
IBM QRadar
7.4.3

Ariel Query Language Guide

IBM

Note

Before you use this information and the product that it supports, read the information in “Notices” on
page 71.

© Copyright International Business Machines Corporation 2013, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this guide.. v

Chapter 1. Ariel Query Language in the QRadar interface.. 1

Chapter 2. AQL Query structure..3
SELECT statement..5
WHERE clause.. 6
GROUP BY clause...7
HAVING clause...9
ORDER BY clause...10
LIKE clause.. 10
COUNT function... 11
Quotation marks.. 12
Sample AQL queries...14

Chapter 3. Ariel Query Language ... 17
AQL logical and comparison operators... 17
AQL data calculation and formatting functions...20
AQL data aggregation functions.. 25
AQL data retrieval functions.. 28
Time criteria in AQL queries.. 43
AQL date and time formats..45
AQL subquery...47
Grouping related events into sessions.. 48

Transactional query refinements... 50
Conditional logic in AQL queries..55
Bitwise operators in AQL queries.. 56
CIDR IP addresses in AQL queries.. 59
Custom properties in AQL queries...59
System performance query examples.. 60
Events and flows query examples...61
Reference data query examples ...62
User and network monitoring query examples...64
Event, flow, and simarc fields for AQL queries..65

Notices..71
Trademarks.. 72
Terms and conditions for product documentation... 72
IBM Online Privacy Statement.. 73
General Data Protection Regulation..73

Index.. 75

 iii

iv

About this guide

The Ariel Query Language (AQL) Guide provides you with information for using the AQL advanced
searching and API.

Intended audience
System administrators who view event or flow data that is stored in the Ariel database.

Technical documentation
To find IBM® QRadar® product documentation on the web, including all translated documentation, access
the IBM Knowledge Center (http://www.ibm.com/support/knowledgecenter/SS42VS/welcome).

For information about how to access more technical documentation in the QRadar products
library, see Accessing IBM Security Documentation Technical Note (www.ibm.com/support/docview.wss?
rs=0&uid=swg21614644).

Contacting customer support
For information about contacting customer support, see the Support and Download Technical Note
(http://www.ibm.com/support/docview.wss?uid=swg21616144).

Statement of good security practices
IT system security involves protecting systems and information through prevention, detection and
response to improper access from within and outside your enterprise. Improper access can result
in information being altered, destroyed, misappropriated or misused or can result in damage to or
misuse of your systems, including for use in attacks on others. No IT system or product should be
considered completely secure and no single product, service or security measure can be completely
effective in preventing improper use or access. IBM systems, products and services are designed to be
part of a lawful comprehensive security approach, which will necessarily involve additional operational
procedures, and may require other systems, products or services to be most effective. IBM DOES NOT
WARRANT THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE IMMUNE FROM, OR WILL MAKE YOUR
ENTERPRISE IMMUNE FROM, THE MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.

Please Note:

Use of this Program may implicate various laws or regulations, including those related to privacy, data
protection, employment, and electronic communications and storage. IBM QRadar may be used only for
lawful purposes and in a lawful manner. Customer agrees to use this Program pursuant to, and assumes
all responsibility for complying with, applicable laws, regulations and policies. Licensee represents that it
will obtain or has obtained any consents, permissions, or licenses required to enable its lawful use of IBM
QRadar.

© Copyright IBM Corp. 2013, 2021 v

http://www.ibm.com/support/knowledgecenter/SS42VS/welcome
http://www.ibm.com/support/docview.wss?rs=0&uid=swg21614644
http://www.ibm.com/support/docview.wss?uid=swg21616144

vi IBM QRadar : QRadar Ariel Query Language Guide

Chapter 1. Ariel Query Language in the QRadar
interface

Using AQL can help enhance advanced searches and provide specific results.

When you use AQL queries, you can display data from all across QRadar in the Log Activity or Network
Activity tabs.

To use AQL in the search fields, consider the following functions:

• In the search fields on the Log Activity or Network Activity tabs, type Ctrl + Space to see the full list of
AQL functions, fields (properties), and keywords.

• Ctrl + Enter helps you create multi-line AQL queries, which makes the queries more readable.
• By using the copy (Ctrl + C) and paste (Ctrl + V) keyboard commands, you can copy directly to and from

the Advanced search field.

Note: Ensure that you use appropriate quotation marks when you copy queries to the search field.

The AQL categories are listed with the entered component in the interface. The following table lists and
explains the different categories:

Table 1. Ariel Query Language categories

Category Definition

Database The name of an Ariel database, or table, that you
can query.

The database is either events or flows.

Keyword Typically core SQL clauses. For example, SELECT,
OR, NULL, NOT, AS, ASC (ascending), and more.

Field Indicates basic information that you can query
from the database. Examples include Access
intent, VPC ID, and domainid.

Function The name of a function that is used to call in more
information.

Functions work on all fields and databases.
Examples of functions include DATEFORMAT,
HOSTNAME, and LOWER.

© Copyright IBM Corp. 2013, 2021 1

Figure 1. AQL in the advanced search field

2 IBM QRadar : QRadar Ariel Query Language Guide

Chapter 2. AQL Query structure
Use Ariel Query Language (AQL) to extract, filter, and perform actions on event and flow data that you
extract from the Ariel database in IBM QRadar. You can use AQL to get data that might not be easily
accessible from the user interface.

The following diagram shows the flow of an AQL query.

© Copyright IBM Corp. 2013, 2021 3

SELECT

column_name, column_name, column_name

column name, *
*
column_name AS alias, column_name

FROM events
or
FROM flows

WHERE condition

GROUP BY column data from results

ORDER BY column_name

HAVING condition Optional

Query results

column_name, column_name

options

FUNCTION(property) AS alias, column_name

Figure 2. AQL query flow

4 IBM QRadar : QRadar Ariel Query Language Guide

Structure of an AQL statement
Use the SELECT statement to select fields from events or flows in the Ariel database, which are displayed
as columns. For example, the following query returns the results that are shown in the following table:

SELECT sourceip, destinationip, username, protocolid, eventcount FROM events

Table 2. AQL query results

sourceip destinationip Username Protocolid eventcount

192.0.2.21 198.51.100.21 Joe Ariel 233 1

192.0.2.22 198.51.100.24 Jim Ariel 233 1

AQL queries begin with a SELECT statement to select event or flow data from the Ariel database. You can
refine the data output of the SELECT statement by using the WHERE, GROUP BY, HAVING, ORDER BY,
LIMIT, and LAST clauses.

SELECT

Use the SELECT statement to select fields from events or flows. For example, select all fields from
events or flows by typing:

SELECT * FROM events, or SELECT * FROM flows

Use the following clauses to filter and manipulate the data that is returned by the SELECT statement:
WHERE

Use the WHERE clause to insert a condition that filters the output, for example, WHERE
logsourceid='65'.

GROUP BY
Use the GROUP BY clause to group the results by one or more columns that you specify in the query,
for example, GROUP BY logsourceid.

HAVING
Use the HAVING clause to specify a condition after the GROUP BY clause, for example, HAVING MAG
> 3.

ORDER BY
Use the ORDER BY clause to order the results for a column in the AQL query in an ascending or
descending order, for example, ORDER BY username DESC.

LIMIT
Use a LIMIT clause to limit the number of results that are returned to a specific number, for example
LIMIT 50 to limit the output to 50 results.

LAST
Use a LAST clause to specify a time frame for the query, for example LAST 1 HOURS.

The following example incorporates all of the clauses that are described in the list:

SELECT sourceip, destinationip, username
FROM events
WHERE username = 'test name'
GROUP by sourceip, destinationip
ORDER BY sourceip DESC
LIMIT 10
LAST 2 DAYS

SELECT statement
Use the SELECT statement to define the criteria that you use to retrieve event or flow data.

Use the SELECT statement to define the columns (fields) that you want to output from your query. You
can use the SELECT statement to output data from an AQL function by using a column alias. Typically, you

Chapter 2. AQL Query structure 5

refer to events or flows in your SELECT statement but you can also use the SELECT statement with the
GLOBALVIEW database, or any other database that you might have access to.

Use the SELECT statement to select the columns that you want to display in the query output.

A SELECT statement can include the following elements:

• Fields from the events or flows databases
• Custom properties from the events or flows databases
• Functions that you use with fields to represent specific data that you want to return.

For example, the function ASSETHOSTNAME(sourceip) searches for the host name of an asset by
source IP address at a specific time.

Use an asterisk (*) to denote all columns.

Field names and SELECT and FROM statements are not case-sensitive. For example, the following query
uses different cases and it parses.

select Sourceip, DATEFORMAT(starTTime,'YYYY-MM-dd HH:mm') as startTime from
events WHERE username is noT Null GROUP BY sourceip ordER BY starttime lAsT
3 houRS

The following examples are queries that use SELECT statements:

• SELECT * FROM flows

Returns all columns from the flows database.
• SELECT sourceip, destinationip FROM events

Returns only the sourceip and destinationip columns from the events database.
• SELECT sourceip, * FROM flows

Returns the sourceip column first, which is followed by all columns from the flows database.
• SELECT sourceip AS 'MY Source IPs' FROM events

Returns the sourceip column as the alias or renamed column 'MY Source IPs'.
• SELECT ASSETHOSTNAME(sourceip) AS 'Host Name', sourceip FROM events

Returns the output of the function ASSETHOSTNAME as the column name Host Name, and the
sourceip column from the events database.

WHERE clause
Filter your AQL queries by using WHERE clauses. The WHERE clause describes the filter criteria that you
apply to the query and filters the resulting view to accept only those events or flows that meet the
specified condition.

You can apply the WHERE clause to add a condition to search criteria in AQL queries, which filters the
search results.

A search condition is a combination of logical and comparison operators that together make a test. Only
those input rows that pass the test are included in the result.

You can apply the following filters when you use WHERE clause in a query:

• Equal sign (=)
• Not equal to symbol (<>)
• Less than symbol (<)
• Greater than symbol (>)
• Less that or equal to symbol (<=)
• Greater than or equal to symbol (>=)

6 IBM QRadar : QRadar Ariel Query Language Guide

• BETWEEN between two values, for example (64 AND 512)
• LIKE case sensitive match
• ILIKE case insensitive match
• IS NULL is empty
• AND / OR combine conditions or either condition
• TEXT SEARCH text string match

Examples of WHERE clauses
The following query example shows events that have a severity level of greater than nine and are from a
specific category.

SELECT sourceIP, category, credibility
FROM events
WHERE
severity > 9
AND
category = 5013

Change the order of evaluation by using parentheses. The search conditions that are enclosed in
parentheses are evaluated first.

SELECT sourceIP, category, credibility
FROM events
WHERE
(severity > 9 AND category = 5013)
OR
(severity < 5 AND credibility > 8)

Return events from the events database where the text 'typot' is found.

SELECT QIDNAME(qid)
AS EventName,
* FROM events
WHERE
TEXT SEARCH 'typot'

The following query outputs events from the events database where health is included in the log source
name.

SELECT logsourceid, LOGSOURCEGROUPNAME(logsourceid), LOGSOURCENAME(logsourceid)
FROM events
WHERE LOGSOURCENAME(logsourceid)
ILIKE '%%health%%'

The following query outputs events where the device type ID is equal to 11 (Linux Server DSM), and where
the QID is equal to 44250002, which is the identifier for Cron Status.

SELECT * FROM events
WHERE deviceType= '11'
AND qid= '44250002'

GROUP BY clause
Use the GROUP BY clause to aggregate your data by one or more columns. To provide meaningful results
of the aggregation, usually, data aggregation is combined with aggregate functions on remaining columns.

Chapter 2. AQL Query structure 7

Examples of GROUP BY clauses
The following query example shows IP addresses that sent more than 1 million bytes within all flows in a
specific time.

SELECT sourceIP, SUM(sourceBytes)
FROM flows where sourceBytes > 1000000
GROUP BY sourceIP

The results might look similar to the following output.

| sourceIP | SUM_sourceBytes |

192.0.2.0	4282590.0
10.105.2.10	4902509.0
10.103.70.243	2802715.0
10.103.77.143	3313370.0
10.105.32.29	2467183.0
10.105.96.148	8325356.0
10.103.73.206	1629768.0

However, if you compare this information to a non-aggregated query, the output displays all the IP
addresses that are unique, as shown in the following output:

| sourceIP | sourceBytes |

192.0.2.0	1448629
10.105.2.10	2412426
10.103.70.243	1793095
10.103.77.143	1449148
10.105.32.29	1097523
10.105.96.148	4096834
192.0.2.0	2833961
10.105.2.10	2490083
10.103.73.206	1629768
10.103.70.243	1009620
10.105.32.29	1369660
10.103.77.143	1864222
10.105.96.148	4228522

To view the maximum number of events, use the following syntax:

SELECT MAX(eventCount) FROM events

To view the number of average events from a source IP, use the following syntax:

SELECT AVG(eventCount), PROTOCOLNAME(protocolid)
FROM events
GROUP BY sourceIP

The output displays the following results:

| sourceIP | protocol |

192.0.2.0	TCP.tcp.ip
10.105.2.10	UDP.udp.ip
10.103.70.243	UDP.udp.ip
10.103.77.143	UDP.udp.ip
10.105.32.29	TCP.tcp.ip
10.105.96.148	TCP.tcp.ip
192.0.2.0	TCP.tcp.ip
10.105.2.10	ICMP.icmp.ip

8 IBM QRadar : QRadar Ariel Query Language Guide

HAVING clause
Use the HAVING clause in a query to apply more filters to specific data by applying filters to the results
after the GROUP BY clause.

The HAVING clause follows the GROUP BY clause.

You can apply the following filters when you use a HAVING clause in a query:

• Equal sign (=)
• Not equal to symbol (<>)
• Less than symbol (<)
• Greater than symbol (>)
• Less that or equal to symbol (<=)
• Greater than or equal to symbol (>=)
• BETWEEN between two values, for example (64 AND 512)
• LIKE case-sensitive match
• ILIKE case insensitive match
• SUM/AVG total or average values
• MAX/MIN maximum or minimum values

Examples of HAVING clauses
The following query example shows results for users who triggered VPN events from more than four IP
addresses (HAVING 'Count of Source IPs' > 4) in the last 24 hours.

SELECT username, UNIQUECOUNT(sourceip) AS 'Count of Source IPs'
FROM events
WHERE LOGSOURCENAME(logsourceid) ILIKE '%vpn%'
AND username IS NOT NULL
GROUP BY username
HAVING "Count of Source IPs" > 4
LAST 24 HOURS

Note: When you type an AQL query, use single quotation marks for a string comparison, and use double
quotation marks for a property value comparison.

The following query example shows results for events where the credibility (HAVING credibility >
5) is greater than five.

SELECT username, sourceip, credibility
FROM events
GROUP BY sourceip
HAVING credibility > 5
LAST 1 HOURS

The following query groups results by source IP but displays only results where the magnitude (HAVING
magnitude > 5) is greater than five.

