
IBM Endpoint Manager
Version 9.1

Action Guide

IBM

IBM Endpoint Manager
Version 9.1

Action Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 71.

This edition applies to version 9, release 1, modification level 0 of IBM Endpoint Manager and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2012, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Introducing the action
language 1
Creating Action Scripts 1
Introducing the Prefetch Block 2
Using Substitution 3
Introducing Dynamic Downloads 4

Static Downloading 4
Dynamic Downloading 4

Chapter 2. Execution Commands 9
action launch preference low-priority 9
action launch preference normal-priority 9
dos 10
notify client ForceRefresh 10
override 11

Completion 12
Priority (Windows only) 12
Hidden (windows only) 12
Detached (Windows only) 12
RunAs 13

run 13
rundetached 13
runhidden 14
script 15
wait 15
waitdetached 16
waithidden 16

Chapter 3. Flow Control Commands . . 19
action may require restart 19
action parameter query 19
action requires login 20
action requires restart 20
continue if 21
exit 21
if, elseif, else, endif 22

Prefetching 22
parameter 24
pause while 25
restart 25
set clock 26
shutdown 26

Chapter 4. File System Commands . . 29
action log 29
add nohash prefetch item. 29
add prefetch item 30
appendfile 31
archive now 32
begin prefetch block 32
collect prefetch items 34
copy. 35
createfile until 35
delete 36
download 37

download as 38
download now as 39
end prefetch block 40
execute prefetch plug-in 41
extract 42
folder create 43
folder delete 43
move 44
prefetch 44
relay select 45
utility 46

Chapter 5. Setting Commands. 47
setting 47
setting delete 48

Chapter 6. Registry Commands 49
regdelete 49
regset 49

Chapter 7. Wow64 Commands 53
action uses wow64 redirection 53
regdelete64 53
regset64 54
script64. 55

Chapter 8. Administrative Rights
Commands 57
administrator add 57
administrator delete 57

Chapter 9. BigFix Client Maintenance
Commands 59
module add 59
module commit 59
module delete 60

Chapter 10. Locking Commands. . . . 61
action lock indefinite 61
action lock until 61
action unlock 61

Chapter 11. Site Maintenance
Commands 63
site force evaluation 63
site gather schedule disable 63
site gather schedule manual 63
site gather schedule publisher 64
site gather schedule seconds 64
subscribe 64
unsubscribe 65

© Copyright IBM Corp. 2012, 2014 iii

Chapter 12. Comments 67
double forward slash 67

Appendix. Support 69

Notices 71
Programming interface information 73
Trademarks 73

Terms and conditions for product documentation. . 74

iv IBM Endpoint Manager: Action Guide

Chapter 1. Introducing the action language

After a Fixlet identifies a potential problem on a computer, it offers to fix it with
an IBM Endpoint Manager shell command, called an action script. Although there
are other ways to create scripts, the most powerful method is to use the IBM
Endpoint Manager Action Language, because it integrates tightly with the
relevance engine.

Many action commands allow or require parameters. Those parameters can either
be hardcoded (static) values or expressions that are evaluated and inserted by the
IBM Endpoint Manager relevance engine. These are called substitution variables
and they let you create scripts that are finely targeted and highly flexible. The
exact relevance expression that triggered the action can be used in your action
script, ensuring a perfect match between the problem and the correction. All
commands may perform substitution on their arguments before processing them,
with a few noted exceptions.

This document describes all the IBM Endpoint Manager action commands, with
specific examples. At the bottom of each action topic is a version number, such as
Version 7.2 and above. This represents the first version that is compatible with the
given command. Some actions are marked "Windows Only," and will fail on UNIX
or Macintosh systems.

Creating Action Scripts

You can create custom actions to fix problems or address issues across your
network that are not covered by the standard content. Although the process is
simple to describe, there are a large range of actions and targeting techniques at
your disposal. To create a custom action:
1. Log on to the IBM Endpoint Manager Console as a Master Operator.
2. Select Tools > Take Custom action.
3. The Take action dialog pops up. At the top is a place to provide a Name for

your custom action. This field can be sorted and filtered, so a good naming
convention will help you get the most out of your reports.

4. Under the Name field is the Preset pull-down menu that allows you pick a
preset customized action, saving you time and ensuring accuracy. You can also
save your current input as a preset for later use. The Preset interface includes
these fields and buttons:
a. Preset: Select a preset from the pull-down menu.
b. Show only personal presets: Check this box to filter the list of presets to

just your personal ones.
c. Save Preset: Save the current set of action options for later use. This button

isn't active until you make a change to one of the options somewhere in this
dialog. When you click this button, a dialog pops up prompting you for the
name of your preset. A check box below that lets you save it as a public or
private preset.

d. Delete Preset: Removes this preset from the selectable list. It brings up a
confirmation dialog allowing you to cancel this command.

5. Under the Presets, there are several tabs:

© Copyright IBM Corp. 2012, 2014 1

a. Target: Select the targets from the provided list, or use properties or a
specific list of computers to target the action.

b. Execution: Specify the deployment options and constraints, including
repeated application and failure recovery.

c. Users: Determine how this action will respond to the presence or absence of
users.

d. Messages: Provide a message to precede and accompany the action.
e. Offer: Create an action offering, allowing the user to choose whether or not

to apply the action.
f. Post-action: Describe what actions need to be done to complete the action,

including restarts or shutdowns.
g. Applicability: Allows you to override the original action relevance.
h. Success Criteria: Create specific criteria that you can use to determine if

your action was successful.
i. Action Script: This tab allows you to create or modify an action script.

6. Click on the Action Script tab and type in your script. This guide describes the
available action commands and provides multiple examples.

1. Click on the Applicability tab if you would like to fine-tune the targeting of
your action script. For more information about the relevance language, see the
IBM Endpoint Manager relevance Language Reference and the IBM Endpoint
Manager Inspector Guides.

2. Click on the Execution, Users, Messages, Offer or Post-action tabs to further
customize your action.

3. When you are ready to deploy your custom action, click OK.
4. Your custom action will be distributed to all the computers that have been

selected or targeted. The actions will be applied using whatever constraints and
schedules you have specified.

You can also create actions when you Create Tasks or Create Fixlets. See the IBM
Endpoint Manager Console manual for more information on these topics.

Introducing the Prefetch Block

The prefetch block must be the first entry in the action script (other than comments
or blank lines). It contains all the download prefetch logic needed to prepare for
subsequent action execution, making the action easier to understand. Some of the
methods that can be used in a prefetch block include:

Literal downloads
These are ordinary static downloads, which are still available.

Conditional downloads
Only those commands inside TRUE condition pathways are performed.

Variable Substitution
This includes downloads that use relevance substitution to determine
which files to collect.

Custom logic
This takes advantage of a plug-in to create download manifests.

Unlike the pre-parsing algorithm used in the traditional downloading actions,
prefetch block downloads can be viewed as a top-down approach: the prefetch

2 IBM Endpoint Manager: Action Guide

block comes first and must successfully complete before the rest of the action can
continue. This provides greater control, flexibility and power.

Note: Only one prefetch block is allowed per action. When it is used, the begin
prefetch block command must be the first executable in the script. Only blank
lines and comments are allowed to precede it. An end prefetch block command is
required for termination.

Using Substitution

Substitution allows the Fixlet author to include relevance expressions in an action.
This is accomplished by placing the relevance expression in curly braces:
run "{pathname of regapp "excel.exe"}"

This example runs a program without knowing where it is located. A relevance
expression evaluates the pathname automatically using the 'regapp' inspector.
pause while {exists running application "c:\updater.exe"}

This action pauses until a program finishes executing, using the running
application inspector.

Substitution is not recursive, although any particular command may have one or
more expressions to evaluate before execution. The IBM Endpoint Manager Client
is expecting to find a single expression inside the curly braces. If it sees another
left brace before it encounters a closing right brace, it treats it as an ordinary
character:
echo {"a left brace: {"}

would send this string to output:
a left b race: {

Therefore no special escape characters are necessary to represent a left brace. To
output a literal right brace without ending the substitution, use a double character:
echo {"{a string inside braces}}"}

would send this string to output:
{a string inside braces}

Or consider this example:
appendfile {{ name of operating system } {name of operating system}

When this example is parsed, the double left braces indicate that what follows is
not a relevance expression. Only a single right brace is necessary when it's outside
of a relevance expression (inside a relevance expression, a double right brace is
necessary to specify a literal one). This would output the following line to
__appendfile:
{ name of operating system } WinXP

You can also use substitution with add prefetch item commands in prefetch
blocks:

Chapter 1. 3

begin prefetch block
parameter "manifest"="{pathname of file "manifest.spec" of client folder
of site "AV"}"

add prefetch item {concatenation " ; " of lines of file
(parameter "manifest")}

end prefetch block

Introducing Dynamic Downloads

The dynamic downloading feature extends the flexibility of action scripts. To
understand how it works, it is helpful to understand the existing static download
method.

Static Downloading

Before it runs an action, the IBM Endpoint Manager Client parses it, looking for
download or prefetch commands. Static downloads include the URL, SHA hash
algorithm, and size for each item as literal values in the action script. The literal
values allows an operator to observe exactly what the action script is going to do.
These literals are used to construct a numbered list of downloads associated with
the action that is then stored on the IBM Endpoint Manager Server. This stage of
action processing is called prefetch processing.

As a consequence of prefetch processing, the Client will notify the nearest IBM
Endpoint Manager Relay of the need for downloads by requesting a URL ending
in <actionid>/0, which in turn triggers the Relay to download all the items
corresponding to that specified action. When they are ready, the Relay pings the
clients back with the action ID. All the IBM Endpoint Manager Clients running
that action will then collect the files by asking for them one at a time as
<actionid>/1, <actionid>/2, etc.

However, because the download information is represented by literal expressions,
only those URLs already known when the action is authored can be represented.
This means that static downloads cannot be used for those instances where the
downloads change, but the action script remains the same.

Dynamic Downloading

Dynamic downloads add the ability to use relevance clauses to specify downloads.
These new commands must be embedded in a special segment of action code
called a prefetch block. For instance, if you created a file in the AV Fixlet site
named download.spec containing a named variable in the first line such as:
name=update.exe sha1=123 sha256=678 size=456 url=http://site.com/download/patch.exe

You could then access this patch using relevance substitution in a prefetch block:
begin prefetch block

parameter "downloadFile"="{pathname of file "download.spec" of client folder
of site "AV"}"

add prefetch item {line 1 of file (parameter "downloadFile")}
end prefetch block

This code block creates a variable named downloadFile that points to a file in the
AV site. It then adds this file to the prefetch queue for subsequent downloading. In
this way, a Fixlet message in the AV site could offer to keep something
automatically updated and the download.spec file would be refreshed whenever a

4 IBM Endpoint Manager: Action Guide

new version became available. Deploying the action from the Fixlet as a Policy
action would then execute the update whenever the download.spec file was
changed.

Note that this code block terminates with an end prefetch block command, which
ensures that the file is successfully downloaded before execution of the action
script. A prefetch block must be at the top of the action script, and it must be
closed with the end prefetch block statement before the script can continue.

Another popular technique is to use a data file, or manifest, containing a list of
multiple downloads, each with its own URL, SHA hash algorithm, and size. This
manifest can change as often as necessary, making it easy to update spy ware or
anti-virus definitions. One way to implement this is to create a file named
manifest.spec with a list of downloads such as
name=patch1.exe sha1=123 sha256=347 size=456 url=http://site.com/download/patch1.exe
name=patch2.exe sha1=234 sha256=358 size=567 url=http://site.com/download/patch2.exe
name=patch3.exe sha1=345 sha256=368 size=678 url=http://site.com/download/patch3.exe
You can then download these patches with a prefetch block that pulls these

files from the manifest:
begin prefetch block

parameter "manifest"="{pathname of file "manifest.spec" of client folder
of site "AV"}"

add prefetch item {concatenation " ; " of lines of file
(parameter "manifest")}

end prefetch block

You can also use small executables to process files into a fresh manifest. This is
accomplished with the execute prefetch plug-in command, as the following
example illustrates:
begin prefetch block

add prefetch item name=myPlugIn.exe sha1=123 size=456
url=http://mysite/plugin.exe sha2=347

// collect the plug-in before continuing:
collect prefetch items
parameter "ini"="{file "prepass.ini" of site (value of setting

"CustomSite") of client}"
execute prefetch plug-in "{download path "myPlugIn.exe"}" /downloads

"{parameter "ini"}" "{download path "manifest"}"
add prefetch item {concatenation " ; " of lines of download file

"manifest"}
end prefetch block

This prefetch block first adds the plug-in to the prefetch queue and then executes
the collect prefetch items command. This causes prefetch processing to delay until
the items added to the prefetch queue are downloaded before prefetch processing
continues. Once successfully downloaded, the plug-in is executed with arguments
including the path for the data file and the manifest to be produced from it. The
final add prefetch item command queues up the downloads specified in the
freshly created manifest. A technique like this might also be used to decrypt a
secure file into a plain-text manifest.

