
IBM Endpoint Manager
Version 9.1

API Reference Guide

IBM

IBM Endpoint Manager
Version 9.1

API Reference Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 87.

This edition applies to version 9, release 1, modification level 0 of IBM Endpoint Manager and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2011, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. API Reference Guide 1

Chapter 2. Server API 3
Installation 3
BES XML documents 5
Connecting to the API 5
Examples 6

Top-level BES XML elements 6
Running an action 7
Accessing the API with Perl 7

The API Objects 15
BESAPI.XMLImporter 15
BESAPI.ActionStopper. 16
BESAPI.RetrievedProperty 17
BESAPI.FixletMessage 19
BESAPI.SiteManager 22
BESAPI.ActionSiteMasthead 23
BESAPI.SigningKeys 24

BES schemas 25
Fixlet or task 26
Baseline 27
Single actions. 28
Multiple action groups 28
Analyses 29
Computer groups 29
Properties 30

Shared BES XML elements 30
FixletAction 30
ActionScript 30
ActionSuccessCriteria 31
ActionSettings 31
ActionSettingsLocks 34
Search components 35

Miscellaneous types 35
RelevanceString 35
TimeInterval 36
NonNegativeTimeInterval 36
ActionMessageMaxPostponementInterval . . . 36
ActionMessageTimeoutInterval 36

Chapter 3. Client API. 37
Client API terminology 38
Potential use cases 38
Deploying an agent. 39
Software development kit 40
C++ source code. 40
Configuring the components. 41
API specifications 43
BESClientComplianceMod.Session 43
BESClientComplianceMod.Progress 43
BESClientComplianceMod.Response 44
Examples of Client Documents 44
Check service pack 45
Check for a running app 45
Update patches 46

Check for anti-virus 46

Chapter 4. Dashboard API 49
Linking. 49
Relevance in dashboards 50
Debugging dashboards 50
Editing dashboards 51

Chapter 5. Database API 53
BES_FIXLETS. 53
BES_TASKS 54
BES_ANALYSES. 54
BES_BASELINES 54
BES_COMPUTERGROUPS 54
BES_COLUMN_HEADINGS. 55
BES_RELEVANT_FIXLETS 55
BES_RELEVANT_TASKS 55
BES_RELEVANT_BASELINES 56
BES_ACTIONS 56
BES_RELEVANT_FIXLET_HISTORY 57
BES_RELEVANT_TASK_HISTORY. 57
BES_RELEVANT_BASELINE_HISTORY 57
BES_FIXLET_PROPERTIES 58
BES_TASK_PROPERTIES 58
BES_BASELINE_PROPERTIES 59
Example report generator. 59

Chapter 6. WebReports API 63
Authoring Web Reports 63
Converting a dashboard 64
Propagating Web Reports 64
Template report 64
Custom report 65
External report 65
Exporting to PDF 66
Setting a title 66
Setting OnLoad events. 66
SOAP API 66

Configuring SOAP 67
SOAP URL 67
SOAP headers 67
SOAP methods 69
SOAP examples 74

Chapter 7. Creating HTML with
inspectors 77
HTML inspectors 77
HTML tag inspectors 78
Issues with the "it" statement 79
Introducing datastore inspectors 80
Creating statistical properties 80
Linking to other documents 80
The link ID protocol 81
A list of link IDs. 82

© Copyright IBM Corp. 2011, 2014 iii

Refreshing relevance 82

Appendix. Support 85

Notices 87
Programming interface information 89
Trademarks 89

Terms and conditions for product documentation. . 90

iv IBM Endpoint Manager: API Reference Guide

Chapter 1. API Reference Guide

IBM Endpoint Manager has extensibility built-in to allow you to create content
directly from the console in the form of custom Fixlets and tasks. There are times,
however, when you need direct programmatic access to the relevance engine at the
core of IBM Endpoint Manager. IBM Endpoint Manager therefore makes available
a set of application programming interfaces (APIs).

This guide describes the various APIs, including server, client, dashboard, and Web
Reports, that you can use to control all aspects of the IBM Endpoint Manager
engine from your own scripts.

This guide describes the API available to IBM Endpoint Manager Version 9.1.

© Copyright IBM Corp. 2011, 2014 1

2 IBM Endpoint Manager: API Reference Guide

Chapter 2. Server API

This section of the guide shows you how to access programming features of the
console server engine by using your own scripts.

With the console you can create your own custom tasks and actions, giving you a
wide range of options for controlling and monitoring your networks in accordance
with your own best practices. As powerful as that is, there are some problems that
are best solved with direct access to the console engine itself. The power of the
console then becomes yours to control and automate with custom scripts.

Using the server application programming interface, you can create relevance
expressions and execute them as if you were logged in to the console. You can use
your own scripts to generate fresh content, including Fixlets, tasks, actions,
baselines, properties, and analyses. The Server API consists of a set of Component
Object Model (COM) objects that are distributed in the form of a DLL file. The API
was created with Active Template Library (ATL) and C++ but can be accessed by
using COM from a variety of languages and scripting environments, including
VBScript, JScript, Perl, and C#.

To use the API, the calling application creates a BESAPI object with an associated
set of methods and properties. There are different BESAPI objects for each task one
might undertake by using the Tivoli Endpoint Manager console, such as creating
an action or task (BESAPI.XMLImporter) or managing site subscriptions
(BESAPI.SiteManager).

Note: Tivoli Endpoint Manager was previously called the BigFix Enterprise System
(BES), and you can still see this legacy in the names of the API calls.

The content that you create for the Server API is in XML format that is saved in
files with an extension of .bes. This guide provides you with a detailed description
of the XML schema that is used by .bes files.

Installation

Before you can install the BESAPI, you must obtain the site certificate from IBM,
create the action site masthead file, and install the server and console. Verify that the
server is functioning correctly by using the IBM Endpoint Manager Diagnostics Tool.
For more details on these steps, see theIBM Endpoint Manager Installation Guide.

After you successfully install IBM Endpoint Manager, you can install the Server
API by following these steps:
1. Download the BES-ServerAPI program from the same IBM site where you

downloaded the IBM Endpoint Manager program. It has a name of the form:
BigFix-BES-ServerAPI-9.1.933.0.exe. The numbers in the name correspond to
the version. This version must match the version of IBM Endpoint Manager
that you want to access with the API.

2. After you download it, run the program. The installer window opens.

© Copyright IBM Corp. 2011, 2014 3

3. Click Next. The default destination folder is displayed. The location is within
your existing IBM Endpoint Manager (or BigFix Enterprise) folder:

4. Click Change to select a different folder or click Next to proceed.
5. On the subsequent screen, click Install.
6. When the installation is done, click Finish.

The installer creates a folder named BES Server API, typically in the BigFix
Enterprise folder. In this folder are the API DLLs you need to access the platform.

Support and assistance for using the Server API is not directly covered by IBM.
However, for information and examples, visit IBM developerWorks Forum.

4 IBM Endpoint Manager: API Reference Guide

https://www.ibm.com/developerworks/forums

BES XML documents

The Server API allows you to import content into the console so you can create
and automate your own Fixlets, tasks, actions, properties, and more. This content is
contained in a BES XML document. The easiest way to learn about BES XML
documents is to create one in the console and then export it. Here is how:
1. To export a Fixlet, task, baseline, action, analysis or computer group, just

right-click one from the console list panel and select Export from the pop-up
menu.

2. To export retrieved properties, open Tools -> Manage Properties, select a property,
and click Export .

3. Select a folder for the exported .bes file.
4. Open the saved .bes file in an XML editor or plain-text editor.

The BES Schema is defined in the file BES.xsd. You can find this file in theProgram
Files\BigFix Enterprise\BES Console\Reference folder on your console computer.
Familiarize yourself with this file. It contains the definitions for all the permissible
content you can submit to the Server API. Any content that you create must
validate against this schema or it is rejected during import. You can also use this
file when you create your scripts, because many XML authoring tools include the
schema to make XML authoring easier.

Note: In XML, the ‘<’, ‘>’, ‘&’, and ‘”’ characters must be escaped as “<”,
“>”, &”, and “"” respectively. Because many elements can contain
HTML, it can be easier to wrap the element’s unescaped contents in a CDATA tag,
as in “<![CDATA[...]]>”. CDATA tags cannot be nested, so this technique does not
work if the data already contains the CDATA end tag (“]]>”).

Connecting to the API

In versions earlier than 8.2, you had to have an ODBC connection that is defined
and have access to the signing keys for the deployment to authenticate to the API.
In version 8.2, the use of signing keys and ODBC connections was discontinued.
You only need the server hostname and login credentials to connect to the API.

Your existing code should continue to work properly, assuming that you still have
access to the keys and they have not been changed in the deployment after your
upgrade. However, using signing keys results in the execution of additional steps
in the connection process, and you might want to consider migrating to the
simpler login to speed things up.

In version 8.1 and earlier, you were required to create a SigningKeys object, direct
that to the location of the keys, and then ascertain their validity. The sequence was:
SetDefaultDSN($DSN)
SetPrivateKeyPath($Username, $Path)
AreSigningKeysValid($Username, $Password)

In version 8.2, the SigningKeys object is not required. Instead, from any BESAPI
object, you can use:
SetServer($Hostname)

Each subsequent call uses this server for communication. No ODBC connection
must be established and no signing key is required. The new API, however, does

Chapter 2. Server API 5

need to get an SSL Certificate from the server and store that locally. The location
where this key is stored is either the current path of the executable using the API
or from a registry key. That key is:
HKEY_LOCAL_MACHINE\Software\BigFix\(ApplicationName)\base.

The ApplicationName is set from any object by using:
SetAppName($ApplicationName)

If the SSL Certificate on the server changes, it might be necessary to delete the old
certificate from this location. It is also the location where information fetched from
the server is stored, such as site exports.

Note: For versions earlier than 8.2, Patch 3, the API still requires that you make
unnecessary calls to the signing key related methods. To avoid this situation, make
sure that you have Patch 3 or later.

Examples

Top-level BES XML elements

A BES XML file has a BES document element, containing at least one Fixlet, task,
baseline, analysis, SingleAction, MultipleActionGroup, ComputerGroup, or
property element. This is collection of possible elements that you can include in
your .bes files, formatted as XML:
<?xml version="1.0" encoding="UTF-8"?>
<BES xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="BES.xsd">

<Fixlet>
...

</Fixlet>
<Task>

...
</Task>

<Baseline>
...

</Baseline>
<Analysis>

...
</Analysis>
<SingleAction>

...
</SingleAction>
<MultipleActionGroup>

...
</MultipleActionGroup>
<ComputerGroup>

...
</ComputerGroup>
<Property>

...
</Property>

</BES>

Many of the programs you write to access the API take advantage of .bes XML
files. Typically, your program defines the XML file in a variable that you can then
process with a relevant import command. That causes your new content to appear
in the console.

6 IBM Endpoint Manager: API Reference Guide

Running an action

There are several general principles that are involved with all .bes files. To
communicate with the Tivoli Endpoint Manager platform, you must create API
objects, that you can then use to issue commands or to set and retrieve properties.
For example, to propagate an action with a script, first create a
BESAPI.FixletActionCreator object:
var actionCreator = CreateObject("BESAPI.FixletActionCreator");

or
var actionCreator = new
ActiveXObject("BESAPI.FixletActionCreator");

Then use the appropriate set methods on that object to specify the attributes of the
action, such as which computers to target, when to run and the content of the
action (that is, when it is relevant, and the script to execute). For example:
actionCreator.SetTargetComputers("|12345678|");

Finally, commit the action to the database and send it to the client computers using
the DoPropagation method. For example:
actionCreator.DoPropagation("joe","mypassword");
window.alert("Propagated action id #" + actionCreator.actionID);

Accessing the API with Perl

You can access the Server API with many different programming languages. This
section describes access using Perl, a popular choice for creating quick scripts.

The API package in Perl

This is the BESAPI package that you can include with your own scripts:
BESAPI.pm

package BESAPI;

use strict;
use Win32::OLE;

Win32::OLE->Option(Warn => sub { die Win32::OLE->LastError() . "\n"; });

sub new
{

my ($perlType, $besAPIType, $server) = @_;
my $self = {};

$self->{type} = $besAPIType;
$self->{object} = Win32::OLE->new("BESAPI." . $besAPIType);
$self->{object}->SetServer($server);

return bless $self, $perlType;
}

our $AUTOLOAD;
sub AUTOLOAD
{

my $self = shift;
$AUTOLOAD =~ s/^.*:://;
if ($AUTOLOAD eq "DESTROY")

{ return; }

my $besAPIObject = $self->{object};
my $result = $self->{object}->Invoke($AUTOLOAD, @_);

Chapter 2. Server API 7

if ($besAPIObject->DiagnosticMessage()) {
die "BESAPI." . $self->{type} . "." . $AUTOLOAD .
" error: " . $self->{object}->DiagnosticMessage() . "\n";

}

return $result;
}

included for use with versions prior to 8.2
sub CheckSigningKeys
{

my ($dsn, $username, $password, $privateKey) = @_;
my $signingKeys = BESAPI->new("SigningKeys");
$signingKeys->SetDefaultDSN($dsn);
$signingKeys->SetPrivateKeyPath($username, $privateKey);
if (!$signingKeys->AreSigningKeysValid($username, $password))

{ die "SigningKeys not valid\n"; }
}

sub FixletMessage
{

my ($siteID, $FixletID, $username, $password, $server) = @_;
my $Fixlet = BESAPI->new("FixletMessage", $server);
$Fixlet->Load($siteID, $FixletID, $username, $password);
return $Fixlet;

}

1;

Importing a file with Perl

This Perl script lets you import a .bes file into the console. Pass your user name
and password, along with the path of the .bes file and the name of the custom site
where it is located. The usage is as follows:
ImportFile.pl <username> <password> <bes file path> <custom site name>

This is the code:
TakeActionFromFixlet.pl

use strict;
use FindBin;
use lib $FindBin::Bin;
use BESAPI;
use Cwd ’abs_path’;
use File::Basename;

if (@ARGV != 4 && @ARGV != 5) {
print fileparse(abs_path($0)) . " <server> <username> <password>
<bes file path> [<custom site name>]";
exit(0);

}

my ($server, $username, $password, $besFile, $customSite) = @ARGV;
if (!$customSite)

{ $customSite = ""; }

eval
{

my $xmlImporter = BESAPI->new("XMLImporter", $server);
my $ids = $xmlImporter->ImportFile($besFile, $customSite, $username,

$password);

print "IDs: " . join(" ", @$ids) . "\n";
};

8 IBM Endpoint Manager: API Reference Guide

if ($@)
{

print "$@\n";
}

Examining a Fixlet with Perl

This Perl script finds a FixletMessage with a specific site ID and Fixlet ID and
prints all the accessible information about that Fixlet. This program requires you to
enter your name, password, and Fixlet identification in the program itself. The text
that is highlighted in blue is where the assignments are made:
FixletMessage.pl

use strict;
use FindBin;
use lib $FindBin::Bin;
use BESAPI;

my $username = "operator";
my $password = "bigfix";
my $server = "bes-server-hostname";

my $siteID = 1;
my $FixletID = 177;

my $Fixlet = BESAPI::FixletMessage($siteID, $FixletID, $username,
$password, $server);

print "Name: " . $Fixlet->Name() . "\n";
print "SiteName: " . $Fixlet->SiteName() . "\n";
print "SiteDisplayName: " . $Fixlet->SiteDisplayName() . "\n";
print "SiteURL: " . $Fixlet->SiteURL() . "\n";
print "SiteID: " . $Fixlet->SiteID() . "\n";
print "FixletID: " . $Fixlet->FixletID() . "\n";
print "IsTask: " . $Fixlet->IsTask() . "\n";
print "IsAnalysis: " . $Fixlet->IsAnalysis() . "\n";
print "IsPlainFixlet: " . $Fixlet->IsPlainFixlet() . "\n";
print "IsBaseline: " . $Fixlet->IsBaseline() . "\n";
print "DownloadSize: " . $Fixlet->DownloadSize() . "\n";
print "Source: " . $Fixlet->Source() . "\n";
print "SourceID: " . $Fixlet->SourceID() . "\n";
print "SourceSeverity: " . $Fixlet->SourceSeverity() . "\n";
print "SourceReleaseDate: " . $Fixlet->SourceReleaseDate() . "\n";
print "Category: " . $Fixlet->Category() . "\n";
print "IsDeleted: " . $Fixlet->IsDeleted() . "\n";
print "Relevance: " . $Fixlet->Relevance() . "\n";
print "Current FIPS Mode: " . $Fixlet->CurrentFIPSMode($username, $password);

if ($Fixlet->IsAnalysis())
{

print "PropertyIDSet: " . $Fixlet->PropertyIDSet() . "\n";
print "IsGloballyActivated: " . $Fixlet->IsGloballyActivated() . "\n";
print "IsLocallyActivated: " . $Fixlet->IsLocallyActivated() . "\n";
print "CanActivate: " . $Fixlet->CanActivate() . "\n";
print "CanDeactivate: " . $Fixlet->CanDeactivate() . "\n";

}

print "\n\n";
print "Message: " . $Fixlet->Message() . "\n";
print "HTML: \n\n" . $Fixlet->HTML() . "\n";

if ($Fixlet->IsPlainFixlet() || $Fixlet->IsTask())
{

my $action = 0;
print "ActionScript: " . $Fixlet->ActionScript($action) . "\n";
print "ActionScriptMIMEType: " . $Fixlet->ActionScriptMIMEType

Chapter 2. Server API 9

($action) . "\n";
print "ActionScriptTypeName: " . $Fixlet->ActionScriptTypeName

($action) . "\n";
}

Managing a custom site with Perl

You can use a Perl script to manage your custom sites. You can create or delete
sites, as well as adding and removing readers, writers, and owners of the site. Run
the program without input to see the allowed arguments:
Usage:
CustomSiteManager.pl <CreateSite> <dsn> <username> <password> <pvk file>

<sitename>
CustomSiteManager.pl <DeleteSite> <dsn> <username> <password> <pvk file>

<sitename>
CustomSiteManager.pl <AddWriter> <dsn> <username> <password> <pvk file>

<sitename> <writername>
CustomSiteManager.pl <RemoveWriter> <dsn> <username> <password> <pvk file>

<sitename> <writername>
CustomSiteManager.pl <AddOwner> <dsn> <username> <password> <pvk file>

<sitename> <ownername>
CustomSiteManager.pl <RemoveOwner> <dsn> <username> <password> <pvk file>

<sitename> <ownername>
CustomSiteManager.pl <AddReader> <dsn> <username> <password> <pvk file>

<sitename> <readername>
CustomSiteManager.pl <RemoveReader> <dsn> <username> <password> <pvk file>

<sitename> <readername>

This is the Perl script:
CustomSiteManager.pl

use strict;
use FindBin;
use lib $FindBin::Bin;
use BESAPI;

if (@ARGV == 0)
{

Usage();
exit(0);

}

my ($server, $username, $password, $sitename, $subject)
= ($ARGV[1], $ARGV[2], $ARGV[3], $ARGV[4], $ARGV[5]);

my $customSiteManager = BESAPI->new("CustomSiteManager", $server);

if ($ARGV[0] =~ /CreateSite/i)
{

$customSiteManager->CreateCustomSite($sitename, $username, $password);
}
elsif ($ARGV[0] =~ /DeleteSite/i)
{

$customSiteManager->DeleteCustomSite($sitename, $username, $password);
}
elsif ($ARGV[0] =~ /AddWriter/i)
{

$customSiteManager->AddCustomSiteWriter($sitename, $subject, $username,
$password);

}
elsif ($ARGV[0] =~ /RemoveWriter/i)
{

$customSiteManager->RemoveCustomSiteWriter($sitename, $subject, $username,
$password);

}

10 IBM Endpoint Manager: API Reference Guide

elsif ($ARGV[0] =~ /AddOwner/i)
{

$customSiteManager->AddCustomSiteOwner($sitename, $subject, $username,
$password);

}
elsif ($ARGV[0] =~ /RemoveOwner/i)
{

$customSiteManager->RemoveCustomSiteOwner($sitename, $subject, $username,
$password);

}
elsif ($ARGV[0] =~ /AddReader/i)
{

$customSiteManager->AddCustomSiteReader($sitename, $subject, $username,
$password);

}
elsif ($ARGV[0] =~ /RemoveReader/i)
{

$customSiteManager->RemoveCustomSiteReader($sitename, $subject, $username,
$password);

}
else
{

Usage();
}

sub Usage
{

print "Usage:\n";
print File::Basename::basename($0) . " <CreateSite> <server> <username>
<password> <sitename>\n";
print File::Basename::basename($0) . " <DeleteSite> <server> <username>
<password> <sitename>\n\n";
print File::Basename::basename($0) . " <AddWriter> <server> <username>
<password> <sitename> <writername>\n";
print File::Basename::basename($0) . " <RemoveWriter> <server> <username>
<password> <sitename> <writername>\n\n";
print File::Basename::basename($0) . " <AddOwner> <server> <username>
<password> <sitename> <ownername>\n";
print File::Basename::basename($0) . " <RemoveOwner> <server> <username>
<password> <sitename> <ownername>\n\n";
print File::Basename::basename($0) . " <AddReader> <server> <username>
<password> <sitename> <readername>\n";
print File::Basename::basename($0) . " <RemoveReader> <server> <username>
<password> <sitename> <readername>\n";

}

Creating a Fixlet with an action using Perl

The following script loads a FixletMessage with a specific site ID and Fixlet ID and
takes an action from that Fixlet, by using the FixletMessage.ActionXML and
XMLImporter.ImportAction methods. This program requires you to enter your
name, password, and Fixlet identification in the program itself. The text that is
highlighted in blue is where the assignments are made:
TakeActionFromFixlet.pl

use strict;
use FindBin;
use lib $FindBin::Bin;
use BESAPI;

my $username = "bigfix";
my $password = "bigfix";
my $server = "bes-server-hostname";

my $siteID = 3096;

Chapter 2. Server API 11

my $FixletID = 3;
my $action = 0;

my $Fixlet = BESAPI::FixletMessage($siteID, $FixletID, $username, $password,
$server);

my $settingsXML =
"<?xml version=\"1.0\"?>\n" .
"<ActionSettings>\n" .