SELECT sourceIP, magnitude
FROM events
GROUP BY sourceIP
HAVING magnitude > 5

Chapter 2. AQL Query structure 9

ORDER BY clause
Use the ORDER BY clause to sort the resulting view that is based on expression results. The result is
sorted by ascending or descending order.

Note: When you type an AQL query, use single quotation marks for a string comparison, and use double
quotation marks for a property value comparison.

You can use the ORDER BY clause on one or more columns.

Use the GROUP BY and ORDER BY clauses in a single query.

Sort in ascending or descending order by appending the ASC or DESC keyword to the ORDER BY clause.

Examples of ORDER BY clauses
To query AQL to return results in descending order, use the following syntax:

SELECT sourceBytes, sourceIP
FROM flows
WHERE sourceBytes > 1000000
ORDER BY sourceBytes DESC

To display results in ascending order, use the following syntax:

SELECT sourceBytes, sourceIP
FROM flows
WHERE sourceBytes > 1000000
ORDER BY sourceBytes ASC

To determine the top abnormal events or the most bandwidth-intensive IP addresses, you can combine
GROUP BY and ORDER BY clauses in a single query. For example, the following query displays the most
traffic intensive IP address in descending order:

SELECT sourceIP, SUM(sourceBytes)
FROM flows
GROUP BY sourceIP
ORDER BY SUM(sourceBytes) DESC

Attention:

When you use the GROUP BY clause with a column name or AQL function, only the first value is
returned for the GROUP BY column, by default, even though other values might exist.

When you use a time field in the ORDER BY clause, use a simple datetime field, such as starttime.
Using a formatted datetime field can impact the performance of the search.

LIKE clause
Use the LIKE clause to retrieve partial string matches in the Ariel database.

You can search fields by using the LIKE clause.

The following table shows the wildcard options are supported by the Ariel Query Language (AQL).

Table 3. Supported wildcard options for LIKE clauses

Wildcard character Description

% Matches a string of zero or more characters

_ Matches any single character

10 IBM QRadar : QRadar Ariel Query Language Guide

Examples of LIKE clauses
To match names such as Joe, Joanne, Joseph, or any other name that begins with Jo, type the following
query:

SELECT * FROM events WHERE userName LIKE 'Jo%'

To match names that begin with Jo that are 3 characters long, such as, Joe or Jon, type the following
query:

SELECT * FROM events WHERE userName LIKE 'Jo_'

You can enter the wildcard option at any point in the command, as shown in the following examples.

SELECT * FROM flows WHERE sourcePayload LIKE '%xyz'
SELECT * FROM events WHERE UTF8(payload) LIKE '%xyz%'
SELECT * FROM events WHERE UTF8(payload) LIKE '_yz'

Examples of string matching keywords
The keywords, ILIKE and IMATCHES are case-insensitive versions of LIKE and MATCHES.

SELECT qidname(qid) as test FROM events WHERE test LIKE 'Information%'
SELECT qidname(qid) as test FROM events WHERE test ILIKE 'inForMatiOn%'

SELECT qidname(qid) as test FROM events WHERE test MATCHES '.*Information.*'
SELECT qidname(qid) as test FROM events WHERE test IMATCHES '.*Information.*'

COUNT function
The COUNT function returns the number of rows that satisfy the WHERE clause of a SELECT statement.

If the SELECT statement does not have a WHERE clause, the COUNT function returns the total number of
rows in the table.

Examples of the Count function
The following query returns the count of all events with credibility that is greater than or equal to 9.

SELECT COUNT(*) FROM events WHERE credibility >= 9

The following query returns the count of assets by location and source IP address.

SELECT ASSETPROPERTY('Location',sourceip)
AS location, COUNT(*)
FROM events
GROUP BY location
LAST 1 days

The following query returns the user names, source IP addresses, and count of events.

SELECT username, sourceip,
COUNT(*) FROM events
GROUP BY username
LAST 600 minutes

The sourceip column is returned as FIRST_sourceip.

One sourceip is returned only per username, even if another sourceip exists.

Note:

Chapter 2. AQL Query structure 11

When you use the GROUP BY clause with a column name or AQL function, only the first value is returned
for the GROUP BY column, by default, even though other values might exist.

Quotation marks
In an AQL query, query terms and queried columns sometimes require single or double quotation marks
so that QRadar can parse the query.

The following table defines when to use single or double quotation marks.

Table 4. Type of quotation marks to use in a query

Type of quotation
marks

When to use

Single To specify any American National Standards Institute (ANSI) VARCHAR string to
SQL such as parameters for a LIKE or equals (=) operator, or any operator that
expects a VARCHAR string.

Examples:

SELECT * from events WHERE sourceip = '192.0.2.0'

SELECT * from events WHERE userName LIKE '%james%'

SELECT * from events WHERE userName = 'james'

SELECT * FROM events
WHERE INCIDR('10.45.225.14', sourceip)

SELECT * from events WHERE TEXT SEARCH 'my search term'

12 IBM QRadar : QRadar Ariel Query Language Guide

Table 4. Type of quotation marks to use in a query (continued)

Type of quotation
marks

When to use

Double Use double quotation marks for the following query items to specify table and
column names that contain spaces or non-ASCII characters, and to specify
custom property names that contain spaces or non-ASCII characters.

Examples:

SELECT "username column" AS 'User name' FROM events

SELECT "My custom property name"
AS 'My new alias' FROM events

Use double quotation marks to define the name of a system object such as field,
function, database, or an existing alias.

Example:

SELECT "Application Category", sourceIP,
EventCount AS 'Count of Events'
FROM events GROUP BY "Count of Events"

Use double quotation marks to specify an existing alias that has a space when
you use a WHERE, GROUP BY, or ORDER BY clause

Examples:

SELECT sourceIP, destinationIP, sourcePort,
EventCount AS 'Event Count',
category, hasidentity, username, payload, UtF8(payLoad),
QiD, QiDnAmE(qid) FROM events
WHERE (NOT (sourcePort <= 3003 OR hasidentity = 'True'))
AND (qid = 5000023 OR qid = 5000193)
AND (INCIDR('192.0.2.0/4', sourceIP)
OR NOT INCIDR('192.0.2.0/4', sourceIP)) ORDER BY "Event Count"
DESC LAST 60 MINUTES

SELECT sourceIP, destinationIP, sourcePort, EventCount
AS 'Event Count',
category, hasidentity, username, payload, UtF8(payLoad),
QiD, QiDnAmE(qid)
FROM events ORDER BY "Event Count"
DESC LAST 60 MINUTES

Single or double Use single quotation marks to specify an alias for a column definition in a query.

Example:

SELECT username AS 'Name of User', sourceip
AS 'IP Source' FROM events

Use double quotation marks to specify an existing alias with a space when you
use a WHERE, GROUP BY, or ORDER BY clause.

Example:

SELECT sourceIP AS 'Source IP Address',
EventCount AS 'Event Count', QiD, QiDnAmE(qid)
FROM events
GROUP BY "Source IP Address"
LAST 60 MINUTES

Chapter 2. AQL Query structure 13

Copying query examples from the AQL guide
If you copy and paste a query example that contains single or double quotation marks from the AQL
Guide, you must retype the quotation marks to be sure that the query parses.

Sample AQL queries
Use Ariel Query Language (AQL) queries to retrieve data from the Ariel database based on specific criteria.

Use the following query syntax, and adhere to the clause order, when you build an AQL query:

[SELECT *, column_name, column_name]
[FROM table_name]
[WHERE search clauses]
[GROUP BY column_reference*]
[HAVING clause]
[ORDER BY column_reference*]
[LIMIT numeric_value]
[TIMEFRAME]

Note: When you use a GROUP BY or ORDER BY clause to sort information, you can reference
column_names from your existing SELECT statement only.

Note: By default, if the TIMEFRAME value is not specified, the query runs against the last five minutes of
Ariel data.

Remember to use single quotation marks to specify literal values or variables and use double quotation
marks for column names that contain spaces or non-ASCII characters:
Single quotation marks

Use single quotation marks when you reference the beginning and end of a string, as shown in these
examples:
username LIKE '%User%'
sourceCIDR= '192.0.2.0'
TEXT SEARCH = 'VPN Authenticated user'
QIDNAME(qid) AS 'Event Name'

Double quotation marks
Use double quotation marks when column names contain spaces or non-ASCII characters, as shown
in these examples:
Custom property names with spaces, such as "Account Security ID".
Values that have non-ASCII characters.

Simple AQL queries
Table 5. Simple AQL queries

Basic AQL Commands Comments

SELECT * FROM events LAST 10 MINUTES Returns all the fields from the events table that
were sent in the last 10 minutes.

SELECT sourceip,destinationip FROM events
LAST 24 HOURS

Returns the sourceip and destinationip from
the events table that were sent in the last 24
hours.

SELECT * FROM events START '2017 01 01
9:00:00'
STOP '2017 01 01 10:20:00'

Returns all the fields from the events table during
that time interval.

SELECT * FROM events limit 5 LAST 24 HOURS Returns all the fields in the events table during the
last 24 hours, with output limited to five results.

14 IBM QRadar : QRadar Ariel Query Language Guide

Table 5. Simple AQL queries (continued)

Basic AQL Commands Comments

SELECT * FROM events ORDER BY magnitude DESC
LAST 24 HOURS

Returns all the fields in the events table sent in the
last 24 hours, sorting the output from highest to
lowest magnitude.

SELECT * FROM events WHERE magnitude >= 3
LAST 24 HOURS

Returns all the fields in the events table that have
a magnitude that is less than three from the last 24
hours.

SELECT * FROM events WHERE sourceip =
'192.0.2.0'
AND destinationip = '198.51.100.0' START
'2017 01 01
9:00:00' STOP '2017 01 01 10:20:00'

Returns all the fields in the events table that have
the specified source IP and destination IP within
the specified time period.

SELECT * FROM events WHERE
INCIDR('192.0.2.0/24',
sourceip)

Returns all the fields in the events table where the
source IP address is within the specified CIDR IP
range.

SELECT * FROM events WHERE username LIKE
'%roul%'

Returns all the fields in the events table where
the user name contains the example string.
The percentage symbols (%) indicate that the
user name can match a string of zero or more
characters.

SELECT * FROM events WHERE username ILIKE
'%ROUL%'

Returns all the fields in the events table where
the user name contains the example string, and
the results are case-insensitive. The percentage
symbols (%) indicate that the user name can
match a string of zero or more characters.

SELECT sourceip,category,credibility FROM
events
WHERE (severity > 3 AND category = 5018)OR
(severity < 3 AND credibility > 8)

Returns the sourceip, category, and
credibility fields from the events table with
specific severity levels, a specific category, and a
specific credibility level. The AND clause allows for
multiple strings of types of results that you want to
have.

SELECT * FROM events WHERE TEXT SEARCH
'firewall'

Returns all the fields from the events table that
have the specified text in the output.

SELECT * FROM events WHERE username ISNOT
NULL

Returns all the fields in the events table where the
username value is not null.

Chapter 2. AQL Query structure 15

16 IBM QRadar : QRadar Ariel Query Language Guide

Chapter 3. Ariel Query Language
The Ariel Query Language (AQL) is a structured query language that you use to communicate with the
Ariel databases. Use AQL to query and manipulate event and flow data from the Ariel database.

AQL logical and comparison operators
Operators are used in AQL statements to determine any equality or difference between values. By using
operators in the WHERE clause of an AQL statement, the results are filtered by those results that match
the conditions in the WHERE clause.

The following table lists the supported logical and comparison operators.

Table 6. Logical and comparison operators

Operator Description Example

* Multiplies two values and
returns the result. SELECT *

FROM flows
WHERE sourceBytes * 1024 < 1

= The equal to operator
compares two values and
returns true if they are equal.

SELECT *
FROM EVENTS
WHERE sourceIP = destinationIP

!= Compares two values and
returns true if they are
unequal.

SELECT *
FROM events
WHERE sourceIP
!= destinationip

< AND
<=

Compares two values and
returns true if the value on
the left side is less than or
equal to, the value on the
right side.

SELECT *
FROM flows
WHERE sourceBytes < 64
AND
destinationBytes <= 64

> AND
>=

Compares two values and
returns true if the value on
the left side is greater than
or equal to the value on the
right side.

SELECT *
FROM flows
WHERE sourceBytes > 64
AND
destinationBytes >= 64

/ Divides two values and
returns the result. SELECT *

FROM flows
WHERE sourceBytes / 8 > 64

+ Adds two values and returns
the result. SELECT *

FROM flows
WHERE sourceBytes +
destinationBytes < 64

- Subtracts one value from
another and returns the
result.

SELECT *
FROM flows
WHERE sourceBytes -
destinationBytes > 0

© Copyright IBM Corp. 2013, 2021 17

Table 6. Logical and comparison operators (continued)

Operator Description Example

^ Takes a value and raises it
to the specified power and
returns the result.

SELECT *
FROM flows
WHERE sourceBytes ^ 2 < 256

% Takes the modulo of a value
and returns the result. SELECT *

FROM flows
WHERE sourceBytes % 8 == 7

AND Takes the left side and right
side of a statement and
returns true if both are true.

SELECT *
FROM events
WHERE (sourceIP = destinationIP)
AND (sourcePort = destinationPort)

BETWEEN
(X,Y)

Takes in a left side and two
values and returns true if the
left side is between the two
values.

SELECT *
FROM events
WHERE magnitude
BETWEEN 1 AND 5

COLLATE Parameter to order by that
allows a BCP47 language tag
to collate.

SELECT *
FROM EVENTS ORDER BY
sourceIP DESC COLLATE 'de-CH'

IN Specifies multiple values in
a WHERE clause. The IN
operator is a shorthand for
multiple OR conditions.

SELECT *
FROM EVENTS
WHERE SourceIP IN ('192.0.2.1', '::1', '198.51.100.0')

INTO Creates a named cursor that
contains results that can be
queried at a different time.

SELECT * FROM EVENTS INTO
 'MyCursor' WHERE....

NOT Takes in a statement and
returns true if the statement
evaluates as false.

SELECT * FROM EVENTS
WHERE NOT
(sourceIP = destinationIP)

ILIKE Matches if the string passed
is LIKE the passed value and
is not case sensitive. Use %
as a wildcard.

SELECT *
FROM events WHERE userName
ILIKE '%bob%'

IMATCHE
S

Matches if the string
matches the provided
regular expression and is not
case sensitive.

SELECT *
FROM events
WHERE userName
IMATCHES '^.bob.$'

LIMIT Limits the number of results
to the provided number. SELECT *

FROM events LIMIT 100
START '2015-10-28 10:00'
STOP '2015-10-28 11:00'

Note: Place the LIMIT clause in front of a START and STOP
clause.

LIKE Matches if the string passed
is LIKE the passed value but
is case sensitive. Use % as a
wildcard.

SELECT *
FROM events WHERE userName
LIKE '%bob%'

18 IBM QRadar : QRadar Ariel Query Language Guide

Table 6. Logical and comparison operators (continued)

Operator Description Example

MATCHES Matches if the string
matches the provided
regular expression.