Dynamic downloads must specify files with the confirmation of a size or SHA hash
algorithm. The URL, size, and SHA hash algorithm can come from a source outside
of the action script. This flexibility entails extra scrutiny. Since any client can use
dynamic downloading to request a file, it creates an opportunity for people to use
your server to host files indiscriminately. To prevent this, dynamic downloading
uses a white-list. Any request to download from a URL (that is not explicitly
authorized by use of a literal URL in the action script) must meet one of the
criteria specified in a white-list of URLs on the IBM Endpoint Manager Server,

Chapter 1. 5

located at <BES Server Install Path>\Mirror Server\Config\
DownloadWhitelist.txt. This file contains a newline-separated list of regular
expressions using a Perl regex format, such as the following:
http://.*\.sitename\.com/.*
http://software\.sitename\.com/.*
http://download\.sitename\.com/patches/JustThisOneFile\.qfx
The first line is the least restrictive, allowing any file at the sitename
domain to be downloaded. The second line requires a specific domain host
and the third is the most restrictive, limiting the URL to a single file
named "JustThisOneFile.qfx". If a requested URL fails to match an entry in
the white-list, the download immediately fails with status NotAvailable.
A note is made in the Relay log containing the URL that failed to pass.
An empty or non-existent white-list will cause all dynamic downloads to fail.
A white-list entry of ".*" (dot star) will allow any URL to be downloaded.

Prefetch blocks allow conditional statements:
begin prefetch block

if {name of operating system = "Windows 2000"}
add prefetch item name=up.exe sha1=123 size=456

url=http://site.com/patch2k.exe sha2=567
else

add prefetch item name=up.exe sha1=123 size=456
url=http://site.com/patch.exe sha2=567

endif
end prefetch block
wait "{download path "up.exe"}"

This action script branches on the existence of Win2K, but the downloads in this
example are described statically (as literal text). Although the clients will only
download the particular items they need, all the static files are downloaded to
servers and relays as soon as they are requested. Dynamic downloads can improve
on this situation because only those files actually needed by clients are fetched to
the server and relay in the first place. Here's an example using dynamic
downloading:
begin prefetch block

if {name of operating system = "Windows 2000"}
add prefetch item {"name=up.exe sha1=123 size=456

url=http://site.com/patch2k.exe"} sha2=567
else

add prefetch item {"name=up.exe sha1=123 size=456
url=http://site.com/patch.exe"} sha2=567

endif
end prefetch block
wait "{download path "up.exe"}"

By using relevance substitution in the prefetch block, with a properly configured
white list file on the server, this code only fetches the necessary file, potentially
improving bandwidth requirements and efficiency.

You can also branch execution based on the contents of a file, allowing you to
automate updates. This can be especially useful for dealing with changing version
numbers. For instance, you could create a file named 'manifest.txt' containing two
named variables such as:
version=1234
download=name=update.exe sha1=123 size=456

url=http://site.com/download/patch.exe sha2=567
Note that the download variable contains the name, sha1, sha2, size and URL
of the patch file.
You can then use relevance substitution to extract these variables with
an expression such as:
parameter "ver"="{key "version" of file "{download path "manifest.txt"}"}"

6 IBM Endpoint Manager: Action Guide

parameter "filename"={key "download" of file "{download path "manifest.txt"}"}
By comparing the extracted version against some stored values, you can determine
if and when you need to download the specified file. This technique can be
expanded to include multiple versions and can even be used to distinguish between
patches and full replacement updates.

No matter which technique is used, once the files have been downloaded, they can
be examined with various Inspectors which may have different interpretations,
depending on whether or not the action is active (or in prefetch processing). Before
execution, these files are collected in a prefetch folder. During action execution,
they reside in the __Download folder.

There are new Inspectors that can be used to locate the files before or during
action execution:
v download folder: During the prefetch parsing, this Inspector returns a folder

object from the __Global\<sitename>\<actionid>\named folder. Once the action is
active and the download has completed, this Inspector returns the expected
folder object from the __Download directory.

v download path "pathname": This Inspector returns a string containing the full
pathname to the specified file, whether it exists or not. The download filename
is equivalent to (pathname of download folder) & <pathseparator> & filename.

v download file "filename": This Inspector returns a file object from the download
folder or another named folder. The download filename is equivalent to "file
'filename' of download folder". If the file isn't yet in the download folder, the
Inspector returns 'does not exist'.

It is up to the action script author to protect users of these actions and ensure that
downloads and their checksums have not been compromised. An end-to-end
authentication mechanism resistant to man-in-the-middle attacks is the best
defense. When authoring a dynamic download action it is critical to craft the
action so that it authenticates information before using it, typically by using a
plug-in as described above. It is also wise to explicitly identify those steps in the
action script that perform this authentication so that users of your action can audit
the mechanism before deciding to trust it.

Note: Only one prefetch block is allowed per action. When it is used, the begin
prefetch block command must be the first command in the script. Only blank lines
and comments are allowed to precede it. An end prefetch block command is
required to separate the prefetch block from the remainder of the action.

Chapter 1. 7

8 IBM Endpoint Manager: Action Guide

Chapter 2. Execution Commands

This section describes the execution commands.

action launch preference low-priority

When this command is run, subsequent action commands that launch programs
will do so with lower priority than normal. This will help to mitigate the impact of
large patches or service pack upgrades.

Low-priority preference only effects the launch priority of applications launched
from the current action. This preference is maintained until the action completes or
the client executes the action launch preference normal-priority command.

Syntax
action launch preference low-priority

Examples
action launch preference low-priority
run "{pathname of regapp "background_app.exe"}"
action launch preference normal-priority

This example lowers the launch priority before running background_app so that it
will not dominate the system when it executes. It then sets the priority level back
to normal.

th

Note: This command is Windows-only. It will cause an action script to end on a
UNIX agent.

Version 6.0 and above -- Windows Only

action launch preference normal-priority

When this command is executed, subsequent action commands that launch
programs will do so with normal-priority. This statement is only needed to return
the priority to normal after an action launch preference low-priority command.

Syntax

action launch preference normal-priority

Examples
action launch preference low-priority
run "{pathname of regapp "background_app.exe"}"
action launch preference normal-priority

This example lowers the launch priority before running background_app, then
returns the priority to normal for subsequent launch statements.

Notes

© Copyright IBM Corp. 2012, 2014 9

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

Version 6.0 and above -- Windows Only

dos

Issues a standard DOS command. If the DOS command fails, the action script that
contains it is terminated.

Syntax

dos <DOS command line>

Example
dos rmdir /Q /S "{pathname of windows folder & "\temp"}"

This example deletes an empty directory from a temporary folder in the windows
directory.
dos scandisk.exe e:

In this example, e: is a parameter passed to the scandisk program.

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

On a Windows system, this has the same effect as issuing a system (Dos command
line syntax) statement from the Windows API. It is also the same as typing the
DOS command line to a DOS prompt. The DOS command uses the PATH
environment variable to try to locate the command on the user's hard drive. As
with any other DOS command, for other locations you must specify a complete
pathname.

Be sure to use quotes if you have spaces in the filenames.

Version 5.1 and above -- Windows Only

notify client ForceRefresh

This command is equivalent to right clicking on a Client computer in the IBM
Endpoint Manager Console and selecting Send Refresh. This command may be
necessary if the UDP connection to the IBM Endpoint Manager Client is blocked.

Syntax

notify client ForceRefresh

Version 6.0.14 and above

10 IBM Endpoint Manager: Action Guide

override

The override command provides the ability to customize certain commands and
add multiple variations to existing commands. This powerful compound command
allows you to create your own custom combination command similar to the
existing commands waitdetachedor runhidden. To add constraints to an existing
command, you add predefined keyword/value pairs within the body of the
command.

Syntax
override <cmd>
<keyword>=<value>
<keyword>=<value>
<cmd> <rest of command line>

Where cmd is either wait or run, and the keyword/value pairs are chosen from the
table shown in the Usage Notes section.

Example
override wait
hidden=true
wait notepad.exe

This example provides the same functionality as waithidden notepad.exe.
override wait
completion=job
hidden=true
runas=currentuser
wait __Download\patch.exe arg1 arg2 arg3

This example shows how you might run a patch as a hidden process by the
current user, waiting for completion of the job before continuing the Action script.

Usage Notes

The keywords may be specified in any order, but there must be only one per line.
White space is not needed around the '=' (equal sign) and is ignored.

Keywords are case-insensitive, and the values can be enclosed in {curly brackets}
for Relevance substitution. If duplicate keywords are listed, the last value will be
used. The entire command fails if any of the keywords or values are invalid.
Platform-specific keywords that are not meaningful on a given platform will be
silently ignored. As with most commands, the command string is run through
relevance evaluation, so console-side syntax checking is minimal. However, the
agent performs full checking at action execution time.

The available keywords and their values are shown in the table below.

keyword allowable values default value

completion none | process | job none | process *

priority normal | low normal

hidden false | true false

detached false | true false

runas agent | currentuser agent

Chapter 2. Execution Commands 11

* for run, the default is none, for wait, the default is process.

Completion
v Completion=none acts the same as the current run command variants.
v Completion=process acts the same as the current wait command variants.
v Completion=job on Windows makes use of the Windows JobObject which

imposes some limitations on the target process and some potential failure points
for the command. See below for details.

Limitations on 'completion=job'

Windows:

To exercise the most flexible job control over a process, the override command
allows the process to selectively break child processes away from the job. This
allows the process to do its own job control management, but removes any of its
broken out children from the job object.

In those limited cases where the launched process is responsible for its own job
control, it is assumed that a member of the job will remain running until all of its
child processes complete. This is not a guarantee, however, and there may be
situations where this is not the case. In those cases, the action completes even
though the child processes are still running.

UNIX/Linux:

On UNIX/Linux platforms session IDs are used to manage job processes. Session
ids take on the value of the process id of the session leader (the process you want
to launch). The client waits for the leader process to end, as in the
'completion=process' case, then begins a cycle of a half-second of sleep followed by
enumerating processes looking for anything with a session id matching the job
leader's process id. When no more of these processes exist, the job is complete and
the command finishes.

The exit code returned with the command is always that of the leader process, not
the last process to complete.

Version 8.2 and above

Priority (Windows only)
v Priority=normal acts the same as the current 'action launch priority normal'

command.
v Priority=low acts the same as the current 'action launch priority low' command.

Hidden (windows only)
v Hidden=true applies the SW_HIDE attribute to the process as is done with the

runhidden and waithidden commands.
v Hidden=false removes the SW_HIDE attribute from the process.

Detached (Windows only)
v Detached=true creates the process using the detach method as is done in the

rundetached and waitdetached commands.

12 IBM Endpoint Manager: Action Guide

v Detached=false creates the process using the normal method

RunAs
v RunAs=agent applies the same process ownership characteristics as the current

wait and run variants.
v RunAs=currentuser mimics the current RunAsCurrentUser.exe on Windows,

using the same logic to identify the current user and similar code to create the
process with an environment block sourced by the userToken. On UNIX/Linux,
you cannot universally get the appropriate user environment variables, so there
is no attempt to apply environment variables at all, with the exception of
required Xauthority variables. On UNIX/Linux a call is made to setuid to the id
of the user identified as the current user for the XBESClientUI. This is a very
specific and platform dependent test which requires the user to be logged on at
the local console and running X Windows.

For additional information see the “override” on page 11 section.

run

Executes the indicated program. If the process can't be created, the action script is
terminated. Run does not wait for the process to terminate before executing the
next line of the action script. The command line contains the name of the
executable and may optionally contain parameters. If you wish to wait for one
program to finish before starting another one, use the wait command.

