
Query Management Facility
Version 12 Release 1

Installing and Managing QMF for TSO
and CICS

IBM

GC27-8877

Note

Before using this information and the product it supports, be sure to read the general information under
"Notices" at the end of this information.

March 30, 2020 edition

This edition applies to Version 12 Release 1 of IBMIBM® Db2 Query Management Facility (QMF) Classic Edition and
Enterprise Edition, which are features of IBM Db2 12 for z/OS (5650-DB2) and IBM Db2 11 for z/OS (5615-DB2). It also
applies to Version 12 Release 1 of IBM Db2 QMF for z/OS (5697-QM2), which is a stand-alone IBM Db2 for z/OS tool.
This information applies to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1982, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© Rocket Software, Inc. 2013, 2020.

Contents

About this information.. xi
What you should know before you begin..xi
Service updates and support information... xii
Highlighting conventions..xii
How to read syntax diagrams...xii
How to send your comments.. xiii

Part 1. Installing QMF for TSO and CICS... 1

Chapter 1. Planning your configuration...3
Supported configurations...3

Databases that support QMF Version 12.1.. 3
Installation modes.. 4
Coexistence of releases..4

QMF in distributed data networks..5
Remote unit of work..5
Distributed unit of work.. 8

Chapter 2. QMF installation overview and roadmaps...11
QMF installation process overview.. 11
General installation concepts.. 12
Required authorities for installing and adminstering QMF... 12

Required authorities for installing QMF... 13
Required authorities for QMF administration.. 13

Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)..................14
Installation path A: Installing QMF V12.1 in a Db2 for z/OS stand-alone or requester

database.. 16
Installation path B: Migrating to QMF V12.1 from QMF V11.2, V11.1, V10 or a QMF NFM

release in a Db2 for z/OS stand-alone or requester database... 18
Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command..........19

Installation path C: Installing QMF V12.1 in a Db2 for z/OS, iSeries, or LUW server................... 22
Installation path D: Migrating to QMF V12.1 from QMF V11.2, QMF V11.1, QMF V10, or a

QMF NFM release in a Db2 for z/OS, iSeries, or LUW server.. 23
Installation path E: Migrating to QMF V12.1 from V7.2 or earlier in a DB2 for VSE and VM

server... 25
Installation path F: Migrating to QMF V12.1 from QMF V8.1, V9.1, V10.1, V11.1, or V11.2 in

a DB2 for VSE and VM server...26
Roadmap 3: Installing server databases accessed by three-part names.. 27

Installation path G: Preparing a remote server to be accessed by QMF commands that
include three-part names..28

Roadmap 4: Databases accessed in languages other than English... 29
Tasks to perform when upgrading Db2 for z/OS but not QMF.. 30

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases...................................... 33
Preparing to install .. 33

Implementing installation prerequisites... 33
Copying the QMF Version 12.1 libraries from the distribution media...34
Populating the VSAM panel library...37
Addressing storage requirements..37
Moving modules to enhance performance...38

 iii

Setting installation job parameters for requester installations...40
Running the installation jobs... 45

Jobs that install QMF V12.1 where no prior release is installed...45
Jobs that migrate QMF V8 NFM, QMF V9 NFM, QMF V10, QMF V11.1, or QMF V11.2 to QMF

V12.1..47
Defining programs, resources, and preferences to TSO and CICS... 49

Customizing requester installations under TSO.. 49
Customizing requester installations under CICS... 55

Chapter 4. Installing or migrating QMF in server databases.. 61
Setting installation job parameters for server installations..61
Running installation jobs that prepare servers for access by the QMF CONNECT command........... 62

Jobs that install QMF V12.1 in server databases where no prior release is installed..................62
Jobs that migrate QMF V8 NFM, QMF V9 NFM, QMF V10, QMF V11.1, or QMF V11.2 to QMF

V12.1 in a z/OS, iSeries, or LUW server.. 64
Jobs that migrate QMF V7.2 or earlier to QMF V12.1 in a VM or VSE server................................ 66
Jobs that migrate QMF V8, V9, V10, V11.1 or V11.2 to QMF V12.1 in a VM or VSE server......... 66
Falling back to the prior release in server databases.. 67

Running installation jobs that prepare servers to be accessed by QMF commands that include
three-part names.. 68

Chapter 5. Verifying that QMF is installed correctly... 71
Testing QMF installations on requester databases...71

Starting QMF... 71
Checking for the correct version of the QMF panel library.. 75
Checking that QMF libraries have been allocated correctly..77
Checking that all required QMF views were installed..77
Installing sample queries and procedures required for the installation verification

procedures...77
Running the installation verification procedures...80

Testing QMF installations on server databases...83

Chapter 6. Migration and fallback considerations.. 85
Accessing profiles and objects from a prior QMF release...85

Accessing QMF profiles in a different database.. 85
Migrating tables, views, and QMF objects..86

Object compatibility between releases... 86
Forward compatibility of earlier releases with QMF Version 12 Release 1.................................. 86
Compatibility of QMF Version 12.1 with earlier releases.. 87

Above the bar storage requirement changes.. 88

Chapter 7. Deleting an earlier release of QMF.. 89
Deleting QMF from a Db2 for z/OS database...89

When the old and new release are in the same subsystem.. 89
When the old and new release are in different subsystems... 92

Deleting QMF from a DB2 for iSeries or LUW database.. 93
When the old and new releases are in the same server.. 94
When the old and new release are in different servers... 94

Deleting QMF from a DB2 for VSE and VM database...95
When the old and new releases are in the same server.. 95
When the old and new release are in different servers... 96

Chapter 8. Installing extra value features...97
Configuring QMF Analytics for TSO..97

Load library considerations for QMF Analytics for TSO... 97
Allocating files used by QMF Analytics for TSO... 97
File system customization for QMF Analytics for TSO...98
Installing QMF Analytics for TSO sample tables..99

iv

Verifying that QMF Analytics for TSO installed correctly ..99
Configuring QMF Data Service (QDS)...100
Installing QMF National Language Features... 101
Migrating QMF National Language Features... 106
Installing the QMF stored procedure interface (TSO only)...107
Installing the enhanced LIST command function (z/OS only).. 109
Configuring the QMF Data Service Interface...112

Part 2. Managing QMF for TSO and CICS... 115

Chapter 9. Starting QMF.. 117
Starting QMF on TSO..117

Allocating necessary files and resources...117
Adding QMF CLIST and EXEC libraries to TSO...117
Starting QMF with the TSO CALL command...117
Starting QMF directly with the DSQQMFE module.. 118
Starting QMF in a batch environment.. 119
Starting QMF as a Db2 for z/OS stored procedure.. 119

Starting QMF on ISPF...124
Starting QMF from an ISPF menu.. 125
Using LIBDEF statements to allocate QMF program libraries...126
Starting QMF in batch mode in ISPF.. 128
Examples of starting QMF under ISPF... 128

Starting QMF in native z/OS batch... 129
Starting QMF on CICS ..130
Initializing global variables and QMF session behavior when QMF starts....................................... 131

Setting global variables with the DSQUOPTS routine..132
Setting global variables with the global variable table..134
Initialization with the default system initialization procedure..137
Creating your own initialization procedure.. 138

Chapter 10. Setting program parameters and preferences at startup time..141
Summary of program parameters... 141
Setting database and environment parameters..148

Specifying the name of the Db2 for z/OS subsystem in which to start QMF under TSO............ 148
Specifying the initial database connection.. 149
Specifying the name of the QMF application plan... 149
Specifying which ID to use as the QMF profile key under TSO... 150

Defining storage for reports...150
Defining a fixed amount of virtual storage for reports...151
Defining a variable amount of virtual storage for reports..151
Acquiring extra storage for data no longer needed in virtual storage...152

Controlling performance of fetch and insert operations...159
Controlling report wait time... 159
Enabling support for multirow fetch and insert...160

Using multiple database threads...161
Automating QMF activity..162

Specifying the mode of operation (interactive or batch)...162
Specifying an initial procedure to run when QMF starts... 163

Setting tracing options... 167
Setting the trace for TSO.. 168
Setting the trace for CICS...168

Printing DBCS data from non-DBCS display devices.. 169

Chapter 11. Registering users and setting privileges...171
Controlling access to the application plan and packages...171

Granting access to the application plan and packages... 171

 v

Revoking access to the application plan and packages.. 171
Creating QMF user profiles.. 172

About the Q.PROFILES table..172
Establishing a profile structure for your site..180
Adding a user profile...181
Updating a user profile... 183
Deleting a user profile.. 184

Providing access to QMF and database objects..185
Privileges required for QMF commands and functions... 185
Granting and revoking privileges..187

Setting standards for objects and allowing uncommitted read..189
Sharing QMF objects with other users... 189
Allowing uncommitted read... 189

Users’ object lists...190
Customizing users' object lists...190
Default behavior of the QMF LIST and DESCRIBE commands..192
Object list storage requirements..195

Chapter 12. Creating and maintaining objects in the database... 197
Enabling users to create tables in the database... 197

Procedure for creating tables...197
Assigning a table space for SAVE DATA, IMPORT, and RUN QUERY commands.......................198
Granting a user the privileges to create tables..199

Using views to filter sensitive data.. 200
Creating a view... 200
Granting privileges for a view...200

Maintaining the QMF object catalog.. 201
Structure of the Q.OBJECT_DIRECTORY table..201
Structure of the Q.OBJECT_DATA table.. 204
Structure of the Q.OBJECT_REMARKS table...205
Enlarging the table space for the QMF object catalog...205
Listing QMF objects.. 207
Displaying QMF objects.. 208
Transferring ownership of QMF objects...208
Deleting obsolete QMF objects.. 209
Importing queries, forms, and procedures from z/OS data sets.. 209

Maintaining a Db2 for z/OS subsystem..209
Managing data sets...210
Maintaining the QMF control tables... 210

Chapter 13. Setting up printing and charting functions... 213
Deciding whether to use QMF or GDDM services for printing...213
Using GDDM services to handle printing... 214

How QMF interfaces with your GDDM nickname...214
Where GDDM searches for the nickname.. 214
Example nicknames for different printer families... 214
Example nickname definitions for specific printers.. 215
Setting up GDDM services to handle printing.. 216

Using QMF services to handle printing.. 220
QMF services for printing in native z/OS batch, TSO, and ISPF.. 220
Using QMF services for printing in CICS.. 221

Allowing users to print without exiting QMF... 222
Printing requirements by object type.. 223
Enabling charting functions... 224

Enabling chart support in TSO and ISPF..225
Enabling chart support in CICS.. 225

Chapter 14. Command synonyms...227

vi

Using the default synonyms provided with QMF...227
List of default synonyms...227
The DPRE synonym: using ISPF to preview the printed report...228

Guidelines for synonyms..229
Synonym verbs... 229
Synonym object names.. 230
Synonym definitions... 231

Customizing Command synonyms.. 234
Creating a command synonym table... 234
Entering command synonym definitions into the table...235
Activating the synonyms.. 236

Minimizing maintenance of command synonym tables..237
Assigning one synonyms table to all users.. 237
Assigning views of a synonyms table to individual users..237

Chapter 15. Custom function keys..239
Customizing QMF function keys.. 239

Displaying the panel ID.. 239
Choosing the keys that you want to customize... 242
Creating the function key table.. 245
Entering your function key definitions into the table.. 246
Activating new function key definitions... 248
Testing and diagnosing problems with the function key table..249

Examples of key definitions... 249

Chapter 16. Custom edit exit routines for QMF forms..253
Edit exit routines and QMF...253
Fields passed to and from the exit routine..254

Fields of the interface control block.. 254
Fields that characterize the input and output areas... 257

Choosing an edit code..258
Double-byte character set data and edit routines.. 259

DBCS data and what the edit routine receives.. 259
Ensuring that the edit routine returns the right results...260

Date, time, and timestamp data and edit routines... 260
Required formats for date, time, and timestamp information.. 261
Db2 exits for date and time data..262

Edit routines for programming languages... 263
Writing an edit routine in High-Level Assembler... 263
Writing an edit routine in PL/I.. 268
Writing an edit routine in COBOL..273

Chapter 17. Controlling QMF resources..281
The default governor exit routine provided with QMF for TSO and CICS... 281

How a governor exit routine controls resources..281
Resource limits with the default governor exit..284
Program components of the governor exit routine..289
How QMF and the governor interact.. 290
How and when QMF calls the governor exit routine..291

Modifying the default governor exit routine or writing your own routine...298
Passing resource control information to the governor exit... 298
Storing resource control information for the duration of a QMF session....................................310
Providing messages for canceled activities...310
Translating, assembling, and link-editing your governor exit routine.. 311

Canceling user activity... 313
Using the Db2 resource limit facility..314

Differences between governors... 315
QMF commands that can be monitored by the Db2 governor.. 315

 vii

How QMF responds when queries are cancelled by the Db2 governor...................................... 316
Configuring Db2 governing of QMF commands... 317

Chapter 18. Running QMF in batch mode...319
Running QMF as a batch program on z/OS..319

Authority to operate in batch mode... 319
JCL to execute a QMF batch job...320
Running QMF batch in native z/OS...321
Running QMF batch under TSO.. 323
Running QMF batch under ISPF using the QMF BATCH command...324
Initiating a QMF batch job in the foreground on ISPF or TSO... 331
Debugging a batch-mode procedure or application..331

Starting a QMF batch job from a remote Db2 client..332
Running QMF as a batch transaction on CICS...333

Running batch activities from a terminal... 333
Running batch activities without a terminal.. 333
Debugging a procedure.. 334

Chapter 19. Troubleshooting and diagnosing problems.. 335
Applying QMF service...335
Correcting common problems... 336

Errors that can occur at initialization time...336
Warning messages after you start QMF... 344
Incorrect output... 344
Problems with printing... 345
Display errors..347
Resolving storage-related issues...347

Managing QMF performance..347
Capturing EXPLAIN information for dynamic statements...347
Enabling QMF queries to be eligible for query acceleration..348
Solving storage problems...349
Solving resource contention problems.. 351
Improving QMF performance with the DSQEC_BUFFER_SIZE global variable setting..............351
Improving eligibility for the Db2 dynamic statement cache with literal concentration

enablement..352
Using diagnosis aids...353

Diagnosing your problem using message support.. 353
Creating an interrupt to capture diagnostic information...354
The trace facility... 356
Examining error log reports..362
Using diagnostics native to the environment...363

Reporting a problem to IBM.. 365
Searching previously reported problems...365
Working with IBM Software Support..366

Appendix A. Summary of changes in prior releases... 367
Version 11.2 changes.. 367
Version 11.1 changes.. 369
Version 10.1 changes.. 374
Version 9.1 changes.. 377
Version 8.1 changes.. 378
Version 7.2 changes.. 379
Version 7.1 changes.. 380
Version 6.1 changes.. 381

Appendix B. QMF functions that require specific support.................................... 383
Functions that vary according to database type...383

viii

Functions not available in CICS...384

Appendix C. QMF objects that reside in Db2..387
QMF plans.. 387
QMF packages..387
QMF control tables and table spaces for TSO and CICS.. 387
QMF views..388
Db2 for z/OS storage groups... 389
Space for saving LOB data...390
VSAM clusters for TSO/CICS... 390
QMF sample tables.. 391

Appendix D. External editors... 393
Modifying QMF queries and procedures with an editor..393
Inserting QMF reports into documents...394

Changing the application... 395
Renaming the document interface macro (DSQAED1P)...395
Placing the Q.DSQAED1S procedure in the database...395
Changing the data components...396
Changing the CLISTs and macros..397

Appendix E. QMF user-defined functions.. 401
QMF user-defined functions and procedures... 401
APPL_AUTHNAMES... 401
CALL DSQABA1E..402
DSQABA1E... 403

Appendix F. How QMF and GDDM programs are defined to CICS..........................405
How QMF programs are defined to CICS.. 405
How GDDM definitions are loaded during installation of QMF...406
Transaction routing to control resource use in CICS..406

Notices..407
Programming interface information..408
Trademarks..408

Glossary.. 409

Index.. 423

 ix

x

About this information

IBM Db2® Query Management Facility for TSO and CICS® is a tightly integrated, powerful, and reliable tool
that offers query and reporting functions that help you access and present data from any of the following
relational databases:

• Db2 for z/OS®

• Db2 for Linux, UNIX, and Windows
• DB2® for iSeries
• DB2 Server for VSE and VM

These topics are designed to help database administrators and systems programmers with:

• Planning for and performing a new QMF installation or migrating to the current QMF release from a
previous release

• Starting QMF on a Db2 for z/OS application requester
• Customizing and managing the QMF environment for users
• Creating exit routines that establish resource governing capabilities and support for user-defined data

formatting codes
• Running QMF in batch mode
• Troubleshooting and diagnosing problems

What you should know before you begin
You should be familiar with the components that make up your specific environment. These components
are listed and explained below.

• The z/OS operating system.
• Time Sharing Option (TSO), an environment that supports QMF and its related products.
• Interactive System Productivity Facility (ISPF), a dialog manager for QMF.
• Customer Information Control System (CICS), a general-purpose data communication and online

transaction processing system. CICS provides the interface between QMF and z/OS.
• The base Graphical Data Display Manager (GDDM) product, which makes it possible for QMF to display

panels. The base GDDM product can also be used to print reports and other objects. GDDM-PGF is
required for creating charts.

• Db2 for z/OS, the database manager for QMF.
• SMP/E (System Modification Program Extended), the tool used to load QMF content from the

distribution media to the Db2 for z/OS target system where you will be performing the first QMF
installation.

• High-Level Assembler (HLASM), which is needed to modify the default governor exit routine or create
your own. HLASM can also be used to create your own edit codes for QMF forms.

• COBOL and PL/I, which can be used to create your own edit codes for QMF forms.
• REXX, which is used to create execs that install QMF.
• WLM, a component of z/OS that provides the ability to run multiple workloads at the same time within

one z/OS image or across multiple images.

You should be familiar with the basic functions provided in QMF before you begin the tasks in these
topics. To read more about QMF concepts and functions, see the following information:

• , GC27-8876-01

© Copyright IBM Corp. 1982, 2020 xi

• , SC27-8879-01
• , SC27-8880-01

Service updates and support information
To find service updates and support information, including software fix packs, PTFs, Frequently Asked
Questions (FAQs), technical notes, troubleshooting information, and downloads, refer to the following
Web page:

IBM Software Support website

Highlighting conventions
This information uses the following highlighting conventions:

• Boldface type indicates commands or user interface controls such as names of fields, folders, icons, or
menu choices.

• Monospace type indicates examples of text that you enter exactly as shown.
• Italic indicates the titles of other publications or emphasis on significant terms. It is also used to

indicate variables that you should replace with a value.

How to read syntax diagrams
The following rules apply to the syntax diagrams that are used in this information:

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line. The
following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next line.
– The >--- symbol indicates that a syntax diagram is continued from the previous line.
– The --->< symbol indicates the end of a syntax diagram.

• Required items appear on the horizontal line (the main path).
required_item

• Optional items appear below the main path.
required_item

optional_item

If an optional item appears above the main path, that item has no effect on the execution of the syntax
element and is used only for readability.

required_item

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

required_item required_choice1

required_choice2

xii About this information

http://www.ibm.com/software/data/qmf/support.html

If choosing one of the items is optional, the entire stack appears below the main path.

required_item

optional_choice1

optional_choice2

If one of the items is the default, it appears above the main path, and the remaining choices are shown
below.

required_item

default_choice

optional_choice

optional_choice

• An arrow returning to the left, above the main line, indicates an item that can be repeated.

required_item repeatable_item

If the repeat arrow contains a comma, you must separate repeated items with a comma.

required_item

,

repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• Keywords, and their minimum abbreviations if applicable, appear in upper case. They must be spelled

exactly as shown. Variables appear in all lowercase italic letters (for example, column-name). They
represent user-supplied names or values.

• Separate keywords and parameters by at least one space if no intervening punctuation is shown in the
diagram.

• Enter punctuation marks, parentheses, arithmetic operators, and other symbols exactly as shown in the
diagram.

• Footnotes are shown by a number in parentheses; for example, (1).

How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality information. If you
have any comments about this book or any other documentation, use either of the following options:

• Use the online reader comment form, which is located at:

http://www.ibm.com/software/data/rcf
• Send your comments by e-mail to comments@us.ibm.com. Be sure to include the name of the book, the

part number of the book, the version of your product, and, if applicable, the specific location of the text
you are commenting on (for example, a page number or table number).

About this information xiii

http://www.ibm.com/software/data/rcf

xiv Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Part 1. Installing QMF for TSO and CICS

© Copyright IBM Corp. 1982, 2020 1

2 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 1. Planning your configuration
How you install QMF depends on whether a previous release of QMF is installed in the database.
Installation also depends on how the target database for QMF will function in your distributed network.

If QMF already exists, you must determine whether migration from the existing release is supported. If
QMF does not exist, you must determine whether a new installation is supported for this database type.

You must also consider how the database into which you are installing the product will function in a
distributed data configuration. It can stand alone (requiring no connectivity to other databases), function
as a requester, function as a server, or function in both capacities.

After you read these topics, move on to the installation roadmaps. Each roadmap asks you a series of
questions that leads you to the installation path that is appropriate for your QMF configuration, type of
installation or migration, and environment.

Related concepts
QMF installation overview and roadmaps
Because you can install QMF in various databases and migrate to QMF Version 12.1 from various versions,
roadmaps are provided to guide you through the installation and migration processes.
Required authorities for installing and adminstering QMF
Specific authorities are required for installing QMF and for general QMF administration.

Supported configurations
This topic lists databases that support installation of or migration to QMF Version 12.1. It also provides
information about migrating from earlier installation modes and which versions of QMF can coexist with
Version 12.1 in the same Db2 subsystem.

Databases that support QMF Version 12.1
Db2 releases support specific installations of QMF Version 12.1.

The following table shows the supported installations for QMF Version 12.1 according to database type.

For information about compatibility of QMF Version 12.1 with Db2 for z/OS releases not shown in the
table, see http://www.ibm.com/support/docview.wss?uid=swg21409518. In some cases, QMF PTFs
might need to be applied for QMF to operate properly.

Table 1. Supported installations for QMF Version 12.1

Minimum database release

New installations
(no prior release of
QMF exists)

Migrations from
QMF 8.1 NFM,
QMF 9.1 NFM, and
QMF 10.1 and
later

One of the following:

• DB2 for z/OS Version 9.1 (VUE and MLC) running in New
Function Mode with APAR PM45482 applied

• DB2 for z/OS Version 10.1 (VUE and MLC) running in all
modes (except CM8, CM8*, ENFM8, and ENFM8*) with
APARs PM50434 and PM72274 applied

• Db2 for z/OS Version 11.1 (VUE and MLC)
• Db2 for z/OS V12.1 (VUE and MLC)

X X

© Copyright IBM Corp. 1982, 2020 3

http://www.ibm.com/support/docview.wss?uid=swg21409518

Table 1. Supported installations for QMF Version 12.1 (continued)

Minimum database release

New installations
(no prior release of
QMF exists)

Migrations from
QMF 8.1 NFM,
QMF 9.1 NFM, and
QMF 10.1 and
later

DB2 for iSeries Version 5.4 X X

Db2 for Linux, UNIX, and Windows Version 9.5 X X

DB2 Server for VSE and VM Version 7.3 X

Installation modes
Before QMF Version 10, two installation modes were supported: Compatibility Mode and New Function
Mode.

The two installation modes that QMF supported before Version 10 had these characteristics:

• In QMF Compatibility Mode, the QMF object catalog supported authorization IDs up to eight characters
and QMF object names up to 18 characters.

• In QMF New Function Mode, the QMF object catalog supported authorization IDs up to 128 characters
and QMF object names up to 128 characters.

The QMF object catalog comprises the Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and
Q.OBJECT_REMARKS control tables. These three tables store information about QMF queries, forms,
procedures, analytics, and folder objects.

Starting with QMF Version 10, two different installation modes are no longer supported. The QMF Version
12.1 object catalog supports authorization IDs and object names of the same lengths that were
supported by QMF Version 10, QMF Version 9 New Function Mode, and QMF Version 8 New Function
Mode. This difference in catalog column lengths determines which releases of QMF can coexist in the
same database.

QMF Version 11 Release 2 is the last release that supports migration from a QMF release in Compatibility
Mode. QMF Version 12 Release 1 does not support migration from QMF Version 9.1 Compatibility Mode,
QMF Version 8.1 Compatibility Mode, QMF Version 7.2, or earlier releases. If you are using one of these
versions of QMF, you must migrate to New Function Mode prior to migrating to QMF Version 12 Release 1.

Related reference
Coexistence of releases
QMF Version 12.1 can coexist in the same database only with QMF Version 8.1 New Function Mode, QMF
Version 9.1 New Function Mode, or QMF Version 10.1, QMF Version 11.1, or QMF Version 11.2.

Coexistence of releases
QMF Version 12.1 can coexist in the same database only with QMF Version 8.1 New Function Mode, QMF
Version 9.1 New Function Mode, or QMF Version 10.1, QMF Version 11.1, or QMF Version 11.2.

The rules for coexistence of QMF Version 12.1 is due to a difference in the length of authorization IDs and
QMF object names that are supported by the QMF catalog, The following table shows these differences in
supported lengths.

4 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 2. Lengths supported by the QMF object catalog for authorization IDs and QMF object names in QMF
Version 12.1 and prior releases

Release of QMF

Maximum authorization
ID length supported by
QMF catalog

Maximum object
name length
supported by QMF
catalog

• QMF Version 12.1
• QMF Version 11.2
• QMF Version 11.1
• QMF Version 10.1
• QMF Version 9.1 New Function Mode
• QMF Version 8.1 New Function Mode

128 128

• QMF Version 9.1 Compatibility Mode
• QMF Version 8.1 Compatibility Mode
• QMF Version 7.2 or earlier

8 18

QMF in distributed data networks
The first installation of QMF must be performed in a Db2 for z/OS database. When this installation is
complete, the Db2 for z/OS database can then stand alone, function as a requester, or function as both a
requester and server for other QMF Version 12.1 installations.

If the QMF installation under Db2 for z/OS will function as a requester, it can be used to access data from
any of the following remote database server types:

• Another Db2 for z/OS subsystem
• Db2 for Linux, UNIX, and Windows
• DB2 for iSeries
• DB2 for VSE and VM

QMF supports two methods of remote data access: remote unit of work and distributed unit of work. Both
types of access are based on the definition of a unit of work, which is a single logical transaction. A logical
transaction consists of a sequence of SQL statements in which either all of the operations are
successfully performed or the sequence as a whole is considered unsuccessful. For example, all SQL
statements in a multistatement QMF SQL query that contains no COMMIT statements run under a single
unit of work.

Important: Both types of remote data access require that DRDA communications between the requester
and server databases be defined and operational.

Restriction: Different databases have varying levels of support for data types and various functions.
When you display a table or view on a remote database, some operations such as SAVE or EXPORT might
be unsupported if the object includes or refers to a data type that is not supported by that database.

Remote unit of work
QMF supports the remote unit of work of remote data access. Remote unit of work is a form of distributed
relational database processing in which an application program can access data on a remote database
within a unit of work.

A remote unit of work can include more than one relational database request, but all requests must be
made to the same remote database. All requests to a database must be completed (either committed or
rolled back) before requests can be sent to another database.

Chapter 1. Planning your configuration 5

When QMF is participating in a remote unit of work configuration, each installation in a Db2 for z/OS
database can act as either a requester only or as both a requester and server. Installations of QMF in
database types other than Db2 for z/OS can function only as servers, not requesters, in a remote unit of
work configuration.

How the connection is made in remote unit of work configuration
With the remote unit of work data access method, you can connect to the server in one of two ways.

Use one of the following methods to connect from the requester to the server:

• Issue the QMF CONNECT command from within an established QMF session, procedure, or program.
• Specify the DSQSDBNM program parameter when you start QMF. This parameter specifies the name of

an initial server to which QMF will connect.

The DSQSDBNM parameter and the DSQSSUBS parameter are used together. QMF first connects to the
local database requester that is specified on the DSQSSUBS parameter and then issues a CONNECT
command internally to connect to the server location that is specified by the DSQSDBNM parameter,
prior to displaying the QMF home panel.

Restriction: Connectivity with remote servers is not supported when QMF for TSO is started as a stored
procedure in the Db2 for z/OS requester database.

The following figure illustrates QMF in a remote unit of work configuration.

Figure 1. QMF remote unit of work configuration

Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

What you can access using the QMF CONNECT command
After using the QMF CONNECT command or the DSQSDBNM program parameter to connect to a remote
server, you can access both QMF and database objects at the remote server in the same way that you
access them locally.

The QMF catalog on DB2 for VSE and VM databases allows authorization IDs to be up to 8 characters and
QMF object names to be up to 18 characters. The QMF Version 12.1 catalog on all other database types
supports authorization IDs and QMF object names up to 128 characters. When the CONNECT command
references a DB2 for VSE and VM database, the differences in the structure of the QMF catalog are

6 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

tolerated between the two systems. However, be aware of the supported lengths on the DB2 for VSE and
VM system as you run QMF queries and procedures and issue QMF commands.

Where QMF needs to be installed for remote unit of work access
For QMF to connect to a remote server using the QMF CONNECT command or the DSQSDBNM parameter,
the same release level of QMF must be present at both the requester and the server.

The following objects must be installed in both locations:

• QMF installation plan and packages
• QMF application packages
• QMF control tables
• QMF catalog views
• Table space for QMF SAVE DATA and IMPORT TABLE commands
• QMF sample tables (optional)

The QMF application plan must be present at the requester only.

If the QMF control tables and packages are on the remote server and are at the same release level as they
are on the requester, the connection process is successful and processing continues on the remote server
after the connection is established.

Related reference
QMF objects that reside in Db2
These QMF objects are necessary to run QMF Version 12.1 in a Db2 for z/OS subsystem. You can use this
information as a guide during recovery operations if necessary.

Roadmaps for remote unit of work configurations
Two procedures are required to set up QMF to connect to a remote server through the QMF CONNECT
command.

To set up QMF to use the QMF CONNECT command to access data from one or more remote servers:

1. Follow “Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)” on
page 14 to install QMF in the requester database.

Only Db2 for z/OS databases can function as requesters. Use roadmap 1 for each requester that must
access QMF Version 12 Release 1 on a remote server.

2. Follow “Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command” on
page 19 to install QMF in each remote server database so that each server is enabled for access by
QMF CONNECT commands that are issued from requester databases.

If the remote server is a Db2 for z/OS database that is functioning as both a server and a requester, the
installation paths in roadmap 1 prepare the database to function in both capacities.

When you finish any of the installation paths that are associated with roadmap 2, the server is also
prepared for access by three-part names in QMF commands.

Restriction: QMF commands with three-part names cannot be directed to DB2 for VSE and VM
servers.

Related concepts
Distributed unit of work
QMF supports the distributed unit of work of remote data access. Distributed unit of work is a form of
distributed relational database processing that enables a user or application program to read or update
data at multiple locations within a unit of work.

Example configuration for remote unit of work
This example demonstrates a remote unit of work configuration in which both the server and requester
are Db2 for z/OS databases.

In this configuration, the following architecture is used:

Chapter 1. Planning your configuration 7

• The z/OS operating system z/OS1 has two Db2 12 for z/OS subsystems: DB2A and DB2B. This system is
a TSO system; DB2A is an application requester and DB2B is an application server.

• The z/OS operating system z/OS2 has one Db2 12 for z/OS subsystem, DB2C. This system is a batch
system; DB2C is an application server, which is accessible to the TSO users on z/OS1.

• QMF must be installed into DB2A as an application requester, and into DB2B and DB2C as an
application server. Authorized users on DB2A can access data that is stored at DB2B and DB2C without
logging onto different z/OS operating systems.

Figure 2. QMF in a remote unit of work configuration where both the requester and server are Db2 for z/OS

Distributed unit of work
QMF supports the distributed unit of work of remote data access. Distributed unit of work is a form of
distributed relational database processing that enables a user or application program to read or update
data at multiple locations within a unit of work.

Within one unit of work, an application running in one system can direct SQL requests to multiple remote
database management systems by using the SQL that is supported by those systems. For example, a
shop inventory program can update an inventory table on one system and an accounts receivable table on
another system within one unit of work.

When QMF is participating in a distributed unit of work configuration, the database that initiates the data
request is always Db2 for z/OS, because that is where QMF is running. Database types other than Db2 for
z/OS can function only as servers, not requesters.

Related concepts
QMF in distributed data networks
The first installation of QMF must be performed in a Db2 for z/OS database. When this installation is
complete, the Db2 for z/OS database can then stand alone, function as a requester, or function as both a
requester and server for other QMF Version 12.1 installations.

How the connection is made in distributed unit of work configuration
QMF supports distributed unit of work through the use of aliases or three-part names in QMF commands.

Three-part names take the following form:

location_name.auth_ID.object_name

In this syntax:

• location_name specifies the name of the database that is the target of the request.
• auth_ID specifies the authorization ID of the user who created the object.
• object_name specifies the name of the table or view to be accessed.

Restrictions:

• Connectivity with remote servers is not supported when QMF for TSO is started as a stored procedure in
the Db2 for z/OS requester database.

• QMF commands that include three-part names cannot be directed to DB2 for VSE and VM servers.

8 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• By default, QMF commands that include three-part names cannot be used to access remote tables that
contain large object (LOB) data. To enable access of LOB data in remote tables with three-part names,
the DSQEC_LOB_RETRV global variable must be set to 3. The DSQEC_LOB_RETRV can also be set to 2
to enable the retrieval of LOB metadata only.

• Unless the command that includes the three-part name is directed to Db2 for z/OS, QMF must be
started with multirow fetch turned off.

Related concepts
Enabling support for multirow fetch and insert
The DSQSMRFI parameter controls whether the database uses multirow or single-row fetch and insert.

What you can access using three-part names
Three-part names in QMF commands allow you to access only database tables and views. To access QMF
objects, use a remote unit of work configuration.

To access QMF objects (queries, forms, procedures, analytics, and folder objects) on a remote server, you
first must use the QMF CONNECT command to connect to the server database, then issue the request.
The QMF CONNECT command requires a remote unit of work configuration.

Related concepts
Remote unit of work
QMF supports the remote unit of work of remote data access. Remote unit of work is a form of distributed
relational database processing in which an application program can access data on a remote database
within a unit of work.

Where QMF needs to be installed for distributed unit of work access
You can install QMF in two ways to enable users to use aliases or three-part names in QMF commands.

To enable users to use aliases or three-part names in QMF commands, you must complete one of the
following tasks:

• Fully install QMF at both the requester and server.
• Fully install QMF at the requester and perform a three-part-name installation at the server.

Related tasks
Running installation jobs that prepare servers to be accessed by QMF commands that include three-part
names
This job sequence prepares both the requester and server to use three-part names in QMF commands to
access data at a remote server.

Roadmaps for distributed unit of work configurations
How you set up QMF for the distributed unit of work method depends on whether you intend to use the
QMF CONNECT command with three-part names.

If you intend to use three-part names, but not the QMF CONNECT command for remote data access,
complete the following steps:

1. Follow “Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)” on
page 14 to install QMF in the requester database.

2. Follow “Roadmap 3: Installing server databases accessed by three-part names” on page 27 to
prepare the remote server for access by QMF three-part names.

If you intend to use the QMF CONNECT command in addition to three-part names for remote data access,
complete the following steps:

1. Follow “Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)” on
page 14 to install QMF in the requester database.

2. Follow “Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command” on
page 19 to install QMF in the remote server. The installation paths that are associated with roadmap
2 prepare the server to be accessed by both the QMF CONNECT command and three-part names.

Chapter 1. Planning your configuration 9

Restriction: QMF commands that include three-part names cannot be directed to DB2 for VSE and VM
servers.

Example configuration for distributed unit of work
This example configuration shows a Db2 for z/OS-to-Db2 for z/OS distributed unit of work connection.

Figure 3. QMF distributed unit of work configuration. (This example shows a Db2 for z/OS-to-Db2 for z/OS
configuration.)

10 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 2. QMF installation overview and roadmaps
Because you can install QMF in various databases and migrate to QMF Version 12.1 from various versions,
roadmaps are provided to guide you through the installation and migration processes.

For example, the steps, requirements, and considerations are different depending on whether you are
installing QMF in a stand-alone database, a server database that is accessed by the QMF CONNECT
command, or a server database that is accessed by three part names. You can also enable QMF to access
data in languages other than English. Roadmaps are provided for each of these options.

Important: If you upgrade the database after you install QMF Version 12.1, you must run certain jobs to
ensure continued proper operation of QMF.

QMF installation process overview
The process of installing QMF consists of installing or migrating QMF on databases of your choice and
installing any optional features that you want to use.

Table 3. An overview of the QMF installation process

Step of the installation process Details for this step

1. Install or migrate QMF in the first database.

This database must be a Db2 for z/OS database.

You can install QMF Version 12.1 in any of the following configurations:

• In a stand-alone database.

In this configuration, the QMF installation in this database never
accesses, or is accessed by, QMF installations in other databases.

• In an application requester in a distributed data configuration.

In this configuration, the QMF installation in this database requests
data from other QMF installations in remote server databases.

• In both an application requester and an application server in a
distributed data configuration.

In this configuration, the QMF installation in this database accesses
and is accessed by other QMF installations in remote databases.

See roadmap 1 in “Roadmap 1:
Installing QMF in stand-alone or
requester databases (Db2 for z/OS
only)” on page 14.

2. Prepare each additional database in your distributed data
configuration.

Where and how you install QMF in a distributed data configuration
depends on the configuration of your data network and how you plan to
access the data.

• If you plan to use the QMF CONNECT command to access data from
remote servers, follow roadmap 2.

• If you do not plan to use the QMF CONNECT command to connect to
this server, but you intend to direct QMF commands with three-part
names to this server to access tables and views, follow roadmap 3.

See the following information:

• Roadmap 2 in “Roadmap 2:
Installing QMF in server
databases accessed by the QMF
CONNECT command” on page
19.

• Roadmap 3 in “Roadmap 3:
Installing server databases
accessed by three-part names”
on page 27.

3. Optional: Configure QMF Analytics for TSO.

QMF Analytics for TSO provides additional charting and statistical
analysis capabilities for users in the TSO environment.

See “Configuring QMF Analytics for
TSO” on page 97 for information.

© Copyright IBM Corp. 1982, 2020 11

Table 3. An overview of the QMF installation process (continued)

Step of the installation process Details for this step

4. Optional: Install QMF National Language Features.

A National Language Feature (NLF) allows you to use QMF in a language
other than English.

See roadmap 4 in “Roadmap 4:
Databases accessed in languages
other than English” on page 29.

5. Install other optional features as necessary.

• QMF for TSO can be started as a Db2 for z/OS stored procedure.
• You can also install an enhancement to the LIST command that allows

users to list tables and views that are authorized to both primary and
secondary authorization IDs. Granting privileges to PUBLIC for these
objects is then unnecessary.

See the following information:

• “Installing the QMF stored
procedure interface (TSO only)”
on page 107

• “Installing the enhanced LIST
command function (z/OS only)” on
page 109.

General installation concepts
Because QMF for TSO and CICS is a Db2 for z/OS application, you must understand many of the same
concepts as you do to install Db2 for z/OS.

Before you begin the installation process, ensure that you have the following knowledge:

• Ensure that you understand the different ways in which QMF can be configured for your environment so
that you can make informed decisions. Read Chapter 1, “Planning your configuration,” on page 3.

• Ensure that you understand the authorization requirements for installing and administering QMF. Read
“Required authorities for installing and adminstering QMF” on page 12.

• Ensure that you understand the requirements for requester databases. Read “Installation prerequisites
for requester (Db2 for z/OS) databases” on page 33.

• If you intend to install QMF on different databases that are part of a distributed data configuration,
ensure that you understand the remote unit of work and distributed unit of work concepts. Read “QMF
in distributed data networks” on page 5.

• Ensure that you understand the following concepts:

– CREATE, INSERT, and GRANT SQL statements, including the meaning of granting privileges or
authorities to PUBLIC.

– The terms application plan, package, and bind.
– Databases, table spaces, tables, and views.
– Database security.

Related concepts
QMF in distributed data networks
The first installation of QMF must be performed in a Db2 for z/OS database. When this installation is
complete, the Db2 for z/OS database can then stand alone, function as a requester, or function as both a
requester and server for other QMF Version 12.1 installations.

Required authorities for installing and adminstering QMF
Specific authorities are required for installing QMF and for general QMF administration.
Related concepts
Installation prerequisites for requester (Db2 for z/OS) databases

12 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Before you can install QMF on Db2 for z/OS databases that function as stand-alone or requester
databases, you must fulfill the hardware and software requirements.
Planning your configuration
How you install QMF depends on whether a previous release of QMF is installed in the database.
Installation also depends on how the target database for QMF will function in your distributed network.

Required authorities for installing QMF
Ensure that you have the necessary authorities for the databases in which you will be installing QMF.

The following authorities are required:

• Installations on Db2 for z/OS databases require SYSADM authority.

If your site uses security access control external to Db2 such as RACF, reference installation option
EXTSEC in the installation defaults exec QMF1210.SDSQEXCE(DSQ1DEFS). Proper setting of the
EXTSEC variable will eliminate SQL GRANT statements from being issued during the installation
process. Additionally, the default view job will be created without reference to SYSIBM.SYSTABAUTH.

• Installations on Db2 for Linux, UNIX, or Windows databases require SYSADM authority.
• Installations on iSeries databases require *ALLOBJ authority.
• Installations on VM or VSE databases require DBA authority.

Regardless of the user ID that is used to install QMF, the following resources are owned by the "Q"
authorization ID:

• All QMF control tables
• Sample procedures and queries
• Sample tables
• Default views for the database object list

Related concepts
Installation defaults for common parameters
Default values in the QMF1210.SDSQEXCE(DSQ1DEFS) exec.
Related tasks
Customizing users' object lists
Using the default views supplied by QMF for your table lists and column information can increase
processing time, because Db2 gathers authorization information from the SYSIBM.SYSTABAUTH table. If
you do not need the extra security provided by these authorization checks, consider creating your own
views that generate a list of objects stored in the database.
Related reference
Installing sample queries and procedures required for the installation verification procedures
Install the sample QMF queries and procedures only on TSO.
QMF control tables and table spaces for TSO and CICS
These are the control tables shipped with QMF.

Required authorities for QMF administration
To avoid issuing multiple GRANT statements for specific database objects, you must use an authorization
ID with DBADM or equivalent authority for most QMF administration and customization tasks. You need
this level of authority on any database in which your users store data.

You need an authorization ID with DBADM or equivalent authority to the following databases on Db2 for
z/OS systems:
DSQDBCTL

The QMF control tables are stored in this database.

Chapter 2. QMF installation overview and roadmaps 13

DSQDBDEF
When a user issues a SAVE DATA command, the resulting table is stored by default in this database, in
table space DSQTSDEF. Depending on your installation, users may be creating tables in implicitly
created table spaces in the DSQDBDEF table.

If your users will be working with database and QMF objects in a Db2 for Linux, UNIX, and Windows
database, you will need DBADM authority on the DSQTSCTL and DSQTSOBJ database partition groups.

To administer QMF under a different ID from which you installed the product, grant DBADM authority to
the new ID.

During initialization, QMF checks the authorization ID of the user who is starting QMF to determine
whether that ID has either the INSERT or DELETE privilege on the Q.PROFILES control table. If the
authorization ID has either of these privileges, QMF considers the user to be a QMF administrator. QMF
administrator authority makes it easier for you to administer and maintain QMF because QMF
administrators can perform the following commands on QMF queries, forms, and procedures that are
owned by other users without requiring the owners to share these objects with all users:

• SAVE
• ERASE
• IMPORT
• EXPORT
• DISPLAY

QMF administrators can also issue the DISPLAY command on ANALYTIC objects and the ERASE
command on ANALYTIC and FOLDER objects that are owned by other users.

A user who has DBADM or equivalent authority on the database where the QMF control tables are stored
(DSQDBCTL) automatically has QMF administrator authority.

The DSQUOPTS exit routine runs during QMF initialization and provides a way for you to disable QMF
administrator authority checking by using the DSQEC_DISABLEADM global variable. However, if you
disable this feature, you must explicitly set up administrator access to users' QMF objects. For example,
you can request that users save their objects with the SHARE=YES parameter, or you can use the
DSQEC_SHARE global variable to change the default value for the SHARE parameter to YES. You can also
set a new default value for the DSQEC_SHARE global variable in the DSQUOPTS exit routine.

Related concepts
Initializing global variables and QMF session behavior when QMF starts
You can use several methods to set QMF global variables when QMF starts. These methods involve
modifying the DSQUOPTS routine, the Q.GLOBAL_VARS global variable table, or the default system
initialization procedure. This procedure can also be used to set other aspects of a user's QMF session
before the home panel displays.
Related reference
QMF control tables and table spaces for TSO and CICS
These are the control tables shipped with QMF.

Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for
z/OS only)

Use this information for the first QMF installation and for databases that will stand alone, function as
requesters only, or function as both requesters and servers. Only Db2 for z/OS databases can stand alone
or function as requesters.

About this task

The roadmap and installation paths for stand-alone or requester databases apply to the following
installation types:

14 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• The initial installation of QMF Version 12 Release 1. The first installation must always be in a Db2 for
z/OS database because Db2 for z/OS is the only type of database from which QMF can be started.

• QMF installations in databases that will never access remote servers or be accessed by remote
requesters. These databases are known as stand-alone databases.

• QMF installations in databases that function as requesters only in a distributed data configuration.
• QMF installations in databases that function as both servers and requesters in a distributed data
configuration.

Procedure

Use the following roadmap to identify the installation path that is appropriate for your environment.

Figure 4. Installation roadmap for the first QMF Version 12 Release 1 installation or databases that will stand
alone, function as requesters only, or function as both requesters and servers

Roadmap notes:

a. The first installation must be performed on a Db2 for z/OS database because Db2 for z/OS is the only
type of database from which QMF can be started.

b. To determine which Db2 for z/OS release is installed, run the following query:

SELECT GETVARIABLE('SYSIBM.VERSION')
FROM SYSIBM.SYSDUMMY1

The result is DSNvvrrm, where DSN indicates that Db2 for z/OS is the database, vv indicates the
version, rr indicates the release level, and m indicates the modification level. For example, a DB2 10
for z/OS database returns the following result:

DSN10015

Chapter 2. QMF installation overview and roadmaps 15

To determine if the Db2 installation is Db2 Value Unit Edition, run the
SYSPROC.ADMIN_INFO_SYSPARM stored procedure and check the value of the OTC_LICENSE
parameter. Db2 VUE installations have a value of TERMS_ACCEPTED for this parameter; otherwise, the
value is NOT_USED.

c. To determine which QMF release is installed, start QMF. The version and release are displayed on the
QMF home panel.

d. To determine the mode of an existing QMF installation, run the following query. You can run this query
from QMF, SPUFI, or any other SQL tool that is available to you.

SELECT LENGTH
FROM SYSIBM.SYSCOLUMNS
WHERE NAME = ’USERID’
AND TBNAME = ’ERROR_LOG’
AND TBCREATOR = ’Q’

• If the query returns a value of 8, the existing QMF installation is in Compatibility Mode.
• If the query returns a value of 128, the existing QMF installation is in New Function Mode.
• If the query returns no value, QMF is not installed on the server that you are checking.

What to do next

Based on your results after you work through this roadmap, proceed to installation path A or B.

Related concepts
QMF in distributed data networks
The first installation of QMF must be performed in a Db2 for z/OS database. When this installation is
complete, the Db2 for z/OS database can then stand alone, function as a requester, or function as both a
requester and server for other QMF Version 12.1 installations.
Related tasks
Installation path A: Installing QMF V12.1 in a Db2 for z/OS stand-alone or requester database
Use this procedure for the initial installation of QMF in a Db2 for z/OS stand-alone or requester database.
This installation path describes the steps that are required to install QMF Version 12.1 on a Db2 for z/OS
database that contains no prior release of QMF.
Installation path B: Migrating to QMF V12.1 from QMF V11.2, V11.1, V10 or a QMF NFM release in a Db2
for z/OS stand-alone or requester database
Use this procedure to migrate QMF Version 8.1 New Function Mode, QMF Version 9.1 New Function Mode,
QMF Version 10, or QMF Version 11.1, or QMF Version 11.2 to QMF Version 12.1.

Installation path A: Installing QMF V12.1 in a Db2 for z/OS stand-alone or requester
database

Use this procedure for the initial installation of QMF in a Db2 for z/OS stand-alone or requester database.
This installation path describes the steps that are required to install QMF Version 12.1 on a Db2 for z/OS
database that contains no prior release of QMF.

Before you begin

The instructions in this topic assume that you have already determined that this is the correct installation
path by using the roadmap for stand-alone and requester databases.

Before you begin the installation process, complete the following steps:

• Ensure that you have the proper authority for the database into which you will be installing the product.
For more information, see “Required authorities for installing QMF” on page 13.

• If you are installing Db2 QMF for z/OS, ensure that the database is Db2 for z/OS Version 9.1 New
Function Mode or later. If the database release is earlier than Version 9.1 New Function Mode, upgrade
the database before you continue. DB2 10 cannot be running in conversion mode from Version 8,
conversion mode* from Version 8, enabling-new-function mode from Version 8, or enabling-new-
function mode* from Version 8 (CM8, CM8*, ENFM8, or ENFM8*).

16 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Procedure

To install QMF Version 12.1 in a Db2 for z/OS stand-alone or requester database where no previous
release exists, complete the following steps:
1. Start the requester database into which you will be installing QMF Version 12.1.
2. Complete the steps in “Preparing to install QMF in requester (Db2 for z/OS) databases” on page 33.

Thoroughly test the installation of all the products that are listed as required in “Prerequisite software”
on page 33 before you start to install QMF. If an installation verification procedure (IVP) is associated
with the product (GDDM, for example), ensure that the IVP exits with no errors before you start to
install QMF.

3. Install QMF by running the jobs in “Jobs that install QMF V12.1 where no prior release is installed” on
page 45.

4. Customize QMF for the z/OS environment in which it is running:

• If QMF is running in TSO, complete the steps in “Customizing requester installations under TSO” on
page 49.

• If QMF is running in CICS, complete the steps in “Customizing requester installations under CICS”
on page 55.

5. Test the installation according to the procedure in “Testing QMF installations on requester databases”
on page 71.

6. Run the installation verification procedure for the appropriate environment:

• If QMF is running in TSO, complete the steps in “Running the IVPs for TSO” on page 80.
• If QMF is running in CICS, complete the steps in “Running the IVP for CICS” on page 82.

7. Thoroughly test the new release with site-specific workloads, users, applications, and objects before
using it in a production environment.
If the objects that you will use to test the new release are in a different database, you can migrate the
objects to the database where QMF Version 12.1 is installed by using the instructions in Chapter 6,
“Migration and fallback considerations,” on page 85.

What to do next

Continue the installation process with the following roadmaps as necessary:

• If you want to install or migrate QMF on additional stand-alone or requester databases, go back through
roadmap 1.

• If you want to install or migrate QMF on server databases that are to be accessed by the QMF CONNECT
command, proceed to roadmap 2.

• If you want to install or migrate QMF on sever databases that are to be accessed through three-part
names, proceed to roadmap 3.

• If you want to enable a National Language Feature, proceed to roadmap 4.

Related concepts
Initializing global variables and QMF session behavior when QMF starts
You can use several methods to set QMF global variables when QMF starts. These methods involve
modifying the DSQUOPTS routine, the Q.GLOBAL_VARS global variable table, or the default system

Chapter 2. QMF installation overview and roadmaps 17

initialization procedure. This procedure can also be used to set other aspects of a user's QMF session
before the home panel displays.

Installation path B: Migrating to QMF V12.1 from QMF V11.2, V11.1, V10 or a QMF NFM
release in a Db2 for z/OS stand-alone or requester database

Use this procedure to migrate QMF Version 8.1 New Function Mode, QMF Version 9.1 New Function Mode,
QMF Version 10, or QMF Version 11.1, or QMF Version 11.2 to QMF Version 12.1.

Before you begin

The instructions in this topic assume that you have already determined that this is the correct installation
path by using the roadmap for stand-alone and requester databases.

Before you begin the installation process, complete the following steps:

• Ensure that you have the proper authority for the database into which you will be installing the product.
For more information, see “Required authorities for installing QMF” on page 13.

• If you are installing Db2 QMF for z/OS, ensure that the database is Db2 for z/OS Version 9.1 New
Function Mode or later. If the database release is earlier than Version 9.1 New Function Mode, upgrade
the database before you continue. DB2 10 cannot be running in conversion mode from Version 8,
conversion mode* from Version 8, enabling-new-function mode from Version 8, or enabling-new-
function mode* from Version 8 (CM8, CM8*, ENFM8, or ENFM8*).

Procedure

To migrate to QMF Version 12.1 from a QMF New Function Mode release, from QMF Version 10.1, QMF
Version 11.1, or from QMF Version 11.2 in a Db2 for z/OS requester, complete the following steps:
1. Back up the source code and any associated load modules for user-written routines or programs that

are essential for your use of QMF.
Such routines could include, but are not limited to, the following items:

• Governor exit routines
• Edit codes for QMF forms
• REXX execs that provide form calculations or conditional formatting
• Applications that make use of the QMF callable or command interfaces
• Command synonym definitions and any routines that support these definitions
• Customized function key definitions

2. Start the requester database into which you will be installing QMF Version 12.1.
3. Complete the steps in “Preparing to install QMF in requester (Db2 for z/OS) databases” on page 33.

Thoroughly test the installation of all the products that are listed as required in “Prerequisite software”
on page 33 before you start to install QMF. If an installation verification procedure (IVP) is associated
with the product (GDDM, for example), ensure that the IVP exits with no errors before you start to
install QMF.

4. Run the jobs in “Jobs that migrate QMF V8 NFM, QMF V9 NFM, QMF V10, QMF V11.1, or QMF V11.2 to
QMF V12.1” on page 47.

5. Customize QMF for the z/OS environment in which it is running:

• If QMF is running in TSO, complete the steps in “Customizing requester installations under TSO” on
page 49.

• If QMF is running in CICS, complete the steps in “Customizing requester installations under CICS”
on page 55.

6. Test the installation according to the procedure in “Testing QMF installations on requester databases”
on page 71.

7. Run the installation verification procedure for the appropriate environment:

18 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• If QMF is running in TSO, complete the steps in “Running the IVPs for TSO” on page 80.
• If QMF is running in CICS, complete the steps in “Running the IVP for CICS” on page 82.

8. Review the migration considerations in Chapter 6, “Migration and fallback considerations,” on page
85 to determine if special migration considerations for this release apply to your installation or to the
functions that you will be using.

9. Thoroughly test the new release with site-specific workloads, users, applications, and objects before
using it in a production environment.

What to do next

Continue the installation process with the following roadmaps as necessary:

• If you want to install or migrate QMF on additional stand-alone or requester databases, go back through
roadmap 1.

• If you want to install or migrate QMF on server databases that are to be accessed by the QMF CONNECT
command, proceed to roadmap 2.

• If you want to install or migrate QMF on sever databases that are to be accessed through three-part
names, proceed to roadmap 3.

• If you want to enable a National Language Feature, proceed to roadmap 4.

Related concepts
Initializing global variables and QMF session behavior when QMF starts
You can use several methods to set QMF global variables when QMF starts. These methods involve
modifying the DSQUOPTS routine, the Q.GLOBAL_VARS global variable table, or the default system
initialization procedure. This procedure can also be used to set other aspects of a user's QMF session
before the home panel displays.

Roadmap 2: Installing QMF in server databases accessed by the QMF
CONNECT command

Use the following roadmap to identify the installation path for server-only databases that are to be
accessed by the QMF CONNECT command or the DSQSDBNM program parameter. The paths in this
roadmap also enable the servers to be accessed by three-part names in QMF commands.

Restrictions:

• Connectivity with remote servers is not supported when QMF for TSO is started as a stored procedure in
the Db2 for z/OS requester database.

• QMF commands that include three-part names cannot be directed to DB2 for VSE and VM servers.
• By default, QMF commands that include three-part names cannot be used to access remote tables that

contain large object (LOB) data. To enable access of LOB data in remote tables with three-part names,
the DSQEC_LOB_RETRV global variable must be set to 3. The DSQEC_LOB_RETRV can also be set to 2
to enable the retrieval of LOB metadata only.

• Unless the command that includes the three-part name is directed to Db2 for z/OS, QMF must be
started with multirow fetch turned off.

Before you begin

Understand the concepts in “QMF in distributed data networks” on page 5 before you use this
information.

Procedure

Use the following roadmap to identify the installation path that is appropriate for your environment.

Chapter 2. QMF installation overview and roadmaps 19

Figure 5. Installation roadmap for databases that are accessed by the QMF CONNECT command or the
DSQSDBNM program parameter

Roadmap notes:

a. QMF Version 12.1 does not support new installations on DB2 Server for VSE and VM. QMF Version 3.3
or later must be installed or the database cannot function as a server for requesters where QMF
Version 12.1 is installed.

b. To determine which database release is installed, complete the appropriate step:

• For Db2 for z/OS databases, run the following query:

SELECT GETVARIABLE('SYSIBM.VERSION')
FROM SYSIBM.SYSDUMMY1

The result is DSNvvrrm, where DSN indicates that this database is Db2 for z/OS, vv indicates the
version, rr indicates the release level, and m indicates the modification level. For example, a Db2 for
z/OS Version 8.1.5 database returns the following result:

DSN08015

• For DB2 for iSeries databases, issue the DSPPTF command. The release is recorded in the Release
of Base Option field.

20 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• For Db2 for Linux, UNIX, and Windows databases, run the following query:

SELECT SERVICE_LEVEL
FROM SYSIBMADM.ENV_INST_INFO

The first three numbers show the version, release, and modification level. For example, "DB2
v9.1.600.647" indicates Db2 for Linux, UNIX, and Windows Version 9.1.6.

• For DB2 for VSE and VM databases, run the following query:

SELECT *
FROM SYSTEM.SYSOPTIONS
WHERE SQLOPTION='RELEASE'

The result is v.r.m, where v indicates the version, r indicates the release level, and m indicates the
modification level.

c. To determine which QMF release is installed, start QMF in the local Db2 for z/OS subsystem. When the
QMF home panel is displayed, issue the CONNECT command to connect to the remote server.
Alternatively, you can specify the initial database connection by using the DSQSDBNM parameter
when you start QMF. When you are connected to the remote server, check the version and release that
is shown on the QMF home panel.

For information about the CONNECT command, see CONNECT in CICS or CONNECT in TSO.
d. To determine the mode of an existing QMF installation, run the following query. You can run the

following query from QMF, SPUFI, or any other SQL tool that is available to you:

SELECT LENGTH
FROM SYSIBM.SYSCOLUMNS
WHERE NAME = ’USERID’
AND TBNAME = ’ERROR_LOG’
AND TBCREATOR = ’Q’

If the query returns a value of 8, the existing QMF installation is in Compatibility Mode. If the query
returns a value of 128, the existing QMF installation is in New Function Mode. If the query returns no
value, QMF is not installed on the server that you are checking.

What to do next

Based on your results after you work through this roadmap, proceed to installation path C, D, E, or F.

Related tasks
Installation path C: Installing QMF V12.1 in a Db2 for z/OS, iSeries, or LUW server
Installation path D: Migrating to QMF V12.1 from QMF V11.2, QMF V11.1, QMF V10, or a QMF NFM
release in a Db2 for z/OS, iSeries, or LUW server
Installation path E: Migrating to QMF V12.1 from V7.2 or earlier in a DB2 for VSE and VM server
Use this procedure to migrate an existing release of QMF that is Version 7.2 or earlier to QMF Version 12.1
in a DB2 for VSE and VM server. This installation path prepares the DB2 for VSE and VM server for access
by the QMF CONNECT command or by the DSQSDBNM program parameter.
Installation path F: Migrating to QMF V12.1 from QMF V8.1, V9.1, V10.1, V11.1, or V11.2 in a DB2 for VSE
and VM server
Use this procedure to migrate an existing QMF Version 8.1, Version 9.1, Version 10.1, Version 11.1, or
Version 11.2 installation to QMF Version 12.1 in a DB2 for VSE and VM server. This installation path
prepares the DB2 for VSE and VM server for access by the QMF CONNECT command or by the DSQSDBNM
program parameter.
Roadmap 3: Installing server databases accessed by three-part names
Use the following roadmap to identify the installation path that supports using three-part names in QMF
commands to access data at remote servers.
Specifying the initial database connection

Chapter 2. QMF installation overview and roadmaps 21

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.qmf11.ref.doc/ref/tpc/dsq_connect_cics.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.qmf11.ref.doc/ref/tpc/dsq_connect_tso.htm

You can start QMF in the local Db2 for z/OS subsystem and connect immediately to another database
before the QMF home panel is displayed.

Installation path C: Installing QMF V12.1 in a Db2 for z/OS, iSeries, or LUW server
Use this procedure to install QMF Version 12.1 in Db2 for z/OS, DB2 for iSeries, or Db2 for Linux, UNIX,
and Windows servers where no prior release of QMF is installed.

After the installation is complete, requester databases where QMF Version 12.1 is installed can connect
to this server with the QMF CONNECT command or the DSQSDBNM program parameter. QMF commands
that include three-part table and view names can also be directed to this server.

Before you begin

The instructions in this topic assume that you have already determined that this is the correct installation
path by using the roadmap for server databases that are accessed by the QMF CONNECT command.

Before you begin the installation process, complete the following steps:

• If you have not done so already, install, prepare, and test QMF Version 12.1 in at least one Db2 for z/OS
requester database that will access this server. Only Db2 for z/OS databases can function as
requesters. See “Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)”
on page 14 for installation paths for requesters.

• Verify that the database is one of the following releases. If necessary, upgrade the database before you
continue:

– Db2 for z/OS servers must be Version 9.1 New Function Mode or later. DB2 10 cannot be running in
conversion mode from Version 8, conversion mode* from Version 8, enabling-new-function mode
from Version 8, or enabling-new-function mode* from Version 8 (CM8, CM8*, ENFM8, or ENFM8*).

If the Db2 for z/OS database will function as both a requester and server, see “Roadmap 1: Installing
QMF in stand-alone or requester databases (Db2 for z/OS only)” on page 14 to determine your
installation path; the installation paths in that roadmap enable the database to function in both
capacities.

– DB2 for iSeries servers must be Version 5.4 or later.
– Db2 for Linux, UNIX, and Windows servers must be Version 9.5 or later.

• Ensure that you have the proper authority for the database into which you will be installing the product.
For more information, see “Required authorities for installing QMF” on page 13.

Procedure

To install QMF Version 12.1 in a Db2 for z/OS, iSeries, or Linux, UNIX, and Windows server where no prior
release of QMF release is installed, complete the following steps:
1. Define and test DRDA communications between the server into which you are installing QMF Version

12.1 and the requester into which you already installed QMF Version 12.1.

DRDA communications between the server and the requester are used to complete the QMF Version
12.1 installation in the server. For more information about how to define and test DRDA, see the Db2
documentation.

2. Start both the requester and server databases.
You must start the Db2 for z/OS subsystem in the requester database with distributed data facility
(DDF) started.

3. For DB2 for iSeries servers only: from the DB2 for iSeries Query Manager, issue the following SQL
statement on the server.
The user ID that you use must belong to the security officer or it must be a user ID that has *ALLOBJ
authority.

CREATE COLLECTION Q

22 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

4. Set installation parameters as explained in “Setting installation job parameters for server installations”
on page 61.

5. Run the jobs in “Jobs that install QMF V12.1 in server databases where no prior release is installed” on
page 62. You must run these jobs from the local database.

6. Test the installation in the remote server:
a) Complete the steps in “Testing QMF installations on server databases” on page 83.
b) Thoroughly test the new release with site-specific workloads, users, applications, and objects

before using it in a production environment.
If the objects that you will use to test the new release are in a different database, you can migrate
the objects to the database where QMF Version 12.1 is installed by using the instructions in
Chapter 6, “Migration and fallback considerations,” on page 85.

7. For DB2 for iSeries servers only: ensure that QMF users have *USE authority for Q *LIB.

What to do next

Continue the installation process with the following roadmaps as necessary:

• If you want to install or migrate QMF on additional stand-alone or requester databases, go through
roadmap 1.

• If you want to install or migrate QMF on additional server databases that are to be accessed by the QMF
CONNECT command, go back through roadmap 2.

• If you want to install or migrate QMF on sever databases that are to be accessed through three-part
names, proceed to roadmap 3.

• If you want to enable a National Language Feature, proceed to roadmap 4.

Related tasks
Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command

Installation path D: Migrating to QMF V12.1 from QMF V11.2, QMF V11.1, QMF V10, or a
QMF NFM release in a Db2 for z/OS, iSeries, or LUW server

Use this procedure to migrate QMF Version 8.1 New Function Mode, QMF Version 9.1 New Function Mode,
QMF Version 10, QMF Version 11.1, or QMF Version 11.2 to QMF Version 12.1 in a Db2 for z/OS, DB2 for
iSeries, or Db2 for Linux, UNIX, and Windows server.

After the migration is complete, requester databases where QMF Version 12.1 is installed can connect to
this server with the QMF CONNECT command or the DSQSDBNM program parameter, and QMF
commands that include three-part table and view names can also be directed to this server.

Before you begin

The instructions in this topic assume that you have already determined that this is the correct installation
path by using the roadmap for server databases that are accessed by the QMF CONNECT command.

Before you begin the installation process, complete the following steps:

• If you have not done so already, install, prepare, and test QMF Version 12.1 in at least one Db2 for z/OS
requester database that will access this server. Only Db2 for z/OS databases can function as
requesters. See “Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)”
on page 14 for installation paths for requesters.

• Verify that the database is one of the following releases. If necessary, upgrade the database before you
continue:

– Db2 for z/OS servers must be Version 9.1 New Function Mode or later. DB2 10 cannot be running in
conversion mode from Version 8, conversion mode* from Version 8, enabling-new-function mode
from Version 8, or enabling-new-function mode* from Version 8 (CM8, CM8*, ENFM8, or ENFM8*).

– DB2 for iSeries servers must be Version 5.4 or later.
– Db2 for Linux, UNIX, and Windows servers must be Version 9.5 or later.

Chapter 2. QMF installation overview and roadmaps 23

• Ensure that you have the proper authority for the database into which you will be installing the product.
For more information, see “Required authorities for installing QMF” on page 13.

Procedure

To migrate to QMF Version 12.1 from a QMF New Function Mode release in a Db2 for z/OS, DB2 for
iSeries, or Db2 for Linux, UNIX, and Windows server, complete the following steps:
1. Define and test DRDA communications between the server into which you are installing QMF Version

12.1 and the requester into which you already installed QMF Version 12.1.

DRDA communications between the server and the requester are used to complete the QMF Version
12.1 installation in the server. For more information about how to define and test DRDA, see the Db2
documentation.

2. Start both the requester and server databases.
You must start the Db2 for z/OS subsystem in the requester database with distributed data facility
(DDF) started.

3. Set installation parameters as explained in “Setting installation job parameters for server installations”
on page 61.

4. Run the jobs in “Jobs that migrate QMF V8 NFM, QMF V9 NFM, QMF V10, QMF V11.1, or QMF V11.2 to
QMF V12.1 in a z/OS, iSeries, or LUW server” on page 64. These jobs must be run from the local
database.

5. Test the installation in the remote server:
a) Complete the steps in “Testing QMF installations on server databases” on page 83.
b) Thoroughly test the new release with site-specific workloads, users, applications, and objects

before using it in a production environment.
If the objects that you will use to test the new release are in a different database, you can migrate
the objects to the database where QMF Version 12.1 is installed by using the instructions in
Chapter 6, “Migration and fallback considerations,” on page 85.

6. Review the migration considerations in Chapter 6, “Migration and fallback considerations,” on page
85 to determine if special migration considerations for this release apply to your installation or to the
functions that you will be using.

What to do next

Continue the installation process with the following roadmaps as necessary:

• If you want to install or migrate QMF on additional stand-alone or requester databases, go through
roadmap 1.

• If you want to install or migrate QMF on additional server databases that are to be accessed by the QMF
CONNECT command, go back through roadmap 2.

• If you want to install or migrate QMF on sever databases that are to be accessed through three-part
names, proceed to roadmap 3.

• If you want to enable a National Language Feature, proceed to roadmap 4.

Related tasks
Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command

24 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Installation path E: Migrating to QMF V12.1 from V7.2 or earlier in a DB2 for VSE and VM
server

Use this procedure to migrate an existing release of QMF that is Version 7.2 or earlier to QMF Version 12.1
in a DB2 for VSE and VM server. This installation path prepares the DB2 for VSE and VM server for access
by the QMF CONNECT command or by the DSQSDBNM program parameter.

Before you begin

The instructions in this topic assume that you have already determined that this is the correct installation
path by using the roadmap for server databases that are accessed by the QMF CONNECT command.

Before you begin the installation process, complete the following steps:

• If you have not done so already, install, prepare, and test QMF Version 12.1 in at least one Db2 for z/OS
requester database that will access this server. Only Db2 for z/OS databases can function as
requesters. See “Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)”
on page 14 for installation paths for requesters.

• Ensure that the DB2 for VSE and VM server is Version 7.3 or later
• Ensure that you have the proper authority for the database into which you will be installing the product.

For more information, see “Required authorities for installing QMF” on page 13.

Procedure

To migrate to QMF Version 12.1 in a DB2 for VSE and VM server from QMF from Version 7.2 or earlier,
complete the following steps:
1. Define and test DRDA communications between the server into which you are installing QMF Version

12.1 and the requester into which you already installed QMF Version 12.1.

DRDA communications between the server and the requester are used to complete the QMF Version
12.1 installation in the server. For more information about how to define and test DRDA, see the Db2
documentation.

2. Start both the requester and server databases.
You must start the Db2 for z/OS subsystem in the requester database with distributed data facility
(DDF) started.

3. Set installation parameters as explained in “Setting installation job parameters for server installations”
on page 61.

4. Run the jobs in “Jobs that migrate QMF V7.2 or earlier to QMF V12.1 in a VM or VSE server” on page
66. You must run these jobs from the local database.

5. Test the installation in the remote server:
a) Complete the steps in “Testing QMF installations on server databases” on page 83.
b) Thoroughly test the new release with site-specific workloads, users, applications, and objects

before using it in a production environment.
If the objects that you will use to test the new release are in a different database, you can migrate
the objects to the database where QMF Version 12.1 is installed by using the instructions in
Chapter 6, “Migration and fallback considerations,” on page 85.

6. Review the migration considerations in Chapter 6, “Migration and fallback considerations,” on page
85 to determine if special migration considerations for this release apply to your installation or to the
functions that you will be using.

What to do next

Continue the installation process with the following roadmaps as necessary:

• If you want to install or migrate QMF on additional stand-alone or requester databases, go through
roadmap 1.

Chapter 2. QMF installation overview and roadmaps 25

• If you want to install or migrate QMF on additional server databases that are to be accessed by the QMF
CONNECT command, go back through roadmap 2.

• If you want to install or migrate QMF on sever databases that are to be accessed through three-part
names, proceed to roadmap 3.

• If you want to enable a National Language Feature, proceed to roadmap 4.

Related tasks
Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command

Installation path F: Migrating to QMF V12.1 from QMF V8.1, V9.1, V10.1, V11.1, or V11.2
in a DB2 for VSE and VM server

Use this procedure to migrate an existing QMF Version 8.1, Version 9.1, Version 10.1, Version 11.1, or
Version 11.2 installation to QMF Version 12.1 in a DB2 for VSE and VM server. This installation path
prepares the DB2 for VSE and VM server for access by the QMF CONNECT command or by the DSQSDBNM
program parameter.

Before you begin

The instructions in this topic assume that you have already determined that this is the correct installation
path by using the roadmap for server databases that are accessed by the QMF CONNECT command.

Before you begin the installation process, complete the following steps:

• If you have not done so already, install, prepare, and test QMF Version 12.1 in at least one Db2 for z/OS
requester database that will access this server. Only Db2 for z/OS databases can function as
requesters. See “Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)”
on page 14 for installation paths for requesters.

• Ensure that the DB2 for VSE and VM server is Version 7.3 or later
• Ensure that you have the proper authority for the database into which you will be installing the product.

For more information, see “Required authorities for installing QMF” on page 13.

Procedure

To migrate to QMF Version 12.1 in a DB2 for VSE and VM server from QMF from Version 8.1, Version 9.1,
Version 10.1, Version 11.1, or Version 11.2, complete the following steps:
1. Define and test DRDA communications between the server into which you are installing QMF Version

12.1 and the requester into which you already installed QMF Version 12.1.

DRDA communications between the server and the requester are used to complete the QMF Version
12.1 installation in the server. For more information about how to define and test DRDA, see the Db2
documentation.

2. Start both the requester and server databases.
You must start the Db2 for z/OS subsystem in the requester database with distributed data facility
(DDF) started.

3. Set installation parameters as explained in “Setting installation job parameters for server installations”
on page 61.

4. Run the jobs in “Jobs that migrate QMF V8, V9, V10, V11.1 or V11.2 to QMF V12.1 in a VM or VSE
server” on page 66. You must run these jobs from the local database.

5. Test the installation in the remote server:
a) Complete the steps in “Testing QMF installations on server databases” on page 83.
b) Thoroughly test the new release with site-specific workloads, users, applications, and objects

before using it in a production environment.
If the objects that you will use to test the new release are in a different database, you can migrate
the objects to the database where QMF Version 12.1 is installed by using the instructions in
Chapter 6, “Migration and fallback considerations,” on page 85.

26 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

6. Review the migration considerations in Chapter 6, “Migration and fallback considerations,” on page
85 to determine if special migration considerations for this release apply to your installation or to the
functions that you will be using.

What to do next

Continue the installation process with the following roadmaps as necessary:

• If you want to install or migrate QMF on additional stand-alone or requester databases, go through
roadmap 1.

• If you want to install or migrate QMF on additional server databases that are to be accessed by the QMF
CONNECT command, go back through roadmap 2.

• If you want to install or migrate QMF on sever databases that are to be accessed through three-part
names, proceed to roadmap 3.

• If you want to enable a National Language Feature, proceed to roadmap 4.

Related tasks
Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command

Roadmap 3: Installing server databases accessed by three-part names
Use the following roadmap to identify the installation path that supports using three-part names in QMF
commands to access data at remote servers.

Procedure

Use the following roadmap to identify the installation path that is appropriate for your environment.

Chapter 2. QMF installation overview and roadmaps 27

Figure 6. Installation roadmap for installations that use three-part names in QMF commands to access
data at remote servers

What to do next

Based on your results after you work through this roadmap, proceed to roadmap 2 or installation path G.

Related tasks
Installation path G: Preparing a remote server to be accessed by QMF commands that include three-part
names
Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command

Installation path G: Preparing a remote server to be accessed by QMF commands that
include three-part names

Use this procedure to prepare a remote server to be accessed by QMF commands that include three-part
names.

The following rules apply to QMF commands that include three-part table and view names:

• They can be initiated from Db2 for z/OS databases only.
• They can be directed to all types of servers except DB2 for VSE and VM.
• They cannot be used when QMF for TSO has been started as a Db2 for z/OS stored procedure.

The stored procedure interface to QMF for TSO is an optional interface that allows any product that can
run a Db2 for z/OS stored procedure to start QMF for TSO.

• They will produce errors if multirow fetch is active and the command is directed to a server other than
Db2 for z/OS.

28 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Start QMF in the Db2 for z/OS requester with multirow fetch turned off if users will be issuing QMF
commands with three-part names to servers other than Db2 for z/OS.

By default, QMF commands that include three-part names cannot be used to access remote tables that
contain large object (LOB) data. To enable access of LOB data in remote tables with three-part names,
the DSQEC_LOB_RETRV global variable must be set to 3. The DSQEC_LOB_RETRV can also be set to 2
to enable the retrieval of LOB metadata only.

For more information about three-part table and view names, see the Db2 documentation.

Before you begin

The instructions in this topic assume that you have already determined that this is the correct installation
path by using the roadmap for server databases that are accessed by three-part names.

Before you begin the installation process, complete the following steps:

• If you have not done so already, install, prepare, and test QMF Version 12.1 in at least one Db2 for z/OS
requester database that will access this server. Only Db2 for z/OS databases can function as
requesters. See “Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)”
on page 14 for installation paths for requesters.

• Ensure that you have the proper authority for the database into which you will be installing the product.
For more information, see “Required authorities for installing QMF” on page 13.

Procedure

To prepare a remote server to be accessed by QMF commands that include three-part names, complete
the following steps:
1. Define and test DRDA communications between the server into which you are installing QMF Version

12.1 and the requester into which you already installed QMF Version 12.1.

DRDA communications between the server and the requester are used to complete the QMF Version
12.1 installation in the server. For more information about how to define and test DRDA, see the Db2
documentation.

2. Start both the requester and server databases.
You must start the Db2 for z/OS subsystem in the requester database with distributed data facility
(DDF) started.

3. Run the jobs in “Running installation jobs that prepare servers to be accessed by QMF commands that
include three-part names” on page 68. You must run these jobs from the local database.

Related concepts
Enabling support for multirow fetch and insert
The DSQSMRFI parameter controls whether the database uses multirow or single-row fetch and insert.
Related tasks
Roadmap 3: Installing server databases accessed by three-part names
Use the following roadmap to identify the installation path that supports using three-part names in QMF
commands to access data at remote servers.
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Roadmap 4: Databases accessed in languages other than English
Use the following roadmap if you need to use QMF in languages other than English.

Procedure

Use the following roadmap to identify the installation path that is appropriate for your environment.

Chapter 2. QMF installation overview and roadmaps 29

Figure 7. Installation roadmap for enabling QMF to access data in languages other than English

What to do next

Based on your results after you work through this roadmap, proceed to roadmap 1, roadmap 2,
installation path G, or the instructions for installing QMF National Language Features.

Related tasks
Installation path G: Preparing a remote server to be accessed by QMF commands that include three-part
names
Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)
Use this information for the first QMF installation and for databases that will stand alone, function as
requesters only, or function as both requesters and servers. Only Db2 for z/OS databases can stand alone
or function as requesters.
Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Tasks to perform when upgrading Db2 for z/OS but not QMF
When you upgrade either the mode or the release of a Db2 for z/OS database where QMF is installed, but
you do not upgrade QMF, you must run two QMF bind jobs.

You must run these jobs even if you make no changes to the existing installation of QMF. Also, you must
run these jobs regardless of the database's function in your distributed network (stand-alone, requester
only, server only, or both requester and server).

30 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Important: Do not change or add any BIND PACKAGE or BIND PLAN options in any of the QMF bind jobs
for plans and installation packages unless instructed to do so in this information, in the job itself, or by
IBM Software Support.

Table 4. Job sequence to run when you upgrade the release or mode of a Db2 for z/OS database, even if
no changes are required to the existing QMF installation

Job name Description

DSQ1BSQL This job binds the QMF installation programs from the Db2 for
z/OS requester database to the server database.

If you installed QMF under a secondary authorization ID, edit this
job and add either the OWNER(secauth) parameter or a SET
CURRENT SQLID='secauth' specification to the BIND PACKAGE
and BIND PLAN statements so that QMF is able to resolve the ID.
The value of the SECAUTH parameter in the DSQ1DEFS exec
must match the SECAUTH value that you provide in this job.

You must run this job first.

DSQ1BPKG This job binds the QMF packages.

You must run this job after you run the DSQ1BSQL job.

Related tasks
Installing the enhanced LIST command function (z/OS only)
When the enhanced LIST command function is installed, privileges for tables and views must be granted
only to a user's primary or secondary authorization ID, instead of to PUBLIC, to be included in object lists
that are generated by the LIST TABLES or LIST ALL command when the OWNER=ALL option is specified
on the command.

Chapter 2. QMF installation overview and roadmaps 31

32 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 3. Installing or migrating QMF in requester
(Db2 for z/OS) databases

Prepare your environment and system before you begin installing or migrating QMF in a Db2 for z/OS
database.

Preparing to install QMF in requester (Db2 for z/OS) databases
Prepare your environment and system before you begin installing or migrating QMF in a Db2 for z/OS
database.

About this task
The procedures in this topic are associated with the installation paths for stand-alone or requester
databases. Be sure that you are following the correct installation path before you perform these tasks.

What to do next
After completing these tasks, return to the installation procedure that is associated with your chosen
installation path to determine the next step in the installation.
Related tasks
Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)
Use this information for the first QMF installation and for databases that will stand alone, function as
requesters only, or function as both requesters and servers. Only Db2 for z/OS databases can stand alone
or function as requesters.

Installation prerequisites for requester (Db2 for z/OS) databases
Before you can install QMF on Db2 for z/OS databases that function as stand-alone or requester
databases, you must fulfill the hardware and software requirements.

Prerequisite hardware

QMF runs on any processor that is supported by the operating system. However, some operations will not
work with columns that contain decimal floating-point data if the processor on which QMF is running does
not support decimal floating-point instructions.

QMF can access all of the DASD devices that are supported by z/OS and Db2 for z/OS, as well as all
display devices supported by GDDM.

To implement a National Language Feature that uses a double-byte character set (DBCS), you need a
workstation that provides DBCS support. Ensure that this device is supported by GDDM.

Prerequisite software

This topic lists software that is required to install and use QMF Version 12.1, as well as optional software
that is necessary for special features. Each of these products might have prerequisite hardware or
software that you must install and configure.

• Required software

The following table lists the program products that are required to support QMF Version 12.1.

© Copyright IBM Corp. 1982, 2020 33

Table 5. Minimum prerequisite software for Db2 QMF for TSO and CICS Version 12.1

Function Minimum required product

Database functions One of the following:

– Db2 for z/OS Version 9.1 (VUE and MLC) running in
New Function Mode with APAR PM45482 applied

– DB2 for z/OS Version 10.1 (VUE and MLC) running in
all modes (except CM8, CM8*, ENFM8, and ENFM8*)
with APARs PM50434 and PM72274 applied

– Db2 for z/OS Version 11.1 (VUE and MLC)
– Db2 for z/OS V12.1 (VUE and MLC)

Panel display GDDM

GDDM is provided as a base element of z/OS.

QMF for CICS operations only CICS Transaction Server for z/OS, Version 3 Release 1
or later, 5655-M15

• Optional software

GDDM-PGF Version 2.1.3 (5668-812) is required for creating charts in QMF.

Related concepts
Required authorities for installing and adminstering QMF
Specific authorities are required for installing QMF and for general QMF administration.
Related tasks
Enabling charting functions
QMF creates charts using the Interactive Chart Utility (ICU) supplied by the GDDM-PGF product.
Related information
The IBM Publications CenterThe IBM Publications CenterSee the documentation about the products that
are required for QMF Version 12.1See the documentation about the products that are required for QMF
Version 12.1
http://www.ibm.com/software/data/support/lifecycle/Search for information about supported versions of
products that are necessary for QMF Version 12.1.
http://www.ibm.com/support/docview.wss?uid=swg21409518See the information about compatibility
between QMF Version 12.1 and other Db2 releases.
http://www.ibm.com/support/docview.wss?uid=swg21570476See the information about compatibility
between QMF and z/OS.

Copying the QMF Version 12.1 libraries from the distribution media
To load the QMF libraries from the distribution media to the Db2 for z/OS target system, use System
Modification Program Extended (SMP/E). You copy the libraries to the system where you will be
performing the first QMF Version 12.1 installation.

The QMF program directories, which are available in the Db2 Query Management Facility Library, explain
how to use System Modification Program Extended (SMP/E). Ensure that you are reading the correct
program directory for your release and national language, and complete all SMP/E tasks that are
described in the program directory.

With SMP/E, you load QMF modules into two types of libraries:

• Target libraries, which contain the executable code of the running system

The following table describes the purpose of each target library. Library names that end with n have a
version of the library available for each supported national language. The n represents a 1-character
language identifier that is associated with each QMF NLF.

34 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/shop/publications/order
http://www.ibm.com/software/data/support/lifecycle/
http://www.ibm.com/support/docview.wss?uid=swg21409518
http://www.ibm.com/support/docview.wss?uid=swg21570476

By default, all target libraries are prefixed with the QMF default high-level qualifier for Version 12.1,
QMF1210. If you change this prefix, be sure that your new naming convention allows you to identify the
version and release of QMF. This information is needed when tracing problems or communicating with
IBM Software Support.

Table 6. QMF Version 12.1 target libraries and their descriptions

Library name Description

SDSQBASE Sample base QMF for TSO and CICS SMP/E installation jobs.

There is no NLF counterpart for this library.

SDSQSAMn Sample NLF SMP/E installation jobs.

There is no English (E) counterpart for this library.

SDSQCHRT Chart formats supplied with QMF

SDSQCLTn CLIST library

SDSQDBRM Contains the QMF packages

This library is not required for the QMF runtime environment. It is used
only for installation and configuration purposes.

SDSQEXCn Exec library

SDSQEXIT Library for user exits, which can be written for:

– User-created edit codes
– Initializing the QMF environment (the DSQUOPTS and Q.SYSTEM_INI

exit routines are used for this purpose)
– Governing resources

You can also use this library to store any QMF load libraries that you have
customized.

SDSQLOAD QMF load library

SDSQMAPn Default GDDM maps

SDSQMLBn ISPF message library, which is only required if you are running QMF under
ISPF

SDSQPLBn ISPF panel library, which is only required if you are running QMF under
ISPF

SDSQPVRn Contains non-ISPF QMF user interface panels, online help panels, and
message help panels. When you run the DSQ1nPNL job during the
installation process, panels from this library are used to populate the
VSAM data set DSQPNLn. DSQPNLn is allocated to the ddname DSQPNLE
when you start QMF.

This library is not required for the QMF runtime environment. It is used
only for installation and configuration purposes.

SDSQSAPn Contains QMF installation jobs and sample source code for both the
callable interface and programs that support user-created edit codes

This library is not required for the QMF runtime environment. It is used
only for installation and configuration purposes.

SDSQSLBE ISPF skeleton library, which is required only if you are running QMF under
ISPF. This library is English-only and does not have NLF counterparts.

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 35

Table 6. QMF Version 12.1 target libraries and their descriptions (continued)

Library name Description

SDSQTLBn ISPF table library, which is required only if you are running QMF under
ISPF

SDSQUSRn User library for user-written governor or user edit exit routines

This library is not required for the QMF runtime environment. It is used
only for installation and configuration purposes.

• Distribution libraries, which contain the master copy of all the system elements

The following table describes the purpose of each distribution library. Library names that end with n
have a version of the library available for each supported national language. The n represents a 1-
character language identifier that is associated with each QMF NLF.

By default, all distribution libraries are prefixed with the QMF default high-level qualifier for Version
12.1, QMF1210. If you change this prefix, be sure that your new naming convention allows you to
identify the version and release of QMF. This information is needed when tracing problems or
communicating with IBM Software Support.

Table 7. QMF Version 12.1 distribution libraries and their descriptions

Library name Description

ADSQBASE Distribution library for sample SMP/E jobs that are used for installation

ADSQSAMn Distribution library for sample SMP/E jobs that are used for NLF installation

ADSQCHRT Distribution library supplied with QMF for GDDM charts, which reside in the
SDSQCHRT library

ADSQCLTn Distribution library for CLISTs, which reside in the SDSQCLTn library

ADSQDBRM Distribution library for QMF database packages, which reside in the
SDSQDBRM library

ADSQEXCn Distribution library for Execs, which reside in the SDSQEXCn library

ADSQMAPn Distribution library that is supplied with QMF for GDDM maps, which reside
in the SDSQMAPn library

ADSQMLBn Distribution library for ISPF messages, which reside in the SDSQMLBn
library

ADSQOBJ Distribution library for load modules, which are located in the SDSQLOAD
library

ADSQPLBn Distribution library for ISPF panels, which are located in the SDSQPLBn
library

ADSQPVRn Distribution library for the QMF panel library, SDSQPVRn

ADSQSAPn Distribution library for sample code, which resides in the SDSQSAPn library

ADSQSLBE Distribution library for ISPF skeletons, which reside in the SDSQSLBE
library

ADSQTLBn Distribution library for ISPF tables, which reside in the SDSQTLBn library

ADSQUSRn Distribution library for sample code that users can modify, which resides in
the SDSQUSRn library

The program directory provides estimates for the sizes of all target and distribution library data sets for
SMP/E and QMF.

36 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Related information
See the information about QMF Version 12.1 program directories.

Populating the VSAM panel library
When the SMP/E installation is complete, populate the QMF VSAM panel library, DSQPNLE.

To populate the QMF VSAM panel library, edit and run job SDSQSAPE(DSQ1EPNL). This job copies
member DSQPNLE from the SDSQPVRE target library to VSAM panel data set DSQPNLE. Run this job once
per SMP/E installation.

For additional information about the SMP/E installation, see the QMF program directory that is
appropriate for your QMF release and national language.

Related information
See the information about QMF Version 12.1 program directories.

Addressing storage requirements
For the amount of storage required to copy the QMF Version 12.1 libraries from the distribution media
using SMP/E, refer to the QMF program directory that is appropriate for your QMF version and national
language.

When you plan your region size, consider the storage required to load modules during initialization and
the virtual storage requirements for report operations.

Restriction: For TSO only, consider the amount of space required to run applications other than QMF.

Related information
See the information about QMF Version 12.1 program directories.

Storage required to load modules during initialization
These amounts of storage are required to load QMF modules when QMF is started. These are the required
amounts if no QMF modules are placed in the link pack area.

You might improve performance of QMF operations by placing certain modules in the link pack area.

• QMF modules that must run in 24-bit addressing mode require 52 KB. Modules DSQCTOPX (used in
both TSO and CICS installations) and DSQCCI (used in TSO installations only) fall into this category.
They must run below 16 MB.

• QMF modules that can run in 31-bit addressing mode require 4.5 MB.

All modules except DSQCTOPX and DSQCCI can run in 31-bit addressing mode.

Almost all load modules are reentrant.

Related concepts
Moving modules to enhance performance
You might improve performance of QMF by placing certain modules in the link pack area. However,
certain modules should not be placed in the link pack area.

Virtual storage requirements for report operations
Your specific requirements might be greater than the following requirements for TSO or CICS, depending
on the size of the reports your users typically create or the complexity of formatting options they use.

• Report storage in TSO

In QMF for TSO, the minimum amount of virtual storage that is required to run QMF queries and hold
QMF report data is 2 MB per QMF user. You can allocate report storage in two ways in QMF for TSO:

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 37

http://www.ibm.com/software/data/qmf/library.html
http://www.ibm.com/software/data/qmf/library.html
http://www.ibm.com/software/data/qmf/library.html

– Use the DSQSBSTG program parameter to specify the maximum amount of storage as a fixed amount
or a percentage of the available storage for the TSO region.

– Use the DSQSRSTG program parameter to specify an amount of storage to be reserved in the TSO
region for applications other than QMF. QMF then dynamically allocates storage from the non-
reserved amount, as needed, for report operations.

Also in QMF for TSO, LOB and XML data is stored in above-the-bar storage until it is needed for display
in a report. To process QMF commands or SQL statements that involve LOB and XML data, users need
access to above-the-bar storage.

• Report storage in CICS

QMF runs as a conversational transaction in CICS, where multiple users of QMF are in the same CICS
address space. Allow for 16 MB of virtual storage from the extended CICS dynamic storage area
(ECSDA), and add an additional 2 MB of virtual storage from this area per active QMF user. Set report
storage for each user by specifying the DSQSBSTG parameter when you start QMF.

Because QMF for CICS is a large conversational transaction, consider isolating QMF transaction
processing in a CICS region that is dedicated to QMF transactions. Depending on the amount of storage
available, there is an upper limit on the number of users that can run QMF in the same CICS region. To
support more QMF users, use multiple CICS regions by using CICS multiregion operation. You might
want to route the QMF transaction from one CICS system (for example, a terminal-owning region) to the
CICS system that is designated to process QMF transactions (for example, an application-owning
region). If you do, use either multiple transaction IDs or dynamic transaction routing.

Related concepts
Defining a fixed amount of virtual storage for reports
Use the DSQSBSTG parameter to specify a fixed number of bytes of virtual storage to be used by QMF for
report operations.
Related tasks
Reserving virtual storage from the TSO region to be used for applications other than QMF
Use the DSQSRSTG parameter in QMF for TSO to specify the maximum amount of virtual storage that you
want to reserve in the TSO region for use by applications other than QMF, such as TSO commands, REXX,
or ISPF. This reserved storage is then not used for QMF report operations.

Moving modules to enhance performance
You might improve performance of QMF by placing certain modules in the link pack area. However,
certain modules should not be placed in the link pack area.

After you use SMP/E to unload the QMF libraries from the distribution media, the library
QMF1210.SDSQLOAD contains the load modules for QMF.

The following table shows the modules that you can move into the link pack area to enhance
performance.

Table 8. Modules that can reside in the PLPA or EPLPA

Module Description

DSQQMFE
DSQQMF
DSQCSUB
DSQCCISW
DSQCBST
DSQCELTT
DSQCEBLT
DSQCIX
DSQQMRRS
DSQUOPTS
DSQABA1E

These modules are used when you invoke QMF.

Modules DSQCCISW and DSQCIX are used in QMF for TSO only.

38 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 8. Modules that can reside in the PLPA or EPLPA (continued)

Module Description

DSQUEDIT
DSQUECIC

These modules are related to custom exit routines that call user-
defined edit codes to format data. If you expect heavy use, move them
into the link pack area. DSQUEDIT is the user edit routine module for
TSO, and DSQUECIC is the user edit routine module for CICS.

For more information about creating custom formatting routines that
support user-defined edit codes, see Chapter 16, “Custom edit exit
routines for QMF forms,” on page 253.

DSQUEGV3 This module is the English governor module for CICS.

For more information about the governor, see Chapter 17, “Controlling
QMF resources,” on page 281.

The following table lists modules that can reside in the PLPA. These modules must run in 24-bit
addressing mode.

Table 9. Modules that can reside in the PLPA

Module Description

DSQCTOPX QMF uses this module during initialization in both QMF for TSO and
CICS.

DSQCCI QMF uses this module for the ISPF command interface (QMF for TSO
only).

For more information about this interface, see .

The following table describes the modules that should not be placed in the link pack area. Modules listed
in the first three rows of the table are not reentrant.

Table 10. Modules that should not be placed in the link pack area

Module Description

DSQCI This module is used when QMF is invoked. It is used in TSO only.

DSQUEGV1 This module is the English governor module for TSO.

For more information about the governor, see Chapter 17, “Controlling QMF
resources,” on page 281.

DSQ0BINS
DSQ0BSQL
DSQ0BTDC

These modules are QMF utilities that are used during installation and
service updates. For more information about applying QMF service, see
“Applying QMF service” on page 335. These modules are used in TSO only.

DSQUXIA
DSQUXIC
DSQUXILE
DSQUXIP

These modules are used during link-editing of the user edit routine
program, DSQUEDIT (TSO) or DSQUECIC (CICS).

For more information about user edit exit routines, see Chapter 16, “Custom
edit exit routines for QMF forms,” on page 253.)

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 39

Table 10. Modules that should not be placed in the link pack area (continued)

Module Description

DSQCIB (COBOL)
DSQCICX (C/370)
DSQCIA (Assembler)
DSQCIFE (FORTRAN)
DSQCIF (FORTRAN)
DSQCIPX (PL/I)
DSQCIPL (PL/I)
DSQCIX (REXX)

The QMF callable interface uses these modules. They are reentrant and can
be placed in the EPLPA. However, callable interface modules are small and
are normally link-edited with the user's application module.

DYQCOMM

DYQ0CTL

QMF Analytics for TSO uses these modules.

The DYQCOMM module holds common data and command interface anchor
points for QMF Analytics. The DYQ0CTL module is non-executable and is
used in product installation and maintenance for QMF Analytics.

Setting installation job parameters for requester installations
With each QMF installation you run a set of batch installation jobs. You must customize the parameter and
variable values that the jobs use before you run them.

About this task

You can either change the default values in the installation defaults exec, DSQ1DEFS, or override the
values in each installation job before you run it. All batch installation jobs are members of the
QMF1210.SDSQSAPE data set.

Installation defaults for common parameters
Default values in the QMF1210.SDSQEXCE(DSQ1DEFS) exec.

The following table lists the installation defaults provided by QMF for the most commonly used
parameters for requester installations. Review the job comments in the DSQ1DEFS exec for explanations
of additional parameters.

Table 11. Default installation values provided in the DSQ1DEFS exec

Variable name
in DSQ1DEFS
exec

Default
provided with
QMF-

Description

SSID DSN Four-character name of the local Db2 for z/OS requester database into
which you are installing QMF.

VCATNAME QMFDSN QMF table space catalog alias to be used for QMF STOGROUP creation
in new installations only (not migrations).

VOLUMES '*' Value of the VOLUMES parameter to be used for STOGROUP creation in
new installations only (not migrations).

QMFPLNAME QMF1210 Name of the QMF application plan.

DBPTGROUP 0 The DBPARTITIONNUM value on the CREATE DATABASE PARTITION
GROUP statement for installation on Db2 UDB servers.

DBCCSID UNICODE The default CCSID value for the CREATE DATABASE statement on a Db2
for z/OS server.

DSQWLMNM The default WLM environment that is used for defining QMF stored
procedures and user-defined functions.

40 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 11. Default installation values provided in the DSQ1DEFS exec (continued)

Variable name
in DSQ1DEFS
exec

Default
provided with
QMF-

Description

SECAUTH No default If your site uses RACF® security groups and you therefore must install
QMF in a Db2 for z/OS database (whether local or remote) under a
secondary authorization ID, use this variable to specify that ID. The
secondary authorization ID that you specify must have SYSADM or
equivalent authority for the target database into which QMF is being
installed.

If you do not provide a value for this variable, QMF does not try to
process a secondary authorization ID for the steps of the installation
that bind packages and plans.

EXTSEC " " Specification of internal or external Db2 security control. The default is
internal Db2 security control. If a value of YESEXTSEC is found, no
GRANT statements will be issued in QMF installation jobs. In addition,
the default list views used for tables defined in job
QMF1210.SDSQSAPE(DSQ1BVW) will not reference the
SYSIBM.SYSTABAUTH catalog table. The option does not affect the
enhanced list views created in QMF1210.SDSQSAPE(DSQ1BUDV).

(See Note 1 for the following variables.)

TSCT1PRI
TSCT1SEC

200
20

The DSQTSCT1 table space holds the Q.OBJECT_DIRECTORY table.

TSCT2PRI
TSCT2SEC

200
20

The DSQTSCT2 table space holds the Q.OBJECT_REMARKS table.

TSCT3PRI
TSCT3SEC

5000
200

The DSQTSCT3 table space holds the Q.OBJECT_DATA and
Q.OBJECT_DATA2 tables.

TSPROPRI
TSPROSEC

100
20

The DSQTSPRO table space holds the Q.PROFILES table.

TSLOGPRI
TSLOGSEC

100
20

The DSQTSLOG table space holds the Q.ERROR_LOG table.

TSSYNPRI
TSSYNSEC

100
20

The DSQTSSYN table space holds the Q.COMMAND_SYNONYMS table.

TSGOVPRI
TSGOVSEC

100
20

The DSQTSGOV table space holds the Q.RESOURCE_TABLE table.

TSRDOPRI
TSRDOSEC

12
4

The DSQTSRDO table space holds the Q.DSQ_RESERVED table.

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 41

Table 11. Default installation values provided in the DSQ1DEFS exec (continued)

Variable name
in DSQ1DEFS
exec

Default
provided with
QMF-

Description

TSDEFPRI
TSDEFSEC

100
20

The DSQTSDEF table space holds tables that result from the QMF SAVE
DATA command. Optional job DSQ1STGJ creates this table space and
uses these default values.

TSGLVPRI
TSGLVSEC
TSGLVBP
TBGLVVARVALU
E

100
20
BP0
2000

The DSQTSGLV table space holds the Q.GLOBAL_VARS table. The
TSGLVPRI and TSGLVSEC parameters specify the default primary and
secondary space allocations for DSQTSGLV. TSGLVBP specifies the
default buffer pool for DSQTSGLV. TBGLVVARVALUE specifies the
default VARCHAR length of the VARVALUE column in Q.GLOBAL_VARS.

(See Note 2 for the following variables.)

IXODRPRI
IXODRSEC

200
20

These variables specify space quantities for Q.OBJECT_DIRECTORYX,
the index for the Q.OBJECT_DIRECTORY table.

IXORMPRI
IXORMSEC

200
20

These variables specify space quantities for Q.OBJECT_REMARKSX, the
index for the Q.OBJECT_REMARKS table.

IXODTPRI
IXODTSEC

200
20

These variables specify space quantities for Q.OBJECT_OBJDATAX, the
index for the Q.OBJECT_DATA table.

IXOPROPRI
IXOPROSEC

200
20

These variables specify space quantities for Q.PROFILEX, the index for
the Q.PROFILES table.

IXCOMPRI
IXCOMSEC

100
20

These variables specify space quantities for
Q.COMMAND_SYNONYMSX, the index for the Q.COMMAND_SYNONYMS
table.

IXGLVPRI
IXGLVSEC

100
20

These variables specify space quantities for Q.GLOBAL_VARSX, the
index for the Q.GLOBAL_VARS table.

Notes:

1. The variables in this section specify default primary and secondary space allocations (shown in 1 KB
units) for the QMF control tables. The QMF control tables are installed only if no prior release of QMF
exists in the database. Variables with PRI in the name denote the primary space allocation; variables
with SEC in the name denote the secondary space allocation. The values of these variables are not
commonly changed.

2. The variables in this section specify default primary and secondary space allocations (in 1 KB units) for
the indexes on the QMF control tables. Indexes are created only when no prior release of QMF exists in
the database.

Not all QMF installation jobs use every value in the DSQ1DEFS exec. The installation jobs clearly describe
each DSQ1DEFS value that is referenced; if a DSQ1DEFS value is not referenced in a job, it is ignored.

Related concepts
Overriding defaults in the installation jobs

42 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

An example JCL that shows how to override the inherited default values within an installation job by
modifying the parameter values on the SYSTSIN statement.
Related tasks
Setting site-specific installation defaults for requester installations in the exec
Change the default installation values by modifying the installation defaults exec.
Related reference
QMF control tables and table spaces for TSO and CICS
These are the control tables shipped with QMF.

Setting site-specific installation defaults for requester installations in the exec
Change the default installation values by modifying the installation defaults exec.

About this task

The defaults for most of the database installation values in each installation job are in the
QMF1210.SDSQEXCE(DSQ1DEFS) exec. The installation jobs inherit default values from this exec, so you
change the values to those that are appropriate for your site and for your installation. Not all installation
parameters are found in the DSQ1DEFS exec, so are not inherited by the installation job. For those
parameters you override the values in each job if you do not want to use the default values.

Important: Do not delete variables from DSQ1DEFS.

Procedure

To modify any of the values in the DSQ1DEFS exec, complete the following steps:

Tip: You can complete similar steps to modify a copy of DSQ1DEFS to use for each database installation
and then use the copied and renamed file to provide defaults for all QMF installation jobs for that
database.
1. Copy QMF1210.SDSQEXCE(DSQ1DEFS) to any member name.
2. Edit the new member and change the default values shown in Table 11 on page 40 to your site-

specific values.
For example, the following sample lines specify a new default value of DB2L for SSID, ZOS1DB2L for
LOCATION, and DB2LDSN for VCATNAME:

SSID = "DB2L"
LOCATION = "ZOS1DB2L"
VCATNAME = "DB2LDSN"

3. Modify the DSQDEFS DD statement for the job to point to the copy of DSQ1DEFS that you modified.
4. Remove the variables from the SYSTSIN statement in the job. Be sure to leave the QMFBSQL value

after the DSQ1INST call.

Example

The following example shows lines from job DSQ1BLNM, which shows installation defaults for QMF
Version 12.1 (QMF1210) with Db2 for z/OS Version 11.1 (DSN1110). If you are installing QMF Version
12.1 with a Db2 for z/OS version other than Version 11.1, use the qualifier for that version. For example,
the default Db2 for z/OS Version 11 high-level qualifier is DSN1110.

//DSQ1BLNM JOBcard
//DSQEXSQL PROC RGN='2048K',
// QMFTPRE='QMF1210',
// DB2EXIT='DSN1110.SDSNEXIT',
// DB2LOAD=DSN1110.SDSNLOAD'
//STEP1 EXEC PGM=IKJEFT01,REGION=&RGN
//STEPLIB DD DSN=&QMFTPRE..SDSQLOAD,DISP=SHR
// DD DSN=&DB2EXIT.,DISP=SHR
// DD DSN=&DB2LOAD.,DISP=SHR
//SYSTSPRT DD SYSOUT=*,DCB=BLKSIZE=132
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 43

//SYSEXEC DD DSN=&QMFTPRE..SDSQEXCE,DISP=SHR
//DSQDEFS DD DSN=&QMFTPRE..SDSQEXCE(DSQ1DEFS),DISP=SHR
//DSQINDD DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BNFM),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BLND),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BLNA),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BLNR),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BLNO),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BLNE),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1TBLC),DISP=SHR
// PEND
//DSQCTBL EXEC DSQEXSQL
//* ===
//* Tailor SSID and LOCATION values below:
//* ===
//STEP1.SYSTSIN DD *
%DSQ1INST QMFBSQL <-- Variables have been removed after this line

Related concepts
Installation defaults for common parameters
Default values in the QMF1210.SDSQEXCE(DSQ1DEFS) exec.
Overriding defaults in the installation jobs
An example JCL that shows how to override the inherited default values within an installation job by
modifying the parameter values on the SYSTSIN statement.

Overriding defaults in the installation jobs
An example JCL that shows how to override the inherited default values within an installation job by
modifying the parameter values on the SYSTSIN statement.

The QMF installation jobs inherit values from the DSQ1DEFS exec. Each job is liberally commented with
instructions about the values that you must customize and how to submit the job.

In this example the following default values are changed:

• The ssid default value has been changed to DB2L.
• The location default value has been changed to ZOS1DB2L.
• The vcatname default value has been changed to DB2LDSN.

//DSQ1BLNM JOBcard
//DSQEXSQL PROC RGN='2048K',
// QMFTPRE='QMF1210',
// DB2EXIT=DSN1110.SDSNEXIT',
// DB2LOAD=DSN1110.SDSNLOAD'
//STEP1 EXEC PGM=IKJEFT01,REGION=&RGN
//STEPLIB DD DSN=&QMFTPRE..SDSQLOAD,DISP=SHR
// DD DSN=&DB2EXIT.,DISP=SHR
// DD DSN=&DB2LOAD.,DISP=SHR
//SYSTSPRT DD SYSOUT=*,DCB=BLKSIZE=132
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSEXEC DD DSN=&QMFTPRE..SDSQEXCE,DISP=SHR
//DSQDEFS DD DSN=&QMFTPRE..SDSQEXCE(DSQ1DEFS),DISP=SHR
//DSQINDD DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BNFM),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BLND),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BLNA),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BLNR),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BLNO),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1BLNE),DISP=SHR
// DD DSN=&QMFTPRE..SDSQSAPE(DSQ1TBLC),DISP=SHR
// PEND
//DSQCTBL EXEC DSQEXSQL
//* ===
//* Tailor SSID and LOCATION values below:
//* ===
//STEP1.SYSTSIN DD*
%DSQ1INST QMFBSQL SSID(DB2L) LOCATION(ZOS1DB2L) +
 VCATNAME(DB2LDSN) VOLUMES(’*’)

Not all installation parameters are found in the DSQ1DEFS exec; therefore, not all values can be inherited
by each installation job. The following additional parameters are used by the QMF installation jobs and
must be specified within each job before it is run if you do not want to use the default values:

44 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 12. Installation job parameters not found in the installation defaults file, DSQ1DEFS

Installation variable Default value Description

QMFTPRE QMF1210 QMF target library prefix

DB2EXIT DSN1210.SDSNEXIT Local Db2 for z/OS exit library

The default value points to the
Db2 for z/OS Version 12 exit
library. If you are installing QMF
Version 12.1 with a Db2 for
z/OS version other than Version
12, use the qualifier for that
version. For example, the
default Db2 for z/OS Version 9
high-level qualifier is DSN910.

DB2LOAD DSN1210.SDSNLOAD Local Db2 for z/OS load library

The default value points to the
Db2 for z/OS Version 12 exit
library. If you are installing QMF
Version 12.1 with a Db2 for
z/OS version other than Version
12, use the qualifier for that
version. For example, the
default Db2 for z/OS Version 9
high-level qualifier is DSN910.

After completing the tasks associated with preparing for installation, return to the installation procedure
that is associated with your chosen installation path to determine the next step in the installation.

Related concepts
Installation defaults for common parameters
Default values in the QMF1210.SDSQEXCE(DSQ1DEFS) exec.
Related tasks
Setting site-specific installation defaults for requester installations in the exec
Change the default installation values by modifying the installation defaults exec.

Running the installation jobs for requester (Db2 for z/OS) databases
You must run installation jobs to install or migrate to QMF Version 12.1 in a Db2 for z/OS requester
database.

Jobs that install QMF V12.1 where no prior release is installed
This installation path installs QMF Version 12.1 in a Db2 for z/OS requester database when no prior
release of QMF is installed.

Before you begin

• Ensure that you are following the correct installation path before you perform these tasks. The
procedures in this topic are associated with Installation path A: Installing QMF V12.1 in a Db2 for z/OS
requester.

• Ensure that the database is Db2 for z/OS Version 9.1 New Function Mode or later. If the database
release is earlier than Version 9.1 New Function Mode, upgrade the database before you continue. DB2
10 cannot be running in conversion mode from Version 8, conversion mode* from Version 8, enabling-

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 45

new-function mode from Version 8, or enabling-new-function mode* from Version 8 (CM8, CM8*,
ENFM8, or ENFM8*).

About this task

Important: Do not change or add any BIND PACKAGE or BIND PLAN options in any of the QMF bind jobs
for plans and installation packages unless instructed to do so in this information, in the job itself, or by
IBM Software Support.

Procedure

• Customize parameter values in the jobs as necessary by following the instructions in the prolog of each
job or by setting site-specific installation defaults or by overriding installation defaults. Then run the
jobs in their specified order.
The jobs listed in the following table reside as members in the QMF1210.SDSQSAPE data set.

Table 13. Job sequence for installing QMF Version 12.1 in a Db2 for z/OS Version 9 New Function
Mode (or later) database when no prior release of QMF exists

Job name Description

DSQ1TBAJ Optional: Creates QMF VCAT name.

DSQ1BSQL Binds the QMF installation programs to the Db2 for z/OS requester
database.

If you are installing QMF under a secondary authorization ID, edit this
job and add either the OWNER(secauth) parameter or a SET CURRENT
SQLID='secauth' specification to the BIND PACKAGE and BIND PLAN
statements so that QMF is able to resolve the ID. The value of the
SECAUTH parameter in the DSQ1DEFS exec must match the
SECAUTH value that you provide in this job.

DSQ1BLNI Creates QMF Version 12.1 control tables.

DSQ1BVW Creates the default views that support the QMF LIST command.

DSQ1BPKG Binds the QMF application packages.

DSQ1BINR Binds the QMF application plan.

If you are installing QMF under a secondary authorization ID, edit this
job and add either the OWNER(secauth) parameter or a SET CURRENT
SQLID='secauth' specification to the BIND PACKAGE and BIND PLAN
statements so that QMF is able to resolve the ID. The value of the
SECAUTH parameter in the DSQ1DEFS exec must match the
SECAUTH value that you provide in this job.

DSQ1STGJ Creates the storage group, database, and table space needed for the
SAVE DATA command. This command is used in the QMF installation
verification procedure (IVP).

Before running this job, ensure that the TSDEFPRI and TSDEFSEC
variables are properly set for this installation. For more information,
see “Setting installation job parameters for requester installations” on
page 40.

DSQ1EIVS Optional: Creates the QMF sample tables..

• After you run each job, check for a return code of 0 or 4. Both codes indicate successful completion.

46 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

What to do next

After all jobs have run successfully, return to “Installation path A: Installing QMF V12.1 in a Db2 for z/OS
stand-alone or requester database” on page 16 for the next step in the installation process.

Related tasks
Installing the enhanced LIST command function (z/OS only)
When the enhanced LIST command function is installed, privileges for tables and views must be granted
only to a user's primary or secondary authorization ID, instead of to PUBLIC, to be included in object lists
that are generated by the LIST TABLES or LIST ALL command when the OWNER=ALL option is specified
on the command.

Jobs that migrate QMF V8 NFM, QMF V9 NFM, QMF V10, QMF V11.1, or QMF V11.2 to QMF
V12.1

This installation path migrates a release of QMF New Function Mode, QMF Version 10, QMF Version 11.1,
or QMF Version 11.2 to QMF Version 12.1 in a Db2 for z/OS database that will function as a requester or
as both a requester and server.

Before you begin

• Ensure that you are following the correct installation path before you perform these tasks. The
procedures in this topic are associated with Installation path B: Migrating to QMF V12.1 from QMF
V11.2, QMF V11.1, QMF V10, or a QMF NFM release in a Db2 for z/OS requester.

• Ensure that the existing release of QMF is Version 8.1 New Function Mode, Version 9.1 New Function
Mode, Version 10, Version 11.1, or Version 11.2.

• Ensure that the database is Db2 for z/OS Version 9.1 New Function Mode or later. If the database
release is earlier than Version 9.1 New Function Mode, upgrade the database before you continue. DB2
10 cannot be running in conversion mode from Version 8, conversion mode* from Version 8, enabling-
new-function mode from Version 8, or enabling-new-function mode* from Version 8 (CM8, CM8*,
ENFM8, or ENFM8*).

About this task

Important: Do not change or add any BIND PACKAGE or BIND PLAN options in any of the QMF bind jobs
for plans and installation packages unless instructed to do so in this information, in the job itself, or by
IBM Software Support.

Procedure

• Customize parameter values in the jobs as necessary by following the instructions in the prolog of each
job or by setting site-specific installation defaults or by overriding installation defaults. Then run the
jobs in their specified order.
The jobs listed in the following table reside as members in the QMF1210.SDSQSAPE data set.

Table 14. Job sequence to migrate from QMF Version 8.1 New Function Mode, QMF Version 9.1 New
Function Mode, QMF Vesion 10, QMF Vesion 11.1, or QMF Version 11.2 to QMF Version 12.1

Job name Description

DSQ1BSQL Binds the QMF installation programs to the Db2 for z/OS requester
database.

If you are installing QMF under a secondary authorization ID, edit this job
and add either the OWNER(secauth) parameter or a SET CURRENT
SQLID='secauth' specification to the BIND PACKAGE and BIND PLAN
statements so that QMF is able to resolve the ID.

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 47

Table 14. Job sequence to migrate from QMF Version 8.1 New Function Mode, QMF Version 9.1 New
Function Mode, QMF Vesion 10, QMF Vesion 11.1, or QMF Version 11.2 to QMF Version 12.1
(continued)

Job name Description

DSQ1BGLV Creates new QMF Version 12.1 Q.GLOBAL_VARS control table.

Exception: You do not need to run DSQ1BGLV is you are migrating from
QMF 11.1 or higher.

DSQ1ERTS Inserts new command synonyms RUNTSO and RU into
Q.COMMAND_SYNONYMS and updates the DPRE definition.

DSQ1BVW Creates the default QMF views that support the QMF LIST command. If you
installed the enhanced LIST command function, run the DSQ1BUDV
installation job after you run DSQ1BVW.

DSQ1BPKG Binds the QMF packages. In this job, the DSQDEFS DD statement is
optional.

DSQ1BINR Binds the QMF application plan in the requester database.

If you are installing QMF under a secondary authorization ID, edit this job
and add either the OWNER(secauth) parameter or a SET CURRENT
SQLID='secauth' specification to the BIND PACKAGE and BIND PLAN
statements so that QMF is able to resolve the ID. The value of the SECAUTH
parameter in the DSQ1DEFS exec must match the SECAUTH value that you
provide in this job.

• After you run each job, check for a return code of 0 or 4. Both codes indicate successful completion.
• Run these jobs if you want the sample tables from a previous release of QMF.

Previous releases of the QMF sample tables are still valid in the new QMF version.

• If the older sample tables were not previously installed and you want to install them with the new
version, run job DSQ1EIVS.

• If the older sample tables were previously installed and you want to reinstall them, first run job
DSQ1EDSJ to delete the existing samples. Then run job DSQ1EIVS.

What to do next

After all jobs have run successfully, return to “Installation path B: Migrating to QMF V12.1 from QMF
V11.2, V11.1, V10 or a QMF NFM release in a Db2 for z/OS stand-alone or requester database” on page
18 for the next step in the installation process.

Related tasks
Setting installation job parameters for requester installations
With each QMF installation you run a set of batch installation jobs. You must customize the parameter and
variable values that the jobs use before you run them.
Installing the enhanced LIST command function (z/OS only)
When the enhanced LIST command function is installed, privileges for tables and views must be granted
only to a user's primary or secondary authorization ID, instead of to PUBLIC, to be included in object lists

48 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

that are generated by the LIST TABLES or LIST ALL command when the OWNER=ALL option is specified
on the command.

Defining programs, resources, and preferences to TSO and CICS
After installation, you must define and allocate certain resources and customize preferences in
supporting products and components such as ISPF and GDDM. The required customization depends on
the environment in which QMF will be running.

About this task

Important: None of the QMF libraries require APF authorization for any function that QMF performs in
either TSO or CICS.

Customizing requester installations under TSO
If you are running QMF for TSO, you must customize it after installation. You configure GDDM and prepare
the logon procedure.

Customizing GDDM external defaults
If you are running QMF for TSO, you must customize some external defaults to ensure that GDDM
correctly displays information from the database.

About this task

QMF receives information from and presents information to the screen through services that are provided
by GDDM.

To ensure that the data that is sent by Db2 is displayed properly by GDDM, the GDDM code page must
match the coded character set identifiers (CCSIDs) for the current database manager. A CCSID contains
all of the information necessary to assign and preserve the meaning and rendering of characters through
various stages of processing and interchange. This information always includes at least one code page.
The CCSID also has an associated encoding scheme that governs how various code points are to be
handled.

QMF compares the GDDM application code page (APPCPG) with two different CCSID values:

• CURRENT APPLICATION ENCODING SCHEME special register

The application encoding scheme for the database is specified in this special register in Db2 for z/OS.
For single-byte character set (SBCS) languages, the GDDM application code page should match the
value of this special register.

• SYSIBM.SYSTEM_EBCDIC_CCSID session variable

This session variable specifies the CCSID that is in use for EBCDIC data on the current system. For
double-byte character set (DBCS) languages, the GDDM application code page should match the value
of this session variable.

If the CCSIDs do not match, there could be discrepancies between what is sent to Db2 for display and
what is displayed by GDDM.

If necessary, revise the GDDM APPCPG parameter value in one of the following ways:

• Modify the GDDM external defaults file, ADMADFT, then assemble and link-edit the file. Ensure that this
file is accessible to QMF during initialization.

• Create and allocate a data set that contains the GDDM defaults, as shown here.

Procedure

This example shows how to change the APPCPG parameter to a value of 037, which is compatible with
the CCSIDs in use on Db2 for z/OS:

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 49

1. Create a fixed-block sequential file with a record length of 80 named QMF1210.ADMDEFS.

QMF1210 is the default prefix for the QMF Version 12.1 libraries. If you changed the default prefix for
the QMF libraries, substitute that prefix in place of QMF1210.

2. Open the ADMDEFS file for editing and insert the following ADMMDFT statement to specify a value of
037 for the APPCPG parameter. Insert the statement that starts in column 2.

ADMMDFT APPCPG=037

If you insert the line that starts in column 1, it is automatically considered a comment.
3. Save the file and add the following DD statement to the JCL that you use to start QMF:

//ADMDEFS DD DSN=QMF1210.ADMDEFS,DISP=SHR

If you changed the default prefix for the QMF libraries, substitute that prefix in place of QMF1210. See
“Preparing the TSO logon procedure” on page 50 for more information about allocating data sets in
TSO.