SELECT *
FROM events
WHERE userName MATCHES
'^.bob.$'

NOT
NULL

Takes in a value and returns
true if the value is not null. SELECT *

FROM events
WHERE userName
IS NOT NULL

OR Takes the left side of a
statement and the right side
of a statement and returns
true if either side is true.

SELECT *
FROM events
WHERE (sourceIP = destinationIP)
OR (sourcePort = destinationPort)

TEXT
SEARCH

Full-text search for the
passed value.

TEXT SEARCH is valid with
AND operators. You can't use
TEXT SEARCH with OR or
other operators; otherwise,
you get a syntax error.

Place TEXT SEARCH in the
first position of the WHERE
clause.

You can also do full-text
searches by using the Quick
filter in the QRadar user
interface. For information
about Quick filter functions,
see the IBM QRadar User
Guide.

SELECT *
FROM events
WHERE TEXT SEARCH 'firewall'
AND sourceip='192.168.1.1'

SELECT sourceip,url
FROM events
WHERE TEXT SEARCH
'download.cdn.mozilla.net'
AND sourceip='192.168.1.1'
START '2015-01-30 16:10:12'
STOP '2015-02-22 17:10:22'

Examples of logical and comparative operators
• To find events that are not parsed, type the following query:

SELECT * FROM events
WHERE payload = 'false'

• To find events that return an offense and have a specific source IP address, type the following query:

SELECT * FROM events
WHERE sourceIP = '192.0.2.0'
AND
hasOffense = 'true'

• To find events that include the text "firewall", type the following query:

SELECT QIDNAME(qid)
AS EventName,
* FROM events
WHERE TEXT SEARCH 'firewall'

Chapter 3. Ariel Query Language 19

AQL data calculation and formatting functions
Use Ariel Query Language (AQL) calculation and formatting functions on search results that are retrieved
from the Ariel databases.

This list describes the AQL functions that are used for calculations and data formatting:

• “BASE64” on page 20
• “CONCAT” on page 20
• “DATEFORMAT” on page 20
• “DOUBLE” on page 21
• “LONG” on page 21
• “LOWER” on page 23
• “NOW” on page 22
• “PARSEDATETIME” on page 21
• “PARSETIMESTAMP” on page 22
• “REPLACEALL” on page 23
• “REPLACEFIRST” on page 23
• “STRLEN” on page 23
• “SUBSTRING” on page 24
• “UPPER” on page 24
• “UTF8” on page 24

BASE64
Purpose

Returns a Base64 encoded string that represents binary data.
Example

SELECT BASE64(payload)
FROM events

Returns the payloads for events in BASE64 format.

CONCAT
Purpose

Concatenates all passed strings into one string.
Example

SELECT CONCAT(username, ':', sourceip, ':', destinationip)
FROM events LIMIT 5

DATEFORMAT
Purpose

Formats time in milliseconds since 00:00:00 Coordinated Universal Time (UTC) on January 1, 1970 to
a user-readable form.

Examples

SELECT
DATEFORMAT(startTime, 'yyyy-MM-dd hh:mm:ss')

20 IBM QRadar : QRadar Ariel Query Language Guide

AS StartTime
FROM events

SELECT DATEFORMAT(starttime,'yyyy-MM-dd hh:mm')
AS 'Start Time',
DATEFORMAT(endtime, 'yyyy-MM-dd hh:mm')
AS Storage_time,
QIDDESCRIPTION(qid)
AS 'Event Name'
FROM events

See more examples

DOUBLE
Purpose

Converts a value that represents a number into a double.
Example

DOUBLE('1234')

LONG
Purpose

Converts a value that represents a number into a long integer.
Examples

SELECT destinationip,
LONG(SUM(sourcebytes+destinationbytes))
AS TotalBytes
FROM flows
GROUP BY sourceip

The example returns the destination IP address, and the sum of the source and destination bytes in
the TotalBytes column.

SELECT
LONG(sourceip)
AS long_ip
FROM events
INTO <cursor_name>
WHERE (long_ip & 0x<ff>000000) = 0x<hexadecimal value of IP address>000000
GROUP BY long_ip
LIMIT 20

In QRadar7.3.1, you can use the LONG function to convert IP addresses into a long integer. QRadar
uses long integers with bitwise operators to do IP address arithmetic and filtering in AQL queries. In
the example, the source IP is returned as an integer, which is used by the bitwise AND operator.

In the example, the <ff> corresponds with <hexadecimal value of IP address>, which is in the first
octet position for an IP address. The <cursor_name> can be any name that you want to use.

For example, if you want to return all source IP addresses with the number 9 in the first octet, then
substitute the hexadecimal value 9, which is the same as the decimal value, in <hexadecimal value of
IP address>.

See more examples of the long function that are used with bitwise operators

PARSEDATETIME
Purpose

Pass a time value to the parser, for example, PARSEDATETIME('time reference'). The time
reference indicates the parse time for the query.

Chapter 3. Ariel Query Language 21

Example

SELECT * FROM events
START PARSEDATETIME('1 hour ago')

See more examples of time functions

PARSETIMESTAMP
Purpose

Parse the text representation of date and time and convert it to UNIX epoch time.

For example, parse the following text date format:

Thursday, August 24, 2017 3:30:32 PM GMT +01:00 and convert it to the following epoch
timestamp: 1503588632.

This function makes it easier to issue calls from the API that are based on scripts.
Example of how the time format conversion works

The following example demonstrates how the DATEFORMAT function converts epoch time to a text
timestamp by using the specified date format, and then the PARSETIMESTAMP function is used to
convert the text timestamp to an epoch time format.

SELECT starttime, DATEFORMAT(starttime,'EEE, MMM d, "yyyy"')
AS "text time format",
PARSETIMESTAMP('EEE, MMM d, "yyyy"', "text time format")
AS 'epoch time returned' from events limit 5

The following example displays an extract of the output from the query:

starttime text time format epoch time returned
1503920389888 Mon, M08 28, "2017" 1503920389888

Example of how PARSETIMESTAMP might be used to convert times to epoch time so that time
calculations can be made.

In the following example, events are returned when the time difference between logout and login
times is less that 1 hour.

The EEE, d MMM yyyy HH:mm:ss.SSSZ time format is just one example of a time format that
you might use, and my_login and my_logout are custom properties in a known time format, for
example, EEE, MMM d, "yy".

SELECT * from events
WHERE
PARSETIMESTAMP('EEE, d MMM yyyy HH:mm:ss.SSSZ', my_logout)
- PARSETIMESTAMP('EEE, d MMM yyyy HH:mm:ss.SSSZ', my_login)
< 3600000 last 10 days

See more examples of time functions

NOW
Purpose

Returns the current time that is expressed as milliseconds since the time 00:00:00 Coordinated
Universal Time (UTC) on January 1, 1970.

Example

SELECT ASSETUSER(sourceip, NOW())
AS 'Asset user' FROM events

Find the user of the asset at this moment in time (NOW).

22 IBM QRadar : QRadar Ariel Query Language Guide

LOWER
Purpose

Returns an all lowercase representation of a string.

Example

SELECT
LOWER(username),
LOWER(LOGSOURCENAME(logsourceid))
FROM events

Returns user names and log source names in lowercase.

REPLACEALL
Purpose

Match a regex and replace all matches with text.

Replaces every subsequence (arg2) of the input sequence that matches the pattern (arg1) with the
replacement string (arg3).

Example

REPLACEALL('\d{16}',
username, 'censored')

REPLACEFIRST
Purpose

Match a regex and replace the first match with text.

Replaces the first subsequence (arg2) of the input sequence that matches the pattern (arg1) with the
replacement string (arg3).

Example

REPLACEFIRST('\d{16}',
 username, 'censored')

STR
Purpose

Converts any parameter to a string.
Example

STR(sourceIP)

STRLEN
Purpose

Returns the length of this string.
Example

SELECT STRLEN(sourceIP),
STRLEN(username) from events

Returns the string length for sourceip and username.

Chapter 3. Ariel Query Language 23

STRPOS
Purpose

Returns the position (index - starts at zero) of a string in another string. Searches in string for the
index of the specified substring. You can optionally specify an extra parameter to indicate at what
position (index) to start looking for the specified pattern.

The search for the string starts at the specified offset and moves towards the end of string.

STRPOS(string, substring, index)

Returns -1 if the substring isn't found.
Examples

SELECT STRPOS(username, 'name') FROM events

SELECT STRPOS(sourceip, '180', 2) FROM events)

SUBSTRING
Purpose

Copies a range of characters into a new string.
Examples

SELECT SUBSTRING(userName, 0, 3) FROM events

SELECT SUBSTRING(sourceip, 3, 5) FROM events

UPPER
Purpose

Returns an all uppercase representation of a string.
Example

SELECT
UPPER(username),
UPPER(LOGSOURCENAME(logsourceid))
FROM events

Returns user names and log source names in uppercase.

UTF8
Purpose

Returns the UTF8 string of a byte array.
Example

SELECT UTF8(payload)
FROM events
WHERE sourceip='192.0.2.0'

Returns the UTF8 payload for events where the source IP address is 192.0.2.0

24 IBM QRadar : QRadar Ariel Query Language Guide

AQL data aggregation functions
Ariel Query Language (AQL) aggregate functions help you to aggregate and manipulate the data that you
extract from the Ariel database.

Data aggregation functions
Use the following AQL functions to aggregate data, and to do calculations on the aggregated data that you
extract from the AQL databases:

• “AVG” on page 25
• “COUNT” on page 25
• “FIRST” on page 25
• “GROUP BY” on page 26
• “HAVING” on page 26
• “LAST” on page 26
• “MIN” on page 27
• “MAX” on page 27
• “STDEV” on page 27
• “STDEVP” on page 27
• “SUM” on page 28
• “UNIQUECOUNT” on page 28

AVG
Purpose

Returns the average value of the rows in the aggregate.

Example

SELECT sourceip,
AVG(magnitude)
FROM events
GROUP BY sourceip

COUNT
Purpose

Returns the count of the rows in the aggregate.

Example

SELECT sourceip,
COUNT(*)
FROM events
GROUP BY sourceip

See more examples

FIRST
Purpose

Returns the first entry of the rows in the aggregate.

Chapter 3. Ariel Query Language 25

Example

SELECT sourceip,
FIRST(magnitude)
FROM events
GROUP BY sourceip

GROUP BY
Purpose

Creates an aggregate from one or more columns.

To return values other than the default first value, use functions such as COUNT, MAX, AVG.

Examples

SELECT sourceip,
COUNT(*)
FROM events
GROUP BY sourceip, destinationip

SELECT username, sourceip,
COUNT(*) FROM events
GROUP BY username
LAST 5 minutes

The sourceip column is returned as FIRST_sourceip. Only one sourceip is returned per
username, even if another sourceip exists.

SELECT username,
COUNT(sourceip),
COUNT(*) FROM events
GROUP BY username
LAST 5 minutes

The sourceip column is returned as COUNT_sourceip. The count for sourceip results is returned
per username.

See more examples

HAVING
Purpose

Uses operators on the result of a grouped by column.

Example

SELECT sourceip,
MAX(magnitude)
AS MAG
FROM events
GROUP BY sourceip
HAVING MAG > 5

See more examples

Saved searches that include the having clause and that are used for scheduled reports or time-series
graphs are not supported.

LAST
Purpose

Returns the last entry of the rows in the aggregate.

26 IBM QRadar : QRadar Ariel Query Language Guide

Example

SELECT sourceip,
LAST(magnitude)
FROM events
GROUP BY sourceip

MIN
Purpose

Returns the minimum value of the rows in the aggregate.

Example

SELECT sourceip,
MIN(magnitude)
FROM events
GROUP BY sourceip

MAX
Purpose

Returns the maximum value of the rows in the aggregate.

Example

SELECT sourceip,
MAX(magnitude)
FROM events
GROUP BY sourceip

STDEV
Purpose

Returns the Sample Standard Deviation value of the rows in the aggregate.

Example

SELECT sourceip,
STDEV(magnitude)
FROM events
GROUP BY sourceip

STDEVP
Purpose

Returns the Population Standard Deviation value of the rows in the aggregate.

Example

SELECT sourceip,
STDEVP(magnitude)
FROM events
GROUP BY sourceip

Chapter 3. Ariel Query Language 27

SUM
Purpose

Returns the sum of the rows in the aggregate.

Example

SELECT sourceip,
SUM(sourceBytes)
FROM flows
GROUP BY sourceip

UNIQUECOUNT
Purpose

Returns the unique count of the value in the aggregate.

Example

SELECT username,
UNIQUECOUNT(sourceip)
AS CountSrcIP
FROM events
GROUP BY sourceip

AQL data retrieval functions
Use the Ariel Query Language (AQL) built-in functions to retrieve data by using data query functions and
field ID properties from the Ariel database.

Use the following AQL functions to extract data from the Ariel databases:

Data retrieval functions
• “APPLICATIONNAME” on page 29
• “ARIELSERVERS4EPID” on page 29
• “ARIELSERVERS4EPNAME” on page 30
• “ASSETHOSTNAME” on page 30
• “ASSETPROPERTY” on page 31
• “ASSETUSER” on page 31
• “CATEGORYNAME” on page 32
• “COMPONENTID” on page 32
• “DOMAINNAME” on page 32
• “GLOBALVIEW” on page 33
• “GEO::LOOKUP” on page 33
• “GEO::DISTANCE” on page 33
• “HOSTNAME” on page 34
• “INCIDR” on page 34
• “INOFFENSE” on page 34
• “LOGSOURCENAME” on page 34
• “LOGSOURCEGROUPNAME” on page 35
• “LOGSOURCETYPENAME” on page 35
• “MATCHESASSETSEARCH” on page 36

28 IBM QRadar : QRadar Ariel Query Language Guide

• “NETWORKNAME” on page 36
• “OFFENSE_TIME” on page 37
• “PARAMETERS EXCLUDESERVERS” on page 37
• “PARAMETERS REMOTESERVERS” on page 38
• “PROCESSORNAME” on page 39
• “PROTOCOLNAME” on page 40
• “QIDNAME” on page 40
• “QIDESCRIPTION” on page 40
• “REFERENCEMAP” on page 41
• “REFERENCEMAPSETCONTAINS” on page 41
• “REFERENCETABLE” on page 41
• “REFERENCESETCONTAINS” on page 42
• “RULENAME” on page 42

APPLICATIONNAME
Purpose

Returns flow application names by application ID

Parameters

Application ID

Example

SELECT APPLICATIONNAME(applicationid)
AS 'Name of App'
FROM flows

Returns the names of applications from the flows database. These application names are listed in the
Name of App column, which is an alias.

ARIELSERVERS4EPID
Purpose

Use the ARIELSERVERS4EPID function to specify the Event Processor ID when you use it with
PARAMETERS REMOTESERVERS or PARAMETERS EXCLUDESERVERS.