Syntax

run <command line>

Examples
run "{pathname of regapp "wordpad.exe"}"
run "c:\winnt\ftp.exe" ftp.mycorp.net
run wscript /e:vbs x.vbs arg1 arg2

These examples show how you might run a script and pass it some arguments.
Quotes around the command line are recommended, and necessary if there are
spaces in file names.

Note

On a Windows computer, this command has the same effect as calling the
CreateProcess API with <command line>. This is also the same as using
<command line> in the Windows RUN dialog. See the Windows documentation on
CreateProcess for a discussion of the method used to locate the executable from a
<command line>.

Version 5.1 and above

rundetached

Rundetached modifies the run command by setting the DETACHED_PROCESS
flag when calling CreateProcess() on Windows machines. By default, a created
process inherits its parent's console. When detached, this behavior is inhibited. This
gives the new process some more control over how it may interact with the user.

Chapter 2. Execution Commands 13

Among other things, this can be used to prevent pop-up DOS windows when you
execute a program. It's the same as the run command, but the process created
doesn't access the parent's console, which inhibits the distracting DOS window.
Rundetached should not be used for running interactive programs. If this is done,
the interactive program will not be able to show its user interface and may appear
to be hung. This command is provided strictly for running programs that do not
display a user interface.

Syntax

rundetached <command line>

Examples
rundetached "{pathname of regapp "background_app.exe"}"
rundetached "c:\winnt\ftp.exe" ftp.filesite.net

These examples show how you might run a program and pass it some arguments.
Quotes around the command line are recommended, and necessary if there are
spaces in file names.

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent. On a Windows computer, this command has the same effect as issuing
a CreateProcess(CommandLine) statement from the Windows API. This is also the
same as using CommandLine in the Windows RUN dialog. See the Windows
documentation on CreateProcess() for a discussion of the method used to locate the
executable from a CommandLine.

Version 5.1 and above -- Windows Only

runhidden

This command uses CreateProcess() to launch a command in a hidden window. It
hides the window by setting the STARTUPINFO dwFlag to
STARTF_USESHOWWINDOW and setting wShowWindow to SW_HIDE. The
process that is created may modify that flag to subsequently show the window
again.

After launching, the following action command line is immediately executed. To
wait for the launch to complete before continuing the action, use the waithidden
command.

Syntax

runhidden <command line>

Examples
runhidden "{pathname of regapp "wordpad.exe"}"
runhidden "c:\winnt\ftp.exe" ftp.mycorp.net
runhidden wscript /e:vbs x.vbs arg1 arg2

These examples show how you might run a script in a hidden window and pass it
some arguments. Quotes around the command line are recommended, and
necessary if there are spaces in the file names.

14 IBM Endpoint Manager: Action Guide

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

If the launched process requires user input, it will wait for it with its window
hidden, unless the command explicitly shows its window.

On a Windows computer, this command has the same effect as calling the
CreateProcess() API with <command line> and setting the flags to hide the
window. See the Windows documentation on CreateProcess() for a discussion of
the method used to locate the executable from a <command line>.

Version 6.0 and above -- Windows Only

script

Not to be confused with an action script, the script keyword executes an external
script (created for a scripting language like JavaScript or Visual Basic) with the
given name. The action script containing the script keyword will terminate if the
appropriate scripting engine is not installed or if the script cannot be executed. The
next line of the action Shell Command is not executed until the specified script
terminates.

Syntax

script <script name>

Example
script attrib.vbs

Runs the Visual BASIC script attrib.vbs.

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

On a Windows computer, this command has the same effect as issuing a wscript
"scriptName" statement from Windows, and then waiting for completion. This is
also the same as using scriptName from the Windows RUN dialog. If you need to
pass parameters to your script, use the run command instead.

Version 5.1 and above -- Windows Only

wait

The wait command behaves the same as the run command, except that it waits for
the completion of the process or program before continuing.

Syntax

wait <command line>

Chapter 2. Execution Commands 15

Example
wait "scandskw.exe"

Runs the scandskw program and waits for the program to complete before
continuing with the action script. The use of quotes is recommended practice, and
necessary if there are spaces in the file name.

Note

On a Windows computer, this has the same effect as issuing a CreateProcess
<command line> statement from the Windows API, and then waiting for
completion.

Version 5.1 and above

waitdetached

Waitdetached is used to prevent pop-up DOS windows when waiting for a
program to complete. It's the same as the wait command, but the process created
doesn't access the parent's console, inhibiting the distracting DOS window.
Rundetached should not be used for running interactive programs. If this is done,
the interactive program will not be able to show its user interface and may appear
to be hung. This command is provided strictly for running programs that do not
display a user interface.

Syntax

waitdetached <command line>

Example
waitdetached "scandskw.exe"
waitdetached wscript /e:vbs x.vbs arg1 arg2

This example shows how you might run a script, pass it some arguments and then
wait for its completion before continuing the action script.

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

On a Windows computer, this has the same effect as issuing a CreateProcess
(CommandLine) statement from the Windows API, and then waiting for
completion.

Version 5.1 and above -- Windows Only

waithidden

This command is similar to the runhidden command and uses CreateProcess to
execute a command in a hidden window. It hides the window by setting the
STARTUPINFO dwFlag to STARTF_USESHOWWINDOW and setting
wShowWindow to SW_HIDE. This action waits for the completion of the process
before continuing with subsequent action commands.

16 IBM Endpoint Manager: Action Guide

Syntax

waithidden <command line>

Examples
waithidden "{pathname of regapp "notepad.exe"}"
waithidden "c:\winnt\ftp.exe" ftp.myurl.net
waithidden wscript /e:vbs x.vbs arg1 arg2

These examples show how you might run a script in a hidden window and pass it
some arguments. Quotes around the command line are recommended, and
necessary if there are spaces in the file names.

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

If the launched process requires user input, it will wait for it with its window
hidden, unless the command explicitly shows its window.

On a Windows computer, this command has the same effect as calling the
CreateProcess API with <command line> and setting the flags to hide the window.
See the Windows documentation on CreateProcess for a discussion of the method
used to locate the executable from a <command line>.

Version 6.0 and above -- Windows Only

Chapter 2. Execution Commands 17

18 IBM Endpoint Manager: Action Guide

Chapter 3. Flow Control Commands

action may require restart

When this command is executed, the client looks at the system for telltale signs
that a restart is needed. If so, it sets the action completion status such that the
action will appear as 'Pending Restart' in the console, until a restart occurs. Once
the restart is completed, the action completion status of the action will take on the
value of 'success' if the relevance of the action is no longer relevant, or 'failed' if it
is still relevant.

If the telltale signs of restart are not present, the action completion status of the
action will take on the value of 'success' if the relevance of the action is no longer
relevant, or 'failed' if it is still relevant.

Syntax

action may require restart

Example
action may require restart

Version 5.1 and above

action parameter query

This allows data entry of parameters to be available via relevance during action
execution. Parameter names may include blanks, and are case sensitive. The
parameter name, description, and value must each be enclosed inside double
quotation marks ("). Once entered, the user input becomes the default in
subsequent invocations (for Endpoint Manager, the user is the console operator
approving the action for deployment).

Syntax

action parameter query "<parameter name>" [with description "<description>"]
[and] [with default [value] "<default value>"]

Where parameter name is the name of the relevance parameter and the with
description option lets you present a prompt to the user. The and with default
option lets you specify a default value for the parameter.

Examples
action parameter query "InstallationPoint" with description "Please enter

the location of the shared installation point:"
action parameter query "Registry key" with description "Please enter your

desired registry key" and with default value "null"
action parameter query "tips" with description "Enter ’on’ or ’off’ to control

Fixlet tips." With default "on" regset "[HKEY_CURRENT_USER\Software\BigFix]"
"tips"="{parameter "tips" of action}"

© Copyright IBM Corp. 2012, 2014 19

Note: The parameter values input by the user may include %xx where xx stands
for a two-digit hexadecimal number to specify the character you want to embed.
To embed a percent sign, use %25. To embed a double quote, use %22.

While the action is executing, you can retrieve the action parameter value entered
by the console operator. For example, in your action you could use relevance
substitution: {parameter "parameter name" of action}.

Relevance substitution is NOT performed on the action parameter query
command line itself. This is because the command is interpreted in the IBM
Endpoint Manager Console before the action is sent out, allowing the Fixlet author
to ask the operator for deployment-specific parameters needed to run the action.

Version 5.1 and above

action requires login

This command informs the client that the current action will not be completed
until the computer is restarted and an administrator logs in. Once this action has
been completed on a machine, the inspector pending login will return true.

Syntax

action requires login

Example
action requires login

Note

This action is ignored by IBM Endpoint Manager Unix agents.

Version 5.1 and above

action requires restart

This command informs the client that the current action will not be completed
until the next restart completes. Once this action has been completed on a machine,
the inspector 'pending restart' will return 'True'. If there is an 'action requires
restart' command in an action, the IBM Endpoint Manager Console will report
'Pending Restart' until the affected machine is restarted.

Syntax

action requires restart

Example
action requires restart

Version 5.1 and above

20 IBM Endpoint Manager: Action Guide

continue if

This command allows the next line in the script to be executed if the value
provided as a parameter evaluates to true. It will stop without error if the specified
value evaluates to false. You can use relevance substitution to compute the value.
This command is useful in making sure that certain conditions are met to run the
remainder of an action. The line number where the action script exited is reported
to the console. Users of the IBM Endpoint Manager can use this line number to
identify why an action is failing if you insert a continue if statement that identifies
an invariant required by your action.

Syntax
continue if <true condition>

Where true condition represents a relevance expression to evaluate.

Examples
continue if {name of operating system = "Win2k"}
download now http://www.real-time.com/downloads/win98/dun40.exe

This example will download the dun40.exe file only if the operating system is Win
2000.
continue if {(size of it = 325 and sha1 of it = "013e48a5") of file

"dun40.exe" of folder "__Download"}
wait __Download/dun40.exe /Q:A /R:N

This example will run the dun40.exe file only if the size and sha1 value are as
specified.

Version 5.1 and above

exit

The exit command terminates the action and returns an integer value to the caller.
exit {integer exit code}

This command can employ relevance substitution. When it is executed, the value
of the integer is transferred to the exit code inspector, and the action is terminated
at that line. Exit codes can affect the ‘fixed’ status of run-to-completion actions by
exiting from the script before the last line. If there are no executable lines after the
exit command, the action will complete successfully. However, if there are other
commands after the exit command, the run-to-completion action will fail.

In the IBM Endpoint Manager Console, the value of the last exit command is
displayed in the View action Information dialog, along with other status
information.

In a relevance expression, this value can be evaluated using the 'exit code of
<action>' Inspector.

Syntax

exit <{expression}>

Chapter 3. Flow Control Commands 21

Where expression is the integer value to be passed back to the caller. This is
limited to 32-bit signed numbers, however on Unix, the limit is 8 or 16 bits, which
can be determined by running the WIFEXITED macro.

Example
wait ’foo’
parameter "error" = "{exit code of action}"
if {parameter "error" != "0"}

exit {parameter "error"}
endif
// continue processing

This example represents a a script that reports errors as non-zero exit codes. It
allows you to terminate the script early and report the exit code to the caller. This
is one of four script commands (wait, waithidden, waitdetached and exit) that can
change the exit code inspector value. The three wait commands set the exit code
according to the executable, with the OS limiting the size of the number. The exit
command sets the exit code according to the number passed to it as a signed 32 bit
number, regardless of the OS.

You may use the exit command in conjunction with DOS, however DOS can't set
the exit code itself because of a limitation of the system command API.

Note for Unix shell scripts: For actions of type 'x-sh', the exit code of the script is
collected into the inspector value when the client finishes processing a shell script.
Exit codes from UNIX shell scripts are written to the client log.

Version 8.0

if, elseif, else, endif

The if, elseif, else and endif commands allow conditional execution of your action
commands. These conditional statements operate on expressions in curly brackets
as in the following schematic:
if {EXPR1}

statements to execute on EXPR1 = TRUE
elseif {EXPR2}

statements to execute on EXPR1 != TRUE and EXPR2 = TRUE
else

statements to execute when EXPR1 != TRUE and EXPR2 != TRUE
endif

In the action schematic above, if the expression in curly brackets following the if
statement is true, the following statements (up to the endif statement) are
evaluated. If blocks can be nested any number of levels deep.