You can also use the following TSO command to allocate the file:

ALLOC FI(ADMDEFS) DS(QMF1210.ADMDEFS) SHR

What to do next

In addition to changing the value of the APPCPG parameter, make sure that the code page of the terminal
emulator that you are using is consistent with the other CCSIDs in use.

If your users need to display or print the euro currency symbol, ensure that the value that you assign to
the APPCPG parameter is associated with the code page for this symbol. For example, to display the euro
currency symbol in English output, the proper APPCPG value to use is 1140. Determine the appropriate
APPCPG value to use for the national language in which you are running QMF and assign that value to the
APPCPG parameter.

Related information
Search for information about how to modify the external defaults file in the GDDM documentation.

Checking that QMF devices are queriable
GDDM must be able to query device characteristics for all devices used in QMF operations.

QMF manages the display of panels and data by using GDDM services. To build and convert each data
stream into a device-specific form, GDDM must be able to query device characteristics for all devices
used in QMF operations.

To make sure that each device can be queried, check the bytes of the PSERVIC operand of the VTAM®

MODEENT macro. These bytes define the display device or printer type and are set differently for
queriable versus nonqueriable devices.

Related information
Search for information about the valid values of the PSERVIC operand in the GDDM documentation.

Preparing the TSO logon procedure
You must modify the TSO logon procedure to support the storage and other requirements of your users.
This step includes allocating load libraries and data sets.

About this task

The Terminal Monitor Program (TMP) is the principal interface between the user and the display device
during the user's TSO sessions. Your site might be using either its own TMP or the standard one that is
supplied by IBM. If the TMP is not the standard one, some of the information in this topic might not apply.

Whenever you log on to TSO, the TMP invokes the TSO logon procedure. The TSO logon procedure
allocates resources for its users at the start of a TSO session. QMF users require more resources than TSO

50 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

users who are not using QMF. By using a logon procedure, you ensure that you are providing these
additional resources to establish an adequate TSO environment.

IBM supplies a sample logon procedure named DSQ1EINV that you can use and modify, if necessary. The
sample logon procedure allocates resources for someone who uses TSO solely as a means to reach QMF.
For users who want to do more with their TSO sessions, additional resources might be required. Some of
the resources that are allocated in the logon procedure can also be allocated in a CLIST or REXX exec that
invokes QMF.

To establish resources for QMF operations under TSO, modify the sample TSO logon procedure as
follows:

Procedure

1. Edit QMF1210.SDSQSAPE(DSQ1EINV).
2. Locate the REGION parameter and ensure that it meets the minimum storage requirements as

described in “Addressing storage requirements” on page 37.
For example:

//DSQ1EINV EXEC PGM=IKJEFT01,TIME=1440,DYNAMNBR=30,REGION=4096K

3. Allocate program load libraries.
Program load libraries for ISPF, ISPF/PDF, QMF, Db2 for z/OS, and GDDM must be available from the
STEPLIB statement or through a CLIST before you start QMF. This step lists the load libraries for the
various products and shows example allocation statements.
a) Determine whether you want to allocate the program modules through the STEPLIB statement or

through a CLIST. Add the QMF user exit library, QMF1210.SDSQEXIT, to the STEPLIB
concatenation if needed. This step is required only if any exits reside in QMF1210.SDSQEXIT
The sample logon procedure includes the load libraries for ISPF, ISPF/PDF, QMF, Db2 for z/OS, and
GDDM. Not all of these libraries need to be included on the STEPLIB statement. Some can be
allocated later through a CLIST. Before you start QMF, a CLIST can allocate the ISPF and QMF
libraries as ISPLLIB data sets.
The following figure shows the STEPLIB statement for these load libraries in the DSQ1EINV logon
procedure:

//***
//* PROGRAM LOAD LIBRARIES *
//***
//STEPLIB DD DSN=QMF1210.SDSQEXIT,DISP=SHR * QMF MODULES *
// DD DSN=QMF1210.SDSQLOAD,DISP=SHR * QMF MODULES *
// DD DSN=ISP.SISPLOAD,DISP=SHR * ISPF MODULES *
// DD DSN=DSN1110.SDSNEXIT,DISP=SHR * DB2 MODULES *
// DD DSN=DSN1110.SDSNLOAD,DISP=SHR * DB2 MODULES *
// DD DSN=GDDM.SADMMOD,DISP=SHR * GDDM MODULES *

Figure 8. Load libraries in the DSQ1EINV logon procedure

You can also use an ISPLLIB DD statement rather than the STEPLIB statement to allocate the ISPF
load libraries.

b) Determine whether you want to run coexisting versions of QMF in the same Db2 for z/OS
subsystem.
If two different QMF versions will coexist, you must use separate logon procedures to allocate the
QMF load libraries for each release.

The following table shows the load module library names for QMF Version 12.1 and prior QMF
releases from which migration is supported.

QMF version Load module library name

Version 12 Release 1.0 QMF1210.SDSQLOAD

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 51

QMF version Load module library name

Version 11 Release 2.0 QMF1120.SDSQLOAD

Version 11 Release 1.0 QMF1110.SDSQLOAD

Version 10 Release 1.0 QMF1010.SDSQLOAD

Version 9 Release 1.0 QMF910.SDSQLOAD

Version 8 Release 1.0 QMF810.SDSQLOAD

Version 7 Release 2.0 QMF720.SDSQLOAD

Version 7 Release 1.0 QMF710.SDSQLOAD

Version 6 Release 1.0 QMF610.SDSQLOAD

Version 3 Release 3.0 QMF330.DSQLOAD

4. Allocate SDSQEXCE to either SYSEXEC or SYSPROC.
Allocation to SYSEXEC is shown in the following figure. The SYSPROC, SYSEXEC, and SYSHELP
allocation statements show default data set names, which might be different in your installation.

Use the DD statement that has been established by your installation for the TSO search order for
programs. This search order is affected by settings in the TSO defaults modules IRXTSPRM and
IRXISPRM, the TSO EXECUTIL command, and the TSO ALTLIB command. If you do not know your
installation's search order for REXX programs, allocate SDSQEXCE to both SYSEXEC and SYSPROC.

//**
//* DATA SETS USED BY TSO *
//**
//SYSPROC DD DSN=SYS2.CLIST,DISP=SHR
// DD DSN=QMF1210.SDSQCLTE,DISP=SHR
//SYSEXEC DD DSN=SYS2.EXEC,DISP=SHR
// DD DSN=QMF1210.SDSQEXCE,DISP=SHR
//SYSHELP DD DSN=SYS1.HELP,DISP=SHR
//EDT DD DSN=&EDIT,UNIT=SYSDA,SPACE=(1688,(40,12))
//UTL DD DSN=&SYSUT1,UNIT=SYSDA,SPACE=(TRK,(10,5))
//SYSPRINT DD TERM=TS,SYSOUT=A
//SYSTERM DD TERM=TS,SYSOUT=A
//SYSIN DD TERM=TS

Figure 9. Allocating SDSQEXCE in the logon procedure

5. Customize ISPF libraries, if appropriate.
ISPF libraries are optional. If you start QMF under ISPF or use ISPF-related functions, allocate these
libraries as shown in the following figure. The names shown in the figure are the default names of the
ISPF libraries; these names might be different for your specific ISPF installation.

//**
//* DATASETS USED BY ISPF *
//**
//ISPPLIB DD DSN=QMF1210.SDSQPLBE,DISP=SHR
// DD DSN=ISP.SISPPENU,DISP=SHR
//ISPMLIB DD DSN=QMF1210.SDSQMLBE,DISP=SHR
// DD DSN=ISP.SISPMENU,DISP=SHR
//ISPSLIB DD DSN=QMF1210.SDSQSLBE,DISP=SHR
// DD DSN=ISP.SISPSENU,DISP=SHR
// DD DSN=ISP.SISPSLIB,DISP=SHR
//ISPTLIB DD DSN=QMF1210.SDSQTLBE,DISP=SHR
// DD DSN=ISP.SISPTENU,DISP=SHR
//ISPPROF DD UNIT=SYSDA,SPACE=(TRK,(9,1,4)),
// DCB=(LRECL=80,BLKSIZE=8800,RECFM=FB,DSORG=PO)

Figure 10. Allocating ISPF libraries in the logon procedure

52 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

6. Verify GDDM data sets.
The following table lists the name and purpose of each GDDM data set:

Table 15. GDDM data sets

Data set name Description

ADMGGMAP GDDM map group for panels mapped by QMF

The default map library is QMF1210.SDSQMAPE.

ADMCFORM Chart formats supplied by QMF; use only if charting
functions are required

The default chart library is QMF1210.SDSQCHRT.

DSQUCFRM User-defined chart objects

Users who have created their own chart formats while using
GDDM-PGF under QMF for TSO can retrieve chart objects
from this data set or save chart objects to it.

ADMSYMBL Symbol sets supplied with GDDM; use only if charting
functions are required

ADMGDF Graphics Data Format files; use only if charting functions
are required

ADMCDATA Chart data files; use only if charting functions are required

ADMDEFS Allocate the ddname ADMDEFS if you modified this file to
include any settings for GDDM external defaults, such as the
default for the APPCPG parameter. The ADMDEFS file also
stores GDDM nicknames if you use GDDM services for
printing.

The following figure shows the allocation statements for these data sets in the DSQ1EINV procedure.

//**
//* QMF/GDDM DATA SETS *
//**
//ADMGGMAP DD DSN=QMF1210.SDSQMAPE,DISP=SHR * GDDM Map Group
//ADMCFORM DD DSN=QMF1210.SDSQCHRT,DISP=SHR * QMF-Supplied Chart Formats
//DSQUCFRM DD DSN=aaaaaaaa,DISP=SHR * Saves User-defined ICUFORMS
//ADMCDATA DD DSN=xxxx,DISP=SHR
//ADMGDF DD DSN=xxxx,DISP=SHR
//ADMSYMBL DD DSN=xxxx,DISP=SHR

Figure 11. Allocation statements for GDDM data sets

To allocate these data sets in your own procedure, complete the following steps:

a) Ensure that the ADMGGMAP DD statement points to the QMF ADMGGMAP library,
QMF1210.SDSQMAPE, as shown here.

b) Allocate separate libraries for users who want to save their own chart formats that they have
created while running GDDM-PGF under QMF for TSO.
Create the new library with a DD statement like the one in the following example. Provide values for
the DSN, UNIT, VOL, and SPACE parameters, but do not change the DCB parameters.

//DSQUCFRM DD DSN=aaaaaaaa,DISP=(NEW,CATLG),
// UNIT=xxxx,VOL=SER=yyyy,
// SPACE=(400,(200,50,25)),

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 53

// DCB=(LRECL=400,BLKSIZE=400,RECFM=F)

1) Locate the entry for DSQUCFRM in DSQ1EINV.
2) Duplicate and customize this entry for each data set that is allocated to DSQUCFRM.
3) In each duplicated entry, replace aaaaaaaa with the name of each data set that is allocated to

DSQUCFRM.
c) Replace xxxx in the DD statements for ADMCDATA, ADMGDF, and ADMSYMBL with the name of the

data set created during GDDM installation.
If these data sets do not exist, define them using statements like these:

//ADMCDATA DD DSN=xxxx,DISP=(NEW,CATLG),
// UNIT=xxxx,SPACE=(TRK,(5,1,10)),
// DCB=(RECFM=F,LRECL=400,BLKSIZE=400,DSORG=PO)

7. Allocate QMF data sets.
This table lists data sets that are used by QMF in TSO. These files are allocated to ddnames that begin
with DSQ. If you want to allocate them differently, be sure to change them in the allocation statements
in the logon procedure, CLIST, or exec that you use to invoke QMF.

Table 16. Data sets used by QMF in TSO

Data set Description

DSQPNLE QMF VSAM panel file

This file changes from one release to the next and is
built when you run install job
QMF1210.SDSQSAPE(DSQ1EPNL).

DSQUDUMP QMF snap dump output

DSQDEBUG QMF trace dump output

For more information about this data set, see “The trace
facility” on page 356.

DSQPRINT Print data output

DSQSPILL Spill data file

Instead of allocating a file for spill data, you can spill
data to extended storage. For more information, see
“Spilling report data to extended virtual storage (TSO
only)” on page 152.

DSQEDIT Edit transfer file

This file temporarily holds a query or procedure that is
referenced on an EDIT command while ISPF is called
for editing services.

Data sets DSQDEBUG and DSQUDUMP default to a printer. You can customize the definition to send
the information to a data set instead.

The DD statements for DSQUDUMP, DSQDEBUG, and DSQPRINT all require a DCB parameter. For
DSQPRINT, add 1 to the LRECL value for the print control character.

The following figure shows the default allocation statements for the DSQ group of data sets.

54 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

//**
//* DATA SETS USED BY QMF *
//**
//DSQPNLE DD DSN=QMF1210.DSQPNLE,DISP=SHR
//DSQPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//DSQDEBUG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//DSQEDIT DD UNIT=SYSVIO,DCB=(RECFM=FBA,LRECL=79,BLKSIZE=4029),
// DISP=NEW,SPACE=(CYL,(1,1))
//DSQUDUMP DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632)
//SYSUDUMP DD SYSOUT=A
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE),
// UNIT=SYSVIO,SPACE=(CYL,(10,20),RLSE),
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)

Figure 12. Default allocation statements for QMF DSQ data sets

What to do next
After completing these tasks, return to the installation procedure that is associated with your chosen
installation path to determine the next step in the installation.
Related concepts
Creating QMF user profiles
All QMF users need access to a user profile, which determines how QMF handles individual input from
specific users. Use the profile to control certain aspects of a user's environment, such as where printer
output is routed or whether input is converted to upper case.
Setting program parameters and preferences at startup time
This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Format of the CALL statement
This topic explains the format of the required CALL statement.
Related tasks
Using GDDM services to handle printing
You can use GDDM (rather than QMF) services to handle printing in native z/OS batch, TSO, ISPF, and
CICS.
Related reference
Coexistence of releases
QMF Version 12.1 can coexist in the same database only with QMF Version 8.1 New Function Mode, QMF
Version 9.1 New Function Mode, or QMF Version 10.1, QMF Version 11.1, or QMF Version 11.2.
Installing sample queries and procedures required for the installation verification procedures
Install the sample QMF queries and procedures only on TSO.
Related information
Search for information about GDDM data sets and external defaults in the GDDM documentation.

Customizing requester installations under CICS
Before customizing QMF for CICS, you must install and customize both Db2 for z/OS and GDDM to run in
the CICS environment.
Related information
See the GDDM documentation.

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 55

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Describing QMF to Db2
Before you run QMF under CICS, you must describe QMF to Db2.

Procedure

1. Install the Db2 for z/OS-to-CICS connection and the Db2 for z/OS attachment facility for CICS.

QMF uses the CICS/Db2 attachment facility to access Db2 for z/OS data in the CICS environment.
2. Verify that a DB2CONN definition exists for the database in which QMF is installed.

You can use the CICS Resource Definition Online (RDO) facility to create the definition. The DB2ENTRY
definition specific to QMF will be created when the DSQ1ECSD job is run.

All QMF programs were bound during installation; you do not need to separately bind for CICS.

Describing QMF to CICS
Before you run QMF under CICS, you must describe QMF to CICS by modifying and running a job that
updates the CICS system definitions (CSDs).

About this task

Job DSQ1ECSD creates a new list called QMF, which is defined in the CICS system definition file (CSD).
CICS offers a utility program (DFHCSDUP) to update the CSD with a batch job. Use DFHCSDUP to update
all QMF/CICS control tables except the DCT. DSQ1ECSD also defines the DB2ENTRY that is associated
with the correct plan name and group by the QMF transaction.

Procedure

1. Use the RDO VIEW Lsrpool name command to check the current definitions of the LSRPOOL.
The QMF panel data set (DSQPNLE) requires a VSAM CI size of 32 K. QMF does not explicitly define an
LSRPOOL entry. Instead, QMF defaults to the CICS default of 1. If the LSRPOOL in your installation is
smaller than 32 KB, use DFHCSDUP to specify an LSRPOOL that supports a VSAM CI size of 32 KB.

2. Edit QMF1210.SDSQSAPE(DSQ1ECSD) and verify or change the installation parameters in the
instream procedure of the job to accommodate your site's needs.
For example:

//DSQ1ECSD PROC REG=2048K, Job step region
// QMFTPRE='QMF1210', DSN prefix for QMF
// CLOAD='CICS.SDFHLOAD', Name of CICS program library
// CCSD='CICS.DFHCSD', Name of CICS CSD file
// OUTC='*' Print sysout class

3. Submit the job and check that the job ran with a return code of 0. If you receive a non-zero return
code, check the job output and correct the error.

Preparing the governor exit for CICS
Before QMF can be started under CICS, you must translate, assemble, and link-edit the governor supplied
with QMF.

Procedure

1. Edit job QMF1210.SDSQSAPE(DSQ1EGLK) according to the comments in the job.
2. Submit job QMF1210.SDSQSAPE(DSQ1EGLK).
3. Check for a return code of 0 on all steps except LKEDPROG, which can have a return code of 4. If the

return code is not 0 or 4, correct the problem and rerun the job.

Related concepts
Controlling QMF resources

56 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

A governor exit routine helps you limit end-user activity and control use of system resources at your site.

Customizing for GDDM support under CICS
Additional customization is required to support GDDM under CICS.

Customizing GDDM external defaults
You must set several GDDM external defaults in the ADMADFC file to ensure proper interaction with QMF

You must set the following external defaults:
IOSYNCH

Ensure that the IOSYNCH external default is set to YES.
APPCPG

QMF receives information from and presents information to the screen through services that are
provided by GDDM. To ensure that the data that is sent by Db2 is displayed properly by GDDM, the
GDDM code page must match the coded character set identifiers (CCSIDs) for the current database
manager. A CCSID contains all of the information necessary to assign and preserve the meaning and
rendering of characters through various stages of processing and interchange. This information
always includes at least one code page. The CCSID also has an associated encoding scheme that
governs how various code points are to be handled.

QMF compares the GDDM application code page (APPCPG) with two different CCSID values:

• CURRENT APPLICATION ENCODING SCHEME special register

The application encoding scheme for the database is specified in this special register in Db2 for
z/OS. For single-byte character set (SBCS) languages, the GDDM application code page should
match the value of this special register.

• SYSIBM.SYSTEM_EBCDIC_CCSID session variable

This session variable specifies the CCSID that is in use for EBCDIC data on the current system. For
double-byte character set (DBCS) languages, the GDDM application code page should match the
value of this session variable.

If the CCSIDs do not match, there could be discrepancies between what is sent to Db2 for display and
what is actually displayed by GDDM. If necessary, revise the GDDM APPCPG parameter value in the
GDDM external defaults file, ADMADFC. An APPCPG value of 037 is compatible with the CCSIDs in use
on Db2 for z/OS. When you are finished modifying the file, assemble and link-edit the file and ensure
that it is accessible to QMF during initialization. For details on how to modify external defaults, see the
GDDM documentation in the IBM Publications Center.

In addition to changing the value of the APPCPG parameter, make sure that the code page of the
terminal emulator that you are using is consistent with the other CCSIDs in use.

If your users need to display or print the euro currency symbol, ensure that the value that you assign
to the APPCPG parameter is associated with the code page for this symbol. For example, to display
the euro currency symbol in English output, the proper APPCPG value to use is 1140. Determine the
appropriate APPCPG value to use for the national language in which you are running QMF and assign
that value to the APPCPG parameter.

Checking that QMF devices are queriable
GDDM must be able to query device characteristics for all devices used in QMF operations.

QMF manages the display of panels and data by using GDDM services. To build and convert each data
stream into a device-specific form, GDDM must be able to query device characteristics for all devices
used in QMF operations.

To make sure that each device can be queried, check the bytes of the PSERVIC operand of the VTAM
MODEENT macro. These bytes define the display device or printer type and are set differently for
queriable versus nonqueriable devices.

Related information
Search for information about the valid values of the PSERVIC operand in the GDDM documentation.

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 57

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Loading QMF GDDM maps to the GDDM ADMF data set
This procedure replaces the existing maps in the data set.

About this task

The ADMF data set can contain maps from only one QMF release at a time.

Procedure

To load the GDDM maps defined with QMF Version 12.1 to the GDDM ADMF data set, follow these steps:
1. Edit QMF1210.SDSQSAPE(DSQ1EADM) and verify that the installation parameters in the instream

procedure of the job, as well as the job steps, accommodate your requirements.
For example:

//DSQ1EADM PROC RGN='2048K', Job-step region size
// QMFTPRE='QMF1210', QMF prefix name for target libraries
// GDDMADM='GDDM.ADMF' GDDM ADMF data set name

2. Submit QMF1210.SDSQSAPE(DSQ1EADM).
If you must revert to the maps from the release of QMF from which you are migrating for any reason,
run job QMFvrm.SDSQSAPE(DSQ1EADM), where vrm is the version, release level, and modification
level of the release from which you migrated.

3. Check for a return code of 0. If the return code is not 0, correct the problem and rerun DSQ1EADM.

Creating sample charts and the QMF trace data set
This job runs statements (in DSQ1CFRM) that create the default QMF chart formats and the QMF trace
data set.

Before you begin
If you migrated to QMF Version 12.1 from a prior QMF release, skip this step.

Procedure

1. Edit QMF1210.SDSQSAPE(DSQ1BFRM).
2. Locate the installation parameters in the instream procedure of the job and ensure that their values

accommodate your requirements.
For example:

//DSQ1BFRM PROC QMFTPRE='QMF1210', DSN prefix for QMF product
// GDDMADM='GDDM.ADMF', GDDM ADMF data set name
// CHRTVOL='QMFVOL', QMF/GDDM charts volume
// TRCVOL='QMFVOL' Trace data set volume

3. Edit DSQ1CFRM COPY, which is referenced on the SYSIN statement of the DSQ1BFRM job.
4. Customize the VSAM control statement for your installation.

For example:

 DEFINE CLUSTER (NAME(QMF1210.DSQUCFRM) -
 VOLUMES(QMFVOL) -
 UNIQUE -
 RECSZ(400 400) -
 CONTROLINTERVALSIZE(2048) -
 KEYS(20 0)) -
 DATA -
 (RECORDS(1000 300)) -
 CATALOG(VSAMUSERCAT)

5. Submit QMF1210.SDSQSAPE(DSQ1BFRM).
6. Check for a return code of 0. If the return code is not 0:

a) Edit DSQ1CFRM and remove the steps that ran successfully; otherwise, you will receive error
messages indicating that the objects are already there.

58 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

b) Check the trace data set, DSQDEBUG, for errors. See “The trace facility” on page 356 for more
information about this data set.

c) Correct any problems you find and rerun the job.

Updating the CICS startup job stream
You must update the DD statements in the CICS startup job stream to ensure that the proper data sets
are accessed during QMF initialization.

Procedure

1. Place the load library that contains QMF, GDDM, and Db2 for z/OS modules in the CICS module load
library list, DFHRPL.
For example:

//DFHRPL DD ...
// DD DSN=QMF1210.SDSQEXIT,DISP=SHR
// DD DSN=QMF1210.SDSQLOAD,DISP=SHR
// DD DSN=GDDM.SADMMOD,DISP=SHR
// DD DSN=DSN1110.SDSNEXIT,DISP=SHR
// DD DSN=DSN1110.SDSNLOAD,DISP=SHR

Be sure that the correct Db2 for z/OS release level is specified on the statements that refer to the Db2
exit and load libraries.

2. Provide access to the following data sets, which are required by GDDM and QMF:

//* GDDM DATA SETS
//ADMF DD DSN=GDDM.ADMF,DISP=SHR QMF map group
//ADML DD SYSOUT=A
//ADMS DD SYSOUT=A
//ADMT DD SYSOUT=A
//* QMF DATA SETS
//DSQPNLE DD DSN=QMF1210.DSQPNLE,DISP=SHR QMF panel file
//DSQDEBUG DD DSN=QMF1210.DSQDEBUG,DISP=SHR Trace and error messages
//DSQUCFRM DD DSN=QMF1210.DSQUCFRM,DISP=SHR User-defined ICU forms

3. Shut down and restart CICS to incorporate your changes to the CICS tables and to the CICS startup
job.

Determining the type of storage to use for EXPORT and IMPORT commands
After QMF Version 12.1 is installed, the default use of CICS temporary storage and transient data queues
is active. However, for compatibility reasons, QMF Version 12.1 still allows you to activate support of TSO
data sets.

About this task

Prior releases of QMF allowed the direct use of TSO data sets from QMF transactions. However, using TSO
data sets can cause unpredictable results in CICS address spaces that are running QMF transactions.
Therefore, you should use CICS temporary storage or transient data queues for QMF EXPORT and
IMPORT commands.

Procedure

To activate support for TSO data sets for QMF IMPORT and EXPORT commands, follow these steps:
1. Disable the QMF export/import control module, DSQCTLXI.

To disable this module, use the CEMT transaction supplied with CICS:

CEMT SET PROGRAM(DSQCTLXI) DISABLE

DSQCTLXI can also be disabled by removing it from the CICS CSD file. After you disable DSQCTLXI, all
QMF sessions running in CICS use TSO data sets for EXPORT and IMPORT commands.

2. Set the execution key of QMF module DSQCBST to a value of CICS if you are using CICS storage
protection (SIT STGPROT=YES).

Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases 59

To determine if storage protection is being used, issue the following command:

CEMT INQUIRE SYSTEM

If the STOREPROTECT option is set to ACTIVE, storage protection is being used.

If the EXECKey option in the DSQCBST module is set to USER, complete these steps to change this
value to CICS:

a) Issue the following command:

CEDA ALTER PROGRAM(DSQCBST)

b) Recycle the CICS region.
c) Issue the following command:

CEMT INQUIRE PROGRAM(DSQCBST)

With your cursor next to the Prog option, press Enter to display all options. Check that the EXECKey
option is set to Cexeckey, which indicates a value of CICS.

What to do next

After support for CICS temporary storage or transient data queues is disabled, you can reactivate the
support by issuing a CEMT command or by adding a program entry to the CICS CSD file if the entry was
removed. To use CEMT, enter the following command:

CEMT SET PROGRAM(DSQCTLXI) ENABLE

Use the IMPORT command sparingly in CICS, because it can affect QMF performance for other users in
the same address space. QMF uses GET/PUT services when operating under QSAM, which can lock out
other QMF users in the same CICS region during I/O operations.

Revising the EDSA limit size to accommodate SQL queries up to 2 MB
QMF Version 12.1 supports a query size of up to 2 MB for SQL queries that are directed to Db2 for z/OS.

About this task

The DSQEC_SQLQRYSZ_2M parameter defines the upper limit of the total amount of storage within which
CICS can allocate the individual extended dynamic storage areas (EDSAs) that reside above the 16 MB
boundary. An EDSALIMIT value of at least 62914560 is required to run SQL queries up to 2 MB in QMF for
CICS.

Procedure

• If you plan to run queries of this size, set the DSQEC_SQLQRYSZ_2M global variable to 1 and revise the
value of the CICS EDSALIM parameter.

What to do next

After completing these tasks, return to the installation procedure that is associated with your chosen
installation path to determine the next step in the installation.

60 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 4. Installing or migrating QMF in server
databases

This topic explains how to install or migrate to QMF Version 12.1 in a remote server. A remote server is a
server that is accessible, through DRDA communications, from your local Db2 for z/OS subsystem.

Before you begin

Before you install or migrate to QMF Version 12.1 in a remote server, see “Roadmap 2: Installing QMF in
server databases accessed by the QMF CONNECT command” on page 19 to verify that you are following
the correct installation path for your required configuration.

About this task

The installation tasks for remote servers vary depending on whether you intend to access the remote
server by using remote unit of work or by using distributed unit of work.

Related concepts
QMF in distributed data networks
The first installation of QMF must be performed in a Db2 for z/OS database. When this installation is
complete, the Db2 for z/OS database can then stand alone, function as a requester, or function as both a
requester and server for other QMF Version 12.1 installations.

Setting installation job parameters for server installations
With each installation of QMF you run a set of batch installation jobs. You must customize the parameter
and variable values that the jobs use before you run them.

About this task

You can either change the default values in the installation defaults exec, DSQ1DEFS, or override the
values in each installation job before you run it. All batch installation jobs are members of the
QMF1210.SDSQSAPE data set.

Restrictions:

• QMF commands that include three-part names cannot be directed to DB2 for VSE and VM servers.
• By default, QMF commands that include three-part names cannot be used to access remote tables that

contain large object (LOB) data. To enable access of LOB data in remote tables with three-part names,
the DSQEC_LOB_RETRV global variable must be set to 3. The DSQEC_LOB_RETRV can also be set to 2
to enable the retrieval of LOB metadata only.

• Connectivity with remote servers is not supported when QMF for TSO is started as a stored procedure in
the Db2 for z/OS requester database.

Procedure

To customize the parameter and variable values that the installation uses, follow one of these steps:
• Change the default values in the installation defaults exec, DSQ1DEFS.

In addition to the installation defaults listed for common parameters, QMF uses the following
parameters during server installs:
LOCATION

This parameter is used for installations in servers that will be accessed by the CONNECT command
or the DSQSDBNM program parameter. Replace the default value, THISLOCN, with the name of the
remote server into which you are installing QMF.

© Copyright IBM Corp. 1982, 2020 61

T3PARTNM
This parameter is associated with Installation path I: Preparing a remote server to be accessed by
QMF commands that include three-part names.

Specify YES for this parameter if data will be accessed at the remote server using only three-part
names in QMF commands. If you intend to use both the QMF CONNECT command and commands
that include three-part names to access data at the remote server, leave this parameter blank,
because the installation path for servers accessed by the CONNECT command automatically
provides three-part-name access.

Review the job comments in the DSQ1DEFS exec for more information about the installation
parameters.

• Override the default values by customizing the values in each job before you run it.

Important: Be sure that the SSID parameter in all installation jobs that are directed to remote servers
is set to the ID of the local Db2 for z/OS subsystem from which you will be performing the remote
installation.

What to do next

After completing these tasks, return to the installation procedure that is associated with your chosen
installation path to determine the next step in the installation.

Related concepts
Installation defaults for common parameters
Default values in the QMF1210.SDSQEXCE(DSQ1DEFS) exec.
Overriding defaults in the installation jobs
An example JCL that shows how to override the inherited default values within an installation job by
modifying the parameter values on the SYSTSIN statement.

Running installation jobs that prepare servers for access by the QMF
CONNECT command

You must run installation jobs to install or migrate to QMF Version 12.1 in a server database.

Connectivity with remote servers is not supported when QMF for TSO is started as a stored procedure in
the Db2 for z/OS requester database..

Choose the topic appropriate for the type of installation you are performing:

Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Jobs that install QMF V12.1 in server databases where no prior release is installed
This job sequence installs QMF Version 12.1 on Db2 for z/OS, DB2 for iSeries, or Db2 for Linux, UNIX, and
Windows servers where no prior release of QMF is installed.

Before you begin

• Ensure that you are following the correct installation path before you perform these tasks. This
procedure is associated with Installation path D: Installing QMF V12.1 in a Db2 for z/OS, iSeries, or LUW
server.

• Verify that the database is one of the following releases. If necessary, upgrade the database before you
continue:

62 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

– Db2 for z/OS servers must be Version 9.1 New Function Mode or later. DB2 10 cannot be running in
conversion mode from Version 8, conversion mode* from Version 8, enabling-new-function mode
from Version 8, or enabling-new-function mode* from Version 8 (CM8, CM8*, ENFM8, or ENFM8*).

– DB2 for iSeries servers must be Version 5.4 or later.
– Db2 for Linux, UNIX, and Windows servers must be Version 9.5 or later.

About this task

Restriction: DB2 for VSE and VM do not support new installations of QMF Version 12.1 of any type. To
prepare a DB2 for VSE and VM server for access by the QMF CONNECT command, see one of the following
installation paths:

• “Installation path E: Migrating to QMF V12.1 from V7.2 or earlier in a DB2 for VSE and VM server” on
page 25

• “Installation path F: Migrating to QMF V12.1 from QMF V8.1, V9.1, V10.1, V11.1, or V11.2 in a DB2 for
VSE and VM server” on page 26

Important: Do not change or add any BIND PACKAGE or BIND PLAN options in any of the QMF bind jobs
for plans and installation packages unless instructed to do so in this information, in the job itself, or by
IBM Software Support.

Procedure

• Customize parameter values in the jobs as necessary by following the instructions in the prolog of each
job or by setting site-specific installation defaults or by overriding installation defaults. Then run the
jobs in their specified order.
The jobs listed in the following table reside as members in the QMF1210.SDSQSAPE data set.

Table 17. Job sequence for installing QMF Version 12.1 in remote Db2 for z/OS, DB2 for iSeries, or Db2
for Linux, UNIX, and Windows servers where no prior release of QMF is installed.

Job name Description

DSQ1TBAJ Optional: Creates QMF VCAT (Db2 for z/OS servers only)

DSQ1BSQL Binds the QMF installation programs from the Db2 for z/OS
requester database to the server database

If you are installing QMF under a secondary authorization ID,
edit this job and add either the OWNER(secauth) parameter or a
SET CURRENT SQLID='secauth' specification to the BIND
PACKAGE and BIND PLAN statements so that QMF is able to
resolve the ID. The value of the SECAUTH parameter in the
DSQ1DEFS exec must match the SECAUTH value that you
provide in this job.

DSQ1BLNI Creates QMF Version 12.1 control tables

DSQ1BVW Creates the default views that support the QMF LIST command

DSQ1BPKG Binds the QMF packages

DSQ1STGJ Db2 for z/OS servers only: creates the storage group, database,
and table space for the QMF SAVE DATA command

The SAVE DATA command is used during the installation
verification procedures.

DSQ1EIVS Optional: Db2 for z/OS servers only: creates the QMF sample
tables

Chapter 4. Installing or migrating QMF in server databases 63

Table 17. Job sequence for installing QMF Version 12.1 in remote Db2 for z/OS, DB2 for iSeries, or Db2
for Linux, UNIX, and Windows servers where no prior release of QMF is installed. (continued)

Job name Description

DSQ1EDJ4 Optional: Db2 for Linux, UNIX, and Windows servers only:
creates the QMF sample tables

DSQ1EAS4 Optional: DB2 for iSeries only: creates the QMF sample tables

• After you run each job, check for a return code of 0 or 4. Both codes indicate successful completion.

What to do next

After all jobs have run successfully, return to “Installation path C: Installing QMF V12.1 in a Db2 for z/OS,
iSeries, or LUW server” on page 22 for the next step in the installation process.

Related tasks
Installing the enhanced LIST command function (z/OS only)
When the enhanced LIST command function is installed, privileges for tables and views must be granted
only to a user's primary or secondary authorization ID, instead of to PUBLIC, to be included in object lists
that are generated by the LIST TABLES or LIST ALL command when the OWNER=ALL option is specified
on the command.

Jobs that migrate QMF V8 NFM, QMF V9 NFM, QMF V10, QMF V11.1, or QMF V11.2 to QMF
V12.1 in a z/OS, iSeries, or LUW server

This job sequence migrates a release of QMF New Function Mode, QMF Version 10, QMF Version 11.1, or
QMF Version 11.2 to QMF Version 12.1.

Before you begin

• Ensure that you are following the correct installation path before you perform these tasks. This
procedure is associated with Installation path E: Migrating to QMF V12.1 from a QMF V11.2, V11.1, V10,
or QMF NFM release in a Db2 for z/OS, iSeries, or LUW server.

• Verify that the database is one of the following releases. If necessary, upgrade the database before you
continue:

– Db2 for z/OS servers must be Version 9.1 New Function Mode or later. DB2 10 cannot be running in
conversion mode from Version 8, conversion mode* from Version 8, enabling-new-function mode
from Version 8, or enabling-new-function mode* from Version 8 (CM8, CM8*, ENFM8, or ENFM8*).

– DB2 for iSeries servers must be Version 5.4 or later.
– Db2 for Linux, UNIX, and Windows servers must be Version 9.5 or later.

About this task

Important: Do not change or add any BIND PACKAGE or BIND PLAN options in any of the QMF bind jobs
for plans and installation packages unless instructed to do so in this information, in the job itself, or by
IBM Software Support.

Procedure

• Customize parameter values in the jobs as necessary by following the instructions in the prolog of each
job or by setting site-specific installation defaults or by overriding installation defaults. Then run the
jobs in their specified order.
The jobs listed in the following table reside as members in the QMF1210.SDSQSAPE data set.

64 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 18. Job sequence to migrate from QMF Version 8.1 New Function Mode, QMF Version 9.1 New
Function Mode, QMF Version 10, QMF Version 11.1, or QMF Version 11.2 to QMF Version 12.1 in a Db2
for z/OS, DB2 for iSeries, or Db2 for Linux, UNIX, and Windows server

Job name Description

DSQ1BSQL Binds the QMF installation programs from the Db2 for z/OS
requester database to the server database

If you are installing QMF under a secondary authorization ID,
edit this job and add either the OWNER(secauth) parameter or
a SET CURRENT SQLID='secauth' specification to the BIND
PACKAGE and BIND PLAN statements so that QMF is able to
resolve the ID. The value of the SECAUTH parameter in the
DSQ1DEFS exec must match the SECAUTH value that you
provide in this job.

DSQ1BGLV Creates new QMF Version 12.1 Q.GLOBAL_VARS control table.

Exception: You do not need to run DSQ1BGLV if you are
migrating from QMF 11.1 or higher.

DSQ1ERTS Inserts new command synonyms RUNTSO and RU into
Q.COMMAND_SYNONYMS and updates the DPRE definition.

DSQ1BVW Creates the default QMF views that support the QMF LIST
command. If you installed the enhanced LIST command
function, run the DSQ1BUDV installation job after you run
DSQ1BVW.

DSQ1BPKG Binds the QMF packages

• After you run each job, check for a return code of 0 or 4. Both codes indicate successful completion.
• Run these jobs if you want the sample tables from a previous release of QMF.

Previous releases of the QMF sample tables are still valid in the new version.

• If the older sample tables were not installed and you want to install them with the new version, run
the appropriate job from the this table:

Table 19. Jobs that install sample tables

Job name Description

DSQ1EIVS Installs sample tables on Db2 for z/OS servers

DSQ1EAS4 Installs sample tables on DB2 for iSeries servers

DSQ1EDJ4 Installs sample tables on Db2 for Linux, UNIX, and Windows
servers

• If the older sample tables were previously installed and you want to reinstall them, first delete the
existing samples.

- Job DSQ1EDSJ deletes these samples from Db2 for z/OS databases
- Job DSQ1EDX2 deletes them from DB2 for iSeries and Db2 for Linux, UNIX, and Windows

databases.

What to do next

After all jobs have run successfully, return to “Installation path D: Migrating to QMF V12.1 from QMF
V11.2, QMF V11.1, QMF V10, or a QMF NFM release in a Db2 for z/OS, iSeries, or LUW server” on page 23
for the next step in the installation process.

Chapter 4. Installing or migrating QMF in server databases 65

Jobs that migrate QMF V7.2 or earlier to QMF V12.1 in a VM or VSE server
This job sequence migrates QMF Version 7.2 or earlier to QMF Version 12.1 in a DB2 for VSE and VM
server.

Before you begin

• Ensure that you are following the correct installation path before you perform these tasks. This
procedure is associated with Installation path G: Migrating to QMF V12.1 from V7.2 (or earlier) in a DB2
for VSE and VM server.

• Ensure that the DB2 for VSE and VM is Version 7.3 or later.

Procedure

• Customize parameter values in the jobs as necessary by following the instructions in the prolog of each
job or by setting site-specific installation defaults or by overriding installation defaults. Then run the
jobs in their specified order.
The jobs listed in the following table reside as members in the QMF1210.SDSQSAPE data set.

Table 20. Job sequence for migrating QMF Version 7.2 or earlier to QMF Version 12.1 in a DB2 for VSE
and VM server

Job name Description

DSQ1BSQL Binds the QMF installation programs from the Db2 for z/OS
requester database to the server database

If you are installing QMF under a secondary authorization ID,
edit this job and add either the OWNER(secauth) parameter or
a SET CURRENT SQLID='secauth' specification to the BIND
PACKAGE and BIND PLAN statements so that QMF is able to
resolve the ID. The value of the SECAUTH parameter in the
DSQ1DEFS exec must match the SECAUTH value that you
provide in this job.

DSQ1BVW Creates the default views that support the QMF LIST command

DSQ1BPKG Binds the QMF packages

• After you run each job, check for a return code of 0 or 4. Both codes indicate successful completion.
• If necessary, install QMF sample tables by following the documentation for QMF for VSE or VM.

Previous releases of the QMF sample tables are still valid in the new QMF version.

What to do next

After all jobs have run successfully, return to “Installation path E: Migrating to QMF V12.1 from V7.2 or
earlier in a DB2 for VSE and VM server” on page 25 for the next step in the installation process.

Related information
Search for information about installing the QMF sample tables in the QMF for VM or VSE documentation.

Jobs that migrate QMF V8, V9, V10, V11.1 or V11.2 to QMF V12.1 in a VM or VSE server
This job sequence migrates an existing QMF Version 8.1, Version 9.1, Version 10, Version 11.1, or Version
11.2 installation to QMF Version 12.1 in a DB2 for VSE and VM server.

Before you begin

• Ensure that you are following the correct installation path before you perform these tasks. This
procedure is associated with Installation path H: Migrating to QMF V12.1 from QMF V8.1, V9.1, V10,
V11.1, or V11.2 in a DB2 for VSE and VM server.

66 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/shop/publications/order

• Ensure that the DB2 for VSE and VM is Version 7.3 or later.

About this task

Important: Do not change or add any BIND PACKAGE or BIND PLAN options in any of the QMF bind jobs
for plans and installation packages unless instructed to do so in this information, in the job itself, or by
IBM Software Support.

Procedure

• Customize parameter values in the jobs as necessary by following the instructions in the prolog of each
job or by setting site-specific installation defaults or by overriding installation defaults. Then run the
jobs in their specified order.
The jobs listed in the following table reside as members in the QMF1210.SDSQSAPE data set.

Table 21. Job sequence for migrating an existing QMF Version 8.1, Version 9.1, Version 10, Version
11.1, or Version 11.2 installation to QMF Version 12.1 in a DB2 for VSE and VM server

Job name Description

DSQ1BSQL Binds the QMF installation programs from the Db2 for z/OS
requester database to the server database.

If you are installing QMF under a secondary authorization ID,
edit this job and add either the OWNER(secauth) parameter or
a SET CURRENT SQLID='secauth' specification to the BIND
PACKAGE and BIND PLAN statements so that QMF is able to
resolve the ID. The value of the SECAUTH parameter in the
DSQ1DEFS exec must match the SECAUTH value that you
provide in this job.

DSQ1BPKG Binds the QMF packages.

• After you run each job, check for a return code of 0 or 4. Both codes indicate successful completion.
• If necessary, install QMF sample tables by following the documentation for QMF for VSE or VM.

Previous releases of the QMF sample tables are still valid in the new QMF version.

Related information
Search for information about installing the QMF sample tables in the QMF for VM or VSE documentation.

Falling back to the prior release in server databases
If you encounter errors in migrating to QMF Version 12.1 from a QMF Compatibility Mode release (QMF
Version 3.3, 6.1, 7.1, 7.2, Version 8.1 Compatibility Mode, or Version 9.1 Compatibility Mode), you can
return to the earlier release.

Procedure

To return the QMF control tables and their table spaces to their original pre-migration state:
1. Re-create the QMF control tables with their original structure. You can use either of the following

methods:

• Drop the migrated objects and re-create them with their original structure and data. Use your
backup that you created when you migrated.

• Use ALTER statements to change the definition of the objects to match the original specifications as
they existed before the migration.

2. Recover the original image copies.
You must recover the original image copies because the migration process for QMF Version 12.1
renames the original control tables and drops the renamed tables. If you are migrating QMF on a Db2
for z/OS server, use the DSN1COPY utility rather than the RECOVER utility to recover the original image

Chapter 4. Installing or migrating QMF in server databases 67

http://www.ibm.com/shop/publications/order

copies. Because the OBIDs of the original image copies do not match the OBIDs of the newly created
tables, the OBIDXLAT parameter is required.

See the Db2 documentation for more information about the DSN1COPY utility.

Note: In DB2 Version 9 and later, simple table spaces are supported, but new tables are created only
in segmented table spaces. If the QMF tables were created before DB2 Version 9, use the DB2
UNLOAD utility with the fix for APAR PK60612 applied instead of DSN1COPY. With this fix, the
UNLOAD utility can process an image copy of a table space that was non-segmented although the new
table is defined as segmented. For more information, see the "Unloading from an image copy" section
of DB2 9 for z/OS: Using the Utilities Suite.

3. Recover any indexes on the objects.
4. Take a full image copy of the re-created objects from the prior release.

Running installation jobs that prepare servers to be accessed by QMF
commands that include three-part names

This job sequence prepares both the requester and server to use three-part names in QMF commands to
access data at a remote server.

Before you begin

• Ensure that you are following the correct installation path before you perform these tasks. This
procedure is associated with Installation path I: Preparing a remote server to be accessed by QMF
commands that include three-part names.

• If you intend to access data at a remote server by using the QMF CONNECT command in addition to
QMF commands that include three-part names, see “Roadmap 2: Installing QMF in server databases
accessed by the QMF CONNECT command” on page 19 to determine your installation path.

About this task

Restrictions:

• Connectivity with remote servers is not supported when QMF for TSO is started as a stored procedure in
the Db2 for z/OS requester database.

• QMF commands that include three-part names cannot be directed to DB2 for VSE and VM servers.
• By default, QMF commands that include three-part names cannot be used to access remote tables that

contain large object (LOB) data. To enable access of LOB data in remote tables with three-part names,
the DSQEC_LOB_RETRV global variable must be set to 3. The DSQEC_LOB_RETRV can also be set to 2
to enable the retrieval of LOB metadata only.

• Unless the command that includes the three-part name is directed to Db2 for z/OS, QMF must be
started with multirow fetch turned off.

Procedure

To use only three-part names in QMF commands to access data at a remote server where QMF is not
installed, complete the following steps to prepare both the requester and server:
1. Run QMF1210.SDSQSAPE(DSQ1BSQL) at the remote server. Run this job from the local database.
2. Edit QMF1210.SDSQEXCE(DSQ1DEFS) and set the T3PARTNM parameter to YES.

For example:

T3PARTNM="YES"

3. Be sure that the DSQDEFS DD statement in job DSQ1BPKG points to the DSQ1DEFS member that you
modified in step “2” on page 68.

4. Run QMF1210.SDSQSAPE(DSQ1BPKG) at the remote server. Run this job from the local database.
Check for a return code of 0 or 4. Both codes indicate successful execution.

68 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.redbooks.ibm.com/redbooks/pdfs/sg246289.pdf

Related concepts
Enabling support for multirow fetch and insert
The DSQSMRFI parameter controls whether the database uses multirow or single-row fetch and insert.
Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Chapter 4. Installing or migrating QMF in server databases 69

70 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 5. Verifying that QMF is installed correctly
The methods to verify that QMF is correctly installed vary depending on the type of database.

Testing QMF installations on requester databases
To test installations of QMF in requester databases, complete these steps.

Before you begin

• Ensure that you have completed all of the steps in the installation procedure that is associated with
your chosen installation path.

• Ensure that you have the proper authority to run the tests.

The authorization ID that you use to run the tests must have one of the following authorities:

– SYSADM (or equivalent)
– DBADM (or equivalent) on the following databases:

DSQDBCTL
This database contains the QMF control tables of the QMF object catalog.

DSQDBDEF

Depending on your installation, this database may or may not contain the DSQTSDEF table space.
If DSQTSDEF table space is present, it is used as the default space when the SAVE DATA
command is issued. If DSQTSDEF table space is not present, SAVE DATA will create tables in
implicitly created universal table spaces.

About this task

These test procedures apply to the installation paths in “Roadmap 1: Installing QMF in stand-alone or
requester databases (Db2 for z/OS only)” on page 14.

If you plan to use QMF under CICS, run all steps under TSO first, then go through the procedure again for
CICS.

Starting QMF
The method that you use to start QMF depends on whether you are running QMF under TSO or CICS.

Before you begin

Before starting QMF, verify that the requester database has been started. Start the requester database
with DDF if you will proceed with a QMF installation in a server database after testing the requester
installation.

About this task

Separate instructions are provided for starting QMF under TSO and starting QMF under CICS.

Results

If QMF fails to start or you experience errors or warnings when starting QMF, see one of the following
topics for possible causes:

• “Errors that can occur at initialization time” on page 336
• “Warning messages after you start QMF” on page 344

© Copyright IBM Corp. 1982, 2020 71

Initialization problems can occur if QMF is accessing load modules from one or more prior releases during
startup. See “Problems that can occur when QMF is not using current load modules” on page 336 for
instructions on how to investigate whether this might be the problem.

Starting QMF under TSO
If you are using QMF under ISPF, you can start QMF by using the ISPF SELECT service and the ISPSTART
command. To start QMF without ISPF, you can use the DSQQMFn module, where n is a 1-character
language ID.

About this task

After logging onto TSO with a logon procedure, you are in TSO READY mode. From this mode, you can
start QMF with or without ISPF.

Related concepts
Setting program parameters and preferences at startup time
This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.
Related tasks
Starting QMF under CICS
As part of verifying that QMF is installed correctly under CICS, ensure that QMF starts correctly
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Preparing the TSO logon procedure
You must modify the TSO logon procedure to support the storage and other requirements of your users.
This step includes allocating load libraries and data sets.
Related information
Search for information about ISPF dialogs in the ISPF information.

Starting QMF with ISPF
You can start QMF by using the ISPSTART command or you can customize ISPF selection menus to
include QMF as one of the menu choices.

Procedure

• Start QMF with ISPF by either of these methods:

• To use the ISPSTART command, start QMF from an application program by using the callable
interface, or issue the ISPSTART command with or without parameters.

The following example shows how to use the ISPSTART command to override the default values for
the database subsystem name (DSN) and the plan ID (QMF12).

ISPSTART PGM(DSQQMFn) NEWAPPL(DSQn) PARM(DSQSSUBS=ssid,
DSQSPLAN=planid,...)

This command includes the following variables:

n
Use the appropriate 1-character language ID to start QMF in your NLF environment. For
example, to start QMF in an English environment, the values of the PGM parameter is DSQQMFE
and the value of the NEWAPPL parameter is DSQE.

ssid
The 4-character name of the Db2 for z/OS subsystem where QMF Version 12.1 is installed.

planid
The name of the QMF application plan that is bound to the requester. The default is QMF12.

72 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/shop/publications/order

After you issue the preceding ISPSTART command, the QMF home panel is displayed, as shown in
“Checking for the correct version of the QMF panel library” on page 75.

• To code the ISPF Master Application menu supplied with ISPF to include QMF as one of the ISPF
selection menus choices, follow this example:

The call that is highlighted in the lower half of the figure passes a Db2 for z/OS subsystem name of
DB2P and a plan name of QRY10.

%------------------------ MASTER APPLICATION MENU -------------------
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - QMF QUERY MANAGEMENT FACILITY +PF KEYS -
%
%
%
%
%
%
%
%
%
%
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE +
%
)INIT
)PROC
 &SEL = TRANS(TRUNC (&OPT,'.')
 1,'PANEL(ISR@PRIM) NEWAPPL'
 2,'PGM(DSQQMFE) NEWAPPL(DSQE) PARM(S=DB2P,P=QRY10)'
 /* */
 /* ADD OTHER APPLICATIONS HERE */
 /* */
 P,'PANEL(ISPOPT)'
 X,'EXIT'
 ' ',' '
 *,'?')
)END

Figure 13. QMF dialog on the ISPF Master Application menu (English shown)

If you are starting QMF in an NLF environment, you can add entries to the menu for the NLF. In the
example, replace the "E' in DSQQMFE and DSQE with the 1-character national language identifier
for your NLF.

You can also customize any other ISPF menu to allow users to invoke QMF by selecting it from the
menu.

Related concepts
Setting program parameters and preferences at startup time
This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.
Related tasks
Starting QMF without ISPF
To start QMF without ISPF, you can use an application program and the QMF callable interface, or you can
use TSO CALL commands.
Installing QMF National Language Features

Chapter 5. Verifying that QMF is installed correctly 73

A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Starting QMF without ISPF
To start QMF without ISPF, you can use an application program and the QMF callable interface, or you can
use TSO CALL commands.

Procedure

• To use an application program and the callable interface, enter the following statement: DSQQMFn
DSQSSUBS=ssid,DSQSPLAN=planid, ...

This command includes the following variables:

n
Use the appropriate 1-character language ID to start QMF in your NLF environment. For example,
to start QMF in an English environment, the command is DSQQMFE.

ssid
The 4-character name of the Db2 for z/OS subsystem where QMF Version 12.1 is installed.

planid
The name of the QMF application plan that is bound to the requester. The QMF Version 12.1
application plan ID is QMF12.

You can also specify additional values in place of the ellipsis shown.
• To use TSO CALL commands, you can use a TSO CALL command to initialize QMF in the local Db2 for

z/OS requester database.
For example:

CALL 'QMF1210.SDSQLOAD(DSQQMFn)' 'DSQSSUBS=ssid,DSQSPLAN=planid,…'

This command includes the following variables:

QMF1210
The default prefix for the QMF Version 12 Release 1 libraries. If you changed the default prefix for
the QMF libraries, substitute that prefix in place of QMF1210.

n
Use the appropriate 1-character language ID to start QMF in your NLF environment. For example,
to start QMF in an English environment, use DSQQMFE.

ssid
The 4-character name of the Db2 for z/OS subsystem where QMF Version 12.1 is installed.

planid
The name of the QMF application plan that is bound to the requester. The default is QMF12.

Related concepts
Setting program parameters and preferences at startup time
This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.
Related tasks
Starting QMF with ISPF
You can start QMF by using the ISPSTART command or you can customize ISPF selection menus to
include QMF as one of the menu choices.
Installing QMF National Language Features

74 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Starting QMF under CICS
As part of verifying that QMF is installed correctly under CICS, ensure that QMF starts correctly

Procedure

To start QMF for CICS, follow these steps:
1. Sign onto the CICS system where QMF is installed.
2. Press the Escape key to begin a native CICS session.
3. Start QMF:

a) Issue the CICS transaction QMF n, replacing n with the 1-character national language identifier for
your NLF.
For example, for English, the transaction name is QMFE.

a) Specify program parameters DSQSDBQT and DSQSDBQN to configure the type and name of the
queue that will hold trace data.
For example, to start QMF with a temporary storage queue name of DSQD, issue the following
command:

QMFn DSQSDBQT=TS,DSQSDBQN=DSQD

Related tasks
Starting QMF under TSO
If you are using QMF under ISPF, you can start QMF by using the ISPF SELECT service and the ISPSTART
command. To start QMF without ISPF, you can use the DSQQMFn module, where n is a 1-character
language ID.
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Checking for the correct version of the QMF panel library
Both the home panel and help panels should display correctly.

Procedure

To check that the correct version of the QMF panel library is being accessed, complete the following
steps:
1. Check that the correct version of the QMF home panel is displayed, as shown in the following figure.

On the home panel:
a) Check that "Version 12 Release 1" displays beneath the panel name (A).

If the version and release information is not correct and you started QMF under TSO, check your
allocation for DD statement ADMGGMAP to make sure that it points to QMF1210.SDSQMAPn. In
place of specify the 1-character national language ID that is associated with your NLF.
For example, for English QMF, the DD statement should be pointing to QMF1210.SDSQMAPE.
If the version and release information is not correct and you started QMF under CICS, check that
the ADMF DD statement in the startup JCL for the CICS region in which QMF resides correctly
points to the GDDM ADMF data set. The DSQ1nADM installation job (DSQ1EADM for English QMF)
writes the QMF Version 12.1 GDDM maps to this data set.

b) Check that you are connected to the Db2 for z/OS database into which you just installed QMF (B).
The following example shows that the database is named DB2P.

Chapter 5. Verifying that QMF is installed correctly 75

__

__

QMF HOME PANEL Query Management Facility
Version 12 Release 1 A
 ****** ** ** ******** ___
Authorization ID ** ** *** *** ** ___
 KMRAMEY ** ** **** **** ******* ___
 ** ** ** ** ** ** ** ___
Connected to ** * ** ** **** ** ** ___
 DB2P B ****** ** *** ** ** ______
 ** ___________________________________
 http://www.ibm.com/qmf
Enter a command on the command line or press a function key.
For help, press the Help function key or enter the command HELP.
__
1=Help 2=List 3=End 4=Show 5=Chart 6=Query
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, you may enter a command.
COMMAND ===>

Figure 14. QMF Version 12.1 home panel
2. Verify the existence of Version 12.1 online help.

a) Press the Help function key.
The main help menu for QMF Version 12.1 is displayed, as shown in the following figure. Be sure
that topic 1 reflects the correct version of QMF.

+---+
| Help: Query Management Facility |
| |
| Select a topic. |
| 1 to 11 of 17 |
| 1. What's new in QMF Version 12 Release 1 |
| 2. Learning about QMF |
| 3. Profile |
| 4. QMF commands |
| 5. Prompted Query |
| 6. SQL (Structured Query Language) |
| 7. Table Editor |
| 8. Forms |
| 9. Reports |
| 10. Charts |
| 11. Data analytics |
+---+
| F1=Help F3=Exit F7=Backward F8=Forward |
| F9=Keys F12=Cancel |
+---+

Figure 15. Main help menu in QMF Version 12.1
b) Press Cancel (F12 by default) to return to the home panel.

What to do next
If the version and release information is incorrect or the help does not display at all, verify that the
DSQ1nPNL installation job ran successfully and that the DD statement for the DSQPNLn file points to the
correct Version 12 Release 1 data set. In place of n, specify the 1-character national language ID that is
associated with your NLF.

If you started QMF under CICS, additionally check the CICS startup job stream to ensure that the
DSQPNLn data set is properly allocated.

Related concepts
Populating the VSAM panel library

76 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

When the SMP/E installation is complete, populate the QMF VSAM panel library, DSQPNLE.
Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Checking that QMF libraries have been allocated correctly
To check that QMF Version 12.1 libraries have been properly allocated, issue the SHOW GLOBALS
command from within QMF.

Scroll through the global variables and check the value of the following variables:

• DSQAO_QMF_VER_RLS

The value of this variable should be QMFV12R1.0. If any other value is displayed, review the information
on allocating QMF libraries in “Defining programs, resources, and preferences to TSO and CICS” on
page 49.

Related concepts
Initializing global variables and QMF session behavior when QMF starts
You can use several methods to set QMF global variables when QMF starts. These methods involve
modifying the DSQUOPTS routine, the Q.GLOBAL_VARS global variable table, or the default system
initialization procedure. This procedure can also be used to set other aspects of a user's QMF session
before the home panel displays.

Checking that all required QMF views were installed
Check that the views are appropriate for the database to which you are connected.

Procedure

To verify that the appropriate views were installed:
1. Issue the following command:

LIST TABLES (OWNER=Q NAME=DSQ%

2. Check the results of the command against the views that are shipped with QMF.
3. If the appropriate views are not in the list, rerun the DSQ1BVW installation job. If you installed the

enhanced LIST command function, run the DSQ1BUDV installation job after you run DSQ1BVW.

Related reference
QMF views
These views are shipped with QMF. QMF uses these views on the platforms indicated in the table to
create object lists when the QMF LIST command is issued.

Installing sample queries and procedures required for the installation verification
procedures

Install the sample QMF queries and procedures only on TSO.

Some of these objects are required by the installation verification procedures for both TSO and CICS.
After the objects are installed under TSO, they are then available for use under CICS. Other objects are
provided for users to refer to while learning how to use QMF.

The sample queries and procedures have changed in QMF Version 12.1, so you must delete prior versions
and install the new versions.

The following table describes the sample queries.

Chapter 5. Verifying that QMF is installed correctly 77

Table 22. QMF Version 12.1 sample queries

Name of
data set
from which
query is
imported

Name under which QMF saves the
object after importing it Description

DSQ0EQ1 Q.SAMPLE_SELECT1 Simple SELECT query

DSQ0EQ2 Q.SAMPLE_SELECT2 SELECT query with IN keyword and ORDER BY clause

DSQ0EQ3 Q.SAMPLE_SELECT3 SELECT query with BETWEEN and NULL keywords and
AND and OR operators

DSQ0EQ4 Q.SAMPLE_SELECT4 SELECT query that uses LIKE keyword

DSQ0EQ5 Q.SAMPLE_SELECT5 SELECT query that does a join of two tables

DSQ0EQ6 Q.SAMPLE_SELECT6 SELECT query that uses MAX, MIN, and AVG functions

DSQ0EQ7 Q.SAMPLE_SELECT7 SELECT query with GROUP BY and HAVING clauses;
COUNT function

DSQ0EQ8 Q.SAMPLE_SELECT8 SELECT query that uses a UNION operator

DSQ0EQ9 Q.SAMPLE_SELECT9 SELECT query that uses a subquery

DSQ0EQ10 Q.SAMPLE_SELECT10 SELECT query with correlated subselection

DSQ0EQ11 Q.SAMPLE_SELECT11 SELECT query with EXISTS keyword

DSQ0EQ12 Q.SAMPLE_INSERT1 INSERT query to add a single row to a table

DSQ0EQ13 Q.SAMPLE_INSERT2 INSERT query to copy one or more rows into a table

DSQ0EQ14 Q.SAMPLE_UPDATE UPDATE query

DSQ0EQ15 Q.SAMPLE_DELETE DELETE query

DSQ1EQ16 Q.SAMPLE_DATABASE Query that uses the CREATE DATABASE statement

DSQ1EQ17 Q.SAMPLE_TABLESPACE Query that creates a table space

DSQ1EQ18 Q.SAMPLE_CREATETABLE Query that creates a table

DSQ0EQ19 Q.SAMPLE_CREATEINDEX CREATE INDEX query

DSQ0EQ20 Q.SAMPLE_CREATEVIEW Query that creates a view

DSQ0EQ21 Q.SAMPLE_GRANT Query that grants update privileges

DSQ0EQ22 Q.SAMPLE_REVOKE Query that revokes update privileges

DSQ0EQ23 Q.SAMPLE_DROP Query that drops a table from a database

DSQ0EQ25 Q.SAMPLE_COMMENT Query that saves a comment with a table

The following table describes the sample procedures.

78 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 23. QMF Version 12.1 sample procedures

Name of
data set
from which
procedure is
imported

Name under which QMF saves the
object after importing it Description

DSQ0BIQ1 Q.IVP_QUERY_COUNT Provides a row count for a given input table.

DSQ0BIQ2 Q.IVP_QUERY_DELETE Deletes QMF_IVP_QUERY from the catalog

DSQ1EIVP Q.DSQ1EIVP IVP procedure to verify interactive operation under TSO

DSQ1EBAT Q.DSQ1EBAT Batch IVP procedure to verify batch operation under TSO

DSQ1EIVC Q.DSQ1EIVC CICS IVP procedure

DSQAED1S Q.DSQAED1S Installs the document editing interface function

DSQABL01
DSQAEL0D
DSQABL0D

Q.DSQABL01
Q.DSQAEL0D
Q.DSQABL0D

Installs procedures for the LAYOUT application, which
supports the LAYOUT command synonym

Complete the following steps to delete sample queries and procedures from the prior QMF version and
install the QMF Version 12.1 objects:

1. Begin a QMF session.
2. Make sure that you are connected to the Db2 for z/OS subsystem in which you just installed QMF.
3. Delete prior versions of the sample queries and procedures. If you installed QMF Version 12.1 in a

system where no previous QMF release existed, skip this step.

a. Enter the following command to display the procedure that deletes the queries and procedures:

IMPORT PROC FROM QMF1210.SDSQSAPE(DSQ1ESQD)'

In this command and throughout the DSQ1ESQD procedure, QMF1210 is the prefix for the QMF
Version 12.1 data sets. If you used a different prefix, change QMF1210 in the command and
wherever it occurs in the procedure to the site-specific prefix that you have chosen. If you are using
QMF on TSO, you can use the EDIT PROC command, followed by an ISPF command such as
CHANGE, to change the prefix information. For example, the following ISPF command changes the
prefix from QMF1210 to the prefix DB2TOOLS:

CHANGE 'QMF1210' 'DB2TOOLS' ALL

b. Issue the RUN PROC command to run the procedure.
4. Install the Version 12.1 sample queries and procedures.

Enter the following command to display the procedure that installs the Version 12.1 queries and
procedures:

IMPORT PROC FROM 'QMF1210.SDSQSAPE(DSQ1ESQI)'

In this command and throughout the DSQ1ESQI procedure, QMF1210 is the prefix for the QMF Version
12.1 data sets. If you used a different prefix, change QMF1210 in the command and wherever it occurs
in the procedure to the site-specific prefix that you have chosen. If you are using QMF on TSO, you can
use the EDIT PROC command, followed by an ISPF command such as CHANGE, to change the prefix
information. For example, the following ISPF command changes the prefix from QMF1210 to QMF12:

CHANGE 'QMF1210' 'QMF12' ALL

5. Issue the RUN PROC command to run the procedure.

Chapter 5. Verifying that QMF is installed correctly 79

You should receive a message that indicates that the objects were installed correctly. If a failure
occurs, you can use the DSQ1ESQD procedure to delete any already created objects and begin again.

Message DSQ21662 is an informational message only and does not indicate errors; you can ignore this
message and proceed to run the IVPs.

Running the installation verification procedures
The installation verification procedure (IVP) for QMF installations on requester databases differs slightly
depending on whether the installation in the requester database is running under TSO or CICS.

About this task

To test that QMF Version 12.1 is installed correctly, you must run the IVPs that you installed in “Installing
sample queries and procedures required for the installation verification procedures” on page 77.

Running the IVPs for TSO
There are two installation verification procedures for QMF installations that run under TSO: one that tests
interactive operations and one that tests batch operations.

About this task

If you plan to use QMF in batch mode, complete both test procedures.

Related tasks
Running the IVP for CICS
To test for proper operation of QMF under CICS, complete these steps.

Testing interactive operation under TSO
To test interactive operation of QMF under TSO, complete these steps.

Before you begin
If you have not done so already, start QMF.

Procedure

1. Display the QMF installation verification procedure for TSO by issuing the following command:
DISPLAY PROC Q.DSQ1EIVP.
This procedure was imported and saved in the database in the process explained in “Installing sample
queries and procedures required for the installation verification procedures” on page 77. Comments at
the beginning of the procedure describe what the procedure tests.

2. On the PROC panel, customize the procedure if necessary.
QMF1210 is the prefix for the QMF Version 12.1 data sets. If you used a different prefix, change
QMF1210 throughout DSQ1EIVP to the site-specific prefix that you have chosen.

If you change the procedure, issue the following command to save it: SAVE PROC AS Q.DSQ1EIVP
(SHARE=YES.

3. Run the procedure by issuing the following command: RUN PROC.
Enter a value of 1 in response to each prompt.

Results

When the IVP completes successfully, the following message is displayed: The QMF IVP procedure
has successfully completed.

Exit the QMF session by issuing the EXIT command.

80 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

What to do next

If the IVP does not complete successfully, review the output from the QMF installation jobs that you ran
to ensure that all jobs completed successfully. You can also use the QMF messages and message help
panels (which are displayed when you press the Help key) to diagnose and correct the problem.

Testing batch operation under TSO
To test batch operation of QMF under TSO, complete these steps. Skip this step if you do not plan to run
QMF in batch mode.

About this task

A sample procedure named DSQ1nBAT (where n is a 1-character national language identifier) is shipped
with QMF to test batch operation. The procedure verifies that the QMF control tables exist and that basic
QMF operations complete successfully.

You can use other methods to start QMF in batch mode and run the Q.DSQ1nBAT procedure. If the
following method does not suit your needs, see Chapter 9, “Starting QMF,” on page 117 for additional
options.

Procedure

Complete the following steps to test batch operation of QMF under TSO by using the DSQ1nBAT
procedure:
1. If you have not done so already, start QMF.
2. When the QMF home panel is displayed, display the Q.DSQ1nBAT procedure.

For example, to display the English batch IVP, issue the following command:

DISPLAY Q.DSQ1EBAT

If the procedure cannot be found, see “Installing sample queries and procedures required for the
installation verification procedures” on page 77 for steps on installing it. If you are testing batch mode
for a QMF NLF, see Step “10” on page 105 of the procedure in “Installing QMF National Language
Features” on page 101 for information about how to install the batch-mode IVP.

3. Review the procedure and customize it if necessary.

QMF1210 is the prefix for the QMF Version 12.1 data sets. If you used a different prefix, change
QMF1210 throughout the procedure to the site-specific prefix that you have chosen.

If you change the procedure, issue a command like the following to save it:

SAVE PROC AS Q.DSQ1EBAT (SHARE=YES

4. Customize the TSO logon procedure to start QMF in batch mode and run the Q.DSQ1nBAT procedure:
a) Make a copy of the sample logon procedure (DSQ1EINV).
b) Add a JOB statement that is appropriate for your site's needs.
c) Delete the SYSTERM and SYSIN DD statements.
d) Set up printing capabilities.

The QMF procedure that you will be running in batch mode tests the QMF PRINT command. To
ensure that this command is successful, add DD statements that allocate the DSQPRINT file.
Output from the QMF PRINT command goes to this file. For example:

//DSQPRINT DD SYSOUT=A

e) Specify how to control the output from batch mode by adding a statement similar to the following
to the end of the logon procedure:

//SYSTSPRT DD SYSOUT=A

f) Add the following statements after the SYSTSPRT statement.

Chapter 5. Verifying that QMF is installed correctly 81

Replace n with the 1-character national language identifier that corresponds to the language that
you are testing.

//SYSTSIN DD *
 PROFILE PREFIX(username)
 ISPSTART PGM(DSQQMFn) NEWAPPL(DSQn) PARM(M=B,I=Q.DSQ1nBAT,S=ssid)
/*

The first control card within the second JCL statement is required only if your installation does not
use RACF. Replace username with the logon ID of the user who is running the step. See “JCL to
execute a QMF batch job” on page 320 for more information about this statement.

The second control card within the second JCL statement invokes QMF in batch mode (M=B).
Replace ssid with the 4-character subsystem ID of the Db2 for z/OS subsystem into which you
installed QMF. If you do not specify a subsystem ID, the default, DSN, is used. When invoked in this
way, QMF runs the Q.DSQ1nBAT procedure.

For more information about other QMF program parameters that you can pass on the ISPSTART
command, see Chapter 10, “Setting program parameters and preferences at startup time,” on page
141.

5. Save the revised TSO logon procedure.
6. Submit the job, which starts QMF and submits the Q.DSQ1nBAT procedure as a batch job.

After the procedure runs, control returns to TSO, which terminates the job because it finds no more
TSO statements in SYSTSIN. Examine the job output to ensure that you received no errors. The
following messages are displayed in the trace output when the job completes successfully:

OK, TSO command executed successfully.
OK, your procedure was run.

If the IVP does not complete successfully, review the output from the QMF installation jobs that you
ran to ensure that all jobs completed successfully. You can also use the QMF messages and message
help panels (which are displayed when you press the Help key) to diagnose and correct the problem.

Related concepts
Running QMF in batch mode
If a user runs a procedure with the RUN command, the user cannot execute QMF commands except to
cancel the procedure or the session. Thus, running a procedure using the RUN command can tie up
considerable session time.
Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Running the IVP for CICS
To test for proper operation of QMF under CICS, complete these steps.

Procedure

1. Verify that the QMF trace facility is installed by checking the default transient data queue that holds
the trace data (DSQD). From a clear CICS screen, enter the following command: CEMT INQUIRE
QUEUE(DSQD).

Output similar to the following is displayed:

 STATUS: RESULTS - OVERTYPE to MODIFY
 Que(DSQD) Ext Ena Ope

82 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Ena Ope indicates that the queue is open and enabled. If you do not see that DSQD is enabled and
open, review your changes to the CICS system definition file. See “Describing QMF to CICS” on page
56 for details.

2. If you have not done so already, start QMF as explained in “Starting QMF” on page 71.
3. Display the QMF installation verification procedure for CICS by entering the following command:
DISPLAY PROC Q.DSQ1EIVC.
This procedure was imported and saved in the database in the process explained in “Installing sample
queries and procedures required for the installation verification procedures” on page 77. Comments at
the beginning of the procedure describe what the procedure tests.

4. On the PROC panel, customize the procedure if necessary. If you change the procedure, issue the
following command to save it: SAVE PROC AS Q.DSQ1EIVC (SHARE=YES.

5. Run the procedure by entering the following command: RUN PROC.
Enter a value of 1 in response to each prompt.

Results

When the IVP completes successfully, the following message is displayed: The QMF IVP procedure
has successfully completed.

Exit the QMF session by issuing the EXIT command.

If the procedure does not run successfully, review the output from the QMF installation jobs that you ran
to ensure that all jobs completed successfully. To browse the temporary storage queue that you verified
in Step “1” on page 82 for any QMF warning messages, issue the following CICS transaction: CEBR DSQD

Related tasks
Running the IVPs for TSO
There are two installation verification procedures for QMF installations that run under TSO: one that tests
interactive operations and one that tests batch operations.

Testing QMF installations on server databases
You test installations of QMF on server databases as part of the installation paths for server databases
accessed by the QMF CONNECT command or the DSQSDBNM program parameter.

Before you begin

Before you test an installation of QMF on a server database, ensure that you have tested the installations
on requester databases:

• Test the installations of QMF on all requester databases that will access the server.
• Also complete the test procedure for requesters if the remote server database is Db2 for z/OS. For

information about the procedure, see “Testing QMF installations on requester databases” on page 71

About this task

These test procedures apply to the installation paths in “Roadmap 2: Installing QMF in server databases
accessed by the QMF CONNECT command” on page 19.

Procedure

To test a QMF installation on a server database other than z/OS, complete the following steps:
1. Start QMF in the Db2 for z/OS requester database with distributed data facility (DDF).

• If QMF is running in TSO, see “Starting QMF under TSO” on page 72.
• If QMF is running in CICS, see “Starting QMF under CICS” on page 75.

Chapter 5. Verifying that QMF is installed correctly 83

The DSQSSUBS program parameter specifies the name of the Db2 for z/OS requester on which you are
starting QMF.

2. Connect to the server database. You can connect to QMF in the server database in one of two ways:

• After you start QMF in the requester database and the QMF home panel is displayed, use the QMF
CONNECT command to connect to the server.

• Specify the DSQSDBNM program parameter when you start QMF in the requester database. QMF
connects to the server location specified on this parameter before displaying the home panel. For
more information about this parameter, see “Specifying the initial database connection” on page
149.

For example, to start QMF in a local Db2 for z/OS database called LOCL and immediately connect to a
remote Db2 for Linux, UNIX, and Windows database called REMT, specify the following program
parameters on the command that you use to start QMF:

DSQSSUBS=LOCL,DSQSDBNM=REMT

3. Check that the database name shown beneath Connected to on the QMF home panel is the correct
name of the remote database server.
For an example of the home panel, see Figure 14 on page 76.

4. Check that QMF views have been correctly installed. Issue this command to check that the views that
you see in the list are appropriate for the type of database to which you are connected: LIST TABLES
(OWNER=Q NAME=DSQ%.

“QMF views” on page 388 lists, by platform, the default views that support the QMF LIST command.

If the appropriate views are not in the list, rerun the DSQ1BVW installation job. If the server is Db2 for
z/OS and you installed the enhanced LIST command function, run the DSQ1BUDV installation job after
you run DSQ1BVW.

5. Return to the QMF home panel by pressing the Cancel function key (F12 by default). End the QMF
session by pressing the End function key (F3 by default).

What to do next

After completing these tasks, return to the installation procedure that is associated with your chosen
installation path to determine the next step in the installation.

Related concepts
Setting program parameters and preferences at startup time
This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.
Starting QMF
QMF can be started only from z/OS. QMF can be set up to run under TSO, ISPF, as a batch job, or under
CICS.
Related tasks
Testing QMF installations on requester databases
To test installations of QMF in requester databases, complete these steps.

84 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 6. Migration and fallback considerations
After you install or migrate to QMF Version 12.1, you might need to access and use objects from earlier
releases of QMF to thoroughly test the new installation under site-specific conditions.

You also might need to use objects or programs that you created under QMF Version 12.1 with earlier
releases of QMF if you decide to fall back to an earlier release for any reason.

Related tasks
Falling back to the prior release in server databases
If you encounter errors in migrating to QMF Version 12.1 from a QMF Compatibility Mode release (QMF
Version 3.3, 6.1, 7.1, 7.2, Version 8.1 Compatibility Mode, or Version 9.1 Compatibility Mode), you can
return to the earlier release.

Accessing profiles and objects from a prior QMF release
How easily you can access objects created under an earlier release of QMF depends on whether the two
releases reside in the same database.

If you installed QMF into a database that contains an earlier release of QMF, objects and programs from
the earlier release are available under the new release.

If you installed QMF Version 12.1 in a database that does not contain an earlier release, but you need to
access the objects from an earlier release that resides in a different database, you can re-create the
profiles and migrate the tables, views, and QMF objects.

Accessing QMF profiles in a different database
To use profiles from an earlier release that does not reside in the same database as the newly installed
release, re-create the profiles.

About this task

To access QMF, users need a QMF profile. Profile information is stored in the Q.PROFILES control table.

Procedure

To use profiles from an earlier release that does not reside in the same database as the newly installed
release, re-create the profiles in one of the following ways:
• If the earlier release is QMF Version 8.1 or Version 9.1 New Function Mode or QMF Version 10, Version

11.1 or Version 11.2, you can use the QMF EXPORT and IMPORT commands to migrate the profiles by
exporting a copy of the Q.PROFILES table from the database that contains the earlier QMF release and
importing it into the database that contains the new release of QMF.

• For any release of the prior installation of QMF, you can issue multiple INSERT statements from the
SQL Query panel to re-create the appropriate data in the Q.PROFILES table.

Related concepts
Creating QMF user profiles
All QMF users need access to a user profile, which determines how QMF handles individual input from
specific users. Use the profile to control certain aspects of a user's environment, such as where printer
output is routed or whether input is converted to upper case.
Related tasks
Migrating tables, views, and QMF objects

© Copyright IBM Corp. 1982, 2020 85

You can use the QMF EXPORT and IMPORT commands to migrate tables, views, and QMF objects.
Alternatively, you can use Db2 utilities.

Migrating tables, views, and QMF objects
You can use the QMF EXPORT and IMPORT commands to migrate tables, views, and QMF objects.
Alternatively, you can use Db2 utilities.

Procedure

• To use QMF to migrate tables, views, and QMF objects, export the tables from the earlier release of
QMF and then import them under the new release.

If you have Db2 QMF High Performance Option (HPO) installed and the database type is Db2 for z/OS,
you can also use the HPO Object Manager to migrate objects from one Db2 subsystem to another.

• To use Db2 to migrate tables, views, and QMF objects, complete the following tasks
a) Unload the tables by using the tool or utility of your choice, such as the application program

DSNTIAUL, supplied with Db2.
b) Load the tables into the Db2 subsystem where the new release of QMF is installed. Use a tool or

utility of your choice, such as the DB2LOAD utility.
c) Use the available networking facilities to send the exported objects and unloaded tables to the

system that contains the new release of QMF.
If the objects in question are not on Db2 for z/OS, use the system-specific utilities that are available
to you for the type of database that you are working with.

What to do next

Re-create any views, indexes, synonyms, and authorizations on the imported tables at the new database.

Object compatibility between releases
Whether you can use objects created under a different release of QMF depends on whether the
commands and functions that are referenced by the objects operate in the same way in both releases.

The installation process of QMF Version 12.1 supports migrations from Version 3.3, 6.1, 7.1, and 7.2, 8.1,
9.1, and 10.1. To help plan for any incompatibilities, make sure you understand the features and
functions that were added or changed between the release from which you are migrating and QMF
Version 12.1.

Related concepts
Summary of changes in prior releases
QMF Version 12 Release 1 supports migrations from Version 8.1 NFM, Version 9.1 NFM, Version 10.1,
Version 11.1 and Version 11.2. Enhancements in prior releases might affect how you plan your QMF
migration.

Forward compatibility of earlier releases with QMF Version 12 Release 1
Most objects that were created under earlier releases can be used in QMF Version 12.1 without
modification.

However, you should be aware of some exceptions and considerations for using objects from earlier
releases.

QMF commands

• All QMF commands from prior releases can be issued in QMF Version 12.1 provided that the
abbreviation and options are still valid in Version 12.1.

86 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• For a list of commands, syntax, abbreviations, and options in Version 12.1, see the Db2 QMF Reference
guide which is designed to help users, programmers, and database administrators understand this
information:

– The syntax and usage of the commands in QMF for TSO and CICS
– How to use SQL keywords in queries
– How to use forms, reports, and charts (including usage and edit codes)

• For more information about the QMF command interface, see the Developing Db2 QMF applications
guide which includes information to help application programmers with:

– Making application programming design decisions
– Choosing between different programming techniques
– Understanding how to use the QMF command and callable interfaces
– Writing bilingual applications

• For more information about the document editing interface, see the Using Db2 QMF guide which is
designed to help end users with:

– Retrieving data
– Formatting data into reports or charts
– Editing data and other basic QMF tasks

QMF procedures

QMF commands in procedures are subject to the restrictions that are explained in the QMF commands
section.

Some procedures from earlier releases will not work properly if they issue commands with verbs that are
also verbs for user-defined commands (called QMF command synonyms). To avoid potential problems,
you can type QMF before all native QMF commands. For more information about command synonyms, see
“Customizing Command synonyms” on page 234.

Applications
QMF commands in applications are subject to the restrictions that are explained in the QMF commands
section.

Compatibility of QMF Version 12.1 with earlier releases
Some objects that were created under QMF Version 12.1 cannot be used in earlier releases. Consider the
incompatibilities when you plan for a possible fallback.

Unless otherwise stated, any compatibility issues with an earlier version apply to using objects in QMF
Version 12.1 only. You can use the information in the summary of features to determine if functions that
you use in Version 12.1 operate in the same way in a release earlier than Version 12.1.

For information about compatibility with an earlier version, see one of the following sections:

QMF commands

The following commands or command options were added or changed in QMF Version 12.1 and therefore
cannot be used in earlier releases. Procedures or applications that contain these commands or options
must be modified before you attempt to run them under the earlier release.

• TABLE keyword on RUN QUERY for QBE and prompted queries

The following global variables are new in QMF Version 12.1. Commands that reference these variables
cannot be used in earlier releases.

• DSQEC_DS_SUPPORT: This global variable allows QMF access to QMF Data Service data sources.
• DSQEC_BUFFER_SIZE: This global variable changes the QMF internal storage area buffer size.

Chapter 6. Migration and fallback considerations 87

• DSQEC_TRACE_MODULE: This global variable allows administrators to limit trace diagnostics by QMF
module name.

SQL statements

Queries referencing three part names to QMF Data Service data sources cannot be used in earlier
releases. Modify any queries, procedures, or applications that include this statement before you fall back
to an earlier release.

Forms

Forms specifying the ‘C’ or ‘CW’ edit code for binary column data might not be usable in earlier QMF
releases.

QMF program parameters

Earlier QMF releases may not be started with the DSQSMTHD program parameter. Any queries,
procedures, or applications depending on multiple thread support added in Version 12.1 might not be
usable in earlier releases.

Above the bar storage requirement changes
Above the bar storage is required for LOB and XML data type retrieval. For the LOB and XML data type and
the 64 bit spill support, you can increase the amount of above the bar storage (MEMLIMIT).

QMF utilizes above the bar storage (storage above the 2-gigabyte bar). To control the amount of real and
auxiliary storage that an address space can use for memory objects at one time, your site may have
established an installation default MEMLIMIT that sets the total number of usable virtual pages above the
bar for a single address space. If the default is not sufficient, QMF cannot be started.

The current default for MEMLIMIT for z/OS V1R10.0 and later is 2G. The default for z/OS versions prior to
that is 0, meaning that no address space can use virtual storage above the bar. You should verify that the
MEMLIMIT setting for your site is at least 2G for QMF. This amount is recommended for scalability of a
wide range of objects. QMF only uses as much storage above the bar as it needs, and only as long as it is
needed; the storage is released immediately after a job or process is complete.

To set the MEMLIMIT parameter, use one of the following methods:

• Set an installation default on the MEMLIMIT parameter in the SMFPRMxx PARMLIB member.
• Issue the SET SMF or SETSMF command.
• Add either the MEMLIMIT parameter or REGION=0 to the logon procedure TSO JCL or the job JCL.
• Specify MEMLIMIT in a IEFUSI exit routine; if you do so, this MEMLIMIT setting overrides all other

MEMLIMIT settings.

The following example shows the MEMLIMIT parameter added to a TSO logon procedure:

//TSOPROC EXEC PGM=IKJEFT01,REGION=0M,DYNAMNBR=175,
// PARM='%LOGINIT',TIME=1440,MEMLIMIT=2G

See the IBM z/OS documentation for your version of z/OS for additional information about MEMLIMIT.

Note: As a result of these requirement changes, existing QMF TSO address space allocations might need
to be changed.

88 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 7. Deleting an earlier release of QMF
The procedures for removing an earlier release of QMF depend on the type of database in which QMF is
installed. You should remove the release only after you verify you do not need to connect to that release
and you have migrated everything you want to save from the release.

Before you begin

Remove the earlier release of QMF from the database only after you confirm these conditions:

• Connectivity is no longer required with that release. For example, if you are considering removing QMF
Version 9.1 from a server, verify that CONNECT commands from Version 9.1 installations in requester
databases will no longer be directed to the server.

• You have migrated and tested all programs as well as tables, views, queries, forms, procedures, and
other objects that you want to save from the earlier release.

Related concepts
Migration and fallback considerations
After you install or migrate to QMF Version 12.1, you might need to access and use objects from earlier
releases of QMF to thoroughly test the new installation under site-specific conditions.

Deleting QMF from a Db2 for z/OS database
The procedures for removing earlier releases of QMF from a Db2 for z/OS database depend on whether
the old and new releases of QMF are in the same subsystems.

Before you begin

Important: Do not begin the tasks in this topic until you have verified that the earlier version of QMF is no
longer needed in this database. The earlier version is still needed if it is being accessed locally or if
connectivity with remote installations of the same release is required.

When the old and new release are in the same subsystem
You free the application plan, delete the libraries, and drop all packages from the earlier release of QMF
to delete that release. This procedure applies when both releases of QMF on a Db2 for z/OS database are
in the same subsystem.

Freeing the earlier application plan
You free the application plan of an earlier release of QMF that resides in the same subsystem as the new
release by editing the DSQ1DEL1 job and running the DSQ1JFPL jobs.

Procedure

1. Edit QMF1210.SDSQSAPE(DSQ1JFPL).
2. Change the job statement to conform to your site's needs.
3. Verify (or change, if necessary) the values of the parameters in the instream procedure of the job.

//DSQ1JFPL PROC RGN='2048K', Job-step region size
// QMFTPRE='QMF1210', QMF
 prefix
// DB2EXIT='DSN1110.SDSNEXIT', DB2 for z/OS exit library
// DB2LOAD='DSN1110.SDSNLOAD' DB2 for z/OS program library

4. Edit QMF1210.SDSQSAPE(DSQ1DEL1).
5. Replace the DSN SYSTEM value that appears in parentheses with the name of the Db2 for z/OS

subsystem. Replace the FREE PLAN value with the application plan name of the earlier release.

© Copyright IBM Corp. 1982, 2020 89

This table shows default application plan names for releases from which migration to QMF Version
12.1 is supported.

Table 24. Default values for QMF application plan names

Prior release Default application plan name

QMF Version 11.2 QMF1120

QMF Version 11.1 QMF11

QMF Version 10.1 QMF10

QMF Version 9.1 QMF910

QMF Version 8.1 QMF810

QMF Version 7.2 QMF720

QMF Version 7.1 QMF710

QMF Version 6.1 QMF610

QMF Version 3.3 QMF330

For example, if you migrated to QMF Version 12.1 from QMF Version 9.1 in a Db2 for z/OS subsystem
called DB2P, make the following changes in job DSQ1DEL1 to free the Version 9 plan:

DSN SYSTEM(DB2P)
FREE PLAN(QMF910)

6. Start the Db2 for z/OS subsystem in which the old and the new releases reside if you have not done so
already.

7. Submit job QMF1210.SDSQSAPE(DSQ1JFPL).
If the job fails, correct any errors and rerun it.

Using SMP/E to delete the libraries of the earlier release
Use SMP/E to delete the libraries of the release of QMF from which you migrated to Version 12.1. Delete
the libraries after you free the earlier application plan.

About this task

Important: Pay special attention to the prefixes to avoid deleting the current libraries. The default prefix
for all Version 12.1 libraries is QMF1210.

The following libraries are used in QMF Version 8.1, Version 9.1, Version 10.1, and Version 11.1. For
Version 8.1 the prefix is QMF810, for Version 9.1 the prefix is QMF910, for Version 10.1 the prefix is
QMF1010, and for Version 11.1 the prefix is QMF1110.

• prefix.SDSQCHRT
• prefix.ADSQCHRT
• prefix.SDSQCLTE
• prefix.SDSQDBRM
• prefix.ADSQDBMD
• prefix.DSQDEBUG
• prefix.SDSQEXCE
• prefix.SDSQEXIT
• prefix.SDSQLOAD
• prefix.ADSQMACE
• prefix.SDSQMAPE

90 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• prefix.ADSQMAPE
• prefix.SDSQMLBE
• prefix.ADSQOBJ
• prefix.SDSQPLBE
• prefix.ADSQPMSE
• prefix.DSQPNLE
• prefix.SDSQPVRE
• prefix.ADSQPVRE
• prefix.SDSQSAPE
• prefix.SDSQSLBE
• prefix.SDSQUSRE
• prefix.DSQUCFRM

The following table lists the libraries for QMF Version 7.2 and earlier releases.

Table 25. Names of libraries for QMF Version 7.2 and earlier releases

Version 3.3 libraries Version 6.1 libraries Version 7.1 libraries Version 7.2 libraries

QMF330.DSQCHART QMF610.SDSQCHRT QMF710.SDSQCHRT QMF720.SDSQCHRT

QMF330.DSQCLSTE QMF610.SDSQCLTE QMF710.SDSQCLTE QMF720.SDSQCLTE

QMF330.DSQDBRM QMF610.SDSQDBRM QMF710.SDSQDBRM QMF720.SDSQDBRM

QMF330.DSQDBRMD QMF610.ADSQDBMD QMF710.ADSQDBMD QMF720.ADSQDBMD

QMF610.DSQDEBUG QMF710.DSQDEBUG QMF720.DSQDEBUG

QMF330.DSQEXECE QMF610.SDSQEXCE QMF710.SDSQEXCE QMF720.SDSQEXCE

QMF720.SDSQEXIT

QMF330.DSQLOAD QMF610.SDSQLOAD QMF710.SDSQLOAD QMF720.SDSQLOAD

QMF330.DSQMACE QMF610.ADSQMACE QMF710.ADSQMACE QMF720.ADSQMACE

QMF330.DSQMAPE QMF610.DSQMAPE QMF710.DSQMAPE QMF720.DSQMAPE

QMF330.DSQMLIBE QMF610.SDSQMLBE QMF710.SDSQMLBE QMF720.SDSQMLBE

QMF330.DSQOBJ QMF610.ADSQOBJ QMF710.ADSQOBJ QMF720.ADSQOBJ

QMF330.DSQPLIBE QMF610.SDSQPLBE QMF710.SDSQPLBE QMF720.SDSQPLBE

QMF330.DSQPMSE QMF610.ADSQPMSE QMF710.ADSQPMSE QMF720.ADSQPMSE

QMF330.DSQPNLE QMF610.DSQPNLE QMF710.DSQPNLE QMF720.DSQPNLE

QMF330.DSQPVARE QMF610.DSQPVARE QMF710.DSQPVARE QMF720.DSQPVARE

QMF330.DSQSAMPE QMF610.SDSQSAPE QMF710.SDSQSAPE QMF720.SDSQSAPE

QMF330.DSQSLIBE QMF610.SDSQSLBE QMF710.SDSQSLBE QMF720.SDSQSLBE

QMF330.DSQUSERE QMF610.SDSQUSRE QMF710.SDSQUSRE QMF720.SDSQUSRE

QMF330.DSQTLIBE

QMF330.DSQUCFRM QMF610.DSQUCFRM QMF710.DSQUCFRM QMF720.DSQUCFRM

Dropping packages from the earlier release
After you delete the libraries of the earlier release, drop all packages from the earlier release of QMF.

Procedure

1. List all QMF packages for a particular release by running this query.

SELECT SUBSTR(NAME,1,10)
FROM SYSIBM.SYSPACKAGE
WHERE NAME LIKE 'DSQX%'

Chapter 7. Deleting an earlier release of QMF 91

In this statement, X is the version-specific character that is associated with the release. This table lists
the first four characters of the package names for each release from which migration to QMF Version
12.1 is supported.

Table 26. Package identifiers for releases before QMF Version 12.1

Release of QMF no longer needed Package names begin with

Version 3.3 DSQA

Version 6.1 DSQB

Version 7.1 DSQC

Version 7.2 DSQD

Version 8.1 DSQE

Version 9.1 DSQF

Version 10.1 DSQG

Version 11.1 DSQH

Version 11.2 DSQI

2. Issue a DROP statement for each package.

Example

To list packages that are associated with QMF Version 10, issue the following statement:

SELECT SUBSTR(NAME,1,10)
FROM SYSIBM.SYSPACKAGE
WHERE NAME LIKE 'DSQG%'

When the old and new release are in different subsystems
When the old and new releases of QMF are in different Db2 for z/OS subsystems and you delete the
earlier release, you remove all traces of QMF and objects created by QMF.

Before you begin

Important: Complete this task only if the old and new releases of QMF are in different subsystems and
only if connectivity to the earlier release is no longer required.

Procedure

1. Migrate to the QMF Version 12.1 subsystem any QMF queries, procedures, or forms from the earlier
release that you still want to use in Version 12.1.

2. Delete the libraries of the earlier release of QMF as explained in “Using SMP/E to delete the libraries of
the earlier release” on page 90.

3. Drop the QMF packages of the earlier release as explained in “Dropping packages from the earlier
release” on page 91.

4. Delete the QMF constructs and QMF objects from the earlier release by customizing and running job
DSQ1DELA. This job deletes the QMF control tables, including the QMF object control tables and any
queries, procedures, or forms that they contain.
a) Edit QMF1210.SDSQSAPE(DSQ1DELA).
b) Change the job statement to conform to your site's conventions.
c) Verify (or change, if necessary) the values of the parameters in the instream procedure of the job:

// DSQ1DELA PROC RGN='2048K', Job-step region size
// QMFTPRE='QMF1210', QMF prefix

92 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

// DB2EXIT='DSN1110.SDSNEXIT', DB2 for z/OS exit library
// DB2LOAD='DSN1110.SDSNLOAD' DB2 for z/OS program library

d) Edit member QMF1210.SDSQSAPE(DSQ1DEL1). This job frees the QMF application plan of the
earlier release.

In job DSQ1DEL1, replace the DSN SYSTEM value that appears in parentheses with the name of the
Db2 for z/OS subsystem. Replace the FREE PLAN value with the application plan name of the
earlier release of QMF. Default QMF application plan names are shown in Table 24 on page 90.

For example, if you migrated to QMF Version 12.1 from QMF Version 9.1 in a Db2 for z/OS
subsystem called DB2P, make the following changes in job DSQ1DEL1 to free the Version 9 plan:

DSN SYSTEM(DB2P)
FREE PLAN(QMF910)

e) Edit member QMF1210.SDSQSAPE(DSQ1DEL2).
This member contains SQL statements to drop views, table spaces, databases, and storage groups.

If the earlier release did not use a table space for the users' SAVE DATA commands and the IVP,
delete the following statement:

DROP STOGROUP DSQSGDEF

f) Edit member QMF1210.SDSQSAPE(DSQ1DEL3)
This member contains statements to delete user-managed data sets for the QMF control tables.
You do not need to complete this step if your data sets are managed by Db2 for z/OS.

If your data sets are not managed by Db2 for z/OS, change QMFDSN in each statement in the job to
the high-level qualifier you used for the release of QMF that you are deleting.

5. Start the subsystem in which the earlier release of QMF resides, and submit job
QMF1210.SDSQSAPE(DSQ1DELA).

If the job fails, correct any errors and rerun the job.

Related concepts
Migration and fallback considerations
After you install or migrate to QMF Version 12.1, you might need to access and use objects from earlier
releases of QMF to thoroughly test the new installation under site-specific conditions.

Deleting QMF from a DB2 for iSeries or Db2 for Linux, UNIX, and Windows
database

The procedures differ depending on whether the old and new QMF release are in the same or different
databases.

About this task

The procedures in this topic remove earlier releases of QMF from a Db2 for Linux, UNIX, and Windows or
DB2 for iSeries database.

Important: Do not begin the tasks in this topic until you have verified that the earlier version of QMF is no
longer needed in the server. The earlier version is still needed if connectivity is required to QMF at the
same earlier release level.

Chapter 7. Deleting an earlier release of QMF 93

When the old and new releases are in the same remote server
When the old and new QMF releases are in the same remote server, remove the earlier QMF release by
dropping all QMF packages from the earlier release. QMF control tables and sample tables are still
needed for QMF Version 12.1 in this case.

About this task

Table 26 on page 92 lists the version-specific characters of the package identifiers that are associated
with the QMF release from which migration to QMF Version 12.1 is supported.

Procedure

• To list all QMF packages for a particular release, run the statement that is appropriate for your server.
In place of X, substitute the version-specific character of the package identifier that is associated with
the QMF release you want to remove.

Follow this statement with a DROP statement for each package you want to remove.

• For Db2 for Linux, UNIX, and Windows servers:

SELECT SUBSTR(PKGNAME,1,10)
FROM SYSCAT.PACKAGES
WHERE PKGNAME LIKE 'DSQX%'

• For DB2 for iSeries servers:

SELECT SUBSTR(PACKAGE_NAME,1,10)
FROM QSYS2.SYSPACKAGE
WHERE PACKAGE_NAME LIKE 'DSQX%'

Example

For example, to list QMF Version 9 packages on a DB2 for iSeries server, issue the following statement:

SELECT SUBSTR(PACKAGE_NAME,1,10)
FROM QSYS2.SYSPACKAGE
WHERE PACKAGE_NAME LIKE 'DSQF%'

When the old and new release are in different servers
To delete an earlier version of QMF from an iSeries or Linux, UNIX, and Windows database, perform these
tasks.

Before you begin
Migrate to QMF Version 12.1 any QMF queries, procedures, or forms from the earlier release that you still
want to use. See Chapter 6, “Migration and fallback considerations,” on page 85 for information about
how to migrate objects.

About this task

Important: The procedure in this topic removes all traces of QMF from the remote server. Complete this
task only if the old and new releases are in different servers and only if connectivity to the earlier release
of QMF is no longer required.

Deleting QMF control tables and packages
This procedure deletes the QMF control tables, including the QMF object control tables and any queries,
procedures, or forms that they contain.

About this task

Complete the following procedure for Db2 for Linux, UNIX, and Windows or DB2 for iSeries servers that
contain a prior version of QMF.

94 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Procedure

1. Edit QMF1210.SDSQSAPE(DSQ1EDX1).
2. Change ssid to the 4-character name of the Db2 for z/OS requester and change location to the name of

the server database.
3. Review the comments in the job to determine if you need to customize any other values.
4. Submit job QMF1210.SDSQSAPE(DSQ1EDX1).
5. Check the DSQCDROP job step for a return code of 0 or 4. Review SYSTERM for completion messages.

If the return code is not 0 or 4, examine SYSTSPRT and SYSPRINT for error messages. Correct any
errors and rerun the job.

Deleting QMF sample tables
This procedure drops all the QMF sample tables from the server.

Procedure

1. Edit QMF1210.SDSQSAPE(DSQ1EDX2).
2. Change ssid to the 4-character name of the Db2 for z/OS requester and change location to the name of

the server database.
3. Review the comments in the job to determine if you need to customize any other values.
4. Submit job QMF1210.SDSQSAPE(DSQ1EDX2).
5. Check the DSQCDROP job step for a return code of 0 or 4. Review SYSTERM for completion messages.

If the return code is not 0 or 4, examine SYSTSPRT and SYSPRINT for error messages. Correct any
errors and rerun the job.

Deleting QMF from a DB2 for VSE and VM database
The procedures differ depending on whether the old and new QMF release are in the same or different
databases.

About this task

The procedures in this topic remove earlier releases of QMF from a DB2 for VSE and VM database.

Important: Do not begin the tasks in this topic until you have verified that the earlier version of QMF is no
longer needed in the server. The earlier version is still needed if connectivity with QMF installations of the
same release is required.

When the old and new releases are in the same DB2 for VSE and VM server
When the old and new QMF releases are in the same DB2 for VSE and VM server, remove the earlier QMF
release by dropping all QMF packages from the earlier release. QMF control tables and sample tables are
still needed for QMF Version 12.1 in this case.

About this task

Table 26 on page 92 lists the version-specific characters of the package identifiers that are associated
with the QMF release from which migration to QMF Version 12.1 is supported.

Procedure

• To list all QMF packages for a particular release, run the following statement.
In place of X, substitute the version-specific character of the package identifier that is associated with
the QMF release you want to remove.

Chapter 7. Deleting an earlier release of QMF 95

Follow this statement with a DROP statement for each package you want to remove.

SELECT SUBSTR(PROGNAME,1,10)
FROM SYSTEM.SYSPROGAUTH
WHERE PROGNAME LIKE 'DSQX%'

Example

For example, to list QMF Version 9 packages from DB2 for VSE and VM server, issue the following
statement:

SELECT SUBSTR(PROGNAME,1,10)
FROM SYSTEM.SYSPROGAUTH
WHERE PROGNAME LIKE 'DSQF%'

When the old and new release are in different servers
To remove QMF from a DB2 for VM or VSE server, complete these steps.

About this task

Important: The procedure in this topic removes all traces of QMF from a remote VM or VSE server.
Complete this task only if the old and new QMF releases are in different servers and only if connectivity to
the prior QMF release is no longer required.

Procedure

1. List the old QMF packages by running the following query. Then drop the resulting package names.
Replace X in DSQX with the version-specific character from Table 26 on page 92 that corresponds to
the QMF release that you want to remove.

SELECT SUBSTR(PROGNAME,1,10)
FROM SYSTEM.SYSPROGAUTH
WHERE PROGNAME LIKE 'DSQX%'

For example, to list QMF Version 9 packages from a DB2 for VM or VSE server, issue the following
statement:

SELECT SUBSTR(PROGNAME,1,10)
FROM SYSTEM.SYSPROGAUTH
WHERE PROGNAME LIKE 'DSQF%'

2. List views that are used in QMF operations by running the following query. Then drop the resulting
view names.

SELECT * FROM SYSTEM.SYSVIEWS
WHERE VCREATOR = 'Q'

3. List QMF control tables by running the following query. Then drop the resulting table names.

SELECT * FROM SYSTEM.SYSCATALOG
WHERE CREATOR = 'Q'

4. List dbspaces that are used by QMF by running the following query. Then drop the resulting dbspace
names.

SELECT * FROM SYSTEM.SYSDBSPACES
WHERE DBSPACENAME LIKE 'DSQ%'

96 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 8. Installing extra value features
After you have completed the base installation of QMF, you can install extra value features.

Configuring QMF Analytics for TSO
Configuring QMF Analytics for TSO involves customizing and allocating files.

Before you begin

Before using QMF Analytics for TSO, you must:

• Install, configure, and run the installation verification procedure (IVP) for the IBM Graphical Data
Display Manager - PGF (GDDM-PGF).

• Ensure that the emulator that QMF Analytics for TSO will access can display data graphically (charts and
statistical graphs).

• Complete the QMF Analytics for TSO V12 installation and IVP.

Load library considerations for QMF Analytics for TSO
The modules that are needed for QMF Analytics for TSO are prefixed with "DYQ" and exist in the QMF for
TSO load library, SDSQLOAD.

The load library method of allocation using DSQLLIB cannot be used for SDSQLOAD if you use QMF
Analytics for TSO.

Allocating files used by QMF Analytics for TSO
In order to use QMF Analytics for TSO you must allocate the standard QMF for TSO files and the QMF
Analytics for TSO configuration file.

About this task

The QMF Analytics for TSO configuration file is hlq.SDYQCFG(DYQCFG), with a DDNAME of DYQCFG.
Allocating it results in the default configuration for QMF Analytics for TSO.

Procedure

You can allocate DDNAME DYQCFG in one of the following ways:

• From a QMF procedure or QMF command line by using a command similar to the following command:

TSO ALLOC FI(DYQCFG) DSN('QMF1110.SDYQCFG(DYQCFG)')
• Along with your standard QMF allocations in REXX :

"ALLOC FI(DYQCFG) DA('QMF1110.SDYQCFG(DYQCFG)') SHR REUSE"

Results

You have allocated the QMF Analytics for TSO configuration file.

What to do next

If the default configuration does not suit your environment, you can customize it.

© Copyright IBM Corp. 1982, 2020 97

File system customization for QMF Analytics for TSO
QMF Analytics for TSO uses zSeries file system (zFS) to store a user's work files. You must provide the
space for work files for each user in the zFS directory.

QMF Analytics for TSO and work files

QMF Analytics for TSO uses work files to manipulate your data while producing charts and statistical
analyses. It is important to keep the work files for each user separate to avoid users displaying another
each other’s data.

The default location for ZFS work file usage is determined by the ':asfiles.ZFS' configuration entry in
the hlq.SDYQCFG(DYQCFG) configuration file.

QMF Analytics for TSO keeps user's work files separate by storing its work files in a directory
named /QAT/ in the user’s home directory on the file system (zFS or HFS file).

You can use this default configuration as long as each user on the system has been set up with a unique
home directory. However, if your environment is configured so that users share a common home
directory, or if you simply do not want to use the location as specified in the default configuration, you set
the directory location into which QMF Analytics for TSO will store its work files. To do this, you edit
the :asfiles entry in the QMF Analytics for TSO Configuration file (DYQCFG).

Important: The :asfiles. entry is the only line in the QMF Analytics for TSO configuration file that
should ever be altered. Altering any other lines or altering the :asfiles. entry other than in accordance
with these instructions will result in QMF Analytics for TSO not functioning correctly.

When shipped, the default setting for :asfiles. entry is :asfiles.ZFS. As mentioned, using this
setting results in QMF Analytics for TSO storing its work files in [home directory]/QAT/.

If you want QMF Analytics for TSO work files to be placed in a different location, edit the :asfiles.ZFS
setting as follows:

• Keep the setting as :asfiles.ZFS to have work files stored in [user’s_home_directory]/QAT/.
• Specify :asfiles.ZFS root (no leading /) to have work files stored in
[user’s_home_directory]/root/QAT/.

• Specify :asfiles.ZFS /root (leading /) to have work files stored in [file_system_root]/
root/QAT /.

Note that root and /root are limited to 227 characters in length and may include many levels of
subdirectory. A trailing slash / is optional and QMF Analytics for TSO will assume one if there is none.

To introduce uniqueness into the path name when using /root or when each user’s home directory is not
unique, you can use &SYSUID. within the path name. When QMF Analytics for TSO interprets this, it
replaces &SYSUID. with the current user’s user ID in lower case.

The following example shows how one might customize :asfiles.ZFS.

Note: QMF Analytics for TSO also supports hierarchical file system (HFS). If you are using HFS, the same
exact setup steps for :asfiles apply.

--
* QAT Configuration Entry for use with zFS/HFS *
--
:nick.QAT :type.ENV
 :asfiles.ZFS products/workfiles/&SYSUID./QMF
 :library.ZFS
 :log.OFF
 :sortname.ICEMAN

With this setting, work files for users 'Alan' and ‘FINANCE’ are stored as follows:

• For Alan:

[home_directory]/products/workfiles/alan/QMF/QAT/
• For FINANCE:

98 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

[home_directory]/products/workfiles/finance/QMF/QAT/

If the path had been specified with a leading / (i.e.:asfiles.ZFS /products/), the /products/
directory would be placed in the file system root directory rather than the user’s home directory.

Installing QMF Analytics for TSO sample tables
You can optionally install QMF Analytics for TSO sample tables, which are referred to in the
documentation to demonstrate QMF Analytics for TSO functions. These sample tables are Q.CASHFLOW,
Q.CLIMATE_10YR, Q.CLIMATE_USA, and Q.WORLDINFO.

Before you begin
If you installed QMF Analytics for TSO in a Db2 for z/OS or Db2 for Linux, UNIX, and Windows database,
install the base QMF sample tables before you install the QMF Analytics for TSO sample tables. In Db2 for
z/OS, the job that installs the base sample tables is DSQ1EIVS. In Db2 for Linux, UNIX, and Windows, the
job that installs the base sample tables is DSQ1EDJ4. You do not need to install the base sample tables
before installing the QMF Analytics for TSO sample tables in a DB2 for iSeries database.

Procedure

Run job QMF1210.SDSQSAPE(DSQ1EIVQ).

In Db2 for Linux, UNIX, and Windows, job DSQ1EIVQ installs the sample tables in the DSQ1STBT table
space, which was created by job DSQ1EDJ4. In Db2 for z/OS, job DSQ1EIVQ creates universal table
spaces for each sample table.

Verifying that QMF Analytics for TSO installed correctly
You can verify that QMF Analytics for TSO is installed correctly and test the product functionality by
creating a chart and statistical analysis of query results.

Before you begin
Complete the following tasks before you verify the installation:

• Install, configure, and run the installation verification procedure (IVP) for the IBM Graphical Data
Display Manager - PGF (GDDM-PGF).

• Ensure that the emulator that QMF Analytics for TSO will access can display data graphically (charts and
graphs).

• Ensure that you installed QMF for TSO V12.1 and completed the QMF for TSO IVP.

About this task
The verification procedure involves running queries against two sample data tables that are provided with
QMF for TSO:

• Q.STAFF

This table provides personnel-related data such as salary, department, commissions, and hire date for
employees.

• Q.CLIMATE_10YR

This table provides climate and weather-related data such as rainfall amount, days of sunshine, and
temperature that is collected over many years.

Procedure

To verify that QMF Analytics for TSO installed correctly:
1. Start QMF.
2. Enter DISPLAY Q.STAFF on the command line.
3. Start QMF Analytics for TSO by entering SHOW ANALYTICS on the QMF command line and pressing

Enter.

Chapter 8. Installing extra value features 99

4. On the Charts panel of the QMF Analytics Home page, tab to Tower and press Enter.
5. With the cursor in the first data entry field, press the List function key (F4). Move to COMM on the

Column Selection panel and press Enter.

QMF Analytics for TSO returns you to the Charts panel and inserts COMM in the data entry field.
6. Move to the second data entry field on Tower chart’s Parameter Selection panel and press the List

function key (F4). Move to SALARY on the Column Selection panel and press Enter.

QMF Analytics for TSO returns you to the Charts panel and inserts SALARY In the data entry field.
7. With the cursor in the data entry field for the X-axis, press the List function key (F4). Move to DEPT on

the Column Selection panel and press Enter.

QMF Analytics for TSO returns you to the Charts panel and inserts DEPT in the data entry field.
8. Press the Run function key to create the chart.
9. To return to the Parameter Selection panel, press F12.

10. To return to the QMF Analytics Home panel, press the End function key (F3).
11. Enter DISPLAY Q.CLIMATE_10YR on the QMF command line.
12. Enter SHOW ANALYTICS on the command line.
13. Move to Basic in the Statistics section of the QMF Analytics Home page and press Enter.
14. With the cursor in the first data entry field, press the List function key (F4).
15. Move to RAINFALL on the Column Selection panel and press Enter.

QMF Analytics for TSO returns you to the Statistics panel and inserts RAINFALL in the data entry field.
16. Press the Run function key (F2) to see a summary of the basic statistics for rainfall.
17. Press the Statistics function key (F10) to generate the basic statistics of rainfall data.

Configuring QMF Data Service (QDS)
QMF for z/OS and QMF Enterprise Edition users can use the QMF Data Service feature to access non-Db2
data such as VSAM, IMS, sequential files, SMF data, SYSLOG data and more.

Before you begin
The QMF Data Services component, available to QMF for z/OS and QMF Enterprise Edition users, must be
installed and available to the QMF for TSO and CICS environment. Data sources must be defined to QMF
Data Service. The QMF for TSO and CICS global variable DSQEC_DS_SUPPORT must be set to a value of 1.
See the IBM Db2 QMF Data Service Getting Started Guide for more complete instructions on installing the
QDS component and configurations including binding packages and allocating proper QDS libraries. These
tasks must be performed for the QDS and QMF for TSO and CICS configuration to be complete.

About this task

Through QMF for TSO/CICS SQL queries, Prompted queries, or Query-by-Example queries, you can access
QMF Data Service defined data sources using three part names; QMF Data Service data sources are
accessed through three part table names in the query.

For example, you might access a VSAM data set defined to a QMF Data Service server named CQDR by
issuing the following query:

SELECT * FROM CQDR.CQDSQL.VSAM_IMITMTRN

QMF Data Service might join one or more sources that exist at the server. SQL accepted by QMF Data
Service is a subset of SQL accepted by Db2 for z/OS. Refer to the QMF Data Service SQL guide for
accepted SQL syntax.

To use QMF Data Service, you must set the QMF for TSO and CICS global variable DSQEC_DS_SUPPORT
to 1. The default value is 0, which indicates that you do not want to allow access to QMF Data Service.

100 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

The DISPLAY TABLE, DRAW, EXPORT TABLE, and PRINT TABLE commands may also be used to access
QMF Data Service data sources. As with queries, the command must use a three part table name.

For example, you might access a VSAM data set defined to the QMF Data Service server CQDR by issuing
the following command:

DISPLAY TABLE CQDR.CQDSQL.VSAM_IMITMTRN

When you set the DSQEC_DS_SUPPORT global variable to a value of '1', the QMF Data Service component
analyzes the command. If an object that is referenced in the command is defined to the QMF Data Service
component, then the entire command is executed by QMF Data Service. If none of the objects referenced
in the command access an object defined to the QMF Data Service, then the command is executed by the
current DB2 connection.

Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Before you begin

• If you have not done so already, install, prepare, and test QMF Version 12.1 (English) in the database
into which you intend to install the NLF. This installation is the base product.

– For installation paths for requesters, see “Roadmap 1: Installing QMF in stand-alone or requester
databases (Db2 for z/OS only)” on page 14.

– For installation paths for servers that will be accessed by the QMF CONNECT command, see
“Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command” on page
19.

– If the server will be accessed by three-part names only, you do not need to perform any further NLF-
related steps if you already completed “Installation path G: Preparing a remote server to be accessed
by QMF commands that include three-part names” on page 28.

• Ensure that you have the proper authority for the database into which you will be installing the NLF. For
more information, see “Required authorities for installing QMF” on page 13.

About this task

Names of some modules, libraries, and jobs contain an n character. This character is a variable that
represents the 1-character language identifier for your NLF. Substitute the language ID associated with
your NLF wherever you see this character. You can find these identifiers in Table 27 on page 102.

Procedure

To install a QMF NLF, complete the following steps:
1. Read the NLF program directory for supplementary data.

There are several program directories. Make sure that you refer to the National Language Version
program directory that is appropriate for your edition of QMF. The program directories are updated
between NLF releases and they contain useful information, including descriptions of PTFs and APARs.

2. Use SMP/E, as explained in the program directory, to load the NLF libraries for QMF Version 12.1 from
the distribution media into the database into which you installed the base product.
Ensure that you complete all the SMP/E tasks that are described in the NLF program directory for
each NLF that you intend to install.

The JCL and control statements for the NLF are shipped on the IBM software distribution (ISD) tape
for that feature.

Chapter 8. Installing extra value features 101

The following table provides information about each language in which QMF is available. The function
modification identifier (FMID) identifies each QMF NLF to SMP/E.

The 1-character language identifier (language ID) is used in data set, library, and module names.
QMF uses the translated names in column 2 in certain QMF control tables. English is included for
completeness only; English is not a National Language Feature.

The NLF installation requires the use of the sample libraries from QMF Version 12.1,
QMF1210.SDSQSAPE and QMF1210.SDSQSAPn, and the load module library, QMF1210.SDSQLOAD.

Table 27. Language IDs and FMIDs for QMF NLFs

National Language Feature
Name that QMF uses for this
NLF Language ID

QMF Version
12.1 FMID

English ENGLISH E HSQCC10

U/C English UPPERCASE U JSQCC51

Danish DANSK Q JSQCC55

Canadian French FRANCAIS CANADIEN C JSQCC5G

French FRANCAIS F JSQCC56

German DEUTSCH D JSQCC57

Italian ITALIANO I JSQCC58

Japanese NIHONGO K JSQCC59

Korean HANGEUL H JSQCC5A

Brazilian Portuguese PORTUGUES P JSQCC5B

Spanish ESPANOL S JSQCC5C

Swedish SVENSKA V JSQCC5D

Swiss French FRANCAIS (SUISSE) Y JSQCC5E

Swiss German DEUTSCH (SCHWEIZ) Z JSQCC5F

SMP/E associates all modifications of a program with a system release level (SREL) of that program.
The system release level for QMF is P115.

3. Start the database into which you will be installing the NLF.
If you are installing the NLF into a database that will function as a server, DRDA communications
between the server and the requester will be used to complete the NLF installation of QMF Version
12.1 in the server. Therefore, you must complete these steps:
a) Define and test DRDA communications between the server into which you are installing the NLF

and the requester into which you installed the base QMF Version 12.1 product.
For more information about how to define and test DRDA, see the Db2 documentation.

b) Start both the requester and server databases. The Db2 for z/OS subsystem in the requester
database must be started with distributed data facility (DDF).

The NLF must be installed into each Db2 subsystem where you will start QMF in that national
language. Multiple NLFs can be installed in each subsystem if necessary.

4. Customize the installation parameters in the jobs in Step “6” on page 103 for the NLF that you are
installing.
Table 11 on page 40 provides descriptions of the installation parameters in QMF installation jobs.
Commonly customized parameters include QMFTPRE, DB2EXIT, DB2LOAD, SSID, and LOCATION.
For each job, ensure that the job-step region size on the RGN parameter is 2048K (this setting is the
default).

102 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Space allocations for the Q.COMMAND_SYNONYM_n table, which stores NLF-specific command
synonyms, are set at 100 for the primary space allocation and 20 for the secondary space allocation.
The index on the table, Q.COMMAND_SYNONYMX_n, has the same primary and secondary
allocations.

5. Populate the VSAM panel library for the NLF by running job QMF1210.SDSQSAPn(DSQ1nPNL). For
more information about this job, see the QMF program directory.

6. Run the installation jobs in the following table in the order that they are shown for each NLF that you
install.

For all steps that run in TSO batch mode, check the step completion code in the system messages.
Completion messages can be found in the SYSTSPRT or the SYSTERM output. Check for a return code
of 0 or 4.

As each job completes, review SYSTERM for completion messages. If errors occur, examine
SYSTSPRT and SYSPRINT for error messages. SYSPRINT provides more diagnostic information for
IBM Software Support. If any job fails, correct any errors and rerun it.

Table 28. Job sequence for installing a QMF National Language Feature into a requester or server
database

Job name Description

Each of the following jobs creates the QMF NLF control tables in the target database and adds two
rows to the Q.PROFILES table to support the NLF (a row for TSO and a row for CICS). These rows
are inserted with a QMF user ID value of SYSTEM in the CREATOR column of the table.

QMF1210.SDSQSAPn(DSQ1nUPO) Run this job if you are installing the NLF into a Db2 for
z/OS database.

QMF1210.SDSQSAPn(DSQ1nDJ2) Run this job if you are installing the NLF into a Db2 for
Linux, UNIX, and Windows database.

QMF1210.SDSQSAPn(DSQ1nAS2) Run this job if you are installing the NLF into a DB2 for
iSeries database.

QMF1210.SDSQSAPn(DSQ1nCCS) Creates a command synonym table named
Q.COMMAND_SYNONYM_n for the NLF environment.