Parameters

ARIELSERVERS4EPID(processor_ID)

The following examples show how to use the ARIELSERVERS4EPID function with PARAMETERS
REMOTESERVERS or PARAMETERS EXCLUDESERVERS:

 PARAMETERS EXCLUDESERVERS=ARIELSERVERS4EPID(processor_ID)

 PARAMETERS REMOTESERVERS=ARIELSERVERS4EPID(processor_ID)

Examples

In the following example, only the search results from ARIELSERVERS4EPID(8) are included in the
output. If the processor ID that you specify as a parameter for the ARIELSERVERS4EPID function is
not in your QRadar deployment, then the query does not run.

 SELECT ARIELSERVERS4EPID(8), ARIELSERVERS4EPID(11), processorid,
 PROCESSORNAME(processorid),

Chapter 3. Ariel Query Language 29

 LOGSOURCENAME(logsourceid) from events
 GROUP BY logsourceid
 LAST 20 MINUTES
 PARAMETERS REMOTESERVERS=ARIELSERVERS4EPID(8)

You can also use the ARIELSERVERS4EPID function to returns the Ariel servers that are connected to
a specific Event Processor that is identified by ID, as shown in the following example:

 SELECT processorid, PROCESSORNAME(processorid),
 ARIELSERVERS4EPID(processorid)
 FROM events GROUP BY processorid

ARIELSERVERS4EPNAME
Purpose

You use the ARIELSERVERS4EPNAME function to specify the Event Processor name when you use it
with PARAMETERS REMOTESERVERS or PARAMETERS EXCLUDESERVERS.

Parameters

ARIELSERVERS4EPNAME('eventprocessor_name')

The following examples show how you use ARIELSERVERS4EPNAME PARAMETERS REMOTESERVERS
or PARAMETERS EXCLUDESERVERS:

PARAMETERS EXCLUDESERVERS=ARIELSERVERS4EPNAME ('eventprocessor104')

PARAMETERS REMOTESERVERS=ARIELSERVERS4EPNAME ('eventprocessor255')

Examples

In the following example, records from servers that are associated with eventprocessor104 are
excluded from the search.

SELECT processorid,PROCESSORNAME(processorid),
LOGSOURCENAME(logsourceid)
FROM events
GROUP BY logsourceid
PARAMETERS EXCLUDESERVERS=ARIELSERVERS4EPNAME ('eventprocessor104')

You can also use the function to return Ariel servers that are associated with an Event Processor that
is identified by name.

SELECT PROCESSORNAME(processorid),
ARIELSERVERS4EPNAME(PROCESSORNAME(processorid))
FROM events GROUP BY processorid

Returns Ariel servers for the named Event Processor.

ASSETHOSTNAME
Purpose

Searches for the host name of an asset at a point in time.

The domain can optionally be specified to target an asset on a particular domain.

ASSETHOSTNAME(sourceip)

ASSETHOSTNAME(sourceip, NOW())

ASSETHOSTNAME(sourceip, domainid)

30 IBM QRadar : QRadar Ariel Query Language Guide

Parameters

IP address, (timestamp and domain ID are optional)

If the time stamp is not specified, the current time is used.

Examples

SELECT ASSETHOSTNAME(destinationip, NOW())
AS 'Host Name'
FROM events

SELECT ASSETHOSTNAME(sourceip, NOW())
AS 'Host Name'
FROM events

Returns the host name of the asset at the time of the query.

ASSETPROPERTY
Purpose

Looks up a property for an asset.

The domain can optionally be specified to target an asset on a particular domain.

ASSETPROPERTY
('Unified Name', sourceIP, domainId)

Parameters

Property name, IP address

Domain ID is optional

Example

SELECT
ASSETPROPERTY('Location',sourceip)
AS Asset_location,
COUNT(*)
AS 'event count'
FROM events
GROUP BY Asset_location
LAST 1 days

Returns the asset location that is affiliated with the source IP address.

ASSETUSER
Purpose

Searches for the user of an asset at a point in time.

Domain can optionally be specified to target an asset in a specific domain.

ASSETUSER(sourceIP,NOW(), domainId)

Parameters
IP address, (timestamp and domain ID are optional)
If the time stamp is not specified, the current time is used.

Example

SELECT
ASSETUSER(sourceip, now())
AS 'Username of Asset'
FROM events

Chapter 3. Ariel Query Language 31

Returns the user name that is affiliated with the source IP address.

CATEGORYNAME
Purpose

Searches for the name of a category by the category ID.

CATEGORYNAME(Category)

Parameters

Category

Example

SELECT sourceip, category,
CATEGORYNAME(category)
AS 'Category name'
FROM events

Returns the source IP, category ID, and category name

COMPONENTID
Purpose

Retrieves the ID for a component with a given name.

For example, ARIELSERVERS4EPNAME() is a shortcut for the
ARIELSERVERS4EPID(COMPONENTID(<event_processor_name>)) function.

Parameters

COMPONENTID(<component_name>))

Example

SELECT * from events where processorid = COMPONENTID('eventprocessor0')

Retrieves events for the named Event Processor.

DOMAINNAME
Purpose

Searches for the domain name by the domain ID.

DOMAINNAME(domainID)

Parameters

Domain ID

Example

SELECT sourceip, username,
DOMAINNAME(domainid)
AS 'Domain name'
FROM events

Returns source IP, user name, and domain names from events database

32 IBM QRadar : QRadar Ariel Query Language Guide

GLOBALVIEW
Purpose

Returns the GLOBALVIEW database results for a given saved search name based on the time range
that is input.

This query can be run only by using API.

For more information about accessing a GLOBALVIEW database, see the IBM Security QRadar
Administration Guide.

Parameters

Saved search, time range (DAILY, NORMAL, HOURLY)

Example

SELECT *
FROM GLOBALVIEW
('Top Log Sources','DAILY')
LAST 2 days

GEO::LOOKUP
Purpose

Returns location data, provided by MaxMind, for a selected IP address.

Parameters

IP address (required)

Strings (at least one required):

city, continent, physical_country, registered_country, represented_country,
location, postal, subdivisions, traits, geo_json

Example

SELECT sourceip, GEO::LOOKUP(sourceip, 'city')
AS GEO_CITY
FROM events last 10 minutes

GEO::DISTANCE
Purpose

Returns the distance, in kilometers, of two IP addresses.

Parameters

IP address (two required)

Example

SELECT GEO::DISTANCE(sourceip, destinationip)
AS GEO_DISTANCE
FROM events last 10 minutes

Chapter 3. Ariel Query Language 33

HOSTNAME
Purpose

Returns the host name of an event processor with a certain processorID.

HOSTNAME(processorId)

Parameters

Processor ID

Example

SELECT HOSTNAME(processorId) FROM events

INCIDR
Purpose

Filters the output of the SELECT statement by referencing the source/destination CIDR IP address
that is specified by INCIDR.

Parameters

IP/CIDR, IP address

Example

SELECT sourceip, username
FROM events
WHERE INCIDR('172.16.0.0/16', sourceip)

Returns the source IP and user name columns from the flows database where the source CIDR IP
address is from the 172.16.0.0/16 subnet.

See more examples

INOFFENSE
Purpose

If an event or flow belongs to the specified offense, it returns true.

Parameters

Offense ID

Example

SELECT * FROM events
 WHERE InOffense(123)

SELECT * FROM flows
 WHERE InOffense(123)

LOGSOURCENAME
Purpose

Looks up the name of a log source by its log source ID.

LOGSOURCENAME(logsourceid)

34 IBM QRadar : QRadar Ariel Query Language Guide

Parameters

Log source ID

Example

SELECT * FROM events
WHERE LOGSOURCENAME(logsourceid)
ILIKE '%mylogsourcename%'

Returns only results that include mylogsourcename in their log source name.

SELECT LOGSOURCENAME(logsourceid)
AS Log_Source
FROM events

Returns the column alias Log_source, which shows log source names from the events database.

LOGSOURCEGROUPNAME
Purpose

Searches for the name of a log source group by its log source group ID.

LOGSOURCEGROUPNAME(deviceGroupList)

Parameters

Device group list

Example

SELECT sourceip, logsourceid
FROM events
WHERE LOGSOURCEGROUPNAME(devicegrouplist)
ILIKE '%other%'

Returns the source IP address and log source IDs for log source groups that have 'other' in their name.

LOGSOURCETYPENAME
Purpose

Searches for the name of a log source type by its device type.

LOGSOURCETYPENAME(deviceType)

Parameters

Device type

Example

SELECT LOGSOURCETYPENAME(devicetype)
AS 'Device names', COUNT(*)
FROM events
GROUP BY "Device names"
LAST 1 DAYS

Returns device names and the event count.

All log sources functions example:

SELECT logsourceid,
LOGSOURCENAME(logsourceid)
AS 'Name of log source',
LOGSOURCEGROUPNAME(devicegrouplist)
AS 'Group Names',
LOGSOURCETYPENAME(devicetype)
AS 'Devices'

Chapter 3. Ariel Query Language 35

FROM events
GROUP BY logsourceid

Returns log source names, log source group names, and log source device names.

When you use the GROUP BY function, the first item only in the GROUP BY list is shown in the results.

MATCHESASSETSEARCH
Purpose

If the asset is returned in the results of the saved search, it returns true.

MATCHESASSETSEARCH
('My Saved Search', sourceIP)

Parameters

Saved Search Name, IP address

Example

MATCHESASSETSEARCH
('My Saved Search', sourceIP)

NETWORKNAME
Purpose

Searches for the network name from the network hierarchy for the host that is passed in.

NetworkName(sourceip)

The domain can optionally be specified to target a network in a particular domain.

NETWORKNAME(sourceip, domainId)

Parameters

Host property (domain is optional)

Examples

SELECT NETWORKNAME(sourceip)
ILIKE 'servers'
AS 'My Networks'
FROM flows

Returns any networks that have the name servers.

SELECT NETWORKNAME(sourceip, domainID)
ILIKE 'servers'
AS 'My Networks'
FROM flows

Returns any networks that have the name servers in a specific domain.

SELECT NETWORKNAME(sourceip)
AS 'Src Net',
NETWORKNAME(destinationip)
AS Dest_net
FROM events

Returns the network name that is associated with the source and destination IP addresses.

36 IBM QRadar : QRadar Ariel Query Language Guide

OFFENSE_TIME
New in 7.4.3 Fix Pack 1

Purpose

Limits the query to applicable times that an offense could be active.

This function increases the speed of the query.

Parameters

Offense ID

Example

SELECT * FROM events
 WHERE INOFFENSE(1) times OFFENSE_TIME(1)

PARAMETERS EXCLUDESERVERS
Purpose

Filters search criteria by excluding the specified servers.
Parameters

[Server IP address:Port number]

Use port 32006 for an Event Processor, and port 32011 for a Console.

Parameters accept a comma-separated list of arguments. For example,

"host1:port1,host2:port2,host3:port3".

Examples

In the following example, search results from 192.0.2.0 are excluded. To exclude a Console, you
must use localhost or 127.0.0.1. Do not use the IP address of the Console in this query.

SELECT processorid,PROCESSORNAME(processorid),
LOGSOURCENAME(logsourceid)
from events
GROUP BY logsourceid
PARAMETERS EXCLUDESERVERS='192.0.2.0:32006'

In the following example, search results from the Console are excluded:

SELECT processorid,PROCESSORNAME(processorid),
LOGSOURCENAME(logsourceid) FROM events
GROUP BY logsourceid start '2017-03-15 10:26'
STOP '2017-03-15 10:30'
PARAMETERS EXCLUDESERVERS='127.0.0.1:32011'

In the following example, search results from the Console are excluded. The Console is referred to as
localhost in this example.

SELECT processorid,PROCESSORNAME(processorid),
LOGSOURCENAME(logsourceid) from events
GROUP BY logsourceid start '2017-03-15 10:25'
STOP '2017-03-15 10:30'
PARAMETERS EXCLUDESERVERS='localhost:32011'

The following example uses multiple arguments to exclude search results from the Console and two
other servers.

SELECT processorid,PROCESSORNAME(processorid),
LOGSOURCENAME(logsourceid) from events
GROUP BY logsourceid start '2017-04-15 10:25'

Chapter 3. Ariel Query Language 37

STOP '2017-04-15 10:30'
PARAMETERS EXCLUDESERVERS='127.0.0.1:32011,192.0.2.0:32006,172.11.22.31:32006'

Specify the ID of the Event Processor in your query by using the following function:

PARAMETERS EXCLUDESERVERS=ARIELSERVERS4EPID(processor_ID)

Refine your query by using ARIELSERVERS4EPID with PARAMETERS EXCLUDESERVERS to specify
the Event Processor ID that you want to exclude from your search. You can specify one or more Event
Processor IDs.

Example

In the following example, all results from ARIELSERVERS4EPID(8) are excluded in the search.

SELECT processorid,
PROCESSORNAME(processorid),
LOGSOURCENAME(logsourceid) from events
GROUP BY logsourceid
LAST 20 MINUTES
PARAMETERS EXCLUDESERVERS=ARIELSERVERS4EPID(8)

Specify the name of the Event Processor in your query by using the following function:

PARAMETERS EXCLUDESERVERS=ARIELSERVERS4EPNAME ('processor_name')

Refine your query by using ARIELSERVERS4EPNAME with PARAMETERS EXCLUDESERVERS to specify
the Event Processor by name. You can specify one or more Event Processor names.

Example

In the following example, records from servers that are associated with eventprocessor104 are
excluded from the search.

SELECT processorid,PROCESSORNAME(processorid),
LOGSOURCENAME(logsourceid)
FROM events
GROUP BY logsourceid
PARAMETERS EXCLUDESERVERS=ARIELSERVERS4EPNAME ('eventprocessor104')

PARAMETERS REMOTESERVERS
Purpose

Use the PARAMETERS REMOTESERVERS function to narrow your search to specific servers, which
speeds up your search by not searching all hosts.

Parameters

[Server IP address:Port number]

Use port 32006 for an Event Processor, and port 32011 for a Console.

Use a comma-separated list for multiple arguments, for example,

"host1:port1,host2:port2,host3:port3".

Examples

In the following example, only the specified server is searched.

SELECT * FROM EVENTS START '2016-09-08 16:42'
STOP '2016-09-08 16:47'
PARAMETERS REMOTESERVERS='192.0.2.0:32006'

38 IBM QRadar : QRadar Ariel Query Language Guide

In the following example, multiple servers are specified, which includes search results from the
Console and two other servers.

SELECT processorid,PROCESSORNAME(processorid),
LOGSOURCENAME(logsourceid) from events
GROUP BY logsourceid start '2017-04-15 10:25'
STOP '2017-04-15 10:30'
PARAMETERS REMOTESERVERS='127.0.0.1:32011,192.0.2.0:32006,172.11.22.31:32006'

Specify the ID of the Event Processor in your query by using the following function:

PARAMETERS REMOTESERVERS=ARIELSERVERS4EPID(processor_ID)

Refine your query by using ARIELSERVERS4EPID with PARAMETERS REMOTESERVERS to specify the
ID of the Event Processor that you want to include in your search. You can specify one or more Event
Processor IDs.

Example

In the following example, only the search results from ARIELSERVERS4EPID(8) are included in the
output.