Normal if block semantics are enforced. All statements up to an endif, elseif or
else constitute a block. The elseif {EXPR} and else statements are optional. Any
number of elseif statements may be used, but only one trailing else block.

Prefetching

The IBM Endpoint Manager Client parses actions before it actually executes them,
looking for downloads to prefetch. If the prefetching process does not parse
appropriately, an action syntax error is returned and the action is not run. This can
be problematic if you are creating actions that work in multiple environments

22 IBM Endpoint Manager: Action Guide

where only one branch of an if statement may parse correctly. For instance, you
might want to load files that are unique to specific platforms.

A script like this would seem to work:
if {not exists key "foo" of registry}

prefetch windows_file ...

else if {not exists package "bar" of rpm}
prefetch UNIX_file ...

endif

Here a Windows registry key triggers the first prefetch, while a UNIX package
triggers the second. The problem is that the registry Inspector will fail on UNIX
systems, and the package Inspector will fail on Windows, causing the prefetch
parser to throw an error in both cases.

The answer here is to use cross-platform inspectors (such as name of operating
system) to make sure the wrong blocks are not evaluated:
if {name of operating system starts with "Win"}

if {not exists key "foo" of registry}
prefetch windows_file ...

endif

else if {name of operating system starts with "Redhat"}
if {not exists package "bar" of rpm}

prefetch UNIX_file ...
endif

Endif

By checking first for the proper operating system, you can avoid this type of
prefetch parse error. However, sometimes there may be no way to avoid a
potential error. For instance, an action may create and access a file that doesn't yet
exist in the prefetch phase:
wait chkntfs c: > c:\output.txt
if {line 2 of file "c:\output.txt" as lowercase contains "not dirty"}

regset "HKLM\Software\MyCompany\" "Last NTFS Check"="OK"

else
regset "HKLM\Software\MyCompany\" "Last NTFS Check"="FAIL"

endif

In this Windows example, the output file doesn't exist until the script is actually
executed. The prefetch parser will notice that the file doesn't exist when it checks
for its contents. It will then throw an error and terminate the action. However, you
can adjust the if-condition to allow the prefetch pass to succeed. One technique is
to use the "not active of action" expression which always returns TRUE during the
prefetch pass. You can use this to avoid the problematic block during the
pre-parse:
wait chkntfs c: > c:\output.txt
if {not active of action OR (line 2 of file "c:\output.txt" as lowercase

contains "not dirty")}
regset "HKLM\Software\MyCompany\" "Last NTFS Check"="OK"

else
regset "HKLM\Software\MyCompany\" "Last NTFS Check"="FAIL"

endif

Chapter 3. Flow Control Commands 23

By checking first to see whether the action is being pre-parsed or executed, you get
a successful prefetch pass and the desired behavior when the action is running.

Syntax
if {<expression>}

<statements>
endif

Example
if {name of operating system = "WinME"}

prefetch patch1.exe sha1:e6dd60e1e2d4d25354b339ea893f6511581276fd size:4389760
http://download.microsoft.com/download/whistler/Install/310994/WIN98MeXP/EN-US

/WinXP_EN_PRO_BF.EXE
wait __Download\patch1.exe

elseif {name of operating system = "WinXP"}
prefetch patch2.exe sha1:92c643875dda80022b3ce3f1ad580f62704b754f size:813160

http://www.download.windowsupdate.com/msdownload/update/v3-19990518/cabpool
/q307869_f323efa52f460ea1e5f4201b011c071ea5b95110.exe

wait __Download\patch2.exe

else
prefetch patch3.exe sha1:c964d4fd345b6e5fd73c2235ec75079b34e9b3d2 size:845416

http://www.download.windowsupdate.com/msdownload/update/v3-19990518/cabpool
/q310507_2f3c5854999b7c58272a661d30743abca15caf5c.exe

wait __Download\patch3.exe

endif

This code snippet prefetches, renames and downloads a file, based on the
operating system.

Version 6.0 and above

parameter

The parameter command can be used to create new action variables during the
execution of the action. It takes the form:
parameter "x" = "{expression}"

This command allows you to access the parameter using the inspector parameter
"x". The parameter is only inspectable within the current action. Parameters are
initialized just prior to the startup of the action from headers added to the action
by the IBM Endpoint Manager Console.

You can't reset a parameter that already has a value. When this occurs, the client
will abort the action at the line that is attempting to reset the parameter. Any
errors that result from evaluating the expression will be handled by making the
named parameter become undefined.

The rules of the parameter command are:

Parameter expressions will be coerced into strings.

Plural expressions that result in no values will result in an empty parameter value.

Plural expressions that result in a single value that can be coerced into a string will
assign the value.

24 IBM Endpoint Manager: Action Guide

Plural expressions that result in more than one value will result in a failure of the
action.

Syntax

parameter "<x>" = "<{expression}>"

Where x is the name of the parameter and expression is the value. Note that both
the name of the parameter and the expression must be inside quotes.

Example
parameter "loc" = "{pathname of folder (value of variable "tmp" of environment)}"
createfile until end

Operating system = {name of operating system}
Processor count = {number of processors}

end
delete "{parameter "loc"}\config.txt"
copy __createfile "{parameter "loc"}\config.txt"

Defines a parameter named "loc" that contains the pathname of the tmp folder,
creates a new name=value file containing the operating system and processor
count, deletes the config file from the tmp folder and replaces it with new file.

Version 6.0 and above

pause while

The action will not continue to the next command while the relevance expression
specified evaluates to true. It will continue and execute the next command of the
action as soon as the value evaluates to false or the value fails to evaluate. Use
relevance substitution syntax to define the condition.

Syntax

pause while <true condition>

Where true condition represents a relevance expression to evaluate.

Examples
pause while {exists running application "updater.exe"}
pause while {not exists file "C:\70sp3\result.log"}
pause while {not exists section "ResponseResult" of file "C:\70sp3\result.log"}

Version 5.1 and above

restart

The restart command will restart the computer. If the optional <delay seconds>
parameter is provided, the shutdown will happen automatically after the specified
delay.

If a user is logged in, a dialog will be displayed that shows the delay counting
down. In this case, the interface will have a Restart Now button instead of a
Cancel button. Also, when the Client UI is showing, there is a 60 second minimum
delay before restarting.

Chapter 3. Flow Control Commands 25

If the delay parameter is not specified, the user is prompted to press a button to
restart the computer.

Syntax

restart [<delay seconds>]

Where delay seconds is an optional parameter to provide a lag before restarting.

Example
restart 180

Restarts the computer in three minutes.

Note

The delayed restart is a forced restart; it will not prompt the user to save changes
to documents, etc. The machine will restart without further prompting.

Version 5.1 and above

set clock

Causes the client to re-register with the registration server, and to sets its clock to
the time received from the server during the interaction. This is useful when the
client's clock is out of sync. This BES-only command is not available when the
client is operating under an evaluation license.

Syntax

set clock

Example
set clock

Version 5.1 and above

shutdown

The shutdown command is similar to the restart command, but it simply shuts the
computer down and does not reboot.

If the optional <delay seconds> parameter is provided, the shutdown will happen
automatically after the specified delay.

If a user is logged in, a UI will be displayed that shows the delay counting down.
In this case, the UI will have a Shutdown Now button instead of a Cancel button.

If the delay parameter is not specified, the user is prompted to press a button to
shut down the computer.

Syntax

shutdown [<delay seconds>]

26 IBM Endpoint Manager: Action Guide

Where delay seconds is an optional parameter to provide a lag before shutting
down.

Example
shutdown 180

This command will shut down the computer in three minutes.

CAUTION

The delayed shutdown is a forced shutdown; it will not prompt the user to save
changes to documents, etc. The machine will shut down without further
prompting.

Version 5.1 and above

Chapter 3. Flow Control Commands 27

28 IBM Endpoint Manager: Action Guide

Chapter 4. File System Commands

action log

The action log command allows you to specify how the action logs will be kept.
Ordinarily, all aspects of an action, including commands and parameters, are
logged. The parameters, however, may contain information about establishing
private keys or decrypting passwords. Should you wish to keep these actions
private, use the action log command with a type of command. That will prevent
the logging of potentially sensitive parameters.

Syntax

action log <type>

Where type is one of:

command

all

Example
action log all

Logs both commands and parameters of actions.
action log command

Logs only the command executed by the action, none of the parameters.

Version 8.2 and above

add nohash prefetch item

Clients and relays collect files by action ID and ordinal number identifying the
exact file to use, rather than any file provided by the URL. SHA1 or SHA256 hash
algorithm are not allowed with this prefetch command.

This command adds a download item to the prefetch queue. It must reside
between a begin prefetch block and an end prefetch block command. This is a
singular command and it can only specify a single download at a time. Relevance
substitution is not allowed with the arguments of this command, permitting the
IBM Endpoint Manager Server to cache the download when the action is created. If
the Client requests any ordinal files, the relay will collect them all. The client
downloads the item only if this command is in a TRUE condition block.

Syntax
add nohash prefetch item [name=<n>] [size=<s>] url=<u>

Where:

<n> Is an optional name, limited to 32 characters (including alphanumeric,
dashes, underlines and non-leading periods). If no name is explicitly

© Copyright IBM Corp. 2012, 2014 29

specified, the name will be derived from the final component of the URL
(following the final slash). Only one download item can be specified per
command.

<s> Is an optional file size. Although it is not required, when it is known and
specified, the program can provide meaningful progress information.

<u> Is a required url. If the name is not specified, then it will be derived from
final component of the supplied URL.

The arguments may be in any order desired, but unrecognized commands generate
a syntax error.

Example
begin prefetch block

add nohash prefetch item url=http://www.mysite/downloads/download25.exe
end prefetch block
wait {download path "download25.exe"}

This example uses a static download in a prefetch block and retrieves it without a
hash. This technique is intrinsically insecure, but it uses a white-list on the IBM
Endpoint Manager Server to validate the URL.

Version 7.2 and above

add prefetch item

Adds a download item to the prefetch queue. This command must reside between
a begin prefetch block and an end prefetch block command. This command can
specify multiple downloads separated by semicolons.

The IBM Endpoint Manager Server caches the download when the action is
created, unless relevance substitution is employed. IBM Endpoint Manager Relays
only collect those files that the Clients request, and the Clients only request a file if
the command is inside a TRUE condition block.

Instead of listing the download items in the command line, you can put them in a
file (one item per line) and then use a relevance substitution like the following:
{concatenation ";" of lines of file <your file>}

This is a common usage when specifying a file in a Fixlet site that contains the
download information.
add prefetch item [name=<n>] sha1=<h1> sha256=<h2> size=<s> url=<u> [; ...]

Where:

<n> Is an optional name, limited to alphanumeric, dashes, underlines and
non-leading period characters. If no name is explicitly specified, the name
will be derived from the final component of the URL (following the final
slash).

<h1> Is the required sha1 for the specified file.

<h2> Is the required sha256 for the specified file.

<s> Is the required file size.

<u> Is a required url. If the name is not specified, then it will be derived from
final component of the supplied URL.

30 IBM Endpoint Manager: Action Guide

[; ...] Denotes that the command is plural; extra files can be specified, with each
separated by a semicolon.

Relevance substitution is allowed with the arguments of this command; however
when substitution is used, the IBM Endpoint Manager server cannot cache the
download item at action creation time.

The arguments may be in any order desired, and unrecognized arguments will be
ignored.

When used without relevance substitution, IBM Endpoint Manager clients and
relays will collect these files by actionID and ordinal. When used with relevance
substitution, clients and relays will collect these files by URL and SHA hash
algorithm. To specify a download without specifying the SHA hash algorithm, use
the add nohash prefetch item command.

Example
begin prefetch block

if {name of operating system = "Windows 2000"}
add prefetch item {"name=up.exe sha1=12 size=45 url=http://ms.com

/hot2k.exe"}
else

add prefetch item {"name=up.exe sha1=12 size=45 url=http://ms.com
/hot.exe"}

endif
end prefetch block
wait {download path "up.exe"}

This example demonstrates a conditional download in a prefetch block. By
checking the OS first, only the proper file will be prefetched, potentially saving
considerable time and bandwidth.