The following jobs delete existing and install new versions of the QMF NLF sample tables.

Prior versions of the NLF sample tables are still valid in the new QMF NLF installation. These jobs
are shown in case you must delete and reinstall the samples for any reason. The SELECT privilege is
granted to PUBLIC for all sample tables at the location in which you are installing the NLF. You can
rerun these jobs, if necessary, at any time.

Sample tables are not available for the Uppercase English or Swedish NLFs.

QMF1210.SDSQSAPn(DSQ1nDSJ) Deletes existing QMF NLF sample tables from Db2 for
z/OS databases.

QMF1210.SDSQSAPn(DSQ1nIVS) Installs QMF NLF sample tables on Db2 for z/OS
databases. The CDS and CDP parameters identify the
punctuation mark to use for the decimal point. This
value must match the DECPOINT option that was
specified when Db2 was installed:

• For a period, leave the current values as they are.
• For a comma, change CDS to 6 and CDP to 7.

Chapter 8. Installing extra value features 103

Table 28. Job sequence for installing a QMF National Language Feature into a requester or server
database (continued)

Job name Description

QMF1210.SDSQSAPn(DSQ1nDX2) Deletes existing QMF NLF sample tables from the
following databases:

• DB2 for iSeries servers
• Db2 for Linux, UNIX, and Windows servers

To delete sample tables from VM or VSE databases,
issue DROP statements for any tables that you want to
remove.

QMF1210.SDSQSAPn(DSQ1nAS4) Installs QMF NLF sample tables on DB2 for iSeries
databases.

QMF1210.SDSQSAPn(DSQ1nDJ4) Installs QMF NLF sample tables on Db2 for Linux, UNIX,
and Windows databases.

7. If you want to install the QMF Analytics for TSO sample tables, run the
QMF1210.SDSQSAPn(DSQ1nIVQ) job.

The DSQ1nIVQ jobs are supplied with the corresponding QMF NLF.

Important: For Db2 for z/OS or Db2 for Linux, UNIX, and Windows servers, run the DSQ1nIVS or
DSQ1nDJ4 job to install the base QMF sample tables before running job DSQ1nIVQ.

8. Customize the QMF NLF for the environment in which it is running:
Option Description

If QMF is
running in
TSO

Edit the TSO logon procedure for the QMF base (English) product that you prepared in “Preparing
the TSO logon procedure” on page 50. Concatenate each NLF statement that is highlighted here
to each English statement in the logon procedure.

//ADMGGMAP DD DSN=QMF1210.SDSQMAPn,DISP=SHR
// DD DSN=QMF1210.SDSQMAPE,DISP=SHR
//ISPPLIB DD DSN=QMF1210.SDSQPLBn,DISP=SHR
// DD DSN=QMF1210.SDSQPLBE,DISP=SHR
//ISPMLIB DD DSN=QMF1210.SDSQMLBn,DISP=SHR
// DD DSN=QMF1210.SDSQMLBE,DISP=SHR
//ISPTLIB DD DSN=QMF1210.SDSQTLBn,DISP=SHR
// DD DSN=QMF1210.SDSQTLBE,DISP=SHR
// DD DSN=ISP.SISPTENU,DISP=SHR
//SYSPROC DD DSN=SYS2.CLIST,DISP=SHR
// DD DSN=QMF1210.SDSQCLTn,DISP=SHR
// DD DSN=QMF1210.SDSQCLTE,DISP=SHR
//SYSEXEC DD DSN=SYS2.EXEC,DISP=SHR
// DD DSN=QMF1210.SDSQEXCn,DISP=SHR
// DD DSN=QMF1210.SDSQEXCE,DISP=SHR
//DSQPNLn DD DSN=QMF1210.DSQPNLn,DISP=SHR
// DD DSN=QMF1210.DSQPNLE,DISP=SHR

If QMF is
running in
CICS

a. Load the QMF/GDDM maps to the GDDM ADMF data set by running job DSQ1nADM. Change the
parameters QMFTPRE, GDDMADM, and RGN as necessary to suit the NLF that you are
installing. This job is explained for the base product in “Loading QMF GDDM maps to the GDDM
ADMF data set” on page 58.

b. Customize and run job DSQ1nCSD to create entries for the QMF NLF in the CICS system
definition file. This job is explained for the base product in “Describing QMF to CICS” on page
56.

The return code for this job can be 0 or 4.

104 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Option Description

c. Add a line that allocates the QMF NLF panel file to the existing JCL that is used to start the
CICS region that contains QMF. This JCL is shown in “Updating the CICS startup job stream” on
page 59.

To add a line for the QMF NLF panel file, first locate the statement for the QMF base product in
the CICS startup JCL:

//DSQPNLE DD DSN=QMF1210.DSQPNLE,DISP=SHR

Then, before that statement, add the following statement for the QMF NLF panel file:

//DSQPNLn DD DSN=QMF1210.DSQPNLn,DISP=SHR

9. Start QMF under TSO by using the procedure in “Starting QMF under TSO” on page 72.
10. Install the NLF versions of the QMF sample queries and procedures by deleting the existing NLF

queries and procedures, if necessary, and then creating the Version 12.1 NLF objects.
a) To delete existing NLF versions of the sample queries and procedures, issue the following

commands from the QMF for TSO command line. If you are using a site-specific QMF library prefix
rather than the default prefix of QMF1210, replace QMF1210 in the command and throughout each
procedure before you save it.

IMPORT PROC FROM QMF1210.SDSQSAPn(DSQ1nSQD)'
SAVE PROC AS Q.DSQ1nSQD
RUN PROC

b) Create the Version 12.1 NLF sample queries and procedures by issuing the following commands:

IMPORT PROC FROM 'QMF1210.SDSQSAPn(DSQ1nSQI)
SAVE PROC AS Q.DSQ1nSQI
RUN PROC

For example, to delete the existing German sample queries and procedures, issue the following
commands:

IMPORT PROC FROM QMF1210.SDSQSAPD(DSQ1DSQD)'
SAVE PROC AS Q.DSQ1DSQD
RUN PROC

To create the Version 12.1 German sample queries and procedures, issue the following commands:

IMPORT PROC FROM 'QMF1210.SDSQSAPD(DSQ1DSQI)
SAVE PROC AS Q.DSQ1DSQI
RUN PROC

If a failure occurs during this job, correct the error and rerun the DSQ1nSQD procedure. Then, rerun
the DSQ1nSQI procedure. For more information about the sample queries and procedures, see
“Installing sample queries and procedures required for the installation verification procedures” on
page 77.

11. Test for the correct version of the QMF NLF panel library by using the procedure in “Checking for the
correct version of the QMF panel library” on page 75. Verify that both the home panel and help panels
display in the language you installed.

12. Run the installation verification procedure appropriate for your environment. If you will run QMF
under CICS, complete the IVP for TSO first and then complete the IVP for CICS.

Option Description

For QMF NLFs
under TSO

Issue the following commands from the QMF command line to run the IVP. If necessary,
customize the procedure for your site's requirements. For example, if you are using a library

Chapter 8. Installing extra value features 105

Option Description

prefix other than the default of QMF1210, replace QMF1210 throughout the installation
verification procedure before you save it.

DISPLAY Q.DSQ1nIVP
SAVE PROC AS Q.DSQ1nIVP (SHARE=YES
RUN PROC

For QMF NLFs
under CICS

Start CICS by using the procedure in “Starting QMF under CICS” on page 75. Then, issue the
following commands from the QMF command line to run the IVP. If necessary, customize the
procedure for your site's requirements. For example, if you are using a library prefix other
than the default of QMF1210, replace QMF1210 throughout the installation verification
procedure before you save it.

DISPLAY Q.DSQ1nIVC
SAVE PROC AS Q.DSQ1nIVC (SHARE=YES
RUN PROC

For more information about the functions that are tested by the IVPs, see one of the following topics:

• “Running the IVPs for TSO” on page 80
• “Running the IVP for CICS” on page 82

When the IVP runs without errors, the NLF installation is complete. After the interactive IVP
completes on TSO, you can optionally run the batch-mode IVP. For more information, see “Testing
batch operation under TSO” on page 81.

13. After installation, delete the libraries of the prior QMF NLF release if necessary. The English versions
of these libraries are listed in “Using SMP/E to delete the libraries of the earlier release” on page 90.
Replace the E at the end of each name with the national language identifier (NLID) for the NLF you
are using.

What to do next

To change the national language that is displayed during a QMF session, end the current QMF session and
begin another. You cannot change the language from within the QMF session.

Related reference
About the Q.PROFILES table
Each aspect of a user's QMF session maps to a value in a column of the Q.PROFILES control table. Each
row of the Q.PROFILES table is an individual user profile.
Related information
See the information about QMF Version 12.1 program directories.

Migrating QMF National Language Features
If you are migrating a QMF installation that includes existing National Language Feature (NLFs), ensure
that the correct version of the DSQPNLn data set is allocated, where n is the national language identifier.
When you migrate to Version 12.1, you must also run a couple of jobs to complete the NLF migration
process.

Procedure

Run job QMF1210.SDSQSAPn(DSQ1nRTS).

This job creates new Version 12.1 command synonyms.

106 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/software/data/qmf/library.html

Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Before you begin

If you have not done so already, install, prepare, and test QMF Version 12.1 (English) in the Db2 for z/OS
requester database into which you intend to install the interface. For installation paths for requesters, see
“Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)” on page 14. QMF
can be started only from a Db2 for z/OS database.

About this task

Any software program that can call a Db2 for z/OS stored procedure, such as QMF for Workstation, can
start QMF for TSO and receive up to 21 result sets back, including a result set for trace data. The name of
a predefined procedure or query can be passed to the interface to perform the work and return the
required output. The procedure that is passed to the interface can also start a batch job, which allows any
Db2 client that can issue a CALL statement to access QMF for TSO batch services.

Similar to QMF batch mode, the stored procedure interface allows no user interaction with QMF; the
procedure that is passed to QMF cannot issue commands that display QMF panels (such as LIST, for
example).

Procedure

To install the stored procedure interface:
1. Configure the WLM address space that your site will use to start Db2 for z/OS stored procedures.

The QMF stored procedure interface is made available through a REXX stored procedure,
Q.DSQQMFSP, which is external to QMF and must run in a WLM-managed address space that is not
APF-authorized.

In general,Db2 for z/OS stored procedures (except native SQL procedures) must run in WLM-managed
stored procedure address spaces. You must assign each stored procedure to a WLM application
environment, which routes the stored procedure work to the appropriate WLM-managed address
space.

Make the following changes to the JCL that starts the WLM-managed address space where QMF will
run:

a) Set the NUMTCB parameter to 1. The Q.DSQQMFSP procedure is a REXX stored procedure, and all
REXX stored procedures must be assigned a NUMTCB value of 1.

b) Specify a region size that meets your site's requirements for running QMF in TSO.

Minimum storage requirements are explained in “Addressing storage requirements” on page 37.
Add to these storage figures the amount of storage that you want to reserve in the TSO region for
applications other than QMF; you specify this storage using the DSQSRSTG parameter in the
DSQSCMDn exec, as explained in Step “3” on page 108.

c) Allocate the QMF1210.SDSQEXCE library to the SYSEXEC ddname.
If you intend to run QMF as a stored procedure in both English and a national language
environment, also allocate QMF1210.SDSQEXCn, where n is a 1-character national language
identifier.

d) Allocate the QMF1210.SDSQLOAD load library to the STEPLIB ddname.
e) Allocate the QMF1210.SDSQMAPE library to the ADMGGMAP ddname.

If you intend to run QMF as a stored procedure in both English and a national language
environment, also allocate QMF1210.SDSQMAPn, where n is a 1-character national language
identifier.

Chapter 8. Installing extra value features 107

f) Allocate the following data sets:
DSQDEBUG

Receives QMF trace output.
SYSTSPRT

Receives REXX trace output when PTF or ALL is specified as the trace option.
g) Customize GDDM parameters in the same manner as for other QMF for TSO installations.

2. Make sure that the user ID of the user who starts the QMF stored procedure (Q.DSQQMFSP) has read
access to the QMF libraries that you allocated in the JCL that starts the WLM address space.

3. Revise the parameter values in the DSQSCMDn exec, which is located in the QMF1210.SDSQEXCn
library. Replace n with the 1-character national language identifier that represents the language in
which you want to start QMF.

The stored procedure program logic uses the DSQSCMDn exec to pass program parameters to QMF for
initialization. Within the DSQSCMDn exec, values for the following parameters are required:
DSQSSUBS

The name of the subsystem in which you are installing the Q.DSQQMFSP stored procedure.
DSQSPLAN

The name of the QMF application plan in the Db2 for z/OS subsystem in which you are installing
the Q.DSQQMFSP stored procedure.

The default name for the QMF Version 12.1 application plan is QMF12.

You can optionally set the following program parameters:

DSQSBSTG or DSQSRSTG
Amount of virtual storage to use for report operations.

DSQSMRFI
Enables multirow processing for database fetches and inserts.

DSQSPILL and DSQSPTYP
Enable the use of extra storage to be used for data no longer needed in active storage.

DSQSDBCS
Allows you to print DBCS data from non-DBCS display devices.

All other program parameters in the DSQSCMDn exec are either ignored or take only default values
when you start QMF as a stored procedure.

4. Run the DSQ1BSP installation job to define the QMF stored procedure.
5. Refresh or resume the WLM address space.
6. Grant the EXECUTE privilege on the Q.DSQQMFSP procedure to all users who will be starting QMF by

using this interface.
For example:

GRANT EXECUTE ON PROCEDURE Q.DSQQMFSP TO userid

7. Ensure that all users who will start QMF as a stored procedure have a valid QMF profile.

QMF authenticates the authorization ID under which the WLM-managed address space was started
with the value in the CREATOR column of the Q.PROFILES table. QMF first checks the CREATOR
column for the authorization ID under which the address space was started. If no value in the
CREATOR column corresponds to this ID, QMF checks for a row in the Q.PROFILES table where
CREATOR=SYSTEM. If no SYSTEM row is found, QMF initialization ends in an error.

Profile settings that are associated with the authorization ID under which the address space was
started (or those in the SYSTEM row, if no specific profile is associated with this user ID) serve as
default settings for the duration of the QMF session. Because the trace level is passed on the CALL
statement, the initial value of the TRACE option of the profile is ignored. Because no prompting can
occur when QMF is running as a stored procedure, a value of YES on the CONFIRM option is also
ignored.

108 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

8. Verify that the installation of the stored procedure interface completed successfully:

• Issue the following CALL statement from QMF for Workstation or another client program. This
statement starts the English version of QMF for TSO:

CALL Q.DSQQMFSP('','PTF','','',?)

The statement returns a service-related string about the Q.DSQQMFSP procedure. The string has
the following format:

DSQQMFSP exec level: QMF VnRn WIMnnnnn mm-dd-yyyy DSQAO_QMF_VER_RLS:
QMFVnRn.n DSQ_PRODUCT_RELEASE: nn Current date and time: dd mmm yyyy hh:mm:ss

• If you installed the QMF sample queries you can issue the following CALL statement to test starting
QMF as a stored procedure and passing the Q.SAMPLE_SELECT1 query as the first parameter.

This statement specifies no trace log; however, the message that is returned at the end of the
stored procedure run indicates whether the query ran successfully.

CALL Q.DSQQMFSP('Q.SAMPLE_SELECT1','','','',?)

To receive a trace log back as a result set, issue the following statement:

CALL Q.DSQQMFSP('Q.SAMPLE_SELECT1','L2','','',?)

Results
The DSQAO_STO_PROC_INT global variable records whether QMF was started as a Db2 for z/OS stored
procedure.
Related concepts
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Allocating the trace data set
Make sure that the DSQUDUMP data set or DSQDEBUG data set is allocated, depending on how your run
QMF.
Related tasks
Customizing GDDM external defaults
If you are running QMF for TSO, you must customize some external defaults to ensure that GDDM
correctly displays information from the database.
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Installing the enhanced LIST command function (z/OS only)
When the enhanced LIST command function is installed, privileges for tables and views must be granted
only to a user's primary or secondary authorization ID, instead of to PUBLIC, to be included in object lists
that are generated by the LIST TABLES or LIST ALL command when the OWNER=ALL option is specified
on the command.

About this task

The following tables and views are displayed in the object list when OWNER is set to ALL:

• Tables and views that are owned by the user's primary or secondary authorization ID

Chapter 8. Installing extra value features 109

• Tables and views for which SELECT and other privileges have been granted to the user's primary or
secondary authorization ID

• Tables and views for which privileges have been granted to PUBLIC

RACF group names can be used as secondary authorization IDs.

The enhanced LIST command function can be used only with Db2 for z/OS databases and must be
installed in every database (both requesters and servers) where the function is needed. This topic
explains how to install and activate the User Defined Function (UDF) for the feature, which is supplied
with QMF.

Procedure

To install and activate the enhanced LIST command function, complete the following steps:
1. Set up the environment for UDFs. This step involves setting up and maintaining the environment for

Db2 stored procedures and UDFs in WLM-established address spaces. A system administrator usually
performs this step.

2. Add the QMF program DSQABA1E to the WLM-established address space that will execute the UDF
supplied by QMF. DSQABA1E resides in the QMF load library QMF1210.SDSQLOAD. Copy the
DSQABA1E member from SDSQLOAD into a load library in the STEPLIB concatenation for the WLM-
established stored procedure address. This STEPLIB concatenation is defined in the JCL that is used to
start the address space.

3. Determine the name of the WLM environment where the UDF supplied by QMF will run.
4. Define the QMF UDF to Db2 by running the DSQ1BUDF job, which is located in the

QMF1210.SDSQSAPE library. This job issues an SQL CREATE FUNCTION statement and grants
execution privileges. You might need to customize this job before running it. See the comments in the
job prolog for instructions.

5. Test the registration.
Verify that all the previous steps were successful before changing the QMF list view in the next step.
To test the registration, start QMF or SPUFI and run the following SQL statement:

SELECT U.AUTHNAME FROM TABLE(Q.APPL_AUTHNAMES(’PUBLIC "PUBLIC*"’)) U

The database returns a list of valid authorization names for the user who issued the statement. For
example:

AUTHNAME

W397754
#DQZA
#J49A
DB2FUNC
QMFDEV
PUBLIC
PUBLIC*

6. Change the QMF list view to execute the QMF UDF by running job DSQ1BUDV, which is located in the
QMF1210.SDSQSAPE library.

7. Optional: If you customized the views that QMF uses to generate table and view list, examine the
following sample SELECT statement, which has been modified to use the UDF supplied by QMF.
This example will help you in modifying your customized view:

SELECT
VARCHAR(RTRIM(T.CREATOR)),
 T.NAME,'TABLE',T.TYPE
 ,' ',' ',
 VARCHAR(RTRIM(SUBSTR(T.REMARKS, 1, 254))),
 ' ',' ',' ',VARCHAR(RTRIM(SUBSTR(T.LABEL, 1, 30)))
 ,SUBSTR(T.LOCATION, 1, 16),
 VARCHAR(RTRIM(T.TBCREATOR)),T.TBNAME
 FROM SYSIBM.SYSTABLES T
 ,(SELECT
 DISTINCT
 VARCHAR(RTRIM(TA.TCREATOR)), TA.TTNAME

110 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

 FROM SYSIBM.SYSTABAUTH TA
 WHERE TA.GRANTEETYPE=' '
 AND TA.GRANTEE IN (

 SELECT U.AUTHNAME FROM
 TABLE(Q.APPL_AUTHNAMES
 ('PUBLIC "PUBLIC*"')) AS U

)
) AS UAT ("CREATOR","NAME")
 WHERE
 (T.CREATOR=UAT.CREATOR OR T.CREATOR=CURRENT SCHEMA)
 AND T.NAME=UAT.NAME
 AND T.TYPE IN ('T', 'V', 'H');

8. Test the new function.
a) Grant privileges for tables or views to the primary authorization ID of a particular QMF user. Grant

privileges for a different set of tables to this user's secondary authorization ID.
b) Start QMF under the primary authorization ID.
c) Issue the command LIST TABLES (OWNER=ALL.

You can specify ALL as the default for the OWNER option of the LIST command by setting the
DSQEC_LIST_OWNER global variable to this value.
The list should include all tables for which you granted privileges.

Results

The following table summarizes the jobs that install the enhanced LIST command function. Run these
jobs in the sequence in which they are listed in the table and ensure that each job completes without
errors.

Table 29. Job sequence to install enhanced LIST command function

Job name Description

DSQ1BUDF Creates the enhanced QMF LIST command function.

Run this job at every Db2 for z/OS requester or server where the function is
needed.

Rerun this job when you upgrade the database mode or release level.

DSQ1BUDV Creates QMF views needed to support the enhanced LIST command.

Run this job at every Db2 for z/OS requester or server where the function is
needed.

Rerun this job when you upgrade the database mode or release level.

Note: The installation option EXTSEC found in QMF1210.SDSQEXCE(DSQ1DEFS) supports external
security models such as RACF, but does not affect the views created in
QMF1210.SDSQEXCE(DSQ1BUDV).

What to do next

You can revert to the default QMF LIST command function at any time by running job DSQ1BVW, which
restores the views that support the default LIST command.

Related concepts
Making your new view the default view
To use a view that you have created instead of the default view, use a SET GLOBAL command to set the
appropriate global variable to the new view name.
Tasks to perform when upgrading Db2 for z/OS but not QMF

Chapter 8. Installing extra value features 111

When you upgrade either the mode or the release of a Db2 for z/OS database where QMF is installed, but
you do not upgrade QMF, you must run two QMF bind jobs.
Related tasks
Customizing users' object lists
Using the default views supplied by QMF for your table lists and column information can increase
processing time, because Db2 gathers authorization information from the SYSIBM.SYSTABAUTH table. If
you do not need the extra security provided by these authorization checks, consider creating your own
views that generate a list of objects stored in the database.

Configuring the QMF Data Service Interface
QMF for z/OS V12 and QMF Enterprise Edition V12 adds a new component called QMF Data Service. QMF
for TSO and CICS users can use QMF Data Service to access Db2 and non-Db2 data such as VSAM, IMS™,
sequential files, SMF data, SYSLOG data and more. See the Db2 QMF Data Service Solution Configuration
Guide for a complete list of data sources that can be accessed.

Before you begin

• Install, configure and run the installation verification procedure (IVP) for QMF Data Service. See the Db2
QMF Data Service Customization Guide for more information.

• For QMF for TSO users, install, configure and run the installation verification procedure for QMF for TSO
V12.1 in at least one Db2 for z/OS requester.

• For QMF for CICS users, install, configure and run the installation verification procedure for QMF for
CICS V12.1.

Procedure

For Customizing the QMF for TSO and CICS connection for QMF Data Service involves binding an
additional package, allocating load libraries and in the case of CICS use, adding the QMF Data Service
program definitions to an existing QMF for CICS region.
1. Bind the database package required for QMF Data Service access. The package must be bound in all

Db2 for z/OS systems from which you want to connect to a QMF Data Service server through QMF for
TSO or QMF for CICS.

2. For QMF for TSO implementations only: Update an existing QMF for TSO environment to add the QMF
Data Service library, CQD.SCQDLOAD to either STEPLIB or ISPLLIB.

3. For QMF for CICS implementations only: The following steps for defining CICS program definitions
and updating DFHRPL should be added to an existing QMF for CICS region that has been successfully
installed and tested.

• Customize the job found in QMF1210.SDSQSAPE(DSQ1ECSQ) according to the comments found in
the beginning of the job. Submit the job to successful completion.

• Add the QMF Data Service library, CQD.SCQDCLOD, to the DFHRPL concatenation. For example:

//DFHRPL DD ...
// DD DSN=QMF1210.SDSQEXIT,DISP=SHR
// DD DSN=QMF1210.SDSQLOAD,DISP=SHR
// DD DSN=GDDM.SADMMOD,DISP=SHR
// DD DSN=DSN1210.SDSNEXIT,DISP=SHR
// DD DSN=DSN1210.SDSNLOAD,DISP=SHR
// DD DSN=CQD.SCQDCLOD,DISP=SHR

4. Verify the QMF Data Service connection. To begin the verification, start QMF.

Note: Ensure that the sample virtual table staffvs exists in the QMF Data Service server. Table staffvs
would have been created during installation and verification of the QMF Data Service server. See the
Verifying the server installation section of the Db2 QMF Data Service Customization Guide for more
information on staffvs.

5. Enter the following command on the command line:

112 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

SET GLOBAL (DSQEC_DS_SUPPORT=1

6. Run the following SQL query where cdqs is the name of the QMF Data Service server:

SELECT * FROM cqds.CQDSQL.STAFFVS

A report similar to the one below displays.

REPORT LINE 1 POS 1 159

 STAFFVS
 STAFFVS DATA STAFFVS STAFFVS STAFFVS STAFFVS
 KEY NAME DATA DATA DATA DATA
 ID L NAME DEPT JOB YRS
 ------- ------- --------- ------- ------- -------
 10 7 SANDERS 20 MGR 7
 20 6 PERNAL 20 SALES 8
 30 8 MARENGHI 38 MGR 5
 40 7 O'BRIEN 38 SALES 6
 50 5 HANES 15 MGR 10
 60 7 QUIGLEY 38 SALES 0
 70 7 ROTHMAN 15 SALES 7
 80 5 JAMES 20 CLERK 0
 90 7 KOONITZ 42 SALES 6
 100 5 PLOTZ 42 MGR 7
 110 4 NGAN 15 CLERK 5
 120 8 NAUGHTON 38 CLERK 0
 130 9 YAMAGUCHI 42 CLERK 6
 140 5 FRAYE 51 MGR 6
 150 8 WILLIAMS 51 SALES 6
 160 8 MOLINARE 10 MGR 7
 170 8 KERMISCH 15 CLERK 4
 180 8 ABRAHAMS 38 CLERK 3
 190 7 SNEIDER 20 CLERK 8
 200 8 SCOUTTEN 42 CLERK 0
 210 2 LU 10 MGR 10
 220 5 SMITH 51 SALES 7
 230 9 LUNDQUIST 51 CLERK 3
 240 7 DANIELS 10 MGR 5
 250 7 WHEELER 51 CLERK 6
 260 5 JONES 10 MGR 12
 270 3 LEA 66 MGR 9
 280 6 WILSON 66 SALES 9
 290 5 QUILL 84 MGR 10
 300 5 DAVIS 84 SALES 5
 310 6 GRAHAM 66 SALES 13
 320 8 GONZALES 66 SALES 4
 330 5 BURKE 66 CLERK 1
 340 7 EDWARDS 84 SALES 7
 350 6 GAFNEY 84 CLERK 5

 *** END ***

 1=Help 2= 3=End 4=Print 5=Chart 6=Query
 7=Backward 8=Forward 9=Form 10=Left 11=Right 12=
 OK, this is the REPORT from your RUN command.
 COMMAND ===>

For more information on using QMF Data Service, see Configuring QMF Data Service (QDS).

Chapter 8. Installing extra value features 113

114 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Part 2. Managing QMF for TSO and CICS

© Copyright IBM Corp. 1982, 2020 115

116 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 9. Starting QMF
QMF can be started only from z/OS. QMF can be set up to run under TSO, ISPF, as a batch job, or under
CICS.

Starting QMF on TSO
There are several ways in which you can start QMF under TSO: You set up QMF to be started on TSO by
allocating files and resources and adding CLIST and EXEC libraries to TSO.

Allocating necessary files and resources
You can provide new QMF users with a TSO logon procedure that is called when the user logs on. This
cataloged procedure calls the Terminal Monitor Program (TMP).

The TMP is the principal interface between the user and the display device during a TSO session. If your
site uses its own TMP rather than the procedure supplied by IBM, some of the information in this topic
might not apply.

You can develop CLISTs or execs that users run to start QMF. Within these CLISTs or execs, you can
allocate many of the required data sets through TSO ALLOCATION statements. You can also use TSO
FREE statements in a CLIST or exec to deallocate data sets after the QMF session terminates.

To create a TSO exec to start QMF, you must ensure that the program load libraries, modules, and data
sets are available to QMF, and that GDDM and Db2 requirements are met.

Adding QMF CLIST and EXEC libraries to TSO
Use the DD statement established by your site for the TSO search order for execs.

This search order is affected by settings in the TSO default modules IRXTSPRM and IRXISPRM, the TSO
EXECUTIL command, and the TSO ALTLIB command. These are the data sets used by TSO. If you do not
know your site’s search order for REXX execs, allocate SDSQEXCE to both SYSEXEC and SYSPROC.

//***
//* DATA SETS USED BY TSO *
//SYSPROC DD DSN=SYS2.CLIST,DISP=SHR * CLIST Library
// DD DSN=QMF1210.SDSQCLTE,DISP=SHR
//SYSEXEC DD DSN=SYS2.EXEC,DISP=SHR
// DD DSN=QMF1210.SDSQEXCE,DISP=SHR

Figure 16. Data sets used by TSO

Starting QMF with the TSO CALL command
To use the TSO CALL command to start QMF, specify the name of the QMF load library and pass optional
program parameters following the data set name.

This example starts QMF with the TSO CALL command:

CALL ’QMF1210.SDSQLOAD(DSQQMFE)’ ’DSQSMODE=I,DSQSSUBS=DB2T’

The QMF load library is allocated as a task library for the duration of the CALL command. However, you
must give QMF access to the Db2 and GDDM libraries to load program interfaces to those products. In
most cases, Db2 and GDDM libraries are not part of the TASKLIB. If Db2 and GDDM libraries are not
available, QMF terminates with an error.

Important: Do not use the TSO CALL command from a CLIST that is running under ISPF. When QMF is
started under ISPF, you must use the ISPF SELECT PGM method to start QMF.

© Copyright IBM Corp. 1982, 2020 117

Related concepts
Starting QMF on ISPF
You can let users start QMF using ISPF services.

Starting QMF directly with the DSQQMFE module
You can start QMF under TSO by entering DSQQMFE from the command line in READY mode or in a CLIST
or exec.

For example, the following command shows how to start and pass parameters to QMF operating
independently of ISPF:

DSQQMFE DSQSBSTG=50000,DSQSMODE=B

The parameters in this example:

• Pass a value of 50,000 for the DSQSBSTG parameter (maximum storage for reports)
• Specify a value of B (batch) for DSQSMODE (mode of operation)

To start from a CLIST or exec and specify an initial procedure, issue a command like the following:

DSQQMFE DSQSRUN=Q.IPROC(&&TABLE=Q.STAFF)

This statement uses the DSQSRUN parameter to:

• Specify an initial procedure (Q.IPROC) to run when QMF starts
• Pass a value (Q.STAFF) to the procedure for the variable &TABLE

The DSQSRUN parameter as specified in this example results in the following QMF command:

RUN Q.IPROC (&TABLE=Q.STAFF

When QMF is started in TSO independently of ISPF, the following return codes are valid:
0

Execution successful.
4

Warning condition occurred.
8

Error condition occurred.
16

Severe error occurred. QMF did not start. If no messages are displayed, check the trace output for
messages, which can help you diagnose the problem.

Related concepts
Viewing QMF trace data
DSQDEBUG holds the information that is recorded by the trace facility. It must be allocated before you
start QMF if you want to use tracing.
Related reference
Summary of program parameters

118 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Starting QMF in a batch environment
To start QMF without using ISPF services, place a statement in the SYSTSIN data set of the JCL for the
batch job.

For example, in this command, DSQSMODE=B establishes the appropriate operating mode, and the
DSQSRUN parameter identifies the owner and name of the procedure to be run.

DSQQMFE DSQSMODE=B,DSQSRUN=auth_id.proc_name

The statement can include other parameter values in addition to the required DSQSMODE and DSQSRUN
parameters.

Related concepts
Running QMF in batch mode
If a user runs a procedure with the RUN command, the user cannot execute QMF commands except to
cancel the procedure or the session. Thus, running a procedure using the RUN command can tie up
considerable session time.
Setting program parameters and preferences at startup time
This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.

Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.

Instructions about installing the components of the interface and verifying that it is working correctly are
described in the steps to install the stored procedure interface. Similar to QMF batch mode, no panels can
be displayed when QMF is running as a stored procedure, so any QMF procedure that runs after QMF
starts cannot issue commands such as LIST or DISPLAY.

Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.
Starting a QMF batch job from a remote Db2 client
Any Db2 client that is connected to the Db2 database where the QMF stored procedure DSQQMFSP is
installed can start a QMF for TSO batch job. The batch job is started from the z/OS system that runs the
QMF stored procedure.

Format of the CALL statement
This topic explains the format of the required CALL statement.

The CALL statement that starts QMF for TSO as a Db2 for z/OS stored procedure has the following format:

CALL Q.DSQQMFSP

(

'object-name' 'trace-level' 'L2-destination' 'language' status-message (

object-name
Input parameter that names a QMF procedure or query that will run after QMF starts. The parameter
value, including the name and any substitution variable values that you pass, can be up to 32,704
bytes.

Chapter 9. Starting QMF 119

All types of QMF queries are accepted. The procedure can be either a QMF linear procedure or a
procedure with logic.

The query or procedure that is named in this parameter must exist in the QMF catalog in the
subsystem in which the stored procedure interface components are installed.

One result set is returned if the specified object is a query; up to 21 result sets can be returned from a
procedure (including trace output returned as the last result set when trace-level is L2 and L2-
destination is blank or null). QMF returns one result set to the calling program each time the following
command is encountered in the procedure:

PRINT REPORT (PRINTER=' '

Set the DSQEC_CC global variable to 0 to eliminate carriage control characters from any returned
result sets.

The PRINTER option can be set on the command itself or you can issue the following command in the
procedure to set the PRINTER option of the QMF profile:

SET PROFILE (PRINTER=' '

Because QMF cannot display panels when it has been started as a stored procedure, no prompting for
variable values is available. If the object is a query, values for all variables in the query must be
passed on the CALL statement. If the object is a procedure, the procedure can contain SET GLOBAL
commands to set the necessary values before they are required. Values can also be passed on the
CALL statement.

This parameter is ignored when trace-level is set to PTF.

trace-level
Input parameter that specifies the level of trace detail. Valid values include:
blank

No QMF trace output is generated.
null

No QMF trace output is generated.
NONE

No QMF trace output is generated.
L2

This option traces QMF messages and commands at the highest level of detail. Where the trace
output is sent depends on how L2-destination is set.

ALL
This option traces QMF activity at the highest level of detail, including program initialization errors
and other errors that might occur before the user's profile is established. Trace output is sent to
the DSQDEBUG DD card that you defined when installing the QMF stored procedure interface.

PTF
This option is used to verify that the stored procedure interface is running correctly. Do not use
this option unless instructed to do so in this information or by IBM Software Support.

You can include a SET PROFILE (TRACE command in the initial procedure that is specified by the
object-name parameter to change the level of trace detail for the duration of the stored procedure
session as long as trace output is set to go to the DSQDEBUG data set. If trace-level is set to L2, L2-
destination must be set to DSQDEBUG for SET PROFILE (TRACE commands to be accepted.

L2-destination
Input parameter that specifies the destination for the trace log when trace-level is set to L2. Valid
values include:

120 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

DSQDEBUG
Sends the trace output to the DSQDEBUG DD card that you defined when installing the QMF
stored procedure interface. Use this option if the procedure passed in the object-name parameter
is likely to contain SET PROFILE commands that include the TRACE option.

blank
Returns the trace output as the last result set from the stored procedure run.

null
Returns the trace output as the last result set from the stored procedure run.

The DSQSDBLG parameter, which appears in the DSQSCMDn exec, takes its value from this input
parameter. This parameter cannot be externally set outside the context of the stored procedure
interface.

language
Input parameter that specifies the language in which QMF will run.

Specify a 1-character national language identifier. A blank or null value for this input parameter
invokes QMF in English.

status-message
Output parameter that contains the last message that was issued from the execution of the procedure
or query that is passed in the object-name parameter. How the output parameter is defined depends
on the software program that issues the CALL statement. For example, in QMF for Workstation, the
output parameter containing the status message is defined as a question mark (?) character.

Related concepts
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Getting the right level of detail in your trace output
You can trace all QMF functions in detail or trace individual QMF functions.
Tracing individual QMF modules
You can turn on a trace for certain modules using the SET PROFILE command and the module
DSQUTRAC.
Viewing QMF trace data
DSQDEBUG holds the information that is recorded by the trace facility. It must be allocated before you
start QMF if you want to use tracing.
Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.
Determining the QMF service level
Running an SMP/E report against the target or distribution zones is always the best way to determine the
service level. However, you can also determine the QMF service level in other ways.
Related reference
Examining error log reports

Chapter 9. Starting QMF 121

The Q.ERROR_LOG table is a QMF control table that logs information about resource and other problems.

Starting QMF for TSO from QMF for Workstation and running a linear procedure
This example shows how to start QMF for TSO from QMF for Workstation and run a simple linear
procedure that queries the Q.STAFF sample table for rows that meet specific criteria for employee name,
department, and job.

About this task

The query is named STAFFQUERY:

SELECT * FROM Q.STAFF
WHERE
NAME = &NAME AND
DEPT = &DEPT AND
JOB = &JOB

The example QMF procedure that runs this query is named STAFFPROC:

SET GLOBAL (DSQEC_CC=0 --Turn off carriage control for printing
RUN QUERY STAFFQUERY (&&NAME = &NAME &&DEPT = &DEPT &&JOB = &JOB
PRINT REPORT (PR= ' '

Code 1 PRINT REPORT command for each result set to be returned to the calling program. To receive
report output back in a result set, the PRINTER option of the PRINT REPORT command must be set to a
string of blanks. If you have several PRINT REPORT commands in the procedure, you can issue a SET
PROFILE command to set the PRINTER option before you code the first PRINT REPORT command so that
you do not have to specify the PRINTER option multiple times.

The procedure can include up to 20 PRINT REPORT commands that return result sets. To eliminate
carriage control characters from the result sets, set the DSQEC_CC global variable to 0, as shown in the
preceding example.

Procedure

• To start QMF for TSO as a Db2 for z/OS stored procedure and run the STAFFPROC example procedure,
issue a command like one of the following from QMF for Workstation:

• You can use parentheses as delimiters for the variable values:

CALL Q.DSQQMFSP('STAFFPROC(&NAME=(''PERNAL''),&DEPT=(20),&JOB=(''SALES''))','L2','','E',?)

This CALL statement:

- Returns to QMF for Workstation a result set containing the following row from the Q.STAFF
sample table:

 ID NAME DEPT JOB YEARS SALARY COMM
------ --------- ------ ----- ------ ---------- ----------
 20 PERNAL 20 SALES 8 18171.25 612.45

- Specifies a value of L2 for the trace-level parameter, which traces messages and commands.
- Leaves the L2-destination parameter blank, which specifies that QMF returns the trace output as

the last result set. Thus, a total of two result sets are returned when the STAFFPROC procedure
ends.

- Specifies English as the language in which QMF runs, denoted by a value of E for the language
parameter.

- How the output parameter is defined depends on the software program that issues the CALL
statement. For example, in QMF for Workstation, the output parameter is defined as a question
mark (?) character.

• You can also pass the variable values without using parentheses as delimiters:

122 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

CALL Q.DSQQMFSP('STAFFPROC(&NAME=''pernal'',&DEPT=20,&JOB=''SALES'')','L2','','E',?)

• The following example CALL statement passes a variable value that contains an apostrophe:

CALL Q.DSQQMFSP('STAFFPROC(&NAME=''O''''BRIEN'',&DEPT=38,&JOB=''SALES'')','L2','','E',?)

This statement returns the following row to QMF for Workstation as the first result set:

 ID NAME DEPT JOB YEARS SALARY COMM
------ --------- ------ ----- ------ ---------- ----------
 40 O'BRIEN 38 SALES 6 18006.00 846.55

The last result set contains any trace output from the stored procedure run.

Starting QMF for TSO from QMF for Workstation and running a procedure with logic
In this example, you start QMF for TSO as a stored procedure from QMF for Workstation. You then run a
procedure with logic that sets default values, retrieves global variables values, and runs a query.

About this task

The procedure with logic STAFFPROC, shown here, completes the following tasks:

• Makes the SHARE=YES parameter the default on all QMF SAVE commands.
• Sets the DSQEC_CC global variable to 0 to eliminate carriage control characters from result sets that are

returned to the calling program.
• Retrieves the value of the DSQAO_STO_PROC_INT global variable, which indicates whether QMF for

TSO was started as a Db2 for z/OS stored procedure.
• Writes message text to the trace log that indicates whether QMF for TSO was started as a Db2 for z/OS

stored procedure.
• Runs a query named STAFFQUERY, which is as follows:

SELECT * FROM Q.STAFF
WHERE
NAME = &NAME AND
DEPT = &DEPT AND
JOB = &JOB

• Returns the query results to the calling program as a result set. For each result set that must be
returned, code 1 PRINT REPORT command as follows:

PRINT REPORT (PRINTER=' '

If you have several PRINT REPORT commands in the procedure, you can issue a SET PROFILE
command, as shown in the following example, to set the PRINTER option of the profile to a string of
blanks so that you do not have to specify this option on each PRINT REPORT command. The procedure
can include up to 20 PRINT REPORT commands that return result sets.

/* REXX */
"SET GLOBAL (DSQEC_SHARE = 1"
"SET GLOBAL (DSQEC_CC=0"
"GET GLOBAL ("SPINT"=DSQAO_STO_PROC_INT)"
IF SPINT = 1 THEN
DO
"MESSAGE (TEXT 'YOU ARE RUNNING IN THE QMF STORED PROC INT.'"
"SET PROFILE (PR = ' '"
END
ELSE
DO
"MESSAGE (TEXT 'YOU ARE NOT RUNNING IN THE QMF STORED PROC INT.'"
END

"RUN QUERY STAFFQUERY (&&NAME = &NAME &&DEPT = &DEPT &&JOB = &JOB"
"PRINT REPORT"

Figure 17. Procedure with logic, named STAFFPROC

Chapter 9. Starting QMF 123

Procedure

To start QMF for TSO from QMF for Workstation and run a procedure with logic, follow this example:
1. Issue a command like the following from QMF for Workstation.

This command starts QMF for TSO as a Db2 for z/OS stored procedure and run the example procedure
with logic:

CALL Q.DSQQMFSP('STAFFPROC(&NAME=''O''''BRIEN'',&DEPT=38,&JOB=''SALES'')','L2','','E',?)

This CALL statement:

• Uses double quotation marks as delimiters for the variable values.
• Returns to QMF for Workstation a result set containing the following row from the Q.STAFF sample

table:

 ID NAME DEPT JOB YEARS SALARY COMM
------ --------- ------ ----- ------ ---------- ----------
 40 O'BRIEN 38 SALES 6 18006.00 846.55

• Specifies a value of L2 for the trace-level parameter, which traces messages and commands.
• Leaves the L2-destination parameter blank, which specifies that QMF returns the trace output as

the last result set. Thus, a total of two result sets are returned when the STAFFPROC procedure
ends.

• Specifies English as the language in which QMF runs, denoted by a value of E for the language
parameter.

How the output parameter is defined depends on the software program that issues the CALL
statement.

For example, in QMF for Workstation, the output parameter is defined as a question mark (?)
character.

2. To pass the entire text of a query when you start QMF, create a query that contains only a variable.
For example:

&QUERY

3. Create a procedure, which is named RUNQPROC, that runs the query, as shown in the following
example.
The same results can be achieved with a linear procedure.

/* REXX */
"SET PROFILE (PR = ' '"
"RUN QUERY RUNQ(&&QUERY=&QUERY"
"PRINT REPORT"

The following example CALL statement starts QMF for Workstation and runs the RUNQPROC
procedure, passing the entire query text as part of the first parameter:

CALL Q.DSQQMFSP('RUNQPROC(&QUERY=((SELECT CURRENT SERVER FROM
SYSIBM.SYSDUMMY1)))','L2','','E',?)

Starting QMF on ISPF
You can let users start QMF using ISPF services.

You can add JCL to the ISPF environment that defines QMF resources. You can:

• Add QMF to an initial dialog of ISPF.
• Replace the initial dialog with one that starts QMF directly.
• Create a CLIST to start QMF as a program dialog.

124 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

You can also use any of the previous methods to start QMF using one of the other methods. For example,
you can run an initial dialog from a CLIST.

If you use JCL that points to the QMF program location, the JCL must always be in an initial dialog.

To run QMF under ISPF, you must start the QMF program dialog using the ISPF SELECT service. When a
TSO CALL statement or a TSO command is used, the results can be unpredictable.

Restriction:

• You cannot run QMF as a command dialog. For example, the following statements are not valid:

ISPEXEC SELECT CMD(DSQQMFE) NEWAPPL(DSQE)
ISPSTART CMD(DSQQMFE) NEWAPPL(DSQE)

• If QMF is started as an initial dialog, you cannot enter QMF from a split screen or create a split screen
during a QMF session.

Starting QMF from an ISPF menu
You can configure a menu option to start QMF.

This sample definition for the ISPF Master Application Menu shows how to add an option to the menu. In
this definition, Option 2 was added for reaching QMF through a CLIST.

)BODY
%--------------------- MASTER APPLICATION MENU -----------------
%SELECT APPLICATION ===>_OPT +
% +USERID -
% +TIME -
% 1 +SPF - SPF PROGRAM DEVELOPMENT FACILITY +TERMINAL -
% 2 +QMF - RUN QMF UNDER THE DB2T SUBSYSTEM +PF KEYS -%
%
%
%
%
%
%
%
%
% P +PARMS - SPECIFY TERMINAL PARAMETERS AND LIST/LOG DEFAULTS
% X +EXIT - TERMINATE USING LIST/LOG DEFAULTS
%
+PRESS%END KEY+TO TERMINATE +
%
)INIT
)PROC

 &SEL = TRANS(TRUNC (&OPT,’.’)
 1,’PANEL(ISP0PRIM) NEWAPPL’
 2,’PGM(DSQQMFE) NEWAPPL(DSQE) PASSLIB PARM(DSQSSUBS=DB2T)’
 /* */
 /* ADD OTHER APPLICATIONS HERE */
 /* */
 P,’PANEL(ISPOPT)’
 X,’EXIT’
 ’ ’,’ ’
 *,’?’)
)END

Figure 18. Sample Master Application Menu

You can add more than one option to your menu. Suppose, for example, that DB2T is a test Db2
subsystem and DB2P is the production subsystem. In this case, you must add two options to your menu:
one for each subsystem. You might have each option call a different CLIST, or you might create one CLIST
with a positional parameter for the subsystem. The lines in the menu's PROC section might look like this:

2,’PGM(DSQQMFE) NEWAPPL(DSQE) PASSLIB PARM(DSQSSUBS=DB2T)’
3,’PGM(DSQQMFE) NEWAPPL(DSQE) PASSLIB PARM(DSQSSUBS=DB2P)’

Chapter 9. Starting QMF 125

Using LIBDEF statements to allocate QMF program libraries
If you want to use ISPF LIBDEF statements to allocate QMF libraries during an ISPF session, allocate the
program libraries to a unique QMF ddname of DSQLLIB.

Specify ddname DSQLLIB as the ID value on the LIBRARY option of the ISPF LIBDEF statement.

For example, to allocate QMF and Db2 product libraries, write a TSO ALLOCATE and ISPF LIBDEF
statement:

ALLOC FI(DSQLLIB) DA(’QMF1210.SDSQEXIT,’QMF1210.SDSQLOAD’, +
’DSN1110.SDSNEXIT’,’DSN1110.SDSNLOAD’) SHR REUSE
LIBDEF ISPLLIB LIBRARY ID(DSQLLIB)

The GDDM external defaults module, ADMADFT, is not found in the search order that is defined by the
LIBDEF statement for DSQLLIB. Sample allocation statements for GDDM modules are described in the
information about preparing the TSO logon procedure.

To allocate program libraries that use the ISPF LIBDEF service, write a CLIST similar to the one shown
here. The following CLIST assumes that ISPF is already running and has other ISPF resources already
allocated:

126 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

/**/
/* Allocate QMF and DB2 programs to DSQLLIB */
/**/
ALLOC FI(DSQLLIB) SHR REUSE +
 DA(’QMF1210.SDSQEXIT’, +
 ’QMF1210.SDSLOAD’, +
 ’DSN1110.SDSNEXIT’, +
 ’DSN1110.SDSNLOAD’)
/**/
/* Allocate QMF libraries used for GDDM */
/**/
ALLOC FI(ADMGGMAP) DA(’QMF1210.SDSQMAPE’) SHR REUSE
ALLOC FI(ADMCFORM) DA(’QMF1210.SDSQCHRT’) SHR REUSE
ALLOC FI(DSQUCFRM) DA(’QMF1210.DSQUCFRM’) SHR REUSE
ALLOC FI(ADMGDF) DA(’QMF1210.CHARTLIB’) SHR REUSE
/**/
/* Allocate QMF product data sets */
/**/
ALLOC FI(DSQPRINT) SYSOUT(Z) LRECL(133) RECFM(F B A) BLKSIZE(1330)
ALLOC FI(DSQPNLE) DA(’QMF1210.DSQPNLE’) SHR REUSE
ALLOC FI(DSQDEBUG) SYSOUT(Z) LRECL(121) RECFM(F B A) BLKSIZE(1210)
ALLOC FI(DSQUDUMP) SYSOUT(Z) LRECL(125) RECFM(V B A) BLKSIZE(1632)
ALLOC FI(DSQSPILL) NEW UNIT(SYSDA) SPACE(10,20) CYLINDERS
ALLOC FI(DSQEDIT) NEW UNIT(SYSDA)
/**/
/* Issue ISPF LIBDEF for QMF libraries used for ISPF */
/**/
ISPEXEC LIBDEF ISPLLIB LIBRARY ID(DSQLLIB)
ISPFEXE LIBDEF ISPPLIB DATASET ID(’QMF1210.SDSQPLBE’)
ISPFEXE LIBDEF ISPSLIB DATASET ID(’QMF1210.SDSQSLBE’)
ISPFEXE LIBDEF ISPMLIB DATASET ID(’QMF1210.SDSQMLBE’)
ISPEXEC LIBDEF ISPTLIB DATASET ID('QMF1210.SDSQTLBE')
/***/
/* Start QMF dialog using PASSLIB */
/***/
ISPEXEC SELECT PGM(DSQQMFE) NEWAPPL(DSQE) PASSLIB
/***/
/* Free ISPF LIBDEF for QMF libraries used for ISPF */
/***/
ISPEXEC LIBDEF ISPLLIB LIBRARY ID()
ISPEXEC LIBDEF ISPPLIB LIBRARY ID()
ISPEXEC LIBDEF ISPSLIB LIBRARY ID()
ISPEXEC LIBDEF ISPMLIB LIBRARY ID()
ISPEXEC LIBDEF ISPTLIB LIBRARY ID()
FREE FI(DSQLLIB)
/***/
/* Free QMF product data sets */
/***/
FREE FI(DSQPRINT)
FREE FI(DSQPNLE)
FREE FI(DSQDEBUG)
FREE FI(DSQUDUMP)
FREE FI(DSQSPILL)
FREE FI(DSQEDIT)
/**/
/* Free QMF libraries used for GDDM */
/**/
FREE FI(ADMGGMAP)
FREE FI(ADMCFORM)
FREE FI(DSQUCFRM)
FREE FI(ADMGDF)

Figure 19. ISPF LIBDEF CLIST

This CLIST shows a file allocation for spill data (DSQSPILL). You can spill data to extended storage if you
do not want to allocate a file for spill data.

Related tasks
Preparing the TSO logon procedure
You must modify the TSO logon procedure to support the storage and other requirements of your users.
This step includes allocating load libraries and data sets.
Spilling report data to extended virtual storage (TSO only)

Chapter 9. Starting QMF 127

In QMF for TSO, use extended storage for spill data unless the system on which QMF is running has very
limited extended storage available.

Starting QMF in batch mode in ISPF
You can start QMF in batch mode to potentially save resources and time.

Procedure

You can start QMF using ISPF with or without using a CLIST.
• Place either of the following statements in the SYSTSIN data set of your JCL:

• Without a CLIST

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(...DSQSMODE=B,DSQSRUN=auth_ID.proc_name)

The parameters following the PARM keyword establish batch mode (DSQSMODE=B), identify the
procedure to be run (DSQSRUN=auth_ID.proc_name), and can include variables for that procedure.

The ellipsis after the PARM keyword represents optional parameter values that the user might want
to include in addition to the required DSQSMODE and DSQSRUN parameters.

The value you specify for the DSQSRUN parameter must contain the authorization ID of the owner.
For example, the following statement specifies a procedure named PROCA, which is owned by user
JONES:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSMODE=B,DSQSRUN=JONES.PROCA)

After the procedure runs, QMF ends and returns control to ISPF. ISPF can then continue with
another procedure or command. When ISPF stops, TSO runs the next TSO command in SYSTSIN.
When all commands in the SYSTSIN data set have been run, the job step ends.

• With a CLIST

ISPSTART CMD(clist_name) NEWAPPL

where clist_name is the name of the CLIST that starts QMF.

Examples of starting QMF under ISPF
These examples show how to start and pass parameters to QMF under ISPF.

You might want to start QMF under ISPF in these circumstances

• Starting ISPF from a CLIST and specifying QMF as the initial dialog:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSIROW=150)

This statement passes a value of 150 for DSQSIROW (which controls the number of rows fetched before
the first screen of the report is displayed).

• Starting from a CLIST that operates within ISPF:

ISPEXEC SELECT PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSSUBS=SFDX)

This statement passes the name SFDX for the local Db2 for z/OS subsystem.
• Starting from an ISPF menu:

)PROC

 &SEL = TRANS(TRUNC (&OPT,’.’)
 1,’PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSPILL=NO)’
 .
 .
 .

128 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

This code passes a value of NO for the DSQSPILL parameter, which indicates to not use spill storage for
report data.

• Starting from a CLIST and specifying an initial procedure:

ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE)
PARM(DSQSRUN=Q.IPROC(&&&&TABLE=Q.STAFF))

This statement uses the DSQSRUN parameter to:

– Specify an initial procedure, Q.IPROC, to run when QMF starts
– Pass a value, Q.STAFF, to the procedure for the variable &TABLE

The DSQSRUN parameter as specified in this example results in the following QMF command:

RUN Q.IPROC(&TABLE=Q.STAFF

You must precede the variable with the correct number of ampersands in the initial procedure.

Related concepts
Passing variable values to an initial procedure
When you supply the name of an initial procedure on the DSQSRUN parameter, you can also supply values
for one or more variables contained in the procedure.

Starting QMF in native z/OS batch
You can allow your users to start QMF in native z/OS as a batch job

Create JCL that defines where the panels are stored, the file names of the panels, the names and
locations of other tables and QMF objects, and where the spill file is located (if QMF is configured to spill
data to a file instead of to extended storage).

To issue QMF commands in native z/OS batch, use the following QMF program parameters:

• DSQSMODE

Use a value of B for batch mode. (I specifies interactive operation.) The short name of this parameter is
M. This sample command sets the mode to batch by specifying M=B on the invocation command.

• DSQSRUN

Use this parameter to specify the name of an initial procedure to run when QMF starts. The short name
of this parameter is I. This sample command that specifies a procedure named X on the I parameter.

In the following example, QMF terminates when procedure X completes. You can check the return code of
the job to determine if the job ran successfully.

Chapter 9. Starting QMF 129

//RUNQMF EXEC PGM=DSQQMFE,PARM=’M=B,I=X,P=QMF12,S=DSN’
//***
//* Program load libraries
//***
//STEPLIB DD DSN=QMF1210.SDSQLOAD,DISP=SHR
// DD DSN=DSN1110.SDSNEXIT,DISP=SHR
// DD DSN=DSN1110.SDSNLOAD,DISP=SHR
// DD DSN=GDDM.SADMMOD,DISP=SHR
//***
//* QMF/GDDM maps
//***
//ADMGGMAP DD DSN=QMF1210.SDSQMAPE,DISP=SHR
//***
//* Data sets used by QMF *
//***
//DSQPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//DSQDEBUG DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=122,BLKSIZE=1210)
//DSQUDUMP DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632)
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(100),RLSE),
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)

Figure 20. JCL to run a QMF procedure in native z/OS batch

If you are running QMF in native z/OS, data set names that are used in QMF procedures must be fully
qualified. The TSO prefix and suffix are not available in native z/OS.

Related concepts
Setting program parameters and preferences at startup time
This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.

Starting QMF on CICS
After QMF is customized for CICS, you can start QMF from a CICS display.

To start QMF on CICS, use the transaction name QMFn. n is the 1-character National Language Feature
identifier that represents the language in which QMF will run. Alternatively, you can write an application
that uses the CICS START command. The following command shows the default (English) transaction on
QMF for CICS.

QMFE parameters

QMFE is the transaction ID, and parameters represents the program parameters that you want.

You can also write an application program to issue the CICS START command and specify program
parameters, as in the following example:

EXEC CICS START TRANSID(QMFE) FROM (parameters) TERMID(’id’)

A terminal ID (TERMID) is required for an interactive session (DSQSMODE=I), and is optional for a
noninteractive session (DSQSMODE=B). If the terminal ID specifies where the calling CICS application is
running, the QMF session starts when the CICS application finishes. To specify a terminal ID, the device
that is described by the ID must be available. Also, make sure that the ID is defined as either local or
remote on the system where the START command is issued.

The following examples show starting QMF under CICS:

• Starting from a cleared CICS screen:

QMFE DSQSIROW=150,DSQSBSTG=500000,DSQSPILL=NO

130 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

This statement passes a value of 150 for DSQSIROW (rows fetched before the first screen of the report
is displayed). The statement also passes a value of 500,000 bytes for DSQSBSTG (maximum storage for
reports), and specifies no QMF spill file (DSQSPILL=NO).

• Starting from a cleared CICS screen and specifying an initial procedure:

QMFE DSQSRUN=Q.IPROC(&&TABLE=Q.STAFF)

This statement uses the DSQSRUN parameter to:

– Specify an initial procedure, Q.IPROC, to run when QMF starts
– Pass a value (Q.STAFF) to the procedure for the variable &TABLE

The DSQSRUN parameter as specified in this example results in the following QMF command:

RUN Q.IPROC(&TABLE=Q.STAFF

You must precede the variable with the correct number of ampersands in the initial procedure.

Related concepts
Passing variable values to an initial procedure
When you supply the name of an initial procedure on the DSQSRUN parameter, you can also supply values
for one or more variables contained in the procedure.
Setting program parameters and preferences at startup time
This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.
Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Initializing global variables and QMF session behavior when QMF starts
You can use several methods to set QMF global variables when QMF starts. These methods involve
modifying the DSQUOPTS routine, the Q.GLOBAL_VARS global variable table, or the default system
initialization procedure. This procedure can also be used to set other aspects of a user's QMF session
before the home panel displays.

When QMF starts, it checks the following sources of global variable settings in order, starting with the
default values that are defined by QMF. If a global variable is defined in multiple places, QMF uses the last
value that it finds.

1. Default global variable values that are defined by QMF.
2. Global variable values that are defined in the DSQUOPTS exit routine.
3. Global variable values that are defined in the Q.GLOBAL_VARS global variable table with a USERID of

SYSTEM. These are global variable values that are set by an administrator.
4. Global variable values that are defined in the Q.GLOBAL_VARS global variable table with a USERID of a

user. These are global variable values that are saved from a previous session.
5. Global variable values that are defined by the default system initialization procedure (Q.SYSTEM_INI).

Restriction: If a global variable is defined in the Q.GLOBAL_VARS table with a value of 0 in the
UPDATEABLE column, that global variable cannot be set by the Q.SYSTEM_INI procedure. The
Q.SYSTEM_INI procedure also cannot update global variables that are defined by QMF as read-only,
such as those that begin with DSQAO.

Chapter 9. Starting QMF 131

Setting global variables with the DSQUOPTS routine
The settings in the DSQUOPTS exit routine override the values of certain global variables when QMF
starts. You can modify the default DSQUOPTS routine to suit your needs.

About this task
The default version of DSQUOPTS is shipped in the QMF1210.SDSQLOAD data set.

Procedure

To modify the DSQUOPTS exit routine, follow these steps:
1. Change the Assembler source as necessary. The source for the exit resides in

QMF1210.SDSQUSRE(DSQUOPTS). For details on how to specify override values, see the DSQUOPTS
prolog.

2. Assemble and link-edit the module. A sample job that assembles and link-edits DSQUOPTS resides in
member QMF1210.SDSQSAPE(DSQ1UOPT).

3. Allocate the QMF exit library in the initialization procedure you are using so that the modified exit is
referenced during the QMF initialization process.

Results
When you use the sample job to assemble and link-edit the DSQUOPTS exit routine, the modified
DSQUOPTS load module is placed in the default QMF exit library, QMF1210.SDSQEXIT.

Variables that can be set in the DSQUOPTS routine
The DSQUOPTS exit routine provides settings for some variables. You can use the DSQUOPTS exit to set
other variable values at initialization time as well.

The default version of the DSQUOPTS exit routine sets these variable values:

DISADM

Determines whether QMF checks whether user IDs have QMF administrator authority. You can also
use QMF global variable DSQEC_DISABLEADM to set this value.

Valid values are:
NO

Enables checking for QMF administrator authority. This value is the default.

When the DISADM variable is set to NO, the DSQEC_DISABLEADM global variable has a value of 0.

YES
Disables checking for QMF administrator authority.

When the DISADM variable is set to YES, the DSQEC_DISABLEADM global variable has a value of
1.

During QMF initialization, QMF checks whether the authorization ID of the user who is starting QMF
has either the INSERT or DELETE privilege on the Q.PROFILES table. If the authorization ID has either
of these privileges, QMF considers the user to be a QMF administrator and sets the global variable
DSQAO_QMFADM to 1 to reflect this authority. QMF administrators can perform the following
operations on QMF objects that they do not own, without requiring those objects to be shared with all
QMF users:

• SAVE
• ERASE
• IMPORT
• EXPORT
• DISPLAY

QMF administrators can also issue the DISPLAY command on ANALYTIC objects and the ERASE
command on ANALYTIC and FOLDER objects that are owned by other users.

132 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

If during this checking at initialization time the user who started QMF is not found to have QMF
administrator authority, a -551 SQL code is issued for the INSERT privilege, the DELETE privilege, or
both. This SQL code is expected under these circumstances. The message is not displayed to the user,
nor is it captured in the QMF trace data set (DSQDEBUG) or in the error log table (Q.ERROR_LOG),
because it is not an error. The message does not stop QMF initialization or cause any problems during
QMF execution. However, to suppress this SQL code for any reason, you must disable administrator
authority checking.

If you disable QMF administrator authority checking, you might be limiting your ability to work freely
with other users' objects. Without QMF administrator authority, every object that you work with must
be shared with all users. To share objects, you can either request that users save all objects with the
SHARE=YES parameter or you can set the DSQEC_SHARE variable to change the default value for the
SHARE parameter to YES. This value shares all objects with all users so that users must then explicitly
specify SHARE=NO when they save objects that they do not want to share. Setting the DSQEC_SHARE
variable prevents you from having to take extra time to switch user IDs or share objects when you
need to provide user assistance.

SHARE

Sets the default value for the SHARE parameter of the SAVE command and the Save function key in
QMF Analytics for TSO. You can also use QMF global variable DSQEC_SHARE to set this value.

Valid values are:
NO

Makes NO the default setting for the SHARE parameter of the QMF SAVE command. This value is
the default.

When the SHARE variable is set to NO, the DSQEC_SHARE global variable has a value of 0.

YES
Makes YES the default setting for the SHARE parameter.

When the SHARE variable is set to YES, the DSQEC_SHARE global variable has a value of 1.

LASTRUN

Determines the command or set of commands that causes the LAST_USED column of the
Q.OBJECT_DIRECTORY table to be updated. This value is displayed in the Last Used field on object
lists that are generated by the LIST command. You can also use QMF global variable
DSQEC_LAST_RUN to set this value. The value in the LAST_USED column is updated regardless of
whether the issued command is successful. However, in some cases, the LAST_USED column is not
updated immediately, and if QMF is terminated abnormally, the column might not be updated.

Valid values are:

ZERO
Causes the LAST_USED column of the Q.OBJECT_DIRECTORY table to be updated when any of
the following commands is run:

• CONVERT
• DISPLAY
• EXPORT
• IMPORT
• LAYOUT
• PRINT
• RUN
• SAVE

This value is the default.

When the LASTRUN variable is set to ZERO, the DSQEC_LAST_RUN global variable has a value of
0.

Chapter 9. Starting QMF 133

ONE
Restricts updates of the LAST_USED column to RUN, SAVE, and IMPORT commands only.

When the LASTRUN variable is set to ONE, the DSQEC_LAST_RUN global variable has a value of 1.

TWO
Restricts updates of the LAST_USED column to RUN commands only.

When the LASTRUN variable is set to TWO, the DSQEC_LAST_RUN global variable has a value of 2.

OTC_LICENSE
This variable is obsolete and is included only for compatibility. The only valid value is NOT_USED.

Related concepts
Required authorities for QMF administration
To avoid issuing multiple GRANT statements for specific database objects, you must use an authorization
ID with DBADM or equivalent authority for most QMF administration and customization tasks. You need
this level of authority on any database in which your users store data.

Setting global variables with the global variable table
You can use the Q.GLOBAL_VARS table to set initial global variable values that are to be used when QMF
starts. You can also specify whether those global variables can be changed during the session.

About this task
You can set initial values for both user-defined global variables and QMF predefined global variables that
are not read-only.

Procedure

To set initial global variable values in the Q.GLOBAL_VARS table:
1. Write SQL INSERT statements to add rows to the Q.GLOBAL_VARS table. Specify values for all

columns as follows:
VARNAME

Specify the name of the global variable.
UPDATEABLE

Specify a value of 0 to determine that the global variable cannot be changed by users after QMF
initialization. Specify a value of 1 to determine that the global variable can be updated during the
QMF session.

USERID
By default, a value of SYSTEM is used and does not need to be specified.

VARVALUE
Specify the value of the global variable.

2. Run the INSERT statements.

Example
See the following example statements for inserting rows into the Q.GLOBAL_VARS table.

Table 30. Sample INSERT statements to add rows to the Q.GLOBAL_VARS table

INSERT statement Description

INSERT INTO Q.GLOBAL_VARS
(VARNAME,VARVALUE,UPDATEABLE)
VALUES('DSQDC_SCROLL_AMT','CSR',1)

Sets the DSQDC_SCROLL_AMT global variable to CSR and
specifies that users can change the global variable.

INSERT INTO Q.GLOBAL_VARS
(VARNAME,VARVALUE,UPDATEABLE)
VALUES('DSQEC_DISABLEADM','0',0)

Sets the DSQEC_DISABLEADM global variable to 0 and
specifies that users cannot change the global variable.

134 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 30. Sample INSERT statements to add rows to the Q.GLOBAL_VARS table (continued)

INSERT statement Description

INSERT INTO Q.GLOBAL_VARS
(VARNAME,VARVALUE,UPDATEABLE)
VALUES('MYVAR1','VALUE OF MYVAR1',1)

Sets the MYVAR1 global variable to VALUE OF MYVAR1 and
specifies that users cannot change the global variable.

INSERT INTO Q.GLOBAL_VARS
(VARNAME,VARVALUE,UPDATEABLE)
VALUES('MYVAR2','VALUE OF MYVAR2',2)

Sets the MYVAR2 global variable to VALUE OF MYVAR2 and
specifies that users cannot change the global variable.

Structure of the Q.GLOBAL_VARS table
The Q.GLOBAL_VARS table stores global variable values and session variable values. This table is created
at QMF installation and is required for QMF to start, except on DB2 for VSE and VM.

A QMF administrator can use the Q.GLOBAL_VARS table to specify global variable values that are to be set
when QMF starts. Depending on the value of the UPDATEABLE column for each defined global variable,
users can change these global variable values after QMF initialization. By default, a global variable value is
retained until a user resets it or ends the QMF session. However, the DSQEC_USERGLV_SAV global
variable can be set to save global variable values from one session to another. In this case, a user’s global
variable values are also stored in this table.

The DSQEC_SESSGLV_SAV global variable can also be set to save a user’s input on QMF panels, both
within a session and across sessions. In this case, the user’s panel input is saved in the Q.GLOBAL_VARS
table as session variables, which have a prefix of DXY.

Although the table can be empty, columns cannot contain null values.

Table 31. Structure of the Q.GLOBAL_VARS table

Column name
Data type and
length Function and possible values

VARNAME CHAR(18) Function
Specifies the name of the global variable or session variable.

Values
Any valid global variable name or session variable name.

Chapter 9. Starting QMF 135

Table 31. Structure of the Q.GLOBAL_VARS table (continued)

Column name
Data type and
length Function and possible values

UPDATEABLE CHAR(1) Function
Specifies whether the global variable value can be changed
by users after QMF initialization.

Values
0

Specifies that the global variable cannot be updated
during the QMF session.

1
Specifies that the global variable can be updated during
the QMF session.

Some QMF global variables, such as those that record
information about the state of the current QMF session, are
read-only. If you include a read-only global variable in the
Q.GLOBAL_VARS table, the variable is not set at
initialization, regardless of the UPDATEABLE setting. QMF
initialization also fails.

For global variables that are saved across sessions, this
value is set according to whether the variable can currently
be updated by the user. If the variable cannot be updated,
this value is set to 0. Otherwise, it is set to 1.

USERID VARCHAR(128) Function
Specifies a QMF user ID.

Values
SYSTEM

This value must be used when initial global variable
values are added to the table by an administrator. This
value specifies that the global variable applies to all
users.
SYSTEM is the default value.

userid
When global variable and session values are added to
the table, this value is set to the user's QMF ID.

The USERID and VARNAME fields are used as the primary
key for each global variable entry.

VARVALUE VARCHAR(2000)

At installation, the
VARVALUE column
is defined with a
length of 2000.
However, any
length from 18 to
32555 can be used.

Function
Specifies the value of the global variable or session variable.

Values
Any valid global variable value.

136 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Initialization with the default system initialization procedure
The name of the default procedure in QMF is Q.SYSTEM_INI. The Q.SYSTEM_INI procedure can run any
QMF command or any stored query that the user is authorized to run before the home panel displays.

About this task

The Q.SYSTEM_INI procedure runs just after QMF initialization completes and before the QMF initial
procedure specified by the DSQSRUN program parameter is run. Thus, if you have session controls in the
procedure that is specified by the DSQSRUN parameter, consider moving them to the Q.SYSTEM_INI
procedure. All of the QMF functions available to QMF procedures are also available for use by the
Q.SYSTEM_INI procedure.

This sample Q.SYSTEM_INI procedure is provided with QMF and makes SHARE=YES the default for all
QMF objects that are saved in the database:

-- Q M F S Y S T E M I N I T I A L I Z A T I O N P R O C
-- ----- ----------- --------------------------- -------
--
-- FUNCTION: PROVIDE AN EXAMPLE QMF SYSTEM INITIALIZATION PROCEDURE
-- THAT CAN BE ADDED AFTER QMF INSTALLATION. YOU MAY MOD-
-- IFY OR REPLACE THIS PROCEDURE WITH YOUR OWN VERSION.
--
-- THE PROCEDURE MUST BE STORED IN THE DATABASE UNDER THE
-- NAME OF Q.SYSTEM_INI BEFORE IT WILL RUN AUTOMATICALLY.
-- ------------
--
-- THE COMMAND BELOW IS AN EXAMPLE OF ESTABLISHING A NEW DEFAULT
-- FOR THE SHARE OPTION OF THE SAVE COMMAND THAT WILL APPLY TO ALL
-- QMF USERS. (REMOVE THE LEADING COMMENT SYMBOLS "--" TO ACTIVATE
-- IT.)
--
-- SET GLOBAL (DSQEC_SHARE=1 -- MAKE SHARE=YES THE DEFAULT FOR ALL

Figure 21. The Q.SYSTEM_INI procedure that is shipped with QMF

The Q.SYSTEM_INI procedure, as well as any object used or called by this procedure, has the same
security as any other QMF object or database object during a QMF session. The Q.SYSTEM_INI procedure
is a normal QMF procedure, except for the fact that QMF tries to run it each time a QMF session is started.
Thus, to run the procedure successfully, QMF must be started under an authorization ID that has QMF
administrator authority.

If the Q.SYSTEM_INI procedure exists but is restricted (not shared), the result is the same as with any
other QMF procedure object. If the procedure does not exist, QMF does not attempt to run it.

Procedure

To use the default system initialization procedure, complete these steps:
1. Install the procedure.

The sample procedure that is shipped with QMF is called DSQ0BINI. It can be found in
QMF1210.SDSQSAPE(DSQ0BINI).

• If you installed QMF Version 12.1 into a database that contains a prior QMF release, issue the
following command from within QMF to check for an existing system initialization procedure before
you install the sample. Be sure that you are connected to the database under a QMF user ID with
administrator authority.

DISPLAY Q.SYSTEM_INI

• If you already have a system initialization procedure and want to overwrite it with the sample, or do
not have one and want to install the sample, continue with the following command:

IMPORT PROC FROM ’QMF1210.SDSQSAPE(DSQ0BINI)’

Chapter 9. Starting QMF 137

2. Save the procedure under the name Q.SYSTEM_INI in the database in which it will run.
Before the default system initialization procedure can run automatically, you must save the procedure
with the name Q.SYSTEM_INI. Share the procedure with all QMF users.
a) You can share the procedure by displaying it in QMF and then issuing the command SAVE PROC
(SHARE=YES.

b) Add a comment that describes the procedure when you save it.
For example:

SAVE PROC AS Q.SYSTEM_INI (SHARE=YES,COMMENT='QMF System Initialization Procedure')

What to do next

To troubleshoot problems with the Q.SYSTEM_INI procedure, you can use the QMF L2 tracing option to
see commands and messages issued.

The Q.SYSTEM_INI procedure cannot be replaced by other procedures, but it can call other procedures.
If the default system initialization procedure does not meet your site's needs, you can create your own
version

Related concepts
Required authorities for installing and adminstering QMF
Specific authorities are required for installing QMF and for general QMF administration.
Related tasks
The trace facility
QMF provides a facility that traces QMF activity during a user's session. Trace output from the facility can
help you analyze errors such as incorrect or missing output, performance problems, or loops.

Creating your own initialization procedure
You can create your own procedure if the default version does not meet your site's needs.

Your QMF session procedure can be as simple as setting some QMF global variables or profile values, or
as complex as providing a customized interface to QMF. Use the Q.SYSTEM_INI procedure to call your
initialization procedure. The Q.SYSTEM_INI procedure cannot be replaced by site-specific procedures,
but can be used to call other procedures.

For examples of how to create your own system initialization procedure, see one of the following sections:

• “Creating a procedure that sets user-specific defaults” on page 138
• “Creating a procedure that displays an object list” on page 139

Creating a procedure that sets user-specific defaults

The Q.SYSTEM_INI procedure can call another procedure. The procedure being called can be a user
procedure that is created, owned, and updated by a QMF user.

Each user runs under a unique SQL ID. That SQL ID is the default object owner when the object owner is
not otherwise specified. Thus, you can use the same name for each user's system initialization procedure,
but modify it according to each user's needs. The following example shows a system initialization
procedure that sets global variables and then calls a user-specific session procedure. In the example, the
user-specific session procedure is called USER_INI.

138 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

PROC Q.SYSTEM_INI LINE 1

-- This QMF procedure example shows how to set up QMF session defaults for
-- every QMF user and then calls a user procedure named USER_INI that sets
-- individual QMF session defaults.
--
 QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English commands
 QMF RESET PROC -- Hide contents of this procedure
 QMF SET PROFILE (WIDTH=80,LENGTH=66) -- Set default report page size
 QMF SET PROFILE (SPACE=’DATABASE "DSQDBDEF"’) -- Set default database for SAVE DATA command
 QMF SET GLOBAL (DSQDC_LIST_ORDER=5D) -- Sort object list by date modified
 QMF SET GLOBAL (DSQEC_RESET_RPT=1) -- Prompt for report completion
 RUN USER_INI -- Run user's session procedure
 QMF END -- Display QMF home panel first
 QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to presiding language

Figure 22. Q.SYSTEM_INI example that calls a user-defined procedure

This example of the USER_INI procedure is referenced in the Q.SYSTEM_INI example procedure.

PROC WILLIAMS.USER_INI LINE 1
-- This QMF procedure example shows how to set up QMF session defaults for
-- a QMF user. The following settings replace any settings set by the
-- SYSTEM_INI proc.
--
 QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English commands
 QMF RESET PROC -- Hide contents of this procedure
 QMF SET PROFILE (SPACE=’DATABASE "UIDDB"’) -- Store data in my own database
 QMF SET PROFILE (PRINTER=MYROOM) -- Print reports on a printer named MYROOM
 QMF SET GLOBAL (DSQDC_LIST_ORDER=3A) -- Sort object list by object name
 QMF SET GLOBAL (DSQEC_RESET_RPT=2) -- Always reset reports
 QMF SET GLOBAL (DSQEC_SHARE=1) -- Always share this user's QMF objects
 QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to presiding language

Figure 23. Example of a user procedure that is called by the system initialization procedure

Creating a procedure that displays an object list

The next example is a system initialization procedure that displays a list of objects instead of the QMF
home panel:

PROC Q.SYSTEM_INI LINE 1

-- This QMF procedure example shows how to set up QMF session defaults for
-- every QMF user to display a list of objects instead of the QMF home
-- panel.
--
 QMF SET GLOBAL (DSQEC_NLFCMD_LANG=1) -- Process English commands
 QMF RESET PROC -- Hide contents of this procedure
 QMF SET GLOBAL (DSQDC_LIST_ORDER=3A) -- Sort object list by object name
 QMF SET GLOBAL (DSQEC_NLFCMD_LANG=0) -- Return to presiding language
 QMF LIST ALL -- List all objects

Figure 24. Using Q.SYSTEM_INI to display a list of objects rather than the QMF home panel

Related tasks
Customizing users' object lists
Using the default views supplied by QMF for your table lists and column information can increase
processing time, because Db2 gathers authorization information from the SYSIBM.SYSTABAUTH table. If
you do not need the extra security provided by these authorization checks, consider creating your own
views that generate a list of objects stored in the database.

Chapter 9. Starting QMF 139

140 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 10. Setting program parameters and
preferences at startup time

This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.

When QMF for TSO is started as a Db2 for z/OS stored procedure, you can set some these program
parameters as described when in the installation procedure for the stored procedure interface.

Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

The following table shows the long and short names of the QMF program parameters and the
environments in which they can be used. Parameters that are used only in CICS do not have a short name.

© Copyright IBM Corp. 1982, 2020 141

Table 32. Program parameters

Long name
Short
name Environment

Description

DSQSBSTG B TSO, CICS Controls or sets
Maximum amount of virtual storage per user that is
to be used for report operations.

Valid values
0 - 2147483647

Specifies storage in bytes.
0KB - 2097152KB

Specifies storage in KB.
0MB - 2048MB

Specifies storage in MB.
0GB - 2GB

Specifies storage in GB.
1% - 100%

Specifies a percent of available storage.
Percentages are valid in TSO only.

Defaults
0

When you start QMF in TSO, ISPF, or native
z/OS.

If you set this parameter to a value of less than
15000 in these environments, 15000 is used
automatically.

500000
When QMF is started in CICS

For more information, see “Defining a fixed amount of
virtual storage for reports” on page 151

DSQSDBCS K TSO, CICS Controls or sets
Printing of DBCS data from non-DBCS display
devices

Valid values
YES (supports printing DBCS data from non-DBCS
display devices) or NO (does not set this support)

Default
NO

For more information, see “Printing DBCS data from
non-DBCS display devices” on page 169.

142 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 32. Program parameters (continued)

Long name
Short
name Environment

Description

DSQSDBNM D TSO, CICS Controls or sets
Name of initial database location to connect to
before the QMF home panel is displayed

Valid values
Any valid database name; location names can be up
to 16 characters. Do not use this parameter when
you start QMF for TSO as a Db2 for z/OS stored
procedure.

Default
For CICS, the default database that is currently
being used by CICS. Otherwise, the the default
database for the subsystem that is being used.

For more information, see “Specifying the initial
database connection” on page 149.

DSQSDBQN — CICS Controls or sets
Name of CICS resource to use for QMF trace data

Valid values
Any name that follows CICS queue-naming
conventions

Default
DSQD

For more information, see “Setting the trace for CICS”
on page 168.

DSQSDBQT — CICS Controls or sets
Type of CICS resource to use for QMF trace data

Valid values
TS (uses a CICS temporary storage queue) or TD
(uses a CICS transient data queue)

Default
TD

For more information, see “Setting the trace for CICS”
on page 168.

DSQSDBUG T TSO, CICS Controls or sets
Level of trace detail

Valid values
ALL (traces all functions at the highest level of
detail) or NONE (no trace data is recorded). Do not
use this parameter when you start QMF for TSO as a
Db2 for z/OS stored procedure.

Default
NONE

For more information, see “Setting the trace for TSO”
on page 168 and “Setting the trace for CICS” on page
168.

Chapter 10. Setting program parameters and preferences at startup time 143

Table 32. Program parameters (continued)

Long name
Short
name Environment

Description

DSQSFISO ISO TSO, CICS Controls or sets
Controls the format of CHAR(datetime-expression)
data within a QMF report. The setting controls
whether QMF packages that are precompiled with
the DATE(ISO) and TIME(ISO) options are used.
This parameter sets the DSQAO_DSQSFISO global
variable and provides an initial setting for the
DSQEC_DSQSFISO global variable.

Valid values
YES

Results of the CHAR(datetime-expression)
function that do not specify a format will be
seen in ISO format. QMF packages that are
precompiled with the DATE(ISO) and TIME(ISO)
options are used.

NO
Results of the CHAR(datetime-expression)
function that do not specify a format will be
seen in the format of the DATE FORMAT and
TIME FORMAT values specified on Db2
installation panel DSNTIP4. QMF packages that
are not precompiled with the DATE(ISO) and
TIME(ISO) options are used. To determine the
DATE FORMAT and TIME FORMAT values
defined in the current Db2 subsystem,
reference the DSQAO_DATE_FORMAT and
DSQAO_TIME_FORMAT global variables.

Default
YES

The behavior set by the DSQSFISO program parameter
may be changed within a QMF session by setting global
variable DSQEC_DSQSFISO. The DSQSFISO program
parameter setting provides the initial default value for
DSQEC_DSQSFISO. Note that if DSQEC_DSQSFISO is
modified, the value of DSQAO_DSQSFISO will not
change. DSQEC_DSQSFISO should be referenced for
the current behavior settings.

DSQSIROW F TSO, CICS Controls or sets
Number of rows fetched from the database before
the first screen of the report is displayed

Valid values
From 0 to 99999999

Default
100

For more information, see “Controlling report wait
time” on page 159.

144 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 32. Program parameters (continued)

Long name
Short
name Environment

Description

DSQSMODE M TSO, CICS Controls or sets
Mode of operation

Valid values
B (batch operation) or I (interactive operation). Do
not use this parameter when you start QMF for TSO
as a Db2 for z/OS stored procedure.

Default
I (B if QMF is started through the callable interface)

For more information, see “Specifying the mode of
operation (interactive or batch)” on page 162.

DSQSMRFI MR TSO, CICS Controls or sets
Use of Db2 for z/OS multirow fetch and insert
features. This parameter sets the
DSQAO_DSQSMRFI global variable.

Valid values
YES (multirow fetch and insert is used) or NO
(single-row fetch and insert is used). If you are
using a query accelerator, verify its rowset cursor
capabilities before setting this value to YES. Some
query accelerators do not support queries that are
run with rowset cursors, which are used by
multirow fetch.

Default
NO

For more information, see “Enabling support for
multirow fetch and insert” on page 160.

DSQSMTHD MT TSO Controls or sets
Use of second Db2 for z/OS thread per user. This
parameter sets the DSQAO_DSQSMTHD global
variable.

Valid values
YES (use a second Db2 for z/OS thread) or NO (use
a single Db2 for z/OS thread). The second thread is
active only during RUN QUERY, DISPLAY TABLE
commands and subsequent scrolling (BOTTOM,
TOP, FORWARD, BACKWARD, RIGHT, and LEFT) of
reports with open cursors. Commands that make
use of a complete report such as EXPORT DATA,
SAVE DATA, PRINT REPORT, and DPRE will also use
the second thread.

Default
NO

Chapter 10. Setting program parameters and preferences at startup time 145

Table 32. Program parameters (continued)

Long name
Short
name Environment

Description

DSQSPILL L TSO, CICS Controls or sets
Use of extra storage to hold data that is no longer
needed in active storage

Valid values
YES (uses spill storage for data no longer needed in
active storage) or NO (does not use spill storage)

Default
YES when QMF is running under TSO; NO when QMF
is running under CICS. When DSQSPILL is YES, use
DSQSPTYP to specify the type of storage to be used
for spill data.

For more information, see “Acquiring extra storage for
data no longer needed in virtual storage” on page 152.

DSQSPLAN P TSO Controls or sets
Name of QMF application plan

Valid values
Any valid Db2 application plan name. This
parameter is required in the DSQSCMDn exec when
you start QMF for TSO as a Db2 for z/OS stored
procedure.

Default
QMF12

For more information, see “Specifying the name of the
QMF application plan” on page 149.

DSQSPRID U TSO Controls or sets
QMF profile key for QMF for TSO installations

Valid values
PRIMEID (QMF authenticates the user's Db2
primary authorization ID against the CREATOR
column of the Q.PROFILES table) or TSOID (QMF
authenticates the user's TSO logon ID against the
CREATOR column of the Q.PROFILES table). Only a
value of PRIMEID is allowed when you start QMF for
TSO as Db2 for z/OS stored procedure.

Default
PRIMEID

For more information, see “Specifying which ID to use
as the QMF profile key under TSO” on page 150.

146 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 32. Program parameters (continued)

Long name
Short
name Environment

Description

DSQSPTYP ST TSO Controls or sets
Use of extended storage to hold data that is not
needed in active storage; supported only when the
DSQSPILL parameter is set to YES

Valid values
FILE (spills data to a file) or 64BIT (spills data to
extended virtual storage)

Default
FILE

For more information, see “Spilling report data to
extended virtual storage (TSO only)” on page 152.

DSQSRSTG R TSO Controls or sets
Number of bytes of storage that you want to reserve
from the TSO region to be used for applications
other than QMF

When QMF generates the first report in a QMF
session, it subtracts the amount of storage
specified by this parameter from the amount of free
continuous storage available to QMF at the time.
The remaining storage is then available for QMF
report operations for the remainder of the QMF
session.

Valid values
From 0 to 99999999

Default
0

For more information, see “Reserving virtual storage
from the TSO region to be used for applications other
than QMF” on page 151.

DSQSRUN I TSO, CICS Controls or sets
Name of QMF procedure to run when QMF starts,
before the QMF home panel is displayed

Valid values
Any valid procedure name. Do not use this
parameter when you start QMF for TSO as a Db2 for
z/OS stored procedure.

Default
No initial procedure is run

For more information, see “Specifying an initial
procedure to run when QMF starts” on page 163.

Chapter 10. Setting program parameters and preferences at startup time 147

Table 32. Program parameters (continued)

Long name
Short
name Environment

Description

DSQSSPQN — CICS Controls or sets
Name of CICS queue to hold data no longer needed
in active storage when DSQSPILL has been set to
YES

Valid values
Any name that follows CICS queue-naming
conventions

Default
DSQSnnnn (where nnnn is the CICS terminal ID)

For more information, see “Spilling report data to a file
in CICS” on page 157.

DSQSSUBS S TSO Controls or sets
Name of Db2 subsystem in which to start QMF
under TSO

Valid values
Any valid Db2 subsystem name. This parameter is
required in the DSQSCMDn exec when you start
QMF for TSO as a Db2 for z/OS stored procedure.

Default
DSN

For more information, see “Specifying the name of the
Db2 for z/OS subsystem in which to start QMF under
TSO” on page 148.

Setting database and environment parameters
These program parameters control settings and preferences related to the database and environment in
which QMF runs.

Specifying the name of the Db2 for z/OS subsystem in which to start QMF under TSO
QMF must be started in a Db2 for z/OS subsystem running under TSO. Use the DSQSSUBS parameter to
specify the name of the Db2 for z/OS subsystem in which to start QMF.

In a data-sharing environment, you can use the Db2 group attachment name in place of a Db2 subsystem
name.

A value for this parameter is required in the DSQSCMDn exec when you start QMF for TSO as a Db2 for
z/OS stored procedure.

Related concepts
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Related tasks
Installing the QMF stored procedure interface (TSO only)

148 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Specifying the initial database connection
You can start QMF in the local Db2 for z/OS subsystem and connect immediately to another database
before the QMF home panel is displayed.

Procedure

To start QMF and specify the initial database connections, follow these steps:
1. Set the DSQSSUBS parameter to the name of the Db2 for z/OS subsystem in which QMF is started.
2. Set the DSQSDBNM parameter to the name of the location to which you want to connect before the

QMF home panel is displayed. Location names can be up to 16 characters.

Results

When QMF for TSO is started as a Db2 for z/OS stored procedure, this parameter is ignored if it is
specified in the DSQSCMDn exec that passes parameter values to the stored procedure interface.

Related concepts
Specifying the name of the Db2 for z/OS subsystem in which to start QMF under TSO
QMF must be started in a Db2 for z/OS subsystem running under TSO. Use the DSQSSUBS parameter to
specify the name of the Db2 for z/OS subsystem in which to start QMF.
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Specifying the name of the QMF application plan
The default name for the QMF application plan is QMF12. If you have chosen a different name for the QMF
application plan, you must pass the correct name on this parameter.

A value for this parameter is required in the DSQSCMDn exec when you start QMF for TSO as a Db2 for
z/OS stored procedure.

Related concepts
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Related tasks
Installing the QMF stored procedure interface (TSO only)

Chapter 10. Setting program parameters and preferences at startup time 149

QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Specifying which ID to use as the QMF profile key under TSO
If you choose to create specific profiles for each user in QMF for TSO, the values in the CREATOR column
of the table can all be TSO logon IDs or Db2 primary authorization IDs. If you choose to have QMF
authenticate users using their TSO logon IDs, you must specify that choice when you start QMF.

When a user starts QMF, QMF authenticates the user ID under which the program was started with the
value in the CREATOR column of the Q.PROFILES table. QMF first checks the CREATOR column for the
specific user ID under which the program was started. If no row in the table corresponds to that ID, QMF
checks for a row in the Q.PROFILES table where CREATOR=SYSTEM.

If you set QMF to authenticate users using their TSO logon IDs, enter a value of TSOID for the DSQSPRID
program parameter when you start QMF:

DSQSPRID=TSOID

A value of PRIMEID is the default for this parameter, indicating that QMF will authenticate users using
their Db2 primary authorization IDs.

Only the value PRIMEID is valid in the DSQSCMDn exec when you start TSO as a Db2 for z/OS stored
procedure.

Related concepts
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Defining storage for reports
When a user performs a QMF task that retrieves, imports, or exports data, the data is held in storage until
the operation is complete. In both CICS and TSO, you can set a fixed upper limit for the amount of virtual
storage, also called active storage, to be used for these operations. In TSO, you can also specify a
percentage or portion of available storage to be used for reports.

About this task

To improve QMF performance in both TSO and CICS, you can also specify additional storage to be used to
hold data no longer needed in active storage; this type of storage is called spill storage. You can spill data
to extended virtual storage or a file.

150 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Defining a fixed amount of virtual storage for reports
Use the DSQSBSTG parameter to specify a fixed number of bytes of virtual storage to be used by QMF for
report operations.

Set the DSQSBSTG parameter to a value between 0 and 2147483647. This value represents the
maximum number of bytes of virtual storage to be used for report operations in QMF. If you set this
parameter to a value less than 15000, 15000 is used automatically.

Defaults for the DSQSBSTG parameter are as follows:

• 0 when you start QMF from TSO, ISPF, or native z/OS
• 500000 when you start QMF from CICS

Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Defining a variable amount of virtual storage for reports
In TSO, you can define the amount of virtual storage that is available for reports as a percentage or
portion of the total available storage.

With the DSQSBSTG program parameter, you can directly define the storage that is used for reports as a
percentage of the available storage. With the DSQSRSTG program parameter, you can define the amount
of storage that is reserved for applications other than QMF. The remaining amount of virtual storage is
available for report operations.

Defining storage for reports as a percentage of available storage
In TSO only, you can define the amount of storage that is available for reports as a percentage of the total
available virtual storage.

Procedure

Set the DSQSBSTG parameter to a value in the range 1% - 100%.
A percent sign (%) must follow the numeric value with no space between the value and the sign.

Reserving virtual storage from the TSO region to be used for applications other than QMF
Use the DSQSRSTG parameter in QMF for TSO to specify the maximum amount of virtual storage that you
want to reserve in the TSO region for use by applications other than QMF, such as TSO commands, REXX,
or ISPF. This reserved storage is then not used for QMF report operations.

About this task

The amount of storage that you set on this parameter can affect other programs and the generation of
reports. When QMF creates a new report, it determines the amount of storage that is available in the QMF
address space. QMF subtracts the amount of storage that you specify for the DSQSRSTG parameter from
the amount of free storage available to QMF at the time. The remaining amount of virtual storage is
available for report operations.

Procedure

To set the amount of storage to reserve from the TSO region for applications other than QMF, follow these
steps:
1. Ensure that the DSQSBSTG parameter is set to 0, which is the default value.

If you set the DSQSBSTG to a non-zero value in QMF for TSO, QMF allocates the specified amount of
storage and ignores the DSQSRSTG parameter.

2. Set the DSQSRSTG parameter to a value between 0 and 99999999.
This value represents the maximum number of bytes of virtual storage that are reserved for
applications not related to QMF.

Chapter 10. Setting program parameters and preferences at startup time 151

If you specify 0 for both the DSQSBSTG and DSQSRSTG parameters, no storage is reserved for
applications other than QMF. This value is probably adequate for users who never use z/OS, TSO
commands, REXX, ISPF or other services not related to QMF during QMF sessions. However, be aware
that even the most casual users might unknowingly use a program not related to QMF when they issue
site-defined QMF commands. Such commands are performed by QMF applications, which generally
make extensive use of programs not related to QMF. Take this into account when selecting values for
DSQSRSTG and DSQSBSTG.

Related concepts
Defining a fixed amount of virtual storage for reports
Use the DSQSBSTG parameter to specify a fixed number of bytes of virtual storage to be used by QMF for
report operations.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Acquiring extra storage for data no longer needed in virtual storage
Because demands on active storage can affect the operation of other programs, QMF allows you to
specify extra storage (called spill storage) to store data no longer needed in active storage.

About this task

When a QMF report is returned or a user issues an IMPORT or EXPORT command, the data required by
the operation is held in virtual storage, also called active storage. Using spill storage can improve
performance in an interactive QMF session because QMF does not need to return to the database for
multiple copies of the same data. Instead, data is retrieved from spill storage and is brought back into
active storage as needed.

Data is written to spill storage as needed until one of the following events occurs:

• The QMF report is reset (through the RESET DATA command) or a new report is created (for example,
when a user issues a QMF RUN QUERY, DISPLAY TABLE, or IMPORT DATA command).

• Your query has finished (all requested rows have been retrieved) and the DATA object is therefore
complete.

• The maximum amount of storage that you specified for spill data has been used.

There are two types of spill storage. In QMF for TSO, you can use extended storage for spill data. In both
QMF for TSO and QMF for CICS, you can allocate a file for spill data to be used when active storage is
exhausted.

Related tasks
Spilling report data to extended virtual storage (TSO only)
In QMF for TSO, use extended storage for spill data unless the system on which QMF is running has very
limited extended storage available.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Spilling report data to extended virtual storage (TSO only)
In QMF for TSO, use extended storage for spill data unless the system on which QMF is running has very
limited extended storage available.

About this task

152 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Procedure

To spill report data to extended virtual storage in QMF for TSO, follow these steps:
1. Set the following program parameters when you start QMF:

• DSQSPILL=YES
• DSQSPTYP=64BIT

2. Set the DSQEC_EXTND_STG global variable to the number of megabytes of extended storage for QMF
to acquire on each request to the extended storage manager.
When a user performs an operation that requires extended storage, QMF issues repeated requests to
the extended storage manager for the specified amount until the operation is complete or extended
storage is exhausted. The default value for this global variable is 25, indicating that QMF requests 25
MB of storage on each request.

When setting this global variable, consider the average size of DATA objects with which your QMF
users work. If the average size is very large and you set the DSQEC_EXTND_STG variable too low, QMF
must issue many calls to the extended storage manager to complete the DATA object, which could
affect overall performance.

Spilling report data to a file in TSO
If QMF users are working with data types that require larger amounts of virtual storage, such as XML or
LOB data types, you must configure QMF to spill data to extended storage rather than a file.

About this task

When the QMF report is reset (through the RESET DATA command) or a new report is created (for
example, when a user issues a RUN QUERY, DISPLAY TABLE, or IMPORT DATA command), QMF resets
the space allocation to the primary allocation by opening and closing the spill file with a TTR of zero.

Related concepts
Troubleshooting spill file problems
Creating a spill file can solve storage problems, but it can also cause other problems. You can usually
recover from these problems by adding space, moving the user's spill file, and making changes that
reviewing factors that affect performance.

Estimating the space required for a spill file
Providing enough spill storage is important because, when spill storage is exhausted, QMF does not use
the data already retrieved into the spill file, but instead retrieves it again from the database, using virtual
storage to hold it.

About this task

Procedure

Use the following procedure to calculate the amount of space required for the spill file:
1. Calculate the width (W) of the longest row that can appear in the DATA object by adding field widths in

bytes (use the following table).
Defined columns and any columns containing LOB or XML data do not get written to the spill file. LOB
and XML columns are stored in extended storage when they are fetched and moved to report storage
when they are used.

Table 33. Widths of fields for different data types. Use this table to help estimate the width of a row of
data when estimating the required size of the spill file.

Field type Field width in bytes

CHAR(n), BINARY(n) n+2

VARCHAR(n), VARBINARY(n) n+4

Chapter 10. Setting program parameters and preferences at startup time 153

Table 33. Widths of fields for different data types. Use this table to help estimate the width of a row of
data when estimating the required size of the spill file. (continued)

Field type Field width in bytes

DATE 12

DECFLOAT(16) 8

DECFLOAT(34) 16

DECIMAL(n,m) (n+1)/2+2, n odd (n+2)/2+2, n even

FLOAT(21) 10

FLOAT(53) 10

GRAPHIC(n) n*2+2

INTEGER 6

SMALLINT 4

BIGINT 22

TIME 10

TIMESTAMP(0) 21

TIMESTAMP(n) 22 + n (where n= 1 to 12)

TIMESTAMP(0) WITH TIME ZONE 29

TIMESTAMP(n) WITH TIME ZONE 30 + n (where n= 1 to 12)

LONG VARCHAR (depends on other field lengths)

LONG VARGRAPHIC (depends on other field lengths)

VARGRAPHIC(n) n*2+4

If a row contains LONG VARCHAR or LONG VARGRAPHIC fields, space is first allotted for all other
fields. Then the remaining space is divided by the number of fields, and each LONG VARCHAR or LONG
VARGRAPHIC field is truncated to that length.

2. Use the value of W to calculate either the number of rows per page (R) or the number of pages per row
(P):

• If W is 4096 or less, calculate the number of rows per page (R) using R = 4096/W, and round the
result down to the next lowest integer. When W is 4096 or less, QMF fits as many rows as it can into
a page, without spanning pages.

• If W is greater than 4096, calculate the number of pages per row (P), using P = W/4096, and
round up to the next highest integer. When W is greater than 4096, QMF uses the minimum number
of pages to hold a row, spanning pages regardless of column boundaries. Each row begins at the
start of a page.

3. Use values from step “1” on page 153 and step “2” on page 154 to calculate the number of pages
required for the spill file:

• If W is 4096 or less, calculate the number of pages required for the spill file by dividing the number
of rows in the table by R.

• If W is greater than 4096, calculate the number of pages required for the spill file by multiplying the
number of rows in the table by P.

The following table shows a sample calculation for an individual spill file.

154 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 34. Sample row width calculation for a spill file

Content of row Calculation Contribution to width

Two SMALLINT columns 2 x 4 = 8 bytes

One INTEGER column 6 bytes

One DECIMAL(3,2) column (3+1)/2+2 = 4 bytes

One DECIMAL(6,0) column (6+2)/2+2 = 6 bytes

One FLOAT column 10 bytes

One CHAR(10) column 10 + 2 = 12 bytes

One VARCHAR(16) column 16 + 4 = 20 bytes

Total width of row 59 bytes

The following sample calculations provide two ways to calculate the spill file space.

When R=4096/540, 7 rows/buffer:

600,000 rows 1 track 1 cylinder
------------ * --------- * ---------- = 571 cylinders
 7 10 blocks 15 tracks

When R=6000, 2 buffers/row:

6000 rows * 2 blocks/row * 1 track 1 cylinder
 --------- * ---------- = 800 cylinders
 10 blocks 15 tracks

4. Estimate the number of concurrent QMF users and provide enough spill storage to accommodate the
individual spill files of all of these users as well as any other storage demands from other programs.

Related tasks
Spilling report data to extended virtual storage (TSO only)
In QMF for TSO, use extended storage for spill data unless the system on which QMF is running has very
limited extended storage available.

Allocating a spill file
You can allocate a spill file through a DD statement in the user's logon procedure, JCL, or CLIST.

Before you begin
Ensure that the following program parameter values are set when you start QMF:

• DSQSPILL=YES
• DSQSPTYP=FILE

Both of these values are the default values for these program parameters.

About this task

Important: QMF performance might slow down if QMF needs a data row (as a result of a SCROLL
BACKWARD command) and that data is not in the spill file or in virtual storage. In this case, an I/O abend
occurs. QMF provides error-handling routines for the DCB SYNAD exit and recovers from these I/O abends
by using information that is provided by the DCB abend exit. QMF then stops using the spill file and
fetches the data again from the database. If you use z/OS tools that intercept DCB abends (such as the
B37 abend), ensure that you exclude the QMF spill file from such operations. Otherwise, QMF cannot
properly manage the spill file, causing not only unpredictable results, but also difficulty in tracing and
diagnosing any errors.

Chapter 10. Setting program parameters and preferences at startup time 155

Procedure

When you allocate the spill file, follow these guidelines:
• Allocate the file as a temporary data set, which persists during the user's session.
• If the DASD is a single volume that does not exceed 16,777,215 tracks, you can allocate the file to a

virtual I/O device. This allocation is shown on the UNIT=SYSVIO statement in the example allocation
statement. Or you can allocate the spill file to other DASD storage. You cannot allocate the spill file to
a terminal or display device.

The QMF spill file is allocated for direct access by using the BSAM access method. The z/OS NOTE,
POINT, READ, WRITE, and CHECK services are used to manage the QMF spill file. Any z/OS restrictions
that apply to the use of these system services also apply to the use of the QMF spill file.

• Specify fixed-length records, one record for each block. The records must always be unblocked. (A
block is the size of a z/OS page: 4096 bytes.)

• Specify release storage by using the RLSE keyword as shown in the following example.
• To allocate a spill file in a CLIST, issue an ATTR statement followed by an ALLOC statement as in the

following example.
The ATTR statement is not required, but can be specified.

ATTR SPILL RECFM(F) LRECL(4096) BLKSIZE(4096)
ALLOC FILE(DSQSPILL) UNIT(SYSVIO) SPACE(10,20) RELEASE +
 NEW DELETE USING(SPILL)

• If you must allocate or reallocate the spill file during a user's QMF session, follow these steps:
a) Issue the QMF RESET DATA command to close the current spill file.
b) Issue the FREE command to free the current spill file allocation.

If you issue this command from within QMF, it must be preceded by the QMF TSO command, as in
the following example:

 __
 1=Help 2=List 3=End 4=Show 5=Chart 6=Query
 7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
 OK, you may enter a command.
 COMMAND ===> TSO FREE FILE(DSQSPILL)

c) Allocate the new spill file by using ATTR and ALLOC statements as in the earlier example.
When the user creates a report, QMF uses the new spill file specifications.

Example

An example allocation statement for spill storage appears in the sample logon procedure that is provided
with QMF, where the spill file is allocated to the ddname DSQSPILL.

//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE),
// UNIT=SYSVIO,SPACE=(TRK,(10,20),RLSE),
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)

The SPACE operand in this statement can minimize spill file storage requirements during a session:

• The small primary extent keeps the space that is held by the spill file to 10 tracks during sessions when
a spill file is not needed.

• The much larger secondary extents are used only when a spill file is required.
• The RLSE keyword lets QMF release all secondary extents when the user's DATA object is reset. For

example, the DATA object can be reset when the user runs a new query and a new report is returned.

156 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Spilling report data to a file in CICS
In CICS, spill data must go to a temporary storage queue.

Procedure

To specify the use of a file for spilling report data in CICS, follow these steps:
1. Estimate the space required for the spill file. See “Estimating the space required for a spill file” on

page 153.
2. Enlarge DFHTEMP storage to accommodate the individual spill files of all concurrent QMF users as

well as demands from transactions other than QMF.
3. Set the following program parameters when you start QMF:

• DSQSPILL=YES
• DSQSPTYP=FILE
• DSQSSPQN=queuename

Results

For example, to specify the name MYDATA for the CICS queue when you start QMF in English, enter:

QMFE DSQSPILL=YES, DSQSPTYP=FILE, DSQSSPQN=MYDATA

Spilling report data when QMF is running in batch mode
Spill storage is most useful for improving performance in an interactive QMF session, when the
DSQSMODE parameter is set to I. However, if you are running QMF noninteractively (the DSQSMODE
parameter is set to B), using spill storage can also improve performance when multiple passes of the data
are required to produce the report.

Spill storage might also be necessary to complete the DATA object (for example, when a RUN QUERY
command is followed by a SAVE DATA command).

Multiple passes of the data are required in these conditions:

• You must print several reports with different formats for the same data.
• You use PCT, CPCT, TCPCT, or TPCT edit codes with the report.
• You print a report that requires QMF to split the pages, because the report is wider than the print width.

When QMF is running in batch mode, the DSQSPILL program parameter should be set based on the work
to be done. If the batch job will produce a large DATA object for printing, then allocating a spill file can
have a negative effect on performance. In these cases, specify DSQSPILL=NO when starting QMF.

If you start a batch QMF session from within a CICS application and you choose not to specify a CICS
terminal ID, you must explicitly specify a value for the DSQSSPQN parameter or QMF does not start.

Troubleshooting spill file problems
Creating a spill file can solve storage problems, but it can also cause other problems. You can usually
recover from these problems by adding space, moving the user's spill file, and making changes that
reviewing factors that affect performance.

For more information, see one of the following sections:

• “Problems caused by too little space on a DASD volume” on page 157
• “Problems caused by increasing the secondary space allocation for the spill file” on page 158
• “Performance considerations” on page 158

Problems caused by too little space on a DASD volume

If several users with the same QMF logon procedure are experiencing spill file problems, and their
common logon procedure allocates all their spill files to a single specific DASD volume, the problems

Chapter 10. Setting program parameters and preferences at startup time 157

could be due to insufficient space on this volume. If this is the case, you can solve the problem by
changing the spill file DD statement in their logon procedure. The new DD statement might make a
nonspecific volume reference instead of referring to a specific volume.

Problems caused by increasing the secondary space allocation for the spill file

Increasing the spill file's secondary allocation could solve one user’s spill file problems, but in doing so,
you might create spill file problems for others. If you must increase the secondary allocation, consider
moving the user's spill file to a volume not used for other users' spill files.

A user can unknowingly create spill file problems for others. For example, a user might scroll to the
bottom of a large report and overflow the spill file, but do nothing to bring about the incomplete data
condition. This would be true if the user failed to issue certain types of commands between the time the
report was first displayed and the time it was replaced by another report. In the interim, the user's spill
file might unnecessarily hold space that others need.

Performance considerations

If you are not using conditional formatting or column definitions (which use REXX and have additional
performance considerations), the performance you observe is the result of accessing data in the
database.

Part of the processing time is devoted to writing the data to the spill file so that it can be fetched later. If
you have enough storage available to QMF after your data is retrieved the first time, QMF will not need to
reaccess the database to obtain rows a second time.

Performance is affected by several factors:

• The value of the DSQSIROW parameter (initial number of rows to fetch before displaying the first screen
of the report).

• Whether you perform a task that requires multiple passes of the data. (Certain usage codes, such as
PCT, require that all the data be read before the first report screen displayed.) This primarily affects the
initial display of the report only.

• The amount of memory required to hold one row of data.
• Where the data is retrieved from when additional passes are required to complete the report:

– The database (not all data fits in memory and the spill file)
– Virtual memory and the spill file
– Virtual memory alone

• Whether you are scrolling backward or forward. Successive FORWARD commands usually perform best.
BACKWARD commands might require starting over at the start of the DATA object. This depends on the
amount of memory, how far back you want to scroll, and the complexity of the report.

For very large reports with little memory and insufficient DSQSPILL allocation, the entire DATA object
could be read from row 1 to the new current row, every time the BACKWARD command is used.

The best performance is achieved when there is sufficient memory to hold all data and DSQSPILL is not
used. If the value for the DSQSIROW parameter is high enough to allow the entire DATA object to be
retrieved into virtual memory before the first screen of the report is displayed, the database locks are
released, providing better performance in scrolling the displayed report. Releasing the locks could also
improve performance for other users. However, setting DSQSIROW higher can also slow the display of the
first screen of the report.

To improve performance with commands following RUN QUERY commands that produce large answer
sets, or to avoid storage issues when using the SAVE DATA command for large answer sets, you can use
multiple database threads. To run end user SQL commands on a separate database thread, this optional
second thread is controlled by the QMF program parameter DSQSMTHD (YES/NO; default: NO). This
program parameter allows QMF Administrators to control whether QMF uses an additional database
thread or executes on a single thread as it does by default. Note: The use of 2 threads per user can affect
general Db2 resource consumption (CTHREAD limits, etc).

158 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Related concepts
Controlling report wait time
The DSQSIROW parameter controls the number of rows the database fetches before QMF displays the
first report screen.

Controlling performance of fetch and insert operations
Two program parameters in QMF help you control database performance during fetch and insert
operations.

Controlling report wait time
The DSQSIROW parameter controls the number of rows the database fetches before QMF displays the
first report screen.

Use the DSQSIROW parameter to specify the maximum number of rows that QMF retrieves into the DATA
object before displaying the first screen of the report to the user. DSQSIROW applies only to the initial
load of a new DATA object, created by:

• Running queries that use SQL SELECT statements
• Displaying a database table with the QMF DISPLAY command

The value of DSQSIROW determines when QMF stops fetching rows from the database and displays the
report. However, QMF always retrieves enough rows to fill a 4 KB buffer prior to displaying the first screen
of data, regardless of the DSQSIROW value. For example, suppose that 62 rows are required to fill a
buffer and you set DSQSIROW to 50. QMF retrieves 62 rows of data and, upon comparing 62 to 50, stops
retrieving rows and displays the first screen of data.

Some report formatting options, such as PCT and ACROSS usage codes, require that all the data be
retrieved before QMF displays the first screen. QMF ignores the DSQSIROW value in these situations.

Performance with small DSQSIROW values

Do not use DSQSIROW to limit the number of rows that QMF displays on the screen. Although you can
specify a small value, QMF retrieves enough rows to fill the screen display in an interactive session. If you
use too small a value for the DSQSIROW parameter, QMF might not be able to complete the DATA object
before the first screen of the report is displayed. An incomplete DATA object causes share locks on the
data, which can prevent other users from updating the data. If necessary, you can avoid this problem by
allowing uncommitted read.

Many users might be affected if a QMF control table or a part of the system catalog is locked. You can
release the locks in one of the following ways:

• Use the BOTTOM command to retrieve the remaining rows into the DATA object, then release the locks.
• Use the RESET DATA command to release these locks and clear the DATA object, whether or not all

requested rows have been retrieved.
• Use any SAVE command (for example, SAVE DATA or SAVE FORM) to retrieve and save the remaining

rows into the DATA object, then release the locks.

To get the best performance in a batch session (when the DSQSMODE parameter is set to B), use a value
of 0 for DSQSIROW unless you want to minimize the number of open read locks while QMF is retrieving or
formatting data.

Performance with large DSQSIROW values

If you use too large a value for the DSQSIROW parameter, QMF might take a long time to display the first
screen of data. Additionally, if there is not enough storage to retrieve the number of rows specified by
DSQSIROW, storage becomes full. If storage is full and you are running QMF in CICS, CICS waits for
storage to become available. In TSO, QMF issues a message indicating that storage is full.

Chapter 10. Setting program parameters and preferences at startup time 159

Related concepts
Allowing uncommitted read
If you want your QMF session to allow uncommitted read, you can specify a value for the global variable
DSQEC_ISOLATION in the Q.SYSTEM_INI procedure.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Enabling support for multirow fetch and insert
The DSQSMRFI parameter controls whether the database uses multirow or single-row fetch and insert.

Use the DSQSMRFI parameter (MR) to control whether QMF uses multirow processing for database fetch
and insert operations. With multirow processing, a single SQL statement can process several rows of data,
resulting in decreased network traffic. The following commands take advantage of increased performance
from multirow support:

• BOTTOM
• FORWARD
• DISPLAY TABLE
• DPRE
• EXPORT DATA and EXPORT TABLE
• IMPORT TABLE
• PRINT REPORT and PRINT TABLE
• RUN QUERY or RUN PROC (when these specify retrieval operations)
• SAVE DATA

Single-row fetch is automatically used in the following situations:

• When the command requires processing of XML or LOB data
• When you start QMF in the requester database with MR=YES, use the QMF CONNECT command to

connect to a server other than Db2 for z/OS Version 8.1.5 (or later), then proceed to issue a command
that requires fetch or insert operations

Restriction:

• If MR is set to YES and you use a QMF command that includes a three-part name, both the requester
where the command is initiated and the server to which the command is directed must be Db2 for z/OS
8.1.5 (or later) or the command fails. Start QMF with MR=NO if you will be issuing QMF commands with
three-part names directed to servers other than Db2 for z/OS Version 8.1.5 (or later). Commands with
three-part names cannot be directed to DB2 for VSE and VM servers.

• Depending on the capabilities of your query accelerator, the QMF DSQSMRFI (MR) program parameter
might be of importance. Some query accelerators do not support queries that are run with rowset
cursors. If QMF is started with the DSQSMRFI (MR) program parameter set to YES, QMF uses a rowset
cursor. If your query accelerator does not support queries that are run with rowset cursors, start QMF
with MR=NO.

• QMF supports operations with XML data only when you are connected to a database release that
supports the XML data type.

Related reference
Summary of program parameters

160 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Using multiple database threads
To improve performance with commands following RUN QUERY commands that produce large answer
sets, or to avoid storage issues when using the SAVE DATA command for large answer sets, you can run
end user SQL commands on a separate database thread.

About this task

To use multiple threads, the optional second thread is controlled by the QMF program parameter
DSQSMTHD (YES/NO; default: NO). This program parameter allows QMF Administrators to control
whether QMF uses an additional database thread or executes on a single thread as it does by default.

The end user SQL that uses the second thread includes the following QMF commands:

• RUN QUERY (except for RUN QUERY with the TABLE keyword)
• DISPLAY TABLE
• Commands that scroll reports (BOTTOM, TOP, FORWARD, BACKWARD, RIGHT and LEFT)
• Commands that require complete reports (EXPORT DATA, SAVE DATA, PRINT REPORT, DPRE,

CONNECT, ERASE TABLE)

When DSQSMTHD is set to YES, the value of the DSQAO_CURSOR_OPEN state global variable will reflect
the status of the end user SQL second thread.

DSQSMTHD is applicable to QMF running under TSO (QMF CAF interface) only. DSQSMTHD settings are
ignored when running QMF under CICS and running QMF under the stored procedure interface.

When DSQMTHD is set to YES, the effect of global variable DSQEC_RESET_RPT (prompting if an
incomplete report is outstanding) is changed. When you CONNECT to remote databases, or CONNECT to a
new userid and password within the same data base, the second thread will also connect. Any open
report objects must be completed prior to the CONNECT. DSQEC_RESET_RPT can be used to alert you to
this situation.

While the ERASE TABLE command does not utilize the user thread, it continues to require that an
incomplete data object be completed; this prevents deadlock and timeout situations.

In the case of an incomplete report (with DSQSMTHD=YES), the list of commands that will COMMIT the
report (release locks) and delete the thread is:

• RESET DATA
• RUN QUERY (SELECT statements)
• PRINT TABLE
• DISPLAY TABLE
• EXPORT TABLE
• CONNECT
• ERASE TABLE

Incomplete data prompting (DSQEC_RESET_RPT) will also occur (except for RESET DATA).

Note: The use of two threads per user can affect general Db2 resource consumption (CTHREAD limits,
etc).

Related concepts
Troubleshooting spill file problems

Chapter 10. Setting program parameters and preferences at startup time 161

Creating a spill file can solve storage problems, but it can also cause other problems. You can usually
recover from these problems by adding space, moving the user's spill file, and making changes that
reviewing factors that affect performance.
Related tasks
Using multiple database threads
To improve performance with commands following RUN QUERY commands that produce large answer
sets, or to avoid storage issues when using the SAVE DATA command for large answer sets, you can run
end user SQL commands on a separate database thread.

Automating QMF activity
The DSQSMODE and DSQSRUN parameters can automate QMF activity and save resources and time.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Specifying the mode of operation (interactive or batch)
Using the program parameter DSQSMODE, you can save resources and time by starting a batch session to
perform your work in QMF. Your system is then free for you to do other work while the transaction is
running.

Before you begin

Do not specify this parameter when you start QMF for TSO as a Db2 for z/OS stored procedure; a value of
B, indicating batch mode, is already specified for you in the DSQSCMDn exec that starts the interface.

About this task

Some query and report-writing tasks that users must perform might not require interaction with QMF. For
example, a salesperson might use the same QMF procedure every few days to query a set of tables for
account status. Although the data changes, the procedure and tasks required to access the data remain
the same.

Procedure

To start QMF in batch mode, follow these steps:
1. Specify a value of B on the DSQSMODE parameter.

To specify interactive operation of QMF, use a value of I on the DSQSMODE parameter. This is the
default value.

2. Because a batch session displays no QMF panels, use the DSQSRUN parameter to run an initial
procedure that does the required work and exits the program

For example, the following command starts a batch session in English that runs an initial procedure
called STARTPROC, which is owned by user JONES.

DSQQMFE M=B,I=JONES.STARTPROC

3. If necessary, add the DSQSDBNM parameter to specify the initial database to which you want to
connect if you do not want to use the default database location.

Related concepts
Specifying an initial procedure to run when QMF starts
The DSQSRUN parameter passes the name of a QMF procedure that runs as soon as QMF starts and then
exits QMF.
Starting QMF as a Db2 for z/OS stored procedure

162 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Specifying an initial procedure to run when QMF starts
The DSQSRUN parameter passes the name of a QMF procedure that runs as soon as QMF starts and then
exits QMF.

For example, to start QMF in English and run an initial procedure named STARTPROC, issue the following
command:

DSQQMFE I=STARTPROC

Qualify the procedure name with the SQL authorization ID of its owner if other users are using it to start
QMF. For example, if user JONES owns the STARTPROC procedure, enter:

DSQQMFE I=JONES.STARTPROC

When you pass the name of an initial procedure, QMF issues a RUN PROC command, which runs the
procedure that you specify.

Important: QMF does not allow blanks in the user ID and procedure name syntax. For example, QMF
doesn't recognize the following procedure name:

DSQQMFE I=JONES. STARTPROC

To use a procedure name with an embedded blank, you must enclose the name in quotes:

DSQQMFE I=JONES.'START PROC'

• You can use the DSQSRUN parameter to:
• Automate QMF activity in batch mode so that you can conserve resources that are normally used when

running interactively.
• Allow users to perform interactive QMF work within the confines of a predefined procedure, then exit

when they are finished with the work specified in the procedure.

Do not specify this parameter when you start QMF for TSO as a Db2 for z/OS stored procedure; when you
start QMF in this manner, you use the CALL statement to pass the name of an initial query or procedure
name to be run when QMF starts.