SELECT ARIELSERVERS4EPID(8), ARIELSERVERS4EPID(11), processorid,
PROCESSORNAME(processorid),
LOGSOURCENAME(logsourceid) from events
GROUP BY logsourceid
LAST 20 MINUTES
PARAMETERS REMOTESERVERS=ARIELSERVERS4EPID(8)

Note: If the processor ID that you specify as a parameter for the ARIELSERVERS4EPID function is not
in your QRadar deployment, then the query does not run.

Specify the name of the Event Processor in your query by using the following function:

PARAMETERS REMOTESERVERS=ARIELSERVERS4EPNAME ('eventprocessor_name')

Refine your query by using ARIELSERVERS4EPNAME and PARAMETERS REMOTESERVERS to specify
the name of the Event Processor that you want to include in your search. You can specify one or more
Event Processor names.

Example

In the following example, only search records that are associated with eventprocessor104 are
included in the search results.

SELECT processorid,PROCESSORNAME(processorid),
LOGSOURCENAME(logsourceid)
FROM events
GROUP BY logsourceid
PARAMETERS REMOTESERVERS=ARIELSERVERS4EPNAME ('eventprocessor104')

PROCESSORNAME
Purpose

Returns the name of a processor by the processor ID.

PROCESSORNAME(processorid)

Parameters

Processor ID number

Chapter 3. Ariel Query Language 39

Example

SELECT sourceip, PROCESSORNAME(processorid)
AS 'Processor Name'
FROM events

Returns the source IP address and processor name from the events database.

Example

SELECT processorid, PROCESSORNAME(processorid)
FROM events WHERE processorid=104
GROUP BY processorid LAST 5 MINUTES

Returns results from the Event Processor that has a processor ID equal to 104.

PROTOCOLNAME
Purpose

Returns the name of a protocol by the protocol ID
Parameters

Protocol ID number

Example

SELECT sourceip, PROTOCOLNAME(protocolid)
AS 'Name of protocol'
FROM events

Returns the source IP address and protocol name from the events database.

QIDNAME
Purpose

Searches for the name of a QID by its QID.

QIDNAME(qid)

Parameters

QID

Example

SELECT QIDNAME(qid)
AS 'My Event Names', qid
FROM events

Returns QID name and QID number.

QIDESCRIPTION
Purpose

Searches for the QID description by its QID.

QIDDESCRIPTION(qid)

Parameters

QID

40 IBM QRadar : QRadar Ariel Query Language Guide

Example

SELECT QIDDESCRIPTION(qid)
AS 'My_Event_Names', QIDNAME(qid)
AS 'QID Name'
FROM events

Returns QID description and QID name.

REFERENCEMAP
Purpose

Searches for the value for a key in a reference map.

ReferenceMap('Value',Key,domainID)

Although the domainID is optional, in a domain-enabled environment, the search is limited to only
shared reference data when the domainID is excluded.

Parameters

String, String, Integer

Example

SELECT
REFERENCEMAP('Full_name_lookup', username, 5)
AS Name_of_User
FROM events

Searches for the userName (key) in the Full_name_lookup reference map in the specified domain,
and returns the full name (value) for the user name (key).

REFERENCEMAPSETCONTAINS
Purpose

If a value exists for a key in a reference map of sets, for a domain, it returns true.

REFERENCEMAPSETCONTAINS(MAP_SETS_NAME, KEY, VALUE)

Parameters

String, String, String

Example

ReferenceMapSetContains('RiskyUsersForIps','sourceIP','userName')

REFERENCETABLE
Purpose

Searches for the value of a column key in a table that is identified by a table key in a specific reference
table collection.

REFERENCETABLE
('testTable','value','key', domainID)
or
REFERENCETABLE
('testTable','value','key' domainID)

Although the domainID is optional, in a domain-enabled environment, the search is limited to only
shared reference data when the domainID is excluded.

Chapter 3. Ariel Query Language 41

Parameters
String, String, String (or IP address), Integer

Example

SELECT
REFERENCETABLE('user_data','FullName',username, 5)
AS 'Full Name',
REFERENCETABLE('user_data','Location',username, 5)
AS Location,
REFERENCETABLE('user_data','Manager',username, 5)
AS Manager
FROM events

Returns the full name (value), location (value), and manager (value) for the username (key) from
user_data.

See more Reference data examples

REFERENCESETCONTAINS
Purpose

If a value is contained in a specific reference set, it returns true.

REFERENCESETCONTAINS
('Ref_Set', 'value', domainID)

Although the domainID is optional, in a domain-enabled environment, the search is limited to only
shared reference data when the domainID is excluded.

Parameters

String, String, Integer

Example

SELECT
ASSETUSER(sourceip, NOW())
AS 'Source Asset User'
FROM flows
WHERE
REFERENCESETCONTAINS('Watchusers', username, 5)
GROUP BY "Source Asset User"
LAST 24 HOURS

Returns the asset user when the username (value) is included in the Watchusers reference set.

RULENAME
Purpose

Returns one or more rule names that are based on the rule ID or IDs that are passed in.

RULENAME(creeventlist)

RULENAME(3453)

Parameters

A single rule ID, or a list of rule IDs.

Example

SELECT * FROM events
WHERE RULENAME(creEventList)
ILIKE '%my rule name%'

42 IBM QRadar : QRadar Ariel Query Language Guide

Returns events that trigger a specific rule name.

SELECT RULENAME(123)
FROM events

Returns rule name by the rule ID.

Time criteria in AQL queries
Define time intervals in your AQL queries by using START and STOP clauses, or use the LAST clause for
relative time references.

Define the time settings that are passed to the AQL query
The SELECT statement supports an arieltime option, which overrides the time settings.

You can limit the time period for which an AQL query is evaluated by using the following clauses and
functions:

• “START” on page 43
• “STOP” on page 44
• “LAST” on page 44
• “NOW” on page 45
• “PARSEDATETIME” on page 45

START
You can pass a time interval to START selecting data (from time), in the following formats:

yyyy-MM-dd HH:mm
yyyy-MM-dd HH:mm:ss
yyyy/MM/dd HH:mm:ss
yyyy/MM/dd-HH:mm:ss
yyyy:MM:dd-HH:mm:ss

The timezone is represented by 'z or Z' in the following formats:

yyyy-MM-dd HH:mm'Z'

yyyy-MM-dd HH:mm'z'

Use START in combination with STOP.
Examples

SELECT *
FROM events WHERE userName IS NULL
START '2014-04-25 15:51'
STOP '2014-04-25 17:00'

Returns results from: 2014-04-25 15:51:00 to 2014-04-25 16:59:59

SELECT *
FROM events WHERE userName IS NULL
START '2014-04-25 15:51:20'
STOP '2014-04-25 17:00:20'

Returns results from: 2014-04-25 15:51:00 to 2014-04-25 17:00:59

SELECT * from events
START PARSEDATETIME('1 hour ago')
STOP PARSEDATETIME('now')

Chapter 3. Ariel Query Language 43

STOP is optional. If you don't include it in the query, the STOP time is = now

STOP
You can pass a time interval to STOP selecting data (end time), in the following formats:

yyyy-MM-dd HH:mm
yyyy-MM-dd HH:mm:ss
yyyy/MM/dd HH:mm:ss
yyyy/MM/dd-HH:mm:ss
yyyy:MM:dd-HH:mm:ss

The timezone is represented by 'z or Z' in the following formats:

yyyy-MM-dd HH:mm'Z'

yyyy-MM-dd HH:mm'z'

Use STOP in combination with START.
Examples

SELECT * FROM events
WHERE username IS NULL
START '2016-04-25 14:00'
STOP '2016-04-25 16:00'

SELECT * FROM events
WHERE username IS NULL
START '2016-04-25 15:00:30'
STOP '2016-04-25 15:02:30'

Use any format with the PARSEDATETIME function, for example,

SELECT *
FROM events
START PARSEDATETIME('1 day ago')

Even though STOP is not included in this query, the STOP time is = now.

Select * FROM events
START PARSEDATETIME('1 hour ago')
STOP PARSEDATETIME('now')

SELECT * FROM events
START PARSEDATETIME('1 day ago')

Select *
FROM events
WHERE logsourceid = '69'
START '2016-06-21 15:51:00'
STOP '2016-06-22 15:56:00'

LAST
You can pass a time interval to the LAST clause to specify a specific time to select data from.

The valid intervals are MINUTES, HOURS, and DAYS

Examples

SELECT * FROM events
LAST 15 MINUTES

44 IBM QRadar : QRadar Ariel Query Language Guide

SELECT * FROM events
LAST 2 DAYS

SELECT * from events
WHERE userName ILIKE '%dm%'
LIMIT 10
LAST 1 HOURS

Note: If you use a LIMIT clause in your query, you must place it before START and STOP clauses, for
example,

SELECT *
FROM events
LIMIT 100
START '2016-06-28 10:00'
STOP '2016-06-28 11:00'

Time functions
Use the following time functions to specify the parse time for the query.

NOW
Purpose

Returns the current time that is expressed as milliseconds since the time 00:00:00 Coordinated
Universal Time (UTC) on January 1, 1970.

Example

SELECT ASSETUSER(sourceip, NOW())
AS 'Asset user' FROM events

Find the user of the asset at this moment in time (NOW).

PARSEDATETIME
Purpose

Pass a time value to the parser, for example, PARSEDATETIME('time reference'). This 'time
reference' is the parse time for the query.

Example

SELECT * FROM events
START PARSEDATETIME('1 hour ago')

AQL date and time formats
Use Ariel Query Language (AQL) date and time formats to represent times and dates in queries.

The following table lists the letters that represent date and time in AQL queries. This table is based on the
SimpleDateFormat.

Chapter 3. Ariel Query Language 45

Table 7. Date and time formats

Letter Date or time
parameter

Presentation Examples

y Calendar year Year

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yy-MM-dd')

Returns date format: 16-06-20

DATEFORMAT(starttime,'yyyy-MM-dd')

Returns date format: 2016-06-20

SELECT
DATEFORMAT(devicetime,'yyyy-MM-dd')
AS Log_Src_Date, QIDDESCRIPTION(qid)
AS 'Event Name'
FROM events

Y Week year Year

The first and last days of a week
year can have different calendar
year values.

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'YY-MM-dd')

Returns date format: 16-06-20

DATEFORMAT(starttime,'YYYY-MM-dd')

Returns date format: 2016-06-20

SELECT
DATEFORMAT(starttime,'YYYY-MM-dd hh:mm')
AS 'Start Time',
DATEFORMAT(endtime,'YYYY-MM-dd hh:mm')
AS Storage_time,
QIDDESCRIPTION(qid)
AS 'Event Name'
FROM events

Returns start time, storage time, and event name columns

M Month in year Month

3 or more letters are interpreted as
text.

2 letters are interpreted as a
number.

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yyyy-MMMM-dd')

Returns date format: 2016-June-20

DATEFORMAT(starttime,'yyyy-MMM-dd')

Returns date format: 2016-Jun-20

DATEFORMAT(starttime,'yyyy-MM-dd')

Returns date format: 2016-06-20

w Week in year Number

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yyyy-ww-dd')

Returns date format: 2016-26-20

Note: 26 is week 26 in year

W Week in month Number

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yyyy-WW-dd')

Returns date format: 2016-04-20

Note: 04 is week 4 in month

D Day in year Number

Day in year represented by number

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yyyy-mm-DD')

Returns date format: 2016-06-172

Note: 172 is day number 172 in year

d Day in month Number

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yyyy-mm-dd')

Returns date format: 2016-06-20

F Day of week in
month

Number

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yyyy-MM-FF')

Returns date format: 2016-06-03

Note: 03 is day 3 of week in month

E Day name in
week

Text

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yyyy-MM-EE')

Returns date format: 2016-06-Mon

a AM or PM Text

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yyyy-MM-dd h a')

2016-06-20 06 PM

46 IBM QRadar : QRadar Ariel Query Language Guide

Table 7. Date and time formats (continued)

Letter Date or time
parameter

Presentation Examples

H Hour in day
(0-23)

Number

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yyyy-MM-dd H')

Returns date format: 2016-06-20 18

Note: 18 is 18:00 hours

k Hour in day
(1-24)

Number

Date example used is: 20-
June-2016

DATEFORMAT(starttime,'yyyy-MM-dd k')

Returns date format: 2016-06-20 18

Note: 18 is 18:00 hours

K Hour in AM/PM
(0-11)

Number

Date example used is: 20-
June-2016, 6 PM

DATEFORMAT(starttime,'yyyy-MM-dd K a')

Returns date format: 2016-06-20 6 PM

Note: K = 6 and a = PM

h Hour in AM/PM
(1-12)

Number

Date example used is: 20-
June-2016 6 PM

DATEFORMAT (starttime,'yyyy-MM-dd h a')

Returns date format: 2016-06-20 6 PM

Note: h = 6 and a = PM

m Minute in hour Number

Date example used is: 20-
June-2016, 6:10 PM

DATEFORMAT(starttime,'yyyy-MM-dd h:m a')

Returns date format: 2016-06-20 6:10 PM

Note: colon added in query to format time

s Second in minute Number

Date example used is: 20-
June-2016, 6:10:56 PM

DATEFORMAT(starttime,'yyyy-MM-dd h:m:s a')

Returns date format: 2016-06-20 6:10:56 PM

Note: colons added in query to format time

S Millisecond Number

Date example used is: 20-
June-2016, 6:10 PM

DATEFORMAT(starttime,'yyyy-MM-dd h:m:ss:SSS a')

Returns date format: 2016-06-20 6:10:00:322 PM

Note: colons added in query to format time

z Time zone General Time zone

Date example used is: 20-
June-2016, 6:10 PM GMT +1

DATEFORMAT(starttime,'yyyy-MM-dd h:m a z')

Returns date format: 2016-06-20 6:10 PM GMT + 1

Note: colon added in query to format time

Z Time zone RFC 822 time zone

Date example used is: 20-
June-2016, 6:10 PM GMT +1

DATEFORMAT(starttime,'yyyy-MM-dd h:m a Z')

Returns date format: 2016-06-20 6:10 PM + 0100

Note: colon added in query to format time

X Time zone ISO 8601 time zone

Date example used is: 20-
June-2016, 6:10 PM GMT +1

DATEFORMAT(starttime,'yyyy-MM-dd h:m a X')

Returns date format: 2016-06-20 6:10 PM + 01

Note: colon added in query to format time

AQL subquery
Use an AQL subquery as a data source that is referred to, or searched by the main query. Use the FROM or
IN clause to refine your AQL query by referring to the data that is retrieved by the subquery.

A subquery is a nested or inner query that is referenced by the main query. The subquery is available in
the following formats:

• SELECT <field/s> FROM (<AQL query expression>)

This query uses the FROM clause to search the output (cursor) of the subquery.
• SELECT <field/s> FROM events WHERE <field> IN (<AQL query expression>)

This query uses the IN clause to specify the subquery results that match values from the subquery
search. This subquery returns only one column. You can specify the results limit but the maximum is
10,000 results.

Subquery examples

Chapter 3. Ariel Query Language 47

The nested SELECT statement in parenthesis is the subquery. The subquery is run first and it provides the
data that is used by the main query. The main query SELECT statement retrieves the user names from the
output (cursor) of the subquery

SELECT username FROM
(SELECT * FROM events
WHERE username IS NOT NULL
LAST 60 MINUTES)

The following query returns records where the user name from the Ariel database matches values in the
subquery.

SELECT * FROM events
WHERE username IN
(SELECT username FROM events
LIMIT 10 LAST 5 MINUTES) LAST 24 HOURS

The following query returns records where the source IP address from the Ariel database matches the
destination IP address in the subquery.

SELECT * FROM EVENTS
WHERE sourceip IN
(SELECT destinationip FROM events)

The following query returns records where the source IP address from the Ariel database matches the
source IP addresses that are returned in the subquery. The subquery filters the data for the main select
statement by locating internal hosts that interacted with high-risk entities. The query returns hosts that
communicated with any hosts that interacted with high-risk entities.

SELECT sourceip AS 'Risky Hosts' FROM events
WHERE destinationip IN (SELECT sourceip FROM events
WHERE eventdirection = 'L2R'
AND REFERENCESETCONTAINS('CriticalWatchList', destinationip)
GROUP BY sourceip)
GROUP BY sourceip last 24 hours

Grouping related events into sessions
Group events that are contextually related into sessions where you can observe event sequences and the
outcomes of those event sequences. Gain insight into user activity and network activity by observing the
sequence of events that occur in a session.

About this task
You can use events to tell you what a user did at a specific time, but you can use transactional sessions to
tell you what the user did before and after an event. Transactions give you full detail such as a purchase
on the internet, or an unauthorized login attempt.

The session ID is unique and is assigned to events in the same session. You define the session based on
parameters such as time, user name, login, or any other criteria. You use the SESSION BY clause to create
the unique sessions.

For example, use the transactional sessions to do these tasks:

• Define a user activity based on web-access events that includes a unique combination of activities.
• Group events by a specific user behavior session such as website visits, downloads, or emails sent.
• Record when users login to and logout of your network, and how long they log in for. The logout closes

the related transaction that is initiated by the login.
• Pick an activity that you want to track and define the criteria for the session activity.

48 IBM QRadar : QRadar Ariel Query Language Guide

Procedure
1. To create sessions, use the SESSION BY clause by using the following format.

SESSION BY <TimeExpression> <AQL_expression_list> BEGIN <booleanExpression>
END <booleanExpression>

The following table describes the session parameters.

Table 8.

Session parameters Description

Time <TimeExpression> Time

<AQL_expression_list> AQL expression list

BEGIN <booleanExpression> Starts a new session

END <booleanExpression> The END clause is optional, and is used to finish the session.

The SessionId changes when any AQL expression value changes or when the BEGIN or END
booleanExpression is TRUE.

2. To test an example, take the following steps:
a) To go to the IBM QRadar API documentation page, from the Help menu, click Interactive API for

Developers.

b) Click 8.0 or the highest version to expand the menu.
c) Click /ariel > /searches.
d) Click the Post tab.
e) Enter your AQL query in the Value field for the query_expression parameter.

For example,

Select sessionID, DATEFORMAT(starttime, 'YYYY-MM-dd HH:mm:ss')
start_time, username, sourceip, category from events
into <your_Cursor_Name> where username is not null
SESSION BY starttime username, sourceip
BEGIN category=16001
start '2016-09-14 14:20' stop '2016-09-14 14:50'

The <your_cursor_name> is any name that you want to use for the results output.
f) Click Try it out.

If the query runs without errors, the response code is 201.
g) Click /ariel > / searches > > /{search_id} > /results

The 8.0 - GET - /ariel/searches/{search_id}/results page opens.
h) In the Value field for the search_id parameter, type <your_cursor_name>.
i) Select text/table for the Mime Type.
j) Click Try it out.

Table 9. Query results

sessionID start_time username sourceip category

1 2016-09-14 14:42:03 admin 9.23.121.97 16003

1 2016-09-14 14:42:09 admin 9.23.121.97 16003

2 2016-09-14 14:42:10 admin 127.0.0.1 16003

2 2016-09-14 14:42:11 admin 127.0.0.1 16003

Chapter 3. Ariel Query Language 49

Table 9. Query results (continued)

sessionID start_time username sourceip category

3 2016-09-14 14:42:27 joe_blogs 9.23.121.98 16001

4 2016-09-14 14:44:11 joe_blogs 9.23.121.98 16001

5 2016-09-14 14:44:35 root 127.0.0.1 4017

5 2016-09-14 14:44:35 root 127.0.0.1 3014

5 2016-09-14 14:44:55 root 127.0.0.1 4017

5 2016-09-14 14:44:55 root 127.0.0.1 3014

The categories represent specific activities in your event logs. A new session is started for
every change of user name and source IP address values, for example, see sessionid 2 and
sessionid 5.

Also, a new session is created for category 16001, which occurs in sessionid 3 and sessionid
4.

Example

In this example events are returned and grouped by unique session ID, where the user joe_blogs logs in
and starts a process between 4 PM and 11:30 PM on November 25.

select sessionId,DATEFORMAT(starttime,'YYYY-MM-dd HH:mm:ss')
start_time,username,sourceip,category from events into <cursor_name>
where username='joe_blogs'
SESSION BY starttime username, sourceip
BEGIN category=16001
END category=16003
start '2016-11-25 16:00'
stop '2016-11-25 23:30'

A session is started when you get an event where the BEGIN expression is met OR the previous event
ends the session.

A session is ended when you get an event where the END expression is true OR the next event starts a
new session.

Event category 16001 indicates a user login or logout event on the Console, and event category 16003
indicates that a user initiated a process, such as starting a backup or generating a report. For a list of
event categories, see the IBM QRadar Administration Guide.

Transactional query refinements
Refine transactional AQL queries by using the EXPLICIT expression with the BEGIN and END expressions.
Also, use the TIMEOUT and TIMEWINDOW expressions to specify time intervals.

Use the EXPLICIT expression with the BEGIN and END expressions to apply more precise filtering to your
transactional queries.

For example, you might use the BEGIN expression with the EXPLICIT END expression to capture several
(BEGIN) unsuccessful login attempts, which are followed by an (EXPLICIT END) successful login.

Use the TIMEOUT and TIMEWINDOW expressions to apply time filters for the sessions in your
transactional queries.

Expressions
Use the expressions that are described in the following to refine your transactional AQL query:

50 IBM QRadar : QRadar Ariel Query Language Guide

Table 10. AQL transactional query expressions

Query expressions Description

BEGIN A session is started when you get an event where the BEGIN expression is
met or the previous event ends the session.

EXPLICIT BEGIN Starts a new session only if the EXPLICIT BEGIN expression is true.

END A session is ended when you get an event where the END expression is
true or the next event starts a new session.

EXPLICIT END Closes the current session only if the EXPLICIT END expression is true.

TIMEOUT Closes the session when the specified TIMEOUT period elapses from the
time that the previous event occurred to the time that the current event
happened.

TIMEWINDOW Tracks the session time.

Closes the session when the specified TIMEWINDOW period elapses from
the time that the first event occurred to the time that the current event
happened.

Syntax

SESSION BY
<TimeExpression> <ExpressionList>
[EXPLICIT] BEGIN <booleanExpression>
[EXPLICIT] END <booleanExpression>
TIMEOUT <IntegerLiteral millieseconds>
TIMEWINDOW <IntegerLiteral SECONDS|MINUTES|HOURS|DAYS>

The following examples show the examples of results that you get by using different combinations of the
available query expressions:

BEGIN and END expressions
A BEGIN expression starts a session when an event matches the BEGIN expression or the previous event
ends the session.

An END expression ends a session when the END expression is true for an event or the next event starts a
new session.

By using the EXPLICIT expression with the BEGIN and END expressions, you apply a more precise filter
that refines the result set.

See the following examples of queries and results.

The following query example uses BEGIN and END expressions.

Select sessionId,
DATEFORMAT(starttime,'YYYY-MM-dd HH:mm:ss')
start_time, username, sourceip,
category from events into TR1
where username = 'user_x'
SESSION BY starttime username, sourceip
BEGIN category=16001
END category=16003
start '2016-12-10 16:00' stop '2016-12-10 23:30'

Event category 16001 indicates a user login or logout event on the Console, and event category 16003
indicates that a user initiated a process, such as starting a backup or generating a report.

The following table shows the results for the query that uses BEGIN and END.

Chapter 3. Ariel Query Language 51

Table 11. BEGIN and END query results

sessionID start_Time user name sourceip category

1 2016-12-10 16:00:06 user_x 10.2.2.10 16001

1 2016-12-10 16:00:06 user_x 10.2.2.10 16003

2 2016-12-10 16:00:06 user_x 10.2.2.10 16003

3 2016-12-10 16:00:10 user_x 10.2.2.10 16001

3 2016-12-10 16:00:10 user_x 10.2.2.10 16003

4 2016-12-10 16:00:11 user_x 10.2.2.10 16003

3 2016-12-10 16:00:11 user_x 10.2.2.10 16001

3 2016-12-10 16:00:11 user_x 10.2.2.10 16003

Note: Sessionid 2 consists of only one event that closes it (category 16003). A session that has one
event is an exception and can happen.

EXPLICIT BEGIN and END expressions
Events are skipped when a session is not started and an event is not an EXPLICIT BEGIN event.

Select sessionId,
DATEFORMAT(starttime,'YYYY-MM-dd HH:mm:ss')
start_time, username, sourceip,
category from events into TR2
where username='user_x'
SESSION BY starttime username, sourceip
EXPLICIT BEGIN category=16001
END category=16003 start '2016-12-10 16:00'
stop '2016-12-10 23:30'

The following table shows the results for the query that uses EXPLICIT BEGIN and END.

Table 12. EXPLICIT BEGIN and END query results

sessionID start_Time user name sourceip category

1 2016-12-10 16:00:06 user_x 10.2.2.10 16001

1 2016-12-10 16:00:06 user_x 10.2.2.10 16003

2 2016-12-10 16:00:07 user_x 10.2.2.10 16001

2 2016-12-10 16:00:07 user_x 10.2.2.10 16003

3 2016-12-10 16:00:11 user_x 10.2.2.10 16001

3 2016-12-10 16:00:11 user_x 10.2.2.10 16003

3 2016-12-10 16:00:11 user_x 10.2.2.10 16003

4 2016-12-10 16:00:14 user_x 10.2.2.10 16001

5 2016-12-10 16:00:15 user_x 10.2.2.10 16001

5 2016-12-10 16:00:15 user_x 10.2.2.10 16003

Only events that satisfy the EXPLICIT BEGIN expression are returned.

Sessionid 2 and Sessionid 4 in the EXPLICIT BEGIN and END don't satisfy the EXPLICIT BEGIN
expression.

52 IBM QRadar : QRadar Ariel Query Language Guide

BEGIN and EXPLICIT END
Close current session only if the EXPLICIT END expression is true. There are no more checks for BEGIN
events in the session when the EXPLICIT END expression is true.

Multiple BEGIN events in a single session can be associated with one EXPLICIT END expression. For
example, you might use the EXPLICIT END expression for counting multiple failed login attempts that
are followed by a successful login during a specific time interval (session timeout).

The following query example uses BEGIN and EXPLICIT END expressions.

Select sessionId,
DATEFORMAT(starttime,'YYYY-MM-dd HH:mm:ss')
start_time, username, sourceip,
category from events into TR3
where username = 'user_x'
SESSION BY starttime username, sourceip
BEGIN category=16001
EXPLICIT END category=16003
start '2016-12-10 16:00'
stop '2016-12-10 23:30'

The following table shows the results for the query that uses BEGIN and EXPLICIT END expressions.

Table 13. BEGIN and EXPLICIT END query results

sessionID start_Time user name sourceip category

1 2016-12-10 16:00:06 user_x 10.2.2.10 16001

1 2016-12-10 16:00:06 user_x 10.2.2.10 16003

2 2016-12-10 16:00:07 user_x 10.2.2.10 16003

2 2016-12-10 16:00:10 user_x 10.2.2.10 16001

2 2016-12-10 16:00:10 user_x 10.2.2.10 16003

3 2016-12-10 16:00:11 user_x 10.2.2.10 16001

3 2016-12-10 16:00:11 user_x 10.2.2.10 16003

4 2016-12-10 16:00:12 user_x 10.2.2.10 16003

4 2016-12-10 16:00:12 user_x 10.2.2.10 16001

4 2016-12-10 16:00:12 user_x 10.2.2.10 16003

5 2016-12-10 16:00:13 user_x 10.2.2.10 16001

4 2016-12-10 16:00:11 user_x 10.2.2.10 16003

EXPLICIT BEGIN and EXPLICIT END
Events are ignored when a session is not started and an event is not an EXPLICIT BEGIN event.

Close current session only if the EXPLICIT END expression is true. There are no more checks for BEGIN
events in the session when the EXPLICIT END expression is true.

The following query example uses both EXPLICIT BEGIN and EXPLICIT END expressions.

Select sessionId,
DATEFORMAT(starttime,'YYYY-MM-dd HH:mm:ss')
start_time, username, sourceip,
category from events into TR4
where username = 'user_x'
SESSION BY starttime username, sourceip
EXPLICIT BEGIN category=16001
EXPLICIT END category=16003
start '2016-12-10 16:00'
stop '2016-12-10 23:30'

Chapter 3. Ariel Query Language 53

The following table shows the results for the query that uses both EXPLICIT BEGIN and EXPLICIT END
expressions.

Table 14. EXPLICIT BEGIN and EXPLICIT END query results

sessionID start_Time user name sourceip category

1 2016-12-10 16:00:06 user_x 10.2.2.10 16001

1 2016-12-10 16:00:06 user_x 10.2.2.10 16003

2 2016-12-10 16:00:10 user_x 10.2.2.10 16001

2 2016-12-10 16:00:10 user_x 10.2.2.10 16003

3 2016-12-10 16:00:11 user_x 10.2.2.10 16001

3 2016-12-10 16:00:12 user_x 10.2.2.10 16001

3 2016-12-10 16:00:12 user_x 10.2.2.10 16003

4 2016-12-10 16:00:13 user_x 10.2.2.10 16001

4 2016-12-10 16:00:14 user_x 10.2.2.10 16001

4 2016-12-10 16:00:14 user_x 10.2.2.10 16003

5 2016-12-10 16:00:15 user_x 10.2.2.10 16001

5 2016-12-10 16:00:15 user_x 10.2.2.10 16003

TIMEOUT
Closes the session when the specified TIMEOUT period elapses from the time that the previous event
occurred to the time that the current event happened. The current event becomes part of a new session.
The TIMEOUT value is specified in milliseconds.

The following query example uses the TIMEOUT expression.

Select sessionId,
DATEFORMAT(starttime,'YYYY-MM-dd HH:mm:ss.SSS')
start_time, username, sourceip,
category from events into TR5
where username='user_x'
SESSION BY starttime username, sourceip
BEGIN category=16001
EXPLICIT END category=16003
TIMEOUT 3600
start '2016-12-10 16:00'
stop '2016-12-10 23:30'

The following table shows the results for the query that uses the TIMEOUT expression.

Table 15. TIMEOUT query results

sessionID start_Time user name sourceip category

1 2016-12-10 16:00:06.716 user_x 10.2.2.10 16003

2 2016-12-10 16:00:10.328 user_x 10.2.2.10 16001

Sessionid 1 is ended and sessionid 2 is started because the TIMEOUT of 3600 is exceeded.

TIMEWINDOW
Tracks the session time. Closes the session when the specified TIMEWINDOW period elapses from the
time that the first event occurred to the time that the current event happened. The current event becomes
part of a new session. The TIMEWINDOW value can be specified in seconds, minutes, hours, or days.

54 IBM QRadar : QRadar Ariel Query Language Guide

The following query example uses the TIMEWINDOW expression.

Select sessionId,
DATEFORMAT(starttime,'YYYY-MM-dd HH:mm:ss.SSS')
start_time, username, sourceip,
category from events into TR6
where username='user_x'
SESSION BY starttime username, sourceip
BEGIN category=16001
EXPLICIT END category=16003
TIMEWINDOW 3000
start '2016-12-10 16:00'
stop '2016-12-10 23:30'

The following table shows the results for the query that uses the TIMEWINDOW expression.

Table 16. TIMEWINDOW query results

sessionID start_Time user name sourceip category

1 2016-12-10 16:00:06.415 user_x 10.2.2.10 16001

1 2016-12-10 16:00:06.433 user_x 10.2.2.10 16003

2 2016-12-10 16:00:06.716 user_x 10.2.2.10 16003

3 2016-12-10 16:00:10.328 user_x 10.2.2.10 16001

3 2016-12-10 16:00:06.328 user_x 10.2.2.10 16003

Sessionid 1 is within the TIMEWINDOW expression time but sessionid 2 is ended because the
TIMEWINDOW of 3600 is exceeded.

Conditional logic in AQL queries
Use conditional logic in AQL queries by using IF and CASE expressions.

Use conditional logic in your AQL queries to provide alternative options, depending on whether the clause
condition evaluates to true or false.

CASE Statements
CASE expressions return a Boolean true or false result. When an expression is returned as true, the value
of that CASE expression is returned and processing is stopped. If the Boolean result is false, then the
value of the ELSE clause is returned.

In the following example, when the user name is root, the value of the CASE expression that is returned is
Admin root. When the user name is admin, the value of the CASE expression that is returned is Admin
user. If the CASE expressions return a Boolean false, the value of the ELSE clause is returned.

SELECT CASE username
WHEN 'root'
THEN 'Admin root'
WHEN 'admin'
THEN 'Admin user'
ELSE 'other' END FROM events

When the WHEN statement is true, the THEN statement is processed, otherwise processing finishes.

IF, THEN, ELSE statements
Statements between THEN and ELSE are processed when the IF statement is true.

In this example, when the IF condition is true, 'ADMIN' is returned when the user name is 'root',
otherwise the user name is returned from the events log.

Chapter 3. Ariel Query Language 55

SELECT sourceip,
IF username = 'root'
THEN 'ADMIN'
ELSE username AS user FROM events

In the following example, if the log has no user name, then get it from the asset model. Otherwise, the
user name is returned from the events log.

SELECT sourceip,
IF username IS NULL
THEN ASSETUSER(sourceip)
ELSE username AS username FROM events
GROUP BY username
LAST 2 DAYS

Bitwise operators in AQL queries
Enhance the filtering capability and performance of your AQL queries that include IP addresses by using
bitwise operators. Specify filters at the IP address octet level to return specific results.

By filtering on octets in an IP address, you can refine the IP address search criteria.

For example, to search for specific device types whose last octet in a source IP address ends in 100, such
as x.y.z.100, you can use the following query:

SELECT LONG(sourceip)AS long_ip,
sourceip
FROM events into <cursor_name>
WHERE (long_ip & 0x000000ff)=0x00000064
GROUP BY long_ip
ORDER BY long_ip

In the example, the <sourceip> is returned as an integer. The integer is used by the bitwise AND operator.
The hexadecimal value <ff> in the last octet position for the source IP address specifies a filter in the
corresponding IP address octet position of 0x000000<IP address octet hexidecimal value>. In this case,
the hexadecimal value <64> is substituted for the decimal value 100 in the IP address.

The result is all source IP addresses that end in 100. The results can be a list for a specific device type for
a company, if the last octet of all of the IP addresses is 100.

The following examples outline scenarios to use when you search with bitwise operators.

Bitwise AND (&) examples
Returns all IP addresses that match 10.xxx.xxx.xxx

SELECT LONG(sourceip)AS long_ip,
sourceip
FROM events into t1
WHERE (long_ip & 0xff000000)=0x0a000000
GROUP BY long_ip
LIMIT 50

Returns all IP addresses that match xxx.100.xxx.xxx

SELECT LONG(sourceip)AS long_ip,
sourceip
FROM events into t2
WHERE (long_ip & 0x00ff0000)=0x0064000
GROUP BY long_ip
ORDER BY long_ip

Returns all IP addresses that match xxx.xxx.220.xxx

SELECT LONG(sourceip)AS long_ip,
sourceip
FROM events into t3
WHERE (long_ip & 0x0000ff00)=0x000dc00

56 IBM QRadar : QRadar Ariel Query Language Guide

GROUP BY long_ip
ORDER BY long_ip

Returns all IP addresses that match xxx.xxx.xxx.1

SELECT LONG(sourceip)AS long_ip,
sourceip
FROM events
WHERE (long_ip & 0x000000ff)=0x0000001
GROUP BY long_ip
ORDER BY long_ip

Bitwise NOT (~) examples
Use the following examples to convert each 1-bit value to a 0-bit value, or each 0-bit value to a 1-bit
value, in a given binary pattern.

SELECT ~123456789
FROM events
LIMIT 1

Returns 123456790

SELECT ~0
FROM events
LIMIT 1

Returns -1

SELECT ~2147483647
FROM events
LIMIT 1

Returns - 2147483648

Bitwise OR examples
Use the following examples compare two bits. If both bits have a value of "1", then the query returns a 1.
If both bits have a value of "0", then the query returns a 0.

SELECT destinationip,
LONG(destinationip),
sourceip,
LONG(sourceip)AS source_ip,
LONG(destinationip)|source_ip
FROM events
WHERE destinationip='127.0.0.1'
LIMIT 1

SELECT destinationip,
LONG(destinationip),
sourceip,
~LONG(sourceip)AS not_source_ip,
LONG(destinationip)|not_source_ip
FROM events
WHERE destinationip='127.0.0.1'
LIMIT 1

SELECT-2147483648|2147483647
FROM events
LIMIT 1

Returns -1

Chapter 3. Ariel Query Language 57

Bitwise XOR examples
The following examples can be used to take 2-bit patterns, or a pair of bits from each position, and
convert them to either a 1 or a 0. If the bits are different, the result in that position is 1. If the bits are
identical, the result in that position is 0.

SELECT 2147483647#2147483647
FROM events
LIMIT 1

Returns 0

SELECT 12345#6789
AS A,
(~12345 & 6789)|(12345 & ~6789)
AS B
FROM events
LIMIT 1

Returns 10940, 10940

ShiftLeft examples
The number of places to shift is given as the second argument to the shift operator.

SELECT -1<<1
AS A
FROMS events
LIMIT 1

Returns -2

SELECT 16<<1
AS A
FROMS events
LIMIT 1

Returns 128

ShiftRight examples
The operator >> uses the sign bit, which is the left-most bit, to fill the trailing positions after the shift. If
the number is negative, then 1 is used as a filter and if the number is positive, then 0 is used as a filter.

SELECT 16>>3
AS A
FROMS events
LIMIT 1

Returns 2

SELECT -32768>>15
AS A
FROMS events
LIMIT 1

Returns -1

ShiftRightUnsigned example
Always fills 0 regardless of the sign of the number.

SELECT -1>>>33
FROM events
LIMIT 1

58 IBM QRadar : QRadar Ariel Query Language Guide

Returns 2147483647

Dividing by the power of 2.

SELECT (20+44)>>>1 A,
(20+44)>>>2 B,
(20+44)>>>3 C,
(20+44)>>>4 D,
(20+44)>>>5 E
FROM events
LIMIT 1

CIDR IP addresses in AQL queries
You can insert CIDR IP addresses (IPv4 or IPv6) in your AQL statements to query by IP address range,
source IP, destination IP, or you can exclude specific CIDR IP addresses.

Examples of CIDR IP addresses in AQL queries
Query by source CIDR IP address, or by destination CIDR IP address.

SELECT * FROM flows
WHERE INCIDR('10.100.100.0/24',sourceip)

SELECT * FROM flows
WHERE INCIDR('10.100.100.0/24',destinationip)

SELECT * FROM flows
WHERE INCIDR('ff02:0:0:0:0:1:ff2f:29d6',destinationv6)

Query for flows that have a source or destination CIDR IP address of 10.100.100.0/24

SELECT * FROM flows
WHERE INCIDR('10.100.100.0/24',sourceip)
OR INCIDR('10.100.100.0/24',destinationip)

Query for events where 192.168.222.0/24 is not the source CIDR IP address.

SELECT *
FROM events
WHERE NOT INCIDR('192.168.222.0/24',sourceip)

Query for flows where 192.168.222.0/24 is not the destination CIDR IP address.

SELECT *
FROM flows
WHERE NOT INCIDR('192.168.222.0/24',destinationip)

Custom properties in AQL queries
You can call a custom property directly in your AQL statements. If the custom property contains spaces
you must use double quotation marks to encapsulate the custom property.

You must enable a custom property before you can use it in an AQL statement.

If the custom property is not enabled, you will be able to run your AQL query but you will not get results.

Custom property example
SELECT Bluecoat-cs-host, sourceip, Bluecoat-cs-uri
FROM events
WHERE LOGSOURCEGROUPNAME(devicegrouplist)
ILIKE '%Proxies%'

Chapter 3. Ariel Query Language 59

AND Bluecoat-cs-host ILIKE '%facebook.com%'
GROUP BY sourceip

Bluecoat-cs-host is the host name from the client's URL that is requested.

Bluecoat-cs-uri is the original URL that is requested.

System performance query examples
You can use or edit examples of system performance AQL queries to run in your network.

Use the following query examples to get information about system performance in your network or edit
these examples to build your own custom queries.

Disk Utilization and CPU usage

SELECT Hostname, "Metric ID", AVG(Value)
AS Avg_Value, Element
FROM events
WHERE LOGSOURCENAME(logsourceid)
ILIKE '%%health%%'
AND
"Metric ID"='SystemCPU'
OR
"Metric ID"='DiskUtilizationDevice'
GROUP BY Hostname, "Metric ID", Element
ORDER BY Hostname last 20 minutes

This query outputs the Hostname, MetricID, Avg_Value, and Element columns.

The Avg_Value column returns an average value for CPU usage and disk utilization.

Disk Utilization by partition

SELECT Hostname, AVG(Value) AS Disk_Usage, Element
FROM events
where LOGSOURCENAME(logsourceid)
ILIKE '%%health%%'
and "Metric ID"='DiskUsage'
GROUP BY Hostname, Element
ORDER BY Hostname
LAST 2 HOURS

This query outputs the Hostname, Disk_Usage, and Element columns

The Disk_Usage column returns a value for disk usage for the directories that are listed in the Element
column.

Disk usage in gigabytes (GB) per partition

SELECT element
AS Partiton_Name,
MAX(value/(1024*1024*1024))
AS 'Gigabytes_Used'
FROM events
WHERE "Metric ID"='DiskSpaceUsed'
GROUP BY element
ORDER BY Gigabytes_Used DESC
LAST 2 DAYS

This query outputs the Partition_Name and the Gigabytes_Used columns from the events database.

The Gigabytes_Used column returns a value for the gigabytes that are used by each partition that is listed
in the Gigabytes_Used column for the last two days.

60 IBM QRadar : QRadar Ariel Query Language Guide

Copying query examples from the AQL guide
If you copy and paste a query example that contains single or double quotation marks from the AQL
Guide, you must retype the quotation marks to be sure that the query parses.

Events and flows query examples
Use or edit query examples to create events and flows queries that you can use for your AQL searches.

Use the following query examples to get information about events and flows in your network or edit these
examples to build your own custom queries.

Event rates and flow rates for specific hosts
SELECT AVG(Value), "Metric ID", Hostname
FROM events
WHERE LOGSOURCENAME(logsourceid)
ILIKE '%%health%%'
AND ("Metric ID"='FlowRate' OR "Metric ID"='EventRate')
GROUP BY "Metric ID", Hostname
LAST 15 minutes

This query outputs the AVG_Value, Metric ID, and Hostname columns from the events or flows database
for the last 15 minutes.

The AVG_Value column returns a value for the average flow or event rate over the last 15 minutes for the
host that is named in the Hostname column.

EPS rates by log source
SELECT logsourcename(logsourceid)
AS 'MY Log Sources',
SUM(eventcount) / 2.0*60*60
AS EPS_Rates
FROM events
GROUP BY logsourceid
ORDER BY EPS_Rates DESC
LAST 2 HOURS

This query outputs My Log Sources, and EPS_Rates columns from events.

The My Log Sources column returns log source names and the EPS_Rates column returns the EPS rates
for each log source in the last two hours.

Event counts and event types per day
SELECT
DATEFORMAT(devicetime, 'dd-MM-yyyy')
AS 'Date of log source',
QIDDESCRIPTION(qid)
AS 'Description of event', COUNT(*)
FROM events
WHERE devicetime >(now() -(7*24*3600*1000))
GROUP BY "Date of log source", qid
LAST 4 DAYS

This query outputs the Date of log source, Description of event, and count of event columns from
events.

The date of the event, description of event, and count of events are returned for the last four days.

Monitoring local to remote flow traffic by network
SELECT sourceip,
LONG(SUM(sourcebytes+destinationbytes))

Chapter 3. Ariel Query Language 61

AS TotalBytes
FROM flows
WHERE flowdirection= 'L2R'
AND NETWORKNAME(sourceip)
ILIKE 'servers'
GROUP BY sourceip
ORDER BY TotalBytes

This query outputs the sourceip and TotalBytes columns.

The TotalBytes column returns the sum of the source and destination bytes that crosses from local to
remote.

Monitoring remote to local flow traffic by network
SELECT sourceip,
LONG(SUM(sourcebytes+destinationbytes))
AS TotalBytes
FROM flows
WHERE flowdirection= 'R2L'
AND NETWORKNAME(sourceip)
ILIKE 'servers'
GROUP BY sourceip
ORDER BY TotalBytes

This query outputs the sourceip and TotalBytes columns.

The TotalBytes column returns the sum of the source and destination bytes from remote to local.

Copying query examples from the AQL guide
If you copy and paste a query example that contains single or double quotation marks from the AQL
Guide, you must retype the quotation marks to be sure that the query parses.