Version 7.2 and above

appendfile

The appendfile command creates a text file named __appendfile in the site
directory (by default C:\Program Files\BigFix__Data\<site name>). Each time
you invoke the command, it appends the specified text to the end of the file. This
command may be useful for creating diagnostic files or dynamically building files
that incorporate attributes of the end-user's machine. This file is automatically
deleted when the action Shell Commands begin.

Syntax

appendfile <text>

Where text represents information to be placed in the file.

Examples
appendfile This file will contain details about your computer
appendfile Operating System={name of operating system}
appendfile Windows is installed on the {location of windows folder} drive

The above commands record the OS and Windows location in the append file
appendfile {("Disk " & name of it & ", free space=" & free space of it

as string) of drives}

Chapter 4. File System Commands 31

The above example records the name and the free space available for all the drives
on the client PC.

Note

Use the appendfile command as part of an action that builds a script which is
subsequently passed to a script interpreter. For example, you can use the following
syntax to create an .ini file using action commands:
appendfile [HKR]
appendfile HostBasedModemData\Parameters\Driver,ModemOn,1,00,00
delete {location of system folder}\smcfg.ini
copy __appendfile {location of system folder}\smcfg.ini
run smcfg

This same technique can be used to build .bat files, .cmd files, visual basic scripts,
bash shell scripts, etc.

Version 5.1 and above

archive now

This command invokes the Archive Manager. If the Archive Operating Mode is set
to manual, this command will trigger archiving and uploading of the configured
set of files. To set the appropriate archive mode to manual, use this setting:

_BESClient_ArchiveManager_OperatingMode = 2

The archive now command will return a status of Failed if the operating mode is
not set to manual. It will also return Failed if an existing archive is currently being
uploaded.

Syntax

archive now

Examples
archive now

This command initiates archiving and uploading of the configured set of files.

Version 5.1 and above

begin prefetch block

Starts a set of commands to download files. Normally, when you download a file
using IBM Endpoint Manager actions, the checksum is evaluated to guarantee
authenticity. However, if the target of your download is in flux, such as an
anti-virus definition, that requirement may be too restricting. To handle a case like
this, the IBM Endpoint Manager provides dynamic download commands, which
are bracketed by begin prefetch block and end prefetch block. For more
information, see Introducing the Prefetch Block and Introducing Dynamic Downloads.

This feature is tightly integrated with your IBM Endpoint Manager Relay structure,
optimizing download speeds and bandwidth. When an action requests a file, the

32 IBM Endpoint Manager: Action Guide

relay checks its cache, and immediately forwards the file if available. Otherwise,
the request is passed up the line until it reaches the IBM Endpoint Manager Server.

Dynamic downloading uses a white-list to ensure that only trusted sites are
accessed. The while-list is contained in the following file:

On Windows systems:
<BES Server Install Path>\Mirror Server\Config\DownloadWhitelist.txt

On Linux systems:
<BES Server Install Path>/Mirror Server/config/DownloadWhitelist.txt

This file contains a list of URLs formatted as regular expressions, such as
http://.*\.mysite\.com/.*. The URL you provide in a prefetch statement must
match an entry in the white-list before it can be downloaded. If the URL isn't
found in the list, the command fails with NotAvailable error.

These existing commands are allowed within the prefetch block:
// comment lines and blank lines
if/elseif/else/endif
parameter
action parameter query (treated as a comment by the client)

The following new commands are allowed within the prefetch block, but are not
allowed outside of it:
add prefetch item
add nohash prefetch item
collect prefetch items
execute prefetch plug-in

Syntax

begin prefetch block

Only one prefetch command block can be used in an action script and it must be
closed with an end prefetch block command.

Only comments or blank lines are allowed to precede this command. When
processing actions with prefetch blocks, download, download as and prefetch are
not allowed anywhere in the action script. The download now as command is
allowed, but not inside or before the prefetch block.

Example
// action script to automatically update a URL manifest from a custom site
begin prefetch block

parameter "ini"="{file "server_bf.ini" of site (value of setting
"MyCustomSite") of client}"

// prefetch the plug-in that provides the download list
add prefetch item name=plugin.exe sha1=123 sha256=347 size=12

url=http://www.mysite/downloads/myplugin.exe
// collect above prefetch file (needed to create a manifest composed of URLs)
collect prefetch items
// execute the plug-in that produces a manifest from the ini data file
execute prefetch plug-in "{download path "plugin.exe"}" /downloads

"{parameter "ini"}"
"{download path "urllist"}"

// URL manifest formatted as lines containing: name=<n> sha256=<h2> size=<s>
url=<url>

add prefetch item {concatenation " ; " of lines of download file "urllist"}

Chapter 4. File System Commands 33

end prefetch block
// action is now active, update the files:
waithidden "{download path "plugin.exe"}" /update "{parameter "ini"}" "{location of

download folder}"

This example downloads a plug-in that processes another file to produce a
manifest containing a list of more files to download. When the prefetch block ends,
the files have been downloaded and moved to the download folder and the rest of
the action can continue.

Notes:

Older consoles and clients will reject action scripts that use the new prefetch
functionality and identify them as containing syntax errors. Older relays will not
process dynamic download actions even if the server and clients can handle it.
Only one prefetch block is allowed in an action script.

Certain commands must not appear anywhere in an action script that contains a
prefetch block: download, download as and prefetch. Download now might
appear in the script, but it must come after the prefetch block.

Several new inspectors have been added to allow action script to reference
download files using relevance substitution. These include download path
“<name>”, download file “<name>”, and download folder. See the Inspector
Guide for more information.

Version 7.2 and above

collect prefetch items

After items have been added to the prefetch queue by commands such as add
nohash prefetch items and add prefetch items, this command collects those items
from the IBM Endpoint Manager Relay. Prefetch processing of the action is
suspended until all the specified files are collected. If the add prefetch command
has provided the downloads with new names, they will be renamed at this point.

This command is typically used to retrieve a plug-in and/or a set of files that can
be processed by a plug-in. In this case, a file is first added to the prefetch list,
collected, and then processed by a subsequent execute prefetch plug-in command,
which might create a file containing additional downloads. Each collect prefetch
items command is treated as a synchronization point, causing the prefetch
processing of the action to wait for the files to download before proceeding. Once
the files are available, the action is reprocessed from the beginning. This allows the
action to compensate for any files that may have changed due to altered conditions
on the machine. The next command in the action will be processed only after the
collect prefetch items command is executed and all files in the prefetch list have
been downloaded.

The end prefetch block command does an automatic collection, ensuring that
subsequent action commands will have the necessary files at hand.

Once the files have been collected, they can be examined with some new
Inspectors which may have different interpretations, depending upon whether the
action is active during prefetch processing or not. For more information on these
Inspectors, see Introducing Dynamic Downloads.

34 IBM Endpoint Manager: Action Guide

Syntax
collect prefetch items

Example
begin prefetch block

parameter "ini"="{file "server_bf.ini" of site (value of setting
"MyCustomSite") of client}"
add prefetch item name=myPlugIn.exe sha1=12 size=12 sha256=347 size=456
url=http://mysite/plugin.exe

// collect the plug-in before continuing:
collect prefetch items
execute prefetch plug-in "{download path "myPlugIn.exe"}" /downloads
"{parameter "ini"}" "{download path "urllist"}"

add prefetch item {concatenation " ; " of lines of download file "urllist"}
end prefetch block

In this example, the collect statement ensures that the plug-in has been successfully
downloaded before proceeding with the rest of the prefetch block.

Version 7.2 and above

copy

Copies the source file to the named destination file. An action script with the copy
command terminates if the destination already exists or if the copy fails for any
other reason (such as when the destination file is busy).

Syntax

copy <Source_FileName> <Destination_FileName>

Where Source_Filename and Destination_Filename are the names of the files to
copy from and to respectively (typically enclosed in quotes).

Examples
copy "{name of drive of windows folder}\win.com" "{name of drive of

windows folder}\bigsoftware\win.com"

This command copies the win.com file to the bigsoftware folder.
delete "c:\windows\system\windir.dll"
copy " __Download\windir.dll" "c:\windows\system\windir.dll"

This pair of action Shell Commands deletes the target file (if it exists) before it
performs the copy action.

Version 5.1 and above

createfile until

This command creates a text file named __createfile in the site directory. It allows
you to fill a file with a series of statements up to a terminating string. The form of
the command is as follows:

Chapter 4. File System Commands 35

createfile until <end-delim-string>
line 1
line 2
...

end-delim-string

Note: make sure that the lines labeled 'line 1, line 2, .' do not unintentionally
contain the end-delim-string. If they do, the action parser will begin looking for
action commands after the first instance of the end-delim-string.

Syntax

createfile until <delimiter>

statements...

delimiter

Examples
parameter "config" = "{pathname of folder (value of variable "tmp" of

environment)}\config.txt"
createfile until end

Operating system = {name of operating system}
Processor count = {number of processors}

end
delete "{parameter "config"}"
copy __createfile "{parameter "config"}"

Defines a parameter named "config" that contains the pathname of a config file in
the tmp folder, creates a new name=value file containing the operating system and
processor count, deletes the config file from the tmp folder and replaces it with the
new file.

Version 6.0 and above -- Windows Only

delete

Deletes the named file. Any action script with the delete command will terminate
if the file exists but cannot be deleted. This can happen due to write protection or
an attempt to delete from a CD-ROM, for instance. If the file does not exist at all,
however, the action script will continue to execute.

Syntax

delete <FileName>

Where FileName is the name of the file to delete (typically enclosed in quotes).
Relevance substitution is performed on the arguments of delete action command
lines.

Examples
delete "c:\program files\bigsoftware\module.dll"
delete "{name of drive of windows folder}\win.com"

These examples delete the specified files. Note that you can use variable
substitution (in curly brackets) to specify pathnames.

36 IBM Endpoint Manager: Action Guide

Note

It's good practice to enclose filenames in quotes to preserve spaces in the
filenames. Without quotes, the file system will not be able to access those files with
spaces in the path or file name.

Version 5.1 and above

download

Deprecated: use download as or download now as.

Downloads the file indicated by the URL. This command is included for backward
compatibility with version 2.0 of the Client Edition, and it continues to be
supported to properly handle legacy IBM Endpoint Manager actions. For all other
applications, this command has been superseded by the download as and
download now as commands.

After downloading, the file is saved in a folder named "__Download" (the folder
name begins with two underscores) relative to the local folder of the Fixlet Site that
issued the download command.

If the download fails, the action script terminates. The name of the file is derived
from the part of the URL after the last slash.

For instance, consider the command:
download ftp://ftp.microsoft.com/deskapps/readme.txt

The action example above downloads the readme.txt file from the Microsoft site
and automatically saves it in the local __Download folder as readme.txt.

The filename is derived from the URL. Everything after the final / or \ character is
considered to be the filename. This might occasionally generate a problematic
filename, for instance:
URL: http://skdkdk.ddddd.com/cgi-bin/xyz?jjj=yyy

results in a file named xyz?jjj=yyy, which is not a valid filename. You can usually
work around this inconvenience by adding a dummy argument to the end of the
URL:
http://skdkdk.ddddd.com/cgi-bin/xyz?jjj=yyy?file=/ddd.txt

which will result in a file named ddd.txt being saved to the __Download directory.
The download as and prefetch commands can also be used to address this
situation.

Syntax
download [option] <File_URL>

Where the [options] preface can be one of two optional keywords:

open: calls the ShellExecute API, passing the resulting filename once the download
completes.

now: tells the IBM Endpoint Manager Client to start the download at that point in
the execution of the action, as opposed to pre-fetching it before the action begins.

Chapter 4. File System Commands 37

The agent will attempt to collect the download directly from the specified URL
instead of going through the relay system.

The File_URL is the location of the file to download.

Examples
download http://download.mycompany.com/update/bfxxxx.exe

Prefetches the bfxxxx.exe file from the mycompany site, and directs the
downloaded file to the default site "__Download" folder.
download open http://download.bigfix.com/update/bfxxxx.exe

Prefetches and saves the bfxxxx.exe file to the default site "__Download" folder and
executes the program once the download completes.
download now http://download.mycompany.com/update/bfxxxx.exe

Downloads the bfxxxx.exe file from the mycompany site as soon as the command
is executed.
download "http://download.microsoft.com/download/prog.exe"
run "__Download\prog.exe"

This set of actions automates the download process, reducing the application of an
executable patch to a single click. Note that the downloaded program is run from
the '__Download' directory of the Fixlet site, where the download command places
it. The Fixlet site directory is the working directory for all commands and the
__Download directory is located there.

Note: Relevance substitution is NOT performed on the download action command
lines. This is because these actions are scanned by other components that deliver
the downloads and these other components run on different machines which do
not share those client's evaluation context. This restriction, however, allows the
IBM Endpoint Manager to prefetch downloads through a relay hierarchy to the
clients.

Version 5.1 and above

download as

Downloads the file indicated by the URL and allows you to rename it. After
downloading, the file is saved in a folder named "__Download" (the folder name
begins with two underscores) relative to the local folder of the Fixlet Site that
issued the download as command.

For instance, consider the command:
download as intro.txt ftp://ftp.microsoft.com/deskapps/readme.txt

The action example above downloads the readme.txt file from the Microsoft site
and automatically saves it in the local __Download folder as intro.txt. If the
download fails, the action script terminates.

This command, when accompanied by a continue if with a sha1 or sha256 value,
allows the file to be pre-fetched.

Syntax

38 IBM Endpoint Manager: Action Guide

download as <name> <url>

Where name is a simple filename, without special characters or path delimiters. If
the name violates any of the following rules, the download command will fail:

Name must be 32 characters or less.

Name must only be composed of ASCII characters a-z, A-Z, 0-9, -, _, and
non-leading periods.

Here url is the complete URL of the specified file.

Examples
download as myprog.exe http://www.website.com/update/prog555.exe

Downloads the prog555.exe file from the specified folder on the web site, directs
the downloaded file to the action site "__Download" folder and renames it to
myprog.exe.
download as patch1 http://www.download.windowsupdate.com/msdownload/update/v3-

19990518/cabpool/q307869_f323efa52f460ea1e5f4201b011c071ea5b95110.exe
continue if {(size of it = 813160 and sha1 of it =

"92c643875dda80022b3ce3f1ad580f62704b754f") of file "patch1" of
folder "__Download"}

Downloads the specified file, renames it patch1 and continues only if the size and
sha1 are correct.

Note:

relevance substitution is NOT performed on the download as action command
lines. This is because these actions are scanned by other components that deliver
the downloads and these other components run on different machines which do
not share those client's evaluation context. This restriction, however, allows IBM
Endpoint Manager to prefetch downloads through a relay hierarchy to the clients.

Version 6.0 and above -- Windows Only

download now as

Downloads the file indicated by the URL and allows you to rename it. After
downloading, the file is saved in a folder named __Download (the folder name
begins with two underscores) relative to the local folder of the Fixlet Site that
issued the download now as command.

If the download fails, the action script terminates.

For instance, consider the command:
download now as intro.txt ftp://ftp.microsoft.com/deskapps/readme.txt

The action example above immediately downloads the readme.txt file from the
Microsoft site and automatically saves it in the local __Download folder as
intro.txt.

Syntax
download now as <name> <url>

Chapter 4. File System Commands 39

Where name is a simple filename, without special characters or path delimiters. If
the name violates any of the following rules, the download command will fail:

Name must be 32 characters or less.

Name must only be composed of ASCII characters a-z, A-Z, 0-9, -, _, and
non-leading periods.

Here url is the complete URL of the specified file.

Examples
download now as myprog.exe http://www.website.com/update/prog555.exe

Immediately downloads the prog555.exe file from the specified folder on the web
site, directs the downloaded file to the action site "__Download" folder and names
it myprog.exe.
download now as patch2 http://www.download.windowsupdate.com/msdownload/update
/v3-19990518/cabpool/q310507_2f3c5854999b7c58272a661d30743abca15caf5c.exe
continue if {(size of it = 845416 and sha1 of it =
"c964d4fd345b6e5fd73c2235ec75079b34e9b3d2") of file "patch2.exe" of folder
"__Download"}

Immediately downloads the specified file from the web site, directs the
downloaded file to the action site __Download folder and names it patch2. The
action continues only if the size and sha1 are correct.

Note: Relevance substitution is NOT performed on the download now as action
command lines. This is because these actions are scanned by other components
that deliver the downloads and these other components run on different machines
which do not share those client's evaluation context. This restriction, however,
allows the IBM Endpoint Manager to prefetch downloads through a relay
hierarchy to the clients.

Version 6.0 and above -- Windows Only

end prefetch block

Marks the end of a prefetch block (see begin prefetch block). This command must
be present whenever the begin prefetch block command is specified. This
command automatically performs a collect prefetch items command, meaning that
all the files added to the prefetch list will be available when the block is ended.

Syntax
end prefetch block

Only one prefetch command block can be used in an action script and it must be
bracketed by a begin prefetch block command and an end prefetch block
command.

Only comments or blank lines are allowed to precede the prefetch block. When
processing actions with prefetch blocks, download as and prefetch are not allowed
anywhere in the action script. The download now command is allowed after the
prefetch block, but not before or inside the prefetch block.

40 IBM Endpoint Manager: Action Guide

begin prefetch block
add prefetch item sha1=123 sha256=689 size=456 url=http://ms.com/downloads/hotfix123.exe
end prefetch block
wait {download path "hotfix123.exe"}

This code demonstrates static downloading in a prefetch block. Although it doesn't
take advantage of dynamic relevance substitution, this is the preferred format for
downloads in versions 7.2 and later. Note that the end prefetch block command
also collects the file (hotfix123.exe), so that the subsequent wait command -- which
runs and waits for completion -- is guaranteed to have the file available.

Note: Older consoles and clients will reject action scripts that use the new prefetch
functionality and identify them as containing syntax errors. Older relays will not
process dynamic download actions even if the server and clients can handle it.

Version 7.2 and above

execute prefetch plug-in

This command passes arguments to a named command and then executes it. It is
not intended for a lengthy executable and the client will only wait 60 seconds for
its completion. This command can be used to authenticate or execute downloads. It
can also be used to execute custom logic that can create inspectable values for
subsequent add prefetch item commands.

For use cases such as updating anti-virus definitions, this command can be used to
run code that processes a file to produce another file containing a set of URLs to
be downloaded.

Syntax
execute prefetch plug-in "executable pathname" <args>

Where:

"executable pathname"
Is the full pathname for the plug-in to execute. This command is designed
for executables that are fast to execute and return promptly. The IBM
Endpoint Manager Client will block out 60 seconds of time while it waits
for the command to complete; only a shutdown request can interrupt this
waiting period. After 60 seconds, the Client will log a message and disable
the command. When it is disabled, any actions that use this command will
not execute until after the client has been restarted. In general it is
expected that the command will complete much faster -- if it takes longer
than two seconds to execute, the client will log an appropriate message.
Relevance substitution can be used to specify the pathname.

<args>
Are arguments passed to the executable.

The exit code of the execute prefetch plug-in application is important as it informs
the client of failure or success, where 0 (zero) indicates success and all other exit
codes are treated as failures and result in a failed action attempt. For debugging
purposes, the exit code is recorded in the client log.

Example

Chapter 4. File System Commands 41

begin prefetch block
parameter "ini_file"={file "server_bf.ini" of site (value of setting
"MyCustomSite") of client}
add prefetch item name=plugin.exe sha1=123 sha256=789 size=12
url=http://mysite/myplugin.exe
collect prefetch items
// execute the plug-in to produce a manifest from the ini_file:
execute prefetch plug-in "{download path "plugin.exe"}" /downloads
"{parameter "ini_file"}" "{download path "manifest"}"

add prefetch item {concatenation " ; " of lines of download file "manifest"}
end prefetch block

This example downloads a plug-in that processes the ini_file to produce a
manifest.

Version 7.2 and above

extract

Extracts files from the specified archive in the download folder (__Download) and
leaves the results in the same folder.

An archive file is similar to a compressed tar file. IBM Endpoint Manager uses a
tool called Archivewriter to construct the archive. This can be useful for copying
an entire directory to a computer, which is often required by installers that contain
multiple files along with a setup executable. There is a wizard in the IBM Endpoint
Manager Console that facilitates the distribution of directories that use this kind of
archive.

As of version 8.2, this command also allows you to specify a target directory with
an optional second argument.

Syntax

extract <Archive File> [<Destination_Directory>]

Where the destination directory is optional and defaults to the __download
directory.

Examples
extract InstallMyApp.zip

Extracts the constituent files of InstallMyApp in the __Download folder, places the
results back in the __Download folder and deletes the original InstallMyApp file.
extract InstallMyApp.zip "d:/temp"

Same as above, but specifying a target directory.

Note: There should be no quotes around the filename, even if there is whitespace
in the name. This is to be consistent with systems that allow quotes as valid
filename characters.

Version 5.1 and above

42 IBM Endpoint Manager: Action Guide

folder create

Creates the named folder. Any action script with the create command will
terminate if the folder cannot be created. This can happen due to write protection
or an attempt to write to a CD-ROM, for instance. It will also terminate if the path
already exists, but does not refer to a folder.

Syntax

folder create <FolderName>

Where FolderName is the name of the folder to create (typically enclosed in
quotes). Relevance substitution is performed on the arguments of folder create
command lines.

Examples
folder create "c:\program files\bigsoftdir"
folder create "{name of drive of windows folder}\Extras"

These examples create the specified folders. Note that you can use variable
substitution (in curly brackets) to specify pathnames.

Note

It is always good practice to enclose folder names in quotes to preserve any spaces.

Version 8.0

folder delete

Deletes the named folder. This command is recursive, deleting all contained files
and folders. An action script with the delete command will terminate if the folder
exists but cannot be deleted. This can happen due to write protection or an attempt
to delete from a CD-ROM, for instance. This action will also fail (and leave the
contents of the folder in an indeterminate condition) when the folder contents are
busy, as can happen when a file inside the folder is in use by another application.

If the folder does not exist at all, however, the action script will continue to
execute.

Syntax

delete folder <FolderName>

Where FolderName is the name of the folder to delete (typically enclosed in quotes
to preserve spaces). Relevance substitution is performed on the arguments of delete
folder command lines.

Examples
delete folder "c:\program files\bigsoftdir"
delete folder "{name of drive of windows folder}\Temp"

These examples delete the specified folders. Note that you can use variable
substitution (in curly brackets) to specify pathnames.

Chapter 4. File System Commands 43

CAUTION!

This command is extremely powerful. Because it is recursive, it can delete all the
files on the Client. Please use with great care!

Version 8.0

move

Moves the source file to the named destination file. This command also gives the
action author the ability to rename a file. An action script with the move command
terminates if the destination already exists, if the source file doesn't exist, or if the
move fails for any other reason.

Syntax

move <Source_FileName> <Destination_FileName>

Where Source_Filename and Destination_Filename are the names of the files to
move from and to respectively (typically enclosed in quotes).

Examples
move "c:\program files\bigsoftware\module.dll" "c:\temp\mod.dll"

This command moves and renames the mod.dll file. Note that quotes are necessary
for file names and folder names with spaces in them.
delete "c:\updates\q312456.exe"
move "__Download\q312456.exe" "c:\updates\q312456.exe"

The command lines above first delete the file, then move it back in place from
another location.

Version 5.1 and above

prefetch

The prefetch command allows a file to be downloaded before the action begins.
You do not need a matching continue if statement for the file to be downloaded
and checked in advance. The prefetch command is preferred over the download
command.

For instance, consider the command:
prefetch a.exe sha1:0123456789012345678901234567890123456789

sha256:0a1b2345678901234567g8901j234e5678g90y12r3456789345678923167e3se
size:11723 http://x/z.exe

The action example above prefetches the z.exe file from the specified site and
automatically saves it in the local __Download folder as a.exe.

Syntax
prefetch <name> sha1:<value> size:<value> sha256:<value> <url>

Where name is a simple filename, without special characters or path delimiters. If
the name violates any of the following rules, the prefetch command will fail:

44 IBM Endpoint Manager: Action Guide

Name must be 32 characters or less.

Name must only be composed of ASCII characters a-z, A-Z, 0-9, -, _, and
non-leading periods.

Here sha1:value or sha256:value represent the secure hash algorithm value,
size:value represents the size of the file in bytes and url represents the location of
the site, including the filename.