"<Settings>\n" .
"<ActionUITitle>title</ActionUITitle>\n" .
"<PreActionShowUI>true</PreActionShowUI>\n" .
"<PreAction>\n" .

"<Text>preaction description</Text>\n" .
"<AskToSaveWork>true</AskToSaveWork>\n" .
"<ShowActionButton>true</ShowActionButton>\n" .
"<ShowCancelButton>true</ShowCancelButton>\n" .
"<DeadlineBehavior>ForceToRun</DeadlineBehavior>\n" .
"<DeadlineType>Absolute</DeadlineType>\n" .
"<DeadlineOffset>PT23H58M54.000000S</DeadlineOffset>\n" .
"<ShowConfirmation>true</ShowConfirmation>\n" .
"<Confirmation>confirmation message</Confirmation>\n" .

"</PreAction>\n" .
"<HasRunningMessage>true</HasRunningMessage>\n" .
"<RunningMessage>\n" .

"<Text>running text</Text>\n" .
"</RunningMessage>\n" .
"<HasTimeRange>false</HasTimeRange>\n" .
"<HasStartTime>true</HasStartTime>\n" .
"<StartDateTimeOffset>-PT1M6.000000S</StartDateTimeOffset>\n" .
"<HasEndTime>true</HasEndTime>\n" .
"<EndDateTimeOffset>P1DT23H58M54.000000S</EndDateTimeOffset>\n" .
"<HasDayOfWeekConstraint>false</HasDayOfWeekConstraint>\n" .
"<ActiveUserRequirement>RequireUser</ActiveUserRequirement>\n" .
"<ActiveUserType>LocalUsers</ActiveUserType>\n" .
"<HasWhose>false</HasWhose>\n" .
"<Reapply>false</Reapply>\n" .
"<HasReapplyLimit>false</HasReapplyLimit>\n" .
"<HasReapplyInterval>false</HasReapplyInterval>\n" .
"<HasRetry>false</HasRetry>\n" .
"<HasTemporalDistribution>false</HasTemporalDistribution>\n" .
"<PostActionBehavior Behavior=\"Nothing\"></PostActionBehavior>\n" .
"<IsOffer>true</IsOffer>\n" .
"<OfferCategory>offer category</OfferCategory>\n" .
"<OfferDescriptionHTML>offer description</OfferDescriptionHTML>\n" .
"</Settings>" .

"</ActionSettings>";

my $actionXMLDocument = $Fixlet->ActionXML($action, $settingsXML);

my $targetXMLA =
"<?xml version=\"1.0\"?>" .
"<BESActionTarget>" .

"<ComputerName>a</ComputerName>" .
"<ComputerName>b</ComputerName>" .
"<ComputerName>c</ComputerName>" .

"</BESActionTarget>";

my $targetXMLB =
"<?xml version=\"1.0\"?>" .
"<BESActionTarget>" .

"<ComputerID>34</ComputerID>" .
"<ComputerID>12704810</ComputerID>" .

"</BESActionTarget>";

my $targetXMLC =
"<?xml version=\"1.0\"?>" .

12 IBM Endpoint Manager: API Reference Guide

"<BESActionTarget>" .
"<CustomRelevance>exists file \"c:\\virus\"</CustomRelevance>" .

"</BESActionTarget>";

my $xmlImporter = BESAPI->new("XMLImporter", $server);
my $actionID = $xmlImporter->ImportAction($actionXMLDocument->XML(), $targetXMLA,

$Fixlet->SiteID(), $Fixlet->FixletID(), $username, $password);

print "ActionID: $actionID\n";

Creating a Fixlet with an action using C#

You can do the same as the previous example with any flavor of C as well as Perl.
This is the C# equivalent of the previous script:
using System;
using System.Collections.Generic;
using System.Text;
using BESAPILib;

namespace BESAPITest
{

class Program
{
static void Main(string[] args)
{

try
{
string username = "bigfix";
string password = "bigfix";
string server = "bes-server-hostname";

int siteID = -2147481618;
int FixletID = 32;
int action = 0;

BESAPILib.FixletMessage Fixlet = new BESAPILib.FixletMessage();
Fixlet.SetServer(server);

Fixlet.Load(siteID, FixletID, username, password);
if (Fixlet.DiagnosticMessage.Length != 0)

throw new Exception(Fixlet.DiagnosticMessage);

string settingsXML =
"<?xml version=\"1.0\"?>\n" +
"<ActionSettings>\n" +

"<Settings>\n" +
"<ActionUITitle>title</ActionUITitle>\n" +
"<PreActionShowUI>true</PreActionShowUI>\n" +
"<PreAction>\n" +

"<Text>preaction description</Text>\n" +
"<AskToSaveWork>true</AskToSaveWork>\n" +
"<ShowActionButton>true</ShowActionButton>\n" +
"<ShowCancelButton>true</ShowCancelButton>\n" +
"<DeadlineBehavior>ForceToRun</DeadlineBehavior>\n" +
"<DeadlineType>Absolute</DeadlineType>\n" +
"<DeadlineOffset>PT23H58M54.000000S</DeadlineOffset>\n" +
"<ShowConfirmation>true</ShowConfirmation>\n" +
"<Confirmation>confirmation message</Confirmation>\n" +

"</PreAction>\n" +
"<HasRunningMessage>true</HasRunningMessage>\n" +
"<RunningMessage>\n" +

"<Text>running text</Text>\n" +
"</RunningMessage>\n" +
"<HasTimeRange>false</HasTimeRange>\n" +
"<HasStartTime>true</HasStartTime>\n" +
"<StartDateTimeOffset>-PT1M6.000000S
</StartDateTimeOffset>\n" +

Chapter 2. Server API 13

"<HasEndTime>true</HasEndTime>\n" +
"<EndDateTimeOffset>P1DT23H58M54.000000S
</EndDateTimeOffset>\n" +
"<HasDayOfWeekConstraint>false</HasDayOfWeekConstraint>\n" +
"<ActiveUserRequirement>RequireUser
</ActiveUserRequirement>\n" +
"<ActiveUserType>LocalUsers</ActiveUserType>\n" +
"<HasWhose>false</HasWhose>\n" +
"<Reapply>false</Reapply>\n" +
"<HasReapplyLimit>false</HasReapplyLimit>\n" +
"<HasReapplyInterval>false</HasReapplyInterval>\n" +
"<HasRetry>false</HasRetry>\n" +
"<HasTemporalDistribution>false</HasTemporalDistribution>\n" +
"<PostActionBehavior Behavior=\"Nothing\">

</PostActionBehavior>\n" +
"<IsOffer>true</IsOffer>\n" +
"<OfferCategory>offer category</OfferCategory>\n" +
"<OfferDescriptionHTML>offer description
</OfferDescriptionHTML>\n" +
"</Settings>" +

"</ActionSettings>";

BESAPILib.IXMLDOMDocument actionXMLDocument = Fixlet.get_ActionXML
(action,System.Text.Encoding.Unicode.GetBytes(settingsXML));

if (Fixlet.DiagnosticMessage.Length != 0)
throw new Exception(Fixlet.DiagnosticMessage);

string targetXMLA =
"<?xml version=\"1.0\"?>" +
"<BESActionTarget>" +

"<ComputerName>a</ComputerName>" +
"<ComputerName>b</ComputerName>" +
"<ComputerName>c</ComputerName>" +

"</BESActionTarget>";

string targetXMLB =
"<?xml version=\"1.0\"?>" +
"<BESActionTarget>" +

"<ComputerID>34</ComputerID>" +
"<ComputerID>12704810</ComputerID>" +

"</BESActionTarget>";

string targetXMLC =
"<?xml version=\"1.0\"?>" +
"<BESActionTarget>" +

"<CustomRelevance>exists file \"c:\\virus\"</CustomRelevance>" +
"</BESActionTarget>";

BESAPILib.XMLImporter xmlImporter = new BESAPILib.XMLImporter();
xmlImporter.SetServer(server);

int actionID = xmlImporter.ImportAction(System.Text.Encoding.Unicode.GetBytes
(actionXMLDocument.xml),

System.Text.Encoding.Unicode.GetBytes
(targetXMLA),

(UInt32) Fixlet.siteID,
(UInt32) Fixlet.FixletID,
username,
password);

if (xmlImporter.DiagnosticMessage.Length != 0)
throw new Exception(xmlImporter.DiagnosticMessage);

System.Console.WriteLine("ActionID: " + actionID);
}
catch (System.Exception e)
{

System.Console.WriteLine(e.Message);

14 IBM Endpoint Manager: API Reference Guide

}
}
}
}

The API Objects

The objects in the Server API are listed here and are detailed in the following
sections:
v XMLImporter: Use to import .bes files into the Tivoli Endpoint Manager console.
v ActionStopper: Use to stop the specified action.
v RetrievedProperty:Use to define and modify retrieved properties.
v FixletMessage: Use to set and access Fixlets.
v SettingsActionCreator: Use to create and manage settings.
v SiteManager: Use to create and assign rights to custom sites.
v ActionSiteMasthead: Use to manage the mastheads for your custom sites.
v SigningKeys: Use to manage sign-in security for the API under Tivoli Endpoint

Manager.

BESAPI.XMLImporter

The XML Importer provides the main functionality of the Server API. Use it to
import a special XML file, with the extension of .bes, into the platform engine for
evaluation.

Note: Although the console lets you import BES XML documents with computer
groups in them, the BESAPI.XMLImporter object does not support the creation of
computer groups.

XMLImporter Methods Description

HRESULT SetAppName (

BSTR appName
);

Set the Application Name string that is used
to specify the registry key for the BESAPI.
Default is 'BESAPI'.

HRESULT SetDSN (

BSTR dsn
);

Set the name of the ODBC DSN to use when
connecting to the database. Default is
'BES_bfenterprise'.

HRESULT ImportFile (

BSTR xmlFilePath,
BSTR customSiteName,

BSTR username,
BSTR password,
[out, retval] VARIANT *ids

);

Connects to the database with the username
and password. Reads the contents of the
specified xml file, and imports it into the
database, by using the specified custom site
name, or if that is the empty string, then the
operator’s action site, or the master action
site, if the operator is a master operator. It
returns an array containing the database IDs
of the objects created. Note that only one
site is propagated, so importing more than
one object, or by using the “auto activate
analysis” feature might result in an object
being created in the database without
propagating that object to the BES agents.

Chapter 2. Server API 15

HRESULT Import (

SAFEARRAY(byte) xml,
BSTR customSiteName,

BSTR username,
BSTR password,

[out, retval] VARIANT *ids
);

Connects to the database with the username
and password. Imports the xml specified
into the database, with the specified custom
site name, or if that is the empty string, then
the operator’s action site, or the master
action site, if the operator is a master
operator. Returns an array containing the
database IDs of the objects created.

HRESULT ImportAction (

SAFEARRAY(byte) actionXML,
SAFEARRAY(byte) targetXML,
UINT sourceSiteID,
UINT sourceFixletID,
BSTR username,
BSTR password,
[out, retval] long *id

);

Connects to the database with the username
and password. Imports the action specified
by the actionXML, by using the targetXML
for targeting endpoints, and by using the
specified source information. The
appropriate site (operator site or master
action site) is propagated depending on
whether or not the username refers to a
master operator. Returns an integer
containing the database id of the action
object created.

XMLImporter Properties Description

HRESULT DiagnosticMessage (

[out, retval] BSTR *pVal
);

If a method fails, this property returns a
string containing a diagnostic message.

HRESULT StatusMessage (

[out, retval] BSTR *pVal
);

Returns a string describing the status of the
current operation (for example,
propagation).

HRESULT CurrentFIPSMode(

BSTR username,
BSTR password,
[out, retval] BOOL* pVal);

This is a function added in version 7.1 to
every BESAPI interface. It retrieves the
masthead from the database and returns true
if FIPS mode cryptography is enabled in the
masthead.

BESAPI.ActionStopper

ActionStopper Methods Description

HRESULT SetAppName (

BSTR appName
);

Sets the Application Name string that is
used to specify the registry key for the
BESAPI. Default is 'BESAPI'.

HRESULT SetDSN (

BSTR dsn
);

Sets the name of the ODBC DSN to use
when connecting to the database. Default is
'BES_bfenterprise'.

HRESULT StopAction (

UINT actionID,
BSTR dbUserName,
BSTR password

);

Stops the existing action in the database
with the specified ID number, and uses the
username and password to propagate a new
version of the action site.

HRESULT DeleteAction (

UINT actionID,
BSTR dbUserName,
BSTR password

);

Permanently deletes the existing action in
the database with the specified ID number,
and uses the username and password to
propagate a new version of the action site.
The action must be stopped or expired.
Open actions cannot be deleted.

16 IBM Endpoint Manager: API Reference Guide

ActionStopper Properties Description

HRESULT DiagnosticMessage (

[out, retval] BSTR *pVal
);

If a method fails, this property returns a
string containing a diagnostic message.

HRESULT StatusMessage (

[out, retval] BSTR *pVal
);

Returns a string describing the status of the
current operation (for example propagation).

HRESULT CurrentFIPSMode(

BSTR username,
BSTR password,
[out, retval] BOOL* pVal);

Retrieves the masthead from the database
and returns true if FIPS mode cryptography
is enabled in the masthead.

BESAPI.RetrievedProperty

RetrievedProperty Methods Description

HRESULT SetAppName (

BSTR appName
);

Sets the Application Name string that is
used to specify the registry key for the
BESAPI. Default is 'BESAPI'.

HRESULT SetDSN (

BSTR dsn
);

Sets the name of the ODBC DSN to use
when connecting to the database. Default is
'BES_bfenterprise'.

HRESULT Create (

BSTR name,
BSTR relevance,
UINT delaySeconds,
BSTR dbUserName,
BSTR password

);

Creates a new retrieved property with the
specified name, relevance, and evaluation
period. Use the username and password to
propagate a new version of the action site.
The ID property is set to the database ID of
the newly created retrieved property. Note
that this function fails if a retrieved property
with the same name already exists.

HRESULT Modify (

long ID,
BSTR name,
BSTR relevance,
BSTR evaluation period,
BSTR dbUserName,
BSTR password

);

Modifies the existing retrieved property with
the specified database ID to have the
specified name, relevance and evaluation
period. Use the username and password to
propagate a new version of the action site.
Note that this function fails if the name is
changed and a retrieved property with the
same name already exists.

HRESULT Delete (

long ID,
BSTR dbUserName,
BSTR password

);

Deletes the existing retrieved property with
the specified database ID, and uses the
username and password to propagate a new
version of the action site.

HRESULT Load (

long ID,
BSTR dbUserName,
BSTR password

);

Connects to the database with the specified
username and password, and sets the ID,
name, and relevance properties with the
values stored in the database for the existing
retrieved property with the specified
database ID.

RetrievedProperty Properties Description

Chapter 2. Server API 17

HRESULT ID (

[out, retval] long *pVal
);

The database ID number of the retrieved
property. Not set until after either Load,
Modify, Delete, or Create has succeeded.

HRESULT Name (

[out, retval] BSTR *pVal
);

The name of the retrieved property. Not set
until after Load, Modify or Create has
succeeded.

HRESULT Relevance (

[out, retval] BSTR *pVal
);

The relevance expression that defines the
retrieved property. Not set until after Load,
Modify, or Create has succeeded.

HRESULT DelaySeconds (

[out, retval] UINT *pVal
);

The evaluation period of this retrieved
property in seconds (0 means ‘every report’).
Not set until after Load, Modify, Delete, or
Create has succeeded.

HRESULT IsCustom (

[out, retval] BOOL *pVal
);

True if the property is a custom property.
Not set until after Load, Modify, Delete, or
Create has succeeded.

HRESULT IsReserved (

[out, retval] BOOL *pVal
);

True if the property is a reserved property.
Not set until after Load, Modify, Delete, or
Create has succeeded.

HRESULT IsDefault (

[out, retval] BOOL *pVal
);

True if the property is a predefined property.
Not set until after Load, Modify, Delete, or
Create has succeeded.

HRESULT IsPropertyOverride (

[out, retval] BOOL *pVal
);

True if the property is a reference to a
property defined in an analysis. The
evaluation period of this object overrides the
evaluation period specified in the analysis.
Not set until after Load, Modify, Delete, or
Create has succeeded.

HRESULT SourceSiteID (

[out, retval] UINT *pVal
);

If the property is a reference to a property
defined in an analysis, then this is the SiteID
of the site which contains the analysis. Not
set until after Load, Modify, Delete, or
Create has succeeded.

HRESULT SourceFixletID (

[out, retval] UINT *pVal
);

If the property is a reference to a property
defined in an analysis, then this is the
FixletID of the analysis. Not set until after
Load, Modify, Delete, or Create has
succeeded.

HRESULT SourcePropertyID (

[out, retval] UINT *pVal
);

If the property is a reference to a property
defined in an analysis, then this is the ID of
the property withing that analysis. Not set
until after Load, Modify, Delete, or Create
has succeeded.

HRESULT SourceName (

[out, retval] BSTR *pVal
);

If the property is a reference to a property
defined in an analysis, then this is the
original name of the property in the
analysis. Not set until after Load, Modify,
Delete, or Create has succeeded.

HRESULT SourceRelevance (

[out, retval] BSTR *pVal
);

If the property is a reference to a property
defined in an analysis, then this is the
original relevance of the property in the
analysis. Not set until after Load, Modify,
Delete, or Create has succeeded.

18 IBM Endpoint Manager: API Reference Guide

HRESULT SourceDelaySeconds (

[out, retval] BSTR *pVal
);

If the property is a reference to a property
defined in an analysis, then this is the
original evaluation period for the property
in the analysis. Not set until after Load,
Modify, Delete, or Create has succeeded.

HRESULT DiagnosticMessage (

[out, retval] BSTR *pVal
);

If a method fails, this property returns a
string containing a diagnostic message.

HRESULT StatusMessage (

[out, retval] BSTR *pVal
);

Returns a string describing the status of the
current operation (such as propagation).

HRESULT CurrentFIPSMode(

BSTR username,
BSTR password,
[out, retval] BOOL* pVal);

Retrieves the masthead from the database
and returns true if FIPS mode cryptography
is enabled in the masthead.

BESAPI.FixletMessage

FixletMessage Methods Description

HRESULT SetAppName (

BSTR appName
);

Sets the Application Name string that you
use to specify the registry key for the
BESAPI. Default is 'BESAPI'.

HRESULT SetDSN (

BSTR dsn
);

Sets the name of the ODBC DSN to use
when you connect to the database. Default is
'BES_bfenterprise'.

HRESULT Load (

long siteID,
long FixletID,
BSTR dbUserName,
BSTR password

);

Connects to the database with the specified
username and password. Queries the
database for the data of the Fixlet with the
specified FixletID contained in the Fixlet site
that is identified by the specified siteID. The
properties of the FixletMessage object are set
with the data read from the database.

HRESULT Delete (

BSTR dbUserName,
BSTR password

);

Connects to the database with the specified
username and password. Deletes this Fixlet,
analysis, task, or computer group, and
propagates the action site. This method fails
if the Load method is not used to load the
object.

HRESULT Activate (

BSTR dbUserName,
BSTR password

);

Connects to the database with the specified
username and password. Activates this
analysis and propagates the action site. This
method fails if the Load method is not used
to load the object, or if the object is not an
analysis.

HRESULT Deactivate (

BSTR dbUserName,
BSTR password

);

Connects to the database with the specified
username and password. Stops this analysis
and propagates the action site. This method
fails if the Load method is not used to load
the object, or if the object is not an analysis.

FixletMessage Properties Description

Chapter 2. Server API 19

HRESULT SiteID (

[out, retval] long *pVal
);

The database ID number of the site that
contains the loaded Fixlet. Not set until after
Load succeeds.

HRESULT FixletID (

[out, retval] long *pVal
);

The database ID number of the loaded
Fixlet. Not set until after Load succeeds.

HRESULT SiteName (

[out, retval] long *pVal
);

The name of the site that contains the
loaded Fixlet. Not set until after Load
succeeds.

HRESULT SiteDisplayName(

[out, retval] BSTR *pVal
);

Version 7.1 introduced a new feature where
content can rename a site, such that the site
name in all the console and Web Reports UI
is shown with the new name. To maintain
compatibility with an earlier version, the
SiteName property still returns the old site
name, while this method returns the new
site display name.