Reference data query examples
Use AQL queries to get data from reference sets, reference maps, or reference tables. You can create
and populate reference data by using rules to populate reference sets, by using external threat feeds, for
example, LDAP Threat Intelligence App, or by using imported data files for your reference set.

Use the following examples to help you create queries to extract data from your reference data.

Use reference tables to get external metadata for user names that show up in
events
SELECT
REFERENCETABLE('user_data','FullName',username) AS 'Full Name',
REFERENCETABLE('user_data','Location',username) AS 'Location',
REFERENCETABLE('user_data','Manager',username) AS 'Manager',
UNIQUECOUNT(username) AS 'Userid Count',
UNIQUECOUNT(sourceip) AS 'Source IP Count',
COUNT(*) AS 'Event Count'
FROM events
WHERE qidname(qid)ILIKE '%logon%'
GROUP BY "Full Name", "Location", "Manager"
LAST 1 days

Use the reference table to get external data such as the full name, location, and manager name for users
who logged in to the network in the last 24 hours.

Get the global user IDs for users in events who are flagged for suspicious activity
SELECT
REFERENCEMAP('GlobalID_Mapping',username) AS 'Global ID',
REFERENCETABLE('user_data','FullName', 'Global ID') AS 'Full Name',

62 IBM QRadar : QRadar Ariel Query Language Guide

UNIQUECOUNT(username),
COUNT(*) AS 'Event count'
FROM events
WHERE RULENAME(creEventlist)
ILIKE '%suspicious%'
GROUP BY "Global ID"
LAST 2 days

In this example, individual users have multiple accounts across the network. The organization requires a
single view of a user's activity. Use reference data to map local user IDs to a global ID. The query returns
the user accounts that are used by a global ID for events that are flagged as suspicious.

Use a reference map lookup to extract global user names for user names that are
returned in events
SELECT
QIDNAME(qid) as 'Event name',
starttime AS Time,
sourceip AS 'Source IP',
destinationip AS 'Destination IP',
username AS 'Event Username',
REFERENCEMAP('GlobalID_Mapping', username) AS 'Global User'
FROM events
WHERE "Global User" = 'John Ariel'
LAST 1 days

Use the reference map to look up the global user names for user names that are returned in events.
Use the WHERE clause to return only events for the global user John Ariel. John Ariel might have a few
different user names but these user names are mapped to a global user, for example, in an external
identity mapping system, you can map a global user to several user names used by the same global user.

Monitoring high network utilization by users
SELECT
LONG(REFERENCETABLE('PeerGroupStats', 'average',
REFERENCEMAP('PeerGroup',username)))
AS PGave,
LONG(REFERENCETABLE('PeerGroupStats', 'stdev',
REFERENCEMAP('PeerGroup',username)))
AS PGstd,
SUM(sourcebytes+destinationbytes) AS UserTotal
FROM flows
WHERE flowtype = 'L2R'
GROUP BY UserTotal
HAVING UserTotal > (PGAve+ 3*PGStd)

Returns user names where the flow utilization is three times greater than the average user.

You need a reference set to store network utilization of peers by user name and total bytes.

Threat ratings and categories
SELECT
REFERENCETABLE('ip_threat_data','Category',destinationip)
AS 'Threat Category',
REFERENCETABLE('ip_threat_data','Rating', destinationip)
AS 'Threat Rating',
UNIQUECOUNT(sourceip)
AS 'Source IP Count',
UNIQUECOUNT(destinationip)
AS 'Destination IP Count'
FROM events
GROUP BY "Threat Category", "Threat Rating" LAST 24 HOURS

Returns the threat category and the threat rating.

You can look up reference table threat data and include it in your searches.

Chapter 3. Ariel Query Language 63

Copying query examples from the AQL guide
If you copy and paste a query example that contains single or double quotation marks from the AQL
Guide, you must retype the quotation marks to be sure that the query parses.

User and network monitoring query examples
Use query examples to help you create your user and network monitoring query AQL queries.

Use the following examples to monitor your users and network, or you can edit the queries to suit your
requirements.

Find users who used the VPN to access the network from three or more IP
addresses in a 24-hour period
SELECT username,
UNIQUECOUNT(sourceip)
AS 'Source IP count'
FROM events
WHERE LOGSOURCENAME(logsourceid)
ILIKE '%VPN%'
AND username IS NOT NULL
GROUP BY username
HAVING "Source IP count" >= 3
ORDER BY "Source IP count"
DESC
LAST 24 HOURS

This query outputs the username and Source IP count columns.

The username column returns the names of users who used the VPN to access the network from three or
more IP addresses in the last 24 hours.

Find users who used the VPN from more that one geographic location in 24 hours
SELECT username, UNIQUECOUNT(geographiclocation)
AS 'Count of locations'
FROM events
WHERE LOGSOURCENAME(logsourceid)
ILIKE '%VPN%'
AND geographiclocation <> 'other location'
AND username
IS NOT NULL
GROUP BY username
HAVING "Count of locations" > 1
ORDER BY "Count of locations"
DESC
LAST 3 DAYS

This query outputs the username and Count of locations columns.

The username column returns the names of users who used the VPN from more than one location that is
not called 'other location' in the last 24 hours.

Monitoring local to remote flow traffic by network
SELECT sourceip,
LONG(SUM(sourcebytes+destinationbytes))
AS TotalBytes
FROM flows
WHERE flowdirection= 'L2R'
AND NETWORKNAME(sourceip)
ILIKE 'servers'
GROUP BY sourceip
ORDER BY TotalBytes

64 IBM QRadar : QRadar Ariel Query Language Guide

This query outputs the sourceip and TotalBytes columns.

The TotalBytes column returns the sum of the source and destination bytes that crosses from local to
remote.

Monitoring remote to local flow traffic by network
SELECT sourceip,
LONG(SUM(sourcebytes+destinationbytes))
AS TotalBytes
FROM flows
WHERE flowdirection= 'R2L'
AND NETWORKNAME(sourceip)
ILIKE 'servers'
GROUP BY sourceip
ORDER BY TotalBytes

This query outputs the sourceip and TotalBytes columns.

The TotalBytes column returns the sum of the source and destination bytes from remote to local.

Application usage by application name, users, and flows traffic
SELECT sourceip
AS Source_IP,
FIRST(destinationip)
AS Destination_IP,
APPLICATIONNAME(applicationid)
AS Application,
DATEFORMAT(lastpackettime, 'dd-MM-yyyy hh:m:ss')
AS 'Start Time',
FIRST(sourcebytes)
AS Source_Bytes,
ASSETUSER(sourceip, NOW()) AS Src_Asset_User
FROM flows
GROUP BY Source_IP
ORDER BY Source_Bytes DESC

This query outputs data about your asset users, application names, and flow data. Use this query to report
specific user activity or application usage, or to build a variation of this query to achieve your desired
results.

Location of assets
SELECT ASSETPROPERTY('Location',sourceip)
AS asset_location,
COUNT(*)
FROM events
GROUP BY asset_location
LAST 1 days

This query outputs the asset_location and count columns.

The asset location column returns the location of the assets.

Copying query examples from the AQL guide
If you copy and paste a query example that contains single or double quotation marks from the AQL
Guide, you must retype the quotation marks to be sure that the query parses.

Event, flow, and simarc fields for AQL queries
Use the Ariel Query Language (AQL) to retrieve specific fields from the events, flows, and simarc tables in
the Ariel database.

Chapter 3. Ariel Query Language 65

Supported event fields for AQL queries
The event fields that you can query are listed in the following table.

Table 17. Supported event fields for AQL queries

Field name Description

adekey Ade key

adevalue Ade value

category Low-level category

creEventList Matched custom rule

credibility Credibility

destinationMAC Destination MAC

destinationPort Destination port

destinationv6 IPv6 destination

destinationaddress Destination address

destinationip Destination IP

sourceaddress Source address

deviceTime Log source time

deviceType Log source type

devicegrouplist Device group list

domainID Domain ID

duration Duration

endTime Storage time

eventCount Event count

eventDirection Event direction:

local-to-Local (L2L)

local-to-remote (L2R)

remote-to-local (R2L)

remote-to-remote (R2R)

geographiclocation geographic location

sourcegeographiclocation Source geographic location

destinationgeographiclocation Destination geographic location

hasIdentity Has identity

hasOffense Associated with offense

highLevelCategory High-level category

identityhostname Identity host name

identityip Identity IP address

isduplicate Is duplicate

66 IBM QRadar : QRadar Ariel Query Language Guide

Table 17. Supported event fields for AQL queries (continued)

Field name Description

isCREEvent Is custom rule event

logsourceid Log source ID

magnitude Magnitude

pcappacket PCAP packet

partialMatchList Partial match list

payload Payload

postNatDestinationIP Destination IP after NAT

postNatDestinationPort Destination port after NAT

postNatSourceIP Source IP after NAT

postNatSourcePort Source port after NAT

preNatDestinationIP Destination IP before NAT

preNatDestinationPort Destination port before NAT

preNatSourceIP Source IP before NAT

preNatSourcePort Source port before NAT

protocolid Protocol

processorId Event Processor ID

qid Event name ID

qideventid Event ID

relevance Relevance

severity Severity

sourceIP Source IP

sourceMAC Source MAC

sourcePort Source port

sourcev6 IPv6 source

startTime Start time

isunparsed Event is unparsed

userName User name

Supported flow fields for AQL queries
The flow fields that you can query are listed in the following table.

Table 18. Supported flow fields for AQL queries

Field name Description

applicationId Application ID

category Category

Chapter 3. Ariel Query Language 67

Table 18. Supported flow fields for AQL queries (continued)

Field name Description

credibility Credibility

destinationASN Destination ASN

destinationBytes Destination bytes

destinationDSCP Destination DSCP

destinationFlags Destination flags

destinationIP Destination IP

destinationIfIndex Destination if index

destinationPackets Destination packets

destinationPayload Destination payload

destinationPort Destination port

destinationPrecedence Destination precedence

destinationv6 IPv6 destination

domainID Domain ID

fullMatchList Full match list

firstPacketTime First packet time

flowBias Flow bias

flowDirection Flow direction

local-to-local (L2L)

local-to-remote (L2R)

remote-to-local (R2L)

remote-to-remote (R2R)

flowInterfaceID Flow interface ID

flowSource Flow Source

flowType Flow type

geographic Matches geographic location

hasDestinationPayload Has destination payload

hasOffense Has offense payload

hasSourcePayload Has source payload

icmpCode Icmp code

icmpType ICMP type or code

flowInterface Flow interface

intervalId Interval ID

isDuplicate Duplicate event

lastPacketTime Last packet time

68 IBM QRadar : QRadar Ariel Query Language Guide

Table 18. Supported flow fields for AQL queries (continued)

Field name Description

partialMatchList Partial match list

protocolId Protocol ID

qid Qid

processorID Event processor ID

relevance Relevance

retentionBucket Retention bucket dummy

severity Severity

sourceASN Source ASN

sourceBytes Source bytes

sourceDSCP Source DSCP

sourceFlags Source flags

sourceIP Source IP

sourceIfIndex Source if index

sourcePackets Source packets

sourcePayload Source payload

sourcePort Source port

sourcePrecedence Source precedence

sourcev6 IPv6 source

startTime Start time

viewObjectPair View object pair

Supported simarc fields for AQL queries
The simarc fields that you can query are listed in the following table.

Table 19. Supported simarc fields for AQL queries

Field name Description

destinationPort Destination port key creator

destinationType Destination type key creator

deviceId Device key creator

direction Direction key creator

eventCount Event count key creator

eventFlag Flag key creator

applicationId Application ID key creator

flowCount Flow count key creator

destinationBytes Destination bytes key creator

Chapter 3. Ariel Query Language 69

Table 19. Supported simarc fields for AQL queries (continued)

Field name Description

flowSource Flow source key creator

sourceBytes Source bytes key creator

lastPacketTime Time key creator

protocolId Protocol key creator

source Source key creator

sourceType Source type key creator

sourceRemoteNetwork Source remote network key creator

destinationRemoteNetwork Destination remote network key creator

sourceCountry Source geographic key creator

destinationCountry Destination geographic key creator

destination Destination key creator

70 IBM QRadar : QRadar Ariel Query Language Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2013, 2021 71

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions..

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

VMware, the VMware logo, VMware Cloud Foundation, VMware Cloud Foundation Service, VMware
vCenter Server, and VMware vSphere are registered trademarks or trademarks of VMware, Inc. or its
subsidiaries in the United States and/or other jurisdictions.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

72 Notices

http://www.ibm.com/legal/copytrade.shtml

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s session id for purposes of session management and authentication. These cookies can be
disabled, but disabling them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details/ the section entitled “Cookies, Web Beacons and Other Technologies”.

General Data Protection Regulation
Clients are responsible for ensuring their own compliance with various laws and regulations, including the
European Union General Data Protection Regulation. Clients are solely responsible for obtaining advice of
competent legal counsel as to the identification and interpretation of any relevant laws and regulations
that may affect the clients’ business and any actions the clients may need to take to comply with such
laws and regulations. The products, services, and other capabilities described herein are not suitable for
all client situations and may have restricted availability. IBM does not provide legal, accounting or auditing
advice or represent or warrant that its services or products will ensure that clients are in compliance with
any law or regulation.

Learn more about the IBM GDPR readiness journey and our GDPR capabilities and Offerings here: https://
ibm.com/gdpr

Notices 73

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details/us/en/
http://www.ibm.com/privacy/details/us/en/
https://ibm.com/gdpr
https://ibm.com/gdpr

74 IBM QRadar : QRadar Ariel Query Language Guide

Index

A
AQL 17
Ariel Query Language 17

C
contact information v
COUNT function 11
customer support v

D
description v
documentation v

E
events and flows 65

F
field list 65
functions

Date and time format 45

G
GROUP BY 7

H
HAVING 9

L
LIKE clause 10

N
network administrator v

O
ORDER BY clause 10

S
SELECT clause 5
Start and Stop clauses 43

T
technical library v

W
WHERE clause 6

Index 75

76 IBM QRadar : QRadar Ariel Query Language Guide

IBM®

	Contents
	About this guide
	Chapter 1. Ariel Query Language in the QRadar interface
	Chapter 2. AQL Query structure
	SELECT statement
	WHERE clause
	GROUP BY clause
	HAVING clause
	ORDER BY clause
	LIKE clause
	COUNT function
	Quotation marks
	Sample AQL queries

	Chapter 3. Ariel Query Language
	AQL logical and comparison operators
	AQL data calculation and formatting functions
	AQL data aggregation functions
	AQL data retrieval functions
	Time criteria in AQL queries
	AQL date and time formats
	AQL subquery
	Grouping related events into sessions
	Transactional query refinements

	Conditional logic in AQL queries
	Bitwise operators in AQL queries
	CIDR IP addresses in AQL queries
	Custom properties in AQL queries
	System performance query examples
	Events and flows query examples
	Reference data query examples
	User and network monitoring query examples
	Event, flow, and simarc fields for AQL queries

	Notices
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	General Data Protection Regulation

	Index