Example
prefetch patch3 sha1:92c643875dda80022b3ce3f1ad580f62704b754f

size:813160 http://www.download.windowsupdate.com/msdownload
/update/v3-19990518/cabpool/
q307869_f323efa52f460ea1e5f4201b011c071ea5b95110.exe

This line of code prefetches the given file from the specified folder on the web site,
directs the downloaded file to the action site "__Download" folder and renames it
to patch3.
if {name of operating system = "WinXP"}

prefetch patch.exe sha1:92c643875dda80022b3ce3f1ad580f62704b754f
size:813160 http://www.download.windowsupdate.com/msdownload
/update/v3-19990518/cabpool/
q307869_f323efa52f460ea1e5f4201b011c071ea5b95110.exe

else
prefetch patch.exe sha1:c964d4fd345b6e5fd73c2235ec75079b34e9b3d2
size:845416 http://www.download.windowsupdate.com/msdownload
/update/ v3-19990518/cabpool/
q310507_2f3c5854999b7c58272a661d30743abca15caf5c.exe

endif
utility __Download\patch.exe
wait __Download\patch.exe

This code prefetches a file based on the operating system, saves the file to the
utility cache as patch.exe and waits for its completion to continue the action.

Note: Relevance substitution is NOT performed on the prefetch action command
lines. This is because these actions are scanned by other components that deliver
the downloads and these other components run on different machines which do
not share those client's evaluation context. This restriction, however, allows the
IBM Endpoint Manager to prefetch downloads through a relay hierarchy to the
clients.

Version 6.0 and above -- Windows Only

relay select

The relay select command forces the IBM Endpoint Manager Client to select the
nearest relay if one is available. This command issues a request to the client to
perform a relay selection at the next opportunity and always succeeds immediately,
regardless of the success or failure of the pending relay selection.

Syntax

relay select

Examples

Chapter 4. File System Commands 45

relay select

This command instructs the IBM Endpoint Manager Client to search for and
connect to the nearest relay.

Version 5.1 and above

utility

The utility command can be used to place commonly used programs into a special
cache. As an example:
utility __Download/RunQuiet.exe

This places the common RunQuiet program into the utility cache to avoid
downloading it multiple times.

The 6.0 clients maintain two disk caches; one for utility programs and another for
action payloads. Files arriving in the action payload cache will not push files out of
the utilities cache and vice versa.

The 6.0 clients use the sha1 or sha256 value of an action download to locate any
matching utility (such as ‘RunQuiet’) that already exists on the client.

An action-specific folder is created to contain downloads as they are pre-fetched.
Existing files that match the sha1 or sha256 values don't need to be downloaded
again. Any other files will be pre-fetched from the parent relay. When all the
downloads are available on the client, the files will be moved from the
action-specific folder (this is a change from pre 6.0 client behavior) to the
__Download folder of the action site and the action will be started.

When the action completes, any files left in the __Download folder that were
pre-fetched with sha1 or sha256 will be candidates for utility caching. These files
will have their sha1 or sha256 values re-computed and any files with matching
sha1 or sha256 values can be moved into the utility cache.

A least-recently used scheme is used to keep the cache within its size limits. For
short intervals only, the cache limit may be exceeded by single files.

Syntax

utility <pathname>

Example
prefetch patch.exe sha1:92c643875dda80022b3ce3f1ad580f62704b754f
__size:813160 http://www.download.windowsupdate.com/msdownload/update/v3-
__19990518/cabpool/q307869_f323efa52f460ea1e5f4201b011c071ea5b95110.exe
utility __Download\patch.exe
wait __Download\patch.exe

This example prefetches a file, saves the file to the utility cache as patch.exe and
waits for its completion to continue the action.

Version 6.0 and above -- Windows Only

46 IBM Endpoint Manager: Action Guide

Chapter 5. Setting Commands

setting

Settings are named values that can be applied to individual Fixlet sites or to client
computers. Each setting has a time associated with it. This time stamp is used to
establish priority -- the latest setting will trump any earlier ones.

Settings can be created and propagated by IBM Endpoint Manager Console
Operators. Settings issued by the Console will be tagged with the current time and
date. Settings are separated into groups, including one for each site and one for the
client. Each group of settings is independent of the others and is persistent on the
client.

Settings can also be created by actions in Fixlets, and typically use the substitution
{now}, which is evaluated when the action is executed. You can examine these
settings and their time stamps with Inspectors such as "effective date of <setting>"
(see the Inspector Guides for more information).

Syntax

setting "<name>"="value" on "<date>" for client

setting "<name>"="value" on "<date>" for site "<sitename>"

Where name=value describes the setting, and date is a time-stamp used to
establish priority. These can be set for the client computers or for a named site.

Examples
setting "name"="Bob" on "31 Jan 2007 21:09:36 gmt" for client

Sets the name variable to Bob on the client machine with a MIME date/time stamp
provided by the Console when this setting was created. It will supersede any other
name setting with an earlier date.
setting "preference"="red" on "{now}" for site "color_site"

Upon execution of the action containing this command, {now} is evaluated as a
MIME date/time and substituted into the string. This command sets the
"preference" variable to "red" for the specified Fixlet site. Note that unless there are
multiple sites with the same name, you can specify the site without the full gather
URL. You may have a different "preference" setting on each site.
setting "time"="{now}" on "{now}" for current site

Immediately sets the time variable to the current time on the current site.
setting "division"="%22design group%22" on "15 Mar 2007 17:05:46 gmt" for client

This example uses %xx to indicate special characters by their hexadecimal
equivalent. In this case, %22 encloses the value of the variable in double quotes.

Note

© Copyright IBM Corp. 2012, 2014 47

When a client is reset, the effective dates of the settings are removed and any
subsequent setting commands will overwrite them. There are several ways that
clients can be reset, including computer-ID collisions (most often caused by
accidentally including the computer ID in an image that gets copied to multiple
systems), changing an action site masthead to a new server, or instructing the
client to collect a new ID.

The actions that run next will establish a new effective date, but the setting values
will be the same as before the reset. The values are retained because they contain
information such as relay selections. That way, when a deployment reset occurs,
you don’t have to issue new actions to reset your network relay structure.

Version 5.1 and above

setting delete

This action deletes a named setting variable on the client computer. It includes a
time stamp which will be compared to the time stamp on the original setting. If
the delete date is later than the setting date, the setting will be deleted. Otherwise,
the delete command will be ignored.

Syntax

setting delete "<name>" on "<date>" for client

setting "<name>" on "<date>" for site "<site_url>"

Where name describes the setting to delete, and date is when the setting will be
deleted. Settings can be deleted on the client computers or on a named site.

Examples
setting delete "name" on "14 Apr 2007 21:09:36 gmt" for client

Deletes the "name" variable on the client machine if the time-stamp is later than
the corresponding setting time. Otherwise, the delete command is ignored.
setting delete "abc" on "{now}" for site "siteurl"

Immediately deletes the "abc" variable on the specified site.
setting delete "abc" on "{now}" for current site

Immediately deletes the "abc" variable on the current site.

Version 5.1 and above

48 IBM Endpoint Manager: Action Guide

Chapter 6. Registry Commands

regdelete

Deletes a registry key value of the given name, regardless of whether it currently
exists or not.

Syntax

regdelete "<registry key>" "<value name>"

Where registry key is the name of the key and value name is the value in the
registry key you wish to delete.

Example
regdelete "[HKEY_CLASSES_ROOT\ShellScrap]" "NeverShowExt"

Deletes the NeverShowExt value from the specified registry key.

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

In order to delete a non-empty registry key and all its sub-keys, you need to create
a file, say del.reg, that looks like this:
REGEDIT4
[-HKEY_CURRENT_USER\keep\removethisandbelow]

There should be three lines in this file: the last line must be a blank. Note the dash
(-) in front of the registry path.

Now you can execute an action like this:
regedit /s del.reg

When this action is executed, the key named removethisandbelow, along with all
its sub-keys, is deleted. You can use the appendfile command to build this .reg
file.

If the specified key doesn't already exist, it will be created by this command.

Version 5.1 and above -- Windows Only

regset

Sets a registry key to the given name and value. If the key doesn't already exist,
this command creates the key with this starting value.

Syntax

regset "<registry key>" "<value name>"=<value>

© Copyright IBM Corp. 2012, 2014 49

Where registry key is the key of interest and value name is the key value to set to
value. These values are entered just as they are in a REGEDIT4 registry file, in
keeping with the rules for Regedit, the Windows program that edits the registry.
String values are delimited by quotes, and the standard 4-byte integer (dword) is
identified using dword: followed by the numeric value entered in hexadecimal
(with leading zeroes) as shown below.

Examples
regset "[HKEY_CURRENT_USER\Software\Microsoft\Office\9.1\Word\Security]"

"Level"=dword:00000002

This example sets the Level value of the specified registry to a double-word 2.
regset "[HKEY_CURRENT_USER\Software\BigCorp Inc.]" "testString"="bob"

This example sets the testString value of the specified registry key to bob.
regset "[HKEY_CLASSES_ROOT\ShellScrap]" "AlwaysShowExt"=""

This example clears the data of the specified registry value.

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

Notice in these examples that square brackets [] are used to enclose the name of
the registry key. Again, this is in keeping with the rules for REGEDIT4 registry
files. This syntax is necessary for the RegSet command, but not for registry
Inspectors.

When you use the regset command, keep in mind that the IBM Endpoint Manager
Client dynamically builds the .reg file that you would have had to create manually
to update the registry and then it executes that resulting .reg file for you. One of
the rules of the .reg file is that any \'s in the value field need to appear as double
slashes, that is \\. So if you were trying to assign the value SourcePath2 of the
registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion
to c:\I386, the command that you would define would look like this:
regset "[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion]"

"SourcePath2"="c:\\I386"
regset "[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion]"

"SourcePath2"={escape of "c:\I386"}

The last example uses the escape relevance clause to automatically convert
backslashes to double backslashes.

In situations where you need to issue many regset commands, you might consider
using the appendfile or createfile until commands to build a properly formatted
regedit file, and then run regedit silently:
Createfile until end-reg-edit-commands

REGEDIT4
[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion]

"SourcePath1"="c:\\I386"
"SourcePath2"="{escapes of pathname of windows folder}"

end-reg-edit-commands
move __createfile setup.reg
wait regedit /s setup.reg

If the specified key does not already exist, it will be created by this command.

50 IBM Endpoint Manager: Action Guide

Version 5.1 and above -- Windows Only

Chapter 6. Registry Commands 51

52 IBM Endpoint Manager: Action Guide

Chapter 7. Wow64 Commands

action uses wow64 redirection

This command allows the client to get outside of the 32-bit world created for it by
the Windows On Windows64 (Wow64) facility built into the new 64-bit versions of
the Windows operating system, including Windows 2003 x64 and Windows XP Pro
x64.

When this command is executed in an action on a 64-bit OS with a value of true,
the client enables Wow64 redirection in any subsequent commands that involve
filenames. This state continues until the action completes or the client executes the
action uses wow64 redirection false command.

You can use relevance substitution to supply the <true|false> value. The file
system redirection provided by Wow64 is disabled using the
Wow64DisableWow64FsRedirection and re-enabled using the
Wow64RevertWow64FsRedirection Windows API.

The commands affected by this setting include:
v dos
v run, wait, rundetached, waitdetached, runhidden, waithidden
v delete, copy, move, open

Syntax

action uses wow64 redirection <true|false>

Example
action uses wow64 redirection true

This example turns on Wow64 redirection.
action uses wow64 redirection false

This example turns off Wow64 redirection.

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

Version 6.0 and above -- Windows Only

regdelete64

Regdelete64 uses the same syntax as the regdelete command, but places a call to
Wow64DisableWow64FsRedirection before launching the 64-bit version of Regedit
to set the registry, allowing you to use the 64-bit registry available on 64-bit
machines. This command deletes a registry key value of the given name. If the
value doesn't already exist, this command will fail and all subsequent commands
will not be executed.

© Copyright IBM Corp. 2012, 2014 53

Syntax

regdelete64 "<registry key>" "<value name>"

Where registry key is the name of the key and value name is the value in the
registry key you wish to delete.

Example
regdelete64 "[HKEY_CLASSES_ROOT\ShellScrap]" "NeverShowExt"

Deletes the NeverShowExt value from the specified registry key.