Related concepts
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Related tasks
Installing the QMF stored procedure interface (TSO only)

Chapter 10. Setting program parameters and preferences at startup time 163

QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Running an initial procedure in batch mode
You can run a procedure in batch mode by using a value of B for the DSQSMODE parameter and naming a
procedure using the DSQSRUN parameter.

For example, suppose that every Monday morning, you must produce an inventory status report. Each
Sunday night, you must run a query that retrieves data from the same columns of a table called
INVENTORY. Your query might look something like the following query.

SELECT * FROM INVENTORY
WHERE STOCK < 20

For this example, we will name this query INVENTORY_QUERY. The procedure that you use to run this
query and print the status report might look something like the following procedure. For these examples,
we'll call this QMF procedure INVENTORY_PROC:

RUN QUERY INVENTORY_QUERY
PRINT REPORT
EXIT

The procedure includes an EXIT command because, when QMF is running in batch mode, no user is
present to end the QMF session. EXIT ends the QMF session and frees the resources being held by QMF.
Always use an EXIT command in an initial procedure that runs in batch mode.

Because the tasks involved in creating the report do not change (only the data changes), you can use the
DSQSRUN parameter to query the INVENTORY table off-shift on Sunday night and print the report:

QMFn I=INVENTORY_PROC,M=B

Performing interactive QMF work with an initial procedure
You can use an initial procedure in an interactive QMF session to predefine QMF tasks for end users,
making it easy for them to access only the data they need.

For example, suppose that a QMF end user has the responsibility of producing an inventory status report
every Monday morning. The user might know the value that indicates low stock but might not know
exactly how to produce the status report. In this case, you can put a variable in the query so that the user
needs to enter only the value that indicates low stock. We will call this query INVENTORY_QUERY:

SELECT * FROM INVENTORY
WHERE STOCK < &LOWSTOCK

Because the user might want to view the data before printing it, your INVENTORY_PROC procedure might
not include the EXIT command:

RUN QUERY INVENTORY_QUERY

You can then use the DSQSRUN parameter without specifying the DSQSMODE parameter, so that you
start an interactive session for the user:

QMFn I=INVENTORY_PROC

The INVENTORY_PROC procedure prompts the user for the &LOWSTOCK variable value.

For interactive sessions, instruct users to enter EXIT on the command line when they are finished viewing
the report. The initial procedure runs repeatedly until an EXIT command is issued. Thus, pressing the End
function key from the report panel reruns the initial procedure; it does not display the QMF home panel.

Additionally, when you use the DSQSRUN parameter, ensure that the DSQEC_RERUN_IPROC global
variable is set to 0 and that the current object is not the QMF home panel.

Related concepts
Passing variable values to an initial procedure

164 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

When you supply the name of an initial procedure on the DSQSRUN parameter, you can also supply values
for one or more variables contained in the procedure.

Passing variable values to an initial procedure
When you supply the name of an initial procedure on the DSQSRUN parameter, you can also supply values
for one or more variables contained in the procedure.

Follow these rules when you specify variables for the DSQSRUN parameter:

• Put parentheses around the variable parameter list.
• Precede the variable name with an ampersand, and ensure that the string is in a variable_name=value

format.
• Ensure that the combined total of characters for the procedure name and the variable parameter list is

98 characters or less.
• Separate the variable parameter specifications using a single comma, one or more blanks, or a

combination of a comma and blanks.

The following table lists the number of ampersands required to use a variable in each environment.

Table 35. Required number of ampersands preceding program variables

Environment

Number of
additional

ampersands Example

CICS 0 &variable=value

TSO without ISPF 0 &variable=value

TSO with ISPF 1 &&variable=value

TSO without ISPF using CLISTs 2 &&&variable=value

TSO with ISPF using CLISTs 3 &&&&variable=value

When you specify the name of an initial procedure, QMF issues a RUN PROC command that runs the
procedure. When you use variables in your procedure, the values you supply for these variables must
conform to the syntax used for passing variables on a RUN command.

For example, suppose you frequently need two pieces of information about employees in your
organization. One piece of information is the name of the employee, and the other varies. You might
define a query that returns values for the NAME column and uses a variable for the name of the other
column. The following figure shows an example query and procedure. The figure also shows how to pass a
value for the variable when you enter the DSQSRUN parameter, and shows the resulting RUN PROC
command that QMF issues.

Query (JONES.QUERY2)
SELECT NAME, &COL FROM Q.STAFF

Procedure (JONES.PROC2)
RUN QUERY JONES.QUERY2 (&&COL=&COL

DSQSRUN parameter
QMFn I=JONES.PROC2(&COL=YEARS)

Resulting RUN command
RUN PROC JONES.PROC2 (&COL=YEARS)

Figure 25. Passing a column name on the DSQSRUN parameter

Chapter 10. Setting program parameters and preferences at startup time 165

The next figure shows a similar example, but instead of passing one column name to the procedure, it
allows you to pass several, which return the employee's name, the department, and the employee's
salary.

Query (JONES.QUERY3)
SELECT &COLS FROM Q.STAFF

Procedure (JONES.PROC3)
RUN QUERY JONES.QUERY3 (&&COLS=&COLS

DSQSRUN parameter
QMFn I=JONES.PROC3(&COLS=((DEPT,NAME,SALARY))

Resulting RUN command
RUN PROC JONES.PROC3(&COLS=((DEPT,NAME,SALARY)))

Figure 26. Passing several column names on the DSQSRUN parameter

The next four examples show how to pass information that you normally supply after the WHERE keyword
in a query.

These examples contain character strings, which require special syntax because of how QMF evaluates
the values when it processes the RUN PROC command. Special characters (commas, blanks,
parentheses, double or single quotation marks, apostrophes, and equal signs) can also be included in the
string, as shown in the examples.

The first of these four examples shows a query that returns the names and employee numbers of all the
managers in an organization. When you pass the character string MGR on the DSQSRUN parameter, be
sure to enclose the value in single quotation marks.

Query (JONES.QUERY4)
SELECT JOB, NAME, ID FROM Q.STAFF WHERE JOB=&JOB

Procedure (JONES.PROC4)
RUN QUERY JONES.QUERY4 (&&JOB=&JOB

DSQSRUN parameter
QMFn I=JONES.PROC4(&JOB='MGR')

Resulting RUN command
RUN PROC JONES.PROC4 (&JOB='MGR')

Figure 27. Passing a character string within single quotations marks on the DSQSRUN parameter

The second of the four examples shows how to pass variable values that contain commas. Enclose the
value SAN JOSE, CA in single quotation marks because it contains a comma.

Query (JONES.QUERY5)
SELECT * FROM Q.APPLICANT WHERE ADDRESS=&CITY

Procedure (JONES.PROC5)
RUN QUERY JONES.QUERY5 (&&CITY=&CITY

DSQSRUN parameter
QMFn I=JONES.PROC5(&CITY='SAN JOSE, CA')

Resulting RUN command
RUN PROC JONES.PROC5 (&CITY='SAN JOSE, CA')

Figure 28. Passing a comma within a string on the DSQSRUN parameter

166 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

The third of the four examples with character strings shows how to pass variable values that contain
single quotation marks (for example, an apostrophe in a name). When you pass the value on the
DSQSRUN parameter, be sure to enclose the value in single quotation marks and use two single quotation
marks for the apostrophe instead of one.

Query (JONES.QUERY6)
SELECT * FROM Q.STAFF WHERE NAME=&NAME

Procedure (JONES.PROC6)
RUN QUERY JONES.QUERY6 (&&NAME=&NAME

DSQSRUN parameter
QMFn I=JONES.PROC6(&NAME='O''BRIEN')

Resulting RUN command
RUN PROC JONES.PROC6 (&NAME='O''BRIEN')

Figure 29. Passing an apostrophe as part of a string on the DSQSRUN parameter

The last of the four examples shows how to pass more than one variable value on the RUN command.

Query (JONES.QUERY7)
SELECT * FROM Q.STAFF WHERE DEPT IN &DEPT AND JOB = &JOB

Procedure (JONES.PROC7)
RUN JONES.QUERY7 (&&DEPT=&V1 &&JOB=&V2

DSQSRUN parameter
QMFn I=JONES.PROC7(&V1=(((10,38))) &V2='MGR')

Resulting RUN command
RUN PROC JONES.PROC7(&V1=(((10,38))) &V2='MGR')

Figure 30. Passing multiple variable values on the DSQSRUN parameter

Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Setting tracing options
QMF provides a trace facility that helps track QMF and user activity.

About this task

Use the DSQSDBUG parameter to specify the level of detail at which you want to trace QMF activity.
Specify a value of ALL on the DSQSDBUG parameter to trace QMF activity at the highest level of detail,
including program initialization errors and other errors that might occur before the user's profile is
established. This value is shown in the following two different types of initialization commands. Replace n
in the commands with the 1-character national language identifier for the language you are using.

DSQQMFn T=ALL
QMFn T=ALL

When you set DSQSDBUG to NONE, the level of detail in the trace output depends on whether the QMF
session is running interactively or in batch mode:

• In either an interactive or a batch session, only system error tracing is done during initialization, before
the user's profile is established. The only way to turn off this initial tracing is to not allocate or define
storage for the trace data.

Chapter 10. Setting program parameters and preferences at startup time 167

• In a batch session, all messages and commands are traced at the most detailed level.

The trace level that you set with this parameter is effective until the user issues a SET PROFILE
(TRACE=value command to change it or, in the case of a value of NONE, until the profile is loaded.

Related concepts
Getting the right level of detail in your trace output
You can trace all QMF functions in detail or trace individual QMF functions.
Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Setting the trace for TSO
To set the trace in QMF for TSO, specify DSQSDBUG=ALL when starting QMF.

Do not specify the DSQSDBUG parameter when you start QMF for TSO as a Db2 for z/OS stored
procedure. When QMF is started in this manner, you use the CALL statement to pass an input parameter
that specifies the level of trace detail.

After QMF starts, you can turn tracing off if necessary by using the command SET PROFILE
(TRACE=NONE. You can also set more specific levels of trace detail using the SET PROFILE command.

Related concepts
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.
The trace facility
QMF provides a facility that traces QMF activity during a user's session. Trace output from the facility can
help you analyze errors such as incorrect or missing output, performance problems, or loops.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Setting the trace for CICS
You set several parameters to set the trace in QMF for CICS.

Procedure

To specify tracing in QMF for CICS, follow these steps:
1. Specify DSQSDBUG=ALL when starting QMF.
2. Use the DSQSDBQT parameter to specify the type of storage to be used for the trace data.

• Specify the value TS to use a CICS auxiliary temporary storage queue for tracing:

QMFn DSQSDBQT=TS

• Use temporary storage for message-level tracing. Other types of tracing, such as ALL, capture more
trace data and therefore require more storage. Use a transient data queue (a value of TD) if you
think that the trace output could exceed the maximum size of a CICS temporary storage queue.

168 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• A transient data queue named DSQD is predefined for you during QMF installation. If you use the
DSQSDBQN parameter to name the transient data queue something other than DSQD, you must
predefine the queue in the CICS DCT before you use it for the first time.

3. Use the DSQSDBQN parameter to specify the name of the CICS storage queue that will store the trace
data.

• DSQSDBQN specifies the name of the transient data or temporary storage queue that holds trace
data.

• Ensure that the queue name conforms to CICS specifications for the type of queue specified by
DSQSDBQT. TD queues have names from 1 to 4 characters. TS queues have names from 1 to 8
characters.

• You do not need to predefine temporary storage queues to CICS. For example, the following
statement dynamically allocates a temporary storage queue named MYTRACE to hold trace data for
the QMF session:

QMFn DSQSDBQN=MYTRACE,DSQSDBQT=TS

• You must associate a transient data queue with a ddname. DSQDEBUG is the default name for the
trace data set. QMF issues CICS ENQ and DEQ commands around single trace entries in the queue,
so that a single queue can be used by more than one user.

Results

After QMF starts, you can turn tracing off if necessary by using the command SET PROFILE
(TRACE=NONE. You can also set more specific levels of trace detail using the SET PROFILE command.

Related tasks
The trace facility
QMF provides a facility that traces QMF activity during a user's session. Trace output from the facility can
help you analyze errors such as incorrect or missing output, performance problems, or loops.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

Printing DBCS data from non-DBCS display devices
If you use the Uppercase, Japanese, or Korean National Language Feature (NLF), you might need to print
double-byte character set (DBCS) data.

Procedure

• To print DBCS data from non-DBCS display devices, set the DSQSDBCS program parameter to YES.

Example

Suppose that a user you support uses a non-DBCS display device and needs to print a table (named
DBCSTABLE) whose nonnumeric columns contain DBCS data. The following statement starts the
Uppercase NLF from a cleared CICS screen and allows the user to print DBCSTABLE by using a command
such as PRINT DBCSTABLE (PRINTER=printername.

QMFU K=YES

Related concepts
Setting up printing and charting functions

Chapter 10. Setting program parameters and preferences at startup time 169

QMF end users frequently need to print data they retrieve from the database. This data might be in the
format of a report, chart, database table, or some other QMF or database object.
Related reference
Summary of program parameters
A quick reference is provided for program parameters that you can pass to QMF when you start QMF
under the standard interface.

170 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 11. Registering users and setting privileges
To enable users to access and use QMF, you must grant them access to the QMF application plan and
packages and to database objects. You must also create a user profile. You can also customize users'
object lists so that they can work with their objects more efficiently.

Controlling access to the application plan and packages
To control access to QMF, you can grant and revoke access to the QMF application plan and packages as
necessary.

Granting access to the application plan and packages
The QMF application plan and packages enable QMF to run as a Db2 application program. To access QMF,
all QMF users need access to the QMF application plan and packages.

At installation time, the EXECUTE privilege is granted to PUBLIC for the QMF plan (named QMF12 by
default) and packages. You can revoke access on the QMF plan from PUBLIC. However, you then must
issue an SQL GRANT statement for each individual QMF user, as in the following example.

GRANT EXECUTE ON PLAN qmfplanname TO userid

You can also restrict access to QMF through the QMF profile structure that you create.

Related concepts
Revoking access to the application plan and packages
To revoke a GRANT statement to the QMF application plan and packages, you must have SYSADM (or
equivalent) authority.
Establishing a profile structure for your site
Users can use either a generic or a unique profile to access QMF. If necessary, you can restrict QMF
access to those users who have unique profiles.

Revoking access to the application plan and packages
To revoke a GRANT statement to the QMF application plan and packages, you must have SYSADM (or
equivalent) authority.

To revoke a user's access to the QMF application plan, you can issue a statement like this one:

REVOKE EXECUTE ON PLAN qmfplanname FROM userid

The default QMF plan name for Version 12.1 is QMF12.

If it is possible that the user's EXECUTE privilege was granted by more than one user, use the following
SQL statement to revoke the privilege:

REVOKE EXECUTE ON PLAN qmfplanname FROM userid BY ALL

To revoke these privileges from PUBLIC, substitute PUBLIC for userid in the statements.

If the user you are removing is a former QMF administrator who granted access to the QMF plan and
packages to other users, removing access from the administrator also removes access for those users.

© Copyright IBM Corp. 1982, 2020 171

Creating QMF user profiles
All QMF users need access to a user profile, which determines how QMF handles individual input from
specific users. Use the profile to control certain aspects of a user's environment, such as where printer
output is routed or whether input is converted to upper case.

About the Q.PROFILES table
Each aspect of a user's QMF session maps to a value in a column of the Q.PROFILES control table. Each
row of the Q.PROFILES table is an individual user profile.

The following table shows the columns of the Q.PROFILES control table. Each column of the table
represents an aspect of a user's QMF session that you can customize. The defaults that are listed are for
the English QMF environment.

Default values might be different for the English environment and some NLFs. For example, do not
assume that the default for all NLFs is UPPER because the English default is UPPER. The default value for
the CASE field in the German NLF is MIXED, and might also vary for other NLFs. For the default values for
each NLF, see the translated versions of the Q.PROFILES table.

The Q.PROFILES table has the index Q.PROFILEX, with the attributes UNIQUE and CLUSTER. The keyed
columns are CREATOR, TRANSLATION, and ENVIRONMENT. No three rows can have identical values for
these three columns.

When you start QMF for TSO as a Db2 for z/OS stored procedure, the input parameters that you specify on
the CALL statement that starts QMF override some of the settings in the QMF profile, as indicated in the
table.

Table 36. Structure of the Q.PROFILES table

Column name Data type and length

Nulls
allowe

d

Function and possible values

CREATOR VARCHAR(128)

Exception: The
CREATOR column is
defined as CHAR(8)
when you are
connected to a DB2
for VSE and VM
database.

No Function
Specifies the user ID of the user who owns the
profile.

Values
SYSTEM (default), Db2 primary or SQL
authorization ID, or TSO logon ID (if the
DSQSPRID parameter is set to TSOID).

The SYSTEM row is shipped with the Q.PROFILES
table for English and each NLF; users who do not
have unique profile rows can use the SYSTEM
row.

When you start QMF for TSO as a Db2 for z/OS
stored procedure, CREATOR must either be
SYSTEM or the authorization ID that starts the
WLM-managed address space from which the
Q.DSQQMFSP procedure runs. Any other values
cause QMF initialization errors.

172 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 36. Structure of the Q.PROFILES table (continued)

Column name Data type and length

Nulls
allowe

d

Function and possible values

CASE CHAR(18) Yes Function
Specifies whether terminal input is converted to
upper case.

Values
UPPER (default), STRING, or MIXED.

Use a value of MIXED if you plan to take
advantage of RACF support in TSO for mixed-case
passwords or the CONNECT command will fail. In
this case, instruct QMF users to enter all input in
uppercase because QMF recognizes commands
only in uppercase.

For a full description of these values, see . CASE
might have a different default for NLF users.

DECOPT CHAR(18) Yes Function
Specifies the separators that QMF uses in
numeric report columns.

Values
PERIOD (default), COMMA, and FRENCH. For
more information, see . DECOPT is translated and
might have a different default for NLF users.

Chapter 11. Registering users and setting privileges 173

Table 36. Structure of the Q.PROFILES table (continued)

Column name Data type and length

Nulls
allowe

d

Function and possible values

CONFIRM CHAR(18) Yes Function
Specifies the default action for confirmation
prompting with QMF commands that support the
CONFIRM option. This default applies when the
commands do not specify the CONFIRM option.
The value of CONFIRM indicates whether QMF
displays a confirmation panel before completing
a command that:

• Changes or replaces an object in the database
• Has a cost estimate that exceeds allocated

resources defined in the Db2 resource limit
facility (the Db2 governor)

• Replaces a file or data set (in the case of an
EXPORT command, for example)

Values
YES (default)

Displays a confirmation panel, providing an
opportunity to cancel the command before it
runs

A value of YES is ignored when QMF for TSO
has been started as a Db2 for z/OS stored
procedure.

NO
Completes the command without displaying a
confirmation panel

When you run a query that contains multiple SQL
statements that change the database, a single
confirmation panel is displayed. The answer that
you provide in response to this prompt applies to
changes that will be made by all SQL statements
in the query.

WIDTH CHAR(18) Yes Function
Controls the number of printed columns per
page.

Values
22 to 999. The default is 132.

LENGTH CHAR(18) Yes Function
Controls the number of printed lines per page.

Values
1 to 999, or CONT if you want no page breaks.
The default is 60.

174 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 36. Structure of the Q.PROFILES table (continued)

Column name Data type and length

Nulls
allowe

d

Function and possible values

LANGUAGE CHAR(18) Yes Function
Controls which query language QMF uses when
creating a new query after a RESET QUERY
command is issued.

Values
SQL (default), QBE (for Query-by-Example), or
PROMPTED (for Prompted Query).

Chapter 11. Registering users and setting privileges 175

Table 36. Structure of the Q.PROFILES table (continued)

Column name Data type and length

Nulls
allowe

d

Function and possible values

SPACE CHAR(50) Yes Function
Specifies the default storage space in the
database for tables created with the SAVE DATA,
IMPORT, or RUN QUERY command.

Values
The name of a valid storage space for the current
database location. Depending on the database
type, this could be a database name, a table
space name, or a combination of a database and
table space name. You can specify the following
storage locations:

You can specify the following storage locations for
Values:

databasename.spacename
Specify both a database and a table space to
have QMF save the table in that specific table
space.

For example, this query configures the profile of a
QMF user named SMITH to save tables in table
space TSPACE1, in database DBASE1:

UPDATE Q.PROFILES
 SET SPACE='DBASE1.TSPACE1'
 WHERE CREATOR='SMITH' AND
 TRANSLATION='ENGLISH'

However, if all users are using the same table
space, you could experience resource contention.

DATABASE "databasename"
When you specify the DATABASE keyword
followed by a database name in quotes, each
table is created in a separate table space created
implicitly and exclusively for that table by Db2.
Such implicit table spaces have default
LOCKSIZE, BUFFERPOOL, STOGROUP, and space
attributes, and have names that match the name
of the table that was created.

For example, the following value for the SPACE
field of the Q.PROFILES table saves each table in
a separate table space in the DSQDBDEF
database:

DATABASE "DSQDBDEF"

Limiting each table space to one table only
minimizes resource contention. Both partitioned
and universal table space schemes impose a limit
of one table per table space. QMF recommends
this method.

NULL or blank
If the SPACE field of the QMF profile is null or
blank, SAVE DATA or IMPORT TABLE commands
create tables in implicitly generated table space
names in the DSNDB04 database by default.

176 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 36. Structure of the Q.PROFILES table (continued)

Column name Data type and length

Nulls
allowe

d

Function and possible values

TRACE CHAR(18) Yes Function
Controls the level of detail in trace output.

Values
ALL traces all functions at the most detailed level.
A character string of function codes and numbers
indicates the level of tracing for individual QMF
functions. The default value varies depending on
the value provided for the DSQSMODE parameter.
For example, when the DSQSMODE parameter is
set to B, the trace level is L2; otherwise it is
NONE.

Only the values ALL and NONE are translated in
NLFs.

When you start QMF for TSO as a Db2 for z/OS
stored procedure, values for the trace options are
taken from the trace-level parameter of the
CALL statement that starts QMF. You can include
a SET PROFILE (TRACE command in the initial
procedure specified by the object-name
parameter to change the level of trace detail for
the duration of the stored procedure session, as
long as trace output is set to go to the
DSQDEBUG data set. If trace-level is set to
L2, L2-destination must be set to DSQDEBUG for
SET PROFILE (TRACE commands to be
accepted.

For more information, see “Getting the right level of
detail in your trace output” on page 358 and “Tracing
individual QMF modules” on page 359

Chapter 11. Registering users and setting privileges 177

Table 36. Structure of the Q.PROFILES table (continued)

Column name Data type and length

Nulls
allowe

d

Function and possible values

PRINTER CHAR(8) Yes Function
Controls where printer output is routed.

Values
Use a null (default) or blank value to route print
output to CICS temporary storage or transient
data queues, or to the data set with the ddname
DSQPRINT. Use a GDDM nickname to direct
output to a printer defined by GDDM.

If you allocate output from DSQPRINT to go to
the HOLD queue, to release the output to the
OUTPUT queue for printing you must issue the
following TSO command:

FREE DDNAME(DSQPRINT)

When you start QMF for TSO as a Db2 for z/OS
stored procedure and want to receive report
output back in result sets, this profile option must
be set to a string of blanks or a string of blanks
must be passed on a SET PROFILE command in
the initial procedure that runs after QMF starts.

TRANSLATION CHAR(18) No Function
Indicates whether the language in use is English
or a National Language Feature (NLF).

Values
English (default) or the name that QMF uses for
the NLF.

When you start QMF for TSO as a Db2 for z/OS
stored procedure, the language value is taken
from the language parameter passed on the
CALL statement that starts QMF and not from the
profile.

For information about NLFs, see Table 27 on page
102.

PFKEYS VARCHAR(261)

Exception: The
PFKEYS column is
defined as CHAR(31)
when you are
connected to a DB2
for VSE and VM
database.

Yes Function
Indicates the table or view (if any) where users'
customized function key definitions are stored.

Values
Any valid Db2 table or view name. If this value is
blank or null (the default), the default keys are
used.

178 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 36. Structure of the Q.PROFILES table (continued)

Column name Data type and length

Nulls
allowe

d

Function and possible values

SYNONYMS VARCHAR(261)

Exception: The
SYNONYMS column is
defined as CHAR(31)
when you are
connected to a DB2
for VSE and VM
database.

Yes Function
Indicates the table or view where users'
customized command definitions are stored.
When a user enters a command synonym, the
synonym definition must be stored in the table
named here or the command fails.

Values
Any valid Db2 table or view name.

The table named here must conform to the
structure explained in “Customizing Command
synonyms” on page 234. You can use the default
synonyms, create your own table of synonyms, or
create your own table and add the synonyms
supplied by QMF to it.

Default QMF command synonyms are stored in
the Q.COMMAND_SYNONYMS table. For NLF
users, default synonyms are stored in the
Q.COMMAND_SYNONYM_n table, where n is a 1-
character language identifier from Table 27 on
page 102.

If this value is blank or null (the default), no
customized definitions are used.

RESOURCE_GROUP CHAR(16) Yes Function
Controls how the default governor exit routine
limits a user's resources or commands.

Values
Any valid resource group name. If this value is
blank or null (the default), QMF attempts to use
the user's primary or SQL authorization ID here,
according to the value of the DSQSPRID program
parameter: If DSQSPRID is set to TSOID, QMF
attempts to assign the TSO logon ID as the value
for the RESOURCE_GROUP column; if DSQSPRID
is set to PRIMEID, QMF attempts to assign the
Db2 or SQL primary authorization ID as the value
of the RESOURCE_GROUP column. In these
cases, the user's session is not governed (unless
the TSO ID or the primary or SQL authorization ID
is a valid resource group name).

The resource group in use for the user's QMF
session is recorded in the DSQAP_RESOURC_GRP
global variable.

Chapter 11. Registering users and setting privileges 179

Table 36. Structure of the Q.PROFILES table (continued)

Column name Data type and length

Nulls
allowe

d

Function and possible values

MODEL CHAR(8) Yes Function
Specifies the model for data access.

Values
Always use the value REL for this column,
indicating relational data.

ENVIRONMENT CHAR(8) Yes Function
Indicates the operating environment.

Values
Valid values for new installations are TSO or
CICS. The default value is TSO. If the Q.PROFILES
table has been migrated from a prior release, you
might see the following values in this column in
addition to TSO or CICS.
CMS

Used in QMF Version 7.2 and earlier
CICSMVS

Used in QMF Version 7.2 and earlier to
distinguish QMF installations under z/OS from
those under VSE

CICSVSE
Used in QMF Version 7.2 and earlier to
distinguish QMF installations under VSE from
those under z/OS

WINDOWS
Used in QMF for Workstation and QMF for
WebSphere®

Related concepts
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Establishing a profile structure for your site
Users can use either a generic or a unique profile to access QMF. If necessary, you can restrict QMF
access to those users who have unique profiles.

Generic profiles

You can allow users to use the default QMF profile, which is the row of the Q.PROFILES table where the
CREATOR column has a value of SYSTEM.

The Q.PROFILES table is shipped with default profile values in this row. You can change the default values
to create a generic profile that meets the needs of your site.

180 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Unique profiles

If you choose not to maintain a generic QMF profile, you must create a unique row in the Q.PROFILES
table for each user. Set the CREATOR column of Q.PROFILES to the primary authorization ID of the user
and customize other column values according to individual needs. If you start QMF in TSO with a
DSQSPRID value of TSOID, the CREATOR column is the user's TSO logon ID.

You can create unique profiles for some users at your site and allow other users to use the generic profile.

Restricting QMF usage to those with unique profiles

It can be difficult to track individual resource use if several people use QMF under the common, default
SYSTEM profile. To restrict use of QMF to users who have unique profiles, delete the SYSTEM rows of
Q.PROFILES. The following table shows SQL statements that delete the rows. A statement that deletes
the SYSTEM row from the German version of the Q.PROFILES table is provided as an example of how to
delete the row for an NLF. For the value of the TRANSLATION column, use the name that QMF uses for the
NLF.

Important: For both English and NLF environments, always specify a TRANSLATION value when deleting
rows from Q.PROFILES, or more rows (across different national language environments) might be deleted
than you intend. Additionally, always use a WHERE clause, or all rows of Q.PROFILES are deleted.

Table 37. Restricting use of QMF to users who have unique profiles

Base QMF (English) German NLF

DELETE FROM Q.PROFILES
WHERE CREATOR='SYSTEM'
AND TRANSLATION='ENGLISH'

DELETE FROM Q.PROFILES
WHERE CREATOR='SYSTEM'
AND TRANSLATION='DEUTSCH'

After you delete the SYSTEM row of Q.PROFILES, you must create a unique profile for every QMF user;
otherwise, your users will not be able to use QMF.

Related tasks
Adding a user profile
Add a row in the Q.PROFILES table for each unique user profile you create.
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Related reference
About the Q.PROFILES table
Each aspect of a user's QMF session maps to a value in a column of the Q.PROFILES control table. Each
row of the Q.PROFILES table is an individual user profile.

Adding a user profile
Add a row in the Q.PROFILES table for each unique user profile you create.

About this task

When QMF is started, it determines which users are authorized to establish a QMF session by searching
the CREATOR, ENVIRONMENT, and TRANSLATION columns of the Q.PROFILES table. QMF searches for
specific profile values in the following order:

1. CREATOR=userid, ENVIRONMENT=current operating environment
2. If running in CICS, CREATOR=userid, ENVIRONMENT=CICS
3. CREATOR=userid, ENVIRONMENT=NULL
4. CREATOR=SYSTEM, ENVIRONMENT=current operating environment

Chapter 11. Registering users and setting privileges 181

5. If running in CICS, CREATOR=SYSTEM, ENVIRONMENT=CICS
6. CREATOR=SYSTEM, ENVIRONMENT=NULL

QMF must find values for CREATOR and ENVIRONMENT that match one of the pairs in the preceding list,
or QMF initialization ends in an error before the QMF home panel is displayed. If the values in the
CREATOR column of your Q.PROFILES table are TSO logon IDs instead of Db2 primary authorization IDs,
set the DSQSPRID parameter to TSOID when you start QMF; otherwise authentication with the
Q.PROFILES table fails when users attempt to log on to QMF.

Procedure

To add a user profile to the Q.PROFILES table, follow these steps:
1. Write an SQL INSERT statement to add the row.

Tip: To make maintenance tasks more efficient, a single SQL query can contain multiple SQL
maintenance statements. To create a query that includes multiple statements, place a semicolon
between statements and set the DSQEC_RUN_MQ global variable to 1. Information about how to
create queries that include multiple statements as well as restrictions on the types of statements that
can be used is included in the description of the RUN command. Alternatively, you can create a
template query that describes a standard profile and use a substitution variable for any value that will
change from one profile to another (such as the value for the CREATOR column).

2. At a minimum, specify values for the CREATOR, ENVIRONMENT, and TRANSLATION columns of the
table:

• CREATOR

Specify a value of SYSTEM if you are creating a generic QMF profile. If you are creating a unique
profile, specify the authorization ID of the user. The database uses this ID to determine if the user is
authorized to use the database.

• ENVIRONMENT

Specify a value of CICS or TSO. A value of TSO includes TSO, ISPF, or native z/OS.
• TRANSLATION

Specify ENGLISH or the translated value for the NLF you are using. For example, profile rows for
French users contain FRANCAIS in the TRANSLATION column.

Always specify a TRANSLATION value when inserting a row into Q.PROFILES, or the TRANSLATION
value defaults to a null value and the profile row is automatically ignored.

You can establish multiple NLF profiles for the same user. For example, a user can have a profile with
one set of values in one national language and a profile with a different set of values in another
national language.

3. Issue the RUN QUERY command to add the profile rows.

Example

This table shows sample SQL that creates unique profiles in the TSO environment for users with SQL
authorization IDs of JONES (base QMF, or English) and SCHMIDT (German NLF).

Table 38. Creating a user profile on TSO

Base QMF (English) German NLF

INSERT INTO Q.PROFILES
(CREATOR, LANGUAGE, SPACE, TRANSLATION,
PFKEYS, SYNONYMS, RESOURCE_GROUP, ENVIRONMENT)
VALUES ('JONES', 'PROMPTED', 'SAVEIT'
'ENGLISH', 'PFKEYS', 'COMMAND_SYNONYMS'
'NONPRIME', 'TSO')

INSERT INTO Q.PROFILES
(CREATOR, LANGUAGE, SPACE, TRANSLATION,
PFKEYS, SYNONYMS, RESOURCE_GROUP,ENVIRONMENT)
VALUES ('SCHMIDT', 'MENUE', 'STUT2BER'
'DEUTSCH', 'DEUTASTEN', 'COMMAND_SYNONYM_D',
'SCHICHT', 'TSO')

182 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Related reference
About the Q.PROFILES table
Each aspect of a user's QMF session maps to a value in a column of the Q.PROFILES control table. Each
row of the Q.PROFILES table is an individual user profile.

Updating a user profile
You can change the values in a user's profile by using either the SET PROFILE command or SQL UPDATE
statements.

Using the SET PROFILE command
Using the SET PROFILE is quicker than using SQL UPDATE statements, because you can enter it from the
QMF command line with minimal typing.

Values set using SET PROFILE remain effective only until the user's session ends; use the SAVE PROFILE
command to save values you changed.

Because no special SQL privileges are required to use this command, your users can easily update their
own profiles. However, they cannot use SET PROFILE to update fields that you might use to customize
their QMF sessions. These fields are PFKEYS, SYNONYMS, and RESOURCE_GROUP. You can use SQL
UPDATE statements or the QMF Table Editor to update these Q.PROFILES fields.

Related concepts
Using SQL UPDATE statements
SQL UPDATE statements can be used to update all fields of the Q.PROFILES table, including SYNONYMS,
PFKEYS, and RESOURCE_GROUP.
Updating the SYSTEM profile
You can change the default values provided in the SYSTEM row of the Q.PROFILES table. However, any
user who needs different values than those you assigned for the SYSTEM row must have a unique profile
row.

Using SQL UPDATE statements
SQL UPDATE statements can be used to update all fields of the Q.PROFILES table, including SYNONYMS,
PFKEYS, and RESOURCE_GROUP.

Tip: To make maintenance tasks more efficient, a single SQL query can contain multiple SQL maintenance
statements. To create a query that includes multiple statements, place a semicolon between statements
and set the DSQEC_RUN_MQ global variable to 1. Information about how to create queries that include
multiple statements as well as restrictions on the types of statements that can be used is included in the
description of the RUN command.

Use an SQL UPDATE statement similar to the one in the following table to update existing user profiles.
This example changes the name of the table that stores a user's command synonyms. On the left is an
example statement for user JONES for base QMF (English); on the right is the same statement for user
SCHMIDT for the German NLF.

Table 39. Updating user profiles using an UPDATE statement for the Q.PROFILES table

Base QMF (English) German NLF

UPDATE Q.PROFILES
SET SYNONYMS='COMMAND_SYNONYMS'
WHERE CREATOR='JONES' AND
TRANSLATION='ENGLISH'

UPDATE Q.PROFILES
SET SYNONYMS='GUMMOW.XYZ'
WHERE CREATOR='SCHMIDT' AND
TRANSLATION='DEUTSCH'

Chapter 11. Registering users and setting privileges 183

Important: When running UPDATE, DELETE, and INSERT statements on the Q.PROFILES table, always
include the TRANSLATION column in the statement; otherwise, QMF applies the changes to all language
environments.

Related concepts
Using the SET PROFILE command
Using the SET PROFILE is quicker than using SQL UPDATE statements, because you can enter it from the
QMF command line with minimal typing.
Updating the SYSTEM profile
You can change the default values provided in the SYSTEM row of the Q.PROFILES table. However, any
user who needs different values than those you assigned for the SYSTEM row must have a unique profile
row.

Updating the SYSTEM profile
You can change the default values provided in the SYSTEM row of the Q.PROFILES table. However, any
user who needs different values than those you assigned for the SYSTEM row must have a unique profile
row.

For example, suppose that your site has two groups of users: the PRIME group contains the majority of
QMF users, who all use the system during normal business hours; the NONPRIME group contains fewer
users, who all use the system during non-business hours. Suppose that PRIME is the default value for the
RESOURCE_GROUP field of the SYSTEM row in Q.PROFILES. You must formally enroll the users who are in
the NONPRIME group by giving them unique profile rows.

Related concepts
Using the SET PROFILE command
Using the SET PROFILE is quicker than using SQL UPDATE statements, because you can enter it from the
QMF command line with minimal typing.
Using SQL UPDATE statements
SQL UPDATE statements can be used to update all fields of the Q.PROFILES table, including SYNONYMS,
PFKEYS, and RESOURCE_GROUP.

Deleting a user profile
Periodically, you might need to delete obsolete user profiles from the Q.PROFILES table. Delete a user
profile from Q.PROFILES only when you are sure that objects created by the primary authorization ID or
the TSO logon ID associated with the profile are either deleted or transferred to other users.

Use a DELETE statement similar to the following one to delete a user profile. You can include several
DELETE statements in one SQL query to speed up maintenance tasks.

Table 40. Deleting a QMF user profile

Base QMF (English) German NLF

DELETE FROM Q.PROFILES
WHERE CREATOR='JONES'
AND TRANSLATION='ENGLISH'

DELETE FROM Q.PROFILES
WHERE CREATOR='SCHMIDT'
AND TRANSLATION='DEUTSCH'

Important: Make sure that each DELETE statement specifies a value for the TRANSLATION column if you
want to delete the user profile in a single NLF environment. If you do not specify a value for the
TRANSLATION column, QMF deletes the profile for all languages.

If the user whose profile you deleted had a private table space, use the DROP TABLESPACE statement
from the SQL Query panel if the space contains nothing you want to save. Also, you can use the SQL
DROP TABLE statement or QMF ERASE commands if you want to delete specific QMF or database objects.

184 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Providing access to QMF and database objects
QMF objects, such as queries and procedures, and functions such as the Table Editor, allow users to
access and manipulate data stored in tables in the database.

About this task

To enable users to work with the QMF and database objects that they need to access, you must grant
access to them. Because this data might be sensitive, you might need to control users' access to certain
objects.

Privileges required for QMF commands and functions
The process of controlling users' access to certain objects is started by determining the tasks that each
user needs to perform. Then review the SQL privileges required for users to run QMF queries and
commands and perform QMF functions.

For more information about privileges required to use QMF, review the following sections :

• “SQL privileges required for QMF commands” on page 185
• “SQL privileges required for prompted and QBE queries” on page 186
• “SQL privileges required for the Table Editor” on page 186

SQL privileges required for QMF commands

Using the following table, locate the QMF command that your users require and grant them the required
SQL privilege on the table or view they are working with.

Table 41. QMF commands and their SQL equivalents

QMF command SQL privilege required on objects referenced by the command

DISPLAY tablename/
viewname

SELECT

DRAW tablename/
viewname

SELECT

EDIT TABLE tablename/
viewname

The necessary privileges depend on the Table Editor mode.

EXPORT TABLE
tablename/viewname

SELECT

IMPORT TABLE
tablename/viewname

If the table exists, SELECT, DELETE, and INSERT privileges are required. To
include a comment, you must have either ownership of the table or DBADM
(or equivalent) authority for the database in which the table resides. If the
table does not exist, the user must have DBADM or equivalent authority for
the database, the USE privilege for the table space specified in the SPACE
field of the profile, or the CREATETAB privilege for the database in which the
table will be created.

Use the IMPORT command sparingly in CICS, because it can affect QMF
performance for other users in the same address space. QMF uses GET/PUT
services when operating under QSAM, which can lock out other QMF users in
the same CICS region during I/O operations.

PRINT tablename/
viewname

SELECT

RUN query Whatever privileges are used in the query

Chapter 11. Registering users and setting privileges 185

Table 41. QMF commands and their SQL equivalents (continued)

QMF command SQL privilege required on objects referenced by the command

RUN procedure Whatever privileges are used in the commands in the procedure

SAVE DATA If the table exists, SELECT, DELETE, and INSERT privileges for the table are
required.

If the table does not exist, you must have either the CREATETAB privilege or
DBADM (or equivalent) authority for the database or the USE privilege for the
table space specified in the SPACE field of the associated user profile.

To include a comment, you must have either ownership of the table or
DBADM (or equivalent) authority for the database where the table resides.

LIST tablename/
viewname

SELECT

SQL privileges required for prompted and QBE queries

Using the following table, locate the type of query your users need and grant them the SQL privilege on
the table or view against which the query runs.

Table 42. QMF query types and their SQL equivalents

Query type SQL privilege needed for the query

Prompted SELECT

QBE I. INSERT

QBE P. SELECT

QBE U. UPDATE

QBE D. DELETE

SQL privileges required for the Table Editor

Using the following table, locate the Table Editor function your users need to use and grant them the SQL
privilege on the table or view that they need to edit.

Table 43. Table Editor commands and their SQL equivalents

Table Editor function SQL privilege needed on tables or views being
edited

ADD INSERT

SEARCH SELECT

CHANGE UPDATE

DELETE DELETE

Related concepts
Granting a user the privileges to create tables

186 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

The authority that you must grant to a user who creates tables varies. One set of privileges are required
when you specify a database and table space name in the SPACE field of the QMF user profile. A different
set of privileges is required when you specify only a database or no value.

Granting and revoking privileges
Users own objects that they create and save in the database (unless they create a table with a different
owner). The object owner can grant or revoke SQL privileges on these objects to other users.

Anyone with DBADM or equivalent authority can grant or revoke SQL privileges for any object in the
database for which they hold this authority. If you do not have DBADM or equivalent authority and you do
not own the object, you must have the grant option for the privileges you hold on that object. (The grant
option is specified by using the WITH GRANT OPTION clause on the GRANT statement.) When granting or
revoking privileges on objects you do not own, qualify the object with the SQL authorization ID of the
owner:

JONES.ORDER_BACKLOG

SQL authorization IDs can be implicit qualifiers. Queries can contain unqualified table, view, and index
names. QMF commands can contain unqualified query, procedure, form, and analytics objects names. In
these cases, the user's SQL authorization ID serves as the implicit qualifier. For example, suppose that a
user is operating with JONES as the current SQL authorization ID. During the QMF session, the user issues
the following command:

RUN QUERYA (FORM=FORMA

This command runs the following SQL query:

SELECT * FROM TABLEA

The RUN command refers to the query JONES.QUERYA and the form refers to the form JONES.FORMA.
The SELECT command refers to the table JONES.TABLEA.

If you attempt to create a table, view, index, or alias with an unqualified name, your current authorization
ID becomes the owner of the object. That ID must have the privileges needed to create the object.

You must have DBADM or equivalent authority to create a table, view, or index with a qualified name that
is not your authorization ID.

The SQL GRANT statement
You can use the SQL GRANT statement to grant SQL SELECT, UPDATE, INSERT, DELETE, and other
privileges on tables or views.

For example, suppose user JONES needs to use the Change mode of the Table Editor for a table called
ORDER_BACKLOG. To grant JONES the UPDATE privilege on the ORDER_BACKLOG table, issue the
following statement:

GRANT UPDATE ON ORDER_BACKLOG TO JONES WITH GRANT OPTION

The WITH GRANT OPTION clause indicates that JONES can grant to other users any of the SQL privileges
you granted for the ORDER_BACKLOG table.

Use the keyword PUBLIC to grant SQL privileges to all local QMF users. For example, use the following
statement to grant the INSERT privilege on the ORDER_BACKLOG table to all users in the local database,
and allow each of those users to grant the INSERT privilege to other users:

GRANT INSERT ON ORDER_BACKLOG TO PUBLIC WITH GRANT OPTION

Chapter 11. Registering users and setting privileges 187

To make an object available to local and remote users for Db2 for z/OS subsystems that have distributed
data that is enabled, grant authority to PUBLIC AT ALL LOCATIONS. For example, the following
statements give the SELECT privilege on the table Q.STAFF:

GRANT SELECT ON TABLE Q.STAFF TO PUBLIC
GRANT SELECT ON TABLE Q.STAFF TO PUBLIC AT ALL LOCATIONS

Q.STAFF is one of the QMF sample tables. Similar statements are run for all of the QMF sample tables
during QMF installation so that all users have the SELECT privilege on the sample tables.

Tip: To make maintenance tasks more efficient, a single SQL query can contain multiple SQL maintenance
statements. To create a query that includes multiple statements, place a semicolon between statements
and set the DSQEC_RUN_MQ global variable to 1. Information about how to create queries that include
multiple statements as well as restrictions on the types of statements that can be used is included in the
description of the RUN command. Alternatively, you can create a template query that uses QMF variables
in place of the parts of the query that frequently change (such as the type of privilege, the object name,
and the authorization ID). You might also consider using a QMF procedure to do the task if there is more
than one query.

The SQL REVOKE statement
Issue REVOKE statements to withdraw privileges.

For example, the following statement withdraws the SELECT privilege from user BAKER on the table
SMITH.TABLEA:

REVOKE SELECT ON TABLE SMITH.TABLEA FROM BAKER

You can always withdraw grants for which your authorization ID is the grantor.

If you revoke a privilege from a grantee and find that the grantee still has the privilege, that grantee
received the privilege from another user. If your SQL authorization ID has SYSADM or equivalent
authority, however, you can revoke the grants of others. By using SYSADM or equivalent authority you can
revoke privileges even if they are a result of multiple grants. For example, BAKER has the SELECT
privilege on the table SMITH.TABLEA. The QMF administrator wants to remove this privilege from BAKER,
but does not know who the grantors are. The QMF administrator, who has SYSADM authority, can run the
following statement:

REVOKE SELECT ON TABLE SMITH.TABLEA FROM BAKER BY ALL

The clause BY ALL removes every grant of the privilege.

Use the PUBLIC keyword to revoke privileges from all QMF users.

You cannot remove a table privilege from the owner of a table. Additionally, you cannot remove an
implied database privilege, such as CREATETAB, from someone with, for example, DBADM authority over
a database.

Database privileges have a cascading structure. Privileges that are revoked from a user are automatically
revoked from any additional users to whom that user granted them.

The loss of privileges can spread to many users, especially if some of those users who lost privileges
granted privileges to others. With this loss of privileges might come other losses as well:

• The owner of a view loses the view if the owner loses the SELECT privilege on one of the underlying
objects. Views for which the lost view is an underlying object are also lost, and so on.

• A Db2 application plan can become invalid if the authorization ID under which it was bound loses a
privilege that the plan needs for the operation of the program. For example, if the SELECT privilege is
lost on a table, no one can run the program.

Problems that result from cascading privileges are more likely when many users can grant database
privileges. So consider carefully which users in your organization you want to be responsible for this task.

Tip: If you must revoke different privileges from many users at once, you can include multiple REVOKE
statements in a single SQL query. To create a query that includes multiple statements, place a semicolon

188 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

between statements and set the DSQEC_RUN_MQ global variable to 1. Information about how to create
queries that include multiple statements as well as restrictions on the types of statements that can be
used is included in the description of the RUN command. Alternatively, you can create a template query
that uses QMF variables in place of the parts of the query that frequently change (such as the type of
privilege, the object name, and the authorization ID). You might also use a QMF procedure to do the task if
there is more than one query.

Setting standards for objects and allowing uncommitted read
QMF objects might be shared among many users, so the objects should have names that indicate what
the object is and how it should be used. Allowing uncommitted reads can be useful in a distributed
environment.

Sharing QMF objects with other users
You can enable other QMF users to access QMF objects that you own.

You can enable access to QMF queries, forms, and procedures by using the SHARE parameter of the QMF
SAVE command. In QMF Analytics for TSO, you can enable access to your chart or statistics specifications
by using the SHARE option that is available through the Save function key. Charts and statistics
specifications are saved as analytics objects. All QMF folder objects contain information about the actual
QMF object (query, procedure, form, or analytics object); the actual QMF object identifies the owner and
the SHARE option for that object.

Encourage users to use standard names and to provide comments that describe for other users the
purpose of queries, forms, procedures, tables, and analytics objects. Tables and views require more
maintenance and administration, so consider establishing special guidelines for creating these objects.

Specify SHARE=YES when you save an object to allow any other user to display the query and use it in a
QMF command that does not replace or erase it. For example, the following command saves the current
query as ORDER_QUERY and allows any other user to display and run it:

SAVE QUERY AS ORDER_QUERY (SHARE=YES

Figure 31. Sharing a QMF object

Note that to save an ANALYTIC object, you must use the Save function key in QMF Analytics for TSO.

The default is defined by the global variable DSQEC_SHARE.

The owner of an object can change its shared status at any time by using a DISPLAY command followed
by a SAVE command, as shown here:

DISPLAY ORDER_QUERY
SAVE QUERY AS ORDER_QUERY (SHARE=NO

Figure 32. Changing the shared status of a QMF object

Allowing uncommitted read
If you want your QMF session to allow uncommitted read, you can specify a value for the global variable
DSQEC_ISOLATION in the Q.SYSTEM_INI procedure.

Values can be:
'0'

Isolation level UR (uncommitted read)

Chapter 11. Registering users and setting privileges 189

Uncommitted read can be useful in a distributed environment. However, if you are using uncommitted
read, any reports that users view might contain data that was deleted from the database after the
report was displayed.

'1'
Isolation level CS (cursor stability)

This is the default. When using cursor stability, QMF does not display the report until all database
commands affecting the data in the report have been completed.

Users’ object lists
QMF users periodically need to list tables and views that they have saved in the database or view
comments that show them what purpose a table or view serves or what type of data a column in the table
or view contains. The QMF LIST and DESCRIBE commands perform these functions.

Customizing users' object lists
Using the default views supplied by QMF for your table lists and column information can increase
processing time, because Db2 gathers authorization information from the SYSIBM.SYSTABAUTH table. If
you do not need the extra security provided by these authorization checks, consider creating your own
views that generate a list of objects stored in the database.

About this task

Note: The installation option, EXTSEC, defined in installation exec QMF1210.SDSQEXCE(DSQ1DEFS), can
influence the definition of the default views defined in installation job QMF1210.SDSQSAPE(DSQ1BVW).
When set, the default views can be defined without any SYSIBM.SYSTABAUTH dependency.

To customize users' object lists, you create your own view, then run a SET GLOBAL command to use the
view.

What to do next

In addition to customizing the default object list function, you can install an enhancement to the LIST
command that lists tables and views authorized to either a primary authorization ID or a secondary
authorization ID. This enhancement eliminates the need to grant privileges on these objects to PUBLIC if
you want to see these objects in list results.

Related tasks
Installing the enhanced LIST command function (z/OS only)
When the enhanced LIST command function is installed, privileges for tables and views must be granted
only to a user's primary or secondary authorization ID, instead of to PUBLIC, to be included in object lists
that are generated by the LIST TABLES or LIST ALL command when the OWNER=ALL option is specified
on the command.

Creating your own list view
You create your own view for the LIST or DESCRIBE commands by using a CREATE statement.

This statement eliminates duplicate rows in the view and, although Db2 spends more time before
returning rows to QMF, there is less data transfer between the database and the user machine, producing
better performance. You can name your customized view any name that is valid in QMF.

190 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

CREATE VIEW Q.DATABASE_OBJECTS
 (OWNER,TNAME,TYPE,SUBTYPE,MODEL, RESTRICTED, REMARKS,
 CREATED,MODIFIED,LAST_USED,LABEL,LOCATION,OWNER_AT_LOCATION,
 NAME_AT_LOCATION)
AS SELECT CREATOR,TNAME,
'TABLE',TABLETYPE,' ',' ',REMARKS,
 ' ',' ',' ',TLABEL,' ',' ',' '
FROM SYSIBM.SYSTABLES
 WHERE TNAME IN (SELECT TTNAME
 FROM SYSIBM.SYSTABAUTH
 WHERE TCREATOR = A.CREATOR
 AND GRANTEETYPE = ' &'
 AND GRANTEE IN (USER, 'PUBLIC'))

Figure 33. Customizing your object lists using global variables

Tip: To make maintenance tasks more efficient, a single SQL query can contain multiple SQL maintenance
statements. To create a query that includes multiple statements, place a semicolon between statements
and set the DSQEC_RUN_MQ global variable to 1. Information about how to create queries that include
multiple statements as well as restrictions on the types of statements that can be used is included in the
description of the RUN command.

Follow these rules if you are creating a list view of your own:

• The view must have the same column names as the corresponding view supplied by QMF. The column
names in the CREATE VIEW statement of the alternative view can be in any order.

• All columns must have a data type of CHAR or VARCHAR. QMF returns errors upon finding other data
types.

• Always supply values for OWNER, TNAME, TYPE, and CNAME. These columns cannot be null.

If you want to create a view that shows only the tables for which a user has privileges, but does not
require a join, consider defining a view that selects only from SYSIBM.SYSTABAUTH, but does not return
values for REMARKS or LABEL.

For other administrators, consider creating another view similar to the default QMF view, but that selects
only from SYSIBM.SYSTABLES or SYSIBM.SYSCOLUMNS (for column information). Then the
administrators can name this view in the DSQEC_COLS_LDB2 or DSQEC_COLS_RDB2 global variables and
access descriptive information for any columns in the database.

Making your new view the default view
To use a view that you have created instead of the default view, use a SET GLOBAL command to set the
appropriate global variable to the new view name.

For example:

SET GLOBAL (DSQEC_TABS_LDB2 = QMFADM.LOCAL_DB2_TABLES

Related concepts
Global variables that store the default view names
The names of the default views used in LIST and DESCRIBE commands are stored in QMF global
variables.
Related reference
Default views that are used for the commands

Chapter 11. Registering users and setting privileges 191

QMF provides default views during installation. How each view is used depends on whether you have
issued the LIST or DESCRIBE command as well as the location to which the command is directed.

Default behavior of the QMF LIST and DESCRIBE commands
When a user issues a LIST TABLES command or a DESCRIBE command for a column in a table, QMF
generates the required information from views that are defined on a set of database catalog tables. QMF
global variables are used to store the view names.

Default views that are used for the commands
QMF provides default views during installation. How each view is used depends on whether you have
issued the LIST or DESCRIBE command as well as the location to which the command is directed.

The SQL statement that creates the view is shown beneath each view name. These view definitions can
also be found in job DSQ0BCTV, which is run when you run job DSQ1BVW during installation.

The default views can return multiple identical rows if SYSIBM.SYSTABAUTH has multiple entries
authorizing the user or PUBLIC to a given table. When used by the QMF LIST or DESCRIBE commands,
rows with duplicate OWNER and TNAME (for the table view) or duplicate OWNER, TNAME, and CNAME
(for the column view) are ignored.

Q.DSQEC_TABS_LDB2L

Note: Depending on the value of installation parameter EXTSEC, the definitions of views
Q.DSQEC_TABS_LDB2L, Q.DSQEC_COLS_LDB2L, Q.DSQEC_TABS_RDB2L and Q.DSQEC_COLS_RDB2L
created at installation time may not include reference to the SYSIBM.SYSTABAUTH. EXTSEC
installation parameter, which is set in the QMF1210.SDSQEXCE(DSQ1DEFS) exec and is referenced by
the QMF1210.SDSQSAPE(DSQ1BVW) job. EXTSEC indicates whether internal or externity security
control is in place.

The view Q.DSQEC_TABS_LDB2L is used for LIST commands directed to the current location (the
database to which you are currently connected). This view is used for all database types except DB2
for VSE and VM.

The following SQL statements create the view. These statements apply to Db2 for z/OS databases
only. The DDL for Db2 for Linux, UNIX, and Windows and DB2 for iSeries can be found in job
DSQ0BCTV.

CREATE VIEW Q.DSQEC_TABS_LDB2L
 (OWNER,TNAME,TYPE,SUBTYPE,MODEL,RESTRICTED,REMARKS,
 CREATED,MODIFIED,LAST_USED,LABEL,LOCATION,OWNER_AT_LOCATION,
 NAME_AT_LOCATION)
 AS SELECT
 VARCHAR(RTRIM(T.CREATOR)),
 T.NAME,'TABLE',T.TYPE
 ,' ',' ',
 VARCHAR(RTRIM(SUBSTR(T.REMARKS, 1, 254))),
 ' ',' ',' ',VARCHAR(RTRIM(SUBSTR(T.LABEL, 1, 30)))
 ,SUBSTR(T.LOCATION, 1, 16),
 VARCHAR(RTRIM(T.TBCREATOR)),T.TBNAME
 FROM SYSIBM.SYSTABLES T
 ,(SELECT DISTINCT
 VARCHAR(RTRIM(TA.TCREATOR)), TA.TTNAME
 FROM SYSIBM.SYSTABAUTH TA
 WHERE TA.GRANTEETYPE=' '
 AND TA.GRANTEE IN (
 USER,CURRENT SQLID,CURRENT SCHEMA,
 'PUBLIC','PUBLIC*')
) AS UAT ("CREATOR","NAME")
 WHERE (T.CREATOR=UAT.CREATOR OR
 T.CREATOR=CURRENT SCHEMA)
 AND T.NAME=UAT.NAME
 AND T.TYPE IN ('T', 'V', 'H');

Q.DSQEC_TABS_RDB2L

The view Q.DSQEC_TABS_RDB2L is used for LIST commands that include the LOCATION parameter.
LIST commands that include the LOCATION parameter can be initiated from and directed to Db2 for
z/OS databases only.

192 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

The following SQL statements create the view:

CREATE VIEW Q.DSQEC_TABS_RDB2L
 (OWNER,TNAME,TYPE,SUBTYPE,MODEL,
 RESTRICTED,REMARKS,CREATED,MODIFIED,
 LAST_USED,LABEL,LOCATION,OWNER_AT_LOCATION,
 NAME_AT_LOCATION)
 AS SELECT VARCHAR(RTRIM(T.CREATOR)),T.NAME,'TABLE',T.TYPE
 ,' ',' ',
 VARCHAR(RTRIM(SUBSTR(T.REMARKS, 1, 254))),
 ' ',' ',' ',
 VARCHAR(RTRIM(SUBSTR(T.LABEL, 1, 30))),
 SUBSTR(T.LOCATION, 1, 16),
 VARCHAR(RTRIM(T.TBCREATOR)),T.TBNAME
 FROM SYSIBM.SYSTABLES T
 ,(SELECT DISTINCT
 VARCHAR(RTRIM(TA.TCREATOR)), TA.TTNAME
 FROM SYSIBM.SYSTABAUTH TA
 WHERE TA.GRANTEETYPE=' '
 AND TA.GRANTEE IN (
 USER,CURRENT SQLID,CURRENT SCHEMA,'PUBLIC*')
) AS UAT ("CREATOR","NAME")
 WHERE (T.CREATOR=UAT.CREATOR OR
 T.CREATOR=CURRENT SCHEMA)
 AND T.NAME=UAT.NAME
 AND T.TYPE IN ('T', 'V', 'H');

Q.DSQEC_COLS_LDB2L
The view Q.DSQEC_COLS_LDB2L is used for DESCRIBE commands issued for tables at the current
location (the database to which you are currently connected). This view is used for all database types
except DB2 for VSE and VM.

The following SQL statements create the view. These statements apply to Db2 for z/OS databases
only. The DDL for Db2 for Linux, UNIX, and Windows and DB2 for iSeries can be found in job
DSQ0BCTV.

CREATE VIEW Q.DSQEC_COLS_LDB2L
 (OWNER, TNAME, CNAME, REMARKS, LABEL)
 AS SELECT
 VARCHAR(RTRIM(C.TBCREATOR)),
 C.TBNAME,
 VARCHAR(RTRIM(SUBSTR(C.NAME, 1, 30))),
 VARCHAR(RTRIM(SUBSTR(C.REMARKS, 1, 254))),
 VARCHAR(RTRIM(SUBSTR(C.LABEL, 1, 30)))
 FROM SYSIBM.SYSCOLUMNS C
 ,(SELECT DISTINCT
 VARCHAR(RTRIM(TA.TCREATOR)), TA.TTNAME
 FROM SYSIBM.SYSTABAUTH TA
 WHERE TA.GRANTEETYPE=' '
 AND TA.GRANTEE IN (
 USER,CURRENT SQLID,CURRENT SCHEMA,
 'PUBLIC','PUBLIC*')
) AS UAT ("CREATOR","NAME")
 WHERE (C.TBCREATOR=UAT.CREATOR OR
 C.TBCREATOR=CURRENT SCHEMA)
 AND C.TBNAME=UAT.NAME;

Q.DSQEC_COLS_RDB2L

The view Q.DSQEC_COLS_RDB2L is used for DESCRIBE commands for Db2 for z/OS databases only.

The following SQL statements create the view:

CREATE VIEW Q.DSQEC_COLS_RDB2L
 (OWNER, TNAME, CNAME, REMARKS, LABEL)
 AS SELECT VARCHAR(RTRIM(C.TBCREATOR)),
 C.TBNAME,
 VARCHAR(RTRIM(SUBSTR(C.NAME, 1, 30))),
 VARCHAR(RTRIM(SUBSTR(C.REMARKS, 1, 254))),
 VARCHAR(RTRIM(SUBSTR(C.LABEL, 1, 30)))
 FROM SYSIBM.SYSCOLUMNS C
 ,(SELECT
 VARCHAR(RTRIM(TA.TCREATOR)), TA.TTNAME
 FROM SYSIBM.SYSTABAUTH TA
 WHERE TA.GRANTEETYPE=' '
 AND TA.GRANTEE IN (

Chapter 11. Registering users and setting privileges 193

 USER,CURRENT SQLID,'PUBLIC*'
)
) AS UAT ("CREATOR","NAME")
 WHERE C.TBCREATOR=UAT.CREATOR AND C.TBNAME=UAT.NAME

Q.DSQEC_ALIASESL

The view Q.DSQEC_ALIASESL selects only the list of aliases for a list of tables, or the column
information for an alias, for all database types except DB2 for VSE and VM.

The following SQL statements create the view. These statements apply to Db2 for z/OS databases
only. The DDL for Db2 for Linux, UNIX, and Windows and DB2 for iSeries can be found in job
DSQ0BCTV.

CREATE VIEW Q.DSQEC_ALIASESL
 (OWNER, TNAME, TYPE, SUBTYPE, MODEL,
 RESTRICTED, REMARKS, CREATED, MODIFIED,
 LAST_USED, LABEL, LOCATION,
 OWNER_AT_LOCATION, NAME_AT_LOCATION)
 AS SELECT
 VARCHAR(RTRIM(T.CREATOR)),T.NAME,'TABLE',T.TYPE
 ,' ',' ',VARCHAR(RTRIM(SUBSTR(T.REMARKS, 1, 254))),
 ' ',' ',' ',
 VARCHAR(RTRIM(SUBSTR(T.LABEL, 1, 30))),
 SUBSTR(T.LOCATION, 1, 16),
 VARCHAR(RTRIM(T.TBCREATOR)),T.TBNAME
 FROM SYSIBM.SYSTABLES T
 WHERE T.CREATOR
 IN (USER,CURRENT SQLID,CURRENT SCHEMA)
 AND T.TYPE = 'A';

Q.DSQEC_TABS_SQLL
The view Q.DSQEC_TABS_SQLL is used for LIST commands that are directed to a DB2 for VSE and VM
database to which you are currently connected.

The following SQL statement creates the view:

CREATE VIEW Q.DSQEC_TABS_SQLL
 (OWNER,TNAME,TYPE,SUBTYPE,MODEL,RESTRICTED,REMARKS,
 CREATED,MODIFIED,LAST_USED,LABEL,LOCATION,
 OWNER_AT_LOCATION,NAME_AT_LOCATION)
 AS SELECT
 STRIP(CREATOR),TNAME,'TABLE',TABLETYPE,' ',' ',
 REMARKS,' ',' ',' ',
 TLABEL,' ',' ',' '
 FROM SYSTEM.SYSCATALOG, SYSTEM.SYSTABAUTH
 WHERE CREATOR = TCREATOR AND TNAME=TTNAME AND
 GRANTEETYPE = ' ' AND
 GRANTEE IN (USER,'PUBLIC')

Q.DSQEC_COLS_SQLL
The view Q.DSQEC_COLS_SQLL is used for DESCRIBE commands that are directed to a DB2 for VSE
and VM database to which you are currently connected.

The following SQL statement creates the view:

CREATE VIEW Q.DSQEC_COLS_SQLL
 (OWNER, TNAME, CNAME, REMARKS,LABEL)
 AS SELECT
 STRIP(CREATOR), TNAME, CNAME, REMARKS, CLABEL
 FROM SYSTEM.SYSCOLUMNS, SYSTEM.SYSTABAUTH
 WHERE TCREATOR = CREATOR AND TTNAME = TNAME AND
 GRANTEETYPE = ' ' AND GRANTEE IN (USER,'PUBLIC')

Global variables that store the default view names
The names of the default views used in LIST and DESCRIBE commands are stored in QMF global
variables.
For LIST commands:

• If the command is directed to the local Db2 for z/OS database (or if you issue a CONNECT command
to connect to a remote database other than DB2 for VSE and VM and then issue a LIST TABLES

194 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

command), QMF uses the views named in the DSQEC_ALIASES and DSQEC_TABS_LDB2 global
variables. By default, the DSQEC_ALIASES global variable is set to Q.DSQEC_ALIASESL and the
DSQEC_TABS_LDB2 global variable is set to Q.DSQEC_TABS_LDB2L.

• If you issue a LIST TABLES command that includes the LOCATION parameter, QMF uses the view
named in the DSQEC_TABS_RDB2 global variable, which defaults to the view
Q.DSQEC_TABS_RDB2L. LIST commands with the LOCATION parameter can be initiated from and
directed to Db2 for z/OS databases only.

• If you issue a CONNECT command to connect to a DB2 for VSE and VM database and then issue a
LIST TABLES command, QMF uses the view named in the DSQEC_TABS_SQL global variable, which
is Q.DSQEC_TABS_SQLL by default.

For DESCRIBE commands:

When you issue a DESCRIBE command, the views that QMF uses to generate the required information
also depend on the database to which the command is directed:

• If the command is directed to the local Db2 for z/OS database (or if you issue a CONNECT command
to connect to a remote database other than DB2 for VSE and VM and then issue the DESCRIBE
command), QMF uses the view named in the DSQEC_COLS_LDB2 global variable. This variable is set
to Q.DSQEC_COLS_LDB2L by default.

• If you issue a LIST TABLES command that includes the LOCATION parameter and then issue the
DESCRIBE command for one of the tables or views in the list, QMF uses the view named in the
DSQEC_COLS_RDB2 global variable. This variable is set to Q.DSQEC_COLS_RDB2L by default. LIST
commands with the LOCATION parameter can be initiated from and directed to Db2 for z/OS
databases only.

• If you issue a CONNECT command to connect to a DB2 for VSE and VM database and then issue a
LIST TABLES command followed by a DESCRIBE command for one of the tables or views in the list,
QMF uses the views named in the DSQEC_COLS_SQL global variable. This variable is set to
Q.DSQEC_COLS_SQLL by default.

Related reference
Default views that are used for the commands
QMF provides default views during installation. How each view is used depends on whether you have
issued the LIST or DESCRIBE command as well as the location to which the command is directed.

Object list storage requirements
For the LIST command, there are two sets of storage requirements for each row of the object list.

These are the storage requirements for each row:

• The QMF internal RPT record collection requires:

– Object OWNER key information (50 bytes)
– REMARKS (up to 254 bytes)
– TABLE with a LABEL (up to 30 bytes)
– ALIAS (42 bytes)
– Object information for QUERY, PROC, FORM, and ANALYTIC (63 bytes)

• Displayed data and control information requires 130 bytes plus the actual number of bytes for
REMARKS (up to 254 bytes) and the actual number of bytes for the LABEL associated with a table (up to
30 bytes).

Related reference
QMF views
These views are shipped with QMF. QMF uses these views on the platforms indicated in the table to
create object lists when the QMF LIST command is issued.

Chapter 11. Registering users and setting privileges 195

196 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 12. Creating and maintaining objects in the
database

The way in which you set up and maintain QMF and database objects can impact how easily your users
are able to use QMF as well as the security of your data and the performance of your system.

Enabling users to create tables in the database
Depending on the needs of your site, you might need to create tables for your users or enable them to
create their own tables.

A QMF user can create a table using any of these methods:

• SQL CREATE TABLE statement

Run the SQL CREATE TABLE statement from the SQL Query panel or directly from the database.

Tip: A single SQL query can contain multiple SQL maintenance statements. To create a query that
includes multiple statements, place a semicolon between statements and set the DSQEC_RUN_MQ
global variable to 1. Information about how to create queries that include multiple statements as well
as restrictions on the types of statements that can be used is included in the description of the RUN
command.

• QMF DISPLAY command, followed by the SAVE DATA command

Information about the syntax and options of the SAVE DATA command is included in the description of
the SAVE command.

• QMF IMPORT command

Procedure for creating tables
The steps for creating a table varies depending on whether you are creating the tables for your users or
users are creating their own tables.

Procedure

• If you are creating tables for your users, follow these steps:
a) Create a table space and define it to the database before its first use.
b) To create the table, issue either an SQL CREATE TABLE statement, a QMF DISPLAY command

followed by a SAVE DATA command, or an IMPORT command.
c) To improve Db2 performance, create one or more indexes on the tables you create.
d) Fill the tables with data.

Use the Db2 for z/OS LOAD utility, QMF IMPORT commands (for transferring small tables), or other
methods.

e) Grant Db2 and SQL privileges for the tables to users who need them.
• If users are creating tables themselves, follow these steps:

a) Grant a user Db2 CREATETS or CREATETAB authority. If you choose to grant only CREATETAB
authority, create a table space and define it to the database before its first use.

b) Assign the table space in the user's QMF profile, using an SQL UPDATE statement for the SPACE
field.
You can update the SYSTEM profile if you need to change its default values.

c) Grant CREATETAB authority to users creating their own tables in table spaces, or assign CREATETS
authority and allow users to create table spaces for their own use.

© Copyright IBM Corp. 1982, 2020 197

Users automatically have all SQL privileges on tables and table spaces they create.
d) Provide education on the SQL CREATE TABLE statement, QMF SAVE DATA and IMPORT commands,

and other guidelines your site has for creating tables.
e) Grant Db2 and SQL privileges on any table or view on which users issue SAVE DATA or IMPORT

commands to create new tables.
Grant at least the SELECT privilege, or QMF cannot read the data to create a new table.

Assigning a table space for SAVE DATA, IMPORT, and RUN QUERY commands
Where tables are saved in the database when users issue SAVE DATA, IMPORT TABLE or RUN QUERY
commands depends on the setting of the SPACE option of the QMF™ profile or the value of the SPACE
keyword on the command.

Valid values for the SPACE field of the profile

Users using the QMF SYSTEM profile have a default database and table space of DSQDBDEF.DSQTSDEF.
Newer installations will have a default SPACE value of DATABASE "DSQDBDEF". This value may be
overridden by using the keyword value SPACE on the commands.

You can set the SPACE option of the profile with the following values:

• databasename.spacename

Specify both a database and a table space to have QMF save the table in that specific table space.
Throughout this topic, this is known as an explicit table space. The table space that you specify must
have already been created. QMF will not create the table space.

For example, the following query configures the profile of a QMF user named SMITH to save tables in
table space TSPACE1, in database DBASE1:

UPDATE Q.PROFILES
 SET SPACE='DBASE1.TSPACE1'
 WHERE CREATOR='SMITH' AND TRANSLATION='ENGLISH'

However, if all users are using the same table space, you could experience resource contention.
• DATABASE "databasename"

When you specify the DATABASE keyword followed by a database name in quotes, each table is created
in a separate table space created implicitly and exclusively for that table by Db2. Such implicit table
spaces have default LOCKSIZE, BUFFERPOOL, STOGROUP, and space attributes, and have names that
match the name of the table that was created. QMF recommends this method.

For example, the following value for the SPACE field of the Q.PROFILES table saves each table in a
separate table space in the DSQDBDEF database:

DATABASE "DSQDBDEF"

Limiting each table space to one table only minimizes resource contention. Both partitioned and
universal table space schemes impose a limit of one table per table space. QMF recommends this
method for SAVE DATA operations.

• NULL or blank

If the SPACE field of the QMF profile is null or blank, SAVE DATA or IMPORT TABLE commands create
tables in implicitly generated table space names in the DSNDB04 database by default.

Factors to consider when choosing a table space scheme
Consider these factors when you decide whether to explicitly create table spaces or configure QMF to
implicitly create them when they are needed:
Table sizes

The default attributes for implicitly created table spaces might not be suitable for the intended tables.
The default values for the space parameters (PRIQTY and SECQTY) are intended for small sample and

198 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

summary tables. If the user's tables are large, the explicit table space option is probably the better
choice.

If the table space is too small, the new table remains in the table space but is empty. The table space
must therefore be enlarged before the SAVE or IMPORT commands can run successfully.

Maintenance
When you use the QMF explicit table space option, you simplify maintenance if you take advantage of
segmented table spaces. When a table is dropped in a segmented table space, its segments become
immediately available for reuse when the drop is committed. It is not necessary to wait for
reorganization of the table space.

Implicitly created table spaces can also simplify maintenance. An implicitly created table space is
erased automatically when the table it contains is erased.

QMF for TSO and CICS recommends using implicitly created universal table spaces for SAVE DATA,
IMPORT TABLE, and RUN QUERY operations. For new QMF installations, this is the default method of
operation.

Choose the method which best conforms to your site's standards.

Resource contention
To avoid resource contention, use either the explicit table space option with a segmented table space
or implicitly created, universal tablespaces. With a segmented table space, when a table is locked, the
lock does not interfere with access to segments of other tables.

Integrity and security
You might have to grant the user certain Db2 privileges that the user would not otherwise need. With
the explicit table space option, you can limit these added privileges to the creation of tables in the
chosen table space. With the implicit table space option, you must grant the user the privilege to
create table spaces for the database, and you cannot restrict this privilege to table spaces created
with the SAVE and IMPORT commands.

Convenience
An explicitly created table space named DSQDBDEF.DSQTSDEF is the default table space for users
using the QMF SYSTEM profile. It is created during QMF installation and is used in the installation
verification procedures. You might find that this table space is large enough to hold the tables of your
users.

This table space should be used by multiple users only if the tables are primarily read-only; otherwise
resource contention could prevent necessary updates.

Granting a user the privileges to create tables
The authority that you must grant to a user who creates tables varies. One set of privileges are required
when you specify a database and table space name in the SPACE field of the QMF user profile. A different
set of privileges is required when you specify only a database or no value.
Privileges that are required for explicitly created table spaces:

At a minimum, the user needs the CREATETAB privilege for the database and the USE privilege on the
receiving table space.

If you want to allow a user to create tables, but want to maintain control over how much resource is
used, assign a table space for the user rather than granting CREATETS authority. That way, you can
control the size of the table space and the amount of resource used.

Privileges that are required for implicitly created table spaces:
At a minimum, the user needs the CREATETAB and CREATETS privileges on the database.

Users of the default Db2 for z/OS database, DSNDB04, might already have some of the preceding
privileges. During database installation, the CREATETAB and CREATETS privileges for the default
database are granted to PUBLIC. A user of the default database, operating under the implicit table space
option, automatically has the minimum authority to create tables. If, instead, this user operates under the
explicit table space option, only the USE privilege must be granted.

Chapter 12. Creating and maintaining objects in the database 199

Important: Do not grant privileges to any of the databases that are used exclusively by Db2 itself. These
databases include DSNDB01, DSNDB03, and DSNDB05.

When users create tables for others, the owner qualifier (the owner of the object) must be the user's
primary or secondary authorization ID. With other IDs, the appropriate CREATE table statement might
run, but INSERT statements might not run. When users create their own tables after the table structure is
created, the users have the necessary INSERT privilege. All that is needed is the privilege to run the
CREATE TABLE statement.

Related concepts
Valid values for the SPACE field of the profile

Using views to filter sensitive data
You can use views to filter sensitive data from certain users.

Creating a view
Use the CREATE VIEW statement to create a view.

For example, suppose that you want to create a view that is based on the table SMITH.STAFF, which
contains personnel information. Each row in the table represents an employee. For each row, you want
the view to show the employee's name, department, job classification, and years of service. You do not
want it to show the employee's salary and commission.

You can create the view with a SQL statement like the following one.

CREATE VIEW VIEWA AS
 SELECT NAME, DEPT, JOB, YEARS
 FROM SMITH.STAFF

To create a view, the user's SQL authorization ID must have, at a minimum, the SELECT privilege on each
of the underlying objects of the view.

If the owner of a view loses the SELECT privilege on one or more of the underlying objects, the view is
dropped from the system. Any views that use that dropped view as an underlying object are also dropped,
and so on.

Granting privileges for a view
As with tables, you can grant SELECT, INSERT, UPDATE, and DELETE privileges on a view.

With the SELECT privilege, a person can use the view just like a table in SELECT queries and subqueries.
With the other privileges, a person can modify the data in the table underlying the view.

Granting a privilege for a view begins with the owner of the view. The privileges the owner can grant
depend on the privileges the owner has on the underlying objects of the view. These are the tables and
views that are named in the FROM clause of the view's defining CREATE statement. For example, the
underlying object of the view created with this statement is the table SMITH.STAFF:

CREATE VIEW VIEWA AS
 SELECT NAME, DEPT, JOB, YEARS
 FROM SMITH.STAFF

When the underlying objects include views, or objects not owned by the owner of the view, the privileges
the owner holds on the underlying objects might vary widely. In this situation, the following rules apply:

• The owner of a view always has the SELECT privilege on the view. The owner has this privilege with the
GRANT option if the owner has the SELECT privilege with the GRANT option on each of the underlying
objects of the view.

• The owner of a view has the INSERT, UPDATE, or DELETE privileges on the view if both of the following
are true:

– The view is not read-only. This implies that the view has a single underlying object.

200 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

A view is automatically read-only if the statement that created it joins two or more tables.
– The owner of the view has the same privilege on the underlying object.

As with tables, the WITH GRANT OPTION clause can be specified so that the grantee can grant privileges
to others.

Maintaining the QMF object catalog
Periodically, you must condense and reorganize the QMF object catalog, which stores information about
QMF queries, forms, procedures, analytics, and folders.

Regular maintenance of the QMF catalog might involve tasks such as transferring objects to new owners
or enlarging the table space for the tables when it is no longer large enough to hold existing QMF objects.

All QMF catalog information about queries, forms, procedures, analytics, and folder objects is stored
among three QMF control tables:

• Q.OBJECT_DIRECTORY
• Q.OBJECT_DATA
• Q.OBJECT_REMARKS

You can keep QMF and the database running efficiently by periodically listing, displaying, or deleting QMF
objects from these tables and reorganizing them when necessary. You might also need to use the
information in these tables to transfer an object from one owner to another. You must assign STATS and
REORG privileges to a user who is monitoring or reorganizing the QMF catalog control tables.

Related reference
QMF control tables and table spaces for TSO and CICS
These are the control tables shipped with QMF.

Structure of the Q.OBJECT_DIRECTORY table
The Q.OBJECT_DIRECTORY table contains a row for each QMF query, form, procedure, folder, and
analytics objects in the database.

The table has the index Q.OBJECT_DIRECTORYX, with the UNIQUE and CLUSTER attributes. The keyed
columns are OWNER and NAME.

The Q.OBJECT_DIRECTORY table has the structure shown in the following table:

Table 44. Structure of the Q.OBJECT_DIRECTORY table

Column name Data type and length Nulls allowed? Function/values

OWNER VARCHAR(128)

Exception: The
OWNER column is
defined as CHAR(8)
when you are
connected to a DB2 for
VSE and VM database.

No Shows the authorization ID of the creator of
the object.

NAME VARCHAR(128)

Exception: The NAME
column is defined as
VARCHAR(18) when
you are connected to a
DB2 for VSE and VM
database.

No Shows the name of the object.

Chapter 12. Creating and maintaining objects in the database 201

Table 44. Structure of the Q.OBJECT_DIRECTORY table (continued)

Column name Data type and length Nulls allowed? Function/values

TYPE CHAR(8) No Shows the type of object: FORM, PROC,
ANALYTIC, QUERY, or FOLDER.

Exception: DB2 Server for VSE and VM.

SUBTYPE CHAR(8) Yes The following subtypes are used for QUERY
objects:

• SQL
• QBE
• PROMPTED

The following subtypes are used for
ANALYTIC objects:
PLOT

Plot chart
HIST

Histogram
PIE

Pie chart
TOWER

Tower chart
MIXED

Mixed chart
MAP

Map
UNIVAR

Univariate curve
LINEAR

Linear trend
DCF

Discounted clash flow
BASIC

Basic statistics
BIVAR

Bivariate curve
WILCOSR

Wilcoxon Signed-Rank Test
MANNW

Mann-Whitney U Test

This field is blank for all other object types.

OBJECTLEVEL INTEGER(4) No QMF uses this number to reconstruct an
object from its defining text in the
Q.OBJECT_DATA table.

202 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 44. Structure of the Q.OBJECT_DIRECTORY table (continued)

Column name Data type and length Nulls allowed? Function/values

RESTRICTED CHAR(1) No YES if the object has not been shared (using
the SHARE parameter of the QMF SAVE
command or the SHARE option of the SAVE
panel in QMF Analytics for TSO); NO if the
object has been shared with other users.

MODEL CHAR(8) Yes This value is always REL, indicating
relational data.

CREATED TIMESTAMP Yes Shows the timestamp value for when an
object was created. The value is recorded
after SAVE or IMPORT commands.

MODIFIED TIMESTAMP Yes Shows the timestamp value for when an
object was last modified. The value is
recorded after SAVE or IMPORT commands.

LAST_USED TIMESTAMP Yes Shows the date value for when an object
was last used, regardless of whether the
command that accessed the object was
successful. However, in some cases, the
LAST_USED column is not updated
immediately after a command is issued, and
if QMF is terminated abnormally, the
column might not be updated.

By default, the following commands cause
the LAST_USED value to change:

• CONVERT
• DISPLAY
• EXPORT
• IMPORT
• LAYOUT
• PRINT
• RUN
• SAVE

You can restrict the LAST_USED column to
updates by RUN, SAVE, and IMPORT
commands only by setting the
DSQEC_LAST_RUN global variable to 1.

You can also restrict the LAST_USED
column to updates by the RUN command
only by setting the DSQEC_LAST_RUN
global variable to 2.

The value is updated only once a day, even
if the object is used multiple times.

Chapter 12. Creating and maintaining objects in the database 203

Structure of the Q.OBJECT_DATA table
The Q.OBJECT_DATA table contains one or more rows for each query, form, procedure, folder, and
analytics object in the database.

Each row contains all or part of the defining text for each object. Objects are reconstructed from this text
by combining the text with the corresponding format number in the OBJECTLEVEL column of the
Q.OBJECT_DIRECTORY table.

The Q.OBJECT_DATA table has the index Q.OBJECT_OBJDATAX, with the UNIQUE and CLUSTER
attributes. Keyed columns are OWNER, NAME, and SEQ.

The table has the structure shown in the following table:

Table 45. Structure of the Q.OBJECT_DATA table

Column name
Data type and
length

Nulls
allowed? Function/values

OWNER VARCHAR(128)

Exception: The
OWNER column is
defined as
CHAR(8) when
you are connected
to a DB2 for VSE
and VM database.

No Shows the authorization ID of the creator of the
object.

NAME VARCHAR(128)

Exception: The
NAME column is
defined as
VARCHAR(18)
when you are
connected to a
DB2 for VSE and
VM database.

No Shows the name of the object.

TYPE CHAR(8) No Shows the type of object: FORM, PROC, ANALYTIC,
QUERY, or FOLDER.

Exception: FOLDER is not a valid TYPE when QMF is
connected to DB2 Server for VSE and VM.

SEQ SMALLINT(2) No Indicates the sequence that this text occupies within
the entire text of the object. For example, if this row is
the first row of text in the object, SEQ is 1; if it is the
second, SEQ is 2, and so on.

APPLDATA VARCHAR(3600)
FOR BIT DATA

Yes Contains the data that constitutes the object.

Important: Because the data is stored in binary
format, do not try to update this column. Additionally,
the APPLDATA column must never be subjected to
code page (CCSID) conversion.

204 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Structure of the Q.OBJECT_REMARKS table
The Q.OBJECT_REMARKS table contains one row for each query, form, procedure, folder, and analytics
object in the database.

Each row contains comments that are entered when the QMF SAVE command is issued or when the Save
function key is used in QMF Analytics for TSO.

The Q.OBJECT_REMARKS table has the index Q.OBJECT_REMARKSX, with the UNIQUE and CLUSTER
attributes. Keyed columns are OWNER and NAME.

The table has the structure shown in the following table:

Table 46. Structure of the Q.OBJECT_REMARKS table

Column name Data type and
length

Nulls
allowed?

Function/values

OWNER VARCHAR(128)

Exception: The
OWNER column
is defined as
CHAR(8) when
you are
connected to a
DB2 for VSE and
VM database.

No Shows the authorization ID of the user who created the
object.

NAME VARCHAR(128)

Exception: The
NAME column is
defined as
VARCHAR(18)
when you are
connected to a
DB2 for VSE and
VM database.

No Shows the name of the object.

TYPE CHAR(8) No Shows the type of the object: FORM, PROC, ANALYTIC,
QUERY, or FOLDER.

Exception: FOLDER is not a valid TYPE when QMF is
connected to DB2 Server for VSE and VM.

REMARKS VARCHAR(254) Yes Contains the comment that was saved with the object
when it was created or replaced.

Enlarging the table space for the QMF object catalog
Periodically, QMF objects might collectively become too large for the table spaces that contain the QMF
object catalog control tables (Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and Q.OBJECT_REMARKS).

Before you begin

To help you estimate the amount of space needed, you can determine the amount of space currently
used. If the space is managed by Db2, you can get this information in the following way:

1. Run the STOSPACE utility on the table space's storage group.
2. Run the following query:

Chapter 12. Creating and maintaining objects in the database 205

SELECT SPACE
 FROM SYSIBM.SYSTABLEPART
 WHERE TSNAME='tttttttt' AND DBNAME='DSQDBCTL'

In this statement, tttttttt is the table space name. The result (SPACE) gives the number of kilobytes of
storage currently allocated to the table space.

About this task

The default table spaces are listed in the following table.

In addition to this procedure, you can also use the Db2 LOAD utility to enlarge a table space.

Table 47. Table spaces for control tables that store information about QMF objects

Table space
name Contents

Default
size

DSQTSCT1 Q.OBJECT_DIRECTORY table 256 pages

DSQTSCT2 Q.OBJECT_REMARKS table 256 pages

DSQTSCT3 Q.OBJECT_DATA and Q.OBJECT_DATA2 tables 5120 pages

Important: QMF Version 12.1 creates table space data sets managed by Db2 if QMF was not previously
installed. Do not change the QMF storage groups from managed by Db2 to user-managed after QMF
installation. However, if the space is user-managed, you can use the TSO LISTCAT command for the
space information if you know the data set name.

Procedure

To enlarge the table space for the QMF object catalog control tables, follow these steps:
1. Make an image copy of the table space.

You can use this for restoration if the procedure fails.
2. Create a storage group for the table space.

Do this only if the table space has user-managed data sets, and no storage group is already available.

To determine the type of data set management used for the table space, run the following query:

SELECT STORTYPE
 FROM SYSIBM.SYSTABLEPART
 WHERE TSNAME='DSQTSCT3' AND DBNAME='DSQDBCTL'

This query produces a one-line result for the table space DSQTSCT3. In the result, STORTYPE has the
value E or I:
E

Indicates that the data sets for the table space are user-managed (no associated storage group).
I

Indicates that the data sets for the table space are managed by Db2. The following table shows the
default database partition groups for the QMF control tables.

Table 48. Database partition groups for control tables that store information about QMF objects

Database Partition
Group Name Used for Characteristics

DSQTSCTL For all QMF control tables
except as described elsewhere
in this table.

Can be distributed across multiple
database partitions. Growth potential is
low.

206 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 48. Database partition groups for control tables that store information about QMF objects
(continued)

Database Partition
Group Name Used for Characteristics

DSQTSOBJ The QMF object catalog control
tables where procedure, query,
form, folder, and analytics
objects are stored.

Can be distributed across multiple
database partitions. Growth potential is
high.

DSQTSDEF The default SAVE DATA space
as initialized in the QMF profile.

Should be defined to be restricted to a
single database partition to avoid
complications.

DSQTSAMP The QMF sample tables. Can be distributed across multiple
database partitions.

3. Stop the database using the following command:

-STOP DATABASE(DSQDBCTL)

4. Change the table space description.

• If the table space data sets are user-managed, issue a Db2 statement like the following example:

ALTER TABLESPACE DSQDBCTL.tttttt
 USING STOGROUP ssssss PRIQTY pppp SECQTY ssss

In this statement, tttttt is the table space name. The statement changes the table space from user-
managed to managed by Db2 and names a storage group (ssssss) for the management. The
quantities pppp and ssss are the new primary and secondary allocation sizes (in kilobytes) for the
enlarged table space.

• If the table space data sets are managed by Db2, execute a Db2 statement like the following:

ALTER TABLESPACE DSQDBCTL.tttttt
 PRIQTY pppp SECQTY ssss

In this statement, tttttt is the table space name. The character strings pppp and ssss represent the
new primary and secondary allocation sizes, in kilobytes, for the enlarged table space.

5. Move the table space data.
Simply changing the table space description does not affect enlargement. You must instead do
something that causes the table space to be refilled.

6. Start the database with the statement:

-START DATABASE(DSQDBCTL)

Listing QMF objects
To get the information you need to help you maintain the QMF environment, you can list the queries,
forms, procedures, folders, and analytic objects that QMF users have saved in the database.

With administrator authority, you can list QMF objects that you do not own by using the following query.

Chapter 12. Creating and maintaining objects in the database 207

SELECT D.NAME, D.TYPE, D.SUBTYPE, D.RESTRICTED, R.REMARKS
 FROM Q.OBJECT_DIRECTORY D,
 Q.OBJECT_REMARKS R
 WHERE D.OWNER = 'userid'
 AND D.OWNER = R.OWNER
 AND D.NAME = R.NAME
 ORDER BY D.TYPE, D.SUBTYPE, D.RESTRICTED

Figure 34. Listing queries, forms, procedures, folders and analytic objects that are owned by a particular
user

This query returns a list of objects that is sorted by type (ANALYTICS, FOLDER, FORM, PROC, or QUERY)
and further by subtype if type is ANALYTICS or QUERY. Objects of each type are further sorted by whether
they have been shared by the owner. Shared status is reflected in the RESTRICTED column of the
Q.OBJECT_DIRECTORY table; a value of "Y" indicates that the object is not shared.

Displaying QMF objects
In addition to listing a query, procedure, form, or analytic object to get the information you need to help
you maintain the QMF environment, you can use the DISPLAY command for more information.

DISPLAY is not a valid command for QMF folder objects because folders do not contain object data.
Folders contain only references to other QMF objects (queries, procedures, forms, or analytic objects).

If listing the objects does not provide enough information in the REMARKS column, try displaying the
object using one of the following methods:

• Issue the following statement to share the user's objects. Then display them from your own ID:

UPDATE Q.OBJECT_DIRECTORY
 SET RESTRICTED = 'N'
 WHERE OWNER = 'userid'

Important: Issue this statement only if you do not need to track which of the user's objects are
restricted and which are not. After you issue this statement, you can reset RESTRICTED to Y, but then
you will not be able to tell which objects were originally restricted.

Tip: A single SQL query can contain multiple SQL maintenance statements. To create a query that
includes multiple statements, place a semicolon between statements and set the DSQEC_RUN_MQ
global variable to 1. Information about how to create queries that include multiple statements as well
as restrictions on the types of statements that can be used is included in the description of the RUN
command.

• Issue the QMF DISPLAY command for each object that you want to display.

Related concepts
Listing QMF objects
To get the information you need to help you maintain the QMF environment, you can list the queries,
forms, procedures, folders, and analytic objects that QMF users have saved in the database.

Transferring ownership of QMF objects
You must run three statements to transfer QMF objects (queries, forms, procedures, folders, and analytic
objects) from one user to another. Ensure that you run all three statements.

Important: First ensure that the new owner has no objects that are saved with the name of the object
that you are transferring, or QMF will replace the existing object with the object that you transfer.

To transfer QMF objects from one user to another, run the following statements:

UPDATE Q.OBJECT_DIRECTORY UPDATE Q.OBJECT_REMARKS UPDATE Q.OBJECT_DATA
SET OWNER = 'newuserid' SET OWNER = 'newuserid' SET OWNER = 'newuserid'
WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid' WHERE OWNER =

208 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

'olduserid'
AND NAME IN namelist AND NAME IN namelist AND NAME IN namelist

In these statements, namelist is a list of the object names to be transferred; the list must be set off by
parentheses, with each name separated by a comma and surrounded by single quotes. For example:

('QUERY1','QUERY2','FORMA','PROCB')

For queries or procedures that name objects qualified with the old SQL authorization ID, be sure to
change the qualifier. For example, if you transfer MYQUERY from BAXTER to JONES, change the name
from BAXTER.MYQUERY to JONES.MYQUERY.

Use an SQL statement like the one in “Displaying QMF objects” on page 208 to change the RESTRICTED
column value to N if you decide you want to share the object after transferring it.

Tip: A single SQL query can contain multiple SQL maintenance statements. To create a query that
includes multiple statements, place a semicolon between statements and set the DSQEC_RUN_MQ
global variable to 1. Information about how to create queries that include multiple statements as well as
restrictions on the types of statements that can be used is included in the description of the RUN
command.

Deleting obsolete QMF objects
You must run three statements to delete all of a particular user's QMF queries, forms, procedures,
folders, and analytic objects. Make sure that you run all three statements, because the internal
representation of each object spans the three QMF control tables (Q.OBJECT_DIRECTORY,
Q.OBJECT_DATA, and Q.OBJECT_REMARKS).

DELETE FROM Q.OBJECT_DIRECTORY DELETE FROM Q.OBJECT_REMARKS DELETE FROM Q.OBJECT_DATA
WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid' WHERE OWNER = 'olduserid'

Figure 35. Deleting unnecessary objects from the QMF object control tables

You can also delete obsolete objects by sorting the Q.OBJECT_DIRECTORY table by date and time. You
can select every object where the date last used was before a particular date and delete all the
appropriate rows from the three control tables.

Tip: A single SQL query can contain multiple SQL maintenance statements. To create a query that
includes multiple statements, place a semicolon between statements and set the DSQEC_RUN_MQ
global variable to 1. Information about how to create queries that include multiple statements as well as
restrictions on the types of statements that can be used is included in the description of the RUN
command.

Importing queries, forms, and procedures from z/OS data sets
QMF objects that exist in z/OS data sets can be imported into QMF using the IMPORT command.

If the exported objects are protected by RACF, you need RACF read access to import objects from them.
To obtain this access, see your RACF administrator.

Maintaining a Db2 for z/OS subsystem
If you want to share the responsibility for maintenance, you can assign specialized administration tasks to
users to perform under their own authorization IDs.

About this task

Give these users only enough Db2 authority to run the queries and utilities that are required for their
tasks. For example:

• The INSERT privilege is required on the Q.PROFILES table to create QMF profiles for new users.

Chapter 12. Creating and maintaining objects in the database 209

• DBADM or equivalent authority is required on databases to administer the associated tables, indexes,
and table spaces.

Include the WITH GRANT OPTION clause to enable the grantee to, in turn, grant lesser privileges on the
database to other users.

• STATS and REORG privileges are required on the database in which the QMF object control tables are
stored so that these tables can be monitored and reorganized.

Except where noted, the information relates to Db2 for z/OS. On z/OS, you can maintain multiple
databases with multiple table spaces. On Db2 for Linux, UNIX, and Windows, each server (a named
location) is a single database. You can maintain multiple table spaces in each database.

To prevent users from accessing QMF during maintenance work, issue the Db2 -STOP DATABASE
command for any table spaces that you will be working on before you begin maintenance operations.

Managing data sets
The data sets for the table spaces and indexes might be user-managed or managed by Db2. How these
data sets are managed determines what you must do to enlarge table spaces and indexes.

Storage groups for data sets managed by Db2

A storage group is a named set of DASD volumes from which space can be drawn for the objects that the
storage group supports. For each control table with an index, the index and the table space share a
common storage group. The storage group for the QMF control tables is DSQSGCTL. The QMF installation
process creates this storage group; do not change this storage group to user-managed from one managed
by Db2 after the QMF installation.

If you are using Db2 for Linux, UNIX, and Windows, storage groups do not apply.

VSAM clusters for user-managed data sets

You need a VSAM cluster for each table space and each index to manage the control-table data sets. You
define these clusters using VSAM statements, and link the resulting clusters to Db2 with SQL CREATE
statements. The link between a cluster and its Db2 object is in the name of the cluster and the name of
the ICF (Integrated Catalog Facility) in which the cluster is cataloged.

Related reference
QMF control tables and table spaces for TSO and CICS
These are the control tables shipped with QMF.

Maintaining the QMF control tables
Most control-table maintenance cannot be done under QMF, because QMF relies on these tables for its
operations.

About this task

You can issue SQL maintenance statements in batch-mode TSO through the DSN processor, or
interactively through the SPUFI facility of DB2I. For Db2 for Linux, UNIX, and Windows servers, you can
use the Db2 command line processor from the operating system in which the database is installed.

Monitoring and reorganizing the QMF control tables
You can prevent maintenance problems by monitoring the condition of the control tables through the Db2
system catalog.

About this task

At its most effective, reorganization can minimize the space requirements for the control tables and
indexes and increase the efficiency of QMF operations.

210 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Procedure

1. Periodically run the RUNSTATS utility on the control tables and indexes to add current statistics to
certain Db2 system tables.

2. Query these system tables and examine these statistics to decide whether reorganization is required.
3. If reorganization is required, do the following steps:

a) Run the REORG utility.
b) Rerun the RUNSTATS utility.
c) Query the updated system tables again to see if reorganizing improved the statistics.

What to do next

Rebind your most critical applications, such as the QMF application plan, after reorganization so that the
most efficient search paths can be selected.

Switching buffer pools
For performance reasons, you might want to change the buffer pool for a table space containing a QMF
control table or for a control table index.

For example, you could switch the buffer pools for the control table indexes and table spaces to BP1, and
reserve BP1 for their exclusive use.

You change buffer pools through ALTER TABLESPACE and ALTER INDEX statements. You can choose
BP0, BP1, or BP2 for your new buffer pool, but not BP32K.

Chapter 12. Creating and maintaining objects in the database 211

212 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 13. Setting up printing and charting
functions

QMF end users frequently need to print data they retrieve from the database. This data might be in the
format of a report, chart, database table, or some other QMF or database object.

How you set up printing for your end users depends on what type of printer you have and which objects
you need to print. This topic helps you decide whether it is more efficient for you to handle printing using
QMF services or Graphical Data Display Manager (GDDM) services. It also provides instructions on how to
print objects using either method.

Related tasks
Printing DBCS data from non-DBCS display devices
If you use the Uppercase, Japanese, or Korean National Language Feature (NLF), you might need to print
double-byte character set (DBCS) data.

Deciding whether to use QMF or GDDM services for printing
Whether you print using GDDM services or QMF services depends on what type of objects you need to
print and what types of printers and other resources are available to you.

Use this topic to help you decide which method suits your needs.

• If you need to print charts, forms, or prompted queries, use GDDM.

QMF uses GDDM services to display these objects; GDDM must be used to print these objects as well. If
you do not use GDDM services, you can print only reports, tables, QBE and SQL queries, procedures,
and the QMF profile.

• If your site is set up to route output to named printers, use GDDM services for printing.

GDDM allows you to link a name with a device. If you do not use GDDM and use exclusively QMF
services, you need to print objects by specifying the type and name of the storage queue through which
those objects are routed to the printer.

Both QMF and GDDM handle printer input asynchronously, which means that QMF can return messages
indicating that the object is printed before it is actually printed.

If you are using CICS, also consider the following:

• In CICS, if you need to handle routing automatically (rather than writing a program to route output), use
GDDM or define transient data queues for use with QMF.

GDDM does the routing for you by using the transient data queue definitions that you define to CICS.
QMF takes care of the routing in the same way if you are using transient data queues to hold your
output.

If you print to temporary storage, you must write a program to send the temporary storage queue to the
printer or display the printed output online with the transaction CEBR supplid with CICS.

• In CICS, if you expect print output to exceed the maximum size of a temporary storage queue, use
GDDM for printing or define transient data queues to use with QMF.

© Copyright IBM Corp. 1982, 2020 213

Using GDDM services to handle printing
You can use GDDM (rather than QMF) services to handle printing in native z/OS batch, TSO, ISPF, and
CICS.

About this task

Important: The explanations in this topic apply only if you are using the GDDM default values shipped
with the GDDM product.

Related information
See the GDDM documentation.

How QMF interfaces with your GDDM nickname
QMF interfaces with GDDM nicknames through the standard interface provided by GDDM, which issues a
call that allows QMF to open a GDDM print file.

The following defaults are provided by QMF on the DSOPEN call when the PRINT command begins:

• The device type is set to Family 2
• The device token is set to *
• No processing options are in place (PROCOPT is set to zero)
• The only entry in the name list is the nickname

The print operation is carried out one page at a time using the ASCPUT and FSFRCE GDDM services. When
printing is complete, QMF closes the print operation with a DSDROP statement.

Where GDDM searches for the nickname
When you enter a printer name on the PRINT command, GDDM searches a single module in CICS, and
searches several data sets native in z/OS batch, TSO, and ISPF.

Printer nicknames enable you to define complex print or display devices to simplify the work of your end
users. Nicknames define device characteristics that indicate to GDDM how to format and distribute the
report, and they can define both local and remote devices.

Native z/OS batch, TSO, and ISPF

In native z/OS batch, TSO, and ISPF, when a user enters a printer name on the PRINTER keyword of the
QMF PRINT command, GDDM first searches the ADMDEFS data set and then the defaults module,
ADMADFT, for a matching nickname that defines how and where to direct the output.

CICS

In CICS, GDDM searches only the defaults module, ADMADFC. GDDM uses nicknames to recognize all the
devices with which it can communicate (including display devices).

Example nicknames for different printer families
These examples show how to define GDDM printer nicknames for different printer families.

Example nickname for a Family 1 or 2 GDDM printer

To define the nickname GRAPHIC for a Family 1 or 2 GDDM printer, you might use an ADMMNICK
specification similar to the one in the following example. This specification is for a Family 2 GDDM printer
(use TOFAM=1 for a Family 1 GDDM printer). It uses the device token R87S, an example of a token for a
remotely attached 3287 printer.

ADMMNICK NAME=GRAPHIC,TOFAM=2,DEVTOK=R87S,TONAME=GRAP

214 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/shop/publications/order

• Native z/OS batch, TSO, and ISPF: After you create your nickname in TSO, ISPF, and native z/OS batch,
a temporary data set is created as a result of running the QMF PRINT command and specifying a
nickname that exists. This data set is userid.ADMPRINT.REQUEST.#nnnnn, where nnnnn is a
sequence number. You can then print the data set by using the ADMOPUT utility. You can also use the
ADMOPUJ utility to write your print job to the JES spool.

• CICS: If you use either of the GDDM print utilities (ADMOPUT or ADMOPUJ) to print QMF objects by
using GDDM nicknames, the GDDM map groups that are supplied with QMF must be made available to
the GDDM print utility. The ADMGGMAP DD statement contains the name of the data set
(QMF1210.SDSQMAPE) that holds the map groups:

//ADMGGMAP DD DSN=QMF1210.SDSQMAPE,DISP=SHR

Without this statement, any attempt to print a form on a Family 2 printer ends in an error.

Restriction: In CICS, after you create the ADMMNICK specification, link the name with a device by
defining the printer to CICS. Make sure that the TERMINAL attribute in the CICS RDO TERMINAL
definition and the TONAME parameter in the ADMMNICK specification have matching values. If you
define the printer to CICS by using a DFHTCT macro, make sure that the TONAME parameter in the
ADMMNICK specification and the TRMIDNT attribute in the terminal control table (TCT) have matching
values.

Example nickname for a Family 3 GDDM printer

To define the nickname 370PRINT for a Family 3 GDDM printer, you might use an ADMMNICK
specification similar to the one in the following example:

ADMMNICK NAME=370PRINT,TOFAM=3,DEVTOK=S3800W8,TONAME=370P

After you create your nickname in TSO, ISPF, and native z/OS batch, the ddname ADMLIST is created. You
can then send the formatted file to the printer you chose.

After you create the ADMMNICK specification in CICS, link the name with a device by defining the
transient data queue to CICS. Make sure that the TONAME parameter in the ADMMNICK specification and
the TDQUEUE attribute of the CICS RDO TDQUEUE definition have matching values. If you define the
transient data queue by using the DFHDCT macro, make sure that the TONAME parameter in the
ADMMNICK specification and the DESTID attribute in the DCT have matching values.

Example nickname for a Family 4 GDDM printer on TSO, ISPF, or native z/OS batch

To define the nickname 3900PRNT for a Family 4 GDDM printer, you might use an ADMMNICK
specification similar to the following one:

ADMMNICK NAME=3900PRNT,TOFAM=4,DEVTOK=A3820Q

Output is written by default to a ddname of ADMIMAGE. You can spool the file to z/OS automatically
through JES if you have the CSPOOL processing option set. Family 4 printers cannot be used in CICS.

Related concepts
Example nickname definitions for specific printers
These examples show printer nicknames that you might use for Family 1, 2, or 3 devices.
Related information
Search for information about valid device tokens in the GDDM documentation.

Example nickname definitions for specific printers
These examples show printer nicknames that you might use for Family 1, 2, or 3 devices.
3800, 3812, or 3820 printer, 8 lines per inch:

Use the following definition to define the nickname GDDMPRT2 for a Family 3 printer:

GDDMPRT2 ADMMNICK TOFAM=3,DEVTOK=S3800N8,NAME=MYPRINT2

Chapter 13. Setting up printing and charting functions 215

http://www.ibm.com/shop/publications/order

Non-3800 system printer, 132 columns, 8 lines per inch:
Use the following definition to define the nickname GDDMPRT3 for a Family 3 printer:

GDDMPRT3 ADMMNICK TOFAM=3,DEVTOK=S1403W8,NAME=MYPRINT3

A remotely attached 3287 (suitable for printing charts):
Use the following definition to define the nickname GDDMPRT4 for a Family 2 printer:

GDDMPRT4 ADMMNICK TOFAM=2,DEVTOK=R87,NAME=MYPRINT4

Any destination without print control options:
Use the following definition to define the nickname GDDMPRT5 for a Family 3 printer:

GDDMPRT5 ADMMNICK TOFAM=3,PROCOPT=((PRINTCTL,0)),NAME=MYPRINT5

The PROCOPT parameter specifies processing options by using a print control (PRINTCTL) keyword,
with which you specify a number of print control options. For example, you can use PRINTCTL to
specify a page heading to be printed, the number of copies to print, and the width of the margins.

Attention: If the print data set has RECFM=F, GDDM printing changes the DCB of the data set
from RECFM=F to RECFM=V.

A PC printer using GDDM-PCLK:
Use the following definition to define the nickname PCPRINT for a Family 1 printer:

GDDMPRT6 ADMMNICK TOFAM=1,FAM=0,NAME=PCPRINT,TONAME=*,ADMPCPRT

In the preceding command, * indicates the user's current device or the default value.

To print to a workstation printer, GDDM-PCLK must be installed on your workstation.

Related concepts
Example nicknames for different printer families
These examples show how to define GDDM printer nicknames for different printer families.
Related information
Search for information about nicknames for Family 4 printers and about print control options in the GDDM
documentation.

Setting up GDDM services to handle printing
You can use GDDM services to handle printing in native z/OS batch, TSO, ISPF, and CICS.

Procedure

To use GDDM services to handle printing, complete the following steps:
1. Choose a GDDM nickname for the print device.
2. “Choosing the right type of GDDM device” on page 217.
3. “Creating the printer nickname specification” on page 217.
4. “Activating the nickname” on page 219.
5. “Updating the GDDM defaults module with the nickname” on page 218.
6. Update the PRINTER field of the user's row in the Q.PROFILES table.

Related concepts
Where GDDM searches for the nickname

216 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/shop/publications/order

When you enter a printer name on the PRINT command, GDDM searches a single module in CICS, and
searches several data sets native in z/OS batch, TSO, and ISPF.

Choosing the right type of GDDM device
The printer nickname you use depends on the type of device.
Family 1 devices

Specify auxiliary devices attached to a workstation using GDDM-PCLK. A Family 1 device can also
include display devices, such as 3270 data-stream display devices.

Family 2 devices
Include devices such as IBM 3270 display devices and queued printers.

Family 3 devices
Are system printers that support the ANSI code of carriage control characters.

Family 4 devices
Are printers for which you need to use the ADMOPUT and ADMOPUJ utilities to print output. These
utilities are provided by GDDM. Family 4 devices cannot be used for printing in CICS.

Creating the printer nickname specification
Use this format to specify a GDDM printer nickname.

ADMMNICK NAME=nickname,TOFAM=family_type,DEVTOK=device_token,TONAME=name

Figure 36. Format of the ADMMNICK specification, which defines a printer nickname

• Use NAME to indicate a 1-character to 8-character printer nickname to use with the QMF PRINT
command. For example, if MYPRTR is the nickname, users can enter the following command: PRINT
REPORT (PRINTER=MYPRTR. NAME can be a single name, a list of names separated by commas, or a
name with a leading or trailing ? character, which is used as a wildcard to send output to multiple
printers that have similar names.

• Use TOFAM to indicate the type of device you are using. GDDM recognizes four families of devices, and
handles each differently.

• Use DEVTOK to indicate a valid GDDM device token, which uniquely identifies a device and its print
configuration.

• TONAME is used only in CICS. This field points to a CICS terminal definition or a CICS transient data
queue definition, which enables CICS to properly manage communication between GDDM and the
printer. Use the TONAME parameter to point to the name of a 1-character to 4-character CICS definition
with a value that depends on the type of device:

– If the nickname defines a Family 1 or 2 printer, the TONAME parameter must point to a
corresponding CICS terminal definition.

If you define the printer to CICS using CICS resource definition online (RDO) to update the CICS
system definition (CSD) file, the TERMINAL attribute has the same value as TONAME.

If you define the printer to CICS using a DFHTCT macro, which creates an entry in the CICS terminal
control table (TCT), the TRMIDNT field has the same value as TONAME.

– If the nickname defines a Family 3 printer, the TONAME parameter must point to a corresponding
CICS transient data queue.

If you define the transient data queue to CICS using CICS resource definition online (RDO) to update
the CICS system definition (CSD) file, the TDQUEUE attribute has the same value as TONAME.

If you define the transient data queue to CICS using the DFHDCT macro, which creates a
corresponding entry in the CICS destination control table (DCT), the DESTID field has the same value
as TONAME.

Chapter 13. Setting up printing and charting functions 217

Adding the nickname in native z/OS batch, TSO, and ISPF

Add the nickname to your ADMDEFS data set. GDDM looks at this data set first. If the nickname is not
found, GDDM looks in the external defaults module, ADMADFT, in which you define a GDDM ADMMNICK
specification. See Figure 36 on page 217 for the proper format of the ADMMNICK specification.

Adding the nickname in CICS

To create a nickname in CICS, first define a GDDM ADMMNICK specification, as shown in Figure 36 on
page 217, in the GDDM external defaults module, ADMADFC. This specification indicates the device
characteristics to GDDM, such as the number of lines per page the printer can handle, and how the printer
is managed by CICS.

A unique label can be added to the syntax. For example, GDDMPRT1 is a possible label for the nickname
definition in the following example:

GDDMPRT1 ADMMNICK NAME=MYPRINT,TOFAM=3,DEVTOK=ADMKSYSP

Defining multiple nicknames with one definition

You can use a single nickname to define multiple printer addresses by including the wildcard ? in your
nickname definition, like this:

ADMMNICK TOFAM=3,NAME=MYPRINT?,PROCOPT=((PRINTCTL,0))

The nickname MYPRINT? allows you to route print output to printers named MYPRINT1, MYPRINT2,
MYPRINTA, and so on. For example:

PRINT REPORT (PRINTER=MYPRINT2

In this example, GDDM uses the nickname definition for the MYPRINT? nickname to create a data set and
direct the output from the PRINT command to the data set with a ddname of MYPRINT2.

Related concepts
Example nickname definitions for specific printers
These examples show printer nicknames that you might use for Family 1, 2, or 3 devices.
Example nicknames for different printer families
These examples show how to define GDDM printer nicknames for different printer families.
Related information
Search for information about the GDDM print utilities and about Family 4 printing in the GDDM
documentation.

Updating the GDDM defaults module with the nickname
After you create the printer nickname specification, update the GDDM defaults module ADMADFC or
ADMADFT.

About this task
The defaults module also contains default values for the GDDM product. The module is stored as a
member of the SADMSAM data set.

Procedure

To update the module with your nickname specification:
1. Edit the source file to add the nickname.

• In native z/OS batch,TSO, and ISPF, the external defaults module is ADMADFT.
• In CICS, the external defaults module is ADMADFC.

2. Enter your ADMMNICK specification after the ADMMDFT statements in the module.
3. Reassemble and link-edit the changed defaults module.

218 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/shop/publications/order

Related information
Search for information about the defaults module in the GDDM documentation.

Activating the nickname
After you updated the GDDM defaults module with the nickname specification, you need to test and
incorporate the nickname so that it can be used. This process differs depending on your operating
environment.

Native z/OS batch, TSO, and ISPF

Test your nickname definitions by placing them in an external defaults file and printing with them until
you are satisfied they are working correctly. Then, you can assemble them into external defaults modules.

GDDM uses external defaults modules more efficiently than data sets to find a nickname.

The decision to use external defaults files or modules affects a user's JCL because an external defaults
file requires a DD statement, while an external defaults module must be a member of a STEPLIB library.

For TSO, ISPF, native z/OS batch, the ddname of the nickname data set is ADMDEFS. You should allocate
it when you start your QMF session. To add the ddname ADMDEFS to the user's logon procedure, use a
statement like the following one:

//ADMDEFS DD DSN=LOCAL.GDDM.NICKNAME,DISP=SHR

CICS

In CICS, the nicknames are incorporated into user default specifications and assembled into the external
defaults module, ADMADFC.

After you update the ADMADFC module, you need to update the CICS resource definitions so that CICS
can link the nickname with the device it manages.

• Linking a Family 2 nickname with a device: QMF supports the use of GDDM nicknames for reports and
requires nicknames for printing QMF charts, forms, and prompted queries. If you have printers that are
described to CICS by using VTAM and CICS terminal definitions, you must describe the printer as
queued, an attribute of GDDM Family 2 devices. When you use a Family 2 device, the TONAME
parameter in your ADMMNICK specification points to a CICS terminal definition (as opposed to a CICS
transient data queue definition for a Family 3 device).

For example, consider the following nickname specification:

ADMMNICK NAME=GRAPHIC,TOFAM=2,DEVTOK=R87S,TONAME=GRAP

For this nickname specification, you can update the CICS TCT by using a macro similar to the following
example.

GRAP DFHTCT TYPE=TERMINAL,
 ACCMETH=VTAM,
 TRMIDNT=GRAP,
 TRMTYPE=SCSPRT,
 . . .
 . . .
 . . .

Figure 37. Defining to CICS a nickname for a Family 2 GDDM printer

To define the printer to CICS by using RDO, follow this example:

DEFINE TERMINAL(GRAP) TYPETERM(DFHSCSP) ...

Chapter 13. Setting up printing and charting functions 219

http://www.ibm.com/shop/publications/order

• Linking a Family 3 nickname with a device: To use Family 3 devices, set up a GDDM nickname table by
using the following syntax. See Figure 36 on page 217 for the meanings of the parameters that are
shown in the ADMMNICK specification.

GDDMPRT ADMMNICK TOFAM=3, X
 NAME=SYSPRT, X
 DEVTOK=S1403W6, X
 TONAME=SYSP

Figure 38. Defining to CICS a nickname for a Family 3 GDDM printer

The GDDM documentation (which you can find in the IBM Publications Center) describes the process of
incorporating the nicknames into the user default specifications and assembling the user default
specifications into the external defaults module, ADMADFC.

The TONAME parameter must have a matching CICS transient data queue definition. You can define the
transient data queue to CICS by using RDO as shown here:

DEFINE TDQUEUE(SYSP) TYPE(EXTRA) BLOCKSIZE(6050) DDNAME(ADMSYSP)
 RECORDFORMAT(VARIABLE) BLOCKFORMAT(BLOCKED)
 RECORDSIZE(260) TYPEFILE(OUTPUT) ...

To define the transient data queue to CICS as a DCT entry, see Figure 39 on page 220.

* THE GDDM NICKNAME IS SYSPRT AND THE
* LONGEST RECORD THAT CAN BE PRINTED
* IS 256.

 DFHDCT TYPE=SDSCI,DSCNAME=ADMSYSP, X
 RECFORM=VARBLK, X
 RECSIZE=260,BLKSIZE=6050,TYPEFLE=OUTPUT
 .
 .
* ENTRY FOR GDDM NICKNAME SYSPRT
SYSP DFHDCT TYPE=EXTRA,DESTID=SYSP,DSCNAME=ADMSYSP,RSL=1

Figure 39. Adding a TONAME entry to the CICS DCT

You also need to add the ddname ADMSYSP to the CICS startup JCL, as follows:

//ADMSYSP DD SYSOUT=A

Add the TYPE=SDSCI entry that is shown in Figure 39 on page 220 after all other TYPE=SDSCI entries in
the DCT.

Using QMF services to handle printing
You can use QMF (rather than GDDM) services to handle printing in native z/OS batch, TSO, ISPF, and
CICS.

QMF services for printing in native z/OS batch, TSO, and ISPF
You can use DSQPRINT to print a report, table, SQL or QBE query, procedure, or your profile.

DSQPRINT is a special printer destination that QMF uses when you do not supply a printer name on the
command line or in the user profile. DSQPRINT must be allocated with a DD statement that points to the
data set or output class QMF uses for printing. The DD statement becomes part of your QMF startup exec,
CLIST or JCL.

To add your printed output to a user-owned data set, allocate DSQPRINT by using JCL or a CLIST. Here is
an example of JCL to allocate DSQPRINT:

220 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/shop/publications/order

//DSQPRINT DD DSN=&SYSUID..PRINT.DATA,DISP=MOD

Here is an example of a CLIST that accomplishes the same thing:

ALLOC DDNAME(DSQPRINT) SYSOUT(A) LRECL(133) RECFM(F B A) BLKSIZE(1330)
FREE DDNAME(DSQPRINT)

To route your output to a printer, allocate DSQPRINT by using the following syntax:

//DSQPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)

Set the carriage control (CC) option to YES when you issue the PRINT command.

If you are using ISPF, you can use the DPRE (Display Printed Report) command synonym that is supplied
with QMF to view the effects of the width and length values you specified without having to print the
report. This view is applicable only while you use DSQPRINT.

Related concepts
The DPRE synonym: using ISPF to preview the printed report
IBM supplies the QMF command synonym DPRE to display a report as it appears when printed. When you
issue the DPRE command, QMF completes the report and prints the report to a data set that is allocated
to DSQPRINT. The ISPF browser is then called to view this data set.

Using QMF services for printing in CICS
To use QMF services to handle printing, specify the type of storage you want to use and provide CICS with
a name for the storage.

Choosing between temporary storage queues and transient data queues

CICS temporary storage queues have a maximum size and route data only to local print destinations. If
you need to route data to other print destinations or the print output is too large for a temporary storage
queue, you need to write a program that routes the data from the temporary storage queue to a transient
data queue, or view the report online with the transaction CEBR, supplied with CICS.

CICS transient data queues are limited only by the amount of storage defined for the queue before CICS is
started. You can define the transient data queue as an intrapartition or extrapartition data queue. You can
use transient data queues to print data to a data set or SYSOUT class.

Using the PRINT command to route output to queues

You can specify on the QMF PRINT command both the name of the queue and the type of storage defined
for that queue. For example, to print a report to a temporary storage queue named XYZ, enter this
command:

PRINT REPORT (QUEUET=TS,QUEUEN=XYZ

To print from a transient data queue named XYZ, you can enter the following command. Ensure that the
transient data queue is defined to CICS before its first use.

PRINT REPORT (QUEUET=TD,QUEUEN=XYZ

QUEUET and QUEUEN are abbreviations for QUEUETYPE and QUEUENAME.

QMF issues an ENQ statement on the queue name to prevent writing to the queue if another program is
using it. If the name is already enqueued by another application, CICS indicates to QMF that the queue is
unavailable at that time. Use the SUSPEND (S) keyword to tell QMF what to do when the queue is
unavailable. Use the value YES (or Y) to hold the report until the queue is available, then write to it. For
example:

PRINT REPORT (QUEUET=TS,QUEUEN=XYZ,S=YES

The value NO is the default and cancels the PRINT command, returning a message to the user.

Chapter 13. Setting up printing and charting functions 221

Using global variables to define queues for printing

If you do not specify values for queue type and queue name on the PRINT command, QMF uses values
stored in the global variables DSQAP_CICS_PQTYPE and DSQAP_CICS_PQNAME.

Set the global variable DSQAP_CICS_PQTYPE to TS if you are using temporary storage queues for printing,
and TD if you are using transient data queues. TS is the default.

Use the global variable DSQAP_CICS_PQNAME to define the name of the temporary storage or transient
data queue. Names for transient data queues can be from 1 to 4 bytes. Names for temporary storage
queues can be from 1 to 8 bytes. The default temporary storage queue name is DSQPnnnn, where nnnn is
the user's 4-byte CICS terminal ID. For example, DSQPA085 is a valid name.

Printing from a CICS temporary storage queue

If you set up your environment to route print output to temporary storage queues, you need to write a
transaction that routes the output from the queue to a printer. The QMF user can then start the print
transaction by using the CICS command. Any subsequent PRINT command from the same device uses
the same queue name, appending the previous report. See for more information about the CICS
command.

Viewing a report from a CICS temporary storage queue

You can view a report with the transaction CEBR, supplied with CICS.

Allowing users to print without exiting QMF
You can customize your system to allow users to use a local print utility by pressing the Print function key
to print an object without exiting QMF. You define a command synonym for printing and customize your
Print function key.

Procedure

1. Create a file to print the current object locally:

• If you are running in native z/OS batch, TSO, or ISPF

Create a REXX exec or CLIST to locally print the current object. Here is a sample that uses a QMF
callable interface application named PRTQMF:

/* PRTQMF REXX EXEC for local DSPRINT */
CALL DSQCIX "PRINT PROC (PRINTER=MYPRINT1"
DSPRINT '&SYSUID..MYPRINT1.DATA'

This example assumes you have a MYPRINT1 nickname defined and that it directs print output to a
data set called MYPRINT1.DATA.

Some users prefer to bypass the PRINT command and simply export the object for local printing. In
this case use something like the following exec:

/* PRTQMF REXX EXEC for local print utilities called DSPRINT */
CALL DSQCIX "EXPORT PROC TO MYPROC"
DSPRINT '&SYSUID..MYPROC.PROC'

• If you are running in CICS

Create a QMF procedure called PRT_QMF. This sends the object to temporary storage, then starts a
transaction that prints the object.

PRINT REPORT (QUEUENAME=QMFREPT,QUEUETYPE=TS)
CICS QMFP (FROM='QMFREPT')

2. Create a QMF command synonym for printing.

222 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

These sample queries create the command synonym PRTQMF to execute the PRTQMF program:

• If you are running in native z/OS batch, TSO, or ISPF

Create a command synonym like this sample:

INSERT INTO COMMAND_SYNONYMS (VERB, SYNONYM_DEFINITION, REMARKS)
VALUES('PRTQMF','TSO PRTQMF','Print QMF Proc')

• If you are running in CICS

Create a command synonym like this sample:

INSERT INTO COMMAND_SYNONYMS (VERB, SYNONYM_DEFINITION, REMARKS)
VALUES('PRTQMF','RUN PRT_QMF','Print QMF Report')

3. Customize a function key to use this command synonym.
You must customize a key for each panel.

These examples assume that the user's profile has the PFKEYS column value set to PFKY_TABLE:

• If you are running in native z/OS batch, TSO, or ISPF

Customize a function key on the PROC panel. This example shows a query to customize function
key 4 on the procedure panel:

INSERT INTO PFKY_TABLE (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('PROC','K', 4, 'PRTQMF')

• If you are running in CICS

Customize a function key on the report panel. A query to customize function key 4 on the REPORT
panel looks like this:

INSERT INTO PFKY_TABLE (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
VALUES('REPORT','K', 4, 'PRTQMF')

4. Restart QMF to implement the function key change.

Related tasks
Customizing Command synonyms
If the default command synonyms do not meet your needs, you can create your own synonyms. After you
create a command synonym, users can enter the synonym on the command line in the same way that
they enter a QMF command.
Customizing QMF function keys
You customize the command that QMF issues when a user presses a function key and the key label in the
function key table.

Printing requirements by object type
The rules for printing QMF and database objects vary, depending on the type of object.

The following table summarizes the requirements for each object.

Table 49. Summary of print requirements for QMF and database objects

Object type Nickname
required

When GDDM gets control Where output is routed for z/OS

Chart Yes GDDM ICU always gets control
when the PRINT command is
issued.

Output is controlled by GDDM.

Chapter 13. Setting up printing and charting functions 223

Table 49. Summary of print requirements for QMF and database objects (continued)

Object type Nickname
required

When GDDM gets control Where output is routed for z/OS

Form Yes GDDM always gets control
when the PRINT command is
issued.

Output is controlled by GDDM.

QBE query No GDDM gets control only if the
nickname is supplied on the
PRINT command or in the
profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Procedure No GDDM gets control only if the
nickname is supplied on the
PRINT command or in the
profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Profile No GDDM gets control only if the
nickname is supplied on the
PRINT command or in the
profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Prompted query Yes GDDM always gets control
when the PRINT command is
issued.

Output is controlled by GDDM.

Report No GDDM gets control only if the
nickname is supplied on PRINT
command or in the profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

SQL query No GDDM gets control only if the
nickname is supplied on the
PRINT command or in the
profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Table No GDDM gets control only if the
nickname is supplied on the
PRINT command or in the
profile.

Output goes to the device
associated with the GDDM
nickname or the ddname
DSQPRINT.

Enabling charting functions
QMF creates charts using the Interactive Chart Utility (ICU) supplied by the GDDM-PGF product.

About this task

From a single report, users can specify different chart formats, such as scatter charts, pie charts, and bar
charts. When the user enters a QMF DISPLAY CHART or EXPORT CHART command, the chart format and
the data are merged to produce graphics data file (GDF) data. Users can use IBM-supplied chart formats
or create their own. In addition, they can save newly created chart formats, provided they have libraries in
which to store them.

Related concepts
Installation prerequisites for requester (Db2 for z/OS) databases

224 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Before you can install QMF on Db2 for z/OS databases that function as stand-alone or requester
databases, you must fulfill the hardware and software requirements.

Enabling chart support in TSO and ISPF
From a single report, users can specify different chart formats, such as scatter charts, pie charts, and bar
charts.

About this task

Users can use default chart formats or create their own. In addition, they can save newly created chart
formats if they have libraries in which to store them.

Procedure

To create a library to hold a user's saved chart formats:
1. Create the library with a DD statement:

//DSQUCFRM DD DSN=aaaaaaaa,DISP=(NEW,CATLG),
// UNIT=xxxx,VOL=SER=yyyy,
// SPACE=(400,(200,50,25)),
// DCB=(LRECL=400,BLKSIZE=400,RECFM=F)

Provide the DSN, UNIT, VOL, and SPACE parameters, but do not change the DCB parameters.
2. Allocate the library for the user's QMF sessions, and use the ddname DSQUCFRM.

You can allocate the data set through the user's TSO logon procedure, or you can allocate it through a
CLIST that the user calls to reach QMF.
For example:

ALLOC DSNAME(aaaaaaaa) DDNAME(DSQUCFRM) SHR

What to do next

The default chart formats are in the library QMF1210.SDSQCHRT by default. Allocate this library to the
ddname ADMCFORM. Both this library and the user's library are searched for user-specified chart
formats, but the new library is searched first. When the user saves a chart format, it always goes into the
new library, never into QMF1210.SDSQCHRT.

This arrangement gives each user access to both the default chart formats and formats that the user
saved. It also prevents replacement of the default chart formats.

Enabling chart support in CICS
During QMF installation, a data set is created to hold the default chart formats. This data set is described
to CICS by a CSD file entry with the name DSQUCFRM.

This data set is normally allocated to the CICS region during CICS startup and is available to all CICS
users. The DSQUCFRM data set is the default chart library used to store chart formats when using the ICU
from QMF. You can store chart formats in other chart libraries by using the advanced form of the ICU
panel directory. Each chart library must be described to CICS and must be accessible to the CICS region
that is running QMF. You describe the chart library with a file entry in the CSD data set.

QMF provides an EXPORT CHART command. This command is used to save the whole chart in graphic
data format (GDF). When you export a chart, the GDF data is stored in the GDDM ADMF library. You can
also save the whole chart in GDF using the ICU facility of GDDM.

Related information
Search for information about the advanced ICU panel directory in the GDDM documentation.

Chapter 13. Setting up printing and charting functions 225

http://www.ibm.com/shop/publications/order

226 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 14. Command synonyms
Command synonyms help you customize QMF commands by allowing you to define your own terms and
link them to QMF, CICS, or TSO commands. A synonym can be another word for a command, or it might
be a term that does the work of several commands.

Using the default synonyms provided with QMF
QMF provides several command synonyms by default.

List of default synonyms
QMF provides several command synonyms that appear in the Q.COMMAND_SYNONYMS table. Users with
access to this table can call an application associated with one of the default command synonyms by
entering the synonym as if it were a QMF command.

If you are connected to Db2 for Linux, UNIX, and Windows, the default synonyms appear in the table
Q.COMMAND_SYN_TSO.

These default synonyms are valid only if QMF is started under ISPF. If QMF is not started under ISPF, you
can access ISPF by entering TSO ISPSTART. ISPF is not available when QMF is running under CICS.

DPRE (display printed report)
The synonym for the display printed report REXX exec is DPRE. This exec displays the user's current
report in its printed form.

BATCH (batch query/procedure)
The synonym for the batch application is BATCH. This application allows the user to run a query or
procedure in batch mode.

ISPF (bridge to ISPF)
The synonym to bridge to ISPF is ISPF. This synonym lets the user temporarily leave the interactive
mode of QMF and "bridge" to an ISPF/PDF session. After the session ends, the user returns to QMF at
the point where the ISPF command was issued.

LAYOUT (layout form)
The synonym for the Layout Form application is LAYOUT. This application lets the user customize
reports without running a query.

RUNTSO
The RUNTSO command makes it possible for QMF for Workstation and QMF for WebSphere users to
run queries and procedures using the stored procedure interface to QMF for TSO. When a query or
procedure that includes the RUNTSO command is passed toQMF for TSO from the stored procedure
interface, QMF for TSO issues the RUN command with any parameters that were originally passed on
the RUNTSO command from the client.

Before users can issue the RUNTSO command from either QMF for Workstation or QMF for
WebSphere, the stored procedure interface must be installed and configured.

RU
RU is a synonym for the RUN command. This command synonym is needed if you use RU as an
abbreviation for the RUN command.

Related concepts
The DPRE synonym: using ISPF to preview the printed report
IBM supplies the QMF command synonym DPRE to display a report as it appears when printed. When you
issue the DPRE command, QMF completes the report and prints the report to a data set that is allocated
to DSQPRINT. The ISPF browser is then called to view this data set.
Running QMF in batch mode

© Copyright IBM Corp. 1982, 2020 227

If a user runs a procedure with the RUN command, the user cannot execute QMF commands except to
cancel the procedure or the session. Thus, running a procedure using the RUN command can tie up
considerable session time.
Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

The DPRE synonym: using ISPF to preview the printed report
IBM supplies the QMF command synonym DPRE to display a report as it appears when printed. When you
issue the DPRE command, QMF completes the report and prints the report to a data set that is allocated
to DSQPRINT. The ISPF browser is then called to view this data set.

A printed report does not look exactly as it does on screen. The following differences exist between a
displayed report and a printed report:

• A report with one or more page breaks displays as a single scrollable page. A printed report with one or
more page breaks contains multiple pages.

• Page headings and footings appear once in a displayed report. In a printed report, they display at the
top and bottom of each page.

• Fixed columns remain in place when a displayed report is scrolled horizontally. In a printed report, fixed
columns are repeated on the left side of each page.

The synonym definition that is associated with the DPRE command runs a REXX exec named DSQAnR1C
(where n is a one-character national language identifier that depends on the language in which QMF is
running). DSQAnR1C calls an associated exec named DSQABR1C. These applications are shared for use
by everyone.

Using DPRE
To use DPRE, load the DATA object with the report data and the FORM object with the appropriate form.

After you load the objects, issue the following command:

DPRE

The DPRE application then generates the printer output and displays it through the ISPF browse facility.

If you are using an National Language Feature (NLF), issue the translated command synonym for DPRE to
display printed reports. For example, the translated German command synonym for DPRE is AGB. For the
translated command synonym for DPRE in the other language environments, see the
Q.COMMAND_SYNONYM_n control table. Replace the n character with the 1-character language identifier
for your NLF.

Report parameters

The LENGTH parameter for the report being browsed is taken from the user's profile. The WIDTH
parameter specified in the profile is used if it has a logical record length (LRECL) of less than 132;
otherwise, a record length of 132 is used because this is the length specified in the TSO allocation
statement. If 132 is too small, the TSO allocation statement for DSQPRINT can be changed to
accommodate a larger width.

Responding to errors

DSQPRINT is the ddname for the data set that receives output from QMF PRINT commands in which
PRINTER=' ' in cases where QMF for TSO was started under ISPF. When a user runs DPRE, DSQPRINT is
redefined as the data set that holds the material to be browsed. If the DPRE command stops for any
reason before the report can be displayed, printed output might not go to the expected location. To
correct this problem, you must exit QMF and begin a new session.

228 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Customizing DPRE
Under TSO, you can customize the behavior of the DPRE command synonym by modifying the DSQABR1C
exec.

The DSQABR1C exec contains a customization section at the beginning of the program. You can use the
customization section to change settings such as the name of the BROWSE data set or the printer
allocation. The DSQABR1C exec contains instructions for modifying the customization section.

Important: When you modify any file, first rename it and be sure to keep backup copies of the original
and modified files.

Guidelines for synonyms
Command synonyms include a verb, a definition, and optionally, an object name.

Synonym verbs
Every command synonym definition must have a verb. Only the object name is optional.

The verb is your own word for the command in QMF for CICS, or QMF for TSO that is stored in the
SYNONYM_DEFINITION column. For example, you might create the synonym COMPUTE for the QMF base
verb RUN if your company has financial analysts who run procedures that return computations.

Related concepts
Synonym object names
An object name is optional in a command synonym. When you do use an object name, however, ensure
that users specify both the verb and the object name; otherwise, QMF cannot find a match in the
synonyms table.
Synonym definitions
The synonym definition is the command, procedure, or application that runs when the user enters the
command synonym.

Rules for the VERB column
Ensure that entries in the VERB column of the synonyms table are valid.

Entries in the VERB column of the synonyms table must follow these rules:

• Are 1 to 18 characters long
• Do not contain blanks
• Do not include the verb QMF (other base QMF commands are allowed)
• Have an alphabetic or national character as the first character

In English, national characters are #, @, and $.

Characters after the first letter can be alphabetic, national characters, decimal digits, or the underscore.
No other characters are allowed.

The following examples demonstrate these rules. QMF ignores rows that have invalid entries in the VERB
column.

Chapter 14. Command synonyms 229

Table 50. Examples of valid and invalid verbs for command synonyms

Valid verbs Invalid verbs

COMPUTE DO SALES (Blanks not allowed unless surrounded by double quotation
marks)

DISPLAY ADJ%AGE (% not allowed)

PRINT PRINT_PRODUCTIVITY_TOTALS (more than 18 characters)

Using base QMF verbs as command synonym verbs
You can use base QMF commands, such as PRINT, as synonyms.

For example, you might choose to define a synonym that automatically routes print output to a GDDM-
defined printer.

When you define a synonym that is also a base QMF command, you must precede the command with the
letters QMF if you want to use the base QMF command. For example, the synonym DISPLAY might
represent a synonym definition that executes the QMF command RUN PROC SALES_REPORT. The
SALES_REPORT procedure runs a query and prints a report on a GDDM-defined printer. Users who forget
to enter QMF in front of DISPLAY might get a formatted, printed report of data they did not necessarily
want.

Some base QMF commands must be followed by keywords or parameters. For example, you need to
follow the IMPORT command with an object type, such as TABLE. If you are using a verb such as IMPORT
in a verb-object pair, choose an object name that is not one of these parameters to prevent users from
inadvertently running the synonym.

Synonym object names
An object name is optional in a command synonym. When you do use an object name, however, ensure
that users specify both the verb and the object name; otherwise, QMF cannot find a match in the
synonyms table.

Entries in the OBJECT column of the synonyms table must follow these rules:

• Must be 1 to 31 characters long
• Must conform to the rules for naming Db2 tables
• Must be surrounded by double quotation marks if the object name has blanks or other special

characters

Both QMF and the database manager remove the double quotation marks when the name is processed.

The following examples show valid and invalid objects:

Table 51. Examples of valid and invalid objects in command synonym definitions

Valid objects Invalid objects

PFKEYS 80CAT (first character is numeric)

MONTH_2_REPORT ADJ%AGE (% not allowed)

"Net Sales" JONES GROSS (double quotation marks required for blanks)

Related concepts
Synonym verbs
Every command synonym definition must have a verb. Only the object name is optional.
Synonym definitions

230 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

The synonym definition is the command, procedure, or application that runs when the user enters the
command synonym.

Synonym definitions
The synonym definition is the command, procedure, or application that runs when the user enters the
command synonym.
Related concepts
Synonym verbs
Every command synonym definition must have a verb. Only the object name is optional.
Synonym object names
An object name is optional in a command synonym. When you do use an object name, however, ensure
that users specify both the verb and the object name; otherwise, QMF cannot find a match in the
synonyms table.

Guidelines for definitions
An entry in the SYNONYM_DEFINITION column can include certain commands.

An entry in the SYNONYM_DEFINITION column can include:

• A RUN command that calls a QMF procedure or query

For example, the following command might be a synonym definition for the synonym COMPUTE
MONTHLY_SALES:

RUN PROC JONES.SALES_DATA

• A TSO command that calls a CLIST
• A CICS command that starts another CICS transaction

Example: using a linear procedure in the synonym definition
A linear procedure is a QMF procedure that executes QMF commands sequentially. Your synonym
definition can include a linear procedure that does the work of several QMF commands.

For example, consider the following procedure:

-- Procedure name: SALES_PROC
 RUN QUERY SALES_DATA
 PRINT REPORT (QUEUENAME=XYZ,QUEUETYPE=TS)
 TSO RPTX (FROM=('REPORTX, XYZ'))

Figure 40. Sample procedure to run using a command synonym

This procedure performs the following tasks:

1. Runs the following query, called SALES_DATA, which creates a report that shows all the customers
handled by sales representative number 20:

SELECT QUANTITY, CUSTNO
FROM Q.SALES
WHERE SALESREPNO = 20

2. Routes the report from QMF to TSOTSO virtual storage or a CICS temporary storage queue. XYZ is the
name of the temporary storage queue.

3. Runs a CICS or TSO procedure to route the report from storage to a predefined print destination. RPTX
is the transaction name. It runs asynchronously with QMF to route output to a destination named
REPORTX.

Your definition for a synonym that runs this procedure might look similar to the following one:

Chapter 14. Command synonyms 231

SYNONYM
VERB OBJECT DEFINITION
----------- --------------- -------------------
SHOW SALES RUN PROC SALES_PROC

Figure 41. Example of using a command synonym to run a linear procedure

If you are using an National Language Feature (NLF), ensure that the commands in the queries, forms, and
other objects included in the procedure are translated before you use the command synonym (unless
your procedure sets the DSQEC_NLFCMD_LANG variable to 1, which requires that users issue commands
in English). Also ensure that these components are suitable for the NLF that you are using.

Using variables in the synonym definition
You can use variables in the synonym definition to pass values for like-named variables present in objects
(such as queries) named in the definition.

For example, this example shows a definition that passes the value Q.STAFF for the table name, which is
evaluated when MYQUERY runs.

SYNONYM
VERB OBJECT DEFINITION
---------- --------- --------------------------------------
EXECUTE - RUN QUERY MYQUERY (&&TABLENAME=Q.STAFF

Figure 42. Using variables in command synonym definitions

MYQUERY might look something like the following:

SELECT * FROM &TABLENAME

Ampersands are doubled in a variable name in the synonym definition because they become single
ampersands when QMF executes the RUN command.

The variable &ALL
&ALL is a special QMF variable that allows you to enter variable values when you enter the synonym,
rather than including them in the synonym definition. Use double ampersands in the synonym definition
for all variables except the variable &ALL.

&ALL is a special QMF variable that allows you to enter variable values when you enter the synonym,
rather than including them in the synonym definition. When you use the variable &ALL in a synonym
definition, QMF uses as variable values any information you enter to the right of the synonym. You can use
the &ALL variable to show where the variable information is located within the synonym definition.

This synonym definition shows an example of a synonym defined using the &ALL variable.

SYNONYM
VERB OBJECT DEFINITION
---------- --------- ------------------------
SHOW_INFO - RUN QUERY STAFFQUERY (&ALL)

Figure 43. Using the variable &ALL in a command synonym definition

The query named STAFFQUERY might look something like the following example:

SELECT * FROM Q.STAFF
WHERE DEPT=&DEPT and JOB=&EMPLOYEE_JOB

232 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

After activating the SHOW_INFO synonym defined in Figure 43 on page 232, you can enter the following
statement from the QMF command line to display information about all the managers in Department 10:

SHOW_INFO &DEPT=10 &EMPLOYEE_JOB='MGR'

When you use the variable &ALL in a synonym definition, follow these guidelines:

• Use &ALL only once in a synonym definition.
• Always write &ALL in upper case.
• Never follow &ALL with a number or letter.
• Any value you substitute for &ALL must be syntactically correct when QMF evaluates the entire

command.

If a user does not supply a value following the command synonym, QMF substitutes a null value for &ALL.
In the synonym definition shown in Figure 43 on page 232, QMF prompts the user for values for the
&DEPT and &EMPLOYEE_JOB variables if the user enters SHOW_INFO by itself on the command line.

Keying information into the SYNONYM_DEFINITION column
Command synonym definitions must follow certain rules when you enter them into the synonyms table.

Follow these rules when keying your synonym definitions into the synonyms table:

• Add single quotes around any variable in your synonym definition.

Single quotes around a variable eliminate the need for the user to add quotes to the command synonym
when running a query. For example:

RUN MYQUERY (&&NAMEVALUE='&ALL'

If you search for the name MARENGHI, you do not need to enter 'MARENGHI', because QMF does this
for you.

• Enter base verbs and keywords in upper case.

Literal information in the synonym definition is not converted to upper case.
• Qualify all object names if their owners are different from the SQL authorization ID of the user who uses

the synonym.

QMF leaves names unqualified when searching for a synonym that contains the object name specified.
For example, if your synonym definition includes a query named MY_SALES owned by user ID JONES,
ensure that the object name in the synonym definition reads JONES.MY_SALES. Otherwise, JONES is
the only user who can use that command synonym.

• Use only capital letters for letters that lie outside of delimited identifiers.

If QMF converts user input (the synonym) to upper case and the synonym definition is in lower case,
QMF cannot find the synonym definition that matches the synonym that the user entered. The CASE
value of the user's QMF profile controls whether input is converted to upper case. Use the SET PROFILE
command to change the CASE value.

Chapter 14. Command synonyms 233

Customizing Command synonyms
If the default command synonyms do not meet your needs, you can create your own synonyms. After you
create a command synonym, users can enter the synonym on the command line in the same way that
they enter a QMF command.

Creating a command synonym table
When a user starts a QMF session, QMF loads a command synonym table whose name you specify in the
SYNONYMS field of the user's profile.

About this task

When you enter a command, QMF first checks the synonyms table for a match. If there is no match, QMF
interprets the command as a base QMF command. To prevent QMF from checking the synonyms table,
enter the letters QMF in front of any command.

Procedure

1. If necessary, acquire or add a table space in the local Db2 for z/OS subsystem to hold the command
synonym table.
If you do not have an available table space, create one for your table with a statement like the one
shown here:

CREATE TABLESPACE DSQTSSN1
 IN DSQDBCTL
 USING STOGROUP DSQSGSYN
 PRIQTY 100
 SECQTY 20
 LOCKSIZE PAGE
 BUFFERPOOL BP0
 CLOSE NO

Figure 44. Creating a table space

This statement creates the table space DSQTSSN1. The storage group and database for this table
space are also those for the table space containing the default synonyms table,
Q.COMMAND_SYNONYMS.

If you use implicit table spaces, skip this step.
2. From the QMF SQL Query panel, run a CREATE TABLE statement similar to the following statement.

Substitute your own table name in place of COMMAND_SYNONYMS and your own table space name
for DSQTSSN1. If you use implicit table spaces, do not include the IN DSQTSSN1 clause in your
statement. Type the other portions of the statement exactly as shown.

CREATE TABLE COMMAND_SYNONYMS
 (VERB CHAR(18) NOT NULL,
 OBJECT VARCHAR(31),
 SYNONYM_DEFINITION VARCHAR(254) NOT NULL,
 REMARKS VARCHAR(254))
 IN DSQTSSN1

Figure 45. Creating a command synonym table

The VERB and OBJECT columns store your synonym. The SYNONYM_DEFINITION column stores the
command or procedure that runs when you enter the synonym.

234 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

The columns can be in any order, and you can add a column for comments so that users know the
purpose of each synonym.

3. Add comments to the Db2 system catalog using the following example for the COMMAND_SYNONYMS
table:

COMMENT ON TABLE COMMAND_SYNONYMS IS 'SYNONYMS FOR R AND D'

The phrase SYNONYMS FOR R AND D appears in the REMARKS column of the Db2 system catalog.

You do not need to add comments about your new table to the Db2 system catalog. However, consider
adding one comment about the table and other comments to describe the columns. For example,
suppose that COMMAND_SYNONYMS has a column named AUTHID that distinguishes private from
public synonyms. To add a comment to explain this, run a query that contains a statement like the
following:

COMMENT ON COLUMN COMMAND_SYNONYMS.AUTHID
 IS 'PRIVATE SYNONYM: USE AUTH ID. PUBLIC SYNONYM: USE NULL'

By issuing a subsequent COMMENT ON statement, you can replace the current comment.

4. Create an index to maximize performance at initialization time, when QMF processes the command
synonym table.
Use a statement similar to the following:

CREATE UNIQUE INDEX SYNONYMS_INDEX
 ON COMMAND_SYNONYMS (VERB, OBJECT)

Index both the VERB and OBJECT columns with the UNIQUE keyword to prevent duplicate synonym
definitions. If you choose not to use the UNIQUE keyword, QMF allows duplicate synonyms in the
table. QMF uses the first synonym it locates in the table and logs a warning message in the QMF trace
data for any duplicates encountered.

Entering command synonym definitions into the table
After you create a command synonym table, use an SQL INSERT statement to enter your synonyms into
the table. You can also use the Table Editor to update the table.

This SQL INSERT statement enters synonyms into the table.

INSERT INTO COMMAND_SYNONYMS (VERB,OBJECT,SYNONYM_DEFINITION)
 VALUES('COMPUTE', 'MONTHLY_SALES', 'RUN PROC JONES.SALES_FIGURES')

Figure 46. Creating a command synonym definition

After it is activated, the synonym COMPUTE MONTHLY_SALES runs a QMF linear procedure called
SALES_FIGURES, owned by user JONES.

The statement in the following example shows an example of a synonym that has no entry in the object
column:

INSERT INTO COMMAND_SYNONYMS (VERB,SYNONYM_DEFINITION)
 VALUES('EXECUTE','RUN QUERY')

Figure 47. Creating a command synonym definition

After it is activated, the synonym EXECUTE runs the query currently in the QMF temporary storage area.

The synonyms in these examples follow guidelines for synonyms that allow QMF to process each
synonym correctly.

Chapter 14. Command synonyms 235

Related concepts
Guidelines for synonyms
Command synonyms include a verb, a definition, and optionally, an object name.

Activating the synonyms
Command synonyms follow the same rules for abbreviation as QMF commands.

About this task

Any abbreviation must indicate a unique QMF command or command synonym. For example, the
minimum valid abbreviation for the synonym EXECUTE is EXE. If you enter only EX, QMF cannot
distinguish the command synonym EXECUTE from the base QMF command EXPORT.

Procedure

To activate the command synonym table for your users:
1. Update the SYNONYMS field of the user's profile with the proper command synonym table name.

This column is defined as VARCHAR(261) to allow for a 128-byte table owner ID and table name.

Important: Always specify a value for TRANSLATION when you are updating Q.PROFILES, or you
might change more rows than you intend.

The following example shows how to assign the COMMAND_SYNONYMS table to the user JONES in
the English language and the table GUMMOW.XYZ to the user SCHMIDT in the German NLF
environment:

Table 52. Activating a user's QMF command synonyms

Base QMF (English) German NLF

UPDATE Q.PROFILES
SET SYNONYMS='COMMAND_SYNONYMS'
WHERE CREATOR='JONES'
AND TRANSLATION='ENGLISH'
AND ENVIRONMENT='TSO'

UPDATE Q.PROFILES
SET SYNONYMS='GUMMOW.XYZ'
WHERE CREATOR='SCHMIDT'
AND TRANSLATION='DEUTSCH'
AND ENVIRONMENT='TSO'

The previous statement applies to users who are already enrolled in QMF. You can use a similar
statement to update the SYSTEM profile. If you are enrolling a new user, use an INSERT statement.

2. Grant the SQL SELECT privilege to PUBLIC so that assigned users can access the synonyms.
For example:

GRANT SELECT ON COMMAND_SYNONYMS TO PUBLIC

If you are using a view of a synonyms table rather than the table itself, grant SELECT on only the view
to prevent users from accessing synonyms not meant for their use.

What to do next

Instruct users to end the current QMF session and start another to activate the new synonyms.

Related tasks
Assigning views of a synonyms table to individual users

236 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

To enable users to have synonyms unique to their needs and still keep table maintenance at an
acceptable level, consider creating several views of one synonyms table, and assigning the views to
individual users or groups of users. There are three types of views you can create.

Minimizing maintenance of command synonym tables
The command synonym table is initialized before the QMF home panel is displayed. If you notice that
QMF initialization time is increasing, you might need to reorganize the command synonym table.

To minimize the time you spend maintaining users' command synonym tables, consider either assigning
one synonyms table to all users or assigning a variety of different views of the same table.

Assigning one synonyms table to all users
The more command synonym tables you create for individual users, the more time you spend on
maintenance. One way to reduce maintenance is to create a single command synonym table and assign it
to every user.

This statement assigns to every user of base (English)QMF a table with the default name,
Q.COMMAND_SYNONYMS.

UPDATE Q.PROFILES
 SET SYNONYMS='Q.COMMAND_SYNONYMS'
 WHERE TRANSLATION='ENGLISH' and ENVIRONMENT='TSO'

Figure 48. Assigning a single command synonym table to all QMF users

Assigning views of a synonyms table to individual users
To enable users to have synonyms unique to their needs and still keep table maintenance at an
acceptable level, consider creating several views of one synonyms table, and assigning the views to
individual users or groups of users. There are three types of views you can create.

Synonyms for public or private use
If you have few synonyms that are used by individuals, consider creating and assigning a view that flags
each synonym for either public use (by all users) or private use (by individual users).

Procedure

To create and assign a view that flags each synonym for public or private use, follow this procedure:
1. Add an AUTHID column to the synonyms table when you create the table. A null value in the AUTHID

column indicates a public synonym; a user ID in the AUTHID column indicates a private synonym. You
can have many entries for the same synonym, each assigned to a different user.

2. Use a statement similar to the following one to create a view on the synonyms table.
This statement allows a user (indicated by userid in the figure) to use all public synonyms in the table
and any synonyms assigned privately to his or her SQL authorization ID.

CREATE VIEW SYNVIEW (VERB,OBJECT,SYNONYM_DEFINITION)
 AS SELECT VERB, OBJECT, SYNONYM_DEFINITION
 FROM COMMAND_SYNONYMS
 WHERE AUTHID='userid' OR AUTHID IS NULL

Figure 49. Creating a view that controls individual and public use of synonyms

Chapter 14. Command synonyms 237

Synonyms for public or group use
If you support a large group of end users, consider creating and assigning a view that flags certain
synonyms to be used by certain groups of users.

About this task

The synonyms table that is used to create the view contains a single row for each synonym that belongs
to a user group, and a single row for each public synonym. AUTHID is either null or has a value that
uniquely identifies the user group.

Procedure

1. Add an AUTHID column to the synonyms table if it does not have one.
2. Use a statement similar to the following one to create the view on the synonyms table.

This statement shows a view created for a group of users that have a common user ID, DEPTD02. All
users in the DEPTD02 group can use all public synonyms in the table and any synonyms assigned
specifically to the group.

CREATE VIEW GROUPVIEW (VERB,OBJECT,SYNONYM_DEFINITION)
 AS SELECT VERB, OBJECT, SYNONYM_DEFINITION
 FROM COMMAND_SYNONYMS
 WHERE AUTHID='DEPTD02' OR AUTHID IS NULL

Figure 50. Creating a view that controls group and public use of synonyms

Synonyms paired with an authorization table
Consider creating a separate table that holds in one column SQL authorization IDs and the other column
the values of a key.

If the keyed value for a particular SQL authorization ID matches a keyed value in a row of the command
synonym table, the synonym described in that row is available to the user.

Use a statement similar to the following one to implement this method of maintaining command
synonyms. This statement creates a view called KEYVIEW on the table COMMAND_SYNONYMS,
incorporating in the view only the synonyms that have keyed matches between COMMAND_SYNONYMS
and the auxiliary table, KEYTABLE.

CREATE VIEW KEYVIEW (VERB,OBJECT,SYNONYM_DEFINITION)
 AS SELECT VERB, OBJECT, SYNONYM_DEFINITION
 FROM COMMAND_SYNONYMS
 WHERE AUTHID IS NULL OR AUTHID IN
 (SELECT KEYS FROM KEYTABLE WHERE USER=userid)

Figure 51. Creating a view that uses an extra table to control use of synonyms

238 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 15. Custom function keys
The default settings and labels for function keys on each QMF panel describe a common set of QMF tasks
that end users are likely to perform. However, because every site's needs are unique, QMF provides a way
for you to customize both the label that displays on the screen and the command QMF runs when a user
presses the key.

Customizing QMF function keys
You customize the command that QMF issues when a user presses a function key and the key label in the
function key table.

About this task
QMF function keys are displayed on two types of panels: primary panels, which are full-screen panels
such as FORM.MAIN and REPORT, and secondary panels, which open as window dialog panels. Help,
prompt, and Prompted Query panels are examples of secondary panels.

Displaying the panel ID
You enter the panel identifier of the panel for which you want to customize the function keys in the PANEL
column of the function key table. Use the global variable DSQDC_SHOW_PANID to display the panel ID.

About this task
The panel ID is displayed in the upper left corner of the panel when the global variable
DSQDC_SHOW_PANID is set to 1.

Procedure

• Use the following command to set the global variable to display the panel ID:

SET GLOBAL (DSQDC_SHOW_PANID=1

Full-screen panel identifiers
Full-screen panel IDs for the QMF English base product.

Valid full-screen panel IDs for each QMF National Language Feature (NLF) are listed in the language-
specific versions of the DSQ22957 message. To view the message for an NLF, issue the command HELP
DSQ22957 from the QMF command line while you are running the NLF.

When you enter your function key definitions into the function key table, enter the identifiers exactly as
they are shown here or in the message text.

• FORM.BREAK1
• FORM.BREAK2
• FORM.BREAK3
• FORM.BREAK4
• FORM.BREAK5
• FORM.BREAK6
• FORM.CALC
• FORM.COLUMNS
• FORM.CONDITIONS
• FORM.DETAIL
• FORM.FINAL

© Copyright IBM Corp. 1982, 2020 239

• FORM.MAIN
• FORM.OPTIONS
• FORM.PAGE
• GLOBALS
• HOME
• PROC
• PROFILE
• PROMPTED QUERY
• REPORT
• SQL QUERY

Window panel identifiers
Window panel IDs to use when you enter your function key definitions into the function key table.

If you set the global variable DSQDC_SHOW_PANID to display the panel IDs, you notice that each ID
shown in these tables is prefaced by 4 characters when it is displayed.

Window panels that are not named in the tables do not have unique panel IDs, and can be customized by
using the class ID shown at the bottom of each table. All class IDs have the character string XXXX in
them. These characters are not variable characters; they are part of the ID.

Choose one of the following sections for more information:

• “Command windows” on page 240
• “Forms windows” on page 240
• “Global variable windows” on page 240
• “Help and prompt windows” on page 241
• “Location windows” on page 241
• “Object list windows” on page 241
• “Prompted query windows” on page 241

Command windows

Panel identifier Title or description

COENTR Command entry

COXXXX Command window class

Forms windows

Panel identifier Title or description

FOALIG Alignment

FODFIN Definition

FOSPEC Specify

FOXXXX Form window class

Global variable windows

Panel identifier Title or description

GLADVA Add variables

240 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Panel identifier Title or description

GLSHVA Show individual global variables

(This label is associated with the panel that displays when a user
presses the Show Field key on the GLOBALS panel.)

GLXXXX Global variables window class

Help and prompt windows

Panel identifier Title or description

HEXXXX Subject help window class

(Error message help panels follow a different naming convention.)

PRXXXX Prompt window class

Location windows

Panel identifier Title or description

PLLOCA Location window list

Object list windows

Panel identifier Title or description

OBDESC Object description

OBLIAC Object list action

OBLIMU Object list multi-selection

OBLISI Object list single-selection

OBSORT Object list sort

OBXXXX Object list window class

Prompted query windows

Panel identifier Title or description

QPCDCH Condition connector - change

QPCDIT Condition connector

QPCFOR Change time period

QPCOCH Column - change

QPCODE Column description

QPCOFI Column summary function items

QPCOFU Column summary functions

QPCOLI Column names list

QPCOLU Columns

QPDUCH Duplicate rows - change

QPDUPL Duplicate rows

Chapter 15. Custom function keys 241

Panel identifier Title or description

QPERSP Specify time period

QPEXPR Expression

QPJOCO Join columns

QPJOTA Join tables

QPROBE Rows - between

QPROCH Rows - change (left side)

QPROCT Rows - containing

QPROC1 Rows - comparison operators 1

QPROC2 Rows - comparison operators 2

QPROEN Rows - Ending with

QPROEQ Rows - Equal to

QPROGQ Rows - Greater than or equal to

QPROGR Rows - Greater than

QPROLQ Rows -Less than or equal to

QPROLS Rows - Less than

QPROST Rows - Starting with

QPROWS Rows (row conditions)

QPSHFI Show field

QPSHSQ Show SQL

QPSOCH Sort - change

QPSORT Sort

QPSPEC Specify

QPTABL Tables

QPTTAB Select tables or views for time period

QPXXXX PQ window class

Choosing the keys that you want to customize
The default key labels differ by panel type. Choose the function key that you want to customize.

You cannot customize function keys on Table Editor panels. On other panels, you can choose QMF or site-
defined commands to associate with any function key label you modify.

Default keys on full-screen panels
This table shows the default function key settings for full-screen panels.

Table 53. Default function keys and commands for full-screen panels

Default key label Default command issued when key is pressed

Backward BACKWARD

Cancel CANCEL

242 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 53. Default function keys and commands for full-screen panels (continued)

Default key label Default command issued when key is pressed

Change CHANGE

Chart DISPLAY CHART or SHOW CHART

Check CHECK

Clear CLEAR

Command SHOW COMMAND

Comments SWITCH COMMENTS

Delete DELETE

Describe DESCRIBE

Draw DRAW

Edit Table EDIT TABLE

End END

Enlarge ENLARGE

Form DISPLAY FORM or SHOW FORM

Forward FORWARD

Help HELP

Insert INSERT

Left LEFT

List LIST

Print PRINT

Proc DISPLAY PROC or SHOW PROC

Profile DISPLAY PROFILE

Query DISPLAY QUERY or SHOW QUERY

Reduce REDUCE

Refresh REFRESH

Report DISPLAY REPORT or SHOW REPORT

Retrieve RETRIEVE

Right RIGHT

Run RUN QUERY or RUN PROC

Save SAVE PROFILE

Show SHOW

Show Field SHOW FIELD

Show SQL SHOW SQL

Sort SORT

Specify SPECIFY

Chapter 15. Custom function keys 243

Table 53. Default function keys and commands for full-screen panels (continued)

Default key label Default command issued when key is pressed

Specify View SPECIFY VIEW

Default keys on window panels
This table shows the default function keys on window panels as well as the command executed when
each key is pressed.

Table 54. Default function keys and commands for window panels

Default key label Default command issued when key is pressed

Attribute SPECIFY ATTRIBUTES

Backward BACKWARD

Cancel CANCEL

Clear CLEAR

Command SHOW COMMAND

Comments SWITCH COMMENTS

Condition SPECIFY CONDITION

Delete DELETE

Describe DESCRIBE

End END

Exit END

Forward FORWARD

Help HELP

Index HELP INDEX

Keys HELP KEYS

List LIST

Menu HELP MENU

More Help MORE HELP

Next Column NEXT COLUMN

Next Definition NEXT DEFINITION

Previous Column PREVIOUS COLUMN

Previous Definition PREVIOUS DEFINITION

Refresh REFRESH

Show Entity SHOW ENTITY

Show Field SHOW FIELD

Show View SHOW VIEW

Sort SORT

Specify Attributes SPECIFY ATTRIBUTES

244 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 54. Default function keys and commands for window panels (continued)

Default key label Default command issued when key is pressed

Specify Condition SPECIFY CONDITION

Switch HELP SWITCH

On the global variable list panel, RESET GLOBAL is the command executed when the Delete function key
is pressed.

Creating the function key table
After you decide which function keys you want to customize, you can create a table that links your
customized function key definitions with the appropriate panels.

Procedure

Follow these steps to create the function key table:
1. Use an SQL CREATE TABLE statement similar to the one shown here to create the table.

Substitute your own name for MY_PFKEYS. Substitute your own table space for DSQTSSN1.

CREATE TABLE MY_PFKEYS
 (PANEL CHAR(18) NOT NULL,
 ENTRY_TYPE CHAR(1) NOT NULL,
 NUMBER SMALLINT NOT NULL,
 PF_SETTING VARCHAR(254),
 REMARKS VARCHAR(254))
 IN DSQTSSN1

Figure 52. Creating a function key table

2. Add comments to the Db2 system catalog using an SQL statement similar to the following statement:

COMMENT ON TABLE MY_PFKEYS IS 'PF KEYS RESERVED FOR FINANCIAL ANALYSTS'

The phrase PF KEYS RESERVED FOR FINANCIAL ANALYSTS appears in the REMARKS column of
the Db2 system catalog.

You do not need to add comments about your new table to the Db2 system catalog; however, if you do,
one comment might be about the table and others might describe the columns. For example, suppose
that MY_PFKEYS has a column named AUTHID that distinguishes private from public function keys. To
add a comment to explain this, run a query containing a statement like the one in the following
example:

COMMENT ON COLUMN MY_PFKEYS.AUTHID
 IS 'PRIVATE PFKEY: USE AUTH ID. PUBLIC PFKEY: USE NULL'

By issuing a subsequent COMMENT ON statement, you can replace the current comment.
3. Create an index using an SQL statement similar to the following statement:

CREATE UNIQUE INDEX MY_PFKEYSX
 ON MY_PFKEYS (PANEL, ENTRY_TYPE, NUMBER)

Use the UNIQUE keyword to index the PANEL, ENTRY_TYPE, and NUMBER columns to ensure that no
two rows of the table can be identical.

If you choose not to use the UNIQUE keyword, QMF allows duplicate key definitions. QMF logs warning
messages if it finds more than one key definition for the same key, and writes these messages to the
user's trace data. Multiple key definitions for window panels cause no messages; QMF uses the last
definition it finds.

Chapter 15. Custom function keys 245

Entering your function key definitions into the table
You can use SQL INSERT statements or the QMF Table Editor to insert key definitions into the function
key table.

Each function key definition spans two rows in the table:

• One row specifies the command QMF issues when a user presses the key.
• The other row specifies the key label that appears on the screen.

Enter both rows for each key that you want to customize. A function key command without an associated
label doesn't appear on the user's screen. Similarly, a label with no associated command is inactive.

Related concepts
Examples of key definitions
Use the examples in this topic to see how to enter a complete function key definition for each type of QMF
panel. The examples show how to update a full-screen panel, a window panel, and a help panel.

Linking a command with a function key
Each function key on a QMF panel is linked with a QMF command that executes when the function key is
pressed. To ensure that the function key is active, add a row to the function key table that identifies the
command.

To ensure your customized function keys also work this way, make sure that one of the two rows you
enter into the table has the values shown in the following table.

Table 55. Values for the first of two rows required for each function key definition

Column Value Information

PANEL ID of the QMF panel to be
customized

If you want to define the same set of keys to appear on every
panel in a class of window panels, use the class ID shown at
the bottom of the tables. For example, to customize the
Specify panel of a Forms window, use the panel ID FOSPEC if
you want the Specify panel to have different keys than the rest
of the panels in the forms class. Otherwise, use the panel ID
FOXXXX, which characterizes all panels in that class.

Changes that you make using a class ID apply to all panels
customized by that class ID. Help and prompt windows do not
have a set of unique IDs; they can be customized only by using
class IDs.

ENTRY_TYPE K K indicates that this row defines the command that QMF issues
when the key is pressed.

NUMBER Number of the function
key to be customized

For example, if you are changing the definition for F5, enter a 5
in this column.

246 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 55. Values for the first of two rows required for each function key definition (continued)

Column Value Information

PF_SETTING Text of the command that
runs when the key is
pressed

Make sure that this command is appropriate for the panel on
which it appears. For example, the ENLARGE command is
appropriate only for the QUERY panel in a QBE query. Because
QMF does not check if the command is appropriate for the
panel until the user presses the key, test each of your new
function keys before their first use.

Enter the command in upper case, because QMF does not
convert display device input to upper case when it retrieves the
commands associated with function keys. The command will
not run if this value is in lower case and the CASE field of the
user's profile has the value UPPER.

Ensure that each panel that you customize has a key set to END
or CANCEL. Without a key defined to one of these commands,
users might not be able to exit the panel.

If you are using an NLF, make sure that the underlying command has the correct national language
translation and that the label text for each key is written in the language of the NLF you are using.

Related reference
Labeling the function key and positioning it on the screen
The function keys on each QMF panel have labels next to the function key numbers. To ensure that the
label appears on the screen, add a row to the function key table that identifies the label.

Labeling the function key and positioning it on the screen
The function keys on each QMF panel have labels next to the function key numbers. To ensure that the
label appears on the screen, add a row to the function key table that identifies the label.

In this row, make sure that the columns of the function key table have the values shown in the following
table.

Table 56. Values for the second of two rows required for each function key definition

Column Value Information

PANEL ID of the QMF panel to be
customized

This is the same ID that you used for the first row of the
definition.

ENTRY_TYPE L L indicates that the row defines the label associated with the
function key.

NUMBER Depends on whether you
are customizing a full-
screen panel or a window
or help panel

If you are customizing a full-screen panel, this is the number of
the row where the key appears on the display. For example, on
the home panel, F5 appears in row 1, so the NUMBER column
in this definition would have a value of 1.

If you are customizing a window or help panel, NUMBER
represents the number of the function key (as it does in the first
row you added to the table that links the command).

Chapter 15. Custom function keys 247

Table 56. Values for the second of two rows required for each function key definition (continued)

Column Value Information

PF_SETTING Text of the function key
labels

For full-screen panels, QMF displays on the screen exactly what
you enter in this column, and does not adjust for spacing. For
example, if you are customizing the QMF home panel, you need
to enter all the keys that appear on that panel, whether or not
you customized them. QMF does not automatically assign the
default key settings for keys that you do not customize. See
Figure 53 on page 249 for an example.

For window panels, you need to type only the label of the key in
this column. See Figure 56 on page 250 and Figure 57 on page
250 for examples.

Related reference
Linking a command with a function key
Each function key on a QMF panel is linked with a QMF command that executes when the function key is
pressed. To ensure that the function key is active, add a row to the function key table that identifies the
command.

Activating new function key definitions
To enable users to use the customized function key definitions that you created, you must activate them.

Procedure

1. Update the PFKEYS field of the user's profile with the name of your function key definitions table.

In the following example, the statement on the left assigns to English QMF user JONES the table
MY_PFKEYS, and the statement on the right assigns to German NLF user SCHMIDT the table
MEIN_PFKY.

Important: Always include a value for the TRANSLATION and ENVIRONMENT columns in a statement
that updates the Q.PROFILES table or you might change more rows than you intend.

Table 57. Making customized function keys accessible to a user

Base QMF (English) German NLF

UPDATE Q.PROFILES
SET PFKEYS = 'MY_PFKEYS'
WHERE CREATOR='JONES'
AND TRANSLATION = 'ENGLISH'
AND ENVIRONMENT = 'TSO'

UPDATE Q.PROFILES
SET PFKEYS = 'MEIN_PFKY'
WHERE CREATOR='SCHMIDT'
AND TRANSLATION = 'DEUTSCH'
AND ENVIRONMENT = 'TSO'

2. Grant the SQL SELECT privilege to users who need to access the table.
To allow any user to whom the table is assigned to use it, grant the SELECT privilege to PUBLIC. For
example:

GRANT SELECT ON MY_PFKEYS TO PUBLIC

To minimize maintenance of function keys at your site, you can assign a view of the table. Grant the
SELECT privilege on only the view to prevent users from accessing function keys not meant for their
use.

Use the strategies for assigning views of a function key table to decide whether to assign a table or a
view to individual users or groups of users.

What to do next

Instruct users to end the current QMF session and start another to activate the new function keys.

248 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Related tasks
Assigning views of a synonyms table to individual users
To enable users to have synonyms unique to their needs and still keep table maintenance at an
acceptable level, consider creating several views of one synonyms table, and assigning the views to
individual users or groups of users. There are three types of views you can create.

Testing and diagnosing problems with the function key table
After you have activated the new function key definitions by inserting the function key table name into the
user's Q.PROFILES entry, the new definitions are ready to be tested.

Procedure

You can test the new definitions one of two ways:
• Exit QMF and start a new QMF session.
• From within QMF, reconnect by entering the CONNECT TO servername command, where servername is

the same location name that you see on the QMF home panel.

Results

If you do not see the new function key definitions after reconnecting to QMF, review the QMF trace output
for possible error or warning messages.

If the QMF trace data shows no errors, issue the SHOW GLOBALS command and check the global variable
DSQAP_PFKEY_TABLE. If this global variable does not contain the name of the newly created or modified
function key table, review the user's row in the Q.PROFILES table.

Examples of key definitions
Use the examples in this topic to see how to enter a complete function key definition for each type of QMF
panel. The examples show how to update a full-screen panel, a window panel, and a help panel.

The examples shown use panel IDs from the tables that list the full screen panels and window panels.

Entering a definition for a key on a full-screen panel

Use the following SQL statements to change F2 on the home panel from EDIT TABLE to IMPORT. Identify
the home panel with the panel ID HOME, and indicate with the number 2 (in the first statement shown)
that you want to customize the command executed when a user presses F2.

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
 VALUES('HOME', 'K', 2, 'IMPORT')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
 VALUES('HOME','L',1,'1=Help 2=Import 3=End 4=Show 5=Chart 6=Query')

Figure 53. Changing a function key for a QMF command on the home panel

The QMF home panel now displays Import for F2, as shown here:

Chapter 15. Custom function keys 249

Type command on command line or use PF keys. For help, press PF1 or type HELP.
__
1=Help 2=Import 3=End 4=Show 5=Chart 6=Query
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, cursor positioned.
COMMAND ===>

Figure 54. After adding the definition to the function keys table, the function key appears customized on the
screen

In the PF_SETTING column of the second INSERT statement, be sure to type exactly what appears in the
top row of keys on the home panel, even if you have not customized each key. For example, if you specify
only the word Import in the PF_SETTING column for the second statement, the home panel looks like the
following one:

Type command on command line or use PF keys. For help, press PF1 or type HELP.
__
Import
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
OK, cursor positioned.
COMMAND ===>

Figure 55. The first row of keys is missing if you do not specify them when you insert the new key definition
into the function keys table

Entering a definition for a key on a window panel

The following SQL statements add an F3 key to the Tables panel in Prompted Query. The function key
executes the CANCEL command, and is labeled CancelMe.

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
 VALUES('QPTABL', 'K', 3, 'CANCEL')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
 VALUES('QPTABL', 'L', 3, 'CancelMe')

Figure 56. Changing a function key on the Specify panel for Prompted Query

Entering a key definition for a help or prompt panel

The following SQL statements in add an F13 key to all help panels. The function key executes the CANCEL
command, and is labeled CancelMe.

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
 VALUES('HEXXXX', 'K', 13, 'CANCEL')

INSERT INTO MY_PFKEYS (PANEL,ENTRY_TYPE,NUMBER,PF_SETTING)
 VALUES('HEXXXX', 'L', 13, 'CancelMe')

Figure 57. Changing a function key on a help panel or prompt panel

All help and prompt panels are customized using a single class ID. Because any changes you make to one
panel in the class appear on all panels that are defined with that class ID, ensure that changes you make
to one help or prompt panel are appropriate for all the help and prompt panels in that class.

Related reference
Full-screen panel identifiers
Full-screen panel IDs for the QMF English base product.
Window panel identifiers

250 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Window panel IDs to use when you enter your function key definitions into the function key table.

Chapter 15. Custom function keys 251

252 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 16. Custom edit exit routines for QMF forms
QMF forms help users to control the format of data returned from the database. If the default edit codes
do not meet the report-editing needs of your site, you can create your own edit codes.

You can use edit codes in the EDIT field of the FORM.MAIN and FORM.COLUMNS panels to format report
data in different ways. For example, you can use a decimal edit code for a column that returns salary data;
this edit code formats the numeric data into a decimal with a currency symbol.

Edit exit routines and QMF
QMF and your edit exit routine work together to format data by using the edit codes that you define.

Calling your exit routine to format the data

This image shows how a user edit routine works with QMF.

Figure 58. How a user edit routine works with QMF for TSO and CICS

When you enter your own code in a column of FORM.MAIN or FORM.COLUMNS, QMF passes certain
characteristics of the data into the first interface control block. These characteristics reside in specific
fields of the control block. QMF also passes into the input area the data to be formatted and an output
area that holds the formatted result.

Passing information to and from the exit routine

To format the data returned from the database, QMF calls your edit exit routine and passes information
through fields of the interface control block. Information is also passed to and from the exit routine using
the input and output areas, which contain the data to be formatted and information about where to put
the formatted result.

The data to be formatted can be a column value, the result of a built-in function, a defined column, a
calculation, or a value represented by a variable in a heading, a footing, or a final-summary line.

Upon receiving control for formatting, your edit routine receives the following parameters:

• Control information from the interface control block
• The value of ECSINPT, the data from the input area to be formatted
• ECSRSLT, which contains the output area for the formatted result

ECSRSLEN contains the length of the output area. If your formatted result doesn't fit in the output area,
it must be truncated because the output area cannot be column-wrapped.

Important: Do not use more memory in the output area than is indicated by the value in the ECSRSLEN
field, or you will see error DSQ60439: User edit program memory overwrite. To correct this
error, do one of the following:

– Increase the width of the column by modifying the edit code in the QMF form to the length expected
on the report.

– Code your edit exit program so that it checks the value of the ECSRSLEN field to determine if your
program should pad or truncate the results passed back to QMF.

© Copyright IBM Corp. 1982, 2020 253

ECSINPT, ECSRSLT, and ECSRSLEN are fields of the interface control block.

Passing control to the exit routine when QMF terminates

Use the ECSRQMF field of the control block to indicate that you want your exit routine to receive control
when QMF terminates.

The ECSRQMF value should be updated the first time the edit exit routine receives control.

When your edit exit routine receives control upon termination of QMF, the parameters passed to the
routine are the control block, the input area, and the output area. Only the control block contains usable
information.

Related concepts
Fields that characterize the input and output areas
In addition to the fields in the interface control block, your edit exit routine receives, in the input field,
information about the data to be formatted. The output field contains information about where to put the
formatted result.
Related reference
Fields of the interface control block
Use the fields of the interface control block to pass information to and from your exit routine.

Fields passed to and from the exit routine
These fields of the interface control block and of the input and output areas contain information that is
passed either to or from your edit exit routine.

Fields of the interface control block
Use the fields of the interface control block to pass information to and from your exit routine.

Although there are separate interface control blocks that work with Assembler, PL/I, or COBOL, the fields
of the interface control block are standard regardless of the programming language in which your edit exit
routine is written. These fields are shown in the following table. Unless otherwise stated, each field
relates to all formatting calls.

Language-specific versions of the edit exit interface control structure are located in the
QMF1210.SDSQUSRn library (where n is a 1-character identifier that represents your national language):

• For High-Level Assembler, use DSECT DXEECSA
• For PL/I, use copy file DXEECSP
• For COBOL, use copy book DXEECSC

Table 58. Fields of the QMF edit exit interface control block, DXEECS

Name Description

ECSDECPT Contains the current decimal point symbol as determined by the DECOPT
option of the QMF profile (period or comma).

ECSECODE Contains the user edit code.

254 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 58. Fields of the QMF edit exit interface control block, DXEECS (continued)

Name Description

ECSERRET Contains a zero at the point of call. Set this to a nonzero return code to record
an error. Use one of the values in the following list for an error of the indicated
type:
Number

Error
99101

Unrecognized edit code
99102

Improper input data type for edit code
99103

Invalid input value for item to be formatted
99104

Item to be formatted is too short
99105

Not enough room for result in ECSRSLT (result is too wide for the space
allotted)

The error codes listed (and their associated messages and help panels) are
specific to the error. For any other code, a general error message, with a
general help panel, is displayed.

ECSFREQ Holds E for a formatting call, T for a termination call.

ECSINDTA Contains information about the value to be formatted.

ECSINLEN Contains the length, in bytes, of the value to be formatted.

ECSINNUL Holds an N if the value to be formatted is null.

ECSINPRC Contains the precision of the value to be formatted. Applies only to U-type
codes when the data type is DECIMAL, or to V-type codes when the character
string to be formatted was derived from numeric data.

ECSINSCL Contains the scale of the value to be formatted. Applies only to U-type codes
when the data type is DECIMAL, or to V-type codes when the character string to
be formatted was derived from numeric data.

ECSINSGN Holds the sign of a converted numeric value (blank or -). Applies only to V
codes when the character string to be formatted was derived from numeric
data.

Chapter 16. Custom edit exit routines for QMF forms 255

Table 58. Fields of the QMF edit exit interface control block, DXEECS (continued)

Name Description

ECSINTYP The internal database representation of the data type of the value to be
formatted. The code shown here for each data type is the same as the value
that appears in the SQLTYPE field of the SQLDA.
384

DATE data type
388

TIME data type
392

TIMESTAMP data type
448

VARCHAR data type
452

CHAR data type
456

LONG VARCHAR data type
464

VARGRAPHIC data type
468

GRAPHIC data type
472

LONG VARGRAPHIC data type
480

FLOAT data type
484

DECIMAL data type
492

BIGINT data type
496

INTEGER data type
500

SMALLINT data type
908

VARBINARY data type
912

BINARY data type
940

Extended FLOAT
996

DECFLOAT data type (both long format and extended format)
2448

TIMESTAMP WITH TIME ZONE data type

ECSNAME Contains the name of the control block, which is DXEECS. Serves as an eye
catcher in storage dumps.

ECSRQMF Set this to T to request a termination call.

ECSRSDTA Contains information about the formatted result.

256 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 58. Fields of the QMF edit exit interface control block, DXEECS (continued)

Name Description

ECSRSLEN Contains the length of the output area, in bytes. (This value is taken from the
WIDTH column of the QMF form.) Do not use more memory in the output area
than is indicated by the value in the ECSRSLEN field, or you will see error
DSQ60439: User edit program memory overwrite.

ECSTHSEP Contains the thousands separator as determined by the DECOPT option of the
QMF profile (blank or a comma).

ECSUSERS A 256-byte scratchpad area where your exit routine can record information that
persists from one call to the next. On the first call after the edit routine is
loaded, this field contains binary zeros.

Related concepts
Edit exit routines and QMF
QMF and your edit exit routine work together to format data by using the edit codes that you define.
Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Fields that characterize the input and output areas
In addition to the fields in the interface control block, your edit exit routine receives, in the input field,
information about the data to be formatted. The output field contains information about where to put the
formatted result.

The value to be formatted appears in the ECSINPT field. How it is represented depends on whether the
value is numeric or character, as determined by the ECSINTYP field, or whether the edit code is a U or V
code, as determined by the ECSECODE field.

How U-type edit codes are represented in the input area

Numeric values are represented in internal database format. For example, if ECSINTYP is equal to 496
(INTEGER data type), the value is a full-word integer. If it is 484 (DECIMAL data type), the value is in
decimal format. Scale and precision for decimal format are in the ECSINSCL and ECSINPRC fields. Length
(in bytes) is in the ECSINLEN field.

Numeric data from defined columns, calculations, and summary values is returned as extended floating-
point values. The length (16 bytes) is in the ECSINLEN field.

Character or graphic values are represented in their internal, character-string format, with one exception:
for variable-length strings (for example, the VARCHAR data type), only the string itself appears and not
the preceding length field. For all character values, the string length (in bytes) is in the ECSINLEN field.

How V-type edit codes are represented in the input area

Numeric values are represented by a numeric character string. The length is contained in the ECSINLEN
field. Leading or trailing zeros fill out the string if required.

The string contains no sign or decimal point. Instead, the sign appears as a blank or a minus sign in the
ECSINSGN field, and the position of the decimal point is in the ECSINSCL field. For example, suppose that
the string in ECSINPT is 12345, that ECSINSGN is blank, and that ECSINSCL is equal to 3; then the value
represented is +12.345.

Character or graphic values are represented in their character strings. For all character values, the string
length (in bytes) is in the ECSINLEN field.

Chapter 16. Custom edit exit routines for QMF forms 257

The output area

The ECSRSLT field receives the formatted output in the form of a character string that completely fills the
field. This result is then returned in a QMF report. The length of this field (in bytes) is stored in the
ECSRSLEN field. This field is always blank before the edit routine is called.

Related concepts
Edit exit routines and QMF
QMF and your edit exit routine work together to format data by using the edit codes that you define.

Choosing an edit code
You can create your own edit codes for data of all types except XML, BLOB, CLOB, and DBCLOB. You can
create your own edit codes for decimal floating-point data types only if both the processor on which QMF
is running and the language in which you write the exit routine support decimal floating-point instructions.

About this task

An edit code is a set of characters that tells QMF how to format and punctuate the data in a specific
column of a report.

You do not need to restrict an edit code to the processing of numeric data, or to the processing of
character data. The sample edit routines supplied with QMF process one edit code for both numeric and
character data.

If the CASE field of a user's profile has the value UPPER or STRING, QMF converts all input entered from
the display device to upper case. If your edit routine is written to accept edit codes in mixed case, enter
the edit codes when CASE is set to MIXED.

Procedure

• Decide what you want your routine to do and choose either a Uxxxx or Vxxxx edit code to associate
with the routine that will format the data.

• For U codes, data passed to the edit routine has the internal database representation of the source
data unless the field on which the user edit code is used is the result of an expression. All data
resulting from expressions is passed back to the edit routine as extended floating-point data.

• For V codes, numeric data is converted to a character string, and this character string is passed to
the edit program.

Both codes can be used to process either character or numeric data. U and V must be in upper case.

When the source data is character, codes of either type are equally easy to process. If the formatting
requires arithmetic operations, consider using U codes for numeric sources; otherwise, use V codes.

If the programming language you are using does not support a particular data type, use a V edit code
to convert those values to characters. For V codes containing numeric data, QMF converts the data to
character format and then calls the user edit routine. The length of the converted number varies
depending upon its original data type, as shown in this table:

Table 59. How QMF converts numeric data according to data type

If data type of original
numeric data is:

QMF converts it to this length:

Small integer 6

Integer 10

Big integer 19

Decimal Equal to the precision of the original data (raised to an odd number
if the original data is even)

258 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 59. How QMF converts numeric data according to data type (continued)

If data type of original
numeric data is:

QMF converts it to this length:

Floating point 15 or more, depending on the base 10 exponent

Extended floating point 30 or more, depending on the base 10 exponent

Long-format decimal floating
point

17

Extended-format decimal
floating point

31

• Replace xxxx with zero to four characters (letters, digits, or special characters); embedded blanks or
nulls are not allowed.
The following examples show valid U-type and V-type edit codes:

U1
UAB42
V_1
VX%5

Double-byte character set data and edit routines
Double-byte character set (DBCS) data can appear in character columns or in columns with a graphic data
type (GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC). If you need to devise edit routines that process
this type of data, ensure that your routine handles the data correctly.

Among the characters represented by the Japanese DBCS are Latin characters and Katakana characters.
A Latin character has these characteristics:

• The first (left-most) byte of the character has the value X'42'.
• The second byte of the character contains the EBCDIC equivalent.

A Katakana character has these characteristics:

• The first byte of the character contains X'43'.
• The second byte contains the EBCDIC equivalent.

You can use either Uxxxx or Vxxxx edit codes for DBCS data. The data that the edit routine receives is the
same.

DBCS data and what the edit routine receives
The data to be formatted is in the field ECSINPT, and the length of that data, in bytes, is in ECSINLEN.

What you find in ECSINPT depends, to some extent, on where the data originates. More precisely, it
depends on whether the column containing that data is a character column or one with a graphic data
type.

Data from character columns

If the data to be processed comes from a character column, then the data in ECSINPT is just a copy of the
column data. Unlike data from a graphic column, this data can hold single-byte characters and shift
characters, as well as DBCS characters. To locate DBCS characters, you must search for the SO and SI
characters that bracket the DBCS strings. If there are no SO or SI characters in ECSINPT, the string
contains no DBCS data. For example, suppose that ECSINPT contains the following string:

ccccSodedededededededeSiccSodededededeSi

Chapter 16. Custom edit exit routines for QMF forms 259

Here, c, d, and e stand for any possible byte, and SO and SI are shift bytes. From the placement of the
shift bytes, you can see that every occurrence of c represents a single-byte character, and that every
occurrence of de represents a DBCS character.

Single-byte characters can represent Latin letters, Arabic numerals, and special characters such as plus
signs and parentheses. For Japanese character sets, they can also be Katakana characters. Some bytes
meant to represent lowercase Latin might be displayed as Katakana symbols. You might have to devise
edit codes that distinguish between columns containing lowercase English and those containing
Katakana.

Data from graphic columns

If the data to be formatted is from a column with a graphic data type, then the text in ECSINPT consists of
this data preceded by one shift character and followed by another. Both shift characters are single bytes.
For DBCS display devices, shift characters mark the start and end of a string of DBCS characters.

SO denotes the shift character that introduces a DBCS string, and SI denotes the one that marks its end.
SO has the value X'0E'. SI has the value X'0F'. The shift characters are included in the data length
recorded in ECSINLEN.

Thus, the length appearing in ECSINLEN is always greater by two than the length of the actual data.
Because the data is presumably a string of DBCS characters, its length (in bytes) is always an even
number.

Ensuring that the edit routine returns the right results
You must return the edited results in the ECSRSLT field, with trailing blanks for unused bytes, and ensure
that the user's display device has the capability to read them.

This means that the resulting DBCS and EBCDIC characters must have the appropriate representations,
and that the beginning and end of any string of DBCS characters are marked by SO and SI characters.

Overflowing the ECSRSLT field

Be careful not to overflow the ECSRSLT field, whose length is contained in the ECSRSLEN field. If your
results do not fit, truncate them on the right. If the last character represented in the truncated results is a
DBCS character, be certain to retain its right-most byte, and to follow that character with an SI character.

Printing the report column

QMF copies the ECSRSLT field into the corresponding report column. The result is exactly as wide as the
report column. If you do not specify ALIGNMENT for data, the data is aligned exactly as you typed it.

How the report device represents what you return depends on the specific device. For many display
devices, the following rules apply:

• If the report is displayed on the screen, the SI and SO characters embedded in a user's results also
appear on the display.

• The SI and SO characters appear either as blanks or as special symbols. There is one special symbol for
SI and another for SO.

• Blanks appear instead of the symbols unless the user presses a certain combination of keys.

Any legitimate DBCS character can be returned in the ECSRSLT field.

Date, time, and timestamp data and edit routines
If you are writing an edit exit routine to format DATE, TIME, TIMESTAMP, or TIMESTAMP WITH TIME
ZONE data, you must use the default formats for each data type. If you do not require formatting of

260 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

TIMESTAMP or TIMESTAMP WITH TIME ZONE data, you can also the exit routines supplied with Db2 for
date and time data.

Required formats for date, time, and timestamp information
Your edit routine can format data from datetime columns, just as it can format data from columns with
other data types. The one difference is that the value to be formatted, which appears in the control block
field ECSINPT, is always passed as a character string, whether the code to be processed is a U code or a V
code.

The expected format of the string is described in this table.

Table 60. Formatting DATE, TIME, and TIMESTAMP data

Data type Form of the string

DATE data yyyy-mm-dd where:

yyyy
Specifies the year. It is always a four-digit number.

mm
Specifies the month (01 for January, 12 for December). It is always a
two-digit number that can contain a leading zero.

dd
Specifies the day of the month. It is always a two-digit number that can
contain a leading zero.

The dashes (-) represent true dashes.

For example, 2006-03-12 is the date March 12, 2006.

TIME data hh.mm.ss where:

hh
Specifies the hour (based on a 24-hour clock, from 00 to 23). It is always
a two-digit number that can contain a leading zero.

mm
Specifies the minute. It is always a two-digit number that can contain a
leading zero.

ss
Specifies the second. It is always a two-digit number that can contain a
leading zero.

The periods represent true periods.

For example, 13.08.36 is 1:08 P.M. and 36 seconds in the notation commonly
used in the United States.

TIMESTAMP data yyyy-mm-dd-hh.mm.ss.nnnnnnnnnnnn where:

yyyy-mm-dd
Specifies the date in the same way as for DATE data.

hh.mm.ss
Specifies the time of day in the same way as for TIME data.

nnnnnnnnnnnn
Specifies a 0-digit to 12-digit number that represents the number of
fractional seconds.

For example, 2010-09-30-13.08.36.123456654321 is 1:08 P.M. and
36.123456654321 seconds on September 30, 2010, in the notation
commonly used in the United States.

Chapter 16. Custom edit exit routines for QMF forms 261

Table 60. Formatting DATE, TIME, and TIMESTAMP data (continued)

Data type Form of the string

TIMESTAMP WITH TIME
ZONE data

yyyy-mm-dd-hh-mm-ss-nnnnnnnnnnnnzth:tm

yyyy-mm-dd
Specifies the date in the same way as for DATE data.

hh.mm.ss
Specifies the time of day in the same way as for TIME data.

nnnnnnnnnnnn
Specifies a 0-digit to 12-digit number that represents the number of
fractional seconds.

z
A plus (+) or minus (-) sign that indicates the time zone offset relative to
Coordinated Universal Time (UTC), formerly known as Greenwich Mean
Time (GMT).

th
A two-digit value representing the time zone hours.

tm
A two-digit value representing the time zone minutes.

The valid range for the time zone portion of the format is from -24:00 to
+24:00. To specify UTC, you can either specify a time zone of -0:00 or
+0:00 or replace the time zone offset and its sign with an uppercase Z.

For example, 2010-09-30-13.08.36.123456654321-08:00 indicates a time
of 1:08 P.M. and 36.123456654321 seconds on September 30, 2010, in San
Jose, California, in the United States. The timestamp
2010-09-30-13.08.36.123456654321Z indicates a time of 1:08 P.M. and
36.123456654321 seconds wherever UTC is in effect.

Db2 exits for date and time data in TSO
When users create reports in QMF for TSO, they can specify the local format for DATE or TIME data by
specifying the appropriate QMF edit code: TDL for dates; TTL for times. QMF does the formatting by
calling the appropriate exit that is supplied with Db2: DSNXVDTX formats dates; DSNXVTMX formats
times.

As shipped by Db2, these exits are stubs. These stubs are meant to be used when no local formats are
defined; they do no formatting at all. You must replace them with your local copies of the exits for them to
work properly.

Make your local copies of the exits available to QMF by placing their load libraries in the STEPLIB
concatenation of your users’ JCL. Ensure that this library is searched before the Db2 program library. If
the program library is searched first, QMF loads and uses the two stubs that are supplied with Db2
instead. In the following STEPLIB statement example, the formatting routines are in the library
XYZ.FORMAT, and the Db2 program library is DSN1110.SDSNLOAD.

//STEPLIB DD DSN=ISP.SISPLOAD,DISP=SHR
// DD DSN=QMF1210.SDSQLOAD,DISP=SHR
// DD DSN=XYZ.FORMAT,DISP=SHR (local formatting library)
// DD DSN=DSN1110.DSNLOAD,DISP=SHR (DB2 program library)
// DD DSN=GDDM.OSPID.SADMMOD,DISP=SHR

Figure 59. Making the edit routine available

262 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

If you choose to write an edit exit routine to carry out functions that are handled by the TTL and TDL edit
codes, you cannot use TTL and TDL as the edit codes for those functions. Instead, use Uxxxx or Vxxxx edit
codes to identify your local date and time exit routines.

Edit routines for programming languages
You can write your edit exit routine to format the data described by your edit code in one of several
languages. QMF provides both a standard interface to your edit exit routine and a sample edit exit
program that you can use as a starting point for writing your own.

Different versions of a sample edit exit routine are placed in the QMF1210.SDSQSAPn library (where n is a
1-character identifier that represents your national language). The name of the sample routine varies by
programming language and environment, as shown here:

Table 61. Names of the sample edit exit routine, by programming language and environment

Language TSO, ISPF, and native z/OS batch CICS

COBOL DSQUXDTC DSQUXCTC

PL/I DSQUXDTP DSQUXCTP

Assembler DSQUXDTA DSQUXCTA

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Writing an edit routine in High-Level Assembler
You can write an edit routine in Assembler for TSO, ISPF, native z/OS, and CICS.

Writing an Assembler edit routine for TSO, ISPF, and native z/OS
To write an edit routine in Assembler for TSO, ISPF, and native z/OS you must understand the details that
are specific to the language.

The QMF edit exit interface for Assembler consists of these parts:

• Interface control block

A sample Assembler DSECT for the interface control structure, DXEECS, is shipped with QMF as
DXEECSA, located in the QMF1210.SDSQUSRn library (where n is a 1-character identifier that
represents your national language). The interface control structure defines the input fields for the edit
interface, DSQUEDIT.

If you are using the example program (DSQUXDTA), a COPY statement that includes this DSECT is
already included in the sample. If you are writing your own routine instead of starting with the example
program, ensure that your program includes this COPY statement.

The interface control block contains the user's edit code, identifies the source data and the target
location for the edited result, and provides a scratchpad area for the user edit routine's use. The control
block is persistent between calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

• Control program, which is shipped with QMF as DSQUXIA
• Your edit exit program, which is named DSQUXDT

The sample edit program for Assembler, DSQUXDTA, is located in the QMF1210.SDSQSAPn library
(where n is a 1-character identifier that represents your national language). The sample program is
commented so that you can modify it to suit your needs. If you plan to start with this example program,
copy it to your private program source library and change its name to DSQUXDT.

Chapter 16. Custom edit exit routines for QMF forms 263

The following figure shows the program structure of an Assembler edit exit routine for TSO, ISPF, or
native z/OS.

Figure 60. Program structure of an Assembler edit exit routine for TSO, ISPF, or native z/OS

Statements for calling your program and returning control to QMF

The user edit program is called as a subroutine in TSO, ISPF, and native z/OS using a standard Assembler
CALL statement. Linkage obeys the standard IBM calling conventions. On entry to your edit exit program,
the following conditions exist:

• Register 1 contains the address of a standard parameter list.
• Register 13 contains the address of a standard SAVE area.
• Register 14 contains the caller's (QMF) return address.

The following figure shows an example of these conditions.

Figure 61. Conditions that exist on entry to the edit exit program in Assembler

Return control to QMF in the standard way by restoring registers to their values at the time of the call and
then returning to the address in register 14.

In the example program, the addresses are placed in registers 10, 9, and 8 through the following
statements:

ECSPTR EQU R10
 L ECSPTR,0(R1)
 USING DXEECS,ECSPTR
ECSINPTP EQU R9
 L ECSINPTP,4(R1)
 USING ECSINPT,ECSINPTP
ECSRSLTP EQU R8
 L ECSRSLTP,8(R1)
 USING ECSRSLT,ECSRSLTP

The USING statements refer to the DSECTs defined in DXEECSA. These define the three parameters and
their input-field components.

Registers 10, 9, and 8 point, respectively, at the control block, the value to be formatted, and the storage
reserved for the formatted results.

264 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Assembling and link-editing your program

When you assemble and link-edit your program, the QMF edit exit interface control block for Assembler,
DXEECSA, must be available in a macro library. DXEECSA is located in the QMF1210.SDSQUSRn library
(where n is a 1-character identifier that represents your national language).

Create a new QMF edit exit module, DSQUEDIT, by including your edit program (DSQUXDT) with the
control module, DSQUXIA, which is located in the QMF module library QMF1210.SDSQLOAD. DSQUXIA
must be specified as the entry point.

Module DSQUEDIT can be executed in either 24-bit or 31-bit addressing mode. QMF runs in 31-bit
addressing mode and automatically switches to 24-bit addressing mode if edit exit module DSQUEDIT
has a 24-bit addressing mode. Thirty-one bit addressing mode is recommended.

These statements show examples for assembling and link-editing your job for TSO, ISPF, and native z/OS.
Before running this job, create the load library referenced in the SYSLMOD statement; the user edit exit
module will reside in this library.

//sampasm JOB
//STEP1 EXEC PROC=ASMACL
//* Provide access to QMF edit macro DXEECSA
//C.SYSLIB DD DSN=QMF1210.SDSQUSRE,DISP=SHR
//C.SYSIN DD *
 .
 .
 .
 Your program or copy of QMF sample DSQUXDTA
 .
 .
 .
/*
//* Provide access to QMF interface module
//L.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//L.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR
//L.SYSIN DD *
 INCLUDE QMFLOAD(DSQUXIA)
 ENTRY DSQUXIA
 MODE AMODE(31) RMODE(31)
 NAME DSQUEDIT(R)
/*

Figure 62. Example statements for assembling and link-editing an Assembler edit exit routine for TSO, ISPF,
or native z/OS

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Related reference
Fields of the interface control block
Use the fields of the interface control block to pass information to and from your exit routine.

Writing an Assembler edit routine for CICS
To write an edit routine in Assembler for CICS you must understand the details that are specific to the
language.

The QMF edit exit interface for Assembler in CICS consists of these parts:

• Interface control block between QMF and the user edit interface

An Assembler DSECT for the interface control block, DXEECS, is shipped with QMF as DXEECSA and is
located in the QMF1210.SDSQUSRn library (where n is a 1-character identifier that represents your
national language).

Chapter 16. Custom edit exit routines for QMF forms 265

If you are using the supplied sample program for CICS (DSQUXCTA), a COPY statement that includes
this DSECT is already included in the sample. If you are writing your own program instead of starting
with the supplied sample edit program, be sure to include the COPY statement in your program.

The interface control block contains the user's edit code, identifies the source data and the target
location for the edited result, and provides a scratchpad area for the user edit routine's use. The control
block is persistent between calls to the user edit routine. The scratchpad area is not modified by QMF
after the initial invocation of the exit routine.

• CICS prolog and epilog macros, which are shipped with CICS as DFHEIENT and DFHEIRET
• CICS command interface modules, which are shipped with CICS as DFHEAI and DFHEAI0
• Your edit exit program, which is named DSQUECIC

The supplied example edit program in Assembler, named DSQUXCTA, is located in the
QMF1210.SDSQSAPn library (where n is a 1-character identifier that represents your national
language). The example program is liberally commented; you can print it, browse it online, or modify it
to meet your needs. If you plan to use this program, copy it to your private program source library and
change its name to DSQUECIC.

The program structure of an Assembler edit exit routine for CICS is illustrated here:

Figure 63. Program structure of an Assembler edit exit routine for CICS

Statements for calling your program and returning control to QMF

The user edit program is called by using the standard CICS LINK command interface. Your program is
executing on a different program level than the main QMF program. On entry to your edit exit program, the
following conditions exist:

• Register 1 contains the address of a standard CICS parameter list suitable for processing by macros
DFHEIENT and DFHEIRET that are supplied with CICS.

Here is the program flow:

266 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Figure 64. How a CICS Assembler edit routine interacts with QMF
• Register 13 contains the address of a standard CICS working storage area as described by macro

DFHEISTG that is supplied with CICS.

Return control to QMF by using the standard CICS RETURN command (for example, EXEC CICS RETURN).

Translating, assembling, and link-editing your program

You must translate your program using the CICS translator for Assembler. When you translate your
program, CICS normally supplies the standard CICS prologue (DFHEIENT), which sets up addressability,
saves registers in the standard CICS working storage area, and provides a standard CICS epilogue
(DFHEIRET).

During assembly, QMF edit exit interface control block DXEECSA, located in the QMF1210.SDSQUSRn
library (where n is a 1-character identifier that represents your national language), and the CICS macro
library must be available.

Create a new QMF edit exit module, DSQUECIC, by including your edit program (DSQUECIC) with EXEC
CICS interface control modules DFHEAI and DFHEAI0, which are both located in the CICS module library
as distributed by the CICS product. The EXEC CICS module DFHEAI must be the first module in the edit
exit module and the entry point must be DSQUECIC.

The module DSQUECIC must be executable in 31-bit addressing mode.

The following statements are examples for translating, assembling, and link-editing your job for CICS.
Before running this job, create the load library referenced in the SYSLMOD statement; the user edit exit
module will reside in this library.

Chapter 16. Custom edit exit routines for QMF forms 267

 //SAMPASM JOB ...
//* Add a parameter PROGLIB to procedure DFHEITAL
//* PROGLIB=&PROGLIB,
//TRNCOMLK EXEC PROC=DFHEITAL,PROGLIB=QMF1210.SDSQLOAD'
//TRN.SYSIN DD *
 .
 .
 .
 Your program or modified copy of QMF sample DSQUXCTA
 .
 .
 .
/*
//* Provide access to QMF edit macro DXEECSA
//ASM.SYSLIB DD DSN=QMF1210.SDSQUSRE,DISP=SHR
//LKED.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE SYSLIB(DFHEAI)
 INCLUDE SYSLIB(DFHEAIO)
 ORDER DFHEAI,DFHEAI0
 ENTRY DSQUECIC
 MODE AMODE(31) RMODE(31)
 NAME DSQUECIC(R)
/*

Figure 65. Example statements for translating, assembling, and link-editing an Assembler edit exit routine
for CICS

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Writing an edit routine in PL/I
You can write a QMF edit routine in PL/I.

The CEEPIPI Language Environment interface and PL/I edit routines for TSO, ISPF, or native z/OS
Follow these instructions for using the CEEPIPI Language Environment® interface to write a QMF edit
routine that runs in TSO, ISPF, or native z/OS.

This interface consists of the following parts:

• Interface control structure DXEECS

This control structure is shipped with QMF as DXEECSP. The control structure is passed on all calls to
the edit exit program. It contains status and communications information between QMF and the edit
exit routine. It also contains information about the data to be formatted as well as a pointer to where
the formatted result is stored.

For more information about the DXEECS control structure, see copy file DXEECSP, which is in the
QMF1210.SDSQUSRn library (where n is a 1-character identifier that represents your national
language).

• A control program named DSQUXILE, which is shipped with QMF

DSQUXILE must be the main entry point to the QMF edit exit module, DSQUEDIT. DSQUXILE is in the
QMF module library, QMF1210.SDSQLOAD. The DSQUXILE control program calls the CEEPIPI program
to initialize the Language Environment and to terminate the Language Environment when the QMF
session ends. The DSQUXILE control program calls the user exit program, DSQUXDT, by calling the
CEEPIPI program and specifying execution of the DSQUXDT program.

• Your edit exit program

The example edit exit program for PL/I, named DSQUXDTP, is in the QMF1210.SDSQSAPn library
(where n is a 1-character identifier that represents your national language). The example program is

268 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

heavily commented; it can be browsed online, printed, or modified to suit your needs. If you plan to use
this program, copy it to your private program source library and change its name to DSQUXDT.

• Language Environment preinitialization service program, which is named CEEPIPI

The following figure shows the program structure of a PL/I edit exit routine that uses the CEEPIPI
Language Environment interface.

Figure 66. Program structure of a PL/I edit exit routine written with the CEEPIPI Language Environment
interface

Statements for calling your program and returning control to QMF

QMF calls your edit exit routine as a PL/I program by calling the CEEPIPI program and specifying
execution of DSQUXDT. The following parameters are provided in the indicated order:

DSQUXDT:
 PROCEDURE(DXEECSF,ECSINPTF,ECSRSLTF) OPTIONS(REENTRANT);

Return control to QMF by using a standard RETURN statement.

Compiling DSQUXDT

Compile your edit exit program by specifying REENTRANT as a procedure option. See “Statements for
calling your program and returning control to QMF” on page 269 for the proper syntax of the PROCEDURE
statement.

During the compilation, QMF edit exit interface control block DXEECSP, in the QMF1210.SDSQUSRn
library (where n is a 1-character identifier that represents your national language), must be available in
the SYSLIB allocation.

Link-editing your program

Create a new QMF edit exit module (DSQUEDIT) by including your edit program (DSQUXDT) with the
control module (DSQUXILE), in QMF module library QMF1210.SDSQLOAD. DSQUXILE must be specified
as the entry point.

Module DSQUEDIT can be executed in either 24-bit or 31-bit addressing mode. QMF runs in 31-bit
addressing mode and automatically switches to 24-bit addressing mode if edit exit module DSQUEDIT
has a 24-bit addressing mode.

Thirty-one bit addressing mode is recommended.

Chapter 16. Custom edit exit routines for QMF forms 269

These statements show examples for assembling and link-editing your job for TSO, ISPF, or native z/OS. If
your edit routine formats decimal floating-point data, you need to add the ARCH(7) and FLOAT(DFP)
compiler options. Before you run this job, create the load library that is referenced in the SYSLMOD
statement; the user edit exit module will reside in this library.

//samPLI JOB
//STEP1 EXEC PROC=IBMZCPL
//* Provide access to QMF edit macro DXEECSP
//PLI.SYSLIB DD DSN=QMF1210.SDSQUSRE,DISP=SHR
//PLI.SYSIN DD *
 .
 .
 .
 Your PL/I edit exit program DSQUXDT
 or copy of sample program DSQUXDTP
 that has been renamed to DSQUXDT
 .
 .
 .
 If your edit routine formats decimal
 floating-point data, add ARCH(7) and
 FLOAT(DFP) compiler options here.
/*
//* Provide access to QMF interface module DSQUXILE
//LKED.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
//LKED.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE QMFLOAD(DSQUXILE)
 ENTRY DSQUXILE
 MODE AMODE(31) RMODE(ANY)
 NAME DSQUEDIT(R)
/*

Figure 67. Example statements for compiling and link-editing a PL/I routine that was written with the
CEEPIPI Language Environment interface

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Related reference
Fields of the interface control block
Use the fields of the interface control block to pass information to and from your exit routine.

Writing a PL/I edit routine for CICS
To write an edit routine in PL/I for CICS you must understand the details that are specific to the language.

The QMF edit exit interface for PL/I in CICS consists of these parts:

• A PL/I data structure

This data structure is shipped with QMF as DXEECSP and is provided in the QMF1210.SDSQUSRn library
(where n is a 1-character identifier that represents your national language). Include this structure in
your program.

The data structure is passed on all calls to the edit exit program. It contains status and communications
information between QMF and the edit exit routine. It also contains information about the data to be
formatted as well as a pointer to where the formatted result is stored.

• CICS command-level interface

QMF uses the CICS command-level interface to invoke the QMF edit exit module, DSQUECIC. Your
completed edit exit module must issue an EXEC CICS RETURN statement to pass control back to QMF.

• Your edit exit program, which is named DSQUECIC

270 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

When QMF is installed, the QMF edit exit program is installed with a program language of Assembler;
the supplied example edit program for PL/I in CICS is named DSQUXCTP and is located in the
QMF1210.SDSQSAPn library (where n is a 1-character identifier that represents your national
language).

The example program is liberally commented; you can print it, browse it online, or modify it to meet
your needs. If you plan to use this program, copy it to your private program source library and change its
name to DSQUECIC.

When QMF is installed, the CICS program definition resource is configured to Assembler. To use the
PL/I edit exit program, you must reconfigure the CICS program definition to PL/I.

Here is the program structure of a PL/I edit exit routine in CICS:

Figure 68. Program structure for PL/I edit exit routine in CICS

Statements for calling your program and returning control to QMF

The user edit program is called by using the standard CICS LINK command interface. Your program is
executing on a different program level than the main QMF program. The user edit program must be
translated using the CICS translator for PL/I.

QMF provides addresses to the user edit routine control block (DXEECS), as well as input data and output
data, in the CICS communications area, DFHCOMMAREA, as shown here.

Figure 69. How DFHCOMMAREA, the CICS communications area, works

After translation, the CICS translator provides a procedure statement that describes the CICS
environment block, DFHEIBLK. Provide a parameter that points to the CICS communications block,
DFHCOMMAREA, as in the following example:

DSQUECIC:
 PROCEDURE(DFHCOMMP) OPTIONS(REENTRANT,MAIN);

Also provide your own description of the DFHCOMMAREA in the PL/I program, as shown here:

Chapter 16. Custom edit exit routines for QMF forms 271

/***/
/* CICS DFHCOMMAREA DESCRIPTION OF EDIT EXIT PARAMETERS */
/***/
 DECLARE
 DFHCOMMP PTR;
 DECLARE
 1 DFHCOMM BASED(DFHCOMMP),
 02 DFHCOMM_ECSPTR PTR,
 02 DFHCOMM_INPTR PTR,
 02 DFHCOMM_OUTPTR PTR;

Figure 70. Description of edit exit parameters in DFHCOMMAREA, the CICS communications area

To provide addressability to the user edit routine control block, DXEECS, as well as input data area
ECSINPT and result data area ECSRSLT, set the addresses of these data areas to the values located in
DFHCOMMAREA, as shown in here:

 ECSPTR = DFHCOMM_ECSPTR /* ADDRESS OF DXEECS:
 EDIT CODE SPECIFICATIONS */
 ECSINPTP = DFHCOMM_INPTR /* ADDRESS OF INPUT DATA */
 ECSRSLTP = DFHCOMM_OUTPTR /* ADDRESS OF RESULT AREA */

Figure 71. Providing addressability to the DXEECS control block

Return control to QMF using a standard CICS RETURN command such as the following:

EXEC CICS RETURN;

Translating, compiling, and link-editing your program

Translate your program using the CICS translator for PL/I. During translation, CICS supplies an input
parameter and data-structure definition for the CICS environment control block (EIB).

The QMF edit exit interface control block, DXEECSP, is located in the QMF1210.SDSQUSRn library (where
n is a 1-character identifier that represents your national language); it must be available in a macro library
during the compilation.

Specify PL/I compiler options PP(CICS), SYSTEM(CICS), and RENT.

Create a new QMF edit exit module, DSQUECIC, that has a run mode (RMODE) and address mode
(AMODE) of 31-bit.

The following statements are examples for translating, compiling, and link-editing your job for CICS. If
your edit routine formats decimal floating-point data, you need to add the ARCH(7) and FLOAT(DFP)
compiler options. Before running this job, create the load library referenced in the SYSLMOD statement;
the user edit exit module will reside in this library.

272 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

//SAMPLI JOB
//COMLK EXEC PROC=IBMZCPL
//PLI.SYSLIB DD DSN=QMF1210.SDSQUSRE,DISP=SHR
//PLI.SYSIN DD *
.
.
.
Your program or modified copy of QMF sample DSQUXCTP
that has been renamed to DSQUECIC
.
.
.
Include complier options: PP(CICS),SYSTEM(CICS) and RENT.
If your edit routine formats decimal
floating-point data, add ARCH(7) and
FLOAT(DFP) compiler options.
.
.
.
/*
//LKED.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR
//LKED.SYSIN DD *
MODE AMODE(31),RMODE(31)
NAME DSQUECIC(R)
/*

Figure 72. Example statements for translating, compiling, and link-editing your edit exit in PL/I for CICS

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Writing an edit routine in COBOL
You can write a QMF edit routine in COBOL.

The IGZERRE interface and COBOL edit routines for TSO, ISPF, or native z/OS
Follow these instructions for using the IGZERRE interface to write a COBOL edit routine that runs in TSO,
ISPF, or native z/OS.

This interface consists of the following parts:

• Interface control structure DXEECS

This control structure is shipped with QMF. Include it in your program.

The control structure is passed on all calls to the edit exit program. It contains status and
communications information between QMF and the edit exit routine. It also contains information about
the data to be formatted as well as a pointer to where the formatted result is stored. For more
information about the DXEECS control structure, see copy book DXEECSC, which is provided in the
QMF1210.SDSQUSRn library (where n is a 1-character identifier that represents your national
language).

• A control program named DSQUXIC

This control program is shipped with QMF. It must be the main entry point to the QMF edit exit module,
DSQUEDIT. DSQUXIC is in the QMF module library, QMF1210.SDSQLOAD. The DSQUXIC control
program calls the IGZERRE program to initialize the COBOL environment and to terminate the COBOL
environment when the QMF session ends. The DSQUXIC control program calls user exit program
DSQUXDT as a COBOL program.

• Your edit exit program, which is named DSQUXDT

The example edit exit program in COBOL, named DSQUXDTC, is in the QMF1210.SDSQSAPn library
(where n is a 1-character identifier that represents your national language). The example program is

Chapter 16. Custom edit exit routines for QMF forms 273

liberally commented; it can be browsed online, printed, or modified to suit your needs. If you plan to
use this program, copy it to your private program source library and change its name to DSQUXDT.

The following figure shows the program structure of a COBOL edit exit routine

Figure 73. Program structure of a COBOL edit exit routine

Statements for calling your program and returning control to QMF

QMF calls your edit exit routine as a COBOL program that uses a standard COBOL CALL statement. The
following parameters are provided in the indicated order:

PROCEDURE DIVISION
 USING DXEECS, ECSINPT, ECSRSLT.

Return control to QMF by using a standard GOBACK statement.

Compiling and link-editing your program

Compile the program with the LIB, RENT, QUOTE, and NODYNAM options. The user edit routine control
block, DXEECSC, uses quotes as literal delimiters. You must use the QUOTE compiler option if you use the
DXEECSC control block as distributed by IBM.

During the compilation, QMF edit exit interface control block DXEECSC, in the QMF1210.SDSQUSRn
library (where n is a 1-character identifier that represents your national language), must be available in
the SYSLIB allocation.

After you compile DSQUXDT, place the resulting load module in the QMF1210.SDSQLOAD library.

You create a new QMF edit exit module (DSQUEDIT) by including your edit exit program (DSQUXDT) with
the control module (DSQUXIC). DSQUXIC is in the QMF module library, QMF1210.SDSQLOAD. DSQUXIC
must be specified as the entry point. Module DSQUEDIT can be executed in either 24-bit or 31-bit
addressing mode. QMF runs in 31-bit addressing mode and automatically switches to 24-bit addressing
mode if edit exit module DSQUEDIT has a 24-bit addressing mode. 31-bit addressing mode is
recommended.

These statements show examples for compiling and link-editing your applications that run in TSO, ISPF,
or native z/OS. Before you run this job, create the load library that is referenced in the SYSLMOD
statement; the user edit exit module will reside in this library.

274 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

//samCOBOL JOB
 //STEP1 EXEC PROC=IGYWCL,PARM='LIB,RENT,NODYNAM,QUOTE'
 //* Provide access to QMF edit macro DXEECSC
 //COBOL.SYSLIB DD DSN=QMF1210.SDSQUSRE,DISP=SHR
 //COBOL.SYSIN DD *
 .
 .
 .
 Your COBOL edit exit program DSQUXDT or a copy of
 sample program DSQUXDTC that has been renamed to
 DSQUXDT
 .
 .
 .
 /*
 //* Provide access to QMF interface module DSQUXIC
 //LKED.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
 //LKED.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR
 //LKED.SYSIN DD *
 INCLUDE QMFLOAD(DSQUXIC)
 INCLUDE SYSLIB(IGZERRE)
 ENTRY DSQUXIC
 MODE AMODE(31) RMODE(ANY)
 NAME DSQUEDIT(R)
 /*

Figure 74. Example statements for compiling and link-editing an edit exit that was written in COBOL and
that uses the IGZERRE interface

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

The CEEPIPI Language Environment interface and COBOL edit routines for TSO, ISPF, or native z/OS
Follow these instructions for using the CEEPIPI Language Environment interface to write a QMF edit
routine in COBOL that runs in TSO, ISPF, or native z/OS.

This interface cannot be used for edit exit programs that run in QMF for CICS.

The QMF edit exit interface in COBOL for TSO, ISPF, or native z/OS consists of these parts:

• Interface control structure DXEECS

This control structure is shipped with QMF as DXEECSC. Include this structure in your program. The
information in this control structure is passed on all calls to the edit exit program. It contains status and
communications information between QMF and the edit exit routine. It also contains information about
the data to be formatted as well as a pointer to where the formatted result is stored.

For details about the DXEECS interface control structure, see the copy book DXEECSC, which is in the
QMF1210.SDSQUSRn library (where n is a 1-character identifier that represents your national
language).

• Control program, which is provided by IBM and shipped with QMF as DSQUXILE

The QMF control program, DSQUXILE, is provided by IBM and must be the main entry point to the QMF
edit exit module, DSQUEDIT. DSQUXILE is in the QMF module library QMF1210.SDSQLOAD. The
DSQUXILE control program calls the CEEPIPI program to initialize the Language Environment and to
terminate the Language Environment when the QMF session ends. The DSQUXILE control program calls
the user exit program, DSQUXDT, by calling the CEEPIPI program and specifying execution of the
DSQUXDT program.

• Your edit exit program, which is named DSQUXDT

The example edit exit program in COBOL, named DSQUXDTC, is in the QMF1210.SDSQSAPn library
(where n is a 1-character identifier that represents your national language). The example program is

Chapter 16. Custom edit exit routines for QMF forms 275

heavily commented; it can be browsed online, printed, or modified to suit your needs. If you plan to use
this program, copy it to your private program source library and change its name to DSQUXDT.

• Language Environment preinitialization service program, which is named CEEPIPI

The following figure shows the program structure of a COBOL edit exit routine that uses the CEEPIPI
interface:

Figure 75. Program structure of a COBOL edit exit routine that uses the CEEPIPI interface

The edit control block (DXEECSC) and the sample COBOL program (DSQUXCTC), as shipped with QMF,
use quotes (") to delimit literals. If your site or program uses apostrophes (’) instead, you have to change
DXEECSC or copy the structure to your program, changing quotes to apostrophes.

Statements for calling your program and returning control to QMF

QMF calls your edit exit routine as a COBOL program by calling the CEEPIPI program and specifying
execution of DSQUXDT. The following parameters are provided in the indicated order:

 PROCEDURE DIVISION
 USING DXEECS, ECSINPT, ECSRSLT.

Use a standard GOBACK statement to return control from your COBOL edit exit program, DSQUXDT, to
QMF.

Compiling DSQUXDT

During the compilation, QMF edit exit interface control block DXEECSC, in the QMF1210.SDSQUSRn
library (where n is a 1-character identifier that represents your national language), must be available in
the SYSLIB allocation.

Compile the program with the LIB, RENT, QUOTE, and NODYNAM options. DXEECSC uses quotes as literal
delimiters. You must use the QUOTE compiler option if you use the DXEECSC control block as distributed
by IBM.

Link-editing your program

You create a new QMF edit exit module (DSQUEDIT) by including your edit exit program (DSQUXDT) with
the control module DSQUXILE. DSQUXILE is in the QMF module library (QMF1210.SDSQLOAD).
DSQUXILE must be specified as the entry point.

276 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Module DSQUEDIT can be executed in either 24-bit or 31-bit addressing mode. QMF runs in 31-bit
addressing mode and automatically switches to 24-bit addressing mode if the edit exit module
DSQUEDIT has a 24-bit addressing mode; 31-bit addressing mode is recommended.

These statements show examples for compiling and link-editing your job for TSO, ISPF, or native z/OS.
Before you run this job, create the load library that is referenced in the SYSLMOD statement; the user edit
exit module will reside in this library.

//samCOBOL JOB
 //STEP1 EXEC PROC=IGYWCL,PARM='LIB,RENT,NODYNAM,QUOTE'
 //* Provide access to QMF edit macro DXEECSC
 //COBOL.SYSLIB DD DSN=QMF1210.SDSQUSRE,DISP=SHR
 //COBOL.SYSIN DD *
 .
 .
 .
 Your COBOL edit exit program DSQUXDT
 .
 .
 .
 /*
 //* Provide access to QMF interface module DSQUXILE
 //LKED.QMFLOAD DD DSN=QMF1210.SDSQLOAD,DISP=SHR
 //* Provide access to the LE program library
 //LKED.SYSLIB DD ...
 // DD DSN=SYS1.SCEELKED,DISP=SHR
 //LKED.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR
 //LKED.SYSIN DD *
 INCLUDE QMFLOAD(DSQUXILE)
 ENTRY DSQUXILE
 MODE AMODE(31) RMODE(ANY)
 NAME DSQUEDIT(R)
 /*

Figure 76. Example statements for compiling and link-editing an edit exit routine that was written in COBOL
and that uses the CEEPIPI interface

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Related reference
Fields of the interface control block
Use the fields of the interface control block to pass information to and from your exit routine.

Writing a COBOL edit routine for CICS
To write an edit routine in COBOL for CICS you must understand the details that are specific to the
language.

The edit exit interface for COBOL in CICS consists of these parts:

• Interface control block DXEECS

For details on this control block, see the copy book DXEECSC, which is shipped with QMF and is located
in the QMF1210.SDSQUSRn library (where n is a 1-character identifier that represents your national
language). Include this copy book in your program.

• CICS command-level interface

QMF uses the CICS command-level interface to invoke the QMF edit exit module, DSQUECIC. Your
completed edit exit module must issue an EXEC CICS RETURN statement to pass control back to QMF.

• Your edit exit program, which must be named DSQUECIC

Chapter 16. Custom edit exit routines for QMF forms 277

When QMF is installed, the QMF edit exit program is installed with a program language of Assembler. To
use the COBOL edit exit program, you must change the program language of module DSQUECIC to
COBOL in the CICS program resource control table.

The IBM-supplied example edit program in COBOL, named DSQUXCTC, is located in the
QMF1210.SDSQSAPn library (where n is a 1-character identifier that represents your national
language). The example program is liberally commented; it can be browsed online, printed, or modified
to suit your needs. To use the example program, copy it to your private program source library and
change its name to DSQUXCT.

The following figure shows the structure of a COBOL edit exit routine in CICS.

Figure 77. Program structure for a COBOL edit exit routine in CICS

Statements for calling your program and returning control to QMF

The user edit program is called by using the standard CICS LINK command interface. Your program is
executing on a different program level than the main QMF program. The interface control block between
QMF and the user edit interface (DSQUEDIT) is DXEECS. It contains the user's edit code and provides a
scratchpad area for the user edit routine's use. The control block is persistent between calls to the user
edit routine. The scratchpad area is not modified by QMF after the initial invocation of the exit routine.

The user edit program must be translated using the CICS translator for COBOL. The CICS communications
area, DFHCOMMAREA, is used to provide addresses to the user edit routine program parameters
(DXEECS, input data, and output data) as shown here.

Figure 78. Providing addressability for your edit exit routine in CICS using the DFHCOMMAREA

After translation, the CICS translator provides a procedure statement that describes the CICS
environment block, DFHEIBLK, and the CICS communications block, DFHCOMMAREA, as in the following
example:

PROCEDURE DIVISION USING DFHEIBLK DFHCOMMAREA.

278 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

As shown in the previous figure, QMF provides addresses to the user edit routine control block DXEECS,
input data, and output data in the CICS communications area, DFHCOMMAREA. Provide your own
description of the DFHCOMMAREA in the COBOL program linkage section as follows:

LINKAGE SECTION.

 01 DFHCOMMAREA.
 02 ECSADR POINTER.
 02 ECSINADR POINTER.
 02 ECSRLADR POINTER.

To provide addressability to the user edit routine control block, DXEECS, input data area ECSINPT, and
result data area ECSRSLT, set the addresses of these data areas to the values located in the
DFHCOMMAREA as in the following example:

SETUP SECTION.

 SET ADDRESS OF DXEECS TO ECSADR.
 SET ADDRESS OF ECSINPT TO ECSINADR.
 SET ADDRESS OF ECSRSLT TO ECSRLADR.

Return control to QMF by using a standard CICS RETURN command such as the following:

EXEC CICS

 RETURN

 END-EXEC.

Translating, compiling, and link-editing your COBOL program

Translate your program using the CICS translator for COBOL. When you translate your program, CICS
normally supplies the standard procedure and linkage sections. Replace the standard CICS
communications area, DFHCOMMAREA, by providing a structure as specified in the linkage section
example in “Statements for calling your program and returning control to QMF” on page 278.

QMF edit exit interface control block DXEECSC, located in the QMF1210.SDSQUSRn library (where n is a
1-character identifier that represents your national language), must be available in a macro library during
the compile.

Specify COBOL compiler options RENT, RES, and NODYNAM, and runtime options NOSTAE and
NORTEREUS.

DXEECSC uses quotes as literal delimiters. You must use the QUOTE compiler option if you use the
DXEECSC control block as distributed by IBM.

You create a new QMF edit exit module, DSQUECIC, by including your edit exit program (DSQUXCTC) with
the EXEC CICS interface control module supplied by CICS. Module DSQUECIC must be executable in 31-
bit addressing mode.

These statements show examples for translating, compiling, and link-editing your job for CICS. Before
running this job, create the load library referenced in the SYSLMOD statement; the user edit exit module
will reside in this library.

Chapter 16. Custom edit exit routines for QMF forms 279

//SAMCOBOL JOB ...
//* Add a parameter PROGLIB to procedure DFHYITVL
//* PROGLIB=&PROGLIB,
//TRNCOMLK EXEC PROC=DFHYITVL,PROGLIB=QMF1210.SDSQLOAD',
// PARM.TRN='QUOTE',
// PARM.COB='RENT,NODYNAM,OBJECT,LIB,LIST,MAP,QUOTE'
//TRN.SYSIN DD *
.
.
.
Your program or modified copy of QMF sample DSQUXCTC
.
.
.
/*
//* Provide access to QMF edit macro DXEECSC
//COB.SYSLIB DD DSN=QMF1210.SDSQUSRE,DISP=SHR
//COB.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR
//LKED.SYSIN DD *
ENTRY DSQUECIC
MODE AMODE(31) RMODE(31)
NAME DSQUECIC(R) /*

Figure 79. Example statements for translating, compiling, and link-editing a COBOL edit exit program for
CICS

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

280 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 17. Controlling QMF resources
A governor exit routine helps you limit end-user activity and control use of system resources at your site.

Note: This topic contains General Use Programming Interface and Associated Guidance Information.

Several governing tools are available for use with QMF:

• You can use governing functions provided with QMF for TSO and CICS.
• You can use the QMF High Performance Option/Manager (HPO/Manager) to manage and control QMF

session activity. HPO/Manager provides a real-time user interface for QMF session activity and a query
analyzer that estimates a query's resource use before it is run. The HPO/Manager replaces the QMF
governor.

• You can use the Db2 resource limit facility to govern QMF operations.

The default governor exit routine provided with QMF for TSO and CICS
This default governor routine provides default resource limits. For example, you can limit the number of
rows a user can retrieve from the database or the amount of time spent running QMF commands.

The governor exit routine supplied for use with TSO, ISPF, and native z/OS (DSQUEGV1) provides options
for controlling how many rows a user can retrieve from the database as well as the processor time that is
spent running a QMF command. The governor exit routine supplied for CICS (DSQUEGV3) controls how
many rows a user can retrieve from the database.

How a governor exit routine controls resources
The governor uses two types of information to control resources.

These types of information are used by the governor to control resources:

• Information about the resource limits you set for a user, defined in a table called Q.RESOURCE_TABLE.
• Information about the state of the user's session, which tells the governor how close the user's activity

is coming to the resource limits defined for the resource group the user is in.

This information is passed to the governor exit routine in the control blocks DXEGOVA and DXEXCBA.
These control blocks cannot be updated if you are using the default governor exit routine; for
information on how to modify the default governor or write your own routine, see “Modifying the default
governor exit routine or writing your own routine” on page 298.

What happens when you reach a resource limit

When the resource control information QMF passes to the governor exit routine indicates that a resource
limit has been reached, the default governor exit routine calls the QMF cancellation service to cancel the
QMF activity the user tried to perform.

If you use the default limits for number of rows, the governor exit routine also displays a warning before
canceling the activity, as shown in Figure 81 on page 285. You can also activate this warning if you are not
using the default values for the number of rows retrieved.

The default governor exit routine resets its count of the number of rows upon returning control to QMF, so
that the number of rows is not cumulative across calls to the governor.

Related tasks
Defining your own resource limits

© Copyright IBM Corp. 1982, 2020 281

To set your own resource limits for the number of rows that are retrieved from the database, you can add
a resource group to the resource control table.

How the governor knows what the resource limits are
Each row of the Q.RESOURCE_TABLE supplied by IBM contains resource control information.

Each row of the Q.RESOURCE_TABLE contains these values:

• The name of a resource group (RESOURCE_GROUP), which characterizes one or more users whose
activities you want to govern in the same manner.

• The name of the resource (RESOURCE_OPTION) that you want to limit for the group of users named in
RESOURCE_GROUP.

• Values (INTVAL, FLOATVAL, or CHARVAL) that define the limits for the resource option. Resource
options can have integer values, floating-point values, or character values.

The following table describes each of the columns in Q.RESOURCE_TABLE. The table has the index
Q.RESOURCE_INDEX. Keyed columns are RESOURCE_GROUP and RESOURCE_OPTION.

Table 62. Structure of the Q.RESOURCE_TABLE table

Column name Data type and
length

Nulls
allowed?

Function/values

RESOURCE_GROUP CHAR(16) No Contains the name of the resource group. Update
the RESOURCE_GROUP field of the user's row in
Q.PROFILES to activate governing for that user.

The resource group in use for the user's QMF
session is recorded in the DSQAP_RESOURC_GRP
global variable.

RESOURCE_OPTION CHAR(16) No Your own name for a resource that you want to
monitor.

INTVAL INTEGER Yes Reflects the resource limit for resource options
that have integer values. For example, the
number of rows retrieved from the database is a
resource that has an integer value.

FLOATVAL FLOAT Yes Reflects the resource limit for resource options
that have floating-point values. FLOATVAL is null
for the default governor.

CHARVAL VARCHAR(80) Yes Reflects the resource limit for resource options
that have character values. For example, you
might establish a DAY_OF_WEEK resource option
and assign MONDAY to CHARVAL so that QMF
users can log on to QMF only on Mondays.
CHARVAL is used as a comment column in the
default governor.

The following two tables show the default rows of the Q.RESOURCE_TABLE as it is shipped by IBM. The
default table includes a predefined resource group named SYSTEM.

This next table shows rows that are common to all environments.

Table 63. Default resource group and options for the default governor exit. These options are common to all
environments.

RESOURCE_GROUP RESOURCE_OPTION INTVAL FLOATVAL CHARVAL

SYSTEM SCOPE - - Indicate whether governor
is active

282 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 63. Default resource group and options for the default governor exit. These options are common to all
environments. (continued)

RESOURCE_GROUP RESOURCE_OPTION INTVAL FLOATVAL CHARVAL

SYSTEM ROWPROMPT 25000 - Prompt user after fetching
25,000 rows

SYSTEM ROWLIMIT 100000 - Cancel activity after
fetching 100,000 rows

And this table shows the rows of Q.RESOURCE_TABLE that apply specifically to TSO, ISPF, and native
z/OS batch environments.

Table 64. Additional default resource options that are only available in TSO, ISPF, or native z/OS batch
environments

RESOURCE_GROUP RESOURCE_OPTION INTVAL FLOATVAL CHARVAL

SYSTEM TIMECHECK 900 - 15 minute interval
between time check

SYSTEM TIMEPROMPT 360 - Prompt user after 6
minutes of CPU time

SYSTEM TIMELIMIT 1440 - Cancel after 24 minutes of
CPU time

The resource options shown in the preceding two tables have the following meanings:

SCOPE
Used to activate governing:

• A value of zero in the INTVAL column of Q.RESOURCE_TABLE activates governing for a particular
resource group.

• Any non-zero value for SCOPE, including a null (the default), deactivates governing for the resource
group.

ROWPROMPT = 25000
Warns the user when 25,000 database rows have been retrieved.

ROWLIMIT = 100000
If the user decides to continue when warned, the governor exit routine cancels data retrieval activities
after 100,000 rows are retrieved. (Retrieval is for FETCH only.)

ROWLIMIT is dependent on the buffer size; therefore, more than 100,000 rows can be retrieved if the
buffer holds a number of rows not divisible by 100,000.

The three additional options provided for TSO, ISPF, and native z/OS batch are:
TIMECHECK = 900

TIMECHECK is specified in seconds of real time. Thus, the value 900 specifies 15 minutes of real time
between time checks or prompting or canceling.

TIMEPROMPT = 360
TIMEPROMPT is specified in seconds of processor time. Processor time refers to the jobstep time plus
the SBR (Service Request Block) time. Thus, the value 360 warns the user when 6 minutes of
processor time have elapsed. Evaluated after a TIMECHECK interval is processed.

TIMELIMIT = 1440
TIMELIMIT is specified in seconds of processor time. Thus, if the user decides to continue when
warned, the governor exit routine cancels the command after 1440 seconds, or 24 minutes, of
processor time have elapsed. TIMELIMIT is checked at TIMECHECK intervals; therefore, more than 24
minutes of processor time can elapse if the TIMECHECK interval is set at an interval not divisible by
24. TIMELIMIT is evaluated after a TIMECHECK interval is processed.

Chapter 17. Controlling QMF resources 283

Related concepts
How the governor knows when you reach a resource limit
The governor exit routine compares information from a user's row in the Q.PROFILES table against a value
in the Q.RESOURCE_TABLE.

How the governor knows when you reach a resource limit
The governor exit routine compares information from a user's row in the Q.PROFILES table against a value
in the Q.RESOURCE_TABLE.

IBM supplies a view of Q.RESOURCE_TABLE called Q.RESOURCE_VIEW. The view includes all five
columns of Q.RESOURCE_TABLE. Each time QMF calls the governor exit routine, QMF passes to the
routine the resource control information stored in Q.RESOURCE_VIEW according to the resource group to
which the user belongs. To determine the resource group, QMF checks the value of the
RESOURCE_GROUP column of the user's row in the Q.PROFILES table and checks Q.RESOURCE_VIEW for
a matching value. The governor exit routine uses this resource information to help determine when the
user reaches a resource limit.

QMF uses two control blocks, DXEGOVA and DXEXCBA, to pass information to the governor exit routine.
The DXEGOVA control block contains information from Q.RESOURCE_VIEW about the limits you set for
each user. The DXEXCBA control block contains information about the activities the user is performing in
the current QMF session, which tells the governor how close the user is coming to the resource limits.
These control blocks cannot be modified if you are using the default governor exit routine.

QMF makes function calls to the governor exit routine at a number of different points within the QMF
session.

Related concepts
How the governor knows what the resource limits are
Each row of the Q.RESOURCE_TABLE supplied by IBM contains resource control information.
Points at which QMF calls the governor
Function calls to the governor exit routine either precede or follow a specific type of QMF activity.
Related tasks
Modifying the default governor exit routine or writing your own routine
If you decide to govern resources other than the number of rows returned from the database or the
processor time expired, you need to modify the default governor exit routine or write your own.

Resource limits with the default governor exit
The governor exit routine supplied for use with TSO, ISPF, and native z/OS (DSQUEGV1) provides options
for controlling how many rows a user can retrieve from the database as well as the processor time that is
spent running a QMF command. The governor exit routine supplied for CICS (DSQUEGV3) controls how
many rows a user can retrieve from the database.

Default resource limits
The default governor monitors and controls the number of rows returned from the database. In addition,
the governor running under TSO, ISPF, and native z/OS has values for the time spent running a QMF
command.

The default governor exit routine is shipped with two predefined values for the number of rows:

• Number of rows at which the user is warned that a resource limit is approaching

A prompt panel warns users when the number of rows retrieved reaches 25,000, at which time the user
sees the message in Figure 80 on page 284.
DSQUn00 QMF governor prompt:
Command has fetched 25,000 rows of data.

==> To continue QMF command press the "ENTER" key.
==> To cancel QMF command type "CANCEL" then press the "ENTER" key
==> To turn off prompting type “NOPROMPT” then press the “ENTER” key

Figure 80. Message displayed when a resource limit is approaching

284 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Important: Database activity is not suspended when a cancellation prompt is displayed. Db2 continues
to fetch rows and use processor time.

• Number of rows at which the QMF command is canceled

The default QMF governor cancels data retrieval when 100,000 rows have been retrieved (if the user
presses the Enter key in response to the message in Figure 80 on page 284). When the governor
cancels data retrieval, the user sees the message shown in Figure 81 on page 285.
Row limit exceeded! Your command canceled by QMF governor.

Figure 81. Message displayed when a resource limit is exceeded

When running a procedure, you might get a message that your procedure was canceled, rather than the
message in Figure 81 on page 285. For example, if your procedure contains a command that requires that
the report be completed (such as ERASE), you receive the message shown in Figure 82 on page 285.
Procedure canceled.

Figure 82. Message displayed when a procedure is canceled

Users using the SYSTEM profile are already set up to use these default values of 25,000 and 100,000
rows.

TSO, ISPF, and native z/OS have two additional predefined values (a time limit and a time prompt value)
for the time spent running a QMF command:

• A time prompt panel warns users when the processor time for the cycle reaches six minutes, at which
time the user sees the message shown in Figure 83 on page 285.
DSQUn00 QMF governor prompt:
 Command has executed for 6 minutes

==> To continue QMF command press the "ENTER" key.
==> To cancel QMF command type "CANCEL" then press the "ENTER" key
==> To turn off prompting type "NOPROMPT" then press the "ENTER" key

Figure 83. Message displayed when a resource limit is approaching
• A time limit value cancels the command when 24 minutes of processor time are used during the cycle.

Activating the default limits
You can set up the governor exit routine to warn a user when the number of rows retrieved from the
database reaches 25,000 and to cancel QMF activity when the number of rows retrieved reaches
100,000.

About this task

If you want to define row limits other than the defaults of 25,000 and 100,000, read “How a governor exit
routine controls resources” on page 281. Then see the procedure in “Defining your own resource limits”
on page 286.

Procedure

1. Enter the statement shown in Figure 84 on page 285 on the SQL Query panel and issue the RUN
QUERY command to update the Q.RESOURCE_VIEW table.

UPDATE Q.RESOURCE_VIEW
SET INTVAL=0
WHERE RESOURCE_OPTION=’SCOPE’ AND
 RESOURCE_GROUP=’SYSTEM’

Figure 84. Activating default values for the governor supplied by IBM

2. Unless you have started QMF with a value of TSOID for the DSQSPRID parameter, set a value of
SYSTEM for the RESOURCE_GROUP field of the user's profile.

Chapter 17. Controlling QMF resources 285

Important: Always specify a value for the TRANSLATION column, or you might change more rows in
the Q.PROFILES table than you intend.

For example, the UPDATE statements in Table 65 on page 286 activate default values for user JONES
(using English QMF) and user SCHMIDT (using German QMF).

If you have started QMF with a DSQSPRID value of TSOID, the resource group name is the user's TSO
user ID.

The resource group in use for the user's QMF session is recorded in the DSQAP_RESOURC_GRP global
variable.

Table 65. Updating a user's resource group to use the default resource limits

Base QMF (English) German NLF

UPDATE Q.PROFILES
SET RESOURCE_GROUP = 'SYSTEM'
WHERE CREATOR='JONES'
AND TRANSLATION='ENGLISH'

UPDATE Q.PROFILES
SET RESOURCE_GROUP = 'SYSTEM'
WHERE CREATOR='SCHMIDT'
AND TRANSLATION='DEUTSCH'

What to do next

Instruct users to reconnect to the database to activate the new values. This can be done with a QMF
CONNECT command, or they can end the current QMF session and begin another to activate the new
resource group.

Defining your own resource limits
To set your own resource limits for the number of rows that are retrieved from the database, you can add
a resource group to the resource control table.

About this task

This procedure adds a resource group named GROUP1. The governor prompts users in GROUP1 when the
number of rows reaches 10,000 and cancels the user's activity when the number of rows reaches 15,000.
For TSO, ISPF, and native z/OS batch, the governor also prompts a user in GROUP1 when processor time
reaches 300 seconds, and cancels the user’s activity when the processor time reaches 1,000 seconds.
The procedure also shows an example of how to add a user to a resource group.

Procedure

To add a resource group to the resource control table, follow these steps:
1. Set the number of rows at which the user is warned of the approaching resource limit.

If you do not want to warn users when they are approaching their limit for the number of rows, skip to
Step “2” on page 286.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
 VALUES('GROUP1','ROWPROMPT',10000)

Figure 85. Configuring a prompt for 10,000 retrieved rows

2. Set the number of rows at which the governor cancels the user's activity.
The following example sets the cancellation at 15,000 rows.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
 VALUES('GROUP1','ROWLIMIT',15000)

Figure 86. Configuring cancellation of QMF activity at 15,000 retrieved rows

286 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

3. Set the processor time that elapses before the user is warned of the approaching resource limit.
Elapsed processor time applies only to TSO, ISPF, and native z/OS batch environments. If you do not
want to warn users when they are approaching their limit for the time that is elapsed, skip to Step “4”
on page 287.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
 VALUES('GROUP1','TIMEPROMPT',300)

Figure 87. Configuring a prompt to be issued after 300 seconds (5 minutes) of processor time in TSO,
ISPF, and native z/OS batch

4. Set the amount of processor time that can elapse before the governor cancels the user's activity.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
 VALUES('GROUP1','TIMELIMIT',1000)

Figure 88. Configuring cancellation of QMF activity after 1000 seconds (over 16 minutes) of processor
time in TSO, ISPF, and native z/OS batch

5. Set the real time between intervals when the governor checks the user's activity.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
 VALUES('GROUP1','TIMECHECK',800)

Figure 89. Configuring QMF to compare user activity against resource limits approximately every 13
minutes in TSO, ISPF, and native z/OS batch

6. Turn on governing for the GROUP1 resource group.
SCOPE is a resource option that activates or deactivates governing. Each resource group in
Q.RESOURCE_TABLE must have a RESOURCE_OPTION called SCOPE, and SCOPE must have a
corresponding INTVAL of zero, or the resource group is not governed. Set INTVAL to 1 to deactivate
governing.

INSERT INTO Q.RESOURCE_VIEW (RESOURCE_GROUP,RESOURCE_OPTION,INTVAL)
 VALUES('GROUP1','SCOPE',0)

Figure 90. Turning on the governor for the GROUP1 resource group

7. Add user JONES to the GROUP1 resource group in the English QMF environment.

UPDATE Q.PROFILES
 SET RESOURCE_GROUP='GROUP1'
 WHERE CREATOR='JONES' AND
 TRANSLATION='ENGLISH'

Figure 91. Updating a user's resource group in the Q.PROFILES table

Use a similar statement to update user profiles in an NLF environment, but use a value for
TRANSLATION that represents the name that QMF uses for the NLF. For the name that QMF uses for an
NLF, see Table 27 on page 102

Chapter 17. Controlling QMF resources 287

What to do next

Instruct the user whose profile you updated to end the current QMF session and start another to activate
the new values.

Related tasks
Modifying the default governor exit routine or writing your own routine
If you decide to govern resources other than the number of rows returned from the database or the
processor time expired, you need to modify the default governor exit routine or write your own.
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Creating your own resource control table
You can create your own table or rename Q.RESOURCE_TABLE.

About this task

You can include additional columns in the table you create if Q.RESOURCE_VIEW is the view defined on
this table and the table includes the columns structure of the Q.RESOURCE_TABLE table.

Important: When running QMF for TSO and CICS, you invalidate the QMF application plan when you drop
the view. For this reason, you should work outside of QMF when you drop and re-create the resource
table and view.

Procedure

To create your own resource table, follow these steps. These example SQL statements create a table
called MY_RESOURCES. Substitute your own table, column, and table space names in the statement.
1. Erase Q.RESOURCE_TABLE from the database with a statement like the following, because

Q.RESOURCE_VIEW is defined on this table:

DROP TABLE Q.RESOURCE_TABLE

2. Re-create the table.
Under TSO, substitute your own table space name for DSQTSSN1.

CREATE TABLE MY_RESOURCES
 (GROUP_NAME CHAR(16) NOT NULL,
 CONSTRAINT CHAR(16) NOT NULL,
 INTEGER INTEGER,
 FLOAT_VALUE FLOAT,
 CHARACTER VARCHAR(80))
IN DSQTSSN1

Figure 92. Creating a resource control table or renaming Q.RESOURCE_TABLE

3. If you do not use the table space supplied with QMF, you must create your own. If you rebind the QMF
application plan explicitly, you also need the BIND privilege on the plan.

4. Redefine Q.RESOURCE_VIEW as a view on the new table, MY_RESOURCES.
Always re-create Q.RESOURCE_VIEW if you decide to use a table other than Q.RESOURCE_TABLE or
decide to give Q.RESOURCE_TABLE a different name, because QMF queries the view, not the table, to
obtain resource control information to pass to the governor exit routine.

The following example shows how to redefine Q.RESOURCE_VIEW as a view on the new table,
MY_RESOURCES. Substitute your own table and column names for those in the example.

CREATE VIEW Q.RESOURCE_VIEW
 (RESOURCE_GROUP, RESOURCE_OPTION, INTVAL, FLOATVAL, CHARVAL)

288 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

 AS SELECT GROUPNAME, CONSTRAINT, INTEGER, FLOAT_VALUE, CHARACTER
 FROM MY_RESOURCES

5. Grant the SELECT privilege on Q.RESOURCE_VIEW to PUBLIC.
6. Test the new view; you can test the view using SPUFI. Finally, rebind the QMF application plan.

Related concepts
How the governor knows what the resource limits are
Each row of the Q.RESOURCE_TABLE supplied by IBM contains resource control information.

Program components of the governor exit routine
The names of the member components of the governor exit routine vary by environment and language
you installed (English or an NLF).

The following table shows the names of the governor exit routine components and the purpose that each
component serves. Replace the n character in the names shown with the 1-character language identifier
that matches the NLF you are using. In the component names, a 1 represents TSO, ISPF, and native z/OS;
3 represents CICS.

Table 66. Components of the default governor

Environment Member name Library Function

TSO, ISPF, and native
z/OS

DSQUnGV1 QMF1210.SDSQLOAD Load module for TSO,
ISPF, and native z/OS

DSQUnGV1 QMF1210.SDSQUSRn Source code for the
governor exit routine for
TSO, ISPF, and native
z/OS

DXEUnGV1 QMF1210.SDSQUSRn Contains text and related
definitions for the
governor prompts and
cancellation messages for
TSO, ISPF, and native
z/OS

CICS DSQUnGV3 QMF1210.SDSQLOAD Load module for CICS

DSQUnGV3 QMF1210.SDSQUSRn Source code for the
governor exit routine for
CICS

DXEUnGV3 QMF1210.SDSQUSRn Contains text and related
definitions for the
governor cancellation
message in CICS

DXEUnGM QMF1210.SDSQUSRn Contains BMS map for the
governor prompts in CICS

All environments DXEGOVA QMF1210.SDSQUSRn DSECT for the DXEGOVA
control block

DXEXCBA QMF1210.SDSQUSRn DSECT for the DXEXCBA
control block

In QMF Version 12.1, this
control block has three
new fields that provide
governing for SQL queries
larger than 32 KB.

Chapter 17. Controlling QMF resources 289

If you are using an NLF, you can govern resources in an NLF session as well as an English QMF session, by
using different versions of the module DSQUnGVx for each language environment. For example, if you
have both English and German installed, use the module DSQUEGV1 for English in TSO, ISPF, and native
z/OS batch and the module DSQUDGV1 for German in TSO, ISPF, and native z/OS batch.

You can share the resource control table (Q.RESOURCE_TABLE or one you create yourself) and the
Q.RESOURCE_VIEW between language environments, just as the Q.PROFILES table can contain profiles
for English or any NLF.

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

How QMF and the governor interact
QMF interacts with the governor exit routine differently in different environments.

At the start of a user's session, QMF brings the governor into the user's virtual storage. Under TSO, ISPF,
and native z/OS, QMF issues a LOAD command. Under CICS, QMF issues an EXEC CICS LOAD command to
bring the governor into the user's virtual storage.

The load module library QMF1210.SDSQLOAD is assumed to be in a library concatenated to the user's
STEPLIB data set.

For performance reasons, an Assembler call interface is used between QMF and the governor exit routine.
The governor exit routine must provide fast performance because, depending on which resources you are
trying to control, it might be called on every row retrieved from the database.

This figure shows the program structure of a governor exit routine under TSO, ISPF, or native z/OS.

Figure 93. How QMF interacts with the governor exit under TSO, ISPF, or native z/OS

The CICS control block interface to the governor exit consists of the following parts:

• Interface control blocks DXEXCBA and DXEGOVA, which are shipped with QMF
• Prolog and epilog macros DFHEIENT and DFHEIRET, which are shipped with CICS
• Command interface modules DFHEAI and DFHEAI0, which are shipped with CICS
• The governor exit program, which is named DSQUnGV3

290 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Figure 94. How QMF interacts with the governor exit in a CICS-supplied environment

The governor exit routine executes on the same program level as the main QMF program.

Under CICS, the entry point to the governor exit routine is DSQUnGV3. When it calls the governor exit
routine, QMF always branches to the address returned by CICS as the result of an EXEC CICSLOAD
command.

If the load fails or the module does not support 31-bit addressing mode, QMF logs a warning message,
disables the governor exit, and continues the session without the governor.

How and when QMF calls the governor exit routine
When you create or modify a governor exit routine, you must establish addressability to the exit routine
for the points at which QMF calls the routine.

Points at which QMF calls the governor
Function calls to the governor exit routine either precede or follow a specific type of QMF activity.

The following figure provides an overview of how the governor limits use of resources. QMF issues
standard Assembler CALL statements to the governor exit routine. The term function calls describes the
points during the QMF session when these CALL statements are issued.

Figure 95. How a governor exit routine works with QMF for TSO and CICS

Function calls are made at the following points:

Chapter 17. Controlling QMF resources 291

Table 67. Points at which QMF makes function calls to the governor exit routine. Function calls to the
governor exit routine either precede or follow a specific type of QMF activity.

QMF activity Description of the function call to the governor exit routine

At the beginning and end of a QMF
session

QMF calls the governor exit routine during initialization for a
QMF session, after the governor exit routine is loaded into the
user's virtual storage. The governor initializes itself for the
session using the resource control information contained in
rows passed from the query of Q.RESOURCE_VIEW.

After a new connection is made to
the database

When a user issues the CONNECT command, the Q.PROFILES
table and the resource control table are re-initialized. The
governor is called because the resource control values might
have changed if a different CONNECT ID was used. All
unfinished database operations are completed before the
connection is made.

Although the governor exit routine cannot cancel a connection
to the database, you can write statements in your own routine
that cancel the user's session on the next activity if the resource
information passed to the governor indicates that the user is not
allowed to use QMF.

Before and after running a
command

QMF calls the governor before and after running all commands.
There can be several calls for the start of commands before a
call for the completion of a command. For example, a RUN PROC
command results in two "start command" calls and two "end
command" calls when there is a RUN QUERY command
embedded in the procedure.

292 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 67. Points at which QMF makes function calls to the governor exit routine. Function calls to the
governor exit routine either precede or follow a specific type of QMF activity. (continued)

QMF activity Description of the function call to the governor exit routine

Before database activity starts and
when it ends

QMF calls the governor just before it begins a variety of
database operations, such as PREPARE, OPEN, and FETCH; QMF
also calls the governor upon completing any database activity.

When QMF retrieves data, it fits the maximum number of rows
possible into a buffer that has a minimum size of 4 KB. QMF
calls the governor once upon retrieving the first row into the
buffer and once upon either filling the buffer or reaching the end
of the table, whichever comes first.

QMF also calls the governor when SQL, QBE, or prompted
queries are submitted using a RUN QUERY command, or when
QMF is running SQL statements required by a QMF command.
For example, a SAVE DATA command might result in DELETE,
CREATE, and INSERT statements. The governor is called before
and after each of these operations. If there is an incomplete
DATA object when a command is entered, there might be
governor calls for database activity while the DATA object is
being completed.

The following QMF commands always force database activity:

• DISPLAY (when the object is a table or view)
• EDIT TABLE
• ERASE TABLE
• EXPORT TABLE
• IMPORT TABLE
• PRINT (when the object is a table or view)
• RUN (for queries)
• SAVE DATA (which results in one or more implicit CREATE

TABLE statements)
• Scrolling commands that result in fetching data when a report

is being displayed
• Data retrieval operations (fetch operations)

Chapter 17. Controlling QMF resources 293

Table 67. Points at which QMF makes function calls to the governor exit routine. Function calls to the
governor exit routine either precede or follow a specific type of QMF activity. (continued)

QMF activity Description of the function call to the governor exit routine

Before and after the user makes a
choice

At various points in a session, QMF waits for users to make
decisions. The time QMF spends waiting is known as think time.

QMF calls the governor before performing an operation that
leads to think time, such as displaying a panel for a user-entered
selection. As soon as the user enters a response and ends the
period of think time, QMF calls the governor.

Any of the following activities lead to think time:

• Displaying a QMF panel between running commands
• Displaying help panels
• Displaying confirmation prompt panels; for example, when the

user is about to erase something by issuing the SAVE
command that replaces the object

• Displaying command prompt panels; for example, when the
user enters DISPLAY ?

• Displaying the LIST prompt panel
• Displaying ICU and EXTRACT panels
• Running the EDIT PROC and EDIT QUERY functions

At initiation of an abnormal ending QMF calls the governor just before it initiates an abnormal
ending. The governor can perform the cleanup necessary before
abend processing begins. The actions might be similar to those
during the session end.

Related concepts
Managing QMF performance
You can monitor the performance of QMF and find some solutions or workarounds to common
performance issues.

What happens upon entry to the governor exit routine
QMF calls the governor exit routine by branching to the address of entry point DSQUnGV1 (TSO, ISPF, or
native z/OS) or DSQUnGV3 (CICS).

When it calls the governor, QMF always branches to an entry point.named DSQUnGV1 (for TSO, ISPF, or
native z/OS) or DSQUnGV3 (for CICS), where n is a 1-character national language identifier. For this
reason, you cannot use the entry point to determine the type of exit; instead, use the GOVFUNCT control-
block field. Its value is a positive integer that identifies the type of exit. Each type of function call has a
specific value for the GOVFUNCT field. These values are shown in Figure 99 on page 296.

Branching to the DSQUnGV1 entry point in TSO, ISPF, or native z/OS

QMF calls the governor exit routine in TSO, ISPF, or native z/OS by branching to the address of entry point
DSQUEGV1. Upon entry to the governor exit routine:

• Register 1 contains the address of the parameter list.

The parameter list contains two full-word addresses: one for the DXEXCBA control block and the other
for the DXEGOVA control block.

294 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Figure 96. Contents of register 1 on a call to the governor exit routine in TSO, ISPF, or native z/OS
• Register 13 contains the address of the QMF SAVE area.
• Register 14 contains the return address from the call.
• Register 15 contains the address of the entry point, which is DSQUEGV1.

After the governor is called, it might begin with code like this code sample, which is from the default
governor for TSO, ISPF, or native z/OS.

DSQUEGV1 CSECT
 USING *,R15
 B FDENTRY BRANCH AROUND CONSTANTS
 DC C'DSQUEGV1' MODULE NAME
 DC C' '
 DC C'&SYSDATE ' DATE OF ASSEMBLY
 DC C'&SYSTIME ' TIME OF ASSEMBLY
 DS 0H
*
FDENTRY STM R14,R12,12(R13) SAVE THE REGISTERS
 BALR R12,0 INITIALIZE BASE REGISTER
 DROP R15
 LA R02,MAINSV CHAIN THE SAVE AREAS
 ST R02,8(R13)
 ST R13,MAINSV+4
 LR R13,R02
*
 L R01,4(R01) GET ADDRESS OF DFHCOMMA
 L XCBPTR,0(R01) GET ADDRESS OF QMF EXIT CTL BLK
 L GOVPTR,4(R01) GET ADDRESS OF QMF GOV CTL BLK
 USING DXEXCBA,XCBPTR
 USING DXEGOVA,GOVPTR
 LA WORKPTR,GOVUSERS SCRATCH PAD ADDRESS
 USING WORK,WORKPTR
⋮
MAINSV DS 18F SAVE AREA
XCBPTR EQU R02 PTR TO DXEXCBA CONTROL BLOCK
GOVPTR EQU R03 PTR TO DXEGOVA CONTROL BLOCK
WORKPTR EQU R04 PTR TO SCRATCH_PAD AREA

Figure 97. Sample code that shows the start of a governor session in TSO, ISPF, or native z/OS

The code in the preceding sample first branches around a block of constants that can serve as eye
catchers in a dump of virtual storage. The constants name the entry point and the applicable version of
QMF. They also show the date and time that the code was assembled.

The code establishes base registers for the program, pointers to the DXEXCBA and DXEGOVA control
blocks, and a scratchpad area named GOVUSERS. The scratchpad area is preserved by QMF between
calls to the governor. A DSECT named WORK describes this scratchpad area in the code for the default
governor.

After the governor processes a call, it returns control to QMF in the standard way. You must use the
standard epilog and prolog, as in the sample code for the default governor that is shown here:

L R13,4(R13) RESTORE CALLER'S SAVE AREA ADDRESS
 LM R14,R12,12(R13) RESTORE CALLER'S REGISTERS
 XR R15,R15 ZERO RETURN CODE
 BR R14 RETURN TO CALLER

Figure 98. How the default governor exit routine returns control to QMF in TSO, ISPF, or native z/OS

Chapter 17. Controlling QMF resources 295

Branching to the DSQUnGV3 entry point in CICS

Entry to the governor exit routine in CICS follows the standard CICS linkage conventions:

• Register 1 contains a CICS parameter list suitable for processing by the macros DFHEIENT and
DFHEIRET that are supplied with CICS. The following figure shows the contents of register 1 on a call to
the governor.

DFHEIBLK is the address of the CICS communications area. DFHCOMMA contains two pointers, one to
the DXEXCBA control block and the other to the DXEGOVA control block.

Figure 99. Contents of register 1 on a call to the governor exit routine in CICS
• Register 13 contains the address of a standard CICS working storage area as described by CICS DSECT

DFHEISTG.
• Register 14 contains the return address.

Because the governor program runs on the same program level as QMF, use caution when you use any
EXEC CICS commands that change the environment (for example, CICS HANDLE CONDITION). If you
need to use the CICS HANDLE CONDITION statement, use EXEC CICS PUSH and EXEC CICS POP
statements to save and restore the existing handle conditions.

Begin the governor program with code similar to the following.

DSQUEGV3 TITLE 'QMF GOVERNOR EXIT ROUTINE'
DFHEISTG DSECT
DSQUEGV3 DFHEIENT CODEREG=(12),DATAREG=(13),EIBREG=(10)
 B FDENTRY BRANCH AROUND CONSTANTS
*
MODNAME DC C'DSQUEGV3' MODULE NAME
 DC C' '
 DC C'&SYSDATE ' DATE OF ASSEMBLY
 DC C'&SYSTIME ' TIME OF ASSEMBLY
 DS 0H
*
FDENTRY DS 0H
 L R01,4(R01) GET ADDRESS OF DFHCOMMA
 L XCBPTR,8(R01) GET ADDRESS OF QMF EXIT CTL BLK
 L GOVPTR,12(R01) GET ADDRESS OF QMF GOV CTL BLK
 USING DXEXCBA,XCBPTR
 USING DXEGOVA,GOVPTR
 LA WORKPTR,GOVUSERS GET ADDRESS OF GOVERNOR WORK AREA
 USING WORK,WORKPTR
*
⋮
 GOVPTR EQU R03 PTR TO DXEGOV CONTROL BLOCK
 XCBPTR EQU R02 PTR TO DXEXCB CONTROL BLOCK
 WORKPTR EQU R04 PTR TO GOVERNOR SCRATCH PAD AREA

Figure 100. Sample code at the start of a governor session (for CICS)

The code in the preceding sample first branches around a block of constants that can serve as eye
catchers in a dump of virtual storage. The constants name the entry point and the applicable version of
QMF. They also show the date and time that the code was assembled.

296 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

The code establishes base registers for the program, pointers to the DXEXCBA and DXEGOVA control
blocks, and a scratchpad area named GOVUSERS. The scratchpad area is preserved by QMF between
calls to the governor. A DSECT named WORK describes this scratchpad area in the code for the default
governor.

When processing is complete, the governor returns control to QMF with the standard CICS return as
specified by the CICS macro DFHEIRET.

Attention: Do not use the command EXEC CICS RETURN. This command ends the QMF session
without releasing QMF resources.

The governor program ends with code similar to the following.

⋮
*
 XR R15,R15 ZERO RETURN CODE
 DFHEIRET RCREG=15
*

Figure 101. Ending code for the governor program in CICS

Related concepts
Structure of the DXEGOVA control block
The DXEGOVA control block passes to the governor exit routine information about a user's resource
constraints. This information is located in a resource control view called Q.RESOURCE_VIEW.
Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Establishing addressability for function calls
Because QMF always branches to an entry point named DSQUnGV1 (TSO, ISPF, or native z/OS) or
DSQUnGV3 (CICS) when it calls the governor, you cannot use these entry points to determine the type of
function call; instead, use the GOVFUNCT field of the DXEGOVA control block.

In the IBM-supplied governor exit routine, GOVFUNCT contains a character value that identifies the type
of function call. This character value, in turn, equates to a 1-byte binary integer from 1 to 10. For example,
on a function call for the start of a QMF session, the value of GOVFUNCT is GOVINIT, which equates to a
numeric value of X'1'.

Both character and numeric values for each type of function call are shown in this figure. GOVABEND is
not called when running in CICS.

GOVINIT EQU 1 -------- INITIALIZATION OF SESSION
GOVTERM EQU 2 -------- TERMINATION OF SESSION
GOVSCMD EQU 3 -------- START COMMAND
GOVECMD EQU 4 -------- END COMMAND
GOVCONN EQU 5 -------- CONNECT COMMAND
GOVSDBAS EQU 6 -------- START DATABASE
GOVEDBAS EQU 7 -------- END DATABASE
GOVSACTV EQU 8 -------- SUSPEND QMF ACTIVITY
GOVRACTV EQU 9 -------- RESUME QMF ACTIVITY
GOVABEND EQU 10 -------- QMF ABEND OPERATION

Figure 102. Character and numeric values for the GOVFUNCT field of the DXEGOVA control block

To improve performance in your own exit routine, you can follow the convention the IBM-supplied
governor uses, and equate the values of GOVFUNCT with binary numbers by using a branch table. QMF
uses the branch table to find the addresses to branch to for each type of function call.

Chapter 17. Controlling QMF resources 297

The following example code identifies branch addresses for the default governor.

XR R07,R07 ZERO REGISTER 7
 IC R07,GOVFUNCT IDENTIFY EXIT TYPE
 SLL R07,2 DETERMINE BRANCH TABLE OFFSET
 LA R15,FUNBTAB(R07) GET BRANCH TABLE ADDRESS
 L R15,0(R15) GET BRANCHING ADDRESS
 BALR R14,R15 BRANCH TO THE APPROPRIATE CODE
 . . .
 . . .
 . . .
 . . .
FUNBTAB DS 0F
 DC A(BYPASS) VALUE "0" - UNUSED
 DC A(INIT) VALUE "1" - QMF INITIALIZATION
 . . .
 . . .
 . . .
 DC A(SUSPEND) VALUE "10" - QMF ABEND IN PROCESS

Figure 103. Identifying the type of function call and branching to the appropriate address

Modifying the default governor exit routine or writing your own routine
If you decide to govern resources other than the number of rows returned from the database or the
processor time expired, you need to modify the default governor exit routine or write your own.

Before you begin

• Read “Program components of the governor exit routine” on page 289.
• Read “How QMF and the governor interact” on page 290.
• Establish addressability to the exit routine for the points at which QMF calls the routine. “How and when

QMF calls the governor exit routine” on page 291 explains this step.

About this task

One of the control blocks that is used to pass resource control information to the governor exit, DXEXCBA,
has been modified in QMF Version 12.1 to accommodate governing of SQL queries that are larger than 32
KB. If you plan to take advantage of this feature and you modified the default governor in prior QMF
releases or you have a user-written governor routine already in place, you need to modify the routine to
make use of the new control block fields that provide this feature.

Related concepts
Structure of the DXEXCBA control block
The DXEXCBA control block passes to the governor exit routine information about the state of the QMF
session upon entry to the governor. The governor combines this information with information about
resource limits (contained in DXEGOVA) to determine when the resource limits have been exceeded and
when to cancel the user's activity.

Passing resource control information to the governor exit
QMF passes resource control information using two control blocks named DXEGOVA and DXEXCBA. Their
addresses are passed to the governor on every function call.

Before you begin, you should know how to define your own resource limits in a format that the governor
can use.

The DSECT DXEXCBA (shipped as DXEXCBA) and the DSECT DXEGOVA (shipped as DXEGOVA) are located
in QMF1210.SDSQUSRE. Include these DSECTs in your program using the Assembler COPY statement.

Three new fields have been added to the DXEXCBA control block in QMF Version 12.1 to provide
governing of SQL queries that are larger than 32 KB: XCBQRYPT, XCBQRYP2, and XCBQRYL2. If you

298 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

modified the default governor exit routine in an earlier release or wrote your own exit, some migration
steps are required to be compatible with this release and to take advantage of this feature.

Related concepts
Forward compatibility of earlier releases with QMF Version 12 Release 1
Most objects that were created under earlier releases can be used in QMF Version 12.1 without
modification.
Related tasks
Defining your own resource limits
To set your own resource limits for the number of rows that are retrieved from the database, you can add
a resource group to the resource control table.

Structure of the DXEGOVA control block
The DXEGOVA control block passes to the governor exit routine information about a user's resource
constraints. This information is located in a resource control view called Q.RESOURCE_VIEW.

The following table provides the name of each field in the DXEGOVA control block, with its data type and
purpose. Each data type is listed as it appears in the DS statement that defines the field in the DSECT. For
example, for the GOVOROWS field, the letter F indicates that this field contains a full-word integer. The
DS statement for GOVOROWS appears as GOVOROWS DS F.

The layout of the control blocks and the information that they contain applies to all QMF environments.
Therefore, some of the information shown in the control blocks might not apply to QMF in the
environment that you are using.

Table 68. Fields of the DXEGOVA interface control block to the governor

Field Data type Description

GOVCADDR A Contains the address to branch to for canceling an activity.

GOVFUNCT XL1 Indicates the type of function call. Possible values are:

• GOVINIT (session initialization); GOVTERM (session termination)
• GOVSCMD (start command); GOVECMD (end command)
• GOVCONN (connect command)
• GOVSDBAS (start database retrieval operation); GOVEDBAS (end

database retrieval operation)
• GOVSACTV (suspend QMF activity for user think time); GOVRACTV

(resume QMF activity)
• GOVABEND (start of an abnormal ending)

GOVGROUP CL16 Contains the name of the user's resource group. This value does not
change during a QMF session.

GOVNAME CL8 Contains the name of the control block (DXEGOVA). This value does not
change during a session. It can serve as an eye catcher in a dump of
virtual storage.

GOVOROWS F Contains the number of rows for the user's resource group in the
resource control table. This value does not change during a session, and
can be zero.

Chapter 17. Controlling QMF resources 299

Table 68. Fields of the DXEGOVA interface control block to the governor (continued)

Field Data type Description

GOVRESC 10XL128 Contains information from the resource control table. This information is
divided into 10 contiguous blocks of storage that are structured like
DSECT GOVRESCT. A block contains information about one of the rows
for the user's resource group in the QMF resource control table.

• If the resource group has less than 10 rows, unused blocks are those
at the end of the field.

• If the resource group has more than 10 rows, use the GOVNEXTR field
(in the GOVRESCT DSECT) to access additional rows.

GOVRESCT DSECT Describes the block of storage containing information about one of the
user's rows of the resource control table.
GOVOPTN(CL16)

Contains the value in the RESOURCE_OPTION column of the
resource control table. Blocks in the chain are ordered alphabetically
on the content of this field.

GOVNULLI(H)
Null indicator for INTVAL column.

GOVINTVL(F)
Value of INTVAL column.

GOVNULLF(H)
Null indicator for FLOATVAL column.

GOVFLOAT(D)
Value of FLOATVAL column.

GOVNULLC(H)
Null indicator for CHARVAL column.

GOVCHLEN(H)
Length of data in CHARVAL column.

GOVCHAR(CL80)
Value in CHARVAL column.

GOVNEXTR(A)
Points to the block of data for the next resource table row. Contains
zero if this is the last row.

Any null indicator in the structure is zero when its corresponding column
value isn't null. If the column value is null, the indicator is not zero.

GOVSQLCA A Address of the SQL communications area (SQLCA), which holds
information about the SQL SELECT query on the resource control view
(Q.RESOURCE_VIEW).

GOVSQLRC F Return code from the SQL SELECT query on the resource control view
(Q.RESOURCE_VIEW). If it is nonzero, the query failed and no rows are
passed to the governor.

GOVUSERS CL2048 Scratchpad area, retained between session calls. QMF does not change
this value.

The following figure shows the structure of the DXEGOVA control block.

** 00001000
* * 00002000
* CONTROL BLOCK NAME: DXEGOVA * 00003000
* * 00004000

300 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

* FUNCTION: * 00005000
* * 00006000
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND * 00007000
* THE GOVERNOR EXIT ROUTINE. * 00008000
* * 00009000
* STATUS: Version 12.1 RELEASE 1 LEVEL 0 * 00010000
* * 00011000
* INNER CONTROL BLOCKS: NONE * 00012000
* * 00013000
* CHANGE ACTIVITY: NA * 00014000
* * 00015000
* CHANGE DATE: NA * 00016000
* * 00017000
** 00018000
* 00019000
DXEGOVA DSECT 00020000
 DS 0D 00021000
GOVNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION 00022000
 SPACE 00023000
GOVEXCTL DS XL72 -- EXIT CONTROL 00024000
 ORG GOVEXCTL 00025000
GOVFUNCT DS XL1 ----- FUNCTION CODE 00026000
GOVINIT EQU 1 -------- INITIALIZATION OF SESSION 00027000
GOVTERM EQU 2 -------- TERMINATION OF SESSION 00028000
GOVSCMD EQU 3 -------- START COMMAND 00029000
GOVECMD EQU 4 -------- END COMMAND 00030000
GOVCONN EQU 5 -------- CONNECT COMMAND 00031000
GOVSDBAS EQU 6 -------- START DATA BASE 00032000
GOVEDBAS EQU 7 -------- END DATA BASE 00033000
GOVSACTV EQU 8 -------- SUSPEND QMF ACTIVITY 00034000
GOVRACTV EQU 9 -------- RESUME QMF ACTIVITY 00035000
GOVABEND EQU 10 -------- QMF ABEND OPERATION 00036000
GOVPAD10 DS CL7 ----- RESERVED FIELD 00037000
 SPACE 00038000
GOVCADDR DS A ---- ADDR TO BRANCH TO FOR CANCELLATION 00039000
 SPACE 00040000
GOVOROWS DS F ---- NUMBER OF OPTION ROWS RETRIEVED 00041000
 SPACE 00042000
GOVSQLRC DS F ---- RESOURCE TABLE SQL RETURN CODE 00043000
 SPACE 00044000
GOVSQLCA DS A ---- ADDRESS OF SQLCA FOR ERROR CONDITION 00045000
 SPACE 00046000
GOVGROUP DS CL16 ---- GROUP NAME 00047000
GOVPAD20 DS CL32 ---- RESERVED FIELD 00048000
SPACE 00049000
GOVUCTL DS XL304 -- USER CONTROL AREA 00050000
 ORG GOVUCTL 00051000
GOVUSERS DS CL2048 ----- USER SCRATCH PAD AREA 00052000
GOVPAD30 DS CL48 ----- RESERVED FIELD 00053000
 SPACE 00054000
 DS 0D 00055000
GOVRESC DS 10XL128 -- RESOURCE CONTROL TABLE 00056000
 ORG GOVRESC 00057000
GOVRESCT DSECT -- RESOURCE CONTROL TABLE MAPPING 00058000
 DS 0D 00059000
GOVOPTN DS CL16 ----- RESOURCE OPTION 00060000
GOVNULLI DS H ----- INTEGER NULL INDICATOR 00061000
GOVPAD40 DS CL2 ----- RESERVED FIELD 00062000
GOVINTVL DS F ----- INTEGER OPTION REPRESENTATION 00063000
GOVNULLF DS H ----- FLOATING POINT NULL INDICATOR 00064000
GOVPAD50 DS CL6 ----- RESERVED FIELD 00065000
GOVFLOAT DS D ----- FLOATING POINT OPTION REPRESENTATION 00066000
GOVNULLC DS H ----- CHARACTER NULL INDICATOR 00067000
GOVCHLEN DS H ----- LENGTH OF THE CHARACTER OPTION 00068000
GOVCHAR DS CL80 ----- CHARACTER OPTION REPRESENTATION 00069000
GOVNEXTR DS A ----- POINTER TO NEXT RESOURCE CONTROL ROW 00070000

Figure 104. The DXEGOVA control block

Related concepts
Addressing the resource control table
The GOVGROUP field of the DXEGOVA control block holds the value of the RESOURCE_GROUP column of
Q.RESOURCE_VIEW, the view defined on the resource control table.
Structure of the DXEXCBA control block
The DXEXCBA control block passes to the governor exit routine information about the state of the QMF
session upon entry to the governor. The governor combines this information with information about

Chapter 17. Controlling QMF resources 301

resource limits (contained in DXEGOVA) to determine when the resource limits have been exceeded and
when to cancel the user's activity.

Addressing the resource control table
The GOVGROUP field of the DXEGOVA control block holds the value of the RESOURCE_GROUP column of
Q.RESOURCE_VIEW, the view defined on the resource control table.

All information about the user's resource options is stored in blocks; there is one block for each of the
user's resource options that you decide to monitor.

The first block defines the first resource option and is stored in the DXEGOVA control block as the DSECT
GOVRESCT. The address of this DSECT is defined in the GOVRESC field of the DXEGOVA control block.
You can establish addressability to the GOVRESC field in your own routine using the address of the
GOVRESCT DSECT.

Negative half-word integers in the DSECT represent null values entered for INTVAL, CHARVAL, or
FLOATVAL in Q.RESOURCE_VIEW; zero or positive half-words indicate a value in that column of
Q.RESOURCE_VIEW.

The blocks that store the resource control information form a chain in which a pointer in one block points
to the beginning of the next block (the next resource option) in the chain. For example, the GOVNEXTR DS
statement in the GOVRESCT DSECT contains the address of the next block in the chain of resource control
information. Each block in the chain has a GOVNEXTR DS statement. In the final block, the GOVNEXTR DS
statement contains zeros to mark the end of the user's resource control information.

The following section of code for the default governor processes the blocks of resource control
information. In this code, GOVRESC points to the GOVRESCT DSECT.

L R08,GOVOROWS GET NUMBER OF RESOURCE TABLE ROWS
 LTR R08,R08 ANY RESOURCE TABLE ROWS?
 BZ ENDRESST NO, SKIP RESOURCE INITIALIZATION
 LA R05,GOVRESC GET ADDRESS OF 1ST RESOURCE ROW
 USING GOVRESC,R05 BASE RESOURCE RECORD ENTRY
LOOK4RES DS 0H MAIN LOOP THRU RESOURCE ROWS
 LTR R05,R05 ANY MORE RESOURCE TABLE ROWS?
 BZ ENDRESST NO, END RESOURCE INITIALIZATION
⋮
 L R05,GOVNEXTR GET ADDRESS ON NEXT RESOURCE ROW
 B LOOK4RES BEGIN NEXT ITERATION
ENDRESST DS OH -- BRANCH HERE WHEN FINISHED READING ALL ROWS

 . . .
 . . .
 . . .
 . . .

DXEGOVA DSECT

 . . .
 . . .
 . . .

GOVRESC DS 10XL128 -- RESOURCE CONTROL TABLE
 ORG GOVRESC
GOVRESCT DSECT -- DSECT FOR RESOURCE ROW
 . . .
 . . .
 . . .
GOVNEXTR DS A -- POINTER TO NEXT RESOURCE ROW
 . . .
 . . .
 . . .

Figure 105. Resource initialization

Related concepts
Structure of the DXEGOVA control block

302 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

The DXEGOVA control block passes to the governor exit routine information about a user's resource
constraints. This information is located in a resource control view called Q.RESOURCE_VIEW.
Structure of the DXEXCBA control block
The DXEXCBA control block passes to the governor exit routine information about the state of the QMF
session upon entry to the governor. The governor combines this information with information about
resource limits (contained in DXEGOVA) to determine when the resource limits have been exceeded and
when to cancel the user's activity.

Structure of the DXEXCBA control block
The DXEXCBA control block passes to the governor exit routine information about the state of the QMF
session upon entry to the governor. The governor combines this information with information about
resource limits (contained in DXEGOVA) to determine when the resource limits have been exceeded and
when to cancel the user's activity.

For example, you can define a resource option that does not allow user JONES to issue INSERT or
UPDATE statements. You can then write your governor exit routine so that, if the XCBQRYP or XCBQRYP2
field of the DXEXCBA control block indicates an INSERT or UPDATE statement, the governor exit calls the
QMF cancellation service to cancel the command.

Three new fields have been added to the DXEXCBA control block in QMF Version 12.1 to provide
governing of SQL queries that are larger than 32 KB: XCBQRYPT, XCBQRYP2, and XCBQRYL2. If you
modified the default governor exit routine in an earlier release or wrote your own exit, some migration
steps are required to be compatible with this release and to take advantage of this feature.

The following table provides the name of each field in the control block, with its data type and purpose.
Each data type is listed as it appears in the DS statement that defines the field in the DSECT.

The layout of the control blocks and the information they contain is the same for QMF support in all
operating environments. Therefore, some of the information shown in the control blocks might not apply
to the environment that you are using.

Table 69. Fields of the DXEXCBA interface control block to the governor

Field Data type Description

XCBACTIV CL1 Indicates the current type of database activity. Applies only when rows
are being retrieved for the current DATA object. Does not apply when
rows are retrieved for an IMPORT command. Possible values are:

1
OPEN being run

2
FETCH being run

3
PREPARE being run

4
DESCRIBE being run

5
CLOSE being run

This field changes whenever the type of database activity changes. You
can use the value when the governor receives control asynchronously as
the result of a timer.

Chapter 17. Controlling QMF resources 303

Table 69. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data type Description

XCBAIACT CL1 Tells whether the current command is running interactively:

1
Interactive

0
Noninteractive (batch)

Interactive commands display prompt and status panels. This field
changes value on any function call for the start of the command; it is
reset to zero when the command completes.

XCBAUTH CL8 Contains the user's SQL authorization ID. If the SQL authorization ID is
longer than 8 characters, the value is truncated and placed in this field.
See XCBAUTHX for the complete SQL authorization ID.

XCBAUTHX CL128 Contains the user's SQL authorization ID.

XCBCAN CL1 Indicates that cancellation of the current command was requested
(either by the user or the governor). The field is set to 1 if cancellation is
requested. Zero indicates that no cancellation was requested. The value
changes at the point at which the cancellation is requested. This field is
reset to zero before the function call for the command's termination.

XCBCLOC CL18 Contains the current location name.

XCBCMDL F Contains the length of the string containing the command to be run. This
is the string addressed by the XCBCMDP field. This field changes in value
when XCBCMDL changes values.

XCBCMDP A Points to the string containing the command to be run. This field is reset
when QMF validates a command at some point before the function call
for the start of the command.

The field is reset to zeros before the function call when the command
completes. If a command synonym is being run, it appears here.

XCBCVERB CL18 Holds the verb of the current command. This field changes value on the
function call for the start of a command. The value does not change
between calls.

XCBDBMG CL1 Identifies the database manager. This value is set to 2 for Db2 for z/OS.

XCBEMODE CL1 Indicates the current mode of the QMF session:

1
Interactive

2
Noninteractive (batch or server)

This value does not change during a session.

XCBERRET F Contains the return code to be used in the default cancellation message.

XCBINCI (ISPF
only)

CL1 Tells whether the current command is being run through the command
interface. The field is set to 1 if it is, and 2 if it isn't.

XCBINPRC CL1 Tells the governor where a command is being run: 1 indicates it is
running in a procedure or LIST command; 0 indicates it is being run
another way.

304 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 69. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data type Description

XCBKPARM CL1 Tells the governor how the DSQSDBCS program parameter is set. The
value does not change during a session. Possible values are: 0 for Latin
letters; 1 for double-byte character set (DBCS) data.

XCBLOGM CL1 Indicates whether QMF should log a message in the QMF trace data set.
Use a value of 1 to log the message, and 0 to not log the message.

XCBMGTXT CL78 Contains the text for a message. The message can be logged in the QMF
trace data, displayed on the screen, or both.

XCBMSGNO
(ISPF only)

CL8 Contains the message ID for an ISPF message definition that can be
used to log a message in the trace data, display a message on the
screen, or both.

XCBNAME CL8 Contains the control block name (DXEXCBA). Can serve as an eye catcher
in a dump of virtual storage. This value does not change during a session.

XCBNLANG CL1 Identifies NLFs being used. This value does not change during a session.

XCBPANEL (ISPF
only)

CL8 Contains the panel ID for the message help panel for a cancellation
message.

XCBPLAN CL8 Contains the application plan ID for QMF. This value does not change
during a session. This field does not apply in CICS.

XCBQCE F Contains the decimal equivalent of the value of the SQLDERRD(4) field in
the SQLCA returned from the database. The integer part of this decimal
appears on the Database Status panel as a "relative cost" estimate. You
can prevent this cost estimate from displaying on the panel by setting
the DSQDC_COST_EST global variable to 0.

The value of the XCBQCE field is set to zero on the function call when the
command finishes running. The field contains zeros if the operation is
not a data retrieval query.

XCBQERR CL1 Tells whether a QMF error occurred since the previous function call: 0
indicates no error occurred; 1 indicates an error occurred.

XCBQMF CL10 Identifies the current release of QMF. This value is QMFV12R1.0, and
does not change during a session.

XCBQRYL2 F Contains the length of the SQL query addressed by field XCBQRYP2.

Chapter 17. Controlling QMF resources 305

Table 69. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data type Description

XCBQRYP A Contains the address of a copy of the query that QMF passes to the
database for execution. The query length is the first halfword.

If you are writing a governor exit routine in QMF Version 12.1 for the first
time, use fields XCBQRYP2 and XCBQRYL2 instead of this field to point
to the SQL query and store its length, because those fields support
queries of any size.

If the query referenced by XCBQRYP is greater than 32 KB, the query is
truncated at 32 KB and field XCBQRYPT is set to indicate the longer
query. In this case, field XCBQRYP2 addresses the query and field
XCBQRYL2 provides its length. The DSQEC_SQLQRYSZ_2M global
variable controls whether SQL queries longer than 32 KB are supported.

The governor inspects the query upon a call to start database activity
(before any data retrieval) and determines whether to cancel the activity.
The address is set to zero either at the beginning of the session or when
the DATA object is reset or imported to temporary storage.

This field contains information only when data retrieval is requested
through one of the following commands; no information is provided for
queries against Db2 for z/OS system tables or QMF control tables.
DISPLAY TABLE

EDIT TABLE
ERASE TABLE

EXPORT TABLE
IMPORT TABLE

PRINT TABLE
RUN QUERY

SAVE DATA

XCBQRYP2 A Contains the address of a copy of the query that QMF passes to the
database for execution. This field accommodates all queries regardless
of length and should be used instead of XCBQRYP if you are writing a
new governor exit routine. Field XCBQRYL2 provides the length of the
query addressed by the XCBQRYP2 field.

The governor inspects the query upon a call to start database activity
(before any data retrieval) and determines whether to cancel the activity.
The address is set to zero either at the beginning of the session or when
the DATA object is reset or imported to temporary storage.

This field contains information only when data retrieval is requested
through one of the following commands; no information is provided for
queries against Db2 for z/OS system tables or QMF control tables.
DISPLAY TABLE

EDIT TABLE
ERASE TABLE

EXPORT TABLE
IMPORT TABLE

PRINT TABLE
RUN QUERY

SAVE DATA

306 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 69. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data type Description

XCBQRYPT CL1 Indicates whether the query is greater than 32 KB, in which case the
query addressed by field XCBQRYP is truncated. Possible values are:
0

The query addressed by field XCBQRYP has not been truncated (it is
32 KB or less).

1
The query addressed by field XCBQRYP has been truncated (it is
greater than 32 KB).

When XCBQRYPT is set to 1, XCBQRYL2 stores the length of the
query and XCBQRYP2 contains the address of a copy of the query.

The DSQEC_SQLQRYSZ_2M global variable controls whether SQL
queries longer than 32 KB are supported..

XCBREFR CL1 Indicates whether QMF refreshes the screen after returning from the
governor; 1 indicates a refresh; 0 indicates no refresh.

If your governor displays any screen information, set this field to 1.

XCBRELN CL2 Identifies the QMF release level. For QMF Version 12 Release 1, this is
19. This value does not change during a session.

XCBRGRP CL16 Contains the name of the user's resource group. This value does not
change during a session.

XCBROWSF F Reflects the number of rows retrieved into the DATA object. Initially
zero, this field changes value whenever more rows are retrieved. All data
retrieval is counted whether data is retrieved from the database,
sequential files, CICS temporary storage, or CICS transient data queues.

QMF does not reset this field, but the governor can. For example, if your
governor exit routine monitors the number of database rows retrieved,
you can set this field to zero on the function call for the end of the
command that began the data retrieval.

XCBSYST CL1 Identifies the current operating system. The value does not change
during a session, and is usually set to 3, indicating TSO, ISPF, or native
z/OS batch. Possible values are:

3
TSO, ISPF, or native z/OS batch

5
CICS

XCBTRACE CL1 Contains a value for the level of detail at which user exit activity is
traced. Possible values are 0 (least detail), 1, or 2 (most detail).

At the start of a session, the value of the TRACE field from the user's
QMF profile is used here. After that, the value changes only when the
user changes the value of the TRACE option.

XCBUSER CL8 Contains the user's TSO logon ID (for TSO) or the user parameter on the
job statement (for native z/OS batch). This field is not used in CICS; it
contains blanks.

Chapter 17. Controlling QMF resources 307

Table 69. Fields of the DXEXCBA interface control block to the governor (continued)

Field Data type Description

XCBUSERS CL2048 Scratchpad area in which you can store results that you want the
governor to save from one call to the next. It is initially set to blanks.
QMF does not change this value.

The structure of the DXEXCBA control block is shown here:

* *
* CONTROL BLOCK NAME: DXEXCBA *
* *
* FUNCTION: *
* *
* THIS IS THE INTERFACE CONTROL BLOCK BETWEEN QMF AND *
* EXIT ROUTINES. *
* *
* STATUS: Version 12 Release 1 Level 0 *
* *
* INNER CONTROL BLOCKS: NONE *
* *

*
DXEXCBA DSECT
 DS 0D
XCBNAME DS CL8 -- CONTROL BLOCK IDENTIFICATION
 SPACE
XCBEXCTL DS XL190 -- EXIT CONTROL
 ORG XCBEXCTL
XCBAUTH DS CL8 ----- AUTHORIZATION ID
XCBUSER DS CL8 ----- USER ID
XCBPLAN DS CL8 ----- PLAN ID
 SPACE
XCBQMF DS CL10 ----- CURRENT VERSION/RELEASE
 SPACE
XCBRELN DS CL2 ----- QMF RELEASE LEVEL
 SPACE
XCBTRACE DS CL1 ----- QMF EXIT TRACE LEVEL
XCBTOFF EQU C'0' -------- NO TRACING
XCBTPART EQU C'1' -------- PARTIAL TRACING
XCBTFULL EQU C'2' -------- FULL TRACING
 SPACE
XCBSYST DS CL1 ----- OPERATING SYSTEM
XCBSYSTX EQU C'3' -------- MVS/ESA or XA (TSO,APPC, native)
XCBSYSTY EQU C'5' -------- CICS (MVS)
 SPACE
XCBPAD10 DS CL4 ----- RESERVED FIELD
 SPACE
XCBNLANG DS CL1 ----- CURRENT NATIONAL LANGUAGE
 SPACE

XCBKPARM DS CL1 ----- SETTING OF K PARAMETER
XCBKPARN EQU C'0' -------- LATIN
XCBKPARY EQU C'1' -------- DBCS
 SPACE
XCBDBMG DS CL1 ----- DATA BASE MANAGER
XCBDBMGS EQU C'1' -------- DB2 FOR SQL/DS
XCBDBMGD EQU C'2' -------- DB2 FOR OS/390
XCBDBMGW EQU C'3' -------- WORKSTATION DB2
 SPACE
XCBEMODE DS CL1 ----- CURRENT EXECUTION MODE
XCBIACTV EQU C'1' -------- INTERACTIVE MODE
XCBBATCH EQU C'2' -------- BATCH MODE
 SPACE
XCBAIACT DS CL1 ----- CURRENT INTERACT MODE
XCBAIACY EQU C'1' -------- INTERACTIVE EXECUTION
XCBAIACN EQU C'0' -------- NOT INTERACTIVE EXECUTION
 SPACE
XCBINCI DS CL1 ----- CURRENT COMMAND INTERFACE STATE
XCBINCIY EQU C'1' -------- COMMAND INTERFACE ACTIVE
XCBINCIN EQU C'0' -------- COMMAND INTERFACE NOT ACTIVE
 SPACE
XCBINPRC DS CL1 ----- PROCEDURE OR LIST CMD EXEC STATE
XCBPRCY EQU C'1' -------- RUNNING A PROCEDURE OR LIST CMD
XCBPRCN EQU C'0' -------- NOT RUNNING PROCEDURE OR LIST CMD
 SPACE

308 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

XCBCVERB DS CL18 ----- CURRENT COMMAND VERB
 SPACE
XCBCAN DS CL1 ----- CANCEL CURRENT COMMAND INDICATOR
XCBCANN EQU C'0' -------- NO CANCELLATION
XCBCANY EQU C'1' -------- CANCELLATION IN PROGRESS
 SPACE
XCBACTIV DS CL1 ----- TYPE OF DATA BASE ACTIVITY
XCBOPEN EQU C'1' -------- OPEN
XCBFETCH EQU C'2' -------- FETCH
XCBPREP EQU C'3' -------- PREPARE
XCBDESCR EQU C'4' -------- DESCRIBE
XCBCLOSE EQU C'5' -------- CLOSE
XCBEXEC EQU C'6' -------- EXECUTE
XCBEXECI EQU C'7' -------- EXECUTE IMMEDIATE
XCBPAD20 DS CL9 ----- RESERVED FIELD
 SPACE
XCBRGRP DS CL16 ----- RESOURCE GROUP NAME
XCBPAD30 DS CL22 ----- RESERVED FIELD
 SPACE
XCBCMDP DS A ----- POINTER TO ORIGINAL COMMAND STRING
* -------- WILL NOT CONTAIN PROMPT VALUES
 SPACE
XCBCMDL DS F ----- ORIGINAL COMMAND STRING LENGTH
 SPACE
XCBQCE DS F ----- QUERY COST ESTIMATE VALUE
 SPACE
XCBROWSF DS F ----- DATA BASE ROWS FETCHED FROM SOURCE
* -------- SET BY QMF; EXIT MAY RESET
 SPACE
XCBQERR DS CL1 ----- QMF ERROR INDICATOR
XCBQERRN EQU C'0' -------- NO QMF ERROR DETECTED
XCBQERRY EQU C'1' -------- QMF ERROR DETECTED
XCBCLOC DS CL18 ----- CURRENT LOCATION NAME
XCBQRYPT DS CL1 ----- XCBQRYP TRUNCATION SWITCH
XCBQRYTN EQU C'0' -------- XCBQRYP IS NOT TRUNCATED
XCBQRYTY EQU C'1' -------- XCBQRYP IS TRUNCATED
XCBPAD32 DS CL32 ----- RESERVED FIELD
XCBQRYP2 DS A ----- POINTER TO SQL QUERY
XCBQRYL2 DS F ----- LENGTH OF QUERY IN XCBQRYP2
 SPACE
XCBQRYP DS A ----- POINTER TO SQL QUERY
* -------- QUERY LENGTH IS FIRST HALFWORD
* -------- QUERY TRUNCATED IF GREATER 32K
 SPACE
XCBUCTL DS XL432 -- USER CONTROL AREA
 ORG XCBUCTL
XCBERRET DS F ----- EXIT ERROR RETURN CODE
XCBMGTXT DS CL78 ----- EXIT ERROR MESSAGE TEXT
XCBMSGNO DS CL8 ----- ISPF MESSAGE NUMBER
XCBPANEL DS CL8 ----- ISPF MESSAGE HELP PANEL
XCBLOGM DS CL1 ----- LOG MESSAGE INDICATOR
XCBLOGMN EQU C'0' -------- QMF SHOULD NOT LOG MESSAGE
XCBLOGMY EQU C'1' -------- QMF SHOULD LOG MESSAGE
XCBREFR DS CL1 ----- REFRESH SCREEN INDICATOR
XCBREFRN EQU C'0' -------- QMF DOES NOT HAVE TO REFRESH SCR
XCBREFRY EQU C'1' -------- QMF SHOULD REFRESH SCREEN
XCBPAD50 DS CL28 ----- RESERVED FIELD
 SPACE
XCBUSERS DS CL2048 -- USER SCRATCH PAD AREA
XCBPAD60 DS CL48 ----- RESERVED FIELD
XCBAUTHL DS H -- LENGTH OF AUTHORIZATION ID
XCBAUTHX DS CL128 -- AUTHORIZATION ID EXTENDED
XCBPAD70 DS CL50 ----- RESERVED FIELD

Figure 106. The DXEXCBA control block

Related concepts
Structure of the DXEGOVA control block
The DXEGOVA control block passes to the governor exit routine information about a user's resource
constraints. This information is located in a resource control view called Q.RESOURCE_VIEW.
Addressing the resource control table
The GOVGROUP field of the DXEGOVA control block holds the value of the RESOURCE_GROUP column of
Q.RESOURCE_VIEW, the view defined on the resource control table.
Forward compatibility of earlier releases with QMF Version 12 Release 1

Chapter 17. Controlling QMF resources 309

Most objects that were created under earlier releases can be used in QMF Version 12.1 without
modification.
Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
The trace facility
QMF provides a facility that traces QMF activity during a user's session. Trace output from the facility can
help you analyze errors such as incorrect or missing output, performance problems, or loops.

Storing resource control information for the duration of a QMF session
You can use the information passed to the governor on the first call of a session for subsequent calls to
the governor routine.

You can use the 2,048-byte scratchpad areas provided in the DXEGOVA and DXEXCBA control blocks to
obtain the necessary storage to hold the resource control information. These fields can contain any
information that you need to store. The information persists from one call to the governor to the next (if a
CONNECT call doesn't change it).

The default governor uses the code shown here to address GOVUSERS, the scratchpad area in the
DXEGOVA control block. You can use similar code to address the XCBUSERS scratchpad area in the
DXEXCBA control block. WORK is the name of a DSECT, and WORKPTR is equated to general register 4.
The WORK DSECT contains the definition for the fields that hold the information in the scratchpad areas.

The governor might also issue GETMAIN macros to obtain needed storage.

LA WORKPTR,GOVUSERS
 USING WORK,WORKPTR

Figure 107. Establishing addressability to the governor scratchpad area

Providing messages for canceled activities
Establish addressability to the QMF message service to provide messages for activities that have been
canceled.

You can use the QMF message service to display a message to users after their commands are canceled
by using the following fields of the DXEXCBA control block:
XCBMGTXT

Contains the message text
XCBERRET

Contains the error return code
XCBMSGNO

Contains the message ID for an ISPF message definition if QMF was invoked under ISPF in TSO
XCBPANEL

Contains the panel ID for an ISPF message help panel if QMF was invoked under ISPF in TSO

Upon entry to the governor, XCBMGTXT contains blanks, and XCBERRET contains binary zeros. The value
of XCBERRET determines what message is displayed on the screen:

• If you want to use the default message, which is OK, command canceled, leave the zero value in
XCBERRET.

• If you want to use the message A governor exit cancel occurred with return code
xxxxx, use a nonzero value for XCBERRET; this nonzero value appears in the message in place of
xxxxx.

310 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

If QMF initialization is canceled by the governor exit, the messages for XCBMGTXT and XCBERRET appear
in the user's trace data rather than on the screen.

Set XCBLOGM to 1 to log a message in the user's trace data for any function call in your own governor exit
routine. If the value of XCBERRET is nonzero, the default governor logs cancellation messages in the
user's trace data by setting the XCBLOGM field of the DXEXCBA control block to a value of 1.

An ISPF message definition can contain longer message text and can designate a panel ID. To use the
long text for a message and the designated panel for help, set XCBMSGNO with the message ID of the
message definition and leave XCBMGTXT and XCBPANEL blank. If no help panel was designated in the
message definition, the user receives no message help.

To override the long-message specification in a message definition, place the new message text in
XCBMGTXT. To override the panel specification, place the new panel ID in XCBPANEL. Placing a panel ID
in XCBPANEL also provides message help when the message definition doesn't specify a panel.

Leave XCBMSGNO blank if there is no relevant ISPF message definition. Then place the message text in
XCBMGTXT, and the help panel ID, if any, in XCBPANEL. Leaving XCBPANEL blank, in this case, leaves the
user without message help.

The governor can also log messages in the ISPF log file if QMF was invoked under ISPF. It can do this
through the ISPF LOG service.

The trace facility writes messages to the DSQDEBUG data set at a level of detail determined by the value
of the XCBTRACE field of the DXEXCBA control block. Use a value of zero for XCBTRACE if you do not want
messages to be logged (although initialization errors are logged unless you do not allocate a trace data
set). Use a value of 1 or 2 for the U trace option to get trace output.

The default governor does not log messages for termination function calls. Messages do not appear on
screen if the command is run in batch from a QMF application.

Related tasks
The trace facility
QMF provides a facility that traces QMF activity during a user's session. Trace output from the facility can
help you analyze errors such as incorrect or missing output, performance problems, or loops.
Related information
Search for information about the ISPF LOG service the appropriate ISPF information.

Translating, assembling, and link-editing your governor exit routine
Whether you're modifying the default governor exit routine or writing a routine of your own, you need to
translate, assemble, and link-edit the routine.

Assembling and link-editing your governor exit routine for TSO, ISPF, and native z/OS batch
You must assemble and link-edit your governor exit routine if you write your own routine or modify a copy
of the default routine.

Procedure

To assemble and link-edit your governor exit routine for TSO, ISPF, and native z/OS batch, follow these
steps:
1. Assemble your governor exit routine.

QMF supports only Assembler language for governor code. The default governor is coded in
Assembler, and the code was written for High-Level Assembler. You can review this code by printing
certain members of the QMF1210.SDSQUSRE library.

2. Link-edit your governor exit routine.
a) Place the load module for the governor in a library available to all your QMF users.

For example, you can use QMF1210.SDSQLOAD, which contains the load modules for QMF. This
library can be part of the concatenation for STEPLIB.

Chapter 17. Controlling QMF resources 311

http://www.ibm.com/shop/publications/order

b) Name the module DSQUnGV1, where n is a 1-character identifier for the national language you are
using.
This name is the name of the default module. Placing your own governor module in the
QMF1210.SDSQLOAD library replaces the default module.

To avoid replacing the default module, you can rename it or move it to another library. Alternatively,
you can place the module for your own governor in a different library in STEPLIB. If you place your
module in a different library, be sure that your module's new library comes before
QMF1210.SDSQLOAD in the concatenation sequence. If it does not come before
QMF1210.SDSQLOAD, QMF calls the default module instead of your own.

c) Be sure that the entry point for the new module is DSQUnGV1.
If your source code begins with a CSECT statement with the DSQUnGV1 label, there is nothing extra
to do. If your source code does not begin with the DSQUnGV1 label, specify the entry name on the
END statement in the Assembler code, or place it in an ENTRY statement in the linkage editor input.
The default governor (DSQUEGV1) must run with AMODE(24) and RMODE(24), as shown here:

ENTRY DSQUEGV1
 MODE AMODE(24),RMODE(24)
 NAME DSQUEGV1(R)

Results

Your own routine can run in either 31-bit (shown here) or 24-bit addressing mode. If your routine requires
z/OS services that need 24-bit addressing mode (such as TPUT), then QMF handles the transfer from QMF
running in 31-bit mode to the governor routine that is running in 24-bit mode and back to QMF in 31-bit
mode.

ENTRY DSQUEGV1
 MODE AMODE(31),RMODE(24)
 NAME DSQUEGV1(R)

Related tasks
Translating, assembling, and link-editing your governor exit routine in CICS
You must assemble and link-edit your governor exit routine in CICS if you write your own routine or
modify a copy of the routine that is supplied by IBM.
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Translating, assembling, and link-editing your governor exit routine in CICS
You must assemble and link-edit your governor exit routine in CICS if you write your own routine or
modify a copy of the routine that is supplied by IBM.

Procedure

To assemble and link-edit your governor exit routine for CICS, follow these steps:
1. Translate your program by using the CICS translator for Assembler.

When you translate your program, CICS supplies the standard CICS prolog (DFHEIENT), which
establishes addressability and saves registers in the standard CICS working storage area. The
standard prolog also provides a standard CICS epilog (DFHEIRET).

2. Assemble your program

QMF supports only Assembler-language for governor exit routines. The default governor is coded in
this language; the code was written for High-Level Assembler. You can review this code by printing
certain members of the QMF1210.SDSQUSRE library.

3. Link-edit your governor program.
a) Place the load module for the governor in a library available to all your QMF users.

312 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

For example, you can use QMF1210.SDSQLOAD, which contains the load modules for QMF. This
library must be concatenated with DFHRPL in CICS.

b) Name the module DSQUnGV3, where n is a 1-character identifier for the national language you are
using.
This name is the name of the default module. Placing your own governor module in the
QMF1210.SDSQLOAD library replaces the default module.

To avoid replacing the default module, you can rename it or move it to another library. Alternatively,
you can place the module for your own governor in a different library in DFHRPL. If you place your
module in a different library, be sure that your module's new library comes before
QMF1210.SDSQLOAD in the concatenation sequence. If it does not come before
QMF1210.SDSQLOAD, QMF calls the default module instead of your own.

c) Be sure that the entry point for the governor module is DSQUnGV3.
If your source code begins with a CSECT statement with this label, there is nothing else to do. If
not, specify the entry name on the END statement in the Assembler code, or place it in an ENTRY
statement in the linkage editor input.

d) You must include the CICS command interface control modules DFHEAI and DFHEAI0. You must
also place the control modules at the beginning of the governor load module.
In CICS, the governor must run with AMODE(31) and RMODE(31), as shown here:

INCLUDE SYSLIB(DFHEAI)
 INCLUDE SYSLIB(DFHEAI0)
 ORDER DFHEAI,DFHEAI0
 ENTRY DSQUEGV3
 MODE AMODE(31),RMODE(31)
 NAME DSQUEGV3(R)

Related tasks
Assembling and link-editing your governor exit routine for TSO, ISPF, and native z/OS batch
You must assemble and link-edit your governor exit routine if you write your own routine or modify a copy
of the default routine.

Canceling user activity
You have multiple options for canceling user activity, including the QMF cancellation service and the QMF
interrupt facility.

QMF cancellation service

QMF provides a cancellation service that can be used to cancel a QMF command or database activity.
When the QMF cancellation service is called, QMF turns on an internal cancel switch that is checked by
the QMF command or database activity. If QMF is able to cancel the activity, a cancel message is
displayed. If the QMF activity is about to complete, the cancellation request might be ignored and the
activity might be allowed to complete.

To have your governor call the QMF cancellation service to cancel an activity, branch to the address that
appears in the GOVCADDR field of the DXEGOVA control block. Figure 108 on page 313 shows the
statements that establish addressability to the QMF cancellation service. Ensure that register 13 points to
a save area for the governor so that QMF cancellation service can restore the state of the governor when it
returns control.

L R15,GOVCADDR
 BALR R14,R15

Figure 108. Calling the QMF cancellation service

Chapter 17. Controlling QMF resources 313

The cancellation routine returns control to the point that is addressed by register 14 (in this case, the
command that follows the BALR command). Register 15 contains a return code. Figure 109 on page 314
contains possible return codes.

0 - QMF accepted the cancel request.
100 - QMF is not active.

Figure 109. Cancellation service return codes

The following governor functions can be canceled using the QMF cancel service:

Governor Function Code * Activity Being Performed

GOVSCMD (3) Start of a QMF command

GOVSDBAS (6) Start of database activity

* Governor function codes are located in the DXEGOVA control block.

Asynchronous timer routine

The cancel service can be called from a timer routine if the timer routine can access the address of the
QMF cancel service provided in the GOVCADDR field of the DXEGOVA control block.

Important: The timer routine cannot be used to cancel an idle QMF session. When QMF is waiting for user
input, the timer routine cannot complete until the user provides input to the screen or the QMF attention
handler is activated by the ATTN key.

z/OS services

The QMF governor exit routine can use z/OS services, such as ABEND to terminate a QMF session.

Cancelling an idle QMF session

To cancel a QMF session that is idle and waiting for input, you can use the Job Wait Time (JWT) option of
the z/OS system management facilities parameters (SMFPRMxx) member of the SYS1.PARMLIB. For more
information, see the information on the Time Limit Exit in the z/OS information.

Freeing locks held by an idle QMF session

To cancel a database thread that is holding locks while the QMF session is idle, see the information on
timing out idle active threads in the Db2 for z/OS information.

QMF interrupt facility

The QMF interrupt facility can be used to attempt to cancel a command that is taking too long to run. For
more information, see “Creating an interrupt to capture diagnostic information” on page 354.

Using the Db2 resource limit facility
Db2 has its own governor, or resource limit facility. You can use the Db2 resource limit facility with either
the QMF for TSO or the QMF High Performance Option governing functions. You can also use the Db2
governor independently.

You can control all access to the database, as well as distributed access, with the Db2 resource limit
facility. And you can use the facility to monitor the processor time used for dynamically run SELECT,
INSERT, UPDATE, and DELETE statements.

314 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Differences between governors
You can supplement the operations of the QMF governor with the Db2 governor. However, the Db2
governor differs from the QMF governor in what and how it monitors.

The QMF and Db2 governors differ in these ways:

• The Db2 governor limits its monitoring to dynamic SELECT, INSERT, UPDATE, and DELETE statements.
It does not monitor, for example, the processor time spent in running a CREATE or DROP statement.

• The Db2 governor limits its monitoring to processor time. It does not count row fetches, as the QMF
governor does.

• Processor time for the Db2 governor includes only the time consumed by Db2. In contrast, the QMF
governor includes the time QMF spends running a command—manipulating a spill file, for example, or
displaying the first page of the results of running a SELECT query.

• When a user runs a SELECT query, the Db2 governor monitors all the time Db2 spends running the
query, beginning with the PREPARE statement and continuing through the row fetches and the closing
of the cursor. The QMF governor ends its monitoring after the first page of the results are displayed. Any
subsequent row fetch is treated as part of the scrolling command that caused the fetch to occur.

• The Db2 governor makes no provision for a cancellation prompt; its only control parameter for a given
QMF session is maximum processor time.

QMF commands that can be monitored by the Db2 governor
You can monitor QMF commands with the Db2 governor.

Each row in the following table represents a group of QMF commands that can be individually monitored
by the Db2 governor. Read the description of each package in the third column of the table to determine
the proper package to govern according to your QMF configuration.

Package names for which the descriptions refer to systems other than Db2 for z/OS are used to govern
SQL statements at remote servers, which are accessed by the QMF CONNECT command or QMF
commands that include three-part names. To use the Db2 resource limit facility to govern SQL statements
at remote servers, additional configuration steps are required to set up governing.

Table 70. Groups of QMF commands that can be individually monitored by the Db2 governor

QMF command

Type of
statement
governed QMF package names to govern

• RUN QUERY (QBE P. queries, prompted
queries, and SQL SELECT queries)

• DISPLAY TABLE (CONFIRM=YES)
• EXPORT TABLE
• PRINT TABLE
• Commands that scroll reports (BOTTOM,

TOP, FORWARD, BACKWARD, RIGHT,
and LEFT)

SELECT • DSQJFSUS - controls single row fetch
operations, which apply when QMF is started in
a Db2 for z/OS, DB2 for iSeries, or Db2 for Linux,
UNIX, and Windows database with the MR
program parameter set to NO

• DSQJFSUM - Controls multirow fetch
operations, which apply when QMF is started in
a Db2 for z/OS database with the MR program
parameter set to YES

• DSQJFSUV - Controls fetching of rows from a
DB2 for VSE and VM database

Chapter 17. Controlling QMF resources 315

Table 70. Groups of QMF commands that can be individually monitored by the Db2 governor (continued)

QMF command

Type of
statement
governed QMF package names to govern

• SAVE DATA
• IMPORT TABLE

INSERT • DSQJSDT7 – Controls single row insert
operations, which apply when QMF is started in
a Db2 for z/OS, DB2 for iSeries, or Db2 for Linux,
UNIX, and Windows database with the MR
program parameter set to NO.

Single row insert is also used when a SAVE
DATA command is issued to save a table that
contains XML or LOB data.

• DSQJSDT8 – Controls multirow insert
operations, which apply when QMF is started in
a Db2 for z/OS database with the MR program
parameter set to YES

RUN QUERY (QBE I., U., or D. queries or
SQL queries that include INSERT, UPDATE,
or DELETE statements)

INSERT
UPDATE
DELETE

• DSQJESQL – For DB2 for VSE and VM databases
• DSQJESQM – For all other database types

EDIT TABLE (MODE=ADD) INSERT DSQJTSQL

EDIT TABLE (MODE=CHANGE,
SAVE=IMMEDIATE)

UPDATE
DELETE

DSQJHSQL

EDIT TABLE (MODE=CHANGE, SAVE=END) UPDATE
DELETE

DSQJNSQL (DB2 for VSE and VM only)

Related concepts
Configuring Db2 governing of QMF commands
You configure the governing of QMF commands directed to the local Db2 for z/OS database by adding
rows to a specific resource limit specification table (RLST).
Enabling support for multirow fetch and insert
The DSQSMRFI parameter controls whether the database uses multirow or single-row fetch and insert.

How QMF responds when queries are cancelled by the Db2 governor
When a query exceeds the maximum processor time, the Db2 governor ends the query and returns an
SQL error code of -905, signaling to QMF that the query has been canceled.

How QMF handles the cancellation depends on where in a QMF session the Db2 governor canceled the
query:
During QMF initialization

When it begins a user's session, QMF runs several queries that the Db2 governor monitors. If any of
these queries are canceled, QMF ends the session. Before the session ends, QMF writes an
explanatory record in the trace data.

For example, suppose that you want to restrict QMF users to using QMF during certain periods of time.
During these periods of time, you can assign restricted users a maximum processor time of zero so
that the QMF session is cancelled before the QMF home panel is displayed.

After QMF initialization
After initialization, QMF treats the cancellation of a query just as it treats any other error in running a
query. Suppose, for example, that the Db2 governor cancels an INSERT statement. The database

316 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

changes resulting from the INSERT statement are rolled back and QMF issues an error message. If
the user then asks for message help, a panel explaining the governor's action is displayed.

Suppose, instead, that a cancellation takes effect while the user is scrolling through a report. In this
case, it is likely that a row fetch caused the cancellation. The cancellation leaves the DATA object
incomplete. Because Db2 closes the cursor, the DATA object cannot be completed and a RESET DATA
command must be issued.

Configuring Db2 governing of QMF commands
You configure the governing of QMF commands directed to the local Db2 for z/OS database by adding
rows to a specific resource limit specification table (RLST).

When the Db2 for z/OS subsystem in which QMF is installed is started, the subsystem is associated with a
specific RLST. An RLST provides the Db2 governor with input for all the users in the subsystem with which
the RLST is associated, including QMF users.

Different RLSTs can be associated at different times with the same Db2 subsystem. For example, one
RLST for a particular period of time might make it impossible for users to start a QMF session during that
period of time; in these cases, any attempt to start a QMF session ends during QMF initialization, and a
message appears in the trace data. You can use different RLSTs to handle site-specific rules and
restrictions or provide governing for individual users or groups of users. For example, you can add rows
for a few individual users and a row that applies to everyone else. The rows for the individual users
contain their primary authorization IDs. The row for the other users contains a blank value for the
authorization ID.

To configure governing of QMF commands directed to the local Db2 for z/OS database, add one row to the
Db2 RLST for each package shown in “QMF commands that can be monitored by the Db2 governor” on
page 315 that you want to govern. The columns to be updated in the RLST depend on whether you want
to govern QMF commands predictively or reactively. More than one row can be associated with a QMF
package name if both predictive and reactive governing are required for the package.

To use the Db2 resource limit facility to govern SQL statements at remote servers, additional
configuration steps are required.

How to update RLSTs for predictive governing

For predictive governing, update the following columns of the RLST table:

Table 71. Values to add to the Db2 for z/OS RLST table to predictively govern QMF commands

Column of RLST table Value

RLFPKG The name of the package associated with the QMF
commands to be governed

Package names are shown in “QMF commands that
can be monitored by the Db2 governor” on page
315.

RLFFUNC 7

RLFASUERR User-determined

RLFASUWARN User-determined

RLF_CATEGORY_B User-determined

How to update RLSTs for reactive governing

For reactive governing, update the following columns of the RLST table:

Chapter 17. Controlling QMF resources 317

Table 72. Values to add to the Db2 for z/OS RLST table to reactively govern QMF commands

RLST column Value

RLFPKG The name of the package associated with the QMF
commands to be governed.

Package names are shown in “QMF commands that
can be monitored by the Db2 governor” on page
315.

RLFFUNC 2

ASUTIME Maximum processor time to be allocated to
completing the QMF command associated with the
package in RLFPKG

Important: Do not update the RLFCOLLN column of the RLST table. Attempting to govern QMF functions
by the QMF collection ID (Q) can stop QMF internal processing in certain situations or otherwise cause
QMF to function improperly.

318 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 18. Running QMF in batch mode
If a user runs a procedure with the RUN command, the user cannot execute QMF commands except to
cancel the procedure or the session. Thus, running a procedure using the RUN command can tie up
considerable session time.

Alternatively, you and your users can create and run procedures and applications in batch mode, in which
case they run independently of the user’s session so that the user can continue to issue commands.

If you need to run QMF noninteractively and you use QMF for TSO, you might consider starting QMF as a
Db2 for z/OS stored procedure. This interface allows any program that can call a Db2 for z/OS stored
procedure, such as QMF for Workstation, to start QMF for TSO as a stored procedure and receive output
back in a result set. You can also run a stored procedure to start a batch job from a remote Db2 client.

If you are using an NLF, users at a multilingual site can choose the language environment for their batch
QMF sessions, just as they can for their interactive sessions.

Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Running QMF as a batch program on z/OS
You can use QMF batch mode in TSO, ISPF, and native z/OS. For ISPF and TSO, the batch facility executes
QMF in the TSO terminal monitor program (TMP).

You need proper authority to operate in batch mode. You also need to understand security implications,
debugging procedures, and how to send a batch job.

Authority to operate in batch mode
Certain QMF and Db2 authorizations are required to submit a batch job.

To begin granting these authorizations to users who need them, first determine the logon ID and Db2
primary authorization ID under which your job will be running:

• If your site uses RACF, the logon ID is the value of the USER parameter on your JOB statement. The Db2
primary authorization ID is the one corresponding to that logon ID.

• If your site does not use RACF, the logon ID and primary authorization ID are determined in the JCL to
execute a batch job.

The logon ID and authorization ID play the same role as when you use QMF interactively. As a result, the
procedure runs only if the following conditions are satisfied:

• You can operate QMF interactively using the logon ID for the batch run.

Users with authority to use QMF interactively and run jobs in the background can also use it in batch
mode.

• The authorization ID corresponding to the logon ID owns the procedure to be run, or that procedure is
shared.

In running the procedure's commands, the authorization ID works interactively. However, not every QMF
command that can be run interactively can be run in batch mode.

RACF security considerations

If RACF is a part of your security, you can prevent users from running jobs under other users’ logon IDs. A
user who runs such a job can access all the Db2 data that the other user has access to, including data that
the user running the job is not authorized to see.

© Copyright IBM Corp. 1982, 2020 319

JCL to execute a QMF batch job
You or your users must create a JCL file that runs the statements.

Batch-job JCL is similar to TSO logon JCL because QMF is run in batch mode through batch-mode TSO.

• The job statement

Begin your JCL with a JOB statement like this:

//BATCH JOB USER=LMN,PASSWORD=ABC,NOTIFY=LMN

The statement that is shown might not be adequate for every site because it does not contain
accounting information or the user's name. The operands that are shown specify that:

– The logon ID is LMN.
– The logon password is ABC.
– The terminal message is sent to user LMN when the job ends.

You can include other operands, including the MSGLEVEL and MSGCLASS operands that control the
level of detail and the routing of the JCL and system messages.

Important: Without RACF, the PASSWORD parameter is ignored, creating a security exposure.
• The EXEC statement

You can use an EXEC statement for a JOB step to run batch-mode QMF similar to the following:

//SAMPLE EXEC PGM=IKJEFT01,TIME=1440,DYNAMNBR=30,REGION=3072K

This statement:

– Calls TSO (PGM=IKJEFT01)
– Specifies an adequate number of allowable dynamic allocations (DYNAMNBR=30)
– Specifies a sufficiently large region for QMF (REGION=3072K)

• The DD statements

You can use the same DD statements both for running QMF interactively and for batch mode. You must
remove the statements for SYSPRINT, SYSTERM, and SYSIN.

You can add the operand HOLD=YES to one or more of the SYSOUT DD statements and then manipulate
their output with the TSO OUTPUT command (another FIB command). Using the OUTPUT command,
you can route the output of the SYSOUT DD statement to your screen.

You also need DD statements for the SYSTSPRT and SYSTSIN data sets, as follows:
SYSTSPRT

This data set contains the message output from TSO and ISPF. For this data set, specify DD
statements like those shown here:

//SYSTSPRT DD SYSOUT=A

SYSTSIN
SYSTSIN holds the TSO statements that run during the job step. To include these statements in your
JCL, specify DD statements like those shown here:

//SYSTSIN DD *
 EXEC CLISTA
 PROFILE PREFIX(LMN)
 ISPSTART PGM(DSQQMFE) NEWAPPL(DSQE) PARM(DSQSMODE=B,DSQSRUN=LMN.PROCA)
 ⋮
/*

TSO runs these statements in their order of appearance in SYSTSIN:

– The first statement runs a CLIST named CLISTA, which can allocate QMF libraries.
– The second statement sets the user's dsname prefix to LMN.

320 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

– The ISPSTART statement invokes batch-mode QMF with ISPF and runs the procedure
LMN.PROCA.

• The PROFILE PREFIX statement

The PROFILE PREFIX statement sets the user's dsname prefix to LMN, which is assumed in the example
to be the user's logon ID.

Place the PROFILE PREFIX statement before the first ISPSTART statement that starts QMF. Issuing the
PROFILE PREFIX statement within QMF is ineffective.

The PROFILE PREFIX statement can make permanent changes to the user's TSO profile, depending on
your site's setup. If it does, a user might want to restore the dsname prefix. The initial value of the prefix
setting is in the ISPF system variable ZPREFIX.

For the PROFILE PREFIX statement to be effective, the DSQSPRID parameter must be set to TSOID. A
similar statement (one setting the user's prefix to the user's logon ID) might be needed in other jobs
that run QMF in batch mode for the following reasons:

– To identify the user to QMF when RACF is not used

At sites where RACF is not used, QMF assumes that the user's logon ID is equal to the user's dsname
prefix. If this prefix is null, QMF assumes that the logon ID is BATCH. Thus, by setting the dsname
prefix to the user's logon ID, the PROFILE PREFIX statement provides the user's logon ID to QMF.

The primary authorization ID that Db2 assigns to the user in this case is the value that is specified by
the Db2 installation parameter UNKNOWN AUTHID. The logon ID is used in trace output that is
recorded in the DSQDEBUG data set. Either the primary authorization ID or the logon ID is used for
reading from the profile and assigning a default resource group, depending on the setting of the
DSQSPRID parameter.

– To avoid problems with data set names

You can encounter problems when a QMF procedure uses both the fully qualified and the incomplete
forms of a data set's name in the QMF IMPORT/EXPORT commands. For example, consider a
procedure that runs under the logon ID LMN, which issues the following two commands:

EXPORT QUERY TO 'LMN.QUERYX.QUERY'
IMPORT QUERY FROM QUERYX

The EXPORT command uses the logon ID (LMN) as the first qualifier for the name of the data set
containing the exported objects. The IMPORT command then imports the contents of this data set.

If the user's dsname prefix is ABC instead of LMN, the file that is referenced in the IMPORT statement
is named 'ABC.QUERYX.QUERY’ instead of 'LMN.QUERYX.QUERY'. This is because the prefix is used
for the first qualifier of a data set name when, as in the example IMPORT command, the name is not
fully qualified.

In these cases, the procedure cannot find the file that it previously exported. The PROFILE PREFIX
statement avoids this problem by setting the dsname prefix to the user's logon ID (in this case,
‘LMN’).

Related concepts
Setting program parameters and preferences at startup time
This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.
Specifying which ID to use as the QMF profile key under TSO
If you choose to create specific profiles for each user in QMF for TSO, the values in the CREATOR column
of the table can all be TSO logon IDs or Db2 primary authorization IDs. If you choose to have QMF
authenticate users using their TSO logon IDs, you must specify that choice when you start QMF.

Running QMF batch in native z/OS
In addition to running QMF batch in TSO and ISPF, you can run QMF as a native z/OS batch job.

You can use JCL like the following example.

Chapter 18. Running QMF in batch mode 321

/***/ 00299000
//QMFBAT JOB 00300000
//S1 EXEC PGM=DSQQMFE,PARM='M=B,I=yourQMFproc' 00301000
//* 00302000
//* Program libraries required when running in batch 00303000
//* 00304000
//STEPLIB DD DSN=QMF1210.SDSQLOAD,DISP=SHR 00305000
// DD DSN=DSN1110.SDSNEXIT,DISP=SHR 00306000
// DD DSN=DSN1110.SDSNLOAD,DISP=SHR 00307000
// DD DSN=GDDM.ADMLOAD,DISP=SHR 00308000
//* 00309000
//* QMF/GDDM maps are required when running in batch 00310000
//* 00311000
//ADMGGMAP DD DSN=QMF1210.SDSQMAPE,DISP=SHR 00312000
//* 00313000
//* 00314000
//* Data sets used by QMF 00315000
//* 00316000
//DSQPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330) 00317000
//DSQDEBUG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210) 00318000
//DSQUDUMP DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632) 00319000
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE), 00320000
// UNIT=SYSDA,SPACE=(TRK,(100),RLSE), 00321000
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096) 00322000
//* 00323000
/**/ 00324000

Figure 110. JCL to run QMF as a native z/OS batch job

When you run QMF in native z/OS, remember that:

• TSO is not available.
• QMF functions that require TSO or ISPF do not work when you run QMF in native z/OS.
• The default user ID suffix is not available; you must use the fully qualified data set names to export or

import files.
• You cannot use procedures with logic (REXX procedures). To run QMF with REXX in a non-TSO address

space, you must use IRXJCL, as illustrated in Figure 111 on page 323.

The REXX program that is listed here uses the QMF callable interface to start QMF and run QMF
commands in batch mode.

322 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

//QMFBATCH JOB REGION=8M,
// MSGCLASS=H,TIME=(2,30),USER=&SYSUID,NOTIFY=&SYSUID,CLASS=A
//ROBQMF1 EXEC PGM=IRXJCL
//STEPLIB DD DSN=DSN1110.DB2A.SDSNLOAD,DISP=SHR
// DD DSN=DSN1110.DB2A.SDSNEXIT,DISP=SHR
// DD DSN=QMFDEV.QMF1210.SDSQLOAD,DISP=SHR
//ADMGGMAP DD DSN=QMFDEV.QMF1210.SDSQMAPE,DISP=SHR
//SYSEXEC DD DSN=ROBIN.QMF1210.SDSQEXCE,DISP=SHR
//DSQPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=137,BLKSIZE=1330)
//DSQDEBUG DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//DSQUDUMP DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632)
//SYSUDUMP DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(CYL,(10,20),RLSE),
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)
//SYSTSIN DD *
/* REXX */
CALL DSQCIX "START (DSQSMODE=BATCH"
SAY DSQ_MESSAGE_ID DSQ_MESSAGE_TEXT
IF DSQ_RETURN_CODE = DSQ_SEVERE THEN EXIT DSQ_RETURN_CODE
CALL DSQCIX "RUN PROC REXXPP"
SAY DSQ_MESSAGE_ID DSQ_MESSAGE_TEXT
CALL DSQCIX "EXIT"
SAY DSQ_MESSAGE_ID DSQ_MESSAGE_TEXT
EXIT DSQ_RETURN_CODE
/*

Figure 111. REXX program to start and run QMF in batch mode

These JCL samples allocate a spill file. Instead of allocating a file for spill data, you can use the
DSQSPTYP parameter to spill data to extended storage.

Related tasks
Spilling report data to extended virtual storage (TSO only)
In QMF for TSO, use extended storage for spill data unless the system on which QMF is running has very
limited extended storage available.

Running QMF batch under TSO
You send a batch job to z/OS by using the TSO SUBMIT command.

You or your users must create the QMF procedure to be run and save it in the database. The procedure
might issue queries or run other procedures and might run most other QMF commands. Through the TSO
command of QMF, the procedure might also call CLISTs or online programs.

After you save the procedure, you or your users must create a JCL file for the job that runs the procedure.
The JCL for this job calls TSO for batch operations. It must allocate resources that TSO and QMF need,
including a data set containing statements that TSO is to run. One of these statements must start a QMF
session.

Submit the job to the background through the TSO SUBMIT command. SUBMIT is one of the FIB
(foreground-initiated background) commands through which the user runs, monitors, and manipulates
background jobs. Issuing an FIB command requires the proper TSO authority. Granting this authority is a
TSO administration task.

The SUBMIT command can be run:

• During the user's QMF session by using the QMF TSO command
• In TSO READY mode or in a CLIST that customizes the JCL of the job

The customization can be based on parameters whose values are passed to the called CLIST.

Any error that is encountered while the procedure runs can:

• Terminate the procedure
• Back out an uncommitted Db2 unit of recovery

Chapter 18. Running QMF in batch mode 323

The JOB statement for the job can specify that a message is sent to the user when the job is done. The
message appears on the user's screen. The user does not need to end the QMF session to receive the
message.

After the run ends, the user can examine the job output for errors. With the proper JCL, this output can be
routed to data sets that the user can print or examine with an editor. One of these data sets can contain a
record of the confirmation and error messages and, if wanted, a record of the QMF commands that ran.

Running QMF batch under ISPF using the QMF BATCH command
The QMF batch query/procedure application is designed to minimize the amount of effort involved and
knowledge required to run a query or procedure in batch mode. To use the application, you must start
QMF under ISPF.

If you are using an NLF, you need to assign a translated synonym for the batch application to the users.
They then issue the translated command synonym for BATCH.

Related tasks
Customizing Command synonyms
If the default command synonyms do not meet your needs, you can create your own synonyms. After you
create a command synonym, users can enter the synonym on the command line in the same way that
they enter a QMF command.

Authority to use the batch application in ISPF
The batch query/procedure application creates the procedure and JCL for the user's batch job, but it is
not able to submit the job unless the user has authority to use the TSO FIB (foreground-initiated
background) commands. A TSO administrator grants the user this authority.

The batch job is run under the user's TSO logon ID, so the commands issued by the batch procedure are
run under the user's authorization ID. The same rules apply to a batch job and to the user running the job
interactively:

• If the query, procedure, or form to be run is not owned by the user, it must be shared by its owner.
• For any table referenced in the query (assuming a retrieval query), the user must have the SQL SELECT

privilege.
• If the query or procedure results are to be saved in a new table, you must enable users to create tables.

Related concepts
Enabling users to create tables in the database
Depending on the needs of your site, you might need to create tables for your users or enable them to
create their own tables.

Using the batch application in ISPF
Any QMF user can use the batch query/procedure application, because starting it consists of running a
shared procedure.

Before starting the batch query/procedure application, the user must have the query or procedure
available to be run, and, if necessary, a form to format the report. These objects can be either in the
database or in temporary storage. If the objects are in the database, they can be owned by others,
provided they are shared.

After the user completes the appropriate fields and presses Enter, the application composes a batch job
and submits it to the background.

While the prompt panel is displayed, the user can:

• Display the application's help panels by pressing the Help function key
• Terminate the application by pressing the End function key

(The function key settings appear at the bottom of the prompt panel.)

If you are using an NLF, issue the translated command synonym for BATCH to run a query or procedure in
batch mode. For example, the translated German command synonym for BATCH is STAPEL. For the

324 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

translated command synonym for BATCH in the other language environments, see the
Q.COMMAND_SYNONYM_n control table, where n is a 1-character language identifier.

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Starting the batch application in ISPF
The advantage to using the batch application is the BATCH command prompt panel because the user
does not need to know JCL or QMF procedures. The user outlines what the job should do in the panel and
leaves the details of how to do it to the application.

About this task

The batch query/procedure application must be invoked while its user is operating under QMF. When
invoked, the application prepares a batch job for the user and submits it to the background. The job is
prepared from information the user enters on a prompt panel. It runs a single query or procedure of the
user's choice. Assuming the batch job is a SELECT query, the job can also:

• Save the DATA object that is created by running the query
• Format the report object using a form of the user's choice
• Print the report
• Write the report to a permanent data set
• Send the report to one or more other users

Procedure

• To use the batch application, enter:

BATCH

Results

This command results in the display of the QMF BATCH command prompt panel as shown here:

 QMF Batch Command Prompt
 Enter name of Query or Procedure ==>
 Use Object from work area? ==> NO
 Is Object QUERY or PROC ==> QUERY
 PROC arguments ==>
 Enter Name of FORM to use ==>
 Use FORM from work area? ==> NO
 Enter Name of QMF Batch PROC ==>
 Enter Name of Data to Save ==>
 Enter Name of Report Dataset ==>
 Is Dataset New? ==>
 Enter Optional Volser ==>
 Enter Report Width ==> 133
 Should Report be Printed? ==> YES
 Enter Output Class ==> A
 Log Messages and Commands? ==> YES
 Enter Userids and Nodes to Send Report:
 Userid(1) ==> Node ==>
 Userid(2) ==> Node ==>
 Enter Database SUBSYSTEM ==> Enter Database PLANID ==>
 Enter TSO Logon Password ==> (Press ENTER Key to Process Request)
 Please enter a name for the batch ITEM.

Figure 112. The QMF BATCH command prompt panel

Chapter 18. Running QMF in batch mode 325

The fields on the batch command prompt panel
The fields on the batch prompt panel describe what the batch job should do.

Required entry fields

Certain fields on the batch prompt panel are mandatory. QMF prompts you for values for these required
fields if necessary. The following table describes the required fields.

Table 73. Required entry fields for the QMF BATCH application

Field text Description

Enter name of
Query or Procedure

A value is required for the name of the query or procedure to be run in batch
mode. If the query or procedure is currently in temporary storage, it is saved
in the database using this name. If the name is that of an existing object, the
new object replaces the old one. (The name must be unqualified.) If the
object is in the database, enter the name under which it was saved. (The
name must be qualified if the object is owned by someone else and shared.)
Save this object using CONFIRM = NO as a profile setting.

Is Object QUERY or
PROC

The object type to be run in batch; must be either QUERY or PROC.

Enter Name of QMF
Batch PROC

A value is required for the name of the QMF procedure to be run in batch
mode. (The name is not qualified.) If you are submitting multiple queries, you
need to modify the Enter name of Query or Procedure field for each
query or the new batch job replaces the old job. This procedure contains the
appropriate QMF commands depending upon user input. The query or
procedure that was specified in the Is Object QUERY or PROC field is run
from this procedure. The procedure is saved using the SHARE = YES keyword
option. It must be able to be run by the batch machine. Save this procedure
using CONFIRM = NO as a profile setting.

Optional entry fields

The following table describes the remaining entry fields on the panel, which are optional. Where a value of
YES or NO is expected, a default YES or NO normally appears on the screen. If you delete a value in a
YES/NO field, QMF prompts you for an entry.

Table 74. Optional entry fields for the QMF BATCH application

Field text Description

Use Object from work
area?

If the batch query or procedure is currently in temporary storage,
enter YES in this field. The query or procedure is then saved to be run
later in batch. If the query or procedure is in the database, enter NO.
The default value for this field is NO.

PROC arguments Arguments to the REXX procedure named in the Enter name of
Query or Procedure field.

326 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 74. Optional entry fields for the QMF BATCH application (continued)

Field text Description

Enter Name of FORM to
use

To run the batch query using a form, you must specify the name of a
form in this field. If the form to be used:

• Is the default form, leave the field empty.
• Is in the database, the form is saved using this name. The name

must be qualified if the form is owned by someone else and shared.
• Is the current form, enter a name under which it can be saved. The

name must be unqualified, because the form is saved under your
own authorization ID.

This form is saved using CONFIRM = NO as a profile setting.

If you enter the name of an existing form, the new form replaces the
old.

Use FORM from work area? If the batch form is the current form, enter YES in this field. The form
is then saved for use later in batch. If the form is in the database,
enter NO. The default value for this field is NO.

Enter Database SUBSYSTEM Enter the name of the Db2 subsystem that QMF uses; this field has
the same value as program parameter DSQSSUBS.

Enter Database PLANID Enter the name of the QMF application plan; this field has the same
value as program parameter DSQSPLAN. The default is QMF12.

Enter TSO Logon Password Enter your logon password; it does not appear on the screen.

Log Messages and
Commands?

The default value for this field is YES. This means that the default
trace level in batch mode is L2, which traces messages and
commands. If you do not want tracing at the L2 level, specify NO.
Tracing does not continue in the batch procedure beyond the SET
PROFILE (TRACE=NONE command, which is then in the generated
user procedure.

Enter Name of Data to
Save

If you want the data resulting from running a query or procedure to
be saved, a value must be given for this field. The DATA object is
saved as a new table using this name and the CONFIRM=NO keyword
option.

Enter Name of Report
Dataset

If you want the report to be written to a permanent data set, enter
the name of that data set here. The name must be fully qualified. If
you do not want this done, leave the field empty.

This data set name is passed to z/OS via JCL statements and must
conform to the z/OS naming conventions. Fully qualified names do
not require quotation marks if the name does not contain any special
characters other than period, @, #, or $. If quotation marks are used,
z/OS assumes that special characters are used and does not catalog
the data set in the system catalog.

Is Dataset New? You must enter something in this field if you entered a data set name
in REPORT DATASET. Enter YES to show that this data set does not
currently exist. Enter NO to show that the data set does currently
exist.

Chapter 18. Running QMF in batch mode 327

Table 74. Optional entry fields for the QMF BATCH application (continued)

Field text Description

Enter Optional Volser Optional: Fill in this field if you entered YES in the Is Dataset
New? field. Enter the serial number of a volume on which the new
data set can reside. The volume must be one that can be used on a
unit of the SYSDA class, as defined by your installation.

Enter Report Width If you entered YES in the Is Dataset New? field, you must
complete this field. Its value becomes the logical record length
(LRECL) of the new data set. If the width of your report is less than or
equal to the LRECL, use the default value of 133.

Should Report Be
Printed?

This field must contain YES or NO. YES indicates to print the job; NO
indicates to not print the job.

Enter Output Class Enter the output class for the printed output from your job. The
printed output includes:

• The system messages
• The report (DSQPRINT), if it was printed
• The DSQDEBUG trace data set
• An abend dump (DSQUDUMP), if one was produced

If your installation provides for it, you can choose an output class
that holds the printed output for routing to your display device.

Enter Userids and Nodes
to Send Report:

If you want the resulting report to be sent to other users, enter their
user IDs and nodes in these fields. To use the fields, you need to
name a data set for the report output in the Enter Name of
Report Dataset field.

On the same line, enter a user's logon ID in one of the Userid fields
and the user's node in the corresponding Node field. In this way, you
can specify up to two recipients for the report. The report is sent
using the TSO TRANSMIT command. You do not need to complete
the Node field for a user if that information is in your
NAMES.TEXTLIST data set. The node ID you specify might
correspond to an entire list of names in this file, allowing you to send
the report to more than just two people.

Modifying the batch application
You can modify the batch application by making changes to its components or creating new components
for the customized application. Create new components so that you do not risk losing your changes when
maintenance is performed.

Applicable QMF components

To modify the batch application, you need to be aware of the following components in the QMF libraries:

• The CLISTs DSQABB11 and DSQABB12 in the QMF1210.SDSQCLTE library

When users call the batch application with the BATCH command, they actually call DSQABB11. The
purpose of this CLIST is to call DSQABB12 through the ISPF SELECT service as a new application. Most
of the logic in the application is in DSQABB12.

• ISPF message definitions in members DSQBE00, DSQBE01, and DSQBE02 of the QMF1210.SDSQMLBE
library

These messages appear on the user's screen after the application ends. The application generates
these messages using the QMF MESSAGE command.

328 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• Various ISPF panel definitions in the QMF1210.SDSQPLBE library, which serve a variety of purposes:

– DXYEABMP is the application's prompt panel.
– DXYEABM1, DXYEABM2, and DXYEABM3 are the help panels for the prompt panel.
– DXYEAB12, DXYEAB13, DXYEAB14, and DXYEAB15 furnish message help for the application's error

messages.
• Certain file customization examples in the QMF1210.SDSQSLBE library:

– DSQABB1J provides sample JCL for the batch job. It is a sample procedure that runs a query in batch
mode.

– DSQABB1P and DSQABB1S are sample QMF procedures. They provide an example of a procedure
that submits the JCL for the job.

Possible changes to the application

You can make the following changes to the application:

• Allow users to choose the Db2 subsystem.

Within the DSQABB1J sample file is the ISPSTART statement to call batch-mode QMF. This statement
does not provide a value for the DSQSSUBS parameter of QMF. As a result, the Db2 subsystem under
which QMF is to run is assumed to have the default name DSN. If you want QMF to run in a Db2
subsystem with a different name, add DSQSSUBS=ssid to the PARM operand of the ISPSTART
command (where ssid is the appropriate subsystem name).

• Allow the user to specify a GDDM nickname for the printed report.
• Add extra logic to enforce your site's rules.

For example, you might offer the user a list of acceptable volumes when the user creates a new data set
for the report output.

• Change the JCL produced by the application to conform to your site's needs.

You can do either of the following:

– Add accounting information to the JOB statement.
– Change the name of QMF application plan in the ISPSTART statement of the SYSTSIN data set. The

default QMF plan name for Version 12.1 is QMF12.

You might also have to make additional changes, such as:

• Adding a field or fields to the prompt panel (DXYEABMP)
• Changing the help panels for the prompt panel
• Adding new error messages to DSQBE00, DSQBE01, or DSQBE02
• Changing some of the logic in DSQABB12

Important: Users who call the batch application should not maintain a data set named
userid.DSQ1EBFT.PROC, where userid is the user's TSO logon ID. If such a data set exists, the QMF batch
application might not run correctly.

Example of modifying the application

The following example shows one way you can modify the BATCH application.

This example modifies the batch application so that all users have the same PROFILE PREFIX statement,
and assumes that all users have unique user IDs. Add the user IDs to the data set names using &SYSUID
and &ZUSER.

You must make three modifications to the DSQABB1S SKELETON file as shown here. The old lines are
commented out. The new replacement lines follow them.

Chapter 18. Running QMF in batch mode 329

)CM ---
)CM FILE: DSQABB1S
)CM DESCRIPTION: THIS SKELETON CREATES DSQABB1S, THE PROC WHICH
)CM SAVES THE CURRENT FORM (IF SPECIFIED)
)CM IMPORTS AND SAVES THE PROC WHICH RUNS THE QUERY
)CM SENDS THE QMF INVOCATION JOB TO z/OS BATCH
)CM RESETS THE PROC ITEM
)CM FREES ISPFILE USED FOR FILE TAILORING
)CM DISPLAYS THE QUERY PANEL
)CM ---

)SEL &FAN = &YES
&SAVE &FORM &AS &FNAME (&SHARE=&YES, &CONFIRM=&NO
)ENDSEL

)CM &IMPORT &PROC &FROM '&ZPREFIX..DSQ1EBFT.&PROC.' (&MEMBER = DSQABB1P
&IMPORT &PROC &FROM '&ZPREFIX..&ZUSER..DSQ1EBFT.&PROC.' (&MEMBER = DSQABB1P
&SAVE &PROC &AS &PNAME (&CONFIRM=&NO
)CM TSO SUBMIT '&ZPREFIX..DSQ1EBFT.&PROC.(DSQABB1J)'
TSO SUBMIT '&ZPREFIX..&ZUSER..DSQ1EBFT.&PROC.(DSQABB1J)'

TSO FREE FILE(ISPFILE) DELETE
&RESET &PROC
)CM &IMPORT &PROC &FROM DSQABB
&IMPORT &PROC &FROM &ZUSER..DSQABB

)SEL &ITM = &QUERY
&DISPLAY &QUERY
)ENDSEL

Figure 113. Modifying the DSQABB1S SKELETON file

Make the five modifications to DSQABB12 CLIST as commented here.

/**/ 00088000
/* ALLOCATE USERID.DSQ1EBFT.PROC TO BE USED FOR ISPF */ 00089000
/* FILE TAILORING OUTPUT. */ 00090000
/**/ 00091000
 FREE FILE(ISPFILE) 00092000
/* ALLOC DDNAME(ISPFILE) DSNAME(DSQ1EBFT.&PROC) OLD 00093000
 ALLOC DDNAME(ISPFILE) DSNAME(&SYSUID..DSQ1EBFT.&PROC) OLD 00093000
 IF &LASTCC ¬= 0 THEN + 00094000
 DO 00095000
 FREE ATTRLIST(ATTRPDS) 00096000
 ATTR ATTRPDS LRECL(80) RECFM(F B) BLKSIZE(800) DSORG(PO) 00097000
/* ALLOC DDNAME(ISPFILE) DSNAME(DSQ1EBFT.&PROC) NEW SPACE(5,2) + 00098000
/* TRACKS DIR(10) USING(ATTRPDS) CATALOG 00099000
 ALLOC DDNAME(ISPFILE) DSNAME(&SYSUID..DSQ1EBFT.&PROC) NEW + 00098000
 SPACE(5,2) TRACKS DIR(10) USING(ATTRPDS) CATALOG 00099000
 END 00100000
 IF &RC = 8 THEN + 00101000
 DO 00102000
⋮
/**/ 00203000
/* EXPORT CURRENT CONTENTS OF PROC PANEL */ 00204000
/**/ 00205000
 ISPEXEC SELECT PGM(DSQCCI) + 00206000
/* PARM(&EXPORT &PROC &TO DSQABB (&CONFIRM = &NO) 00207000
 PARM(&EXPORT &PROC &TO &SYSUID..DSQABB (&CONFIRM = &NO) 00207000
 IF &LASTCC ¬= 0 THEN DO 00208000
 ISPEXEC SELECT PGM(DSQCCI) + 00209000
 PARM(SET GLOBAL (DSQEC_NLFCMD_LANG = &LOCLANG)) 00210000
 SET &MSG = &DSQB.023 00211000
 ISPEXEC SELECT PGM(DSQCCI) PARM(&MESSAGE &MSG) 00212000
 SET &RCDE = 8 00213000
 GOTO CLEANUP 00214000
 END 00215000
⋮
/**/ 00244000
/* IMPORT AND RUN FILE TAILORED SKELETON */ 00245000
/**/ 00246000
 ISPEXEC SELECT PGM(DSQCCI) + 00247000
/* PARM(&IMPORT &PROC &FROM DSQ1EBFT (&MEMBER = DSQABB1S) 00248000
 PARM(&IMPORT &PROC &FROM &SYSUID..DSQ1EBFT (&MEMBER = DSQABB1S) 00248000
 IF &LASTCC ¬= 0 THEN + 00249000
 ⋮

330 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

CLEANUP: FREE FILE(ISPFILE) DELETE 00274000
 DONE: SET &ZPLACE = &SAVEPLC 00275000
 SET &ZPFCTL = &SAVEPFC 00276000
 SET &ZPF01 = &STR(&SAVEPF01) 00277000
 SET &ZPF13 = &STR(&SAVEPF13) 00278000
 SET &ZPF03 = &STR(&SAVEPF03) 00279000
 SET &ZPF15 = &STR(&SAVEPF15) 00280000
 SET &ZPF10 = &STR(&SAVEPF10) 00281000
 SET &ZPF22 = &STR(&SAVEPF22) 00282000
 SET &ZPF11 = &STR(&SAVEPF11) 00283000
 SET &ZPF23 = &STR(&SAVEPF23) 00284000
 ISPEXEC VPUT (ZPLACE ZPFCTL ZPF01 ZPF13) PROFILE 00285000
 ISPEXEC VPUT (ZPF03 ZPF15 ZPF10 ZPF22 ZPF11 ZPF23) PROFILE 00286000
/* DELETE DSQABB.&PROC 00287000
 DELETE &SYSUID..DSQABB.&PROC 00287000
 EXIT CODE(&RCDE) 00288000

Figure 114. Modifying DSQABB12 CLIST

Initiating a QMF batch job in the foreground on ISPF or TSO
To start QMF in batch mode in the foreground, you can use any of the usual methods to start QMF.

For example, from TSO READY mode, you can issue the following statement to start QMF from a CLIST:

ISPSTART CMD(clist_name) NEWAPPL

In this statement, clist_name is the name of the CLIST that starts QMF. This CLIST must contain a
statement of the following form:

ISPEXEC SELECT PGM(DSQQMFE) NEWAPPL(DSQE)
 PARM(...DSQSMODE=B,DSQSRUN=auth_ID.proc_name)

Here, the ISPSTART statement runs in the foreground, not in the background. You cannot do other things
with TSO while waiting for the CLIST to end.

When the CLIST ends, you are back in TSO READY mode. Before the CLIST ends, you might see a display
of the ISPF Disposition Prompt panel if your procedure terminates before you specify permanent
disposition parameters for the TSO console, log, and list files. To avoid displaying this panel, specify
permanent disposition parameters for these files. A value of D (specifying "delete") for each is probably
adequate. If you do not know how to specify these dispositions, ask an ISPF expert or use ISPF help.

Related concepts
Starting QMF
QMF can be started only from z/OS. QMF can be set up to run under TSO, ISPF, as a batch job, or under
CICS.

Debugging a batch-mode procedure or application
You can use the trace codes and the HELP command to diagnose problems with a batch-mode procedure.

L2 tracing, which traces messages and commands at the most detailed level, is the default for procedures
that run in batch mode. To change the trace setting, add a SET PROFILE command to your procedure. For
example, to specify L1 tracing instead of L2, add the following statement at the start of the procedure:

SET PROFILE (TRACE=L1

With either L1 or L2 tracing, a log is produced in the trace data set (which is DSQDEBUG by default).
Within this log is a series of message records: one for each message that QMF issued while the procedure
was being run.

With L2 tracing in effect, the log also contains a record for each QMF command run by the procedure (and
its subordinates).

If the procedure terminates prematurely, an error message is written to the trace data. You can then use
the HELP command to display the corresponding message help panel.

Chapter 18. Running QMF in batch mode 331

Starting a QMF batch job from a remote Db2 client
Any Db2 client that is connected to the Db2 database where the QMF stored procedure DSQQMFSP is
installed can start a QMF for TSO batch job. The batch job is started from the z/OS system that runs the
QMF stored procedure.

Before you begin
Before you start a batch job from a remote Db2 client, authorizations for the QMF stored procedure
interface and batch mode must be set up. Also, see the following information before you begin:

• “Installing the QMF stored procedure interface (TSO only)” on page 107
• “Authority to operate in batch mode” on page 319
• “JCL to execute a QMF batch job” on page 320
• “Debugging a batch-mode procedure or application” on page 331

Procedure

Issue an SQL CALL statement that calls the stored procedure to start the z/OS batch job. Include the
name of the QMF procedure that is run by the QMF stored procedure as the first parameter on the CALL
statement.

For example:

CALL Q.DSQQMFSP('W397754.LAUNCH_STAFF_REPORT','L2','','','')

Example
The following example QMF REXX procedure (W397754.LAUNCH_STAFF_REPORT) starts a staff report
batch job:

/* REXX - Launch Staff Report Batch Job. */
/* This procedure uses the REXX FtpApi to launch the batch */
/* job. */
/**/

/* Initialize Rexx program variables */
hostname = "STLMVS1" /* z/OS host name to receive the batch job */
uid = "W397754" /* z/OS user id that is used to login to ftp */
uidpw = "xxxxxxxx" /* user id pw used to login to ftp */
pcode = 0 /* Initialize return code */
TRACEID = 'PAZ' /* Set FTP trace flag */

/* Create REXX FTP environment */
ftp_rc = ftpapi('fcai.', 'create', TRACEID)
if ftp_rc < 0 then
 do
 pcode = -10
 exit pcode
 end

/* Connect to host. See hostname variable for name of host */
ftp_rc = FtpApi('fcai.', 'init', '-w 300 '||hostname)
if ftp_rc < 0 then exit -21

/* Logon user to FTP session */
cmd = "USER " uid
ftp_rc = FtpApi('fcai.', 'scmd', cmd, 'W')
if ftp_rc < 0 then exit -22

cmd = "PASS " uidpw
ftp_rc = FtpApi('fcai.', 'scmd', cmd, 'W')
if ftp_rc < 0 then exit -23

/* Set JES to receive JCL file */
cmd = "QUOTE SITE FILETYPE=JES"
ftp_rc = FtpApi('fcai.', 'scmd', cmd, 'W')
if ftp_rc < 0 then exit -24

332 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

/* Send JCL file to JES for execution */
cmd = "PUT 'W397754.STAFF.REPORT.JCL'"
ftp_rc = FtpApi('fcai.', 'scmd', cmd, 'W')
if ftp_rc < 0 then exit -25

/* Quit the FTP session */
cmd = "QUIT"
ftp_rc = FtpApi('fcai.', 'scmd', cmd, 'W')
if ftp_rc < 0 then exit -26

/* Terminate te REXX FTP Environment */
ftp_rc = ftpapi('fcai.', 'term')
if ftp_rc < 0 then exit -27

exit pcode

Running QMF as a batch transaction on CICS
QMF batch transactions can be run from a terminal or as a transaction running without a terminal.

All resources needed by QMF are available throughout the user session. Run QMF procedures that can be
used to generate a report in order to conserve resources. The procedures can be run non-interactively.

QMF runs interactively as a conversational transaction in CICS.

Running batch activities from a terminal on CICS
You can run QMF from a terminal to produce a report.

For example, you can run the procedure that is shown here to produce a report that is located in CICS
auxiliary storage. (QMF treats lines that begin with "--" as comments in QMF linear procedures.)

-- Procedure name: STATRPT1_PROC
 --
 -- Example QMF procedure to create an auxiliary CICS
 -- temporary storage queue named STATRPT1
 --
 RUN QUERY STATRPT1_QUERY (FORM=STATRPT1_FORM)
 PRINT REPORT (QUEUENAME=STATRPT1,QUEUETYPE=TS)
 --
 -- End of procedure

Figure 115. Producing a report in CICS auxiliary storage

Execute the QMF transaction described here to run this procedure in batch mode:

QMFE M=B,I=STATRPT1_PROC

QMF runs this transaction without displaying any screens. Upon successful completion of the procedure,
the report is in CICS storage queue STATRPT1. You can then view the report by using the transaction
CEBR supplied with CICS:

CEBR STATRPT1

Running batch activities without a terminal on CICS
Use the EXEC CICS START command to run a procedure while the terminal that is running a batch job is
locked.

A terminal used to run a batch job is locked until QMF completes the transaction. The following example
runs the QMF procedure STATRPT1_PROC in batch mode without a terminal:

EXEC CICS START TRANSID(QMFE) FROM(M=B,I=STATRPT1_PROC)

Chapter 18. Running QMF in batch mode 333

When this transaction completes, the CICS storage queue STATRPT1 can be browsed using the
transaction CEBR supplied with CICS.

Debugging a procedure on CICS
QMF provides a facility that traces messages, commands, and QMF functions. This facility is useful when
there is a problem running a QMF procedure in batch mode.

Messages and commands are traced automatically when QMF is running in batch mode. You can route
this message trace to CICS auxiliary temporary storage or a transient data queue. For example, to run the
STATRPT1_PROC procedure and send the command and message trace to a CICS auxiliary storage queue
with the name QMFMSG, issue a CICS START command similar to the following:

EXEC CICS START TRANSID(QMFE)
 FROM(M=B,I=STATRPT1_PROC,DSQSDBQN=QMFMSG,DSQSDBQT=TS)

Multiple QMF transactions can issue messages to the same trace area. QMF issues a CICS ENQ command
on the queue name while it writes a trace entry. Each entry is marked with the terminal ID and task ID of
the QMF transaction that created the trace entry.

If you want to route QMF trace output to CICS auxiliary storage, do not set full component-level tracing
because temporary storage will fill up quickly. For anything other than message-level tracing, use a
transient data queue to hold the trace output.

Termination return codes

Termination return codes for QMF are:

0
Normal termination

8
Abnormal termination

Related concepts
Getting the right level of detail in your trace output
You can trace all QMF functions in detail or trace individual QMF functions.

334 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Chapter 19. Troubleshooting and diagnosing
problems

To isolate and resolve problems that your users have while using QMF, you can use the troubleshooting
and support information.

Applying QMF service
Whenever you experience a problem with QMF, first ensure that the service level of your QMF installation
is current.

Determine your current level of service, and search the IBM Software Support website for the latest PTFs
for QMF and its prerequisite products. Additionally, request QMF’s preventative service planning (PSP)
bucket. The PSP bucket contains general hints, APARs, and documentation changes associated with
known problems. The PSP upgrade name for QMF Version 12 Release 1 is QMFC10. Valid subset names
for PSP upgrade QMFC10 are shown here.

Table 75. QMF PSP subset names found in PSP upgrade QMFC10

PSP subset name Applies to

HHPCC10 QMF HPO

HQDC110 QMF Data Service

HSQCC10 English (QMF base product)

JSQCC1Q QMF for z/OS OTC

JSQCC1C QMF Classic Edition

JSQCC1E QMF Enterprise Edition

JSQCC51 U/C English

JSQCC55 Danish

JSQCC5G Canadian French

JSQCC56 French

JSQCC57 German

JSQCC58 Italian

JSQCC59 Japanese

JSQCC5A Korean

JSQCC5B Brazilian Portuguese

JSQCC5C Spanish

JSQCC5D Swedish

JSQCC5E Swiss French

JSQCC5F Swiss German

JYQCC10 QMF applications

© Copyright IBM Corp. 1982, 2020 335

http://www.ibm.com/software/data/qmf/support.html

Related concepts
Installation prerequisites for requester (Db2 for z/OS) databases
Before you can install QMF on Db2 for z/OS databases that function as stand-alone or requester
databases, you must fulfill the hardware and software requirements.
Related tasks
Determining the QMF service level
Running an SMP/E report against the target or distribution zones is always the best way to determine the
service level. However, you can also determine the QMF service level in other ways.
Related information
Search for the latest PTFs for QMF and its prerequisite products.

Correcting common problems
Check the list of common problems and possible solutions before you try a more in-depth diagnosis.

Errors that can occur at initialization time
Errors that occur during QMF initialization or the connect process generally do not stop QMF. However,
these types of errors are usually logged to the QMF trace data.

The location of the trace data varies depending on your environment:

• In TSO, ISPF, and native z/OS, the trace data is stored in DSQDEBUG.
• In CICS, the trace data is stored in a transient data queue named DSQD, unless you changed the type or

name of the queue using the DSQSDBQT and DSQSDBQN program parameters when you issued the
command to start the QMF session.

In addition to looking at the trace data, check the screen for messages. If no messages are displayed and
you are trying to start QMF for TSO, issue the following TSO command and restart QMF: PROFILE MSGID
WTPMSG. This command logs messages to the screen in TSO.

After reviewing the trace output and any messages issued to the screen, read the following topics to
determine the problem. If none of these errors appears to be the problem, review additional diagnostic
aids that can help you determine the problem and diagnose its cause.

Related concepts
Using diagnosis aids
Try to diagnose the problem by using a variety of diagnostic aids.
Related tasks
The trace facility
QMF provides a facility that traces QMF activity during a user's session. Trace output from the facility can
help you analyze errors such as incorrect or missing output, performance problems, or loops.

Problems that can occur when QMF is not using current load modules
Unexpected behavior, as well as errors or warning messages when initializing QMF or connecting to a
remote database, can happen when QMF initializes with modules from one or more prior releases.

Procedure

Follow these steps to check whether QMF is initializing with the correct load modules:
1. Issue the command SHOW GLOBALS and check the value of the DSQAO_QMF_VER_RLS variable. The

value of this variable for QMF Version 12 Release 1 is QMFV12R1.0.

If the variable value is not what you expect, it is likely that, during the initialization process, QMF is
accessing load modules from prior releases. Depending on how you allocate the SDSQLOAD library,
the load modules that QMF is accessing during initialization might be in an unexpected data set, the
linklist, or the LPA.

336 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/software/data/qmf/support.html

Even when the DSQAO_QMF_VER_RLS variable has a value of QMFV12R1.0, the initialization process
might be interrupted by the following error when the DSQUOPTS module is loaded: “DSQ90579” on
page 342.

2. Determine the level of load modules that QMF is accessing. How you complete this step depends on
whether you are able to start QMF.

• If you are able to start QMF:

a. Start the program with a value of ALL for the DSQSDBUG parameter.
b. After you run the trace, review any resulting trace output. QMF Version 12.1 modules are

associated with the eyecatcher V12R1.00 in the QMF trace. For example:

--------- ****** 09/12/22 10.25.52 ****** ------------
 DSQCPARM:Applied Service Level (1)
34347370 DSQCABND V12R1.00 09/09/16 13:36 WIM11328
343476C8 DSQCADJM V12R1.00 09/09/16 13:36
345F50C8 DSQCAVAR V12R1.00 09/09/16 13:36 WIM11266
3464D8D0 DSQCBDSS V12R1.00 09/09/16 13:36 WIM7688
34347E88 DSQCBMPA V12R1.00 09/09/16 13:36
34349290 DSQCBOR V12R1.00 09/09/16 13:36 WIM11215
346B69D8 DSQCB64C V12R1.00 09/09/16 13:36 WIM11525

• If you are unable to start QMF:

Inspect any resulting dump output (such as SYSUDUMP, DSQUDUMP, or SYSMDUMP output) for the
version and release information. Verify that the eyecatcher that is associated with all the QMF
modules is be the same. QMF Version 12.1 modules are associated with the eyecatcher V12R1.00,
as shown in the preceding example.

3. If you find that the QMF initialization process is using load modules from one or more prior releases
instead of the current release, determine the location from which the load modules are being
accessed.

• If you are running QMF for TSO under ISPF, you can use the ISPF ISRDDN diagnostic utility to
obtain information about file allocations for the QMF load modules. ISRDDN is a utility that provides
a list of allocated ddnames within a TSO user's address space. Thus, how you use this facility to
view QMF file allocations depends on how these allocations are done. For example, if your QMF file
allocations are done through ISPF, you can issue the following command from within QMF: TSO
ISRDDN. The command returns a list of current data set allocations. Browse the list and check that
all data sets are being accessed from the correct locations. For sample allocations for the data sets,
see the following information:

– “Customizing requester installations under TSO” on page 49
– “Customizing requester installations under CICS” on page 55

The default data set prefix for QMF Version 12.1 data sets is QMF1210. Your data set prefix for the
QMF Version 12.1 load modules might be different.

If you find allocations that are not pointing to the QMF Version 12.1 libraries, change these
allocations to point to the correct locations.

• You can also use the ISRDDN utility to retrieve allocation information for specific modules and
optionally browse the modules if necessary. For example, you can issue the following command to
determine the location from which the DSQQMF module was loaded and optionally browse the
module: TSO ISRDDN MEMBER DSQQMF

Be sure that the DSQQMF module is being accessed from the expected location and that it contains
the version and release identifiers that you expect. For example, the following output shows that
the DSQQMF module was loaded from the QMFCOM.QMF1210.SDSQLOAD data set, which was
accessed via ddname DSQLLIB. The specific name of your QMF data sets will vary.

If the QMF Version 12.1 data set prefix you chose does not include the version and release
information, use the following command to browse the DSQQMF load module to help you
determine this information: TSO ISRDDN BROWSE DSQQMF

Chapter 19. Troubleshooting and diagnosing problems 337

For QMF Version 12.1, verify that the eyecatcher matches V12R1.00, as shown in the following
figure. The date, time, and service level of the module can vary depending on which PTFs were
applied.

 BROWSE DSQQMF JPA Start:34484B48 Size:0038BE10 Line 00000000 Col 001 080
********************************* Top of Data *********************************
 +0 (34484B48) 47F0F122 2EC4E2D8 C3C9D5E3 4040E5F1 * DSQCINT V1 *
 +10 (34484B58) F0D9F14B F0F04040 404040F0 F961F0F9 * 1R1.00 12/12 *
 +20 (34484B68) 61F1F640 F1F37AF3 F740E6C9 D4F1F1F5 * /16 13:37 WIM125 *
 +30 (34484B78) F9F840D3 89838595 A2858440 D481A385 * 33 Licensed Mate *
 +40 (34484B88) 99898193 A2406040 D7999697 8599A3A8 * rials - Property *
 +50 (34484B98) 40968640 C9C2D440 F5F6F3F5 60C4C2F2 * of IBM 5615-DB2 *
 +60 (34484BA8) 6B40F5F6 F0F560C4 C2F2404D C35D40C3 * , 5697-P43 (C) C *
 +70 (34484BB8) 9697A899 898788A3 40C9C2D4 40C39699 * opyright IBM Cor *
 +80 (34484BC8) 974B40F1 F9F8F26B 40F2F0F1 F04B40C1 * p. 1982, 2013. A *
 +90 (34484BD8) 939340D9 898788A3 A240D985 A28599A5 * ll Rights Reserv *
 +A0 (34484BE8) 85844B40 E4E240C7 96A58599 95948595 * ed. US Governmen *
 +B0 (34484BF8) A340E4A2 8599A240 D985A2A3 998983A3 * t Users Restrict *
 +C0 (34484C08) 858440D9 898788A3 A2406040 E4A2856B * ed Rights - Use, *
 +D0 (34484C18) 4084A497 93898381 A3899695 40969940 * duplication or *
 +E0 (34484C28) 8489A283 9396A2A4 99854099 85A2A399 * disclosure restr *
 +F0 (34484C38) 8983A385 844082A8 40C7E2C1 40C1C4D7 * icted by GSA ADP *
 +100 (34484C48) 40E28388 8584A493 8540C396 95A39981 * Schedule Contra *
 +110 (34484C58) 83A340A6 89A38840 C9C2D440 C3969997 * ct with IBM Corp *
 +120 (34484C68) 4B4090EC D00C187F 41807FFF 41908FFF * -----------------*
 Command ===> Scroll ===> PAGE

Figure 116. Using the ISRDDN utility to browse the DSQQMF module to obtain version and release
information

Related tasks
The trace facility
QMF provides a facility that traces QMF activity during a user's session. Trace output from the facility can
help you analyze errors such as incorrect or missing output, performance problems, or loops.

Abends
Certain abends can occur at initialization time. You might need to use native z/OS, TSO, or CICS diagnostic
facilities to help you diagnose an abend.

For more information about common abends at initialization, see one of the following sections:

• “0C1” on page 338
• “0C4” on page 338
• “0C7” on page 339
• “ASRA” on page 339
• “AEY9” on page 340
• “AZTS” on page 340
• “G050” on page 340

0C1

If you experience an 0C1 abend, the problem could be that the QMF initialization process is using load
modules from one or more prior releases instead of the current release. See “Problems that can occur
when QMF is not using current load modules” on page 336 to determine whether this is situation is the
problem.

0C4

If you experience an OC4 abend in response to a QMF command that would normally display a panel, take
the following steps to troubleshoot the problem:

338 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

1. Check to ensure that you ran the DSQ1nPNL installation job, where n is a 1-character national
language identifier. This job populates the VSAM panel library, DSQPNLn, with the product panels and
help panels from QMF Version 12.1. For more information about this job, see “Populating the VSAM
panel library” on page 37 or the QMF program directory. Be sure that you are using the correct
program directory for your QMF release and national language.

2. If you are still experiencing the problem after the DSQ1nPNL job ran successfully, check file
allocations on the following DD statements:

• QMF for TSO:

Check your allocation for DD statement ADMGGMAP to make sure that it points to
QMF1210.SDSQMAPn.

• QMF for CICS:

Check that the ADMF DD statement in the startup JCL for the CICS region in which QMF resides
correctly points to the GDDM ADMF data set. The DSQ1nADM installation job writes the QMF Version
12.1 GDDM maps to this data set.

3. If the file allocations are correct, see “Problems that can occur when QMF is not using current load
modules” on page 336 for more troubleshooting suggestions. Abends can occur at various times when
QMF Version 12.1 is mistakenly initializing with modules from one or more prior releases.

0C7

If you experience an 0C7 abend, the problem could be that the QMF initialization process is using load
modules from one or more prior releases instead of the current release. See “Problems that can occur
when QMF is not using current load modules” on page 336 to determine whether this situation is the
problem.

ASRA

ASRA abends can occur if you are running QMF for CICS. If you receive this error, check the following
possible areas for the problem:

• On QMF startup:

– Make sure that all GDDM link-edits ran successfully.
– Make sure that the GDDM IVPs ran successfully in the CICS region.
– Verify that the QMF SMP/E APPLY steps that are documented in the QMF program directory

completed successfully. These steps link the QMF load modules with the CICS load modules. Be sure
that you are using the correct program directory for your QMF release and national language.

– Make sure that the region allocates the QMF Version 12 Release 1 load libraries and map groups. For
more information about these steps of the installation and customization process, see one of the
following topics:

- “Updating the CICS startup job stream” on page 59
- “Loading QMF GDDM maps to the GDDM ADMF data set” on page 58

• In module DSQQMFE, CSECT ADM:

The problem is probably a GDDM failure. Verify that GDDM is correctly installed and customized for
CICS. Verify that GDDM is in the same CSI zone as CICS.

• In module DSQQMFE, CSECT DSQEGINT:

Verify that GDDM is customized for CICS and that a CSD entry exists for the GDDM module ADMASPLC.
• In module DSQQMFE, CSECT DSQIELI:

Verify that a CSD entry exists for the Db2 for z/OS interface module DSQIELI.
• In module DSQCBST, CSECT DSQCMCVP:

Chapter 19. Troubleshooting and diagnosing problems 339

After QMF service is applied, verify that a z/OS LLA REFRESH was done in case QMF code is in the
Library Lookaside.

• On exit of QMF:

Check that the governor is linked correctly. Review job DSQ1EGLK.
• With ABEND0C4 and DFHSM0102:

This error occurs when you run a query or when you press the Help function key. Make sure that the
CSD file entry for DSQPNLn has RECFM=V (where n is a 1-character national language identifier.

• On issuing HELP or RUN commands:

QMF data set DSQPNLn, which contains help and other screen text, was either not installed correctly or
it was not allocated to the job that started the CICS region. To correct the problem:

– Verify that the CSD entry is defined correctly.
– Verify that a DD statement for DSQPNLn exists in the job stream that starts the CICS region. DD

statements are described in “Updating the CICS startup job stream” on page 59.

Also, look for console error messages that are related to the DSQPNLn data set.

Replace n with the 1-character language identifier that represents the NLF you are using.

AEY9

The Db2 for z/OS attachment facility is not active in the CICS region. Start the attachment facility by using
the DSNC transaction.

AZTS

Make sure that GDDM is running with IOSYNCH=YES.

G050

Verify that the release level of GDDM that you customized for CICS matches the release level of GDDM
that you are using in the job stream to start the CICS region.

Related concepts
Using diagnostics native to the environment
You might need to diagnose abends using diagnostic facilities in TSO, z/OS, or CICS.
Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Related information
See the information about QMF Version 12.1 program directories.

QMF messages
If you experience an error during QMF initialization, you might recover by checking for error messages and
taking appropriate action.

DSQI0026

This message usually occurs on startup. If you are running QMF under CICS, make sure that the QMFn
transaction is entered from a clear screen.

DSQ10297

Invalid subsystem ID.

340 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/software/data/qmf/library.html

This error can occur on ISPF startup, when you use the callable interface, or when you start QMF for TSO
as a Db2 for z/OS stored procedure. Check that the DSQSSUBS parameter (for which the short name is S)
refers to the subsystem in which QMF is being started.

If you are running QMF as a Db2 for z/OS stored procedure, the DSQSSUBS parameter should refer to the
subsystem in which Q.DSQQMFSP procedure is installed. For more information about starting QMF, see
one of the following topics:

• “Starting QMF with ISPF” on page 72
• “Installing the QMF stored procedure interface (TSO only)” on page 107 and “Starting QMF as a Db2 for

z/OS stored procedure” on page 119
• , which provides information about starting QMF under the callable interface

DSQ10344

A coded character set identifier (CCSID) contains all of the information necessary to assign and preserve
the meaning and rendering of characters through various stages of processing and interchange. This
information always includes at least one code page. The CCSID also has an associated encoding scheme
that governs how various code points are to be handled.

At initialization time, QMF compares the GDDM application code page (specified by the APPCPG
parameter) with two different CCSID values:

• CURRENT APPLICATION ENCODING SCHEME special register

The application encoding scheme for the database is specified in this special register in Db2 for z/OS. If
QMF is running in an SBCS language, the GDDM application code page should match the value of this
special register.

• SYSIBM.SYSTEM_EBCDIC_CCSID session variable

This session variable specifies the CCSIDs that are in use for EBCDIC data on Db2 for z/OS. If QMF is
running in a DBCS language, the GDDM application code page should match the value of this session
variable.

If the GDDM application code page does not match one of the preceding two database CCSIDs, message
DSQ10344 is issued as a warning that there might be a difference between the data that is sent by Db2 to
GDDM for display and what is displayed. To correct any potential display problems, you need to change
the GDDM CCSID by modifying the APPCPG external default. For more information, see one of the
following topics:

• “Customizing GDDM external defaults” on page 49 for TSO
• “Customizing GDDM external defaults” on page 57 for CICS

For more details, see the GDDM documentation in the IBM Publications Center.

DSQ10493

This message indicates a database authorization error. Verify that the Db2 for z/OS resource control table
(RCT) contains an entry for the transaction ID that you are using to start QMF. For example, if you are
using the CICS transaction ID QMFE to start QMF, code the entry as follows:

DSNCRCT TYPE=ENTRY,TXID=QMFE,PLAN=QMF12,AUTH=DEPT1

In this example, the authorization ID is DEPT1, and the plan ID is QMF12.

DSQ22843

Make sure that GDDM is running with IOSYNCH=YES.

If the QMF IVP fails with the message A GDDM graphics printer nickname is required for
printer, there is an error in your GDDM nicknames definition file.

Chapter 19. Troubleshooting and diagnosing problems 341

http://www.ibm.com/shop/publications/order

The QMF IVP includes a step to print a query. If you use GDDM nicknames at your site, change the PRINT
QUERY statement in the IVP procedure to PRINT QUERY (PRINTER = gddmnickname. The procedure for
creating GDDM printer nicknames is provided in Chapter 13, “Setting up printing and charting functions,”
on page 213.

DSQ90579

This error indicates that you are trying to start QMF for TSO or QMF for CICS under Db2 QMF for z/OS, but
the OTC_LICENSE variable in the DSQUOPTS exit routine is set to TERMS_ACCEPTED. To correct this
problem:

1. Change the value of the OTC_LICENSE variable in the DSQUOPTS exit routine to NOT_USED.
2. Assemble and link-edit the routine as explained in “Setting global variables with the DSQUOPTS

routine” on page 132.
3. Place the modified DSQUOPTS load module in an exit library that is allocated in the initialization

procedure that starts QMF. When you use sample job DSQ1UOPT to assemble and link-edit the
DSQUOPTS exit routine, the modified DSQUOPTS load module is placed in the default QMF exit library,
QMF1210.SDSQEXIT.

For more information about the DSQUOPTS exit routine, see “Initializing global variables and QMF session
behavior when QMF starts” on page 131.

DSQ50405

The following error message when you start QMF can indicate that QMF is initializing with a load module
library (SDSQLOAD) from a previous release:
Number of REXX program parameters returned should be &V1, not &V2.

Numbers are shown in the message in place of the variables. This problem can happen even when you
correctly allocated the QMF Version 12.1 SDSQLOAD library if there are load modules from a previous
release in the linklist or LPA. The message indicates that QMF is accessing a Version 12.1 copy of
QMF1210.SDSQEXCE(DSQSCMDE), but a previous copy of the SDSQLOAD load library. See “Problems
that can occur when QMF is not using current load modules” on page 336 for steps you can take to
diagnose and correct the problem.

QMF error messages associated with SQL code -805

The following QMF errors are associated with SQL code -805 and can occur during initialization:

• DSQ10205
• DSQ11205
• DSQ12105
• DSQ13005
• DSQ14152
• DSQ14153
• DSQ14154
• DSQ15805
• DSQ16805
• DSQ17805
• DSQ30805
• DSQ31805
• DSQ35805
• DSQ36805

342 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Record all the tokens that are returned from the SQL code -805. For more information about this SQL
code, see the Db2 documentation. Refer to the following page for troubleshooting tips: http://
www.ibm.com/support/docview.wss?uid=swg21567609

QMF error messages associated with SQL code -551

During initialization, QMF checks whether the authorization ID of the user who starts QMF has either the
INSERT or DELETE privilege for the Q.PROFILES control table. If the authorization ID has either of these
privileges, QMF considers that user to be a QMF administrator. If the user is not a QMF administrator, a
-551 SQL code is issued for the INSERT privilege, the DELETE privilege, or both. This SQL code is
expected under these circumstances. The message is not displayed to the end user, nor is it captured in
the QMF trace data set (DSQDEBUG) or in the error log table (Q.ERROR_LOG) because it is not an error.
The message does not stop QMF initialization or cause any problems during QMF operation. However, if
you need to suppress the -551 SQL code for any reason, you must disable QMF administrator authority
checking according to the procedure in “Initializing global variables and QMF session behavior when QMF
starts” on page 131.

The following QMF messages are associated with SQL code -551:

• DSQ10951
• DSQ11851
• DSQ12751
• DSQ15551
• DSQ16551
• DSQ17551
• DSQ30551
• DSQ31551
• DSQ35551
• DSQ36551

For more information about QMF administrator authority, see “Required authorities for QMF
administration” on page 13.

Problems starting QMF
Use a troubleshooting process for problems starting QMF to determine the cause of the problem and to
find a resolution.

If you cannot start QMF, troubleshoot the problem in the following way:

• Determine whether the problem with starting QMF applies to all users or just a certain individual or
group.

• Check whether there are any messages on the display screen, and look up the explanation for the
message you see in the trace data in .

• If nothing appears on the screen and nothing is in the trace data, go into ISQL and issue a SELECT *
FROM Q.ERROR_LOG statement and check whether any entries appear during the time you were trying
to access QMF.

• QMF initializes Db2 and GDDM during QMF initialization. If any DSN (Db2) and ADM (GDDM) error
messages appear, look them up in the messages and codes information for the appropriate product.

Check that the Db2 database is initialized and working properly. If all users are getting a type of
ADMxxxx message when trying to start QMF, check that the base GDDM product is working correctly by
running the GDDM IVPs.

• Check that the QMF initialization process is accessing load modules for the current release.
Initialization problems can result if QMF is being initialized with modules from one or more prior
releases. See “Problems that can occur when QMF is not using current load modules” on page 336 for
more information.

Chapter 19. Troubleshooting and diagnosing problems 343

http://www.ibm.com/support/docview.wss?uid=swg21567609
http://www.ibm.com/support/docview.wss?uid=swg21567609

An error can occur when an incorrect version of the DSQUOPTS exit routine is being loaded at
initialization time or the value of the OTC_LICENSE variable is not appropriate for the edition of QMF
that you are trying to start. See “DSQ90579” on page 342 for more information.

Problems with command synonyms, function keys, and resource control tables
When you have problems with command synonyms, function keys, and resource control tables, you might
recover by reviewing the user's privileges or the table structure and data

For command synonyms, function keys, and resource control tables, ensure that:

• The user has the SQL SELECT privilege for the relevant table. If this might be the problem, issue an SQL
GRANT statement.

• The table conforms to the proper structure:

– The structure for command synonym tables is shown in “Customizing Command synonyms” on page
234.

– The structure for function key tables is shown in “Customizing QMF function keys” on page 239.
• All rows of the table contain valid data. If this might be the problem, see:

– “Entering command synonym definitions into the table” on page 235 for information about valid
command synonym definitions

– “Entering your function key definitions into the table” on page 246 for information about valid
function key definitions

• All rows in the tables are unique.
• The SYNONYMS and PFKEYS fields of the user's QMF profile contain the name of the table where the

command synonym definitions and function key definitions are stored. To see the names of the tables
currently in use, see one of the following global variables:

– The DSQAP_SYNONYM_TBL global variable contains the name of the command synonyms table in
use for the current QMF session.

– The DSQAP_PFKEY_TABLE global variable contains the name of the function key table currently in
use.

Warning messages after you start QMF
When a warning message is issued, the cause of the warning is written to the QMF trace data set,
DSQDEBUG.

Warning messages after you start QMF might be caused by using the same authorization ID for both TSO
and CICS. If a user has the same database authorization ID under both TSO and CICS and uses the same
QMF profile for both environments, QMF might issue warnings. For example, you might see warnings
about invalid entries for environment-specific commands in the Q.COMMAND_SYNONYMS table. Though
you can set up a QMF command synonym table that contains commands for both environments, users
might receive errors if they issue commands that are not specific to the environment in which QMF is
running at the time. To eliminate warning messages caused by this problem, allocate unique QMF profiles
for each environment.

Related concepts
Allocating the trace data set
Make sure that the DSQUDUMP data set or DSQDEBUG data set is allocated, depending on how your run
QMF.

Incorrect output
Sometimes you can tell that there is a problem without receiving an error message. The most common
type of this error is incorrect output.

For example, the QMF home panel does not read Version 12 Release 1, but instead points to another
release. If you are experiencing this error, correct it in one of the following ways:

344 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• If you are using QMF for TSO, check your allocation for DD statement ADMGGMAP to make sure that it
points to QMF1210.SDSQMAPn.

• If you are using QMF for CICS, check that the ADMF DD statement in the startup JCL for the CICS region
in which QMF resides correctly points to the GDDM ADMF data set. The DSQ1nADM installation job
writes the QMF Version 12.1 GDDM maps to this data set.

Unexpected behavior can also occur when QMF is using a mixed set of load modules from the current
release and one or more prior releases.

Note: Incorrect output seen on displayed reports or printed reports can be caused by improperly ordered
queries. If QMF does not have enough storage to complete the displayed and or printed report and has to
make multiple trips to the data base to re-retrieve data, it is imperative that the report data be in the
same order. Usage codes such as BREAK and GROUP require that data be in the same order for the
processing of the report. This is achieved by specifying ORDER BY statements on the SQL query that is
involved in the report. See the BREAK and GROUP edit codes for more information.

Related tasks
Problems that can occur when QMF is not using current load modules
Unexpected behavior, as well as errors or warning messages when initializing QMF or connecting to a
remote database, can happen when QMF initializes with modules from one or more prior releases.

Problems with printing
The source of printing errors can either be in QMF or in GDDM.

GDDM errors
If a GDDM error occurred during printing, QMF displays a message with the GDDM printer nickname.

QMF displays this message:
GDDM error using nnnnnnnn. See message help for details.

The character string nnnnnnnn in the message represents a GDDM printer nickname. Press the Help key
to display the help panel, which contains an explanation of the error. This topic explains some common
errors and what you can do to fix them.

GDDM printing errors begin with the characters ADM.

Table 76. Common GDDM errors

GDDM error code Message Explanation and possible solution

DSQ50623 GDDM error. ADM0307 E FILE
'ADMPRINT.REQU—QUEUE' NOT FOUND.
Severity 8. Function DSOPEN. ***
CMD=PRINT

QMF cannot find a nickname definition for
the printer name the user specified. You
must set up a nickname definition for the
printer name, or supply one that is already
defined.

DSQ50623 GDDM error. ADM0314 E UNABLE TO
OPEN 'MYPRINT'. DD STATEMENT
MISSING. Severity 8. Function DSOPEN.
*** CMD=PRINT

QMF was unable to find a DD statement for
the output. You must provide a DD
statement to your QMF startup EXEC,
CLIST, or JCL to specify what to do with
output from the nickname.

DSQ50623 GDDM error. ADM0482 E DEVICE NAME
LIST '31E' IS INVALID FOR FAMILY 1.
Severity 8. Function DSOPEN. ***
CMD=PRINT

Your nickname definition is incorrect. The
device token you supplied is not a valid
token for the type of GDDM printer for
which you created the nickname.

DSQ50631 GDDM error. ADM0904 E ALPHANUMERIC
FIELDS ARE NOT SUPPORTED FOR THIS
DEVICE. Severity 8. Function ASDFLD. ***
CMD=PRINT

The output the user is trying to print is not
valid for the type of printer defined by the
GDDM nickname. Certain types of output,
such as QMF charts, are restricted to
specific families of GDDM printers.

Chapter 19. Troubleshooting and diagnosing problems 345

Table 76. Common GDDM errors (continued)

GDDM error code Message Explanation and possible solution

DSQ90551 GDDM error. ADM0055 E SPINIT, AT
'82F810C2'X ADM0050 E DEFAULTS
ERROR. INVALID SYNTAX OR VALUE AT
'...JIP,ADMMNICK'

You might see a message like this when
starting QMF. The message indicates that
you made a syntax error somewhere in the
ADMMNICK specification for the nickname.
After you fix the syntax error, reload the
ADMADFC GDDM external defaults module.

DSQ50633 GDDM error ADM0327 E 'TD WRITEQ'
ERROR CODE '08000000'X, ON 'SYSP'.
Severity 8. Function FSFRCE. ***
CMD=PRINT

A message like this indicates that the
temporary storage or transient data queue
(SYSP) to which QMF is attempting to print
is closed, or that a DD statement is missing
from your startup JCL.

Related information
Search for explanations about GDDM errors, about valid device tokens, and about output by family of
printer in the GDDM documentation.

QMF errors
If the source of a printing error is QMF, you can often recover.

The information in the following table helps you to solve errors that can occur during printing:

Table 77. QMF printing errors and possible solutions

Symptom What it means What to do

You issue the PRINT command
from the command line or a
function key and see the following
message:
GDDM printer nickname is
required for PRINTER.

The object you are trying to print
needs a printer name, and no
default printer name exists in your
profile.

Press the Enter key again to display
a prompt panel on which you can
enter a printer name and other print
parameters. You can set a default
printer name in your profile to avoid
being prompted.

You issue several PRINT
commands but find that only the
last object is printed.

Your output data set does not have
a disposition of MOD, so each
PRINT operation reopens the data
set and overwrites the previous
contents.

Change the disposition of your
output data set to MOD. You cannot
use the disposition MOD with a
member of a regioned data set.

You print a QMF object and see
unexpected control characters in
the printed output or data set.

The device token or PROCOPT you
are using does not match the device
on which you are actually printing.

Supply the correct device token, or
reduce control characters to a
minimum by one of these
techniques:

• For a report, table, procedure,
profile, or a SQL or QBE query,
specify PRINTER=' ' to bypass
GDDM printing.

• For other objects, use
PROCOPT=((PRINTCTL,0)) with
no device token.

When printing a report, table,
procedure, profile, or a SQL or QBE
query, you see the following
message:
File DSQPRINT did not open.

No default printer name exists in
your profile, and no DSQPRINT data
set or system output is currently
allocated.

Allocate DSQPRINT before issuing a
PRINT command.

346 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/shop/publications/order

If you are using QMF under TSO and you allocate output from DSQPRINT to go to the HOLD queue, to
release the output to the OUTPUT queue you must issue the following TSO command: FREE
DDNAME(DSQPRINT)

Display errors
If a report has several display control characters in it, data in one or more of the table columns from
which the report is derived might be binary (rather than character) data. You can handle these control
characters with the HEX function or with edit codes.

Using the HEX function

The HEX function is an SQL scalar function that converts its argument to a string of legitimate characters.
The resulting string is the value of the argument in hexadecimal notation. For example, the function
argument ABC produces the string C1C2C3 in hexadecimal notation.

Instruct users to use the word HEX in their queries in front of any columns that might contain binary data.
For example, the following statement converts binary data in column A of the table SMITH.TABLEA.

SELECT HEX(A) FROM SMITH.TABLEA

Using edit codes for hexadecimal and binary data

The edit codes provided with QMF allow QMF to display binary data in character columns: X or XW (for
hexadecimal data), and B, BW, C, or CW (for binary data).

Handling binary data with user-written edit routines

Using the HEX function or the HEX and bit edit codes can be a good way to handle binary data. You can
create your own edit code and write an edit exit routine in COBOL, PL/I, or Assembler to convert the
binary data to the character string you want. You might consider predefining some QMF forms for users
that use the new edit codes that you create.

Related concepts
Custom edit exit routines for QMF forms
QMF forms help users to control the format of data returned from the database. If the default edit codes
do not meet the report-editing needs of your site, you can create your own edit codes.

Resolving storage-related issues
If you receive the following error messages: DSQ14352; DSQ14362; DSQ14484; or DSQ14504 (Not
enough above-the-bar storage exists to complete the request), see “Above the bar
storage requirement changes” on page 88. Note that starting in QMF Version 11, QMF makes use of above
the bar storage for XML and LOB data types.

Managing QMF performance
You can monitor the performance of QMF and find some solutions or workarounds to common
performance issues.

Capturing EXPLAIN information for dynamic statements
You can monitor the performance of eligible dynamic SQL queries by capturing EXPLAIN information for
those queries. EXPLAIN data contains information about the access paths that are used to process SQL
statements.

Before you begin
The following prerequisites are required:

• Db2 for z/OS is in Version 10 new-function mode or later

Chapter 19. Troubleshooting and diagnosing problems 347

• The PLAN_TABLE and DSN_STATEMENT_CACHE_TABLE tables exist on the Db2 for z/OS server

About this task
The behavior of the EXPLAIN facility for dynamic SQL statements is controlled by the CURRENT EXPLAIN
MODE special register. In QMF, you can set this special register through the DSQEC_EXPL_MODE global
variable. This global variable affects only those statements that are issued through the RUN QUERY
command.

Procedure

To capture EXPLAIN information for dynamic SQL statements:
• Set the DSQEC_EXPL_MODE global variable to YES or EXPLAIN.

A value of YES causes explainable dynamic SQL statements to run normally. Information is captured in
EXPLAIN tables after each statement is prepared and executed.

A value of EXPLAIN causes explainable dynamic SQL statements to not execute, but information is
captured to EXPLAIN tables after each statement is prepared in the application. Applications that
depend on the actual successful execution of statements fail if they run while this global variable is set
to EXPLAIN. Only applications with simple application logic should use this option.

Related concepts
Solving storage problems
Users might notice slow performance in running queries or formatting reports when not enough virtual
storage is available to retrieve all rows required by the operation. You can recover from this problem by
increasing storage in one or more areas.
Solving resource contention problems
SELECT queries can time out when required rows are being updated by other operations. To increase
concurrency of your applications and limit resource contention on Db2 for z/OS, you can set the QMF
DSQEC_CON_ACC_RES global variable according to your site's needs.
Improving eligibility for the Db2 dynamic statement cache with literal concentration enablement
When Db2 dynamic statement caching is active, you can specify that Db2 exclude the literal constants
that are in dynamic SQL statements when searching for a statement text match in the dynamic statement
cache. This can result in more sharing and reuse of cached statements.
Related tasks
Enabling QMF queries to be eligible for query acceleration
Using a query accelerator that is available to the Db2 for z/OS database can significantly improve the
performance of certain kinds of queries. QMF queries can be eligible to run on a query accelerator if they
meet the prerequisites and conditions for query acceleration that are listed in the Db2 documentation.
Improving QMF performance with the DSQEC_BUFFER_SIZE global variable setting
Improve QMF performance by increasing the value of the DSQEC_BUFFER_SIZE global variable.

Enabling QMF queries to be eligible for query acceleration
Using a query accelerator that is available to the Db2 for z/OS database can significantly improve the
performance of certain kinds of queries. QMF queries can be eligible to run on a query accelerator if they
meet the prerequisites and conditions for query acceleration that are listed in the Db2 documentation.

About this task

In general, QMF queries inherently meet the eligibility requirements for query acceleration. For example,
the QMF RUN QUERY command runs user-issued SQL statements dynamically. However, you must
complete the following procedure to ensure that QMF queries are eligible for query acceleration.

Procedure

To enable QMF queries to be eligible for query acceleration:

348 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• Ensure that the CURRENT QUERY ACCELERATION special register is set to the appropriate value for
query acceleration.

You can determine the value of the CURRENT QUERY ACCELERATION special register by running the
following query:

SELECT CURRENT QUERY ACCELERATION
FROM SYSIBM.SYSDUMMY1

The initial value of the CURRENT QUERY ACCELERATION special register is determined by the value of
the Db2 QUERY_ACCELERATION subsystem parameter. The SET CURRENT QUERY ACCELERATION
statement can be issued in a QMF SQL query to override the current value of the
QUERY_ACCELERATION subsystem parameter.

• Depending on the capabilities of your query accelerator, the QMF DSQSMRFI (MR) program parameter
might be of importance. Some query accelerators do not support queries that are run with rowset
cursors. If QMF is started with the DSQSMRFI (MR) program parameter set to YES, QMF uses a rowset
cursor.

For some query accelerators, using a rowset cursor makes queries ineligible for query acceleration. To
check the current value of the DSQSMRFI (MR) parameter, issue the SHOW GLOBALS command and
check the value of the DSQAO_DSQSMRFI variable. A value of 0 for the DSQAO_DSQSMRFI global
variable means that NO was specified for the DSQSMRFI program parameter. A value of 1 for the
DSQAO_DSQSMRFI global variable means that YES was specified for the DSQSMRFI program
parameter.

Related concepts
Solving storage problems
Users might notice slow performance in running queries or formatting reports when not enough virtual
storage is available to retrieve all rows required by the operation. You can recover from this problem by
increasing storage in one or more areas.
Solving resource contention problems
SELECT queries can time out when required rows are being updated by other operations. To increase
concurrency of your applications and limit resource contention on Db2 for z/OS, you can set the QMF
DSQEC_CON_ACC_RES global variable according to your site's needs.
Improving eligibility for the Db2 dynamic statement cache with literal concentration enablement
When Db2 dynamic statement caching is active, you can specify that Db2 exclude the literal constants
that are in dynamic SQL statements when searching for a statement text match in the dynamic statement
cache. This can result in more sharing and reuse of cached statements.
Related tasks
Capturing EXPLAIN information for dynamic statements
You can monitor the performance of eligible dynamic SQL queries by capturing EXPLAIN information for
those queries. EXPLAIN data contains information about the access paths that are used to process SQL
statements.
Improving QMF performance with the DSQEC_BUFFER_SIZE global variable setting
Improve QMF performance by increasing the value of the DSQEC_BUFFER_SIZE global variable.

Solving storage problems
Users might notice slow performance in running queries or formatting reports when not enough virtual
storage is available to retrieve all rows required by the operation. You can recover from this problem by
increasing storage in one or more areas.

Increasing the user's report storage

If you are seeing storage-related errors or performance problems, you can make adjustments to users'
virtual storage or spill data configurations.

• Adjusting virtual storage for reports

Chapter 19. Troubleshooting and diagnosing problems 349

Users might experience slow performance if they do not have enough virtual storage to accommodate
large reports. For example, if you set the DSQSBSTG parameter at a very low value and the user runs a
query that retrieves hundreds of thousands of rows, QMF can only maintain a small amount of data in
memory. The user might find performance slow for formatting complex reports or scrolling the report.

To maximize report performance, make sure that you specify an adequate amount of virtual storage for
the user, using the DSQSBSTG or DSQSRSTG parameter. To provide the best performance, use a value
that accommodates the largest report the user is likely to require. However, be aware that setting the
DSQSRSTG parameter at a very high value can cause slow performance.

• Defining spill storage for reports

In QMF for TSO, you can specify the use of extended virtual storage to store data no longer needed in
active storage, thus improving report performance.

You can also spill data to a file in both QMF for TSO and CICS. However, using primarily virtual storage
for QMF operations provides better performance. Users who rely on a spill file and have little virtual
storage might notice slow performance for large reports. Even with a spill file, a user can encounter an
incomplete data condition if the spill file is not large enough to hold all the data. For CICS, because a
spill file can hold a maximum of 32,767 rows of size 4 KB each, setting DSQSBSTG higher ensures that
QMF will complete the report.

If you are using a spill file, performance might also slow down if QMF needs a data row (as a result of a
SCROLL BACKWARD command) and that data is not in the spill file or in virtual storage. In this case, an
I/O abend occurs. QMF provides error-handling routines for the DCB SYNAD exit and recovers from
these I/O abends using information provided using the DCB abend exit. QMF then quits using the spill
file and fetches the data again from the database.

Important: If you use z/OS tools that intercept DCB abends (such as the B37 abend), ensure that you
exclude the QMF spill file from such operations. Otherwise, QMF cannot properly manage the spill file,
causing not only unpredictable results, but also difficulty in tracing and diagnosing any errors.

Increasing the storage group's volume space

If the problem is caused by a lack of available space on the volumes of a control table storage group, add
more volumes to this storage group with the Db2 ALTER STOGROUP statement.

Increasing the size of the CICS region

If a QMF transaction runs out of virtual storage in the CICS region, the transaction might time out waiting
for storage to become available. If this happens, ensure that the size of the CICS region is large enough to
accommodate your users' needs. Make sure that you consider storage required for additional products
you have installed.

Related concepts
Solving resource contention problems
SELECT queries can time out when required rows are being updated by other operations. To increase
concurrency of your applications and limit resource contention on Db2 for z/OS, you can set the QMF
DSQEC_CON_ACC_RES global variable according to your site's needs.
Improving eligibility for the Db2 dynamic statement cache with literal concentration enablement
When Db2 dynamic statement caching is active, you can specify that Db2 exclude the literal constants
that are in dynamic SQL statements when searching for a statement text match in the dynamic statement
cache. This can result in more sharing and reuse of cached statements.
Addressing storage requirements
For the amount of storage required to copy the QMF Version 12.1 libraries from the distribution media
using SMP/E, refer to the QMF program directory that is appropriate for your QMF version and national
language.
Related tasks
Capturing EXPLAIN information for dynamic statements

350 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

You can monitor the performance of eligible dynamic SQL queries by capturing EXPLAIN information for
those queries. EXPLAIN data contains information about the access paths that are used to process SQL
statements.
Enabling QMF queries to be eligible for query acceleration
Using a query accelerator that is available to the Db2 for z/OS database can significantly improve the
performance of certain kinds of queries. QMF queries can be eligible to run on a query accelerator if they
meet the prerequisites and conditions for query acceleration that are listed in the Db2 documentation.
Improving QMF performance with the DSQEC_BUFFER_SIZE global variable setting
Improve QMF performance by increasing the value of the DSQEC_BUFFER_SIZE global variable.
Spilling report data to extended virtual storage (TSO only)
In QMF for TSO, use extended storage for spill data unless the system on which QMF is running has very
limited extended storage available.

Solving resource contention problems
SELECT queries can time out when required rows are being updated by other operations. To increase
concurrency of your applications and limit resource contention on Db2 for z/OS, you can set the QMF
DSQEC_CON_ACC_RES global variable according to your site's needs.

The values for this global variable support concurrent access resolution available in Db2 for z/OS Version
10 as well as the Db2 for z/OS Version 9 SKIP LOCKED DATA option.

Related concepts
Solving storage problems
Users might notice slow performance in running queries or formatting reports when not enough virtual
storage is available to retrieve all rows required by the operation. You can recover from this problem by
increasing storage in one or more areas.
Improving eligibility for the Db2 dynamic statement cache with literal concentration enablement
When Db2 dynamic statement caching is active, you can specify that Db2 exclude the literal constants
that are in dynamic SQL statements when searching for a statement text match in the dynamic statement
cache. This can result in more sharing and reuse of cached statements.
Related tasks
Capturing EXPLAIN information for dynamic statements
You can monitor the performance of eligible dynamic SQL queries by capturing EXPLAIN information for
those queries. EXPLAIN data contains information about the access paths that are used to process SQL
statements.
Enabling QMF queries to be eligible for query acceleration
Using a query accelerator that is available to the Db2 for z/OS database can significantly improve the
performance of certain kinds of queries. QMF queries can be eligible to run on a query accelerator if they
meet the prerequisites and conditions for query acceleration that are listed in the Db2 documentation.
Improving QMF performance with the DSQEC_BUFFER_SIZE global variable setting
Improve QMF performance by increasing the value of the DSQEC_BUFFER_SIZE global variable.

Improving QMF performance with the DSQEC_BUFFER_SIZE global variable setting
Improve QMF performance by increasing the value of the DSQEC_BUFFER_SIZE global variable.

About this task

By default, QMF uses 4K buffers to maintain data rows for both single row and multirow fetch operations.
For multirow fetch operations, if a data row length is greater than 2056 bytes, only one row will fit in a
standard buffer per fetch. As a result, multirow fetch operations for long data rows are no faster than a
single row fetch.

To change this behavior, administrators can increase the value of the DSQEC_BUFFER_SIZE global
variable. Increasing the buffer size allows QMF to retrieve more data rows per fetch and can significantly
improve performance by reducing database traffic.

Chapter 19. Troubleshooting and diagnosing problems 351

Related concepts
Solving storage problems
Users might notice slow performance in running queries or formatting reports when not enough virtual
storage is available to retrieve all rows required by the operation. You can recover from this problem by
increasing storage in one or more areas.
Solving resource contention problems
SELECT queries can time out when required rows are being updated by other operations. To increase
concurrency of your applications and limit resource contention on Db2 for z/OS, you can set the QMF
DSQEC_CON_ACC_RES global variable according to your site's needs.
Improving eligibility for the Db2 dynamic statement cache with literal concentration enablement
When Db2 dynamic statement caching is active, you can specify that Db2 exclude the literal constants
that are in dynamic SQL statements when searching for a statement text match in the dynamic statement
cache. This can result in more sharing and reuse of cached statements.
Enabling support for multirow fetch and insert
The DSQSMRFI parameter controls whether the database uses multirow or single-row fetch and insert.
Related tasks
Capturing EXPLAIN information for dynamic statements
You can monitor the performance of eligible dynamic SQL queries by capturing EXPLAIN information for
those queries. EXPLAIN data contains information about the access paths that are used to process SQL
statements.
Enabling QMF queries to be eligible for query acceleration
Using a query accelerator that is available to the Db2 for z/OS database can significantly improve the
performance of certain kinds of queries. QMF queries can be eligible to run on a query accelerator if they
meet the prerequisites and conditions for query acceleration that are listed in the Db2 documentation.
Improving QMF performance with the DSQEC_BUFFER_SIZE global variable settingImprove QMF
performance by increasing the value of the DSQEC_BUFFER_SIZE global variable.

Improving eligibility for the Db2 dynamic statement cache with literal concentration
enablement

When Db2 dynamic statement caching is active, you can specify that Db2 exclude the literal constants
that are in dynamic SQL statements when searching for a statement text match in the dynamic statement
cache. This can result in more sharing and reuse of cached statements.

This Db2 feature can be achieved through QMF with the activation of the QMF global variable
DSQEC_CON_CSWL. When DSQEC_CON_CSWL set to a value of '1', QMF will append the Db2 prepare
attribute CONCENTRATE STATEMENTS WITH LITERALS to all user driven SQL SELECT statements. If
activated, QMF commands such as RUN QUERY, DISPLAY TABLE, EXPORT TABLE and PRINT TABLE
would be eligible for this Db2 performance improvement.

Related concepts
Solving storage problems
Users might notice slow performance in running queries or formatting reports when not enough virtual
storage is available to retrieve all rows required by the operation. You can recover from this problem by
increasing storage in one or more areas.
Solving resource contention problems
SELECT queries can time out when required rows are being updated by other operations. To increase
concurrency of your applications and limit resource contention on Db2 for z/OS, you can set the QMF
DSQEC_CON_ACC_RES global variable according to your site's needs.
Related tasks
Capturing EXPLAIN information for dynamic statements
You can monitor the performance of eligible dynamic SQL queries by capturing EXPLAIN information for
those queries. EXPLAIN data contains information about the access paths that are used to process SQL
statements.
Enabling QMF queries to be eligible for query acceleration

352 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Using a query accelerator that is available to the Db2 for z/OS database can significantly improve the
performance of certain kinds of queries. QMF queries can be eligible to run on a query accelerator if they
meet the prerequisites and conditions for query acceleration that are listed in the Db2 documentation.
Improving QMF performance with the DSQEC_BUFFER_SIZE global variable setting
Improve QMF performance by increasing the value of the DSQEC_BUFFER_SIZE global variable.

Using diagnosis aids
Try to diagnose the problem by using a variety of diagnostic aids.
Related concepts
Correcting common problems
Check the list of common problems and possible solutions before you try a more in-depth diagnosis.

Diagnosing your problem using message support
QMF issues various types of messages during a user's session, indicating either that QMF successfully
completed the user's request or that an error occurred.

All QMF messages have a message number of the form DSQnnnnn, where nnnnn is a five-digit number.

To obtain the message number and more information about the error, press the Help key to display a
message help panel. Each help panel has a panel number associated with it. If you report the problem to
IBM, your IBM Software Support representative might need this number. To make sure that the number
displays, set the global variable DSQDC_SHOW_PANID to 1: SET GLOBAL (DSQDC_SHOW_PANID=1

Related reference
Db2 QMF Messages and CodesSearch for possible solutions for problems by message number or code.

Determining which QMF function issued an error message
You can use the QMF message number to determine which QMF component issued the message. By
knowing the component, you can isolate the problem to a specific function.

The QMF functions and their associated ranges of message numbers are shown in the following table. The
trace IDs are the same IDs that you use to trace QMF activity for each function.

In addition to the message numbers in this table, the following ranges of message numbers might be
generated during QMF initialization:

DSQI0001 - DSQI0100
DSQ90000 - DSQ99999

Table 78. QMF functions and the message numbers they issue

Function Trace ID Message numbers

Database services I DSQ10000 - DSQ19999, DSQ30000
- DSQ39999

Dialog command processing D DSQ20000 - DSQ29999

Display services E DSQ40000 - DSQ49999

Common services and systems
interface

C DSQ50000 - DSQ59999

Report formatting F DSQ60000 - DSQ69999

Charting P DSQ70000 - DSQ79999

Full-screen windows G DSQ80000 - DSQ89999

Chapter 19. Troubleshooting and diagnosing problems 353

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.qmf11.mandc.doc/qmfmc.htm

Handling system error messages
A system error might indicate a system problem, a resource problem, or an unexpected condition.

These problems might be within QMF, the database manager, or some other software component. System
errors are indicated by the following message:
Sorry, a system error occurred. Your command may not have been executed.

Press the Help key to display more information about the message.

All uncommitted changes to the database are rolled back when a system problem stops QMF. Error
information about the system problem is written to the trace data, which is the only source of information
for a system problem that stops QMF. The Q.ERROR_LOG table contains information about a system error
only if the error occurred while the database was still running.

Related reference
Db2 QMF Messages and CodesSearch for possible solutions for problems by message number or code.

Handling SQL return codes
In some cases, the message that QMF displays might be associated with an SQL return code.

For example, suppose a user receives QMF message DSQ10422. This message is associated with SQL
return code -30060, which has the following text:
RDB AUTHORIZATION FAILURE

The online help for all QMF messages that are associated with SQL return codes includes the contents of
the SQLCA (SQL Communicates Area). To see the SQLCA output, press the Help key while the message is
displayed in the QMF message area, then scroll to the end of the help text. For additional help with SQL
return codes, see the Db2 documentation.

SQL queries that run multiple SQL statements can result in multiple SQL return codes (positive or
negative). In these cases, the QMF message (and any associated SQL code) displayed when the query
completes is associated with the last statement in the query only. You can view the QMF trace output to
see all the SQL return codes and SQLCA information associated with all statements in the query.

You can use the DSQDC_POS_SQLCODE global variable to control how QMF handles positive SQL return
codes. The following values are valid for this variable:
2

Allows users to display online help associated with the positive SQL code.
1

Logs the message associated with the SQL code to DSQDEBUG.
0

The message associated with the SQL code is not logged and no help text is provided.

Related tasks
The trace facility
QMF provides a facility that traces QMF activity during a user's session. Trace output from the facility can
help you analyze errors such as incorrect or missing output, performance problems, or loops.

Creating an interrupt to capture diagnostic information
You can use the QMF interrupt facility to gather information about a problem.

About this task

By using the interrupt facility, you can produce an abend dump or cause trace information to be displayed
or written to the DSQDEBUG data set.

In TSO, the QMF interrupt handler can be activated even when a QMF command is not running.

Procedure

To interrupt QMF:

354 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.qmf11.mandc.doc/qmfmc.htm

1. Log on to QMF under the user ID of the user whose problem you are diagnosing.
2. Re-create the problem.
3. At the point at which you want to start gathering information about the problem, create the interrupt.

For most system configurations, you can create an attention interrupt by pressing either the Attn key
or a combination of the Reset and PA1 keys (or equivalent key combinations in a terminal emulation
session). If these combinations do not work for you, see the appropriate information for your current
system configuration to obtain more information about creating the interrupt.

The interrupt facility responds by displaying the following message:
DSQ50546 QMF command interrupted! Clear screen and press enter.

Figure 117. QMF interrupt handler prompt 1
4. After the interrupt message appears, press the Clear and Enter keys (or an equivalent key combination

in a terminal emulation session), as the message instructs you to do.

The following message appears:
DSQ50547 QMF command interrupted! Do one of the following:
==> To continue QMF command, type 'CONT'.
==> To cancel QMF command, type 'CANCEL'.
==> To enter QMF debug, type 'DEBUG'.

Figure 118. QMF interrupt handler prompt 2
5. Take one of the following actions:

• Enter CONT to return control to wherever you were before you caused the interrupt, as if the
interrupt never occurred.

• Enter CANCEL to stop any command that is running at the time of the interrupt. The keyboard is
unlocked, and QMF awaits your next command. However, it is not always possible to cancel a
command.

• Enter DEBUG to capture diagnostic information. The following sample output is in response to
entering DEBUG:

-- OK, QMF debug entered. QMF CSECT trace is:
 DSQDSUPV -> DSQDSUPX -> DSQEADAP -> DSQEMAIN -> DSQEINPT -> ENDTRACE
==> To continue QMF command, type 'CONT'
==> To cancel QMF command, type 'CANCEL'
==> To abnormally terminate QMF, type 'ABEND'
==> To set QMF trace, type 'TRACEALL' or 'TRACENONE'

Figure 119. Diagnostic information captured by entering DEBUG in response to the interrupt prompt

The trace information in the second line of this example indicates that, at the time of the interrupt,
control was in CSECT DSQEINPT. Control reached this CSECT by passing successively through the
CSECTs DSQDSUPV, DSQDSUPX, DSQEADAP, and DSQEMAIN.

6. Enter the tracing options that you want. Respond to the interrupt prompt panel by entering one of the
following options:

• Enter CONT to return control to wherever you were before you caused the interrupt, as if the
interrupt never occurred.

• Enter CANCEL to stop any command that is running at the time of interrupt. The keyboard is
unlocked, and QMF awaits your next command. However, it is not always possible to cancel a
command.

• Enter ABEND to abnormally terminate QMF and produce an abend dump (if a DSQUDUMP data set
was allocated for the session).

• Enter TRACEALL to cause QMF to start adding the most detailed level of tracing output to the
DSQDEBUG data set. Control returns to wherever it was at the time of interrupt.

• Enter TRACENONE to cause QMF to stop adding any trace output to the DSQDEBUG data set.
Control returns to wherever it was at the time of interrupt.

Chapter 19. Troubleshooting and diagnosing problems 355

The trace facility
QMF provides a facility that traces QMF activity during a user's session. Trace output from the facility can
help you analyze errors such as incorrect or missing output, performance problems, or loops.

Allocating the trace data set
Make sure that the DSQUDUMP data set or DSQDEBUG data set is allocated, depending on how your run
QMF.

Certain procedures in this information rely on abend information as well as trace information that QMF
records in the DSQDEBUG data set.

• Trace information in TSO, ISPF, or native z/OS

Trace information is recorded in the DSQDEBUG data set. You can find abend dump information in the
DSQUDUMP data set. Make sure that this data set is allocated before you begin the QMF session. The
data sets are allocated in the sample TSO logon procedure that is provided with QMF.

If these data sets are not allocated automatically before a QMF session, issue the following TSO
statements before you invoke QMF for your diagnostic session.

ATTR DEBUG RECFM(F B A) LRECL(121)
ATTR DUMP RECFM(F B A) LRECL(125)
ALLOC DDNAME(DSQDEBUG) SYSOUT(A) USING(DEBUG)
ALLOC DDNAME(DSQUDUMP) SYSOUT(A) USING(DUMP)
ALLOC DDNAME(SYSUDUMP) SYSOUT(A)

Figure 120. Allocating the data sets for TSO

If you are starting TSO as a Db2 for z/OS stored procedure, data sets for the trace output and other
functions must be allocated in the JCL that starts the WLM address space from which QMF runs.

• Trace information in CICS

The trace is recorded in the DSQDEBUG data set. Allocate this data set in the CICS startup JCL. The
trace can be shared between all users in the same CICS address space.

The trace data set is described as an extrapartition data set. It was defined when CICS installation job
QMF1210.SDSQSAPE(DSQ1ECSD) was run. The following figure shows the definition information.

DEFINE TDQUEUE(DSQD)
DESCRIPTION(QMF Trace Info) GROUP(QMF1210E)
TYPE(EXTRA) BLOCKSIZE(6050) DDNAME(DSQDEBUG)
RECORDFORMAT(VARIABLE) TYPEFILE(OUTPUT) RECORDSIZE(121)
BLOCKFORMAT(BLOCKED)

Figure 121. Description (in a CICS table) of the trace data set

QMF trace data from all the QMF users in a single CICS region is written to a single trace data set. Each
trace entry contains the terminal ID of the user who recorded it.

To look at the trace data set while the CICS region is active, you must close the trace data set that is
using the CICS queue ID that you specified on the DSQSDBQN parameter (DSQD is the default). You can
do close the trace data set by using the transaction CEMT supplied with CICS. For example:

CEMT I TDQUEUE(DSQD)

When the trace data set is closed, you can print or browse it from ISPF on TSO. When the trace data set
is closed, no other records can be written by CICS users. QMF continues to operate in this state without
recording trace records. To make the QMF trace available again, you can use the same CEMT
transaction that you used to close the trace data set to open it again.

356 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Starting the trace facility
You start a QMF trace by having the user enter the SET PROFILE command with a tracing option or by
updating the TRACE field in the user's profile. When you start QMF for TSO as a Db2 for z/OS stored
procedure, tracing options are passed on the CALL statement that starts the interface.

Before you begin

Be sure that a data set with a ddname of DSQDEBUG is allocated, as explained in “Allocating the trace
data set” on page 356. The trace facility writes trace results into the DSQDEBUG data set, which can be
printed or displayed. This data set is used for trace purposes only.

Procedure

1. Decide on your tracing options.

With these options, you control what is traced and the level of detail.

When you specify a value of ALL on the DSQSDBUG program parameter, all QMF activity is traced at
the highest level of detail, including program failures that might occur during QMF initialization.

If the output exceeds the maximum size of a temporary storage queue, use a transient data queue.
2. Specify tracing options. During a QMF session, some set of tracing options is always in effect unless

you specify a value of NONE on the DSQSDBUG parameter. You can override current trace options in
the following ways:

• Instruct the user to enter the following QMF command: SET PROFILE (T=value

In the preceding command, value is ALL or a string that indicates QMF functions and their levels of
detail in the trace output.

• Use SQL UPDATE statements for the TRACE field in the user's profile, which has the same effect as
the previous method. Instruct the user to reconnect to the database to initialize the new values. For
example, user JONES with password MYPW can enter: CONNECT JONES (PA=MYPW

Users who do not have Db2 CONNECT authority can end the current QMF session and begin
another to initialize the values.

Related concepts
Getting the right level of detail in your trace output
You can trace all QMF functions in detail or trace individual QMF functions.
Viewing QMF trace data
DSQDEBUG holds the information that is recorded by the trace facility. It must be allocated before you
start QMF if you want to use tracing.
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Related tasks
Installing the QMF stored procedure interface (TSO only)

Chapter 19. Troubleshooting and diagnosing problems 357

QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Getting the right level of detail in your trace output
You can trace all QMF functions in detail or trace individual QMF functions.

To trace all QMF functions at the most detailed level, use a value of ALL in the TRACE column of the
Q.PROFILES table. If the results of this option are too large, you can limit the amount of trace output to a
specific size by setting the DSQEC_TRACE_LIMIT global variable.

To trace individual QMF functions, use a different character string in the TRACE column of the
Q.PROFILES table. Use letters for the QMF functions you want to trace and a number for the level of trace
detail for each function. You must pair each letter with a number as follows:

• The value 1 traces a function at a medium level of detail.
• The value 2 traces a function at the highest level of detail.

When you use function-level tracing, only the functions you specify in the character string are traced. The
following table shows the letter to use for each QMF function.

Table 79. Function-level trace IDs

Trace ID QMF function that is traced

A Application support services

C Common services and systems interface

D Dialog command processing

E Display services for parts of QMF such as Prompted Query, QBE, Table Editor, global
variable lists, and database object lists

F Report formatting

G QBE, Prompted Query, and Table Editor full-screen windows

I Database services

L Message and command logging

P Charting (Interactive Chart Utility)

R Storage management functions

U User exits, such as user edit exit routines or a governor exit routine

For example, to trace message and command logging at the most detailed level, application support
services at a medium level, and common services and systems interfaces at the most detailed level, use
this command:

SET PROFILE (T=L2A1C2

The value of the TRACE option in the QMF profile is ignored when you start QMF as a Db2 for z/OS stored
procedure. However, you can include a SET PROFILE (TRACE command in the initial procedure
specified by the object-name parameter to change the level of trace detail for the duration of the stored
procedure session as long as the L2-destination parameter is set to DSQDEBUG. When you issue a SET
PROFILE command to change the trace settings, ensure that L2 is among the options specified on the SET
PROFILE (TRACE command in the initial procedure if you want to continue tracing messages and
commands.

Use the L1 and L2 trace records to precisely record user activities during a QMF session. A value of L1
writes records for all messages that are issued by QMF. L2 writes all the L1 records plus more records
that describe the execution of QMF commands. Use the L2 trace code to log each command that a user

358 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

issued and how QMF responded to that command. The following example of a RUN QUERY command fail
because the user names columns that are not in the table.

--
---------- ****** 93/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
COMMAND TEXT:
RUN QUERY
--
--
---------- ****** 93/12/15 20:39 ****** -----------------
USERID: KRIS
AUTHORIZATION-ID: KRIS
MESSAGE NUMBER: DSQ12405
MESSAGE TEXT:
Column name DATE is not in table STAFF.
&O1: DATE
&O2: STAFF
&O9: -205
--

Figure 122. Using the L2 trace code to trace a user's commands and messages

Within the DSQDEBUG data set, the messages appear chronologically. When commands are included,
they also appear chronologically and are intermixed with the messages. A message is associated with the
command that precedes it in the data set or file.

QMF messages have variables for parts of the message that change, such as a table or column name. You
can use the trace data to help a user decipher a message that includes variables. For example, the
message that is shown in the previous example appears in Db2 QMF Messages and Codes as: Column
&V1 is not in table &V2. The bottom half of the example shows that the value for &V1 in the
message is DATE and that the value for &V2 is STAFF. Substitute these values into the message to help a
user solve the problem.

These variables might also appear in the definition of the help panels that are associated with the error
message. Use the variable values from the trace data together with the HELP command to reconstruct the
message help panel if necessary.

Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.
Starting QMF for TSO from QMF for Workstation and running a procedure with logic
In this example, you start QMF for TSO as a stored procedure from QMF for Workstation. You then run a
procedure with logic that sets default values, retrieves global variables values, and runs a query.

Tracing individual QMF modules
You can turn on a trace for certain modules using the SET PROFILE command and the module
DSQUTRAC.

Important: Run a trace at the module level only under the guidance of IBM Software Support.

For example, you can trace the formatter buffer manager without tracing the line manager or the
summary manager. The values for module-level tracing are:

• A value of 3 provides a detailed trace for specific programs in a component, and traces entry and exit for
all other programs in the component.

• A value of 4 traces a module only.

To create a module-level trace, use the DSQUTRAC module to list the modules that you want to trace.
Then assemble and link-edit the module. After the module is created, you must make it available. You can
then run the following command: SET PROFILE (TRACE=F4

Chapter 19. Troubleshooting and diagnosing problems 359

To trace only a specific module or set of modules, you must set the DSQEC_TRACE_MODULE global
variable. In this variable, specify the name of the modules that you want to trace (you can specify up to six
names separated by commas). Then, run the following command: SET PROFILE (TRACE=ALL. This will
initiate tracing for only the modules specified in DSQEC_TRACE_MODULE. If you specify modules via the
SET GLOBAL command from the command line, then module names must be enclosed in single quotes.

The value of the TRACE option in the QMF profile is ignored when you start QMF as a Db2 for z/OS stored
procedure. However, you can include a SET PROFILE (TRACE command in the initial procedure
specified by the object-name parameter to change the level of trace detail for the duration of the stored
procedure session as long as the L2-destination parameter is set to DSQDEBUG. When you issue a SET
PROFILE command to change the trace settings, ensure that L2 is among the options specified on the SET
PROFILE (TRACE command in the initial procedure if you want to continue tracing messages and
commands.

Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.
Starting QMF for TSO from QMF for Workstation and running a procedure with logic
In this example, you start QMF for TSO as a stored procedure from QMF for Workstation. You then run a
procedure with logic that sets default values, retrieves global variables values, and runs a query.

Viewing QMF trace data
DSQDEBUG holds the information that is recorded by the trace facility. It must be allocated before you
start QMF if you want to use tracing.

If you are running QMF for TSO as a Db2 for z/OS stored procedure, you can allocate the data set to print
or display it.

In CICS, depending on the number of users and the levels of detail at which their sessions are traced, the
trace data might be long.

• Printing or displaying the trace data in TSO:

The DSQDEBUG data set can be allocated through the TSO logon procedure. However, if necessary, you
can reallocate the file for printing by issuing statements like the following examples, which define
DSQDEBUG as a PRINT file:

FREE FILE(DSQDEBUG)
ATTR DEBUG RECFM(F B A) LRECL(121)
ALLOC DDNAME(DSQDEBUG) SYSOUT(A) USING(DEBUG)

These statements allocate the trace file with fixed-length, 121-character records whose first byte is an
ANSI carriage-control character. The trace information is formatted with 120 characters to the line, not
including the ANSI control character.

Important: If you allocate output from DSQDEBUG to go to the HOLD queue, to release the output to
the OUTPUT queue, you must issue the following TSO command: FREE DDNAME(DSQDEBUG)

You can also issue the following statements to allocate (or reallocate) the DSQDEBUG data set as a
sequential data set that can be displayed by using an online editor. The following example statements
allocate the trace file with fixed-length, 81-character records whose first byte is an ANSI carriage-
control character. The trace information is formatted with 80 characters to a line, not including the ANSI
control character.

FREE FILE(DSQDEBUG)
ATTR DEBUG RECFM(F B A) LRECL(81)
ALLOC DDNAME(DSQDEBUG) DSNAME(DEBUG.LIST) NEW KEEP

• Printing or displaying the trace data in CICS:

The trace is recorded in the DSQDEBUG data set. Allocate this data set in the CICS startup JCL.

360 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

If you have a warning or a system error during QMF initialization, you must look at the QMF trace data
set to understand the reason for the error. QMF trace data from all the QMF users in a single CICS region
is written to a single trace data set. Each trace entry contains the terminal ID of the user who recorded
it.

Related concepts
Allocating the trace data set
Make sure that the DSQUDUMP data set or DSQDEBUG data set is allocated, depending on how your run
QMF.
Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Determining the QMF service level
Running an SMP/E report against the target or distribution zones is always the best way to determine the
service level. However, you can also determine the QMF service level in other ways.

Procedure

You can determine the QMF service level in the following ways:
• Issue the SHOW command

The SERVICE option of the SHOW command returns the service information for the specified module in
a message. For example, SHOW SERVICE.DSQCSID0 returns a message similar to the following
message:

OK, DSQCSID0 V11R2.00 09/09/16 13:39 WIM11299

• Look at trace data to get the service level

The trace output can help you obtain the service level of your QMF installation. The service level
information is automatically displayed when an abend occurs.

You can obtain the QMF service level in the following way when you experience non-abend problems:

a) Set the trace for the highest level of detail by specifying a value of ALL for tracing.
You can set this value on the DSQSDBUG parameter when you invoke QMF or use the following
command to set the value in the Q.PROFILES table: SET PROFILE (T=ALL

b) Reset the trace to a value of NONE by using the following command: SET PROFILE (T=NONE
c) Exit QMF.
d) Examine the DSQDEBUG file.

The resulting trace shows the program with its version, date, and time. The trace can also show
Authorized Program Analysis Report (APAR) numbers if the module has one or more Program
Temporary Fixes (PTFs) applied, as in the following trace example:

** DSQFQWRM: ENTERED FROM DSQFMCTL ***
 V10R1.00 10/10/25 12:00 PNnnnnn

APAR PNnnnnn is the most recent APAR for which service was applied, where the nnnnn characters
represent numbers.

If you see a blank value in place of PNnnnnn or you see WIMnnnnn, the module is either at "base level"
or no service was applied or is available.

• Run a batch job to determine the service level

Another way to determine the QMF service level is to submit a batch job like the following one:

//ROBINK JOB (&SYSUID,090,T48,G249),ROBIN,
// NOTIFY=ROBIN,TIME=2,MSGCLASS=H,USER=&SYSUID

Chapter 19. Troubleshooting and diagnosing problems 361

//AMBSTEP EXEC PGM=AMBLIST
//SYSPRINT DD SYSOUT=*
//DDDD1 DD DSN=QMFDEV.QMF1210.SDSQLOAD,DISP=SHR
//SYSLIB DD DUMMY
//SYSIN DD *
LISTIDR DDN=DDDD1,MODLIB

This job produces a report that shows the latest PTF applied to each CSECT within a load module.

What to do next
Make sure that the appropriate level of service has been applied to the DSQPNLx runtime panel file,
where x is your language identifier. Occasionally, after PTFs have been applied, the equivalent service
updates are overlooked and are not applied to the runtime panel file, which can cause unpredictable
behavior.

To check the service level of the DSQPNLx runtime panel file, display the QMF home panel, press PF1, and
select About QMF. The service level of DSQPNLx is provided.

If the service level of DSQPNLx is not current, contact your system administrator to determine if
QMF1210.SDSQSAPE(DSQ1xNPL) was run after the latest PTFs were applied.

Turning off the trace facility
After you capture diagnostic details using the trace facility, you might want to turn tracing off, because the
storage queue for the trace data can fill up very quickly.

About this task

If you leave tracing on until you end the QMF session, when you start QMF the next time, the tracing is set
to NONE by default. The program parameter DSQSDBUG controls this tracing when QMF is started.

Procedure

• To turn tracing off, issue the following command from within QMF: SET PROFILE (T=NONE

Related tasks
Setting tracing options
QMF provides a trace facility that helps track QMF and user activity.

Examining error log reports
The Q.ERROR_LOG table is a QMF control table that logs information about resource and other problems.

The structure of the table is shown here.

Table 80. Structure of the Q.ERROR_LOG table

Column name
Data type and
length Nulls allowed? Function/values

DATESTAMP CHAR(8) no The date on which the error occurred. It is
in the form yyyymmdd.

TIMESTAMP CHAR(5) no The time at which the error occurred. It is
in the form hh:mm, where hh is the hour
and mm is the minute.

362 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 80. Structure of the Q.ERROR_LOG table (continued)

Column name
Data type and
length Nulls allowed? Function/values

USERID VARCHAR(128)

Exception: When
you are connected to
a DB2 for VSE and
VM database, the
data type and length
for the USERID
column is CHAR(8).

no In QMF for TSO, this column contains the
authorization ID or the TSO logon ID of the
user who experienced the error.

In QMF for CICS, this is the CICS terminal
ID of the user who experienced the error.

For errors experienced when you are
running QMF for TSO as a Db2 for z/OS
procedure, this column contains the
authorization ID of the user who started
the WLM-managed address space from
which QMF runs.

MSG_NO CHAR(8) no The QMF message number that was
issued with the error.

MSGTEXT VARCHAR(254) no Text of the message. SQL errors might
have data from the SQLCA in this column.

A long error message might need more than one row of the table to represent it. If it does, the values of
every column except the MSGTEXT column repeat. Within the MSGTEXT column, each row carries a
fragment of the message. A fragment begins with 1), 2), 3), and so on, to indicate its relative position in
the message.

To help diagnose problems, you can query the Q.ERROR_LOG table for information about errors as shown
in the following example.

SELECT TIMESTAMP, MSG_NO, MSGTEXT
 FROM Q.ERROR_LOG
 WHERE USERID = 'id'
 AND DATESTAMP = 'date'
 AND TIMESTAMP BETWEEN 'time1' AND 'time2'
ORDER BY TIMESTAMP, MSG_NO, MSGTEXT

Figure 123. Querying the error log for problem information

Related concepts
Starting QMF as a Db2 for z/OS stored procedure
The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.
Related tasks
Installing the QMF stored procedure interface (TSO only)
QMF Version 12.1 allows you to start QMF for TSO as a Db2 for z/OS stored procedure. Users do not need
to log on to QMF for TSO to perform tasks.

Using diagnostics native to the environment
You might need to diagnose abends using diagnostic facilities in TSO, z/OS, or CICS.

In CICS, abend information is recorded in the DFHDMPx data set. This data set should be allocated in the
CICS startup JCL. Most QMF programs contain a stamp that you can use to help identify them in
diagnostic output. Here is an example.

Chapter 19. Troubleshooting and diagnosing problems 363

Figure 124. Example of a stamp that identifies a QMF program

Diagnosing problems in TSO
To diagnose an abend in TSO, you might need to use procedures in the z/OS information center or you
might be able to use the QMF abend handler.

When QMF starts, it establishes an abend handler. If QMF fails, the abend handler gets control, records
the error, and cleans up the environment. After completion, the abend handler returns control to the
operating system and allows it to continue with the abnormal termination process.

If an abend occurs while processing a user edit code or while executing the governor exit routine,
additional areas appear in the dump to assist with problem diagnosis:

• For problems with user edit exit routines: DXEECS, the input area, and the result area are added to the
output.

• For problems with the governor: DXEXCBA and DXEGOV are added to the output.

Diagnosing problems in CICS
To diagnose an abend in QMF, you might need to use procedures in the CICS documentation.

Because another program might have caused QMF to abend, these procedures in the CICS documentation
can help you find much of the information you need in a CICS dump of the transaction. A transaction
dump shows detailed activity of the programs that were running in the CICS region at the time of the
abend.

The program that caused the abend might be QMF or it might be another program. You can use the CICS
Execution Diagnostic Facility (CEDF) to help you diagnose a QMF abend if the QMF diagnostic facilities
explained in this information do not contain enough detail about the cause of the error.

• Identifying QMF in CICS diagnostic output

If you use CICS diagnostic facilities to help you diagnose an abend in QMF, the following information
might help you identify QMF programs in CICS output.

– QMF program names begin with the prefix DSQ.
– QMF is an Assembler-language program and issues standard Assembler calls, not CICS LINK

statements.
– QMF issues standard EXEC CICS statements for all system services when running in CICS.
– QMF uses an internal call interface to the GDDM product.
– QMF issues standard EXEC SQL statements to the database.
– QMF does not issue any EXEC CICS ABEND commands.

• Defining the display for a CICS abend message

In some cases, such as if QMF abends or when the operator cancels the transaction, CICS sends a
message to the user's display indicating the abnormal ending. Because QMF is a full-screen application
that uses GDDM to provide display services, you need to define to CICS how you want the abend
message displayed.

Using the CICS Resource Definition Online (RDO) facility, set diagnostic display attributes of the CICS
error message in the CICS TYPETERM definition. A TYPETERM is a partial terminal definition that makes
it easy for you to define many terminal displays with one definition. The following example shows
diagnostic display attributes you might use. This definition displays the message at the bottom of the
screen, beneath the QMF message line. The message appears in red, underlined, and with a higher

364 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

intensity than the rest of the screen display. This definition is useful if you defined the QMF transaction
to time out when the user does not enter input for a certain amount of time. In this type of transaction
timeout, the QMF display remains on the screen, so the message is readable only at the bottom of the
screen.

DIAGNOSTIC DISPLAY
 ERR Last line : Yes No | Yes
 ERRIntensify : Yes No | Yes
 ERRColor : Red NO | Blue | Red | Pink | Green
 | Turquoise | Yellow | Neutral
 ERRHilight : Underline No | Blink | Reverse | Underline

Figure 125. TYPETERM specification for CICS diagnostic display

Reporting a problem to IBM
After trying to find your answer or solution by using other self-help options such as technotes, you can
contact IBM Software Support. IBM Software Support provides assistance with product defects, answers
FAQs, and helps users resolve problems with the product.

Before you report a problem to IBM, check the IBM Software Support website to see if the problem has
already been reported. For unreported problems, IBM Software Support prepares an Authorized Program
Analysis Report (APAR), which includes useful information about how to solve the problem.

Searching previously reported problems
You can often find solutions to problems by searching IBM knowledge bases.

Search the IBM Software Support website by constructing a string of search words that describes your
problem. Every string of search words for QMF begins with the component ID 566872101 and the release
number that matches the QMF national language environment in which you experienced the problem.

Table 81. Release numbers for QMF base product and NLFs

NLF ID

Brazilian Portuguese B5B

Canadian French B5G

Danish B55

English B10

French B56

German B57

Italian B58

Japanese B59

Korean B5A

Spanish B5C

Swedish B5D

Swiss French B5E

Swiss German B5F

Uppercase English B51

Chapter 19. Troubleshooting and diagnosing problems 365

http://www.ibm.com/software/data/qmf/support.html
http://www.ibm.com/software/data/qmf/support.html

Working with IBM Software Support
If you are having trouble diagnosing the problem and have used all available diagnosis aids, contact IBM
Software Support to report the problem.

To help diagnose the problem, your Software Support representative might need some information that
provides more details about the problem. For example, if you call to report an abend in QMF, you might
need to supply some information about CSECTs of the program that you suspect might have caused the
error. In many cases, you can find this type of information using the trace facility.

Related tasks
The trace facility
QMF provides a facility that traces QMF activity during a user's session. Trace output from the facility can
help you analyze errors such as incorrect or missing output, performance problems, or loops.

366 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Appendix A. Summary of changes in prior releases
QMF Version 12 Release 1 supports migrations from Version 8.1 NFM, Version 9.1 NFM, Version 10.1,
Version 11.1 and Version 11.2. Enhancements in prior releases might affect how you plan your QMF
migration.

Choose the topic associated with the release from which you are migrating and read topics for every
subsequent release.

Related concepts
Migration and fallback considerations
After you install or migrate to QMF Version 12.1, you might need to access and use objects from earlier
releases of QMF to thoroughly test the new installation under site-specific conditions.

Version 11.2 changes
These are enhancements to QMF Version 11 Release 2.

Enhanced QMF Editor

The QMF Enhanced Editor feature brings creating and editing QMF SQL queries and procedures to a whole
new level. For SQL queries, the QMF Enhanced Editor provides customizable highlighting and formatting
for SQL syntax, reserved words, functions, and data types. Parenthesis checking is also available.

The Query Assist feature provides table name suggestions, column name and data type information, and
suggested column value information. A preview pane is available for immediate SQL results checking.

The QMF Enhanced Editor can be used for QMF linear procedures and procedures with logic. Highlighting
similar to that found in the query object is also available.

The QMF Enhanced Editor is accessed from the QMF command line by entering the QMF EDIT command
with the EDITOR keyword set to 'EE'. The new DSQEC_EDITOR global variable provides a customizable
override of the EDITOR keyword specifications.

Get organized with QMF folders

QMF queries, procedures, forms, and analytics can now be organized into groups called folders.

The LIST, SAVE, and ERASE commands have been updated to operate with the FOLDER keyword, which
allows you to view and manipulate QMF objects in a more defined way. By using the SAVE command, you
can automatically create a new folder by saving your first object to it. The RENAME command has been
updated to rename FOLDER objects and to rename FOLDER references when a QMF object is renamed.

The new DSQEC_CURR_FOLDER global variable allows you to define your own default value for the
FOLDER keyword.

QMF Analytics for TSO enhancements

Three new models, Wilcoxon Signed-Rank Test, Mann-Whitney U Test, and F-Test have been added to the
statistics modeling capabilities of the QMF Analytics for TSO feature.

The ability to choose columns for use in analytical analyses has been improved with enhanced data type
targeting and information. The columns that are shown are based on model requirements; you can see a
sample of values such as maximum and minimum to aid in column input to the model.

User-defined mapping capability has been added to QMF Analytics for TSO. OpenGIS WKT map
definitions are available in either Db2 tables or exported data sets, which can be read by QMF Analytics
for TSO to format user-specific maps. Maps for Africa, North America, South America, and Germany have
been added to the existing library of predefined maps.

© Copyright IBM Corp. 1982, 2020 367

Saving analytics has been updated to allow listing of existing analytics objects.

SQL enhancements

Enhancements for SQL queries include the following changes:

• The following special registers can now be set from within a QMF SQL query:
CURRENT APPLICATION COMPATIBILITY

Specifies the compatibility level support for dynamic SQL.
CURRENT GET_ACCEL_ARCHIVE

Specifies whether a dynamic SQL query uses archived data if the query refers to a table that is
archived on an accelerator server.

• By using the new DSQSFISO program parameter option, scalar date and time functions such as CHAR
will now reflect the actual date and time format of the database and not the ISO format precompiler
option of QMF, which was the format used in previous releases. The new DSQAO_DATE_FORMAT and
DSQAO_TIME_FORMAT global variables inform the user of the default date and time formats used by
the database. The new DSQAO_DSQSFISO global variable contains the value of the DSQSFISO program
parameter setting.

QMF command and command behavior

Enhancements to QMF commands and command behavior include the following changes:

• The process of saving database tables, which was traditionally accomplished by using the QMF SAVE
DATA command, has been improved for increased performance and reduced storage requirements. By
using the new TABLE keyword on the RUN QUERY command, you can now SAVE DATA without having to
return and complete a data object. The RUN QUERY with the TABLE keyword operates completely
within the database to both retrieve data and insert rows without returning a report to the user.

• The SPACE keyword has been added to the SAVE DATA, IMPORT TABLE, and RUN QUERY commands
(when the TABLE keyword is specified) to allow you to override the SPACE specifications that are
usually set in your profile. Specific databases and tablespaces can be targeted for saving data without
updating a user's profile.

• The ACCELERATOR keyword has been added to the SAVE DATA, IMPORT TABLE, and RUN QUERY
commands (when the TABLE keyword is specified) to allow the creation of Db2 accelerator-only tables.
The new DSQEC_SAV_ALLOWED global variable controls whether an accelerator, traditional tablespace,
or both can be used. The new DSQEC_SAV_ACCELNM global variable has been added to provide a
default for the ACCELERATOR keyword.

• A new command, RENAME, has been added to give you the ability to rename Db2 tables or QMF objects
in a single step.

• The QMF EDIT command has been updated to load saved queries and procedures directly from the
database rather than requiring that queries and procedures be already located in temporary storage.

• The new DSQCP_RMV_BLANKS global variable allows you to retain trailing blanks on VARCHAR and
VARGRAPHIC columns while using the QMF EDIT TABLE command. Columns that contain relevant
trailing blanks will be preserved after editing by the QMF Table Editor.

• Exporting QMF reports can now be done with no control information. You can use the EXPORT REPORT
command with the DATAFORMAT keyword set to the new value 'TEXT' in order to get preallocated data
sets that contain formatted QMF reports. The report output is suitable for text attachments or easy
reading.

Default form overrides

By using following new the global variables, you can override QMF default form edit codes:

• DSQDC_EC_CHAR
• DSQDC_EC_NUM
• DSQDC_EC_DEC

368 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• DSQDC_EC_DATE
• DSQDC_EC_TIME

Default formatting can be controlled by global variable settings with no saved customized forms at all,
which can reduce the amount of specialized forms in which only edit code changes exist.

Query by example (QBE) enhancements

The QBE interface has been updated to support 128-character owner and table names and 30-byte
column names. The DRAW, IMPORT, and EXPORT commands for QBE objects have also been updated to
support increased owner, table, and column name lengths.

Application programming support

Documentation about session-cancelling topics within the QMF governor interface has been improved.

QMF administration and serviceability

This release of Db2 QMF includes the following serviceability and administration enhancements:

• The DSQEC_SAV_ALLOWED global variable allows administrators to control the implementation of the
SAVE DATA, IMPORT TABLE, or RUN QUERY to TABLE commands. This global variable controls whether
you can save data to traditional tablespaces, an accelerator, or block the use of the commands. The
global variable allows you to specify defaults or to override defaults with keyword values.

• The DSQEC_SPAC_OVRIDE global variable allows administrators to control whether the SPACE
parameter can be used to override the Q.PROFILES.SPACE values on SAVE DATA, IMPORT TABLE, or
RUN QUERY to TABLE commands.

• Storage sizes for QMF procedures and queries have been optimized so that a minimal amount of space
is used for storage within the QMF catalog.

• Improved default tracing diagnostics are now produced for default trace situations. QMF release and
database connections will be easily discovered in default tracing. QMF trace size controls have been
added with the new DSQEC_TRACE_LIMIT global variable .

• The new 'SHOW SERVICE' command displays service-level information.
• DSQPNLE panel service-level information can be quickly determined from the 'About QMF' panel, which

is accessed from the main help system.

For additional information about any of these enhancements, see the QMF Version 11 Release 2
information in IBM Knowledge Center at: http://ibm.com/support/knowledgecenter/SS9UMF/
welcome.html.

Removal of DSQ0EQ24
QMF sample query SAMPLE_SYNONYM, which existed in QMF.SDSQSAPE member DSQ0EQ24, has been
removed from the product.

Version 11.1 changes
These are enhancements to QMF Version 11 Release 1.

QMF Analytics for TSO

QMF Analytics for TSO allows you to analyze query results that are returned by QMF for TSO. QMF
Analytics for TSO can be started only from within QMF for TSO, and it provides statistical analysis,
forecasting functions, and additional chart types, all from an easy-to-use, menu-driven interface.

In QMF Analytics for TSO, you can save a chart or statistical analysis specification as an ANALYTIC object
by pressing the Save function key. You can then use the saved specification in a RUN QUERY command by

Appendix A. Summary of changes in prior releases 369

including the ANALYTICS option in the command. You can also list, display, and erase an ANALYTIC
object through the LIST, DISPLAY, and ERASE commands.

Improved report storage management

Enhancements to report storage management include the following changes:

• New maximum for storage allocation

The maximum storage that can be specified on the DSQSBSTG parameter has been increased to 2GB.
You can also now specify a percentage instead of a fixed value for the DBSQSBTG parameter. This
percentage specifies the maximum percentage of available storage that is to be used for reports.

• Dynamic handling of storage

Prior releases of QMF assessed storage requirements for reports only once during a session, after the
first report was returned. In this release, QMF assesses and manages storage requirements dynamically
throughout a session when a new report is requested.

• New global variables for determining storage settings

Four new global variables contain the values of storage management parameters that were used for
QMF initialization: DSQAO_DSQSBSTG, DSQAO_DSQSRSTG, DSQAO_DSQSPILL, DSQAO_DSQSPTYP.
The information that is stored by these global variables can help administrators with storage
management and troubleshooting.

Enhancements for large data types

Enhancements for large data types include the following changes:

• LOB data enhancements

– QMF now returns up to 2 GB of CLOB and BLOB data and up to 1 GB of DBCLOB data for DISPLAY
commands and SELECT queries. To display all of the data with these data types up to their
maximums, set the column width on the QMF form to the maximum width. For CLOB and BLOB data,
the maximum width is 32767, and for DBCLOB data, the maximum width is 16383. Then, use the
wrapping edit code (CW, BW, or GW) that is appropriate for the data type.

– You can now import, export, and save LOB data through the QMF IMPORT, EXPORT, and SAVE DATA
commands.

– Preferences for saving and retrieving LOB data can now be controlled by the following new global
variables:

- DSQEC_LOB_RETRV can be used to control how LOB data is retrieved and displayed by the
following QMF commands: DISPLAY TABLE, EXPORT TABLE, EXPORT DATA, SAVE DATA, PRINT
TABLE, PRINT REPORT, and RUN QUERY.

- DSQEC_LOB_SAVE can be used to control whether users can save LOB data through the SAVE
DATA or IMPORT TABLE commands.

- DSQEC_LOB_COLMAX can be used to specify the maximum size of LOB data to retrieve, in kilobytes
(up to 2 GB). Global variable DSQEC_LOB_RETRV must be set to either 1 or 3 for
DSQEC_LOB_COLMAX to be effective. If a user tries to work with data containing a LOB column that
is larger than the maximum specified by DSQEC_LOB_COLMAX, an error is issued and no report
data is displayed.

– QMF now supports the use of three-part table and view names to access LOB data at remote
locations in a distributed unit of work environment. To enable the use of three-part names, you must
set the DSQEC_LOB_RETRV global variable to 2 or 3.

• XML data enhancements

– In prior versions of QMF, entire XML documents were read into buffer storage when the IMPORT
command was issued for data in XML data format. QMF Version 11 allows one row at a time to be
read into buffer storage. This enhancement results in reduced storage usage and can improve
processing of data in XML data format depending on the size of the imported data.

370 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

– QMF now supports DISPLAY, EXPORT, IMPORT, SAVE, SELECT, and RUN operations with XML data
when connected to Db2 for Linux, UNIX, and Windows Version 9.5 and later or DB2 for iSeries Version
7 and later.

• Extended storage support for fetching LOB and XML data

In prior releases, below-the-bar storage was used for fetching LOB and XML data. Because this release
increases the maximum size that QMF supports for these data types, large amounts of storage might be
used below the bar. Instead, LOB and XML data is now fetched and then stored in storage above the bar
until it is needed. At that point, the data is moved to below-the-bar storage and deleted from below-
the-bar storage when it is no longer needed.

Broader support for temporal data

QMF Version 10 included support for selecting, creating, and updating temporal data through SQL
queries. Temporal data is now additionally supported by the following commands and objects:

Prompted queries
The Specify panel of Prompted Query now contains a Time Period option that you can use to add a
time period specification to a query for a temporal table or view.

LIST command
The LIST command now lists both temporal and history tables. Using DESCRIBE on a Table List panel
displays information about the table, including the table's subtype. “History Table” is now a valid
subtype. On Db2 for Linux, UNIX, and Windows, history tables display with a “Table” subtype.

EXPORT command
Although temporal tables cannot be exported directly from the database through the EXPORT TABLE
command, you can export temporal data from QMF temporary storage through the EXPORT DATA
command. Temporal data that is exported has no association with history data.

IMPORT and SAVE commands
You can use the IMPORT and SAVE commands to append or replace existing temporal data by
specifying ACTION=APPEND or ACTION=REPLACE. However, you cannot use these commands to
create a new temporal table. IMPORT TABLE newtable and SAVE DATA AS newtable create new non-
temporal tables.

SQL query enhancements

Enhancements for SQL queries include the following changes:

• To control the unit of work, you can now include COMMIT statements in queries that contain multiple
SQL statements. If the user’s QMF profile has the CONFIRM option set to YES to enable confirmation
prompting, a prompt is displayed for each COMMIT statement in the query.

• SQL queries that contain multiple statements can now include one SELECT statement. In prior releases,
an SQL query that contained a SELECT statement could not contain any other statements.

• If confirmation prompts are enabled, prompts are displayed for SELECT statements that modify the
database through an embedded INSERT, DELETE, MERGE, or UPDATE statement. Confirmation prompts
for this type of database change are supported on all databases that support this type of SELECT
statement. Confirmation prompts were previously not displayed for any SELECT statements.

• This release of QMF provides additional support for Db2 special registers.

– A new global variable, DSQEC_EXPL_MODE, can be used to set the CURRENT EXPLAIN MODE special
register. This special register controls EXPLAIN behavior for dynamic SQL statements that are run
through the RUN QUERY command.

– The following special registers can be set from within a QMF SQL query:
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

Controls which materialized query tables that are enabled for optimization are considered during
the optimization process of dynamic SQL queries.

Appendix A. Summary of changes in prior releases 371

CURRENT QUERY ACCELERATION
Specifies whether queries are to be considered for query acceleration by the Db2 optimizer.

CURRENT TEMPORAL BUSINESS_TIME
Specifies a TIMESTAMP(12) value that is used in the default BUSINESS_TIME period specification
for references to application-period temporal tables.

CURRENT TEMPORAL SYSTEM_TIME
Specifies a TIMESTAMP(12) value that is used in the default SYSTEM_TIME period specification
for references to system-period temporal tables.

• A new global variable, DSQAO_DSQSMRFI, can be used to check the value of the DSQSMRFI program
parameter.

• QMF now handles the nullable ROWID SQLTYPE 905, which Db2 returns under some circumstances
when a LEFT OUTER JOIN is included in a query.

• QMF users can now call a stored procedure that references a DISTINCT data type.
• This release of QMF supports the setting of Db2 global variables through a SET statement if the new

DSQEC_KEEP_THREAD global variable is set to 1. Db2 global variables are named memory variables
that you can access and modify through SQL statements. A Db2 global variable is associated with a
specific application context and contains a value that is unique to that application scope. The scope of
global variables is similar to that of Db2 special registers because after they are created, the definitions
of global variables are shared across different Db2 connections. However, each connection maintains
its own instance of each global variable, so the variable content is only shared among SQL statements
within the same connection.

• ROWLIMIT processing is now done by Db2 instead of QMF. This change provides a performance
improvement in QMF when users issue RUN QUERY with ROWLIMIT for complex queries. In particular,
this enhancement can provide performance improvements for large result sets that have an ORDER BY
clause in the query.

QMF commands and command behavior

Enhancements to QMF commands and command behavior include the following changes:

• Enhancements to EXPORT operations

– This release adds the ability to export data in CSV (comma-separated value) format. You can then
download the exported data to your workstation where data in CSV format can be used with
applications such as Microsoft Excel.

– Prior releases required SQL query and procedure objects to be exported to data sets with an LRECL of
79 bytes. These objects can now be exported to data sets with an LRECL of 79 to 32,760 bytes for
new and existing data sets, allowing use of existing DFSMS DATA classes. A new global variable,
DSQEC_DSLRECL1, can be used to set the record size to use when exporting an SQL query or QMF
procedure to a new data set.

– In QMF, you can set the number of primary and secondary tracks for data sets that are used to store
the results of the EXPORT command. In prior releases, you could specify up to 65,535 tracks for PS
and PDS data sets. This limit is now increased to 16,777,215 tracks. The setting of QMF global
variable DSQEC_DSALLOC_PRI controls this allocation. This support also allows QMF to function with
extended address volumes (EAV).

• Increased control for setting an object's LAST_USED timestamp in the Q.OBJECT_DIRECTORY table of
the QMF catalog

The DSQEC_LAST_RUN global variable now includes another option that restricts the updates of the
timestamp to RUN commands only. To support this change, the DSQUOPTS initialization routine was
also updated.

• Improvement to the DPRE command synonym

DPRE is a command synonym that provides a print preview in QMF for TSO. In previous releases, the
synonym ran a QMF procedure, thus replacing any procedure object that was in temporary storage

372 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

when the synonym was issued. The synonym definition and associated code now runs as a REXX exec,
which allows the current procedure object to remain in temporary storage.

• New SHOW ANALYTICS command

This command provides access to the new QMF Analytics for TSO product, which is described in more
detail in “QMF Analytics for TSO” on page 369.

Application programming support

In prior releases, QMF set the z/OS program mask to get control on operations that could cause fixed-
point or decimal overflow. Because problems can occur in other applications when QMF leaves the
program mask set, the current mask is now saved and set to zero before calls to the following services or
commands:

• QMF governor exit routines
• REXX interfaces for forms or procedures with logic that require REXX
• EDIT PROC and EDIT QUERY commands
• The TSO command and commands that require ISPF

Also, when programs call QMF, QMF now preserves the caller's program mask and initializes the program
mask for use by QMF. When QMF returns control to the caller, the caller's program mask is restored.

Enhancement for callable interface applications

A new TRACE command can be used to add trace information in applications that use the callable
interface except for applications that are written in REXX.

Global variable management enhancements

Enhancements to QMF global variable management include the following changes:

• Control of initial global variable settings

Administrators can populate a new Q.GLOBAL_VARS table with initial values for global variables and
specify whether those values can be updated by users. This table is installed as an empty table during
QMF installation and is read at QMF initialization.

• Persistence of global variable values across sessions

A new global variable, DSQEC_USERGLV_SAV, controls whether values of user global variables and
global variables that start with “DSQ” are saved from session to session. Values that are to be saved are
stored in the Q.GLOBAL_VARS table and associated with user IDs. See QMF Reference for more
information about this global variable.

• Saving user input

A new global variable, DSQEC_SESSGLV_SAV, controls whether user input in some data entry fields on
some panels is saved within and across QMF sessions. See QMF Reference for more information about
this global variable. User input is saved through new global variables that are named with a DXY prefix.

Support for EAV DASD

z/OS Version 1 Release 11 introduced extended address volumes (EAV) support for extended format
sequential data sets and VSAM data sets. QMF Version 11 was enhanced to support these volumes.

Thread management

A new QMF global variable, DSQEC_KEEP_THREAD, provides the ability to retain a Db2 thread that is used
by QMF until the end of the QMF session. In previous releases of QMF, each Db2 thread that was used by
QMF was deleted at the end of each query.

Appendix A. Summary of changes in prior releases 373

Version 10.1 changes
These are enhancements to QMF Version 10.1.

Stored procedure interface to QMF for TSO

A new interface allows you to start QMF for TSO as a Db2 for z/OS stored procedure. With this new
feature, any software program that can call a Db2 for z/OS stored procedure can now start QMF for TSO
and receive report output back in up to 20 result sets.

Query enhancements

Query enhancements include:

• Support for multiple SQL statements in a single SQL query

Each SQL query can now contain multiple statements that involve database maintenance, such as
UPDATE, INSERT, ALTER, CREATE, DROP, EXPLAIN, and others. Statements that return results, such as
SELECT or CALL, remain limited to one per SQL query, as does the CREATE PROCEDURE statement.

A new global variable, DSQEC_RUN_MQ, allows you to set whether multiple SQL statements will be
allowed. When multiple statements are allowed, all of the statements in the query are issued as a single
unit of work. If one statement in the query fails, database changes made by statements prior to the
failing statement are rolled back and subsequent statements are not run. Some statements, such as
SET, apply to aspects of the QMF session and therefore are not rolled back in the case of a failure.

Substitution variable values and responses to confirmation prompts apply to all SQL statements in the
query.

• Support for running QMF SQL queries over 32 KB long

The maximum size of an SQL query that can be run by the RUN QUERY command has been increased to
2 MB for SQL queries directed to Db2 for z/OS and 65 KB for SQL queries directed to DB2 for iSeries or
Db2 for Linux, UNIX, and Windows. You can activate this feature by setting the DSQEC_SQLQRYSZ_2M
global variable. SQL queries directed to DB2 for VSE and VM remain limited to 8 KB.

QMF continues to support a query size of 32 KB for prompted and QBE queries, unless the database to
which the RUN QUERY command is directed does not support SQL statements of this size.

Improved report performance and resource control

Report performance and resource control enhancements include:

• 64-bit virtual storage area for spill data in QMF for TSO

A new 64-bit virtual storage area handles QMF for TSO data that is no longer needed in active storage.
This new storage area precludes the need to allocate a spill file in TSO and enables broader support for
data types that require larger amounts of storage, such as XML.

A new TSO program parameter, DSQSPTYP, activates this support; a new global variable,
DSQEC_EXTND_STG, allows you to specify the amount of extended storage for QMF to acquire.

• Increased maximum length for data rows in QMF reports

Prior releases of QMF for TSO and CICS had a 32 KB limit on the length of a single data row returned in a
QMF report. A new global variable, DSQEC_TWO_GB_ROW, allows you to set support for row lengths up
to 2 GB, with the following restrictions:

– You cannot create a table with a maximum record size that is greater than the page size. Db2 stores
records within pages that are 4 KB, 8 KB, 16 KB, or 32 KB in size. Thus, if you are retrieving data from
one table only, the row length is still limited to 32 KB.

– When a table contains a column with LOB data, the data in the LOB column is truncated at 32 KB in
query results as well as during display and print operations. The row containing the LOB data can still
be up to 2 GB long, however.

374 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

The maximum row length remains at 32 KB when you export or import data in QMF, IXF, or HTML
format. However, you can use XML format to export or import character data; this format supports
record lengths of up to 2 GB.

• Independent governing of database activity generated by user commands

The QMF packages have been restructured so that modules that handle database activity driven by end-
user commands are now separate from modules that handle database activity driven by SQL internal to
QMF. This new structure allows you to isolate the following groups of QMF commands for individual
governing by the Db2 resource limit facility:

– RUN QUERY (SELECT queries of any type), DISPLAY TABLE (when the CONFIRM option is YES),
EXPORT TABLE, PRINT TABLE, BOTTOM, TOP, FORWARD, BACKWARD, RIGHT, and LEFT

– SAVE DATA and IMPORT TABLE
– RUN QUERY (when the query includes INSERT, UPDATE, or DELETE statements)
– EDIT TABLE (Add mode)
– EDIT TABLE (Change mode when the SAVE parameter has been set to IMMEDIATE)
– EDIT TABLE (Change mode when the SAVE parameter has been set to END)
– ERASE

• Ability to set concurrent access resolution options from within QMF

This enhancement adds the DSQEC_CON_ACC_RES global variable, which allows you to specify how
QMF should resolve locks on data that it is attempting to access. Values for the new DB2 Version 10
bind option, CONCURRENTACCESSRESOLUTION, are supported through this global variable, as is the
existing SKIP LOCKED DATA option.

Enhancements to QMF commands and support of SQL statements

Enhancements to QMF commands and support of SQL statements include:

• Optional confirmation prompting with the DISPLAY TABLE command

QMF now provides a CONFIRM parameter for the DISPLAY TABLE command. When CONFIRM is set to
YES and the estimated resource to complete the command exceeds the allocated resource defined in
the Db2 resource limit facility, QMF displays a panel prompting the user to decide whether to cancel the
command.

• Support for implicit casting on the SAVE and IMPORT commands

If the database to which the SAVE or IMPORT command is directed offers support for implicit casting,
QMF no longer requires that the columns in the data to be saved or imported have the same data types
and lengths as the columns in the existing table that is being replaced or appended.

• Optional default for the OWNER parameter of the QMF LIST command

This enhancement adds a new global variable, DSQEC_LIST_OWNER. This variable allows you to specify
a default database authorization ID for the OWNER parameter of the LIST command, eliminating the
need to specify this parameter each time the command is issued. You can set the variable to any valid
database authorization ID, or specify ALL to list all objects that you are allowed to access, regardless of
owner. If no value is specified for the variable, the OWNER parameter defaults to the current database
authorization ID, as in prior QMF releases.

• Ability to restrict which commands cause the Last Used timestamp on an object to be updated

In previous releases, the timestamp in the LAST_USED column of the Q.OBJECT_DIRECTORY table in
the QMF catalog was updated whenever an object was referenced by any of the following commands:

– CONVERT
– DISPLAY
– EXPORT
– IMPORT

Appendix A. Summary of changes in prior releases 375

– LAYOUT
– PRINT
– RUN
– SAVE

This timestamp is displayed in the Last Used field on QMF database object lists that are generated by
the LIST command. This feature provides a new global variable, DSQEC_LAST_RUN, which allows you
to default to the timestamp behavior of prior releases or restrict the timestamp to updates by RUN,
SAVE, and IMPORT commands only.

• More parameters on SQL CALL statements

This enhancement increases the number of parameters that QMF allows on an SQL CALL statement
from 32 to 63.

• Additional support for Db2 special registers

This enhancement allows you to use the SET statement in a QMF SQL query to set the CURRENT
SCHEMA and CURRENT REFRESH AGE special registers in Db2 for z/OS.

Broader support for data types

Enhancements to QMF's support for Db2 data types include:

• Increased support for XML data

Rows that contain XML data can now be up to 2 GB. This new limit is also supported when you import or
export data in XML format.

• Broadened support for decimal floating-point data

QMF has been enhanced to provide full support for the decimal floating-point (DECFLOAT) data type,
provided that the processor on which QMF is running supports decimal floating-point instructions. QMF
supports the long and extended formats of the DECFLOAT data type. If the processor on which QMF is
running does not support decimal floating-point instructions, the edit code used for the data defaults to
M and metadata is displayed in the report. For example, DECFLOAT(16) is displayed in place of long-
format values and DECFLOAT(34) is displayed in place of extended-format values.

• Support for increased precision for the TIMESTAMP data type

This enhancement supports greater precision allowed by Db2 for z/OS Version 10 for the TIMESTAMP
data type. The number of digits representing fractional seconds can now be from 0 to 12.

• Support for the new TIMESTAMP WITH TIME ZONE data type

This enhancement provides QMF support for the new DB2 Version 10 data type TIMESTAMP WITH
TIME ZONE. This new data type extends the TIMESTAMP data type to include the time zone
information. The time zone is the time difference, in hours and minutes, between the local time and
Coordinated Universal Time (UTC), formerly known as Greenwich Mean Time (GMT).

Improvements in QMF forms

This enhancement provides a new global variable, DSQDC_COL_LABELS, which controls whether the
column heading shown in QMF forms defaults to the database label assigned to the column or the name
of the column in the table from which it was selected. Database labels are used by default.

Improved diagnostic capabilities

Additional information is now provided for QMF errors associated with SQL codes issued by the database
manager. For these errors:

• The SQL Communications Area (SQLCA) is now displayed at the end of the QMF message help panel
that describes the error.

• A new global variable, DSQDC_POS_SQLCODE, allows you to set notification of positive SQL codes at
varying levels of detail.

376 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Version 9.1 changes
These are enhancements to QMF Version 9.1.
Database processing enhancements

The DSQSMRFI program parameter allows you to take advantage of Db2 multiple-row fetch and insert
processing. Prior to this change, an SQL FETCH or INSERT statement was required for every row of
data processed. With multiple-row processing, a single SQL statement can process several rows of
data. For distributed databases, this improvement results in decreased network traffic. QMF can use
multiple-row support when the database that is accessed also supports multiple-row fetch or insert.
The following QMF commands take advantage of multiple-row support:

BOTTOM
FORWARD
DISPLAY TABLE
DPRE
EXPORT DATA
EXPORT TABLE
PRINT REPORT
PRINT TABLE
RUN QUERY
SAVE DATA.

Support for Db2 for z/OS Version 9 data types

• Big integer

BIGINT is a numeric data type capable of representing 63-bit integers. The range of numbers
supported by BIGINT is -9223372036854775808 to +9223372036854775807.

• Fixed-length and variable-length binary

QMF supports BINARY and VARBINARY data types, which are compatible with the BLOB data type,
for which support already existed prior to Version 9.

• XML

Columns in a relational table can contain XML documents. XML columns in Db2 have no
architectural limit and no defined length. In Version 9, QMF for TSO and CICS had a size limit of 32
KB for each instance of an XML document. Character data in the XML document is encoded in UTF-8
format. QMF maintains this format when exporting XML data. XML data is converted to character
data for viewing in a displayed or printed report.

QMF supports operations with XML data only when you are connected to a database release that
supports the XML data type.

• Decimal floating-point

If the processor on which QMF is running supports decimal floating-point instructions, the decimal
floating-point data type is fully supported in QMF Version 9 by QMF for WebSphere and QMF for TSO
and CICS. If the processor does not support decimal floating-point instructions, QMF for TSO and
CICS Version 9 tolerates access to decimal floating-point data by allowing the use of the metadata
(M) edit code when displaying a table that contains decimal floating-point data.

Import/export enhancements

• Ability to import and export XML data

QMF provides a sample style sheet that maps a Db2 table to an HTML table. You can export XML
data directly to a z/OS UNIX path or import XML data from a z/OS UNIX path.

• Ability to export and import data using a UNIX path name

This feature provides the ability to export QMF reports in HTML format or export XML data to a Web
server, as well as the capability to import XML data from a Web server using a z/OS UNIX path to

Appendix A. Summary of changes in prior releases 377

access the data. You can map the UNIX path to a file name in a hierarchical file system (HFS) or a
file name in a network file system (NFS).

• Ability to export and import QMF objects using PDSE data sets

With this enhancement, you can export and import QMF objects using PDSE data sets. You can also
create new PDSE data sets when exporting a QMF object to a new data set. Allocation of PDSE data
sets is controlled by the DSQEC_PO global variable.

• Easier specification of data set size

This enhancement allows you to use a set of QMF global variables to specify the size of a data set
used by the Db2 QMF EXPORT command. These variables are DSQEC_DSALLOC_PRI,
DSQEC_DSALLOC_SEC, and DSQEC_DSALLOC_DIR.

Security enhancements
The QMF CONNECT command supports the use of RACF mixed-case passwords.

Diagnostic capabilities
This enhancement provides diagnostic support for SQL codes that were new in Db2 for z/OS Version
9.

Version 8.1 changes
These are enhancements to QMF Version 8.1.
Installation

The installation process improved in QMF Version 8.1, with less post-SMP/E work to perform.
Database operations

• Names up to 128 characters in length are supported for authorization IDs, current SQL IDs, and
table names. Column names can be up to 30 characters long. Support is based on whatever length
the database allows.

Support includes larger data entry fields and the display of names in QMF dialog panels.
• The CALL statement can be issued from the SQL Query panel to run a Db2 stored procedure. Output

parameters are placed in QMF substitution variables defined by the user. Result sets returned have
all the features of a result set returned from a query.

• A new global variable, DSQEC_SP_RS_NUM, allows for the specification of a particular result set of a
Db2 stored procedure that returns multiple result sets.

• Fully integrated support for BLOB, CLOB, and DBCLOB data types. LOB data can be displayed in a
QMF report or printed from either temporary storage or the database, but is truncated at 32 KB.

The M edit code is assigned to all LOB columns by default. This edit code displays the associated
column metadata in lieu of the actual data. Other edit codes can be used, depending on the data
type.

• Support for several new Db2 UDB for z/OS Version 8 SQL codes.
• As of QMF Version 8.1, only Db2 UDB for z/OS databases can function as requesters. Additionally,

the QMF runtime libraries are provided for z/OS only, not for VM or VSE. This means that QMF can
only be started in a Db2 UDB for z/OS database. QMF Version 8.1 running on a Db2 UDB for z/OS
database can still connect to a server that is not running z/OS as long as QMF Version 8.1 is installed
on that server.

QMF commands

• A new PRINT command option allows the suppression of carriage control characters in the report
output format when a print device name is not supplied.

The DSQEC_CC global variable provides flexibility in setting the CC (carriage control) keyword on the
PRINT command.

378 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

• The size of global variables specified on the SET GLOBAL and GET GLOBAL commands was
extended in QMF Version 8.1 from 55 to 2000 characters.

Version 7.2 changes
These are enhancements to QMF Version 7.2.
Installation

• Db2 UDB for OS/390® and z/OS environments included the user exit library QMF720.SDSQEXIT.
This library can be used to store the user-modified version of the DSQUOPTS routine, local user date
and time exits (Db2-supplied exits), QMF user edit code routines, and QMF callable interface
programs.

• OS/390 and VM environments included the DSQ1BVW installation job, which creates or re-creates
all default QMF views on any supported Db2 database. Installation jobs were also provided for the
enhanced LIST command function, which allows the QMF LIST command to list all tables and views
authorized to either a primary or secondary authorization ID so that you do not have to explicitly
grant privileges to PUBLIC.

Database operations

• QMF Version 7.2 introduced the ability for QMF on VM, VSE, and z/OS to connect to Db2 for
Linux/390 as an application server.

• Support was added for several new Db2 UDB for OS/390 and z/OS SQL codes.

QMF initialization

• The DSQAO_QMFADM global variable was introduced. This variable indicates whether the user who
started QMF is a QMF administrator. Global variable DSQEC_DISABLEADM allows you to turn this
checking off.

• The DSQUOPTS exit routine was made available to override default values for global variables
DSQEC_SHARE and DSQEC_DISABLEADM.

Application support
The @IF REXX function was made available for FORM.CALC, FORM.CONDITIONS, and
FORM.COLUMNS definitions to provide an extended ability to conditionally alter the display of data
with improved null, overflow, and undefined processing. This spreadsheet-like function provides QMF
report authors with extended control over report output based on input values.

QMF commands and object operations

• The QMF LIST TABLES command works with authority groups defined by Db2 secondary
authorization IDs.

• Support was introduced for the QMF CONNECT command to enable uniform support of Db2 for
OS/390 user IDs and passwords across three QMF platforms: VM, VSE and OS/390.

• Users are prompted before discarding modifications in QUERY, PROC, FORM, and PROFILE objects.
This function is provided by the following global variables:

– DSQEC_PRO_QUERY
– DSQEC_PRO_PROC
– DSQEC_PRO_FORM
– DSQEC_PRO_PROF
– DSQEC_PRO_ENABLE

• The SET GLOBAL command allows procedure authors to set the value of a global variable to the
value of another global variable.

Appendix A. Summary of changes in prior releases 379

Version 7.1 changes
These are enhancements to QMF Version 7.1.

QMF Version 7.1 provided these enhancements.

Database operations

• Distributed access to the entire Db2 family of server products was introduced in this release, with
the addition of support for:

– DB2 for AS/400 server, Version 4.4
– DB2 for VSE Application Requester

• Cross-platform DRDA package binding provided additional installation and maintenance options for
QMF on VM, VSE and OS/390.

• Support for the following data types:

– ROWID data type

QMF Version 7.1 provided fully integrated support for this data type.
– LOB data types

QMF Version 7.1 provided limited support for this data type in the following areas:

- Table Editor
- Prompted Query
- DRAW SQL Query

QMF restricts LOB lengths to 32 KB in QMF reports. New SQL functions cast LOB columns into
character columns.

QMF commands and object operations

• Date and time edit codes TD and TT were added. These codes adjust their report formatting
characteristics automatically based on changes in the date or time format of the database
management system.

• Defaults were implemented for QMF commands that draw their values from the current context.
Working with the PROC, QUERY, or FORM objects was therefore made easier for the following
commands:

– CONVERT
– EDIT
– EXPORT
– PRINT
– RESET
– RUN
– SAVE

• Additional flexibility and control was provided for command options that accept quoted strings,
including more ways to specify the string. Increased lengths were also offered. Featured options
include:

– COMMENT for the SAVE and IMPORT commands
– TEXT for the MESSAGE command
– FROM for the CICS command (transaction data)
– Direct navigation to the QMF home panel using the SHOW command.

380 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Version 6.1 changes
These are enhancements to QMF Version 6.1.
Installation

Support for the ISPF LIBDEF service was introduced. You can use this service to allocate QMF
program libraries.

Database operations

• Support for Db2 Universal Database Version 5 was introduced.
• Formal QMF administrator authority was introduced, which provides administrators with the

unrestricted ability to display, save, erase, import, and export QMF objects that are owned by any
user.

• Support for Db2 special registers was added.

QMF initialization
The user's current authorization ID is displayed prominently on the QMF home panel.

Application support

Support for developing user-defined edit codes using Language Environment was added.

Resource control
Users can choose in advance whether to run or cancel a long-running query that is expected to use
too many resources. This function is provided by a confirmation panel that works with the Db2
predictive governor.

QMF commands and object operations

• The following improvements were introduced in QMF forms and reports:

– Support for the euro currency symbol.
– An edit code that offers suppression of zeroes by replacing zeroes with blanks in QMF reports.
– An edit code and associated global variable for currency formatting, enabling two different

currency symbols in the same report.
– A global variable that sets the default for the QMF scroll amount.

• The following improvements were introduced in QMF commands:

– The ERASE TABLE command was introduced, which can be used to erase a database alias.
– Improvements to SAVE command syntax to allow QMF to recognize both the object name and

type in context.
• Table editor support for column defaults in Change mode was added

Appendix A. Summary of changes in prior releases 381

382 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Appendix B. QMF functions that require specific
support

Support for these functions varies with the database or environment.

Functions that vary according to database type
Support for these functions varies by database.

Table 82. Functions that require the support of specific database management systems

Function supported Db2 for z/OS

Db2 for Linux,
UNIX, and
Windows

DB2 for iSeries
DB2 for VSE and

VM

Length of query statement
supported

2 MB* 65 KB* 65 KB* 8 KB

Number of columns in SELECT
statement

750 255 255 255

Importing single-precision floating
point numbers

X X

Long fields with LIKE statement X X

Database synonyms X

Database aliases for tables or views X X X

SAVE=IMMEDIATE option available
in Table Editor (supports CURSOR
HOLD)

X X X

Setting Db2 global variables X X

QMF commands that include three-
part names

Commands with
three-part
names can be
initiated from
this type of
database. They
can also be
directed to this
type of database
unless QMF was
started as a
stored
procedure.

Commands with
three-part
names can be
directed to this
type of server
unless QMF was
started as a
stored
procedure.

Commands with
three-part
names can be
directed to this
type of server
unless QMF was
started as a
stored
procedure.

Commands with
three-part
names cannot be
directed to these
server types.

* To activate support for SQL queries up to 2 MB on Db2 for z/OS databases and up to 65 KB on Db2 for
Linux, UNIX, and Windows databases, set the DSQEC_SQLQRYSZ_2M global variable to 1 before running
the query.

Related concepts
Starting QMF as a Db2 for z/OS stored procedure

© Copyright IBM Corp. 1982, 2020 383

The stored procedure interface to QMF for TSO allows any software program that can call a Db2 for z/OS
stored procedure to start QMF for TSO. The interface can also run a predefined QMF query or procedure
and receive up to 21 result sets back, including one for trace data.

Functions not available in CICS
Certain functions are supported by TSO only.

The following functions are not available in CICS:

• Use of multiple thread support.
• Use of QMF Analytics for TSO
• Use of the QMF Enhanced Editor.
• Use of extended storage for spilling report data no longer needed in active storage; a spill file must be

used instead
• Ability to start QMF as a Db2 for z/OS stored procedure
• Interfaces:

– Command interface
– Document interface

• Program parameters:

– DSQSCMD (QMF callable interface only)
– DSQSMTHD
– DSQSPLAN
– DSQSPRID
– DSQSPTYP
– DSQSRSTG
– DSQSSUBS

• Commands:

– BATCH (and its associated application)
– DPRE (and its associated REXX exec)
– EDIT QUERY
– EDIT PROC
– ISPF (and its associated application)
– LAYOUT (and its associated application)
– SET GLOBAL commands that reference the following global variable:

- DSQEC_EXTND_STG
– SHOW GLOBAL commands that reference the following global variables:

- DSQEC_EXTND_STG
- DSQAO_STO_PROC_INT

– STATE (requires the command interface)
• Macros: GETQMF
• Form functions:

– Report calculations or expressions that require REXX
– Conditional formatting
– Column definition

384 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

– Locally defined edit codes TDL and TTL (for formatting dates and times, respectively)
• Procedures with logic (which require REXX)
• The ability to cancel transactions
• The ability to update data at remote locations (all tables and views at remote locations are read-only in

QMF for CICS)
• External variables

Appendix B. QMF functions that require specific support 385

386 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Appendix C. QMF objects that reside in Db2
These QMF objects are necessary to run QMF Version 12.1 in a Db2 for z/OS subsystem. You can use this
information as a guide during recovery operations if necessary.

QMF plans
These plans are shipped with Db2 QMF for TSO and CICS.

Important: Do not change or add any BIND PACKAGE or BIND PLAN options in any of the QMF bind jobs
for plans and installation packages unless instructed to do so in this information, in the job itself, or by
IBM Software Support.

Table 83. QMF plans

Plan name Bind job that installs
this plan

Notes

QMF1210 DSQ1BINR Default QMF plan

DSQIN121 DSQ1BSQL QMF plan used for installation jobs only

QMF packages
These packages are shipped with QMF.

Table 84. QMF packages

Package name Bind job

DSQJ* DSQ1BPKG JCL

For remote servers: DSQJ* DSQ1BPKG JCL

QMF control tables and table spaces for TSO and CICS
These are the control tables shipped with QMF.

If you installed QMF in a DB2 for iSeries database, these control tables are installed in collection Q
instead of in these table spaces.

Important: To ensure that you can recover QMF operations to a specific point in time if necessary, back
up all of these tables at the same time.

Table 85. QMF control tables and the table spaces in which they reside

Control table name Table space Table space size
(in 1 KB units)

Table content Index

Q.PROFILES DSQTSPRO 100 primary, 20
secondary

Contains QMF profiles that hold information
about individual users’ access to resources and
data during a QMF session.

Q.PROFILEX

Q.OBJECT_ DIRECTORY DSQTSCT1 200 primary, 20
secondary

Contains general information about all QMF
queries, forms, procedures, folders, and analytic
objects in the database.

Q.OBJECT_
DIRECTORYX

© Copyright IBM Corp. 1982, 2020 387

Table 85. QMF control tables and the table spaces in which they reside (continued)

Control table name Table space Table space size
(in 1 KB units)

Table content Index

Q.OBJECT_ REMARKS DSQTSCT2 200 primary, 20
secondary

Contains comments that were saved when
queries, forms, procedures, and analytics
objects were created or replaced.

Q.OBJECT_
REMARKSX

Q.OBJECT_DATA

Q.OBJECT_DATA2

DSQTSCT3 5000 primary,
200 secondary

Contains queries, forms, procedures, folders,
and analytic objects represented in a format that
is internal to QMF. Q.OBJECT_DATA2 is for Db2
for Linux, UNIX, and Windows databases only.

Q.OBJECT_
OBJDATAX

Q.COMMAND_ SYNONYMS DSQTSSYN 100 primary, 20
secondary

Contains information about QMF command
synonyms. The Q.COMMAND_SYNONYMS table
stores synonyms for English.

Q.COMMAND_
SYNONYMNSX

Q.COMMAND_
SYNONYM_n

DSQTSSYn 100 primary, 20
secondary

Contains information about the QMF command
synonyms. The Q.COMMAND_SYNONYMS table
stores synonyms for English. There is a
Q.COMMAND_SYNONYM_n table for each QMF
NLF; replace the n with the 1-character
identifier for the national language you are
using. For older QMF installations, these tables
may all be in the DSQTSSYN table space.

Q.COMMAND_
SYNONYMNX_n

Q.RESOURCE_ TABLE DSQTSGOV 100 primary, 20
secondary

Contains resource control information passed to
the governor exit routine.

Q.RESOURCE_ INDEX

Q.ERROR_LOG DSQTSLOG 100 primary, 20
secondary

Contains information about system, resource,
and unexpected errors. This information is more
detailed than the information provided in error
messages.

None

Q.DSQ. RESERVED DSQTSRDO 12 primary, 4
secondary

Contains information used by QMF during
installation.

Important: Do not modify this table.

None

Q.GLOBAL_VARS DSQTSGLV 110 primary, 20
secondary

Contains system and user-defined global and
session variables.

Q.GLOBAL_VARSX

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Installation path G: Preparing a remote server to be accessed by QMF commands that include three-part
names

QMF views
These views are shipped with QMF. QMF uses these views on the platforms indicated in the table to
create object lists when the QMF LIST command is issued.

Table 86. Views used to create object lists when the QMF LIST command is issued

View name Table or tables on which the view is based on each platform

Q.DSQ_GLOBAL_VARS Q.GLOBAL_VARS (for all platforms). This view is not created on DB2 for
VSE and VM.

Q.DSQ_RESERVED_DB • SYSIBM.SYSCOLUMNS (for Db2 for z/OS)
• SYSCAT.COLUMNS (for Db2 for Linux, UNIX, and Windows)
• QSYS2.SYSCOLUMNS (for DB2 for iSeries)

388 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Table 86. Views used to create object lists when the QMF LIST command is issued (continued)

View name Table or tables on which the view is based on each platform

Q.DSQ_RESERVED_OBJ Q.OBJECT_DIRECTORY (for all platforms)

Q.DSQEC_ALIASESL • SYSIBM.SYSTABLES (for Db2 for z/OS)
• SYSCAT.TABLES (for Db2 for Linux, UNIX, and Windows)
• QSYS2.SYSTABLES (for DB2 for iSeries)

Q.DSQEC_COLS_LDB2L • SYSIBM.SYSCOLUMNS and SYSIBM.SYSTABAUTH (for Db2 for z/OS)
• SYSCAT.COLUMNS and SYSCAT.TABAUTH (for Db2 for Linux, UNIX, and

Windows)
• QSYS2.SYSCOLUMNS (for DB2 for iSeries)

Q.DSQEC_COLS_RDB2L SYSIBM.SYSCOLUMNS and SYSIBM.SYSTABAUTH (for Db2 for z/OS)

Q.DSQEC_QMFOBJSL Q.OBJECT_DIRECTORY and Q.OBJECT_REMARKS (for all platforms)

Q.DSQEC_TABS_LDB2L • SYSIBM.SYSTABAUTH and SYSIBM.SYSTABLES (for Db2 for z/OS)
• SYSCAT.TABAUTH and SYSCAT.TABLES (for Db2 for Linux, UNIX, and

Windows)
• QSYS2.SYSTABLES (for DB2 for iSeries)

Q.DSQEC_TABS_RDB2L SYSIBM.SYSTABAUTH and SYSIBM.SYSTABLES (for Db2 for z/OS)

Q.RESOURCE_VIEW Q.RESOURCE_TABLE (for all platforms)

Several of these views are based on Db2 system tables and are used by QMF for both the LIST and
DESCRIBE functions.

You can create or re-create all default QMF control table views on any supported Db2 database from z/OS
by running job DSQ1BVW. This job drops any existing views, creates new views, and grants the necessary
privileges on the views. If you installed the enhanced LIST command function, which is available for use
with Db2 for z/OS, run job DSQ1BUDV to install the views after you run job DSQ1BVW. Job DSQ1BUDV
enables QMF control table views for Db2 secondary authorization IDs.

Note: Depending of the value of installation parameter EXTSEC, the definitions of views
Q.DSQEC_TABS_LDB2L, Q.DSQEC_COLS_LDB2L, Q.DSQEC_TABS_RDB2L and Q.DSQEC_COLS_RDB2L
may not include reference to SYSIBM.SYSTABAUTH.

Related tasks
Installing the enhanced LIST command function (z/OS only)
When the enhanced LIST command function is installed, privileges for tables and views must be granted
only to a user's primary or secondary authorization ID, instead of to PUBLIC, to be included in object lists
that are generated by the LIST TABLES or LIST ALL command when the OWNER=ALL option is specified
on the command.

Db2 for z/OS storage groups
These Db2 for z/OS storage group (STOGROUP) objects are created during QMF installation.

Table 87. Db2 for z/OS storage groups that are created for QMF

Storage group name Description

DSQ1STBG Stores QMF sample tables

DSQSGCTL Stores QMF control tables

DSQSGDEF Default storage group for tables created by the SAVE DATA command

Appendix C. QMF objects that reside in Db2 389

Table 87. Db2 for z/OS storage groups that are created for QMF (continued)

Storage group name Description

DSQSGSYn Stores the command synonym index for QMF national language
features (Q.COMMAND_SYNONYMNSX)

There is a separate space for each national language, indicated by a
unique character in place of the n.

Do not configure these storage groups as user-managed groups after the QMF installation.

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Space for saving LOB data
When you issue a SAVE DATA command for a table that contains one or more LOB columns, multiple
objects are created by Db2 and QMF.

QMF creates one base table and index in the table space that is specified in the SPACE field of the QMF
profile.

Db2 creates an auxiliary table space, table, and index for each LOB column in the table that is saved.

VSAM clusters for TSO/CICS
These VSAM clusters are shipped with QMF.

Table 88. VSAM clusters

Cluster name Object for which cluster is needed

QMFDSN.DSNDBC.DSQDBCTL.DSQTSCT1.I0001.A001 DSQTSCT1

QMFDSN.DSNDBC.DSQDBCTL.DSQTSCT2.I0001.A001 DSQTSCT2

QMFDSN.DSNDBC.DSQDBCTL.DSQTSCT3.I0001.A001 DSQTSCT3

QMFDSN.DSNDBC.DSQDBCTL.DSQTSPRO.I0001.A001 DSQTSPRO

QMFDSN.DSNDBC.DSQDBCTL.DSQTSLOG.I0001.A001 DSQTSLOG

QMFDSN.DSNDBC.DSQDBCTL.DSQTSGOV.I0001.A001 DSQTSGOV

QMFDSN.DSNDBC.DSQDBCTL.DSQTSSYN.I0001.A001 DSQTSSYN

QMFDSN.DSNDBC.DSQDBCTL.DSQTSGLV.I0001.A001 DSQTSGLV

QMFDSN.DSNDBC.DSQDBCTL.OBJECTRD.I0001.A001 Q.OBJECT_DIRECTORYX

QMFDSN.DSNDBC.DSQDBCTL.OBJECTRR.I0001.A001 Q.OBJECT_REMARKSX

QMFDSN.DSNDBC.DSQDBCTL.OBJECTRO.I0001.A001 Q.OBJECT_OBJDATAX

QMFDSN.DSNDBC.DSQDBCTL.PROFILEX.I0001.A001 Q.PROFILEX

QMFDSN.DSNDBC.DSQDBCTL.COMMANDR.I0001.A001 Q.COMMAND_SYNONYMSX

QMFDSN.DSNDBC.DSQDBCTL.GLOBALRV.I0001.A001 Q.GLOBAL_VARSX

390 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

QMF sample tables
QMF provides sample tables that you can use to help you learn and test product functions. These tables
contain data about applicants, interviews, parts, products, employees, and suppliers of a fictitious
electrical parts manufacturer, J & H Supply Company.

Table 89. QMF sample tables

Table Db2 for z/OS Table
Space Name

Contains information about:

Q.APPLICANT DSQ1ST3E or
DSQ1STBT

New candidates for hire

Q.INTERVIEW DSQ1ST6E or
DSQ1STBT

Interviews of new hires

Q.ORG DSQ1ST1E or
DSQ1STBT

The company's organizational structure

Q.PARTS DSQ1ST9E or
DSQ1STBT

Product parts data

Q.PRODUCTS DSQ1ST4E or
DSQ1STBT

The company's products

Q.PROJECT DSQ1ST7E or
DSQ1STBT

Projects undertaken, by department

Q.SALES DSQ1ST5E or
DSQ1STBT

Sales and commissions

Q.STAFF DSQ1ST2E or
DSQ1STBT

The company's personnel

Q.SUPPLIER DSQ1ST8E or
DSQ1STBT

Vendor information

Additionally, QMF Analytics for TSO provides sample tables that you can use to learn about QMF Analytics
for TSO functions. The following table shows the type of data that is contained in each sample table.

Table 90. QMF Analytics for TSO sample tables

Table Db2 for z/OS
Table Space
Name

Contains information about:

Q.CASHFLOW DSQ1STAE or
DSQ1STBT

Data about cost and revenue that can be used with
QMF Analytics for TSO discounted cash flow analytics

Q.CLIMATE_10YR DSQ1STAE or
DSQ1STBT

Data about climate over a 10-year period

Q.CLIMATE_USA DSQ1STCE or
DSQ1STBT

Data about climate in the United States, including
data about rainfall and sunshine

Q.WORLDINFO DSQ1STBE or
DSQ1STBT

Data about geographic regions in which the J & H
Supply Company conducts business

In DB2 for Linux, UNIX, and Windows databases, the DSQ1STBT table space is found in the DSQTSAMP
database partition group. The sample tables reside in the DSQ1STBT table space. In DB2 for z/OS
databases, the table spaces listed in the charts reside in the DSQ1STBB database.

Appendix C. QMF objects that reside in Db2 391

392 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Appendix D. External editors
You can use outside editors with QMF objects and reports.

Modifying QMF queries and procedures with an editor
You can use the EDIT command to modify a QMF SQL query or procedure that is in temporary storage by
using an editor external to QMF.

Before you begin

The following procedure assumes that you use an editor that can be called by a CLIST operating under
ISPF. However, if the editor is ISPF/PDF, it is called directly using the ISPF EDIT service instead of through
a CLIST

About this task

One of the external editors can be ISPF/PDF (if QMF is started under ISPF). When you issue the EDIT
command, QMF exports the object from QMF temporary storage to a temporary edit transfer data set.
When the edit session is complete, the contents of the temporary data set are imported into temporary
storage.

Procedure

To make an editor available for the EDIT command:
1. Write a CLIST to call the editor and pass the name of the data set to be edited as a positional

parameter.
For example, with the following command, QMF calls a CLIST named XYZEDIT to edit a data set
named USERA.XYZDATA.TEXT:

XYZEDIT 'USERA.XYZDATA.TEXT'

2. Place the CLIST in a command library that is allocated to everyone with access to the editor. Place it in
a library that is part of the concatenation for the ddname SYSPROC. One possible choice is QMF library
QMF1210.SDSQCLTE, which must be available to all QMF users.

3. For individual users, allocate and catalog a data set for objects to be edited.
This data set is refilled every time that the user calls the editor with the EDIT command. Give the data
set the following characteristics:

• A physical sequential organization (DSORG=PS)
• Fixed-length, 79-byte records (LRECL=79)
• A block size of 4029 (BLKSIZE=4029)

4. In the JCL for each user, allocate the data set that is cataloged for that user in step “3” on page 393.
Allocate it with the ddname DSQEDIT. Use DISP=OLD for the disposition of the data set.

5. Tell users how to specify the EDIT command.
The command has the following format:

EDIT yyyy (EDITOR=xxxx)

In this syntax, yyyy is either PROC or QUERY, and xxxx is the name of the CLIST created to call the
editor.

6. You can edit your QMF SQL query or QMF procedure under a different ISPF application ID by using an
exec or CLIST as the editor name on the QMF EDIT command.

© Copyright IBM Corp. 1982, 2020 393

• If you specify the program development facility (PDF) editor to edit an SQL query or QMF
procedure, QMF executes the PDF editor under the QMF application ID DSQE, or DSQn where n is a
1-character language identifier. In addition, QMF sets the function keys and location of the
command line to fit the QMF product.

• If you must use a different set of function keys or have existing PDF macros or specialized PDF
editor screens, you can use them by executing the PDF editor under an application ID other than
DSQn. Execute two small REXX programs or CLISTs. The first program simply routes execution to
the second program. The second program then invokes the editor that is running under the ISPF
application ID with the function key that you want, or with other special setup requirements such
as an edit invocation macro or a unique edit panel.

This REXX program example shows how to edit the SQL query or QMF procedure by using the edit
transfer data set, as defined by ddname(DSQEDIT), when QMF is started. The PDF application ID ISP is
used in this example.

Edit Program 1 (MYEDIT)

 /* REXX QMF Edit program 1 */
 /* Transfer to ISP application ID */
 Address ISPEXEC "SELECT CMD(MYEDIT2) NEWAPPL(ISP)"
 Exit 0

Edit Program 2 (MYEDIT2)

 /* REXX QMF Edit program 2 */
 /* Invoke PDF Editor using DDNAME */
 Address ISPEXEC "LMINIT DATAID(EDT) DDNAME(DSQEDIT)"
 Address ISPEXEC "EDIT DATAID("EDT")"
 Address ISPEXEC "LMFREE DATAID("EDT")"
 Exit 0

Figure 126. Editing by using the edit transfer data set

The REXX programs must be allocated to a valid concatenation of either SYSPROC or SYSEXEC before
execution. To execute from QMF, issue a command like the following QMF EDIT command from the
QMF command line:

EDIT QUERY (E=MYEDIT)

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Inserting QMF reports into documents
The document interface is a macro that is supplied by IBM for the ISPF/PDF and PS/TSO editors; it is not
available in CICS. Using this macro, a user operating outside QMF can begin a QMF session and insert a
QMF report into a document while the document is being edited.

The report can be created before the editing session begins. More importantly, the user can create the
report at the time the GETQMF macro is issued, in a QMF session that the macro started.

Before your users can use this macro, you must:

• Ensure that each user is operating with the proper QMF libraries.

In the sample TSO logon procedure, these libraries have names of the following form:

QMF1210.SDSQ*

394 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

You can operate the ISPF/PDF and PS/TSO editors without these resources; however, the document
interface cannot successfully begin a QMF session.

• Change certain document interface components.

Some of these changes are required, while others are optional.

If you are using an NLF, you must also customize the NLF version of the document interface.

Changing the application
Change the application by changing one or more of its components.

The components that you can change are members of certain QMF libraries:

• The CLISTs and macros are members of QMF1210.SDSQCLTE.
• The other components are members of QMF1210.SDSQSAPE.

Renaming the document interface macro (DSQAED1P)
The macro component, DSQAED1P, is the macro that users call to use the document interface.

Procedure

To use the macro:
• Rename a copy of the macro, preferably to GETQMF.

This default name is used for the macro.

If you are using an NLF, the main macro is member DSQAnD1P of the library QMF1210.SDSQCLTn,
where n is the 1-character language ID for the NLF you are using. Like the main English-language
macro, the macro can be renamed with no effect on the other components. Choose a name other than
GETQMF if your users' JCL supports both the English-language and NLF environments. You might
consider changing it to GETQMFn, for example.

• Place the renamed copy in the library that contains the original (QMF1210.SDSQCLTE).

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Placing the Q.DSQAED1S procedure in the database
The Q.DSQAED1S procedure installs the document editing interface function. You place the procedure in
the database as part of setting up the document editing interface.

About this task

The Q.DSQAED1S procedure is in the member DSQAED1S of the QMF1210.SDSQSAPE library.

If you are using an NLF, change the 1-character national language ID in the member DSQAnD1S of the
QMF1210.SDSQSAPn library.

Procedure

• As a QMF administrator, you can place Q.DSQAED1S in the database by entering the following QMF
command:

IMPORT PROC DSQAED1S FROM 'QMF1210.SDSQSAPE(DSQAED1S)' (SHARE=YES

Related tasks
Installing QMF National Language Features

Appendix D. External editors 395

A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Changing the data components
Before your users can use this macro to insert QMF reports into documents, you must change certain data
components. Some of these changes are required, while others are optional.

There are five data components, all in the library QMF1210.SDSQSAPE. Unlike the CLISTs and macros,
these components do not contain logic or executable commands. Instead, they contain information that
can appear in messages or in users' reports.

Because the document interface assumes that these components are in a single library, you can modify
them in either of the following ways:

• You can retain the changed components in QMF1210.SDSQSAPE.

If you use this method, change the names of the original components, and give the changed
components the original names.

• You can place the changed components in a new library.

If you use this method, you must copy all the other data components from the old library into the new
library. You must change the macro DSQAED1P.

The message component

One of the five data components is named DSQAED0L. This component contains messages that can
appear on a user’s screen while the user is operating the document interface, and keywords for certain
QMF commands.

Do not change this component.

If you are using an NLF, change the 1-character language ID in the member DSQAnD0L of the
QMF1210.SDSQSAPn library.

The DCF components

The Document Composition Facility (DCF) is an IBM text processing system. If your site uses DCF, you
might want to change the remaining four DCF components.

A user can indicate to the document interface that the current document is formatted by DCF. In
response, the document interface adds DCF control statements to the user's inserted report. Wherever
these statements appear, they consist of all the records in one or another of the DCF components. You
can change any or all of the records in a component. The components, and what they supply, are as
follows:

• DSQABD01

Supplies statements that are inserted just before the report. These default statements are in the default
component:

.* QMF Document Interface heading control:

.SA

.RH SUP

.RF SUP

.HS 0

.FS 0

.TM 0.5I

.BM 0

.DC CONT OFF

.FO OFF

• DSQABD02

396 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Supplies statements that are inserted just after each page footing. This default statement is in the
default component:

.* QMF Document Interface page footing control:

• DSQABD03

Supplies statements that are inserted just before each page heading. These default statements are in
the default component:

.PA NOSTART

.* QMF Document Interface page heading control:

• DSQABD04

Supplies statements that are inserted just after the end of the report. These default statements are in
the default component::

.* QMF Document Interface footing control:

.RE

.* QMF REPORT END

Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.
Related information
Search for information about the Document Composition Facility components in your DCF information in
the DCF information.

Changing the CLISTs and macros
To set up the document editing interface, you might need to make more changes to some components.

These components are all in the library QMF1210.SDSQCLTE. If you change the CLISTs or macros, change
a copy (not the original) and place it in another library. A DD statement for the new library must appear
among the statements for SYSPROC in your users' JCL. If it is not there already, insert one before the
statement for QMF1210.SDSQCLTE. Otherwise, the original components are used, instead of the ones
you modified. For example, if you place the modified components in the library XYZ.NEWCLIST, then the
DD statements for SYSPROC might look like the following statements:

//SYSPROC DD DSN=SYSUT2.CLIST,DISP=SHR
// DD DSN=XYZ.NEWCLIST,DISP=SHR
// DD DSN=QMF1210.SDSQCLTE,DISP=SHR

Changing DSQAnD1P

This is the macro that you renamed GETQMF. You can also do the following to the macro:

• Change the following statements:

SET &SAMPLIB = QMF1210.SDSQSAP&LANGCHAR
SET &BASELIB = QMF1210.SDSQSAPE

&SAMPLIB
Identifies the library that contains the data components of the document interface

&LANGCHAR refers to the 1-character ID that identifies each NLF.

&BASELIB
Identifies the QMF samples library, QMF1210.SDSQSAPE

Appendix D. External editors 397

http://www.ibm.com/shop/publications/order

When &LANGCHAR has the value E, both variables name the same library – QMF1210.SDSQSAPE. If the
libraries have different names, change the names assigned: &SAMPLIB and &BASELIB.

• Change the following statement:

ALLOC FI(DSQPRINT) SYSOUT RECFM(F B A) LRECL(133) BLKSIZE(1330)

A user can call the document interface in an interactive QMF session. When called this way, the
document interface can reallocate DSQPRINT. This statement restores DSQPRINT to the default. If you
do not want DSQPRINT restored to the default, replace this statement with one that restores DSQPRINT
to the value you want.

Changing DSQABD1Q

This CLIST allocates data sets for the session started with the document interface. Make whatever
modifications you think are necessary to the CLIST code. For example, you might need to add allocations
for data sets specific to your site.

Some of these allocations include GDDM data sets. The document interface does not itself use these data
sets, but you might find this allocation necessary.

The variable &LANGCHAR has the value E. This value indicates a library that contains English-language
components, as opposed to components for a German application, for example.

To support LIBDEF allocations, activate the LIBDEF service and customize file names as necessary:

/***/
/* Remove the Following "GOTO NOLIBDEF" statement to allocate */
/* ISPF libraries using the ISPF LIBDEF service. */
/***/
 GOTO NOLIBDEF
/***/
/* ALLOCATE QMF ISPF LIBRARIES USING LIBDEF */
/***/
 SET PNAME = 'QMF1210.SDSQPLB&LANGCHAR' /* ISPF Panel Library */
 SET MNAME = 'QMF1210.SDSQMLB&LANGCHAR' /* ISPF Message Library */
 SET SNAME = 'QMF1210.SDSQSLB&LANGCHAR' /* ISPF Skeleton Library */
 SET LNAME = 'QMF1210.SDSQLOAD' /* QMF Modules */
 ISPEXEC LIBDEF ISPPLIB DATASET ID(&PNAME)

Changing DSQABD1P to support LIBDEF

If you allocated QMF libraries with the LIBDEF function, modify DSQABD1P to free the use of LIBDEF-
allocated libraries. Uncomment the following statements in DSQABD1P:

 /**/
 /* FREE ISPF LIBDEFs */
 /* You might or might not need to free libdefs here. */
 /* If you do, then remove comments from LIBDEF statements. */
 /**/
 /* ISPEXEC LIBDEF ISPPLIB DATASET ID() */
 /* ISPEXEC LIBDEF ISPMLIB DATASET ID() */
 /* ISPEXEC LIBDEF ISPSLIB DATASET ID() */
 /* ISPEXEC LIBDEF ISPLLIB DATASET ID() */
 /* FREE FI(DSQLLIB) */

Changing DSQABD1C

You can modify this component in the following ways:

• Change the following statement:

ALLOC FI(DSQPRINT) UNIT(SYSDA) SPACE(5,2) TRACKS +
 RECFM(F B A) LRECL(&PRINTREC) BLKSIZE(&EVAL(&PRINTREC*10))

This statement allocates a data set for the user's report. The user then fills the data set through the
QMF PRINT command. You might need to change the SPACE operand if your users create large reports.

• Change the following statement:

398 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

ISPEXEC SELECT PGM(DSQQMF&LANGCHAR)
 PARM(I=&PROCNAME)
 NEWAPPL(DSQ&LANGCHAR)

With the statement in its present form, the subsystem for Db2 must be named DSN, and the application
plan for QMF must be named QMF12. If your settings are different, you must add information to the
PARM operand of the statement. The following example statement applies to a subsystem and
application plan named ABC and QMFXXX:

ISPEXEC SELECT PGM(DSQQMF&LANGCHAR)
 PARM(I=&PROCNAME,S=ABC,P=QMFXXX)
 NEWAPPL(DSQ&LANGCHAR)

The modified statement overrides default values for some QMF program parameters.

Related concepts
Setting program parameters and preferences at startup time
This topic describes program parameters that you can pass to QMF when starting QMF under the
standard interface.
Related tasks
Installing QMF National Language Features
A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

Appendix D. External editors 399

400 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Appendix E. QMF user-defined functions
Information about QMF user-defined functions.

QMF user-defined functions and procedures
Some of the optional QMF installation features allow you to create user-defined functions and
procedures.

The following table lists the user-defined functions and procedures that are associated with optional
installation features. The user-defined functions and procedures that are available in your environment
will vary based on the optional features that are installed.

Table 91. User-defined functions and procedures

Name Specific name Type

Optional
installation job
that defines the
function or
procedure Use

Q.DSQQMFSP DSQQMFSP Procedure DSQ1BSP QMF stored
procedure interface

Q.DSQABA1E DSQABA1E Procedure DSQ1BUDF Enhanced list view
processing

Q.DSQABA1E DSQABA1E_D Function DSQ1BUDF Enhanced list view
processing

Q.APPL_AUTHNAMES DSQABA1E_F0V Function DSQ1BUDF Enhanced list view
processing

Q.APPL_AUTHNAMES DSQABA1E_F1V Function DSQ1BUDF Enhanced list view
processing

Important: If your WLM environment changes after QMF has been installed, you must run ALTER
statements to update the WLM environment information for any of the user-defined functions or
procedures that you are using. For example:

ALTER PROCEDURE Q.DSQQMFSP
WLM ENVIRONMENT new_environment_name;
ALTER FUNCTION Q.DSQABA1E
WLM ENVIRONMENT new_environment_name;
ALTER SPECIFIC FUNCTION Q.DSQABA1E_F0V
WLM ENVIRONMENT new_environment_name;
ALTER SPECIFIC FUNCTION Q.DSQABA1E_F1V
WLM ENVIRONMENT new_environment_name;
ALTER PROCEDURE Q.DSQABA1E
WLM ENVIRONMENT new_environment_name;

APPL_AUTHNAMES
The APPL_AUTHNAMES function returns the Db2 authorization IDs for the current application process. A
row is returned for each authorization name. The schema name is Q.

The syntax description for the user-defined function table is:

© Copyright IBM Corp. 1982, 2020 401

APPL_AUTHNAMES(

adjuncts

)

RETURNS TABLE(

authname

namekind

)

adjuncts
VARCHAR(255): A string of authorization names. Specify each authorization name as an identifier or a
delimited identifier. Separate each authorization name by one or more blanks. For example:

’SALES "DEPT A1" PAYROLL’

These three names would be added to the output of the function should they represent distinct values not
already defined as authorization IDs for the current process.

The result of the function is a Db2 table with the following columns:

Table 92. Table created from the APPL_AUTHNAMES function

Column name Data type Description

authname CHARACTER(128) The name for an authorization ID
of the current process.

namekind CHARACTER(1) A classification code for the
name value in AUTHNAME:
1

Primary authorization ID or
user name

2
Secondary authorization ID or
group name

3
Current authorization ID

This applies only when the
current SQL ID is neither the
primary ID nor a secondary
ID of the current process.

9
Adjunct name value

This applies only when the
ADJUNCT parameter is used
and the identifiers it specifies
are not authorization IDs of
the current process.

CALL DSQABA1E
The DSQABA1E stored procedure returns the Db2 authorization IDs for the currently running process. The
schema name is Q.

The syntax description for the stored procedure interface is:
CALL DSQABA1E (userid , groupids , sqlid)

402 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

userid
VARCHAR(130): The primary authorization ID is returned in the parameter.

groupids
VARCHAR(32672): The secondary authorization IDs are returned in this parameter. Each
authorization name is converted from a VARCHAR data format and to a single-string structure. The
calling program must interpret the content of the character string to obtain the individual
authorization names.

sqlid
VARCHAR(130): The current SQL authorization ID is returned in this parameter.

DSQABA1E
The DSQABA1E function returns diagnostic information that can assist IBM Software Support with
problem diagnosis. The schema name is Q.

The syntax description for the diagnostic user-defined function is:
DSQABA1E ()

The result of the function is a character string with a data type of VARCHAR and an actual length not
greater than 5,300 bytes. This string is suitable for formatting in a QMF report with a column width of 53
and an EDIT code of CW.

Appendix E. QMF user-defined functions 403

404 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Appendix F. How QMF and GDDM programs are
defined to CICS

QMF for TSO and CICS provides the jobs necessary to define QMF programs to CICS and load GDDM
definitions and chart formats for QMF panels.

How QMF programs are defined to CICS
During installation, the default transaction ID QMFn is defined for QMF. The transaction ID is defined in
the system definition (CSD) file.

Resident QMF programs

During installation, the following programs are defined as resident in CICS:

• DSQQMF
• DSQQMFn
• DSQCBST
• DSQCnLTT
• DSQCnBLT
• DSQUnGV3
• DSQUECIC

The variable n in the program names and transaction ID represents the 1-character national language
identifier (NLID) that corresponds to the language in which you are running QMF.

CICS treats programs with RMODE(31) as permanently resident because of the large amount of virtual
storage available above the 16 MB line. Programs defined as resident are loaded during CICS system
initialization. Nonresident programs are loaded on the first reference to the program.

The first QMF transaction to start causes certain GDDM programs to be loaded.

How nonresident programs affect performance

If several users use QMF, removing QMF programs from resident storage might affect QMF and CICS
performance, because QMF must be loaded each time a user starts the transaction. However, if the needs
of your site require that you remove these programs from resident storage, change the definition for QMF
programs from resident to nonresident.

You can specify RESIDENT=NO on the CEDA DEFINE PROGRAM command to interactively change the
program definition in the CSD file.

Related concepts
How GDDM definitions are loaded during installation of QMF
QMF uses GDDM services for printing and displaying QMF screens.
Related tasks
Installing QMF National Language Features

© Copyright IBM Corp. 1982, 2020 405

A QMF National Language Feature (NLF) provides you with an environment that is customized for a
specific language. In general, functions in QMF that are available in the base English-language product
are also available in NLFs.

How GDDM definitions are loaded during installation of QMF
QMF uses GDDM services for printing and displaying QMF screens.

The VSAM panel file, DSQPNLn, contains text for QMF screens and is described to CICS during
installation. QMF also uses the GDDM-PGF product to create charts of many types, such as scatter, pie,
histogram, and others.

How nonresident GDDM programs affect QMF

GDDM programs are not predefined as resident. When you customize GDDM for CICS, consider making
the GDDM programs resident, because certain GDDM programs are loaded when QMF is started, whether
or not you use the charting functions of QMF.

How chart formats are defined

The default installation of QMF stores chart formats, chart data, and GDF data in the GDDM ADMF file. You
can change the name of this GDDM object file or create additional GDDM object files to store chart objects
by modifying the OBJFILE section of the GDDM external defaults module, ADMADFC. For example, you
might have separate files for chart formats, chart data, and GDF data.

Adding charting functions after installation of QMF

If you install GDDM-PGF after you install CICS, you need to fully install and customize GDDM-PGF for
CICS, rather than merely restoring the product to a sublibrary. After you install GDDM-PGF and customize
it, you can verify the installation by running the CICS ADMC transaction, which is predefined by GDDM
during GDDM customizing for CICS. No further customization of the chart formats is necessary; these
formats were defined for you during installation of QMF.

Related concepts
Installation prerequisites for requester (Db2 for z/OS) databases
Before you can install QMF on Db2 for z/OS databases that function as stand-alone or requester
databases, you must fulfill the hardware and software requirements.
Related information
Search for information about customizing GDDM for CICS in the GDDM documentation.

Transaction routing to control resource use in CICS
To protect high-speed transactions in your system from potential long-running QMF queries that might
consume extra resources, consider isolating execution of QMF transactions to a single region, using
multiregion operations or intersystem communications.

Define one CICS terminal-owning region and route QMF transaction requests to other regions by using
multiple transaction IDs or dynamic routing exits.

406 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/shop/publications/order

Notices

This information was developed for products and services offered in the US. This material may be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1982, 2020 407

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any
equivalent agreement between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as shown below.

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This publication documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of QMF.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at http://
www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

408 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Glossary of terms and acronyms

abnormal end of task (abend)
The termination of a task, job, or subsystem because of an error condition that recovery facilities
cannot resolve during execution.

address space
The range of addresses available to a computer program or process. Address space can refer to
physical storage, virtual storage, or both.

Advanced Program-to-Program Communication
See APPC.

aggregate function
Any of a group of functions that summarizes data in a column. They are requested with these usage
codes on the form panels: AVERAGE, CALC, COUNT, FIRST, LAST, MAXIMUM, MINIMUM, STDEV,
SUM, CSUM, PCT, CPCT, TPCT, TCPCT.

aggregation variable
An aggregation function that is placed in a report using the FORM.BREAK, FORM.CALC, FORM.DETAIL,
or FORM.FINAL panels. Its value appears as part of the break footing, detail block text, or final text
when the report is produced.

alias
An alternative name used to identify a table, view, database, or nickname. An alias can be used in SQL
statements to refer to a table, view, or database in the same Db2 system or subsystem or in a remote
Db2 system or subsystem.

APAR (Authorized Program Analysis Report)
A request for correction of a defect in a supported release of an program supplied by IBM.

APF (authorized program facility)
In a z/OS environment, a facility that permits the identification of programs that are authorized to use
restricted functions.

API (application programming interface)
An interface that allows an application program that is written in a high-level language to use specific
data or functions of the operating system or another program.

application
One or more computer programs or software components that use QMF services to provide
functionality in direct support of a specific business process or processes.

APPC (Advanced Program-to-Program Communication)
An implementation of the SNA LU 6.2 protocol that allows interconnected systems to communicate
and share the processing of programs.

application plan
The control structure that is produced during the bind process. The default name for the QMF Version
12.1 application plan is QMF12.

application programming interface
See API.

application requester
The source of a request to a remote DRDA-enabled relational database management system
(RDBMS). Only Db2 for z/OS databases can function as application requesters because this is the only
type of database in which QMF can be started.

application server
The target of a request from an application requester. The database management system (DBMS) at
the application server site services the request. Connectivity with remote servers is not supported
when QMF for TSO is running as a Db2 for z/OS stored procedure.

© Copyright IBM Corp. 1982, 2020 409

argument
A value passed to or returned from a function or procedure at run time.

authorization identifier (authorization ID)
A character string that designates a set of privileges and can be used to verify authority. An
authorization ID can represent an object, an individual user, an organizational group, a function, or a
database role. QMF authenticates either the database authorization ID or, optionally, the QMF TSO
logon ID, against the CREATOR column of the Q.PROFILES table during QMF initialization.

Authorized Program Analysis Report
See APAR.

Authorized program facility
See APF.

auxiliary table
A table that stores columns outside the table in which they are defined. See also base table.

base product
The English-language version of QMF, established when QMF is installed. Any other language
environment is established after installation by installing the National Language Feature (NLF)
associated with that language.

base table
A table that is created by the SQL CREATE TABLE statement and that holds persistent data.

binary string
A sequence of bytes that is not associated with a coded character set and therefore is never
converted. For example, the BLOB data type is a binary string. See also CCSID.

bind
To convert the output from the DBMS precompiler to a usable control structure, such as an access
plan, an application plan, or a package.

bit data
Data with a data type of CHAR or VARCHAR that is not associated with a coded character set and
therefore is never converted.

buffer pool
An area of memory into which data pages are read and in which they are modified and held during
processing. See also address space.

built-in function
A strongly typed, high-performance function that is integral to the Db2 database. A built-in function
can be referenced in SQL statements anywhere that an expression is valid.

CAF (call attachment facility)
A Db2 for z/OS attachment facility for application programs that run in TSO or z/OS batch. The CAF is
an alternative to the DSN command processor and provides greater control over the execution
environment.

call attachment facility
See CAF.

callable interface
A programming interface that provides access to QMF objects and services.

cascade delete
A process by which the Db2 database manager enforces referential constraints by deleting all
descendent rows of a deleted parent row.

catalog
A collection of tables and views that contains descriptions of objects such as tables, views, and
indexes. See also QMF object catalog.

CCSID (coded character set identifier)
A 16-bit number that includes a specific set of encoding scheme identifiers, character set identifiers,
code page identifiers, and other information that uniquely identifies the coded graphic-character

410 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

representation. Because QMF uses display services provided by GDDM, the GDDM application code
page must agree with the CCSIDs in use for the database. See also binary string.

character string
A sequence of bytes that represents bit data, single-byte characters, or a mixture of single-byte and
multibyte characters.

check constraint
A user-defined constraint that specifies the values that specific columns of a base table can contain.
See also constraint.

CICS (Customer Information Control System)
An IBM licensed program that provides online transaction-processing services and management for
business applications.

clause
In SQL, a distinct part of a statement in the language structure, such as a SELECT clause or a WHERE
clause.

CM (Compatibility Mode)
An installation mode of QMF Version 8.1 and QMF Version 9.1 that limited owner and object names in
the QMF object catalog to eight and 18 characters, respectively. See also NFM.

code page
A particular assignment of code points to graphic characters. Within a given code page, a code point
can have only one specific meaning. A code page also identifies how undefined code points are
handled.

coded character set identifier
See CCSID.

coexistence
The state during which two QMF releases exist in the same Db2 subsystem. QMF Version 12.1 can
coexist with QMF Version 9.1 New Function Mode or QMF Version 8.1 New Function Mode only.

column
The vertical component of a database table. A column has a name and a particular data type (for
example, character, decimal, or integer).

column function
See aggregate function.

column wrapping
The value formatting in a report where the values occupy several lines within a column. Column
wrapping is often used when a column contains values whose length exceeds the column width, such
as cases requiring the display of XML data.

command interface
An interface for issuing QMF commands. The command interface allows you to issue QMF commands
from an ISPF dialog running under QMF. Using this interface, QMF communicates with the dialog
through the ISPF variable pool.

command synonym
The verb or verb/object part of a site-defined command. After command synonyms are defined and
activated in the QMF profile, users can enter the synonyms on the QMF command line as they do with
regular QMF commands.

command synonym table
A table that stores one site-defined command in each row. You assign a set of command synonyms to
a user by storing the name of this table in the user's profile.

comparison operator
In SQL, a symbol used in comparison expressions to specify a relationship between two values.
Comparison operators are = (equal to), <> (not equal to), < (less than), > (greater than), <= (less than
or equal to), and >= (greater than or equal to).

Compatibility Mode
See CM.

Glossary of terms and acronyms 411

commit
To end a unit of work by releasing locks so that the database changes made by that unit of work can
be perceived by other processes. This operation makes the data changes permanent.

concatenation
Joining two characters or strings to form one string.

connection
In data communication, an association established between entities for conveying information. See
also SQL connection. Connectivity with remote servers is not supported when QMF for TSO is running
as a Db2 for z/OS stored procedure.

constant
A language element that specifies an unchanging value. Constants are classified as string constants or
numeric constants.

constraint
A rule that limits the values that can be inserted, deleted, or updated in a table.

control section
See CSECT.

control tables
A set of tables that QMF uses to store information about QMF objects and manage QMF operations.
See also QMF object catalog.

correlated reference
A reference to a column of a table or view that is outside a subquery.

correlation name
An identifier specified and used within a single SQL statement as the exposed name for objects such
as a table, view, table function reference, nested table expression, or data change table reference.
Correlation names are useful in an SQL statement to allow two distinct references to the same base
table and to allow an alternative name to be used to represent an object.

CSECT (control section)
The part of a program specified by the programmer to be a relocatable unit, all elements of which are
to be loaded into adjoining main storage locations.

current location
The application server to which the QMF session is currently connected. After the connection is made,
this server processes all SQL statements. When initializing QMF, the current location can be indicated
using the DSQSDBNM startup parameter. Connectivity with remote servers is not supported when
QMF for TSO is running as a Db2 for z/OS stored procedure.

current object
A QMF object that is held in temporary storage so that, with each use, it can be readily accessed
without requiring database retrieval. There are seven temporary storage areas: QUERY, FORM, PROC,
PROFILE, REPORT, DATA, and CHART. Users can navigate to all areas but the DATA area using the
SHOW and DISPLAY commands. See also temporary storage.

cursor
A named control structure used by an application program to point to and select a row of data from a
set.

Customer Information Control System
See CICS.

data type
A classification identifying one of various kinds of data. In SQL, the data type is an attribute of
columns, literals, host variables, special registers, parameters, and the results of functions and
expressions.

database
A collection of interrelated or independent data items that are stored together to serve one or more
applications.

412 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

database administrator
A person who is responsible for the design, development, operation, security, maintenance, and use
of a database.

database management system
See DBMS.

database manager
A program that manages data by providing centralized control, data independence, and complex
physical structures for efficient access, integrity, recovery, concurrency control, privacy, and security.

database server
A software program that uses a database manager to provide database services to other software
programs or computers.

DBCS (double-byte character set)
A set of characters in which each character is represented by two bytes. These character sets are
commonly used by national languages such as Japanese and Chinese, which have more symbols than
can be represented by a single byte. See also SBCS.

DBMS (database management system)
A software system that controls the creation, organization, and modification of a database and the
access to the data that is stored within it.

DCT (destination control table)
A table describing each of the transient data destinations used in CICS. This table contains an entry
for each extrapartition, intrapartition, and indirect destination.

default form
The QMF form created when a saved form is not specified on the RUN QUERY command.

default value
A predetermined value, attribute, or option that is assumed when no other value is specified. A default
value can be defined for column data in Db2 tables by specifying the DEFAULT keyword in an SQL
statement that changes data (such as INSERT, UPDATE, and MERGE).

dependent row
A row that contains a foreign key that matches the value of a parent key in the parent row. The foreign
key value represents a reference from the dependent row to the parent row.

dependent table
A table that is a dependent of an object. For example, a table with a foreign key is a dependent of the
table containing the corresponding primary key.

destination control table
See DCT.

detail block text
The text in the body of a report that is associated with a particular row of data.

detail heading text
The text in the heading of a report.

detail variation
A data formatting definition specified on a FORM.DETAIL panel that can be used to conditionally
format a report or part of a report.

distinct type
A user-defined data type that shares a common representation with built-in data types.

distributed data
Data that is stored on more than one system and is available to remote users and application
programs.

distributed database
A database that appears to users as a logical whole, locally accessible database, but consists of
databases in multiple locations that are connected by a data communications network.

Distributed Relational Database Architecture™
See DRDA.

Glossary of terms and acronyms 413

distributed unit of work
A form of distributed relational database processing that enables a user or application program to
read or update data at multiple locations within a unit of work. Within one unit of work, an application,
such as QMF, running in one system can direct SQL requests to multiple remote database
management systems using the SQL supported by those systems. The request is made through a QMF
command that includes a three-part table or view name. QMF commands with three-part names
cannot be directed to Db2 for VM or VSE databases or used when QMF for TSOhas been started as a
Db2 for z/OS stored procedure. Three-part names in QMF commands also cannot refer to a table that
contains large object (LOB) data types.

double-byte character set
See DBCS.

double-precision floating-point number
A 64-bit approximate representation of a real number.

DRDA (Distributed Relational Database Architecture)
The architecture that defines formats and protocols for providing transparent access to remote data.
DRDA defines two types of functions: the application requester function and the application server
function.

environment
A named collection of logical and physical resources used to support the performance of a function.

exit routine
A program that receives control from another program to perform specific functions.

Extensible Markup Language
See XML.

extended syntax
Syntax that is used for the QMF SET GLOBAL and GET GLOBAL commands and certain function calls in
a callable interface application. Extended syntax defines parameters used by QMF callable interface
applications written in Assembler, C, COBOL, Fortran, or PL/I.

fallback
The process of returning to a prior release of a software program after attempting or completing
migration to a current release.

fetch
The process of retrieving rows from the database or a file to create a QMF DATA object. QMF supports
multirow fetch through the use of the DSQSMRFI parameter.

foreign key
In a relational database, a key in one table that references the primary key in another table.

GDDM (Graphical Data Display Manager)
Graphics software that defines and displays text and graphics for output on a display device or printer.

global variable
A named entity whose value persists for the duration of a QMF session by default. QMF uses global
variables to manage both session and database activity. Some global variables can be set with the
SET GLOBAL command, while others record information about the state of the current QMF session
and therefore cannot be set.

graphic string
A sequence of double-byte character set (DBCS) characters.

Graphical Data Display Manager
See GDDM.

host
The controlling or highest-level system in a data communications configuration.

HTML (hypertext markup language)
A markup language that conforms to the Standard Generalized Markup Language (SGML) standard
and was designed primarily to support the online display of textual and graphical information,
including hypertext links.

414 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

hypertext markup language
See HTML.

ICU (Interactive Chart Utility)
A menu-driven component of IBM's Graphical Data Display Manager (GDDM) product that allows non-
programmers to display, print, or plot charts, graphs, and diagrams.

identity column
A column that provides a way for the Db2 database manager to automatically generate a numeric
value for each row that is inserted into a table. Identity columns are defined with the AS IDENTITY
clause. A table can have no more than one identity column.

index
A set of pointers that is logically ordered by the values of a key. Indexes provide quick access to data
and can enforce uniqueness of the key values for the rows in the table.

inner join
The result of a join operation that includes only the matched rows of both tables that are being joined.
See also outer join.

installation verification procedure
See IVP.

Integrated Exchange Format
See IXF.

Interactive Chart Utility
See ICU.

Interactive System Productivity Facility
See ISPF.

ISPF (Interactive System Productivity Facility)
An IBM licensed program that serves as a full-screen editor and dialog manager. Used for writing
application programs, it provides a means of generating standard screen panels and interactive
dialogs between the application programmer and terminal user.

IVP (installation verification procedure)
A procedure or program whose purpose is to verify that a product has been correctly installed.

IXF (Integrated Exchange Format)
A protocol for transferring tabular data among various software products.

JCL (job control language)
A command language that identifies a job to an operating system and describes the job's
requirements.

job control language
See JCL.

join
An SQL relational operation that allows retrieval of data from two or more tables based on matching
column values.

key
A column or an ordered collection of columns that is identified in the description of a table, index, or
referential constraint. The same column can be part of more than one key.

keyword
One of the predefined words of a programming language, artificial language, application, or command.

keyword parameter
A parameter that consists of a keyword followed by one or more values. See also positional
parameter.

large object
See LOB.

link-edit
To create a loadable computer program by means of a linkage editor.

Glossary of terms and acronyms 415

linkage editor
A computer program for creating load modules from one or more object modules or load modules by
resolving cross-references among the modules and, if necessary, adjusting addresses.

literal
A character string whose value is defined by the characters themselves. For example, the numeric
constant 7 has the value 7, and the character constant 'CHARACTERS' has the value CHARACTERS.

linear procedure
A sequenced set of QMF commands or command synonyms that can be used to perform several
operations at once. See also procedure with logic.

linear syntax
QMF command syntax that is entered in one statement of a program or procedure, or that can be
entered on the QMF command line.

load module
A program in a form suitable for loading into main storage for execution.

LOB (large object)
A sequence of bytes with a size ranging from 0 bytes to 2 gigabytes (less 1 byte). There are three LOB
data types: binary large object (BLOB), character large object (CLOB, which can include single-byte
characters only or a mixture of single-byte and double-byte characters), and double-byte character
large object (DBCLOB). QMF supports a LOB column size of up to 32 KB.

local
Pertaining to databases, objects, or applications that are installed or stored in the system in which
QMF is currently running.

location
A specific relational database server in a distributed relational database system. Each location has a
unique location name.

location name
The unique name of a database server. An application uses the location name to access a Db2
database server.

lock
A means of serializing a sequence of events or serializing access to data.

log
A collection of records that sequentially describes the events that occur in a system.

LUW
An abbreviation for Linux, UNIX, and Windows.

National Language Feature
See NLF.

New Function Mode
See NFM.

NFM (New Function Mode)
An installation mode of QMF Version 8.1 and QMF Version 9.1 that allowed owner and object names in
the QMF object catalog to be the maximum length allowed by the database. QMF Version 12.1 allows
owner and object names to be as long as the database allows as well. See also CM.

NLF (National Language Feature)
Any of several optional features available with QMF. NLFs allow users to interact with QMF in specific
native languages.

object
A named storage space that consists of a set of characteristics that describe the space and, in some
cases, data. An object is anything that occupies space in storage, can be located in a library or
directory, can be secured, and on which defined operations can be performed. See also QMF object.

outer join
The result of a join operation that includes the matched rows of both tables that are being joined and
preserves some or all of the unmatched rows of the tables that are being joined. See also inner join.

416 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

package
A control-structure database object produced during program preparation that can contain both
executable forms of static SQL statements or XQuery expressions and placement holders for
executable forms of dynamic SQL statements.

panel
A formatted display of information on a screen that can also include entry fields.

parameter
A value or reference passed to a function, command, or program that serves as input or controls
actions. The value is supplied by a user or by another program or process.

partition
A portion of a page set. Each partition corresponds to a single, independently extendable data set.
Partitions can be extended to a maximum size of 1, 2, or 4 gigabytes, depending on the number of
partitions in the partitioned page set. All partitions of a given page set have the same maximum size.

plan
See application plan.

positional parameter
A parameter that must appear in a specified location, relative to other parameters. See also keyword
parameter.

precision
An attribute of a number that describes the total number of significant digits.

predicate
An element of a search condition that expresses or implies a comparison operation.

primary authorization ID
The authorization identifier used to identify an application process to Db2 for z/OS.

primary key
In a relational database, a key that uniquely identifies one row of a database table.

privilege
In SQL, a capability given to a user by the processing of a GRANT statement.

procedure
A sequenced set of statements or commands used to perform one or more tasks. See also linear
procedure and procedure with logic.

procedure with logic
A set of statements that performs one or more tasks. A procedure with logic begins with a REXX
comment and allows conditional logic (which uses REXX), calculations, build strings, and TSO or CICS
commands. See also linear procedure.

profile
An object that contains information about the characteristics of the user's session.

program temporary fix
See PTF.

prompted query
A menu-driven query controlled by user-provided parameters.

PTF (program temporary fix)
For System i®,System p, and System z®, products, a fix that is tested by IBM and is made available to
all customers.

QBE (Query-by-Example)
A component of QMF that allows users to create queries graphically.

QMF administrator authority
Authority that allows a user to insert or delete rows in the Q.PROFILES control table. Users with this
authority can perform the following commands on QMF queries, forms, and procedures that are
owned by other users without forcing the owners to share these objects with all users: SAVE, ERASE,
IMPORT, EXPORT, and DISPLAY. QMF checks each user ID for administrator authority during

Glossary of terms and acronyms 417

initialization; you can disable this checking by setting the DSQEC_DISABLEADM variable in the
DSQUOPTS exit routine or in another program of your choice.

QMF administrator
A user who has QMF administrator authority.

Query-by-Example
See QBE.

QMF object
An object used by QMF users to query, format, and present data or otherwise manage interaction
between QMF and the database. QMF objects include queries and query result data, forms,
procedures, reports, charts, and the QMF profile. Each QMF object has a named temporary storage
area that is used to display the object. All objects except reports and charts can be saved in the
database; reports and charts are created dynamically upon user request by applying the formatting
specifications of a particular QMF form to result data that has been returned from the database. See
also temporary storage.

QMF object catalog
A set of control tables that stores information about QMF queries, procedures, forms, folders, and
analytics objects. These control tables include Q.OBJECT_DIRECTORY, Q.OBJECT_DATA, and
Q.OBJECT_REMARKS.

qualifier
When referring to a QMF object, the part of the name that identifies the owner or the location of an
object. When referring to a TSO data set, any part of the name that is separated from the rest of the
name by periods. For example, ‘TCK’, ‘XYZ’, and ‘QUERY’ are all qualifiers in the data set name
‘TCK.XYZ.QUERY’.

query
A request for information from a database based on specific conditions: for example, a request for a
list of all customers in a customer table whose balances are greater than $1000. In QMF, a query also
refers to SQL statements submitted from the Prompted Query, QBE, or SQL query panel, even if these
statements are not requests for information (SELECT statements).

RCT (resource control table)
A Db2 control table that defines the relationship between CICS transactions and Db2 resources.

RDBMS (relational database management system)
A collection of hardware and software that organizes and provides access to a relational database.

RDO (resource definition online)
In CICS, a facility that allows the user to define certain CICS resources interactively while CICS is
running. Specifically, RDO allows the user to define terminals, programs, and transactions
interactively.

record
The storage representation of a row or other data.

record length
The length of storage that represents a row or other data.

reentrant
Executable code that can reside in storage as one shared copy for all database threads. Reentrant
code is not self-modifying and provides separate storage areas for each thread.

referential constraint
The requirement that the nonnull values of a designated foreign key are valid only if they also appear
as values of the primary key of the parent table. The referential constraint is always defined from the
perspective of the dependent file.

relational database
A database that can be perceived as a set of tables and manipulated in accordance with the relational
model of data. Each database includes a set of system catalog tables that describe the logical and
physical structure of the data, a configuration file containing the parameter values allocated for the
database, and a recovery log with ongoing transactions and archivable transactions.

418 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

relational database management system
See RDBMS.

remote
Pertaining to databases, objects, or applications that are installed or stored on a system other than
the system where QMF is currently executing. You can access objects (including QMF queries, forms,
procedures, folders, and analytics objects) at a remote server by using the QMF CONNECT command.
You can also use a QMF command with a three-part table or view name if you want to access just
tables or views at a remote location. Remote access is not permitted when QMF for TSO is running as
a Db2 for z/OS stored procedure.

remote unit of work
A form of distributed relational database processing in which an application program, such as QMF,
can access data on a remote database within a unit of work. The connection is established by the QMF
CONNECT command. The CONNECT command cannot be used when QMF for TSO is running as a Db2
for z/OS stored procedure.

requester
See application requester.

resource
The object of a lock or claim, which could be a table space, an index space, a data partition, an index
partition, or a logical partition.

resource control table
See RCT.

resource definition online
See RDO.

Restructured Extended Executor
See REXX.

REXX (Restructured Extended Executor)
A general-purpose, high-level programming language, particularly suitable for EXEC procedures or
programs for personal computing.

roll back
To restore data that is changed by an SQL statement to the state at its last commit point. If a failure
occurs in a query that contains multiple statements and no COMMIT statements, all statements,
except those that affect the QMF session (such as SET), are rolled back. If a failure occurs in a query
that contains one or more COMMIT statements, all updates after the last successful COMMIT
statement are rolled back. In either case, the query ends after the failure.

routine
A program or sequence of instructions called by a program. Typically, a routine has a general purpose
and is frequently used.

row
The horizontal component of a table, consisting of a sequence of values, one for each column of the
table.

runtime variable
A variable in a procedure or query whose value is specified by the user when the procedure or query is
run. The value of a runtime variable is only available in the current procedure or query. See also global
variable.

SBCS (single-byte character set)
A coded character set in which each character is represented by a 1-byte code. A 1-byte code point
allows representation of up to 256 characters. See also double-byte character set.

scalar function
An SQL function that optionally accepts arguments and that returns a single scalar value each time
that it is invoked. A scalar function can be referenced in an SQL statement wherever an expression is
valid.

Glossary of terms and acronyms 419

scratchpad area
A work area used in conversational processing to retain information from an application program
across executions of the program.

search condition
A criterion for selecting rows from a table. A search condition consists of one or more predicates.

secondary authorization ID
In Db2 for z/OS, an authorization identifier that is associated with a primary authorization ID by an
authorization exit routine. See also primary authorization ID.

segmented table space
A table space that is divided into equal-sized groups of pages called segments. Segments are
assigned to tables so that rows of different tables are never stored in the same segment. See also
table space.

server
See application server.

session
All interactions between the user and QMF from the time the user invokes QMF until the EXIT
command is issued.

shift-in character
A control character (X'0F') that is used in EBCDIC systems to denote that the subsequent bytes
represent SBCS characters. See also shift-out character.

shift-out character
A control character (X'0E') that is used in EBCDIC systems to denote that the subsequent bytes, up to
the next shift-in control character, represent DBCS characters. See also shift-in character.

single-byte character set
See SBCS.

single-precision floating-point number
A 32-bit approximate representation of a real number.

SQL (Structured Query Language)
A standardized language for defining and manipulating data in a relational database.

SQL authorization ID
See SQLID.

SQL connection
An association between an application process and a local or remote application server or database
server. See also remote unit of work, distributed unit of work.

SQL function
A function that is implemented entirely by using a subset of SQL statements and SQL PL statements.

SQL ID (SQL authorization ID)
In Db2 for z/OS, the ID that is used for checking the authorization of dynamic SQL statements in some
situations.

SQL return code
The SQLSTATE or SQLCODE that indicates whether the previously run SQL statement completed
successfully, with one or more warnings, or with an error.

SQLCA (Structured Query Language Communication Area)
A set of variables that provides an application program with information about the execution of its SQL
statements or requests from the database manager. When an error is associated with an SQL code,
the QMF message help (available by pressing the Help key) displays the contents of the SQLCA.

stored procedure
A routine that can be invoked using the SQL CALL statement to perform operations that can include
both host language statements and SQL statements.

stored procedure interface
An interface to QMF for TSO that allows you to start QMF as a Db2 for z/OS stored procedure, pass the
name of a QMF query or procedure that performs the work you require, and receive up to 21 result

420 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

sets back, including a result set for trace output. QMF for TSO can be started in this manner from any
product that can run a Db2 for z/OS stored procedure.

Structured Query Language
See SQL.

Structured Query Language Communication Area
See SQLCA.

subquery
A complete SQL query that appears in a WHERE or HAVING clause of another query.

substitution variable
(1) A variable in a procedure or query whose value is specified either by a global variable or by a
runtime variable. (2) A variable in a QMF form whose value is specified by a global variable.

substring
A part of a character string.

subsystem
In Db2 for z/OS, a distinct instance of a relational database management system (RDBMS).

table
In a relational database, a database object that consists of a specific number of columns and is used
to store an unordered set of rows. See also base table.

table space
A logical unit of storage in a database. In Db2 for z/OS, a table space is a page set and can contain one
or more tables. In Db2 for Linux, UNIX, and Windows, a table space is a collection of containers, and
the data, index, long field, and LOB portions of a table can be stored in the same table space or in
separate table spaces.

temporary storage
An area used to store a QMF object temporarily while the user is working on it so that, with each use,
it can be readily accessed without further database retrieval. There are seven temporary storage
areas: QUERY, DATA, FORM, PROC, REPORT, CHART, or PROFILE. With the exception of query result
data (the DATA object), the QMF objects in these areas can be displayed using the SHOW command
followed by the name of the storage area. Though the contents of the DATA area cannot be directly
displayed, users can issue the SHOW REPORT or SHOW CHART commands to see the query result
data formatted with the specifications of the form currently in the FORM area. See also QMF object,
current object.

temporary storage queue
In CICS, a queue of data items which can be read and reread, in any sequence. The queue is created
by a task, and persists until the same task or a another task deletes it. See also transient data queue.

thread
The Db2 structure that describes an application's connection, traces its progress, processes resource
functions, and delimits its accessibility to Db2 resources and services. Most Db2 functions execute
under a thread structure.

three-part name
The full name of a table, view, or alias that consists of a location name, an authorization identifier, and
an object name, separated by periods. QMF commands that include three-part names can be initiated
only from Db2 for z/OS databases and can be directed to all databases except DB2 for VM or VSE.
When QMF for TSO has been started as a Db2 for z/OS stored procedure, QMF commands with three-
part names are not supported.

Time Sharing Option
See TSO.

trace
A record of the processing of a computer program or transaction. The information collected from a
trace can be used to assess problems and performance.

transaction
A unit of processing consisting of one or more application programs, affecting one or more objects,
that is initiated by a single request.

Glossary of terms and acronyms 421

transient data queue
A CICS storage area where objects are stored for subsequent internal or external processing. See also
temporary storage queue.

trigger
A database object that is associated with a single base table or view and that defines a rule. The rule
consists of a set of SQL statements that runs when an insert, update, or delete database operation
occurs on the associated base table or view.

TSO (Time Sharing Option)
A base element of the z/OS operating system that allows users to work interactively with the system.

two-phase commit
A two-step process by which recoverable resources in an external subsystem are committed. During
the first step, the database manager subsystems are polled to ensure that they are ready to commit.
If all subsystems respond positively, the database manager instructs them to commit.

UDF (user-defined function)
A function that is defined to the Db2 database system by using the CREATE FUNCTION statement and
that can be referenced thereafter in SQL statements. A UDF can be an external function or an SQL
function.

Unicode
A character encoding standard that supports the interchange, processing, and display of text that is
written in the common languages around the world, plus some classical and historical texts. The
Unicode standard has a 16-bit character set defined by ISO 10646.

unit of recovery (UR)
A sequence of operations within a unit of work between points of consistency.

unit of work (UOW)
A recoverable sequence of operations within an application process. At any time, an application
process is a single UOW, but the life of an application process can involve many UOWs as a result of
commit or rollback operations. In a multisite update operation, a single UOW can include several units
of recovery. In QMF SQL queries that include multiple statements and no COMMIT statements, all
statements comprise a single unit of work, so all statements except those that affect the session
(such as SET) are rolled back in the event of a failure. In QMF SQL queries that include multiple
statements and one or more COMMIT statements, a unit of work consists of a COMMIT statement and
all previous statements back to the beginning of the query or the last COMMIT statement. If a failure
occurs, all updates after the last successful COMMIT statement are rolled back.

user-defined function
See UDF.

view
A logical table that is based on data stored in an underlying set of tables. The data returned by a view
is determined by a SELECT statement that is run on the underlying tables.

XML (Extensible Markup Language)
A standard metalanguage for defining markup languages that is based on Standard Generalized
Markup Language (SGML).

z/OS
An IBM mainframe operating system that uses 64-bit real storage.

422 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

Index

Numerics
64-bit storage for report operations (TSO) 152

A
abbreviating command synonyms 236
ABEND, from QMF install 338
ABENDASRA 338
abends

DCB intercepts, spill file considerations 349
access

to QMF application plan packages 171
ADD mode, Table Editor

governing 315
ADMADFC defaults module 218
ADMCFORM ddname 225
administration

authority required 13
tables, creating 197
user profiles and objects 184

administrator authority, See QMF administrator authority
ADMMNICK specification 214
AEY9 abend 338
ALLOBJ authority prerequisites (iSeries) 13
allocation of data sets

stored procedure interface 107
allocation of storage

dynamic (TSO) 151
fixed (TSO, CICS) 151
percentage (TSO) 151
spill data

extended storage (TSO) 152
file (CICS) 157
file (TSO) 153
overview 152

variable (TSO) 151
ampersand (&)

in command synonyms 232
analytic objects

displaying 208
analytics objects

internal stored format 204
listing 207

APAR (Authorized Program Analysis Report) 335, 363, 365
APPCPG parameter, GDDM 49, 57
APPLDATA column 204
application code page

CCSID incompatibilities with GDDM 49, 57
application plan for QMF

access type 171
required locations 7

ARCH(7) compiler option, user edit routines 268, 270
ASCPUT services, printing 214
asynchronous processing, printing 213
asynchronous timer routine 313
authentication

authentication (continued)
initial procedure 128, 163
national language features 101
primary authorization ID vs. TSO ID 150
QMF administrator authority verification, See QMF
administrator authority
QMF plan and packages, controlling access 171
QMF profile

adding 181
CREATOR column of Q.PROFILES 172
open enrollment 184
restricted enrollment 180
updating 183

secondary authorization IDs
installation using 13
LIST command support 109

stored procedure interface (TSO only) 107
system initialization procedure (Q.SYSTEM_INI) 137

authority required for QMF tasks
accessing sample tables 101
administration 13
installation 13
installation verification procedure (IVP) 71
QMF administrator, See QMF administrator authority

authority, Db2
distributing, overview 209

authorization
command synonyms 238
error 340
QMF administrator authority, See QMF administrator
authority
to access QMF 180

authorization ID
authentication during initialization 107
authentication through TSO logon ID 150
checking for QMF administrator authority 131
enrolling individual users versus groups 171
installing under secondary 13, 30, 40, 45, 47, 62, 64,
66, 109
position in qualified names 8
Q 13
Q.SYSTEM_INI requirements 137
RACF group names, See secondary authorization IDs
requirements for QMF IDs 172
returning list for current application 401
running an initial procedure 128
secondary, See secondary authorization IDs
supported lengths 4, 6
See also authority required for QMF tasks

automatic routing, print output 213
automation of QMF tasks

batch mode QMF
CICS 333
program parameters 162
TSO, ISPF, native z/OS 319

procedures
initialization exit that sets global variables 131

Index 423

automation of QMF tasks (continued)
procedures (continued)

post-initialization 163
running in stored procedure interface 107, 119

AZTS abend 338

B
B37 abends and spill file considerations 349
backups

creating
QMF control table listing 387

recovery to
servers 67

BACKWARD command
governing 315

backward compatibility between QMF releases 85
base QMF commands as synonyms 230
batch

running a query or procedure in 227
running from remote Db2 client 332
using a spill file 157

BIGINT data type
SQLTYPE, user edit routines 254
width 153

BINARY data type
SQLTYPE, user edit routines 254
width 153

bit edit codes 347
BLOB data, user edit routines 253
BOTTOM command

governing 315
branch addresses, governor 297
buffer pools, control table assignments for 211

C
C trace code 353
calculate spill file size 153
CALL statement

restrictions for multistatement queries 171
syntax, stored procedure interface 107

callable interface
common error 340

cancellation service, governor 313
carriage control characters

eliminating from result sets 119
cascading authority 188
CASE column (Q.PROFILES) 172
catalog

QMF objects, See object catalog
catalog views

required locations 7
CCSID incompatibilities 49, 57
CEBR transaction 333
CHANGE mode, Table Editor

governing 315
CHAR data type

SQLTYPE, user edit routines 254
width 153

chart
formats 224
printing

chart (continued)
printing (continued)

specific objects 223
charting functions, tracing 353
CICS environment

common errors 338
EDSA limit size for large QMF queries 60
ENVIRONMENT values, QMF profile 172
HANDLE CONDITION 294
IMPORT command 185
interface to governor 290
NLF control tables 101
NLF customization 101
storage requirements

initialization 37
report operations 37
setting fixed storage 151

temporary storage queue 221
transaction ID 340
transient data queue 221
TYPETERM entries, QMF display 364
unsupported functions 384
using the trace facility 356

CICSenvironment
diagnostic facilities 364

class ID, customizing function keys 246
cleanup after installation 89
CLOB data, user edit routines 253
code page incompatibilities between GDDM and database
49, 57
coded character set identifier (CCSID) incompatibilities 49,
57
codes, SQL, See SQL codes
coexistence

different installation modes 4
column

number supported in queries 383
command synonym table

creating 234
maintaining 237
views 237

commands
governing through resource limit facility 315
RUN

synonym definition 231
SET PROFILE 183
tracing 119

comments on function keys table 245
comments, sending to IBM xiii
common services in QMF, tracing 353
communications, establishing between QMF installations,
See connectivity, establishing between QMF installations
compatibility between QMF releases 4, 85
Compatibility Mode

checking for 14, 19
QMF

coexistence with New Function Mode 4
prior releases 4

Compatibility with earlier releases 87
configuration of QMF

allocating files for QMF Analytics for TSO 97
customizing QMF Analytics for TSO 98, 99
customizing z/OS environment preferences 49
distributed data access overview 5

424 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

configuration of QMF (continued)
distributed unit of work 8
HFS customization 98
installation roadmaps 11
installation verification procedure (IVP) 99
Load library 97
National Language Features (NLFs) 101
optional features 97, 99
planning, See planning for installation
QMF Analytics for TSO 97
QMF Analytics for TSO file allocation 97
QMF Analytics for TSO sample tables 99
remote unit of work 5, 8
SAVE DATA command setup 13
server databases 61
zFS customization 98

configuration of QMF Analytics for TSO
customizing HFS 98
customizing ZFS 98
setting up work file location 98

CONFIRM column (Q.PROFILES) 172
CONNECT command

distributed data access overview 5
errors 340, 344
installation roadmaps 7
required configuration 5
restrictions 6, 8

connectivity, establishing between QMF installations
CONNECT command, See CONNECT command
distributed unit of work, See distributed unit of work
DRDA requirements 5
remote unit of work, See remote unit of work
restrictions 6, 8
three-part names, See three-part names

contention for resources
concurrent access resolution options 351
uncommitted read vs. cursor stability 189

control blocks for QMF exit routines
governor

DXEGOVA 299
DXEXCBA 303

control tables
coexistence of QMF releases 4
compatibility of Version 12.1 with prior 4
DSQDBCTL database 13
maintenance

environment 210
Q.ERROR_LOG 362
Q.RESOURCE_VIEW 284
required locations 7
switching buffer pools 211
VSAM clusters for user managed data sets 210
when to reorganize 210

controlling access to QMF 171
conventions for highlighting xii
CONVERT command

date last used, setting behavior 201
CREATE PROCEDURE statement

restrictions for multistatement queries 171
CREATE TABLE statement

command synonyms 234
privileges for SAVE DATA 185
tables for users 197

CREATETS/CREATETAB privilege

CREATETS/CREATETAB privilege (continued)
privilege to run CREATE TABLE statement 199

CREATOR column (Q.PROFILES)
defined 172
role in profile initialization 181

CSD file
customizing for the panel file 338

CURRENT APPLICATION ENCODING SCHEME special
register 49, 57
cursor stability options 189
customizing QMF Analytics for TSO

installation verification procedure (IVP) 99

D
D trace code 353
DASD requirements for QMF 33
DATA object

SAVE DATA configuration 13, 185
storage, See allocation of storage

data sets
allocation

stored procedure interface (TSO) 107
management of

overview 210
data type

edit exit conversions 258
database

functions that vary from one to another 383
uncommitted read vs. cursor stability 189

database services functions, tracing 353
databases

authority prerequisites 13, 209
CCSID incompatibilities with GDDM 49, 57
connection

authority 171
initial, remote unit of work 6
remote 117

DSQDBCTL 13
fetch program parameters 159, 160
installation prerequisites 33
partition groups

DSQTSCTL 13
DSQTSOBJ 13

prerequisite releases for QMF installation 3
slow performance 347

DATE data type
edit routines that format 261
SQLTYPE, user edit routines 254
width 153

date last used, setting behavior 132, 201
Db2

governor 281
Db2 governor

resource limit specification table 317
DBA authority prerequisites (VM/VSE) 13
DBADM authority prerequisites 13, 209
DBCLOB data, user edit routines 253
DBCS (double-byte character set) support

CCSIDs 49, 57
device requirements 33
edit codes 259
Latin characters 259
stored procedure interface (TSO) 107

Index 425

DCB abends and spill file considerations 349
DECFLOAT data type

compiler options for user exit routines
PL/I (CEEPIPI LE interface) 268
PL/I for CICS 270

conversion in user edit routines 258
requirements for support 33, 253
SQLTYPE, user edit routines 254
width 153

DECIMAL data type
SQLTYPE, user edit routines 254
width 153

decimal data, edit routine 258
decimal floating-point data type, See DECFLOAT data type
DECOPT column (Q.PROFILES) 172
device requirements for QMF 33
DEVTOK keyword, ADMMNICK specification 217
diagnostics

aids 353
dumps 364
symptoms 353
trace facility 356

dialog command processing functions, tracing 353
DISPLAY command

date last used, setting behavior 201
QMF administrator privileges 13
SQL privileges required 185

display devices
GDDM nicknames 214
support for 33

display services, tracing 353
DISPLAY TABLE command

governing 315
storage, See allocation of storage

distributed data access
overview 5

Distributed Relational Database Access, See DRDA
(Distributed Relational Database Access)
distributed unit of work

databases that do not support 383
DRDA requirements 5
installation procedure 68
installation roadmaps 9, 27
required configuration 8
restrictions 8

double-byte character set (DBCS) support
edit codes 259
Latin characters 259

DPRE (display printed report) synonym
customizing 229

DRAW command, SQL privileges required 185
DRDA (Distributed Relational Database Access)

requirements for remote data access 5
DSQ, names that begin with

data sets/libraries
DSQDEBUG (QMF trace output) 50
DSQEDIT (edit transfer file) 50
DSQPLBE (ISPF panel library) 34
DSQPNLE (QMF panel library) 34, 37, 50, 75
DSQPRINT (QMF print output) 50
DSQSPILL (spill file) 50
DSQUCFRM (user-defined chart formats) 50
DSQUDUMP (QMF snap dump) 50

database partition groups

DSQ, names that begin with (continued)
database partition groups (continued)

DSQTSCTL (QMF control tables) 13
DSQTSOBJ (SAVE DATA results) 13

databases
DSQDBCTL (QMF control tables) 13
DSQDBDEF (SAVE DATA results) 13

DSQUOPTS routine 132
execs

DSQ1DEFS (installation parameter defaults) 40
DSQSCMDn (stored procedure interface
parameters) 107

exit routines
DSQUOPTS (initializes global variables) 131

global variables
DSQAO_OTC_LICENSE 77
DSQAO_OTC_LICENSE (QMF VUE licenses) 132
DSQAO_QMF_VER_RLS (current QMF release) 77
DSQAO_STO_PROC_INT (stored procedure
interface) 107
DSQEC_CC (carriage control suppression) 119
DSQEC_DISABLEADM (QMF administrator authority
checking) 132
DSQEC_ISOLATION (transaction isolation level)
189
DSQEC_LAST_RUN (last used date in object lists)
132
DSQEC_SHARE (SHARE parameter default) 132

installation jobs
DSQ1BFRM (CICS charts and trace) 58
DSQ1BINR (binds QMF application plan) 45, 47
DSQ1BLNI (creates V12.1 control tables) 45, 62
DSQ1BPKG (binds QMF packages) 30, 45, 47, 62,
64, 66, 68
DSQ1BSP (stored procedure interface) 107
DSQ1BSQL (binds installation programs) 30, 45, 47,
62, 64, 66, 68
DSQ1BUDF (installs enhanced LIST command) 45,
62, 109
DSQ1BUDV (enhanced LIST command views) 30,
45, 62, 109
DSQ1BVW (installs default LIST command views)
30, 45, 62, 66, 109
DSQ1CFRM (CICS charts and trace) 58
DSQ1EADM (GDDM map groups) 58
DSQ1EAS4 (creates sample tables on iSeries) 64
DSQ1ECSD (CICS system definition) 56
DSQ1EDJ4 (creates sample tables on LUW) 62, 64
DSQ1EDSJ (deletes sample tables on z/OS) 47, 64
DSQ1EDX2 (deletes sample tables on iSeries, LUW)
64
DSQ1EGLK (CICS governor preparation) 56
DSQ1EIVQ (creates QMF Analytics for TSO sample
tables) 62
DSQ1EIVS (creates sample tables on z/OS) 45, 47,
62, 64
DSQ1EPNL (populates panel library) 37, 75
DSQ1ESQD (deletes sample queries/procedures)
77
DSQ1ESQI (installs sample queries/procedures) 77
DSQ1nCCS (creates NLF command synonyms) 101
DSQ1nRTS (creates new command synonyms) 106
DSQ1STGJ (creates storage spaces) 45, 62
DSQ1TBAJ (creates VCAT name) 45, 62

426 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

DSQ, names that begin with (continued)
installation jobs (continued)

DSQ1UOPT (assembles, link-edits DSQUOPTS exit
routine) 132

load modules
listings 38

package names
release identifiers 91

procedures
DSQ0BINI (default system initialization procedure)
137
DSQ1EBAT (TSO installation verification, batch) 81
DSQ1EIVC (CICS installation verification) 82
DSQ1EIVP (TSO installation verification) 80
TSO logon 50

program parameters
DSQSBSTG 151
DSQSBSTG (fixed virtual storage) 151
DSQSDBCS (printing DBCS data) 169
DSQSDBLG (trace log destination, stored procedure
interface) 119
DSQSDBNM (initial database location) 6, 149
DSQSDBQN (trace queue name in CICS) 168
DSQSDBQT (trace queue type in CICS) 168
DSQSDBUG (trace level) 167
DSQSIROW (rows fetched before report display)
159
DSQSMODE (batch vs. interactive operation) 162
DSQSMRFI (multirow fetch/insert) 160
DSQSPILL (spill storage for report operations) 152
DSQSPLAN (QMF application plan ID) 149
DSQSPRID (QMF profile key) 150
DSQSPTYP (extended storage for spill data in TSO)
152
DSQSRSTG (dynamic virtual storage) 151
DSQSRUN (initial procedure name) 163
DSQSSPQN (CICS queue name for spill data) 157
DSQSSUBS (database subsystem name) 6
DSQSSUBS (Db2 subsystem ID) 148

programs
DSQQMFE 72, 74, 117, 118

queues
DSQD 75

starting QMF
initializing global variables in DSQUOPTS 132

stored procedures
DSQABA1E (enhanced LIST command) 109, 402
DSQQMFSP (QMF stored procedure interface) 107

table spaces
DSQTSCT1 (Q.OBJECT_DIRECTORY control table)
40
DSQTSCT2 (Q.OBJECT_REMARKS control table) 40
DSQTSCT3 (Q.OBJECT_DATA control table) 40
DSQTSDEF (SAVE DATA results) 13, 40
DSQTSGOV (Q.RESOURCE_TABLE control table) 40
DSQTSLOG (Q.ERROR_LOG control table) 40
DSQTSPRO (Q.PROFILES control table) 40
DSQTSRDO (Q.DSQ_RESERVED control table) 40
DSQTSSYN (Q.COMMAND_SYNONYMS control
table) 40

uninstall jobs
DSQ1DEL1 (frees application plan on z/OS) 89, 92
DSQ1DEL2 (drops database constructs on z/OS) 92

DSQ, names that begin with (continued)
uninstall jobs (continued)

DSQ1DEL3 (deletes user-managed data sets on
z/OS) 92
DSQ1DELA (deletes prior QMF release, z/OS) 92
DSQ1EDX1 (drops control tables/packages on
iSeries, LUW) 94
DSQ1EDX2 (deletes sample tables on iSeries, LUW)
95
DSQ1JFPL (frees application plan on z/OS) 89

DSQ10297 340
DSQ10493 340
DSQ1DEFS exec

SECAUTH parameter 13
DSQ1EGLK 338
DSQAO_STO_PROC_INT global variable 107
DSQDBCTL database 13
DSQDBDEF database 13
DSQDC_POS_SQLCODE variable 354
DSQDEBUG data set

stored procedure interface 119
stored procedure interface, allocation 107
support for positive SQL codes 354
under CICS 356

DSQEC_BUFFER_SIZE global variable 351
DSQEC_CC global variable

stored procedure interface 119
DSQEC_CON_ACC_RES global variable 351
DSQEC_CON_CSWL global variable 352
DSQEC_DISABLEADM global variable 131
DSQEC_EXTND_STG global variable 152
DSQI0026 340
DSQPNLE

CSD definition 338
DSQQMFE 338
DSQQMFSP procedure, See stored procedure, starting QMF
for TSO as
DSQSCMDn exec

stored procedure interface 107
DSQTSCTL database partition group 13
DSQTSDEF table space 13
DSQTSOBJ database partition group 13
DSQUCFRM ddname 225
DSQUECIC edit program 265, 270, 277
DSQUEGV1 module, governor exit 294
DSQUEGV3 module, governor exit 294
DSQUOPTS user exit

description 131
dumps for diagnosis 364
DXEGOVA control block 299
DXEXCBA control block 303
dynamic statement cache search

improving reuse 352

E
E trace code 353
edit

codes
CASE field of profile 258
numeric data processing 258

exit interface
control block fields 254
DBCS support 259

Index 427

edit (continued)
exit interface (continued)

input area 253, 254
output area 253, 254
termination calls 253

routine 253
EDIT TABLE command

SQL privileges required 185
EDSA limit size (CICS) for large QMF queries 60
enhancements

to prior releases 367
ENQ command

print queues 221
ENTRY_TYPE column (function key table) 247
environment

customizing 172
default setup 405

ENVIRONMENT column (Q.PROFILES)
role in profile initialization 181

ERASE command
QMF administrator privileges 13

error
initialization 340

errors, See troubleshooting
EXECUTE privilege

access, QMF application plan and packages 171
EXPLAIN

enabling in QMF 347
EXPORT command

date last used, setting behavior 201
QMF administrator privileges 13

EXPORT TABLE command
governing 315
SQL privileges 185

extended floating point, edit routine 258
extended storage for report operations (TSO) 152, 349
extended-format decimal floating point, See DECFLOAT data
type

F
F trace code 353
fallback to prior QMF release

backward compatibility considerations 85
procedure for fallback to CM release

servers 67
Family 1 printer 214, 217
Family 2 printer 214, 217
Family 3 printer 214, 217
Family 4 printer 214
feedback, sending to IBM xiii
fetch program parameters

multirow fetch 160
number of report rows retrieved 159

FLOAT data type
SQLTYPE, user edit routines 254
width 153

FLOAT(DFP) compiler option, user edit routines 268, 270
floating point data, edit routine 258
floating-point numbers

importing single-precision 383
folders

internal stored format 204
listing 207

forms
creating new edit codes 258
displaying 208
internal stored format 204
listing 207
print preview 228
printing 223
window IDs 240

FORWARD command
governing 315

forward compatibility between QMF releases 85
FSFRCE services, printing 214
full-screen panels

customized function key examples 249
panel IDs 239
tracing 353

function calls
branch addresses 297
types 291

function keys
customizing

activating new definitions 248
problems activating 246
updating function key table 246

index on table 245
table

creating 245
entering definitions 246

function-level trace, configuring 353

G
G trace code 353
G050 abend 338
GDDM (Graphical Data Display Manager)

add maps to ADMF data set 101
ADMADFT defaults module 218
APPCPG parameter 49, 57
common errors on QMF startup 338
display devices supported 33
error messages, printing 345
printer nicknames

ADMMNICK specification 217
printing 214

GDDM-PGF 406
global variable table

structure 135
global variables

DSQAO_STO_PROC_INT 107
DSQDC_POS_SQLCODE 354
DSQEC_BUFFER_SIZE 351
DSQEC_CC, stored procedure interface 119
DSQEC_CON_ACC_RES 351
DSQEC_CON_CSWL 352
DSQEC_DISABLEADM 131
DSQEC_EXTND_STG 152
DSQEC_LAST_RUN 132
initializing when QMF starts 131
printing 221
Q.GLOBAL_VARS table

setting values 134
setting in Q.GLOBAL_VARS table 134
starting QMF

initializing global variables in Q.GLOBAL_VARS 134

428 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

global variables (continued)
window IDs 240

governor exit routine
cancellation service 313
CICS control block interface 298
command processing 294
comparison with Db2 resource limit facility, See
resource limit facility, Db2
control blocks

DXEGOVA 299
DXEXCBA 303

control information, storing 310
description 281
entry point 290
exit routine information 303
flow of control 298
function calls 297
performance 297
program structure 298
resource control table 281
scratchpad area 310
specifying for resource groups 286
types of function calls 291

governor exit routineQMF
passing resource control information 298

governor, Db2, See resource limit facility, Db2
granting to PUBLIC AT ALL LOCATIONS 187
GRAPHIC data type

SQLTYPE, user edit routines 254
width 153

graphics printers, defining nicknames 214

H
HANDLE CONDITION

CICS 294
hardware prerequisites 33
help panels, customizing keys 240, 249
hex edit codes 347
HEX function 347
High Performance Option/Manager 281
highlighting conventions xii
HPO/Manager 281

I
I trace code 353
implicitly created table spaces 198
IMPORT command

date last used, setting behavior 201
QMF administrator privileges 13
single-precision floating point support 383
storage, See allocation of storage

IMPORT TABLE command
creating tables 197
governing 315
SQL privileges required 185

indexes
Q.PROFILES table 172
recreating 205

initial procedure
receiving variable values 165

initialization

initialization (continued)
authentication process 107, 150, 181
global variable values (DSQUOPTS routine) 131
message numbers 353
performance 405
QMF administrator authority verification

disabling 131
process 13

storage requirements 37
troubleshooting 340

input area
control for formatting 253
control for termination 253

installation
authority required 13
cleanup 89
coexistence of QMF releases 4
database releases supported 3
determining current installation mode 14
information roadmaps, See installation roadmaps
migrating objects and programs 85
modes in prior releases 4
National Language Features (NLFs) 101
objects required for remote unit of work 7
overview 11
planning, See planning for installation
prerequisites 33
resources created 13
restrictions 5
server database installs 61
stored procedure interface (TSO) 107
testing and verification 71

installation packages
required locations 7

installation plan
required locations 7

installation roadmaps
Db2 for z/OS requesters

new QMF installations 16
overview 14

National Language Features 29
overview 11
three-part name access 27

installation verification procedure
requester databases 71
server databases 83
stored procedure interface 107

INTEGER data type
edit routines 254, 258
width 153

intercepts for DCB abends, spill file considerations 349
interface control block

DXEGOVA 298
DXEXCBA 298

interrelease compatibility 85
interrupt facility

using 354
invalid subsystem ID 340
ISC (intersystem communication) 406
iSeries platform

authorities required 13
database prerequisites 3
distributed unit of work configuration 8
remote unit of work configuration 5

Index 429

isolation levels
cursor stability 189
uncommitted read 189

ISPF (Interactive System Productivity Facility)
common error 340
LIBDEF allocations for QMF libraries 126

J
JCL

stored procedure interface, QMF for TSO 107
job control language, See JCL
jobs that install QMF

requester databases
new V12.1 installations 45

server databases
new Version 12.1 installations 62
three-part name access 68

K
keywords, reporting problems 365

L
L2 trace option

stored procedure interface 119
language features of QMF, See National Language Feature
(NLF)
language parameter, stored procedure interface 119
last used date on objects 132, 201
LAYOUT command

date last used, setting behavior 201
LEFT command

governing 315
legal

notices 407
trademarks 408

LENGTH column (Q.PROFILES) 172
LIBDEF statements for QMF library allocations 126
license agreement for QMF VUE 16, 18
LIKE keyword

how support varies by database 383
linear procedures in command synonyms 231
link-edit statements

governor exit routine 311, 312
Linux, See Linux, UNIX, and Windows platform
Linux, UNIX, and Windows platform

authorities required 13
database prerequisites 3
distributed unit of work configuration 8
packages available for governing 315
remote unit of work configuration 5

LIST command
ALL keyword 208
listing tables authorized to secondary IDs

after upgrading Db2 30
installing feature that allows 109

list views
creating 190
secondary authorization IDs 109

literals in command synonyms 233
load modules

load modules (continued)
moving to enhance performance 38

LOB data
storage objects 390

location window IDs 240
locks on data

uncommitted read vs. cursor stability 189
logon to QMF

enabling 172
restricting 180

LONG VARCHAR data type
SQLTYPE, user edit routines 254
width 153

LONG VARGRAPHIC data type
SQLTYPE, user edit routines 254
width 153

long-format decimal floating point, See DECFLOAT data type
LUW, See Linux, UNIX, and Windows platform

M
machine requirements for QMF 33
maintenance

command synonym table 237
displaying objects 208
enlarging table space for objects 205
listing objects 207
QMF administrator authority 13

messages
canceling user activity, governor 310
diagnosing problems 353
number ranges and what they mean 353
row limit exceeded 284
status, stored procedure interface 119
system error messages 354
tracing

stored procedure interface 119
support for positive SQL codes 354

migration
National Language Features (NLFs) 106

migration of QMF
coexistence of QMF releases 4
database releases supported 3
database-only upgrade tasks 30

MODEL column 201
MODEL column (Q.PROFILES) 172
modes of installation in prior QMF releases 4
modules for QMF program, See load modules
MRO (multiregion operation) 406
multiple database threads 161
multirow fetch

program parameter 160
three-part name restrictions 8

multistatement queries
restrictions 171
units of work 5

N
names

ADMMNICK specification 217
objects

supported lengths 4

430 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

names (continued)
three-part, multirow fetch 160

National Language Feature (NLF)
configuring stored procedure interface 107
DBCS device requirements 33
installation

procedure 101
roadmap 29

migration
procedure 106

specifying in stored procedure interface 119
networks and QMF configuration 5
New Function Mode

checking for 14, 19
Db2 for z/OS

QMF installation requirements 3
QMF

coexistence with Compatibility Mode 4
prior releases 4

nickname
defined 214
defining multiple printers 217
errors during printing 345

NLF (National Language Feature)
command synonyms 231
release numbers 365
See also National Language Feature (NLF)

notices
legal 407

NUMBER column (function key table) 247
numeric

data
conversion, edit routine 258
importing single-precision floating point 383

NUMTCB parameter, stored procedure interface 107

O
object

control tables 201
date last used 132, 201
deleting 209
displaying 208
internal representation 201
list

customizing 190
window IDs 240

listing 207
maintenance 201
name, command synonym 229
names

supported lengths 4
sharing 208

object catalog
coexistence of QMF releases 4
compatibility between QMF releases 4
DSQDBCTL database 13

OBJECT column (synonyms table) 230
object lists

customizing with global variables 190
OBJECTLEVEL column, QMF control tables 201
online help

message support
setting handling of positive SQL codes 354

OTC_LICENSE variable (QMF VUE license agreement) 132
output area

control for formatting 253
control for termination 253

OWNER column, QMF control tables 201
ownership

how QMF tracks 201
transferring 208

P
P trace code 353
packages, QMF

governing with Db2 resource limit facility 315
PANEL column (function key table) 246
panels

class ID 246
governor prompt 284
IDs 239, 240
print and display support 406

parameters
passed to edit routine 253
passing 141

partition groups, database, See databases, partition groups
PC printers 217
performance

DSQSIROW, large values 159
DSQSIROW, small values 159
managing 347
resident programs 405
table indexes 197
troubleshooting 349, 351, 352
using spill file 157

performance, improving with DSQEC_BUFFER_SIZE 351
PF_SETTING column (function key table) 247
PFKEYS column (Q.PROFILES) 172
planning for installation

coexistence of QMF releases 4
distributed data configurations

distributed unit of work 8
remote unit of work 5

planning for installation
installation modes 4

prerequisites 33
roadmaps for installation 11

post-installation cleanup
base QMF (English) 89
NLF 101

prerequisites for installation
authority 12
concepts 12
database releases 3
hardware 33
software 33

previewing printed reports 228
previous QMF releases

deleting 89
Version 12.1 compatibility 85

PRINT command
date last used, setting behavior 201
routing to named destinations 213, 221

print preview function 228
PRINT TABLE command

governing 315

Index 431

PRINT TABLE command (continued)
SQL privileges required 185

printer
ANSI support

graphic device 213
control keywords (PRINTCTL) 217
multiple addresses 217
nicknames (GDDM) 340

PRINTER column (Q.PROFILES) 119, 172
printing

enabling users 213
errors 345
QMF vs. GEM 213
using GDDM services 214

prior QMF releases
deleting 89
Version 12.1 compatibility 85

privileges
database objects 185
QMF administrator authority 13
required for QMF tasks 185
revoking grants of others 188
STATS and REORG 209
stored procedure interface 107
See also table privilege

problem reporting 365
problems, See troubleshooting
procedures

displaying 208
internal stored format 204
listing 207
maintaining objects 204
printing 223
running through stored procedure interface 107
using in command synonyms 231

processor time
controlling use 285
setting limits 281

processors supported for QMF 33
PROCOPT parameter, printing 217
profile

authentication during logon 107, 181
CASE setting, customized function keys 247
command synonyms 236
creating 172, 180
default settings 180
default values 172
deleting 180, 184
initialization search order 181
maintenance 201
printing 223
SET PROFILE command 183
trace values

stored procedure interface 119
updating 183, 184

PROFILE PREFIX statement 320
PROG 759 340
program parameters

DSQSBSTG 151
DSQSDBCS 169
DSQSDBLG 119
DSQSDBNM 6, 149
DSQSIROW 159
DSQSMODE 162

program parameters (continued)
DSQSMRFI 160
DSQSPILL 141, 152
DSQSPLAN 149
DSQSPRID 150
DSQSPTYP 141
DSQSRSTG 151
DSQSRUN 163
DSQSSPQN 157
DSQSSUBS 6, 148
stored procedure interface (TSO) 107
summary 141
trace

DSQSDBQN 168
DSQSDBQT 168
DSQSDBUG 167

programming interface information 408
prompt panels

customized function key example 249
panel IDs 240

prompted query
printing 214, 223
SQL privileges 185
window IDs 240

PSP subset names for QMF 335
PTF trace option (stored procedure interface) 119
PTFs for QMF, applying 335
PUBLIC, granting to, See granting to PUBLIC AT ALL
LOCATIONS

Q
Q authorization ID 13
Q.COMMAND_SYNONYMS_n table

job to create 101
Q.ERROR_LOG control table 362
Q.GLOBAL_VARS table

structure 135
Q.OBJECT_DIRECTORY

LAST_USED column 132, 201
Q.PROFILES control table

adding user profiles 181
administrator authority checking 13
deleting user profile 180
table structure 172
update for NLF 101
updating 183
updating RESOURCE_GROUP field 285
user authentication 181
user modifications 183

Q.RESOURCE_VIEW, governor 284
QBE queries

governing 315
printing 223
SQL privileges 185

QMF administrator authority
disabling 131
verification process and privileges 13

QMF Analytics for TSO
sample tables 99

query
created during installation 13
deleting 209
displaying 208

432 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

query (continued)
internal stored format 204
listing 207
multistatement, See multistatement queries
running through stored procedure interface 107
statement length 383

query acceleration
enabling 348

query accelerator 348
QUEUENAME, QUEUETYPE keywords 221

R
RACF

batch security 319
group names, See secondary authorization IDs
installation considerations 13

RCT (Resource Control Table) 340
release numbers for NLFs 365
REMARKS column 205
remote data access

overview 5
remote Db2 client

QMF batch jobs 332
remote unit of work

creating command synonym tables 117
customizing a remote database connection 117
DB2 for VSE and VM default views 192
DRDA requirements 5
installation roadmaps

non-z/OS servers 19
z/OS-only servers 14

multirow fetch with 160
required configuration 5
restrictions 6
server installations 62

removing Db2 privileges
incomplete revocations 188
the cascade effect 188

report formatting services, tracing 353
reports

binary data 347
data formats 253
print preview 228
printing 223
Q.ERROR_LOG table 362
receiving in result sets (stored procedure interface) 119
slow performance 349
storage

dynamic allocation 151
fixed allocation 151
percentage allocation 151
spill data 152
troubleshooting 349
variable allocation 151

requester databases
configuration

overview 5
installations

install job parameters 40
jobs that install a new release 45
jobs that migrate a prior release 47
loading QMF Version 12.1 libraries 34
moving modules 38

requester databases (continued)
installations (continued)

prerequisites 33
roadmaps 14
storage requirements 37
TSO and CICS preferences 49

requirements for installation
authority 12
concepts 12
database releases 3
hardware 33
software 33

resident QMF programs 405
resource

group 180
profile management 180

resource contention
concurrent access resolution options 351
See also contention for resources

resource limit facility, Db2
comparison with QMF governor 315
QMF commands that can be governed 315

resource limit specification table (Db2) 317
RESTRICTED column

changing value to NO 208
defined 201

result sets, receiving reports as 119
REVOKE statements

example 188
REXX support

QMF for TSO stored procedure interface 107
RIGHT command

governing 315
RLSTs 317
roadmaps for installation

CONNECT command and three-part name access 14, 19
distributed unit of work configuration 9
general installation steps 11
multicultural support 29
remote unit of work configuration 7
requester databases (Db2 for z/OS)

new QMF installations 16
overview 14

server databases
overview 19
three-part name access 27

stand-alone configuration 14
three-part name access only 27

rows, database
controlling number retrieved 284

rules
command synonyms 229
customizing function keys 246

RUN command
command synonym 231
date last used, setting behavior 201
SQL privileges required 185
storage, See allocation of storage

RUN QUERY command
governing 315

S
sample tables

Index 433

sample tables (continued)
creating

NLF 101
NLF (QMF Analytics for TSO) 106

deleting
NLF 101

installing NLF 101
QMF Analytics for TSO 99

SAVE command
DATA keyword 185
date last used, setting behavior 201
enhancement 198
QMF administrator privileges 13
SQL privileges required 185
TABLE keyword 185

SAVE DATA command
governing 315
LOB storage 390
receiving table space 13
storage, See allocation of storage

SAVE option
EDIT TABLE command

unsupported situations 383
SBCS languages, CCSIDs 49, 57
SCOPE resource option 282
scratchpad area

governor exit routine 310
SECAUTH installation parameter 13
secondary authorization IDs

installation with 13
LIST command support 109

security
administrator authority verification, See QMF
administrator authority
RACF, See RACF

SELECT statement
restrictions for multistatement queries 171

SEQ column 204
server databases

configuration
overview 5

connecting during initialization 6
installations

CONNECT command access 19
install job parameters 40
minimum database versions 3
three-part name access 27

service
PSP subset names for QMF 335

service information xii
session 172
SET PROFILE command 183
share locks on data, See locks on data
SHARE parameter, SAVE command 13
shift characters 259
single-precision floating point numbers

support 383
slow performance 349
small integer data, edit routine 258
SMALLINT data type

SQLTYPE, user edit routines 254
width 153

software prerequisites 33
Software Support 365

SPACE column (Q.PROFILES) 172
special registers for CCSID values 49, 57
spill data

extended storage (TSO only) 152
file

CICS 157
TSO 153

spill file
DCB abend intercept considerations 349
estimating size 153
performance problems 157
sample calculations 153

SQL
HEX function 347
ID

command synonym table 238
how QMF stores 204

privileges
for prompted, QBE queries 185
for QMF commands 185

return codes 354
statement

INSERT (new user profile) 181
UPDATE 183

SQL codes
-551 131, 340
-805 340
message support 354
setting handling of positive 354

SQL queries
larger than 32 KB

governing 289
SQL statements

governing through QMF with Db2 resource limit facility
315

SQLTYPEs of data in user edit routines 254
stand-alone database configuration

installation roadmaps 14
starting QMF

common errors 338
initializing global variables 131
QMF administrator authority overrides 131
QMF profile initialization 181
stored procedure interface 107, 119

statement, query
lengths supported 383

storage
data from edit routine 253
moving modules to enhance 38
report operations

program parameters 150
spill data 152, 349

requirements
initialization 37
region size 107
report operations 37

table space, increasing size 205
troubleshooting 349

storage-related issues
resolving 347

stored procedure
starting QMF for TSO as

authentication 107
installing interface 107

434 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

stored procedure (continued)
starting QMF for TSO as (continued)

restrictions 8
starting TSO as

restrictions 6
subsystem ID

specifying, remote unit of work 6
SUBTYPE column, QMF control tables 201
summary of changes 367
support information xii
SUSPEND keyword 221
SYNONYM_DEFINITION column 231
SYNONYMS column (Q.PROFILES) 172
synonyms for QMF commands

creating synonyms table 234
initialization messages 340, 344
object name 229
problems activating 229
quotation marks 233
synonym definition 231
syntax 233
table maintenance 237
using variables 232
verb 229

syntax diagrams
CALL statement 107

syntax diagrams, how to read xii
SYSADM authority

installation prerequisites 13
REVOKE statements 188
revoking access to the application plan 171

SYSIBM.SYSTEM_EBCDIC_CCSID session variable 49, 57
system initialization procedure, default 137
SYSTEM profile

changing default values 184
deleting 180

SYSTEM row of QMF profile
authentication using 107

systems interface, tracing 353
SYSTSPRT data set

stored procedure interface, allocation 107

T
Table Editor

SQL privileges required 185
table privilege

overview 187
table space

assigning 198
creating tables 197
default space, SAVE DATA command 13
deleting 184
enlarging 205
explicit/implicit option

CREATE TABLE statement 199
SAVE and IMPORT commands 198

explicitly created table spaces 198
implicitly created table spaces 198
specifying in user profile 172

tables
controlling access 185
created during installation 13
function keys 239

tables (continued)
indexes 197
printing 223
resource control, governor exit 282
SAVE DATA configuration 13

temporary storage queue
printing using QMF services 221

termination calls, edit routine 253
termination messages 364
terms of license agreement, QMF VUE 16, 18
testing installation

requester databases 71
server databases 83
stored procedure interface 107

three-part names
database support 383
governing remote access 315
installation path

jobs 28
roadmap 27
T3PARTNM parameter 61

installation paths
jobs 68

installation roadmaps 9
objects accessed 9
required configuration 8, 9
restrictions

multirow fetch/insert 160
VM/VSE platforms 8

TIME data type
edit routines that format 261
SQLTYPE, user edit routines 254
width 153

timeout, QMF transaction
CICS region size 349
defining message display 364

TIMESTAMP data type
edit routines that format 261
SQLTYPE, user edit routines 254
width 153

TIMESTAMP WITH TIME ZONE data type
edit routines that format 261
SQLTYPE, user edit routines 254
width 153

TOFAM keyword, ADMMNICK specification 217
toggle switch, governor exit 282
TOP command

governing 315
TRACE column (Q.PROFILES) 172
tracing problems

allocation of output
CICS 58, 75
TSO 50

batch mode procedures 326, 331, 334
CICS

allocation of output 141
diagnosis aids 364

command synonyms 234
creating interrupts 354
data

allocating data set 356
viewing 360

DSQDEBUG data set 50, 58, 107
error log reports 362

Index 435

tracing problems (continued)
facility

starting 357
stopping 362

function keys 245, 249
governor

cancelled initialization 310, 316
configuring message logging 303, 310
level of detail, setting 303

high-level qualifier for data sets (default) 34
incorrect load modules 336
initialization

Q.SYSTEM_INI procedure 137
level of detail 358
level of detail, setting 141, 167, 172, 353
message logging 340
message number ranges and what they mean 353
searching previously reported problems 365
spill file 155, 349
SQL codes, writing to DSQDEBUG 354
SQLCA information, viewing 354
starting a trace 356
system errors 354
TSO

diagnosis aids 364
stored procedure interface 107, 119

warning messages after starting QMF 344
trademarks 408
transaction

database
isolation levels 189

routing requests with MRO and ISC 406
transferring object ownership 208
transient data queue

printing using QMF services 221
routing output 213

TRANSLATION column (Q.PROFILES) 172
translations available in QMF, See National Language Feature
(NLF)
troubleshooting

diagnostic aids 353
dynamic statement cache search 352
installation verification procedure (IVP)

DSQ21662 during import 77
performance problems 347
resource contention 351
SQL codes

-551 131
storage requirements 349
storage-related problems 349
three-part name failures 160

TSO (Time Sharing Option)
interface to governor 290
interrupt facility 354
storage requirements

initialization 37
report operations 37
setting dynamic allocation of storage 151
setting fixed storage 151
setting report storage as percentage 151
setting variable storage amount 151

stored procedure interface to QMF 107, 119
virtual storage 150

TSO user ID, using for QMF authentication 150

TYPE column, QMF control tables 201
TYPETERM specification 364

U
U edit codes, forms

defined 258
input area 254

uncommitted read options 189
uninstalling QMF

DB2 for iSeriesand LUW databases 93
DB2 for VSE and VM databases 95
Db2 for z/OS databases 89

unit of work, See remote unit of work or distributed unit of
work
UNIX, See Linux, UNIX, and Windows platform
user

adding 181
authentication 181
authorization for objects 185
objects 207

user edit routines
handling different codes 257

user-defined functions 401

V
V edit codes, forms

defined 258
input area 254

Value Unit Edition, See VUE (Value Unit Edition)
values, variable 165
VARBINARY data type

SQLTYPE, user edit routines 254
width 153

VARCHAR data type
SQLTYPE, user edit routines 254
width 153

VARGRAPHIC data type
SQLTYPE, user edit routines 254
width 153

variables
in synonym definitions 232
passing values to initial procedure 165
using &ALL 232

VERB column (synonyms table) 229
views

controlling access 185
created during installation 13
granting privileges for 200
privilege to create 200
privileges for queries 185
Q.RESOURCE_VIEW, governor exit 284
screening tools 200
underlying objects 200

virtual storage, See storage
VM platform

authorities required 13
database prerequisites 3
packages available for governing 315
QMF catalog column lengths 6
remote unit of work configuration 5
restrictions

436 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

VM platform (continued)
restrictions (continued)

three-part names 8
VSAM data sets

used for indexes and table spaces 210
VSE platform

authorities required 13
database prerequisites 3
packages available for governing 315
QMF catalog column lengths 6
remote unit of work configuration 5
restrictions

three-part names 8
VUE (Value Unit Edition)

license agreement 16, 132
prerequisite database releases 3, 33

W
warning messages 340, 344
WIDTH column (Q.PROFILES) 172
window panels

customized function key examples 249
IDs 240

Windows, See Linux, UNIX, and Windows platform
WLM address spaces required in QMF

stored procedure interface 107
WLM environment

updating for user-defined functions 401

X
XCB fields of DXEXCBA control block

XCBAUTH 303
XCBAUTHX 303
XCBQRYP 303
XCBQRYP2 303
XCBQRYPT 303

XML data type
extended storage for spill data 152, 153
governing fetching of XML columns 315
restrictions

exit routines for user edit codes 253
multirow fetch 160

Z
z/OS platform

authorities required 13
database prerequisites 3
DCB abend intercepts and spill file 349
distributed unit of work configuration 8
packages available for governing 315
remote unit of work configuration 5
upgrading Db2 but not QMF 30

Index 437

438 Query Management Facility Version 12 Release 1: Installing and Managing QMF for TSO and CICS

IBM®

Product Number: 5697-QMF

GC27-8877

	Contents
	About this information
	What you should know before you begin
	Service updates and support information
	Highlighting conventions
	How to read syntax diagrams
	How to send your comments

	Part 1. Installing QMF for TSO and CICS
	Chapter 1. Planning your configuration
	Supported configurations
	Databases that support QMF Version 12.1
	Installation modes
	Coexistence of releases

	QMF in distributed data networks
	Remote unit of work
	How the connection is made
	What you can access using the QMF CONNECT command
	Where QMF needs to be installed for remote unit of work access
	Roadmaps for remote unit of work configurations
	Example configuration for remote unit of work

	Distributed unit of work
	How the connection is made
	What you can access using three-part names
	Where QMF needs to be installed for distributed unit of work access
	Roadmaps for distributed unit of work configurations
	Example configuration for distributed unit of work

	Chapter 2. QMF installation overview and roadmaps
	QMF installation process overview
	General installation concepts
	Required authorities for installing and adminstering QMF
	Required authorities for installing QMF
	Required authorities for QMF administration

	Roadmap 1: Installing QMF in stand-alone or requester databases (Db2 for z/OS only)
	Installation path A: Installing QMF V12.1 in a Db2 for z/OS stand-alone or requester database
	Installation path B: Migrating to QMF V12.1 from QMF V11.2, V11.1, V10 or a QMF NFM release in a Db2 for z/OS stand-alone or requester database

	Roadmap 2: Installing QMF in server databases accessed by the QMF CONNECT command
	Installation path C: Installing QMF V12.1 in a Db2 for z/OS, iSeries, or LUW server
	Installation path D: Migrating to QMF V12.1 from QMF V11.2, QMF V11.1, QMF V10, or a QMF NFM release in a Db2 for z/OS, iSeries, or LUW server
	Installation path E: Migrating to QMF V12.1 from V7.2 or earlier in a DB2 for VSE and VM server
	Installation path F: Migrating to QMF V12.1 from QMF V8.1, V9.1, V10.1, V11.1, or V11.2 in a DB2 for VSE and VM server

	Roadmap 3: Installing server databases accessed by three-part names
	Installation path G: Preparing a remote server to be accessed by QMF commands that include three-part names

	Roadmap 4: Databases accessed in languages other than English
	Tasks to perform when upgrading Db2 for z/OS but not QMF

	Chapter 3. Installing or migrating QMF in requester (Db2 for z/OS) databases
	Preparing to install
	Implementing installation prerequisites
	Copying the QMF Version 12.1 libraries from the distribution media
	Populating the VSAM panel library
	Addressing storage requirements
	Storage required to load modules during initialization
	Virtual storage requirements for report operations

	Moving modules to enhance performance
	Setting installation job parameters for requester installations
	Installation defaults for common parameters
	Setting site-specific installation defaults for requester installations in the exec
	Overriding defaults in the installation jobs

	Running the installation jobs
	Jobs that install QMF V12.1 where no prior release is installed
	Jobs that migrate QMF V8 NFM, QMF V9 NFM, QMF V10, QMF V11.1, or QMF V11.2 to QMF V12.1

	Defining programs, resources, and preferences to TSO and CICS
	Customizing requester installations under TSO
	Customizing GDDM external defaults
	Checking that QMF devices are queriable
	Preparing the TSO logon procedure

	Customizing requester installations under CICS
	Describing QMF to Db2
	Describing QMF to CICS
	Preparing the governor exit for CICS
	Customizing for GDDM support under CICS
	Customizing GDDM external defaults
	Checking that QMF devices are queriable
	Loading QMF GDDM maps to the GDDM ADMF data set
	Creating sample charts and the QMF trace data set

	Updating the CICS startup job stream
	Determining the type of storage to use for EXPORT and IMPORT commands
	Revising the EDSA limit size to accommodate SQL queries up to 2 MB

	Chapter 4. Installing or migrating QMF in server databases
	Setting installation job parameters for server installations
	Running installation jobs that prepare servers for access by the QMF CONNECT command
	Jobs that install QMF V12.1 in server databases where no prior release is installed
	Jobs that migrate QMF V8 NFM, QMF V9 NFM, QMF V10, QMF V11.1, or QMF V11.2 to QMF V12.1 in a z/OS, iSeries, or LUW server
	Jobs that migrate QMF V7.2 or earlier to QMF V12.1 in a VM or VSE server
	Jobs that migrate QMF V8, V9, V10, V11.1 or V11.2 to QMF V12.1 in a VM or VSE server
	Falling back to the prior release in server databases

	Running installation jobs that prepare servers to be accessed by QMF commands that include three-part names

	Chapter 5. Verifying that QMF is installed correctly
	Testing QMF installations on requester databases
	Starting QMF
	Starting QMF under TSO
	Starting QMF with ISPF
	Starting QMF without ISPF

	Starting QMF under CICS

	Checking for the correct version of the QMF panel library
	Checking that QMF libraries have been allocated correctly
	Checking that all required QMF views were installed
	Installing sample queries and procedures required for the installation verification procedures
	Running the installation verification procedures
	Running the IVPs for TSO
	Testing interactive operation under TSO
	Testing batch operation under TSO

	Running the IVP for CICS

	Testing QMF installations on server databases

	Chapter 6. Migration and fallback considerations
	Accessing profiles and objects from a prior QMF release
	Accessing QMF profiles in a different database
	Migrating tables, views, and QMF objects

	Object compatibility between releases
	Forward compatibility of earlier releases with QMF Version 12 Release 1
	Compatibility of QMF Version 12.1 with earlier releases

	Above the bar storage requirement changes

	Chapter 7. Deleting an earlier release of QMF
	Deleting QMF from a Db2 for z/OS database
	When the old and new release are in the same subsystem
	Freeing the earlier application plan
	Using SMP/E to delete the libraries of the earlier release
	Dropping packages from the earlier release

	When the old and new release are in different subsystems

	Deleting QMF from a DB2 for iSeries or LUW database
	When the old and new releases are in the same server
	When the old and new release are in different servers
	Deleting QMF control tables and packages
	Deleting QMF sample tables

	Deleting QMF from a DB2 for VSE and VM database
	When the old and new releases are in the same server
	When the old and new release are in different servers

	Chapter 8. Installing extra value features
	Configuring QMF Analytics for TSO
	Load library considerations for QMF Analytics for TSO
	Allocating files used by QMF Analytics for TSO
	File system customization for QMF Analytics for TSO
	Installing QMF Analytics for TSO sample tables
	Verifying that QMF Analytics for TSO installed correctly

	Configuring QMF Data Service (QDS)
	Installing QMF National Language Features
	Migrating QMF National Language Features
	Installing the QMF stored procedure interface (TSO only)
	Installing the enhanced LIST command function (z/OS only)
	Configuring the QMF Data Service Interface

	Part 2. Managing QMF for TSO and CICS
	Chapter 9. Starting QMF
	Starting QMF on TSO
	Allocating necessary files and resources
	Adding QMF CLIST and EXEC libraries to TSO
	Starting QMF with the TSO CALL command
	Starting QMF directly with the DSQQMFE module
	Starting QMF in a batch environment
	Starting QMF as a Db2 for z/OS stored procedure
	Format of the CALL statement
	Starting QMF for TSO from QMF for Workstation and running a linear procedure
	Starting QMF for TSO from QMF for Workstation and running a procedure with logic

	Starting QMF on ISPF
	Starting QMF from an ISPF menu
	Using LIBDEF statements to allocate QMF program libraries
	Starting QMF in batch mode in ISPF
	Examples of starting QMF under ISPF

	Starting QMF in native z/OS batch
	Starting QMF on CICS
	Initializing global variables and QMF session behavior when QMF starts
	Setting global variables with the DSQUOPTS routine
	Variables that can be set in the DSQUOPTS routine

	Setting global variables with the global variable table
	Structure of the Q.GLOBAL_VARS table

	Initialization with the default system initialization procedure
	Creating your own initialization procedure

	Chapter 10. Setting program parameters and preferences at startup time
	Summary of program parameters
	Setting database and environment parameters
	Specifying the name of the Db2 for z/OS subsystem in which to start QMF under TSO
	Specifying the initial database connection
	Specifying the name of the QMF application plan
	Specifying which ID to use as the QMF profile key under TSO

	Defining storage for reports
	Defining a fixed amount of virtual storage for reports
	Defining a variable amount of virtual storage for reports
	Defining storage for reports as a percentage of available storage
	Reserving virtual storage from the TSO region to be used for applications other than QMF

	Acquiring extra storage for data no longer needed in virtual storage
	Spilling report data to extended virtual storage (TSO only)
	Spilling report data to a file in TSO
	Estimating the space required for a spill file
	Allocating a spill file

	Spilling report data to a file in CICS
	Spilling report data when QMF is running in batch mode
	Troubleshooting spill file problems

	Controlling performance of fetch and insert operations
	Controlling report wait time
	Enabling support for multirow fetch and insert

	Using multiple database threads
	Automating QMF activity
	Specifying the mode of operation (interactive or batch)
	Specifying an initial procedure to run when QMF starts
	Running an initial procedure in batch mode
	Performing interactive QMF work with an initial procedure
	Passing variable values to an initial procedure

	Setting tracing options
	Setting the trace for TSO
	Setting the trace for CICS

	Printing DBCS data from non-DBCS display devices

	Chapter 11. Registering users and setting privileges
	Controlling access to the application plan and packages
	Granting access to the application plan and packages
	Revoking access to the application plan and packages

	Creating QMF user profiles
	About the Q.PROFILES table
	Establishing a profile structure for your site
	Adding a user profile
	Updating a user profile
	Using the SET PROFILE command
	Using SQL UPDATE statements
	Updating the SYSTEM profile

	Deleting a user profile

	Providing access to QMF and database objects
	Privileges required for QMF commands and functions
	Granting and revoking privileges
	The SQL GRANT statement
	The SQL REVOKE statement

	Setting standards for objects and allowing uncommitted read
	Sharing QMF objects with other users
	Allowing uncommitted read

	Users’ object lists
	Customizing users' object lists
	Creating your own list view
	Making your new view the default view

	Default behavior of the QMF LIST and DESCRIBE commands
	Default views that are used for the commands
	Global variables that store the default view names

	Object list storage requirements

	Chapter 12. Creating and maintaining objects in the database
	Enabling users to create tables in the database
	Procedure for creating tables
	Assigning a table space for SAVE DATA, IMPORT, and RUN QUERY commands
	Valid values for the SPACE field of the profile
	Factors to consider when choosing a table space scheme

	Granting a user the privileges to create tables

	Using views to filter sensitive data
	Creating a view
	Granting privileges for a view

	Maintaining the QMF object catalog
	Structure of the Q.OBJECT_DIRECTORY table
	Structure of the Q.OBJECT_DATA table
	Structure of the Q.OBJECT_REMARKS table
	Enlarging the table space for the QMF object catalog
	Listing QMF objects
	Displaying QMF objects
	Transferring ownership of QMF objects
	Deleting obsolete QMF objects
	Importing queries, forms, and procedures from z/OS data sets

	Maintaining a Db2 for z/OS subsystem
	Managing data sets
	Maintaining the QMF control tables
	Monitoring and reorganizing the QMF control tables
	Switching buffer pools

	Chapter 13. Setting up printing and charting functions
	Deciding whether to use QMF or GDDM services for printing
	Using GDDM services to handle printing
	How QMF interfaces with your GDDM nickname
	Where GDDM searches for the nickname
	Example nicknames for different printer families
	Example nickname definitions for specific printers
	Setting up GDDM services to handle printing
	Choosing the right type of GDDM device
	Creating the printer nickname specification
	Updating the GDDM defaults module with the nickname
	Activating the nickname

	Using QMF services to handle printing
	QMF services for printing in native z/OS batch, TSO, and ISPF
	Using QMF services for printing in CICS

	Allowing users to print without exiting QMF
	Printing requirements by object type
	Enabling charting functions
	Enabling chart support in TSO and ISPF
	Enabling chart support in CICS

	Chapter 14. Command synonyms
	Using the default synonyms provided with QMF
	List of default synonyms
	The DPRE synonym: using ISPF to preview the printed report
	Using DPRE
	Customizing DPRE

	Guidelines for synonyms
	Synonym verbs
	Rules for the VERB column
	Using base QMF verbs as command synonym verbs

	Synonym object names
	Synonym definitions
	Guidelines for definitions
	Example: using a linear procedure in the synonym definition
	Using variables in the synonym definition
	The variable &ALL
	Keying information into the SYNONYM_DEFINITION column

	Customizing Command synonyms
	Creating a command synonym table
	Entering command synonym definitions into the table
	Activating the synonyms

	Minimizing maintenance of command synonym tables
	Assigning one synonyms table to all users
	Assigning views of a synonyms table to individual users
	Synonyms for public or private use
	Synonyms for public or group use
	Synonyms paired with an authorization table

	Chapter 15. Custom function keys
	Customizing QMF function keys
	Displaying the panel ID
	Full-screen panel identifiers
	Window panel identifiers

	Choosing the keys that you want to customize
	Default keys on full-screen panels
	Default keys on window panels

	Creating the function key table
	Entering your function key definitions into the table
	Linking a command with a function key
	Labeling the function key and positioning it on the screen

	Activating new function key definitions
	Testing and diagnosing problems with the function key table

	Examples of key definitions

	Chapter 16. Custom edit exit routines for QMF forms
	Edit exit routines and QMF
	Fields passed to and from the exit routine
	Fields of the interface control block
	Fields that characterize the input and output areas

	Choosing an edit code
	Double-byte character set data and edit routines
	DBCS data and what the edit routine receives
	Ensuring that the edit routine returns the right results

	Date, time, and timestamp data and edit routines
	Required formats for date, time, and timestamp information
	Db2 exits for date and time data

	Edit routines for programming languages
	Writing an edit routine in High-Level Assembler
	Writing an Assembler edit routine for TSO, ISPF, and native z/OS
	Writing an Assembler edit routine for CICS

	Writing an edit routine in PL/I
	The CEEPIPI Language Environment interface and PL/I edit routines for TSO, ISPF, or native z/OS
	Writing a PL/I edit routine for CICS

	Writing an edit routine in COBOL
	The IGZERRE interface and COBOL edit routines for TSO, ISPF, or native z/OS
	The CEEPIPI Language Environment interface and COBOL edit routines for TSO, ISPF, or native z/OS
	Writing a COBOL edit routine for CICS

	Chapter 17. Controlling QMF resources
	The default governor exit routine provided with QMF for TSO and CICS
	How a governor exit routine controls resources
	How the governor knows what the resource limits are
	How the governor knows when you reach a resource limit

	Resource limits with the default governor exit
	Default resource limits
	Activating the default limits
	Defining your own resource limits
	Creating your own resource control table

	Program components of the governor exit routine
	How QMF and the governor interact
	How and when QMF calls the governor exit routine
	Points at which QMF calls the governor
	What happens upon entry to the governor exit routine
	Establishing addressability for function calls

	Modifying the default governor exit routine or writing your own routine
	Passing resource control information to the governor exit
	Structure of the DXEGOVA control block
	Addressing the resource control table
	Structure of the DXEXCBA control block

	Storing resource control information for the duration of a QMF session
	Providing messages for canceled activities
	Translating, assembling, and link-editing your governor exit routine
	Assembling and link-editing your governor exit routine for TSO, ISPF, and native z/OS batch
	Translating, assembling, and link-editing your governor exit routine in CICS

	Canceling user activity
	Using the Db2 resource limit facility
	Differences between governors
	QMF commands that can be monitored by the Db2 governor
	How QMF responds when queries are cancelled by the Db2 governor
	Configuring Db2 governing of QMF commands

	Chapter 18. Running QMF in batch mode
	Running QMF as a batch program on z/OS
	Authority to operate in batch mode
	JCL to execute a QMF batch job
	Running QMF batch in native z/OS
	Running QMF batch under TSO
	Running QMF batch under ISPF using the QMF BATCH command
	Authority to use the batch application
	Using the batch application
	Starting the application
	Fields on the batch prompt panel
	Modifying the batch application

	Initiating a QMF batch job in the foreground on ISPF or TSO
	Debugging a batch-mode procedure or application

	Starting a QMF batch job from a remote Db2 client
	Running QMF as a batch transaction on CICS
	Running batch activities from a terminal
	Running batch activities without a terminal
	Debugging a procedure

	Chapter 19. Troubleshooting and diagnosing problems
	Applying QMF service
	Correcting common problems
	Errors that can occur at initialization time
	Problems that can occur when QMF is not using current load modules
	Abends
	QMF messages
	Problems starting QMF
	Problems with command synonyms, function keys, and resource control tables

	Warning messages after you start QMF
	Incorrect output
	Problems with printing
	GDDM errors
	QMF errors

	Display errors
	Resolving storage-related issues

	Managing QMF performance
	Capturing EXPLAIN information for dynamic statements
	Enabling QMF queries to be eligible for query acceleration
	Solving storage problems
	Solving resource contention problems
	Improving QMF performance with the DSQEC_BUFFER_SIZE global variable setting
	Improving eligibility for the Db2 dynamic statement cache with literal concentration enablement

	Using diagnosis aids
	Diagnosing your problem using message support
	Determining which QMF function issued an error message
	Handling system error messages
	Handling SQL return codes

	Creating an interrupt to capture diagnostic information
	The trace facility
	Allocating the trace data set
	Starting the trace facility
	Getting the right level of detail in your trace output
	Tracing individual QMF modules
	Viewing QMF trace data
	Determining the QMF service level
	Turning off the trace facility

	Examining error log reports
	Using diagnostics native to the environment
	Diagnosing problems in TSO
	Diagnosing problems in CICS

	Reporting a problem to IBM
	Searching previously reported problems
	Working with IBM Software Support

	Appendix A. Summary of changes in prior releases
	Version 11.2 changes
	Version 11.1 changes
	Version 10.1 changes
	Version 9.1 changes
	Version 8.1 changes
	Version 7.2 changes
	Version 7.1 changes
	Version 6.1 changes

	Appendix B. QMF functions that require specific support
	Functions that vary according to database type
	Functions not available in CICS

	Appendix C. QMF objects that reside in Db2
	QMF plans
	QMF packages
	QMF control tables and table spaces for TSO and CICS
	QMF views
	Db2 for z/OS storage groups
	Space for saving LOB data
	VSAM clusters for TSO/CICS
	QMF sample tables

	Appendix D. External editors
	Modifying QMF queries and procedures with an editor
	Inserting QMF reports into documents
	Changing the application
	Renaming the document interface macro (DSQAED1P)
	Placing the Q.DSQAED1S procedure in the database
	Changing the data components
	Changing the CLISTs and macros

	Appendix E. QMF user-defined functions
	QMF user-defined functions and procedures
	APPL_AUTHNAMES
	CALL DSQABA1E
	DSQABA1E

	Appendix F. How QMF and GDDM programs are defined to CICS
	How QMF programs are defined to CICS
	How GDDM definitions are loaded during installation of QMF
	Transaction routing to control resource use in CICS

	Notices
	Programming interface information
	Trademarks

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