HRESULT SiteURL (

[out, retval] long *pVal
);

The gather URL of the site that contains the
loaded Fixlet. Not set until after Load
succeeds.

HRESULT Name (

[out, retval] BSTR *pVal
);

The name of the loaded Fixlet. Not set until
after Load succeeds.

HRESULT Relevance (

[out, retval] BSTR *pVal
);

The relevance expression, including parent
relevance that defines when the problem
identified by this Fixlet affects a client. Not
set until after Load succeeds.

HRESULT ActionScript (

long whichAction,
[out, retval] BSTR *pVal

);

The action script which corrects the problem
that is identified by this Fixlet. Because the
Fixlet might provide more than one
corrective action, you must specify the
whichAction parameter. Usually the
whichAction parameter is 1. Not set until
after Load succeeds.

HRESULT ActionScriptMIMEType (

long whichAction,
[out, retval] BSTR *pVal

);

The MIME type of the action script which
corrects the problem that is identified by this
Fixlet. Because the Fixlet might provide
more than one corrective action, you must
specify the whichAction parameter. Usually
the whichAction parameter is 1. Not set
until after Load succeeds.

HRESULT ActionScriptTypeName (

long whichAction,
[out, retval] BSTR *pVal

);

The friendly name of the MIME type of the
action script which corrects the problem that
is identified by this Fixlet. Because the Fixlet
might provide more than one corrective
action, you must specify the whichAction
parameter. Usually the whichAction
parameter is 1. Not set until after Load
succeeds.

20 IBM Endpoint Manager: API Reference Guide

HRESULT HTML (

[out, retval] BSTR *pVal
);

The HTML code for the body of the Fixlet
which describes the problem and offers links
to the corrective actions. This HTML code
might reference image files from the site.
Those references are relative, and can be
resolved if you set the BASE property of the
HTML document to the path to the site's
data directory. Not set until after Load
succeeds.

HRESULT IsTask (

[out, retval] BOOL *pVal
);

True if the Fixlet is a task message. Not set
until after Load succeeds.

HRESULT IsAnalysis (

[out, retval] BOOL *pVal
);

True if the Fixlet is an analysis. Not set until
after Load succeeds.

HRESULT IsPlainFixlet (

[out, retval] BOOL *pVal
);

True if the Fixlet is neither a task, analysis,
baseline nor computer group. Not set until
after Load succeeds.

HRESULT IsBaseline (

[out, retval] BOOL *pVal
);

True if the Fixlet is a baseline. Not set until
after Load succeeds.

HRESULT DownloadSize (

[out, retval] UINT *pVal
);

The size of the download for this Fixlet, in
bytes. Not set until after Load succeeds.

HRESULT Source (

[out, retval] BSTR *pVal
);

A string that describes the source of this
Fixlet (for example, Microsoft). Not set until
after Load succeeds.

HRESULT SourceID (

[out, retval] BSTR *pVal
);

A string that describes an identifier that is
specified by the source of the Fixlet (for
example Microsoft KB number). Not set
until after Load succeeds.

HRESULT SourceSeverity (

[out, retval] BSTR *pVal
);

A string that describes the severity rating of
the Fixlet as determined by the source. Not
set until after Load succeeds.

HRESULT SourceReleaseDate (

[out, retval] BSTR *pVal
);

A string indicating when the source released
the information. Not set until after Load
succeeds.

HRESULT Category (

[out, retval] BSTR *pVal
);

A string that describes the category of this
Fixlet as specified by the Fixlet author. Not
set until after Load succeeds.

HRESULT Message (

[out, retval] BSTR *pVal
);

A string that contains the text message that
is specified when this Fixlet was created
(applies only to custom Fixlets). Not set
until after Load succeeds.

HRESULT IsDeleted (

[out, retval] BOOL *pVal
);

True if this Fixlet is deleted (applies only to
custom Fixlets). Not set until after Load
succeeds.

HRESULT PropertyIDSet (

[out, retval] BSTR *pVal
);

A string that contains the list of database
IDs of the properties that refer to the
properties contained in this analysis. The
IDs are separated by tabs. This property is
set only for analyses. Not set until after
Load succeeds.

Chapter 2. Server API 21

HRESULT IsGloballyActivated (

[out, retval] BOOL *pVal
);

True if this Fixlet is an analysis and is
activated by a Master Operator. Not set until
after Load succeeds.

HRESULT IsGloballyActivated (

[out, retval] BOOL *pVal
);

True if this Fixlet is an analysis and is
activated by a Master Operator. Not set until
after Load succeeds.

HRESULT IsLocallyActivated (

[out, retval] BOOL *pVal
);

True if this Fixlet is an analysis and is
activated by a Non-Master Operator. Not set
until after Load succeeds.

HRESULT CanActivate (

[out, retval] BOOL *pVal
);

True if this Fixlet is an analysis and can be
activated by the current user (the user which
was used to Load this Fixlet). Not set until
after Load succeeds.

HRESULT CanDeactivate (

[out, retval] BOOL *pVal
);

True if this Fixlet is an analysis and can be
stopped by the current user (the user which
was used to Load this Fixlet). Not set until
after Load succeeds.

HRESULT ActionXML (

long whichAction,
SAFEARRAY(byte) settingsXML,
[out, retval] IXMLDOMDocument
**actionXML

);

Returns an importable XML document that
represents an action that is taken from this
Fixlet, task or baseline. Specify which action
with the whichAction parameter. The
settingsXML parameter is the bytes of an
XML document that specifies the various
settings in an action.

HRESULT XML (

[out, retval] IXMLDOMDocument
**xml

);

Returns an importable XML document that
represents this Fixlet object.

HRESULT DiagnosticMessage (

[out, retval] BSTR *pVal
);

If a method fails, this property returns a
string that contains a diagnostic message.

HRESULT StatusMessage (

[out, retval] BSTR *pVal
);

Returns a string that describes the status of
the current operation (for example
propagation).

HRESULT CurrentFIPSMode(

BSTR username,
BSTR password,
[out, retval] BOOL* pVal);

Retrieves the masthead from the database
and returns true if FIPS mode cryptography
is enabled in the masthead.

BESAPI.SiteManager

SiteManager Methods Description

HRESULT SetAppName (

BSTR appName
);

Set the Application Name string that is used
to specify the registry key for the BESAPI.
Default is 'BESAPI'.

HRESULT SetDSN (

BSTR dsn
);

Set the name of the ODBC DSN to use when
connecting to the database. Default is
'BES_bfenterprise'.

22 IBM Endpoint Manager: API Reference Guide

HRESULT Subscribe (

BSTR mastheadFilePath,
BSTR username,
BSTR password

);

Connects to the database with the username
and password. Subscribes to the site
specified by the masthead file at the
specified file path. Propagates a new version
of the action site.

HRESULT SubscribeWithRelevance (

BSTR mastheadFilePath,
BSTR relevance,
BSTR username,
BSTR password

);

Connects to the database with the username
and password. Subscribes computers that
evaluate the specified relevance as "true” to
the site specified by the masthead file at the
specified file path. Propagates a new version
of the action site.

HRESULT Unsubscribe (

UINT siteID,
BSTR username,
BSTR password

);

Connects to the database with the username
and password. Unsubscribes from the site
specified by the specified site ID. Propagates
a new version of the action site.

SiteManager Properties Description

HRESULT DiagnosticMessage (

[out, retval] BSTR *pVal
);

If a method fails, this property returns a
string containing a diagnostic message.

HRESULT StatusMessage (

[out, retval] BSTR *pVal
);

Returns a string describing the status of the
current operation (for example propagation).

HRESULT CurrentFIPSMode(

BSTR username,
BSTR password,
[out, retval] BOOL* pVal);

Retrieves the masthead from the database
and returns true if FIPS mode cryptography
is enabled in the masthead.

BESAPI.ActionSiteMasthead

ActionSiteMasthead Methods Description

HRESULT SetAppName (

BSTR appName
);

Sets the Application Name string that is
used to specify the registry key for the
BESAPI. Default is 'BESAPI'.

HRESULT SetDSN (

BSTR dsn
);

Sets the name of the ODBC DSN to use
when connecting to the database. Default is
'BES_bfenterprise'.

HRESULT Load (

BSTR username,
BSTR password

);

Connects to the database with the specified
username and password. Reads the action
site masthead from the database.

ActionSiteMasthead Properties Description

HRESULT DiagnosticMessage (

[out, retval] BSTR *pVal
);

If a method fails, this property returns a
string containing a diagnostic message.

HRESULT StatusMessage (

[out, retval] BSTR *pVal
);

Returns a string describing the status of the
current operation (for example,
propagation).

Chapter 2. Server API 23

HRESULT IsAdministrator(

BSTR username,
[out, retval] BOOL *pVal

);

True if the operator specified is a Master
Operator.

HRESULT IsAuthoringEnabled(

[out, retval] BOOL *pVal
);

True if the authoring features are enabled for
this deployment.

HRESULT CurrentFIPSMode(

BSTR username,
BSTR password,
[out, retval] BOOL* pVal);

Retrieves the masthead from the database
and returns true if FIPS mode cryptography
is enabled in the masthead.

BESAPI.SigningKeys

SigningKeys Methods Description

HRESULT SetAppName (

BSTR appName
);

Sets the Application Name string that is
used to specify the registry key for the
BESAPI. Default is 'BESAPI'.

HRESULT SetDSN (

BSTR dsn
);

Sets the name of the ODBC DSN to use
when you connect to the database. Default is
'BES_bfenterprise'.

HRESULT SetPrivateKeyPath (

BSTR username,
BSTR fullpath

);

Registers the location of the private key file
for the specified user. The fullpath
parameter is the full path to the private key
file, including the file name that is usually
named "publisher.pvk”.

HRESULT SetPublisherCertPath (

BSTR username,
BSTR fullpath

);

Registers the location of the user’s certificate
file that corresponds to the private key. The
fullpath parameter is the full path to the
certificate file, including the file name that is
usually named "publisher.crt”.

HRESULT SetLicenseCertPath (

BSTR username,
BSTR fullpath

);

Registers the location of the site license
certificate file for the deployment. The
fullpath parameter is the full path to the
certificate file, including the file name that is
usually named "license.crt”.

HRESULT SetDefaultAppName (

BSTR appName
);

Sets the default application name string
which is used by every BESAPI object,
unless its SetAppName method is used to
override the default. If no default is
specified using this method and
SetAppName is not called explicitly on an
object, then the object uses ‘BESAPI’ as the
application name.

HRESULT SetDefaultDSN (

BSTR dsnName
);

Sets the default name of the ODBC DSN to
use when you connect to the database. This
DSN is used unless the SetDSN method is
used to override the default. If no default is
specified with this method, and SetDSN is
not called explicitly on an object, then the
object uses ‘BES_bfenterprise’ as the name of
the ODBC DSN when you connect to the
database.

24 IBM Endpoint Manager: API Reference Guide

SigningKeys Properties Description

HRESULT DiagnosticMessage (

[out, retval] BSTR *pVal
);

If a method fails, this property returns a
string that contains a diagnostic message.

HRESULT StatusMessage (

[out, retval] BSTR *pVal
);

Returns a string that describes the status of
the current operation (for example,
propagation).

HRESULT AreSigningKeysValid(

BSTR username,
BSTR password,
[out, retval] BOOL *pVal

);

True if the keys registered for the specified
user are valid, and the specified password is
correct. If this is false, then the
DiagnosticMessage property specifies the
reason that the keys are not valid.

HRESULT CurrentFIPSMode(

BSTR username,
BSTR password,
[out, retval] BOOL* pVal);

Retrieves the masthead from the database
and returns true if FIPS mode cryptography
is enabled in the masthead.

BES schemas

The schemas that are listed in this section are condensed and augmented
interpretations of traditional XML schemas. They outline the structure in terms of
elements and attributes, simplifying the XML syntax. They also add a repeat range
that describes the number of elements and attributes that are expected by Tivoli
Endpoint Manager. Although these augmented schemas are not schemas (.xsd) in
the strictest sense, for the sake of brevity we describe them as such.

There are two basic types in the augmented schemas, the elements and their
attributes:
v <ElementTagName> ElementType </ElementTagName>

This identifies an XML element named ElementTagName of type ElementType.
v <ElementTagName

AttributeName=”AttributeType”>

...

</ElementTagName>

This XML element has an attribute named AttributeName of type AttributeType.

There might be multiple entries for these objects. For each element and attribute,
there is a stated range. That represents the number of objects of the specified type
that is expected. These values are represented by numbers in square brackets, as
follows:
v [x] This element or attribute must occur exactly x times.
v [x..y] This element or attribute occurs a minimum of x times and a maximum of

y times.
v [x..*] This element or attribute occurs a minimum of x times and has no

maximum.

The following example indicates that the schema allows zero or more Relevance
elements of type RelevanceString:
<Relevance> RelevanceString </Relevance> [0..*]

Chapter 2. Server API 25

Fixlet or task

The schema for Fixlets is similar to the schema for tasks. Their combined schema is
as follows:
<Fixlet> | <Task>

<Title> xs:normalizedString </Title> [1]
This is the Fixlet name.

<Description> xs:string </Description> [1]
The description is treated as HTML that is used to construct
the Fixlet body
for the “Description” tab of the console Fixlet document.

<Relevance> RelevanceString </Relevance> [0..*]
Each relevance element is shown as a separate relevance clause
in the console Fixlet document. The Fixlet is reported as
relevant only for computers for which every relevance clauses
evaluates to true.

<GroupRelevance JoinByIntersection="xs:boolean"> [1]
The content of this tag includes any number of the search component
types in any order:

<SearchComponentRelevance> SearchComponentRelevance
</SearchComponentRelevance> [0..*]
<SearchComponentPropertyReference> SearchComponentPropertyReference
</SearchComponentPropertyReference> [0..*]
<SearchComponentGroupReference> SearchComponentGroupReference
</SearchComponentGroupReference> [0..*]
</GroupRelevance>

As of version 7.0, it became possible for Fixlets, Tasks,
Baselines, and Analyses to have Relevance definitions in
the same form as computer group definitions. You can
access this functionality in the console by going to
the Relevance tab of the Create Fixlet Dialog and selecting
the option for "computers matching the following criteria".
The XML for such a Fixlet would have a GroupRelevance tag
instead of a Relevance tag, in the same form as the XML
for computer groups.

<Category> xs:normalizedString </Category> [0..1]
Displayed on the “details” tab of the Fixlet document
and in the Fixlet tree/list.

<WizardData> ... </WizardData> [0..1]
For use by wizards. Not used for importing through
the console or through the Server API.

<DownloadSize> xs:nonNegativeInteger </DownloadSize> [0..1]
The total number of bytes of all downloads in the
Fixlet's action.

<Source> xs:normalizedString </Source> [0..1]
<SourceID> xs:normalizedString </SourceID> [0..1]
<SourceReleaseDate> NonNegativeDate </SourceReleaseDate> [0..1]

Must be of the form YYYY-MM-DD.
<SourceSeverity> xs:normalizedString </SourceSeverity> [0..1]
<CVENames> xs:normalizedString </CVENames> [0..1]
<SANSID> xs:normalizedString </SANSID> [0..1]

DownloadSize, Source, SourceID, SourceReleaseDate,
SourceSeverity, CVENames, and SANSID are extra
information about a Fixlet that are displayed
on the “details” tab of the Fixlet document and
in the Fixlet tree/list.

<DefaultAction> FixletAction </DefaultAction> [0..1]
<Action> FixletAction </Action> [0..*]
<MIMEField> [0..*]
<Name> xs:string </Name> [1]
<Value> xs:string </Value> [1]
</MIMEField>

Some external Fixlets are tagged with special pieces
of data in the form of MIME fields. They are then
used by dashboards and wizards. These fields are

26 IBM Endpoint Manager: API Reference Guide

preserved when Fixlets are exported and imported.
You should only add these special fields if you want
to access them from dashboards or wizards.

</Fixlet> | </Task>

Baseline

You can also specify baselines with .bes files. This is the schema:
<Baseline>

Baselines have the following fields in common with Fixlets and tasks:
<Title> xs:normalizedString </Title> [1]
<Description> xs:string </Description> [1]
<Relevance> RelevanceString </Relevance> [0..*]
<GroupRelevance> ... </GroupRelevance> [0..1]
<Category> xs:normalizedString </Category> [0..1]
<WizardData> ... </WizardData> [0..1]
<DownloadSize> xs:nonNegativeInteger </DownloadSize> [0..1]
<Source> xs:normalizedString </Source> [0..1]
<SourceID> xs:normalizedString </SourceID> [0..1]
<SourceReleaseDate> NonNegativeDate </SourceReleaseDate> [0..1]
<SourceSeverity> xs:normalizedString </SourceSeverity> [0..1]
<CVENames> xs:normalizedString </CVENames> [0..1]
<SANSID> xs:normalizedString </SANSID> [0..1]
<MIMEField> ... </MIMEField> [0..*]

Baselines are also composed of a collection of named baseline component
groups, which contain baseline components:
<BaselineComponentCollection> [1]

<BaselineComponentGroup
Name="xs:normalizedString [0..1]"> [0..*]
<BaselineComponent

Name="xs:normalizedString [0..1]"
The “Name” attribute corresponds to the content ID
of the action, which is a short identifier for the
component that is used to match it up with a
particular action of the source Fixlet/task/baseline
of the component.

ActionName="xs:normalizedString [0..1]"
The “ActionName” attribute is a longer description
of the action shown on the “Components” tab of the
baseline document.

IncludeInRelevance="xs:boolean [0..1]"
If true, then the relevance of the component will be
included in the relevance for the baseline. If false,
then the baseline will be relevant regardless of
whether this component is relevant; the individual
component will still not be executed if it is not
relevant.

SourceSiteURL="xs:anyURI [0..1]"
The gather site URL for the source Fixlet/task/
baseline that this component comes from.

SourceID="xs:nonNegativeInteger [0..1]"
The ID of the Fixlet/task/baseline that this
component comes from.

> [0..*]
<Relevance> RelevanceString </Relevance> [1]

This component will be executed only on computers
for which the relevance clause evaluates to true.

<ActionScript> ActionScript </ActionScript> [1]
<SuccessCriteria> ActionSuccessCriteria
</SuccessCriteria> [0..1]

</BaselineComponent>
</BaselineComponentGroup>

Chapter 2. Server API 27

</BaselineComponentCollection>
<Settings> ActionSettings </Settings> [0..1]
<SettingsLocks> ActionSettingsLocks </SettingsLocks> [0..1]

</Baseline>

Single actions

You can specify Actions in a .bes file. This is the schema:
<SingleAction>

<Title> xs:normalizedString </Title> [1]
The name of the action.

<Relevance> RelevanceString </Relevance> [1]
The action will run only on computers for which the relevance
expression evaluates to true.

<ActionScript> ActionScript </ActionScript> [1]
<SuccessCriteria> ActionSuccessCriteria </SuccessCriteria> [0..1]
<Settings> ActionSettings </Settings> [0..1]
<SettingsLocks> ActionSettingsLocks </SettingsLocks> [0..1]
<SuccessCriteriaLocked> xs:boolean </SuccessCriteriaLocked> [0..1]

If this element is present and set to true, then the action will have
a success criteria that the user taking the action will not be able
to change in the Take Action Dialog.

<IsUrgent> xs:boolean </IsUrgent>
This marks the action as urgent for client processing. It should
be left out in most circumstances (defaults to false).

</SingleAction>

Multiple action groups

You can specify multiple action groups in a .bes file. This is the schema:
<MultipleActionGroup>

<Title> xs:normalizedString </Title> [1]
The name of the multiple action group.

<PreGroupActionScript> ActionScript </PreGroupActionScript> [0..1]
An action to run before all the member actions of the multiple
action group; corresponds to the Pre-Execution Action Script
tab of the Take Action Dialog when taking multiple actions.

<MemberAction> [1..*]
<Title> xs:normalizedString </Title> [1]

The name of the member action.
<Relevance> RelevanceString </Relevance> [1]

The member action will run only on computers for which
the relevance expression evaluates to true.

<ActionScript> ActionScript </ActionScript> [1]
<SuccessCriteria> ActionSuccessCriteria </SuccessCriteria> [0..1]
<IncludeInGroupRelevance>true|false</IncludeInGroupRelevance>

A value of true for IncludeInGroupRelevance for a member
action of a multiple action group means that the group
as a whole is relevant if this member action’s
relevance is true. Thus, if any of a group’s members
that have IncludeInGroupRelevance set to true are relevant,
then the group as a whole is relevant. If no members
have IncludeInGroupRelevance set, then the group should be
relevant on all computers, as long as the group’s top-level
relevance is true.

</MemberAction>
<PostGroupActionScript> ActionScript </PostGroupActionScript> [0..1]

An action to run once all member actions have finished executing;
corresponds to the Post-Execution Action Script when taking
multiple actions.

<Settings> ActionSettings </Settings> [0..1]
<SettingsLocks> ActionSettingsLocks </SettingsLocks> [0..1]

</MultipleActionGroup>

28 IBM Endpoint Manager: API Reference Guide

Analyses

You can specify analyses in a .bes file. This is the schema:
<Analysis>

<Title> xs:normalizedString </Title> [1]
The name of the analysis.

<Description> xs:string </Description> [1]
The description is treated as HTML that is shown on the “Description”
tab of the analysis document.

<Relevance> RelevanceString </Relevance> [1..*]
Only computers for which all relevance clauses are true will report
results.

<Property
Name="xs:normalizedString [1]"

The name of the property.
EvaluationPeriod="NonNegativeTimeInterval [0..1]"

Controls how often the property is evaluated.
ID="xs:nonNegativeInteger [1]"

Each property in the analysis must have a unique ID attribute.
KeepStatistics="xs:boolean [0..1]"

If true, then enables statistical inspection of the results
for this property. This statistical data is then available
to dashboards and wizards. You should only capture these
properties if you want to use statistical data from
dashboards or wizards.

> [0..*]
RelevanceString

</Property>
<MIMEField> ... </MIMEField> [0..*]
<GroupRelevance> ... </GroupRelevance> [0..1]

</Analysis>

Computer groups

You can specify automatic computer groups in the .bes file. Note that only
automatic groups can be created by importing through the console, and no
computer groups can be created by using the Server API. This is the schema:
<ComputerGroup>

<Title> xs:normalizedString </Title> [1]
The name of the computer group.

<JoinByIntersection> xs:boolean </JoinByIntersection> [1]
If true, then a computer is in the group only if it meets
the requirements of all of the group components. If false, a
computer is in the group if it meets any of the requirements
of the group components.

<IsDynamic> xs:boolean </IsDynamic> [1]
Must be true. For internal use.

<EvaluateOnClient> xs:boolean </EvaluateOnClient> [1]
Must be true. For internal use.
The rest of the computer group definition includes any number
of the search component types in any order:

<SearchComponentRelevance> SearchComponentRelevance
</SearchComponentRelevance> [0..*]
<SearchComponentPropertyReference> SearchComponentPropertyReference
</SearchComponentPropertyReference> [0..*]
<SearchComponentGroupReference> SearchComponentGroupReference
</SearchComponentGroupReference> [0..*]

</ComputerGroup>

Chapter 2. Server API 29

Properties

This element creates a global retrieved property that you can specify in a .bes file.
This is the schema:
<Property

Name="xs:normalizedString [1]"
EvaluationPeriod="NonNegativeTimeInterval [0..1]">

controls how often the property is evaluated.
RelevanceString

</Property>

Shared BES XML elements

The following are API elements that can be mixed with other elements. For
example, you can have several actions that are associated with a Fixlet, all sharing
the same schema.

FixletAction

You can specify multiple actions for each Fixlet you define in a .bes file. This is the
schema:
<...
ID="xs:normalizedString [1]">

Each action inside a Fixlet or task must have a unique ID, which is displayed
on the actions tab of the Edit Fixlet Dialog and on the Details tab of the
Fixlet document.
<Description> [0..1]

<PreLink> xs:normalizedString </PreLink> [1]
<Link> xs:normalizedString </Link> [1]
<PostLink> xs:normalizedString </PostLink> [1]

</Description>
The description of the action is the HTML that is displayed in the actions
section of the Fixlet description tab. The content of the Prelink tag is
the HTML that is displayed before the link that takes the action
(for instance “Click”). The content of the Link tag is HTML that the user
can click on to take the action (for instance “here”).
The content of the PostLink tag is HTML following the link (for instance
“to deploy this action.”)
<ActionScript> ActionScript </ActionScript> [1]

See the “ActionScript” type.
<SuccessCriteria> ActionSuccessCriteria </SuccessCriteria> [0..1]

See the “ActionSuccessCriteria” type. If this element is not preset
and the action is inside a Fixlet, the success criteria will default
to match the relevance of the Fixlet. If the action is inside a task,
the success criteria will default to run to completion.

<SuccessCriteriaLocked> xs:boolean </SuccessCriteriaLocked> [0..1]
If this element is present and set to true, then the action will
have a success criteria that the user taking the action will not
be able to change in the Take Action Dialog.

<Settings> ActionSettings </Settings> [0..1]
<SettingsLocks> ActionSettingsLocks </SettingsLocks> [0..1]

</...>

ActionScript

You can include multiple scripts in a .bes file. This is the schema:
<...
MIMEType="xs:normalizedString [0..1]">

The attribute MIMEType specifies the type of the actionscript; if absent,
it defaults to "application/x-Fixlet-Windows-Shell". For AppleScript, use

30 IBM Endpoint Manager: API Reference Guide

“application/x-AppleScript”. For a sh script, use “application/x-sh”.
The contents of the tag specify the contents of the action script.
xs:string

</...>

ActionSuccessCriteria

You can specify an action success criteria in a .bes file. The ActionSuccessCriteria
element corresponds to the ‘Success Criteria’ tab of the Take Action Dialog. This is
the schema:
<...
Option="xs:string (possible values: {’RunToCompletion’|’OriginalRelevance’|
’CustomRelevance’}) [0..1]">

If the 'Option' attribute is 'RunToCompletetion', the action will
be considered successful when all lines of the action script have
been executed. If the option is 'OriginalRelevance', the action
is considered successful when the applicability relevance of
the action becomes false. If the option is 'CustomRelevance',
then the action is considered false when the custom relevance
expression inside the tag evaluates to false.

RelevanceString
</...>

ActionSettings

The contents of the ActionSettings element correspond to the options available on
the Execution, Users, Messages, Offer, and Post-Action tabs of the Take Action Dialog.
This is the schema:
<...>

<ActionUITitle> xs:normalizedString </ ActionUITitle > [0..1]
The title of the message action as displayed in the client UI.
<PreActionShowUI> xs:boolean </PreActionShowUI> [0..1]
If true, a message is displayed before running the action.
<PreAction> [0..1]

<Text> xs:string </Text> [0..1]
The text of the message shown before running the action.

<AskToSaveWork> xs:boolean </AskToSaveWork> [0..1]
If true, the user is asked to save work before

the action is run.
<ShowActionButton> xs:boolean </ShowActionButton> [0..1]
If true, the user is allowed to view the action script

before running it.
<ShowCancelButton> xs:booelan </ShowCancelButton> [0..1]

If true, the user is allowed to cancel running
the action.

<DeadlineBehavior> xs:string (possible values {ForceToRun|
RunAutomatically}

</DeadlineBehavior> [0..1]
All pre-action messages have a deadline. If the
deadline behavior is 'ForceToRun', the user will
be presented with a dialog that must be acknowledged
when the deadline is reached. If the deadline behavior
is 'RunAutomatically', the action will run when the
deadline is reached, regardless of whether the user has
acknowledged the action.

<DeadlineType> xs:string (possible values {Interval|Aboslute})
</DeadlineType> [0..1]
<DeadlineInterval> ActionMessageTimeInterval
</DeadlineInterval> [0..1]
<DeadlineOffset> TimeInteval </DeadlineOffset> [0..1]

The pre-action deadline can be specified as either a
time interval from when the client UI is shown, or as

Chapter 2. Server API 31

an absolute date and time. If the deadline type is
'Interval', then the 'DeadlineInterval' element must
be present with an appropriate time interval of type
ActionMessageTimeInterval. If the deadline type is
'Absolute', then the 'DeadlineOffset' element must
be present with a TimeInterval, which will create
an absolute deadline for the action that is offset
from the date and time the action is taken in the console.

<ShowConfirmation> xs:boolean </ShowConfirmation> [0..1]
<Confirmation> xs:string </Confirmation> [0..1]

If 'ShowConfirmation' is true, an extra confirmation message
is shown to the user with text from the
'Confirmation' element.

</PreAction>
<HasRunningMessage> xs:boolean </HasRunningMessage> [0..1]

If true, a message is displayed while running the action.
<RunningMessage> [0..1]

<Title> xs:normalizedString </Title> [0..1]
The title of message displayed while running the action.

<Text> xs:string </Text> [0..1]
The text of the message displayed while running the action.

</RunningMessage>
<HasTimeRange> xs:boolean </HasTimeRange> [0..1]
<TimeRange> [0..1]

<StartTime> xs:time </StartTime> [0..1]
<EndTime> xs:time </EndTime> [0..1]

</TimeRange>
If HasTimeRange is true, then the action will run only between
the StartTime and EndTime in client local time.
Times have the form hh:mm:ss.

<HasStartTime> xs:boolean </HasStartTime> [0..1]
<StartDateTimeOffset> TimeInterval </StartDateTimeOffset> [0..1]

If HasStartTime is true, then the action will start at a date
and time computed by adding the StartDateTimeOffset to
the time the action is taken. For example, to have an
action start one day from the time it is taken, specify
“P1D”. Note that this time can be negative – to create
an action that starts a day before the action is taken
(so that clients in every timezone will start executing
immediately), specify “-P1D”. See TimeInterval for possible values.

<HasEndTime> xs:boolean </HasEndTime> [0..1]
<EndDateTimeOffset> NonNegativeTimeInterval </EndDateTimeOffset> [0..1]

If HasEndTime is true, then the action will start at a date and
time computed by adding the EndDateTimeOffset to the time the
action is taken. See NonNegativeTimeInterval for possible values.

<HasDayOfWeekConstraint> xs:boolean </HasDayOfWeekConstraint> [0..1]
<DayOfWeekConstraint> [0..1]

<Sun> xs:boolean </Sun> [0..1]
<Mon> xs:boolean </Mon> [0..1]
<Tue> xs:boolean </Tue> [0..1]
<Wed> xs:boolean </Wed> [0..1]
<Thu> xs:boolean </Thu> [0..1]
<Fri> xs:boolean </Fri> [0..1]
<Sat> xs:boolean </Sat> [0..1]

</DayOfWeekConstraint>
If HasDayOfWeekConstraint is true, then the action will run only
on those days of the week that are specified and whose contents
are true.

<ActiveUserRequirement> xs:string (value comes from list: {’NoRequirement’|
’RequireUser’|’RequireNoUser’})

</ActiveUserRequirement> [0..1]
NoRequirement = Run independently of user presence
RequireUser = Run when at least one of the selected users is logged on
RequireNoUser = Run only when no user is logged on

<ActiveUserType> xs:string (value vomes from list: {'AllUsers'|'LocalUsers'|
'UsersOfGroups'})

</ActiveUserType> [0..1]

32 IBM Endpoint Manager: API Reference Guide

<UIGroupConstraints>
<Win9xGroup /> [0..1]
<WinNTGroup /> [0..1]
<LocalGroup Name=”xs:string” /> [0..*]
<DomainGroup Name=”xs:string” Sid=”xs:string” /> [0..*]

</UIGroupConstraints>
If the ActiveUserType is 'UsersOfGroups', then the client UI will
only be shown to a user if a user is in at least one of
the specified groups.

<HasWhose> xs:boolean </HasWhose> [0..1]
<Whose> [0..1]

<Property> xs:string </Property> [0..1]
<Relation> xs:string </Relation> [0..1]
<Value> xs:string </Value> [0..1]

</Whose>
If HasWhose is true, then the action will run only on computers
where the retrieved property named in Property has the relationship
given in Relation to the value in Value. For example, to add
the constraint that the action runs only on computers where the
value of the retrieved property OS starts with Win:

<Property>OS</Property>
<Relation>starts with</Relation>
<Value>Win</Value>

The possible values of relation are {matches, does not match,
contains, does not contain, starts with, ends
with, =, <, >, <=, >=, !=}

<Reapply> xs:boolean </Reapply> [0..1]
If true, the action will automatically reapply if it becomes
relevant again after it has successfully executed.

<HasReapplyLimit> xs:boolean </HasReapplyLimit> [0..1]
<ReapplyLimit> xs:nonNegativeInteger </ReapplyLimit> [0..1]

If the action is set to reapply and HasReapplyLimit is true, then
the action will only reapply the specified number of times.

<HasReapplyInterval> xs:boolean </HasReapplyInterval> [0..1]
<ReapplyInterval> NonNegativeTimeInterval (possible values:

{’PT10M’|’PT15M’|’PT30M’|’PT1H’|’PT2H’|’PT4H’|’PT8H’|
’PT12H’|’P1D’|’P2D’|’P5D’|’P7D’|’P15D’|’P30D’})

</ReapplyInterval> [0..1]
If the action is set to reapply and HasReapplyInterval is true,
then the client will wait the specified time interval between
reapplications. The possible values are in the list above.
See TimeInterval for information about the value format.

<HasRetry> xs:boolean </HasRetry> [0..1]
<RetryCount> xs:nonNegativeInteger </RetryCount> [0..1]

If HasRetry is true, the action is retried on failure
the number of times specified in RetryCount.

<RetryWait
Behavior="xs:string (value comes from list: {’WaitForReboot’|

’WaitForInterval’}) [0..1]"> [0..1]
RetryWaitInterval (TimeInterval)

</RetryWait>
If the action is set to retry and the attribute Behavior of
the RetryWait element is WaitForReboot, the computer must
be rebooted before the action is retried. If the
Behavior is WaitForInterval, then the action is retried
after the time interval specified inside the RetryWait tag.
The possible values are:
{’PT15M’|’PT30M’|’PT1H’|’PT2H’|’PT4H’|’PT8H’|
’PT12H’|’P1D’|’P2D’|’P3D’|’P5D’|’P15D’|’P30D’}
See TimeInterval for more information about the value format.

<HasTemporalDistribution> xs:boolean </HasTemporalDistribution> [0..1]
<TemporalDistribution> NonNegativeTimeInterval
</TemporalDistribution> [0..1]

If HasTemporalDistribution is true, then the action will
be distributed over the time duration specified in
TemporalDistribution to reduce network load.

<PostActionBehavior

Chapter 2. Server API 33

Behavior="xs:string (value comes from list: {’Nothing’|’Restart’|
’Shutdown’}) [0..1]"> [0..1]

If the Behavior attribute is Restart or Shutdown, the
computer is restarted or shutdown (respectively) after
the action completes.

<AllowCancel> xs:boolean </AllowCancel> [0..1]
If true, the user is allowed to cancel the
restart/shutdown.

<PostActionDeadlineBehavior> xs:string (value comes from list
{'ForceToRun'|'RunAutomatically'}

</PostActionDeadlineBehavior> [0..1]
<PostActionDeadlineInterval> ActionMessageTimeInterval
</PostActionDeadlineInterval> [0..1]

When a restart/shutdown is specified, the restart/shutdown will
always have a deadline. If the deadline behavior is 'ForceToRun',
the user is forced to acknowledge the restart/shutdown when
the deadline is reached. If the deadline behavior is
'RunAutomatically', the restart/shutdown will happen
automatically, regardless of user acknowledgement. The deadline
interval is specified in the PostActionDeadlineInterval.

<Title> xs:normalizedString </Title> [0..1]
The title of the message displayed before the restart/shutdown.

<Text> xs:string </Text> [0..1]
The text of the message displayed before the restart/shutdown.

</PostActionBehavior>
</...>

ActionSettingsLocks

By default, all the action settings specified are used as the new defaults to the Take
Action Dialog. Certain settings might be locked so that the user cannot change
them through the dialog. If a setting in ActionSettingsLocks is set to true, then the
corresponding group of settings in ActionSettings is locked.

For example, if the TimeRange element of ActionSettingsLocks is true, then the
values specified in ActionSettings for HasTimeRange, StartTime, and EndTime
cannot be changed in the Take Action Dialog.

This is the schema:
<...>

<ActionUITitle> xs:boolean </ActionUITitle> [0..1]
<PreActionShowUI> xs:boolean </PreActionShowUI> [0..1]
<PreAction>

<MessageTitle> xs:boolean </MessageTitle> [0..1]
<MessageText> xs:boolean </MessageText> [0..1]
<AskToSaveWork> xs:boolean </AskToSaveWork> [0..1]
<ShowActionButton> xs:boolean </ShowActionButton > [0..1]
<ShowCancelButton> xs:boolean </ShowCancelButton > [0..1]
<DeadlineBehavior> xs:boolean </DeadlineBehavior > [0..1]
<ShowConfirmation> xs:boolean </ShowConfirmation> [0..1]

</PreAction>
<HasRunningMessage> xs:boolean </HasRunningMessage> [0..1]
<RunningMessage> [0..1]

<Title> xs:boolean </Title> [0..1]
<Text> xs:boolean </Text> [0..1]

</RunningMessage>
<TimeRange> xs:boolean </TimeRange> [0..1]
<StartDateTimeOffset> xs:boolean </StartDateTimeOffset> [0..1]
<EndDateTimeOffset> xs:boolean </EndDateTimeOffset> [0..1]
<DayOfWeekConstraint> xs:boolean </DayOfWeekConstraint> [0..1]
<ActiveUserRequirement> xs:boolean </ActiveUserRequirement> [0..1]
<Whose> xs:boolean </Whose> [0..1]
<Reapply> xs:boolean </Reapply> [0..1]
<ReapplyLimit> xs:boolean </ReapplyLimit> [0..1]

34 IBM Endpoint Manager: API Reference Guide

<ReapplyInterval> xs:boolean </ReapplyInterval> [0..1]
<RetryCount> xs:boolean </RetryCount> [0..1]
<RetryWait> xs:boolean </RetryWait> [0..1]
<TemporalDistribution> xs:boolean </TemporalDistribution> [0..1]
<PostActionBehavior> [0..1]

<Behavior> xs:boolean </Behavior> [0..1]
<AllowCancel> xs:boolean </AllowCancel> [0..1]
<Deadline> xs:boolean </Deadline> [0..1]
<Title> xs:boolean </Title> [0..1]
<Text> xs:boolean </Text> [0..1]

</PostActionBehavior>
</...>

Search components

Search components are used to describe a group of computers for creating a
computer group, or for specifying the relevance for a Fixlet, task, baseline, or
analysis. Applicability is defined by a combination of three types of components,
relevance, property reference and group reference.

This is the schema:
<SearchComponentRelevance

Comparison="xs:normalizedString (possible values: {’IsTrue’|
’IsFalse’}) [0..1]"> [0..*]

<Relevance> RelevanceString </Relevance> [1]
</SearchComponentRelevance>

Contains a relevance expression and a comparison {’IsTrue’|’IsFalse’}.
A computer is in the group if the expression is true for that computer
and the comparison is 'IsTrue' or the expression is false and
the comparison is 'IsFalse'.

<SearchComponentPropertyReference PropertyName="xs:normalizedString [0..1]"
Comparison="xs:normalizedString (possible values:
{’Contains’|’DoesNotContain’|’Equals’|’DoesNotEqual’}) [0..1]"> [0..*]
<SearchText> xs:normalizedString </SearchText> [1]
<Relevance> RelevanceString </Relevance> [1]

</SearchComponentPropertyReference>
Contains a retrieved property name, a comparison {’Contains’ |
’DoesNotContain’ | ’Equals’ | ’DoesNotEqual’}, and text
against which to compare the property result. A computer is in the group
if its result for the property meets the comparison with the specified text.

<SearchComponentGroupReference
GroupName="xs:normalizedString [0..1]"
Comparison="xs:normalizedString (value comes from list:
{’IsMember’|’IsNotMember’}) [0..1]" />Contains another computer
group name and a comparison {’IsMember’|’IsNotMember’}. A computer
is in the current group if it is in the other group and
the comparison is 'IsMember', or if it is not in the other group and
the comparison is 'IsNotMember'.

Miscellaneous types

RelevanceString

Equivalent to xs:string.

Chapter 2. Server API 35

TimeInterval

Values of this type have the format (-)PdDThHmMsS, where dD represents the
number of days, T is the date/time separator, hH is the number of hours, mM is
the number of minutes, and sS is the number of seconds (that can have up to six
decimal digits).

Examples:

PT1M – one minute

P32DT4H24M43.52S – 32 days, 4 hours, 24 minutes, 43.52 seconds

-P12H – negative 12 hours

NonNegativeTimeInterval

TimeInterval that cannot be negative.

ActionMessageMaxPostponementInterval

Possible values:
{’PT15M’|’PT30M’|’PT1H’|’PT2H’|’PT4H’|’PT6H’|’PT8H’|
’PT12H’|’P1D’|’P2D’|’P3D’|’P5D’|’P7D’|’P15D’|’P30D’}

ActionMessageTimeoutInterval

Possible values:
{’PT1M’|’PT2M’|’PT3M’|’PT4M’|’PT5M’|’PT10M’|’PT15M’|’PT30M’|’PT1H’|’PT2H’|
’PT4H’|’PT6H’|’PT8H’|’PT12H’|’P1D’|’P2D’|’P3D’|’P5D’|’P7D’|’P15D’|’P30D’}

36 IBM Endpoint Manager: API Reference Guide

Chapter 3. Client API

The Client API allows you to use the client (also called the BES client) to
interrogate your networked endpoints. Through the API, you gain access to
thousands of client properties that you can then reuse in your own agent programs
or pass on to other third-party programs. The interface is mediated by a rules
document (XML) that defines your queries. The results are calculated in the
execution environment of the client that typically has elevated privileges and
access rights.

You define the values that are exposed by the Client API using relevance
expressions and the complete set of inspectors available for clients. You can use
expressions of arbitrary complexity to finely target your search. Note that
inspectors are powerful and can also reveal sensitive data; take care to monitor the
information that is exposed through this interface.

For the information to become available to the API, a console operator must
propagate the program and the rules document to the client computers.
Alternatively, another program that uses the Server API can propagate the required
files.

The Client API is general-purpose, driven by a rules document and an agent to
process the output of the API. However, it is largely used to support compliance of
networked endpoints to various policies. As such, the rules document is typically
called the compliance document, and both terms are used in this guide.

From a compliance point of view, the API offers many pertinent features. It can
target just the computers that are out of compliance and use that same analysis to
drive the remediation. Because the Tivoli Endpoint Manager client is under the
control of the console, its network role can be modified based on feedback from
the API. Among other things, this means you can quarantine any endpoint that is
out of compliance. There are two ways to enforce quarantine:
v Self Quarantine: Enables network access control software (such as VPN clients

and firewalls) to quarantine the computer based on the compliance evaluation
results from the client.

v Network Enforced Quarantine: Enables network admission control frameworks
and technologies (such as Cisco Network Admission Control, InfoExpress
CyberGatekeeper, Sygate Secure Enterprise or ZoneLabs Integrity) to quarantine
the computer based on the compliance evaluation results from the client.

Using either of these methods, you can specify a compliance policy that checks the
following:
v Security Configuration: Check that all security policies are in place and there are

no security vulnerabilities (weak passwords, open shares, unauthorized
USB/wireless devices, insecure settings, and so on).

v Patch Status: Check that the computer has all the latest patches that are required
by company policy.

v AntiVirus Status: Check that the AntiVirus agent is installed and enabled, the
definitions are up-to-date, and no viruses are currently detected.

v AntiSpyware Status: Check that the computer has AntiSpyware protection
installed and working.

© Copyright IBM Corp. 2011, 2014 37

v Configuration Standards: Custom compliance checks can easily be added to
allow for additional policies.

There is a software developer kit to help you implement these capabilities. The
SDK can be found at: http://software.bigfix.com/download/bes/misc/
BESClientSDK-6.0.21.5.zip.

Client API terminology
There are some terms you need to know to follow this section of the guide.

Compliance Document A file that contains one or more compliance expression items.
The document is formatted as XML. The client maintains a file storage location for
each Fixlet site where it locates compliance documents.

Compliance Expression Item Contains a designator, relevance expression, and
optionally, a description and comment.

Compliance Response The response made available to the API by the client after it
processes the compliance document. The response contains of one or more
Compliance Result items.

Compliance Result item Contains a designator, relevance result, description, and a
comment.

Designator A string up to 64 characters in length, composed of alphanumeric
characters, underscores, or periods.

Relevance Expression Arbitrary relevance expression to be evaluated by the client
and reported to the API with the corresponding designator.

Relevance Result The result of evaluating the relevance expression. Plural
expressions result in multiple Compliance Result Items that are shown in the
response from the API.

Description Some text that is carried from the Compliance Expression item to the
Compliance result item. It is passed from the document to the API without
processing and can therefore be used to convey arbitrary data about the
Compliance expression item.

Comment This is text handled the same as the Description.

Potential use cases
The results of evaluation can be used by access control software to observe the
compliance state of the endpoint, by diagnostic software to observe the failure state
of particular components, or by startup scripts to verify any aspect of the system
computable within the Tivoli Endpoint Manager inspection framework.
Compliance might be determined based on detecting that certain conditions do or
do not exist on the endpoint. Examples include:
v Detecting if spyware is installed or running. This use might take the form of a

compliance policy that a particular spyware detection program is installed,
running, and up-to-date, or that a set of executables is not installed.

v Detecting if a virus scanner is installed, running and properly configured.

38 IBM Endpoint Manager: API Reference Guide

v Detecting if a firewall is installed, running and properly configured. This use
might take the form of a compliance policy that requires the installation of a
specific firewall.

v Detecting that network shares are turned off. This use might take the form of
requiring that no network shares be defined on the endpoint for the endpoint to
be in compliance.

v Detecting that wireless networks are disabled. This use might take the form of
requiring that wireless networks be turned off during corporate LAN access.

v Detecting the patch level of the endpoint. The API allows you to check whether
there are any critical patches that require installation.

This is an example compliance expression that returns true when there are no
critical patches that are relevant on the endpoint:
number of relevant fixlets whose (value of header "x-fixlet-source-severity" of it
as lowercase = "critical”) of sites = 0

The description and comment fields of the compliance expression item can be used
to provide content for your custom application. This technique can help mitigate
the need to update your application executables when requirements change. For
example, you might mark certain compliance expression items with comments like
"Compliant if true" or "Quarantine if true." Then, you might program your
application that is based on the results of evaluating the expression and the
comments that are returned.

Possible applications include configurable watchdog software that is designed to
look for certain conditions and then can disable, limit, or enable the following
functions:
v Network shares
v Wireless networks
v Network access

Deploying an agent
To create an agent that can query the Client API and return properties, you can
complete the following steps:
v Build your agent application. Design it to provide feedback that is based on client

properties (such as compliance) returned from relevance expressions.
v Build compliance documents to define designators, relevance expressions,

descriptions, and comments. These documents might describe compliance with
company or government policies.

v Build an installer that ensures the correct configuration of the API before copying
the program to the client.

v Create a Fixlet to target the chosen clients and include an action to copy your
documents and run the installer on the client.

v Deploy the Fixlet from the console to the chosen end points. You can use extra
targeting or computer grouping to reach just the subsets of endpoints you want.

v Use the API to query the client when your agent is installed and starts running.
v Use your agent to respond with comments, warnings, or quarantine that is based

on the data received.

Because your agent can be easily installed with a Fixlet action, you can quickly
update the agent or the documents whenever compliance policies change.
Including concepts like quarantine involve only a few more steps:

Chapter 3. Client API 39

v Configure a network enforcement agent. The network enforcement agent must be
configured to query the client for the compliance status that is based on the
compliance document. The details of the configuration depend on which
network enforcement agent is used. The client can automatically configure the
network enforcement agent for many network enforcement products.

v Assess and quarantine. The network enforcement agent periodically queries the
client for the compliance status of the computer. If the computer is not in
compliance, it is automatically quarantined by the network enforcement agent.

v Automate remediation. Even in quarantine, the client can automatically remediate
the computer into compliance, enabling the computer to be taken out of
quarantine and seamlessly placed back onto the network.

Software development kit
The Client Compliance API SDK contains the following files:

Table 1. Software Components

File name Description

ClientCompliance.h
ClientComplianceMain.cpp
ClientCompliance.vcproj
ClientComplianceMT.lib
ClientCompliance.exe

C++ sample source and project files to build a
self-contained application. (Does not require
BESClientComplianceMod.dll COM module to be
installed). Does not require COM or Windows scripting to
be installed.

BESClientComplianceMod.dll
test.vbs
ComplianceDumpToReg.vbs

COM module that contains objects and interfaces to drive
the API. Use this module together with either of the visual
basic samples, and the windows script engine to evaluate
compliance.

ComplianceDoc.xml Sample compliance rules document.

BigFix Client Compliance
Configuration.efxm

Masthead file for Fixlets to install and configure the Client
Compliance API – automates many of the configuration
steps for deploying the API on a managed computer.

The BigFix Client Compliance Configuration Fixlet site automates much of the manual
configuration that is outlined in the following sections. Run the masthead (the
.efxm file) to install the site.

C++ source code
This is a listing of the sample source file ClientComplianceMain.cpp that
demonstrates the correct use of the Client API.
// COMPLIANCE Function definitions
// **

CLIENTCOMPLIANCEDLL_API int COMPLIANCE_Open(
const char *siteurl,
const char *complianceDocument,
unsigned int flag // COMPLIANCE_FLAG_*
);
// return value < 0 is COMPLIANCE_ERROR_*
// return value == 0 if Open successfully talks to client
// Make sure to call COMPLIANCE_Close if this succeeds

// **
CLIENTCOMPLIANCEDLL_API int COMPLIANCE_Close();
// return value < 0 is COMPLIANCE_ERROR_*
// return value = 0 is success

40 IBM Endpoint Manager: API Reference Guide

// **
CLIENTCOMPLIANCEDLL_API int COMPLIANCE_Progress(
unsigned int* progressPercent,
unsigned int* error
);
// return value of COMPLIANCE_PROGRESS_COMPLETE
// return value of COMPLIANCE_PROGRESS_BUSY; progressPercent set
// return value of COMPLIANCE_PROGRESS_ERROR; error set
// After this returns COMPLIANCE_PROGRESS_COMPLETE
// use COMPLIANCE_ResultCount and
// COMPLIANCE_IndexedValue to look at results

//COMPLIANCE response accessors
// **
CLIENTCOMPLIANCEDLL_API int COMPLIANCE_ResultCount();
// return value is the number of all values
// return value is COMPLIANCE_ERROR_*

// **
CLIENTCOMPLIANCEDLL_API int COMPLIANCE_IndexedValue (
unsigned int index, // value to retrieve (starts at 0)
const char **designator, // designator of value found
const char **result, // result of evaluating relevance
const char **description, // description accompanying designator
const char **comment // comment accompanying designator
);
// return value is 0 on success, otherwise COMPLIANCE_ERROR_*

Configuring the components
Applications that use the API require that several components be installed and
properly configured. In general, you must ensure that the following are correctly
configured:
v The client is running.
v You created and saved a file named ComplianceDoc.xml in your site data folder:

C:\Program Files\BigFix Enterprise\BES Client__BESData\<your_site_name>\
__Compliance.

v BESClientComplianceMod.dll is installed and registered.
v The registry is configured with appropriate paths to RequestDir and

ResponseDir.
v RequestDir and ResponseDir are existing folders.

These are the steps to perform:
1. Install COM module.

If you are using a COM implementation, you can install COM modules with
the following command:
Regsvr32.exe BESClientComplianceMOD.dll

2. Create Configuration Key and add Path Data.
On Windows computers, create the following registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\BigFix\ClientComplianceAPI

Define the following three string values in the configuration registry key:
v RequestDir – full path where configuration requests are written
v ResponseDir – full path where configuration responses are written

Chapter 3. Client API 41

v ConnectDir – full path where interface glue scripts and executables are
located

3. Create RequestDir.
Create the directory where request files are written by the API. The protections
on this directory must permit anyone to write files to it and the client to read
and delete files. For Windows systems, this value is set in the RequestDir entry
in the registry. For UNIX and Mac systems, the expected paths are:
UNIX: /var/opt/BESClient/RequestDir
Mac: /Library/Application Support/BigFix/BES Agent/RequestDir

4. Create ResponseDir
Create the directory where response files are written by the API. The
protections on this directory must permit anyone to read files from it and the
client to write to it. For Windows, this value is set in the ResponseDir entry in
the registry. For UNIX and Mac, the expected paths are:
UNIX: /var/opt/BESClient/ResponseDir
Mac:/Library/Application Support/BigFix/BES Agent/ResponseDir

5. Create ConnectDir
Create a directory where you can keep “glue” scripts and other executables that
provide the interface between the Client Compliance API and third-party
agents. The protections on this directory must be such that third-party clients
can execute files in this directory. For Windows, this value is set in the
ConnectDir entry in the registry. For UNIX and Mac, the expected paths are:
UNIX: /var/opt/BESClient/ConnectDir
Mac: /Library/Application Support/BigFix/BES Agent/ConnectDir

6. Create __Compliance.
Create a data directory that is required by the UNIX compliance executable:
UNIX only: /var/opt/BESClient/__BESData/__Compliance

7. Install the Client.
The client must be installed on the endpoint. The client must be running to
evaluate compliance.

8. Store the Compliance XML
After you create your compliance document, store it in your action site data
directory.
UNIX: /var/opt/BESClient/__BESData/actionsite/__Compliance/
your_compliance_doc.xml

Mac: /Library/Application Support/BigFix/BES Agent/__BESData/actionsite/
__Compliance/your_compliance_doc.xml

9. Run your agent.
When everything is properly configured, you can run your agent by submitting
your compliance document to the client. Do this by using the gather
application:
UNIX: ./compliance -c http://<server>:52311/cgi-bin/bfgather.exe/
actionsite your_compliance_doc.xml

Mac: ./BESClientCompliance -c http://<server>:52311/cgi-bin/
bfgather.exe/actionsite your_compliance_doc.xml

42 IBM Endpoint Manager: API Reference Guide

API specifications
The BES Client Compliance API is provided as a COM module that registers as
BESClientComplianceMod. The module provides three classes:
v Session
v Progress
v Response

These classes are described in the following sections.

BESClientComplianceMod.Session

This object is used to interact with the client. After construction, the object
properties Open and Close can be called to start a compliance evaluation session
with the client.

BESClientComplianceMod.Session
Use this object to interact with the BESClient. After construction, the object
properties Open and Close can be called to initiate a compliance evaluation session
with the BESClient.

Session Methods Description

long Open(

BSTR siteURL,

BSTR rulesXML,

long flags

);

Attempts to open a compliance evaluation session with the
BESClient. The return value is 0 when an evaluation is successfully
started. A negative number is returned when an evaluation cannot
be started. The return value is one of the integer constants whose
name begins with COMPLIANCE_ERROR in the API constants. The
BESClient processes the compliance document named <rulesXML>
in the __Compliance subfolder of the site data folder of the site
whose gather url matches the <siteURL>.

long Close(); Closes the session. Call this property when you are finished with
your evaluation. The return value is 0 on success, or one of the
integer constants whose name begins with COMPLIANCE_ERROR
in the API Constants.

BESClientComplianceMod.Progress
Use this object to collect the progress of the Open session from the BESClient.

Progress Methods Description

long
SessionProgress()

Requests progress of current session. When a session is currently
open, contacts the BESClient to collect the current progress state of
the current compliance operation. The return values of this property
are one of:

1: COMPLIANCE_PROGRESS_COMPLETE

2: COMPLIANCE_PROGRESS_ERROR

3: COMPLIANCE_PROGRESS_BUSY

When COMPLIANCE_PROGRESS_COMPLETE is returned, the
results of the compliance check are available. Use the Result object to
collect the results.

Chapter 3. Client API 43

Progress Properties Description

long GetPercent(); When COMPLIANCE_PROGRESS_BUSY is returned from
SessionProgress, the GetPercent property might be accessed to obtain
the current estimate of percent completion.

long GetError(); When COMPLIANCE_PROGRESS_ERROR is returned from
SessionProgress, the GetError property might be accessed to obtain
the current error. The error codes are defined in the API Constants
part of this document.

BESClientComplianceMod.Response
Use this object to examine the compliance response from BESClient. This object
returns results if the session is still open, after a call to Progress.SessionProgress()
returns COMPLIANCE_PROGRESS_COMPLETE, and until Session.Close() is
called.

Response Properties Description

long ResultCount(); Returns the number of results in the compliance response.

BSTR GetDesignator (

long index

);

Collects the Designator for the result at this index position. An
index of 0 gives the first item.

BSTR
GetRelevanceResult (

long index

);

Collects the RelevanceResult for the result at this index position. An
index of 0 gives the first item.

BSTR GetDescription
(

long index

);

Collects the Description for the result at this index position. An
index of 0 gives the first item.

BSTR GetComment (

long index

);

Collects the Comment for the result at this index position. An index
of 0 gives the first item.

Examples of Client Documents
ComplianceDoc.xml is included in the Client API package as an example of the
kind of document you might create to specify compliance with a given policy. It is
a plain text file containing XML that can be prepared with any text editor.

Sample Compliance Document

The following is a snippet from that file that tests for the existence on the client of
the Windows operating system:

44 IBM Endpoint Manager: API Reference Guide

<?xml version="1.0"?>
<BESClientComplianceDocument Version="1.0">
<Date>13 Jun 2004 13:41:57 -0700</Date>
<ComplianceItem>
<Designator>IsWindowsOS</Designator>
<Expression>name of operating system starts with "Win"</Expression>
<Description>Is a Windows computer</Description>
<Comment>Compliant if True</Comment>
</ComplianceItem>

</BESClientComplianceDocument>

The file is composed of one or more items each with multiple parts, including:

Designator: An identifier for the retrieved value.

Expression: The relevance expression that is evaluated by the API and returned to
the specified designator.

Description: A brief description of the retrieved value.

Comment: A comment about this retrieved value.

All compliance documents follow this format, with as many compliance items as
wanted. The following sections illustrate the concept with some more samples.

Check service pack
The following compliance document requires that the client computer is running
Windows 7 with at least Service Pack 2 Installed.
<BESClientComplianceDocument Version="1.0">
<ComplianceItem>
<Designator>XPServicePack</Designator>
<Expression>
name of operating system = "Win7"
AND csd version of operating system
>= "Service Pack 2"
</Expression>
<Description>
Minimum Windows 7 Service Pack requirement:
Service Pack 2
</Description>
<Comment>Compliant if True</Comment>
</ComplianceItem>
</BESClientComplianceDocument>

Check for a running app
This compliance document requires that the application DefWatch.exe is running
on the computer.
<BESClientComplianceDocument Version="1.0">
<ComplianceItem>
<Designator>RequiredProgram</Designator>
<Expression>exists running application "DefWatch.exe"</Expression>
<Description>DefWatch.exe must be running.</Description>
<Comment>Compliant if True</Comment>
</ComplianceItem>
</BESClientComplianceDocument>

Chapter 3. Client API 45

Update patches
The following compliance document requires that there are less than 10 unapplied
patches with severity rating Critical, and the elapsed time since the oldest
unapplied critical patch is less than 30 days.
<BESClientComplianceDocument Version="1.0">
<ComplianceItem>
<Designator>NumCritical</Designator>
<Expression>
10 > number of relevant fixlets whose
(value of header "x-fixlet-source-severity" of
it as lowercase = "critical") of sites
</Expression>
<Description>
Total # of critical patches must be < 10
</Description>
<Comment>Compliant if True</Comment>
</ComplianceItem>
<ComplianceItem>
<Designator>MaxPatchAge</Designator>
<Expression>
if (exists relevant fixlet whose ((value of header "X-Fixlet-Source-Severity" of it
as lowercase = "critical") AND (value of header "X-Fixlet-Source-Release-Date"
of it does not contain "Unspecified")) of sites "bessecurity")
then ((30 > ((it - 1) of maximum of ((preceding texts of firsts " day"
of ((now + 1*day - it) as string) as integer)
of ((((it as string & " 00:00:00 -0700")
of ((value of header "X-Fixlet-Source-Release-Date" of it) of relevant fixlets
whose ((value of header "x-fixlet-source-severity" of it as lowercase = "critical")
AND (value of header "X-Fixlet-Source-Release-Date" of it
does not contain "Unspecified")) of sites)) as time))))) as string) else "True"

</Expression>
<Description>
Elapsed time since the oldest unapplied critical patch
is less than 30 day(s)
</Description>
<Comment>Compliant if True</Comment>
</ComplianceItem>
</BESClientComplianceDocument>

Check for anti-virus
This compliance document requires that Norton Anti-Virus Corporation Edition is
running and the Anti-Virus definitions are less than 10 days old.
<BESClientComplianceDocument Version="1.0">
<ComplianceItem>
<Designator>AVDefinitionAge</Designator>
<Expression>
FALSE OR ((exists running application "vptray.exe" OR exists
running application "rtvscan.exe") AND exists
key "HKEY_LOCAL_MACHINE\Software\Symantec\SharedDefs"
of registry AND exists value "NAVCORP_70"
of key "HKEY_LOCAL_MACHINE\Software\Symantec\SharedDefs"
of registry AND (now - ((following text of position 6
of (preceding text of last "." of following text of last "\"
of (value "NAVCORP_70"
of key "HKEY_LOCAL_MACHINE\Software\Symantec\SharedDefs"
of registry as string)) & " " & first 3 of following text
of position (first 2 of following text of position 4
of (preceding text of last "." of following text
of last "\" of (value "NAVCORP_70"
of key "HKEY_LOCAL_MACHINE\Software\Symantec\SharedDefs"
of registry as string)) as integer * 3 - 3)
of "JanFebMarAprMayJunJulAugSepOctNovDec"

46 IBM Endpoint Manager: API Reference Guide

& " " & first 4 of (preceding text of last "."
of following text of last "\" of (value "NAVCORP_70"
of key "HKEY_LOCAL_MACHINE\Software\Symantec\SharedDefs"
of registry as string)) & " 00:00:00 - 0700")
as time)) < 10 * day)

</Expression>
<Description>
Elapsed time since the virus definition was last updated is less than
the specified number of day(s).

</Description>
<Comment>Compliant if True</Comment>
</ComplianceItem>
</BESClientComplianceDocument>

Chapter 3. Client API 47

48 IBM Endpoint Manager: API Reference Guide

Chapter 4. Dashboard API

Tivoli Endpoint Manager exposes an interface that allows you to author your own
dashboards, granting you the power to create customized views into whatever
aspect of your network you want to monitor. Dashboards, wizards and Web
Reports are three different manifestations of the same underlying concept. The
main differences are:
v Dashboards Typically open in a document window and provide for easily

updated views. They usually consist of a collection of tabular and graphical
widgets that provide a condensed view of your network.

v Wizards Typically open in a stand-alone dialog window. They often have
multiple pages to ease the user through a complicated installation or procedure.
Both wizards and dashboards have the file extension of OJO.

v Web Reports Are similar to dashboards, but offer static web-facing views of your
data. They have a file extension of BESWRPT.

Despite these differences, the interfaces are driven by the same fundamental
language elements, referred to as the Dashboard API. This guide describes how
Relevance elements work within the Dashboard API, letting you analyze,
aggregate, and visualize multiple facets of your networked clients.

The Dashboard API is based on HTML and XML. The XML defines hooks into the
console or Web Reports and it has a single primary section that holds HTML. The
HTML section in turn can hold anything that a browser can render. In addition to
the basic browser environment, the console or the Web Reports application injects a
library of JavaScript hooks that provide access to various API functions.

The content that is embedded in the HTML section is typically a mix of JavaScript,
HTML, Flex, and Relevance expressions that are evaluated with the JavaScript
function EvaluateRelevance. As soon as they are received, the results of the
evaluation are embedded directly into the page and it is redrawn.

The document can also specify how your dashboard is attached to the console UI,
for example as a menu, a list, or an item on the navigation bar. Dashboard
documents can also be linked to or from other documents. They can be imported
or exported and used by internal or external Fixlet sites.

Linking
The console intercepts all links before they are followed. If the “link:” protocol is
used, then they are interpreted as an instruction to the console. This is typically
something like:
link:opendoc?siteid=123&objectid=456

This link opens the given document from the specified site. Additional capabilities
include launching wizards and various console dialogs (such as Take Action or
Visualization), executing search operations, and more.

© Copyright IBM Corp. 2011, 2014 49

Relevance in dashboards
Dashboard markup is passed through a pre-processor that recognizes Relevance
tags. These Relevance expressions are evaluated and the tag is then replaced by
those results. The results are then wrapped in a special tag so they can be
reevaluated and updated as they change, creating a dynamic document. You can
also use JavaScript to evaluate Relevance and for other document object model
manipulations.

You can evaluate relevance in dashboards in two ways, both of which are
compatible with wizards and Web Reports.

The first technique is to use the <?relevance expression ?> tag. This method is used
when you want to create sections of properly formatted HTML containing
Relevance results. These instructions are parsed at load time and replaced by the
result of evaluating the given expression. The result is coerced into the html
inspector type that means that the string is escaped, ensuring that it does not
interfere with any surrounding HTML code. The html type is described in greater
detail later in this guide.

The second technique works when you must evaluate relevance from within
JavaScript. In this instance, use the EvaluateRelevance function. This function is
defined in an external JavaScript source file that is automatically included by
console documents that support dashboard functions, including Fixlets, tasks,
baselines, analyses, wizard documents, and Web Reports. In Web Reports, the
external definition is somewhat different, but it functions the same.

From any script code, you can evaluate a relevance expression and get the results
back as a string, with a statement like this:
myDiv.innerText = EvaluateRelevance("expression");

The expression is a relevance expression string just like in the <?relevance ?> case.
The result of EvaluateRelevance depends on whether the expression is a singular
expression or a plural expression. If theexpression is singular, the result is a string.
If it is plural, the result is an array of strings. Unlike the results of relevance in
processing instructions, none of the strings are HTML escaped unless you use the
"as html" cast explicitly. If an error is encountered, EvaluateRelevance throws an
exception. You can get a descriptive error string as follows:
try {
myDiv.innerText = EvaluateRelevance("expression");
}
catch (e){
window.alert("Error encountered evaluating relevance: " + e.description);
}

Debugging dashboards
The Debug menu in the console offers some helpful tools for creating, editing, and
debugging dashboards. Among them is the Presentation Debugger (also called the
Dashboard Debugger in some versions of the program) that is turned off by
default. To enable the Debug menu:
1. Press Ctrl-Shift-Alt-D to display the Debug Dialog.
2. Select the check box next to Show Debug Menu.

Alternatively, you can edit the registry:
1. Locate the key HKCU\Software\BigFix\Enterprise Console\NoEditMenus.

50 IBM Endpoint Manager: API Reference Guide

2. Set the DWORD value Show Debug Menu to 1.
3. Restart the console.

The Presentation Debugger dialog lets you write a Relevance Expression and test
it. You can enter the expression in String, HTML, or Presentation (XML) style.
There are some buttons that are attached to this dialog, although they differ
depending on the context of the dialog:
v Cancel: Available when the debugger is called from a wizard tool, use this button

to cancel the insertion of the wizard.
v Insert: Also available when the debugger is called from a wizard tool, this button

lets you insert the wizard icon into a custom Fixlet, task, baseline, or analysis.
v Open File: Opens a File Open dialog to import an existing Relevance statement

or a dashboard-style file.
v Evaluate: Click this button to evaluate the specified Relevance statement. The

results are displayed in the box below.

You can also attach a site (from the pull-down menu) and a Fixlet ID to your
expression, by using the appropriate input boxes.

This dialog can be accessed whenever you create a new or custom Fixlet, task,
baseline, or analysis. In the description tag, enter the text that you desire, and then
from the toolbar at the top, insert the Wizard Hat icon. This displays the
Presentation Debugger dialog.

Editing dashboards
The Presentation Debugger is suitable for debugging a few lines at a time, but it is
inconvenient for full-fledged development. Some suggestions for improving the
process include:
v Use the debugger, but develop iteratively, a short section at a time.
v Put the content in a Fixlet site and subscribe to it. The changes that you make

are automatically replaced as you edit.
v Use Web Reports > Create Report > Advanced: Blank Reportthat allows you to

create, edit and view your dashboard as a Web Report.
v Create a wizard .ojo file on your local drive, and then use Debug > Load Wizard

to load and view it.

Chapter 4. Dashboard API 51

52 IBM Endpoint Manager: API Reference Guide

Chapter 5. Database API

This section of the guide describes a set of SQL views, or virtual tables, that
constitute the database application programming interface (API). These views are
provided to enable your applications to query the database directly by using
MSSQL-compatible interfaces such as ADO or ODBC. A typical application might
be a Perl cgi program that creates an HTML report for online viewing. Perl uses
the database Interface (dbi) to connect to the SQL database. Any programming
language that has an ODBC interface can be used to access the database.

The SQL format of the database makes it easy to create various views of the tables,
including Fixlet, action, computer, and retrieved property tables. With a few simple
SELECT commands, you can create filtered and sorted views of the various
databases. These can be used to prepare custom reports, audit trails or capture
snapshots of the environment.

The database API provides backwards compatibility across releases: applications
written against them should continue to work in later releases of Tivoli Endpoint
Manager unless product functionality or underlying content changes in a way that
renders these views inapplicable. In this guide, there are references to BigFix
Enterprise Suite, or BES. This refers to what we now call Tivoli Endpoint Manager,
and is a legacy of previous releases.

Access to the database for the SELECT commands listed here is granted to all
authorized users of the Console. Because these views are intended for output only,
users are not able to update, delete, or otherwise modify the database with this
API. For information about how to create actions and tasks that might modify the
database, see the section of this guide titled Platform API.

The following sections describe the views that are supplied to support the SQL
Database API.

BES_FIXLETS
This view provides a list of all Fixlets in the BES Database. This table is useful in
conjunction with the BES_RELEVANT_FIXLETS and BES_ACTIONS table to get
the Fixlet name. Custom Fixlet content is provided under the “ActionSite”
sitename.

Column Type Description

Sitename varchar(128) Fixlet site name

ID int Unique Fixlet ID

Name varchar(255) Fixlet name

Example:
select Sitename, ID, Name from BES_FIXLETS where Sitename = 'Enterprise Security'
order by Sitename, ID

© Copyright IBM Corp. 2011, 2014 53

BES_TASKS
This view provides a list of all tasks (including custom tasks) in the BES Database.
This table is useful in conjunction with the BES_RELEVANT_TASKS and
BES_ACTIONS table to get the task name.

Column Type Description

Sitename varchar(128) Source Fixlet site name

ID int Unique task ID

Name varchar(255) Task name

Example:
select Sitename, ID, Name from BES_TASKS where Sitename = 'Enterprise Security'
order by Sitename, ID

BES_ANALYSES
This view provides a list of all Analyses (including custom Analyses) in the BES
Database.

Column Type Description

Sitename varchar(128) Source Fixlet site name

ID int Unique analysis ID

Name varchar(255) Analysis name

Example:
select Sitename, ID, Name from BES_ANALYSES where Sitename = 'BES Support'
order by Sitename, ID

BES_BASELINES
This view provides a list of all Baselines in the BES Database. This table is useful
in conjunction with the BES_RELEVANT_BASELINES and BES_ACTIONS table to
get the baseline name.

Column Type Description

Sitename varchar(128) Source Fixlet site name

ID int Unique baseline ID

Name varchar(255) Baseline name

Example:
select Sitename, ID, Name from BES_BASELINES where Sitename = 'Enterprise Security'
order by Sitename, ID

BES_COMPUTERGROUPS
This view provides a list of all Computer Groups in the BES Database.

Column Type Description

ID int Unique Group ID

54 IBM Endpoint Manager: API Reference Guide

Name varchar(255) Computer group name

Example:
select ID, Name from BES_ComputerGroups where Name LIKE 'Chicago Office%' order by ID

BES_COLUMN_HEADINGS
This view provides access to all the retrieved property information collected about
client computers by the BES Database. Retrieved properties that return multiple
results are expressed in this view by a value field that contains the multiple results
separated by a newline character. Column headings whose “Value” contains more
than 8000 characters are truncated to 8000 characters in this view.

Column Type Description

ComputerID int Computer ID

Name varchar(255) Retrieved property name

Value varchar(8000) Newline separated list of
retrieved property values

IsFailure Tinyint Nonzero if the retrieved
property failed to evaluate
on the BES Client

Example:
select ComputerID, Name, Value, IsFailure from BES_COLUMN_HEADINGS where
Name = 'Total HD Space' order by ComputerID

BES_RELEVANT_FIXLETS
This view contains an entry for every Fixlet/computer pair in which the Fixlet is
relevant on that computer. This view includes custom Fixlet content.

Column Type Description

Sitename varchar(128) Fixlet site name

ID int Fixlet ID

ComputerID int Computer ID

Version int Number of times the Fixlet is
modified

Example:
select F.Sitename, F.ID, F.Name, R.ComputerID from BES_FIXLETS F, BES_RELEVANT_FIXLETS R
where F.Sitename = R.Sitename AND F.ID = R.ID

BES_RELEVANT_TASKS
This view contains an entry for every task/computer pair (including custom Tasks)
in which the task is relevant on that computer.

Column Type Description

Sitename varchar(128) Fixlet site name

ID int Task ID

Chapter 5. Database API 55

ComputerID int Computer ID

Version int Number of times the task is
modified

Example:
select T.Sitename, T.ID, T.Name, R.ComputerID from BES_TASKS T, BES_RELEVANT_TASKS R
where T.Sitename = R.Sitename AND T.ID = R.ID

BES_RELEVANT_BASELINES
This view contains an entry for every baseline/computer pair in which the baseline
is relevant on that computer.

Column Type Description

Sitename varchar(128) Fixlet site name

ID int Baseline ID

ComputerID int Computer ID

Version int Number of times the baseline
is modified

Example:
select B.Sitename, B.ID, B.Name, R.ComputerID from BES_BASELINES B, BES_RELEVANT_BASELINES R
where B.Sitename = R.Sitename AND B.ID = R.ID

BES_ACTIONS
This view contains an entry for every action/computer pair where the action was
received by the computer.

Column Type Description

ActionID int Action ID

ComputerID int Computer ID

Name varchar(255) Title of the action

Username varchar(32) Database user name of action
issuer

StartTime datetime Time at which the action was
issued

FixletID int Source Fixlet ID

Sitename varchar(128) Source Fixlet site name

ActionStatus text A brief summary of the state
of the action for this
computer

Example:
select * from BES_ACTIONS where ActionStatus = 'Executed'

56 IBM Endpoint Manager: API Reference Guide

BES_RELEVANT_FIXLET_HISTORY
This view contains an entry for every Fixlet/computer pair that has ever been
relevant, with timestamps indicating the first time it became relevant, the last time
it became relevant (the same as FirstBecameRelevant if it became relevant only
once), and the last time it became non-relevant. Some of these fields might be
NULL if the event in question never occurred. This view includes custom Fixlet
content.

Column Type Description

Sitename varchar(128) Fixlet site name

ID int Fixlet ID

ComputerID int Computer ID

FirstBecameRelevant datetime Time at which Fixlet first
became relevant

LastBecameRelevant datetime Time at which Fixlet last
became relevant

LastBecameNonRelevant datetime Time at which Fixlet last
became non-relevant

Version int Fixlet version

BES_RELEVANT_TASK_HISTORY
This view contains an entry for every task/computer pair (including custom tasks)
that has ever been relevant, with timestamps indicating the first time it became
relevant, the last time it became relevant (the same as FirstBecameRelevant if it
became relevant only once), and the last time it became non-relevant. Some of
these fields might be NULL if the event in question never occurred.

Column Type Description

Sitename varchar(128) Source Fixlet site name

ID int Task ID

ComputerID int Computer ID

FirstBecameRelevant datetime Time at which task first
became relevant

LastBecameRelevant datetime Time at which task last
became relevant

LastBecameNonRelevant datetime Time at which task last
became non-relevant

Version int Task version

BES_RELEVANT_BASELINE_HISTORY
This view contains an entry for every baseline/computer pair that has ever been
relevant, with timestamps indicating the first time it became relevant, the last time
it became relevant (the same as FirstBecameRelevant if it became relevant only
once), and the last time it became non-relevant. Some of these fields might be
NULL if the event in question never occurred.

Column Type Description

Chapter 5. Database API 57

Sitename varchar(128) Source Fixlet site name

ID int Baseline ID

ComputerID int Computer ID

FirstBecameRelevant datetime Time at which baseline first
became relevant

LastBecameRelevant datetime Time at which baseline last
became relevant

LastBecameNonRelevant datetime Time at which baseline last
became non-relevant

Version int Baseline version

BES_FIXLET_PROPERTIES
This view lists the different properties associated with each Fixlet (including
custom Fixlets), such as the severity.

Column Type Description

Sitename varchar(128) Fixlet site name

ID int Fixlet ID

PropertyName varchar(32) Property name

PropertyValue text Property value

Example:
select BF.Sitename, BF.ID, BF.Name, BFP.PropertyValue AS ’Severity’
from BES_FIXLETS BF, BES_FIXLET_PROPERTIES BFP
where BF.Sitename = BFP.Sitename
and BF.ID = BFP.ID AND BFP.PropertyName = ’Source Severity’

BES_TASK_PROPERTIES
This view lists the different properties associated with each task (including custom
Tasks), such as the severity.

Column Type Description

Sitename varchar(128) Source Fixlet site name

ID int Task ID

PropertyName varchar(32) Property name

PropertyValue text Property value

Example:
select BT.Sitename, BT.ID, BT.Name, BTP.PropertyValue AS ’Severity’
from BES_TASKS BT, BES_TASK_PROPERTIES BTP
where BT.Sitename = BTP.Sitename AND BT.ID = BTP.ID
and BTP.PropertyName = ’Source Severity’

58 IBM Endpoint Manager: API Reference Guide

BES_BASELINE_PROPERTIES
This view lists the different properties associated with each baseline, such as the
severity.

Column Type Description

Sitename varchar(128) Source Fixlet site name

ID int Baseline ID

PropertyName varchar(32) Property name

PropertyValue text Property value

Example:
select BB.Sitename, BB.ID, BB.Name, BBP.PropertyValue AS ’Severity’
from BES_BASELINES BB, BES_BASELINE_PROPERTIES BBP
where BB.Sitename = BBP.Sitename AND BB.ID = BBP.ID
and BBP.PropertyName = ’Source Severity’

Example report generator
The following Perl script, with the appropriate dsn name and login supplied in the
DBI->connect line, accesses the database and print the contents of the four
principal views in HTML tables.
#
Example Perl cgi script which shows the contents of a Database
#

use strict;
use CGI;
use DBI;
use CGI::Carp qw(fatalsToBrowser);

$| = 1;

Insert your own database details here
my $dbh = DBI->connect ("dbi:ODBC:bes_locke", "bigfix", "bigfix")
or die "unable to connect to db";

#---
Create the HTML to output your report. Here, we refer to a computer named ’LOCKE’:
print "content-type: text/html\n\n";
print "<html><body>";
print "<h1>Contents of Database on LOCKE</h1>";

#...
Print out all column headings:
{
print "<h3>Column Headings</h3>";
print "<table width=100% bgcolor=#b0b0f0 border=1><tr>";
print "<td>ComputerID</td><td>Name</td>";
print "<td>Value</td><td>IsFailure</td></tr>";

set up the SQL query:
my $query = "select ComputerID, Name, Value, IsFailure ";
$query .= "from BES_COLUMN_HEADINGS";
my $sth = $dbh->prepare($query);
$sth->execute();
my @row;
while(@row = $sth->fetchrow_array){
print "<tr><td>";
print join("</td><td>", @row);

Chapter 5. Database API 59

print "</td></tr>";
}
print "</table>";
}

#...
Print out all relevant fixlets
{
print "<h3>Relevant Fixlets</h3>";
print "<table width=100% bgcolor=#f0b0b0 border=1>";
print "<tr><td>Sitename</td><td>ID</td>";
print "<td>ComputerID</td></tr>";

set up the SQL query:
my $query = "select Sitename, ID, ComputerID from BES_RELEVANT_FIXLETS";
my $sth = $dbh->prepare($query);
$sth->execute();
my @row;
while(@row = $sth->fetchrow_array){
print "<tr><td>";
print join("</td><td>", @row);
print "</td></tr>";
}
print "</table>";
}

#...
Print out all actions
{
print "<h3>Actions</h3>";
print "<table width=100% bgcolor=#d080ff border=1>";
print "<tr><td>ActionID</td><td>ComputerID</td>";
print "<td>Name</td><td>Username</td><td>Start Time</td>";
print "<td>FixletID</td><td>Sitename</td><td>ActionStatus</td></tr>";

set up the SQL query:
my $query = "select ActionID, ComputerID, Name, Username, StartTime, ";
$query .= "FixletID, Sitename, ActionStatus from BES_ACTIONS";
my $sth = $dbh->prepare($query);
$sth->execute();
my @row;
while(@row = $sth->fetchrow_array){
print "<tr><td>";
print join("</td><td>", @row);
print "</td></tr>";
}
print "</table>";
}

#...
Print out all known fixlets
{
print "<h3>Known Fixlets</h3>";
print "<table width=100% bgcolor=#b0f0b0 border=1>";
print "<tr><td>Sitename</td><td>ID</td><td>Name</td></tr>";

set up the SQL query:
my $query = "select Sitename, ID, Name from BES_FIXLETS";
my $sth = $dbh->prepare($query);
$sth->execute();
my @row;
while(@row = $sth->fetchrow_array){
print "<tr><td>";
print join("</td><td>", @row);
print "</td></tr>";

60 IBM Endpoint Manager: API Reference Guide

}
}

print "</body></html>";

Chapter 5. Database API 61

62 IBM Endpoint Manager: API Reference Guide

Chapter 6. WebReports API

Tivoli Endpoint Manager exposes an API to help you author your own Web
Reports, granting you the power to create customized views into whatever aspect
of your network that you want to monitor. The Web Reports API is based on the
Dashboard API, but it operates with static web-facing views of your data. These
views have a file extension of BESWRPT.

The Web Reports API is based on HTML and XML, with a new interface based on
SOAP. The XML defines hooks into the console or Web Reports and it has a single
primary section that holds HTML. The HTML section in turn can contain anything
that a browser can render. In addition to the basic browser environment, there is a
library of JavaScript hooks available to provide access to various functions.

The content that is embedded in the HTML section is typically a mix of JavaScript,
HTML, Flex, and Relevance expressions that are evaluated with the JavaScript
function EvaluateRelevance. As soon as they are received, the results of the
evaluation are embedded directly into the page and it is redrawn.

Web Reports markup is passed through a pre-processor that recognizes Relevance
tags. The Relevance language uses a special class of inspectors called Datastore
inspectors that can help you query and aggregate statistics on your data. These
Relevance expressions are evaluated and the tag is then replaced by those results.
You can also use JavaScript to evaluate Relevance and for other document object
model manipulations.

Authoring Web Reports
Although there is much commonality between dashboards and Web Reports, they
have several important differences.
v The Web Reports application maintains Fixlet history inspectors, but the console

does not. Fixlet history inspectors are of the form: first became relevant of.
v Certain current inspectors work only in the console. These include inspectors

such as current console user or current computer.
v Inspectors that work with Locally Hidden/Visible Fixlets always return nothing.

Global Fixlets, however, still work as expected.
v While the dashboard can report only on the local server, Web Reports can span

multiple servers. The ActionSite has the server name added: ActionSite
(BES_Server_Name).

v Javascript EvaluateRelevance calls are instantaneous on the console, but in a Web
Report, they generate HTTP requests that might average up to one second per
call. Web Reports has an AsyncEvaluateString call that does not have the same
penalty, because it is asynchronous. It takes an HTML object ID as a parameter,
and the results are set to the object's innerHTML for use with tags like <div>,
, or <p>.

v Certain links that work in the console do not work in the Web Reports. Links to
Fixlet filters do not work, while links to computer groups, computers, Fixlets,
tasks, and analyses do.

© Copyright IBM Corp. 2011, 2014 63

Converting a dashboard
The following process converts a dashboard-style .ojo file into a custom report:
1. Open the .ojo file and rename it to .besrpt.
2. Delete everything outside of the ![CDATA] tags. This typically consists of the

first line and last few lines of the file.
3. Resolve any links that would not be available in Web Reports, such as style

sheet references or links to pictures.
4. Import the .besrpt file into BES Custom Reports and analyze it for correctness.

Propagating Web Reports
Web Reports has a generalized report format that can incorporate reports from
content sites, allowing new reports to be added, edite, or removed. The report file
must have the extension .beswrpt, and is written in XML:
<BESWebReport>
<Name>Report name</Name>
<Description>Report description</Description>
<Type>[TemplateReport] | [CustomReport] | [ExternalReport]</Type>
<Category>Report category</Category>
<Source>Report source</Source>
<URLParameters>param1=value1&param2=value2</URLParameters>
<Data>Custom data or external URL</Data>
</BESWebReport>

The .beswrpt file can also contain multiple reports in one xml file:
<BESWeb Reports>
<BESWebReport>
.
.
.
</BESWebReport>
<BESWebReport>
.
.
.
</BESWebReport>
</BESWeb Reports>

The Name, Category, and Source are listed in the basic report list, and Description
shows up if the question mark (?) next to it is clicked. If the category is blank, a
suitable default is filled in, depending on the type of the report. A blank source
just appears blank.

URLParameters and Data depend on the Type tag. The type tag can be one of three
strings, TemplateReport, CustomReport, or ExternalReport (case-sensitive).

Template report
A template report provides arguments for, and then runs, a previously existing
Web Report. The URL for the report is specified in the <URLParameters> tag. The
Data tag does not exist for this report.

For example, to create a particular Issue Assessment report you might create a
template report like the following:
<BESWebReport>
<Name>Example Issue Assessment Report</Name>
<Description>

64 IBM Endpoint Manager: API Reference Guide

An example report. Runs the Issue Assessment report with
specific Fixlets, BES Support/129 and BES Support/173.
</Description>
<Type>TemplateReport</Type>
<Category>Issue Assessment</Category>
<Source>IBM</Source>
<URLParameters>
FixletParam=BES Support%2f129&FixletParam=BES Support%2f173&page=VAReport
</URLParameters>
</BESWebReport>

Note: The URL must be properly escaped inside the XML.

Custom report
A custom report is constructed from HTML, relevance expressions, and JavaScript.
The <Data> tag contains a definition of the report in a CDATA block to allow the
HTML and JavaScript portions to be presented normally, without the need for
escape characters.

This is a custom web report that retrieves and prints the names of your networked
computers:
<BESWebReport>
<Name>Example Custom Report</Name>
<Description>
A customized report, prints all computer names.
</Description>
<Type>CustomReport</Type>
<Category>Custom Report</Category>
<Source>IBM</Source>
<Data>
<![CDATA[
<div>Computer Names</div>
<?Relevance names of bes computers?>
]]>
</Data>
</BESWebReport>

External report
An External Report places an absolute link into the report list that can point to any
valid web page. It allows, among other things, linking to another reporting engine
or service. The Data tag contains the full external URL and must start with http or
https.

This is an example report that displays the IBM home page:
<BESWebReport>
<Name>Example External Report</Name>
<Description>
Home Page
</Description>
<Type>ExternalReport</Type>
<Category>External Report</Category>
<Source>IBM</Source>
<Data>
http://www.ibm.com
</Data>
</BESWebReport>

Chapter 6. WebReports API 65

Exporting to PDF
You can export content reports by using EvaluateRelevance to PDF. By default,
Web Reports allows only ten seconds for generating the PDF. If your reports are
taking longer than that, you can adjust the wait, by performing the following
steps:
1. Include an element with id='wr_content_will_signal_completion' to your report,

like this:
<div id=’wr_content_will_signal_completion’></div>

2. When your report is ready to print, set the DOM property
document.wr_content_complete to true with the following JavaScript:
document.wr_content_complete = true;

3. If the report never sets the document.wr_content_complete property, it times
out after an hour and reports an error. To avoid delays with PDF generation,
you can wrap your report in a try/catch block and, in the catch portion, set
document.wr_content_complete = true

Setting a title
You might need to specify a custom title <div>. Here is how:
var titleDiv = document.getElementById(’wr_titlediv’);
titleDiv.className = ’my title class’;
titleDiv.innerHTML = ’my new title’;

Setting OnLoad events
If you want to add an onload event, make sure that you call the original Web
Reports onload event at some point. This is how you would typically create an
onload event:
window.onload = function() {

hourglass(document.body);
RetrieveData();
pointer (document.body);

}

To work with Web Reports, make sure that you include the original onload event
as follows:
var oldonload = window.onload;
window.onload = function() {

hourglass(document.body);
RetrieveData();
pointer(document.body);
oldonload();

}

This ensures that the Web Reports UI is displayed correctly.

SOAP API
In addition to HTTP GET, Web Reports provides a Simple Object Access Protocol
(SOAP) interface to allow external applications to interact with Web Reports and
retrieve data. SOAP specifies a protocol for exchanging structured data, by using
XML format. The protocol has three parts:

Envelope
Defines the contents of the message and how it is parsed.

66 IBM Endpoint Manager: API Reference Guide

Header
Web Reports headers are used to send login information verifying that the
user of the SOAP application has permission to take the action.

Body The contents of the Web Report request.

Most client libraries require a Web Services Description Language (WSDL) file as
well as the method name and parameters to pass into the method. The WSDL file
describes the network endpoints required to query the database by using Web
Reports. Some of the available methods and their parameters include:
GetRelevanceResult(String relevanceExpression, String username, String password)
GetRelevanceResult(String relevanceExpression, String username, String password)
StoreSharedVariable(dashID, variableName, variableValue,
[success/failure callback], [database id])
DeleteSharedVariable(dashID, variableName, [success/failure callback], [database id])

Configuring SOAP
The only configuration setting required for SOAP is the location of the WSDL file
that is stored in the registry. The setting name is wsdl and the value is the path to
the WSDL file. The default value is the sample file, relevance.wsdl, in the installation
directory. This WSDL file defines relevanceExprthat allows you to evaluate a
relevance expression. If you installed Tivoli Endpoint Manager to a folder named
BigFix Enterprise, you can find the file in this directory:
BigFix Enterprise\BES Server\BESReportsServer\wwwroot\soap

The Registry contains the actual location for your particular installation:
HKLM\SOFTWARE\BigFix\Enterprise Server\BESReports\Paths

On a 64-bit machine, you must select the Wow6432 node:
HKLM\SOFTWARE\Wow6432Node\BigFix\Enterprise Server\BESReports\Paths

This registry key has a string value named wsdl that contains the path name for
the WSDL file.

SOAP URL
Interacting with Web Reports SOAP is different depending on what library you are
using. However, there are two things that most libraries require: The location of
the WSDL, and a location to send it requests. The location of the Web Reports
WSDL is:
http://example.com/webreports?wsdl

Where "example.com" is the URL of the Web Reports server. The location for
posting requests is:
http://example.com/webreports/soap

SOAP headers
Web Reports uses request and response headers in all SOAP methods except for
GetRelevanceResult. Headers are used to send login information to verify that the
user associated with the SOAP request has the correct permissions to execute it.
The data that are returned from the SOAP call is filtered by those permissions.

Two kinds of headers are used, login or authentication. A login header takes a
username and a password to authenticate. The server replies to the request with a
response header that contains a session token. In subsequent requests, until the

Chapter 6. WebReports API 67

user's session times out, SOAP requests can be authenticated by using an
authentication header that requires a username and the provided session token.

Table 2. Request Header

Name Type Occurs Description

RequestHeaderElement LoginHeader or
AuthenticationHeader

1 Login information to verify that a
user has permission to perform
this action.

Table 3. Response Header

Name Type Occurs Description

RequestHeaderElement ResponseHeader 1 Contains a session token passed
back by the server so that
subsequent requests do not need to
pass the user's password to the
server.

Example request
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Header>
<h:RequestHeaderElement xsi:type="LoginHeader"
xmlns:h="http://schemas.example.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.example.com/Relevance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<username>example</username>
<password>pswd</password>

</h:RequestHeaderElement>
</s:Header>
<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...

</s:Body>
</s:Envelope>

Example response
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>
<bf:ResponseHeaderElement
xmlns:bf="http://schemas.example.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XML-Schema-instance">

<bf:sessionToken>3jPHTrTJSea2o76xiGM4K8fQuSE</bf:sessionToken>
</bf:ResponseHeaderElement>

</soapenv:Header>
<soapenv:Body>
...

</soapenv:Body>
</soapenv:Envelope>

Subsequent requests
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Header>
<h:RequestHeaderElement xsi:type="AuthenticationHeader"
xmlns:h="http://schemas.example.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.example.com/Relevance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<username>example</username>
<sessionToken>3jPHTrTJSea2o76xiGM4K8fQuSE</sessionToken>

68 IBM Endpoint Manager: API Reference Guide

</h:RequestHeaderElement>
</s:Header>
<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...

</s:Body>
</s:Envelope>

Subsequent requests require the username and the session token that is provided
by the primary request.

SOAP methods
There are several methods available for you to query the Web Reports server or
add to the database. Each method is described in detail in the following sections.

GetRelevanceResult
GetRelevanceResult is a SOAP method that evaluates a relevance expression and
returns the result as a simple array of strings. This is the only method that does
not require request and response headers.

Table 4. Parameters

Name Type Occurs Description

relevanceExpr string 1 The relevance expression to be evaluated.

username string 1 Login name of Web Reports user used to
evaluate relevance.

password string 1 Password of Web Reports user used to
evaluate relevance.

Table 5. Return Values

Name Type Occurs Description

a string 0+ If there is only 1 occurrence, it represents
the singular result from the expression. If
there are 0 occurrences, it represents an
empty plural result. If there are 2 or more
occurrences, each occurrence represents
one element of a plural result.

Example request
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<GetRelevanceResult xmlns="http://schemas.bigfix.com/Relevance">

<relevanceExpr>now</relevanceExpr>
<username>bigfix</username>
<password>bigfix</password>

</GetRelevanceResult>
</s:Body>

</s:Envelope>

Example response
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<GetRelevanceResultResponse xmlns="http://schemas.bigfix.com/Relevance">

Chapter 6. WebReports API 69

<a>Mon, 13 Sep 2010 14:42:55 -0700
</GetRelevanceResultResponse>

</soapenv:Body>
</soapenv:Envelope>

GetStructuredRelevanceResult
GetStructuredRelevanceResult is a SOAP method that evaluates a relevance
expression and returns the result as a complex (structured) object. This object gives
access to information about the type of the result, evaluation time, errors, along
with a strongly typed list of results. Note that this method requires request and
response headers.

Table 6. Parameters

Name Type Occurs Description

relevanceExpr string 1 The relevance expression to be
evaluated.

Table 7. Return Values

Name Type Occurs Description

StructuredRelevanceResult StructuredRelevanceResult 1 An object
containing
information about
the result of the
relevance query,
along with a list
of results.

Example request
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Header>
<h:RequestHeaderElement xsi:type="LoginHeader"
xmlns:h="http://schemas.bigfix.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.bigfix.com/Relevance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<username>bigfix</username>
<password>bigfix</password>

</h:RequestHeaderElement>
</s:Header>
<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<GetStructuredRelevanceResult xmlns="http://schemas.bigfix.com/Relevance">

<relevanceExpr>ids of bes computers</relevanceExpr>
</GetStructuredRelevanceResult>

</s:Body>
</s:Envelope>

Example response
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>
<bf:ResponseHeaderElement
xmlns:bf="http://schemas.bigfix.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XML-Schema-instance">

<bf:sessionToken>3jPHTrTJSea2o76xiGM4K8fQuSE</bf:sessionToken>
</bf:ResponseHeaderElement>

</soapenv:Header>
<soapenv:Body>
<GetStructuredRelevanceResultResponse

70 IBM Endpoint Manager: API Reference Guide

xmlns="http://schemas.bigfix.com/Relevance">
<StructuredRelevanceResult>
<results>

<Integer>10697214</Integer>
<Integer>14519782</Integer>

</results>
<plural>true</plural>
<type>integer</type>
<evaltime>24</evaltime>

</StructuredRelevanceResult>
</GetStructuredRelevanceResultResponse>

</soapenv:Body>
</soapenv:Envelope>

CreateUser
CreateUser is a Web Reports SOAP method that allows a Web Reports
administrator to programmatically create new Web Reports users. Note that this
method requires request and response headers to authenticate.

Table 8. Parameters

Name Type Occurrences Description

user UserAccount 1 The new Web Reports user
account to be created.

Table 9. Return Values

Name Type Occurrences Description

success boolean 1 True if the user was successfully
created, otherwise false.

Example request
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Header>
<h:RequestHeaderElement xsi:type="LoginHeader"
xmlns:h="http://schemas.bigfix.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.bigfix.com/Relevance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<username>bigfix</username>
<password>bigfix</password>

</h:RequestHeaderElement>
</s:Header>
<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<CreateUser xmlns="http://schemas.bigfix.com/Relevance">

<user>
<logonName>new_user</logonName>
<fullName>Mr. New User</fullName>
<password>new_password</password>
<role>Normal</role>

</user>
</CreateUser>

</s:Body>
</s:Envelope>

Example response
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>
<bf:ResponseHeaderElement xmlns:bf="http://schemas.bigfix.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XML-Schema-instance">

Chapter 6. WebReports API 71

<bf:sessionToken>uWGgqjb91IyheW7x+EPGMWERZiU</bf:sessionToken>
</bf:ResponseHeaderElement>

</soapenv:Header>
<soapenv:Body>
<CreateUserResponse xmlns="http://schemas.bigfix.com/Relevance">

<success>true</success>
</CreateUserResponse>

</soapenv:Body>
</soapenv:Envelope>

StoreSharedVariable
StoreSharedVariable is a SOAP method that inserts a variable into the dashboard
datastore of one or more databases being aggregated by Web Reports. You can save
data into the database by using a script function, and retrieve that data with a
session inspector. Each dashboard has its own name space, so it can use common
names (such as settings) without causing name collisions with another dashboard.
In addition, variables can be flagged as private, in which case they are visible only
to a particular user. So a private settings variable stores the settings for a particular
dashboard for a particular user. A shared settings variable stores the settings for a
particular dashboard and is shared by all users of that dashboard.

If dashboards must share data with each other, they can. The dashboard ID can be
specified in both the script function for writing variable data and in the session
inspectors used to access that data, although typically it is expected that the
current dashboard inspector is used to supply that ID. Note that this method
requires request and response headers to authenticate.

Table 10. Parameters

Name Type Occurs Description

dashboardVariableIdentifier DashboardVariableIdentifier 1 A dashboard
ID, variable
name, and
optional
database ID
that identify
the dashboard
variable to be
inserted.

variableValue string 1 The value to
insert for the
variable.

Table 11. Return Values

Name Type Occurs Description

success boolean 1 True if variable was successfully
inserted, otherwise false.

Example request
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Header>
<h:RequestHeaderElement xsi:type="LoginHeader"
xmlns:h="http://schemas.bigfix.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.bigfix.com/Relevance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<username>bigfix</username>
<password>bigfix</password>

72 IBM Endpoint Manager: API Reference Guide

</h:RequestHeaderElement>
</s:Header>
<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<StoreSharedVariable xmlns="http://schemas.bigfix.com/Relevance">

<dashboardVariableIdentifier>
<dashboardID>testID</dashboardID>
<variableName>testVariable</variableName>

</dashboardVariableIdentifier>
<variableValue>testValue</variableValue>

</StoreSharedVariable>
</s:Body>

</s:Envelope>

Example response
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>
<bf:ResponseHeaderElement
xmlns:bf="http://schemas.bigfix.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XML-Schema-instance">

<bf:sessionToken>sPu1faAdFGLzqummbcy5ScTYMEE</bf:sessionToken>
</bf:ResponseHeaderElement>

</soapenv:Header>
<soapenv:Body>
<StoreSharedVariableResponse xmlns="http://schemas.bigfix.com/Relevance">

<success>true</success>
</StoreSharedVariableResponse>

</soapenv:Body>
</soapenv:Envelope>

DeleteSharedVariable
DeleteSharedVariable is a Web Reports SOAP method that deletes a variable from
the dashboard datastore of one or more databases being aggregated by Web
Reports. Note that this method requires request and response headers to
authenticate.

Table 12. Parameters

Name Type Occurs Description

dashboardVariableIdentifier DashboardVariableIdentifier 1 A dashboard ID,
variable name,
and optional
database ID that
identify the
dashboard
variable to be
deleted.

Table 13. Parameters

Name Type Occurs Description

success boolean 1 True if variable was
successfully deleted,
otherwise false.

Example request
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Header>
<h:RequestHeaderElement xsi:type="LoginHeader"
xmlns:h="http://schemas.bigfix.com/Relevance"

Chapter 6. WebReports API 73

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.bigfix.com/Relevance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<username>bigfix</username>
<password>bigfix</password>

</h:RequestHeaderElement>
</s:Header>
<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<DeleteSharedVariable xmlns="http://schemas.bigfix.com/Relevance">

<dashboardVariableIdentifier>
<dashboardID>testID</dashboardID>
<variableName>testVariable</variableName>
<databaseID>2147485678</databaseID>

</dashboardVariableIdentifier>
</DeleteSharedVariable>

</s:Body>
</s:Envelope>

Example response
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>
<bf:ResponseHeaderElement xmlns:bf="http://schemas.bigfix.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XML-Schema-instance">

<bf:sessionToken>QVExtc5suqwQUfBcdw9+Ozs3Aio</bf:sessionToken>
</bf:ResponseHeaderElement>

</soapenv:Header>
<soapenv:Body>
<DeleteSharedVariableResponse xmlns="http://schemas.bigfix.com/Relevance">

<success>true</success>
</DeleteSharedVariableResponse>

</soapenv:Body>
</soapenv:Envelope>

SOAP examples
The following sample scripts help you understand how to access the SOAP API:

Shell script
This script is a simple Perl shell that allows you to retrieve a single relevance
evaluation. This example requires the SOAP::Lite module, version 0.71 or later. It
uses the GetRelevanceResult SOAP method.
use SOAP::Lite;
#arguments: [hostname] [username] [password] [relevance expression]
#hostname only, e.g. ’example.com’ rather than ’http://example.com/webreports’
my $host = $ARGV[0];
my $username = SOAP::Data->name(’username’ => $ARGV[1]);
my $password = SOAP::Data->name(’password’ => $ARGV[2]);
my $expr = SOAP::Data->name(’relevanceExpr’ => $ARGV[3]);
my $service = SOAP::Lite -> uri(’http://’ . $host . ’/webreports?wsdl’)

-> proxy($host);
my $result = $service -> GetRelevanceResult($expr, $username, $password);
if($result->fault) {
print "faultcode: " . $result->faultcode . "\n";
print "faultstring: " . $result->faultstring . "\n";
}
else {

foreach my $answer ($result->valueof("//GetRelevanceResultResponse/a")) {
print $answer . "\n";

}
}

74 IBM Endpoint Manager: API Reference Guide

You pass four arguments to this script: host, username, password, and the
relevance expression that you want to evaluate. The host name is something like
example.com, denoting the location of your Web Reports server. After passing the
parameters to the SOAP module, a call is made to GetRelevanceResult. If there is
an error, it can be parsed here. Otherwise, the results of the relevance evaluation
(typically plural) are printed in a loop.

Add the following line at the top of the file to help with debugging:
use SOAP::Lite +trace => ’debug’;

The following line might be required to avoid a bug in SOAP:Lite
$SOAP::Constants::DO_NOT_CHECK_CONTENT_TYPE = 1;

Create user example
This code creates a new user. All the required information about the new user is
embedded in the code:
use SOAP::Lite;

my $host = "http://localhost/webreports";

The login credentials for an existing admin user
my $username = ’name’;
my $password = ’password’;

The new user information
my $newUserLogin = ’new_admin’;
my $newUserFullName = ’Mr. New User’;
my $newUserPassword = ’new_password’;
my $newUserRole = ’Administrator’;

my $service = SOAP::Lite->uri($host . ’?wsdl’)->proxy($host);
this string includes embedded quotes by using backslash characters (\")
my $loginXML = "<h:RequestHeaderElement xsi:type=\"LoginHeader\" " .
" xmlns:h=\"http://schemas.example.com/webreports\
" xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" " .
" xmlns=\"http://schemas.example.com/webreports\
" xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\">" .
" <username>$username</username>" .
" <password>$password</password>" .
"</h:RequestHeaderElement>";

my $loginHeaders = SOAP::Header->type(’xml’ => $loginXML);

my $newUserInfo = SOAP::Data->name(’user’ => \SOAP::Data->value(
SOAP::Data->name(’logonName’ => $newUserLogin),
SOAP::Data->name(’fullName’ => $newUserFullName),
SOAP::Data->name(’password’ => $newUserPassword),
SOAP::Data->name(’role’ => $newUserRole)));

my $result = $service->CreateUser($newUserInfo, $loginHeaders);
PrintResult($result, "CreateUserResponse");

sub PrintResult {
my $result = shift;
my $responseName = shift;

if ($result->fault) {
print "faultcode: " . $result->faultcode . "\n";
print "faultstring: " . $result->faultstring . "\n";

}
else {

print $result->result . "\n";

Chapter 6. WebReports API 75

foreach my $answer ($result->valueof("//$responseName/a"))
{ print $answer . "\n"; }

}
}

SOAP error handling
Web Reports uses standard SOAP faults for most error handling. This includes
malformed requests, invalid login credentials, and other unexpected errors. It also
includes relevance errors from the GetRelevanceResult method, and notrelevance
errors from the GetStructuredRelevanceResult method. Relevance errors from
GetStructuredRelevanceResult are listed in the StructuredRelevanceResult object
returned from the server. For more information, see GetStructuredRelevanceResult.

The following demonstrates a request that results in an “invalid user name or
password” error:

Request
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Header>
<h:RequestHeaderElement xsi:type="LoginHeader"

xmlns:h="http://schemas.example.com/Relevance"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.example.com/Relevance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<username>example</username>
<password>wrong_password</password>

</h:RequestHeaderElement>
</s:Header>
<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<GetStructuredRelevanceResult xmlns="http://schemas.example.com/Relevance">

<relevanceExpr>now</relevanceExpr>
</GetStructuredRelevanceResult>

</s:Body>
</s:Envelope>

Response
<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

<env:Body>
<env:Fault>

<faultcode>env:Client</faultcode>
<faultstring xml:lang="ENU">Invalid username or password.</faultstring>

</env:Fault>
</env:Body>

</env:Envelope>

76 IBM Endpoint Manager: API Reference Guide

Chapter 7. Creating HTML with inspectors

There are several inspectors that allow you to more easily create HTML content.
The following sections describe how you can use them with the APIs to create
custom reports.

HTML inspectors
There are several inspectors that facilitate the generation of HTML text from string
literals and property results. These inspectors have the type html that allows
special characters, such as angle brackets and ampersands, to be properly escaped.
Neglecting to escape these characters when you output text that is based on user
input or database content can lead to cross-site scripting vulnerabilities. Using
these inspectors, you can safely format HTML strings with any regular query. For
example:
<?relevance name of company?>

If name of company is be Big&Bad, the processing instruction is replaced in the
HTML with the properly escaped string:
Big&Bad

You can include an "as html" cast explicitly to ensure that special characters print
properly, rather than being interpreted as markup:
<?relevance "<h1>Heading</h1>" as html?>

This expression returns:
"<h1>Heading</h1>"

There are some situations where escaping reserved characters is not appropriate.
The most common cases are where you have a literal HTML string, or properties
whose type is string but that already produce appropriately formatted HTML. In
these cases, you can use the html indexed property:
<?relevance html "<h1>Heading</h1>"?>

This phrase results in:
"<h1>Heading</h1>"

Depending on how the dashboard is used, try to avoid the use of the html indexed
property that potentially allows a script insertion attack. As an alternative, consider
creating your own expressions by concatenating strings and html. For example, the
following two expressions return the same result:
<?relevance html "<h1>" & name of company & html "</h1>"?>
<?relevance concatenation of (html "<h1>"; name of company as html; html "</h1>")?>

These lines return the following:
"<h1>Big&Bad</h1>"

Because items in a list must all have the same type, the following does not work:
<?relevance concatenation of (html "<h1>"; name of company; html "</h1>")?>

© Copyright IBM Corp. 2011, 2014 77

This code chunk produces the error: Incompatible types (html and string) because the
company name was not cast as html.

HTML tag inspectors
Another way to avoid using the html indexed property is to use the html tag
inspectors:
<?relevance html tag "h1" of name of company?>

that returns:
"<h1>Big&Bad</h1>"

The html tag embeds the requested text in the specified HTML tag. The requested
text can be either a string or html. If it is a string, it is HTML-escaped. The index
parameter can also include attributes that are separated from the tag name by
whitespace:
<?relevance html tag "h1 id=’companyName’" of name of company?>

that returns:
"<h1 id=’companyName’>Big&Bad</h1>"

You can also nest tags:
<?relevance html tag "div id=’header’" of html tag "h1" of name of company?>

That returns:
"<div id=’header’><h1>Big&Bad</h1></div>"

Most common HTML elements have a shorthand tag property:
<?relevance h1 of name of company?>

That returns:
"<h1>Big&Bad</h1>"

Like the generic html tag inspector, each shorthand tag property can embed both
strings and html. The shorthand tags also accept HTML attributes:
<?relevance h1 "id=’companyName’ class=’header’" of name of company?>

That returns:
"<h1 id=’companyName’ class=’header’>Big&Bad</h1>"

The following shorthand tags are supported:
html head title meta body div
span address h1 h2 h3 h4
h5 h6 em strong dfn code
samp kbd var cite abbr acronym
blockquote q sub sup p pre
ins del ul ol li dt
dd table caption thead tfoot tbody
colgroup col tr th td link
base tt i b big small

Because “a” is ignored by the relevance evaluator, the “a” shorthand property is
represented by “anchor”.
<?relevance anchor "href=’http://www.bigfix.com’" of "BigFix"?>

78 IBM Endpoint Manager: API Reference Guide

That returns:
"BigFix"

There are a few special-purpose aggregating properties:
v Ordered list
v Unordered list
v Definition list

These produce HTML lists (of the respective types) of their plural string or html
direct object. For example an ordered (numbered) list can be specified like this:
<?relevance ordered list of ("<"; ">"; "&")?>

That returns:
"<>&"

A simple bulleted list can be specified like this:
<?relevance unordered list of ("<"; ">"; "&")?>

That returns:
"<>&"

Definition lists alternate between dt and dd elements. They are used where you
have a natural set of name-value pairs:
<?relevance definition list of (name of it; free space of it as string) of
drives whose (exists free space of it)?>

That returns:
"<dl><dt>C:</dt><dd>32183602176</dd><dt>G:</dt><dd>4845355008</dd></dl>"

Issues with the "it" statement
Throughout this guide you have seen several examples of the “it” statement, such
as this one:
<?relevance definition list of (name of it; free space of it as string) of
drives whose (exists free space of it)?>

In this example, if you also want to use “it” to refer to attributes, you encounter a
problem because "it" in the html tag parameter must refer to the clause that defines
the tag contents. In the following example, it refers to statementA, not statementB:
(html tag ("tag value=’" & name of it & "’") of statementA) of statementB

The html inspectors provide an alternative syntax to avoid this problem:
html tag (<name>, <contents>)
html tag (<name>, attr list of (<name1>, <value1>; ...; <nameN>, <valueN>), <contents>)

Where <name> is a string, <contents> is a string or html, and names and values
are strings. Use this syntax to form complex html statements without the use of
“it”:
html tag ("h1", attr list of ("id", "Big&Bad"), "Big&Bad")

That returns:
"<h1 id="Big&Bad">Big&Bad</h1>"

Or this line:

Chapter 7. Creating HTML with inspectors 79

html tag ("p", attr list of (("class", "myclass"); ("align", "left")),
html "html <i>italic snippet</i>")

That returns:
<p class="myclass" align="left">html <i>italic snippet</i></p>

Introducing datastore inspectors
Dashboards have access to a persistent data store allowing them to remember
configuration options. You can get a good overview of these datastore inspectors
by evaluating the following relevance expression in the Presentation debugger:
properties whose (direct object type of it as string starts with "bes")

These keywords are also referred to as Session inspectors. Some of the basic types
are:
v BES Fixlet
v BES action
v BES property
v BES computer

The names of these types double as global iterated properties. For example:
bes properties

This inspector returns a list of all property objects.
bes computers

This returns a list of all computers that can be administered by the current user.
For a complete guide to these inspectors, see the Session Inspector Library.

Creating statistical properties
There are two primary methods of getting statistical properties into a deployment:
v Import an analysis that contains properties with the KeepStatistics attribute set to

true.
v Author an analysis in a Fixlet site by using hand-edited action script MIME.

Add the header "X-Keep-Statistics: true" to the property headers.

Properties must be one of the following types to keep statistics:
v Integer
v Boolean
v Floating point

Attempts to keep statistics on properties with other types are ignored.

Plural properties are acceptable, if used carefully. For example, "free spaces of
drives" results in statistics about all drives on all computers.

Linking to other documents
You can use the link inspector to create an HTML hyperlink that opens the
appropriate document window for any specified Fixlet, computer, action, or user.
The link inspector typically uses the name or the ID of the object to identify it:
link of bes fixlets whose (id of it is 17)

80 IBM Endpoint Manager: API Reference Guide

This inspector resolves the Fixlet ID and then generates a tag of the form:
Name Of Fixlet

Where "Name Of Fixlet" is the name-string that is retrieved for the specified linked
Fixlet and the number pair specifies the site number and the Fixlet number.

You can also specify your own custom content for the anchor tag by using the
indexed form of the inspector:
link "Click Here" of bes fixlets whose (id of it is 17)

or
link (b of "Click Here") of bes fixlets whose (id of it is 17)

These commands generate links of the form:
Click Here

Click Here

In a dashboard or wizard, click the link to open the associated MDI document. For
example:
link of bes wizards whose (name of it = "AntiPest")

This code generates an anchor of the form:
TEM
AntiPest

This HTML link, when clicked, opens the AntiPest dashboard. Similarly, in Web
Reports, the link you create opens a report page for the object.

The link ID protocol
Several of the previous examples illustrated anchor links by using the linkid:
protocol. You might want to create a link such as this directly. This style of linking
is typically used in the Navigation bar, but it is also available for dashboards and
wizards. It takes the form:
linkid:openfixlet(siteid,fixletid)linkid:openaction(actionid)
linkid:opencomputer(computerid)
linkid:openuser(username)
linkid:openunmanagedasset(unmanagedassetid)

Linkids open the specified object in an MDI document window. However, the IDs
of Fixlets, actions and other objects are rarely predictable, so it is problematic to
specify them as literals. In addition, linkids do not work in Web Reports. To
circumvent these limitations, use the link href inspector:
link href of bes fixlets whose (id of it is 17)

This code generates a corresponding linkid for dashboards and wizards:
linkid:openfixlet(1,17)

Here, the first number refers to the site and the second number (17) refers to Fixlet.
Note that the direct linkid protocol does not work for Web Reports. Instead, use
the link href inspector that in the context of a Web Report, generates an ordinary
HTML link. This technique is recommended for writing portable scripts that can
run in both environments without rewriting.

There is also a linkid for the Tivoli Endpoint Manager support site:

Chapter 7. Creating HTML with inspectors 81

linkid:supportSite

Clicking this link opens the Tivoli Endpoint Manager support website in a new
application window with the default browser.

A list of link IDs
This is a table of some useful link IDs:

Table 14.

Link Name Dialog invoked

fixletMessages mainTabDialog->ShowAllRelevantFixlets();

fixletActions mainTabDialog->ShowAllFixletActions();

customFixlets mainFrame.OnToolsCreateNewFixletMessage();

viewTasks mainTabDialog->ShowAllRelevantTasks();

taskActions mainTabDialog->ShowAllTaskActions();

customTask mainFrame.OnToolsCreateNewTaskMessage();

customBaseline mainFrame.OnToolsCreateNewBaseline();

customActions mainFrame.OnToolsTakeCustomAction();

allComputers mainTabDialog->OnViewComputerList();

viewAnalyses mainTabDialog->OnViewAnalysesList();

customAnalyses mainFrame.OnToolsCreateCustomAnalysis();

ConsoleOperators mainTabDialog->OnViewUserList();

unmanagedAssets mainTabDialog->OnViewUnmanagedAssetsList();

visualization mainFrame.OnToolsVisualization();

webReports mainFrame.OnToolsViewwebreports();

clientSettingsTasks mainFrame.GetMainTabDialog()-
>OnToolsEditClientSettings();

serverRelaySettingsTasks mainFrame.GetMainTabDialog()-
>OnToolsEditServerRelaySettings();

onlineHelp mainFrame.OnHelpContents();

manageSiteSubscriptions mainFrame.OnToolsManagesites();

editRetrievedProperties mainFrame.OnToolsCustomProperties();

Refreshing relevance

Ideally, dashboards and wizards in the console should be updated as new
information arrives from the database. To make <?relevance ?> instructions
automatically update, you must specify another pair of processing instructions to
enclose the time-sensitive block of your document:
<?BeginRefreshRelevance?>
<?EndRefreshRelevance?>

These tags cause every <?relevance ?> tag that is contained between them to be
reevaluated every time something in the console database changes.

The actual implementation of this update is important because it can affect the
way that you code your HTML. During execution, the <?BeginRefreshRelevance?>

82 IBM Endpoint Manager: API Reference Guide

tag is replaced by a tag, and the <?EndRefreshRelevance?> tag is replaced
by a tag. When the console detects that one of the <?relevance ?> tags is
changed, it updates the entire section of the document by replacing the contents of
the tag. You must therefore make sure that these relevance tags do not
interrupt any existing tags.

To correctly identify which must be updated, the console assigns an ID
attribute to the tag that it generates to replace the
<?BeginRefreshRelevance?> tag. By default, that ID is __DRRSN (an acronym for
Default Refresh Relevance Section Name).

If necessary, you can specify a different ID in the refresh tags like the following
code:
<?BeginRefreshRelevance id="MyRefreshSpan"?>
<?EndRefreshRelevance id="MyRefreshSpan"?>

The IDs must match exactly. Specifying your own IDs gives you a way to nest
RefreshRelevance tags.

By default, anything that changes a Relevance evaluation triggers a refresh of the
code block. However, you can specify which changes must trigger a refresh as well
as a minimum time interval to wait. For example:
<?BeginRefreshRelevance ActionResults="00:01:00" ?>
<?relevance (link of it & "(" & (number of results of it as string) & ")" & br)
of bes actions whose (state of it is "Open") ?>

<?EndRefreshRelevance ?>

This example displays a list of all the open actions as links that you can click to
open the associated action document. Next to the link, the number of results for
each action is displayed in parentheses. The number indicates how many of the
targeted computers reported on the action.

If the action results are not changing, this block of code is static. However, when a
change occurs, the “00:01:00” value for ActionResults specifies that this block is
refreshed at most one time per minute. The form of these values is the standard
TimeInterval string format “hh:mm:ss”. This is a list of the built-in refresh triggers:

Table 15.

Trigger Type Refreshes Whenever...

Computers A computer is added or removed (ComputerDataStore)

ReportTimes A computer's last report time changes

ExternalContent External Fixlet site content changes (FixletStore)

CustomContent Custom content changes, not including actions (ActionSiteStore)

Actions Actions are taken, stopped, restarted, and so on. (ActionStore)

ActionResults A client reports on the status of an action (ActionResultStore)

FixletResults A client reports on the relevance of a Fixlet (FixletResultStore)

PropertyResults A client reports a new value for a retrieved property
(RPResultStore)

RefreshCycle See the following text

ManualRefresh See the following text

Chapter 7. Creating HTML with inspectors 83

Refreshes are done only at the end of each refresh cycle, not when the change is
first detected. At the end of a cycle, if any of your specified types are triggered and
its time interval is expired, then a refresh occurs. For more frequent updating, the
RefreshCycle attribute can be used to force a refresh at the end of the refresh cycle,
regardless of any changes.

You can also create blocks that can be refreshed manually by using the
ManualRefresh attribute. It works in combination with a predefined script that takes
the ID of the Refresh block as an argument, for example:
ManualRefresh(“Clock”)

This works to refresh a code block with an id=”Clock”:
<?BeginRefreshRelevance id="Clock" ManualRefresh="00:00:00" ?>
<P> The current time is: <?relevance now ?> </P>
<?EndRefreshRelevance id="Clock" ?>
<P> <Button onclick=’ManualRefresh("Clock")’>Refresh</Button> </P>

You can also call the script function with no parameters:
ManualRefresh()
ManualRefresh("")

This code refreshes the default unnamed refresh block. To refresh all the blocks,
use:
ManualRefreshAll()

You can set multiple clocks to satisfy different refresh needs:
<?BeginRefreshRelevance ManualRefresh="00:00:00"?>
<?relevance now ?>
<?EndRefreshRelevance?>
<?BeginRefreshRelevance id="Foo" ManualRefresh="00:00:00"?>
<?relevance now ?>
<?EndRefreshRelevance id="Foo"?>
<P> <Button onclick=’ManualRefresh()’>Refresh first clock</Button> </P>
<P> <Button onclick=’ManualRefresh("Foo")’>Refresh second clock</Button> </P>
<P> <Button onclick=’ManualRefreshAll()’>Refresh all clocks</Button> </P>

Note: Inside the refresh block, all the Relevance expressions are replaced by their
results. This means that any ManualRefresh calls you place inside the block are
also replaced, invalidating your code. Therefore, always put the actual call outside
the refresh block.

You can also associate refresh operations with a JavaScript by using
RegisterRefreshHandler. You can use the RegisterRefreshHandler function in both the
console and Web Reports, but in Web Reports it is ignored, and your handler is
never called. Because a Web Report is static, it does not support refreshing
relevance.

84 IBM Endpoint Manager: API Reference Guide

Appendix. Support

For more information about this product, see the following resources:
v http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc_9.1/

welcome/welcome.html
v IBM Endpoint Manager Support site
v IBM Endpoint Manager wiki
v Knowledge Base
v Forums and Communities

© Copyright IBM Corp. 2011, 2014 85

http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc_9.1/welcome/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc_9.1/welcome/welcome.html
http://www.ibm.com/support/entry/portal/Overview/Software/Tivoli/Tivoli_Endpoint_Manager
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Endpoint%20Manager/page/Home
http://www-01.ibm.com/support/docview.wss?uid=swg21584549
http://www.ibm.com/developerworks/forums/category.jspa?categoryID=506

86 IBM Endpoint Manager: API Reference Guide

Notices

This information was developed for products and services that are offered in the
USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2011, 2014 87

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

88 IBM Endpoint Manager: API Reference Guide

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at www.ibm.com/legal/
copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of The
Minister for the Cabinet Office, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 89

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/us/en/copytrade.shtml

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM® Corp. and Quantum in the U.S. and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

90 IBM Endpoint Manager: API Reference Guide

Notices 91

IBM®

Printed in USA

	Contents
	Chapter 1. API Reference Guide
	Chapter 2. Server API
	Installation
	BES XML documents
	Connecting to the API
	Examples
	Top-level BES XML elements
	Running an action
	Accessing the API with Perl
	The API package in Perl
	Importing a file with Perl
	Examining a Fixlet with Perl
	Managing a custom site with Perl
	Creating a Fixlet with an action using Perl
	Creating a Fixlet with an action using C#

	The API Objects
	BESAPI.XMLImporter
	BESAPI.ActionStopper
	BESAPI.RetrievedProperty
	BESAPI.FixletMessage
	BESAPI.SiteManager
	BESAPI.ActionSiteMasthead
	BESAPI.SigningKeys

	BES schemas
	Fixlet or task
	Baseline
	Single actions
	Multiple action groups
	Analyses
	Computer groups
	Properties

	Shared BES XML elements
	FixletAction
	ActionScript
	ActionSuccessCriteria
	ActionSettings
	ActionSettingsLocks
	Search components

	Miscellaneous types
	RelevanceString
	TimeInterval
	NonNegativeTimeInterval
	ActionMessageMaxPostponementInterval
	ActionMessageTimeoutInterval

	Chapter 3. Client API
	Client API terminology
	Potential use cases
	Deploying an agent
	Software development kit
	C++ source code
	Configuring the components
	API specifications
	BESClientComplianceMod.Session
	BESClientComplianceMod.Progress
	BESClientComplianceMod.Response
	Examples of Client Documents
	Check service pack
	Check for a running app
	Update patches
	Check for anti-virus

	Chapter 4. Dashboard API
	Linking
	Relevance in dashboards
	Debugging dashboards
	Editing dashboards

	Chapter 5. Database API
	BES_FIXLETS
	BES_TASKS
	BES_ANALYSES
	BES_BASELINES
	BES_COMPUTERGROUPS
	BES_COLUMN_HEADINGS
	BES_RELEVANT_FIXLETS
	BES_RELEVANT_TASKS
	BES_RELEVANT_BASELINES
	BES_ACTIONS
	BES_RELEVANT_FIXLET_HISTORY
	BES_RELEVANT_TASK_HISTORY
	BES_RELEVANT_BASELINE_HISTORY
	BES_FIXLET_PROPERTIES
	BES_TASK_PROPERTIES
	BES_BASELINE_PROPERTIES
	Example report generator

	Chapter 6. WebReports API
	Authoring Web Reports
	Converting a dashboard
	Propagating Web Reports
	Template report
	Custom report
	External report
	Exporting to PDF
	Setting a title
	Setting OnLoad events
	SOAP API
	Configuring SOAP
	SOAP URL
	SOAP headers
	SOAP methods
	GetRelevanceResult
	GetStructuredRelevanceResult
	CreateUser
	StoreSharedVariable
	DeleteSharedVariable

	SOAP examples
	Shell script
	Create user example
	SOAP error handling

	Chapter 7. Creating HTML with inspectors
	HTML inspectors
	HTML tag inspectors
	Issues with the "it" statement
	Introducing datastore inspectors
	Creating statistical properties
	Linking to other documents
	The link ID protocol
	A list of link IDs
	Refreshing relevance

	Appendix. Support
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation