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

If the specified key doesn't already exist, it will be created by this command.

Version 6.0 and above -- Windows Only

regset64

Regset64 uses the same syntax as the regset command, but places a call to
Wow64DisableWow64FsRedirection before launching the 64-bit version of Regedit
to set the registry. This allows you to use the native 64-bit registry to set a registry
key to the given name and value. If the key doesn't already exist, this command
creates the key with this initial value.

Syntax

regset64 "<registry key>" "<value name>"=<value>

Where registry key is the key of interest and value name is the key value to set to
value. These values are entered just as they are in a REGEDIT4 registry file, in
keeping with the rules for Regedit, the Windows program that edits the registry.
String values are delimited by quotes, and the standard 4-byte integer (dword) is
identified using dword: followed by the numeric value entered in hexadecimal
(with leading zeroes) as shown below.

Examples
regset64 "[HKEY_CURRENT_USER\Software\Microsoft\Office\9.1\Word\Security]"

"Level"=dword:00000002

This example sets the Level value of the specified registry to a double-word 2.
regset64 "[HKEY_CURRENT_USER\Software\BigCorp Inc.]" "testString"="bob"

This example sets the testString value of the specified registry key to bob.
regset64 "[HKEY_CLASSES_ROOT\ShellScrap]" "AlwaysShowExt"=""

This example clears the data of the specified registry value.

Note:

54 IBM Endpoint Manager: Action Guide

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

Notice in these examples that square brackets [] are used to enclose the name of
the registry key. Again, this is in keeping with the rules for REGEDIT4 registry
files. This syntax is necessary for the RegSet command, but not for registry
Inspectors.

When you use the regset64 command, keep in mind that the IBM Endpoint
Manager Client dynamically builds the .reg file that you would have had to create
manually to update the registry and then it executes that resulting .reg file for you.
One of the rules of the .reg file is that any \'s in the value field need to appear as
double slashes, that is \\.

So if you were trying to assign the value SourcePath2 of the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion
to c:\I386, the command that you would define would look like this:
regset64 "[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion]"

"SourcePath2"="c:\\I386"
regset64 "[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion]"

"SourcePath2"={escape of "c:\I386"}

The last example uses the escape relevance clause to automatically convert
backslashes to double backslashes.

If the specified key doesn't already exist, it will be created by this command.

Version 6.0 and above -- Windows Only

script64

Script64 uses the same syntax as the script command, but places a call to
Wow64DisableWow64FsRedirection before executing the script. This allows you to
issue a native 64-bit script command, bypassing Windows 32-bit environment built
on top of 64-bit processors.

The script keyword executes an external script (created in a scripting language like
JavaScript or Visual Basic) with the given name. The action script containing the
script keyword will terminate if the appropriate scripting engine is not installed or
if the script cannot be executed. The next line of the action Shell Command is not
executed until the specified script terminates.

Syntax

script64 <script name>

Example
script64 attrib.vbs

Runs the Visual BASIC script attrib.vbs in native 64-bit mode.

Notes

This command is Windows-only. It will cause an action script to terminate on a
Unix agent.

Chapter 7. Wow64 Commands 55

On a Windows computer, this command has the same effect as calling
Wow64DisableWow64FsRedirection and then issuing a wscript "scriptName"
statement from Windows.

Version 6.0 and above -- Windows Only

56 IBM Endpoint Manager: Action Guide

Chapter 8. Administrative Rights Commands

administrator add

This command lets you appoint specific people to administer specific IBM
Endpoint Manager Clients. This is accomplished by using a setting with an
effective date, passed as a parameter. The date is not optional. The effective date
tests are the same as for ordinary settings.

Syntax

administrator add <administrator name> on <date>

Example
administrator add "bob" on "21 Aug 2002 17:39:14 gmt"

Allows the Console operator named bob to have administrative rights on the
targeted computer(s), effective on the given date.

Version 5.1 and above

administrator delete

This command allows you to remove administrative rights for the specified
administrator. This is accomplished by using a setting with an effective date,
passed as a parameter. The date is not optional. The effective date tests are the
same as for ordinary settings.

Syntax

administrator delete <administrator name> on <date>

Example
administrator delete "bob" on "21 Aug 2002 17:39:14 gmt"

Removes the administrative rights of the Console operator named bob, effective on
the given date.

Version 5.1 and above

© Copyright IBM Corp. 2012, 2014 57

58 IBM Endpoint Manager: Action Guide

Chapter 9. BigFix Client Maintenance Commands

module add

Adds the specified inspector library file to the set of inspector libraries to be used
by the client. When replacing an inspector library, you must specify it in a module
delete command as well as specifying it in the module add command. To complete
the action you must issue a module commit command.

Syntax

module add "<module name>"

Example
module add "dellinspect.dll"

Note

For internal use only.

Version 5.1 and above

module commit

The add and delete commands set the stage for committing changes to the
inspector libraries. The commit command performs the actual deletion and
addition.

Syntax

module commit

Example
delete "dellinspect.dll"
copy "{pathname of client folder of site "dell"}\dellinspect.dll""dellinspect.dll"
module add "dellinspect.dll"
module commit

Note

For internal use only.

Version 5.1 and above

© Copyright IBM Corp. 2012, 2014 59

module delete

Marks the specified inspector library file for deletion. To complete the action you
must issue a module commit command.

Syntax

module delete "<module name>"

Example
module delete "inspectors.dll"

Note

For internal use only.

Version 5.1 and above

60 IBM Endpoint Manager: Action Guide

Chapter 10. Locking Commands

action lock indefinite

Turns on the action lock, starting on the effective date, which will never expire.
The date is in MIME time format (as in 15 Mar 2007 12:42:51 -0700).

Syntax

action lock indefinite "<effective date>"

Example
action lock indefinite "{now}"

Turns on the action lock immediately.

Version 5.1 and above

action lock until

Locks actions from the effective date until the expiration date occurs. The
expiration date is MIME time format (as in 19 Jul 2007 12:42:51 -0700). You can use
substitution with an Inspector like {now}, which will evaluate the time and insert it
into the string.

Syntax

action lock until "<expire date>" "<effective date>"

Example
action lock until "{now + 3*days}" "{now}"

Locks actions immediately, unlocking them in three days.
action lock until "{apparent registration server time + 10 * minutes}" "{apparent

registration server time}"

Locks actions for 10 minutes, using the current apparent registration server time,
which is based on the last time the Client registered with the server.

Version 5.1 and above

action unlock

Unlocks the client to act upon any actions. The effective date field is used to insure
that locking and unlocking actions take place in the order in which they were
created. The date is in MIME time format (as in 29 Nov 2008 12:42:51 -0700).

Syntax

action unlock "<effective date>"

© Copyright IBM Corp. 2012, 2014 61

Example
action unlock "{now}"

Unlocks actions immediately.

Version 5.1 and above

62 IBM Endpoint Manager: Action Guide

Chapter 11. Site Maintenance Commands

site force evaluation

Causes the client to re-evaluate all Fixlets for the site. This is useful after updating
files or settings, to make sure that the Fixlet's relevance is recomputed for the
entire site as soon as possible.

Syntax

site force evaluation

Example
site force evaluation

Version 5.1 and above

site gather schedule disable

This command disables scheduled gathering from the current site. It is ineffective
for action sites.

Syntax

site gather schedule disable

Example
site gather schedule disable

Version 5.1 and above

site gather schedule manual

This command enables manual gathering from the current site. It is ineffective for
action sites.

Syntax

site gather schedule manual

Example
site gather schedule manual

Version 5.1 and above

© Copyright IBM Corp. 2012, 2014 63

site gather schedule publisher

This command sets the schedule for gathering from the current site to that
specified in the masthead for the site.

Syntax

site gather schedule publisher

Example
site gather schedule publisher

Version 5.1 and above

site gather schedule seconds

This command sets the schedule for gathering from the origin site to the number
of seconds specified.

Syntax

site gather schedule seconds <seconds>

Example
site gather schedule seconds 360

Sets the site gathering schedule to six minutes.

Version 5.1 and above

subscribe

Subscribes the client to the site identified in the masthead file. The IBM Endpoint
Manager Console provides the Manage Sites dialog to automate site addition.

Syntax

subscribe "<masthead file name>"

Example
subscribe "__Download\Sitename.fxm"

Note

In the IBM Endpoint Manager this command returns an error unless it is executed
as an action in the master action site. The command is useful for subscribing
clients to Enterprise Fixlet sites and for updating the action site masthead file.

Version 5.1 and above

64 IBM Endpoint Manager: Action Guide

unsubscribe

Automatically unsubscribes from the current Enterprise Fixlet site.

Syntax

unsubscribe

Example
unsubscribe

Version 5.1 and above

Chapter 11. Site Maintenance Commands 65

66 IBM Endpoint Manager: Action Guide

Chapter 12. Comments

double forward slash

Lines beginning with // are comments and are ignored during action execution.

Syntax

//

Example
// The following command will replace the file on the C drive:
copy "{name of drive of windows folder}\win.com" "{name of drive of windows

folder}\bigsoftware\win.com"

The double slashes allow you to comment your action scripts.

Version 5.1 and above

© Copyright IBM Corp. 2012, 2014 67

68 IBM Endpoint Manager: Action Guide

Appendix. Support

For more information about this product, see the following resources:
v http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc_9.1/

welcome/welcome.html
v IBM Endpoint Manager Support site
v IBM Endpoint Manager wiki
v Knowledge Base
v Forums and Communities

© Copyright IBM Corp. 2012, 2014 69

http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc_9.1/welcome/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc_9.1/welcome/welcome.html
http://www.ibm.com/support/entry/portal/Overview/Software/Tivoli/Tivoli_Endpoint_Manager
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Endpoint%20Manager/page/Home
http://www-01.ibm.com/support/docview.wss?uid=swg21584549
http://www.ibm.com/developerworks/forums/category.jspa?categoryID=506

70 IBM Endpoint Manager: Action Guide

Notices

This information was developed for products and services that are offered in the
USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2012, 2014 71

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

72 IBM Endpoint Manager: Action Guide

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at www.ibm.com/legal/
copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of The
Minister for the Cabinet Office, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 73

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/us/en/copytrade.shtml

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM® Corp. and Quantum in the U.S. and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

74 IBM Endpoint Manager: Action Guide

Notices 75

IBM®

Printed in USA

	Contents
	Chapter 1. Introducing the action language
	Creating Action Scripts
	Introducing the Prefetch Block
	Using Substitution
	Introducing Dynamic Downloads
	Static Downloading
	Dynamic Downloading

	Chapter 2. Execution Commands
	action launch preference low-priority
	action launch preference normal-priority
	dos
	notify client ForceRefresh
	override
	Completion
	Limitations on 'completion=job'

	Priority (Windows only)
	Hidden (windows only)
	Detached (Windows only)
	RunAs

	run
	rundetached
	runhidden
	script
	wait
	waitdetached
	waithidden

	Chapter 3. Flow Control Commands
	action may require restart
	action parameter query
	action requires login
	action requires restart
	continue if
	exit
	if, elseif, else, endif
	Prefetching

	parameter
	pause while
	restart
	set clock
	shutdown

	Chapter 4. File System Commands
	action log
	add nohash prefetch item
	add prefetch item
	appendfile
	archive now
	begin prefetch block
	collect prefetch items
	copy
	createfile until
	delete
	download
	download as
	download now as
	end prefetch block
	execute prefetch plug-in
	extract
	folder create
	folder delete
	move
	prefetch
	relay select
	utility

	Chapter 5. Setting Commands
	setting
	setting delete

	Chapter 6. Registry Commands
	regdelete
	regset

	Chapter 7. Wow64 Commands
	action uses wow64 redirection
	regdelete64
	regset64
	script64

	Chapter 8. Administrative Rights Commands
	administrator add
	administrator delete

	Chapter 9. BigFix Client Maintenance Commands
	module add
	module commit
	module delete

	Chapter 10. Locking Commands
	action lock indefinite
	action lock until
	action unlock

	Chapter 11. Site Maintenance Commands
	site force evaluation
	site gather schedule disable
	site gather schedule manual
	site gather schedule publisher
	site gather schedule seconds
	subscribe
	unsubscribe

	Chapter 12. Comments
	double forward slash

	Appendix. Support
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation

