Tivoli® ITCAM for Application Diagnostics
Version 7.1

User Guide
Note

Before using this information and the product it supports, read the information in "Notices" on page 681.

Edition Notice

This December 2009 edition applies to Version 7.1 of ITCAM for Application Diagnostics and all subsequent releases and modifications until otherwise indicated in new editions.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

About this guide ... ix
Who should read this guide ix
Publications .. ix
Accessibility .. xi
Tivoli technical training xi
Supporting information xi
Conventions used in this guide xi

Part 1. Part 1: Introduction to ITCAM for Application Diagnostics 1

Chapter 1. Overview of ITCAM for Application Diagnostics 3
ITCAM for Application Diagnostics functionality .. 3
ITCAM for Application Diagnostics user interfaces 4
Components used by the Tivoli Enterprise Portal user interface 5
 The Agents .. 5
 IBM Tivoli Monitoring components ... 6
Components used by the MSVE user interface .. 8
Tivoli Enterprise Portal interoperation with MSVE 10
What’s new in the 7.1 release? 11
Getting Started with ITCAM for Application Diagnostics 11

Chapter 2. Scenarios .. 13
Scenario 1: Diagnosing a memory leak .. 13
Scenario 2: Diagnosing hanging transactions 15
Scenario 3: Diagnosing a WebSphere server shutdown 19
Scenario 4: Determining if the WebSphere cluster needs to be load balanced 20
Scenario 5: Determining the cause of high response times 23
Scenario 6: Determining the cause of connection problems 28
Scenario 7: Determining if the Garbage Collection policy needs to be adjusted 29
Scenario 8: Troubleshooting application response time in an XD cell 31
Scenario 9: Ensuring that jobs processed by Compute Grid don’t execute for longer than one hour ... 34

Part 2. Part 2: Using ITCAM for Application Diagnostics 37

Chapter 3. ITCAM for Application Diagnostics Managing Server Visualization Engine .. 39
Access the Managing Server Visualization Engine from Tivoli Enterprise Portal 39
Account management .. 43
 User Scenarios .. 43
 User profiles ... 44
 Role configuration ... 46
Server management ... 49
 User Scenarios .. 49
 Server groups ... 49
 Data Collector Configuration 52
 Data Collector Profiles 61
Monitoring on Demand (TM) 73
 User Scenarios .. 74
 MOD Console ... 74
 Schedule Management .. 75
 Creating a schedule .. 75
 Applying a schedule .. 76
 Overriding a monitoring level 77
 Modifying a schedule .. 77
 Deleting a schedule ... 78
 Duplicating a schedule 78
 Managing server ... 78
 System properties ... 79
 Self-diagnosis ... 82
Systems overview .. 84
 User Scenarios .. 84
 User Scenarios .. 85
 User Scenarios .. 85
 Enterprise Overview .. 85
 Group Overview ... 86
 Server Overview ... 86
 Portal Overview ... 88
 Viewing the Portal Page Summary 88
 Viewing the Portlet Summary 89
 WLM associated service class summary 90
 WLM associated service class period detail 91
 Viewing a WLM enclave 91
Server Statistics Overview 92
 Configuring the Server Statistics Overview page 93
 Viewing the Server Statistics Overview 94
Recent Activity Display 95
 User Scenarios .. 95
 Creating a Recent Activity report 95
 System resources .. 96
 User Scenarios .. 96
 Viewing the System Resources Browser 96
 Resources Performance Metrics 97
SMF data ... 104
 User Scenarios .. 105
 Viewing SMF data ... 105
Alerts and Events ... 106
 Escalating alerts and events to the Problem Center 107
 Problem Center ... 107
 Viewing the details of a problem 109
 Adding a problem manually 111
 Closing a problem .. 111
In-flight request search ... 112
 User Scenarios .. 112
 Searching for an Application Request 113

© Copyright IBM Corp. 2006, 2009
ITCAM for Application Diagnostics - WebSphere

Agent attributes 3 0 1

Content
Set_Completion_Thresholds: Set completion thresholds .. 450
Set_Request_Sampling_Rate: Set the sampling rate for request data .. 450
Start_Baselines: start the baselining process .. 450
Start_GC_Monitoring: Begin reporting garbage-collection data ... 451
Start_Request_Monitoring: Begin reporting request data ... 451
Start_Resource_Monitoring: Begin reporting PMI data .. 452
Start_WebSphere_Server: Start a WebSphere application server ... 452
Stop_Baselines: stop the baselining process ... 452
Stop_GC_Monitoring: Stop reporting garbage-collection data ... 453
Stop_Request_Monitoring: Stop reporting request data .. 453
Stop_Resource_Monitoring: Stop reporting PMI data ... 453
Stop_WebSphere_Server: Stop a WebSphere application server ... 453
Update_Baseline: trigger a baseline update .. 454
Threshold calculation detail .. 454
ITCAM for Application Diagnostics - WebSphere XD Overview .. 456
Configure WebSphere XD Cell monitoring .. 457
ITCAM for Application Diagnostics - WebSphere XD Cell workspaces 460
ITCAM for Application Diagnostics - WebSphere XD Cell Attributes 475
Compute Grid Attributes ... 475
ITCAM for Application Diagnostics - WebSphere XD Take Actions 486
ITCAM for Application Diagnostics - XD Agent situations .. 487

Chapter 5. ITCAM Agent for J2EE. . . . 493
ITCAM for Application Diagnostics - Agent for J2EE workspaces .. 495
Organization of the predefined workspaces ... 495
Allocation Failures workspace ... 500
Application Health Summary workspace ... 501
Application Registry workspace ... 502
BEA WebLogic Application Server workspace ... 503
Data sources workspace ... 503
DB Connection Pools workspace ... 504
DC Message Events workspace ... 505
EJB Components workspace .. 506
Enterprise Java Beans workspace ... 507
EJB Modules workspace ... 508
EJBs - Selected Enterprise Application workspace .. 509
Garbage Collection Analysis workspace .. 509
Garbage Collections - Selected Allocation Failure workspace .. 510
J2EE Agent workspace .. 510
J2EE Application workspace .. 511
JBoss App Server workspace .. 512
JCA Connection Pools workspace .. 513
JDBC Connection Pools workspace .. 514
JMS Connection Pools workspace ... 515
JMS Summary workspace ... 515
JTA Resources workspace ... 516
JTA Summary workspace .. 517
JVM Statistics workspace .. 517
Log Analysis workspace .. 518
Oracle App Server workspace .. 519
Request Analysis workspace .. 519
Selected Request - Baseline workspace .. 520
Selected Application - Application Tier Analysis workspace .. 521
Selected Application - Configuration workspace ... 522
Selected Application - Backend Tier Analysis workspace ... 522
Selected Application - Health History workspace .. 523
Selected Application - Client Tier Analysis workspace ... 524
Selected Request - Data sources workspace ... 525
Selected Request - JMS Queues workspace .. 525
Selected Request - Resource Adapters workspace .. 526
SAP NetWeaver Server workspace ... 526
Servlets/JSPs - Selected Enterprise Application workspace ... 527
Servlets/JSPs - Selected Web Application workspace ... 528
Tomcat Server workspace ... 528
Web Applications workspace .. 529
Web Container workspace ... 530
WebSphere App Server CE workspace .. 531
ITCAM for Application Diagnostics - Agent for J2EE attributes .. 531
Attribute groups used by the predefined workspaces ... 532
Allocation Failure - J2EE attributes ... 533
Application Health Status attributes ... 535
Application Monitoring Configuration attributes ... 537
Application Server Status - J2EE attributes ... 540
Application Server - J2EE attributes ... 541
Baseline attributes .. 543
Data sources - J2EE attributes ... 545
DB Connection Pools - NetWeaver attributes ... 547
DC Messages - J2EE attributes ... 548
Enterprise Java Bean Components - WebLogic attributes .. 550
Enterprise Java Bean Modules - J2EE attributes .. 551
Enterprise Java Bean Service - NetWeaver attributes ... 553
Enterprise Java Beans - WebLogic attributes .. 555
Garbage Collection Analysis - J2EE attributes ... 557
Garbage Collection Cycle - J2EE attributes .. 559
J2EE Agent Events attributes .. 562
J2EE Connector Connection Pools - WebLogic attributes ... 563
JCA Connection Pools - J2EE attributes .. 565
JDBC Connection Pools - WebLogic attributes ... 566
JDK - Operation System attributes .. 568
JDK - Memory attributes .. 570
JDK - JVM attributes ... 571
JDK - Threading attributes .. 573
About this guide

This book provides a user guide for ITCAM for Application Diagnostics 7.1.

Who should read this guide

This user guide is intended for end users of ITCAM for Application Diagnostics.

Publications

This section lists publications in the ITCAM for Application Diagnostics library and related documents.

ITCAM for Application Diagnostics library

The following publications are included in the ITCAM for Application Diagnostics library, available at [ITCAM for Application Diagnostics Information Center](#):

- **IBM Tivoli Composite Application Manager for Application Diagnostics: Prerequisites**
 Provides the hardware and software requirements for installing ITCAM for Application Diagnostics components.

- **IBM Tivoli Composite Application Manager for Application Diagnostics: User's Guide**
 Provides the user overview, user scenarios, and Helps for every ITCAM for Application Diagnostics component.

- **IBM Tivoli Composite Application Manager for Application Diagnostics: Planning an Installation**
 Provides the user with a first reference point for a new ITCAM for Application Diagnostics installation or upgrade.

- **ITCAM Agent for WebSphere® Applications Installation and Configuration Guides:**
 - **IBM Tivoli Composite Application Manager: Agent for WebSphere Applications Installation and Configuration Guide**
 - **IBM Tivoli Composite Application Manager: Agent for WebSphere Applications Installation and Configuration Guide for z/OS**
 - **IBM Tivoli Composite Application Manager: Agent for WebSphere Applications Data Collector Installation and Configuration Guide for IBM i**
 Provide installation instructions for setting up and configuring ITCAM Agent for WebSphere Applications on distributed, z/OS®, and IBM® i systems.

- **ITCAM Agent for J2EE Applications Installation and Configuration Guides:**
 - **IBM Tivoli Composite Application Manager: Agent for J2EE Data Collector Installation and Configuration Guide**
 - **IBM Tivoli Composite Application Manager: Agent for J2EE Monitoring Agent Installation and Configuration Guide**
 Provide installation instructions for setting up and configuring ITCAM Agent for J2EE.

- **IBM Tivoli Composite Application Manager: Agent for HTTP Servers Installation and Configuration Guide**
 Provides installation instructions for setting up and configuring ITCAM Agent for HTTP Servers.
• IBM Tivoli Composite Application Manager for Application Diagnostics Managing Server Installation Guide
 Provides installation instructions for setting up and configuring ITCAM for Application Diagnostics Managing Server.

• IBM Tivoli® Composite Application Manager for Application Diagnostics: Troubleshooting Guide
 Provides instructions on problem determination and troubleshooting for ITCAM for Application Diagnostics.

• IBM Tivoli Composite Application Manager for Application Diagnostics: Messaging Guide
 Provides information about system messages received when installing and using ITCAM for Application Diagnostics.

Accessing publications online

The documentation CD contains the publications that are in the product library. The format of the publications is PDF, HTML, or both.

IBM posts publications for this and all other Tivoli products, as they become available and whenever they are updated, to the Tivoli software information center Web site. Access the Tivoli software information center by viewing the Tivoli software library at the following Web address:

Note: If you print PDF documents on other than letter-sized paper, set the option in the File > Print window that enables Adobe® Reader to print letter-sized pages on your local paper.

The IBM Software Support Web site provides the latest information about known product limitations and workarounds in the form of technotes for your product. You can view this information at the following Web site:

Ordering publications

You can order many Tivoli publications online at the following Web site:

You can also order by telephone by calling one of these numbers:
• In the United States: 800-879-2755
• In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli publications. To locate the telephone number of your local representative, perform the following steps:
1. Go to the following Web site:
2. Select your country from the list and click Go.
3. Click About this site in the main panel to see an information page that includes the telephone number of your local representative.

Accessibility

Accessibility features help users with a physical disability, such as restricted mobility or limited vision, to use software products successfully. With this product, you can use assistive technologies to hear and navigate the interface. You can also use the keyboard instead of the mouse to operate most features of the graphical user interface.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli Education Web site:

Supporting information

If you have a problem with your IBM software, you want to resolve it quickly. IBM provides the following ways for you to obtain the support you need:

- Searching knowledge bases: You can search across a large collection of known problems and workarounds, Technotes, and other information.
- Obtaining fixes: You can locate the latest fixes that are already available for your product.
- Contacting IBM Software Support: If you still cannot solve your problem, and you need to work with someone from IBM, you can use a variety of ways to contact IBM Software Support.

Conventions used in this guide

This guide uses several conventions for special terms and actions, and operating-system-dependent commands and paths.

Typeface conventions

This guide uses the following typeface conventions:

Bold

- Lowercase commands and mixed case commands that are otherwise difficult to distinguish from surrounding text
- Interface controls (check boxes, push buttons, radio buttons, spin buttons, fields, folders, icons, list boxes, items inside list boxes, multicolumn lists, containers, menu choices, menu names, tabs, property sheets), labels (such as Tip, and Operating system considerations)
- Keywords and parameters in text

Italic

- Words defined in text
- Emphasis of words (for example, "Use the word that to introduce a restrictive clause.")
- New terms in text (except in a definition list)
- Variables and values you must provide
Monospace

- Code and other examples
- File names, programming keywords, and other elements that are difficult to distinguish from surrounding text
- Message text and prompts addressed to the user
- Text that the user must type
- Values for arguments or command options

Operating-system-dependent variables and paths

The publications in this library use the UNIX® convention for specifying environment variables and for directory notation.

When using the Windows® command line, replace $variable with %variable% for environment variables and replace each forward slash (/) with a backslash (\) in directory paths. The names of environment variables are not always the same in Windows and UNIX. For example, %TEMP% in Windows is equivalent to $tmp in UNIX.

Note: If you are using the bash shell on a Windows system, you can use the UNIX conventions.

Tivoli command syntax

The following special characters define Tivoli command syntax:

- Identifies elements that are optional. Required elements do not have brackets around them.

... Indicates that you can specify multiple values for the previous element. Separate multiple values by a space, unless otherwise directed by command information.

If the ellipsis for an element follows a closing bracket, use the syntax within the brackets to specify multiple values. For example, to specify two administrators for the option [–a admin]..., use –a admin1 –a admin2.

If the ellipsis for an element is within the brackets, use the syntax of the last element to specify multiple values. For example, to specify two hosts for the option [–h host]..., use –h host1 host2.

| Indicates mutually exclusive information. You can use the element on either the left or right of the vertical bar.

{} Delimits a set of mutually exclusive elements when a command requires one of them. Brackets ([]) are around elements that are optional.

In addition to the special characters, Tivoli command syntax uses the typeface conventions described in “Typeface conventions” on page xi. The following examples illustrate the typeface conventions used in Tivoli command syntax:

- wcrtpr [–a admin]... [–r region] [–m resource]... name

 The name argument is the only required element for the wcrtpr command. The brackets around the options indicate they are optional. The ellipses after the –a admin option means that you can specify multiple administrators multiple times. The ellipses after the –m resource option means that you can specify multiple resources multiple times.

- wchkdb [–o outfile] [–u] [–x] [–f infile | –i | object]...
The -f, -i, and object elements are mutually exclusive. Braces that surround elements indicate that you are including a required element. If you specify the object argument, you can specify more than one object.
Chapter 1. Overview of ITCAM for Application Diagnostics

IBM Tivoli Composite Application Manager (ITCAM) for Application Diagnostics is a monitoring, diagnostics, and management technology for WebSphere, J2EE, and HTTP servers in a distributed environment. ITCAM for Application Diagnostics also provides enhanced support for monitoring Virtual Enterprise and Compute Grid products from the WebSphere XD (Extended Deployment) suite. ITCAM for Application Diagnostics helps to maintain and improve the availability and performance of on-demand applications in your environment. It helps you to quickly locate in real time, the source of bottlenecks in application code, server resources, and external system dependencies.

ITCAM for Application Diagnostics can monitor application servers and HTTP servers at different levels. Monitoring applications incurs an unavoidable cost in terms of processing time. To minimize this cost, there are multiple monitoring levels available. A minimum amount of information is collected during standard operations. As problems are encountered, the level of information that is collected can be gradually increased until the problem is located and solved.

ITCAM for Application Diagnostics functionality

ITCAM for Application Diagnostics can perform monitoring, diagnostics, and management functions for WebSphere, J2EE, and HTTP servers.

Monitoring

ITCAM for Application Diagnostics can monitor the following WebSphere, J2EE, and HTTP servers:
- **WebSphere servers**
 - WebSphere Application Server (Network Deployment)
 - WebSphere Application Server (Extended Deployment)
 - WebSphere Process Server
 - WebSphere Portal Server
 - WebSphere ESB Server
- **J2EE servers**
 - SAP Net Weaver
 - Oracle Application Server
 - JBoss Application Server
 - Apache Tomcat
 - BEA WebLogic Server
 - WebSphere Application Server CE
 - J2SE
 - WebLogic Portal Server
 - Sun Java™ System Application Server Enterprise Edition
- **HTTP servers**
 - Apache Web Server
 - IIS Web Server
 - IBM HTTP Server
Use ITCAM for Application Diagnostics to diagnose the following problems in your On-Demand application environment:
- Hanging requests
- Lock contention problems
- Malfunctioning applications in a server farm
- Memory problems relating to garbage collection and JVM heap size

Use ITCAM for Application Diagnostics to perform the following management functions in your On-Demand application environment:
- Start and stop monitored servers
- Manage servers using groups
- Configure Data Collectors
- Use roles to restrict access to features
- Use server groups to grant access to servers
- Adjust the monitoring level at specific times based on the current work load of the server

ITCAM for Application Diagnostics user interfaces

ITCAM for Application Diagnostics functions can broadly be divided into two areas: monitoring and diagnostics. Each of these functions uses different combinations of components. Each function also uses a different user interface. The two user interfaces are the Tivoli Enterprise Portal and the Managing Server Visualization Engine (MSVE).

The Tivoli Enterprise Portal user interface

The Tivoli Enterprise Portal is part of the IBM Tivoli Monitoring architecture. The Tivoli Enterprise Portal is the user interface into your ITCAM for Application Diagnostics environment site and possibly other IBM Tivoli enterprise applications if they are installed in your environment. For further information about the Tivoli Monitoring architecture, see "Components used by the Tivoli Enterprise Portal user interface" on page 5.

Using the Tivoli Enterprise Portal interface, you can easily monitor the health and availability of production applications and application servers, and you can quickly identify and isolate availability and response time problems. The Tivoli Enterprise Portal provides monitoring information, such as memory usage, response time, pool analysis, and data source analysis. The Tivoli Enterprise Portal enables you to drill down from server level metrics to specific application and resource level metrics.

MSVE user interface

The MSVE user interface provides users with management and monitoring functions for application servers. In addition, the MSVE also provides a diagnostic function. Here are some of the diagnostic activities you can perform in MSVE:
Detect transactions failing
Detect memory leaks
Examine detailed method traces, which help to detect application code hotspots
Generate reports to analyze historical information, such as application performance and OS performance

Components used by the Tivoli Enterprise Portal user interface

A number of components work together to collect, analyze, and display monitoring data in the Tivoli Enterprise Portal. These components are:
1. The Agents
2. IBM Tivoli Monitoring components

The Agents

There are separate agents for WebSphere, J2EE, and HTTP Servers. The agents consist of the following components:
• Tivoli Enterprise Monitoring Agent (referred to as the Monitoring agent)
• Data Collector

Note: The exception is the HTTP Servers agent. The HTTP Servers agent does not contain a Data Collector. Only the WebSphere and J2EE Agents contain Data Collectors.

The Monitoring Agent: The Monitoring Agent is a component of the IBM Tivoli Monitoring architecture. The purpose of the Monitoring Agent is to route information to the Tivoli Enterprise Monitoring Server (monitoring server) where the information is processed and presented in the Tivoli Enterprise Portal.

The Data Collector: The purpose of the Data Collector is to collect and route data to the Monitoring Agent. It is not intended to analyze or interpret data.

On each WebSphere and J2EE server you are monitoring, an agent is installed, so there is a Monitoring Agent and a Data Collector running on each server you are monitoring.

For example, if you are monitoring a Tomcat server, a J2EE Agent is installed on this server. If you are monitoring a WebSphere Portal server, a WebSphere Agent is installed.

The WebSphere Agent

The WebSphere Agent consists of a Monitoring Agent and a Data Collector. The WebSphere Monitoring Agent works with the WebSphere Data Collector. The WebSphere Data Collector collects monitoring data from WebSphere servers and communicates the data to the Monitoring Agent.

The WebSphere Agent collect data from four primary sources:
• Response time data for application service requests from the Data Collector
• Resource data from the WebSphere Performance Monitoring Infrastructure (PMI)
• WebSphere Application Server log messages
• Garbage-collector activity that is recorded in the JVM verbose GC trace
• Process data from the operating system
The J2EE Agent

The J2EE Agent is composed of a Monitoring Agent and a Data Collector. The J2EE Agent works with the J2EE Data Collector to collect performance data from J2EE application servers. The J2EE Data Collector collects monitoring data from J2EE servers and communicates the data to the Monitoring Agent. The J2EE Agent collects data from three primary sources:

- Response time data for application service requests from the data collector
- J2EE application server log messages
- Garbage collection activity that is recorded in the JVM verbose GC trace

The HTTP Agent

The HTTP Agent is composed of a Monitoring Agent only. The Monitoring Agent can monitor the following HTTP servers:

- IIS Web Servers
- Apache Web Servers
- IBM HTTP Web Servers
- Sun Web Servers

The HTTP Monitoring Agent has three components that are used to collect monitoring data from Web servers. There is an Apache, an IIS, and a Sun Web servers component.

The HTTP Agent collects performance data about the Web servers and Web sites in the following ways:

Apache Server and HTTP Server: The agent modifies the Apache server and IBM HTTP server configuration files to include the monitoring module. The monitoring module is loaded dynamically during Web server start up. The module receives all HTTP requests and report data to the HTTP Agent. In addition, the HTTP Agent parses static information from the configuration file.

IIS Web Server: The HTTP Agent collects monitoring data from IIS Servers in the following two ways:

- For static information about server configuration, the agent issues queries to the Admin Base Object (ABO) interface which provides access to the IIS metabase.
- For dynamic information about server availability and performance metrics, the agent issues queries to the Microsoft Windows Management Instrumentation (WMI) interface.

Sun Web Server: The HTTP Agent collects monitoring data from Sun Web Servers by polling the SNMP service for Web server-related statistics. It also parses Web server configuration files to get information that is not provided by the SNMP service.

IBM Tivoli Monitoring components

IBM Tivoli Monitoring monitors the performance and availability of distributed operating systems and applications. IBM Tivoli Monitoring products are based on a set of common service components. These service components provide security, data transfer and storage, notification mechanisms, user interface presentation, and communication services in an agent-server-client architecture. Some of these service
components are shared by other products, including IBM Tivoli OMEGAMON® XE mainframe monitoring products, ITCAM for Application Diagnostics, and ITCAM for Applications.

The service components ITCAM for Application Diagnostics and IBM Tivoli Monitoring share are:

- Tivoli Enterprise Monitoring Server (referred to as the Monitoring Server)
- Tivoli Enterprise Portal Server (referred to as the Portal Server)
- Tivoli Enterprise Portal
- Tivoli Enterprise Monitoring Agent (referred to as the Monitoring Agent)

ITCAM for Application Diagnostics uses the service components of IBM Tivoli Monitoring. The ITCAM for Application Diagnostic Monitoring Agents integrate with components in the IBM Tivoli Monitoring environment by retrieving data from the Monitoring Agents and forwarding it to the Portal Server where it is displayed in the Tivoli Enterprise Portal.

Here is some further information regarding the shared service components and how they integrate with ITCAM for Application Diagnostics:

Tivoli Enterprise Monitoring Server: The Monitoring Server performs the following functions:

- Acts as a collection and control point for alerts that are received from the Monitoring Agents.
- Tracks the heartbeat request interval for all Monitoring Agents connected to it.
- Stores, initiates, and tracks all situations and policies, and is the central repository for storing all active conditions on every Monitoring Agent.
- Initiates and tracks all generated actions that invoke a script or program on the Monitoring Agent.

Tivoli Enterprise Portal Server: The Portal Server performs the following functions:

- Acts as a repository for all graphical presentations of monitoring data.
- Provides the core presentation layer, which allows for the retrieval, manipulation, analysis, and reformatting of data.
- Manages data access through user workspace consoles.

Tivoli Enterprise Portal: The Tivoli Enterprise Portal is a Java-based user interface that connects to the Monitoring Server and displays monitoring data. The Tivoli Enterprise Portal can be launched from an Internet Explorer browser, or can be installed as a client application on a workstation. The Tivoli Enterprise Portal is one of the user interfaces for ITCAM for Application Diagnostics, the other user interface is the MSVE.

Tivoli Enterprise Monitoring Agent: The Monitoring Agents are responsible for data gathering. The Monitoring Agents communicate monitoring data to the Monitoring Server and the managing server. In ITCAM for Application Diagnostics, the WebSphere, J2EE, and HTTP agents contain Monitoring Agents.

The following diagram displays the component used by the Tivoli Enterprise Monitor:
Components used by the Tivoli Enterprise Portal user interface

A number of components work together to collect, analyze, and present the monitoring data in the MSVE. These components are:

- Managing Server
- Data Collector

The Managing Server is the central component of ITCAM for Application Diagnostics. For every implementation of ITCAM for Application Diagnostics, there is one Managing Server. The Managing Server is a powerful technology that provides deep dive functions. The user interface for the Managing Server is the MSVE. The Managing Server works with Data Collectors, for each server being monitored there is one Data Collector installed. The Data Collector collects performance data from the application servers and HTTP servers and forwards this information to the Managing Server.

ITCAM for Application Diagnostics Managing Server provides deep dive diagnosis capabilities. The Managing Server provides the following functions:
Table 1. Managing Server Functionality

<table>
<thead>
<tr>
<th>Area</th>
<th>What you can do</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server and Account</td>
<td>• Manage servers using groups</td>
</tr>
<tr>
<td>management</td>
<td>• Configure Data Collectors</td>
</tr>
<tr>
<td></td>
<td>• MOD management</td>
</tr>
<tr>
<td></td>
<td>• Use roles to restrict access to features</td>
</tr>
<tr>
<td>Systems Overview</td>
<td>• Display the availability of application servers</td>
</tr>
<tr>
<td></td>
<td>• Provide comparisons between current response times and baseline response</td>
</tr>
<tr>
<td></td>
<td>times</td>
</tr>
<tr>
<td></td>
<td>• Provide application server-level statistics for quick assessment of server</td>
</tr>
<tr>
<td></td>
<td>activity and related platform data</td>
</tr>
<tr>
<td></td>
<td>• Provide system resources</td>
</tr>
<tr>
<td>Server Activity</td>
<td>• Use In-Flight Request Search and Server Activity Display – Active Requests</td>
</tr>
<tr>
<td></td>
<td>to locate malfunctioning applications</td>
</tr>
<tr>
<td></td>
<td>• View transactions in progress</td>
</tr>
<tr>
<td></td>
<td>• Evaluate the current performance of your applications</td>
</tr>
<tr>
<td></td>
<td>• Spot hanging transactions</td>
</tr>
<tr>
<td></td>
<td>• Troubleshoot and fix hanging transactions</td>
</tr>
<tr>
<td></td>
<td>• Solve lock contention problems</td>
</tr>
<tr>
<td></td>
<td>• Access JVM thread data</td>
</tr>
<tr>
<td></td>
<td>• Use memory diagnostic tools to allocate memory problems inside applications</td>
</tr>
<tr>
<td>Recent Activity</td>
<td>• Investigate and fix potential memory problems relating to garbage collection</td>
</tr>
<tr>
<td></td>
<td>and the JVM heap size</td>
</tr>
<tr>
<td></td>
<td>• Tune the JVM parameters</td>
</tr>
<tr>
<td></td>
<td>• Find evidence of memory leaks</td>
</tr>
<tr>
<td>Performance Analysis and</td>
<td>• Generate reports</td>
</tr>
<tr>
<td>Reporting</td>
<td>• Analyze historical data</td>
</tr>
<tr>
<td>Problem Center</td>
<td>• View high priority trap alerts and Tivoli Enterprise Portal events</td>
</tr>
<tr>
<td></td>
<td>• Use historic data to analyze performance problems found in traps and</td>
</tr>
<tr>
<td></td>
<td>Tivoli Enterprise Portal situation events</td>
</tr>
<tr>
<td>Composite Transactions</td>
<td>• Monitor transactions and analyze the method flow using method trace, stack</td>
</tr>
<tr>
<td></td>
<td>trace, and request information</td>
</tr>
<tr>
<td>Monitoring on Demand</td>
<td>• Create a schedule that alters the monitoring level based on a date and time</td>
</tr>
<tr>
<td></td>
<td>when a server needs more detailed monitoring</td>
</tr>
<tr>
<td></td>
<td>• Adjust the monitoring level at specific times based on the current work</td>
</tr>
<tr>
<td></td>
<td>load of the server</td>
</tr>
<tr>
<td></td>
<td>• Override the monitoring level or change the schedule for a selected server</td>
</tr>
</tbody>
</table>

Managing Server components

The Managing Server is J2EE application that is configured within WebSphere Application Server. The Managing Server works with a DB2® or Oracle database. It is designed for scalability and load balancing, and there are many ways to implement an installation across one or more servers. The Managing Server consists of the following components:
Kernel: The kernel controls the Managing Server. The kernel registers components as they join the Managing Server, it periodically renews connections and registrations with components and Data Collectors and collects server and component availability information.

Publish Server: The publish server receives data from the Data Collector and aggregates it based on different needs.

Archive Agent: The archive agent collects data from the publish server and archives it into the database for reporting.

Message Dispatcher: The message dispatcher sends out e-mails of performance reports and trap actions from the Performance Analysis and Reporting and the Trap and Alert Management features.

Global Publish Server (GPS): The global publish server tracks composite requests, as they move from one server to another.

The following diagram displays the component used by the MSVE:

Components used by the Managing Server Visualisation Engine

Tivoli Enterprise Portal interoperation with MSVE

The Tivoli Enterprise Portal and MSVE interoperate in a number of ways. When monitoring and troubleshooting your application environment, you can move easily between the Tivoli Enterprise Portal and MSVE as you can use links in the Tivoli Enterprise Portal workspaces to launch in context into MSVE. In the MSVE more detailed information is provided about individual transactions as they occur - this assists you in diagnosing problems. The Tivoli Enterprise Portal provides monitoring information, so in the Tivoli Enterprise Portal you are alerted that a problem occurred with a server, an application, or a resource. If you need to analyze problems in greater detail, you can link in context to MSVE.
Another way in which the Tivoli Enterprise Portal and the MSVE interoperate is through situations in the Tivoli Enterprise Portal and alerts in the MSVE. When a situation is triggered in the Tivoli Enterprise Portal, this is displayed as an alert in the MSVE. Alerts and Events page. All situations can be escalated to problems and then can be evaluated in the Problem Center.

For further information about configuring Single Sign on between Tivoli Enterprise Portal and MSVE, see the ITCAM for Application Diagnostics: Installation and Configuration Guide.

What's new in the 7.1 release?

A number of components work together to collect, analyze, and present monitoring data in the Tivoli Enterprise Portal. These components are:

1. Ability to monitor WebSphere XD environment
2. Ability to launch in context from Tivoli Enterprise Portal workspaces into MSVE, this enables users to examine individual transactions in more detail
3. Rephrased data table names in Server Activity Display in MSVE makes them more clear to users
4. Improved MSVE menus to indicate if data is real-time data or historic data
5. In MSVE, ability to link from active requests to the Stack Trace page
6. New predefined situations in the Tivoli Enterprise Portal
7. Improved Summary Workspaces functionality in the Tivoli Enterprise Portal to guide

Getting Started with ITCAM for Application Diagnostics

Depending on your requirements, when you use ITCAM for Application Diagnostics, you use either the MSVE or the Tivoli Enterprise Portal user interfaces or a combination of both. For further information about using and navigating the Tivoli Enterprise Portal and the MSVE, see the ITCAM for Application Diagnostics: User Guide.

For further information about installing ITCAM for Application Diagnostics, see the following publications:

ITCAM for Application Diagnostics: WebSphere Monitoring Agent Installation and Configuration Guide

ITCAM for Application Diagnostics: J2EE Monitoring Agent Installation and Configuration Guide

ITCAM for Application Diagnostics: J2EE Data Collector Installation and Configuration Guide

ITCAM for Application Diagnostics: HTTP Monitoring Agent Installation and Configuration Guide

ITCAM for Application Diagnostics: Managing Server Installation and Configuration Guide
Chapter 2. Scenarios

This following scenarios describe some usage scenarios using the Tivoli Enterprise Portal and the Managing Server Visualization Engine in ITCAM for Application Diagnostics to monitor and diagnose problems in your application environment.

These usage scenarios refer to the following fictitious personas that might reflect typical positions in your organization:

<table>
<thead>
<tr>
<th>Persona</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annette – Level 2 Operator</td>
<td>Her primary focus is to find which component is down, which components are impacted, and the location of the problem. In addition, she follows procedures to correct the problem. If she cannot fix the problem within a specified time limit that her service level agreement (SLA) stipulates, she produces a trouble ticket and escalates the problem.</td>
</tr>
<tr>
<td>Jim – Middleware/Application Support Subject Matter Expert (SME)</td>
<td>His primary focus is to ensure that the middleware applications he is responsible for is up and running at all times. If an application should go down, then a line of business is affected and has a direct impact on how his team is rated against their SLA. He also works with the systems monitoring and automation group to define the appropriate monitors and thresholds for his domain area of responsibility.</td>
</tr>
<tr>
<td>Dave – Application Developer</td>
<td>His primary focus is to develop in-house applications. When a problem comes up in a production application he is sent trace files so he can analyze the problem, which he then tries to simulate in his environment.</td>
</tr>
<tr>
<td>Simon - Operating System Specialist</td>
<td>His primary focus is to work with the systems management team to define what are the base OS services/daemons, ports, file systems, and logs that must be monitored on every computer. Simon is also a recognized expert in cluster configurations.</td>
</tr>
</tbody>
</table>

Scenario 1: Diagnosing a memory leak

Users are reporting slow response times for an application. A user contacts the help desk and raises a ticket for slow response time in relation to an application. Annette, the level 2 operator, picks up the ticket.

1. Annette navigates to the Tivoli Enterprise Portal and notices that the Resources icon is displaying a Critical symbol. On the Resources icon flyover, the GC Active Time (ms) metric is displaying a high value and also the WASHighGCTimePercent situation has triggered. This indicates that the JVM garbage collection is taking too long.
2. In the Garbage Collection Analysis workspace, Annette observes, the Percentage of Time Garbage Collector Running - History view displays an increasing trend, which suggests that the heap is insufficient for the demand that applications are putting on it. The Running - History graph, which displays the percentage of real time that the garbage collector was running during the current interval for each server region, is showing an increasing trend. This suggests that either the heap size is insufficient for the demand that applications are putting on it or else there is a memory leak.

3. Annette uses an external ticketing tool to route the ticket to Jim, the Middleware/Application SME, for further observance and investigation.

4. Jim notices a problem ticket from Annette involving excessive garbage collection times. Jim navigates to the Garbage Collection Analysis workspace and confirms the problem. He requires more detailed information to diagnose the cause of the problem. He clicks the Diagnostic Memory Leak link in the Garbage Collection Analysis workspace. This opens the Memory Leak Confirmation report page in Managing Server Visualization Engine (MSVE).
5. From examining the Memory Leak Confirmation report page in MSVE, Jim suspects that there is a memory leak.

6. To fully determine if there is a memory leak, he sets the monitoring level to L3 and enables memory leak BCI by doing the following steps:
 - Edits the file: `$DC_HOME/runtime//custom/toolkit_custom.properties` file and sets the property `com.ibm.tivoli.itcam.toolkit.ai.enablememoryleakdiagnosis=true`.
 - Uncomments this line to enable Memory Leak Diagnosis:
 `am.camtoolkit.gpe.customxml.leak=/opt/IBM/itcam/WebSphere/DC/itcamdc/etc/memory_leak_diagnosis.xml`
 - Restarts the Data Collector.

 Jim forwards the problem to Dave, the Application Developer. Dave works to resolve the problem. This action is outside the scope of ITCAM for Application Diagnostics.

Scenario 2: Diagnosing hanging transactions

Annette, the level 2 operator, receives an e-mail indicating that a situation triggered in the Tivoli Enterprise Portal. The situation is indicating that response time is slow for an application.

1. In the Tivoli Enterprise Portal, Annette points to the application icon and sees in the flyover that the WASHighResponseTime situation triggered.
2. Annette double-clicks the application icon and the Application Trend is displayed. In this workspace, the Application Summary report displays information about response time, error rate, and request rate. Annette double-clicks the Request Analysis workspace, which displays information about worst average request response time and worst average request completion rate. Annette observes that the average request response time is high and that the average request completion rate is low (for some of the requests).

3. For a more detailed analysis of requests, Annette navigates to the Request Analysis workspace. The response times for some requests are displaying as high.
4. Annette uses an external ticketing tool to route the ticket to Jim, the Middleware/Application Support SME, for further observance and investigation.

5. Jim notices a problem ticket from Annette indicating slow response times. Jim navigates to the Request Analysis workspace in the Tivoli Enterprise Portal and confirms the slow request response time for the application.

6. To see individual hanging transactions, Jim needs to open MSVE. He clicks the Diagnostic In-Flight Request Search link, which displays the In-flight Request Search page in the MSVE.

7. From here, Jim can diagnose hanging requests and see the stack trace for that request by clicking the server activity display.
8. Jim then forwards details to Dave, the Application Developer. Dave works to resolve the problem. This action is outside the scope of ITCAM for Application Diagnostics.
Scenario 3: Diagnosing a WebSphere server shutdown

Annette, the level 2 operator, receives a severity 1 ticket indicating that users cannot access an application.

1. Annette navigates to the Tivoli Enterprise Portal where (in the WebSphere Agent Summary Status workspace) the Applications icon is displaying a critical symbol. The flyover on the Application icon shows that a WasNotConnected situation triggered. The application server summary also shows the server status as “Disconnected”.

2. Annette navigates to the Log Analysis workspace. This workspace reports application server errors and exception conditions that are recorded in the SystemOut.log WebSphere Application Server log file. The information in this workspace includes the exception severity of errors, and the ID and text of the associated message.

3. Annette observes that in the Log Analysis report, the Process ID value is displayed as -1. This value indicates that the Data Collector is disconnected. If a WebSphere server shutdown occurs, the connection between the data collector and Tivoli Enterprise Monitoring Agent is closed. However, the data collector continues to write to log files and Tivoli Enterprise Monitoring Agent processes these records but sets the PID value to -1.
4. Annette uses an external ticketing team to forward the ticket to Jim the Middleware/Application Support SME. Jim investigates the cause of the WebSphere server shutdown and initiates a restart of the WebSphere Application Server.

Scenario 4: Determining if the WebSphere cluster needs to be load balanced

Annette, the level 2 operator, is getting a number of tickets relating to slow response time for an application. Annette receives an e-mail indicating that the WASHighCPUPercentUsed situation triggered on the WebSphere Application Server where the application is hosted.

1. Annette navigates to the Tivoli Enterprise Portal and observes that on the WebSphere Agent Summary workspace the Application icon is displaying a warning symbol. The Resources icon is displaying the critical symbol. The Resource icon flyover is displaying high JVM CPU%.
2. Annette double-clicks the Resources icon and sees that the OS icon and JVM icon are both displaying the critical symbol. The OS icon flyover is displaying System CPU (ms) as high. It also has the JVM icon displaying JVM CPU% as high.

3. Annette double-clicks the Application icon. The Application Trend at L2/L3 workspace is displayed. The Selected Application Summary report displays the application name, average request response time, average request completion rate, and error rate. The average request response time is high. The Request Rate Trend chart displays the number of requests that are completed per second for the application. Again, this value is displaying as high.
4. Before Annette escalates this problem, she needs to determine if this problem is recent or if it has been occurring for some time. Annette checks the trend by taking the following steps in the Request Rate Trend chart:
 a. In the Application Trend at L2/L3 workspace, she selects the Specify time span for query icon. The Select the Time Span window is displayed.
 b. In the Custom Parameters section, she enters the required values in the Start Time and End Time fields. and she clicks OK.

5. Annette observes that there was an increase in client requests a few days ago and that this value has remained high throughout the week. Further investigation reveals that a surge of new customers caused a large increase in new users on the system. As a result, the load on the system is high.

6. Annette uses an external ticketing tool to forward the ticket with all details to Jim, the Middleware/Application Support SME.
7. Jim immediately sees from what Annette has reported that the system is over-burdened as a result of a significant increase in new users, and that the number of servers that are available in the cluster needs to be increased. Jim forwards the ticket to Simon, the OS SME.

8. Simon needs to determine if the Application is running on a static or a dynamic WebSphere cluster. If the application is running on a static cluster, he adds additional application servers. If the application is running on a dynamic cluster; he increases the number of servers allowed. These actions are outside the scope of ITCAM for Application Diagnostics.

Scenario 5: Determining the cause of high response times

Annette, the level 2 operator, receives an e-mail to indicate that the WASHighResponseTime situation has triggered for an application.

1. Annette navigates to the Tivoli Enterprise Portal and notices in the Application Server Summary workspace, the icon for the application is displaying a critical icon. The flyover for the application indicates that the Average Response time (ms) is high. Annette needs to determine how long the response time has been high.

2. Annette double clicks the Application icon, the Application Trend at L1 workspace is displayed. Annette requests historical data by taking the following steps:
 a. In the Requests - Current Interval View, she clicks the Specify time span for query icon. The Select the Time Span window is displayed.
 b. In the Custom Parameters section, she enters the required values in the Start Time and End Time fields and she clicks OK.
 c. She sorts by the Average Response Time column.
3. Annette uses an external ticketing tool to forward the trend details to Jim, the Middleware/Application Support SME.

4. Jim receives this problem ticket about high response times for a particular application. Jim navigates to the Request Analysis workspace and confirms the problem Annette described.

5. To further investigate the problem Jim needs to open MSVE. Jim clicks the Diagnostic Recent Completed Requests link to open the MSVE Server Activity – Recent Requests page. Only requests that contain the URI information from the
Request Analysis workspace are displayed. Jim notices that there are a number of client requests with high response times.

6. Jim decides to further analyze the transactions by setting a Resident Time – In-Flight trap. This trap activates the moment an in-flight request takes longer than a specified amount of time (minimum 15 seconds). To set up this trap, Jim must do the following steps:

a. Select the trap type.

b. Set the trap alerts.
c. Activate the trap.

d. Jim then sets an action type of Stack Trace and waits for a problem request to trigger the trap.

7. After a little while, the problem request triggers the trap.
8. This trap also produces a stack trace.

Jim forwards the trouble ticket to Dave, the application developer. Dave works to resolve the problem. This action is outside the scope of ITCAM for Application Diagnostics.
Scenario 6: Determining the cause of connection problems

Annette, the level 2 operator, receives notification that the WASJ2CCPAvgWaitTimeHigh situation triggered. This error is critical. This situation indicates that the average wait time until a connection is granted is longer than 2 seconds.

1. Annette navigates to the J2C Connections Pools workspace. This workspace reports information about resource adapters and connectors that adhere to J2EE Connector Architecture (J2C). J2C is the WebSphere Application Server implementation of the Java EE Connector Architecture (JCA). Data counters for this category contain usage information about the J2C connection pools that enable enterprise beans to connect to, and interact with, Enterprise Information Systems.

2. In this workspace Annette observes in the Worst Wait Times view that some wait times for connections are above 2 seconds. The Highest Average Pool Sizes bar chart shows the largest average number of managed connections for each J2C connection pool. Typically, a connection takes no longer than 2 seconds.
3. Annette uses an external ticketing tool to forward the ticket with details to Jim, the Middleware/Application Support SME.

4. Jim navigates to the J2C Connections Pools workspace and compares the average pools size with the maximum pool size to establish the ideal maximum value. Jim establishes that the connection pool size needs to be adjusted, which is outside the scope of ITCAM for Application Diagnostics.

Scenario 7: Determining if the Garbage Collection policy needs to be adjusted

Annette, the level 2 operator is monitoring the Tivoli Enterprise Portal. Annette notices a critical symbol on the JVM icon in the Application Server Summary workspace. The flyover for JVM icons shows a high metric for JVM CPU% and GC Active Time (ms).
1. Annette double-clicks the JVM icon. The JVM Stack Trend workspace is displayed. The Percent GC Time Used view displays a high value. The heap usage trend is also high.

2. Annette uses an external ticketing tool to forward the ticket with details to Jim, the Middleware/Application Support SME.
3. Jim reviews the information and determines that the heap size parameters in the JVM are not set correctly. This incorrect setting affects application performance. Jim sets the appropriate GC policy.

Scenario 8: Troubleshooting application response time in an XD cell

Due to external resource the response time for one of applications in the XD cell degrades below the service policy goal. Annette the level 2 operator, receives an e-mail to indicate that the Application Requests Above Goal situation triggered. This situation triggers when the rate of requests above goal is greater than 0.5%.

1. In the Tivoli Enterprise Portal navigation tree, Annette follows the workspace link for the triggered situation. The XDVEAppReqAboveGoalPercentHigh Event workspace is displayed.

2. Annette navigates by a link from the XDVEAppReqAboveGoalPercentHigh Event workspace to the Application workspace.

3. The Application workspace displays On Demand Router Statistics (ODR) for the selected application module, transaction, class, and protocol summarized over all ODRs in the cell.

4. From the Application workspace, Annette observes that the average overall response time is 20 seconds and the average server service time is also 20 seconds. This indicates, that some problem is occurring with the handling requests by this application.

5. To see the deployment targets hosting the application and ascertain which of the deployment targets is contributing to the slow response time, Annette drills down to the Deployment Targets workspace using the Per Deployment Targets link.
6. The Deployment Targets workspace displays a single deployment target for this application: DynCluster. Annette drills down to this dynamic cluster using the link and then to servers belong to the dynamic cluster.

7. The servers for the dynamic cluster performance are displayed. From this view, Annette observes that both servers in the dynamic cluster have similar loading. Annette drills down to each server and observes that both have requests higher than the set goal of 10 seconds.

8. Annette drill downs to Server Diagnostic for one of servers using the link, which opens the Data Collector workspace for that server. Annette observes in the workspace that the “sleeperEAR” application is displaying a critical red symbol.
9. Annette double-clicks the application, this opens the Request Analysis workspace.

10. From the Request Analysis workspace, Annette navigates to the MSVE using the Diagnostic In-Flight Request Search link. From the MSVE, Annette can navigate to the thread for the selected request and view the request call stack.
11. Annette uses an external ticketing tool to forward the ticket with details to Jim, the Middleware/Application Support SME.

12. Jim reviews the information and determines that the application waits for response from an external system. Jim researches and resolves the external system issue and restores the application response time before it impacted the majority of the users.

Scenario 9: Ensuring that jobs processed by Compute Grid don't execute for longer than one hour

Annette, the level 2 operator, needs to ensure that jobs processed by Compute Grid do not execute for longer than one hour. If a job executes for longer, then Annette needs to capture the job information and forward to the Middleware/Application Support SME.

1. Middleware/Application Support SME configure jobs as custom requests via Data Collector configuration files.
2. Annette edits the predefined XDCGJobExcessiveTotalTime situation to trigger if the total job time is greater than 60 minutes.
3. At some point in time, Annette observes that the situation has triggered.

4. Annette clicks the event link and the event workspace is displayed.
5. Annette opens the Job workspace by using the link from event workspace.

6. The Job workspace shows all the details about the job. From the job notifications, Annette observes that the job is executing for a long time, she clicks the Diagnostic in-Flight Request Search link, this opens the MSVE in-flight workspace, from here she clicks the link to see the request call stack.

7. Annette captures the call stack and provides to Jim, the Middleware/Application Support SME.

8. Jim determines that job is waiting for database lock and resolves it appropriately.
Part 2. Part 2: Using ITCAM for Application Diagnostics
Chapter 3. ITCAM for Application Diagnostics

Managing Server Visualization Engine

The Managing Server Visualization Engine (MSVE) user interface provides users with management and monitoring functions for application servers. In addition, the MSVE also provides a diagnostic function. Here are some of the diagnostic activities you can perform in MSVE:

- Detect transactions failing
- Detect memory leaks
- Examine detailed method traces, which help to detect application code hotspots
- Generate reports to analyze historical information, such as application performance and OS performance

Access the Managing Server Visualization Engine from Tivoli Enterprise Portal

You can access the Managing Server Visualization Engine from links in ITCAM Agent for WebSphere Applications workspaces.

When you access the Managing Server Visualization Engine in this way, the Managing Server Visualization Engine displays in a browser view inside a workspace. The Tivoli Enterprise Portal navigation tree is automatically hidden in the workspace. To show or hide the Tivoli Enterprise Portal navigation tree, click the small black arrow on the left side of the window.

The following table displays a list of Tivoli Enterprise Portal workspaces that have links to the Managing Server Visualization Engine.

Table 3. Tivoli Enterprise Portal workspaces that have links to Managing Server Visualization Engine

<table>
<thead>
<tr>
<th>Workspace: Table View Name</th>
<th>Number of links to Managing Server Visualization Engine</th>
<th>Link Name</th>
<th>Pre-populated information in the link page to Managing Server Visualization Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSphere Agent Summary Status > Application Servers</td>
<td>2</td>
<td>• Diagnostic Server Activity Display</td>
<td>The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace.</td>
</tr>
<tr>
<td>WebSphere Agent Summary Status > Application Servers</td>
<td>2</td>
<td>• Diagnostic In-Flight Request Search</td>
<td></td>
</tr>
<tr>
<td>WebSphere Agent Configuration > Application Servers</td>
<td>2</td>
<td>• Server Activity Display – Active Requests</td>
<td></td>
</tr>
<tr>
<td>WebSphere Agent Configuration > Application Servers</td>
<td>2</td>
<td>• In-Flight Request Search</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Tivoli Enterprise Portal workspaces that have links to Managing Server Visualization Engine (continued)

<table>
<thead>
<tr>
<th>Workspace: Table View Name</th>
<th>Number of links to Managing Server Visualization Engine</th>
<th>Link Name</th>
<th>Link Target Pages Managing Server Visualization Engine</th>
<th>Pre-populated information in the link page to Managing Server Visualization Engine</th>
</tr>
</thead>
</table>
| OS Stack > Current OS Stack Summary | 3 | • Diagnostic Server Activity Display
• Diagnostic In-Flight Request Search
• <platform> OS
• <platform> is one of the following operating systems: Linux, UNIX, Windows or z/OS | • Server Activity Display – Active Requests
• In-Flight Request Search
• Using the dynamic workspace link to link to the corresponding OS agent workspace. For z/OS, the link is to OMEGAMON XE for z/OS. | The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace. |
| JVM Stack Trend > JVM Stack Trend | 1 | Diagnostic Memory Leak | Memory Leak Analysis | The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace. |
Table 3. Tivoli Enterprise Portal workspaces that have links to Managing Server Visualization Engine (continued)

<table>
<thead>
<tr>
<th>Workspace: Table View Name</th>
<th>Number of links to Managing Server Visualization Engine</th>
<th>Link Name</th>
<th>Link Target Pages Managing Server Visualization Engine</th>
<th>Pre-populated information in the link page to Managing Server Visualization Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Analysis > Requests – Current Interval</td>
<td>3</td>
<td>• Diagnostic Recent Completed Requests</td>
<td>• Server Activity Display – Recent Requests</td>
<td>• The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Diagnostic In-Flight Request Search</td>
<td>• In-Flight Requests</td>
<td>• Content in Request Detail column of Requests table view in Tivoli Enterprise Portal is pre-populated in the following fields:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Diagnostic SMF Data (z/OS only)</td>
<td>• SMF Data (for z/OS data collectors only)</td>
<td>– Recent Requests: Client Request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– In-Flight Request Search: Search Request/Transaction field</td>
</tr>
<tr>
<td>Garbage Collection Analysis > Garbage Collection Analysis</td>
<td>1</td>
<td>Diagnostic Memory Leak</td>
<td>Memory Leak Analysis</td>
<td>The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace.</td>
</tr>
<tr>
<td>Thread Pools > Thread Pools</td>
<td>1</td>
<td>Diagnostic JVM Thread Display</td>
<td>JVM Thread Display</td>
<td>The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace.</td>
</tr>
</tbody>
</table>
Table 3. Tivoli Enterprise Portal workspaces that have links to Managing Server Visualization Engine (continued)

<table>
<thead>
<tr>
<th>Workspace: Table View Name</th>
<th>Number of links to Managing Server Visualization Engine</th>
<th>Link Name</th>
<th>Link Target Pages Managing Server Visualization Engine</th>
<th>Pre-populated information in the link page to Managing Server Visualization Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datasources > Datasources – Current Interval</td>
<td>Diagnostic Server Activity Display</td>
<td>Server Activity Display – Active Requests</td>
<td>The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace.</td>
<td></td>
</tr>
<tr>
<td>Web Applications > Web Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EJB Containers > EJB Containers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JMS Summary > JMS Summary – Current Interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB Connection Pools > DB Connection Pools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J2C Connection Pools > J2C Connection Pools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **Server Group** feature that displays at the top of these pages applies to the Managing Server Visualization Engine. When you access any Managing Server Visualization Engine page from the Tivoli Enterprise Portal, the information in the **Groups** and **Servers** fields is automatically populated with the data collector associated with the link and workspace you selected in the Tivoli Enterprise Portal.

Groups are a set of application servers which have similar functionality. All configured data collectors are automatically assigned to the **Unassigned Servers Group**. The relationship between Server Group and data collector is many to many. A data collector can belong to one or more server groups. A server group can have one or more data collectors. You can add data collectors to groups using the **Server Management** functionality in the Managing Server Visualization Engine. For more information about adding data collectors to Server Groups, refer to the Composite Application Manager Help in the Managing Server Visualization Engine interface.

The **Server Activity Display** section has three tabs.

- **Active Requests**: provides real-time request or transaction data for an application server at the time the page displays.
- **Recent Requests**: displays the last 100 or less completed request or transaction data for an application server.
- **Lock Contentions**: displays requests that are hanging because they are waiting on a lock. The data shows data that is currently locked and the item that is waiting to be locked.
The Active Requests tab and the Recent Requests tab have a toolbox icon. You can click this toolbox icon to access direct links to the following features:

- JVM Thread Display
- System Resources
- Monitoring On Demand®
- Data Collector Profiles
- Trap and Alert Management

You can use this information to analyze the details and identify the areas where the issues occur. To return to the Tivoli Enterprise Portal interface at any time click back on your web browser.

For more detailed information see:

- “Server Activity Display - recent requests” on page 117
- “Server Activity Display - active requests” on page 115
- “Server Activity Display - lock contentions” on page 118
- “JVM thread display” on page 135
- “System resources” on page 96
- “Monitoring on Demand (TM)” on page 73
- “Data Collector Profiles” on page 61
- “Trap and alert management” on page 139

Account management

Control access to features and servers.

Account management enables you to control users’ access to features and servers. Use roles to restrict access to features, and use server groups to grant access to servers.

User Scenarios

Scenario 1: Granting members of Team XYZ access to ITCAM for Application Diagnostics

Team XYZ has asked for access to ITCAM for Application Diagnostics for, but only needs access to features that use historical data. Since the existing roles provide access to features that use both real time and historical data, create a role for them called team XYZ. When you define this role, provide access to features that use only historical data, for example PAR. Assign role team_XYZ to each user account belonging to members of team XYZ.

Scenario 2: Creating an account for a new employee

Employee John Smith is an operator that just joined your company. John needs to use ITCAM for Application Diagnostics for to monitor QA systems. As the ITCAM for Application Diagnostics for administrator, you create John’s account with access granted to QA server groups but not Production server groups. Furthermore, you restrict John’s access to features by assigning the Operator role to his account.
User profiles

The User Profiles page shows a table of all user accounts in the Visualization Engine. From this page, you can create, modify, and delete user accounts.

To view the User Profiles page, from the top navigation, click Administration > Account Management > User Profiles.

For every account, the table shows the account name, first name, last name, and a Delete button.

To sort by any column, click its heading.

To modify the information for an account (including access rights), click the account name. See “Modifying a user account” on page 45.

To delete a user account, click the Delete button in its row. See “Deleting a user account” on page 46.

To create a user account, in the left navigation pane, click Create User Account. See “Creating a user account.”

Creating a user account

About this task

Add new user accounts to the application monitor on the Create User Account page. Limit the rights of your user accounts to the groups of servers you select. A valid WebSphere Global Security user name is required to create an account. The user name can be different from the operating system user ID, but it must be at least three alpha characters and no more than 255. To enable single sign-on, configure the Managing Server and the WebSphere application server that the Managing Server Visualization Engine runs on. Then, add every user who needs to access single sign-on. For more information about single sign-on, refer to Appendix N Setting Up Single Sign on for Tivoli Enterprise Portal Users in the ITCAM for Application Diagnostics 7.1 Managing Server Installation and Customization Guide

To create a user account:

1. From the top navigation, click Administration > Account Management > User Profiles. The User Profiles page opens.
2. In the left navigation pane, click Create User Account. The Create User Account page opens.
3. Enter the first name (required).
4. Enter the last name (required).
5. Enter the user name (required).
6. Enter the OS/LDAP user name (required). ITCAM uses WebSphere Global Security system for user authentication, therefore a valid WebSphere Global Security user name is required to create an account.
7. Select the role you want to assign to the user account from the list box.
8. Select Active or Suspended for the account status. A user account is not ready for use if its status is not marked Active.
9. Enter the user's e-mail address (optional).
10. Enter remarks in the available fields (optional).
11. To save the user account setup, click Save.
Results

To grant group access rights:
1. Click to select the group name in the All Groups box.
2. Click Add to grant the user account rights to the selected groups. The group name appears in the Granted box.
 To select multiple groups, hold down the Ctrl key during your selection.

To remove group access rights:
1. Click to select the group name in the Granted box.
2. Click Remove to remove the user account rights from the selected groups. The group name disappears from the Granted box.
3. To select multiple groups, hold down the Ctrl key during your selection.

Related topics
- Assigning a role
- Creating a role

Modifying a user account

About this task

Modify existing user accounts in the application monitor on the Modify User Account page. Limit the rights of your user accounts to the groups you select.

To modify a user account:
1. From the top navigation, click Administration > Account Management > User Profiles. The User Profiles page opens.
2. Click the user name to select the user account you want to modify. The Modify User Account page opens.
3. Select the field you want to edit, and enter the new information.
4. After entering your changes, click Save. You might want to suspend the user accounts when the operators are on leave. When they return, select Active to turn their user accounts back on.

Results

To grant group access rights:
1. Click to select the group name in the All Groups box.
2. Click Add to grant the user account rights to the selected groups. The group name appears in the Granted box.

To remove group access rights:
1. Click to select the group name in the Granted box.
2. Click Remove to remove the user account rights from the selected groups. The group name disappears from the Granted box.

Related topics
- Assigning a role
- Creating a group
Deleting a user account
About this task

Manage your accounts by keeping them up-to-date. Delete existing user accounts from the application monitor on the User Profiles page.

To delete a user account:
1. From the top navigation, click Administration > Account Management > User Profiles. The User Profiles page opens.
2. Click X or Delete on the last column of the user account that you want to delete from the application monitor. A confirmation box displays.
3. Click OK in the confirmation box to delete the user account, or click Cancel to return to the User Profiles page.
4. If you select OK, the system deletes the user account and the User Profiles page no longer displays the deleted account.
5. To sort by heading, click the heading you want to sort. Only underlined headings can be sorted. The page displays the results sorted by the selected heading.

Related topics
Creating a role
Creating a user account
Deleting a role

Role configuration

The Role configuration page shows a table of permissions for security roles defined in the Visualization Engine. From this page, you can create, modify, and delete security roles.

To view the Role Configuration page, from the top navigation, click Administration > Account Management > Role Configuration.

To control user account access to the product functions, each user account is assigned a security role. The role grants access to specific product functions. A user account can have only one role; the same role can be assigned to many accounts.

The rows in the table represent product functions; columns represent security roles. Every cell of the table shows whether function (row) is allowed for the role (column).

The Administrator, Operator, and User roles are predefined and cannot be changed; you can change, add, and delete other roles.

To change permissions for a role, check or clear the boxes in its column. To save changes, click the Save button; to undo changes before they are saved, click the Reset button. (You might need to scroll the page down to reach these buttons). See “Modifying a role” on page 47.

To delete a role, click the X button next to its name. See “Deleting a role” on page 48.

To create a role with blank permissions, in the left navigation pane, click Create Role. See “Creating a role” on page 47.
To create a role with permissions copied from another role, in the left navigation pane, click **Duplicate Role**. See “Duplicating a role” on page 48.

Creating a role

About this task

The Create Role page provides the functionality to create a custom role for your environment. Design the custom role to restrict and grant privileges specific to the needs for your environment.

To open the Create Role page:
1. From the top navigation, click **Administration > Account Management > Role Configuration**. The Role Configuration page opens.
2. On the left navigation pane, click **Create Role**. The Create Role page opens.
3. Type in the name of the new role.
4. Click **OK**. The new role displays on the Role Configuration page.
5. Click to select the privileges user accounts can access in the application monitor.
6. Click **Save**.
7. Click **Reset** to revert to the pre-modified settings.

Related topics

Assigning a role
Creating a user account

Assigning a role

About this task

After creating a role on the Role Configuration page, assign the role to user accounts on the Modify User Account page. Modify user accounts to assign appropriate privileges to them.

To assign a role:
1. From the top navigation, click **Administration > Account Management > User Profiles**. The User Profiles page opens.
2. Click the user name that you want to assign a role. The Modify User Account page opens.
3. On the Modify User Account page, from the Role list box, select the role to assign to the user account.
4. Click **Save**.

Related topics

Creating a role
Deleting a role
Modifying a role

Modifying a role

About this task

The Role Configuration page provides the functionality to modify your custom roles. Update and delete custom roles based on the needs of your environment.

To modify a role:
1. From the top navigation, click Administration > Account Management > Role Configuration. The Role Configuration page opens.

2. Click to check and clear the permissions you want to assign this role. Changing the custom role privileges in the user accounts grants access in the application monitor.

3. Click Save.

4. Click Reset to revert to the pre-modified settings.

Related topics
- Assigning a role
- Creating a role

Duplicating a role

About this task
To easily customize a new role, you can duplicate a role that uses a similar set of permissions rather than checking or clearing the boxes one by one repeatedly.

To duplicate a role:
1. From the top navigation, click Administration > Account Management > Role Configuration. The Role Configuration page opens.
2. On the left navigation pane, click Duplicate Role. The Duplicate Role page opens.
3. Select a role name for the duplicated role from the Role Name list box.
4. Enter a new name for the duplicated role.
5. Click Save. The new duplicated role displays on the Role Configuration page.
6. Click to select the privileges user accounts can access in the Application Monitor.
7. Click Save.
8. Click Reset to revert to the pre-modified settings. The duplicated role does not have any users since its user-to-role relationship is not duplicated.

Related topics
- Assigning a role
- Creating a user account
- Modifying a role

Deleting a role

About this task
The Role Configuration page provides the functionality to delete your custom roles. Manage your custom roles based on the needs of your environment. You cannot delete a role while the system associates a user account with it.

To delete a role not assigned to a user account:
1. From the top navigation, click Administration > Account Management > Role Configuration. The Role Configuration page opens.
2. Click the X next to the role you want to delete.
3. At the confirmation box, click OK.

Results
To delete a role still assigned to a user account:
1. From the top navigation, click Administration > Account Management > Role Configuration. The Role Configuration page opens.
2. Click X next to the role you want to delete. A confirmation box displays.
3. Click OK at the confirmation box. A list of the user accounts assigned to the role appears. Since the system assigned the role to a user account, you have to change the role of the user account on the Update Role page.
4. Click the link to select the user account. The Modify User Account page opens.
5. Click to select a role for the user account from the Role list box.
6. Click Save. The system displays the Role Configuration page without the deleted role.

Related topics
- Creating a role
- Creating a user account
- Deleting a user account

Server management

Manage your servers with the server group management page.

Add and delete server groups, while associating groups with individual account. You can restrict user access to data and operations on a specific group of servers.

User Scenarios

Scenario 1: Separating server groups according to applications

As the ITCAM for Application Diagnostics administrator, you want to distinguish the group of servers that process trading requests from the group of servers that process quote requests. You create two server groups: Trading and Quotes. In the Trading server group, you include only those servers that deal with trading, and in the Quotes server group you include only those servers that deal with quotes. Grant users access to the appropriate server group(s).

Scenario 2: Grouping servers by authority structure

As the ITCAM for Application Diagnostics administrator, you want to separate the servers in your environment by the authority structure present in the company. The current Support team is separated into smaller groups that control individual groups of servers. You create server groups that contain these servers such as Support A controls servers 1 through 29, Support B controls servers 30 through 59 and Support C controls servers 60 through 90.

Server groups

The Server Groups page shows a table of all server groups. From this page, you can create, modify, and delete server groups.

Groups are a set of application servers which have similar functionality. All configured data collectors are in the Unassigned Servers Group. The relationship between Server Group and data collector is many to many. A data collector can belong to one or more server groups. A server group can have one or more data collectors. You can add data collectors to groups using the Server Management functionality in the Managing Server Visualization Engine. For more information about adding data collectors to Server Groups, refer to the Composite Application Manager Help in the Managing Server Visualization Engine interface.
To view the Server Groups page, from the top navigation, click Administration > Server Management > Server Groups.

Server groups are used for convenient grouping of information in the Managing Server Visualization Engine. Every group includes one or several servers. In a number of Managing Server Visualization Engine pages, you can view information by server group. Each user can be granted access to information for some server groups but not others. A server can be a member of several groups.

When you access pages from the Tivoli Enterprise Portal, the information in the Groups and Servers fields is automatically populated with the group and data collector associated with the link and workspace you selected in the Tivoli Enterprise Portal.

For every server group, the table shows the group name, description, and a Delete button.

To modify a server group (including list of member servers and access rights for users), click the group name. See “Modifying a group” on page 51.

To delete a server group, click the Delete button in its row. See “Deleting a group” on page 51.

To create a server group with default settings, no member servers and no user access rights, in the left navigation pane, click Create Group. See “Creating a group.”

To create a server group with settings, member servers and user access rights copied from another server group, in the left navigation pane, click Duplicate Group. See “Duplicating a group” on page 52.

Creating a group
About this task

Combine servers into groups to streamline daily server maintenance. The Create Group page provides the functionality to create groups of servers and grant users access to those groups.

To create a group:
1. From the top navigation, click Administration > Server Management > Server Groups. The Server Group Management page opens.
2. On the left navigation pane, click Create Group. The Create Group page opens.
3. Enter a unique group name in the text box.
4. Enter a description in the text box.
5. Enter the Server Group Response Time Thresholds.
6. Enter the Portal Response Time Thresholds. (If you have a portal server, configure the thresholds for portal.) Optional.
7. Click to select a baseline definition and fill out the information. Steps 5 through 7 are all default settings based on the settings on the System Properties page under Configuring the Enterprise Overview Display section.
8. Click to select the server name in the All Servers box.
9. Click **Add** to select the server for the group. The server name appears in the Servers in Group box. To select multiple servers, hold down the shift key during your selection. To add multiple servers non-continuously, Ctrl + click the servers for selection.

10. In the Servers In Group box, select the server you want to remove and click **Remove** to delete the server from the group. The server name disappears from the Servers in Group box.

11. Select the user and click **Add** to grant users access to the group. The user name appears in the Granted Access box.

12. Click **Remove** to remove the user's access to the group. The user name disappears from the Granted Access box.

13. Click **Save** to save the group’s settings.

Related topics
- Configuring a data collector
- Configuring the Enterprise Overview display
- Creating a configuration

Modifying a group
About this task

Maintain your groups with the most updated information. The Modify Group page provides the functionality to modify your groups and grant users access to those groups.

To modify a group:
1. From the top navigation, click **Administration > Server Management > Server Groups**. The Server Group Management page opens.
2. Click the group name of the group you want to modify. The Modify Group page opens populated with the selected group’s information.
3. Select the field you want to edit and enter the new information.
4. Click **Save** to save the group’s settings. Changes made to the server-to-group assignments and user-to-group grants occur immediately. Also, if an administrator removes a server from a group anyone logged in will notice the change.

Related topics
- Configuring the Enterprise Overview display
- Creating a group

Deleting a group
About this task

Delete outdated groups from the system. You can delete existing groups on the Server Group Management page.

To delete a group:
1. From the top navigation, click **Administration > Server Management > Server Groups**. The Server Group Management page opens.
2. Click X or **Delete** next to the group name you want to delete from the application monitor.
3. Click **OK** in the confirmation box to delete the group, or click **Cancel** to return to the Server Group Management page.
4. If you select **OK**, the application monitor deletes the group and the Server Group Management page no longer displays the deleted group. Before deleting a group from the application monitor database, delete all reports attached to that group in order to maintain data integrity. To delete each report, click the report's link. The group will be deleted after all reports are deleted.

Once a group is deleted, the records in the application monitor database that belong to the group via the server relationship will no longer be accessible through the group. However, the records can still be accessed either via the server name or another group which contains the servers. You can also re-assign the servers to other groups on the Modify Group page.

Related topics
- Deleting a configuration
- Modifying a group

Duplicating a group

About this task

Save time by duplicating groups. Duplicating a group allows you to quickly create a new group based on the settings of an existing group.

To duplicate a group:

1. From the top navigation, click **Administration > Server Management > Server Groups**. The Server Group Management page opens.
2. On the left navigation pane, click **Duplicate Group**. The Duplicate Group page opens.
3. From the **Group Name** list box, select the group name you want to duplicate.
4. Enter a new name for the duplicated group.
5. Click **Save** to duplicate the group. The Duplicate Group link does not display when there is no group in the system.

Related topics
- Creating a group
- Deleting a group
- Modifying a group

Data Collector Configuration

In the Data Collector Configuration pages, you can configure Data Collectors, disable, enable, and unconfigure them, and also enable/disable TTAPI support.

To view the Data Collector Configuration page, from the top navigation, click **Administration > Server Management > Data Collector Configuration**.

A Data Collector is software that runs within the same JVM as the application server and captures information regarding the applications running inside the application server. The Data Collector communicates this information to the Managing Server and/or to the Tivoli Enterprise Monitoring Agent.

To work with the Managing Server, a Data Collector must first be configured using its own configuration utility. After this, you also need to configure the Data Collector through the Visualization Engine. To do this, you need to apply one of the defined configurations to this Data Collector.
You might also need to unconfigure a Data Collector. When you have
unconfigured a Data Collector, you can apply a different configuration, or if you
want to remove the Data Collector, you can unconfigure it and then uninstall it.

To view the configured Data Collectors, enable, disable, and unconfigure them,
select Configured Data Collectors in the left navigation pane. See “Configured
Data Collectors.”

To view the unconfigured Data Collectors and configure them, select Unconfigured
Data Collectors in the left navigation pane. See “Unconfigured Data Collectors” on
page 54.

To view the existing Data Collector configurations, modify, duplicate and delete
them, select Configuration Library in the left navigation pane. See “Configuration
Library” on page 54.

To create a new Data Collector configuration, select Create a Configuration in the
left navigation pane. See “Creating a configuration” on page 58.

Configured Data Collectors
The Configured Data Collectors page shows a table of all Data Collectors that are
configured in the Visualization Engine. You can view their configuration, enable,
disable, and unconfigure them.

For every configured Data Collector, the table shows:
- Admin Server name
- Application Server name
- Cluster name
- Configuration name
- Platform that is monitored (type of application server)
- Status change button (Disable if the Data Collector is enabled, or Enable if it is
disabled)
- Unconfigure check box.
- Join Time - if a Data Collector is not available because the Data Collector
 connection to the Managing Server was unconfigured, then the value for Join
 Time is displayed as N/A.

To disable an enabled Data Collector, click the Disable button. See “Disabling a
data collector” on page 57.

To enable a disabled Data Collector, click the Enable button. See “Enabling a data
collector” on page 56.

To unconfigure a Data Collector, check the Unconfigure box and click the Apply
button at the bottom of the table. See “Unconfiguring a data collector” on page 56.

To view the details of a Data Collector configuration, click the configuration name.
The “Configuration Library” on page 54 page will open, showing this
configuration.

You can use the left navigation pane to view unconfigured Data Collectors, view
existing Data Collector configurations, create a configuration, and enable TTAPI.
See “Data Collector Configuration” on page 52.
Unconfigured Data Collectors
The Unconfigured Data Collectors page shows a table of all Data Collectors that communicate with the Managing Server but are not configured in the Visualization Engine. You can configure them.

For every unconfigured Data Collector, the table shows:
- Admin Server name
- Application Server name
- Cluster Name
- Platform that is monitored (type of application server)
- Apply a configuration check box

To configure a Data Collector, check the Apply a configuration box, select the configuration name in the pull down control at the top of the table, and click the Apply button at the bottom of the table. See “Configuring a data collector” on page 55.

You can use the left navigation pane to view configured Data Collectors, view existing Data Collector configurations, create a configuration, and enable TTAPI. See “Data Collector Configuration” on page 52.

Configuration Library
The Configuration library page shows a table of all Data Collector configurations. You can apply configurations to Data Collectors, modify them, delete them, and create new configurations as copies of existing ones.

For every Data Collector configuration, the table shows:
- Configuration name.
- Class names that are to be excluded from monitoring.
- Class names that are to be included in monitoring, even if they would fit the exclude list.
- Associated Server names, that is, names of servers to which the configuration is presently applied
- Modify, Duplicate, Apply, and Delete buttons.

To modify a configuration, click the Modify button. See “Modifying a configuration” on page 59.

To create a new configuration as a copy of an existing one, click the Duplicate button. See “Duplicating a configuration” on page 59.

To apply a configuration to Data Collectors, click the Apply button. Note that you can configure a previously unconfigured Data Collector or change the configuration of an already configured Data Collector in this way. See “Applying a configuration” on page 58.

To delete a configuration, click the Delete button. See “Deleting a configuration” on page 60.

You can use the left navigation pane to view configured and unconfigured Data Collectors, create a configuration, and enable TTAPI. See “Data Collector Configuration” on page 52.
Enable TTAPI for JDBC
The Enable TTAPI for JDBC page shows tables of Data Collectors that support TTAPI for JDBC and do not currently have it enabled, and those that have TTAPI for JDBC enabled. You can enable and disable TTAPI for JDBC for these Data Collectors.

The TTAPI JDBC disabled Data Collectors table shows the Data Collectors that support TTAPI for JDBC and do not currently have it enabled. For every Data Collector, the server name and the Enable check box are shown.

To enable TTAPI for JDBC for a Data Collector, check the Enable box and click the Apply button at the bottom of the table. See “Enabling TTAPI for JDBC for a Data Collector” on page 60.

The TTAPI JDBC enabled Data Collectors table shows the Data Collectors that support TTAPI for JDBC and do not currently have it enabled. For every Data Collector, the server name and the Enable check box are shown.

To enable TTAPI for JDBC for a Data Collector, check the Enable box and click the Apply button at the bottom of the table. See “Disabling TTAPI for JDBC for a Data Collector” on page 60.

Configuring a data collector
About this task
When a new data collector connects to a managing server for the first time, it is automatically configured.

If there are data collectors that you want to manually configure, you need to ensure that for those data collectors, the dc.autoconfigure property in the dc.properties file is set to false.

For Data Collectors that you wish to manually configure, you can assign an initial configuration using the Data Collector Configuration page in MSVE. When the data collector acknowledges the new configuration, the managing server then lists it as a "configured" data collector. You can also return a currently configured data collector to an unconfigured state. If this is done, all data and reports concerning the data collector are lost. After a data collector has been configured, you can enable or disable it at any time.

For WebSphere v6, the data collector name is formed from the admin server name (node name) and the application server instance name, the data collector application server name also includes the profile name.

Here is an example of a WebSphere v6 profile name:
jupiterCell01.jupiterNode01.server1(default).

In many places, an additional field is appended to the end of the data collector name that indicates whether the data collector is associated with a currently running application server instance or not. When the application server instance and data collector are running, this field is the process or address space identifier: jupiterCell01.jupiterNode01.server1.12345. When the data collector is not running and there is no process or address space identifier, two dashes (--) are used, for example: jupiterNode01.server1.--

To configure a data collector:
1. From the top navigation, click **Administration > Server Management > Data Collector Configuration**. The Configured Data Collector Overview page opens.

2. Click **Unconfigured Data Collectors** on the left navigation pane.

3. Select a configuration from the **Apply a Configuration** list box.

4. Click **Select All** or click in the check box of the unconfigured data collector you want to configure.

5. Click **Apply**.

 The apply procedure can take a minute or two for the data collector to receive, successfully apply, and acknowledge its success back to the managing server. You will need to refresh your page every 10-20 seconds until the data collector disappears from the Unconfigured Data Collector's table.

Related topics

- Applying a configuration
- Modifying a configuration
- Unconfiguring a data collector

Unconfiguring a data collector

About this task

Use the Data Collector Overview page to unconfigure the data collectors. When you unconfigure a data collector, the system removes it from the configured data collectors list and displays it with the unconfigured data collectors.

The name of the Data Collector is a combination of the admin server name and the application server name i.e., admin_server.application_server. The name cannot be changed.

To unconfigure a data collector:

1. From the top navigation, click **Administration > Server Management > Data Collector Configuration**. The Configured Data Collector Overview page opens.

2. Place a check in the Unconfigure check box next to the data collector you want to unconfigure.

3. Click **Apply**. The Unconfigured Data Collector Overview page displays.

Related topics

- Applying a configuration
- Configuring a data collector
- Enabling a data collector

Enabling a data collector

About this task

Enable your data collectors on the Configured Data Collector Overview page. Manage monitoring on your system by enabling and disabling data collectors as needed.

To enable a data collector:

1. From the top navigation, click **Administration > Server Management > Data Collector Configuration**. The Configured Data Collector Overview page opens.

2. Click **Enable** next to the data collector you want to enable.

3. The system enables the data collector and the button face changes to **Disable**. If you stopped the data collector from sending and receiving data by disabling it,
you can enable the data collector again when you are ready. Since a disabled data collector doesn't lose settings, you can simply turn it back on without any reconfiguration.

Related topics
- Configuring a data collector
- Disabling a data collector
- Modifying a configuration

Disabling a data collector

About this task

Disable your data collectors on the Configured Data Collector Overview page. Manage monitoring on your system by enabling and disabling data collectors as needed.

To disable a data collector:

1. From the top navigation, click **Administration > Server Management > Data Collector Configuration**. The Configured Data Collector Overview page opens.
2. Click **Disable** next to the data collector you want to disable.
3. The system disables the data collector and the button face changes to **Enable**.

Results

Disabling a Data Collector in the Visualization Engine only disables monitoring with the Managing Server; IBM Tivoli Monitoring is not affected. You can also use the Data Collector configuration to disable communication between the Data Collector and the Managing Server. The following table provides a comparison between these two ways of disabling Data Collector communication to the Managing Server:

Table 4. Comparison of ways to disable Data Collector communication to the Managing Server.

<table>
<thead>
<tr>
<th>Disable Data Collector communication to the Managing Server using Data Collector configuration</th>
<th>Disable Data Collector communication to the Managing Server using the Visualization Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>The application server instance is not listed in the Visualization Engine.</td>
<td>The application server instance remains listed in the Visualization Engine.</td>
</tr>
<tr>
<td>The Visualization Engine shows no information on the application server instance.</td>
<td>The Visualization Engine shows whether the application server instance is up or down; monitoring information is not available.</td>
</tr>
<tr>
<td>No system or network resources are used for Managing Server communication.</td>
<td>Some system and network resources are used to maintain Managing Server communication.</td>
</tr>
<tr>
<td>You do not need to apply maintenance fixes for the Agent that only impact Managing Server communication.</td>
<td>You need to apply maintenance fixes for the Agent that only impact Managing Server communication.</td>
</tr>
<tr>
<td>In order to re-enable communication, you need to perform Data Collector configuration again, and restart the application server.</td>
<td>In order to re-enable communication using the Visualization Engine, you do not need to restart the application server.</td>
</tr>
</tbody>
</table>

Related topics
- Configuring a data collector
Creating a configuration
About this task

Use this page to create a configuration and name it for your data collectors. Create multiple configurations that monitor different classes.

The system assigns a name to the data collector. The name of the Data Collector is a combination of the Admin Server name and the Application Server name. The name cannot be changed.

To create a configuration:
1. From the top navigation, click Administration > Server Management > Data Collector Configuration. The Configured Data Collector Overview page opens.
2. Click Create a Configuration on the left navigation pane. The Create page opens.
3. Enter the names of classes you want to ignore into the Exclude (Classname) list. You can use an asterisk (*) as a wildcard. In this case it means exclude all.
4. Enter the names of classes you want to monitor into the Exclude Override (Classname) list.
5. Select the check box if you want to enable MQ. This will provide you with an Exclude and Exclude Override box specifically for configuring MQ.
6. Enter a name for the configuration. (Required field)
7. Click Save to create the configuration or Save & Apply to create the configuration and apply it to a data collector. You can configure or change these options at any time.

Related topics
- Applying a configuration
- Configuring a data collector

Applying a configuration
About this task

Use the Apply page to apply the configuration to a data collector. After you create a configuration, you must apply it to a data collector in order to start monitoring.

To apply a configuration:
1. From the top navigation, click Administration > Server Management > Data Collector Configuration. The Configured Data Collector Overview page opens.
2. Click Configuration Library on the left navigation. The Data Collector Configuration List page opens.
3. Click the Apply icon next to the configuration you want to apply. The Apply page opens.
4. Click to select the data collectors’ name from the All Data Collectors box. To select a range of contiguous data collectors, hold the shift key down during your selection. To add multiple servers non-contiguously, Ctrl + click the servers for selection.
5. Click Add to apply the configuration to the data collector. The Data Collector's names displays in the Applied box.
6. Select Enable from the Status list box to set the status of the configuration.
7. Click **Apply**.

Related topics
- Disabling a data collector
- Enabling a data collector
- Unconfiguring a data collector

Modifying a configuration

About this task

You can modify an existing configuration for your data collectors by updating the list of classes you monitor. Remove and add classes to the Exclude (Classname) list and Exclude Override (Classname) list to change what you monitor.

To modify a configuration:
1. From the top navigation, click **Administration > Server Management > Data Collector Configuration**. The Configured Data Collector Overview page opens.
2. Click **Configuration Library** on the left navigation pane. The Data Collector Configuration List page opens.
3. Click the Modify icon next to the configuration you want to modify. The Modify page opens.
4. Enter the names of classes you want to ignore into the Exclude (Classname) list.
5. Enter the names of classes you want to monitor into the Exclude Override (Classname) list.
6. Select the check box to enable MQ list.
7. Click **Save** to save your modifications to the configuration. The Configured Data Collector Configuration List displays with the updated information.

Related topics
- Applying a configuration
- Configuring a data collector
- Enabling a data collector

Duplicating a configuration

About this task

Create a new configuration using an existing configuration from your data collectors.

To duplicate a configuration:
1. From the top navigation, click **Administration > Server Management > Data Collector Configuration**. The Configured Data Collector Overview page opens.
2. Click **Configuration Library** on the left navigation pane. The Configured Data Collector Configuration List page opens.
3. Click the Duplicate icon next to the configuration you want to duplicate. The Duplicate Configuration page opens.
4. Select an existing configuration from the list box.
5. Enter a new name for the configuration.
6. Click **Save**. The new configuration displays in the Configuration List.

Related topics
- Applying a configuration
- Configuring a data collector
Enabling a data collector

Deleting a configuration

About this task

You can delete outdated configurations from the list to keep your list current.

To delete a configuration:
1. From the top navigation, click Administration > Server Management > Data Collector Configuration. The Configured Data Collector Overview page opens.
2. Click Configuration Library on the left navigation pane. The Data Collector Configuration List page opens.
3. Click the Delete icon next to the configuration you want to delete. A confirmation box appears to warn you that deleting this configuration will unconfigure all the associated servers.
4. Click OK to delete the configuration. The Configuration List displays without the deleted configuration. Remember to apply a new configuration to the servers you unconfigured while deleting the configuration.

Related topics
- Applying a configuration
- Configuring a data collector
- Enabling a data collector
- Modifying a configuration

Enabling TTAPI for JDBC for a Data Collector

About this task

For Data Collectors that support TTAPI for JDBC, enable it on the Enable TTAPI for JDBC page.

To enable TTAPI for JDBC for a Data Collector:
1. From the top navigation, click Administration > Server Management > Data Collector Configuration. The Configured Data Collector Overview page opens.
2. Click Enable TTAPI for JDBC on the left navigation menu.
3. Click in the Enable check box next to the data collector for which you want to enable TTAPI for JDBC.
4. Click the Apply button at the bottom of the table.

Related tasks
- "Disabling TTAPI for JDBC for a Data Collector"

Related topics

Disabling TTAPI for JDBC for a Data Collector

About this task

For Data Collectors that have TTAPI for JDBC enabled, disable it on the Enable TTAPI for JDBC page.

To disable TTAPI for JDBC for a Data Collector:
1. From the top navigation, click Administration > Server Management > Data Collector Configuration. The Configured Data Collector Overview page opens.
2. Click Enable TTAPI for JDBC on the left navigation menu.
3. Click in the Disable check box next to the data collector for which you want to enable TTAPI for JDBC.

4. Click the Apply button at the bottom of the table.

Related tasks

“Enabling TTAPI for JDBC for a Data Collector” on page 60

Related topics

Data Collector Profiles

A data collector profile is a collection of multiple configuration changes that can be stored together and applied to a data collector. You can use the Data Collector profiles feature to modify the data collector properties file and toolkit files on a data collector, from the Managing Server Visualization Engine. It is still possible to modify these files when configuring a data collector. Data Collector profiles can be installed on monitored application servers running ITCAM for WebSphere/J2EE Data Collector 6.1 FP4 or higher. For more information, refer to the ITCAM for Application Diagnostics - Agent for WebSphere Installation and Configuration Guide.

From the Managing Server Visualization Engine, you can check which data collector profiles are installed on which data collector. You can add and remove profiles to and from data collectors. You can also import and export data collector profiles from other managing servers. If you change a data collector profile it must be reinstalled on the data collector and the data collector needs to be restarted for the changes to take effect.

You can access the Data Collector Profiles using one of the following methods:

- From the main menu, click Administration > Server Management > Data Collector Profiles.
- From the main menu, click Problem Determination > Server Activity Display.

Click the toolbox icon on the Active Requests tab or the Recent Requests tab.

The Data Collector profiles page displays a list of existing profiles if profiles have been created already. Click a profile name to view which data collectors are using that profile. The DC Profiles Menu contains a list of configurable items that you can modify on each profile.

For more information see:

- “Viewing and editing data collector profiles”
- “Exporting a data collector profile” on page 64
- “Importing a data collector profile” on page 63
- “Adding and removing data collector profiles” on page 62
- “Configuring a data collector profile” on page 64
- “Installing a profile on a data collector” on page 71
- “Uninstalling a data collector profile” on page 72

Viewing and editing data collector profiles

You can view and edit profiles at any stage. You can also edit data collector profiles while they are assigned to a data collector.

Access the Data Collector Profiles using one of the following methods:
From the main menu, click Administration > Server Management > Data Collector Profiles.

From the main menu, click Problem Determination > Server Activity Display.

Click the toolbox icon on the Active Requests tab or the Recent Requests tab.

1. The Data Collector profiles page displays a list of existing profiles if profiles have been created already.

2. Click a profile name to view which data collectors are using that profile.

3. In the DC Profiles Menu, click the individual configuration items to view the details of each item.

4. For more information about the configuration items and how to edit them see "Configuring a data collector profile" on page 64.

5. In the DC Profiles Menu, you can click Data Collectors to view a list of data collectors available.

6. When you click on a data collector name you can also click Profiles Installed to view the profiles assigned to the data collector.

7. If you are editing a profile, select a configuration item from the Profiles list in DC Profiles Menu, click Apply then click Save to add the changes to the profile.

When you edit a profile that is assigned to a data collector, the status of the profile changes to Outdated in the Profiles Installed list. To implement the updated profile changes on the data collector you need to reinstall the profile on the data collector. For more information see "Installing a profile on a data collector" on page 71. Then the Data Collector needs to be restarted for the changes to take effect.

See also:
- "Data Collector Profiles" on page 61
- "Exporting a data collector profile" on page 64
- "Importing a data collector profile" on page 63
- "Adding and removing data collector profiles"
- "Uninstalling a data collector profile" on page 72

Note: If you click refresh or F5 on your browser from any page in Data Collector Profiles, you will return to the main Data Collector Profiles page.

Adding and removing data collector profiles

You can add or remove data collector profiles at any stage.

Access the Data Collector Profiles using one of the following methods:

- From the main menu, click Administration > Server Management > Data Collector Profiles.
- From the main menu, click Problem Determination > Server Activity Display.

Click the toolbox icon on the Active Requests tab or the Recent Requests tab.

The page has two main areas; the DC Profiles Menu and the Profiles area of the page. You can use the DC Profiles Menu to edit, add, and remove configurable items from profiles. You can use the Profiles area of the page to add, edit, and remove data collector profiles.
Click Profiles to view a list of existing profiles.
Click DC Profiles Menu to view a list of available data collectors.

1. To add a profile, click New.
2. In the Name field, type the name you want to give the profile.
3. Click Apply.
4. In the DC Profiles Menu, click the items you want to configure to add to this profile.
5. For more information see “Configuring a data collector profile” on page 64.
6. Then click Save to add the profile to the list of Data collector profiles.
7. To delete a profile select the check box then click Delete.

When you delete a profile that is assigned to a data collector the status of the profile changes to Outdated in the Profiles Installed list. The Data Collector needs to be restarted for the changes to take effect.

See also:
• “Data Collector Profiles” on page 61
• “Viewing and editing data collector profiles” on page 61
• “Exporting a data collector profile” on page 64
• “Importing a data collector profile”
• “Configuring a data collector profile” on page 64
• “Installing a profile on a data collector” on page 71
• “Uninstalling a data collector profile” on page 72

Importing a data collector profile
You can import a data collector profile from other locations for use on other managing servers.

Access the Data Collector Profiles using one of the following methods:
• From the main menu, click Administration > Server Management > Data Collector Profiles.
• From the main menu, click Problem Determination > Server Activity Display.

Click the toolbox icon on the Active Requests tab or the Recent Requests tab.

1. The Data Collector profiles page displays a list of existing profiles if profiles have been created already.
2. Click Browse to locate the .xml file you want to import.
3. Select the .xml file and click Open.
4. Select the profile you want to overwrite by selecting the check box in the Select column.
5. Click Import.
6. If you are importing a file with the same profile name a message displays. Click OK to overwrite the existing profile.
7. If you are importing a new file, then a new profile is created.

See also:
• “Installing a profile on a data collector” on page 71
• “Uninstalling a data collector profile” on page 72
• “Data Collector Profiles” on page 61
Exporting a data collector profile

You can export data collector profiles to other locations for use on other managing servers.

Access the Data Collector Profiles using one of the following methods:

- From the main menu, click **Administration > Server Management > Data Collector Profiles**.
- From the main menu, click **Problem Determination > Server Activity Display**.

 Click the toolbox icon on the **Active Requests** tab or the **Recent Requests** tab.

1. The Data Collector profiles page displays a list of existing profiles if profiles have been created already.
2. Select the profile by selecting the check box in the **Select** column.
3. Click **Export** to launch an .xml version of the profile in your browser.
4. From the browser menu, click **File > Save as** and select the location you want to export the file to.
5. Then close the browser.

See also:

- “Data Collector Profiles” on page 61
- “Viewing and editing data collector profiles” on page 61
- “Importing a data collector profile” on page 63
- “Adding and removing data collector profiles” on page 62
- “Configuring a data collector profile”
- “Installing a profile on a data collector” on page 71
- “Uninstalling a data collector profile” on page 72

Configuring a data collector profile

When you are creating a profile there are a number of items you can configure. You can select the items you want to configure, not all items are required to be configured. You can also modify existing items. When you have configured a profile you can install it on one or more data collectors.

Access the Data Collector Profiles using one of the following methods:

- From the main menu, click **Administration > Server Management > Data Collector Profiles**.
- From the main menu, click **Problem Determination > Server Activity Display**.

 Click the toolbox icon on the **Active Requests** tab or the **Recent Requests** tab.

The Data Collector profiles page displays a list of existing profiles if profiles have been created already. Click on the Profile, a list of configurable items displays in the **DC Profiles Menu**.
Click on the following links for more details on configuring each item in a data collector profile.

- “PMI” (WebSphere products only)
- “Custom Request” on page 66
- “Custom L2” on page 67
- “Method Entry and Exit” on page 68
- “Lock Analysis” on page 69
- “Memory Diagnosis” on page 69
- “Custom MBeans” on page 70
- “Tuning Parameters” on page 71

See also:

- “Data Collector Profiles” on page 61
- “Viewing and editing data collector profiles” on page 61
- “Adding and removing data collector profiles” on page 62
- “Importing a data collector profile” on page 63
- “Exporting a data collector profile” on page 64
- “Installing a profile on a data collector” on page 71
- “Uninstalling a data collector profile” on page 72

PMI:

This feature is available for WebSphere products only. Standard WebSphere Application Server PMI modules are automatically included in monitored JVM and are rendered on the Managing Server Visualization Engine. If your environment is using WebSphere Process Server or WebSphere Commerce, the PMI modules associated with these products are not rendered to the Managing Server Visualization Engine. You can use this feature to add the PMI module names for these products to data collector profiles.

For information about the PMI module names for these products, refer to the following documentation links:

- WebSphere Commerce: http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp

To add a PMI module to a data collector profile, choose one of the following options to access the PMI feature:

- From the main menu, click **Administration > Server Management > Data Collector Profiles**.
- From the main menu, click **Problem Determination > Server Activity Display**.

Click the toolbox icon on the **Active Requests** tab or the **Recent Requests** tab.

The Data Collector profiles page displays a list of existing profiles if profiles have been created already.

1. Click the profile **Name**.
2. In the **DC Profiles Menu**, click **PMI**.
3. In the **PMI Module Name** field, type the module name add a custom PMI module.
4. Click **Apply** or **Save** to implement the changes to the profile.

When the PMI module name is added to the profile, the next step is to install the profile on a data collector. When the Managing Server is restarted, the PMI module displays on the Managing Server Visualization Engine **System Resource** page, when the corresponding data collector is selected.

See also:

- "**Custom Request**"
- "**Configuring a data collector profile**" on page 64
- "**Data Collector Profiles**" on page 61
- "**Viewing and editing data collector profiles**" on page 61
- "**Adding and removing data collector profiles**" on page 62
- "**Installing a profile on a data collector**" on page 71
- "**Uninstalling a data collector profile**" on page 72

Custom Request:

A custom request is an application class and method that you designate as an edge or nested request. This feature defines custom request methods and classes that are included in L2 Method Trace.

Access the Data Collector Profiles using one of the following methods:

- From the main menu, click **Administration > Server Management > Data Collector Profiles**.
- From the main menu, click **Problem Determination > Server Activity Display**.

Click the toolbox icon on the **Active Requests** tab or the **Recent Requests** tab.

The Data Collector profiles page displays a list of existing profiles if profiles have been created already.

1. Click the profile **Name**.
2. In the **DC Profiles Menu**, click **Custom Request**.
3. Click **New**.
4. Complete the following fields:
 - **Request Name**: Identifies the unique name for this request. The request name is displayed in the L1 or L2 trace entry that is produced when one of the methods identified by this custom request runs.
 - **Class Name**: Identifies the name of the class.
 - **Method Name**: Identifies the names of the methods within one of the classes that are to be Byte-Code-Instrumented for custom request processing.
5. Select the **Type** by clicking one of the following options:
 - Class
 - Superclass
 - Interface
6. Click **OK** to save the Custom Request.
7. To edit a custom request, click **Custom Request** and edit the fields on display, click **Save** to implement the changes to the profile.
8. To delete a custom request from a data collector profile, on the Profile - Custom Requests page select the check box in the select column, then click Delete.

See also:
- "Custom L2"
- "Configuring a data collector profile” on page 64
- “Data Collector Profiles” on page 61
- "Viewing and editing data collector profiles” on page 61
- "Adding and removing data collector profiles” on page 62
- “Installing a profile on a data collector” on page 71
- "Uninstalling a data collector profile” on page 72

Custom L2:

The data collector uses a technique called Byte Code Instrumentation (BCI) to collect data from various types of J2EE APIs that typically operate as nested requests. BCI is automatically enabled for these types of APIs. You can use Custom L2 to enable and disable L2 instrumentation components if you want to lower the monitoring workload on the data collector. You can also define new L2 events using the Custom L2 events option.

1. Click the profile Name.
2. In the DC Profiles Menu, click Custom L2. You can enable or disable the following events:
 - SERVLET
 - JDBC (Java Database Connectivity)
 - JMS (Java Message Service)
 - HTTP Session Count
 - CTG (CICS® Transaction Gateway)
 - JDO (Java Data Objects)
 - MQI (Message Queue Interface)
 - EJB (Enterprise Java Beans)
 - JNDI (Java Naming and Directory Interface)
 - JCA (Java Connector Architecture)
 - Axis Web Service (JBoss and Weblogic)
 - IMS
 - RMI (Resource Manager Interface)
3. Select the check box to enable an event.
4. Clear the check box to disable an event.
5. To add Custom L2 events In the Custom L2 event area of the page click New.
6. In the Event Type drop down menu, select one of the following options to enable or disable the instrumentation:
 - SERVLET
 - EntityBean
 - SessionBean
 - Message Driven Bean
7. Type the Class Name.
8. Select the Enabled check box to save the event.
9. On the main page select the check box to assign the custom event to the profile.
10. Click **Apply**, click **Save**.
 - To edit an L2 custom event, click the **Event Type**, add the changes click **Apply**, click **Save**.
 - To delete an L2 custom event, select the check box for the **Event Type**, click **Delete**.

See also:
- “Method Entry and Exit”
- “Configuring a data collector profile” on page 64
- “Data Collector Profiles” on page 61
- “Viewing and editing data collector profiles” on page 61
- “Adding and removing data collector profiles” on page 62
- “Installing a profile on a data collector” on page 71
- “Uninstalling a data collector profile” on page 72

Method Entry and Exit:

You can use this item to select classes to include or exclude on the monitored JVM used for classes and methods in L3 methods traces.

1. In the **DC Profiles Menu**, click **Method Entry/Exit**.
2. A list of existing classes assigned to the profile display.
3. Click **New** to add a new class to the profile.
4. From the **Lookup Sever** drop-down menu, select the server.
5. A list of available classes display.
6. Click a file to expand the view and see the classes.
7. Select the check boxes associated with the classes you want to add click **Add**.
8. Click **Save** to add the classes to Method Trace Entry and Exit.
9. To remove a class, select the check box for the class you want to remove then click **Apply** and **Save**.

To create a class to add to **Method Entry/Exit**.

1. Type **Class Name**.
2. Type the **New Method Name**.
3. Click **Add** to display the class.
4. Select the check box then click **Apply** to add the class to the list of existing classes for Method Exit Entry.
5. From the list select the check boxes for the classes that you want to add.
6. Click **Save**.
 - To edit a class, in the **Method Entry/Exit** page, click the **Class Name**, add the changes then click **Apply**.
 - To remove a class, select the check box for the class then click **Delete** then click **Save**.

See also:
- “Lock Analysis” on page 69
- “Configuring a data collector profile” on page 64
- “Data Collector Profiles” on page 61
Lock Analysis:

You can use this feature to probe classes for lock analysis. All application classes are included by default. You can access these classes from the Lookup Server. Use the add option to add new entries containing classes or methods to be included or excluded for lock analysis.

1. In the DC Profiles Menu, click Lock Analysis.
2. From the Lookup Server drop-down menu, select the server.
3. A list of available classes display.
4. Click a file to expand the view and see the classes.
5. Select the check boxes associated with the classes you want to add click Add.
6. Click Save to add the classes to Lock Analysis.

Use the following steps to add a class:
1. To add a class, in the DC Profiles menu, click Lock Analysis.
2. Type New Class Name.
3. Click Add.
4. In the Classes to Monitor list, select the check box then click Apply and then Save to add the class to Lock Analysis.
5. To remove a class, select the check box for the class you want to remove then click Delete then click Apply and Save.

See also:
- “Memory Diagnosis”
- “Configuring a data collector profile” on page 64
- “Data Collector Profiles” on page 61
- “Viewing and editing data collector profiles” on page 61
- “Adding and removing data collector profiles” on page 62
- “Installing a profile on a data collector” on page 71
- “Uninstalling a data collector profile” on page 72

Memory Diagnosis:

You can use this feature to select classes to use in Memory diagnosis. All memory classes are included for memory leak diagnosis in L3 mode by default. Memory diagnosis can be restricted to a selected combination of allocating and allocated classes.

1. In the DC Profiles Menu, click Memory Diagnostic.
2. To add heap allocation classes click New.
3. In the New Allocating Class Name field, type the name of the class that allocates objects to Memory Diagnosis. New Allocating Class Name identifies the name of a class or classes to be modified.
4. In the New Allocated Class Name field, type the name of the class allocated to include in the Memory Diagnosis. The New Allocated Class Name identifies the specific heap allocation requests within the class or classes.
5. Click Add to add the class to the Allocated Classes to monitor list.
6. In the Allocated classes to monitor list, select the check box for the class name you want to add to the Allocating classes.
7. Click Apply and Save to save the class to the Heap Allocations list.
8. To remove a class from the Allocated Classes to monitor list, select the check box then click Delete then click Apply and Save to implement the changes.
 • To edit a class, from the Heap Allocations list, click the class name, make the necessary changes then click Apply and Save.
 • To delete a class from the Heap Allocations list, select the check box then click Delete then click Apply and Save to implement the changes.

See also:
 • “Custom MBeans”
 • “Configuring a data collector profile” on page 64
 • “Data Collector Profiles” on page 61
 • “Viewing and editing data collector profiles” on page 61
 • “Adding and removing data collector profiles” on page 62
 • “Installing a profile on a data collector” on page 71
 • “Uninstalling a data collector profile” on page 72

Custom MBeans:

You can include MBeans to be rendered on the System resource page on the Managing Server Visualization Engine. You can add new entries or use the lookup server drop down menu to query existing beans and select attributes.

1. In the DC Profiles Menu, click Custom MBeans to display the Profile Custom MBean page.
2. Use the following steps to manually add Custom MBeans to the Managing Server.
3. Domain: Type the Domain name.
4. Object Name: Type the MBean Object Name.
5. Category: Type the unique Category Name (used by ITCAM).
6. Select the Retrieve all Attributes check box if you want to add all attributes associated with the MBean.
7. Attribute Name: Type the name of the attribute.
8. Mapped Key Name: Type the unique key string to map the attribute (used by ITCAM).
9. Object Name Pattern: Type the MBean pattern to search in the form.
10. Click Add to add the MBean to the list.

To add MBeans from the Look up Server drop-down menu use the following steps:
1. From the Look up Server drop-down menu, select the application server.
2. From the Select MBean drop-down menu, select the MBean you want to add.
3. From the Select Attributes drop-down menu, select the attribute you want to add.
4. Click Apply to add the Custom MBeans to the list.
5. From the Custom MBeans list, select the check boxes for the Custom MBeans you want to add to the data collector profile.
6. Click **Apply** then click **Save**.

- To edit a **Custom MBeans** from the **Custom MBeans** list, click the MBean **Object name**, make the necessary changes then click **Apply** and **Save**.
- To delete a **Custom MBeans** from the **Custom MBeans** list, select the check box then click **Delete** then click **Apply** and **Save** to implement the changes.

See also:

- "Tuning Parameters" on page 62
- "Configuring a data collector profile" on page 64
- "Data Collector Profiles" on page 61
- "Viewing and editing data collector profiles" on page 61
- "Adding and removing data collector profiles" on page 62
- "Installing a profile on a data collector"
- "Uninstalling a data collector profile" on page 72

Tuning Parameters:

You can configure tuning parameters and apply them to the data collector profile on the data collectors.

Note: Data Collector Tuning parameters cannot be reversed by un installing the profile, however, they can be modified back to the original value.

1. In the **DC Profiles Menu**, click **Tuning Parameters**.
2. From the **Tuning Parameters** drop-down menu, select the parameter you want to add.
3. Repeat this process for each parameter you want to add.
4. Detailed information relating to each parameter you select displays in the **Selected Tuning Parameters** page.
5. When a selected parameter displays in the list, type a value in the **Value** column for each parameter.
6. Click **Apply** and then click **Save** to add the parameters to the data collector profile.
7. Select the check box to add a parameter to the data collector profile. Click **Apply** then **Save**.
8. To remove a parameter, select the check box then click **delete** and then **Save** to remove a parameter from the profile.

See also:

- "Configuring a data collector profile” on page 64
- “Data Collector Profiles” on page 61
- “Viewing and editing data collector profiles” on page 61
- “Adding and removing data collector profiles” on page 62
- “Installing a profile on a data collector”
- “Uninstalling a data collector profile” on page 72

Installing a profile on a data collector

When you create a data collector profile, the next step is to add it to a data collector. You then need to restart the managing server for the changes to take effect.
Access the Data Collector Profiles using one of the following methods:

- From the main menu, click Administration > Server Management > Data Collector Profiles.
- From the main menu, click Problem Determination > Server Activity Display.

Click the toolbox icon on the Active Requests tab or the Recent Requests tab.

The Data Collector profiles page displays a list of existing profiles if profiles have been created already.

1. Click the profile name to view the list of data collectors assigned to that profile.
2. If you want to view details of the profile, from the DC Profiles Menu, click the configurable items.
3. To assign a profile to a Data Collector, from the DC Profiles Menu, click Data Collectors to view all the available data collectors.
4. Select the check box in the Select column of each data collector you want to add a new profile to.
5. Click Install to display the list of data collector profiles available.
6. Select the check box in the Select column of the profile you want to add.
7. Click Merge if you want to retain any manual entries made by manually editing the xml and the properties file as well as the changes made to the profile.
8. Click Overwrite to remove all manual changes and to replace them with the changes in the data collector profile.
9. If you are reinstalling an updated version of an existing profile, click Overwrite to update the profile on the data collector. You will need to restart the managing server for all changes to take effect.

See also:
- “Uninstalling a data collector profile”
- “Configuring a data collector profile” on page 64
- “Data Collector Profiles” on page 61
- “Viewing and editing data collector profiles” on page 61
- “Adding and removing data collector profiles” on page 62
- “Importing a data collector profile” on page 63
- “Exporting a data collector profile” on page 64
- “Uninstalling a data collector profile”

Uninstalling a data collector profile

You can uninstall a data collector profile from a data collector at any stage. You then need to restart the managing server for the changes to take effect.

Access the Data Collector Profiles using one of the following methods:

- From the main menu, click Administration > Server Management > Data Collector Profiles.
- From the main menu, click Problem Determination > Server Activity Display.

Click the toolbox icon on the Active Requests tab or the Recent Requests tab.

The Data Collector profiles page displays a list of existing profiles if profiles have been created already.
1. From the **DC Profiles Menu**, click **Data Collectors** to view all the available data collectors. Click **Refresh list** to update the current list of available data collectors.

2. Click a data collector name to view the list of profiles assigned to the data collector.

3. Select the check box in the **Select** column of the profile you want to remove.

4. Click **Uninstall** to remove the profile from the data collector.

5. You then need to restart the managing server for the changes to take effect.

See also:
- “Configuring a data collector profile” on page 64
- “Data Collector Profiles” on page 61
- “Viewing and editing data collector profiles” on page 61
- “Adding and removing data collector profiles” on page 62
- “Importing a data collector profile” on page 63
- “Exporting a data collector profile” on page 64
- “Installing a profile on a data collector” on page 71

Monitoring on Demand (TM)

In the Monitoring on Demand (MOD) pages, you can view and adjust the monitoring level for all servers, and schedule adjustment of this level at fixed times.

To view the Monitoring on Demand page, from the top navigation, click **Administration > Monitoring on Demand**. You can also access this page from the toolbox icon on the Server Activity Display page.

The **Modify Server Settings** page is displayed. You can use this page to change the selected Data Collector’s monitoring level, select a different schedule, or change the current sampling rate. Overriding a monitoring level lasts until the next monitoring level begins, as determined by the schedule.

Selected Group/Server displays the server the changes are applied to.

1. Select the **Schedule Selection** from the drop-down menu.

2. Select the **Override Monitoring Level** from the drop-down menu.
 - System Default
 - L1 Production Mode
 - L2 Problem Determination Mode
 - L3 Tracing Mode

3. Select the **Enable Method Profiling** check box and type the number of minutes that you want to use.

4. Select the **Sampling Rate** for the monitoring level you select.

5. **Override Transaction CPUMON Level (CICS only)** Select the level from the drop-down menu.

The **monitoring level** for a server defines the amount of data collected for it. The higher the monitoring level, the more details are collected and the larger
performance overhead is introduced by the Data Collector. The available Monitoring Levels are L1 (Production mode), L2 (Problem Determination mode), and L3 (Tracing mode).

You can create schedules that defines preset times at which the monitoring level is to be changed, then apply different schedules to different servers. You can also set (override) the monitoring level manually for any server at any time.

To view the monitoring level for all servers, adjust it manually and assign schedules for its adjustment, select MOD Console in the left navigation pane. See "MOD Console."

To view the schedules and modify them, select Schedule Management in the left navigation pane. See "Schedule Management" on page 75.

To create a new blank schedule, select Create Schedule in the left navigation pane. See "Creating a schedule" on page 75.

To create a schedule as a copy of an existing schedule, select Duplicate Schedule in the left navigation pane. See "Duplicating a schedule" on page 78.

Tip: To change the default monitoring level, used when no schedule or override is applied, see "Configuring the Data Collection settings" on page 79.

Related topics
 "Configuring the Data Collection settings" on page 79

User Scenarios

Scenario 1: Setting a schedule for detailed monitoring at night

Your manager wants you to monitor your servers at Level 3 during off hours because that’s when the load is the lightest. As the ITCAM for Application Diagnostics administrator, you set a schedule to monitor the servers during business hours at Level 1 and at night at Level 3.

Scenario 2: Overriding the monitoring level during an emergency

An emergency arises that requires Level 3 monitoring to locate a problem. As the ITCAM for Application Diagnostics administrator, you override the current schedule and set the monitoring level to Level 3. After fixing the problem, you can reset the monitoring level or wait until the next schedule change.

MOD Console

The MOD Console page shows a table of all servers and the monitoring level set for them. You can manually set (override) this level and assign a schedule for automatically changing it at preset times.

If you want to only see servers in a particular server group, use the All Groups pull down control at the top of the table to select the group.

For every server, the table shows:
• Group and Server name.
• Platform (operating system) the server uses.
• The name of the Schedule currently applied to it. If a Schedule is applied, it determines automatic adjustment of server monitoring level at preset times.
• Current monitoring level.
• Current sampling rate.
• Current CPU load.
• Schedule Change/Override button.

To set (override) the monitoring level for a server or to assign a schedule for automatically changing it at preset times, click the Schedule Change/Override button. See “Overriding a monitoring level” on page 77 and “Applying a schedule” on page 76.

To view or modify a schedule, click the schedule name. See “Modifying a schedule” on page 77.

You can use the left navigation pane to view the existing schedules and create a new schedule. See “Monitoring on Demand (TM)” on page 73.

Schedule Management

The Schedule Management page shows a table of all schedules. A schedule defines preset times at which the monitoring level for a server should be changed. You can modify and delete the schedules, and set the monitoring level or change the schedule for servers.

For every schedule, the table shows the schedule name, the server name, and a Delete button.

To modify a schedule, click the schedule name. See “Modifying a schedule” on page 77.

To set (override) the monitoring level or change the schedule for a server, click the server name. See “Overriding a monitoring level” on page 77 and “Applying a schedule” on page 76.

To delete a schedule, click the Delete button. See “Deleting a schedule” on page 78.

You can use the left navigation pane to view the monitoring levels for all servers and create a new schedule. See “Monitoring on Demand (TM)” on page 73.

Creating a schedule

About this task

At times a server might need more detailed monitoring, you can create a schedule that changes the monitoring level based on a specified date and time. Using the schedule, modulate the monitoring level at different times based on the anticipated load on the server.

To create a schedule:

1. From the top navigation, click Administration > Monitoring on Demand TM. The Monitoring on Demand TM (MOD) Console page opens.
2. Click Create Schedule on the left navigation pane. The Schedule Detail page opens where you can create a new schedule.
3. Enter a Schedule Name for the new schedule.
4. Select the Day of the Month or the Day of the Week when you want your schedule to take effect; for example, you might want the schedule to start on the 5th of every month or on every Monday.

5. Select the Hour and Minute when the schedule starts.

6. Select the Monitoring Level that best suits your needs: L1, L2, or L3.

7. Click **Add** to insert the settings into the schedule. Each schedule can include multiple monitoring level changes; to save each change, click **Add**.

8. To save the schedule, click **Save**. The Schedule Management page opens with the new schedule displayed. In the event of a schedule conflict, the most recently entered item will take precedence.

 Do not create an overly complicated schedule or else you will never know at what level of monitoring your servers are running. Keep the rules simple. L1 has the smallest overhead, while L3 is heavier. When L2 applies, it has optimum overhead and allows you to switch to L3 without the need to restart. You might want minimum one or maximum 5% of your servers running at L3, either as dedicated servers, or only during non-peak hours. This arrangement will give you good quality data for workload tracing and application sizing. In the case of the z/OS environment, you might want to create a server instance that runs at L3.

Related topics

- Applying a schedule
- Overriding a monitoring level

Applying a schedule

About this task

After creating a schedule, you can apply it to a server that needs monitoring. You may also apply other existing schedules to a server.

To apply a schedule:

1. From the top navigation, click **Administration > Monitoring on Demand**. The Monitoring on Demand (MOD) Console page opens.

2. Click **Schedule Change/Override** for the server where you want to apply a schedule. The Modify Server Settings page opens.

3. Click to select a schedule from the schedule selection list box for the server.

4. Enter a percentage in the boxes for sampling setting or choose the default setting by checking the system default box.

5. Click **OK**. The MOD Console page displays the server with the schedule applied in the table.

Note: A schedule can be applied at the group level and the all servers level as well.

Related topics

- Creating a schedule
- Deleting a schedule
- Modifying a schedule
Overriding a monitoring level

About this task

In case you need to collect more or less detailed data in a particular period of time, you can override the current monitoring level until the next scheduled monitoring level occurs.

To override a monitoring level:

1. From the top navigation, click Administration > Monitoring on Demand. The Monitoring on Demand (MOD) Console page opens.
2. Click Schedule Change/Override for the server or group that you want to override its current monitoring level. The Modify Server settings page opens.
3. Click to select a monitoring level from the override monitoring level drop down box. If you select L2, you will be given the option to check MP for Method Profiling. The time interval setting in Enable Method Profiling is for how often the Data Collector should aggregate method data and push the data to the Managing Server. For example, if the interval setting is 60 minutes, then it means, every 60 minutes, the Data Collector aggregates the method data and push the data to the Managing Server. To disable the Method Profiling feature, clear "Enable Method Profiling". You can view the method profile reports on the Method Profiling Management page. If you override the system default monitoring level, the request sampling setting will also be changed according to the default monitoring level that the server is running on.
4. Click OK. Due to overhead when collecting transaction CPU in CICS, Application Diagnostics 7.1 offers the option to specify the level for collecting CICS CPU. Called the Transaction CPU.MON Level, this option is available on the Monitoring on Demand Override page (accessed via Administration > Monitoring on Demand, click Schedule Change/Override) and on the System Properties page (accessed via Administration > Managing Server > System Properties). In both cases, the options include:
 - Do Not Collect
 - Collect at Monitoring Level L1, L2, and L3
 - Collect at Monitoring Level L2 and L3
 - Collect at Monitoring Level L3 only

With these alternatives, you can plan to collect transaction CPU when the load on your system is not overwhelming. Collect at Monitoring Level L3 only is the default.

Modifying a schedule

About this task

If you find that an existing schedule is not providing the correct level of monitoring, modify the schedule to reflect your needs. Keep your schedules current based on the ever fluctuating needs of your data center.

To modify a schedule:

1. From the top navigation, click Administration > Monitoring on Demand. The Monitoring on Demand (MOD) Console page opens.
2. Click the schedule name for the schedule you want to modify on the console page or the Schedule Management page. The View MOD Schedule page opens.
3. Click Modify Schedule. The Schedule Detail page opens.
4. Enter the information to modify the schedule setting.
5. Click **Add** to insert the settings into the schedule. Each schedule can include multiple monitoring level changes; to save each change, click **Add**.
6. To save the schedule, click **Save**.

 Note: Changes take effect immediately.

Related topics
- Applying a schedule
- Configuring the Data Collection settings

Deleting a schedule

About this task

Keep your schedules updated by deleting schedules from the system that are no longer in use.

To delete a schedule:

1. From the top navigation, click **Administration > Monitoring on Demand TM**. The Monitoring on Demand TM (MOD) Console page opens.
2. Click **Schedule Management** on the left navigation pane. The Schedule Management page opens.
3. Click **X** or **Delete** next to the schedule you want to remove.
4. At the confirmation box, click **OK** to delete the schedule. The Schedule Management page displays without the deleted schedule.

 If a schedule is currently being used by a server, you have to apply another schedule to that server or it will automatically apply the system default after you delete the schedule.

Duplicating a schedule

About this task

Save time by duplicating schedules. Duplicating a schedule allows you to quickly create a new schedule based on the settings of an existing schedule.

To duplicate a schedule:

1. From the top navigation, click **Administration > Monitoring on Demand TM**. The Monitoring on Demand TM (MOD) Console page opens.
2. Click **Duplicate Schedule** on the left navigation pane. The Duplicate Schedule page opens.
3. From the Schedule list box, select the schedule you want to duplicate.
4. Enter a new name for the duplicated schedule.
5. Click **Save**. The Schedule Management page opens displaying the duplicated schedule.

Related topics
- Applying a schedule
- Modifying a schedule

Managing server

Tune and debug the managing server.
The managing server section is separated into two categories: system properties and self-diagnosis. System properties enable you to tune ITCAM, while self-diagnosis provides you with a method for debugging the managing server when problems arise.

System properties

In the System Properties pages, you can set defaults for server data collection, baseline settings for the Enterprise Overview display in the Visualization Engine, and SNMP settings.

To view the System Properties pages, from the top navigation, click Administration > Monitoring Server > System Properties.

To set default values for server data collection, select Data Collection Settings in the left navigation pane. See "Configuring the Data Collection settings.”

To set the values for baseline indication in the Enterprise Overview display, select Enterprise Overview Display in the left navigation pane. See "Configuring the Enterprise Overview display” on page 80.

To configure the SNMP network, select SNMP in the left navigation pane. See "Configuring the SNMP network” on page 81.

Configuring the Data Collection settings

About this task

Use the Data Collection settings to set and modify the system settings for the managing server to regulate the frequency of data collection, the percentage of data stored and the level of monitoring. The default data collection settings can be established at the managing server level, then overridden by configuration settings specific to each configured data collector.

To configure the Data Collection settings:

1. From the top navigation, click Administration > Managing Server > System Properties. The System Properties page opens.
2. Enter the appropriate value for the following properties:
 - **System Resources Polling Frequency** - Set how often the system resources requests information from your application server. The default setting is 60 seconds.
 - **Request Sampling Rate** - The percentage of requests stored in the database for reporting and analysis. The default request sampling rate is 2%.
 - **Default Monitoring Level** - The currently set default monitoring level for all servers connected to the application monitor. This is the case when configuring a server for the first time and bringing up the server under the management of the application monitor. The default monitoring level for the non z/OS platform is L2 (Problem Determination). As for the z/OS platform, the default monitoring level is L1 (Production Mode). The monitoring levels are as follows:
 - **L1 (Production mode)** - this monitoring level provides availability management, system resources and basic request-level data. This monitoring level least affects the CPU overhead per transaction and is appropriate for servers that are not malfunctioning.
 - **L2 (Problem determination mode)** - this monitoring level provides production level monitoring plus advanced request data, including
external component and CPU information, as well as additional monitoring fields and functions. Under problem determination mode you can view component traces. These are traces that show J2EE request-related events that are made to external services. Use this level when you suspect a problem or need to capture data about external events but do not need all the method-level data. When you select L2, you will be given the option to check MP for Method Profiling. This feature allows you to determine how often the data collector will aggregate method data and send the data to the managing server: 1-999 minutes. You can view the method profile reports on the Method Profiling Management page.

- **L3 (Tracing Mode)** – this is the most powerful monitoring level, therefore only this level utilizes all reporting elements available. For example, in L3 the server activity display shows additional data for the following columns: Accumulated CPU, Last Known Class Name, Last Known Method, and Last Known action. In addition, on the Request Detail page, the method trace with SQL statements are also available. L3 has inherently higher overhead than the other monitoring levels. Use this level for servers that have been selected for diagnostics and detailed workload characterization.

- **Transaction CPU Time (CICS only)** - This field indicates whether the CPU times for a CICS transaction will be collected or not. The CPU times for CICS tasks are reported, but if you want to avoid overhead from the data capture, adjust these settings as necessary. Select one of the following four options for collecting transaction CPU:
 - Do Not Collect
 - Collect at Monitoring Level L1, L2, and L3
 - Collect at Monitoring Level L2 and L3
 - Collect at Monitoring Level L3 only

- **Maximum Method Records** - The maximum number of method trace records. The records will be cycled through, showing the 10,000 (or Maximum Method Records value) most recent methods in the system. The default value is 10,000.

- **Maximum IMS™ Message Data Length** - The maximum length of the IMS message data. The default is 256.

3. Click **Save**.

Related topics

- Configuring the Enterprise Overview display
- Configuring the SNMP network

Configuring the Enterprise Overview display

About this task

Use the Enterprise Overview Display settings to set the response time Baseline Indicators and Baseline Definitions. The Baseline Indicator is the percentage above the baseline that you determine to indicate slow or very slow response. The Baseline Definition determines how the baseline is calculated. These thresholds apply to the average of average response times for all servers in the group.

To configure the Enterprise Overview display:

1. From the top navigation, click **Administration > Managing Server > System Properties**. The System Properties page opens.
2. On the left navigation pane, click **Enterprise Overview Display**. The Enterprise Overview Display page opens.
3. Enter the appropriate value for the following properties:
 - **Baseline Indicator Settings** - The percentage above the baseline that indicates slow or very slow response time. Slow response means the present response time is between 26% and 50% of the baseline; very slow response means the present response time exceeds 50% of the baseline. All averages are over 5 minute intervals. For example: if Indicator 1 is set to 25%, and Indicator 2 is set to 50%, average response times between 125% and 150% of the baseline are considered slow response. Average response times above 150% of the baseline are considered very slow response.
 - **Baseline Definition Settings** - The method to be used for determining the response time baseline.
 - **Rolling Date** - Historical response time data for this number of days is averaged to determine the baseline.
 - **Fixed Date** - Baseline is the average response time over the time interval midnight on the start date to 11:59PM on the end date.
 - **Fixed Response Time** - The response time entered in this field will become the response time against which your current response times on the enterprise overview page will be compared.

4. Click **Save**. These properties are actually defined at the group level for the servers once they are added to a group. The group properties take precedence over the system properties. When the response time reaches Indicator 1, an orange indicator will display on the Enterprise Overview page; a red indicator means the response time has exceeded Indicator 2.

Related topics
- Configuring the Data Collection settings
- Configuring the SNMP network
- “Enterprise Overview” on page 85

The Enterprise Overview page shows a table of summary availability information for each server group.

Configuring the SNMP network

About this task

Use the SNMP network settings to indicate the configuration for the SNMP server. A test message will be sent to the SNMP network manager to test for an open connection.

Note: Consult the Installation and Customization Guide for further instructions on the setup required to configure the SNMP network.

To configure the SNMP network:
1. From the top navigation, click **Administration > Managing Server > System Properties**. The System Properties page opens.
2. On the left navigation pane, click **SNMP**. The SNMP Network Configuration page opens.
3. Click the **Add SNMP Configuration** button. Enter the appropriate value for the following properties:
 - **Device Host Name or IP Address** - The name or address of your SNMP Network Manager, to which SNMP messages will be sent.
 - **Port Number** - The port number of your SNMP Network Managers.
 - **Community** - A string that is part of the SNMP protocol.
4. Click **Test and Save** to send a test message to the SNMP Network Manager.
5. Click **Save** to save your settings.

Related topics
- Configuring the Data Collection settings
- Configuring the Enterprise Overview display

Self-diagnosis

In the Self-diagnosis pages, you can view details of ITCAM operation. This information can be useful for debugging.

To view the Self-diagnosis page, from the top navigation, click **Administration > Managing Server > Self-Diagnosis**.

These pages are designed for the Support staff to service ITCAM. The self-diagnosis provides a view of all the components currently running, their states and attributes. Since ITCAM is designed to run in a loosely-coupled, dynamic environment, individual components can be up or down without affecting the integrity of the whole system.

Use the left navigation pane to select the Managing Server components for which debugging information will be shown.

Viewing the Self-diagnosis for the kernel

About this task

The Self-diagnosis provides a view of all the components on the kernel currently running and their attributes. Since the application monitor is a dynamic environment, the components can be up or down without affecting the integrity of the whole system.

To view the Self-diagnosis for the kernel:
1. From the top navigation, click **Administration > Managing Server > Self-diagnosis**. The Self-diagnosis page opens displaying the kernel's data.
2. In the left navigation pane, click the + **Kernel Instances**.
3. Click to select the kernel link you want to view. The kernel runtime environment detail displays.

Related topics
- Viewing the Self-diagnosis for the archive agent
- Viewing the Self-diagnosis for the publish server
- Viewing the Self-diagnosis for the global publish server
- Viewing the Self-diagnosis for the data collector controller
- Viewing the Self-diagnosis for the message dispatcher

Viewing the Self-diagnosis for the archive agent

About this task

The archive agent aggregates the data from the publish server and archives it into the database for reporting. The Self-diagnosis provides a view of all the components on the archive agent currently running and their attributes.

To view the Self-diagnosis for the archive agent:
1. From the top navigation, click **Administration > Managing Server > Self-diagnosis**. The Self-diagnosis page opens.
2. In the left navigation pane, click + Archive Agents.
3. Click to select the archive agent you want to view. The data for the selected archive agent displays.

Related topics
- Viewing the Self-diagnosis for the kernel
- Viewing the Self-diagnosis for the publish server
- Viewing the Self-diagnosis for the global publish server
- Viewing the Self-diagnosis for the data collector controller
- Viewing the Self-diagnosis for the message dispatcher

Viewing the Self-diagnosis for the publish server

About this task

The publish server retrieves data from the data collector and aggregates it based on different needs. The Self-diagnosis provides a view of all the components on the publish server currently running and their attributes.

To view the Self-diagnosis for the publish server:

1. From the top navigation, click Administration > Managing Server > Self-diagnosis. The Self-diagnosis page opens.
2. In the left navigation pane, click + Publish Servers.
3. Click to select the publish server you want to view. The data for the selected publish server displays.

Related topics
- Viewing the Self-diagnosis for the kernel
- Viewing the Self-diagnosis for the archive agent
- Viewing the Self-diagnosis for the global publish server
- Viewing the Self-diagnosis for the data collector controller
- Viewing the Self-diagnosis for the message dispatcher

Viewing the Self-diagnosis for the global publish server

About this task

The global publish server keeps track of composite requests, as they move from one server to another. The Self-diagnosis provides a view of the global publish server's attributes, as well as all the components with which the global publish server has relationships.

To view the Self-diagnosis for the global publish server:

1. From the top navigation, click Administration > Managing Server > Self-diagnosis. The Self-diagnosis page opens.
2. In the left navigation pane, click + Global Publish Servers.
3. Click to select the global publish server you want to view. The data for the selected global publish server displays.

Related topics
- Viewing the Self-diagnosis for the kernel
- Viewing the Self-diagnosis for the archive agent
- Viewing the Self-diagnosis for the publish server
- Viewing the Self-diagnosis for the data collector controller
- Viewing the Self-diagnosis for the message dispatcher
Viewing the Self-diagnosis for the data collector controller

About this task

The data collector controller regulates the behavior of a data collector, including the monitoring level, filter list, and enable or disable status. The Self-diagnosis provides a view of all the components on the data collector controller currently running and their attributes.

To view the Self-diagnosis for the data collector controller:
1. From the top navigation, click **Administration > Managing Server > Self-diagnosis**. The Self-diagnosis page opens.
2. In the left navigation pane, click the Data Collector Controllers’ link.
3. Click to select the data collectors you want to view. The data for the selected data collector controller displays.

Related topics
- Viewing the Self-diagnosis for the kernel
- Viewing the Self-diagnosis for the archive agent
- Viewing the Self-diagnosis for the publish server
- Viewing the Self-diagnosis for the global publish server
- Viewing the Self-Diagnosis for the message dispatcher

Viewing the Self-diagnosis for the message dispatcher

About this task

The message dispatcher sends out e-mails of performance reports and trap results from the Performance Analysis and Reporting and the Trap and Alert Management applications. The Self-diagnosis shows all the attributes of the message dispatcher currently running such as total number of e-mails sent.

To view the Self-diagnosis for the message dispatcher:
1. From the top navigation, click **Administration > Managing Server > Self-diagnosis**. The Self-diagnosis page opens.
2. In the left navigation pane, click **+ Message Dispatchers**.
3. Click to select the message dispatcher link you want to view. The message dispatcher runtime environment detail displays.

Related topics
- Viewing the Self-diagnosis for the kernel
- Viewing the Self-diagnosis for the archive agent
- Viewing the Self-diagnosis for the publish server
- Viewing the Self-diagnosis for the global publish server
- Viewing the Self-diagnosis for the data collector controller

Systems overview

Assess your entire system.

Systems overview allows you to evaluate the availability of your entire system by looking at recent performance trends.

User Scenarios

Scenario 1: Investigating an unresponsive system
Your first line of support receives calls that some parts of the system are not responding. The support team goes to the Server Statistics Overview page and immediately sees that one server displays the red icon representing the “unavailable” status. The support team determines the unavailable server needs to be restarted, which will return the system to full functionality.

Scenario 2: Monitoring proactively

As the administrator of production systems, you have set appropriate thresholds for the fields displayed on the Server Statistics Overview page. During your regular monitoring you see that the Paging Rate threshold is being crossed. You know that the increase in paging rate probably means an increase in overhead. You can now increase memory, add servers, or take some similar course of action to keep production running smoothly.

User Scenarios

Scenario 1: Verifying customer response time complaints

Customer service has been receiving complaints that your company’s Web sites have been responding slowly. As one of the administrators of the servers, the inquiry has come to your attention. Upon opening the Enterprise Overview page, you immediately see that three of your production servers are no longer available. You also verify that the response time has degraded.

Scenario 2: Diagnosing an application problem

Customers have been complaining that they cannot place orders. As one of your company’s administrators, you go to the Enterprise Overview page and see that all the servers are up. You find the group that appears to have the highest response time and drill down to the Server Overview page where you see that a database connection pool is saturated.

Enterprise Overview

The Enterprise Overview page shows a table of summary availability information for each server group.

To view the Enterprise Overview page, from the top navigation, click Availability > Systems Overview > Enterprise.

For every server group (“ALL” is a group consisting of all servers communicating to the Managing Server) the table shows:

- A "traffic-light" indicator. Green means good availability, orange means problematic availability, and red means an alert. The indicator is set based on comparing the current response time with a baseline time determined from the average for a certain time.
- Number of available servers, total number of servers in the group, and the percentage of servers that are available.
- A Maintenance Mode column displays if a server group has one or more WebSphere Dynamic Cluster members. It shows the number of clusters in maintenance mode compared to the total number of servers in the group.
- A graph showing throughput (requests per 5 minutes) for the last hour.
- A graph showing the average response times, in milliseconds, over every 5 minutes for the last hour.
- A tool button.

To see availability information for individual servers in a group, click the name of the group. The **Group Overview** page will open.

To see the activity for a group, click the tool button and select **Server Activity Display**. See **Server Activity Display** on page 114.

To find a specific request for this group, click the tool button to select **In-flight Request Search**. The **In-flight request search** on page 112 page will open.

To set the Enterprise Overview as the default page when you open the Visualization Engine, click **Set as My Default page** at the top right of the page.

To switch to the **Group Overview**, **Server Overview**, **Alerts and Events** on page 106, **Problem Center** on page 107, and **Portal Overview** on page 88 use the tabs at the top of the page.

Group Overview

The Group Overview page shows a table of availability information for each server in a server group.

To view the Group Overview page, from the top navigation, click **Availability > Systems Overview > Group**.

To change the group, select the new group in the **Servers In** pull down control. ("ALL" is a group consisting of all servers communicating to the Managing Server).

For every server in the group the table shows:
- A "traffic-light" indicator. Green means good availability, orange means problematic availability, and red means an alert. The indicator is set based on comparing the current response time with a baseline time determined from the average for a certain time.
- Server name
- Status of the server
- Total volume of requests processed by this server in the last hour
- A graph showing throughput (requests per 5 minutes) for the last hour.
- A graph showing the average response times, in milliseconds, over every 5 minutes for the last hour.

To see detailed information for a server, click the server name. The **Server Overview** page will open.

To set the Group Overview as the default page when you open the Visualization Engine, click **Set as My Default page** at the top right of the page.

To switch to the **Enterprise Overview** on page 85, **Server Overview**, **Alerts and Events** on page 106, **Problem Center** on page 107, and **Portal Overview** on page 88 use the tabs at the top of the page.

Server Overview

The Server Overview page displays information and activity graphs for a server.
To view the Server Overview page, from the top navigation, click **Availability > Systems Overview > Server.**

To select a server for displaying information, select the group and server names from the pull down controls at the top of the page.

The following information is displayed for the server under Server Information:
- Server name.
- Group name.
- Platform (operating system).
- IP Address.
- Start time.
- Current monitoring level for this server.
- Number of problems detected on this server.

The following information is displayed for the server under Server Statistics:
- A graph showing JVM CPU utilization for the last hour.
- A graph showing JVM memory utilization for the last hour.
- The throughput (total volume of requests) for the last hour.
- The uptime of the server, that is, the time since it was last rebooted.
- The names of the applications currently running on the server.
- Platform (operating system).
- IP Address.
- Start time.
- Current monitoring level for this server.
- Number of problems detected on this server.

The following information is displayed for the server under Activity (Last Hour):
- A graph showing average response time, in milliseconds, for every minute in the last hour.
- A graph showing the throughput, or number of requests, for every minute in the last hour.
- A graph showing the number of open sessions, or logged on users, for every minute in the last hour.

To switch to the “Runtime Environment Check” on page 155, “Runtime Environment Comparison” on page 154, and “Server Statistics Overview” on page 92 for this server, mouse over the tool button at Server Information and select the needed link.

To switch to following items for this server, mouse over the tool button at Activity and select the needed link:
- “Server Statistics Overview” on page 92
- “Server Activity Display” on page 114
- “Memory Analysis” on page 131
- “Heap Analysis” on page 131
- “Memory Leak” on page 132
- “System resources” on page 96
To view WLM Associated Service Classes for a z/OS server, mouse over the tool button at Server Information and select Workload Management. The "WLM associated service class summary" on page 90 page opens.

To switch to the "Enterprise Overview" on page 85, "Group Overview" on page 86, "Alerts and Events" on page 106, "Problem Center" on page 107, and "Portal Overview" use the tabs at the top of the page.

Portal Overview

The Portal Overview page shows availability information specific for IBM WebSphere Portal Server. You can access detailed portal statistics from this page.

To view the Portal Overview page, from the top navigation, click Availability > Systems Overview > Portal.

To select a server for displaying information, select the group and server names from the pull down controls at the top of the page. Only servers running IBM WebSphere Portal Server are listed.

The page shows graphs of average response time, in milliseconds, for every minute in the last hour for the following portal components:

- Portal Pages and Gateway servlets
- Portlets
- Model Building
- Page Loading
- Authentication
- Authorization

To view detailed statistics (response time and access count) for portal pages, click the Portal Pages/Gateway Servlet link. You will see statistics for the pages that were slowest and most popular in the last hour; to view statistics for all pages, click View All Portal Pages at the bottom of the table. See "Viewing the Portal Page Summary."

To view detailed statistics (response time and access count) for portlets, click the Portlets link. You will see statistics for the portlets that were slowest and most popular in the last hour; to view statistics for all pages, click View All Portlets at the bottom of the table. See "Viewing the Portlet Summary" on page 89.

To switch to the "Enterprise Overview" on page 85, "Group Overview" on page 86, "Server Overview" on page 86, "Alerts and Events" on page 106, and "Problem Center" on page 107 use the tabs at the top of the page.

Viewing the Portal Page Summary

About this task

The Portal Page Summary offers a view of the portals in your system and how they are operating. You can monitor the status of your portals from the slowest portals to the most popular portals for the last hour. In addition, view the metrics for the portals including Average Response Time and Count for authentication and authorization, and credential and content access metrics as well.

To open the Portal Page Summary for the slowest and most popular portals:
1. From the top navigation, click Availability > Systems Overview > Portal.
2. Select a group and a server from the list boxes. The Portal Overview page displays the portal trends for the last hour.
3. Click the Portal Pages link. The portal page summary data for the slowest and the most popular portals displays.

Results

To open the Portal Page Summary for all portals from the last hour:
1. From the top navigation, click Availability > Systems Overview > Portal.
2. Select a group and a server from the list boxes. The Portal Overview page displays the response times for the portals.
3. Click the Portlets link. The Portlet Summary page displays the slowest and the most popular portals.
4. Click the View all Portal Pages link.

Related topics

Configuring the Enterprise Overview
“Enterprise Overview” on page 85
The Enterprise Overview page shows a table of summary availability information for each server group.

“Group Overview” on page 86
The Group Overview page shows a table of availability information for each server in a server group.

“Server Overview” on page 86
The Server Overview page displays information and activity graphs for a server.

“Portal Overview” on page 88
The Portal Overview page shows availability information specific for IBM WebSphere Portal Server. You can access detailed portal statistics from this page.

Viewing the Portlet Summary

About this task

The Portlet Summary offers a view of the portlets in your system and how they are operating. You can monitor the status of your portlets from the slowest portlets to the most popular portlets for the last hour. In addition, view the metrics for the portlets including Average Response Time and Count for authentication and authorization, and credential and content access metrics as well.

To open the Portlet Summary page for the slowest and most popular portlets:
1. From the top navigation, click Availability > Systems Overview > Portal.
2. Select a group and a server from the list boxes. The Portal Overview page displays the response times for the portals.
3. Click the Portlets link. The Portlet Summary page displays the slowest and the most popular portlets.
Results

To open the Portlet Summary page for all the portlets for the last hour:
1. From the top navigation, click **Availability > Systems Overview > Portal**.
2. Select a group and a server from the list boxes. The Portal Overview page displays the portal trends for the last hour.
3. Click the Portlets link. The Portlet Summary page displays the slowest and the most popular portlets.
4. Click the View All Portlets link. The Portlet Summary page displays all the portlets for the last hour.

Related topics
- Configuring the Enterprise Overview
- “Enterprise Overview” on page 85
 The Enterprise Overview page shows a table of summary availability information for each server group.
- “Group Overview” on page 86
 The Group Overview page shows a table of availability information for each server in a server group.
- “Server Overview” on page 86
 The Server Overview page displays information and activity graphs for a server.
- “Portal Overview” on page 88
 The Portal Overview page shows availability information specific for IBM WebSphere Portal Server. You can access detailed portal statistics from this page.

WLM associated service class summary

About this task

The WLM Associated Service Class Summary page offers a way to view selected data from the Workload Manager (WLM) for z/OS and OS/390®, for the address space associated with a particular server, as well as its associated service class data and service class period data.

This feature is only available for z/OS servers.

To open the WLM Associated Service Class Summary:
1. From the top navigation, click **Availability > Systems Overview > Server**. The Server Overview selection page opens.
2. Select a group and a server from the list boxes. The Server Overview page opens displaying data for the selected server.
3. Click **Workload Management** from the tools button at Server Information. The WLM Associated Service Class Summary page opens.

Related topics
- Configuring the Enterprise Overview
- “Enterprise Overview” on page 85
 The Enterprise Overview page shows a table of summary availability information for each server group.
- “Group Overview” on page 86
 The Group Overview page shows a table of availability information for each server in a server group.
WLM associated service class period detail

About this task

The WLM Associated Service Class Period Detail page offers a way to view selected data from the Workload Manager (WLM) for z/OS and OS/390, for a selected service class period. This includes the response time distribution detail and delay detail information about each subsystem work manager.

To open the WLM Associated Service Class Period Details page:
1. From the top navigation, click **Availability > Systems Overview > Server**. The Server Overview selection page opens.
2. Select a group and a server from the list boxes. The Server Overview page opens displaying data for the selected server.
3. Click **Workload Management** from the tools button. The WLM Associated Service Class Summary page opens.
4. Click the name of one of the associated service class periods. The WLM Associated Service Class Period Detail page opens.

Results

To view the details for one of the associated service class periods, click its name. The “WLM associated service class period detail” page opens.

To view the WLM Enclave, click the **Enclave** tab. The WLM Enclave page opens. See “Viewing a WLM enclave.”

Related topics
- [Configuring the Enterprise Overview](#)
- [Enterprise Overview](#)
- [Group Overview](#)
- [Server Overview](#)

Viewing a WLM enclave

About this task

The WLM Enclave page offers a way to view selected data from the Workload Manager (WLM) for z/OS and OS/390, for an enclave.

For z/OS 1.2, all tokens in the Enclave are shown. There is no filtering on the basis of server instance; for z/OS 1.3 and above, only the tokens in the Enclave initiated by the server instance are shown.

To open the WLM Enclave page:
1. From the top navigation, click **Availability > Systems Overview > Server**. The Server Overview selection page opens.

2. Select a group and a server from the list boxes. The Server Overview page opens displaying data for the selected server.

3. Click **Workload Management** from the tools button. The WLM Associated Service Class Summary page opens.

4. Click the Enclave tab. The WLM Enclave page opens.

Related topics

- Configuring the Enterprise Overview
- "Enterprise Overview” on page 85
 The Enterprise Overview page shows a table of summary availability information for each server group.
- "Group Overview” on page 86
 The Group Overview page shows a table of availability information for each server in a server group.
- "Server Overview” on page 86
 The Server Overview page displays information and activity graphs for a server.

Server Statistics Overview

The Server Statistics Overview page shows a configurable set of application server level statistics. You can show the statistics for several servers on one page, and access other pages to view additional details for any server.

To view the Server Statistics Overview page, from the top navigation, click **Availability > Server Statistics Overview**.

To view statistics for an application server, select the server group and server name from the **Server Selection** pull down controls, and click the **Add Server(s)** button. You can add more than one server; every server will be represented by a line in the table. You can also select **All Servers** in the server name control to view information for all servers in a server group.

To remove a server from the page, click the X icon next to the server name.

Note: For servers running the z/OS platform, when you remove a server instance from the Server Statistics Overview page, the system removes all the server regions belonging to that server instance from the display since the system treats them as a group of clones.

To remove all servers from the page, click **Clear All** at the bottom of the list.

For every server, the table shows the configured statistics.

The statistics are refreshed periodically. To pause refreshing, click the **Pause** button. To resume refreshing (if it was paused) and force an immediate refresh, click the **Refresh** button.

To configure the statistics in the table, click **Customize**. See "Configuring the Server Statistics Overview page" on page 93.
Configuring the Server Statistics Overview page

About this task

Configure the Server Statistics Overview page by selecting the resources to display on the detail page. In addition, set the warning threshold for certain resources by selecting the desired function from the list box.

To configure the Server Statistics Overview page:
1. From the top navigation, click Availability > Server Statistics Overview. The Server Statistics Overview page opens.
2. Click Customize. The Server Statistics Configuration window opens.
3. Click Select All or click the individual check boxes to select the resource you want to display.
4. If you want to show a warning (color the table cell yellow) when a statistic is above or below a certain threshold, select an operator from the list box, and enter the threshold limit in the field next to it.
5. Click Save. For each data element on the Server Statistics Configuration page, set the range between 0-99999.

Results

You can select the following statistics:
- Volume Delta.
- Total Volume.
- Group name: the name of the group to which the server belongs
- Uptime: the time since the server was last rebooted
- Start Time: the time when server monitoring was started; this is usually the time the server was started
- Paging Rate
- Total CPU%: the current CPU load on the server
- Platform: the operating system that the server runs
- Live Sessions: the number of sessions currently open on the server
- Platform CPU Delta: the amount of CPU time spent since the last sample
- Application Server Platform
- Volume Delta per Second (If this value is >.5, it is rounded up to 1.)
- JVM/Region CPU Delta
- JVM/Region CPU%
- IP Address
- Average Response Time (1 min).
- Data Collector Uptime: the time since the Data Collector was started or restarted.
- JVM/Region (DSA,EDSA) Memory Usage.
- Delta Normal CP time: for z/OS servers, the amount of normal central processor time spent since last sample.
- Delta zAAP time: for z/OS servers, the amount of zAAP (additional CPU used exclusively for Java applications including WebSphere; requires z/OS 1.6 or above) time spent since last sample.
- Delta zAAP-eligible time on CP: for z/OS servers, the amount of normal central processor time since last sample that was spent on tasks eligible for a zAAP; this
happens when a zAAP is not present or busy. High values of this statistic can mean that an additional zAAP would be beneficial.

- Delta zAAP-eligible time: for z/OS servers, the amount of processor time (regardless of processor type) since last sample that was spent on tasks eligible for a zAAP. This is a sum of Delta zAAP time and Delta zAAP-eligible time on CP.

Related topics

- **“Enterprise Overview” on page 85**
 The Enterprise Overview page shows a table of summary availability information for each server group.

- **“Group Overview” on page 86**
 The Group Overview page shows a table of availability information for each server in a server group.

- **“Server Overview” on page 86**
 The Server Overview page displays information and activity graphs for a server.

Viewing the Server Statistics Overview

About this task

The Server Statistics Overview page provides application server-level statistics for quick assessment of server activity and related platform data. For thread data or system data on a server, or system data across a server group, click the tools button to view the information on the Server Activity Display page, the System Resources page, or the System Resources Comparison page respectively.

To open the Server Statistics Overview page:

1. From the top navigation, click **Availability > Server Statistics Overview** or by selecting from the Tools button on the Server Overview page.

2. The Server Statistics Overview page opens. The zAAP (zSeries® Application Assist processor) is a new hardware feature for zSeries. It is an additional CPU used exclusively for Java applications like WebSphere. zAAP requires z/OS 1.6 or above. ITCAM for WAS provides the following utilization statistics for the zAAP processors:
 - **Delta zAAP time** is the amount of CPU time spent on zAAP since the last sample.
 - **Delta Normal CP time** is the regular CP time for the address space.
 - **Delta zAAP-eligible time on CP** is the amount of time that could have been executed on zAAP but wasn’t because it was already busy. High eligible time could mean that an additional zAAP processor could be needed.
 - **Delta zAAP-eligible time** is the total amount of time that could have been executed on zAAP, i.e., delta zAAP + delta zAAP on CP.

Results

To remove a server from the Server Statistics Overview display:

1. Click the X icon next to the server. The server disappears from the display.

2. If you want to clear all the servers from the display, click **Clear All** at the bottom of the list. The page refreshes clear of any servers or information.

For the z/OS platform, when you remove a server instance from the detail page, the system removes all the server regions belonging to that server instance from the display since the system treats them as a group of clones.
Recent Activity Display

In the Recent Activity Display page, you can create a report that can help you to discover problems related to memory or other resources.

To create the report, see "Creating a Recent Activity report."

User Scenarios

Scenario 1: Evaluating the impact of garbage collection

You suspect that frequent garbage collection calls are affecting the performance of a server, so you go into Recent Activity and set up the first graph to display the Number of Garbage Collections metric for the last 48 hours. In the second graph, you roll through the different metrics possibly affected by frequent garbage collection.

The Garbage Collection option is not supported for either CICS or IMS.

Creating a Recent Activity report

About this task

Use Recent Activity when you need to investigate potential memory problems relating to garbage collection and the JVM heap size. At times garbage collection might not cleanup properly or the heap may have too little memory allocated.

To create a Recent Activity report:
1. From the top navigation, click Availability > Recent Activity Display. The Recent Activity Display page opens.
2. Select a group and a server from the list boxes.
3. For Metric 1 and Metric 2, select the two metrics you want to compare from the list boxes. The available metrics are as follows:
 • # of Requests
 • Avg. Response Time
 • Live Sessions
 • System Paging Rate
 • JVM CPU
 • JVM Heap Size
 • # of GCs
 • Total GC Time
 • Avg. Heap Size after GC

Note: The Garbage Collection options are not supported for either CICS or IMS.

When the date range is Last 48 Hours, the Avg. Response Time value equals the result of the summary of AVG_RES_TIME in this hour divided by the
summary counts of AVG_RES_TIME in this hour. If no AVG_RES_TIME occurs within the hour then the result is 0. When the date range is Last 60 Minutes, the Avg. Response Time value equals the result of the summary of AVG_RES_TIME in this minutes divided by the summary count of AVG_RES_TIME in this minute. If no AVG_RES_TIME occurs within the minute then the result is 0.

4. For Time, select the time when you want the system to extract the data.
5. Click the OK button. A new report displays based on your selection. You can click on the bars in the graph for further details.
6. Using the Recent Activity Options, you can select a different group or server, compare two different metrics, or view a different time increment.

Results

Either heap size or garbage collection can cause a slow down in your server’s performance. Find out if your heap size is too small for the number of users using the system or too small for the current workload on the system. At times, garbage collection can cause high JVM CPU usage, slow transaction response time, or a delay that impacts throughput. Analyze the memory in your system using the Recent Activity Display and then make the necessary adjustments.

Related topics

- Creating a Memory Analysis report
- Creating a Memory Leak Candidate Finder report
- Setting up a Heap Analysis

System resources

The System Resources pages provide views of system, resource metrics available for an application server. You can use this information to tune the application server.

Select the group and server names to view the System Resources Browser. See “Viewing the System Resources Browser.”

This feature is not available for CICS or IMS.

User Scenarios

Scenario 1: Eliminating bottlenecks

The response time of application A becomes unacceptable once the server is experiencing modest throughput. You see that much of the resident time is spent idle. To see if the cause is a bottleneck in the application server pools, use System Resources during these times to view the percentage of threads used in the Database Connection Pools, Thread Pools, and JCA Connection Pools. If any pool is at or near 100%, it is likely that demand for application A is saturating those resources. You might be able to fix the problem by creating more or larger pools.

Viewing the System Resources Browser

About this task

The System Resources Browser displays summary information for all the resources on the selected application server. You can view data, such as EJBs, Database/JCA
Connection Pools, Servlet/Session Manager, Thread Pools, JTA Transactions, Web Applications, SQL Data, JCA-CICS, ORB, and JVM/System.

To open the System Resources Browser:
1. From the top navigation, click **Availability > System Resources**. The System Resources Overview page opens. The right side of the page is the System Resources Overview page while the left side is the navigation for the System Resources Browser. You can also access this page from the toolbox icon on the Server Activity Display page.
2. Select a group and a server from the list box on the left navigation panel. The System Resources Browser opens displaying the information for the selected group and server. If you access this page from the Tivoli Enterprise Portal and from the Server Activity Display page, the server group name and server name display automatically.
3. Mouse over the question mark icon next to each of the following items; EJB Activity, Servlet JSP Activity EJB Coverage and Servlet JSP Coverage, for additional information.

Results

Use the Resource Categories left navigation pane to select the category of resources that you need to view. For the available resource categories, see "Resources Performance Metrics."

To change the application server:
1. On the left navigation pane, select a group from the list box.
2. On the left navigation pane, select a server from the list box.

Note: In the Current Snapshot view, if more that 50 objects are retrieved, then sorting is disabled. You can view 5, 10 or 15 rows per page.

Related topics
- Configuring the Enterprise Overview
- “Enterprise Overview” on page 85
 The Enterprise Overview page shows a table of summary availability information for each server group.
- “Group Overview” on page 86
 The Group Overview page shows a table of availability information for each server in a server group.
- “Server Overview” on page 86
 The Server Overview page displays information and activity graphs for a server.

Resources Performance Metrics

About this task

You can drill down into different pages of the resources to view detailed information. The following information provides the metrics for various metric categories and the application servers that support them.

WebSphere 5.x
- Servlet
- EJB Module
• Entity Bean
• Stateful Session Bean
• Message Driven Bean
• J2EE Server
• J2EE Application
• Web Module
• JDBC Provider
• Data Source
• RAR Module
• Resource Adapter
• Thread Pool
• Orb
• JVM
• Dynamic Cache
• JMS Provider
• JMS Server
• Listener Port
• Mail Provider
• Session Manager
• J2C Connection Factory
• Transaction Service
• Trace Service
• URL Provider
• Web Services Service
• System Metrics
• WLM Module
• WSGW Module
• Object Pool Module
• SQL
• CTG
• MQI

WebSphere 5.x\Lotus Mail Services
• Bean Module
• Cache Module
• Connection Pool Module
• JVM Runtime Module
• Orb Module
• Servlet Session Module
• System Module
• Thread Pool Module
• Transaction Module
• Web Application Module
• Mail Service Module
• IMAP Service Module
- Queue Manager Module
- POP Service Module
- SQL
- CTG
- MQI

WebSphere 6
- Servlet
- JVM
- J2EE Domain
- J2EE Server
- J2EE Application
- EJB Module
- Web Module
- RAR Module
- Entity Bean
- Stateful Session Bean
- Stateless Session Bean
- Message Driven Bean
- Resource Adapter
- JDBC Resource
- JDBC Data Source
- JDBC Driver
- JCA Resource
- JCA Connection Factory
- JCA Managed Connection Factory
- JNDI Resource
- JMS Resource
- JTA Resource
- RMIIOOP Resource
- Thread Pool
- Orb
- Dynamic Cache
- Servlet Session Manager
- Transaction Service
- HA Manager Module
- System Module
- J2C Module
- Web Services Module
- WLM Module
- WSGW Module
- Object Pool Module
- Alarm Manager Module
- Schedulers Module
- DCS Statistics Module
• SQL
• CTG
• MQI
• **SIB (System Integration Bus)**
 – Message Store
 – Mediation Framework
 – Message Processor
 – Communications

WebSphere ESB (Enterprise Service Bus) 6.x
• Servlet
• JVM
• J2EE Domain
• J2EE Server
• J2EE Application
• EJB Module
• Web Module
• RAR Module
• Entity Bean
• Stateful Session Bean
• Stateless Session Bean
• Message Driven Bean
• Resource Adapter
• JDBC Resource
• JDBC Data Source
• JDBC Driver
• JCA Resource
• JCA Connection Factory
• JCA Managed Connection Factory
• JNDI Resource
• JMS Resource
• JTA Resource
• RMIIIOIP Resource
• Thread Pool
• Orb
• Dynamic Cache
• Servlet Session Manager
• Transaction Service
• HA Manager Module
• System Module
• J2C Module
• Web Services Module
• WLM Module
• WSGW Module
• Object Pool Module
- Alarm Manager Module
- Schedulers Module
- DCS Statistics Module
- SIB Service
- SQL
- CTG
- MQI
- **SIB (System Integration Bus)**
 - MessageStore
 - Mediation Framework
 - Message Processor
 - Communications

WebSphere Process Server 6.x
- Servlet
- JVM
- J2EE Domain
- J2EE Server
- J2EE Application
- EJB Module
- Web Module
- RAR Module
- Entity Bean
- Stateful Session Bean
- StatelessSession Bean
- Message Driven Bean
- Resource Adapter
- JDBC Resource
- JDBC Data Source
- JDBC Driver
- JCA Resource
- JCA Connection Factory
- JCA Managed Connection Factory
- JNDI Resource
- JMS Resource
- JTA Resource
- RMIOP Resource
- Threadpool
- Orb
- Dynamic Cache
- Servlet Session Manager
- Transaction Service
- HA Manager Module
- System Module
- J2C Module
• Web Services Module
• WLM Module
• WSGW Module
• Objectpool Module
• Alarm Manager Module
• Schedulers Module
• DCS Statistics Module
• SIB Service
• SQL
• CTG
• MQI
• SIB (System Integration Bus)
 – MessageStore
 – Mediation Framework
 – Message Processor
 – Communications

J2EE

WebLogic 8
• Web module
• Servlet
• Entity EJB
• Stateless EJB
• Stateful EJB
• Message Driven EJB
• Message Driven EJB Destination
• JDBC Connection Pool Resource
• JCA Connection Pool
• JMS Session
• JTA Resources
• JVM System
• JVM System Server
• Execute Queue
• Execute Queue Runtime

WebLogic 9.1
• Web module
• Servlet
• Entity EJB
• Stateless EJB
• Stateful EJB
• Message Driven EJB
• Message Driven EJB Destination
• JDBC Connection Pool Resource
• JCA Connection Pool
• JMS Session
• JTA Resources
• JVM System Server
• Execute Queue
• Thread Pool

JBoss 3 and 4
• Web module
• Servlet
• EJB Module
• Entity EJB
• Stateless EJB
• Stateful EJB
• Message Driven EJB
• JDBC Connection Pool
• JCA Connection Pool
• JMS Session
• JTA Resources
• JVM/System

Tomcat 5.0 and 5.5
• Web module
• Servlet
• Cache
• Thread Pool
• Session Manager

Oracle Application Server 9.x
• Operating System

Oracle Application Server 10.x
• Web module
• Servlet
• EJB Module
• Entity EJB
• Stateful Session Bean
• Stateless Session Bean
• Message Driven Bean
• JDBC Data Source
• JVM

Netweaver 6
• Component Performance
• Request Performance
• Performance Summary
• Thread Pool
• Web Container
The following performance metrics are supported on any application server which supports the underlying call interface. The following categories are available:

- CICS transactions
- Queue manager
- SQL

Related topics

- [Configuring the Enterprise Overview](#)
- [“Enterprise Overview” on page 85](#)
 The Enterprise Overview page shows a table of summary availability information for each server group.
- [“Group Overview” on page 86](#)
 The Group Overview page shows a table of availability information for each server in a server group.
- [“Server Overview” on page 86](#)
 The Server Overview page displays information and activity graphs for a server.

SMF data

The SMF data pages show the information collected by the System Management Facilities (SMF) on z/OS servers.
In these pages, you can view detailed information on Server, EJBs, Servlet Session Manager, Web Applications, and Server Regions. The source of the data comes primarily from the SMF records published periodically by WebSphere. As these records are published, the Application Monitor intercepts the transfer of the records and makes a copy in real time before writing it to the SMF dataset.

To view SMF data, select the group name and server name. (SMF data is only provided for z/OS servers). See “Viewing SMF data.”

User Scenarios

Scenario 1: Pinpointing problems

Application A’s response time slows to unusable when the server experiences even moderate throughput, while resident time is idle. Using SMF data, view the percentage of threads used in the Database Connection Pools, Thread Pools, and JCA Connection Pools; this will tell you if there is a bottleneck in the application server pools. Any pool that is at or near 100% is most likely being overwhelmed by application A’s requests for those resources. To fix the problem, you can create more or larger pools.

Viewing SMF data

About this task

The following information provides the metrics for the SMF data type and the application servers it supports.

WebSphere 5 and 6

- Overview
- Server
- EJBs
- Servlet Session Manager
- Web Applications
- SQL
- JCA-CICS

z/WebSphere only

The following information provides the metrics for the z/WAS only data type and the application servers it supports.

WebSphere 5

Server Regions

To view the SMF data page:

1. From the top navigation, click Availability > SMF Data. The SMF Data page opens.
2. Select a group and a server from the list box on the left navigation panel. The SMF Data page opens displaying the information for the selected group and server. If you have come to this page directly from the Tivoli Enterprise Portal, the group name and server name display automatically.

Related topics
Alerts and Events

In the Alerts and Events page, you can view the alerts and events generated by Managing Server traps and by the Tivoli Enterprise Portal, and escalate these events into the Problem Center for diagnosis and tracking.

To display ITCAM situations in Alerts and Events, complete the following setup:

1. Go to the Managing Server Visualization Engine host.
2. Open the file $MS_HOME/etc/dal/dal.properties set the correct values for the following properties:

 `dal.itmsoap.hostName=`

 `dal.itmsoap.port=1920`

 `dal.itmsoap.useHttps=false`

 For UNIX and Linux platforms, $MS_HOME is by default /opt/IBM/itcam/WebSphere/MS.
 For Windows platforms, $MS_HOME is by default C:\Program Files\IBM\itcam\WebSphere\MS.

To view the Alerts and Events page, from the top navigation, click Problem Determination > Alerts and Events.

The page shows a table of all high-priority trap alerts and Tivoli Enterprise Portal events for the last 24 hours for a selected server.

To change the server, select the group and server names from the pull down controls, and click the OK button.

To show only alerts or only events, select Alerts or Events from the Status control, and click the OK button.

To filter the displayed alerts and events by date and time, click Show Advanced Filters, check the Date Range box, then select the date and time range in the From and To controls and click the OK button.

For every alert or event, the table shows:

- Date and Time of the alert or event.
- Server group name.
- Server name.
- Name of alert or event.
- Origin of the event (trap or Tivoli Enterprise Portal).
- Escalate button.

To escalate an alert or event, adding it to the Problem Center, click the Escalate button. See “Escalating alerts and events to the Problem Center” on page 107.
Escalating alerts and events to the Problem Center

About this task

When you need to diagnose an alert in order to resolve it, you can escalate it as a problem in the Problem Center. This will allow you to keep track of the data related to the alert and provide further information that might help you resolve the issue. If you escalate an alert to a problem, your actions will be recorded in the audit trail.

To open the Alerts and Events page:
1. From the top navigation, click Problem Determination > Alerts and Events. The Alerts and Events page opens.
2. Select a group and a server from the list box. This will limit the alerts to the server and group you specify.
3. If you want to escalate an alert to a problem for tracking, click Escalate.
4. Type in a description of the problem in the text box. (A description is not required.)
5. Select the Category from the list box. The available categories are as follows:
 - **Unknown**–The category could not be determined by the system.
 - **Application Performance**–Under capacity, hanging or waiting incomplete transaction, CPU hogging, poor load balancing, slow completed transaction, slow JDBC call, slow, LDAP look-up, slow JMS call, and slow method call.
 - **Application Outage**–exception, incorrect output, intermittent outage, binaries discrepancies within a group/cluster, and properties discrepancies across a group/cluster.
 - **Resource Consumption**–JDBC connection leak, JMS connection leak, heap usage, heap/object lead, excessive JVM CPU%, high garbage collection frequency, high garbage collection time, and fragmentation.
6. Click **OK** to save as a problem. The problem displays in the Problem Center.
7. Click the Problem Center tab to view your problem.

Results

Using the advanced filters:
1. Click the Show Advanced Filters link.
2. Click the check box to set the advanced filters.
3. Select the dates and times you want to use to limit your list of problems.
4. Click **OK**. The list displays based on the filtering you selected.

Related topics

“Problem Center”

The Problem Center page shows problems that were previously escalated from actions or events or added manually. You can investigate problems, close them, and add new problems.

Problem Center

The Problem Center page shows problems that were previously escalated from actions or events or added manually. You can investigate problems, close them, and add new problems.
To view the Problem Center, from the top navigation, click **Problem Determination** > **Problem Center**.

Escalated problems are normally high-priority trap alerts and Tivoli Enterprise Portal events, escalated from the "Alerts and Events" on page 106 page. The details of each problem, including a snapshot of the problem details and the state of the application server at the time the problem occurred, are available for review.

A problem has a *status* value:
- **New**: the status assigned by the system to newly created problems.
- **Open**: the status assigned by the system after a user opens a problem.
- **Closed**: the status assigned by the user when he closes a problem. Closed problems are deleted from the system after 30 days.

Initially, all problems are shown in the Problem Center table.

To show only the problems for a particular server, select the group and server names from the **Filter** controls, and click the **OK** button.

To show only the problems with a particular status, select the status from the **status** control, and click the **OK** button.

To show only problems that occurred in a limited date/time range, click **Show Advanced Filters**, check the **Date Range** box, then select the date and time range in the **From** and **To** controls and click the **OK** button.

For every problem, the table shows:
- Date and Time the problem occurred.
- Server group name.
- Server name.
- Problem category, set when the problem was escalated. See "Escalating alerts and events to the Problem Center" on page 107.
- Origin of the problem (trap, Tivoli Enterprise Portal, or manual creation).
- Name of the problem.
- Description of the problem, entered when the problem was escalated. See "Escalating alerts and events to the Problem Center" on page 107.
- Closing comment, entered when the problem is closed. The field is empty for new or open problems.
- Problem status (New, Open, or Closed).
- **Delete** button.

To view the details of a problem, click its date/time. See "Viewing the details of a problem" on page 109.

To close a problem, select Closed in the **Problem status** control in the table row. See "Closing a problem" on page 111.

To delete a problem, click the **Delete** button.

To add a problem manually, click the **Add Problem Manually** button at the bottom of the table. See "Adding a problem manually" on page 111.
Viewing the details of a problem

About this task

The Problem Center displays a list of all the high-priority trap alerts and Tivoli Enterprise Portal events that were escalated to problems as well as problems entered manually. You can view further details on each problem by selecting the Date/Time link for the problem. This will enable you to access the tabs that furnish further diagnostic information.

To view the details of a problem:

1. From the top navigation, click Problem Determination > Problem Center. The Problem Center opens.
2. Select the Date/Time link for the problem. The details for the problem open to the Problem tab. Several tabs provide further problem details including memory, transactions, resources, traps, logs, and configuration. The information provided by each tab is useful in diagnosing the problem. The function of each tab is described in the following section:
 - **Problem** - displays an analysis based on the user-defined category of the problem assigned when the problem was escalated from Alerts and Events. Each category contains a set of contributing factors. The system will analyze whether there was a positive result or not and suggest a solution based on the data. You can change the status of a problem, edit the problem's description, and change the problem's category.
 - **Memory** - displays information related to the event or alert, identification for the server, status of the server, filter to display previous hours of data (1, 2, 6, 12, 24, or 48 hours), actions to perform (Heap dump and Thread dump), a snapshot of the current memory usage information, a graph for the Average Heap Usage after Garbage Collection (GC), and trends for the Heap Size, Number of Requests, Number of Sessions, Response time, Number of GCs, CPU usage, GC time, and Paging rate.
 - **Transactions** - displays information related to the event or alert, identification for the server, status of the server, filter to display previous hours of data (1, 2, 6, 12, 24, or 48 hours), action to perform (Thread dump), a snapshot of the current transaction usage information, trends for the Response time, JVM CPU Usage, Number of Sessions, Number of Requests, and Heap Usage, ranks the slowest transactions in a list, and provides a Transaction Snapshot of all the transactions.
 - **Resources** - displays information related to the event or alert, identification for the server, and opens the JMX browser page. In the Current Snapshot table, the list displays based on the filtering you select. If more that 50 objects are retrieved, then sorting is disabled. You can view 5, 10 or 15 rows per page.

Complete the following setup steps to see data in the TEMA data snapshot section.

a. Go to the Managing Server Visualization Engine host.
b. Open the file $MS_HOME/etc/dal/dal.properties set the correct values for the following properties:

 dal.itmsoap.hostName=

 dal.itmsoap.port=1920

 dal.itmsoap.useHttps=false

 For UNIX and Linux platforms, $MS_HOME is by default /opt/IBM/itcam/WebSphere/MS.
For Windows platforms, MS_HOME is by default C:\Program Files\IBM\itcam\WebSphere\MS.

c. Restart the Managing Server Visualization Engine server instance.

Monitoring Console - the Monitoring Console button launches the Tivoli Enterprise Portal browser client from the Managing Server Visualization Engine. Complete the following steps to enable this feature:

a. Go to the Managing Server Visualization Engine host.

b. Open the file $MS_HOME/etc/ve.properties set the correct values for the following properties:

 - `tep.hostname=`
 - `tep.port=1920`
 - `tep.baseurl=///cnp/kdh/lib/cnp.html`
 - `tep.userid=`

 For UNIX and Linux platforms, MS_HOME is by default /opt/IBM/itcam/WebSphere/MS.

 For Windows platforms, MS_HOME is by default C:\Program Files\IBM\itcam\WebSphere\MS.

c. Restart the Managing Server Visualization Engine server instance.

- **Traps** - displays information related to the event or alert, identification for the server, action to perform (New Trap), and Trap Action History, which provides the date the trap occurred, name of the trap, server name, severity, and the action taken. From the Action Taken, you can access the results of the action. For example, if a method trace was taken, you can click this link to go to the properties page for this method trace. In addition, you can delete the history of a trap you no longer need.

- **Logs** - displays information related to the event or alert, identification for the server, filter to display by entry type (All, Warning, or Error), and a scrape of the log files.

Viewing log data. Data under the Logs tab comes from the ITCAM TEMA agents. Complete the following setup steps to view this data:

a. Go to the Managing Server Visualization Engine host.

b. Open the file $MS_HOME/etc/dal/dal.properties set the correct values for the following properties:

 - `dal.itmsoap.hostName=`
 - `dal.itmsoap.port=1920`
 - `dal.itmsoap.useHttps=false`
 - `tep.userid=`

 For UNIX and Linux platforms, MS_HOME is by default /opt/IBM/itcam/WebSphere/MS.

 For Windows platforms, MS_HOME is by default C:\Program Files\IBM\itcam\WebSphere\MS.

c. Restart the Managing Server Visualization Engine server instance.

- **Configuration** - displays information related to the event or alert, identification for the server, and a filter to display previous hours of data (1, 2, 6, 12, 24, or 48 hours).

3. You can add a description, change the problem's status, or change the category for a problem by clicking the **Edit** button in the Event box. See the Contributing Factors section for more information about the problem.

Related topics
Adding a problem manually

About this task

You might need to add a problem to the Problem Center manually, for example, if your monitoring software does not interface with ITCAM or if you discover a problem that does not have a trap associated with it. You can do this in the Problem Center using the Add Problem Manually button. As a result, you will be able to access the problem details after creating the problem.

To add a problem manually:
1. From the top navigation, click Problem Determination > Problem Center. The Problem Center opens.
2. At the bottom of the page, click the Add Problem Manually button.
3. Select the group and server where the problem exists from the list boxes.
4. Select the date from the list box and enter a time in the text box.
5. Enter a name and description for the problem in the text box.
6. Select the Category from the list box. The available categories are as follows:
 • Unknown—The category could not be determined by the system.
 • Application Performance—Under capacity, hanging or waiting incomplete transaction, CPU hogging, poor load balancing, slow completed transaction, slow JDBC call, slow, LDAP look-up, slow JMS call, and slow method call.
 • Application Outage—Exception, incorrect output, intermittent outage, binaries discrepancies within a group/cluster, and properties discrepancies across a group/cluster.
 • Resource Consumption—JCBC connection leak, JMS connection leak, heap usage, heap/object lead, excessive JVM CPU%, high garbage collection frequency, high garbage collection time, and fragmentation.
7. Click OK to save as a problem. The problem displays in the list in the Problem Center with the status as new.
8. Additional details on the problem are available when you select the Date/Time link for the problem. See Viewing the details of a problem on page 109 for more information.

Related topics

“Problem Center” on page 107
The Problem Center page shows problems that were previously escalated from actions or events or added manually. You can investigate problems, close them, and add new problems.

Viewing the details of a problem

Closing a problem

About this task

Close a problem in the Problem Center when the issue is resolved. After you close a problem, you are given the option to delete it from the Problem Center. If you elect not to delete a problem, your closed problem will be deleted from the system after 30 days.
To close a problem:
1. From the top navigation, click **Problem Determination > Problem Center**. The Problem Center opens.
2. View all Open problems by selecting Open from the Status list box and click **OK**. Find the problem you want to close.
3. To change the status of an open problem to closed, select Closed from the list box in the Status column. A Closing Comment text box opens.
4. Add your final notes to the problem in the Enter Closing Comment text box and click **OK**. Your notes will display in the Closing Comment column and the problem’s status will change to Closed.

Related topics
- Adding a problem manually
- Viewing the details of a problem

In-flight request search

In the In-flight request search page, you can search for requests that are currently open on an application server. As a request normally closes relatively quickly, this search is useful for locating hanging transactions, which result from an application malfunction.

To search for a request in a server group, select the group name in the **Group** control.

To search for a request in an individual server, select the group name in the **Group** control and the server name in the **Server** control.

If you have come to this page directly from the Tivoli Enterprise Portal, the group name and server name display automatically.

To search for a request that has a substring in the URL string (for Web requests) or class name (for EJB requests), enter the substring in the **Search Request/Transaction** control.

Click the **OK** button to perform the search and view the results. See “Searching for an Application Request” on page 113.

User Scenarios

Scenario 1: Investigating a hanging transaction

Customers call and complain they are having trouble completing transactions. You go to In-flight Request Search to locate a hanging transaction and, upon finding one, view a method trace for the transaction. You can see that the transaction is waiting for the return of a specific SQL call. You forward the method trace to a database administrator for further analysis.

Scenario 2: Isolating a problem with CPU utilization

After looking at the Server Statistics Overview page, you notice that CPU utilization is very high. You go to the In-flight Request Search to see if a transaction is present. It appears the system is churning on a transaction. Through a method trace, you suspect the transaction is looping. You forward the method trace to a developer for further analysis.
Searching for an Application Request

About this task

The In-flight Request Search page lets you search for open, troubled requests in your server farm.

From the search results you can follow any request's Thread/Task ID link to view the Request Detail for that request. Click on any column heading to sort the search results by that column. Click the column heading again to reverse the sort. In addition, click the Tools button to view the Server Activity Display page or the System Resources page for that server.

The In-flight Request Search is not case sensitive.

To search for a request:
1. From the top navigation, click Problem Determination > In-Flight Request Search. The In-flight Request Search page opens.
2. Select a group or server from the list box.

 Note: If you do not select a group or server, requests from all servers will display.
3. Enter a string in the Search Request box.

 Note: The system will search all active URL strings (for Web requests) and active class names (for remote EJB requests) for the string entered in step 2. If any request contains the string, (Web requests or remote EJB requests), the results page will display those requests. In addition, if you leave the search request box empty, all active requests will display.
4. Click OK. All the active requests associated with your search display in the order of descending Total Resident Time. To change the order, see “Sorting search results.”

Related topics

Activating a thread
Cancelling a request
Changing a thread's priority
E-mailing a PDF file - SAD
Exporting to a file - SAD
Searching a Method Trace
Suspending a thread
Viewing a Method/Component Trace - Flow View
Viewing a PDF file - SAD
Viewing a Stack Trace
Viewing Request detail
Viewing the request object and session object

Sorting search results

About this task

You can sort your search results in alphabetical order according to the Server Names, by Client Request / Transaction, or in numeric order with Start Date / Time, Total Resident Time and User ID.
To sort the search results:
1. Click a column heading to sort the results. You can only sort by columns with underlined headings.
2. When the page refreshes, the results display sorted by the selected heading.
3. Click the column heading a second time to sort the results in reverse order.

Related topics
- Searching for an Application Request
- Viewing a Composite Method Trace - In-flight Request Search
- Viewing a Composite Request Detail - In-flight Request Search
- Viewing a Composite Stack Trace - In-flight Request Search

Server Activity Display

The Server Activity Display page shows a table of request activity on an application server. This page can help you troubleshoot and fix hanging requests and evaluate the current performance of your applications.

You can access the Server Display using one of the following options:

- From the top navigation, click **Problem Determination > Server Activity Display** to display the Server Activity Display page.
- If you have logged in from the Tivoli Enterprise Portal the information about the server group name and server name files is already complete.

For more information see "Access the Managing Server Visualization Engine from Tivoli Enterprise Portal" on page 39.

To set the server for which the activity is displayed, select the server group name and server name.

To show requests currently being processed by the server, click the **Active Requests** tab. See "Server Activity Display - active requests" on page 115.

To show requests recently processed by the server, click the **Recent Requests** tab. See "Server Activity Display - recent requests" on page 117.

To show requests that are hanging because they are waiting on a lock, click the **Lock Contentions** tab. See "Server Activity Display - lock contentions" on page 118.

User Scenarios

Scenario 1: Troubleshooting an application that hangs.

Several users of application Z have reported that they can’t update their user preferences: Application Z times out after a minute of not responding. You look for the application Z requests that have long resident times in the Active Requests tab of the Server Activity Display. View the Request Detail for one of these requests to determine why or where it is hanging.

Scenario 2: Understanding immediate workload.

While performing normal monitoring of your servers, you notice that a server’s average response time has recently increased, with no appreciable change in throughput. You begin by looking at the Recent Requests tab of the Server Activity Display.
Display to see what the most recently completed requests have been on that server. You can see whether the requests are uniformly slow, or if there is variation among requests; this can help you isolate whether it is a problem with the server (uniformly slow), or with an application (certain requests are slow). You can see whether the slow requests are CPU-heavy, or if they are spending too many moments idle.

Server Activity Display - active requests

About this task

The Active Requests tab displays thread data for an application server at a specific point in time.

Data in this section is constantly fluctuating. Active requests display a snapshot of the data at a specific point in time. As a result, requests can be completed and disappear from the display on refresh, or by the time you drill down.

To open the Server Activity Display (active requests) page:

1. From the top navigation, click **Problem Determination > Server Activity Display**. The Server Activity Display page opens.
2. Select a group and a server from the list box. If you have come to this page directly from the Tivoli Enterprise Portal, the group name and server name display automatically.

Results

The Active Requests tab has three main sections

- Server Information
- Recent Activity (Last Minute)
- Active Requests (In JVM Memory Now)

Server Information provides details relating to the server. It also has a toolbox icon. You can click this toolbox icon to access direct links to the following features. The feature you select displays information specific to the group sever and server name you select.

- JVM Display
- System Resources
- Monitoring On Demand
- Data Collector Profiles
- Trap and Alert Management

Recent Activity (Last Minute) displays the following features. You can click a link to create a Recent Activity Report for the item you want to select.

- JVM CPU
- JVM Heap Size (MB)
- # of Requests
- # of live Sessions
- Average Response Time (MS)

Active Requests (In JVM Memory Now) you can use this section of the page to view information about thread types and to view request details.
To filter the active requests data:

1. You can filter active request by selecting the options available on the **Thread Type** and **Thread Status** drop-down menus.
2. Click **Thread Type**, select one of the following options from the drop-down menu:
 - Any
 - EJB
 - Servlet
 - JSP
 - CICS
3. Click **Thread Status**, select one of the following options from the drop-down menu:
 - Any
 - Active
 - Suspended
 - Waiting
4. Click **Refresh**. The active requests data displays based on the selected filter.

To sort the active requests data:

1. Click a heading link:
 - Client Requests
 - Client Requests Start
 - Thread ID
 - Resident Time (ms)
 - Accumulated CPU (ms)
 - Idle Time (ms)
 - Thread Status
 - Last Known Class
 - Last Known Method
 - Last Known Action
 - User ID
 The data refreshes sorted by the selected heading.
2. Click the heading link a second time to invert the sorting.

To view request detail, click the link in the **Client Requests** column. From the request detail view, you can investigate further details, suspend and reactivate the request thread, and change its priority.

Related topics

- Activating a thread
- Canceling a request
- Server Activity Display - recent requests
- Viewing the request detail
Server Activity Display - recent requests

About this task

The Recent Requests page displays list of the recently completed requests for the user to review the recent activity data on a per-server basis. The default maximum number of recent activity data is 100. The maximum number of recent activity data applies to each server. When the queue is full, the newest request data replaces the oldest data.

To open the Server Activity Display (recent requests) page:

If you have logged in from the Tivoli Enterprise Portal page, all the relevant information including the server group name and server name display automatically.

1. From the top navigation, click Problem Determination > Server Activity Display. The Server Activity Display page opens.
2. Select a group and a server from the list boxes. If you have come to this page directly from the Tivoli Enterprise Portal, the group name and server name display automatically. The Server Activity Display (active requests) page opens. The information for the selected server group displays.
3. Click Recent Requests. The Recent Requests tab opens displaying the 100 most recently completed requests.

Results

The Recent Requests tab has three main sections
- Server Information
- Recent Activity (Last Minute)
- Recent Requests (Last 100 Completed Requests)

Server Information provides details relating to the server. It also has a toolbox icon. You can click this toolbox icon to access direct links to the following features. The feature you select displays information specific to the group sever and server name you select.
- JVM Display
- System Resources
- Monitoring On Demand
- Data Collector Profiles
- Trap and Alert Management

Recent Activity (Last Minute) displays the following features. You can click a link to create a Recent Activity Report for the selected item.
- JVM CPU
- JVM Heap Size (MB)
- # of Requests
- # of live Sessions
- Average Response Time (MS)

Recent Requests (Last 100 Completed Requests) displays completed requests you can filter this information by Thread Type. To filter the recent request data:
1. You can filter recent requests by selecting the options available on the **Thread Type** drop-down menu and then clicking Refresh to display the results.

2. Click **Thread Type**, select one of the following options from the drop-down menu:
 - Any
 - EJB
 - Servlet
 - JSP
 - CICS

3. Click **Refresh**. The active requests data displays based on the selected filter.

To sort the recent request data:

1. Click a heading link:
 - Client Requests
 - Client Requests Start
 - Response Time (ms)
 - Accumulated CPU (ms)
 - Idle Time (ms)
 - Thread Type
 - User ID

2. The data refreshes sorted by the selected heading.

To view request detail, click the link in the **Client Requests** column.

Related topics
- Activating a thread
- Server Activity Display - active requests
- Viewing the request detail

Server Activity Display - lock contentions

About this task

Use the Lock Contentions tab when a request is taking too long to process and you want to know why. The Lock Contentions tab displays any requests that are hanging because they are waiting on a lock. The data shows both the object that has the lock and the one that is waiting for a lock.

To open the Server Activity Display (lock contentions) page:

1. From the top navigation, click **Problem Determination > Server Activity Display**. The Server Activity Display page opens.

2. Select a group and a server from the list box. The Server Activity Display (active requests) page opens. The information for the selected server group displays. If you have come to this page directly from the Tivoli Enterprise Portal, the group name and server name display automatically.

3. Click **Lock Contentions**. The Lock Contentions tab opens displaying the active locks. If no locks have occurred, the system message says, "There are no classes instrumented for lock analysis."
Results

If there are any Active Locks (for active requests) the information displays under the following column headings:

- Locked Object Class
- Owners Request/Transaction Name
- Owners Request/Transaction Type
- Owner Class
- Owner Method
- Waiting Time (ms)
- Waiting Class
- Waiting Method
- Waiting Request/Transaction Name
- Waiting Workload Type

Related topics
- Activating a thread
- Canceling a request
- Server Activity Display - active requests
- Server Activity Display - recent requests
- Viewing the request detail

Viewing request detail

About this task

The Request Detail page provides data for one request only. Typically you arrive on this page by clicking a Client Request's link on the Server Activity Display (in the Active Requests tab) page.

Through the left navigation of the Request Detail page, you can obtain a Stack Trace or Method/Component Trace, or view the Request/Session Object. If necessary, you can cancel a request, and change the thread's priority or status.

To open the Request Detail page:
1. From the top navigation, click Problem Determination > Server Activity Display. The Server Activity Display page opens.
2. Select a group and a server from the list boxes. The Server Activity Display (active requests) page opens. The information for the selected server group displays unfiltered.
3. Click the link in the Client Requests' column.
4. The Request Detail page for that request opens. This page displays data for that request only.

Results

If the request is not yet completed, you can perform the following additional actions on it:

- To suspend the request thread, select Suspend from the Change Thread Status control. See "Suspending a thread" on page 120.
- To re-activate a suspended thread, select Active from the Change Thread Status control. See "Activating a thread" on page 120.
To cancel the request, click the **Cancel Request** button. See “Canceling a request” on page 121.

To change the priority of the request thread, select a priority from the **Change Priority** control. See “Changing a thread’s priority” on page 121.

To view a Stack Trace, showing which methods were called to reach the current state of the request thread, click **Stack Trace** on the left navigation pane. See “Viewing a Stack Trace” on page 122.

To view a request object and session object, click **Request/Session Object** on the left navigation pane. See “Viewing a request object and session object” on page 123.

To view a Method/Component Trace, click **Method/Component Trace** on the left navigation pane. From this view, you can search the trace and export it to a file. See “Viewing a Method/Component Trace - flow view” on page 122.

Related topics

- Canceling a request
- Changing a thread’s priority

Suspending a thread

About this task

An executing thread is active, and a paused thread is suspended. Suspend a thread if there is a problem with it and you want to uncover the cause.

To suspend a thread:

1. From the top navigation, click **Problem Determination > Server Activity Display**. The Server Activity Display page opens.
2. Select a group and a server from the list boxes. The Server Activity Display (Active Requests) page opens.
3. Click the link in the Client Request column. The Request Detail page for that request opens.
4. From the Change Thread Status list box, select **Suspend**.
5. Click **OK**.

Results

When suspending a thread, there is a danger that the request might hold database locks or system resources. After you suspend the request, any other requests that require the removal of those locks or monitors will also be suspended. Any locks in the application server and database server will not be released after the system suspends a thread. This can cause other applications to fail or hang.

Related topics

- Activating a thread
- Canceling a request
- Changing a thread’s priority

Activating a thread

About this task

A thread is executing if it is active, and the thread is paused when it is suspended. Select **Active** status to re-activate a suspended thread.
To activate a thread:

1. From the top navigation, click Problem Determination > Server Activity Display. The Server Activity Display page opens.
2. Select a group and a server from the list boxes. The Server Activity Display (Active Requests) page opens.
3. Click the link in the Client Request column. The Request Detail page for that request opens.
4. From the Change Thread Status list box, select Active.
5. Click OK.

Related topics
- Canceling a request
- Changing a thread priority
- Suspending a thread

Canceling a request
About this task

If an application request from the system is looping or abusing resources, it might be necessary to cancel the request. This will terminate the request by throwing a run-time exception.

To cancel a request:

1. From the top navigation, click Problem Determination > Server Activity Display. The Server Activity Display page opens.
2. Select a group and a server from the list boxes. The Server Activity Display (Active Requests) page opens.
3. Click on the link in the Client Requests’ column of the request that is hanging. A Request Detail page opens, where you can click the Cancel Request button.
4. Click Cancel Request. A confirmation box displays.
5. At the confirmation box, click OK. Canceling a thread can cause JVM and application server instability. Use the Cancel Thread function only when absolutely necessary, and with careful consideration of the consequences.

Related topics
- Activating a thread
- Changing a thread priority
- Suspending a thread

Changing a thread’s priority
About this task

If a thread is executing too slowly, you can increase the thread’s priority. This will move the thread up in the stack so it will execute more quickly. (Alternatively, you can decrease a thread’s priority to allow other threads to execute more quickly.)

To change a thread’s priority:

1. From the top navigation, click Problem Determination > Server Activity Display. The Server Activity Display page opens.
2. Select a group and a server from the list boxes. The Server Activity Display (Active Requests) page opens.
3. Click the link in the Client Request column. The Request Detail page for that request opens.

4. From the Change Priority list box, select a priority. Priority 1 is the lowest and priority 10 is the highest.

5. Click Save.

Related topics
- Activating a thread
- Canceling a request
- Suspending a thread
- Viewing a request detail
- Viewing a Stack Trace

Viewing a Stack Trace

About this task

The Stack Trace page displays a list of method calls, starting with the method being executed when the stack trace was requested, in last in first out order. For each method, the list includes the Class Name, Method Name and (optionally) a line number.

To view a Stack Trace:
1. From the top navigation, click **Problem Determination > Server Activity Display**. The Server Activity Display page opens.
2. Select a group and a server from the list boxes. The Server Activity Display (Active Requests) page opens.
3. Click the link in the Client Request column. The Request Detail page for that request opens.
4. Click **Stack Trace** from the left navigation pane. The Stack Trace page opens. The most recently executed method displays first in the Stack Trace.

Related topics
- Canceling a request
- Changing a thread’s priority

Viewing a Method/Component Trace - flow view

About this task

The Flow View lists the method flow of the current request, in terms of the method/component entry and exit events in last in first out order.

To view the flow view of a Method/Component Trace:
1. From the top navigation, click **Problem Determination > Server Activity Display**. The Server Activity Display page opens.
2. Select a group and a server from the list boxes. The Server Activity Display (Active Requests) page opens.
3. Click the link in the Client Request column. The Request Detail page for that request opens.
4. Click **Method/Component Trace** on the left navigation pane. The Method/Component Trace (flow view) page opens. The last executed method displays first in the Method/Component Trace.
5. Enter the Delta Elapsed Time and the Delta CPU Time value under the Threshold Highlighter table to highlight the data with the features that you want to view throughout the whole trace.

6. Click Apply. The Complete Flow View table displays the method flow list with the highlighted data that you selected to view.

7. Click Reset to Default for using the default threshold highlighter value, if necessary.

8. Click to select the number of rows of data that you want to view per page from the Pagination list box. The Flow View tab refreshes displaying the number of rows of data you selected to view on each page.

Results

To export the method/component trace to a comma-delimited file, click the Export to File button. See "Exporting to a file - SAD" on page 125.

To export the method/component trace to a PDF file and view or save this file, click the View PDF button. See "Viewing a PDF file - SAD" on page 125.

To export the method/component trace to a PDF file and e-mail this file, click the E-Mail button. See "E-mailing a PDF file - SAD" on page 124.

Related topics

Canceling a request
Changing a thread’s priority

Viewing a request object and session object

About this task

The Request Object and Session Object page lists information for the current request object and session object.

To view the request object and session object trace:

1. From the top navigation, click Problem Determination > Server Activity Display. The Server Activity Display server selection page opens.

2. Select a group and a server from the list boxes. The Server Activity Display page opens.

3. Click the link in the Client Requests' column. The Request Detail page for that thread opens.

4. Click Request/Session Object from the left navigation pane. The Request Object and Session Object page opens.

Related topics

Canceling a request
Changing a thread’s priority

Searching a Method/Component Trace

About this task

The search allows you to specify any of the columns available in the Flow View (Elapsed Time, CPU Time, Delta Elapsed Time, Delta CPU Time, Event Type or Event Data), together with a numerical threshold (or a string,) and presents a list of events from the method trace whose metrics cross the threshold (or match the string). The Event Type and Event Data searches are case sensitive.
To search a Method/Component Trace:
1. From the top navigation, click Problem Determination > Server Activity Display. The Server Activity Display page opens.
2. Select a server from the Server list box. The Server Activity Display (Active Requests) page opens.
3. Click the link in the Client Request column. The Request Detail page for that request opens.
4. Click Method/Component Trace from the left navigation pane. The Method/Component Trace (Flow View) page opens. The last executed method displays first in the Method Trace.
5. Click the Search tab. The Search tab opens.
6. Enter the search criteria and the search value.
7. Click Search. The Method Trace page refreshes displaying the method trace that suits your search criteria and value. Clicking the result in the Event Data column opens the Flow View tab to the corresponding line. For example, if the first result in the Search tab is the twentieth method on the Flow View page, then clicking the Event Data link of the first result will bring up the Flow View tab starting with the page that includes that twentieth record.

Related topics
- Viewing a Composite Method Trace - SAD
- Viewing a Method/Component Trace - Flow View

E-mailing a PDF file - SAD

About this task
You can e-mail a PDF file of the Method Trace/Component Trace to one or a group of the application monitor users. Separate multiple addresses with a comma. Recipients must have valid user accounts and proper permissions in order to view the report.

To e-mail a PDF file:
1. From the top navigation, click Problem Determination > Server Activity Display. The Server Activity Display page opens.
2. Select a group and a server from the list boxes. The Server Activity Display (Active Requests) page opens.
3. To view the detail, click the link in the Client Requests' column. The Request Detail page for that thread opens.
5. Click the E-mail button. The E-mail page opens.
6. Enter the e-mail address of the recipient. Separate multiple addresses with a comma.
7. Click OK.

Related topics
- Exporting to a file - SAD
- Viewing a PDF file - SAD
Viewing a PDF file - SAD

About this task

Before e-mailing a PDF file, view the file by downloading it.

To view a PDF file:

1. From the top navigation, click **Problem Determination > Server Activity Display**. The Server Activity Display page opens.
2. Select a group and a server from the list boxes. The Server Activity Display (Active Requests) page opens.
3. Click the link in the Client Requests’ column. The Request Detail page for that thread opens.
4. Click **Method/Component Trace**. The Method/Component Trace page opens.
5. Click the **View PDF** button.
6. From the File Download window, click either **Open** to view the file immediately or click **Save** to download the file.

Related topics

- Exporting to a file - SAD
- E-mailing a PDF file - SAD

Exporting to a file - SAD

About this task

You can export the trace data to a comma-delimited file format.

To export to a file:

1. From the top navigation, click **Problem Determination > Server Activity Display**. The Server Activity Display server selection page opens.
2. Select a group and a server from the list boxes. The Server Activity Display (Active Requests) page opens.
3. Click the link in the Client Requests’ column. The Request Detail page for that thread opens.
4. Click **Method/Component Trace**. The Method/Component Trace page opens.
5. Click the **Export to File** button.
6. Click either **Open** to view the file immediately or click **Save** to download the file.

Related topics

- E-mailing a PDF file - SAD
- Viewing a PDF file - SAD

Web Session Browser

The Web Session Browser page provides information on open HTTP sessions. You can search a server, a group, or all servers and groups for all sessions or sessions with a specific username.

Visualization Engine will only show sessions on servers that have the monitoring level set to L2 or L3.
To search for Web Sessions on all servers, select "All Groups" in the Group control and "All Servers" in the Server control.

To search for Web Sessions on all servers in a group, select the group name in the Group control and "All Servers" in the Server control.

To search for Web Sessions on a specific servers, select the group name in the Group control and the server name in the Server control.

If you need to search for sessions with a specific username, enter it in the Username control.

To launch the search, click the OK button. The search results will be displayed. See "Viewing the Web Session Browser."

Viewing the Web Session Browser

About this task

Use the Web Session Browser to find information on HTTP sessions. Search a server, a group, or all servers and groups for a specific session. After activating the search, the system will take a snapshot of the server(s) and return a list of sessions. Using a wildcard (*) indicates that all data will be searched. Blank fields are disallowed in the search. The Data Collector must be at L2 or higher monitoring level to provide the data for this display page.

To view the Web Session Browser:

1. From the top navigation, click **Problem Determination > Web Session Browser**. The Web Session Browser page opens.
2. Select a group and server and enter the user name that you want to search for. The Web Session Browser page opens showing the sessions that match your search criteria. After the system returns your search results, you can review the attributes of a session by clicking the **View** link in the Attributes field.

Many different kinds of Java objects, including customized objects, can be in a session; sometimes in the form of binary data. ITCAM cannot display this data on the front-end in a useful way. In order to display the data correctly, define the toString() method. ITCAM will invoke this method and display the data returned in the Web Session Browser. If the toString() method is not defined, ITCAM will publish the content of the Java objects as-is, which might not contain useful data.

Related topics

- Memory Diagnosis
 View heap and memory information.
- Server activity
 The Server Activity Display page shows a table of request activity on an application server. This page can help you troubleshoot and fix hanging requests and evaluate the current performance of your applications.

Memory diagnosis

View heap and memory information.
Memory Diagnosis includes the following features: Memory Analysis, Heap Analysis, Memory Leak, and Heap Dump Management. Gain insight into the JVM's heap and memory information through memory diagnosis. Use this information to tune the JVM parameters, assess your resources, and find evidence of memory leaks.

The Memory Analysis (Garbage Collection) option is not supported for CICS or IMS. The Memory Analysis (Java Heap Size option) is not available for IMS. The Heap Analysis and Memory Leak features are not available for CICS or IMS. Heap Dump files can be viewed using Memory Dump Diagnostic for Java (MDD4J).

User Scenarios

Scenario 1: Detecting a memory leak

After creating a Memory Analysis report that compares JVM Heap Size to Average Response Time, you think there is a memory leak. Access the Memory Leak feature to see if the amount of uncollected memory is increasing. You set up a candidate for the server in question. This tells the system to collect heap data now and again after a specified amount of time. Then you can compare the heap data for the two periods of time to determine if there is evidence of a memory leak.

Scenario 2: Supporting your claim that the purchase of new servers is necessary

The year end budget is due and you need to project whether you will need to buy more servers for your environment. You create a Memory Analysis report during peak usage and compare JVM Heap Size to the Number of Sessions. The number of servers is close to maxing out the current environment. As a capacity planner, you recommend that the company increase the number of servers currently servicing the environment.

Heap Dump Management

Use the Heap Dump Management pages to view and schedule heap dumps for the monitored servers.

To access Heap Dump Management, from the top navigation click Problem Determination > Memory Diagnosis > Heap Dump Management.

To create heap dumps, you need to install IBM Support Assistant and Memory Dump Diagnostic for Java on the monitored servers. See "Downloading Memory Dump Diagnostic for Java from IBM Support Assistant" on page 128.

To view information on existing heap dumps and delete the heap dumps you no longer want to store, select Heap Dumps in the left navigation pane. See "Heap Dumps" on page 129.

To view all scheduled heap dumps, modify and delete the schedules, select Heap Dump Schedule in the left navigation pane. See "Heap Dump Schedule" on page 130.

To schedule a new heap dump, select Schedule a Heap Dump in the left navigation pane. See "Scheduling a heap dump" on page 130.
Downloading Memory Dump Diagnostic for Java from IBM Support Assistant

About this task

In order to download Memory Dump Diagnostic for Java (MDD for Java), you will need to first download IBM Support Assistant (ISA). ISA provides extra help with diagnosing problems and provides extra tools and components for troubleshooting as well as providing a place to write problems (PMR). MDD for Java analyzes either a single heap dump or analyzes and compares two heap dumps and searches for evidence of a memory leak. You can either manually take a heap dump or schedule a heap dump using the Heap Dump Management tool and then download the heap dump to your PC and analyze it using MDD for Java.

MDD for Java only analyzes heap dumps from IBM JDKs. For non-IBM JDKs use ITCAM Heap Analysis features.

Searching capabilities are not supported for ITCAM for WebSphere in ISA.

To download ISA:

2. If you do not have a universal IBM user ID, you will need to click register now and fill in the required information. Upon completion, you can return to this page and sign in to download ISA.
3. After signing in, select the radio button to download IBM Support Assistant Version 3.0.0.1.
4. Click Continue.
5. Select View license. After reading the license, click the I agree check box and then click I confirm to continue with the download.
6. Click Download now next to the correct platform. We suggest you download to the server on which the data collector is installed. Do not download to the server that has the managing server.
7. Click Save to download ISA to your hard drive.

Results

To install ISA:

1. Go to the directory on your hard drive where you saved the ISA zip file.
2. Extract the files.
3. Double-click the setupwin32.exe file.
4. Follow the installation instructions to install ISA.
5. Open the ISA program.

To install MDD for Java:

1. Double-click Updater to open.
2. Select the New Products and Tools tab.
3. Open the WebSphere directory by clicking the + sign.
4. Click the check box to select WebSphere Application Server. (The version you select does not matter.)
5. Click Install.
6. Select the feature under Features to Install and review the license.
7. Click Yes to accept the license.
8. Click OK to accept the message that displays, "New product plug-ins or tool plug-ins were installed successfully. Please make sure to restart IBM Support Assistant for these changes to take effect."
9. Click the + sign next to the Common Component Tools directory.
10. Click the check box to select Memory Dump Diagnostic for Java (MDD4J) version 3 or above.
11. Click Install.
12. Click OK to accept the message that displays, "Reminder–You are installing a common component tool. After installation, you might not see the common component tool in the Tools component. Common component tools only display in the Tools component if a product is added that uses them." This is why you need to install a version of WebSphere.
13. Select Memory Dump Diagnostic for Java under the Features to Install and review the license.
14. Click Yes to accept the license.
15. Click OK at the restart IBM Support Assistant message.

Related topics
- Scheduling a heap dump
- "Heap Dump Schedule" on page 130

The Heap Dump Schedule page shows a table of scheduled heap dumps on the monitored servers. From this page, you can modify and delete the schedules.

Heap Dumps
The Heap Dumps page shows a table of existing heap dumps on the monitored servers. From this page, you can delete the heap dumps you no longer want to store.

To view the Heap Dumps page, from the top navigation click Problem Determination > Memory Diagnosis > Heap Dump Management.

In the table, heap dumps are grouped by server. You can hide the heap dumps for a server by clicking - next to the server name, and show them again by clicking +.

To view heap dumps for servers in a server group, select the group name in the Group list box; to view heap dumps for a single server, select the server name in the Server list box.

For every heap dump, the table shows:
- The fully qualified file name. (The file is located on the monitored server).
- The date and time when the heap dump was created.
- The origin of its creation ("Schedule" for normal scheduled heap dumps).
- Whether garbage collection was forced before creation of the heap dump. This option can be set in the heap dump schedule.
- A Delete button.

To delete a heap dump, click the Delete button.

You can use the left navigation pane to view scheduled heap dumps and schedule a new heap dump. See "Heap Dump Management" on page 127.
Heap Dump Schedule

The Heap Dump Schedule page shows a table of scheduled heap dumps on the monitored servers. From this page, you can modify and delete the schedules.

To view the Heap Dump Schedule page, from the top navigation click **Problem Determination > Memory Diagnosis > Heap Dump Management**. Then from the left navigation pane, Select **Heap Dump Schedule**.

In the table, scheduled heap dumps are grouped by server. You can hide the heap dumps for a server by clicking - next to the server name, and show them again by clicking +.

To view heap dump schedules for servers in a server group, select the group name in the **Group** list box; to view heap dumps for a single server, select the server name in the **Server** list box.

For every heap dump schedule, the table shows:
- The date and time when the heap dump is to be created.
- Whether garbage collection is to be forced before creation of the heap dump.
- A **Modify** button.
- A **Delete** button.

To modify a heap dump schedule, click the **Modify** button. This will open the Schedule a Heap Dump page (see “Scheduling a heap dump”); you will be able to modify the settings. To save the changes, click **OK**.

To delete a heap dump schedule, click the **Delete** button.

You can use the left navigation pane to view existing heap dumps and schedule a new heap dump. See “Heap Dump Management” on page 127.

Scheduling a heap dump

About this task

You have the flexibility to schedule a heap dump to take place now or in the future.

To schedule a heap dump:
1. From the top navigation, click **Problem Determination > Memory Diagnosis > Heap Dump Management**. The Heap Dump Management page opens.
2. Click the **Schedule a Heap Dump** link.
3. Select a group and a server from the list boxes.
4. Under Heap Dump Schedule, select Now to schedule a heap dump to take place immediately, or select your own date and time in the future.
5. Under Garbage Collector Before Heap Dump, select yes or no based on whether you want a garbage collection performed prior to the heap dump.
6. Click **OK** to save the schedule for the heap dump.

Related topics
- **Downloading Memory Dump Diagnostic for Java from IBM Support Assistant**
- “Heap Dump Schedule”

The Heap Dump Schedule page shows a table of scheduled heap dumps on the monitored servers. From this page, you can modify and delete the schedules.
Memory Analysis

Use the Memory Analysis page to create a memory analysis report, to help investigate potential memory problems related to garbage collection and the JVM heap size.

To access the Memory Analysis page, from the top navigation click Problem Determination > Memory Diagnosis > Memory Analysis.

To create a Memory Analysis report, select the server group name in the Group list box, select the server name in the Server list box, select the analysis type (Garbage Collection or Java Heap Size), and click the Next button. In the Metric Selection, select the option that contains the two metrics you want to compare, and click the View Results button. See "Creating a Memory Analysis report."

Creating a Memory Analysis report

About this task

Investigate potential memory problems related to garbage collection and the JVM heap size by using the Memory Analysis. When there is over 24 hours of data, your reports will show the last 48 hours; in all other cases, the last 60 minutes of data will display.

To create a Memory Analysis report:
1. From the top navigation, click Problem Determination > Memory Diagnosis > Memory Analysis. The Memory Analysis page opens.
2. Select a group and a server or all servers from the list boxes.
3. Select the Analysis Type: Garbage Collection or Java Heap Size.
4. Click Next.
5. In the Metric Selection, select the option that contains the two metrics you want to compare.
6. Click View Results. The Memory Analysis report displays.
7. Using the Memory Analysis Options, you can select a different group or server, compare two different metrics, or view a different time increment. A new report displays based on your new selections. If there is over 24 hours of data available, your report will show the last 48 hours. Otherwise your report will display the last 60 minutes.

Related topics
Creating a Memory Leak Candidate Finder report
Creating a Memory Leak Confirmation report
Setting up a Heap Analysis

Heap Analysis

Use the Heap Analysis page to set up a heap analysis, which captures the runtime heap of an application server, breaks it down by class names of objects in the heap, and provides the number of instances and the size they occupy.

To access the Heap Analysis page, from the top navigation click Problem Determination > Memory Diagnosis > Heap Analysis.

To set up a heap analysis, select the server group name in the Group list box, select the server name in the Server list box, select whether a Garbage Collection
should be forced before taking the heap snapshot, and click the OK button. See “Setting up a Heap Analysis.”

Setting up a Heap Analysis
About this task

The Heap Analysis captures the runtime heap of an application server and breaks it down by the class names of the objects residing in the heap at the time of the snapshot, while providing the number of instances and the size they occupy.

To set up a Heap Analysis:
1. From the top navigation, click Problem Determination > Memory Diagnosis > Heap Analysis. The Heap Analysis page opens.
2. Select a group and a server.
3. Select Yes or No to perform a garbage collection on the heap prior to the Heap Analysis snapshot.
4. Click OK. The Heap Analysis results display in the same window.
5. If you want to narrow the results, enter the names of the classes you want to ignore into the Exclude (Class name) list. If you specify regular expressions in the Exclude list, but want to monitor a subset of these, enter the names of classes you want to monitor into the Exclude Override (Class name) list.
6. Click Apply. The new Heap Analysis displays.
7. Click Reset to return the class name filters to their original settings.

Related topics
Creating a Memory Analysis report
Creating a Memory Leak Candidate Finder report
Creating a Memory Leak Confirmation report
Viewing a Memory Leak Candidate Finder report

Memory Leak

Use the Memory Leak page to create a Memory Leak Confirmation report, which might help determine whether a memory leak is occurring in one of the applications on a server. You can also use this report to create Memory Leak Diagnosis and Memory Leak Candidate Finder report, which might help diagnose the source of a memory leak.

To access the Memory Leak page, from the top navigation click Problem Determination > Memory Diagnosis > Memory Leak.

To create a Memory Leak Confirmation report, select the server group name in the Group list box, select the server name in the Server list box, and click the OK button. See “Creating a Memory Leak Confirmation report.”

Creating a Memory Leak Confirmation report
About this task

Uncover a memory leak trend using the Memory Leak Confirmation report. Compare heap size to several load-oriented metrics to determine that there is in fact a leak, not just a change in workload. The system highlights a leak trend by comparing the average heap size after a garbage collection with a memory increase, increase in users, or increase in volume.

To create a Memory Leak Confirmation report:
1. From the top navigation, click **Problem Determination > Memory Diagnosis > Memory Leak**. The Select a server page opens.

2. Select a group and a server from the list boxes and click **OK**. The Memory Leak Confirmation report displays.

3. Use the list boxes in the Report Control box to select a new group, server, date range, metric 1, 2, or 3 and click **OK** to rerun the report. If there is over 24 hours of data available, your report will show the last 48 hours. Otherwise your report will display the last 60 minutes.

Results

To get further information, you can view Memory Leak Diagnosis and Memory Leak Candidate Finder reports.

A Memory Leak Diagnosis report provides application diagnostic details. To create and view a Memory Leak Diagnosis report, click **Memory Leak Diagnosis** in the left navigation pane. See "Creating a Memory Leak Diagnosis report."

A Memory Leak Candidate Finder report creates a heap snapshot, waits a specified time, and creates another snapshot; comparison of these snapshots can help reveal memory leaks in applications. To start the creation of a Memory Leak Candidate Finder report, click **Create New Candidate** in the left navigation pane, see "Creating a Memory Leak Candidate Finder report" on page 134. After the specified time has elapsed, view the report by clicking **View Existing Candidates** in the left navigation pane, see "Viewing a Memory Leak Candidate Finder report" on page 134.

Related topics

- Creating a Memory Analysis report
- Creating a Memory Leak Candidate Finder report
- Setting up a Heap Analysis

Creating a Memory Leak Diagnosis report

About this task

In the Memory Leak Diagnosis report each row in the Suspected Memory Leaks table represents an allocation pattern for which memory allocation data has been collected. When a memory leak occurs objects accumulate on the heap and increase over time. The growth data informs you as to what is growing on the heap.

To create a Memory Leak Diagnosis report:

1. From the top navigation, click **Problem Determination > Memory Diagnosis > Memory Leak**. The Select a server page opens.

2. Select a group and a server from the list boxes and click **OK**. The Memory Leak Confirmation report displays.

3. From the Additional Tools box, click the **Memory Leak Diagnosis** link. The Memory Leak Diagnosis report page displays, showing the server and group you selected, as well as essential server information and the date and time this report was generated. The list of suspected memory leaks follows.

If you receive the error CYNVE0746E: *This server not instrumented for detail heap data collection.* This might indicate that the application server has not received any requests yet. Run Memory Leak Diagnosis again when you know requests are in the system. Check that the Level 3 monitoring mode and the heap analysis flag on the Data Collector have been enabled. If you still receive this error, contact the system administrator.
Click the Class Name link to view references to live objects on the heap. See “Viewing References to Live Objects on the Heap” on page 135.

Related topics
Creating a Memory Analysis report
Creating a Memory Leak Confirmation report
Viewing a Memory Leak Candidate Finder report
Viewing References to Live Objects on the Heap

Creating a Memory Leak Candidate Finder report
About this task

The Memory Leak Candidate Finder report lets you create a comparison report of two heap snapshots. Taking two heap snapshots will show if, over time, the number of instances of a specific class is increasing. In cases, where the number of instances of a class continues to rise over a period of time, the report will demonstrate this leak candidate.

To create a Memory Leak Candidate Finder Report:
1. From the top navigation, click Problem Determination > Memory Diagnosis > Memory Leak. The Select a server page opens.
2. Select a group and a server from the list boxes and click OK. The Memory Leak Confirmation report displays.
3. From the Additional Tools box, click Create New Candidate link. The Create New Candidate page opens.
4. Select a group and a server.
5. Enter the Wait Time and select hours or minutes from the list box. (There is a 48 hour maximum.) The Wait Time is the amount of time the system must wait before taking the second heap snapshot.
6. Click Save. The Memory Leak Candidate Finder Management page displays the report with a waiting status. Check the report for results after your wait time elapses. If you receive a failed status on your Memory Leak Candidate Finder report this indicates that either the data collector restarted, the managing server is down, or there is not enough memory to run the report.

Related topics
Creating a Memory Analysis report
Creating a Memory Leak Confirmation report
Viewing a Memory Leak Candidate Finder report

Viewing a Memory Leak Candidate Finder report
About this task

The Memory Leak Candidate Finder report displays the data comparison between two heap snapshots. The heap results display unfiltered. You can filter the heap results by class name using the Exclude (Class name) and Exclude Override (Class name) lists. Use this data to evaluate whether a memory leak is in progress on your system.

To view a Memory Leak Candidate Finder report:
1. From the top navigation, click Problem Determination > Memory Diagnosis > Memory Leak. The Select a server page opens.
2. Select a group and a server from the list boxes and click OK. The Memory Leak Confirmation report displays.
3. From the Additional Tools box, click View Existing Candidates link. The Memory Leak Candidate Finder Management page opens.

4. The status for your report will be completed. Click the Server Name's link to open your previously created report. The Memory Leak Candidate Finder report opens.

5. Click Comparison Data on the left navigation pane. The comparison data displays with the data for each heap snapshot.

6. To view each heap individually, click either Heap 1 or Heap 2 on the left navigation pane. This gives you another view of the heap analysis for your current data.

7. To filter your data more precisely, enter the classes you don’t want to analyze into the Exclude (Class name) list. If you specify regular expressions in the Exclude list, but want to monitor a subset of these classes, enter the classes you want to monitor into the Exclude Override (Class name) list. The report will refresh and display with the current data. When the comparison for the Memory Leak Candidate Finder report displays the heap snapshot data, the data includes the class name, the change in the number of instances, and the change in total size. Watch the change in the number of instances; increasing numbers are an indicator of a memory leak in your system.

Related topics
Creating a Memory Leak Candidate Finder report
Creating a Memory Analysis report

Viewing References to Live Objects on the Heap

About this task
Occasionally objects on the heap do not get garbage collected because another object has a reference to the original object. After clicking the Class Name link, the data displays which object is linked to the object that is growing.

To view the References to Live Objects on the Heap:
1. From the top navigation, click Problem Determination > Memory Diagnosis > Memory Leak. The Memory Leak Overview page opens.
2. From step three, select a group and a server and click View Diagnosis. The Memory Leak Diagnosis page opens.
3. Select the Class Name link. The References to Live Objects on the Heap page displays.

Related topics
Creating a Memory Analysis report
Creating a Memory Leak Confirmation report
Creating a Memory Leak Diagnosis report
Viewing a Memory Leak Candidate Finder report

JVM thread display

Use the JVM thread display page to view all threads running within the JVM of an application server.

To view the JVM thread display page, from the top navigation click Problem Determination > JVM Thread Display. You can also access this page from the toolbox icon on the Server Activity Display page.
Select the server group name in the **Group** list box, and the server name in the **Server** list box. If you access this page from the Tivoli Enterprise Portal and from the Server Activity Display page, the server group name and server name display automatically.

At the top of the page, the snapshot date and time and the server name and IP address are displayed. The timestamp for Snapshot Date and Snapshot Time is collected from the Data Collector and converted to the time zone of the managing server.

The page initially displays a list of top-level thread groups and active threads.

To view thread groups and active threads within a thread group, click the name of the thread group. A **Thread Group Properties** pane displays on the right of the page, showing information for the current thread group. To return to an upper level thread group, click **..**.

To view information for a thread, click its name. A **Thread properties** pane displays on the right of the page, showing information for the thread.

To change priority for the thread, in the **Thread properties** pane select the new priority in the **Priority** list box and click the **Change Priority** button. See “Changing a JVM thread’s priority” on page 137.

Important: The new priority remains for the life of the thread. As a result, any requests assigned to that thread after the change hold that priority.

To view a stack trace for the thread, in the **Thread properties** pane click the **View Stack Trace** button. See ”Viewing a stack trace” on page 137.

CAUTION:
Canceling a thread might cause JVM and application server instability. Use the cancel thread function only when absolutely necessary, and with careful consideration of the consequences.

To cancel the thread, in the **Thread properties** pane click the **Cancel Thread** button. See ”Canceling a thread” on page 138.

To troubleshoot a multithreaded application, you might need to view the thread dump, which includes detailed information about memory allocation of all threads in the JVM. To view the thread dump, click the **Thread Dump** button, located in Server Properties at the top of the page. See ”Viewing a thread dump” on page 138.

User Scenarios

Scenario 1: How to alleviate high server response time

You are asked to investigate server A where response time and JVM CPU% are higher than expected, but throughput is normal. You don’t see any active requests in the In-flight Request Search, so you suspect there might be threads running outside the application server. You access the JVM Thread Display and notice a couple of suspect threads. After taking a thread dump for the JVM, find the details of the current thread that is misbehaving and either re-prioritize or cancel the thread.
Changing a JVM thread's priority

About this task

If a thread is executing too slowly, you can change its priority by moving it up in the stack, so that it can process a request quickly.

To change a thread's priority:
1. From the top navigation, click **Problem Determination > JVM Thread Display**. The JVM Thread Display Server selection page opens.
2. Select a group and a server to view the running threads. The JVM Thread Display page opens showing all top level thread group running in the selected server.
3. Select and click to the right of the thread for detailed information.
4. From the priority list box in the Thread Properties table, select a number. Priority 1 is the lowest and priority 10 is the highest.
5. Click **Change Priority**. The priority list box displays the priority you selected for the thread to execute request. When changing a thread's priority, be aware that the new priority remains for the life of the thread. As a result, any requests assigned to that thread after the change will hold that priority during that request's lifetime.

Related topics
- [Canceling a thread](#)
- [Viewing a stack trace](#)

Viewing a stack trace

About this task

The Stack Trace page displays the sequence of method execution and in last in first out order. The last executed method will be displayed first in the stack trace.

To view a stack trace:
1. From the top navigation, click **Problem Determination > JVM Thread Display**. The JVM Thread Display Server selection page opens.
2. Select a group and a server to view the running threads. The JVM Thread Display page opens showing all top level thread group running in the selected server.
3. Select and click a thread for detailed information. The Thread Properties table displays the detailed information of the thread that you selected.
4. Click **View Stack Trace** The Stack Trace page opens.

The stack trace shows the outstanding methods waiting to execute as a result of the request. This trace reports the data unfiltered, so you will see every class. In a normal environment, a request executes quickly so it might be difficult to catch a stack trace before completion.

Related topics
- [Changing a JVM thread's priority](#)
- [Canceling a thread](#)
Canceling a thread

About this task

If a thread is misbehaving, for example looping, sleeping or abusing resources, it might be necessary to cancel the thread and terminate the executing Java thread to let other threads to proceed. By default, only "Administrator" role will have access to the canceling a thread functionality.

To cancel a thread:
1. From the top navigation, click **Problem Determination > JVM Thread Display**. The JVM Thread Display Server selection page opens.
2. Select a group and a server to view the running threads. The JVM Thread Display page opens showing all top level thread group running in the selected server.
3. Select and click a thread that you want to view its detailed information. The Thread Properties table displays the detailed information of the thread that you selected.
4. Click **Cancel Thread**.
5. Click **OK** in the confirmation box. The JVM Thread Display page refreshed displaying without the canceled thread.

Canceling a thread might cause JVM and application server instability. Use the cancel thread function only when absolutely necessary, and with careful consideration of the consequences.

Related topics
- Changing a JVM thread priority
- Viewing a stack trace

Viewing a thread dump

About this task

To troubleshoot a problematic multithreading application with a hung thread or looping thread, you might need to view the Thread Dump page for detailed information about memory allocation of threads in a JVM.

When a user clicks thread dump on the JVM Thread Display page, a snapshot will be taken showing the data about all threads. You can view the Thread Dump page for detailed information about memory allocation of threads in a JVM.

To view the Thread Dump page:
1. From the top navigation, click **Problem Determination > JVM Thread Display**. The JVM Thread Display Server selection page opens.
2. Select a group and a server to view the running threads. The JVM Thread Display page opens showing all top level thread group running in the selected server.
3. Click **Thread Dump**. The Thread Dump page opens.

Related topics
- Changing a JVM thread's priority
- Canceling a thread
Trap and alert management

Use the Trap and alert management page to define and modify traps and alerts that monitor server health and determine problems with applications, and to view the history of triggered traps and alerts.

To access trap and alert management, from the top navigation, click Problem Determination > Trap & Alert Management.

You can also access this page from the toolbox icon on the Server Activity Display page.

Use trap and alert management to monitor server health and determine problems with applications. Prevent disruptions in service by receiving alerts before problems arise. Gather data that helps you pinpoint the root cause of difficult-to-reproduce problems.

The page shows a table of active traps and another table of defined trap profiles. (You can activate a trap based on a trap profile).

For each active trap the table shows:
- The name of the trap.
- The name of the server that the trap applies to. If the trap applies to multiple servers, you can click + to view the list.
- The number of minutes for which the trap will be suppressed before triggering, if applicable. This avoids triggering a trap on a short load spike.
- The duration of the trap; the trap will be deactivated when this duration expires. Traps can also have an infinite duration.
- Time left until the duration expires (N/A if the duration is infinite).
- The time when this trap was activated.
- The user who has activated the trap.
- A Deactivate button.

To deactivate a trap, click the Deactivate button. See “Deactivating a trap” on page 148.

For each trap profile the table shows:
- The name of the trap profile.
- The description.
- The user who has created the profile.
- Activate, Modify, Modify, and Delete buttons.

To activate a trap based on the profile, click the Activate button. See “Activating a trap” on page 147.

To modify a trap profile, click the Modify button. See “Modifying a trap” on page 148.

To create a trap profile as a copy of an existing profile, click the Duplicate button. See “Duplicating a trap” on page 149.

To delete a trap profile, click the Delete button. See “Deleting a trap” on page 149.
To create a new trap profile, click **Create trap** in the left navigation pane, and select the trap type and target type. See:

- “Setting an Application trap”
- “Setting an Application trap using the Resident Time - Misbehaving Transaction target type” on page 143
- “Setting a Server Resource trap” on page 145

To view the history of triggered traps, click **Trap Action History** in the left navigation pane. See “Viewing the trap action history” on page 150.

User Scenario

Scenario 1: Debugging complex applications

You are monitoring application A, which has a J2EE component on server S and a legacy CRM back end. The Java component of application A frequently exhibits idle times of several seconds, even when there is not much load on server S. You do not wish to run at L3, but you want to see in what methods the Java application is waiting. You set an Application Trap for Wait Time with a Threshold of 2,000 ms, by Request for application A, choose the Stack Trace Data Action and apply this trap to server S. The next time a request for application A takes longer than two seconds, the system will take a stack trace of server S. Look in the Trap Action History to obtain the stack trace, to determine where application A is waiting.

Setting an Application trap

About this task

An Application trap detects metrics in a request, method, or SQL or MQI call. The system triggers the trap after the monitored server exceeds the threshold for the metric you set. When the trap is triggered, and when the action conditions are met, then any alerts you have activated (whose conditions have been met) will be sent, and any actions you have specified (whose conditions have been met) will be performed.

To set an Application trap:

1. From the top navigation, click **Problem Determination > Trap & Alert Management**. The Trap and Alert Management page opens.
2. On the left navigation pane, click **Create Trap**. The Trap Type selection page opens.
3. Select **Application Trap** as the trap type.
4. Select one of the Target Types from the list box. Based on the target type you select, the system will dynamically generate the trap definition options in the next step. The following is a list of the Target Types:
 - **Occurrence** - The number of times the specified unit occurred. The Occurrence trap has three available filters; By Request; By Method, and By SQL.
 - **CPU Time** - The amount of time the CPU is executing instructions. The CPU Time trap has two available filters, By Request and By Method.
 - **Wait Time** - The amount of time the CPU is idle. The Wait Time trap has two available filters, By Request and By Method.
 - **Resident Time - In-flight** - Based on the resident in-flight time of a transaction, the Publish Server keeps track of all the active (in-flight)
requests and their resident times and triggers the trap if the resident time of the request exceeds the time configured in the trap condition. The Resident Time - In-flight trap has one available filter, the By Request filter.

- **Resident Time - Completed** - The wall clock time for when the unit of a transaction, method, etc. ends, minus the wall clock time when it started. The Resident Time - Completed trap has three available filters; By Request; By Method, and By SQL.

- **Resident Time - Misbehaving Transaction** - This trap has one available filter, the By Request filter. With this target type, when the complete response request time violates the threshold in the trap definition, the monitoring level for the request switches from L1/L2 to L3 and component/method trace detail is captured. As switching from L1/L2 to L3 has a performance impact on the Data Collector, there are 2 fields you can use to deactivate the trap and return to the original L1/L2 monitoring level once the required detail has been captured:
 - **Number of occurrences of every request after which the trap will be deactivated** - The purpose of this field is to prevent the Data Collector from running at L3 indefinitely. The value in this field determines the number of times you want every request to reach the threshold before the trap is deactivated. Using this field enables you to capture component/method trace detail at L3 when the threshold is exceeded, and to then automatically revert to the original monitoring level, thereby reducing the performance cost to the server.
 - **Number of occurrences of every request that doesn’t violate this trap after which mod level is reverted back and trap is deactivated** - Once L3 is enabled, after the trap condition is violated the first time, it remains at L3 until the request violates for the predetermined number of times as set in the **Number of occurrences of every request after which the trap will be deactivated** field. As a result, the request in the Data Collector will remain at L3 if the request doesn’t violate for the predetermined number of times, resulting in performance cost to the Data Collector. To prevent this, use this field - **Number of occurrences of every request that doesn’t violate this trap after which mod level is reverted back and trap is deactivated**. Once the trap triggers and the monitoring level switches to L3, if the number of requests that does not reach the threshold is equal to the value in this field, then the trap is deactivated. For further detail on this target type, see [“Setting an Application trap using the Resident Time - Misbehaving Transaction target type” on page 143](#).

- **Uncaught Exception** - Capture exceptions that occur in applications and data about the failure. The Uncaught Exception trap has three available filters; By Request, Exception or Error Class Name.

- **Lock Acquisition Time - In-flight** - The in-flight transaction has not completed and might be hanging, using this type will provide data on how to fix the problem. What is being measured is the amount of time taken to obtain an acquisition. The acquisition clock starts when the class/method begins trying to acquire the lock, and ends when the lock is acquired. The Lock Acquisition Time - In-flight trap has two available filters, By Request and By Method.

- **Lock Acquisition Time - Completed** - The amount of time taken to obtain an acquisition. The acquisition clock starts when the class/method begins trying to acquire the lock, and ends when the lock is acquired. The Lock Acquisition Time - Complete trap has two available filters, By Request and By Method.
Traps are now supported in CICS. CICS has the following trap types available: Occurrence, CPU time, Resident Time - Completed, Resident Time - In-flight, and Wait Time.

Note: By default, the Publish Server does not process requests which run longer than 5 minutes. Therefore, if an application trap’s threshold is greater than or equal to 300 seconds, the trap will not be triggered. To change this default setting in the Publish Server, in the `psX.properties` file, change the `TIMEOUT_LIMIT` property to greater than 5 minutes as required. The properties files for the Publish Servers are located here: `MS_HOME/etc/`. They are named with the convention `psX.properties`, where `X` is an integer. By default, there are 2 files, `ps1.properties` and `ps2.properties`, if you add another Publish Server instance, the properties file will be called `ps3.properties` and for all additional instances of the Publish Server, the integer value in the properties file name will increment by 1.

5. Click **Next**. The Step 2 - Define Trap page opens.
6. Complete the rest of the fields in the Trap Definition section, which restrict which events will trigger the trap to fire.
7. Click **Next**. The Set Trap Alerts page opens.
8. For the Trap Alert settings, under Condition enter the number of times the trap will occur before the system takes an action. Specify the amount of time under Time Interval to monitor how many times the trap met its conditions.
9. Click to select the severity level from the list box. The application monitor has three severity levels. Since the application monitor provides SNMP integration with Tivoli, map the three severity levels of the application monitor to the warning levels of Tivoli listed in the following table:

<table>
<thead>
<tr>
<th>ITCAM severity level</th>
<th>Tivoli warning level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Harmless</td>
</tr>
<tr>
<td>Medium</td>
<td>Minor</td>
</tr>
<tr>
<td>High</td>
<td>Critical</td>
</tr>
</tbody>
</table>

10. Select an action or multiple actions, such as sending an e-mail or SNMP message, for the system to take when the condition is met.
11. Select one or all Data Actions, such as Component/Method Trace, Stack Trace, or Thread Dump (not applicable to the Windows platform), to get detailed information. We recommend that you select Component/Method Trace as the data action, since a request executes quickly and it is difficult to catch before completion. Make sure that you have selected L3 monitoring level if you choose to collect Component/Method Trace as the Data Action. When setting a trap, you can select multiple trigger conditions and alerts for each action set. Each trap is required to have at least one action but may have multiple actions set. Thread Dump is not available for CICS.
12. Click **Add** to add the alert to your trap. If you select Component/Method Trace as the Data Action for an In-flight-based trap, the method trace might contain a "-1" for Depth on some events in the method trace. In-flight transactions, by definition, are incomplete transactions, so the request stacks of those transactions will be incomplete.
13. Set the Default Suppression settings by entering the amount of time you want to delay alerts after the first alert is sent.
14. Click **Next** to proceed. The Name Trap page opens.
15. Enter a name and descriptive text for your trap.
16. Click either **Save** or **Save & Activate**.

17. If you click **Save**, the Trap and Alert Management page opens displaying your new trap.

18. If you click **Save & Activate**, the Activate page opens. To activate a trap, see **Activating a Trap**.

Related topics
- Activating a trap
- Setting a Server Resource trap

Setting an Application trap using the Resident Time - Misbehaving Transaction target type

About this task

A Resident Time - Misbehaving Transaction is a target type for an Application Trap. With this target type, when the resident time of a request violates the specified level in the trap definition, the monitoring level for that specified request switches from L1/L2 to L3. For all the subsequent resident time violations for that request, method trace detail is captured.

This target type provides an efficient means of collecting method trace detail at L3 as you can configure the data collector to return to L1/L2 after the threshold is reached a certain number of times within a given time period, thereby reducing the performance cost to the data collector. This target type also provides a dynamic means of collecting method trace detail as detail is collected at the time the problem is occurring.

To set an Application trap with a Resident Time - Misbehaving Transaction target type:

1. From the top navigation, click **Problem Determination > Trap & Alert Management**. The Trap and Alert Management page opens.

2. On the left navigation pane, click **Create Trap**. The Trap Type selection page opens.

3. Select **Application Trap** as the trap type.

4. Select **Resident Time - Misbehaving Transaction** as the target type.

5. Click **Next**. The Step 2 - Define Trap page is displayed. In the **Threshold** field, enter a value. This value is the complete request response time expressed in milliseconds. When a transaction reaches this value, the trap is triggered.

6. In the **By Request** field, choose **Request Contains** and then enter the value *. When the **By Request** field contains the value *, the Resident Time - Misbehaving Transaction trap will deactivate after every request has reached the specified number of occurrences as specified in the **Number of occurrences of every request after which the trap will be deactivated** field.

7. Click **Next**. The Step 3 - Set Trap Alerts page is displayed. In the **Severity** field, select a severity level. The application monitor has three severity levels. Since the application monitor provides SNMP integration with Tivoli, map the three severity levels of the application monitor to the warning levels of Tivoli listed in the following table:

<table>
<thead>
<tr>
<th>ITCAM severity level</th>
<th>Tivoli warning level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Harmless</td>
</tr>
<tr>
<td>Medium</td>
<td>Minor</td>
</tr>
</tbody>
</table>
8. In the **Alert Action(s)** section, choose how and to whom you wish to communicate details of the trap threshold being reached. You can choose e-mail, SNMP or both.

9. Select **Collect Component/Method Trace**.

10. Click **Add** to add the alert to your trap. In the **Name** section, enter a name and a description for the trap. Click **Save & Activate**. The Activate page is displayed.

11. In the **Server Selection** section, select the servers you wish to monitor for this trap.

12. In the **Alert Suppression Settings** section, enter the amount of time you want to delay alerts after the first alert is sent. Click the **Trap Default** radio button to use the default suppression for the trap, or click the **Override Default** radio button to set a specific suppression duration for this particular trap activation. If you do not want to suppress any alerts, enter a value of 0, or leave the field blank.

13. In the **Deactivation Settings** section, there are 2 fields. Here is a description of each field:
 - **Number of occurrences of every request after which the trap will be deactivated** - The purpose of this field is to prevent the Data Collector from running at L3 indefinitely. The value in this field determines the number of times you want every request to reach the threshold before the trap is deactivated. Using this field enables you to capture component/method trace detail at L3 when the threshold is exceeded, and to then automatically revert to the original monitoring level, thereby reducing the performance cost to the server.

 A problem can occur if this value is not reached. If the **Number of occurrences of every request after which the trap will be deactivated** value is not reached, then the server will remain at L3 resulting in a continuous performance cost. To prevent this from happening use the field - **Number of consecutive non-violating requests after which mod level is reverted back and trap deactivated**.

 - **Number of consecutive non-violating requests after which mod level is reverted back and trap deactivated** - Once L3 is enabled, after the trap condition is violated the first time, it remains at L3 until the request violates for the predetermined number of times as set in the **Number of occurrences of every request after which the trap will be deactivated** field. As a result, the request in the Data Collector will remain at L3 if the request doesn’t violate for the predetermined number of times, resulting in performance cost to the Data Collector. To prevent this, use this field - **Number of consecutive non-violating requests after which mod level is reverted back and trap deactivated**.

 Once the trap triggers and the monitoring level switches to L3, if the number of requests that does not reach the threshold is equal to the value in this field, then the trap is deactivated. A field for this value is also displayed in the Active Traps table in the Trap and Alert Management page. The field is **Non Violating Requests Left**, it indicates the number of occurrences of non violating requests before the trap is deactivated.

14. Click **Activate** to activate the trap.
Setting a Server Resource trap

About this task

A Server Resource trap measures a variety of target types. The system will trigger a trap after exceeding the threshold for the metric you set. When the system meets the definition of the trap an alert occurs. For example, set a trap to alert you when a server is unavailable 2 times, and after a server is unavailable you can select to receive an e-mail.

To set a Server Resource trap:
1. From the top navigation, click Problem Determination > Trap & Alert Management. The Trap and Alert Management page opens.
2. On the left navigation pane, click Create Trap. The Trap Type selection page opens.
3. Select Server Resource trap as the Trap Type.
4. Select one of the following target types from the list box.
 - **CPU**: Average Platform CPU % Usage - Based on the average platform CPU usage over five minutes, the Publish Server retrieves CPU usage at regular intervals (60 seconds by default) and calculates the average platform CPU over five minutes.
 - **Average JVM CPU % Usage** - Based on the average JVM CPU usage over five minutes, the Publish Server retrieves CPU usage at regular intervals (60 seconds by default) and calculates the average JVM CPU over five minutes.
 - **Memory**:
 - **JVM Heap Size** - Based on the JVM Heap Size of the data collector, the Publish Server retrieves JVM Heap Size from the data collector at regular intervals (60 seconds by default) and checks the heap size from that measure.
 - **Garbage Collection Frequency** - Garbage Collection is calculated over one minute (supported in ITCAM J2EE WebLogic).
 - **Average JVM Heap Size after Garbage Collection** - The trap triggers when the average JVM Heap size exceeds the size configured in the trap (supported in ITCAM J2EE WebLogic)
 - **Application Capacity**:
 - **Number of Sessions** - Based on the number of user sessions that are currently in use by the application server.
 - **Average Response Time** - Publish Server triggers the trap if the average response time exceeds the time configured in the trap condition (supported in ITCAM J2EE WebLogic).
 - **Server available** - Publish server triggers the trap when the Server (Data Collector) becomes available (supported in ITCAM J2EE WebLogic).
 - **Server unavailable** - The Publish server triggers the trap if the Server (Data Collector) goes down or becomes unavailable (supported in ITCAM J2EE WebLogic).
• **Uncaught Java Exceptions** - Based on the rate of the Java exceptions that occur in applications and includes data about the failure. It is calculated over 60 seconds. Publish server triggers the trap if the Servlet error rates exceed the number configured in the trap condition.

• **Request Frequency** - Number of requests per minute.

• **Resource Pool**:
 - **Thread Pool % Usage** - Publish Server triggers the trap if the Thread Pool % Usage of a particular server exceeds the threshold that is specified in the trap condition (supported in ITCAM J2EE WebLogic).
 - **JCA Pool % Usage** - Publish Server triggers the trap if the JCA Pool % Usage of a particular server exceeds the threshold that is specified in the trap condition (supported in ITCAM J2EE WebLogic).
 - **JDBC Pool % Usage** - Publish Server triggers the trap if the JDBC Pool % Usage of a particular server exceeds the threshold that is specified in the trap condition (supported in ITCAM J2EE WebLogic).

5. Click **Next**. The Define Trap page opens.
6. Enter a threshold that will send out an alert when it triggers the trap after meeting the condition.
7. Click **Next**. The Set Trap Alerts page opens.
8. For the Trap Alert settings, under **Condition** enter the number of times the trap occurs before the system takes an action. Specify the amount of time under **Time Interval** to monitor how many times the trap met its conditions.
9. Click to select the severity level from the list box.

Note: The application monitor has three severity levels. Since the application monitor provides SNMP integration with Tivoli, map the three severity levels of the application monitor to the warning levels of Tivoli listed in the following table:

<table>
<thead>
<tr>
<th>ITCAM severity level</th>
<th>Tivoli warning level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Harmless</td>
</tr>
<tr>
<td>Medium</td>
<td>Minor</td>
</tr>
<tr>
<td>High</td>
<td>Critical</td>
</tr>
</tbody>
</table>

10. Select an action or multiple actions, such as sending an e-mail or SNMP message, for the system to take when the condition is met.
11. The Data Action–Heap Dump is only available if you select JVM Heap Size or Average JVM Heap Size after Garbage Collection as your Target type.
12. Click **Add** to add the alert to your trap.
13. Set the Default Suppression settings by entering the amount of time you want to delay alerts after the first alert is sent.
14. Click **Next** to proceed. The Name Trap page opens.
15. Enter a name and descriptive text for your trap.
16. Click either **Save** or **Save & Activate**.
17. If you click **Save**, the Trap and Alert Management page opens displaying your new trap.
18. If you click **Save & Activate**, the Activate page opens. To activate a trap, see *Activating a Trap*.

146 ITCAM for Application Diagnostics: User Guide
Results

If you select the <= operator while creating or modifying the Request Frequency target type, then the following sequence of events occurs:

1. The trap action does not trigger if no transactions are received by the Publish Server after activating the trap.
2. Trap threshold checking begins after the first transaction received by the Publish Server activates the trap.

Note: When setting a trap, you can select multiple trigger conditions and alerts for each action set. Each trap is required to have at least one action but can have multiple actions set.

Related topics
Activating a trap

Activating a trap

About this task

You can turn traps off and on by activating and deactivating them. Traps use resources on the managing server, including database storage, and generate network traffic, so make sure the thresholds you set to trigger your traps are realistic.

To activate a trap:

1. A trap is activated at the end of the trap creation dialog by clicking the Save & Activate button on the Name Trap panel; see “Setting an Application trap” on page 140 or “Setting a Server Resource trap” on page 145 to start from the beginning of the trap creation process. To activate an existing trap, from the top navigation, click Problem Determination > Trap & Alert Management. The Trap and Alert Management page opens.
2. In the Trap Profiles list, click Activate next to the trap you want to activate. The Activate page opens.
3. Select a group and a server.

Note: If you select all servers the trap will be applied to all servers assigned to the group (whether currently available or unavailable) at the time the trap is activated. Any new servers assigned to the group will not use the trap.

4. Set the Alert Suppression settings by entering the amount of time you want to delay alerts after the first alert is sent. Click the Trap Default radio button to use the default suppression for the trap, or click the Override Default radio button to set a specific suppression duration for this particular trap activation. If you do not want to suppress any alerts, enter a value of 0, or leave the field blank.

5. If you want the trap to run indefinitely, do not check either of the check boxes in the deactivation settings section. If you want the trap to deactivate, click one or both of the check boxes for deactivation, and fill in the value(s) for minutes or occurrences. If both deactivation settings are selected, the trap will deactivate when the first of the two deactivation conditions is met.

6. Click Activate. The Trap and Alert Management page displays the trap in the Active Traps table at the top of the page.

Related topics
Deactivating a trap
Deactivating a trap

About this task

Deactivate your traps when they are no longer required since they can add overhead to the system. The traps in the Trap Profiles table are not active.

To deactivate a trap:
1. From the top navigation, click **Problem Determination > Trap & Alert Management**. The Trap and Alert Management page opens.
2. In Active Traps table, click **Deactivate** next to the trap you want to deactivate.
3. Click **OK** at the confirmation box. The trap displays in the Trap Profiles table as deactivated.

Results

Note: A trap must be deactivated prior to modification.

Related topics

- Activating a trap
- Modifying a trap
- Setting a Server Resource trap
- Setting an Application trap

Modifying a trap

About this task

After creating a trap, you can modify any of the parameters of a trap. Change the Group, Server, Trap Type, Target Type, Alert Conditions, and the Action that occurs when the system meets the conditions. Using this method, you can reuse and modify old traps for different servers.

Note: A trap must be deactivated prior to modification. (See “Deactivating a trap.”)

To modify a trap:
1. From the top navigation, click **Problem Determination > Trap & Alert Management**. The Trap and Alert Management page opens.
2. In the Trap Profiles, click **Modify** next to the trap you want to modify. The Modify page opens.
3. If you want to change the Trap Definition, enter a new threshold that will trigger the trap after meeting the condition.
4. If you want to change the Trap Alert settings, under Condition enter the number of times the trap occurs before the system takes any action, including sending an e-mail or sending an SNMP message. Specify the amount of time under Time Interval to monitor how many times the trap met its conditions. In addition, set the Alert Suppression settings by entering the amount of time you want to delay alerts after the first alert is sent.
5. Select one or all Data Actions to get detailed information (not applicable to the Windows platform), such as Component/Method Trace, Stack Trace, and Thread Dump. Data Action is not applicable to Server Resource trap.

6. Click Add to add a new alert to your trap. If you select Component/Method Trace as the Data Action for an In-flight-based trap, the method trace might contain a “-1” for Depth on some events in the method trace. In-flight transactions, by definition, are incomplete transactions, so the request stacks of those transactions will be incomplete.

7. If you want to change the name, enter a new name and descriptive text for your trap. This will replace the old name when saved.

8. Click Save. The Trap and Alert Management page opens displaying your modified trap.

Related topics
Activating a trap
Setting a Server Resource trap
Setting an Application trap

Duplicating a trap

About this task

Save time by duplicating traps. Duplicating a trap allows you to quickly create a new trap based on the settings of an existing trap.

To duplicate a trap:
1. From the top navigation, click Problem Determination > Trap & Alert Management. The Trap and Alert Management page opens.
2. In the Trap Profiles table, click Duplicate next to the trap you want to duplicate. The Duplicate page opens.
3. Select the trap you want to duplicate from the list box.
4. Enter a name for the new trap.
5. Click Save. The new trap displays in the Trap and Alert Management page.

Related topics
Activating a trap
Deactivating a trap
Modifying a trap

Deleting a trap

About this task

Manage your traps by keeping them up-to-date. Delete existing traps from the system that are no longer in use.

To delete a trap:
1. From the top navigation, click Problem Determination > Trap & Alert Management. The Trap and Alert Management page opens.

 Note: A trap must be deactivated prior to deletion. (See “Deactivating a trap” on page 148

2. In the Trap Profiles table list, click Delete next to the trap you want to delete.
3. Click **OK** at the confirmation box. The Trap and Alert Management page opens displaying without the deleted trap.

Related topics
- Activating a trap
- Modifying a trap
- Setting a Server Resource trap
- Setting an Application trap

Viewing the trap action history

About this task

The Trap Action History page provides a record of traps that met the set conditions. You can view the trap history such as the date and time that the action was taken, trap properties, server name, severity, and the type of action that was taken.

To view a fired trap:
1. From the top navigation, click **Problem Determination > Trap & Alert Management**. The Trap and Alert Management page opens.
2. On the left navigation pane, click **Trap Action History**. The Trap Action History opens displaying the information for the fired traps.
3. Click **Show Filters**. You may either filter the information by server or by server and trap name but not by the trap name only.
4. Click to select the group name and the server name, and a trap name (if applicable), then click **Filter**. The Trap Action History page refreshes displaying the filtered trap information that you selected.

 The history of a method trace for an in-flight transaction may show -1 for the Depth. In-flight transactions, by definition, are incomplete transactions, so the request stacks of those transactions would be incomplete which makes calculating depth for partial events (a start without an end event) impossible.

 The Trap Action History page now displays the Data Collector process ID information.
5. To delete a fired trap history, check the Delete box next to the trap that you want to delete and click **Delete**. The Trap Action History page refreshes displaying without the deleted trap history.

Related topics
- Activating a trap
- Setting alert actions and data actions

Setting alert actions and data actions

About this task

Regardless of the trap type, you must specify trap actions as part of the trap definition.

Trap actions include alerts and data actions. Alerts include messages sent by e-mail or SNMP, whereas data actions capture Method Traces, Stack Traces or Thread Dumps.

Trap actions occur when a trap triggers. You can configure alert actions to be suppressed, to avoid getting spammed by alerts.
To set alert actions and data actions:

1. You can set trap alerts on the Step 3 - Set Trap Alerts page, which is part of the trap creation process. To arrive at this page, see "Setting an Application trap" on page 140 or "Setting a Server Resource trap" on page 145.

2. For the Trap Alert settings, in the condition field, enter the number of times the trap will trigger before the action is taken.

 Note: This value will be applied to all the trap actions defined in the next two steps. If you want to define multiple actions, each with a different condition, repeat steps 2-4 once for each distinct condition.

3. Click to select the severity level from the list box.

 Note: The application monitor has three severity levels. Since the application monitor provides SNMP integration with Tivoli, the three severity levels of the application monitor are mapped to the warning levels of Tivoli listed in the following table:

<table>
<thead>
<tr>
<th>ITCAM severity level</th>
<th>Tivoli warning level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Harmless</td>
</tr>
<tr>
<td>Medium</td>
<td>Minor</td>
</tr>
<tr>
<td>High</td>
<td>Critical</td>
</tr>
</tbody>
</table>

4. Add at least one action, either an alert action (e-mail or SNMP message) or a data action (Method Trace, Stack Trace or Thread Dump.) (The Thread Dump is not available on the Windows platform.)

5. To select an action, click its check box. For the e-mail action, also enter the list of e-mail addresses to which the message will be sent.

6. Click **Add** to add the actions to your trap. Repeat this step until you have added all the actions you want. You can change the values of the condition and severity fields (steps 2 and 3) each time you add a new action. If you select Component/Method Trace as the Data Action for an In-flight-based trap, the method trace may contain a "-1" for Depth on some events in the method trace. In-flight transactions, by definition, are incomplete transactions, so the request stacks of those transactions will be incomplete.

7. Set the Default Suppression setting if you want to avoid getting spammed by Alert Actions that might occur close together in time.

8. Click **Next** to proceed. The Name Trap page opens.

9. Enter a name and descriptive text for your trap.

10. Click either **Save** or **Save & Activate**. If you click Save, the Trap and Alert Management page opens displaying your new trap. If you click **Save & Activate**, the Activate page opens. To activate a trap, see "Activating a Trap".

Results

You can configure the Time Interval in the Trap Alert Settings page to milliseconds, seconds, minutes, hours, days or weeks. The smallest available time interval unit is milliseconds, certain trap types might not be able to use milliseconds as the time unit. Use the following table as a guideline for setting the Time Interval value with default Managing Server and Data Collector settings.

<table>
<thead>
<tr>
<th>Trap Type</th>
<th>Target Type</th>
<th>Minimum Time Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3. ITCAM for Application Diagnostics Managing Server Visualization Engine</td>
<td>151</td>
<td></td>
</tr>
</tbody>
</table>
Related topics
- Activating a trap

Software consistency check

Identify irregular servers.

Use the software consistency check to troubleshoot aberrant servers in an otherwise homogenous server group.

This feature is not available for CICS or IMS.

User Scenarios

Scenario 1: Comparing a non-functioning server with working servers

After an upgrade to Application B, which is deployed on multiple servers, requests on Server D are occasionally hanging while all the other servers are working fine. As an Operator, you check the Runtime Environment and compare the server having problems with one of the properly functioning servers. Go to the Installed Binary Check to see if the files on both servers are the same. You find that one of the files on Server D is not the same as the file on the server that is properly functioning. Install the proper file to correct the problem.

Installed Binary Comparison

Use the Installed Binary Comparison page to compare the installed binaries on a chosen server (the Authoritative Server) with up to 10 additional servers (the Comparison Servers).
To set up the installed binary comparison, select the authoritative servers and the comparison servers. See “Setting up an Installed Binary Comparison.”

Setting up an Installed Binary Comparison

About this task

Analyze the data from the Installed Binary Comparison to find out whether your servers contain the same installed binaries. The Installed Binary Comparison allows you to compare the installed binaries on a chosen server (the Authoritative Server) with up to 10 additional servers (the Comparison Servers). The comparison describes whether or not your servers contain the same installed binaries.

To setup an Installed Binary Comparison:

1. From the top navigation, click **Problem Determination > Software Consistency Check > Installed Binary Comparison**. The Installed Binary Comparison page opens.
2. Under the Authoritative Server, select a group and a server.
3. Under the Comparison Servers, select a group and a server, or select multiple servers within that group by clicking Ctrl + the server name.
4. Click **Next** to continue. The File selection page opens.
5. Click to select the File Source (EAR file or class path) and the File Types (JAR, Web, class, or image files).
6. Click **OK**. The Installed Binary Comparison results page displays the overview data first with the results of the comparison.

Results

See “Viewing the results of the Installed Binary Comparison.”

Related topics

- Viewing the results of the Installed Binary Comparison

Viewing the results of the Installed Binary Comparison

About this task

Review the comparison to find the differences among installed binaries on your servers. Differences in the installed binaries in a server farm can cause unexplained behavior.

To view the results of the Installed Binary Comparison:

1. Navigate the results of the binary comparison by clicking the expansion icon next to the server name on the left navigation pane.
2. To view further details, click the server name and select either the Matched or Unmatched folders.
3. To view the folder contents, in the Matched folders: select Full Match, File Name/Path/Size Match, or File Name Match, and in the Unmatched folders: select either Authoritative Only or Comparison Only.
4. To perform an MD5 on a file, click **Perform MD5**. You can only perform an MD5 on files that are a Full Match or a File Name/Path/Size Match. The results display whether the files matched or not at the MD5 level.

Results

The files in the Matched folders contain files that match to varying degrees:
• **Full Match** - indicates that everything matched, including the file name and path, size, and file system timestamp. These files are likely to be identical to each other. However, the user can opt to further perform a MD5 operation on the files. An MD5 is a unique numeric signature that is different for each file when the contents of the files are different, even if the creation date and the file names coincide.

• **File Name/Path/Size Match** - includes the files with matched file name and path, and size, but not timestamp. These files are likely to be the same. A user can opt to perform an MD5 on the files.

• **File Name Match** - indicates that only the file names matched. The files are unlikely to be the same.

The files in the Unmatched folders contain files that exist on either the Authoritative Server or the Comparison Server but not on both:

• An **Authoritative Only** indicates that the file only exists on the Authoritative Server.

• A **Comparison Only** indicates that the file only exists on the Comparison Server.

Related topics

Setting up an Installed Binary Comparison

Installed Binary Check

The Installed Binary Check page provides a list of the installed binaries deployed to the selected server.

To access the Installed Binary Check page, from the top navigation, click Problem Determination > Software Consistency Check > Installed Binary Check.

Select the server group name in the Group list box, and the server name in the Server list box, and click the Refresh button to view the binary information for the server.

The page shows a table of all application binaries installed on the server; the type, fully qualified name, modification time, and size are displayed.

In the Name column, click on directory names (these files display DIR in the Type column) to view details on binaries within the directories.

Click on JAR and EAR file names to view a list of the file contents.

Runtime Environment Comparison

Use the Runtime Environment Comparison page to compare the runtime environments on a chosen server (the Authoritative Server) with up to 10 additional servers (the Comparison Servers).

To set up the runtime environment comparison, select the authoritative servers and the comparison servers. See "Setting up a Runtime Environment Comparison."

Setting up a Runtime Environment Comparison

About this task

Analyze the data in the Runtime Environment Comparison and find out if the runtime environments on all your clone servers are setup the same.

To set up a Runtime Environment Comparison:
1. From the top navigation, click **Problem Determination > Software Consistency Check > Runtime Environment Comparison**. The Runtime Environment Comparison page opens.

2. Under the Authoritative Server, select a group and a server.

3. Under the Comparison Servers, select a group, and then select multiple servers within that group by clicking **Ctrl + the server name**.

4. Click **Next** to continue. The Runtime Environment Comparison results page displays the data.

5. For specific data on the server, click any of the options in the left navigation under System Runtime Environment, Java Runtime Environment, and the App Server Runtime Environment.

6. For a complete detail report on a particular server, click the server's name. The Runtime Environment Check page displays all the available data on the system runtime environment, Java runtime environment, and the appserver runtime environment for the selected server.

7. Click **Change Comparison** to set up another runtime environment comparison.

Related topics

[Viewing the results of the Installed Binary Comparison](#)

Runtime Environment Check

The Runtime Environment Check page provides runtime environment details for the selected server, including host computer, JVM and application server information.

To access the Installed Binary Check page, from the top navigation, click **Problem Determination > Software Consistency Check > Runtime Environment Check**.

Select the server group name in the **Group** list box, and the server name in the **Server** list box in the left pane.

Note: If you have a WebSphere Stack Product, such as WebSphere Process Server, WebSphere Portal Server, WebSphere Enterprise Service Bus, etc., which runs on an IBM WebSphere Application Server, the name of the application server is displayed when you Run the Runtime Environment Check.

Note: After configuring data source with the administration web application provided by Tomcat, the MBean from MBeanServer cannot be retrieved. As the result, the JDBC Connection Pools column will always be 0 on the page Runtime Environment Check. This is a Tomcat 5.0 bug (latest version Tomcat 5.0.28) and only occurs in the Tomcat 5.0 series. Tomcat 5.5 series does not have the problem.

Performance analysis and reporting

Analyze applications and servers.

Use performance analysis and reporting to analyze historical data. This helps you understand the performance of your applications and the utilization of your servers.

User Scenarios

Scenario 1: Investigating poor response time claims
Customers have been complaining about poor performance on Application A. As a performance analyst, you go into ITCAM for Application Diagnostics and draw up a response Trend Report for Application A for the last week to verify the customers’ claims. Once you are able to see that there indeed are instances of poor response time, you decompose the problematic period to see how different requests impact the response time. Drill down to a method trace of an actual instance of a slow transaction, and e-mail this Trace Report to the developers so they can determine why the transaction was slow.

Scenario 2: Predicting how your servers will handle a new workload

Marketing is going to launch a new campaign to bring more visitors to your site. Your manager wants to make sure that there is enough capacity to handle the projected workload without degrading response times. As a capacity planner, you need to project how well your current servers will perform under the new workload. You create a Capacity Analysis report to compare throughput versus response time. You can use the trend line to estimate at what throughput the response time will be unacceptable.

Defining reports

Set report requirements.

Set different requirements for generating reports to analyze the performance of application servers.

Defining a Request/Transaction Analysis report

About this task

The Request/Transaction Analysis report provides a whole picture about the behavior on the application server. After defining the request/transaction analysis, several reports become available: Trend report, Decomposition report, Request report detail, and Trace report. Each of these reports provides more specific data for understanding the application’s performance at every level.

To define a Request/Transaction Analysis report:

1. From the top navigation, click **Performance Analysis > Create Application Reports > Request/Transaction**. The Create report page opens.
2. Select yes or no to decide if you want the report to recur and click **Next**. For the purpose of these instructions we are selecting no. If you want further instructions on scheduling reports, refer to [Defining a Schedule report](#).
3. Select the group and the server from the list box.
4. Click **Next** to continue creating the report. The Report Filtering options page opens. It displays the options based on the Report Type you select.
5. Set the following options to filter the records returned in the report:
 - **Metric** - Throughput per Hour, Throughput per Second, Throughput per Minute, Response Time, and CPU Time.
 - **Request Type** - All, EJB, JSP, Servlet, CICS, Web Service, OTMA, VTAM®, BTAM, APPC, Portal, and RMI-IIOP.
 - **Request Name** - Unless you know the exact request string, always leave the field blank to return all requests or type in the specific request name.
6. Click **Next** to continue creating the report. The Date Range settings page opens.
7. Set the parameters to restrict the data returned in your report. For detailed instructions, see [Understanding the Date Range settings](#).

8. Click View Report to view the report. If you want to get a second data set for comparative analysis, click Next to open the Report Comparison page. The Report Comparison page opens.

9. Select a report comparison type and view the comparison report by clicking View Report.

10. Click Save if you want to save the report. For more information see “Viewing saved reports” on page 172.

Related topics
- Defining a Schedule report
- Understanding the Date Range settings
- Defining a Schedule report
- E-mailing a report
- Exporting a file
- Modifying a report
- Viewing a PDF file

Defining a Method/Program Analysis report

About this task

The Method/Program Analysis report shows you the performance of the methods in the requests that have been processed by the application servers. After defining the Method/Program Analysis report, a Trend report, Decomposition report, and detailed Method/Program report are available.

To define a Method/Program Analysis report:

1. From the top navigation, click Performance Analysis > Create Application Reports > Method/Program. The Create reports page opens.

2. Select yes or no to decide if you want the report to recur and click Next. For the purpose of these instructions we are selecting no. If you want further instructions on scheduling reports, refer to [Defining a Schedule report](#).

3. Select the group and the server from the list box.

4. Click Next to continue creating the report. The Report Filtering options page opens. It displays the options based on the Report Type you select.

5. Set the following options to filter the records returned in the report:
 - **Metric** - Throughput per Second, Throughput per Minute, Throughput per Hour, Response Time (ms), and CPU Time (ms).
 - **Method/Component Trace** - Unless you know the exact string, always leave the field blank to return all traces or type in the specific method/program/component name.

 Note: The name of this field represents the names used in J2/WAS and z/OS. Method name is used in the J2/WAS environments, and Program and component name are used in the z/OS environments.

 - **Request Type** - ALL, EJB, JSP, Servlet, CICS, Web Service, and Portal.
 - **Request Name** - Unless you know the exact request string, always leave the field blank to return all requests or type in the specific request name.

6. Click Next to continue creating the report. The Date Range settings page opens.
7. Set the parameters to restrict the data returned in your report. For detailed instructions, see “Understanding the Date Range settings.”

8. Click View Report to view the report. If you want to get a second data set for comparative analysis, click Next to open the Report Comparison page. The Report Comparison page opens.

9. Select a report comparison type and view the comparison report by clicking View Report.

10. Click Save if you want to save the report. For more information see “Viewing saved reports” on page 172.

Related topics
- Defining a Schedule report
- Understanding the Date Range settings
- Defining a Schedule report
- E-mailing a report
- Exporting a file
- Modifying a report
- Viewing a PDF file

Defining a SQL Analysis report
About this task

The SQL Analysis report provides the information for the SQL calls’ performance in the requests that have been processed by the application server. You can also view the Trend report, Decomposition report, and detailed SQL report after defining the SQL Analysis report.

To define a SQL Analysis report:
1. From the top navigation, click Performance Analysis> Create Application Reports > SQL. The Create report page opens.
2. Select yes or no to decide if you want the report to recur and click Next. For the purpose of these instructions we are selecting No. If you want further instructions on scheduling reports, refer to Defining a Schedule report.
3. Select the group and the server on which you want to report from the list box.
4. Click Next to continue creating the report. The Report Filtering options page opens. It displays the options based on the Report Type you select.
5. Set the following options to filter the records returned in the report:
 - Metric - Throughput per Second, Throughput per Minute, Throughput per Hour and Response Time.
 - SQL Call - All, Insert, Delete, Update, Execute, Select, Lock, Unlock, Open, Close and Fetch.
 - Table Name - Leave blank for all table names or type in the specific table name.
 - Request Type - All, EJB, JSP, Servlet, CICS, Web Service, and Portal.
 - Request Name - Unless you know exactly what the request string is, otherwise always leave the field blank to return all requests or type in the specific request name.
 - Method/Component Trace - Leave blank for all methods or type in the specific name.
6. Click Next to continue creating the report. The Date Range settings page opens.
7. Set the parameters to restrict the data returned in your report. For detailed instructions, see "Understanding the Date Range settings".

8. Click View Report to view the report. If you want to get a second data set for comparative analysis, click Next to open the Report Comparison page. The Report Comparison page opens.

9. Select a report comparison type and view the comparison report by clicking View Report.

10. Click Save if you want to save the report. For more information see “Viewing saved reports” on page 172.

Related topics
Defining a Schedule report
Understanding the Date Range settings
Defining a Schedule report
E-mailing a report
Exporting a file
Modifying a report
Viewing a PDF file

Defining an MQI Analysis report

About this task

The MQI Analysis report provides the information for the MQI calls' performance in the requests that have been processed by the application server. You can also view the Trend report, Decomposition report, and detailed MQI report after defining the MQI Analysis report.

To define a MQI Analysis report:

1. From the top navigation, click Performance Analysis > Create Application Reports > MQI. The Create report page opens.

2. Select yes or no to decide if you want the report to recur and click Next. For the purpose of these instructions we are selecting no. If you want further instructions on scheduling reports, refer to Defining a Schedule report.

3. Select the group and the server on which you want to report from the list box.

4. Click Next to continue creating the report. The Report Filtering options page opens. It displays the options based on the Report Type you select.

5. Set the following options to filter the records returned in the report:
 - **Metric** - Throughput per Second, Throughput per Minute, Throughput per Hour, and Response Time (ms).
 - **MQI Call** - BACK, BEGIN, CLOSE, CMIT, CONN, CONNX, DISC, GET, INQ, OPEN, PUT, PUT1, and SET.
 - **Queue Manager** - manager of the queue.
 - **Queue Name** - Name of the queue.
 - **Request Type/Transaction Type** - All, EJB, JSP, Servlet, CICS, Web Service, OTMA, VTAM, BTAM, APPC, Portal, and RMI-IIOP
 - **Request/Transaction Name** - Unless you know the exact request string, always leave the field blank to return all requests or type in the specific request name.
 - **Method/Program/Component Trace** - Leave the field blank to return all methods. Type in the specific method name if you know the method name you are looking for.
6. Click **Next** to continue creating the report. The Date Range settings page opens.

7. Set the parameters to restrict the data returned in your report. For detailed instructions, see [Understanding the Date Range settings](#).

8. Click **View Report** to view the report. If you want to get a second data set for comparative analysis, click **Next** to open the Report Comparison page. The Report Comparison page opens.

9. Select a report comparison type and view the comparison report by clicking **View Report**.

10. Click **Save** if you want to save the report. For more information see ["Viewing saved reports"](#) on page 172.

Related topics
- Defining a Schedule report
- Understanding the Date Range settings

Defining a Lock Analysis report

About this task

If you suspect that you have lock contention issues with a specific application, you can run a lock analysis report. This will give you the history of locking in the application and show whether there is a trend. The lock reports will show you the difference between the total locks and the ones that are contentious.

To define a Lock Analysis report:

1. From the top navigation, click **Performance Analysis > Create Application Reports > Lock Analysis**. The Create report page opens.

2. Select yes or no to decide if you want the report to recur and click **Next**. For the purpose of these instructions we are selecting no. If you want further instructions on scheduling reports, refer to [Defining a Schedule report](#).

3. Select the group and the server from the list box.

4. Click **Next** to continue creating the report. The Report Filtering options page opens. It displays the options based on the Report Type you select.

5. Set the following options to filter the records returned in the report:
 - **Metric** - The item you want to measure: Number of Lock Acquisitions, Number of Lock Contentions and Total Acquisition Time.
 - **Request Type** - All, EJB, JSP, Servlet, Web Service, and Portal.
 - **Request Name** - Unless you know the exact request string, always leave the field blank to return all requests or type in the specific request name.
 - **Method/Component Trace** - Leave the field blank to return all methods or type in the specific method name.

6. Click **Next** to continue creating the report. The Date Range settings page opens.

7. Set the parameters to restrict the data returned in your report. For detailed instructions, see [Understanding the Date Range settings](#).

8. Click **View Report** to view the report.

9. Click **Save** if you want to save the report. For more information see ["Viewing saved reports"](#) on page 172.

Related topics
- Defining a Schedule report
- Understanding the Date Range settings
- Defining a Schedule report
Defining a Portal Page report

About this task

The Portal Page report provides a picture of the behavior within the Portal Page requests. Once you isolate the problem requests, the portal-specific nested requests allow you to quickly get a high-level picture of where your problem is taking place. After defining the portal page report, several reports become available: Trend report, Decomposition report and Portal Page Detail report.

To define a Portal Page report:
1. From the top navigation, click Performance Analysis > Create Application Reports > Portal. The Create report page opens.
2. Select yes or no to decide if you want the report to recur and click Next. For the purpose of these instructions we are selecting no. If you want further instructions on scheduling reports, refer to Defining a Schedule report.
3. Select the group and the server from the list box.
4. Click Next to continue creating the report. The Report Filtering options page opens. It displays the options based on the Report Type you select.
5. Set the following options to filter the records returned in the report:
 - **Metric** - The item you want to measure: Throughput per hour, Throughput per minute, Throughput per second, Response Time and CPU Time.
 - **Nested Request Type** - Portal page and Portlet. You must set this to Portal Page for a Portal Page report.
 - **Portal Page Name** - Limits the requests that are being reported on to include only those whose name matches the string you enter.
 - **Portlet Name** - Type in a specific portlet name to show only those portal pages that contain the portlet name specified.
6. Click Next to continue creating the report. The Date Range settings page opens.
7. Set the parameters to restrict the data returned in your report. For detailed instructions, see Understanding the Date Range settings.
8. Click View Report to view the report.
9. Click Save if you want to save the report. For more information see "Viewing saved reports" on page 172.

Related topics
- Defining a Schedule report
- Understanding the Date Range settings
- Defining a Schedule report
- E-mailing a report
- Exporting a file
- Modifying a report
- Viewing a PDF file
Defining a Portlet report

About this task

If you want to compare the response time of a portlet across multiple pages, or debug an application rather than the entire portal server, you can run a portlet report. This will show the performance of a portlet and not the whole request. Then you can see if the same portlet has different response times on different pages. Drilling down allows you to get detailed performance information on a per-portlet basis. You can see how a portlet performs across the different pages that it’s used on, which can help determine whether the problem you are encountering is caused by the portlet itself or by the things surrounding it on the page.

To define a Portlet report:

1. From the top navigation, click Performance Analysis > Create Application Reports > Portal. The Create report page opens.
2. Select yes or no to decide if you want the report to recur and click Next. For the purpose of these instructions we are selecting no. If you want further instructions on scheduling reports, refer to Defining a Schedule report.
3. Select the group and the server from the list box.
4. Click Next to continue creating the report. The Report Filtering options page opens. It displays the options based on the Report Type you select.
5. Set the following options to filter the records returned in the report:
 - **Metric** - The item you want to measure: Throughput per hour, Throughput per minute, Throughput per second, Response Time and CPU Time.
 - **Nested Request Type** - Portal page and Portlet. You must set this to Portlet for a Portlet report.
 - **Portal Page Name** - Type in a specific portal page name to show only those portlets which are contained in the portal pages whose name matches the one you specified.
 - **Portlet Name** - Type in a specific portlet name to show only those portlets that contain the portlet name specified.
6. Click Next to continue creating the report. The Date Range settings page opens.
7. Set the parameters to restrict the data returned in your report. For detailed instructions, see Understanding the Date Range settings.
8. Click View Report to view the report.
9. Click Save if you want to save the report. For more information see Viewing saved reports on page 172.

Related topics

- Defining a Schedule report
- Understanding the Date Range settings
- Defining a Schedule report
- E-mailing a report
- Exporting a file
- Modifying a report
- Viewing a PDF file
Defining Top reports

About this task

Top reports are a quick and convenient way to run a report for request, method, or SQL data. Top reports provide the top 100 results records for the selected metric.

To define a Top report:
1. From the top navigation, click **Performance Analysis > Create Application Reports > Top Reports.** The Recurrence report page opens.
2. Select yes or no to decide if you want the report to recur and click **Next.** For the purpose of these instructions we are selecting no. If you want further instructions on scheduling reports, refer to **Defining a Scheduled report.**
3. Select the group and the server from the list boxes. The Report and Data Range selection page opens.
4. Select the type of Top report you want to run and set the date range using the list boxes. If applicable, set the Advanced Filtering to extract the data of a specific time period. For detailed instructions, see step two of **Understanding the Date Range settings.**
5. Click **View Report** to open the report. The Top report opens.
6. Click **Save** if you want to save the report. For more information see **Viewing saved reports** on page 172.

Results

Note: The Top Slowest Request Report calculates the average response time by (sum of the response time)/(total # of requests) given the selected group/server and time period. This might cause the data in the Slowest Request Report to vary for the group report and server report for the same time span.

Related topics
- **Defining a Scheduled report**
- **Understanding the Date Range settings**
- **Defining a Schedule report**
- **E-mailing a report**
- **Exporting a file**
- **Modifying a report**
- **Viewing a PDF file**

Defining a System Resource Analysis report

About this task

The System Resource Analysis report gives you the information of the utilization of the memory, and the connection pool for the application servers. You can also view a Trend report and Decomposition report after defining the System Resource Analysis report.

Note: This feature does not apply to the z/OS platform.

To define a System Resource Analysis report:
1. From the top navigation, click **Performance Analysis > Create Server Reports > System Resource.** The Create report page opens.
2. Select yes or no to decide if you want the report to recur and click **Next.** For the purpose of these instructions we are selecting no. If you want further
instructions on scheduling reports, refer to Defining a Schedule report. The Server and Report Type selection page opens.

3. Select the group and the server on which you want to report from the list box.

4. Click Next to continue creating the report. The Report Filtering options page opens. It displays the options based on the Report Type you select.

5. Set the following options to filter the records returned in the report: Metric - Amount of memory used, JVM/Region CPU %, System CPU %, Average % of Pool in Use (supported in ITCAM J2EE WebLogic), JDBC Connection Pool Size (supported in ITCAM J2EE WebLogic), and Live Sessions.

6. Click Next to continue creating the report. The Date Range settings page opens.

7. Set the parameters to restrict the data returned in your report. For detailed instructions, see Understanding the Date Range settings.

8. Click View Report to view the report. If you want to get a second data set for comparative analysis, click Next to open the Report Comparison page. The Report Comparison page opens.

9. Select a report comparison type and view the comparison report by clicking View Report.

10. Click Save if you want to save the report. For more information see Viewing saved reports on page 172.

Related topics
Defining a Schedule report
Understanding the Date Range settings
Defining a Schedule report
E-mailing a report
Exporting a file
Modifying a report
Viewing a PDF file

Defining a Server Availability Analysis report

About this task
The Server Availability Analysis report shows the percentage of the server availability. In the group situation, availability is defined as the total amount of time when one or more servers in the group are up, divided by the total elapsed time.

To define a Server Availability Analysis report:
1. From the top navigation, click Performance Analysis > Create Server Reports > Server Availability. The Create report page opens.
2. Select yes or no to decide if you want the report to recur and click Next. For the purpose of these instructions we are selecting No. If you want further instructions on scheduling reports, see Defining a Schedule report.
3. Select the group and the server on which you want to report from the list box.
4. Click Next to continue creating the report. The Date Range settings page opens.
5. Set the parameters to restrict the data returned in your report. For detailed instructions, see Understanding the Date Range settings.
6. Click View Report to view the report. If you want to get a second data set for comparative analysis, click Next to open the Report Comparison page. The Report Comparison page opens.
7. Select a report comparison type and view the comparison report by clicking View Report.
8. Click Save if you want to save the report. For more information see "Viewing saved reports" on page 172.

Related topics
- Defining a Schedule report
- Understanding the Date Range settings
- Defining a Schedule report
- E-mailing a report
- Exporting a file
- Modifying a report
- Viewing a PDF file

Defining a Capacity Analysis report
About this task

The Capacity Analysis report provides you with the necessary information to evaluate the capacity of your system using supply and demand metrics.

To define a Capacity Analysis report:
1. From the top navigation, click Performance Analysis > Create Server Reports > Capacity Analysis. The Server Selection page opens.
2. Select the group and the server on which you want to report from the list box.
3. Click Next to continue creating the report.
4. Set the following options to filter the records returned in the report:
 - X - Axis - Throughput per Minute and Users.
 - Y - Axis - System CPU (%), JVM/Process CPU (%), JVM/Process Memory (MB), and Response Time (ms).
5. Click the check box to select Set Y-axis Max and enter the value you want to be set to the maximum.
6. Click Next to continue creating the report. The Date Range settings page opens.
7. Set the parameters to restrict the data returned in your report. For detailed instructions, see "Understanding the Date Range Settings".
8. Click View Report.
9. Click Save to save the report.
10. Click Save if you want to save the report. For more information see "Viewing saved reports" on page 172.

Related topics
- Understanding the Date Range settings
- Defining a Schedule report
- E-mailing a report
- Exporting a file
- Modifying a report
- Viewing a PDF file
Defining a Schedule report

About this task

Scheduling reports allows you to create a time for your reports to automatically activate at a time you preselect.

To define a Scheduled report:

1. From the top navigation, click Performance Analysis > Create Application Reports > Method/Program.

 Note: We will use the Method/Program report as an example. You can create a Scheduled report from a selection of the available reports.

2. Select Yes to have the report recur and click Next. The Server Selection page opens.

3. Select the group and the server on which you want to report from the list boxes. Select the Create a separate report for each server check box to create one report for each server without repeating the steps for each one. If you don’t select the check box, the report provides all the data aggregated across all servers.

4. Click Next to continue creating the report.

5. Set the following options to filter the records returned in the report:
 - Metric - Throughput per Second, Throughput per Minute, Throughput per Hour, Response Time (ms), and CPU Time (ms).
 - Method/Component Trace - Unless you know the exact string, always leave the field blank to return all traces or type in the specific method/program/component name.

 Note: The name of this field represents the names used in J2/WAS and z/OS. Method name is used in the J2/WAS environments, and Program and component name are used in the z/OS environments.

 - Request Type - ALL, EJB, JSP, Servlet, CICS, Portal, and Web Service.
 - Request Name - Unless you know the exact request string, always leave the field blank to return all requests or type in the specific request name.

6. Click Next to continue creating the report. The Date Range settings page opens.

7. Set the parameters to restrict the data returned in your report. For detailed instructions on setting the parameters, see Understanding the Date Range settings.

8. To view the report, click Preview. To set a schedule for the report, click Schedule.

9. Set the schedule for the report and setup an e-mail distribution list of the people you want the report sent to when it is completed. Unlike a saved report, you can not click Run Report to view the report at anytime. For a scheduled report, you can only view the e-mailed PDF of the report. Click Next.

10. Enter the name of the report. Click Save or Save & Activate. For more information see “Viewing saved reports” on page 172.

 Note: You can either save the report now and activate it later or you can save and activate the report at the same time.

11. The Scheduled reports page opens displaying your report in the list.

Related topics
Understanding the Date Range settings

About this task

The Date Range settings allow you to set the parameters that restrict the data you want to capture for a report. You will be given the option to modify these settings while creating a report. The Date Range settings contain three main sections: Date Range, Advanced Filtering (optional) and Graphing Option.

This section is not applicable to defining a Top report.

To set the Date Range settings:
1. From the Date Range section, click to select a preset date range or enter a custom start date and end date for extracting only the data for the time period specified.
2. To extract the data of a specific time period, define your custom data set in the Advanced Filtering section:
 • Uncheck the hours of the day when you do not want data to display. For example, to select only data occurring between 9:00am and 5:00pm, uncheck 00:00-08:00 hours and 18:00-23:00 hours.
 • Uncheck the days of the week when you do not want data to display. For example, to select only data occurring Monday through Friday, uncheck Sunday and Saturday.
 • Uncheck the days of the month when you do not want data to display.
 • Uncheck the months of the year when you do not want data to display. By default, the Advanced Filtering section automatically selects all the options.
3. Select any of the following options in the Graphing option for analyzing certain patterns in the data based on time characteristics, or compiling large amounts of data over a long period and plotting all the points:
 • Time series in minutes
 • Time series in hour
 • Time series in day
 • Time series in week
 • Time series in month
 • Aggregate minute of the hour
 • Aggregate hour of the day
 • Aggregate day of the week
 • Aggregate month of the year

Results

On the Trend report, if the date range selected is <= 60 minutes, both the graph and data table will display. If the date range selected is > 60 minutes, only the data table will display.

Related topics
Defining a Schedule report
E-mailing a report
Exporting a file
Viewing a PDF file

Viewing the Detail report
About this task

The Detail report allows you to drill down into the data for more information about the requests. Each detail report provides detail, summary, worst performers, and locks information for your review.

To view the detail report:
1. Create a report.
2. View the report.
3. Access the Trend report and click any part of the graph/chart to go to the Decomposition report.
4. From the Decomposition report, drill down into the detail report.
5. The Detail report has four tabs: detail, summary, worst performers, and locks.
 - The Detail tab provides information about each request that made up the data point selected from the decomposition report.
 - The Summary tab provides information about requests across all requests breaking it down by nested requests so you can view the data component by component.
 - The Worst Performers tab provides information about the requests containing the worst-performing nested requests based on the selected metrics.
 - The Lock tab provides detailed lock information with the ability to toggle between the lock acquisition and contention information. Lock Tab is only available for the Lock Analysis report. This data is the average for all the requests on the Detail tab of the Detail report.

Note: The following reports can be viewed in PDF format: Trend report, Decomposition report, Detail report, and Flow View in Trace report. All these reports can be mailed to users in PDF format and also these reports can be exported to a file in CSV format.

Note: Detail report is available for all application reports except Top reports.

Related topics
Defining a Schedule report
Understanding the Date Range settings
Defining a Schedule report
E-mailing a report
Exporting a file
Modifying a report
Viewing a PDF file
Defining a Lock Analysis report
Defining a Method/Program Analysis report
Defining a Portal report
Defining a Request/Transaction Analysis report
Defining a SQL Analysis report
Defining an MQI Analysis report

Viewing the Trace Report
About this task

The Trace report allows you to drill down into the method flow of a selected request from the Detail report, in terms of the method/component entry and exit events. Each trace report provides the following options, Nesting Summary, Drilldown View, Flow View, and Search tabs to view method trace data in different formats.

To view the trace report:
1. Create a report.
2. View the report.
3. Access the Trend report and click any part of the graph/chart to go to the Decomposition report.
4. From the Decomposition report, drill down into the detail report.
5. The Detail report, Detail tab, click Request/Transaction Name, drill down into the trace report.
6. Inside the Trace report, there are four tabs: Nesting Summary, Drilldown View, Flow View, and Search.
 * The **Nesting Summary** tab provides information about the top 10 slowest components. It also provides the total number of calls, the average response time, and the average CPU time for each component in the selected request.
 * The **Drilldown** tab provides information about method trace at each level.
 * The **Flow View** tab provides the complete method flow of the selected request.
 * The **Search** tab allows you to specify any of the following types, together with a numerical threshold (or a string) and presents a list of events from the method trace whose metrics cross the threshold (or match the string). The Event Type and Event Data searches are case sensitive.
 - Elapsed Time
 - CPU Time
 - Delta Elapsed Time
 - Delta CPU Time
 - Event Type
 - Event Data
 - Total Acquisition Time

Note: Trace report is available for Request/Transaction report, Lock Analysis report, and Portal report.

Related topics
Defining a Lock Analysis report
Defining a Portal report
Defining a Request/Transaction Analysis report

Report management
Manage saved reports.
Manage the reports you save on your system: view the reports (click the Report Name) or run the reports (click Run Report).

Modifying a report

About this task

After creating a report, you can modify the parameters of the report to suit your changing needs. Change the settings in the Server and Report Type Selection page, the Report Filtering Options page, the Date Range Settings page, and the Report Comparison page. Using this method, you can reuse, duplicate, and modify old reports for different application servers.

To modify a report:

1. From the top navigation, click Performance Analysis > View Saved Reports. The Reports page opens.
2. Click Modify next to the report you want to change. The Recurrence page opens. Select Yes to have the report recur.
3. Change the group or server, and click Next. The Report Filtering options page displays different options based on the report type you select.
 While you are choosing a server by navigating through the groups, note that the final group name does not affect the data to be extracted for the preparation of the report. The group name is immaterial to the selection process when data is gathered. The report will compile all records that are generated by the chosen server regardless which group it belongs to.
4. Select the filtering options for your report to examine and limit the type of records to include in the report.
5. Click Next to continue creating the report. The Date Range Settings page opens.
6. Set the parameters to restrict the data returned in your report. For detailed instructions, see [Understanding the Date Range Settings](#).
7. Click View Report to view the report. If you want to get a second data set, click Next to open the Report Comparison page. The Report Comparison page opens.
8. Select a report comparison type and view the comparison report by clicking View Report. The Trend report opens.
9. Click Save if you want to save the report. For more information see ["Viewing saved reports" on page 172](#).

Related topics

- [Understanding the Date Range settings](#)
- [Defining a Schedule report](#)
- [Running a report](#)

Modifying a Top report

About this task

After creating a Top report, you can modify its parameters to suit your changing needs. Change the settings in the Server and Report Type selection page, and the Report and Date Range selection page. Using this method, you can reuse, duplicate and modify old reports for different application servers.

To modify a Top report:

1. From the top navigation, click Performance Analysis > View Saved Reports.
 The Reports page opens.
2. Click **Modify** next to the top report you want to change. The Recurrence page opens. Select Yes to have the report recur.

3. Change the group or server, and click **Next**. While you are choosing a server by navigating through the groups, note that the final group name does not affect the data to be extracted for the preparation of the report. The group name is immaterial to the selection process when data is gathered. The report will compile all records that are generated by the chosen server regardless which group it belongs to.

4. Click **Next** to modify the report type, date range, and the filtering options. The Report and Date Range selection page opens.

5. Select a Top report type from the list box.

6. Set the Start Date, End Date, Start Time, and End Time. If applicable, set the Advanced Filtering to extract the data of a specific time period. For detailed instructions, see step 2 of Understanding the Date Range Settings.

7. Click **Finish** to create the report. The Top report opens.

Related topics
- Understanding the Date Range settings
- E-mailing a report
- Exporting a file
- Running a report
- Viewing a PDF file

Running a report

About this task

Return to the Performance Analysis and Reporting Management page to run a saved report and retrieve the current data. Additionally, you can save a report, e-mail a link or PDF of a report, or view PDF report, export a PDF report to a comma delimited file format. If you e-mail a link, remember that the recipient must be a user of the application monitor with the appropriate rights to view the servers to where the report runs.

To run a report:

1. From the top navigation, click **Performance Analysis > View Saved Reports**. The Reports page opens.

2. All previously defined and saved reports (except Scheduled reports) display on the Reports Management page.

3. Click **Run Report** next to the report you want to run.

 Note: The report opens displaying data based on the Metric selected on the Report Filtering options page. The type of report and metric selected display in the page heading, for example, Trend report - Throughput per Second Request Analysis.

Related topics
- E-mailing a report
- Exporting a file
- Viewing a PDF file
- Viewing the reports
Duplicating a report
About this task

Save time creating new reports by duplicating an existing report.

To duplicate a report:
1. From the top navigation, click Performance Analysis > View Saved Reports. The Reports page opens.
2. Click Duplicate next to the report you want to duplicate.
3. Enter a name for the duplicated report, and click Save. The Reports page displays with the new duplicated report.

Related topics
- E-mailing a report
- Exporting a file
- Viewing a PDF file

Viewing saved reports
About this task

After defining a report other than a Top report, there are six different reports that display various levels of detail: Trend report, Decomposition report, Method report, Request report, SQL report, and Trace report. The reports that you have access to will vary depending on the criteria you select while creating your report. For example, on the Server and Report Type Selection page, depending on the Report Type you select, the following reports are available:

- **Request/Transaction** - displays Trend, Decomposition, Request Detail, and Trace reports.
- **Method/Program** - displays Trend, Decomposition, and Method Detail reports.
- **SQL** - displays Trend, Decomposition, and SQL Detail reports.
- **MQI** - displays Trend, Decomposition, and MQI Detail reports.
- **Lock Analysis** - displays Trend, Decomposition, and Lock Analysis Detail reports.
- **Server Availability** - displays the Trend report.
- **System Resources** - displays Trend, and Decomposition reports.
- **Capacity Analysis** - displays Capacity Analysis Detail report.

To view the reports:
1. From the top navigation, click Performance Analysis > View Saved Reports. The Reports page opens.
2. Click Run Report next to the report you want to run. The Trend report opens first.

 Note: Use the left navigation to return to the Saved Reports page, Modify reports, or Save a report.
3. Select an option from the Additional Details list box to decompose the Trend report.
4. Click the bar displayed in the graph or a data point in the table to view more details. The Decomposition report opens.
5. Click on a section of the chart or a data point in the table to view more details. The Request/Transaction Report Detail page opens displaying the Detail data, the Summary and the Worst Performers.

Results

If you selected Request/Transaction Analysis as the Report Type, to access the Trace report:
1. Click the Request Name to view the Trace report.
2. The Trace report page - Nesting Summary page opens. For more information see “Viewing the Nesting Summary” on page 192.

Note: These instructions apply to all the report types available. However, remember that the reports available depend on the Report Type selected. Top reports have no additional detail.

Related topics
Defining a Capacity Analysis report
Defining a Request/Transaction Analysis report
Defining Top reports

Deleting a report
About this task

Manage your reports by keeping them up-to-date. Delete existing reports from the system that are no longer in use.

To delete a report:
1. From the top navigation, click Performance Analysis > View Saved Reports. The Reports page opens.
2. Click X next to the report you want to remove.
3. At the confirmation box, click OK to delete the report. The Reports page displays without the deleted report.

Related topics
E-mailing a report
Exporting a file
Viewing a PDF file

E-mailing a report
About this task

You can e-mail a PDF file of a report to either the application monitor users or non application monitor users. You can also e-mail a link of a report to a group of application monitor users. The recipient will be brought to a particular page by the link after logging in. You can e-mail a PDF of the following reports: Trend report, Decomposition report, Detail report, and Flow View in Trace report

To e-mail a report/PDF:
1. From the top navigation, click Performance Analysis > View Saved Reports. The Reports page opens.
2. Click Run Report next to the report you want to run. The selected report opens.
3. Click the **E-mail PDF** icon to e-mail a PDF file of a report. The E-mail page opens.
4. On the E-mail page, enter the e-mail address of the recipient. Separate multiple addresses with a comma.
5. Click **OK** to e-mail the report.

Results

To e-mail a link:

1. From the top navigation, click **Performance Analysis > View Saved Reports**.
 The Reports page opens.
2. Click **Run Report** next to the report you want to run.
 The selected report opens.
3. Click the **E-mail Link** to e-mail a link of a report.
 The E-mail page opens.
4. On the E-mail page, enter the e-mail address of the recipient. Separate multiple addresses with a comma.
5. Click **OK** to e-mail the link of the report. When you e-mail a link, the recipient must be a user of the application monitor with the appropriate rights to view the servers in the report.

Related topics

- Exporting a file
- Viewing a PDF file

Viewing a PDF file

About this task

You can view a PDF file of a report before you send out the file to another recipients.

You can view a PDF of the following reports: Trend report, Decomposition report, Detail report, and Flow View in Trace report

To view a PDF file:

1. From the top navigation, click **Performance Analysis > View Saved Reports**. The Reports page opens.
2. Click **Run Report** next to the report you want to run. The selected report opens.
3. Click **View PDF** to download a PDF file of a report.
4. From the File Download window, click either **Open** to view the file immediately or click **Save** to save the file.

Related topics

- E-mailing a report
- Exporting a file

Exporting a file

About this task

You can export a report to a comma delimited file format, if necessary. You can e-export a PDF of the following reports: Trend report, Decomposition report, Detail report, and Flow View in Trace report
To export to a file:
1. From the top navigation, click **Performance Analysis > View Saved Reports**. The Reports page opens.
2. Click **Run Report** next to the report you want to run. The selected report opens.
3. Click **Export to File**.
4. Click either **Open** to view the file immediately or click **Save** to download the file. The exported file downloads into the location you specify.

Related topics
- E-mailing a report
- Viewing a PDF file

Method Profiling
Use the Method profiling pages to create, view and delete method profile reports.

View the method profile reports that have been run and view their details. Delete reports you no longer want to save.

See "Viewing Method Profiling Management."

Viewing Method Profiling Management
About this task

The Method Profiling Management page provides a list of all the method profiles collected and stored in the method profile reports generated as a result. From this page, you can delete method profile reports and view data about the reports.

To collect method profiles you are required to use L2 and select method profiling, see "Overriding a monitoring level" on page 77.

To open Method Profiling Management:
1. From the top navigation, click **Performance Analysis > Method Profiling**. The Method Profiling Management page opens.
2. Select the group and the server whose method profile you want to view. If there are no method profiles on that server "Data not available." will display.
3. Click the Date/Time link to view the data for the report. The report opens and displays the method names contained in the method profile as well as the Total CPU Time, Total Elapsed Time, Total Hits, Avg. CPU Time, and Avg. Elapsed Time.
4. To delete the report, click **Delete**
5. Click **OK** to finish deleting the report.

Related topics
- Activating Method Profiling
- "Monitoring on Demand (TM)" on page 73

In the Monitoring on Demand (MOD) pages, you can view and adjust the monitoring level for all servers, and schedule adjustment of this level at fixed times.
Activating method profiling

About this task

Method profiling is a new feature that is part of L2 monitoring. You can activate L2 with method profiling by selecting the monitoring level, overriding the monitoring level, or creating a schedule that selects the monitoring level. Links to the instructions to perform these actions are available in the following related topics.

1. To activate method profiling by creating a schedule, see “Creating a schedule” on page 75 for more information.
2. To activate method profiling by overriding the monitoring level, see “Overriding a monitoring level” on page 77 for more information.
3. To activate method profiling by configuring the data collection settings, see “Configuring the Data Collection settings” on page 79 for more information.

Related topics
“Monitoring on Demand (TM)” on page 73

In the Monitoring on Demand (MOD) pages, you can view and adjust the monitoring level for all servers, and schedule adjustment of this level at fixed times.

Viewing Method Profiling Management

Daily Statistics

The Daily Statistics pages provide daily SMF information snapshots for z/OS WebSphere servers.

The Daily Statistics page provides a list of daily SMF statistics reports available for a date. Initially, it shows the server reports for the previous day.

To view a report, click the server name. See “Viewing the Daily Statistics Overview.”

To view reports for a different date, change the date in the Enter Report Date controls and click the Go button.

To delete all daily statistics report created before a certain date, set this date in the Delete Reports Older Than controls and click the Delete button. See “Deleting Daily Statistics” on page 177.

Viewing the Daily Statistics Overview

About this task

The Daily Statistics Overview pages provides daily SMF information snapshots for z/OS WebSphere servers only. This data is shown for the server selected on the Daily Statistics page.

To open the Daily Statistics Overview page:
1. From the top navigation, click Performance Analysis > Daily Statistics. The Daily Statistics selection page opens with the previous day’s data.
2. If the snapshots from a different date are desired, from the left navigation pane, select a month, day, and year under the Enter Report Date heading and click Go.
3. Click on a server name to view the Daily Statistics Overview, where the snapshot data will be presented.

Results

Note: The side navigation can be used to find out more information regarding: Server, EJ Bs, Servlet Session Manager, Server Regions, SQL, JCA-CICS, and Web Applications.

To change the date of the report:
1. On the left navigation pane, select a month from the list box.
2. On the left navigation pane, select a date from the list box.
3. On the left navigation pane, select a year from the list box.
4. Click Go.

Related topics
- System Resources Metrics
- Viewing the System Resources Browser

Deleting Daily Statistics
About this task

You can permanently delete daily statistics by purging the system.

To open the Daily Statistics page:
2. Use the left navigation to select a month, day, and year under the Delete Reports Older Than heading.
3. Click Delete.
4. Click Yes in the confirmation box. The system deletes all reports created earlier than the date you select.

Related topics
- System Resources Metrics
- Viewing the Daily Statistics Overview

Custom requests

Custom requests are defined for application-specific operations that do not fall under the normal pre-defined J2EE operations. Use custom requests to track specific application operations as separate requests. For example, if the application is performing some well-defined processing like parsing documents, or CPU-intensive numeric calculation, it might be useful to track this operation as a separate request.

When you use custom requests, you can set the monitoring level to L2 rather than L3. L3 generally applies to a large set of methods, typically every application method, as a result L3 monitoring overhead is high. Custom requests are defined for specific application methods, and the overhead is much lower. Also, custom request definitions are not limited to application methods, you can define specific system methods as custom requests.
Types of requests

Request

A request is a call made to a component that performs a service. For example, a call to execute a SQL statement through a JDBC driver or a data source. The following list provides some of the typical J2EE requests that are interesting to monitor, they are all standard J2EE requests that are monitored by the Data Collector, with no extra custom definitions required:

- Invoking a Servlet through the doGet() or doPost() methods
- EJB create() and other business methods
- JDBC API invocations like getConnection() or executeQuery()
- JMS operations to send and receive messages
- JNDI operations like lookup() used to find objects stored in the registry
- JCA resource adapter operations like getManagedConnection()

Edge request

The outermost request that needs to be monitored is called an edge request. This involves a request that enters the application server from an outside client, for example invoking a Servlet/JSP or a call to an EJB business method through the Object Request Brokers (ORB). However, sometimes this request might not be of interest as it might be a generic call like when Apache Struts applications are involved. In such cases, a custom request might be defined to act as an edge request. In ITCAM for Application Diagnostics, edge requests are tracked starting at L1 monitoring level.

Nested request

A request that is invoked within another request is called a nested request. For example, a JDBC call like getConnection() invoked from within an EJB business method is a nested request. In ITCAM for Application Diagnostics, nested requests are tracked starting at L2 monitoring level.

Custom request

Custom requests are defined for application-specific operations that do not fall under the normal pre-defined J2EE operations. A custom request defines a user-specified class and method as the start and end point of a request. If it is enclosed in another request like a Servlet or EJB request, then it becomes a custom nested request.

Creating custom requests

To create a custom request, complete the following steps:

1. Edit the DC_home/runtime/app_server_version.node_name.server_name/custom/toolkit_custom.properties file and uncomment the following line:

 am.camtoolkit.gpe.customxml.custom=/opt/IBM/itcam/WebSphere/DC/itcamdc/etc/custom_requests.xml

 You can specify a different location and file name.
Note: If the custom_request.xml file resides in the DC_home/runtime/app_server_version.node_name.server_home/custom/ directory, then you can simply specify the simple file name, without having to specify the fully qualified path.

2. Create or edit the custom_requests.xml - it is typically easier to make a copy of the file and edit it to add the custom request definitions. The following example shows an XML specification for a custom request:

```xml
<gpe>
  <bci>
    <customEdgeRequests>
      <edgeRequest>
        <requestName>MonteCarlo</requestName>
        <Matches>com.myco.investment.modeler.Simulator</Matches>
        <type>application</type>
        <methodName>executeMonteCarlo</methodName>
      </edgeRequest>
    </customEdgeRequests>
  </bci>
</gpe>
```

The following table explains the XML elements in the custom_requests.xml file.

<table>
<thead>
<tr>
<th>Tag Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>edgeRequest</td>
<td>Identifies one or more application methods that are to be monitored for custom request processing. By modifying the requestName, Matches, type, and methodName tags within the edgeRequest tag, you can customize the selection. Each edgeRequest tag must contain exactly one methodName tag, and one or more Matches tags. Multiple edgeRequest tags can be specified.</td>
</tr>
<tr>
<td>requestName</td>
<td>Defines a unique name for this request. The request name appears in the L1 or L2 trace entry that is produced when one of the methods identified by this custom request runs.</td>
</tr>
<tr>
<td>Matches</td>
<td>Identifies a class or classes that contain the methods that are to be defined as custom requests. Multiple Matches tags can be present within a single edgeRequest tag.</td>
</tr>
<tr>
<td>type</td>
<td>Indicates whether the classes specified are loaded by system or application class loader. If the classes are present within an application EAR file, then the type is “application”. However, in rare cases, the classes might be present in JAR files specified in ws.ext.dir, system classpath or even in bootstrap classpath. In such cases the type is “system”.</td>
</tr>
<tr>
<td>methodName</td>
<td>Identifies the names of the methods within one of the classes identified by the Matches tag that are to be monitored for custom request processing. One methodName tag can be specified in each edgeRequest tag.</td>
</tr>
</tbody>
</table>

The Matches and the methodName tags can include wildcard characters. The following list is a summary of the wildcard functionality:

- Asterisk (*) stands for zero or more occurrences of any character when used by itself. When embedded within a sequence of characters, for example, java.*.String, it matches zero or more occurrences of any character except the package separator (\).
- Two periods (..) can be used to specify all sub-packages, for example, java..String matches java.lang.String. It matches any sequence of characters that starts and ends with the package separator (\).

3. After defining the custom requests, the application server JVM needs to be recycled for them to take effect.
Making a custom request invoke an edge request

If the class and method defined in a custom request definition are invoked from within another request, then the custom request becomes a nested request. It is necessary to turn on the L2 monitoring to view these requests in the ITCAM MSVE console.

For example, in Model-View-Controller(MVC) architectures, the controller receives all the requests from the clients. Based on the content of the request, it then redirects to the appropriate model. A well-known implementation of the MVC architecture is the Apache Struts framework that is widely used in the J2EE applications.

In Apache Struts, the controller is the ActionServlet and it receives all the requests. The ActionServlet interprets the URL and based on the Apache Struts configuration files, it gives the handling to one of the Action classes written by the user. When monitoring Apache Struts applications, the user is interested in making these Action classes the edge request instead of the ActionServlet which receives all the requests so that different types of URLs used by the application can be tracked.

This can be done by defining each of the Action classes as a custom request. However, since the ActionServlet is invoked first, these action classes are inside an already created edge request and hence can only be tracked as nested requests.

To make the Action classes an edge request, it is necessary to prevent the Apache Struts ActionServlet from creating the edge request. This is done by preventing the normal Struts action servlet from being considered an edge request by the Data Collector, by excluding the action servlet class from instrumentation.

Excluding classes from instrumentation

Complete the following steps:

1. Edit the configuration file DC_home/runtime/
 app_server_version.node_name.server_name/custom/
 toolkit_custom.properties to add the following new property:
 am.camtoolkit.gpe.customxml.exclude=excludes.xml

2. Create the file excludes.xml in the same custom directory with the following content:

   ```xml
   <gpe>
   <bci>
   <classExcludes>
   <exclude>org.apache.struts.action.ActionServlet</exclude>
   <exclude>com.company.package.*</exclude>
   </classExcludes>
   </bci>
   </gpe>
   ```

3. Add as many classes as needed.

4. Restart the application server.

5. To verify that the class has been excluded, look in toolkit.xml. It appears as follows:

   ```xml
   <classExcludes>
   <include>*</include>
   <include>org.eclipse.osgi.framework.adaptor.core.*</include>
   <exclude>com.company.class</exclude>
   <exclude>com.company.package.*</exclude>
   <exclude>com.sun.net.ssl.internal.ssl.JSA_RSAKeyFactory</exclude>
   <exclude>COM.rsa.jsafe</exclude>
   <exclude>org.eclipse.osgi.*</exclude>
   </classExcludes>
   ```
Note: The toolkit.xml file contains runtime settings and it is refreshed every time the application server is restarted.

Viewing custom requests

Viewing recent custom edge request
1. From the top navigation, select Problem Determination - > Server Activity Display.
2. Select the Recent Requests tab. Custom edge requests are identified in the ThreadType field.

Viewing Active Custom Requests and Nested Custom Requests
1. From the top navigation, select Problem Determination - > Server Activity Display.
2. Select the Active Requests tab. Custom edge requests are identified in the Last Know Action field.
3. To view nested custom requests, click the edge request link name and select Method/Component Trace.
4. In the Complete Flow View, details of the nested custom request are displayed.

Viewing custom requests in reports

Custom requests can be seen in the following reports:

- Custom edge requests are displayed in the Decomposition report, in the Decomposition Data Table section.
- Nested custom requests are displayed in the Trace report in the Nesting Summary tab, see “Viewing the Nesting Summary” on page 192.

Composite requests

Use the Composite Request features in MSVE to monitor transactions that use resources on more than one server.

The Composite Request features help you to:

- Determine if the reason a top-level request is hanging is its use of resources on a different application server.
- Identify the origin (the application server and top-level request) that invoked a hanging request.
- Discover the inter-application architecture of complex workflows.

There are a number of areas of MSVE that enable you to locate, view, and analyze composite requests.

<table>
<thead>
<tr>
<th>Area of functionality</th>
<th>Description of functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Activity Display</td>
<td>View active requests/transactions on a specific server</td>
</tr>
<tr>
<td>In-Flight Request Search</td>
<td>Search for active requests/transactions on all servers, a group of servers, or a specific server</td>
</tr>
<tr>
<td>Performance Analysis and Reporting</td>
<td>Locate completed requests/transactions</td>
</tr>
</tbody>
</table>
Table 6. Composite Request functionality (continued)

<table>
<thead>
<tr>
<th>Area of functionality</th>
<th>Description of functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite Method Trace</td>
<td>Display the method traces of all requests/transactions in the composite request</td>
</tr>
<tr>
<td>Composite Stack Trace</td>
<td>Display the stack traces of all servers involved in the composite request that are still actively processing the request/transaction</td>
</tr>
</tbody>
</table>

Each of these features produces a list of requests/transactions which might participate in a composite request. The presence of the composite request icon indicates that a request/transaction participates in a composite request.

User Scenarios

Scenario 1: Discovering application architecture

Your manager asks you to provide an example of a complete transaction of an airline reservation application. This involves a Web-based Java application, a CICS credit card processing application, a CICS ticket reservation application, and a frequent-flyer account, which is also a CICS system.

You look in Performance Analysis and Reporting for examples of the airline reservation application, some of which have the composite request indicator. Clicking the indicator brings you to the composite request view of the Method Trace, which lets you navigate among these requests, so you can see which application calls which one, and by what mechanism (MQ, CTG, or DPL). You can e-mail a PDF of each request involved in the composite transaction to your manager.

The scope of composite requests

To understand the scope of what ITCAM for Application Diagnostics can monitor, it is important to understand two terms: managed space and composite request space.

- Managed space is the entire scope of what ITCAM for Application Diagnostics can monitor. Since ITCAM for Application Diagnostics can monitor servers and application servers, along with applications and J2EE components like EJB, the managed space has many dimensions.
- Composite request space is a subset of the managed space. Composite requests are requests that conform to an Enterprise Application Integration (EAI) architecture.

Managed space

The basic model of ITCAM for Application Diagnostics is to have a single Managing Server and many Data Collectors. The Data Collectors are dynamically controlled through the Managing Server. The Data Collectors deliver their collected data to the Managing Server.

The Managing Server is the heart and brain of ITCAM for Application Diagnostics. It is the entity to which each of the many Data Collectors communicate, and provides the ITCAM for Application Diagnostics User Interface.
The Data Collectors are the eyes and ears of ITCAM for Application Diagnostics. For each Application Server being monitored, a Data Collector is deployed on the computer hosting the Application Server. (If a server has two application servers, then you must configure two Data Collectors on the server in order to monitor both application servers.)

The following table describes what is in the managed space:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servers</td>
<td>Any server on which a Data Collector is installed is in the managed space. For z/OS systems, a server is considered to be equivalent to an LPAR.</td>
</tr>
<tr>
<td>Application Servers</td>
<td>Any application server running in a JVM in which a Data Collector is configured is in the managed space. CICS and IMS regions are considered to be application servers. The architecture of WebSphere running on z/OS consists of a single application server definition with a control region and one or more servant regions. The definition and the regions are called an application server instance. What ITCAM for Application Diagnostics considers to be the application server depends on the context. In a few cases, the application server is either the entire application server instance (as in the case of MOD schedules), but in most cases, the application server is an individual application servant region.</td>
</tr>
<tr>
<td>Resources</td>
<td>ITCAM for Application Diagnostics monitors common resources that are made available through the application server and the J2EE APIs, such as EJB, JMS, JNDI, JDBC, and JCA. If an application server is in the managed space, then the resources it provides are also in the managed space.</td>
</tr>
<tr>
<td>Application</td>
<td>ITCAM for Application Diagnostics supports monitoring of any application which is served by an application server. If the application server is in the managed space, then the applications it serves is in the managed space. As a corollary, standalone applications, which are not served through an application server, are not in the managed space.</td>
</tr>
</tbody>
</table>

Composite request space

Although the managed space includes servers, application servers, requests, and resources, the composite request space includes only a subset of the requests in the managed space.

In order to define the composite request space and understand how requests interact, it is important to understand EAI architecture.
EAI is the term used to describe the integration of the computer applications in an enterprise to maximize their utility throughout the enterprise. Typically, an enterprise has earlier single purpose applications and databases and wants to continue to use them while adding or migrating to a new set of applications that use the Internet, e-commerce, extranet, and other new technologies. EAI might involve developing a new total view of all the applications in an enterprise, seeing how existing applications fit into the new view, and then devising ways to efficiently reuse what exists while adding new applications and data. From the J2EE perspective, this means that an initial request, served by a J2EE application server might invoke a resource on an earlier single purpose system through the JCA API.

When describing EAI transactions, the name used for the initial J2EE request is the home request, and the server on which the transaction occurs is called the home server. The transaction on the earlier single purpose system is called a participating request, and the server is called a participating server. There might be more than one participating request if the earlier single purpose application invokes resources on other single purpose applications.

In ITCAM for Application Diagnostics operations, both the home request and the participating requests are displayed. However, without the composite request enhancement, these requests appear independently, and there is no explicit indication that they are part of the same transaction. Not only does the composite request enhancement make this relationship explicit, it also provides diagnostic tools, like Method Trace and Stack Trace, that you can apply across all requests in the composite request.

Composite requests involving CICS and IMS systems

If a participating server is a CICS server, and a CICS data collector has been installed, then this system is in the managed space. Similarly, if a participating server system is IMS, and an IMS data collector has been installed, then the system is in the managed space. The J2EE application server is in the managed space if a data collector is installed.

Monitoring CICS transactions

The CICS data collector monitors all program invocations on the managed CICS region, whether they come through a dumb terminal, Distributed Program Link (DPL), EXEC CICS START, or through the CICS Transaction Gateway (CTG).

Furthermore, for transactions invoked through CTG, it does not matter how CTG was accessed, which can include various interfaces. However, ITCAM for Application Diagnostics does not track all such transactions as composite requests.

CICS and IMS transactions in composite requests

Even though all transactions on a CICS or IMS region in the managed space appear in ITCAM for Application Diagnostics, they are not necessarily treated as part of a composite request, even if they invoke programs on other regions.

A transaction on a CICS or IMS region is part of a composite request if it meets the following criteria:

- The CICS or IMS region is in the managed space.
- The Home Server is in the managed space.
- The application server that serves the Home Request is a J2EE application server, and is in the managed space.
• For CICS: The application on the Home Server uses ECI to access CTG. (This includes applications that use CCI as their JCA resource adapter, since CCI uses ECI.)
• The ECI invocation is synchronous.
• The COMMAREA of the CICS program invocation has at least 11 bytes of available space.
• For IMS: The application on the Home Server uses IMS Connect for Java (IC4J) to access IMS connect.

If any of these criteria are not met for an EAI request, then ITCAM for Application Diagnostics does not identify the request as being part of a composite request. However, the core ITCAM for Application Diagnostics features are still available for whatever parts of the transaction are in the managed space.

For example, if an application in C++ invokes a CICS program on a CICS region in the managed space through CTG, the CICS program is displayed as a request within ITCAM for Application Diagnostics, but the C++ application request is not displayed in ITCAM for Application Diagnostics. The reason is, ITCAM for Application Diagnostics does not monitor C++ applications. In this case, ITCAM for Application Diagnostics does not identify the CICS transaction as part of a composite request.

Likewise, if a Java application uses EPI to access CTG, ITCAM for Application Diagnostics does not track the EAI as a composite request, even if the application is in the managed space. In this case, the requests on both the J2EE application server and in the CICS region are displayed in ITCAM for Application Diagnostics, but are displayed independently, and are not identified as a composite request.

The final condition, based on the application’s use of the COMMAREA, is due to the methodology of tracking composite requests, which involves use of the COMMAREA. In practice, it is rare that program invocations use so much of the COMMAREA that there is not room for this correlation information. In these exceptional cases, ITCAM for Application Diagnostics does not attempt to identify the EAI as a composite request, and the individual requests are displayed in ITCAM for Application Diagnostics as independent requests.

Multiple hops
Composite requests are not restricted to single-hop transactions.

In particular, composite requests include cases where CICS programs make DPL calls to other CICS Regions. When such a call is made, we say that the depth of the composite request increases. ITCAM for Application Diagnostics can track requests with no limit to the depth of transaction “hops.”

For IMS, any events with the same message tag from any IMS region in an IMS Network appear as a single transaction.

In addition, composite requests can include up to 100 participating requests made directly by each home or participating request. Although composite requests can include an unlimited depth of "hops," composite requests place a limit on the number of calls that can be tacked by any single request.
Configuring data collectors that use WebSphere MQ

If you are monitoring composite requests for applications that use WebSphere MQ as a mechanism to bridge J2EE and CICS or IMS, then you must configure each participating data collector to monitor WebSphere MQ.

Note: These instructions assume that your data collectors have already been configured.

To enable WebSphere MQ monitoring on a data collector within the Application Monitor:

1. Open the Application Monitor.
2. Click the **Administration** tab on the top navigation.
3. Select **Server Management > Data Collector Configuration**.
4. Click the **Configuration Library** link in the left navigation.
5. Locate the application server in the Associated Server column of the Configuration Library table and click the Modify icon for that row.

 Note: You cannot modify ITCAM for Application Diagnostics supplied default configurations. You can only modify configurations you have created.

6. Select **Enable MQ**.
7. Enter the queues you want to monitor in the **Exclude (Classname)** and **Exclude Override (Classname)**.
8. Click the **Save** button.

Locate, view, and analyze composite requests

There are a number of areas of ITCAM for Application Diagnostics' functionality that enable you to locate, view, and analyze composite requests.

Table 8. Composite Request functionality

<table>
<thead>
<tr>
<th>Area of functionality</th>
<th>Description of functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Activity Display</td>
<td>View active requests/transactions on a specific server</td>
</tr>
<tr>
<td>In-Flight Request Search</td>
<td>Search for active requests/transactions on all servers, a group of servers, or a specific server</td>
</tr>
<tr>
<td>Performance Analysis and Reporting</td>
<td>Locate completed requests/transactions</td>
</tr>
<tr>
<td>Composite Method Trace</td>
<td>Display the method traces of all requests/transactions in the composite request</td>
</tr>
<tr>
<td>Composite Stack Trace</td>
<td>Display the stack traces of all servers involved in the composite request that are still actively processing the request/transaction</td>
</tr>
</tbody>
</table>

Each of these features produces a list of requests/transactions which might participate in a composite request. The presence of the composite request icon indicates that a request/transaction participates in a composite request:
In-Flight Request Search
To search for in-flight requests/transactions that participate in composite requests, use the In-Flight Request Search. See “In-flight request search” on page 112

The results will display: Server Name, Client Request/Transaction, Start Date Time, Thread ID, and Total Resident Time. In addition, ITCAM for Application Diagnostics identifies requests/transactions that are part of a composite request by displaying the composite request icon.

Server Activity Display
To search a server for resident requests/transactions that participate in composite requests, use the Server Activity Display. See “Server Activity Display” on page 114

The results display: Client Requests, Client Requests Start, Thread ID, Resident Time, Accumulated CPU, Idle Time, Thread Status, Last Known Class, Last Known Method, Last Known Action, and User ID. In addition, ITCAM for Application Diagnostics identifies those requests/transactions that are part of a composite request by displaying the composite request icon.

Performance Analysis and Reporting
To search for completed requests/transactions that participated in composite requests, use Performance Analysis and Reporting. Start by creating a Trend Report, then drill down to a Decomposition Report, and then to a Detail report in order to find individual requests/transactions that are part of composite requests.

Note: Performance Analysis and Reporting displays the Composite Request Indicator only for home requests, and not for the other participating requests/transactions. For details on participating requests and home requests, see “The scope of composite requests” on page 182

The following procedure describes how to locate composite requests using Performance Analysis and Reporting:

To locate composite requests using the Performance Analysis and Reporting:
1. View a Request/Transaction Analysis Trend Report for servers that you believe might have served home requests of composite requests. Choose appropriate Report Filtering Options and Date Range Settings.
 A Trend Report is displayed.
2. Choose an appropriate Decomposition option (Additional Detail selection) and time period.
 A Decomposition Report is displayed.
 A Detail Report is displayed.

The resulting Detail Report displays a list of the requests/transactions included in the segment of the Decomposition Report you selected.

The results display: Request/Transaction Name, Request/Transaction Type, Response Time, CPU Time, Server Name, Timestamp, and Number of Records. In addition, ITCAM for Application Diagnostics identifies that a request was a home request of a composite request by displaying the composite request icon next to its Request/Transaction Name.
Viewing composite requests

To access the composite request details of requests/transactions, click the Composite Request Indicator for that request/transaction.

Composite requests have the following features:
- Composite Method Trace: Displays the interrelated method traces across all requests involved in the composite request.
- Composite Stack Trace: Displays a continuous stack trace of all servers involved in the composite request which are still actively processing the request/transaction.

The availability of method-level data is contingent upon the configuration of the data collectors; they must be at L3 monitoring level in order to provide full method-level data. To provide Nested Request data, the Data Collector needs to be at L2 monitoring level.

Since the monitoring levels of data collectors are independent, it is possible that method-level data is available for some, but not all, servers participating in a composite request. The Composite Method Trace presents all data it has, which means that the level of data presented from server to server might vary.

Authorization and composite requests

Authorization is enforced in ITCAM for Application Diagnostics in two ways: by feature and by server. Feature-based authorization limits access to top-level features based on the role assigned to a user. Assuming that a user has access to a feature, the server-based authorization might further limit access to data about servers based on which group a server is assigned to, and which groups the user has authority to view.

Since composite requests involve more than one server, the effects of server-based authorization play out in the following scenario.

A composite request's home request is on server A (which is in group A) and invokes a participating request on server B (which is in group B). There are two users who need to investigate this composite request: User A has access to servers in group A but not group B, and user B has access to servers in group B but not group A.

Assuming that each user uses In-Flight Request Search to locate the requests, the results for each user will differ, since the In-Flight Request Search limits results to those requests executing on servers in groups the user has access to. This means that user A will see only request A and user B will see only request B.

In both cases, the Composite Request Indicator will appear next to the request, and will link to a similar Composite Request Detail page. However, the contents of the Composite Request Detail page will be different for each user.

Both users will see the complete composite request, including the Home Request on server A and the Participating Request on server B. However, the users will not have access to the Request Detail pages of all requests: User A will have access to the Home Request on server A (the request name will be linked), but not to the Participating Request on server B (the request name will not be linked). User B will not have access to the Home Request on server A (the request name will not be linked) but will have access to the Participating Request on server B (the request name will be linked).
Viewing a Composite Method Trace - SAD

About this task

The Composite Method Trace page displays the method flow of the composite transaction, including the method traces of each individual request participating in the composite transaction.

To view a Composite Method Trace:
1. From the top navigation, click Problem Determination > Server Activity Display. The Server Activity Display selection page opens.
2. Select a group from the group list box.
3. Select a server from the server list box. The Server Activity Display page opens.
4. Click the composite transaction indicator next to the request that you want to view. The Composite Request Detail for that composite transaction opens.
5. On the left navigation pane, click Composite Method Trace. The Composite Method Trace page opens.

For CICS, the line numbers and response codes have been added to the Composite Method Trace. The return code is from the method call and the line number is of the CICS method call. You will find their information in the Event Data field on the Flow View tab.

Results

Related topics
- Canceling a request
- Changing a thread's priority

Viewing a Composite Stack Trace - SAD

About this task

The Composite Stack Trace page displays the stack traces of each server involved in the composite transactions that are actively processing their request/transaction.

Note: The Composite Stack Trace is primarily useful for debugging composite transactions that are hanging, since there will be no stack trace data available if a composite transaction has completed by the time you access it.

To view a Composite Stack Trace:
1. From the top navigation, click Problem Determination > Server Activity Display. The Server Activity Display selection page opens.
2. Select a group from the group list box.
3. Select a server from the server list box.
4. Click the composite transaction indicator next to the request that you want to view. The Composite Request Detail for that composite transaction opens.
5. On the left navigation pane, click Composite Stack Trace. The Composite Stack Trace page opens and displays the stack traces of the servers that are actively executing participating requests.

Related topics
- Canceling a request
- Changing a thread's priority
Viewing a Composite Request Detail - SAD
About this task

The Composite Request Detail page summarizes a composite transaction, in terms of the individual requests that participate in it.

To view Composite Request Detail:

1. From the top navigation, click **Problem Determination > Server Activity Display**. The Server Activity Display selection page opens.
2. Select a group from the group list box.
3. Select a server from the server list box.
4. Click the composite transaction indicator next to the request that you want to view. The Composite Request Detail for that composite transaction opens.
5. Click the Request Name's link to drill down and view the detailed information.

Related topics
- Canceling a request
- Changing a thread’s priority

Viewing a Composite Request Detail - In-flight Request Search
About this task

The Composite Request Detail page summarizes a composite transaction, in terms of the individual requests that participate in it.

To view Composite Request Detail:

1. From the top navigation, click **Problem Determination > In-flight Request Search**. The In-flight Request Search page opens displaying active requests participated in composite transactions that are identified by the composite transaction indicator.
2. Click the composite transaction indicator next to the request that you want to view its Composite Request Detail information. The Composite Request Detail for that composite transaction opens.
3. Click the Request Name's link to drill down and view the detailed information.

Related topics
- Canceling a request
- Changing a thread’s priority

Viewing a Composite Stack Trace - In-flight Request Search
About this task

The Composite Stack Trace page displays the stack traces of each server involved in the composite transaction that are actively processing their request/transaction.

Note: The Composite Stack Trace is primarily useful for debugging composite transactions that are hanging, since there will be no stack trace data available if a composite transaction has completed by the time you access it.

To view a Composite Stack Trace:
1. From the top navigation, click **Problem Determination > In-Flight Request Search**. The In-Flight Request Search page opens displaying active requests/transactions.

2. To view the Composite Method Trace for a request/transaction that is participating in a composite transaction, click that request/transaction's composite transaction indicator. The Composite Method Trace page for that composite transaction opens.

3. Click **Composite Stack Trace** in the left navigation pane.

4. The Composite Stack Trace page opens and displays the stack traces of the servers that are actively executing participating requests/transactions.

Related topics
- Canceling a request
- Changing a thread's priority

Viewing a Composite Method Trace - In-flight Request Search

About this task

The Composite Method Trace page displays the method flow of the composite transaction, including the method traces of each individual request participating in the composite transaction.

To view a Composite Method Trace:

1. From the top navigation, click **Problem Determination > In-flight Request Search**. The In-flight Request Search page opens displaying active requests participated in composite transactions that are identified by the composite transaction indicator.

2. Click the composite transaction indicator next to the request that you want to view its Composite Request Detail information. The Composite Request Detail for that composite transaction opens.

3. On the left navigation pane, click **Composite Method Trace**. The Composite Method Trace page opens.

Related topics
- Canceling a request
- Changing a thread's priority

Viewing a Composite Request Detail - PAR

About this task

The Composite Request Detail page summarizes a composite transaction, in terms of the individual requests that participate in it.

To view Composite Request Detail:

1. From the top navigation, click **Performance Analysis > Create Application Reports > select an application report type. For more information see “Performance analysis and reporting” on page 155.** After creating the report, click View Report and the Trend report will open.

2. Click the data in the graph that you are interested in viewing more information on. The Decomposition report opens.

3. Click the data in the Decomposition report that you want more information about. The Request Report Detail opens.

Related topics
- Viewing the Detail report
Viewing a Composite Method Trace - PAR

About this task

The Composite Method Trace page displays the method flow of the composite transaction, including the method traces of each individual request participating in the composite transaction.

To view a Composite Method Trace:
1. From the top navigation, click Performance Analysis > Create Application Reports > select an application report type. For more information see “Performance analysis and reporting” on page 155. After creating the report, click View Report and the Trend report will open.
2. Click the data in the graph that you are interested in viewing more information on. The Decomposition report opens.
3. Click the data in the Decomposition report that you want more information about. The Request Report Detail opens.
4. Click the item in the detail of the report that you need more information on. The Trace report opens.

Related topics
Viewing the nesting summary
Viewing the method/component tract - depth drilldown detail
Viewing the method/component tract - depth drilldown report
Viewing a method/component trace - flow view

Viewing the Nesting Summary

About this task

The Nesting Summary can help you to quickly identify problems with external resources used by a request.

To view the Nesting Summary page:
1. From the top navigation, click Performance Analysis > Create Application Reports. Select an application report type. For more information see “Performance analysis and reporting” on page 155.
2. Click the data in the graph that you are interested in viewing more information about. The Decomposition report opens.
3. Click the data in the Decomposition report that you want more information about. The Request Report Detail opens.
4. Click the item in the detail of the report that you need more information about. The Trace Report opens.
5. Click the Nesting Summary tab. The Nesting Summary page opens. You need to set the monitoring level of the data collector to at least L2 or L3 to capture data for the Nesting Summary.

Related topics
Defining a Capacity Analysis report
Defining a Request/Transaction Analysis report
Defining Top reports
Viewing a Method/Component Trace - Depth Drilldown detail

About this task

Navigate through the trace one level at a time using the Depth Drilldown detail.

To view the Depth Drilldown detail of a method trace:
1. From the top navigation, click Performance Analysis > Create Application Reports. Select an application report type. For more information, see “Performance analysis and reporting” on page 155.
2. Click the data in the graph that you are interested in viewing more information about. The Decomposition report opens.
3. Click the data in the Decomposition report that you want more information about. The Request Report Detail opens.
4. Click the item in the detail of the report that you need more information about. The Trace Report opens.
5. Click the Drilldown View tab. The Drilldown View page opens and displays the Depth Drilldown Detail.

Results

To view the Depth Drilldown report, choose Depth Report from the list box. See “Viewing a Method/Component Trace - Depth Drilldown report.”

Related topics
- Canceling a request
- Changing a thread’s priority

Viewing a Method/Component Trace - Depth Drilldown report

About this task

Use the Depth Drilldown report to quickly identify problems with categories of nested request components used by a method and its children, by comparing the number of calls, Average Response Time, and Average CPU Time.

To view the Depth Drilldown report of a method trace:
1. From the top navigation, click Performance Analysis > Create Application Reports. Select an application report type. For more information see “Performance analysis and reporting” on page 155.
2. Click the data in the graph that you are interested in viewing more information about. The Decomposition report opens.
3. Click the data in the Decomposition report that you want more information about. The Request Report Detail opens.
4. Click the item in the detail of the report that you need more information about. The Trace Report opens.
5. Click the Drilldown View tab. The Drilldown View page opens to the Depth Drilldown Detail.

Related topics
- Canceling a request
- Changing a thread’s priority
Audit trails

Trace user actions.

Audit trails provide a means for tracing user actions in the system. This helps with both accountability and troubleshooting.

User Scenarios

Scenario 1: Verifying high server response time

Upon returning from vacation, you see that response time is higher than usual for one of the servers in group ABC. You notice from the Heap Dump Management page that the server is performing heap dumps regularly which is causing the slowness in the response time. You enter the audit trail to find out who scheduled the heap dump. You contact that person and learn that the heap dumps are scheduled for troubleshooting a suspected memory leak in the application.

Scenario 2: Verifying MOD level change

In your role as a production support engineer you observe that the MOD level of a data collector in the production environment has been set to L2 instead of the expected MOD L1. You ask the Administrator to search the audit trail and find out who changed the MOD level, and find that an application support engineer is troubleshooting a production issue in the application.

Accessing the user audit trail

About this task

The user audit trail is a text file that contains a record of user activity, including Date, Time, User Name for Login, Failed Login, Log Out, Time Out, Authentication, and Account Status changes.

To open the user audit trail:

1. Depending on your platform, navigate to the logs directory where you installed the Managing Server, for example, /var.ibm/tivoli/common/CYN/logs.
2. In a text editor appropriate to your platform, open the audit-ms-Compound.log file.

Request Mapper

Purpose

Use the Request Mapper to customize how requests are named within the Application Monitor. Also, use the Request Mapper to display user names associated with requests.

Usage Overview

This feature helps you:

- Distinguish among requests that otherwise would have the same request name.
- Aggregate requests which otherwise would have distinct request names.
- Identify the User IDs under which requests run.
User Scenarios
Scenario 1: Aggregating Across Distinct Original Request String (ORS)

The application you are monitoring uses a distinct URI to represent each specific application function, such as log in, check out, or log out. You wish to analyze all these requests as a single application. Use the Request Mapper to populate the Request Name field with a common application name.

Scenario 2: Differentiating a Uniform ORS

You are monitoring an application that uses session variables to represent the underlying function, while using the same request name throughout these different interactions. You want to compare the performance of different application functions, such as log in, check out, or log out, so you use the Request Mapper to assign each function a distinct request name.

Note: This feature is not available for IMS.

Data used by the Request Mapper

Request name
The Request Name enables the user to assign alternate request identifiers that are more meaningful and appropriate to the chosen programming model of the application.

The Request Name is provided because the Request String is just one way of identifying requests. There is data that is within the request that is not represented by the Request String. Furthermore, requests can be rather cryptic, so mapping them to something more immediately recognizable or understandable is useful.

For example, a Web request can be mapped by:
- URI: /account/login
- Servlet Class Name: com.cyanea.web.AccountServlet
- Struts Class Name: http://www.cyanea.com/account/execute/login.do --> com.cyanea.web.account.LoginAction
- Custom Naming Scheme: account.login

When the installed Request Mapper is invoked, data is passed into this plug-in class to assist the custom code developer to make a decision. This includes the Request Object and the Session Object in the case of a URL based request.

Application Name
The Application Name enables you to assign request identifiers that classify their requests into different applications. It is a means to aggregate different ORS into an application label.

The Application Name enables you to analyze their historical data from an application perspective.

For example, requests can be mapped to the following names:
- Account Management
- Web Trading
- Order Management
User IDs
The Application Monitor has the ability to capture, display, and store the user ID of a request that comes into the application server. By default, the user ID is captured by calling the following method:

javax.servlet.http.HttpServletRequest.getRemoteUser()

If your application stores user IDs in the session, configuration will be required. User IDs are defined as Web-side identifiers of who initiated the transaction/request.

To capture the user ID from the session, you need to enable the data gathering from the session, and specify the attribute in the session that contains the user ID.

To enable the data gathering from the session, update the data collector properties as follows:

com.cyanea.mapper.http.userid.source=session

To capture the attribute called account name from the session, update the data collector properties as follows:

com.cyanea.mapper.http.userid.attributename=accountname

Default request mapping behavior
From the application server perspective, there are two major types of requests: JSP and Servlet. These calls come either from a Web server, or from an application server other than itself.

We call this request, generally expressed in the form of a string, the ORS. The ORS is composed of the URI plus the query string.

While a unique ORS can be used to represent a specific application function such as log in, check out, and log out, this might not always be the case. Other styles of application design utilize different programming techniques to represent the underlying function, while still maintaining a simple, uniform ORS throughout a series of interactions. When monitoring applications that use such a design, you can use the Request Mapper to distinguish among these different interactions that use the same ORS.

In addition, when performing workload characterization and understanding resource consumption, an analyst might sometimes find that it is neither possible nor effective to break down consumption simply by ORS, especially if there are too many of them. Aggregation of consumptions based on classification of ORS is more desirable.

The Request Mapper functionality is designed to resolve these types of problems. When an application server receives a request (ORS), the Request Mapper will enable the ORS to be rewritten into two other strings before it is passed on to ITCAM for Application Diagnostics:

- Request Name
- Application Name

If no request mapper is used, the Application Monitor will map the incoming ORS onto a Request Name and an Application Name using the following rule:

- Request Name = ORS without the host name
- Application Name = URI of ORS
In-flight Request Search is conducted on the Request Name. Server Activity Display uses Request Name for the display. Performance Analysis and Reporting performs decomposition by Application Name.

Configuring a Request Mapper

Request Mapper is highly sensitive to performance since it is frequently invoked. A poor-performing Request Mapper can have an adverse effect on the overall performance of the application server in terms of Servlet response time as well as CPU costs.

WebSphere 6.1 uses a different class loading mechanism than WebSphere 6.0 or WebSphere 5.1.1, therefore complete the following steps to configure the Request Mapper for WebSphere 6.1:

1. Stop the WebSphere server.
2. To configure a Request Mapper, complete the following steps:
 a. Assuming the requestmapper classes are packaged in requestmapper.jar, create the Request Mapper class plugins and package them into the jar file.
 b. In the datacollector_custom.properties file located in the
 `DC_home/runtime/app_server_version.node_name.server_name/custom/` directory, set the am.requestmapper property as follows:
      ```
      am.requestmapper= <fully qualified requestmapper class name>
      ```
 where `fully qualified requestmapper class name` is the Request Mapper class that implements the ITCAM Request Mapper interface and is packaged in requestmapper.jar.
 c. Put the library requestmapper.jar in `DC_home/itcamdc/lib/ext`
3. (Optional) The following steps are optional, they provide an example of how to configure a Request Mapper and avoid mixing the Request Mapper specific properties with other JVM system properties. This is done by creating a separate Request Mapper properties file and including all the Request Mapper properties in this file. In this way, if you need to add additional Request Mapper properties, you can do so without exposing them to other code either in the data collector or in the application server. The following steps provide an example of this optional approach:
 a. Create a property file called requestmapper.properties and put all the Request Mapper specific properties in this file. Put the requestmapper.properties file in `DC_home/runtime/DC_specific dir`.
 b. In the datacollector_custom.properties file located in the
 `DC_home/runtime/app_server_version.node_name.server_name/custom/` directory, set the customer.requestmapper.file property as follows:
      ```
      customer.requestmapper.file= DC_home/runtime/DC_specific dir/requestmapper.properties
      ```
 c. In the RequestMapper code, get the location of requestmapper.properties file by doing `System.getProperty("customer.requestmapper.file")`
4. Restart the WebSphere server.

Java docs and an example follow:
Package com.cyanea.mapper

Table 9. Interface Summary

<table>
<thead>
<tr>
<th>Interface Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>MappedRequest</td>
</tr>
<tr>
<td>Interface used for providing the ITCAM for Application Diagnostics system with a Distinguishable Request String (DRS) and a Collapsible Request String (CRS) about a particular Servlet request.</td>
</tr>
<tr>
<td>RequestMapper</td>
</tr>
<tr>
<td>ITCAM for Application Diagnostics recognizes JSP and Servlet requests on an application server.</td>
</tr>
</tbody>
</table>

Interface mapped request

public interface MappedRequest

Interface used for providing the ITCAM for Application Diagnostics system with a DRS and a CRS about a particular servlet request.

Table 10. Method Summary

<table>
<thead>
<tr>
<th>Method Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>java.lang.String</td>
</tr>
<tr>
<td>java.lang.String</td>
</tr>
</tbody>
</table>

Interface Request Mapper

public interface RequestMapper

ITCAM for Application Diagnostics recognizes JSP and Servlet requests on an application server. These requests are normally identified throughout the ITCAM for Application Diagnostics system using the URI of the request. In some situations, such as when a Struts design paradigm is used, a particular URI will be used to handle different types of business requests.

ITCAM for Application Diagnostics provides this interface as a mechanism for modifying ITCAM for Application Diagnostics default behavior of using the URI to describe the request. An implementation of this interface can be installed by registering the classname with the Java executable as a system property.

To install, specify the system property "am.requestmapper" with the implementing class as the value.

For example:

-Dam.requestmapper=com.cyanea.mapper.RequestMapperExample
Table 11. Method Summary

<table>
<thead>
<tr>
<th>Method Summary</th>
<th>mapRequest</th>
</tr>
</thead>
<tbody>
<tr>
<td>MappedRequest</td>
<td>(java.lang.String servletClassName, javax.servlet.http.HttpServletRequest request)</td>
</tr>
<tr>
<td></td>
<td>This stateless method translates a servlet classname and a URL into a MappedRequest object.</td>
</tr>
</tbody>
</table>

Sample Request Mapper - mapRequest

```java
class MappedRequestExample implements MappedRequest {
    private String CRS;
    private String DRS;

    public MappedRequestExample(String myCRS, String myDRS) {
        CRS = myCRS;
        DRS = myDRS;
    }

    public String getCRS() {
        return CRS;
    }

    public String getDRS() {
        return DRS;
    }
}
```

This stateless method translates a servlet classname and a URL into a MappedRequest object. Any RequestMapper class should attempt to execute this method as quickly as possible, due to the fact that it lies directly in the path of the application server thread execution.

- **Parameters:**
 - **ServletClassName** - the name of the ServletClass handling this request.
 - **request** - the HttpServletRequest object for this request.

- **Returns:** An instance of MappedRequest indicating the DRS and CRS to be used by the ITCAM for Application Diagnostics system.

Request Mapper Example (1):

```java
package com.cyanea.mapper;
public class MappedRequestExample implements MappedRequest {
    private String CRS;
    private String DRS;

    public MappedRequestExample(String myCRS, String myDRS) {
        CRS = myCRS;
        DRS = myDRS;
    }

    public String getCRS() {
        return CRS;
    }

    public String getDRS() {
        return DRS;
    }
}
```

Request Mapper Example (2):

```java
package com.cyanea.mapper;
import javax.servlet.http.HttpServletRequest;
public class RequestMapperExample implements RequestMapper {
    private static final MappedRequest welcomeRequest;
    private static final MappedRequest quoteRequest;
    private static final MappedRequest buyRequest;
    private static final MappedRequest sellRequest;

    public MappedRequestExample(String myCRS, String myDRS) {
        CRS = myCRS;
        DRS = myDRS;
    }

    public String getCRS() {
        return CRS;
    }

    public String getDRS() {
        return DRS;
    }
}
```
private static final MappedRequest sellRequest;
/** static MappedRequest instance for portfolio page requests */
private static final MappedRequest portfolioRequest;
/** static MappedRequest instance for account page requests */
private static final MappedRequest accountRequest;
/** static MappedRequest instance for update page requests */
private static final MappedRequest updateRequest;
/**
* Static class variables are used to avoid continuous object creation
* of redundant information on a per-client-request basis. An
* unsynchronized, read-only HashMap can also be used for looking up
* MappedRequest instances to gain a performance increase.
**/
static {
 welcomeRequest = new MappedRequestExample("Welcome Page","welcome");
 quoteRequest = new MappedRequestExample("quote","quote");
 buyRequest = new MappedRequestExample("trade","buy");
 sellRequest = new MappedRequestExample("trade","sell");
 portfolioRequest = new MappedRequestExample("overview","portfolio");
 accountRequest = new MappedRequestExample("account","account");
 updateRequest = new MappedRequestExample("account","updateAccount");
}
/** Creates a new instance of RequestMapperExample */
public RequestMapperExample() {
}
/**
* This example checks the HttpServletRequest object for the GET or POST
* parameter "map". If the parameter "map" is not found, "action" is
* used. This "action" string, is then used to look up the corresponding
* MappedRequest object. If no MappedRequest object is found, a new
* object is created and returned. This should be avoided, as it can be
* an expensive operation.
**/
public MappedRequest mapRequest(String servletClassName,
HttpServletRequest request) {
 String action = request.getParameter("map");
 if (action == null) {
 action = request.getParameter("action");
 if (action == null)
 return welcomeRequest;
 }
 /* A HashMap lookup could also be performed here instead of iterating
 * a list of string comparisons. If a list of strings comparison are
 * used, it is desirable to list the most common action first.
 */
 if ("quote".equals(action))
 return quoteRequest;
 else if ("buy".equals(action))
 return buyRequest;
 else if ("sell".equals(action))
 return sellRequest;
 else if("portfolio".equals(action))
 return portfolioRequest;
 else if("account".equals(action))
 return accountRequest;
 else if("updateAccount".equals(action))
 return updateRequest;
 else
 return new MappedRequestExample(action,action);
}
Chapter 4. ITCAM Agent for WebSphere

IBM Tivoli Composite Application Manager for Application Diagnostics - WebSphere Agent provides a systems-management solution for the WebSphere Application Server Versions 6, and 7. Using the WebSphere agent, you can monitor multiple WebSphere application servers running on the same physical node. Each application server must have been configured with its own ITCAM for WebSphere Data Collector.

IBM Tivoli Composite Application Manager Agent for WebSphere is a component of ITCAM for Application Diagnostics, Version 7.1. It is also a component of ITCAM for Applications Version 6.2.3. If you are using ITCAM for Applications the Managing Server (deep dive) functionality is not available; please ignore all references to this functionality in this document.

The Tivoli Enterprise Monitoring Agent collects four types of data through the data collector embedded in the WebSphere Application server process:
- Data for application server requests from the ITCAM for WebSphere Data Collector
- Resource data from WebSphere Performance Monitoring Infrastructure (PMI)
- Data from WebSphere log files
- Process data from the operating system

Initiating data collection and reporting of data

Because of high overhead, some data items are not automatically collected and reported. The collection of some data and statistics depends upon the setting of instrumentation levels for certain attributes. If the instrumentation levels are not set appropriately, certain information will not be collected and displayed in the workspaces. Similarly, those attributes that collect request and application trace data require you to complete several configuration steps. If you need to collect these data, use one of these methods to reconfigure data collection:
- Complete configuration steps (as explained in the ITCAM for Application Diagnostics - WebSphere Agent installation and customization guide).
- Issue Take Action commands to take specific action against your WebSphere application server or the monitoring product using the Tivoli Enterprise Portal.
- Use Manage Tivoli Enterprise Services (as explained in the various IBM Tivoli Monitoring installation manuals and the ITCAM for Application Diagnostics - WebSphere Agent installation and customization guide).

Automatic baselining

To display application health status, ITCAM monitors request response times (averaged over a sampling interval, by default 60 seconds) for every application. Every top level request available in an application is monitored separately.

For every request, two thresholds are set, known as fair and bad. When at least one average request response time for an application rises over the fair threshold, a health warning (yellow) for this application is reported. In the same way, when at least one average request response time rises over the bad threshold, an application health alarm (red) is reported.
ITCAM also monitors the "nested" requests (for example, database calls) within every top level request. In the event of a warning or alarm, it checks which of the nested requests is taking more than its usual share of time. Depending on the type of such nested requests, ITCAM shows whether the client, application, or backend tier is the likely cause of the warning/alarm. Servlet and Portal request types are assigned to the client tier; EJB and User (Custom) request types, to the application tier; all other request types (JNDI, JDBC, JCA, JMS) to the backend tier.

When ITCAM starts to monitor a new application, it automatically starts a baselining process. In this process, which normally runs for 7 days but provides updated information every hour from the beginning, ITCAM collects statistical data for all requests in this application. Once the data is collected, ITCAM sets the thresholds automatically; it also records the typical share of response time for each nested request type.

In most cases, this automatic setting is adequate. When the 7 days are past, the alarms/warnings will correspond to real problems. There is no need to adjust baselining settings when things are working normally. (The automatic thresholds usually become usable earlier, after the application has been observed through its typical load patterns). If you need to acquire thresholds, based on whatever data is available, before the hourly automatic update, you can manually update baselining.

However, in some situations the threshold levels can become inadequate. This results in either too many false alarms/warnings, or in real problems going undetected. Such situations can be broadly split into two categories:

- If some time has passed since the baselining process for an application, its response times might have changed because of configuration alteration, database growth, changing load patterns, and so on. In this case, you may need to run the baselining process again. It is good practice to do it after any configuration or infrastructure change.
- If the thresholds are incorrect immediately after the baselining process has been completed, you may need to adjust the auto threshold settings.

As a last resort, you can also override the thresholds with fixed values. However, do not do this unless you know a lot about the monitored application, or unless instructed by IBM Level 3 Support.

If you need to have the thresholds set before they are updated automatically for the first time, you can trigger a baseline update. This will immediately set the thresholds based on the request data collected so far.

Additional information

For additional usage information about this agent, see:

- [Workspaces](#)
- [Attributes](#)
- [Situations](#)
- [Take Action commands](#)
ITCAM for Application Diagnostics - WebSphere Agent workspaces

As part of the IBM Tivoli Composite Application Manager for Application Diagnostics - WebSphere Agent product's integration with the Tivoli Enterprise Portal, workspaces offer views of monitoring data that provide detailed current data about the Version 6 and 7 WebSphere application servers running on your site's Linux, UNIX, and Windows and z/OS platforms. In addition to reports and graphs, a workspace can contain other views (that is, windows), such as a Notepad editor session, a browser session, a telnet session, an event console, or a Take Action view from which you can issue commands.

Several views of high-level information

Several workspaces provide high-level information to help you meet your site's monitoring and administrative needs. These workspaces report current status and availability for both the WebSphere administrative server and its application server instances. They let you easily monitor the availability of your enterprise, the WebSphere Application Server, and application server instances.

Primary and secondary workspaces

The workspaces listed in the Navigator are directly accessible and are thus termed primary workspaces. Some of these also contain secondary workspaces, which are not accessible directly from the Navigator. Instead you must select and display the primary workspace, then use either a menu option or a special link icon in the primary workspace's views to reach the secondary workspaces (sometimes called subsidiary workspaces).

Workspaces with historical data links

Several workspaces provide secondary workspaces that display historical data. You can specify a time span over which to collect historical data, which accumulates and summarizes the data in the primary workspaces that generate them. (The default setting is 15 minutes; you can modify this setting to suit your needs.) The descriptions of the historical workspaces follow the descriptions of the primary workspaces that generate them in the workspace helps.

Available Tivoli Enterprise Portal workspaces

For an overview of the organization of the available workspaces, see Organization of the predefined workspaces

Organization of the predefined workspaces

The IBM Tivoli Composite Application Manager for Application Diagnostics - WebSphere Agent workspaces for the Tivoli Enterprise Portal define data displays
that appear in the Navigator's Physical view. In addition to the workspaces that the Navigator lists, you can reach their subsidiary (that is, secondary) workspaces from the primary workspaces (those listed in the Navigator).

Accessing the subsidiary workspaces

You can access a primary workspace's subsidiary workspaces by using one or more of the following methods:

From the Navigator:
1. Select the primary workspace.
2. Right-click the name of the selected workspace in the Navigator.
3. Select **Workspaces** from the context menu.
4. Select the desired subsidiary workspace.

From the View menu:
1. Select the primary workspace.
2. In the menu bar at the top of the Tivoli Enterprise Portal, select **View > Workspaces**.
3. Select the desired subsidiary workspace.

From a report:
1. Select the primary workspace.
2. If the workspace's report (which displays by default at the bottom of the workspace) contains a link icon to the left of each row, you can either click the icon to navigate to the default subsidiary workspace pertaining to the selected row or right-click the icon and select a subsidiary workspace from the context menu.

From a chart view:

The data displayed in some bar charts and plot charts is linked to subsidiary workspaces. To search for a link, right-click a bar or data point in the chart. If **Link to** displays in the context menu, you can select a subsidiary workspace pertaining to the data in the chart.

Workspace organization

The hierarchy levels shown in the Navigator depend on how your enterprise customizes the Tivoli Enterprise Portal. However, ITCAM for Application Diagnostics - WebSphere Agent does provide a set of predefined workspaces, which do not require customization. The following list shows the order and hierarchy of the predefined workspaces provided by the IBM Tivoli Composite Application Manager for Application Diagnostics - WebSphere Agent.
Enterprise Monitoring Agent. It is a representation of how the predefined workspaces are organized in the Navigator. For more detailed information about a workspace, click its name in the table.

operating system [for example, Windows]

- *system* [that is, node name]
 - WebSphere Agent
 - “WebSphere Agent Summary workspace” on page 214
 - “WebSphere Agent Summary Status workspace” on page 215
 - “Application Server Summary workspace” on page 215
 - “Configuration workspaces” on page 221
 - “WebSphere Application Server workspace” on page 291
 - “Resources and Applications workspaces” on page 217
 - “High Availability Manager workspace” on page 255
 - “DCS Stacks workspace” on page 248
 - “Configuration workspaces” on page 221

Note: The following workspaces are only available when running a monitoring agent in a z/OS environment, **Websphere App Server - Servant Regions**, and **Selected Region - Application Server Summary**. For more information, see “Region workspaces in a z/OS environment” on page 298.

- Application Health
 - Application Registry
 - Application Trend at L1
 - Application Trend at L2/L3
 - OS Stack
 - JVM Stack Trend
 - “Web Tier Analysis workspace” on page 276
 - “Backend Tier Analysis workspace” on page 274
 - “Request Baseline workspace” on page 272
 - “Application Configuration workspace” on page 274
 - “EJB Tier Analysis workspace” on page 273
 - “Application Health History workspace” on page 275

Note: The following workspaces are only available when running a monitoring agent in a z/OS environment, **Selected Application - Servant Regions**, and **Selected Region - Application Health Status**. For more information, see “Region workspaces in a z/OS environment” on page 298.

- Request Analysis
 - Selected Request - Datasources
 - Selected Request JMS Queues
 - Selected Request Resource Adapters
 - Selected Request - History
Note: The following workspaces are only available when running a monitoring agent in a z/OS environment, **Selected Region - Request Analysis**, and **Selected Request - Servant Regions**. For more information, see “Region workspaces in a z/OS environment” on page 298.

- **Garbage Collection Analysis**
 - “Allocation Failures”
 - “Garbage Collections - Selected Allocation Failure”

Note: The following workspace is only available when running a monitoring agent in a z/OS environment, **Selected Region - History**, and **Garbage Collection Analysis - Servant Regions**. For more information, see “Region workspaces in a z/OS environment” on page 298.

- **Log Analysis**

Note: The following workspaces are only available when running a monitoring agent in a z/OS environment, **Selected Region - Log Analysis**. For more information see, “Region workspaces in a z/OS environment” on page 298.

- **Pool Analysis**

- **Datasources**
 - “Data sources workspace” on page 243
 - “Selected Datasources - Datasource Trend workspace” on page 277

Note: The following workspace is only available when running a monitoring agent in a z/OS environment, **Data Sources - Servant Regions**, and **Selected Regions - Datasources**. For more information see, “Region workspaces in a z/OS environment” on page 298.

- **JMS Summary**

Note: The following workspace is only available when running a monitoring agent in a z/OS environment, **Selected JMS - Servant Regions**, and **Selected Region - JMS Summary**. For more information see, “Region workspaces in a z/OS environment” on page 298.

- **Web Applications**
 - **Sessions**
 - **Servlets / JSPs - Selected Enterprise Application**

- **EJB Containers**
 - **Container Object Pools**
 - **Container Transactions**
 - **Enterprise Java Beans**

- **DB Connection Pools**
 - **Selected DB Connection Pool - History**

- **J2C Connection Pools**

- **Thread Pools**
 - “Thread Pool Trend workspace” on page 286
 - **Alarm Manager**
- **Cache Analysis**
 - “Thread Pool Trend workspace” on page 286

- **Workload Management**

- **Scheduler**

- **Web Services**
 - Selected Web Services - History

- **Messaging Engines**
 - Client Communications
 - Messaging Engine Communications
 - WMQ Client Link Communications
 - WMQ Link Communications
 - Destinations
 - Durable Subscriptions

- **WebSphere Portal Server**
 - “Application Server Summary workspace” on page 215
 - “Configuration workspaces” on page 221
 - “WebSphere Application Server workspace” on page 291
 - “Resources and Applications workspaces” on page 217
 - “High Availability Manager workspace” on page 255
 - “DCS Stacks workspace” on page 248
 - “Configuration workspaces” on page 221

Note: The following workspaces are only available when running a monitoring agent in a z/OS environment, WebSphere App Server - Servant Regions, and Selected Region - Application Server Summary. For more information, see “Region workspaces in a z/OS environment” on page 298.

- **Portal Summary**
 - Portlet Summary
 - Selected Portlet - History
 - Portal Pages Summary
 - Selected Portal Page - History

Note: The following workspaces are only available when running a monitoring agent in a z/OS environment, Selected Region - Portal Summary, Selected Region - Portlet Summary, and Selected Region - Portal Page Summary. For more information, see “Region workspaces in a z/OS environment” on page 298.

- **Request Analysis**
 - Selected Request - Datasources
 - Selected Request JMS Queues
 - Selected Request Resource Adapters
 - Selected Request - History
Note: The following workspaces are only available when running a monitoring agent in a z/OS environment, **Selected Region - Request Analysis**, and **Selected Request - Servant Regions**. For more information, see “Region workspaces in a z/OS environment” on page 298.

- **Garbage Collection Analysis**
 - Allocation Failures
 - Garbage Collections - Selected Allocation Failure

Note: The following workspace is only available when running a monitoring agent in a z/OS environment, **Selected Region - History**, and **Garbage Collection Analysis - Servant Regions**. For more information, see “Region workspaces in a z/OS environment” on page 298.

- **Log Analysis**

Note: The following workspaces are only available when running a monitoring agent in a z/OS environment, **Selected Region - Log Analysis**. For more information see, “Region workspaces in a z/OS environment” on page 298.

- **Pool Analysis**

- **Datasources**
 - “Data sources workspace” on page 243
 - “Selected Datasources - Datasource Trend workspace” on page 277

Note: The following workspace is only available when running a monitoring agent in a z/OS environment, **Data Sources- Servant Regions**, and **Selected Regions - Datasources**. For more information see, “Region workspaces in a z/OS environment” on page 298.

- **JMS Summary**

Note: The following workspace is only available when running a monitoring agent in a z/OS environment, **Selected JMS - Servant Regions**, and **Selected Region - JMS Summary**. For more information see, “Region workspaces in a z/OS environment” on page 298.

- **Web Applications**
 - Sessions
 - Servlets / JSPs - Selected Enterprise Application

- **EJB Containers**
 - Container Object Pools
 - Container Transactions
 - Enterprise Java Beans

- **DB Connection Pools**
 - Selected DB Connection Pool - History

- **J2C Connection Pools**

- **Thread Pools**
 - Alarm Manager

- **Cache Analysis**
• Messaging Engines
 – Client Communications
 – Messaging Engine Communications
 – WMQ Client Link Communications
 – WMQ Link Communications
 – Destinations
 – Durable Subscriptions
• Service Components
 – Service Component Elements
• WebSphere Process Server
• Application Health Summary
 – Selected Application - Application Tier Analysis
 – Selected Application - Configuration
 – Selected Application - Backend Tier Analysis
 – Selected Application - Health History
 – Selected Application - Client Tier Analysis
 – Application Registry
 – Selected Request - Baseline
• High Availability Manager
• DCS Stacks
• Request Analysis
 – Selected Request - Datasources
 – Selected Request JMS Queues
 – Selected Request Resource Adapters
 – Selected Request - History
• Garbage Collection Analysis
 – Allocation Failures
 – Garbage Collections - Selected Allocation Failure
• Log Analysis
• Pool Analysis
• Datasources
 – Selected Datasource - History
• JMS Summary
• Web Applications
 – Sessions
 – Servlets / JSPs - Selected Enterprise Application
• EJB Containers
 – Container Object Pools
 – Container Transactions
 – Enterprise Java Beans
• DB Connection Pools
 – Selected DB Connection Pool - History
• J2C Connection Pools
• Thread Pools
 – Alarm Manager
• Cache Analysis
 • Workload Management
 • Scheduler
 • Web Services
 – Selected Web Services - History
 • Messaging Engines
 – Client Communications
 – Messaging Engine Communications
 – WMQ Client Link Communications
 – WMQ Link Communications
 – Destinations
 - Durable Subscriptions
 • Service Components
 – Service Component Elements
 – Lotus® Workplace Server
 • Application Health Summary
 – Selected Application - Application Tier Analysis
 – Selected Application - Configuration
 – Selected Application - Backend Tier Analysis
 – Selected Application - Health History
 – Selected Application - Client Tier Analysis
 – Application Registry
 - Selected Request - Baseline
 • High Availability Manager
 • DCS Stacks
 • Workplace Mail
 – IMAP/POP
 – Messages Queues
 • Portal Summary
 – Portlet Summary
 - Selected Portlet - History
 – Portal Pages Summary
 - Selected Portal Page - History
 • Request Analysis
 – Selected Request - Datasources
 – Selected Request JMS Queues
 – Selected Request Resource Adapters
 – Selected Request - History
 • Garbage Collection Analysis
 – Allocation Failures
 – Garbage Collections - Selected Allocation Failure
 • Log Analysis
 • Pool Analysis
 • Datasources
 – Selected Datasource - History
Summary workspaces

You can use summary workspaces to quickly see the status of WebSphere application servers and applications in your enterprise.

About Summary Workspaces

Summary workspaces provide a way to quickly monitor the status of application servers and applications. ITCAM for Application Diagnostics provides predefined situations that you can use to monitor WebSphere application servers in your enterprise. Summary workspaces enable you to quickly determine the status of these situations. User defined and predefined situations are mapped to various colored icons in the summary workspaces. The icon color indicates status which enables you to quickly determine the overall health of applications servers and applications. The following organization chart shows the structure of the icons in the summary workspaces:
Summary Workspace Icons

In summary workspaces, the each icon displays as one of the following statuses: Critical, Warning, Normal or Unknown. The status is calculated based on the status of the underlying situations being monitored. Each icon also displays the metrics for the first two situations shown on the flyover. The following table shows the possible status of icons:

Table 12. Status Icons

<table>
<thead>
<tr>
<th>Status Icon</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critical</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Unknown or Application Stopped</td>
</tr>
</tbody>
</table>

Summary Workspace Flyovers

The icons indicate the status of the WebSphere application servers and applications in your enterprise. To access more detailed information from the summary workspaces, point to the icon and a flyover is displayed. The flyover provides relevant metrics pertaining to the icon. Also, it shows the top 10 situations that are linked with the icon. You can go directly to the situation event result workspace by clicking on the situation link icon in the flyover.

Drill Down on Summary Workspaces

You can drill down on the icons to see further information. When you double-click on an icon, further workspace views showing more detailed monitoring data are displayed.

See also

“ITCAM for Application Diagnostics - WebSphere Agent situations” on page 433

Summary Workspace Views

You can use summary workspaces to quickly see the status of WebSphere application servers and applications in your enterprise. Each workspace can contain one or more views.

There are five summary workspaces. The following table describes the summary workspaces:
WebSphere Agent Summary workspace

The WebSphere Agent Summary Workspace provides summary monitoring information for WebSphere application servers in your enterprise. It contains two views, the Application Servers Status Table view and the Application Servers Summary view.

Application Servers Status Table view

Two icons are displayed in this view - the Application and the Resources icons.

The flyover for the Applications icon displays the following metrics:
- Application Server Name
- Average Response Time (ms)
- Request Rate (Req/Sec)
- Error Rate (Errors/sec)
- Number of problem Situations
- List of top 10 situations

The flyover for the Resources icon displays the following metrics:
- Application Server Name
- JVM CPU%
- GC Active Time (ms)
- Number of problem Situations
- List of top 10 situations

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Table 13. Summary Workspace Table

<table>
<thead>
<tr>
<th>Workspace Name</th>
<th>Level in TEP</th>
<th>Views Available</th>
</tr>
</thead>
</table>
| WebSphere Agent Summary | Agent level | • Application Servers Status Table
| | | • Application Servers Summary |
| WebSphere Agent Summary | Agent level | • Application Servers Status Table
| Status | | • Application Servers Summary |
| Application Server Summary | Application Server Level | • Application Server - Resources
| | | • Application Server - Applications |
| Resources | Application Server Level | • Application Server - Resources
| | | • Situation Event Console |
| Applications | Application Server Level | • Application Server - Applications
| | | • Situation Event Console |
WebSphere Agent Summary Status workspace

The WebSphere Agent Summary Status workspace is an alternative summary workspace available at the WebSphere agent level. The WebSphere Agent Summary Status workspace provides summary monitoring information for WebSphere Application servers.

To switch to the WebSphere Agent Summary Status workspace, right-click the WebSphere Agent in the Tivoli Enterprise Portal navigator and select **Workspace** and then select **WebSphere Agent Summary Status**.

The WebSphere Agent Summary Status workspace contains two views, the Application Servers Status view and Applications Servers Summary view.

Application Servers Status View

In this view, there is one icon which indicates the status of both applications and resources - this is the Server icon. The flyover for the Server icon displays the following metrics:

- Average Response Time (ms)
- Request Rate (Req/Sec)
- Error Rate (Errors/sec)
- JVM CPU%
- GC Active Time (ms)
- WAS Node Name
- WAS Cell Name
- WAS Cluster Name
- Number of Problem Situations
- List of top 10 situations

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Application Server Summary workspace

The Application Server Summary workspace provides summary monitoring information for applications running on WebSphere application servers in your enterprise. It contains two views - the Application Server- Resources view and the Applications Server - Applications view.

Application Server - Resources View

The Application Server - Resources view contains the following icons:

- OS
- JVM
- Datasource
- Threadpool
- Services
OS icon

The OS icon provides summary metrics for machine CPU and paging metrics. The flyover for the OS icon displays the following metrics:
- System CPU (ms)
- System Paging Rate (Kbytes/sec)
- Number of problem situations
- List of top 10 situations

When you double-click the OS icon, the following subsidiary views display in the OS Stack workspace:
- Current OS stack summary
- CPU used
- System Paging

For further information about the OS Stack workspace, see OS Stack.

JVM icon

The JVM icon flyover provides summary metrics for: CPU for the JVM process, garbage collection, and heap metrics. The flyover information for the JVM icon displays the following metrics:
- JVM CPU%
- GC Active Time (ms)
- List of top 10 situations

When you double-click the JVM icon, the following subsidiary views display in the JVM Stack Trend workspace:
- JVM CPU Trend
- Percent GC time used
- Heap Usage trend

For further information about the JVM Stack Trend workspace, see JVM Stack Trend.

Datasources icon

The Datasources icon flyover provides summary metrics for JDBC, JMS, JCA and JTA, it also indicates the number of problem situations. When you double-click the Datasource icon, the following subsidiary views display in the Datasources workspace:
- Worst Datasource Query Times
- Worst Datasource Update Times
- Datasources - Current Interval

Threadpool icon

The Threadpool icon flyover provides summary metrics for threadpool information including the number of problem situations. When you double-click the Threadpool icon, the following subsidiary views display in the Threadpools workspace:
- Highest Average Pool Sizes
- Average thread pool usage
Threadpools table

Services icon

The Services icon flyover provides summary metrics for Web Services, Workload Management and System Integration Bus. When you double-click the Services icon:

- for Portal, Services icon will take you to Web Services which has the following views:
 - Worst Response Times
 - Most Popular
 - Web Services
 - Web Service Gateway
- for Lotus, Services icon will take you to Workload Management which has these views:
 - WLM Server Incoming Requests
 - WLM Client Outgoing Requests
 - Workload Management Server
 - Workload Management Client

Application Server - Applications View

In this view, there is an icon per application. The flyover for an Application icon displays the following metrics:

- Average Response Time (ms)
- Request Rate (Req/Sec)
- Error Rate (Errors/sec)
- Monitoring Level
- Number of problem Situations
- List of top 10 situations

When you double click an Application icon, the following subsidiary views display in either the Application Trend at L1 or Application Trend at L2/L3 workspace:

- Response Time Trend
- Error Rate Trend
- Request Rate Trend
- Selected Application Summary: Application Name

For further information about the Application Trend workspace, see “Selected Application - Application Trend at L1 workspace” on page 237, and “Selected Application - Application Trend at L2/L3 workspace” on page 237.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Resources and Applications workspaces

The Resources and Applications workspaces provides monitoring data for your application server.
Resources Workspace

To access the Resources workspace, right-click the Application Server node in the Tivoli Enterprise Portal navigator and select Workspace and then select Resources. The Resources workspace contains the following views:

- Application Servers Resources
- Situation Event Console

For information about the Application Servers Resources view, see “Application Server Summary workspace” on page 215. The Situation Event Console displays additional detail for all open situations. For details on how to perform filtering on open situations, see Tivoli Monitoring help.

Applications Workspaces

To access the Applications workspace, right-click the Application Server node in the Tivoli Enterprise Portal navigator and select Workspace and then select Applications. The Applications workspace contains the following views:

- Application Servers Applications
- Situation Event Console

For information about the Application Servers Applications view, see “Application Server Summary workspace” on page 215. The Situation Event Console displays additional detail for all open situations. For details on how to perform filtering on open situations, see Tivoli Monitoring help.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Situation Mapping and Summary Workspaces

User defined situations are mapped to icons in summary workspaces. When you create a new situation, if the situation then triggers an alert, detail of the situation is displayed in one of the summary workspaces icon flyovers.

When you create a situation, the attribute group you base the situation on determines which summary workspace icon flyover the situation will display in. The following table shows which attribute groups map to which icons and predefined situations:

<table>
<thead>
<tr>
<th>TEMA Attribute Group Name</th>
<th>Icons</th>
<th>Predefined Situations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications Monitoring Configuration</td>
<td>N/A</td>
<td>WASAppDiscovered</td>
</tr>
<tr>
<td>Requests Monitoring Configuration</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Applications Health Status</td>
<td>Applications</td>
<td>WASApplicationBad, WASApplicationFair, WASApplicationGood</td>
</tr>
<tr>
<td>Applications Server Status</td>
<td>JVM</td>
<td></td>
</tr>
<tr>
<td>Log Analysis</td>
<td>JVM</td>
<td>WASError</td>
</tr>
<tr>
<td>TEMA Attribute Group Name</td>
<td>Icons</td>
<td>Predefined Situations</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>KYN Command</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>WebSphere Agent Events</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>DC Messages</td>
<td>JVM</td>
<td></td>
</tr>
<tr>
<td>WebSphere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Cache</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Dynamic Cache Templates</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Workload Management Client</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Workload Management Server</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>DB Connection Pools</td>
<td>Datasources</td>
<td>WASDBConnectionPoolThrTimeOut WASDBConnectionPoolUsageMaxed WASDBConPAverageUsageTimeHigh WASDBConPAvgWaitTimeHigh</td>
</tr>
<tr>
<td>Container Object Pools</td>
<td>Threadpools</td>
<td></td>
</tr>
<tr>
<td>Enterprise Java beans</td>
<td>Applications</td>
<td>WASEJBCreateTimeHigh WASEJBMethodResponseTimeHigh WASEJBRemoveTimeHigh</td>
</tr>
<tr>
<td>Web Applications</td>
<td>Applications</td>
<td>WASWebApplicationError</td>
</tr>
<tr>
<td>Web Applications - Sessions</td>
<td>Applications</td>
<td>WASSrvlSessAvgActiveSessionHigh WASSrvlSessExtReadTimeHigh WASSrvlSessExtWriteTimeHigh</td>
</tr>
<tr>
<td>Applications Server</td>
<td>JVM, OS</td>
<td>WASHighCPUPercentUsed</td>
</tr>
<tr>
<td>EJB Containers</td>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>Servlets JSPs</td>
<td>Applications</td>
<td>WASServletJSPError</td>
</tr>
<tr>
<td>Servlet Sessions</td>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>Thread Pools</td>
<td>Threadpools</td>
<td>WASThreadPoolPercentMaxed WASThreadPoolFreeLow</td>
</tr>
<tr>
<td>Container Transactions</td>
<td>Datasources</td>
<td>WASContainerTransactionRollback WASCTGlbTransDurationHigh WASCTLclTransDurationHigh</td>
</tr>
<tr>
<td>J2C Connection Pools</td>
<td>Datasources</td>
<td>WASJ2CConnectionPoolUsageMaxed WASJ2CCPAverageUsageTimeHigh WASJ2CCPAvgWaitTimeHigh</td>
</tr>
<tr>
<td>DCS Stack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Availability Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web Services Gateway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheduler</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Client Communications</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Durable Subscriptions</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>TEMA Attribute Group Name</td>
<td>Icons</td>
<td>Predefined Situations</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Messaging Engine</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messaging Engines</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Queue</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Service Component Elements</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Service Components</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Topic Spaces</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>WMQ Client Link</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMQ Link Communications</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Workplace Mail Service</td>
<td>Datasources</td>
<td></td>
</tr>
<tr>
<td>Workplace Mail Queues</td>
<td>Datasources</td>
<td></td>
</tr>
<tr>
<td>Workplace Mail IMAP/POP</td>
<td>Services</td>
<td></td>
</tr>
<tr>
<td>Portal Summary</td>
<td>Services</td>
<td>WASPortalPageResponseTime</td>
</tr>
<tr>
<td>Portal Page Summary</td>
<td>Services</td>
<td>WASPortalPageResponseTime</td>
</tr>
<tr>
<td>Portlet Summary</td>
<td>Services</td>
<td>WASPortletResponseTime</td>
</tr>
<tr>
<td>Datasources</td>
<td>Services</td>
<td>WASDataSrcConWaitTimeHigh</td>
</tr>
<tr>
<td>Request Times and Rates</td>
<td>Applications</td>
<td>WASHighResponseTime</td>
</tr>
<tr>
<td>Request Analysis</td>
<td>Applications</td>
<td>WASReqSQLExecuteTimePercentHigh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WASReqSQLQueryTimePercentHigh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WASReqSQLUpdateTimePercentHigh</td>
</tr>
<tr>
<td>JMS Summary</td>
<td>Datasources</td>
<td></td>
</tr>
<tr>
<td>Selected Request</td>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>Garbage Collection Analysis</td>
<td>JVM</td>
<td>WASHighGCTimePercent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WASAvgHeapSizeAfterGCHigh</td>
</tr>
<tr>
<td>Allocation Failure</td>
<td>JVM</td>
<td>WASOutOfHeapSpace</td>
</tr>
<tr>
<td>Garbage Collection Cycle</td>
<td>JVM</td>
<td></td>
</tr>
<tr>
<td>WebSphere Agent</td>
<td></td>
<td>WASNotConnected</td>
</tr>
<tr>
<td>WebSphere App Server</td>
<td></td>
<td>WASHighCPUPercentUsed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WASHighResponseTime</td>
</tr>
</tbody>
</table>

Where NA is indicated for the icon, it means that situations created based on these attribute groups are not reported in the summary workspaces. This is because these tables are strictly related to TEMA configuration parameters which do not reflect the application or application server health.

For additional information, see:

- [WebSphere Agent situations](#)
- [WebSphere Agent attributes](#)
Summary Workspaces error messages

Four possible error messages can be displayed in the summary workspace status bar.

The following table lists and explains the error messages:

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Communication Error</td>
<td>This message indicates a communication problem between the summary workspaces front end and the summary workspaces back end code (called evaluator) running inside the embedded WebSphere server on the TEPS server. There are two reasons this error displays:</td>
</tr>
<tr>
<td></td>
<td>1. If this messages is displayed for all the summary workspaces, there is an installation error. Summary workspaces require code to run inside ITM eWAS. Ensure the following installation steps have been taken:</td>
</tr>
<tr>
<td></td>
<td>a. For ITM 6.1, install the ITM TEP Server Extensions - this installs eWAS. Install ITCAM for Application Diagnostics. After installation, reconfigure the TEPS.</td>
</tr>
<tr>
<td></td>
<td>b. For ITM 6.2, eWAS is already installed. Install ITCAM for Application Diagnostics. After installation, reconfigure the TEPS.</td>
</tr>
<tr>
<td></td>
<td>2. If this error messages is displayed for only some of the summary workspaces, turn up tracing and send to IBM support for review.</td>
</tr>
<tr>
<td>Invalid Data</td>
<td>This message indicates that data being sent from the summary workspaces back end code (called evaluator) running inside the embedded WebSphere server on the TEPS server is malformed. Turn on the tracing, collect the logs and send to IBM support for further analysis. For further information about logs and tracing, see the ITCAM for Application Diagnostics: WebSphere Agent Problem Determination Guide publication in the Tivoli information center: http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.itcamwas_wr.doc_6.2/welcome.htm</td>
</tr>
<tr>
<td>No Applications Configured</td>
<td>This message indicates that no applications are configured on the WebSphere server. This message also displays if the WebSphere server is not connected to the TEMA. The message will no longer display when the WebSphere server is back online. No user action is needed.</td>
</tr>
<tr>
<td>No Applications Servers Connected</td>
<td>This message indicates that no WebSphere servers are connected to the TEMA. The message will no longer display when the WebSphere server is back online. No user action is needed.</td>
</tr>
</tbody>
</table>

Configuration workspaces

Monitoring Agent configuration and tuning is facilitated in the Tivoli Enterprise Portal through configuration workspaces. There are two configuration workspaces, one for the Monitoring Agent level and one for the server level:
WebSphere Agent Configuration workspace
Application Server Configuration workspace

Both configuration workspaces have the same tabs and configuration settings.

The WebSphere Agent Configuration workspace settings are initial settings applied to all data collectors managed by the Monitoring Agent. For example, when a Data Collector connects to the Monitoring Agent for the first time or if the Data Collector configuration was deleted. In both these examples, the configuration settings specified in the WebSphere Agent Configuration workspace are applied.

The Application Server Configuration workspace contains individual server settings and the settings in this workspace override settings in the WebSphere Agent Configuration workspace.

Settings for the WebSphere Agent Configuration and Application Server Configuration workspaces are saved in the following files:

Table 14. Workspace configuration files

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Configuration file</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSphere Agent Configuration</td>
<td>CANDLE_HOME\TMAITM6\hostname_productcode.xml</td>
</tr>
<tr>
<td>workspace in windows:</td>
<td></td>
</tr>
<tr>
<td>Application Server Configuration</td>
<td>CANDLE_HOME\TMAITM6\hostname_productcode_servervendor_servernode_servername.xml</td>
</tr>
<tr>
<td>workspace in windows:</td>
<td></td>
</tr>
<tr>
<td>WebSphere Agent Configuration</td>
<td>CANDLE_HOME/config/hostname_productcode.xml</td>
</tr>
<tr>
<td>workspace in other platforms:</td>
<td></td>
</tr>
<tr>
<td>Application Server Configuration</td>
<td>CANDLE_HOME/config/hostname_productcode_servervendor_servernode_servername.xml</td>
</tr>
<tr>
<td>workspace in other platforms:</td>
<td></td>
</tr>
</tbody>
</table>

The WebSphere Agent Configuration workspace configuration settings are initial settings which are applied to all data collectors managed by the selected WebSphere agent. The Application Server Configuration workspace configuration settings override agent level configuration settings.

Both configuration workspaces have the following two views:

- **Application Diagnostics Configuration view** - this view has the following four tabs
 - Collection (Basic)
 - Collection (Advanced)
 - Application Dashboard (Basic)
 - Application Dashboard (Auto Threshold)
• **Application Servers view** - this view has one tab which lists all application servers monitored by the selected WebSphere agent, for each application server, there is a link to Application Server Configuration workspace.

Application Diagnostics Configuration - Basic Tab

The Basic tab contains the following fields:

• **Request Data Monitoring** - in this field, specify the monitoring level for request data from connected Data Collectors. The following values can be entered into this field:
 - **Disable** - request data is not monitored and is not displayed
 - **Level 1** - only monitors edge request data, for example, servlets, JSPs, and EJBs
 - **Level 2** - monitors nested request data in addition to edge request data, for example, JNDI, JMS, JDBC, and JCA requests

• **Request Data Monitoring Method** - in this field, specify the monitoring method used by the Monitoring Agent to govern when it uploads request and garbage collection data from connected Data Collectors. The following values can be entered into this field:
 - **On Demand** - when the monitoring method is set to On Demand, data is uploaded only when requested by the user. The exception to this is if the cache of data is still current - whether or not this data is current is determined by the Request Data On Demand Maximum Sample Age (sec) field in the Collection Advanced tab. With On Demand monitoring, the Tivoli Enterprise Portal response time is slower as the data is collected as requested but the retrieved data will be the most current available. CPU and memory usage on the monitored systems is lower for On Demand monitoring.
 - **Fixed Interval** - when the monitoring method is set to Fixed Interval, the Monitoring Agent will upload sample data from the data collectors at regular fixed intervals, and respond to a user request using the latest cache of sample data gathered at the last interval. With Fixed Interval monitoring, CPU and memory usage can be higher because more data is collected more frequently but Tivoli Enterprise Portal response time is faster as the data is more readily available. Data samples are calculated for the same time interval and as a result are more consistent.

• **Resource Data Monitoring** - in this field, specify whether resource data is monitored from connected Data Collectors. The following values can be entered in this field:
 - **Disable** - resource data is not collected by the Monitoring Agent and is not displayed in the Tivoli Enterprise Portal.
 - **Enable** - resource data is collected by the Monitoring Agent and is displayed in the Tivoli Enterprise Portal.

• **Resource Data Monitoring Method** - in this field, specify the monitoring methodology used by the agent to govern when it uploads resource data from connected Data Collectors. The following values can be entered into this field:
 - **On Demand** - when the monitoring method is set to On Demand, data is uploaded only when requested by the user. The exception to this is if the cache of data is still current - whether this data is current is determined by the Resource Data On Demand Maximum Sample Age (sec) field in the Collection Advanced tab. With On Demand monitoring, the Tivoli Enterprise Portal response time is slower as the data is collected as requested but the retrieved data is the most current available. CPU and memory usage on the monitored systems is lower for On Demand monitoring.
- **Fixed Interval** - when the monitoring method is set to Fixed Interval, the Monitoring Agent will upload sample data from the data collectors at regular fixed intervals, and respond to a user request using the latest cache of sample data gathered at the last interval. With Fixed Interval monitoring, CPU and memory usage can be higher because more data is collected more frequently but Tivoli Enterprise Portal response time is faster as the data is more readily available. Data samples are calculated for the same time interval and as a result are more consistent.

- **Garbage Collection Monitoring** - in this field, specify if verbose garbage collection output monitoring is enabled. The following values can be entered in this field:
 - **Disable** - verbose garbage collection output data is not collected by the Monitoring Agent and is not displayed in the Tivoli Enterprise Portal.
 - **Enable** - verbose garbage collection output data is collected by the Monitoring Agent and is displayed in the Tivoli Enterprise Portal.

Application Dashboard (Basic) tab
The Application Dashboard (Basic) tab contains the following fields:

- **Application Fair Completion Rate Threshold (%)** - Defines the default completion percentage for application fair availability threshold.
- **Application Bad Completion Rate Threshold (%)** - Defines the default completion percentage for application bad availability threshold.
- **Application Fair Resource Usage Threshold (%)** - Defines the threshold percentage for fair usage level of an application resource.
- **Application Bad Resource Usage Threshold (%)** - Defines the threshold percentage for bad usage level of an application resource.
- **Application Resource Usage Monitoring Cutoff Threshold (%)** - Defines the cutoff threshold percentage for application resources usage monitoring.
- **Request Monitoring Control Level** - Specifies the request monitoring control level for the server. The following entries can be entered to this field:
 - **Application** Request monitoring settings are defined for each application independently.
 - **Server** Request monitoring settings are defined on the server level and override the settings defined for applications.

The Request Monitoring Control Level option gives you more control over request monitoring settings. In certain sequences, you can benefit from "locking" the request monitoring control on the server level, because you can change data collector monitoring level in one place.

In ITCAM For Application Diagnostics 7.1, the request data monitoring level (Level1 or Level2) that displays on the Tivoli Enterprise Portal depends on the **Request Monitoring Control Level** setting you choose.

- If you select the **Request Monitoring Control Level** as **Application** (the default setting), only Level2 data displays in the Tivoli Enterprise Portal when the **Request Data Monitoring Level** for the application is Level2.
- If you select the **Request Monitoring Control Level** as **Server**, and then set the Request Data Monitoring Level at Level2 using take action **Start_Request_Monitoring**, the Request Data Monitoring Level for all the applications in this server is Level2. You can set Request Data Monitoring Level back to Level1 for any application in the server by using the take action, **Set_Application_Monitoring** and selecting Level1. However, in the Tivoli Enterprise Portal, the Request Data Monitoring Level still displays as Level2.
This is because the Tivoli Enterprise Portal displays the effective request monitoring control level. When you change the Request Monitoring Control Level to Application, the Request Data Monitoring Level in the Application Configuration workspace becomes Level1 for that application.

Collection Advanced tab

The Collection Advanced tab contains the following fields:

- **Request Data On Demand Maximum Sample Age (sec)** - The maximum allowed age of sample request data in seconds before collecting a new sample of data. If the monitoring method is set to On Demand, when a user request is received, and the current sample cache is older than the value specified, then the Monitoring Agent uploads a new sample before servicing the request. Two successive on-demand requests received from users within the period specified by the maximum sample age return the same results without incurring the CPU and memory cost of a new data sample.

- **Request Data Fixed Interval between Collections (sec)** - The amount of time in seconds between uploads of sample request data from the data collectors to the Monitoring Agent when the monitoring method is set to Fixed Interval. When a user request is received, it is serviced from the latest uploaded sample.

- **Request Data Sampling Rate (%)** - The percentage of requests that are sampled for request data monitoring.

- **Resource Data On Demand Maximum Sample Age (sec)** - The maximum allowed age of sample resource data in seconds before collecting a new sample of data. If the monitoring method is set to On Demand, when a user request is received and the current sample cache is older than the value specified in this field, then the Monitoring Agent uploads a new sample before servicing the request. Two successive on-demand requests received from a user within the period specified by the maximum sample age return the same results without incurring the CPU and memory cost of a new data sample.

- **Resource Data Fixed Interval between Collections (sec)** - The amount of time in seconds between uploads of sample resource data from the data collectors to the agent. When a Tivoli Enterprise Portal request is received, it is serviced from the latest uploaded sample.

- **Garbage Collection Polling Interval (sec)** - The interval in seconds between the Monitoring Agent scanning the verbose Garbage Collection output.

- **Log Scan Polling Interval (sec)** - The interval in seconds between the Agent scanning the Application Server standard output log for changes.

Application Dashboard (Auto Threshold) tab

The Application Dashboard (Auto Threshold) tab contains the fields:

- **Response Time Selection (%)** - Defines the percentage from baseline to be used for response time auto-thresholding.

- **Response Time Deviation (%)** - Defines the deviation for baseline selection to be used for response times auto-thresholding.

- **Fair Response Time Projection (%)** - Defines the percentage to derive the fair response time threshold from the baseline selection.

- **Bad Response Time Projection (%)** - Defines the percentage to derive the bad response time threshold from the baseline selection.

Workspace link to Managing Server Visualization Engine

With the appropriate configuration and permissions, you can access the Managing Server Visualization Engine from specific workspaces in the WebSphere Tivoli Enterprise Portal. Instead of opening another browser and clicking the relevant...
link, you can access the Managing Server Visualization Engine from Tivoli Enterprise Portal using a link called **Diagnostic Server Activity Display**. Some of the workspaces have additional links you can use to access the Managing Server Visualization Engine. All these links begin with the word **Diagnostic**. When you log in to the **Welcome to the Application Monitor** page, the information displayed is specific to the content in the Tivoli Enterprise Portal workspace you selected.

You also have the option to manually create your own links to the Managing Server Visualization Engine using the **Link Wizard** which is available on all workspaces.

You can access the Managing Server Visualization Engine from the following workspaces.

- WebSphere Agent
- Request Analysis
- Garbage Collection Analysis
- Datasources
- JMS Summary
- Web Applications
- EJB Containers
- DB Connection Pools
- J2C Connection Pools
- Thread Pools

This is a list of the Managing Server Visualization Engine links available from the workspaces:

- **Diagnostic Server Activity display**. Use this link to diagnose application problems, for example, slow transactions or high response times. This link is available from all workspaces except Request Analysis and Garbage Collection Analysis.

- **Diagnostic In-Flight Request Search**. Use this link to identify any hanging transactions. This feature is only available from the WebSphere Agent and Request Analysis workspaces.

- **Diagnostic Recent Completed Requests**. The Recent Requests tab displays data regarding recently completed server requests. This feature is only available from the Request Analysis workspace.

- **Diagnostic SMF Data**. This feature is only available if you are using a z/OS Data Collector and in the Request Analysis workspace. The SMF Overview displays summary information for all the resources on the selected application server.

- **Diagnostic JVM Thread Display**. Use this link to diagnose application problems, for example, slow transactions by examining threads running in JVM. This link is available from the Thread Pools workspace.

- **Diagnostic Memory Leak**. Use this link to diagnose memory leak problems. This link is available from the Garbage Collection Analysis workspace.

For information about accessing workspaces, see "Accessing the Managing Server Visualization Engine from Tivoli Enterprise Portal workspaces" on page 228.

Prerequisites for access

The following conditions must be met to gain access to the Managing Server Visualization Engine through the Tivoli Enterprise Portal.
ITCAM for Application Diagnostics Managing Server version 7.1 and ITCAM for WebSphere Data Collector version 7.1. must be installed in your environment.

Tivoli Enterprise Portal users must be members of the Diagnostic Users Group within the Tivoli Enterprise Portal. For more information see “Granting Users access to Managing Server Visualization Engine from Tivoli Enterprise Portal.”

During the installation of the Managing Server, kernel properties in the Managing Server must be set up accordingly with the correct host name and port number. This action is completed by the user installing the Managing Server.

You can also create your own links to the Managing Server Visualization Engine using the Link Wizard.

For more information see “Creating links to the Managing Server Visualization Engine using the Link Wizard” on page 233

Kernel Settings to access the Managing Server Visualization Engine through the Tivoli Enterprise Portal

If users are to access the Managing Server Visualization Engine through the Tivoli Enterprise Portal, the kernel properties in the Managing Server must be set up accordingly with the correct host name and port number.

The following properties need to be added to kl1.properties and kl2.properties (By default, the Managing Server installer replaces @HOST_VE and @PORT_VE_HTTP at Managing Server installation time):

- ve.host=@HOST_VE
- ve.port=@PORT_VE_HTTP

At kernel startup time, the kernel needs to read these two properties, and set them as part of properties in PROBE_CONFIG.PROPS. If a user changes the VE host name or port number, then the kernel needs to be restarted. Use the following steps to start and stop the kernel in $MS_HOME/bin:

1. To start kernel, issue: ./amctl.sh wd<kernel count> start
2. To stop kernel, issue: ./amctl.sh wd<kernel count> stop

where <kernel count> is 1 by default.

Granting Users access to Managing Server Visualization Engine from Tivoli Enterprise Portal

As a user you must be set up as a member of the DIAGNOSTIC USERS group in the Tivoli Enterprise Portal, otherwise you will not have access to the Visualization Engine from the Tivoli Enterprise Portal. The default administration user Sysadmin is automatically a member of this group. Any user with administrator permissions can add or remove additional users to the DIAGNOSTIC USERS group.

Before you begin

To complete this task you must be a user with administrator permissions to add or remove additional users to the DIAGNOSTIC USERS group. For more information about access see “Prerequisites for access” on page 226.

1. From the Tivoli Enterprise Portal main menu, click Edit > Administer Users.
2. In the Administer Users window, in the top half of the window, click the Users Groups tab.
3. Click the group name, in this case **DIAGNOSTIC USERS**.
4. In the bottom half of the window click the **Members** tab to view existing members of this group and to assign additional users.
5. To add users, in the **Available Members** section select the users you want to assign to the Group.
6. Click the left arrow to move the selected users to the **Assigned Members** section of the window.
7. Click **Apply** and **OK** to implement the changes.
8. If you want to remove a user from the group click the **Assigned Members** tab, select the users you want to remove.
9. Click the right arrow to move the selected users to the **Available Members** tab. Then click **Apply** and **OK**.

What to do next

Users who are members of this group can access the Managing Server Visualization Engine from the Tivoli Enterprise Portal. See "Accessing the Managing Server Visualization Engine from Tivoli Enterprise Portal workspaces."

Adding the LDAP user to Tivoli Enterprise Portal user accounts:

About this task

To add the LDAP user to Tivoli Enterprise Portal user accounts, use Tivoli Enterprise Portal user administration.

1. In the Tivoli Enterprise Portal main menu, select **Administer Users**.
2. Click **Create New User** to create a user profile from defaults, or **Create Another User** to create a user profile as a copy of an existing one.
3. In the **Modify User** window, enter the user name for the new user in the **User ID** field.
4. In the **Distinguished Name** field, enter the following string:

 \[uid=username, cn=users, dc=ibm, dc=com\]

 This string registers the LDAP user with Tivoli Enterprise Portal. If you are using an existing LDAP configuration, use the applicable distinguished name.

Note: For more information about Single sign on refer to **Appendix N Setting Up single sign on for Tivoli Enterprise Portal Users** in the ITCAM for Application Diagnostics 7.1 Managing Server Installation and Customization Guide.

Accessing the Managing Server Visualization Engine from Tivoli Enterprise Portal workspaces

Use the following links for information about how to access the Managing Server Visualization Engine from the Tivoli Enterprise Portal workspaces.

To ensure you have access to the Managing Server Visualization Engine see "Prerequisites for access" on page 226 before you begin.

- "Accessing the Managing Server Visualization Engine from the WebSphere Agent workspace" on page 290
- "Accessing the Managing Server Visualization Engine from the Request Analysis workspace" on page 271
- "Accessing the Managing Server Visualization Engine from the Garbage Collection Analysis workspace" on page 254
For additional information, see:

- “Workspace link to Managing Server Visualization Engine” on page 225
- “Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal”

Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal

You can access the Managing Server Visualization Engine from links in the ITCAM Agent for WebSphere Applications workspaces.

When you access the Managing Server Visualization Engine in this way, the Managing Server Visualization Engine displays in a browser view inside a workspace. The Tivoli Enterprise Portal navigation tree is automatically hidden in the workspace. To show or hide the Tivoli Enterprise Portal navigation tree, click the small black arrow on the left side of the window.

The following table displays a list of Tivoli Enterprise Portal workspaces that have links to the Managing Server Visualization Engine.

<table>
<thead>
<tr>
<th>Workspace: Table View Name</th>
<th>Number of links to Managing Server Visualization Engine</th>
<th>Link Name</th>
<th>Link Target Pages Managing Server Visualization Engine</th>
<th>Pre-populated information in the link page to Managing Server Visualization Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSphere Agent Summary Status > Application Servers</td>
<td>2</td>
<td>Diagnostic Server Activity Display</td>
<td>Server Activity Display – Active Requests</td>
<td>The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace.</td>
</tr>
<tr>
<td>WebSphere Agent Summary Status > Application Servers</td>
<td>2</td>
<td>Diagnostic In-Flight Request Search</td>
<td>In-Flight Request Search</td>
<td></td>
</tr>
<tr>
<td>WebSphere Agent Configuration > Application Servers</td>
<td>2</td>
<td>Diagnostic In-Flight Request Search</td>
<td>In-Flight Request Search</td>
<td></td>
</tr>
<tr>
<td>Workspace: Table View Name</td>
<td>Number of links to Managing Server Visualization Engine</td>
<td>Link Name</td>
<td>Link Target Pages Managing Server Visualization Engine</td>
<td>Pre-populated information in the link page to Managing Server Visualization Engine</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>-----------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| OS Stack > Current OS Stack Summary | 3 | • Diagnostic Server Activity Display
• Diagnostic In-Flight Request Search
• `<platform>OS>` `<platform>` is one of the following operating systems: Linux, UNIX, Windows or z/OS | • Server Activity Display – Active Requests
• In-Flight Request Search
• Using the dynamic workspace link to the corresponding OS agent workspace. For z/OS, the link is to OMEGAMON XE for z/OS. | The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace. |
<p>| JVM Stack Trend > JVM Stack Trend | 1 | Diagnostic Memory Leak | Memory Leak Analysis | The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace. |</p>
<table>
<thead>
<tr>
<th>Workspace: Table View Name</th>
<th>Number of links to Managing Server Visualization Engine</th>
<th>Link Name</th>
<th>Link Target Pages Managing Server Visualization Engine</th>
<th>Pre-populated information in the link page to Managing Server Visualization Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Analysis > Requests – Current Interval</td>
<td>3</td>
<td>• Diagnostic Recent Completed Requests
 • Diagnostic In-Flight Request Search
 • Diagnostic SMF Data (z/OS only)</td>
<td>• Server Activity Display – Recent Requests
 • In-Flight Requests
 • SMF Data (for z/OS data collectors only)</td>
<td>• The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace.
 • Content in Request Detail column of Requests table view in Tivoli Enterprise Portal is pre-populated in the following fields:
 - Recent Requests: Client Request
 - In-Flight Request Search: Search Request/Transaction field</td>
</tr>
<tr>
<td>Garbage Collection Analysis > Garbage Collection Analysis</td>
<td>1</td>
<td>Diagnostic Memory Leak Analysis</td>
<td>Memory Leak Analysis</td>
<td>The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace.</td>
</tr>
<tr>
<td>Thread Pools > Thread Pools</td>
<td>1</td>
<td>Diagnostic JVM Thread Display</td>
<td>JVM Thread Display</td>
<td>The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace.</td>
</tr>
</tbody>
</table>
Table 15. Tivoli Enterprise Portal workspaces that have links to Managing Server Visualization Engine (continued)

<table>
<thead>
<tr>
<th>Workspace: Table View Name</th>
<th>Number of links to Managing Server Visualization Engine</th>
<th>Link Name</th>
<th>Link Target Pages Managing Server Visualization Engine</th>
<th>Pre-populated information in the link page to Managing Server Visualization Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datasources > Datasources – Current Interval</td>
<td>1</td>
<td>Diagnostic Server Activity Display</td>
<td>Server Activity Display – Active Requests</td>
<td>The Group Server dropdown menu is pre-populated based on data collector information from Tivoli Enterprise workspace.</td>
</tr>
<tr>
<td>Web Applications >Web Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EJB Containers >EJB Containers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JMS Summary >JMS Summary – Current Interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB Connection Pools > DB Connection Pools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J2C Connection Pools > J2C Connection Pools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **Server Group** feature that displays at the top of these pages applies to the Managing Server Visualization Engine. When you access any of these pages this page from the Tivoli Enterprise Portal the information in the **Groups** and **Servers** fields is automatically populated with the data collector associated with the link and workspace you selected in the Tivoli Enterprise Portal.

Groups are a set of application servers which have similar functionality. All configured data collectors are automatically in the **Unassigned Servers Group**. The relationship between Server Group and data collector is many to many. A data collector can belong to one or more server groups. A server group can have one or more data collectors. You can add data collectors to groups using the **Server Management** functionality in the Managing Server Visualization Engine. For more information about adding data collectors to Server Groups, refer to the Composite Application Manager Help in the Managing Server Visualization Engine interface.

The **Server Activity Display** section has three tabs.
- **Active Requests**: provides real time request or transaction data for an application server at the time the page displays.
- **Recent Requests**: displays the last 100 or less completed request or transaction data for an application server.
- **Lock Contentions**: displays requests that are hanging because they are waiting on a lock. The data shows data that is currently locked and the item that is waiting to be locked.

The **Active Requests** tab and the **Recent Requests** tab have a toolbox icon ![Toolbox Icon](image). You can click this icon to access direct links to the following features:
Creating links to the Managing Server Visualization Engine using the Link Wizard

Throughout the Tivoli Enterprise Portal, you can use the Link Wizard to manually create links to the Managing Server Visualization Engine.

Creating links

You can access the Link Wizard feature from other views and workspaces in the Tivoli Enterprise Portal.

1. To access the Link Wizard, from any of the tables or views, right click the link icon and click Link Wizard.
2. Follow the steps in the wizard to do one of the following actions:
 - Create a new link.
 - Modify an existing link.
 - Delete one or more links.
3. Type the name and description of the link.
4. Choose one of the following options with the aid of the descriptions in the Link Wizard:
 - Dynamic
 - Absolute
 - Relative
5. Choose the option you want to use. Follow the instructions in the help within the application until you get to the Workspace Link Wizard Parameters page.

Adding parameters to the Link Wizard

When you get to the Workspace Link Wizard Parameters page in the Link Wizard, you will need to manually add these two symbols VEHOSTPORT and VEPATH and add information to these parameters. There are two predefined workspaces which have an embedded browser as its only view.

- Diagnostic Link for Agent. Choose this workspace if the link is from the agent level workspaces.
- Diagnostic Link. Choose this workspace if the link is from the server level workspace.

1. To add Symbols to the Link Wizard. Click Symbol and type VEHOSTPORT.
2. Click OK to add the Symbol.
3. To add an expression select VEHOSTPORT and click Modify Expression.
4. Basic Setup: In the text field, type the expression you want to add. The value for the VEHOSTPORT is <your ve host>:<your ve port>. For example, if in
your environment, the Managing Server Visualization Engine is installed on host1, with port 9080, then the VEHOSTPORT value is: “host1:9080”.

Note:
• Double quotation marks are required in the expression.
• If your Managing Server Visualization Engine host or port information changes, then you need to update the link you defined and correct the VEHOSTPORT information manually.

Advanced Setup: In the text field, type the expression you want to add. The value for the VEHOSTPORT value is CALL(candle.kwj.ve.ITCAMLinkHelper, getVehostportForWASServer, null, null, $kfw.TableRow:ATTRIBUTE.<table_name>.ORIGINNODE$). To get the expression: $kfw.TableRow:ATTRIBUTE.<table_name>.ORIGINNODE$, in the Expression Editor, click Symbol.

5. Click Origin Node and click OK to get $kfw.TableRow:ATTRIBUTE.<table_name>.ORIGINNODE$.

When using the Advanced setup option, if your Managing Server Visualization Engine host or port information changes, ITCAM for Application Diagnostics custom code updates the changes automatically, you do not need to modify the links you defined manually to correct the information.

6. To add an expression, Basic Setup: the VEPATH value can be set as “am/ve/sad/threadList?mappingTEPUrl=true”

Note:
• Double quotation marks are required in the expression.
• When you use the Basic Setup option, you need to select the server group and the server in the Managing Server Visualization Engine yourself when you log in to Managing Server Visualization Engine.

To add an expression, Advanced Setup: Set the VEPATH value in the Expression Editor as: “am/ve/sad/threadList?mappingTEPUrl=true&server=“ + CALL(candle.kwj.ve.ITCAMLinkHelper, getServerIdForWASServer, null, null, $kfw.TableRow:ATTRIBUTE.<table_name>.ORIGINNODE$).

Where the correct expression of $kfw.TableRow:ATTRIBUTE.<table_name>.ORIGINNODE$ can be found by using Symbols view under Expression Editor: $kfw.TableRow:ATTRIBUTE.<table_name>.ORIGINNODE$ (Symbol: Origin Node).

7. Review the details in the Workspace Link Wizard - Summary. Click Finish.

8. If you use the Advanced Setup options in Step 4 and Step 6, modify the linksIsEnabled parameter in the Workspace Link Wizard Parameters view with expression: CALL(candle.kwj.ve.ITCAMLinkHelper, isEnabledForWASServer, null, null, $kfw.TableRow:ATTRIBUTE.<table_name>.ORIGINNODE$) && $kfw.TableRow:ATTRIBUTE.<table_name>.ASID$!= -3. In the Expression Editor, use the Symbols view to find expressions of $kfw.TableRow:ATTRIBUTE.<table_name>.ORIGINNODE$ (Symbol: Origin Node) and $kfw.TableRow:ATTRIBUTE.<table_name>.ASID$ (Symbol: ASID).
Manually adding your own links to the Link Wizard

The minimum settings are **VEHOSTPORT** and **VEPATH**. If you need to link to a different page, you need to change this value to corresponding URL path. Here is a list of frequently used Managing Server Visualization Engine Paths page URL paths:

- Enterprise Overview: am/home
- Server Overview: am/ve/serverOverview
- Server Statistics Overview: am/avm/main
- Server Activity Display: am/ve/sad/threadList
- Memory Leak: am/ve/memory/leakReport
- JVM Thread Display: am/ve/jtd/threadGroupList
- Monitoring On Demand: am/ve/mod/console
- Trap and Alert Management: am/trap
- System Resources: am/ve/jmxbrowser

Note: If you change the host port number at any point. You need to modify these two properties again and the kernel properties on the MS install will need to be restarted to identify the changes.

Link anchor

You can use the **Link anchor** option to access the **Link anchor properties** window. You can use the **Link anchor properties** window to display visual indicators on tables where customized links have been defined, and to establish a default link that opens when the user clicks the indicator.

1. From any of the tables, right click the choose link icon and click **Link Anchor** to display the **Link anchor properties** window.
2. Depending on the area of the table item you select, the window displays the following information:
 - Default no link
 - Show Link indicator
 - Link indicator always enabled.
3. For more information about the uses of these items refer to the help within the **Link anchor properties** window.

"Workspace link to Managing Server Visualization Engine” on page 225

Alarm Manager workspace

This workspace displays aggregated information about the alarms for each work manager.

This workspace displays data provided by the **Alarm Manager** attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report
resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.

- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains:
- Highest Alarm Rate bar chart, which displays the five highest number of alarms fired per second
- Work Manager Alarms report, which displays detailed information about the alarms for each work manager

Accessing the Alarm Manager workspace

To access this workspace from the **Thread Pools** workspace, use one of the following procedures:
- Within the Navigator, right-click the **Thread Pools** entry; then from the pop-up menu, select **Workspace > Alarm Manager**.
- From the primary Tivoli Enterprise Portal menu, pull down the **View** menu, and select **Workspace > Alarm Manager**.

For additional information, see:
- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**

Allocation Failures workspace

This workspace summarizes all the heap-allocation failures that occurred within the Java Virtual Machine (JVM) over the current interval and that caused the JVM to initiate garbage collection.

This workspace displays data provided by the **Allocation Failure** attributes.

Note to Solaris and HP-UX users: Allocation-failure information is not recorded on these platforms; hence this workspace is always empty.

The predefined workspace contains the following items:
- Allocation Failure Elapsed Times bar chart, which displays the number of allocation failures during the current interval
- Heap Usage bar chart, which displays the heap usage for this JVM. The bar's fail over gives the allocation-failure ID number followed by a range of recording times. This allocation-failure number displays in the Allocation Failures report and associates each bar with that particular row within the report
- Allocation Failures report, which displays information about the heap-allocation failure that caused the Java Virtual Machine hosting the application server to invoke its garbage-collection routine. The Allocation Failures report includes the ASID field.

Accessing the Allocation Failures workspace

To access this workspace from the **Garbage Collector Activity** workspace, complete the following steps:
From the Garbage Collection Analysis report, right-click the link icon to the left of any row; then, from the pop-up menu, click Allocation Failures. Note that in the Allocation Failure workspace, the ASID is displayed in the Allocation Failures report.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Selected Application - Application Trend at L1 workspace

This workspace displays access trends for individual applications. It provides trend information for request and response times. It also provides trend information for application errors. This workspace provides a broad overview of the health of an application and draws data from multiple attribute groups.

This workspace displays data provided by the Request Analysis and Request Times and Rates attribute groups.

The predefined workspace contains:
- Selected Application Summary report displays application name, average request response time, average request completion rate, error rate, and ASID. For TEMA running on z/OS, region ID can be found in the ASID column.
- Response Time Trend chart displays summary trend times for the overall response time for the selected application.
- Error Rate Trend chart displays the error rate for the application.
- Request Rate Trend chart displays the number of requests completed per second for the application.

Accessing the Selected Application - Configuration workspace

Access this workspace using one of the following methods:
- Double click any application in the Application Server Summary workspace.
- Right-click on application icon in the Application Server Summary workspace and select Link To, then select Application Trend at L1.

For additional information, see:
- Application Server Summary Workspace
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Selected Application - Application Trend at L2/L3 workspace

This workspace displays access trends for individual applications. It provides trend information for request and response times. It also provides trend information for application errors. This workspace provides a broad overview of the health of an application and draws data from multiple attribute groups.

This workspace displays data provided by the Request Analysis and Request Times and Rates attribute groups.

The predefined workspace contains:
Selected Application Summary report displays application name, average request response time, average request completion rate, error rate, and ASID. For TEMA running on z/OS, region ID can be found in the ASID column.

Response Time Trend chart displays trend times for the following different elements in milliseconds: JNDI, JMS, Application, JCA, Servlet and EJB.

Error Rate Trend chart displays the error rate for the application.

Request Rate Trend chart displays the number of requests completed per second for the application.

Accessing the Selected Application - Configuration workspace

Access this workspace using one of the following methods:

- Double click any application in the Application Server Summary workspace.
- Right-click on application icon in the Application Server Summary workspace and select **Link To**, then select **Application Trend at L2/L3**.

For additional information, see:

- Application Server Summary Workspace
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Application Health workspace

The workspace displays the information about the real-time health status of applications monitored by the Tivoli Enterprise Monitoring Agent.

The health status information is collected from the following sources.

- Request Metrics - performance data that measures request execution time collected from the ITCAM instrumentation points in the application code.
- Resource Metrics - pool usage and container performance statistics collected from the corresponding PMI modules or MBeans.
- GC Metrics - metrics on garbage collection frequency and performance collected from parsing of the GC verbose log file when it is enabled for the application server JVM.
- OS metrics - metrics collected about the JVM process and the whole system execution, such as CPU used percentage, paging rate, etc.

Additionally, the monitoring agent uses thresholds, called Application Health Indicators, to determine the quality of the application service. For request response times, thresholds are assigned automatically during baselining. You can also manually customize the thresholds. There are three monitored application tiers evaluated for health status.

- Client Tier provides performance data and status of application execution in servlets/JSPs or portal containers as well as corresponding thread pools servicing these containers.
- Application Tier provides application execution metrics of EJB containers and custom requests.
- Backend Tier provides application execution in JDBC, JCA, JMS, JNDI API calls.

This workspace displays data provided by the **Application Health Status** attributes.

By default, the predefined workspace has the following views:
• Situation Event console view, which shows the event console with activity associated with the Application Health Summary Navigator item and any other workspaces in the group, as well as linked workspaces. The Navigator will display an event icon overlaid on the Application Health Summary node when a situation becomes true. The report is useful when multiple alerts are raised as you can see them all in a single filtered view.

• Application Health Summary report, which shows the report of the application name, status, and health indicator for client, application, and backend tiers health status.

Note: Due to the runtime MBeans configuration, the Tivoli Enterprise Monitoring Agent (TEMA) can only find composition units of business-level applications that associate with either web or EJB modules.

Accessing the Application Health Summary workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux® Systems, z/OS Systems or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the note you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere Application server entry of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the Application Health entry.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

Application Registry workspace

This workspace displays the information about the server configuration for the application.

This workspace displays data provided by the Application Monitoring Configuration attributes.

The predefined workspace contains:
• Situation Event Console report, which shows the event activity for situations associated with the current Navigator item. The Navigator alerts you when a situation becomes true by overlaying the Navigator item with an event indicator. This report is useful when multiple alerts are raised and you might not know newly arrived alerts just by looking at the indicator.
• Application Configuration report, which shows the configurations that are discovered, stored and managed for WebSphere applications running within that application server.

Accessing the Application Registry workspace

To access this workspace from the Application Health Summary workspace, use one of the following procedures:
Within the Navigator, right-click the Application Health entry; then, from the pop-up menu, click Workspace > Application Registry.

From the primary Tivoli Enterprise Portal menu, click View > Workspace > Application Registry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Cache Analysis workspace

This workspace reports information about the dynamic cache.

WebSphere Application Server consolidates several caching activities, including servlets, Web services, and WebSphere commands, into one service called the dynamic cache. These caching activities work together to improve application performance. The activities share many configuration parameters, which are set in an application server's dynamic cache service. The dynamic cache works within an application server's Java Virtual Machine (JVM), intercepting calls to cacheable objects, for example, through a servlet's service method or a command's execute method. The dynamic cache either stores the object's output to or serves the object's content from the dynamic cache.

This workspace displays data provided by both the Dynamic Cache attributes and the Dynamic Cache Templates attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on-demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- In-memory Cache Sizes - History graph, which shows the sizes of in-memory cache entries for the specified interval
- Highest Miss Rates bar chart, which shows the most frequent cache entry misses (per second). The Y-axis headings correspond to the row number of the Dynamic Cache Templates report
- Dynamic Cache report, which displays information about the dynamic cache, including cache sizes and timeout rates
- Dynamic Cache Templates report, which displays information about the cache template data. A cache template is an object type defined by a cache policy specified in WebSphere Application Server file cachespec.xml. A cache policy, which is specified the caching rules and indicates what will be cached, the invalidation and timeout conditions, and other data.
Accessing the Cache Analysis workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the Cache Analysis entry.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Client Communications workspace

This workspace provides overall Service Integration Bus communication performance data and counters for all clients connected to this application server. WebSphere Application Server 5.1 based products do not support this workspace.

This workspace displays data provided by the Client Communications attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- **Connection Count - History graph**, which shows the number of API sessions used by clients that were network connected to this application server
- **Error Count - History graph**, which shows the communication errors that occurred and that resulted in the disconnection of a network connection to a client
- **Communication Statistics report**, which displays information about client communications, including API connections, errors, reads, writes, sent priority, received priority, MessageSent priority, and MessageReceived priority

Accessing the Client Communications workspace

To access this workspace from the Platform Messaging workspace, use one of the following procedures:
Within the Navigator, right-click the Platform Messaging entry; then from the pop-up menu, click Workspace > Client Communications.

From the primary Tivoli Enterprise Portal menu, click View > Workspace > Client Communications.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Container Object Pools workspace

This workspace displays aggregate information about the object pools associated with Enterprise Java Beans (EJBs). It provides a view of pool performance for all Enterprise Java Beans deployed to each container.

This workspace displays data provided by the Container Object Pools attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- Object Pool Rates - History graphs, which show the retrieval, return, discard, and drain rates for the EJBs in each EJB container
- Container Object Pools report, which displays:
 - Aggregated information for each defined EJB container that aggregates bean object pool performance for all Enterprise beans deployed to that container
 - Aggregated information for the application server that aggregates bean object pool performance data for all Enterprise beans deployed to the application server

Accessing the Container Object Pools workspace

To access this workspace from the EJB Containers workspace, use one of the following procedures:
- From the primary Tivoli Enterprise Portal menu, click View > Workspace > Container Object Pools.
- Within the Navigator, right-click the EJB Containers entry; then, from the pop-up menu, click Workspace > Container Object Pools.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
Container Transactions workspace

This workspace displays data about the activities and transactions running in each application server.

This workspace displays data provided by the Container Transactions attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- Transaction Rates - History graph, which shows the per-second begin, commit, and rollback rates over time for local and global transactions
- Transaction Durations - History graph, which shows the amount of time it takes to complete local and global transactions
- Container Transactions report, which displays performance information for global and local transactions that run in each defined EJB container and an aggregated value for all transactions that run in the application server

Accessing the Container Transactions workspace

To access this workspace from the EJB Containers workspace, use one of the following procedures:
- From the primary Tivoli Enterprise Portal menu, click View > Workspace > Container Transactions.
- Within the Navigator, right-click the EJB Containers entry; then, from the pop-up menu, click Workspace > Container Transactions.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Data sources workspace

The data sources workspace displays statistical data for the data sources that your applications reference when accessing databases.

This workspace displays data provided by the Datasources attributes.

The predefined workspace contains the following items:
- Worst Datasource Query Times bar chart, which shows the longest times (in milliseconds) the application spent waiting to retrieve data from the database during the specified interval
• Worst Datasource Update Times bar chart, which shows the longest times (in milliseconds) the application spent updating data within the database during the specified interval.
• Datasources - Current Interval report, which displays database usage information. For example, this report shows traffic information such as the time the application spent trying to connect to the database and total and average processing times for database queries and updates.

Accessing the Data sources workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the **Datasources** entry.

Selected Data source - History workspace

The Selected Datasource - History workspace displays the historical information that corresponds to the information in the Datasource workspace for a selected data source. Historical information is collected over a specific time span. See the online help for Tivoli Enterprise Portal for a detailed explanation of historical reporting.

Accessing the Selected Data source - History workspace

To access this workspace from the Datasource workspace, use one of the following procedures:
• From the Datasources - Current Interval report, right-click the link icon to the left of any row; then, from the pop-up menu, click **Selected Datasource - History**.
• From Worst Datasource Query Times bar chart or the Worst Datasource Update Times bar chart, right-click any bar; then, from the pop-up menu, click **Link To > Selected Datasource - History**.

Selected Data source - Datasource Trend workspace

The Datasources Trend workspace displays information about datasource connections. This workspace displays data provided by the **Datasources** attributes.

This predefined workspace contains the following items:
• Current Datasources report displays datasource name, total wait time, connection rate, connection average wait time and connection max wait time. For TEMA running on z/OS, region ID can be found in the ASID column.
• Total Wait Time chart displays the total time that applications had to wait for a connection to the data source.
• Connection Rate Trend chart displays the number of connection requests created for the data source per second.
• Connection Average and Max Time Trend chart display the average time in milliseconds and the worst-case time in milliseconds that applications had to wait for a connection.

Accessing the Selected Data source - Datasource Trend workspace

Right-click the **Datasources** workspace, select **Workspace** and then **Datasource Trend** workspace.

For additional information, see:
• [Organization of the predefined workspaces](#)
• [Attribute groups used by the predefined workspaces](#)

Accessing the Managing Server Visualization Engine from the Datasources workspace

In the Tivoli Enterprise Portal, access the **Datasources** workspace. You can use the **Diagnostic Server Activity Display** link to access the Managing Server Visualization Engine. For information about access requirements see [Prerequisites for access](#) on page 226.

1. In the **Datasources - Current Interval** window, right click the **choose link** icon then click **Diagnostic Server Activity Display**.
2. If this is your first time to access the Managing server Visualization Engine during a session, you see a **Welcome to the Application Monitor** page.
3. Depending on the user setup configuration in your environment you may or may not have to type your Managing Server Visualization Engine **User Name** and **Password**. If you do, you only need to log in using your **User Name** and **Password** once per session. Click **OK** to display the **Server Activity Display** page in the Managing Server Visualization engine. You can use this page to diagnose application problems, for example, slow transactions or high response times.
4. In a z/OS environment, right click the link icon on a row where the **ASID** column displays Summary.
 a. Click **Selected Datasource- Servant Regions**.
 b. In the **Selected Datasource - Servant Regions** table, right click the link icon on a row.
 c. Click **Diagnostic Server Activity Display**.
5. For more information about the options available in a z/OS environment, refer to [Region workspaces in a z/OS environment](#) on page 298 and [“Accessing a Region workspace” on page 300](#).
6. The results in this page relate directly to the context from where you launched the link in the Tivoli Enterprise Portal. For more information about using the **Server Activity Display** page, and additional features refer to the Composite Application Manager help within the Managing Server Visualization Engine Interface.

7. To return to the previous workspace in the Tivoli Enterprise Portal interface at any time choose from the following options:
 • from the Tivoli Enterprise Portal desktop client, click the back arrow on your web browser.
• from the Tivoli Enterprise Portal browser client, click the browser back arrow.

For additional information, see:

- “Workspace link to Managing Server Visualization Engine” on page 225
- “Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal” on page 229

DB Connection Pools workspace

This workspace displays information about the database connection pools associated with each application server.

You can use this workspace to monitor Java Database Connectivity (JDBC) performance for WebSphere Application Server applications. This workspace displays data provided by the [DB Connection Pools] attributes.

Note:

- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of the high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:

- Highest Average Pool Sizes bar chart, which shows the largest average size (that is, number of connections) for each database connection pool
- Worst Wait Times bar chart, which shows the worst wait times (in milliseconds) for each database connection pool
- Highest Allocation Rates bar chart, which shows the rate at which database connections are being made for each connection pool
- DB Connection Pools report, which displays information about the database connection pool for each defined data source. The report also displays an aggregated value that aggregates over all data sources. For example, this report displays the number of threads waiting for a connection and the number of connections created and released.

Accessing the DB Connection Pools workspace

To access this workspace, complete the following steps:

1. In the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server entry of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the DB Connection Pools entry.

Selected DB Connection Pool - History workspace

The Selected DB Connection Pool - History workspace displays historical information that corresponds to the information in the DB Connection Pools workspace for a selected connection pool. Historical information is collected over a specific time span. See the online help for Tivoli Enterprise Portal for a detailed explanation of historical reporting.

Accessing the Selected DB Connection Pool - History workspace

To access this workspace from the DB Connection Pools workspace, use one of the following procedures:

- From the DB Connection Pools report, right-click the link icon to the left of any row; then, from the pop-up menu, click Selected DB Connection Pool - History.

- From the Highest Average Pool Sizes bar chart, the Worst Wait Times bar chart, or the Highest Allocation Rates bar chart, right-click any bar; then, from the pop-up menu, click Link To > Selected DB Connection Pool - History.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Accessing the Managing Server Visualization Engine from the DB Connection Pools workspace

In the Tivoli Enterprise Portal access the DB Connection Pools workspace. You can use the Diagnostic Server Activity Display link to access the Managing Server Visualization Engine. For information about access requirements see Prerequisites for access on page 226.

1. In the DB Connection Pools window, right click the choose link icon then click Diagnostic Server Activity Display.
2. If this is your first time to access the Managing Server Visualization Engine during a session, you see a Welcome to the Application Monitor page.
3. Depending on the user setup configuration in your environment you may or may not have to type your Managing Server Visualization Engine User Name and Password. If you do, you only need to log in using your User Name and Password once per session.
4. Click OK to display the Server Activity Display page in the Managing Server Visualization engine. You can use link to diagnose application problems, for example, slow transactions or high response times.
5. The results relate directly to the context from where you launched the link in the Tivoli Enterprise Portal. For more information about using the Server Activity Display page and additional features, refer to the Composite Application Manager help within the Managing Server Visualization Engine Interface.
6. To return to the previous workspace in the Tivoli Enterprise Portal interface at any time choose from the following options:
 - from the Tivoli Enterprise Portal desktop client, click the back arrow on your web browser.
from the Tivoli Enterprise Portal browser client, click the browser back arrow.

For additional information, see:

- “Workspace link to Managing Server Visualization Engine” on page 225
- “Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal” on page 229

DCS Stacks workspace

This workspace displays aggregated information about each DCS stack within the entire WebSphere Application Server domain, including multiple nodes and servers.

This workspace displays data provided by the DCS Stack attributes.

Note:

- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:

- Highest Message Buffer Reallocations bar chart, which displays the highest number of message buffer reallocations that occurred as a result of inadequate buffer size
- Most Sent Messages bar chart, which shows most frequent number of message buffer reallocations that occurred as a result of inadequate buffer size
- High Severity Congestion Events bar chart, which shows the number of times that a high severity congestion event for outgoing messages was raised
- DCS Statistics report, which displays information for the DCS stack data, including incoming and outgoing message size, sent messages, and high severity congestion events

Accessing the DCS Stacks workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the DCS Stacks entry.
Destinations workspace

In this workspace, you can view performance data and counters for the destinations of a selected messaging engine.

A destination is a virtual location within a service integration bus, to which applications attach as producers, consumers, or both, to exchange messages. There are two types of destinations, queues and topic spaces. WebSphere Application Server 5.1 based products do not support this workspace. This workspace displays data provided by both the Topic Spaces attributes and the Queue attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains:
- Queue report, which displays information about the queue data. A queue is a destination for point-to-point messaging
- Topic Spaces report, which displays information about the topic space data. A topic space is a destination for publish/subscribe messaging

Accessing the Destinations workspace

To access this workspace from the "Messaging Engines workspace" on page 264, complete one of the following steps:
- From the Messaging Engines report, right-click the link icon to the left of any row; then, from the pop-up menu, click Destinations.
- From Average Local Wait Time - History graph, Expired Messages - History graph, Incomplete Topic Publications - History graph, or Total Published - History graph, right-click any bar; then, from the pop-up menu, click Link To > Destinations.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Durable Subscriptions workspace

In this workspace, you can view statistic counters for the durable subscriptions of a selected topic.
The default messaging provider supports the use of durable subscriptions to topics. This enables a subscriber to receive a copy of all messages published to a topic, even messages published during periods of time when the subscriber is not connected to the server. WebSphere Application Server 5.1-based products do not support this workspace. This workspace displays data provided by the Durable Subscriptions attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on-demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- Durable Subscriptions report, which displays information about durable subscriptions that pertain to a selected topic, including the number of messages consumed, and message wait time

Accessing the Durable Subscriptions workspace

To access this workspace from the Destinations workspace, complete the following step:
- From the Topic Spaces report, right-click the link icon to the left of any row; then, from the pop-up menu, click Durable Subscriptions.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

EJB Containers workspace

This workspace displays aggregated information about each defined EJB.

This workspace displays aggregated bean performance data for all Enterprise beans deployed to an EJB container. It also displays aggregated information for the application server that aggregates bean performance data for all Enterprise beans deployed on the application server. This workspace displays data provided by the EJB Containers attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on-demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:

- Method Average Response Time - History graph, which shows the average response time for methods invoked by the EJBs in the container
- Method Invocation Rate - History graph, which shows the rate at which an EJB container's methods were invoked
- EJB Containers report, which displays aggregated information for each defined EJB container that aggregates bean performance data for all Enterprise beans deployed to that container. The report also displays aggregated information for the application server that aggregates bean performance data for all Enterprise beans deployed to the application server. For example, this report displays load values, response times, and lifecycle activities for Enterprise beans

Accessing the EJB Containers workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the EJB Containers entry.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Accessing the Managing Server Visualization Engine from the EJB Containers workspace

In The Tivoli Enterprise Portal access the EJB Containers workspace. You can use the Diagnostic Server Activity Display link to access the Managing Server Visualization Engine. For information about access requirements see Prerequisites for access on page 226.

1. In the EJB Containers window, right click the choose link icon then click Diagnostic Server Activity Display.
2. If this is your first time to access the Managing Server Visualization Engine during a session, you see a Welcome to the Application Monitor page.
3. Depending on the user setup configuration in your environment you may or may not have to type your Managing Server Visualization Engine User Name and Password. If you do, you only need to log in using your User Name and Password once per session.
4. Click **OK** to display the **Server Activity Display** page in the Managing Server Visualization engine. You can use link to diagnose application problems, for example, slow transactions or high response times.

5. The results relate directly to the context from where you launched the link in the Tivoli Enterprise Portal. For more information about using the **Server Activity Display** page and additional features, refer to the Composite Application Manager help within the Managing Server Visualization Engine Interface.

6. To return to the previous workspace in the Tivoli Enterprise Portal interface at any time choose from the following options:
 - from the Tivoli Enterprise Portal desktop client, click the back arrow on your web browser.
 - from the Tivoli Enterprise Portal browser client, click the browser back arrow.

 For additional information, see:
 - “Workspace link to Managing Server Visualization Engine” on page 225
 - “Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal” on page 229

Enterprise Java Beans workspace

This workspace reports information about the each Enterprise Java Bean (EJB) defined for an EJB container.

The workspace provides information about these beans that relates to their identity, instrumentation level settings, creation and destruction of bean objects, response times, invocations, calls, and rates for retrievals, returns, and discards. This workspace displays data provided by the **Enterprise Java Beans** attributes.

Note:

- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:

- **Worst Method Response Times** bar chart, which shows the worst response times (in milliseconds) for methods invoked by each bean instance
- **Highest Method Invocation Rates** bar chart, which shows the methods that are invoked most often by each bean instance
- **Enterprise Java Beans** report, which shows performance information about each EJB deployed to the application server. This report displays information about bean activity, including the rates at which beans are being instantiated and destroyed
Accessing the Enterprise Java Beans workspace

You access this workspace from the EJB Containers workspace. To list the EJBs for all containers, use one of the following procedures:

- From the primary Tivoli Enterprise Portal menu, click View > Workspace > Enterprise Java Beans.
- Within the Navigator, right-click the EJB Containers entry; then, from the pop-up menu, click Workspace > Enterprise Java Beans.

To see the EJBs referenced by a specific EJB container, complete the following step:

- From the EJB Containers report, right-click the link icon to the left of any row; then, from the pop-up menu, click Enterprise Java Beans.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Garbage Collections - Selected Allocation Failure workspace

This workspace provides detailed information about the garbage-collection cycles that occurred in response to a specific heap-allocation failure that occurred within the Java Virtual Machine.

This workspace displays data provided by the Garbage Collection Cycle attributes.

Note to Solaris and HP-UX users: Allocation-failure information is not recorded on these platforms. Consequently, this workspace is always empty.

The predefined workspace contains the following items:

- GC Elapsed Times bar chart, which breaks down the mark, sweep, and compact times (in milliseconds) for each garbage-collection cycle that occurred for the selected allocation failure
- Heap Usage bar chart, which displays the JVM's heap usage (kilobytes in use, freed, and free at start of garbage collection) for each garbage-collection cycle
- Garbage Collections - Selected Allocation Failure report, which displays information about a single garbage-collection cycle that the JVM hosting the application server performed. For example, this report displays the free heap space both before and after garbage collection, the heap space freed, and the number of objects moved during garbage collection. For TEMA running on z/OS, region ID can be found in the ASID column.

Accessing the Garbage Collections - Selected Allocation Failure workspace

To access this workspace from the Allocation Failures workspace, use one of the following procedures:

- From the Allocation Failures report, right-click the link icon to the left of any row; then, from the pop-up menu, click Garbage Collections - Selected Allocation Failure.
- From the Allocation Failure Elapsed Times bar chart or the Heap Usage - History bar chart, right-click any bar; then, from the pop-up menu, click Link To > Garbage Collections - Selected Allocation Failure.

For additional information, see:
Organization of the predefined workspaces
Attribute groups used by the predefined workspaces

Garbage Collection Analysis workspace

This workspace summarizes all the Java Virtual Machine's (JVM) garbage-collector activity over a user-defined interval.

The JVM generates detailed garbage collection logs for an application server when started with the `verbose:gc` runtime parameter. This workspace displays data provided by the Garbage Collection Analysis attributes.

The predefined workspace contains the following items:
- Garbage Collection Rate - History graph, which displays the rate at which the garbage-collection algorithm is being invoked
- Heap Usage - History bar chart, which displays the high-water mark of free storage (in kilobytes) available in the heap after each garbage-collector run
- Percentage of Time Garbage Collector Running - History graph, which displays the percentage of real time the garbage collector was running during the current interval, for each server region
- Garbage Collection Analysis report, which displays information about the garbage-collection activities within the Java Virtual Machine that is hosting the application server. For example, this report displays the number of times the collector ran during the interval and the resulting number of objects that the collector freed

Accessing the Garbage Collection Analysis workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the name of the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the Garbage Collection Analysis entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Accessing the Managing Server Visualization Engine from the Garbage Collection Analysis workspace

In the Tivoli Enterprise Portal navigate to the Garbage Collection Analysis workspace. You can use the Diagnostic Server Activity Display link to access the Managing Server Visualization Engine. For information about access requirements see “Prerequisites for access” on page 226.

1. In the Garbage Collection Analysis window, right click the choose link icon then click Diagnostic Memory Leak.
2. If this is the first time you access the Managing Server Visualization Engine you see a Welcome to the Application Monitor page.

3. Depending on the user setup configuration in your environment you may or may not have to type your Managing Server Visualization Engine User Name and Password. If you do, you only need to log in using your User Name and Password once per session.

4. Click OK to display the Memory Leak Confirmation report page in the Managing Server Visualization Engine. You can use this page to diagnose memory leak problems.

5. In a z/OS environment, right click the link icon on a row where the ASID column displays Summary.
 a. Click Garbage Collection Analysis Servant Regions.
 b. In the Garbage Collection Analysis - Servant Regions table, right click the link icon on a row.
 c. Click Diagnostic Memory Leak.

6. For information about Creating a Memory Leak Confirmation report in this page, and additional features refer to the Composite Application Manager help within the Managing Server Visualization Engine Interface.

7. To return to the previous workspace in the Tivoli Enterprise Portal interface at any time choose from the following options:
 - from the Tivoli Enterprise Portal desktop client, click the back arrow on your web browser.
 - from the Tivoli Enterprise Portal browser client, click the browser back arrow.

For additional information, see:
- "Workspace link to Managing Server Visualization Engine” on page 225.
- "Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal” on page 229

High Availability Manager workspace

The High Availability Manager workspace provides aggregated information about high availability managers.

This workspace displays data provided by the High Availability Manager attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set the Resource Data Collection Method configuration value to **On Demand**) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- Local Group - History graph, which shows the number of local groups.
• Group State Rebuild Time - History graph, which shows the time taken to rebuild the global group state in milliseconds.
• High Availability Manager report, which displays information about the high availability manager, including group state rebuild time, bulletin-board subjects, bulletin-board subscriptions, bulletin-board rebuild time, and local bulletin-board subjects

Accessing the High Availability Manager workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the **High Availability Manager** entry.

For additional information, see:

• [Organization of the predefined workspaces](#)
• [Attribute groups used by the predefined workspaces](#)

IMAP/POP workspace

This workspace provides aggregated statistics of the usage information about the IMAP service and the POP3 service connectivity, especially for the performance-related connectivity.

This workspace displays data provided by the **Workplace Mail IMAP/POP** attributes.

Note:

• This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
• Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

Note: The following WebSphere Application Diagnostics 7.1 features do not support the IMAP/POP workspace: configuration and links to the Managing Server Visualization Engine from the Tivoli Enterprise Portal.

The predefined workspace contains the following items:

• Active Sessions bar chart, which displays the number of active sessions during the sampling interval
• Authentication Failures bar chart, which displays the number of authentications failures during the sampling interval
• Workplace Mail report, which displays detailed information about the workplace mail for each protocol

Accessing the IMAP/POP workspace

To access this workspace from the Workplace Mail workspace, use one of the following procedures:
• Within the Navigator, right-click the Workplace Mail entry; then from the pop-up menu, click Workspace > IMAP/POP.
• From the primary Tivoli Enterprise Portal menu, click View > Workspace > IMAP/POP.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

J2C Connection Pools workspace

This workspace reports information about resource adapters and connectors that adhere to J2C, the WebSphere Application Server implementation of the J2EE Connector Architecture (JCA).

Data counters for this category contain usage information about the J2C connection pools that enable enterprise beans to connect to and interact with systems such as the Customer Information Control System (CICS) and the Information Management System (IMS). This workspace displays data provided by the J2C Connection Pools attributes.

Note:
• This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
• Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
• Highest Average Pool Sizes bar chart, which shows the largest average number of managed connections for each J2C connection pool. The Y-axis headings correspond to the row number of the J2C Connection Pools report
• Worst Wait Times bar chart, which shows the worst wait time (in milliseconds) for each of the J2C connection pools. The y-axis headings correspond to the row number of the J2C Connection Pools report
• Highest Allocation Rates bar chart, which displays the highest managed-connection creation, destruction, and allocation rates (in events per second)
- J2C Connection Pools report, which displays information about connectors that adhere to J2C. For example, this report displays the number of managed connections or physical connections and the total number of connections or connection handles.

Accessing the J2C Connection Pools workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the J2C Connection Pools entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Accessing the Managing Server Visualization Engine from the J2C Connection Pools workspace

In The Tivoli Enterprise Portal access the J2C connection pools workspace. You can use the Diagnostic Server Activity Display link to access the Managing Server Visualization Engine. For information about access requirements see "Prerequisites for access" on page 226.

1. In the J2C connection pools window, right click the choose link icon then click Diagnostic Server Activity Display.
2. If this is your first time to access the Managing Server Visualization Engine during a session, you see a Welcome to the Application Monitor page.
3. Depending on the user setup configuration in your environment you may or may not have to type your Managing Server Visualization Engine User Name and Password. If you do, you only need to log in using your User Name and Password once per session.
4. Click OK to display the Server Activity Display page in the Managing Server Visualization engine. You can use link to diagnose application problems, for example, slow transactions or high response times.
5. The results relate directly to the context from where you launched the link in the Tivoli Enterprise Portal. For more information about using the Server Activity Display page and additional features, refer to the Composite Application Manager help within the Managing Server Visualization Engine Interface.
6. To return to the previous workspace in the Tivoli Enterprise Portal interface at any time choose from the following options:
 - from the Tivoli Enterprise Portal desktop client, click the back arrow on your web browser.
 - from the Tivoli Enterprise Portal browser client, click the browser back arrow.
For additional information, see:
- “Workspace link to Managing Server Visualization Engine” on page 225
- “Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal” on page 229

JMS Summary workspace

The JMS Summary workspace displays information about queues being used by your applications using the Java Message Service (JMS) interface.

The JMS Summary workspace also provides information about how WebSphere Application Server applications are using WebSphere MQ. It displays such information as the number of messages read and written and which queue managers and queues were used during the interval.

This workspace displays data provided by the JMS Summary attributes.

The predefined workspace contains the following items:
- Worst JMS Send Times bar chart, which displays the longest times (in milliseconds) your application spent putting messages onto a queue during the interval
- Worst JMS Receive Times bar chart, which displays the longest times (in milliseconds) your application spent getting messages from a queue during the interval
- Worst JMS Browse Times bar chart, which displays the longest times (in milliseconds) your application spent browsing messages on a queue during the interval
- JMS Summary - Current Interval report, which displays detailed information about how the WebSphere Application Server uses messaging middleware (that is, WebSphere MQ) using JMS. Details include the send, receive, browse, and publish times for your application. It also includes such information as, which queue managers and queues are being used and how many messages are being read and written

Accessing the JMS Summary workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the JMS Summary entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
Accessing the Managing Server Visualization Engine from the JMS Summary workspace

In The Tivoli Enterprise Portal access the JMS Summary workspace. You can use the Diagnostic Server Activity Display link to access the Managing Server Visualization Engine. For information about access requirements see “Prerequisites for access” on page 226.

1. In the JMS Summary - Current interval window, right click the choose link icon then click Diagnostic Server Activity Display.
2. If this is your first time to access the Managing Server Visualization Engine during a session, you see a Welcome to the Application Monitor page.
3. Depending on the user setup configuration in your environment you may or may not have to type your Managing Server Visualization Engine User Name and Password. If you do, you only need to log in using your User Name and Password once per session.
4. Click OK to display the Server Activity Display page in the Managing Server Visualization engine. You can use this link to diagnose application problems, for example, slow transactions or high response times.
5. In a z/OS environment, right click the link icon on a row where the ASID column displays Summary.
 a. Click Selected JMS - Servant Regions.
 b. In the Selected JMS - Servant Regions table, right click the link icon on a row.
 c. Click Diagnostic Server Activity Display.
6. For more information about the options available in a z/OS environment, refer to “Region workspaces in a z/OS environment” on page 298 and “Accessing a Region workspace” on page 300.
7. The results in this page relate directly to the context from where you launched the link in the Tivoli Enterprise Portal. For more information about using the Server Activity Display page, and additional features refer to the Composite Application Manager help within the Managing Server Visualization Engine Interface.
8. To return to the previous workspace in the Tivoli Enterprise Portal interface at any time choose from the following options:
 * from the Tivoli Enterprise Portal desktop client, click the back arrow on your web browser.
 * from the Tivoli Enterprise Portal browser client, click the browser back arrow.

For additional information, see:
* “Workspace link to Managing Server Visualization Engine” on page 225
* “Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal” on page 229

JVM Stack Trend workspace

This workspace displays trend data regarding JVM CPU usage, JVM garbage collection, and JVM heap usage.

This workspace displays data provided by the Application Server and Garbage Collection Analysis attribute groups.

The predefined workspace contains:

260 ITCAM for Application Diagnostics: User Guide
• JVM CPU Trend chart indicates the percentage of the JVM CPU used.
• Percent GC Time Used chart
• Heap Usage Trend chart

Accessing the Selected Application - Configuration workspace

Access this workspace using one of the following methods:
• Double click the JVM icon in Resources workspace.
• Right click the JVM icon in the Resources workspace and select Link To, then select JVM Stack Trend.

For additional information see:
• Resources and Applications workspaces
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

Log Analysis workspace

This workspace reports application server error and exception conditions as recorded in the application server’s log file.

This workspace displays data provided by both the Log Analysis attributes and DC Messages attributes.

The predefined workspace contains the following items:
• DC Message Events, which displays aggregated information about the messages from WebSphere Data Collector
• Log Analysis report, which displays application server error and exception conditions as recorded in the application server log file, SystemOut.log. This information includes the exception severity as well as the ID and text of the associated message. In the Log Analysis report, if the PID value is displayed as -1, it indicates that the data collector is disconnected. If a WebSphere server shutdown occurs the connection between the data collector and TEMA is closed but the data collector continues to write to log files and TEMA processes these records but sets the PID value to -1.

Accessing the Log Analysis workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the Log Analysis entry.

For additional information, see:
• Organization of the predefined workspaces
Lotus Workplace Server workspace

The Lotus Workplace Server workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.

Note: The following WebSphere Application Diagnostics 7.1 features do not support Lotus Workplace Server: configuration and links to the Managing Server Visualization Engine from the Tivoli Enterprise Portal.

The predefined workspace contains the following items:

- Heap Usage - History bar chart, which displays free memory size and used memory size (in kilo bytes) within the WebSphere Application Server's heap over time. The chart's flyovers display the exact values. This view displays data provided by the Garbage Collection Analysis attributes.
- Response Time - History graph, which shows the server response time to requests over time. This view displays data provided by the Request Times and Rates attributes.
- Request Rate - History graph, which shows the rate at which requests have been received by this server over time. This view displays data provided by the Request Times and Rates attributes.
- Percent CPU Used - History graph, which shows the percentage of the CPU that this server consumed over time. This view displays data provided by the Application Server attributes.
- Application Server Summary report, which displays overall information about this WebSphere application server, including JVM statistics and CPU usage statistics. This view displays data provided by the Application Server attributes.

Accessing the Lotus Workplace Server workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, click the Lotus Workplace Server entry of your choice.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Messages Queues workspace

This workspace provides aggregated statistics about the usage information about the message delivery.

This workspace displays data provided by the Workplace Mail Queues attributes.
Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

Note: The following WebSphere Application Diagnostics 7.1 features do not support the Messages Queues workspace: configuration and links to the Managing Server Visualization Engine from the Tivoli Enterprise Portal.

The predefined workspace contains the following items:
- Queue Messages bar chart, which displays the number of message in the ready, retry, unprocessed, and dead state in the queue during the sampling interval
- Workplace Mail Message Queues report, which displays detailed information about the state of messages in each queue

Accessing the Messages Queues workspace

To access this workspace from the Workplace Mail workspace, use one of the following procedures:
- Within the Navigator, right-click the Workplace Mail entry; then from the pop-up menu, click Workspace > Messages Queues.
- From the primary Tivoli Enterprise Portal menu, click View > Workspace > Messages Queues.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Messaging Engine Communications workspace

This workspace provides aggregated counter statistics for all the messaging engines being hosted by the current application server. WebSphere Application Server 5.1 based products do not support this workspace.

This workspace displays data provided by the Messaging Engine Communications attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on-demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:

- Situation Event Console report, which shows the event activity for situations associated with the current Navigator item and any items within the branch. The Navigator alerts you when a situation becomes true by overlaying the Navigator item with an event indicator. This report is useful when multiple alerts are raised and you might not know newly arrived alerts just by looking at the indicator.

- Messaging Engine Communications report, which displays information about the messaging engine communications, including API connections, errors, reads, writes, message written and message read.

Accessing the Messaging Engine Communications workspace

To access this workspace from the Platform Messaging workspace, use one of the following procedures:

- Within the Navigator, right-click the Platform Messaging entry; then, from the pop-up menu, click Workspace > Messaging Engine Communications.

- From the primary Tivoli Enterprise Portal menu, click View > Workspace > Messaging Engine Communications.

For additional information, see:

- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**

Messaging Engines workspace

In this workspace, you can view of performance counters of the Messaging Engines supported by a server. WebSphere Application Server 5.1 based products do not support this workspace.

This workspace displays data provided by the Messaging Engines attributes.

Note:

- This workspace reports zeros for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.

- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on-demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:

- Average Local Wait Time - History graph, which shows the historical time spent by messages on this durable subscription on consumption
• Expired Messages - History graph, which shows the number of report-enabled messages that expired while on this queue
• Incomplete Topic Publications - History graph, which shows the number of publications not yet received by all historical subscribers.
• Total Published - History graph, which shows the historical number of publications to the message engines
• Messaging Engines report, which displays the aggregated information about each messaging engine. A messaging engine is a server component that provides the core messaging functionality of a service integration bus. A messaging engine manages bus resources and provides a connection point for applications

Accessing the Messaging Engines workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the Platform Messaging entry.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

OS Stack workspace

This workspace displays information about the operating system performance.

This workspace displays data provided by the Application Server attribute group.

The predefined workspace contains:
• Current OS Stack Summary report which displays:
 – Server name
 – Platform CPU Used (ms)
 – System Paging

 Note: The feature Platform CPU Used (ms) does not apply the z/OS platform.

• CPU Used chart
• System Paging chart

Accessing the Selected Application - Configuration workspace

Access this workspace using one of the following methods:
• Double click the OS icon in Resources workspace.
• Right click the OS icon in the Resources workspace and select Link To, then select OS Stack Trend.
For additional information see:

- Resources and Applications workspaces
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Pool Analysis workspace

This workspace displays information about the usage of several types of pools associated with each application server, including Web container pools, ORB pools, J2C connection pools, and database connection pools. This workspace helps you detect resource constraints and potential performance congestion.

Note:

- This workspace reports zeros for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.

- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:

- Web Container Pool Usage - History graph, which shows the configured maximum number of Web container pooled threads and the average active threads in the Web container pool. This view displays data provided by the [Thread Pools](#) attributes.

- ORB Pool Usage - History graph, which shows the configured maximum number of ORB pooled threads and the average active threads in the ORB pool. This view displays data provided by the [Thread Pools](#) attributes.

- Web Container Pool % at Max - History bar chart, which shows the maximum usage percentage for the Web container's pooled threads over time. This view displays data provided by the [Thread Pools](#) attributes.

- ORB Pool % at Max - History bar chart, which shows the maximum usage percentage for the ORB's pooled threads over time. This view displays data provided by the [Thread Pools](#) attributes.

- Percent CPU Used - History graph, which shows the percentage of the CPU used over time. This view displays data provided by the [Application Server](#) attributes.

- DB Connection % at Max - Current Interval bar chart, which shows the maximum usage percentage for a database connection pool over time. This view displays data provided by the [DB Connection Pools](#) attributes.

- J2C Connection % at Max - Current Interval bar chart, which shows the maximum usage percentage for a J2C connection pool over time. This view displays data provided by the [J2C Connection Pools](#) attributes.

Accessing the Pool Analysis workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.

2. Within the node list, expand the entry that corresponds to the node you want to select.

3. Within that node list of monitored applications, expand the list of WebSphere agents.

4. Within the list of available agents, expand the WebSphere application server of your choice.

5. Within that server list of available WebSphere Application Server workspaces, click the Pool Analysis entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Portal Pages Summary workspace

This workspace reports performances statistics about WebSphere Portal page response times completed on the interval. A historical version of this workspace provides a long-term view of a single portal page that you select.

The following workspace displays only if the request monitoring control level, monitoring level is set to Level2. For more information about the request monitoring control level, see “Application Dashboard (Basic) tab” on page 224.

This workspace displays data provided by the Portal Page Summary attributes.

The predefined workspace contains the following items:
- Worst Response Times bar chart, which displays the worst average response times (in milliseconds) for portlet during the current interval
- Most Popular Portal Pages bar chart, which shows the number of requests for portlet
- Portal Pages report, which displays aggregated information about portal pages, including average response time and request count

Accessing the Portal Pages Summary workspace

To access this workspace from the PortalSummary workspace, use one of the following procedures:
- Within the Navigator, right-click the PortalSummary entry; then, from the pop-up menu, click Workspace > Portal Pages Summary.
- From the primary Tivoli Enterprise Portal menu, click View > Workspace > Portal Pages Summary.

Selected Portal Page - History workspace

The Selected Portal Page - History workspace displays the historical information that corresponds to the information in the Portal Pages Summary workspace for a selected portal page. Historical information is collected over a specific time span. See the online help for Tivoli Enterprise Portal for a detailed explanation of historical reporting.
Accessing the Selected Portal Page - History workspace

To access this workspace from the Portal Pages Summary workspace, use one of the following procedures:

- From the Portal Pages report, right-click the link icon to the left of any row; then, from the pop-up menu, click **Selected Portal Page - History**.
- From the Worst Response Times bar chart, or the Most Popular Portal Pages bar chart, right-click any bar; then, from the pop-up menu, click **Link To > Selected Portal Page - History**.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Portal Summary workspace

The workspace reports summarized statistics about response times and functional decomposition of additional requests collected for WebSphere Portal applications. These include statistics about Portal Pages/Gateway Servlet aggregated response times collected on the interval, and more fine-grained statistics about Portlet, Model Building, Page Loading, Authentication and Authorization requests response times collected on the same interval. By default, this workspace is configured for long-term historical interval reporting.

The following workspace displays only if the request monitoring control level, monitoring level is set to Level2. For more information about the request monitoring control level, see "Application Dashboard (Basic) tab" on page 224.

This workspace displays data provided by the **Portal Summary** attributes.

The predefined workspace contains the following items:

- Portal Pages/Gateway Servlet - History graph, which shows the historical average response time (in milliseconds) of portal pages/Gateway Servlet
- Portlet - History graph, which shows the historical average response time (in milliseconds) of portlets
- Model Building - History graph, which shows the historical response time (in milliseconds) of model building
- Page Loading - History graph, which shows the historical response time (in milliseconds) of page loading
- Authentication - History graph, which shows the historical response time (in milliseconds) of authentication
- Authorization - History graph, which shows the historical response time (in Milliseconds) of authorization

Accessing the Portal Summary workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere Portal server of your choice.
5. Within that server list of available WebSphere Portal Server workspaces, click the Portal Summary entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Portlet Summary workspace
This workspace reports performances statistics about WebSphere Portal portlet response times completed on the interval.

The following workspace displays only if the request monitoring control level, monitoring level is set to Level2. For more information about the request monitoring control level, see "Application Dashboard (Basic) tab" on page 224.

A historical version of this workspace provides a long-term view of a single portlet that you select. This workspace displays data provided by the Portlet Summary attributes.

The predefined workspace contains the following items:
- Worst Response Times bar chart, which displays the worst average response times (in milliseconds) for portlet in the current interval
- Most Popular Portlets bar chart, which shows the exception and request rates (in events per second) for portlet
- Portlets report, which displays aggregated information about portlets, including average response time, request count and request rate

Accessing the Portlet Summary workspace
To access this workspace from the Portal Summary workspace, use one of the following procedures:
- Within the Navigator, right-click the Portal Summary entry; then, from the pop-up menu, click Workspace > Portlet Summary.
- From the primary Tivoli Enterprise Portal menu, click View > Workspace > Portlet Summary.

Selected Portlet - History workspace
The Selected Portlet - History workspace displays the historical information that corresponds to the information in the Portlet Summary workspace for a selected portlet. Historical information is collected over a particular measured time span. See the online help for Tivoli Enterprise Portal for a detailed explanation of historical reporting.

Accessing the Selected Portlet - History workspace
To access this workspace from the Portlet Summary workspace, use one of the following procedures:
- From the Portlets report, right-click the link icon to the left of any row; then, from the pop-up menu, click Selected Portlet - History.
From the Worst Response Time bar chart, or the Most Popular Portlets bar chart, right-click any bar; then, from the pop-up menu, click **Link To > Selected Portlet - History**.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Request Analysis workspace

The workspace reports response times and functional decomposition information about requests (including servlets, JSFs, and EJB methods) that completed during the interval.

A historical version of this workspace provides a long-term view of a single request that you select. This workspace displays data provided by the **Request Analysis** attributes.

The predefined workspace contains the following items:
- Worst Average Response Times bar chart, which displays the five worst response times for requests processed during the current interval
- Worst Completion Rates bar chart, which displays the 10 requests that have the worst completion rates
- Requests - Current Interval report, which displays detailed information about the response times recorded for each request

Accessing the Request Analysis workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the **Request Analysis** entry.

Selected Request - History workspace

The Selected Request - History workspace displays the historical information that corresponds to the information in the Request Analysis workspace for a single request type that you select. Historical information is collected over a specific time span. See the online help for Tivoli Enterprise Portal for a detailed explanation of historical reporting.

Accessing the Selected Request - History workspace

To access this workspace from the Request Analysis workspace, use one of the following procedures:
- From the Requests - Current Interval report, right-click the link icon to the left of any row; then, from the pop-up menu, click **Selected Request - History**.
• From the Worst Average Response Times bar chart, right-click any bar; then, from the pop-up menu, click **Link To > Selected Request - History**.

For additional information, see:

- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**

The following workspaces display only if the request monitoring control level, monitoring level is set to Level2. For more information about the request monitoring control level, see "Application Dashboard (Basic) tab" on page 224.

- Selected Request - Datasource
- Selected Request - JMS Queues
- Selected Request - Resource Adapters

Accessing the Managing Server Visualization Engine from the Request Analysis workspace

In the Tivoli Enterprise Portal access the request analysis workspace see "Accessing the Request Analysis workspace" on page 270. You can use you can use the following links to access the Managing Server Visualization Engine.

- **Diagnostic Recent Completed Requests**
- **Diagnostic In-flight Request Search**
- **Diagnostic SMF Data** (This option is only available if the Tivoli Enterprise Portal is connected to a z/OS data controller.)

For information about access requirements, see "Prerequisites for access" on page 226.

1. In the **Requests - Current Interval** window, right click the **choose link** icon then click one of the following options:
 - **Diagnostic Recent Completed Requests**
 - **Diagnostic In-flight Request Search**

2. To view Diagnostic Recent Completed Requests or Diagnostic In-flight Request Search in a z/OS environment, right click the link icon on a row where the ASID column displays Summary.
 a. Click **Selected Request Servant Regions**.
 b. In the **Selected Requests - Servant Regions Current Interval** table, right click the link icon on a row.
 c. Click **Diagnostic Recent Completed Requests** or **Diagnostic In-flight Request Search**.

3. To view **Diagnostic SMF Data** (z/OS data collector only) right click the link icon on a row where the ASID column displays Summary.
 a. Click **Selected Request Servant Regions**.
 b. In the **Selected Requests - Servant Regions Current Interval** table, right click the link icon on a row.
 c. Click **Diagnostic SMF**.

For information about the options available in a z/OS environment, refer to "Region workspaces in a z/OS environment" on page 298 and "Accessing a Region workspace" on page 300.

4. If this is your first time to access the Managing Server Visualization Engine during the session you see a **Welcome to the Application Monitor** page.
5. Depending on the user setup configuration in your environment you may or may not have to type your Managing Server Visualization Engine User Name and Password. If you do, you only need to log in using your User Name and Password once per session.

6. Click OK to display the relevant page in the Managing Server Visualization Engine.
 - If you click Diagnostic Recent Completed Requests you see the Server Activity Display page.
 - If you click Diagnostic In-flight Request Search you see the In-Flight Request Search page.
 - If you click Diagnostic SMF Data you see the SMF Overview page.

7. The information in these pages relates directly to the context from where you launched the link in the Tivoli Enterprise Portal.

8. To return to the Tivoli Enterprise Portal interface at any time click back on your web browser.

For additional information, see:
 - “Workspace link to Managing Server Visualization Engine” on page 225.
 - “Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal” on page 229.

Request Baseline workspace

This workspace displays aggregated information about the request baseline.

The baselining collects statistical information about an application requests completion times and uses this information to assign fair and bad thresholds on the application requests. The product divides the whole request response times into buckets and collects individual hits into each bucket. Use these attributes to get statistics from individual requests collected during baselining interval.

This workspace displays data provided by the Baseline attributes.

The predefined workspace contains:
 - Baseline Data report, which shows lower and upper boundaries for each bucket request as well as the breakdown of nested request types in percentage.
 - Request Label report, which shows the monitoring configuration settings for selected requests, including auto-threshold settings and actual thresholds calculated from the baseline data.
 - Nested Delays Distribution bar chart, which displays a bar for each bucket of response times across the different nested types (JDBC, JCA, JMS, etc.). This chart provides you with additional hints and insight about how to interpret response times distribution displayed in the distribution chart.
 - Response Time Distribution bar chart, which displays the distribution of the servlet response times on the baselining interval, also called zones.

You can use the bar charts to customize automatic request time thresholds. See “Enable_Auto_Threshold: set threshold parameters” on page 445.

Accessing the Request Baseline workspace

Complete the following steps to access this workspace from the Application Registry:
1. Click **Application Configuration report**.
2. Right click the link icon to the left of any row to display a pop-up menu.
3. Click **Request Baseline**.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

EJB Tier Analysis workspace

The workspace displays detailed information about application tier health for a selected WebSphere application.

The application tier health is derived from the following performance statistics:
- Calculated application request delays in EJB container or custom requests delays compared against corresponding thresholds assigned in application configuration.
- Completion rates for application edge EJB requests.
- Application server ORB thread pool utilization level.
- PMI statistics for application EJB container transactions begin, commit, and rollback rates.

This workspace displays data provided by the **Application Health Status** attributes.

The predefined workspace contains:
- Application Tier Analysis report, which shows the overall health status of the application tier for a selected application. For TEMA running on z/OS, region ID can be found in the ASID column.
- Container Pool Usage bar chart, which displays the average number of concurrently active threads and the average number of free threads in the pool. This view displays data provided by the **Thread Pools** attributes.
- Worst Application Tier Delays - Top 10 bar chart, which displays the top ten delayed requests in the application tier. This view displays data provided by the **Request Analysis** attributes.
- Worst Application Tier Completion Rates - Top 10 bar chart, which displays the top ten worst requests in the application tier. This view displays data provided by the **Request Analysis** attributes.
- Container Transactions bar chart, which displays the counts of global and local transactions that were started, committed, and undone during the interval. This view displays data provided by the **Container Transactions** attributes.
- JVM Health - CPU Used % graph, which displays the percentage of the CPU used by the Java Virtual Machine (JVM) during the interval. This view displays data provided by the **Application Server** attributes.
- JVM Health - Heap Used % graph, which displays the current heap usage for the monitored JVM. This view displays data provided by the **Garbage Collection Analysis** attributes.
- JVM Health - GC Time % graph, which displays the percentage of real time that the garbage collector was active during the interval. This view displays data provided by the **Garbage Collection Analysis** attributes.
Accessing the EJB Tier Analysis workspace

To access this workspace from the Application Health Summary workspace, use the following procedures:

- From the Application Health Summary report, right-click the link icon to the left of any row; then, from the pop-up menu, click **EJB Tier Analysis**.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Application Configuration workspace

This workspace displays the information about the configuration details of the selected application.

The workspace contains information about application requests and the corresponding thresholds assigned to them, as well as about status and configuration for application baselining activity. An entry is created for each application in the configuration report when a WebSphere application is discovered by the monitoring agent. The data is also stored in a context file local to monitoring agent where it can persist between monitoring agent restarts.

This workspace displays data provided by the **Application Monitoring Configuration** attributes.

The predefined workspace contains:

- Longest Request Thresholds - Top 10 bar chart, which displays the ten longest (in time) request thresholds configured for the given application (Servlet/JSP URL or EJB class/method call).
- Application Requests report, which shows the discovered application requests and thresholds assigned to them. Click the link in the Application Request Configuration report or right-click and select Selected Request - Baseline to go to the Request Baseline Workspace. The link to the Selected Request - Baseline is disabled when the baseline request count is less than or equal to 0.
- Application report, which shows the common details about application configuration, including custom requests monitoring levels for application and current baselining status.

Accessing the Application Configuration workspace

To access this workspace from the Application Health Summary workspace, use the following procedures:

- From the Application Health Summary report, right-click the link icon to the left of any row; then, from the pop-up menu, click **Application Configuration**.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Backend Tier Analysis workspace

This workspace displays the information about the details of the backend tier for a selected application.
This workspace displays data provided by the Application Health Status attributes.

The predefined workspace contains:
- Backend Tier Analysis report, which shows the overall health status of the backend tier for a selected application. For TEMA running on z/OS, region ID can be found in the ASID column.
- Worst Backend Tier Delays - Top 10 bar chart, which displays the top ten delayed requests in the backend tier. This view displays data provided by the Request Analysis attributes.
- Most Used Datasources - Top 10 bar chart, which displays the average time per request used by queries and updates to the data source. This view displays data provided by the Datasources attributes.
- Most Used JMS Resources - Top 10 bar chart, which displays the longest times your application spent in getting messages from a queue, putting messages onto a queue, publishing messages to a queue, or browsing messages on a queue during the interval. This view displays data provided by the JMS Summary attributes.
- Most Used JDBC Pools - Top 10 bar chart, which displays the average percentage of the connection pool in use during the interval. This view displays data provided by the DB Connection Pools attributes.
- Most Used JCA Pools - Top 10 bar chart, which displays the average percent of the pool that is in use for the interval. This view displays data provided by the J2C Connection Pools attributes.
- JVM Health - CPU Used % graph, which displays the percentage of the CPU used by the Java Virtual Machine (JVM) during the interval. This view displays data provided by the Application Server attributes.
- JVM Health - Heap Used % graph, which displays the current heap usage for the monitored JVM. This view displays data provided by the Garbage Collection Analysis attributes.
- JVM Health - GC Time % graph, which displays the percentage of real time that the garbage collector was active during the interval. This view displays data provided by the Garbage Collection Analysis attributes.

Accessing the Backend Tier Analysis workspace

To access this workspace from the Application Health Summary workspace, use the following procedures:
- From the Application Health Summary report, right-click the link icon to the left of any row; then, from the pop-up menu, click Backend Tier Analysis.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Application Health History workspace

The workspace displays the information about the historical health status of a selected application. By default, the history data is collected for the last 24 hours.

The workspace displays data provided by the Application Health Status attributes.

The predefined workspace contains:
• Availability/Throughput - History graph, which displays average request processing rate by application over the time. This view displays data provided by the Request Times and Rates attributes.

• Availability/Completion Rate - History graph, which displays the average request completion rate by application over the time; Completion rate is defined as ratio of successfully completed requests count to the total count of requests processed by application on the interval. This view displays data provided by the Request Times and Rates attributes.

• Availability/Average Load- History graph, which displays the average number of concurrent application requests over the time. This view displays data provided by the Request Times and Rates attributes.

• Response Time - History graph, which displays the average application response time over the time. This view displays data provided by the Request Times and Rates attributes.

• Server Resources/CPU Used - History graph, which displays the percent of CPU time used by the application JVM process over the time. This view displays data provided by the Application Server attributes.

• Server Resources/Paging Rate - History graph, which displays the system paging rate in kilobytes per second over the time. This view displays data provided by the Application Server attributes.

• Server Resources/GC Active Time - History graph, which displays the percentage of total CPU time for which the garbage collector was active over the time. This view displays data provided by the Garbage Collection Analysis attributes.

Accessing the Application Health History workspace

1. Click Application Health Summary report.
2. Right-click the link icon to the left of any row to display the pop-up menu.
3. Click Application Health history.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

Web Tier Analysis workspace

This workspace displays detailed information about the client tier health for a selected WebSphere application.

The client tier health indicator is derived from the following performance statistics:
• Calculated application request delays inside Servlet/JSP or Portal container compared against corresponding thresholds assigned in application configuration.
• Completion rates for edge Servlet/JSP and Portal application requests.
• Application server WebContainer thread pool utilization level.
• PMI statistics for HTTP session counts by application.

This workspace displays data provided by the Application Health Status attributes.

The predefined workspace contains:
- Client Tier Analysis report, which shows the overall health status of application execution in Web or portal containers. For TEMA running on z/OS, region ID can be found in the ASID column.
- Web Contain bar chart, which displays the current utilization level of the Web Container thread pool. This view displays data provided by the Timers attributes.
- HTTP Sessions bar chart, which displays the average number of concurrently active and live HTTP session numbers for the selected application during the interval. This view displays data provided by the Servlet Sessions attributes.
- Worst Client Tier Delays - Top 10 bar chart, which displays the top ten requests with biggest delays (threshold violations) in the client tier. This view displays data provided by the Request Analysis attributes.
- Worst Client Tier Completion Rates - Top 10 bar chart, which displays the top ten Servlet/JSP/Portal edge requests with the worst completion rates. This view displays data provided by the Request Analysis attributes.
- JVM Health - CPU Used % graph, which displays the percentage of the CPU used by the Java Virtual Machine (JVM) during the interval. This view displays data provided by the Application Server attributes.
- JVM Health - Heap Used % graph, which displays the current heap usage for the monitored JVM. This view displays data provided by the Garbage Collection Analysis attributes.
- JVM Health - GC Time % graph, which displays the percentage of real time that the garbage collector was active during the interval. This view displays data provided by the Garbage Collection Analysis attributes.

Accessing the Web Tier Analysis workspace

Complete the following steps to access this workspace from the Application Health Summary:
1. Click Application Health Summary report.
2. Right-click the link icon to the left of any row to display the pop-up menu.
3. Click Web Tier Analysis.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Selected Datasources - Datasource Trend workspace

The Datasources Trend workspace displays information about datasource connections.

This workspace displays data provided by the Datasources attributes.

The predefined workspace contains the following items:
- Current Datasources report displays datasource name, total wait time, connection rate, connection average wait time and connection max wait time.
- Total Wait Time Trend line chart displays the total time that applications had to wait for a connection to the data source.
- Connection Rate Trend bar chart displays the number of connection requests (per second) created for the data source.
• Connection Average and Max Time Trend line chart displays the average time (in milliseconds) and the worst-case time (in milliseconds) that applications had to wait for a connection.

Selected Request - Data sources workspace

The Selected Request - Data sources workspace displays information about JDBC activity performed by the request you selected in the primary Request Analysis workspace.

This workspace displays data provided by the Selected Request attributes.

The predefined workspace contains the following items:
• Worst Datasources Response Times bar chart, which shows the worst response times (in milliseconds) for data sources accessed by this request
• Selected Request - Datasources report, which displays detailed information about the data sources accessed for the selected request. For TEMA running on z/OS, region ID can be found in the ASID column.

Accessing the Selected Request - Data sources workspace

To access this workspace from the Request Analysis workspace, use one of the following procedures:
• From the Requests - Current Interval report, right-click the link icon to the left of any row; then, from the pop-up menu, click Selected Request - Datasources.
• From Worst Average Response Times bar chart, right-click any bar; then, from the pop-up menu, click Link To > Selected Request - Datasources.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

Selected Request - JMS Queues workspace

The Selected Request - JMS Queues workspace displays information about message queues owned by messaging middleware and accessed by the request that you selected in the primary Request Analysis workspace.

This workspace displays data provided by the Selected Request attributes.

The predefined workspace contains the following items:
• Worst JMS Queues Response Times bar chart, which shows the worst response times (in milliseconds) for JMS resources accessed by this request
• Selected Request - JMS Queues report, which displays detailed information about the JMS resources accessed by the selected request. For TEMA running on z/OS, region ID can be found in the ASID column.

Accessing the Selected Request - JMS Queues workspace

To access this workspace from the Request Analysis workspace, use one of the following procedures:
• From the Requests - Current Interval report, right-click the link icon to the left of any row; then, from the pop-up menu, click Selected Request - JMS Queues.
From Worst Average Response Times bar chart, right-click any bar; then, from the pop-up menu, click Link To > Selected Request - JMS Queues.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Selected Request - Portal Processing workspace

The Selected Request - Portal Processing workspace displays information about portlet and/or portal page response times referenced by the request you selected in the primary Request Analysis workspace.

This workspace displays data provided by the Selected Request attributes.

Note: This workspace will appear under all WebSphere application servers, but it will have data only under the WebSphere Portal Server.

The predefined workspace contains the following items:
- Worst Portal Processing Response Times bar chart, which shows the worst response times (in milliseconds) for portal sources accessed by this request
- Selected Request - Portal Processing report, which displays detailed information about the portal sources accessed for the selected request. For TEMA running on z/OS, region ID can be found in the ASID column.

Accessing the Selected Request - Portal Processing workspace

To access this workspace from the Request Analysis workspace, use one of the following procedures:
- From the Requests - Current Interval report, right-click the link icon to the left of any row; then, from the pop-up menu, click Selected Request - Portal Processing.
- From Worst Average Response Times bar chart, right-click any bar; then, from the pop-up menu, click Link To > Selected Request - Portal Processing.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Selected Request - Resource Adapters workspace

The Selected Request - Resource Adapters workspace displays response-time information about the J2C resources adapters referenced by the request you selected in the primary Request Analysis workspace.

This workspace displays data provided by the Selected Request attributes.

The predefined workspace contains the following items:
- Worst Average Response Times bar chart, which shows the worst-performing J2C resource adapter's nested requests, in milliseconds
- Selected Request - Resource Adapters report, which displays detailed information about each J2C resource adapter that was accessed by the selected request. For TEMA running on z/OS, region ID can be found in the ASID column.
Accessing the Selected Request - Resource Adapters workspace

To access this workspace from the [Request Analysis](#) workspace, use one of the following procedures:

- From the Requests - Current Interval report, right-click the link icon to the left of any row; then, from the pop-up menu, click **Selected Request - Resource Adapters**.
- From Worst Average Response Times bar chart, right-click any bar; then, from the pop-up menu, click **Link To > Selected Request - Resource Adapters**.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Service Component Elements workspace

This workspace lists performance metrics for all the service components and their elements. Service components contain one or more elements, which are sets of different steps processed in each service component. In turn, each element has its own set of event natures, which are key points that are reached when processing a service component element.

This workspace displays data provided by the [Service Component Elements](#) attributes.

Note:

- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:

- Worst Service Times bar chart, which shows the numbers of the Average Response Time in milliseconds
- Most Invocations bar chart, which shows the numbers of the invocations per second
- Most Failures bar chart, which shows the numbers of the failed invocation counts
- Service Component Elements report, which shows aggregated data about the average response time, failed count, success count, error rate, and request rate.

Accessing the Service Component Elements workspace

To access this workspace from the [Service Components](#) workspace, use one of the following procedures:

- Within the Navigator, right-click the **Service Components** entry; then, from the pop-up menu, click **Workspace > Service Component Elements**.
From the primary Tivoli Enterprise Portal menu, click **View** > **Workspace** > **Service Component Elements**.

For additional information, see:
- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**

Service Components workspace

This workspace provides overview performance of the key service components. WebSphere servers feature their own service components, and each of these components has its own set of event points that can be monitored.

This workspace displays data provided by both the **Service Components** attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- **Service Component Architecture** - History graph, which shows historical bad request count, the instrumentation level, set instrumentation level type, and summary, when the component name of the service is **Service Component Architecture**
- **Business Rules** - History graph, which shows historical bad request count, the instrumentation level, set instrumentation level type, and summary, when the name is **Business Rules**
- **Map** - History graph, which shows historical bad request count, the instrumentation level, set instrumentation level type, and summary, when the name is **Map**
- **Mediation** - History graph, which shows historical bad request count, the instrumentation level, set instrumentation level type, and summary, when the name is **Mediation**
- **Business State Machine** - History graph, which shows historical bad request count, the instrumentation level, set instrumentation level type, and summary, when the name is **Business State Machine**
- **Selector** - History graph, which shows historical bad request count, the instrumentation level, set instrumentation level type, and summary, when the name is **Selector**
- **Bad Requests report**, which displays a summary of the bad request counts

Accessing the Service Components workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.

2. Within the node list, expand the entry that corresponds to the node you want to select.

3. Within that node list of monitored applications, expand the list of WebSphere agents.

4. Within the list of available agents, expand the WebSphere application server of your choice.

5. Within that server list of available WebSphere Application Server workspaces, click the Service Components entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Servlets/JSPs - Selected Enterprise Application workspace

This workspace displays statistical data regarding the servlets and JSPs invoked by a single Enterprise application.

This workspace displays data provided by the Servlets JSPs attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- Worst Servlet/JSP Response Times bar chart, which displays the worst average response times (in milliseconds) for servlets and JSP invoked by the selected Web application
- Most Popular Servlet/JSP bar chart, which shows the servlet and JSP exception and request rates (in events per second) for the selected application
- Worst Servlet/JSP Error Rates bar chart, which shows the worst servlet and JSP error rates for the selected application during the interval
- Servlets/JSPs - Selected Web Application report, which displays performance information about the servlets and JSPs invoked by the application. For example, this report displays the average number of concurrent requests for a servlet and the amount of time it takes a servlet to respond to a request

Accessing the Servlets/JSPs - Selected Enterprise Application workspace

To access this workspace from the Web Applications workspace, use one of the following procedures:
- From the Web Applications report, right-click the link icon to the left of any row; then, from the pop-up menu, click **Servlets/JSPs - Selected Enterprise Application**.
- From the Worst Response Times bar chart, the Most Popular Web Applications bar chart, or the Worst Error Rates bar chart, right-click any bar; then, from the pop-up menu, click **Link To > Servlets/JSPs - Selected Enterprise Application**.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Scheduler workspace

The Scheduler workspace contains data for the Scheduler service. The scheduler service schedules and tracks the starting and stopping of applications.

This workspace displays data provided by the **Scheduler** attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- Highest Task Failures bar chart, which shows the number of the task failure count. The y-axis headings correspond to the row number of the Scheduler report
- Highest Completed Tasks bar chart, which shows the number of the task finished count. The y-axis headings correspond to the row number of the Scheduler report
- Scheduler report, which displays information about the scheduler data, including task finish count, task failure count, task expiration rate, task finish rate, and task run rate

Accessing the Scheduler workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the **Scheduler** entry.

For additional information, see:
- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**

Sessions workspace

This workspace displays information about servlet sessions.

A session is a series of requests to a servlet, originating from the same user at the same browser. Applications running in a Web container can use these sessions to keep track of individual users. This workspace displays data provided by the **Servlet Sessions** attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- Most Active Sessions bar chart, which shows the most frequently referenced servlet sessions for each listed Web application
- Largest Total Session Object Sizes bar chart, which shows the total session object sizes (in bytes) and the associated Web applications
- Servlet Sessions report, which shows usage data about the servlet sessions, including the rates as which sessions are created and destroyed and their read and write times

Accessing the Sessions workspace

To access this workspace from the **Web Applications** workspace, use one of the following procedures:
- Within the Navigator, right-click the **Web Applications** entry; then, from the pop-up menu, click **Workspace > Servlet Sessions**.
- From the primary Tivoli Enterprise Portal menu, click **View > Workspace > Servlet Sessions**.

For additional information, see:
- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**
Thread Pools workspace

This workspace reports information about the various thread pools that support the applications running in your Java Virtual Machine (JVM).

This workspace displays data provided by the Thread Pools attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on-demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- Highest Average Pool Sizes bar chart, which shows the largest thread pools in the JVM
- Average Thread Pool Usage bar chart, which shows the average active and free threads for each thread pool
- Thread Pools report, which shows information about the usage statistics for thread pools that belong to a WebSphere Application Server, such as average and maximum pool sizes and creation and destruction rates

Accessing the Thread Pools workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the Thread Pools entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
Accessing the Managing Server Visualization Engine from the Thread Pools workspace

In The Tivoli Enterprise Portal access the Thread Pools workspace. You can use the Diagnostic Server Activity Display link to access the Managing Server Visualization Engine. For information about access requirements see "Prerequisites for access" on page 226.

1. In the Thread Pools window, right click the choose link icon then click Diagnostic JVM Thread Display.
2. If this is your first time to access the Managing Server Visualization Engine during a session, you see a Welcome to the Application Monitor page.
3. Depending on the user setup configuration in your environment you may or may not have to type your Managing Server Visualization Engine User Name and Password. If you do, you only need to log in using your User Name and Password once per session.
4. Click OK to display the Diagnostic JVM Thread Display page in the Managing Server Visualization engine. You can use link to diagnose application problems, for example, slow transactions or high response times.
5. The results relate directly to the context from where you launched the link in the Tivoli Enterprise Portal. For more information about using the Diagnostic JVM Thread Display page and additional features, refer to the Composite Application Manager help within the Managing Server Visualization Engine Interface.
6. To return to the previous workspace in the Tivoli Enterprise Portal interface at any time choose from the following options:
 - from the Tivoli Enterprise Portal desktop client, click the back arrow on your web browser.
 - from the Tivoli Enterprise Portal browser client, click the browser back arrow.

For additional information, see:
- "Workspace link to Managing Server Visualization Engine" on page 225
- "Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal" on page 229

Thread Pool Trend workspace

The Thread Pool Trend workspace displays information about thread pool size and usage.

This workspace displays data provided by the Selected Request attributes.

This predefined workspace contains the following items:
- Current Thread Pool report displays thread pool name, average active threads, average pool size, percentage of time pool at max and average free threads.
- Average Pool Size Trend bar chart displays the average number of threads in the pool.
- Average Thread Pool Usage Trend bar chart displays the average percentage of time that all threads were in use during the sampling interval.
- Percent of Time Pool Size at Max Trend bar chart displays the percentage of time the pool size is running at the maximum value.
Accessing the Threadpool Trend workspace

Select the Thread Pools workspace, in the Thread Pools report displayed at the bottom of the workspace, click the link icon and select Thread Pool Trend.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Web Applications workspace

This workspace displays information about the Web applications running in J2EE application servers.

This workspace displays data provided by the Web Applications attributes.

Note:
- The Web Applications workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- Worse Response Times bar chart, which shows the worst servlet response times (in milliseconds) during the interval
- Most Popular Web Applications bar chart, which shows the servlet exception and request rates (in events per second)
- Worse Error Rates bar chart, which shows the worst servlet error rates during the interval
- Web Applications report, which displays aggregated performance data for each Web application, about all servlets and JSPs deployed to that Web application, including response and error rates and response times.

Accessing the Web Applications workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the Web Applications entry.
For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Accessing the Managing Server Visualization Engine from the Web Applications workspace

In the Tivoli Enterprise Portal access the **WebSphere Agent** workspace. You can use the **Diagnostic Server Activity Display** link to access the Managing Server Visualization Engine. For information about access requirements see “Prerequisites for access” on page 226.

1. In the **Web Applications** window, right click the choose link icon and then click **Diagnostic Server Activity Display**.
2. If this is your first time to access the Managing Server Visualization Engine during a session, you see a **Welcome to the Application Monitor** page.
3. Depending on the user setup configuration in your environment you may or may not have to type your Managing Server Visualization Engine **User Name** and **Password**. If you do, you only need to log in using your **User Name** and **Password** once per session.
4. Click **OK** to display the **Server Activity Display** page in the Managing Server Visualization engine. You can use link to diagnose application problems, for example, slow transactions or high response times.
5. The results in this page relate directly to the context from where you launched the link in the Tivoli Enterprise Portal. For more information about using the **Server Activity Display** page and additional features, refer to the Composite Application Manager help within the Managing Server Visualization Engine Interface.
6. To return to the previous workspace in the Tivoli Enterprise Portal interface at any time choose from the following options:
 - from the Tivoli Enterprise Portal desktop client, click the back arrow on your web browser.
 - from the Tivoli Enterprise Portal browser client, click the browser back arrow.

For additional information, see:

- “Workspace link to Managing Server Visualization Engine” on page 225
- “Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal” on page 229

Web Services workspace

The Web Services workspace displays information about the data counters of the Web services.

The examples of the information include the number of loaded Web services, the number of requests delivered and processed, the request response time, and the average size of requests. This workspace displays data provided by both the **Web Services** attributes and the **Web Services Gate Way** attributes.

Note:

- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report
resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.

- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains:
- Worst Response Times bar chart, which displays the worst average response times (in milliseconds) for the selected Web services
- Most Popular bar chart, which shows the exception and request rates (in events per second) for the selected services
- Web Services report, which displays aggregated performance data for each Web service, including requests, response times, and payload sizes
- Web Service Gateway report, which displays aggregated performance data for each Web service gateway, including the number of synchronous and asynchronous requests and responses

Accessing the Web Services workspace

To access this workspace, complete the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the **Web Services** entry.

Selected Web Services - History workspace

The Selected Web Services - History workspace displays the historical information that corresponds to the information in the Web Services workspace for a selected Web service. Historical information is collected over a particular measured time span. See the online help for Tivoli Enterprise Portal for a detailed explanation of historical reporting.

Accessing the Selected Web Services - History workspace

To access this workspace from the Web Services workspace, use one of the following procedures:
- From the Web Services report, right-click the link icon to the left of any row; then, from the pop-up menu, click **Selected Web Services - History**.
- From the Worst Response Times bar chart, or the Most Popular bar chart, right-click any bar; then, from the pop-up menu, click **Link To > Selected Web Services - History**.

For additional information, see:

- Organization of the predefined workspaces
WebSphere Agent workspace

This workspace displays product events that affect the ability of the WebSphere Application Server agent to collect data.

This workspace displays events occurring within the WebSphere Application Server agent and WebSphere application servers that are installed on the host computer. It also displays the status of the Tivoli Enterprise Monitoring Agent. The predefined workspace contains the following items:

- Agent Events report, which displays information about agent-level events that affect the ability of the Tivoli Enterprise Monitoring Agent to collect data for the WebSphere application server. You can use this view to see exception and error messages, their IDs, and their severity.

 The Agent Events report also shows the result of issuing a Take Action command. Place your cursor over a truncated message to display the text of the complete message.

 This report displays data reported by the WebSphere Agent Events attributes.

- Application Servers Summary report displays information about status of the WebSphere server.

 This report displays data reported by the Application Server Status attributes.

Accessing the WebSphere Agent workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of available Tivoli Enterprise Monitoring Agents, click the WebSphere Agent entry.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Accessing the Managing Server Visualization Engine from the WebSphere Agent workspace

In the Tivoli Enterprise Portal access the WebSphere agent workspace. You can use the Diagnostic Server Activity Display or the Diagnostic In-flight Request Search link to access the Managing Server Visualization Engine. For information about access requirements see “Prerequisites for access” on page 226.

1. In the Applications Server Summary window, right click the choose link icon then click Diagnostic Server Activity Display or Diagnostic In-flight Request Search.
2. If this is your first time to access the Managing Server Visualization Engine during the session you see a Welcome to the Application Monitor page.
3. Depending on the user setup configuration in your environment you may or may not have to type your Managing Server Visualization Engine User Name and Password. If you do, you only need to log in using your User Name and Password once per session.
4. Click **OK** to display the relevant page in the Managing Server Visualization engine.
 - If you click **Diagnostic In-flight Request Search** you see the **In-Flight Request Search** page in Managing Server Visualization Engine.
 - If you click **Diagnostic Server Activity Display** you see the **Server Activity Display** page in the Managing Server Visualization Engine.

5. The information in both of these pages relates directly to the context from where you launched the link in the Tivoli Enterprise Portal.

6. To return to the Tivoli Enterprise Portal interface at any time click back on your web browser.

For additional information, see:
- “Workspace link to Managing Server Visualization Engine” on page 225
- “Access the Managing Server Visualization Engine from the Tivoli Enterprise Portal” on page 229

WebSphere Application Server workspace

The WebSphere Application Server workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.

The predefined workspace contains the following items:
- Heap Usage - History bar chart, which displays free memory size and used memory size (in kilobytes) within the WebSphere Application Server's heap over time. The chart's flyovers display the exact values.

 This view displays data provided by the **Garbage Collection Analysis** attributes.
- Response Time - History graph, which shows the server response time to requests over time.

 This view displays data provided by the **Request Times and Rates** attributes.
- Request Rate - History graph, which shows the rate at which requests have been received by this server over time.

 This view displays data provided by the **Request Times and Rates** attributes.
- Percent CPU Used - History graph, which shows the percentage of the CPU that this server used over time.

 This view displays data provided by the **Application Server** attributes.
- Application Server Summary report, which displays overall information about this WebSphere application server, including JVM statistics and CPU usage statistics.

 This view displays data provided by the **Application Server** attributes. In the Application Server Summary report, each row represents a different region.

 When you right-click the link for a row, you can choose to go to Selected Region - Application Server Summary, Selected Region - Request Analysis, Selected Region - Application Health Status, Selected Region - Datasources, Selected Region - Log Analysis or Selected Region - JMS Summary. All these links are disabled when TEMA is running on Distributed data collector and enabled when TEMA is running on z/OS data collector.

Accessing the WebSphere Application Server workspace

Complete the following steps to access this workspace:

1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you’re monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.

3. Within that node list of monitored applications, expand the list of WebSphere agents.

4. Within the list of available agents, click the **WebSphere App Server** entry of your choice.

For additional information, see:
- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**

WebSphere ESB Server workspace

The WebSphere ESB Server workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.

The predefined workspace contains the following items:
- **Heap Usage** - History bar chart, which displays free memory size and used memory size (in kilo bytes) within the WebSphere Application Server’s heap over time. The chart’s flyovers display the exact values. This view displays data provided by the **Garbage Collection Analysis** attributes.
- **Response Time** - History graph, which shows the server response time to requests over time. This view displays data provided by the **Request Times and Rates** attributes.
- **Request Rate** - History graph, which shows the rate at which requests have been received by this server over time. This view displays data provided by the **Request Times and Rates** attributes.
- **Percent CPU Used** - History graph, which shows the percentage of the CPU that this server consumed over time. This view displays data provided by the **Application Server** attributes.
- **Application Server Summary report**, which displays overall information about this WebSphere application server, including JVM statistics and CPU usage statistics. This view displays data provided by the **Application Server** attributes.

Accessing the WebSphere ESB Server workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, click the **WebSphere ESB Server** entry of your choice.

For additional information, see:
- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**
WebSphere Portal Server workspace

The WebSphere Portal Server workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.

The predefined workspace contains the following items:

- **Heap Usage - History bar chart**, which displays free memory size and used memory size (in kilo bytes) within the WebSphere Application Server's heap over time. The chart's flyovers display the exact values.

 This view displays data provided by the Garbage Collection Analysis attributes.

- **Response Time - History graph**, which shows the server response time to requests over time.

 This view displays data provided by the Request Times and Rates attributes.

- **Request Rate - History graph**, which shows the rate at which requests have been received by this server over time.

 This view displays data provided by the Request Times and Rates attributes.

- **Percent CPU Used - History graph**, which shows the percentage of the CPU that this server consumed over time.

 This view displays data provided by the Application Server attributes.

- **Application Server Summary report**, which displays overall information about this WebSphere application server, including JVM statistics and CPU usage statistics.

 This view displays data provided by the Application Server attributes. In the Application Server Summary report, each row represents a different region. When you right-click the link for a row, you can choose to go to Selected Region - Application Server Summary, Selected Region - Request Analysis, Selected Region - Application Health Status, Selected Region - Datasources, Selected Region - Log Analysis, Selected Region - JMS Summary, Selected Region - Portal Summary, Selected Region - Portlet Summary. All these links are disabled when TEMA is running on Distributed data collector and enabled when TEMA is running on z/OS data collector.

Accessing the WebSphere Portal Server workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, click the **WebSphere Portal Server** entry of your choice.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

WebSphere Process Server workspace

The WebSphere Process Server workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.
The predefined workspace contains the following items:

- Heap Usage - History bar chart, which displays free memory size and used memory size (in kilo bytes) within the WebSphere Application Server’s heap over time. The chart’s flyovers display the exact values. This view displays data provided by the Garbage Collection Analysis attributes.

- Response Time - History graph, which shows the server response time to requests over time. This view displays data provided by the Request Times and Rates attributes.

- Request Rate - History graph, which shows the rate at which requests have been received by this server over time. This view displays data provided by the Request Times and Rates attributes.

- Percent CPU Used - History graph, which shows the percentage of the CPU that this server consumed over time. This view displays data provided by the Application Server attributes.

- Application Server Summary report, which displays overall information about this WebSphere application server, including JVM statistics and CPU usage statistics. This view displays data provided by the Application Server attributes.

Accessing the WebSphere Process Server workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, z/OS Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, click the **WebSphere Process Server** entry of your choice.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

WMQ Client Link Communications workspace

This workspace provides aggregated counter statistics for all of the clients of WMQ Queue Managers that are or have been connected to this application server. WebSphere Application Server 5.1 based products do not support this workspace.

This workspace displays data provided by the WMQ Client Link Communications attributes.

Note:

- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on-demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- WMQ Client Link Communication Errors - History graph, which shows the number of errors that have caused connections to WMQ JMS clients to be dropped
- WMQ Client Link Statistics report, which displays information about the messaging engine communications, including batch sent, message sent, message received, comm errors, writes blocked, and reads blocked

Accessing the WMQ Client Link Communications workspace

To access this workspace from the Platform Messaging workspace, use one of the following procedures:
- Within the Navigator, right-click the Platform Messaging entry; then, from the pop-up menu, click Workspace > WMQ Client Link Communications.
- From the primary Tivoli Enterprise Portal menu, click View > Workspace > WMQ Client Link Communications.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

WMQ Link Communications workspace

This workspace provides aggregated counter statistics for all of the WMQ Queue Managers that are or have been connected to this application server. WebSphere Application Server 5.1 based products do not support this workspace.

This workspace displays data provided by the WMQ Link Communications attributes.

Note:
- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on-demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:
- WMQ Link Communication Errors - History graph, which shows the historical number of communication errors that resulted in the disconnection of a network connection to a WMQ Queue Manager
WMQ Link Statistics report, which displays information about the messaging engine communications, including batches sent, batches received, message sent, message received, and comm errors

Accessing the WMQ Link Communications workspace

To access this workspace from the Platform Messaging workspace, use one of the following procedures:

- Within the Navigator, right-click the Platform Messaging entry; then, from the pop-up menu, click Workspace > WMQ Link Communications.
- From the primary Tivoli Enterprise Portal menu, click View > Workspace > WMQ Link Communications.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Workload Management workspace

This workspace displays information about the Workload Management (WLM) server and about the WLM client that initiates workload requests to that server.

Workload management optimizes the distribution of client processing tasks. Incoming work requests are distributed to the application servers, enterprise beans, servlets, and other objects that can most effectively process the requests. Workload management also provides failover protection when servers are not available, improving application availability. In a WebSphere Application Server environment, you implement workload management using clusters, transports, and replication domains.

This workspace displays data provided by both the Workload Management Server attributes and the Workload Management Client attributes.

Note:

- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

The predefined workspace contains the following items:

- WLM Server Incoming Requests bar chart, which shows the incoming strong affinity requests and the incoming nonaffinity requests (per second)
- WLM Client Outgoing Requests bar chart, which shows the outgoing requests (per second)
- Workload Management Server report, which shows detailed information about the WLM server, such as incoming requests and clients served
Workload Management Client report, which shows information about the clients that initiate workload requests, such as outgoing requests and response times

Accessing the Workload Management workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the **Workload Management** entry.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Workplace Mail workspace

This workspace provides aggregated statistics of the usage information about the incoming message traffic.

This workspace displays data provided by the **Workplace Mail Service** attributes.

Note:

- This workspace reports blanks for resource data on the first invocation if PMI data collection is configured for on-demand sampling (that is, if your site set configuration value Resource Data Collection Method to On Demand) or if you have not yet run applications that generate PMI resource data. To report resource data in this workspace after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- Because of high overhead, the Tivoli Enterprise Monitoring Agent provides on demand sampling by default. To activate PMI monitoring, you must first select this workspace and then select it again later. Each time you select the workspace, it displays the data collected during the interval between selections.

Note: The following WebSphere Application Diagnostics 7.1 features do not support the Workplace Mail workspace: configuration and links to the Managing Server Visualization Engine from the Tivoli Enterprise Portal.

The predefined workspace contains the following items:

- Connections bar chart, which displays the number of connections to the SMTP server, SMTP client connections, and the maximum number of concurrent LDAP connections during the sampling interval
- Workplace Mail report, which displays detailed information about the workplace mail connections
Accessing the Workplace Mail workspace

To access this workspace, complete the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to the node you want to select.
3. Within that node list of monitored applications, expand the list of WebSphere agents.
4. Within the list of available agents, expand the WebSphere application server of your choice.
5. Within that server list of available WebSphere Application Server workspaces, click the Workplace Mail entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Region workspaces in a z/OS environment

For z/OS installations workspace tables report data at both a region and server instance level.

The advantage is that you can view metrics collected at both levels and switch between server instance level and region level. The following table lists the workspaces that show information and both a region and server level.

All workspaces except the Garbage Collection Analysis workspace report data on both levels. The Garbage collection analysis workspace does not have links to the top-level workspaces.

Table 16. Workspaces and the Servant and Selected Regions in a z/OS environment

<table>
<thead>
<tr>
<th>Workspace Table Name</th>
<th>Link Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSphere App Server - Application Server Summary</td>
<td>WebSphere App Server - Application Server Summary - Selected Region - Application Server Summary</td>
<td>Application Server Summary workspace. This workspace displays data at regional level. Click the Selected Region links to access region-specific links to other top-level workspaces. When a workspace is linked from the application server summary you can view specific drill-down metrics. To view a report for an individual region, see “Accessing a Region workspace” on page 300</td>
</tr>
<tr>
<td></td>
<td>Selected Region - Application Health Status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Region - Request Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Region - Log Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Region - Data Sources</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Region - JMS - Summary</td>
<td></td>
</tr>
</tbody>
</table>
Table 16. Workspaces and the Servant and Selected Regions in a z/OS environment (continued)

<table>
<thead>
<tr>
<th>Workspace Table Name</th>
<th>Link Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Health</td>
<td>Selected Application - Servant regions</td>
<td>In an z/OS environment, the Application Health Summary report displays the total results for the server instances. To view report results by region, Click the WebSphere App Server - Application Server Summary table and right click a link icon in the table to view the available options.</td>
</tr>
<tr>
<td></td>
<td>Selected Application - Health History</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Application- Web Tier Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Application - EJB Tier Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Application - Backend Tier Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Application - Request Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Application - Configuration</td>
<td></td>
</tr>
<tr>
<td>Request Analysis - Requests Current Interval</td>
<td>Selected Request - Datasource</td>
<td>In an z/OS environment, when you select Request Analysis - Requests Current Interval, this report displays the total results for the server instances. To view a report for an individual Request Analysis region, see "Accessing a Region workspace" on page 300.</td>
</tr>
<tr>
<td></td>
<td>Selected Request - JMS Queues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Request - Resource Adaptors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Request - History</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Request - Servant Regions</td>
<td></td>
</tr>
<tr>
<td>Garbage Collection Analysis - Garbage Collection Analysis</td>
<td>Selected Region - History Garbage Collection Analysis - Servant Region (only available when you click a [Summary] row)</td>
<td>When you click Garbage Collection Analysis the results of the report display in the table at the bottom of the screen. There is a summary report of all regions and there are also reports by individual region.</td>
</tr>
<tr>
<td>Log Analysis - Log Analysis</td>
<td>Selected Region - Log Analysis</td>
<td>Log Analysis workspace. In a z/OS environment, the log analysis workspace reports data in two ways. When you select the Log analysis workspace the report displays JVM Log Analysis and DC message events from all regions. To view a report for an individual log analysis region, see "Accessing a Region workspace" on page 300.</td>
</tr>
<tr>
<td>Data sources - Data sources - Current Interval</td>
<td>Selected Datasource</td>
<td>In an z/OS environment, this report displays the total results for the server instances. To view a report for an individual Data source region, see "Accessing a Region workspace" on page 300.</td>
</tr>
<tr>
<td></td>
<td>Selected Datasource - History</td>
<td></td>
</tr>
</tbody>
</table>
Table 16. Workspaces and the Servant and Selected Regions in a z/OS environment (continued)

<table>
<thead>
<tr>
<th>Workspace Table Name</th>
<th>Link Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JMS Summary - JMS Summary - Current Interval JMS</td>
<td>Selected JMS - Servant Regions</td>
<td>In an z/OS environment, this report displays the total results for the server instances. To view a report for an individual JMS Summary region, see "Accessing a Region workspace."</td>
</tr>
<tr>
<td>WebSphere Portal Server</td>
<td>Selected Region - Portal Server Summary</td>
<td>In an z/OS environment, this report displays the total results for the server instances. To view a report for an individual Portal Server summary, see "Accessing a Region workspace."</td>
</tr>
<tr>
<td>Portal Summary</td>
<td>Selected Region - Portal Summary</td>
<td>In an z/OS environment report displays the total results for the server instances. To view a report for an individual region see "Accessing a Region workspace."</td>
</tr>
<tr>
<td></td>
<td>Selected Region - Portlet Summary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Portal Page - History</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Portlet - History</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selected Region - Portal Page Summary</td>
<td></td>
</tr>
</tbody>
</table>

Accessing a Region workspace

To access this workspace, complete the following steps:
1. In the Navigator, expand z/OS system, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored agents, expand the list of the servers.
4. In the list of available servers, click the WebSphere agent of your choice.
5. In the list of available Servers select the Server of your choice.
6. Right click the selected Server node and select WebSphere App Server workspace.
7. Right click a link icon in the Application Server Summary table to display all the available workspaces connected with current region.
8. Select the workspace of your choice from the following list:
 - Selected Region Application Server Summary
 - Selected Region - Application Health Status
 - Selected Region - Request Analysis
 - Selected Region - Log Analysis
 - Selected Region - Data Sources
 - Selected Region - JMS - Summary

For additional information, see: 300 ITCAM for Application Diagnostics: User Guide
ITCAM for Application Diagnostics- WebSphere Agent attributes

IBM Tivoli Composite Application Manager for Application Diagnostics - WebSphere Agent is a Tivoli Enterprise Management Agent that resides within your distributed systems. This agent gathers data about running WebSphere Application Server processes that have been collected and stored by the ITCAM for WebSphere data collector, and stores those data in elements called attributes. Each attribute is a characteristic of an object. For example, the Receive Count attribute in the JMS Summary attribute group counts the number of messages your applications have retrieved from JMS messages queues.

Attribute groups

The IBM Tivoli Composite Application Manager for Application Diagnostics - WebSphere Agent attributes are organized into groups of related items. These attribute groups comprise the attribute tables for this agent. For example, the Garbage Collection Analysis attribute group provides information about the frequency with which the Java Virtual Machine (JVM) invokes its garbage collector.

Attributes and workspaces

Within the Tivoli Enterprise Portal workspaces, these attributes get displayed in, and correspond to, the columns in the reports and the items in the graphic displays for charts and graphs. You can use the collected data to analyze and monitor the performance of your WebSphere application servers and the applications running within them. For an overview of the correlations between the predefined workspaces and the attribute groups, see Attribute Groups Used by the Predefined Workspaces.

Attributes and situations

Various attributes are referenced by the product’s predefined situations. You can also use the IBM Tivoli Composite Application Manager for Application Diagnostics - WebSphere Agent attributes to create your own situations to monitor the performance of your WebSphere application servers and their applications. These situations can monitor your WebSphere Application Server resources or correlate multiple conditions to alert you to problems that may have occurred when attribute values exceed thresholds that you define.

Attribute groups used by the predefined workspaces

A workspace contains graphical data or report columns that correspond directly to particular attributes in an attribute group. The following table shows the correlations between the predefined workspaces and the attribute groups. The workspaces, primary and secondary, are listed alphabetically, not in the order in which they appear in the Navigator.

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Related Attribute Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Health Summary</td>
<td>Application Health Status</td>
</tr>
<tr>
<td>Application Registry</td>
<td>Application Monitoring Configuration</td>
</tr>
<tr>
<td>Allocation Failures</td>
<td>Allocation Failure</td>
</tr>
</tbody>
</table>

Chapter 4. ITCAM Agent for WebSphere
Table 17. Workspaces and the attribute groups they reference (continued)

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Related Attribute Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache Analysis</td>
<td>Dynamic Cache, Dynamic Cache Templates</td>
</tr>
<tr>
<td>Client Communications</td>
<td>Client Communications</td>
</tr>
<tr>
<td>Container Object Pools</td>
<td>Container Object Pools</td>
</tr>
<tr>
<td>Container Transactions</td>
<td>Container Transactions</td>
</tr>
<tr>
<td>Datasources</td>
<td>Datasources</td>
</tr>
<tr>
<td>Selected Datasource - History</td>
<td>Datasources</td>
</tr>
<tr>
<td>DB Connection Pools</td>
<td>DB Connection Pools</td>
</tr>
<tr>
<td>Selected DB Connection Pool - History</td>
<td>DB Connection Pools</td>
</tr>
<tr>
<td>DCS Stacks</td>
<td>DCS Stack Counter</td>
</tr>
<tr>
<td>Destinations</td>
<td>Topic Spaces, Queue</td>
</tr>
<tr>
<td>Durable Subscriptions</td>
<td>Durable Subscriptions</td>
</tr>
<tr>
<td>EJB Containers</td>
<td>EJB Containers</td>
</tr>
<tr>
<td>Enterprise Java Beans</td>
<td>Enterprise Java Beans</td>
</tr>
<tr>
<td>Garbage Collections - Selected Allocation Failure</td>
<td>Garbage Collection Cycle</td>
</tr>
<tr>
<td>Garbage Collector Analysis</td>
<td>Garbage Collection Analysis</td>
</tr>
<tr>
<td>High Availability Manager</td>
<td>High Availability Manager</td>
</tr>
<tr>
<td>IMAP/POP</td>
<td>Workplace Mail IMAP/POP</td>
</tr>
<tr>
<td>J2C Connection Pools</td>
<td>J2C Connection Pools</td>
</tr>
<tr>
<td>JMS Summary</td>
<td>JMS Summary</td>
</tr>
<tr>
<td>Log Analysis</td>
<td>Log Analysis</td>
</tr>
<tr>
<td>Lotus</td>
<td>Application Server, Request Times and Rates, Garbage Collection Analysis</td>
</tr>
<tr>
<td>Messages Queues</td>
<td>Workplace Mail Queues</td>
</tr>
<tr>
<td>Messaging Engine Communications</td>
<td>Messaging Engine Communications</td>
</tr>
<tr>
<td>Platform Messaging</td>
<td>Messaging Engines</td>
</tr>
<tr>
<td>Pool Analysis</td>
<td>Thread Pools, DB Connection Pools, J2C Connection Pools, Application Server</td>
</tr>
<tr>
<td>Portal Pages Summary</td>
<td>Portal Page Summary</td>
</tr>
<tr>
<td>Selected Portal Page - History</td>
<td>Portal Page Summary</td>
</tr>
<tr>
<td>Portal Summary</td>
<td>Portal Summary</td>
</tr>
<tr>
<td>Portlet Summary</td>
<td>Portlet Summary</td>
</tr>
<tr>
<td>Selected Portlet - History</td>
<td>Portlet Summary</td>
</tr>
<tr>
<td>Request Analysis</td>
<td>Request Analysis</td>
</tr>
<tr>
<td>Selected Request - History</td>
<td>Request Analysis</td>
</tr>
<tr>
<td>Selected Request - Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td>Scheduler</td>
<td>Scheduler</td>
</tr>
</tbody>
</table>
Table 17. Workspaces and the attribute groups they reference (continued)

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Related Attribute Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Application - Application Tier Analysis</td>
<td>Application Health Status</td>
</tr>
<tr>
<td>Selected Application - Backend Tier Analysis</td>
<td>Application Monitoring Configuration</td>
</tr>
<tr>
<td>Selected Application - Health History</td>
<td></td>
</tr>
<tr>
<td>Selected Application - Client Tier Analysis</td>
<td></td>
</tr>
<tr>
<td>Selected Application - Configuration</td>
<td>Selected Request</td>
</tr>
<tr>
<td>Selected Request - Datasources</td>
<td></td>
</tr>
<tr>
<td>Selected Request - JMS Queues</td>
<td></td>
</tr>
<tr>
<td>Selected Request - Resource Adapters</td>
<td></td>
</tr>
<tr>
<td>Servlets/JSPs - Selected Web Application</td>
<td>Servlets JSPs</td>
</tr>
<tr>
<td>Sessions</td>
<td></td>
</tr>
<tr>
<td>Thread Pools</td>
<td>Thread Pools</td>
</tr>
<tr>
<td>Web Applications</td>
<td>Web Applications</td>
</tr>
<tr>
<td>Web Services</td>
<td>Web Services Counters</td>
</tr>
<tr>
<td>Selected Web Services - History</td>
<td>Web Services Gateway Counters</td>
</tr>
<tr>
<td>WebSphere Agent</td>
<td>WebSphere Agent Events</td>
</tr>
<tr>
<td></td>
<td>Application Server Status</td>
</tr>
<tr>
<td></td>
<td>Remote Configuration Requests attributes” on page 382</td>
</tr>
<tr>
<td>WebSphere App Server</td>
<td>Application Server</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis</td>
</tr>
<tr>
<td>WebSphere ESB Server</td>
<td>Application Server</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis</td>
</tr>
<tr>
<td>WebSphere Portal Server</td>
<td>Application Server</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis</td>
</tr>
<tr>
<td>WebSphere Process Server</td>
<td>Application Server</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis</td>
</tr>
<tr>
<td>WMQ Client Link Communications</td>
<td>WMQ Client Link Communications</td>
</tr>
<tr>
<td>WMQ Link Communications</td>
<td>WMQ Link Communications</td>
</tr>
<tr>
<td>Workload Management</td>
<td>Workload Management Client</td>
</tr>
<tr>
<td></td>
<td>Workload Management Server</td>
</tr>
<tr>
<td>Workplace Mail</td>
<td>Workplace Mail Service</td>
</tr>
</tbody>
</table>

Alarm Manager attributes

The **Alarm Manager** attributes provide information for the alarm management. Use these attributes to manage alarms fired by the application for each work manager.

The attributes within this group are used to build the **Alarm Manager** workspace.

Note:
• The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.

• The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Alarms Canceled The number of alarms canceled by the application. The valid format is a positive integer.

Alarms Created The total number of alarms created by all asynchronous scopes for the current Work Manager. The valid format is a positive integer.

Alarms Fired The number of alarms fired. The valid format is a decimal (formatted to 3 decimal places).

Alarms Latency Duration The latency of alarms fired in milliseconds. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Alarms Pending Size The number of alarms waiting to fire. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Alarms Rate The number of alarms firing per second. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Instrumentation Level For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Row Number The row number. The valid format is a positive integer.
Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and Yes.

Work Manager Name The name of the work manager. The value format is an alphanumeric string, with a maximum of 256 characters.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Allocation Failure attributes

The Allocation Failure attribute group provides information about the heap-allocation failure that caused the Java Virtual Machine hosting the application server to invoke its garbage-collection routine.

You can use the Allocation Failure attributes in situations to determine the events that caused the JVM to invoke garbage collection. The attributes within this group are used to build the Allocation Failures workspace.

Allocation Failure Number The identifier assigned to the current allocation-failure block, which is associated with a bar in the Heap Usage - History bar chart. The valid format is a positive integer.

ASID The identifier (decimal) assigned to the address space running this servant region.

Bytes Needed The number of bytes needed on the heap when this allocation failure occurred. The valid format is a positive integer.
GC Cycle Count The number of garbage-collection cycles caused by this allocation failure. The valid format is a positive integer.

Heap Expanded The total number of kilobytes by which the heap expanded or contracted as a result of garbage collection. The valid format is a positive integer.

Heap Free (%) after GC The percentage of heap space that is available after garbage collection. The valid format is a positive integer.

Heap Status Whether the out-of-heap-space alert has been raised. Valid values are Normal and Out_of_heap_space.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Kbytes Free at Start of GC The number of kilobytes available in the heap before garbage collection began in response to this allocation failure. The valid format is a positive integer.

Kbytes Freed by GC The number of kilobytes freed by the garbage collector for this allocation failure. The valid format is a positive integer.

Kbytes Used The number of kilobytes in the heap that were in use when this allocation failure occurred. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Objects Moved The number of objects the garbage collector moved during compaction. The valid format is a positive integer.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.
This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Time since Last Failure (ms) The time (in milliseconds) since the previous allocation failure. The valid format is a positive integer.

Time to Complete (ms) The time (in milliseconds) required to complete the action that resulted from this allocation failure. The valid format is a positive integer.

Total Kbytes Freed by GC The total number of kilobytes freed by the garbage collector in response to this allocation failure. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Application Health Status attributes

The Application Health Status attributes provide information for real-time and historical application health status.

The attributes within this group are used to build the Application Health Summary workspace.

Application Health The combined application health level. Valid values are Unknown, Good, Fair, and Bad.

Application ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer or -1 which means that Application ID is aggregated statistic for all applications.

Application Name The name of the application to which the request belongs. The valid format is an alphanumeric string, with a maximum of 256 characters.

Application Status The current status of the monitored application. Valid values are Standby, Discovered, Unknown, Starting, Running, Stopping, Stopped, and Failed.

Application Tier Health The health level of the application tier. Valid values are Unknown, Good, Fair, and Bad. Application tier health indicator is determined from EJB or custom request delays collected on the interval and compared against thresholds configured for application requests.

ASID The identifier (decimal) assigned to the address space running this servant region.

Backend Tier Health The health level of the backend tier. Backend tier health indicator is determined from JDBC, JCA, JNDI, JMS delays collected on the interval and compared against thresholds configured for application requests. Valid values are Unknown, Good, Fair, and Bad.
Client Tier Health The health level of the client tier. Valid values are Unknown, Good, Fair, and Bad. Client tier health indicator is determined from servlet/JSP or portal delays collected on the interval and compared against thresholds configured for application requests.

Completion Level The completion level of the requests during the interval. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from request data as the percentage of number of failed requests to the total number of application requests on the interval.

Custom Requests The availability indicator of the custom requests. Valid values are Unknown, Good, Fair, and Bad.

EJB Container The health level of the EJB container. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from EJB delay types collected during the interval and compared against application thresholds.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

JCA The overall health status of J2EE Connector Architecture (JCA) resources used by applications. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from JCA delay types collected during the interval and compared against application thresholds.

JDBC The overall health status of Java DataBase Connectivity (JDBC) resources used by applications. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from JDBC delay types collected during the interval and compared against application thresholds.

JNDI The overall health status of Java Naming and Directory Interface (JNDI) resources used by applications. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from JNDI delay types collected during the interval and compared against application thresholds.

JMS The overall health status of Java Message Service (JMS) resources used by applications. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from JMS delay types collected during the interval and compared against application thresholds.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Portal Container The health level of the portal container. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from portal delay types collected during the interval and compared against application thresholds.

Response Level The health level of the response time for the requests. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from application requests response times collected during the interval and compared against application thresholds.
Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Indicates that this row is a summary row of statistical totals for all rows.

Web Container The health level of the Web container. Valid values are Unknown, Good, Fair, and Bad.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Application Monitoring Configuration attributes

The Application Monitoring Configuration attributes provide information for the Application Monitoring Configuration.

Use these attributes to monitor different WebSphere applications running within an application server. The attributes within this group are used to build the Selected Application - Configuration workspace.

Application Alias The alias name that you can optionally assign for the application. In practice, this attribute enables you to combine multiple applications under the same common alias and report their request in the Tivoli Enterprise Portal as it would come from same application. This attribute is blank by default. You can assign the value to it from Take Actions at any time in the application monitoring life cycle. The valid format is an alphanumeric string, with a maximum of 256 characters.

App ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer.
Application Name The name of the application to which the request belongs. You can define the pattern of this name in the Application Registry workspace. The valid format is an alphanumeric string, with a maximum of 256 characters.

Bad Completion Rate (%) The bad completion rate threshold for the requests. The valid format is an alphanumeric string, with a maximum of 256 characters.

Baselining Elapsed Time The number of seconds during which the application baselining has been running. The valid format is a positive integer.

Baselining Status The current status of the application baselining process. Valid values are Idle, Running, and Standby.

Baselining Scheduled Stop Time The date and time baselining is scheduled to finish. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Baselining Start Time The date and time when the application baselining was started. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Baselining Update Interval The number of seconds that defines how often active baselining data is incrementally updated to the monitoring agent. The valid format is a positive integer.

Fair Completion Rate (%) The fair completion rate threshold for the requests. The valid format is an alphanumeric string, with a maximum of 256 characters.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.
Monitoring Status The current application monitoring status. Valid values are Discovered, Enabled, Disabled, and Standby.

Node Name The name of the system on which the server is running. The valid format is an alphanumerict string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Data Monitoring Level The custom request aggregation level for all application requests. Valid values are Default, Disabled, Level1, and Level2. This attribute is set to Default when the application is first discovered.

Request Data Sampling Rate The custom request aggregation rate for all application requests. The valid format is a positive integer.

Reflex Automation Mode When reflex automation mode is enabled, application monitoring level is automatically updated on WASAppHealth* situation event.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

For additional information, see:

- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Application Server Status attributes

The Application Server Status attributes provide status information for all WebSphere application servers (and the WebSphere administrative server) being monitored by the agent.
The attributes within this group are used to build the WebSphere Agent workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Cluster Name The name of the server group (cluster) that this application server belongs to. The valid format is an alphanumeric string, with a maximum of 128 characters.

Cluster Type Indicates the type of the server group (cluster) the application server belongs to.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 128 characters.

Process ID The process identifier of the Java virtual machine. The valid format is a positive integer.

Regions Number The number of z/OS regions connected. This applies to z/OS environments only.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Mode The mode of the WebSphere Application Server.
Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Server Origin Node Name Indicates the origin node name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Server Subnode Name The name of the server node in the navigation tree. The valid format is an alphanumeric string, with a maximum of 32 characters.

Server Type The type of server process. The valid values are:

<table>
<thead>
<tr>
<th>Server Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>The server type cannot be determined</td>
</tr>
<tr>
<td>AppServer</td>
<td>A process that executes applications</td>
</tr>
<tr>
<td>AdminServer</td>
<td>The administrative server that one uses when configuring WebSphere Application Server environments</td>
</tr>
<tr>
<td>NodeAgent</td>
<td>The WebSphere Application Server node agent</td>
</tr>
<tr>
<td>JMSServer</td>
<td>The WebSphere Application Server JMS server</td>
</tr>
<tr>
<td>DeploymentMgr</td>
<td>The WebSphere Application Server deployment (cell) manager</td>
</tr>
<tr>
<td>ManagedProcess</td>
<td>A standalone WebSphere Application Server process</td>
</tr>
<tr>
<td>UnManagedProcess</td>
<td>A WebSphere Application Server process that is managed by a WebSphere Application Server deployment manager through a node agent</td>
</tr>
</tbody>
</table>

Start Date and Time The date and time when the WebSphere application server started. The valid format is a timestamp. This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Status The status of the WebSphere application server. Valid values are Connected and Disconnected.

WAS Cell Name The name of the WebSphere Application Server cell to which this application server belongs. The valid format is an alphanumeric string, with a maximum of 64 characters.

WAS Configuration Repository Directory Name The name of the WebSphere Application Server configuration repository directory, which normally resides in the config subdirectory of the product installation root directory. The valid format is an alphanumeric string, with a maximum of 128 characters.

WAS Node Name The name of the WebSphere Application Server node group to which this application server belongs. The valid format is an alphanumeric string, with a maximum of 64 characters.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)
Application Server attributes

The Application Server attributes provide the status and summary data for a specific WebSphere Application Server instance.

The attributes provide performance data for the WebSphere Application Server runtime (JVM memory), thread pools, HTTP sessions, and configuration parameters. They also provide some information from other attribute groups to give an overall view of the WebSphere application server. Use the Application Server attributes in situations to monitor the health and performance of a WebSphere application server.

The attributes within this group are used to build the WebSphere Application Server and the Pool Analysis Workspace workspaces.

Note:
• The attributes in this attribute group contain zeros for performance data if your site sets the configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes when you have installed and configured the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.

• The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; this means the attributes in this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

ASID The identifier (decimal) assigned to the address space running this servant region.

CPU Used (ms) Indicates the number of milliseconds the JVM CPU used during the interval. The valid format is a positive integer.

CPU Used (%) Indicates the percentage of the JVM CPU used during the interval. For UNIX users, this attribute has a meaningful value only if the Tivoli Enterprise Monitoring Agent is running with superuser authority. The valid format is a decimal (formatted to 1 decimal place).

Platform CPU Used (ms) Indicates the number of milliseconds the host platform (OS) CPU used during the interval. This feature does not apply to the z/OS platform.

Garbage Collection Monitoring The monitoring level for garbage-collection data. Valid values are Disabled and Enabled.

Instrumentation Level The JVM instrumentation level. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.
JVM Memory Free (Kbytes) The JVM free memory size in Kbytes.

JVM Memory Total (Kbytes) The JVM total memory size in Kbytes.

JVM Memory Used (Kbytes) The JVM used memory size in Kbytes.

JVM Memory Free (bytes) The JVM free memory size (in bytes). The valid format is a positive integer.

JVM Memory Total (bytes) The JVM total memory size (in bytes). The valid format is a positive integer.

JVM Memory Used (bytes) The JVM used memory size (in bytes). The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The process identifier of the Java virtual machine. The valid format is a positive integer.

Request Data Monitoring Level The monitoring level for request data stored by the Data Collector. Valid values are Disabled, Level1 edge request data, such as servlets and JSPs are displayed), and Level2 (nested request data such as JDBC and JMS requests are also displayed).

Request Data Sampling Rate (%) The percentage of Level1 requests (that is, edge requests) being sampled. The valid format is a positive integer.

Resource Data Monitoring The monitoring level for resource (that is, PMI) data stored by the Data Collector. Valid values are Disabled and Enabled.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12 character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.
This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Instance Name The name of the WebSphere application server. This is a logical grouping of one or more server instances (called a "generic server" or "cluster") any one of which can run an application. The valid format is an alphanumeric string, with a maximum of eight characters.

Server Mode Indicates the mode of the WebSphere Application Server.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Server Type The type of the WebSphere application server. Valid values are Unknown, AppServer, AdminServer, NodeAgent, JMS Server, DeploymentManager, ManagedProcess, and UnManagedProcess.

Server Subnode Name Indicates the sub node name of the application server.

Start Date and Time The date and time when the WebSphere application server started. The valid format is a timestamp. This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Status The status of the WebSphere application server. Valid values are Connected and Disconnected.

Summary Indicates that this row is a summary row of statistical totals for all rows.

System Paging Rate (Kbytes/sec) The system paging rate in kilobytes per second during the interval. The valid format is a positive integer.

Version The version of WebSphere Application Server. The valid format is an alphanumeric string, with a maximum of 8 characters.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Baseline attributes

The **Baseline** attributes provide information for baseline extract data for the given application.

The baselining collects statistical information about an application requests completion times and uses this information to assign fair and bad thresholds on the application requests. The product divides the whole request response times into buckets and collects individual hits into each bucket. Use these attributes to get statistics from individual requests collected during baselining interval.

The attributes within this group are used to build the **Selected Request - Baseline** workspace.
Application ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer.

Bad Hits (%) The percentage of bucket hits in the metric bad value zone. The valid format is a positive integer.

Bucket Number The bucket number of the baselining data. The valid format is a positive integer.

EJB (%) The average percent of time that bucket requests were executed inside EJB container. The valid format is a positive integer.

Fair Hits (%) The percentage of bucket hits in the metric fair value zone. The valid format is a positive integer.

Good Hits (%) The percentage of bucket hits in the metric good value zone. The valid format is a positive integer.

Hits (%) The percentage of hits for the bucket during the baselining. The valid format is a positive integer.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

JCA (%) The average percent of time that bucket requests spent for JCA access. The valid format is a positive integer.

JDBC (%) The average percent of time that bucket requests spent for JDBC access. The valid format is a positive integer.

JMS (%) The average percent of time that bucket requests spent for JMS access. The valid format is a positive integer.

JNDI (%) The average percent of time that bucket requests spent for JNDI access. The valid format is a positive integer.

Lower Boundary (msec) The lower boundary of bucket response times in milliseconds. The valid format is a positive integer.

Metric ID The metric identifier of the baselining data. The valid format is a positive integer.

Metric Type The metric type of the baselining data. Valid formats are Request, Error, and Resource.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Portal (%) The average percent of time that bucket requests were executed inside portal container. The valid format is a positive integer.
Response Time Mean (msec) The mean time of bucket response times. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

Table 27. Format of the 12-character timestamp

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Selection Hits (%) The percentage of bucket hits in the metric selection value zone. The valid format is a positive integer.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Servlet JSP (%) The average percent of time that bucket requests were executed inside the servlet container. The valid format is a positive integer.

Total Hits The total hits number for the bucket during the baselining. The valid format is a positive integer.

Upper Boundary (msec) The upper boundary of bucket response times. The valid format is a positive integer.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Client Communications attributes

The Client Communications attributes display overall statistics about server-side monitoring and a client-side API to retrieve performance data.

The attributes within this group are used to build the Client Communications workspace.

Note: Attributes in this group are only provided for IBM WebSphere Application Server version 6.0 or later.
API Connections The number of API sessions being used by clients that are currently network connected to this application server. Some of these API connections might be being by internal system processes on behalf of a client. The valid format is a positive integer.

Buffered Read (bytes) The number of bytes of data that have been received from the network and are held pending further processing. Large values might indicate that the application server is unable to process data fast enough to keep up with the clients attached. The valid format is a positive integer.

Buffered Write (bytes) The number of bytes of data being held pending transmission. Large values might indicate network congestion or clients which are unable to process data fast enough to keep up with the application server. The valid format is a positive integer.

Clients Attached The number of distinct client processes currently network connected to this application server. The valid format is a positive integer.

Errors The communication errors that have occurred and resulted in a network connection to a client being disconnected. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the client communications. For WebSphere 5, the valid values are None, Low, Medium, High, and Maximum; for WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Message Read (bytes) The number of bytes of message data received from client processes over network connections. This does not include data used to negotiate the transmission of messages. The valid format is a positive integer.

Messages Received at JMS 0 Priority (bytes) The number of messages received at JMS priority 0. The valid format is a positive integer.

Messages Received at JMS 1 Priority (bytes) The number of messages received at JMS priority 1. The valid format is a positive integer.

Messages Received at JMS 2 Priority (bytes) The number of messages received at JMS priority 2. The valid format is a positive integer.

Messages Received at JMS 3 Priority (bytes) The number of messages received at JMS priority 3. The valid format is a positive integer.

Messages Received at JMS 4 Priority (bytes) The number of messages received at JMS priority 4. The valid format is a positive integer.

Messages Received at JMS 5 Priority (bytes) The number of messages received at JMS priority 5. The valid format is a positive integer.
Messages Received at JMS 6 Priority (bytes) The number of messages received at JMS priority 6. The valid format is a positive integer.

Messages Received at JMS 7 Priority (bytes) The number of messages received at JMS priority 7. The valid format is a positive integer.

Messages Received at JMS 8 Priority (bytes) The number of messages received at JMS priority 8. The valid format is a positive integer.

Messages Received at JMS 9 Priority (bytes) The number of messages received at JMS priority 9. The valid format is a positive integer.

Messages Sent at JMS 0 Priority (bytes) The number of messages transmitted at JMS priority 0. The valid format is a positive integer.

Messages Sent at JMS 1 Priority (bytes) The number of messages transmitted at JMS priority 1. The valid format is a positive integer.

Messages Sent at JMS 2 Priority (bytes) The number of messages transmitted at JMS priority 2. The valid format is a positive integer.

Messages Sent at JMS 3 Priority (bytes) The number of messages transmitted at JMS priority 3. The valid format is a positive integer.

Messages Sent at JMS 4 Priority (bytes) The number of messages transmitted at JMS priority 4. The valid format is a positive integer.

Messages Sent at JMS 5 Priority (bytes) The number of messages transmitted at JMS priority 5. The valid format is a positive integer.

Messages Sent at JMS 6 Priority (bytes) The number of messages transmitted at JMS priority 6. The valid format is a positive integer.

Messages Sent at JMS 7 Priority (bytes) The number of messages transmitted at JMS priority 7. The valid format is a positive integer.

Messages Sent at JMS 8 Priority (bytes) The number of messages transmitted at JMS priority 8. The valid format is a positive integer.

Messages Sent at JMS 9 Priority (bytes) The number of messages transmitted at JMS priority 9. The valid format is a positive integer.

Message Written (bytes) The number of bytes of message data sent to client processes over network connections. This does not include data used to negotiate the transmission of messages. The valid format is a positive integer.

Messaging Engine Name The name of the message engine. The value format is an alphanumeric string, with a maximum of 256 characters.

Multicast Send Messages The number of messages transmitted using multicast protocols. The valid format is a positive integer.

Multicast Write The number of bytes transmitted using multicast protocols. The valid format is a positive integer.
Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Reads The number of read operations used to receive data from client processes through network connections. The valid format is a positive integer.

Reads Blocked The number of read operations that could not be completed immediately. This number can be used as an indicator of network congestion when communicating with client processes. The valid format is a positive integer.

Received at High Priority (bytes) The number of bytes of data received at a high priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Received at Highest Priority (bytes) The number of bytes of data received at the highest possible priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Received at JMS 0 Priority (bytes) The number of bytes of data received at the priority used by JMS priority 0 messages. Typically this is an accurate measure of the number of bytes of message data received at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Received at JMS 1 Priority (bytes) The number of bytes of data received at the priority used by JMS priority 1 messages. Typically this is an accurate measure of the number of bytes of message data received at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Received at JMS 2 Priority (bytes) The number of bytes of data received at the priority used by JMS priority 2 messages. Typically this is an accurate measure of the number of bytes of message data received at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Received at JMS 3 Priority (bytes) The number of bytes of data received at the priority used by JMS priority 3 messages. Typically this is an accurate measure of the number of bytes of message data received at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Received at JMS 4 Priority (bytes) The number of bytes of data received at the priority used by JMS priority 4 messages. Typically this is an accurate measure of the number of bytes of message data received at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Received at JMS 5 Priority (bytes) The number of bytes of data received at the priority used by JMS priority 5 messages. Typically this is an accurate measure of the number of bytes of message data received at this priority level. However, from...
time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Received at JMS 6 Priority (bytes) The number of bytes of data received at the priority used by JMS priority 6 messages. Typically this is an accurate measure of the number of bytes of message data received at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Received at JMS 7 Priority (bytes) The number of bytes of data received at the priority used by JMS priority 7 messages. Typically this is an accurate measure of the number of bytes of message data received at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Received at JMS 8 Priority (bytes) The number of bytes of data received at the priority used by JMS priority 8 messages. Typically this is an accurate measure of the number of bytes of message data received at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Received at JMS 9 Priority (bytes) The number of bytes of data received at the priority used by JMS priority 9 messages. Typically this is an accurate measure of the number of bytes of message data received at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Received at Low Priority (bytes) The number of bytes of data received at a low priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Received at Lowest Priority (bytes) The number of bytes of data received at the lowest possible priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Received at Very High Priority (bytes) The number of bytes of data received at a very high priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Received at Very Low Priority (bytes) The number of bytes of data received at a very low priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
</tbody>
</table>
Table 28. Format of the 12-character timestamp (continued)

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Sent at High Priority (bytes) The number of bytes of data transmitted at a high priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Sent at Highest Priority (bytes) The number of bytes of data transmitted at the highest possible priority for transmission. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Sent at JMS 0 Priority (bytes) The number of bytes of data transmitted at the priority used by JMS priority 0 messages. Typically this is an accurate measure of the number of bytes of message data transmitted at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Sent at JMS 1 Priority (bytes) The number of bytes of data transmitted at the priority used by JMS priority 1 messages. Typically this is an accurate measure of the number of bytes of message data transmitted at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Sent at JMS 2 Priority (bytes) The number of bytes of data transmitted at the priority used by JMS priority 2 messages. Typically this is an accurate measure of the number of bytes of message data transmitted at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Sent at JMS 3 Priority (bytes) The number of bytes of data transmitted at the priority used by JMS priority 3 messages. Typically this is an accurate measure of the number of bytes of message data transmitted at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Sent at JMS 4 Priority (bytes) The number of bytes of data transmitted at the priority used by JMS priority 4 messages. Typically this is an accurate measure of the number of bytes of message data transmitted at this priority level. However,
from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Sent at JMS 5 Priority (bytes) The number of bytes of data transmitted at the priority used by JMS priority 5 messages. Typically this is an accurate measure of the number of bytes of message data transmitted at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Sent at JMS 6 Priority (bytes) The number of bytes of data transmitted at the priority used by JMS priority 6 messages. Typically this is an accurate measure of the number of bytes of message data transmitted at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Sent at JMS 7 Priority (bytes) The number of bytes of data transmitted at the priority used by JMS priority 7 messages. Typically this is an accurate measure of the number of bytes of message data transmitted at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Sent at JMS 8 Priority (bytes) The number of bytes of data transmitted at the priority used by JMS priority 8 messages. Typically this is an accurate measure of the number of bytes of message data transmitted at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Sent at JMS 9 Priority (bytes) The number of bytes of data transmitted at the priority used by JMS priority 9 messages. Typically this is an accurate measure of the number of bytes of message data transmitted at this priority level. However, from time to time, control transmissions used to negotiate the flow of messages might be transmitted at this priority level. The valid format is a positive integer.

Sent at Low Priority (bytes) The number of bytes of data transmitted at a low priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Sent at Lowest Priority (bytes) The number of bytes of data transmitted at the lowest priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Sent at Very High Priority (bytes) The number of bytes of data transmitted at a very high priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Sent at Very Low Priority (bytes) The number of bytes of data transmitted at a very low priority. Message data cannot be transmitted with this priority, so typically these bytes of data will comprise control transmissions used to negotiate the flow of messages. The valid format is a positive integer.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.
Summary Whether this row is a summary row of statistical totals for all messaging engines. Valid values are No and yes.

Total Read (bytes) The number of bytes of data received from client processes. This includes both message data and data used to negotiate the transmission of messages. The valid format is a positive integer.

Total Written (bytes) The number of bytes of data sent to client processes. This includes both message data and data used to negotiate the transmission of messages. The valid format is a positive integer.

Writes The number of write operations used to transmit data to client processes via network connections. The valid format is a positive integer.

Writes Blocked The number of write operations that could not be completed immediately. This number can be used as an indicator of network congestion when communicating with client processes. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Container Object Pools attributes
Use the Container Object Pools attributes in situations to monitor the effectiveness of the object cache and of resource usage.

These attributes provide aggregated information for each defined EJB container that aggregates bean object pool performance for all Enterprise beans deployed to that container and aggregated information for the application server that aggregates bean object pool performance data for all Enterprise beans deployed to the application server. The attributes within this group are used to build the Container Object Pools workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Average Objects Discarded The average number of objects discarded each time the bean object pool was emptied of idle objects during the interval. The valid format is a decimal (formatted to 3 decimal places).
Average Objects in Pool The average number of objects in the bean object pool during the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Discard Count The number of times the object returned to the bean-object pool was discarded because the bean object pool was already full during the interval. The valid format is a positive integer.

Discard Rate (per sec) The bean object pool discard rate (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Drain Count The number of times the bean object pool was found idle and an attempt was made to remove idle objects during the interval. The valid format is a positive integer.

Drain Rate (per sec) The number of times (per second) that the bean object pool was found idle during the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Find Count The number of times a retrieval call found an available object in the bean object pool during the interval. The valid format is a positive integer.

Find Rate (per sec) The availability of bean object pool retrievals (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Get Count The number of calls retrieving an object from the bean object pool during the interval. The valid format is a positive integer.

Get Rate (per sec) The number of bean objects retrieved (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Instrumentation Level The instrumentation level for this container. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Return Count The number of calls returning an object to the bean object pool during the interval. The valid format is a positive integer.

Return Rate (per sec) The bean objects returned (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).
Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

Summary of All Containers Whether this row is a summary row of statistical totals aggregated over all bean object pools in the application server. Valid values are No and Yes.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Container Transactions attributes

The **Container Transactions** attribute group provides performance information about transactions that run in each defined EJB container and an aggregated value for all transactions that run in the application server.

Use the Container Transactions attributes in situations to monitor transaction activity for each EJB container and for the application server. The attributes within this group are used to build the Container Transactions workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
• The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Global Transaction before Completion Duration (ms) The average duration before completion for global transactions during the interval. The valid format is a decimal (formatted to 3 decimal places).

Global Transaction Commit Duration (ms) The time (in milliseconds) that the transaction required for its resolution phase during the interval. The valid format is a decimal (formatted to 3 decimal places).

Global Transaction Commit Rate (per sec) The number of times (per second) global transactions were committed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Global Transaction Duration (ms) The average duration (in milliseconds) for global transactions during the interval. The valid format is a decimal (formatted to 3 decimal places).

Global Transaction Optimize Rate (per sec) The number of times (per second) that global transactions were converted to single phase since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Global Transaction Prepare Duration (ms) The average preparation duration (in milliseconds) for global transactions during the interval. The valid format is a decimal (formatted to 3 decimal places).

Global Transaction Rollback Rate (per sec) The number of times (per second) that global transactions were undone because they could not complete during the interval. The valid format is a decimal (formatted to 3 decimal places).

Global Transaction Timeout Rate (per sec) The number of global transaction timeouts (per second) since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Global Transaction Timeouts The number of global transactions that timed out during the interval. The valid format is a positive integer.

Global Transactions Active The number of concurrently active global transactions running in the container during the interval. Global transactions involve multiple resource managers. The valid format is a decimal (formatted to 3 decimal places).

Global Transactions Begin Rate (per sec) The number of times global transactions were started (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Global Transactions Begun The total number of global transactions that the server began during the interval. The valid format is a positive integer.
Global Transactions Committed The number of global transactions that were completed during the interval. The valid format is a positive integer.

Global Transactions Involve Rate (per sec) The number of times (per second) global transactions were involved during the interval. The valid format is a positive integer.

Global Transactions Involved The number of global transactions that were involved at the server during the interval, including those that were begun or imported. The valid format is a positive integer.

Global Transactions Rolled Back The total number of global transactions that were undone because they could not complete during the interval. The valid format is a positive integer.

Global Transactions Optimized The number of global transactions converted to single phase for optimization since the previous sample. The valid format is a positive integer.

Instrumentation Level The instrumentation level for this container. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Local Transaction before Completion Duration (ms) The average duration before completion for local transactions during the interval. The valid format is a decimal (formatted to 3 decimal places).

Local Transaction Commit Duration (ms) The average duration for commit for local transactions during the interval. The valid format is a decimal (formatted to 3 decimal places).

Local Transaction Commit Rate (per sec) The number of local transactions (per second) committed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Local Transaction Duration (ms) The average duration (in milliseconds) of local transactions during the interval. The valid format is a decimal (formatted to 3 decimal places).

Local Transaction Rollback Rate (per sec) The number of times (per second) that local transactions were undone because they could not be completed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Local Transaction Timeout Rate (per sec) The number of local transactions that timed out per second during the interval. The valid format is a decimal (formatted to 3 decimal places).

Local Transaction Timeouts The number of local transactions that timed out during the interval. The valid format is a positive integer.

Local Transactions Active The number of concurrently active local transactions running in the container during the interval. Local transactions involve a single resource manager. The valid format is a decimal (formatted to 3 decimal places).
Local Transactions Begin Rate (per sec) The number of times (per second) local transactions were started during the interval. The valid format is a positive integer.

Local Transactions Begun The number of local transactions begun at the server since the previous sample. The valid format is a positive integer.

Local Transactions Committed The number of local transactions committed during the interval. The valid format is a positive integer.

Local Transactions Rolled Back The number of local transactions that were undone during the interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Data sources attributes

The Data sources attributes provide database usage information.
These attributes provide traffic information such as, response times for database requests, the frequencies at which database connections are created and destroyed, and how often databases are being accessed. The attributes within this group are used to build the Datasources workspace.

Note: The attributes within this attribute group contain meaningful values only if your site has set the request data monitoring level to Level2 to collect data on data source requests.

Application ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer or -1 which means that Application ID is aggregated statistic for all applications.

ASID The identifier (decimal) assigned to the address space running this servant region.

Average Processing Time (ms) The total average processing time (in milliseconds) that the data source is used by an application. The valid format is a decimal (formatted to 3 decimal places).

Average Query Processing Time (ms) The average time (in milliseconds) per request used by queries to the data source. The valid format is a decimal (formatted to 3 decimal places).

Average Update Processing Time (ms) The average time (in milliseconds) per request used by updates to the data source. The valid format is a decimal (formatted to 3 decimal places).

Connection Average Wait Time (ms) The average time (in milliseconds) that applications had to wait for a connection. The valid format is a decimal (formatted to 3 decimal places).

Connection Count The number of connections to the data source. The valid format is a positive integer.

Connection Max Wait Time (ms) The worst-case time (in milliseconds) that applications had to wait for a connection. The valid format is a positive integer.

Connection Rate (per sec) The number of connection requests (per second) created for the data source. The valid format is a decimal (formatted to 3 decimal places).

Connection Total Wait Time (ms) The total time (in milliseconds) that applications had to wait for a connection to the data source. The valid format is a positive integer.

Database Product The name of the database product. The valid format is an alphanumeric string, with a maximum of 128 characters.

Database Product Version The version of the database product. The valid format is an alphanumeric string, with a maximum of 128 characters.

Datasource Name The name of the data source. The valid format is an alphanumeric string, with a maximum of 256 characters.
Datasource Label A shortened version of Datasource Name, used to display the
data source name in the chart view. The valid format is an alphanumeric string,
with a maximum of 12 characters.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive
integer.

Node Name The name of the system on which the server is running. The valid
format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the application server subnode. The valid format is an
alphanumeric string, with a maximum of 128 characters.

Process ID The unique identifier of the process running the Java Virtual Machine
(JVM). The valid format is a positive integer.

Query Count The number of queries performed against the data source. The valid
format is a positive integer.

Query Rate (per sec) The number of queries (per second) being made to the data
source. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management
Agent collected the data. The valid format is a 12-character timestamp. For the STR
and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table
shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006,
at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather
than for creating situations. To specify a time and date for comparison and testing,
use attributes from the Universal Time or Local Time groups.

Sampling Rate (%) The percentage of edge requests—such as servlets and JSPs—that
were sampled for data source requests during the interval. The valid format is a
positive integer.

Server Name The name of the WebSphere application server. The valid format is
an alphanumeric string, with a maximum of 256 characters.

Summary Indicates that this row is a summary row of statistical totals for all rows.
Total Query Processing Time (ms) The total time (in milliseconds) used to process queries made to the data source. The valid format is a positive integer.

Total Update Processing Time (ms) The total time (in milliseconds) used to update the data source. The valid format is a positive integer.

Total Wait Time (ms) The time (in milliseconds) that applications had to wait for connections to the data source. The valid format is a positive integer.

Update Count The number of updates performed against the data source. The valid format is a positive integer.

Update Rate (per sec) The number of updates (per second) made to the data source. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

DB Connection Pools attributes

The **DB Connection Pools** attributes provide information about the database connection pool for each defined data source, and an aggregated value that aggregates over all data sources.

Examples of DB Connection Pools include; the number of threads waiting for a connection and the number of connections created and released. Use the DB Connection Pools attributes to analyze JDBC performance for WebSphere Application Server applications. The attributes within this group are used to build the **DB Connection Pools** and the **Pool Analysis** workspaces.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Application ID Indicates J2EE application ID.

Average Free Pool Size Indicates the average size of the pool based upon the number of free connections.

Average Pool Size The average size of the pool (based upon the number of connections) during the interval. The valid format is a decimal (formatted to 3
decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Usage Time (ms) The average time (in milliseconds) a connection was in use; blank if no transactions are completed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Average Wait Time (ms) The average time (in milliseconds) a client waited for a connection; blank if no transactions are completed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Average Waiting Threads The average number of threads waiting for a connection during the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Connection Allocation Rate (per sec) The connections allocated (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Connection Creation Rate (per sec) The connections created (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Connection Destruction Rate (per sec) The connections released (per second) during the interval. The valid format is a positive integer.

Connection Handle Indicates the number of Connection objects in use for a particular connection pool.

Connection Used The number of managed connection objects in use for a particular EIS product name. The valid format is a positive integer.

Connections Allocated The number of connections allocated during the interval. The valid format is a positive integer.

Connections Created The number of connections created during the interval. The valid format is a positive integer.

Connections Destroyed The number of connections released during the interval. The valid format is a positive integer.

Connections Granted The sum of connections allocated and connections created during the interval. The valid format is a positive integer.

Datasource Label The abbreviated name of the data source. The valid format is an alphanumeric string, with a maximum of 32 characters.

Datasource Name The name of the data source. The valid format is an alphanumeric string, with a maximum of 256 characters.

Instrumentation Level The instrumentation level for the database connection pool for the data source. For WebSphere 5, the valid values are None, Low, Medium,
High, and Maximum; for WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

JDBC Time (ms) Indicates the amount of time spent running in the JDBC driver which includes time spent in the JDBC driver, network, and database.

Maximum Pool Size The maximum number of connections that can be created in this connection pool. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Pool Size Indicates the size of the connection pool.

Percent of Time Pool at Max The average percentage of time the number of connections in the pool reached the maximum number during the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Percent Used The average percentage of the connection pool in use during the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Percent Used Bad The bad percent of pool usage by application. The valid format is a positive integer.

Percent Used Fair The fair percent of pool usage by application. The valid format is a positive integer.

Percent Used Good The good percent of pool usage by application. The valid format is a positive integer.

Prep Statement Cache Discard Rate (per sec) The cache discards (per second) of prepared statements during the interval. The valid format is a decimal (formatted to 3 decimal places).

Prep Statement Cache Discards The number of prepared statements discarded from the cache during the interval. The valid format is a positive integer.

Pool Size Indicates the size of the connection pool.

Return Count The number of connections that applications returned to the pool during the interval. The valid format is a positive integer.

Return Rate (per sec) The number of connections (per second) returned since the previous sample. The valid format is a decimal (formatted to 3 decimal places).
Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

Summary of All DB Connections Whether this row is a summary row of statistical totals collected for all the DB connection pools. Valid values are No and Yes.

Thread Timeout Rate (per sec) The number of threads (per second) that timed out during the interval. The valid format is a decimal (formatted to 3 decimal places).

Threads Timed Out The number of threads that timed out while waiting for a connection during the interval. The valid format is a positive integer.

Total Usage (ms) The total time (in milliseconds) the connection object used. The valid format is a decimal (formatted to 3 decimal places).

Total Wait (ms) The total time (in milliseconds) the connection object waited. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

DC Messages attributes

The DC Messages attributes provide message information from WebSphere Data Collector.
The attributes within this group are used to build the Log Analysis workspace.

ASID The identifier (decimal) assigned to the address space running this servant region.

Component The name of the component that caused the error. The value format is an alphanumeric string, with a maximum of 32 characters.

Event Date and Time The date and time the event occurred. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

File Name The name of the file. The valid format is an alphanumeric string, with a maximum of 256 characters.

Message Description The description of the message. The valid format is an alphanumeric string, with a maximum of 256 characters.

Message ID The unique identifier of the message. The valid format is an alphanumeric string, with a maximum of 8 characters.

Method Name The name of the method. The valid format is an alphanumeric string, with a maximum of 256 characters.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID Indicates the process ID of the JVM.

Sequence Number The sequence number in the JMX notifications stream. The valid format is a positive integer.
Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Severity The severity of the message. Valid values are Info, Warning, Error, and Severe.

Thread ID The identifier of the thread where the event occurred. The valid format is an alphanumeric string, with a maximum of 16 characters.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

DCS Stack attributes
The DCS Stack attributes report information about the statistical data within the entire WebSphere Application Server domain, including multiple nodes and servers.

Examples of DCS Stack attributes include; the incoming and outgoing message size, the number of incoming and outgoing messages, congestion events, and message buffer reallocations. The attributes within this group are used to build the DCS Stacks workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Average Incoming Message Size The average size (in bytes) of the messages that were received by the DCS stack. The valid format is a positive integer.

Average Outgoing Message Size The average size (in bytes) of the messages that were sent through the DCS stack. The valid format is a positive integer.

Coalesce Time The amount of time it actually takes to coalesce a view. The valid format is a decimal (formatted to 3 decimal places).

DCS Stack Name The name of the Topic Space. The value format is an alphanumeric string, with a maximum of 256 characters.

Group Size The size of the group the local member belongs to. The valid format is a positive integer.
High Severity Congestion Events The number of times that a high severity congestion event for outgoing messages was raised. The valid format is a positive integer.

Incoming Messages The number of messages received by the DCS stack. The valid format is a decimal (formatted to 3 decimal places).

Instrumentation Level The instrumentation level for the DCS stack. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Join View Change Time The time to do a merge view change. The DCS stack is blocked during this time. The valid format is a decimal (formatted to 3 decimal places).

Maximum Incoming Message Size The maximal size (in bytes) of the messages that were received by the DCS stack. The valid format is a positive integer.

Maximum Outgoing Message Size The maximal size (in bytes) of the messages that were sent through the DCS stack. The valid format is a positive integer.

Message Buffer Reallocations The number of message buffer reallocations due to inadequate buffer size. If this number is larger than 20 percent of the number of sent messages, contact IBM Support. The valid format is a positive integer.

Minimum Incoming Message Size The minimal size (in bytes) of the messages that were received by the DCS stack. The valid format is a positive integer.

Minimum Outgoing Message Size The minimal size (in bytes) of the messages that were sent through the DCS stack. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Outgoing Messages The number of messages sent through the DCS stack. The valid format is a positive integer.

Remove View Change Time The time to do a split view change. The DCS stack is blocked during this time. The valid format is a decimal (formatted to 3 decimal places).

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:
Table 34. Format of the 12-character timestamp

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Sent Messages The number of messages sent through the DCS stack. The valid format is a positive integer.

Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and yes.

Suspicious The number of times that the local member suspected other members. The valid format is a positive integer.

Synchronization Completion Time The amount of time needed to guarantee that all view members are synchronized. The valid format is a decimal (formatted to 3 decimal places).

Synchronization Timeouts The number of times that the synchronization procedure timed out. The valid format is a positive integer.

View Changes The number of times that this member underwent view changes. The valid format is a positive integer.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Durable Subscriptions attributes

The **Durable Subscriptions** attributes display overall statistics about the durable subscriptions of a selected topic.

A durable subscription can be used to preserve messages published on a topic while the subscriber is not active. The attributes within this group are used to build the **Durable Subscriptions** workspace.

Note:
The attributes in this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.

The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Attributes in this group are only provided for IBM WebSphere Application Server version 6.0 or later.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Aggregate Message Wait Time The time spent by messages in the bus at consumption. If this time is not what was expected, view the message using the admin console to decide what action needs to be taken. The valid format is a positive integer.

Assured Persistent Messages Consumed The number of Assured Persistent messages consumed, for the lifetime of this messaging engine. The valid format is a positive integer.

Available Message The number of messages waiting to be consumed. The valid format is a positive integer.

Best Effort Non-persistent Messages Consumed The number of best effort non-persistent messages consumed, for the lifetime of this messaging engine. The valid format is a positive integer.

Express Non-persistent Messages Consumed The number of express non-persistent messages consumed, for the lifetime of this messaging engine. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the Durable Subscriptions. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Local Oldest Message Age The longest time any message has spent on this subscription. If this time is not what was expected, view the message using the admin console to decide what action needs to be taken. The valid format is a positive integer.

Local Message Wait Time The time spent by messages on this durable subscription at consumption. If this time is not what was expected, view the message using the admin console to decide what action needs to be taken. The valid format is a positive integer.
Messaging Engine Name The name of the message engine. The value format is an alphanumeric string, with a maximum of 256 characters.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Reliable Non-persistent Messages Consumed The number of reliable non-persistent messages consumed, for the lifetime of this messaging engine. The valid format is a positive integer.

Reliable Persistent Messages Consumed The number of Reliable Persistent messages consumed, for the lifetime of this messaging engine. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Subscription Name The name of the subscriptions. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and Yes.

Topic Space Name The name of the topic space. The valid format is an alphanumeric string, with a maximum of 256 characters.

Total Messages Consumed The total number of messages consumed from this durable subscription. The valid format is a positive integer.
For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Dynamic Cache attributes

The **Dynamic Cache** attribute group provides information about the dynamic cache.

WebSphere Application Server consolidates several caching activities, including servlets, Web services, and WebSphere commands, into one service called the dynamic cache. These caching activities work together to improve application performance and share many configuration parameters, which are set in an application server's dynamic cache service. The dynamic cache works within an application server Java Virtual Machine (JVM), intercepting calls to cacheable objects, for example, through a servlet's service method or a command's execute method. It either stores the object's output to, or serves the object's content from, the dynamic cache.

The attributes within this group are used to build the Cache Analysis workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Cache Instance Name Indicates the cache instance name.

Cache Instance Type Indicates Cache instance type.

Current In-Memory Cache Size The number of cache entries currently in memory. The valid format is a positive integer.

In-Memory and Disk Timeout Rate (per sec) The rate (per second) of total in-memory and disk timeouts for the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

In-Memory and Disk Timeouts The total number of in-memory and disk timeouts during the sampling interval. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the dynamic cache. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.
Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Maximum In-Memory Cache Size The maximum number of cache entries in memory. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

Summary of Cache Indicates that this row is a summary row of statistical totals collected for all the cache object types.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Dynamic Cache Templates attributes

The Dynamic Cache Templates attribute group provides information about the cache template data.
A cache template is an object type defined by a cache policy specified in the WebSphere Application Server cachespec.xml file. A cache policy specifies the cache rules indicating what will be cached, the invalidation, timeout conditions, and other data. The attributes within this group are used to build the Cache Analysis workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Cache Instance Name The cache instance name.

Cache Instance Type The cache instance type.

Cache Miss Rate (per sec) The rate (per second) of requests for this cacheable object type that were not found in the cache during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Cache Misses The number of requests for this cacheable object type that were not found in the cache (in memory, on disk or on other cooperating caches); this would have caused the underlying servlet or command to be executed in order to obtain the results. The valid format is a positive integer.

Cache Object Type The name of the object type specified in the cache policy of the cache spec XML file. The valid format is an alphanumeric string, with a maximum of 256 characters.

Client Request Rate (per sec) The request rate (per second) for this cacheable object type made by clients directly accessing this application server. The valid format is a decimal (formatted to 3 decimal places).

Client Requests The number of requests for this cacheable object type made by clients directly accessing this application server. The valid format is a positive integer.

Cluster Request Rate (per sec) The request rate (per second) for this cacheable object type made by cooperating caches in this cluster. The valid format is a decimal (formatted to 3 decimal places).

Cluster Requests The number of requests for this cacheable object type made by cooperating caches in this cluster. The valid format is a positive integer.
Current Cache Size The current number of entries for this cacheable object type present in the dynamic cache. The valid format is a positive integer.

Disk Hit Rate (per sec) The rate (per second) of the requests for this cacheable object type served from disk during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Disk Hits The number of requests for this cacheable object type that were served from disk; this is applicable only when the disk offload is turned on for the dynamic cache. The valid format is a positive integer.

Explicit Disk Invalidations Rate (per sec) The rate at which the entries of this cacheable object type were removed from disk due to explicit invalidations issued by the clients. The valid format is a decimal (formatted to 3 decimal places).

Explicit Disk Invalidations The number of entries of this cacheable object type that were removed from disk due to explicit invalidations issued by the clients (directly accessing the application server and by remote JVMs in the cluster). The valid format is a positive integer.

Explicit Local Invalidation Rate (per sec) The rate at which the explicit invalidations were received for this cacheable object type from clients accessing the application server directly, either programmatically or by a cache policy. The valid format is a decimal (formatted to 3 decimal places).

Explicit Local Invalidations The number of explicit invalidations received for this cacheable object type from clients accessing the application server directly, either programmatically or by a cache policy. The valid format is a positive integer.

Explicit Memory Invalidation Rate (per sec) The rate at which the entries of this cacheable object type were removed from memory due to explicit invalidations issued by the clients. The valid format is a decimal (formatted to 3 decimal places).

Explicit Memory Invalidations The number of entries of this cacheable object type that were removed from memory due to explicit invalidations issued by the clients (directly accessing the application server and by remote JVMs in the cluster). The valid format is a positive integer.

Explicit Remote Invalidation Rate (per sec) The rate at which explicit invalidations were received for this cacheable object type from cooperating JVMs in the cluster. The valid format is a decimal (formatted to 3 decimal places).

Explicit Remote Invalidations The number of explicit invalidations received for this cacheable object type from cooperating JVMs in the cluster. The valid format is a positive integer.

Instrumentation Level The PMI instrumentation level set for collecting dynamic cache data. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.
Least Recently Used Invalidation Rate (per sec) The rate (per second) at which entries of this cacheable object type were evicted from memory by a least-recently-used algorithm. The valid format is a decimal (formatted to 3 decimal places).

Least Recently Used Invalidations The number of entries of this cacheable object type that were evicted from memory by a least-recently-used algorithm. This happens when the in-memory cache becomes full and subsequent requests for new entries have to be accommodated. The entries removed from memory are passivated to disk if disk overflow is enabled. If this number is high, consider increasing the in-memory cache size. The valid format is a positive integer.

Memory Hit Rate (per sec) The rate (per second) of the requests for this cacheable object type served from memory during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Memory Hits The number of requests for this cacheable object type served from memory. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Remote Cache Entries Received The number of entries received from cooperating dynamic caches in this cluster. The valid format is a positive integer.

Remote Cache Entry Receive Rate (per sec) The rate (per second) of entries received from cooperating dynamic caches in this cluster for the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Remote Hit Rate (per sec) The rate (per second) of the requests for this cacheable object type served from other JVMs in the cluster during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Remote Hits The requests for this cacheable object type served from other JVMs in the cluster. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Table 37. Format of the 12-character timestamp
Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

Summary of Cache Templates Whether this row is a summary row of statistical totals collected for all the cache object types. The valid values are No and Yes.

Template Row Number The number of the row in the report that displays in the workspace, which is associated with a bar in the Ten Worst Hits Rate bar chart. The valid format is an integer.

Timeout Invalidation Rate (per sec) The rate (per second) at which entries are removed from the cache (memory or disk) because their timeout has expired. The valid format is a decimal (formatted to 3 decimal places).

Timeout Invalidations The number of entries of this cacheable object type that were removed from memory or disk because their timeout (as specified in the cache spec XML file) has expired. The valid format is a positive integer.

Total Explicit Invalidation Rate (per sec) The rate at which invalidations were issued for entries for this cacheable object type explicitly by the clients. The valid format is a decimal (formatted to 3 decimal places).

Total Explicit Invalidations The number of invalidations issued for entries of this cacheable object type explicitly by the clients (directly accessing the application server and by remote JVMs in this cluster). The valid format is a positive integer.

Total Hit Rate (per sec) The total hit rate per second. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

EJB Containers attributes

The EJB Containers attributes provide aggregated information for each defined EJB container that aggregates bean performance data for all Enterprise beans deployed to that container.

The attributes also provide aggregated information for the application server that aggregates bean performance data for all Enterprise beans deployed to the application server. These attributes provide load values, response times, and lifecycle activities for Enterprise beans. Use the EJB Containers attributes in situations to monitor application server load and resource usage.
The attributes within this group are used to build the EJB Containers workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Activate Count The number of times a bean instance was activated during the interval. The valid format is a positive integer.

Activation Rate (per sec) The bean activations (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Active Method Count The average number of bean methods concurrently active during the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Concurrently Live Beans The average number of bean objects concurrently live during the sampling interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Concurrently Ready Beans The average number of beans concurrently active during the last interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Create Average Time (ms) The average method response time for creates during the interval. The valid format is a decimal (formatted to 3 decimal places).

Create Count The number of bean create calls during the interval. The valid format is a positive integer.

Creation Rate (per sec) The bean create calls (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).
Destroy Count The number of times bean objects were destroyed by garbage collection during the interval. The valid format is a positive integer.

Destruction Rate (per sec) The beans destroyed by garbage collection (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Entity Bean Load Count The number of times an entity bean data was loaded during the interval. The valid format is a positive integer.

Entity Bean Load Rate (per sec) The number of entity beans (per second) that were loaded during the interval. The valid format is a decimal (formatted to 3 decimal places).

Entity Bean Store Count The number of times entity bean data was written to the database during the interval. The valid format is a positive integer.

Entity Bean Store Rate (per sec) The entity bean stores (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Instantiate Count The number of times bean objects were instantiated during the interval. The valid format is a positive integer.

Instantiation Rate (per sec) The number of times bean objects were instantiated (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Instrumentation Level The instrumentation level for this EJB container. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Method Average Response Time (ms) The average response time (in milliseconds) on remote interface methods for all beans during the interval. The valid format is a decimal (formatted to 3 decimal places).

Method Invocation Count The number of method invocations during the interval. The valid format is a positive integer.

Method Invocation Rate (per sec) The rate of invocations (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Passivate Count The number of times a bean instance was passivated during the interval. The valid format is a positive integer.

Passivation Rate (per sec) The bean passivations (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).
Removal Rate (per sec) The bean remove calls (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Remove Average Time (ms) The average method response time for removes during the interval. The valid format is a decimal (formatted to 3 decimal places).

Remove Count The number of bean remove calls during the interval. The valid format is a positive integer.

Request Count The number of requests during the interval. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

Summary of All Containers Whether this row is a summary row of statistical totals collected for all EJB containers. The valid values are No and Yes.

Total (ms) The total time used during the interval. The valid format is a decimal (formatted to 3 decimal places).

Total Create (ms) The total time (in milliseconds) of bean create calls during the interval. The valid format is a decimal (formatted to 3 decimal places).

Total Method Invocation (ms) The total time (in milliseconds) of method invocations during the interval. The valid format is a decimal (formatted to 3 decimal places).
Total Remove (ms) The total time (in milliseconds) of bean remove calls during the interval. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Enterprise Java Beans attributes

The Enterprise Java Beans attributes provide performance information about each Enterprise Java Bean (EJB) deployed to the application server.

These attributes provide information about bean activity and bean object pool activity. Use the Enterprise Java Beans attributes in situations to monitor performance and problems for an individual bean. The attributes within this group are used to build the Enterprise Java Beans workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then reselect it later. Each time you reselect the workspace, these attributes are updated with the latest data.

Activate Count The number of times a bean instance was activated during the interval. The valid format is a positive integer.

Activation Rate (per sec) The bean instance activations (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Active Method Count The average number of invocations being processed concurrently for all the methods during the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Application EJB Module Name The name of the Web Application or EJB Module. The valid format is an alphanumeric string, with a maximum of 64 characters.

Average Concurrently Live Beans The average number of live bean objects during the interval, which include objects that were instantiated but not yet destroyed. This is a load value providing data on the average level as a function of time. It is the average number of bean objects that exist in the run time, whether active or pooled. This is a measure of how many resources the home interface is consuming.
The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Concurrently Ready Beans The average number of active beans during the interval. This is a load value providing data on the average level as a function of time. It is the average number of bean instances of the home that are in the ready state. This is a measure of how busy the server is. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Objects Discarded The average number of objects that were discarded each time the bean object pool was emptied of idle objects during the interval. The valid format is a decimal (formatted to 3 decimal places).

Average Objects in Pool The average number of objects in the bean object pool during the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Bean Name The name of the Enterprise JavaBean (EJB). This name prefixes the application name and the EJB jar name. The valid format is an alphanumeric string, with a maximum of 128 characters.

Bean Type The type of bean. Valid values are Stateless, Stateful, Entity, and Message Driven.

Create Average Time (ms) The average method response time to create bean objects during the interval. The valid format is a decimal (formatted to 3 decimal places).

Create Count The number of create calls during the interval. The valid format is a positive integer.

Creation Rate (per sec) The create calls (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Destroy Count The average number of times bean objects were destroyed by garbage collection during the interval. The valid format is a positive integer.

Destruction Rate The rate of destructions (per second) for bean objects by the garbage collector during the interval. The valid format is a decimal (formatted to 3 decimal places).

Discard Count The number of times the returned object to the bean object pool was discarded because the bean object pool was already full during the interval. The valid format is a positive integer.

Discard Rate (per sec) The bean object pool discards (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).
Drain Count The number of times the bean object pool was found idle and an attempt was made to remove idle objects during the interval. The valid format is a positive integer.

Drain Rate (per sec) The drain rate (per second) for the bean object pool during the interval. The valid format is a decimal (formatted to 3 decimal places).

Entity Bean Load Count The number of times bean data was loaded during the interval. The valid format is a positive integer.

Entity Bean Load Rate (per sec) The bean data loads (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Entity Bean Store Count The number of times bean data was written to the database during the interval. The valid format is a positive integer.

Entity Bean Store Rate (per sec) The rate at which data was written (per second) to the database for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Find Count The number of times a retrieval call found an object available in the bean object pool during the interval. The valid format is a positive integer.

Find Rate (per sec) The bean object pool retrieve availability (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Get Count The number of calls that retrieved an object from the bean object pool during the interval. The valid format is a positive integer.

Get Rate (per sec) The number of times bean objects were retrieved (per second) during the interval. The valid format is a decimal (formatted to 3 decimal places).

Instantiate Count The number of times bean objects were created during the interval. The valid format is a positive integer.

Instantiation Rate (per sec) The bean objects created (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Instrumentation Level The instrumentation level of this enterprise bean. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Method Average Response Time (ms) The average response time (in milliseconds) for all methods of the remote interface for this bean during the interval. The valid format is a decimal (formatted to 3 decimal places).

Method Invocation Rate (per sec) The invocations (per second) for all methods during the sampling interval. This is a load value that provides data on the average level as a function of time. This is a measure of how busy the server is. The valid format is a decimal (formatted to 3 decimal places).
Method Invocations The total number of remote interface method invocations during the interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Passivate Count The number of times a bean instance was passivated during the interval. The valid format is a positive integer.

Passivation Rate (per sec) The number of passivations (per second) during the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Removal Rate (per sec) The remove calls (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Remove Average Time (ms) The average method response time to remove bean objects during the interval. The valid format is a decimal (formatted to 3 decimal places).

Remove Count The number of remove calls during the interval. The valid format is a positive integer.

Return Count The number of calls that returned an object to the bean object pool during the interval. The valid format is a positive integer.

Return Rate (per sec) The bean object pool returns (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.
Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Garbage Collection Analysis attributes

The Garbage Collection Analysis attribute group provides information about the garbage collector in the Java Virtual Machine that is hosting the application server.

The garbage collection attributes report the number of times the collector ran during the interval and the resulting number of objects that the collector freed. Use the Garbage Collection Analysis attributes in situations to monitor garbage-collection performance and possible problems. The attributes within this group are used to build the Garbage Collection Analysis and the WebSphere Application Server workspaces.

ASID The identifier (decimal) assigned to the address space running this servant region.

GC Rate (per min) The rate (per minute) at which the Java Virtual Machine is invoking its garbage-collection routine. The valid format is a decimal (formatted to 3 decimal places).

Heap Used (%) The percentage of heap used at the end of the interval. The valid format is a decimal (formatted to 1 decimal places).

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Kbytes Free The total number of free kilobytes in the heap at the end of the last garbage-collection cycle during the interval. The valid format is a positive integer.

Kbytes Total Freed by GC The total number of kilobytes freed by the garbage collector during the interval. The valid format is a positive integer.

Kbytes Used The number of kilobytes in the heap that were in use at the end of the last garbage collection cycle during the interval. The valid format is a positive integer.

Kbytes Used Delta The difference between the Kbytes Used value for this interval and the Kbytes Used value for the prior interval. The valid format is a positive or negative integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.
Objects Freed The number of objects the garbage collector freed during the interval (only supported for IBM JDK). The valid format is a positive integer. Not monitored on non-IBM Java Virtual Machines, including those commonly used on HP-UX and Solaris platforms.

Objects Moved The number of objects the garbage collector moved during the interval (only supported for IBM JDK). The valid format is a positive integer. Not monitored on non-IBM Java Virtual Machines, including those commonly used on HP-UX and Solaris platforms.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Real Time (ms) The total real time (in milliseconds) the garbage collector required during the most recent cycle. The valid format is a positive integer.

Real Time (%) The percentage of real time that the garbage collector was active during the interval. The valid format is a decimal (formatted to 1 decimal place).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Indicates that this row is a summary row of statistical totals for all rows.

Times Run The number of times the garbage collector ran during the interval. The valid format is a positive integer.

For additional information, see:
- [Organization of the predefined workspaces](#)
Garbage Collection Cycle attributes

The Garbage Collection Cycle attribute group provides information about a single garbage-collection cycle that the Java Virtual Machine hosting the application server performed.

The Garbage Collection Cycle attributes report the free heap space both before and after garbage collection, the heap space freed, and the number of objects moved during garbage collection. Use the Garbage Collection Cycle attributes in situations to examine the results of a particular garbage collection.

The attributes within this group are used to build the Garbage Collections - Selected Allocation Failure workspace.

Allocation Failure Number The identifier assigned to the allocation-failure block for which the JVM ran the current garbage-collection cycle, which is associated with a bar in the Heap Usage - History bar chart. If your Java code called System.gc to invoke garbage collection, this number is 0. The valid format is a positive integer.

ASID The identifier (decimal) assigned to the address space running this servant region.

Compact (ms) The time (in milliseconds) required for the compaction phase of the garbage-collection cycle. The valid format is a positive integer.

Compaction Reason The code describing the reason garbage collection was initiated. The valid format is a positive integer. The compaction codes are:

<table>
<thead>
<tr>
<th>Compaction Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insufficient free space for the allocation request following the mark and sweep phases.</td>
</tr>
<tr>
<td>2</td>
<td>The heap is fragmented and will benefit from a compaction.</td>
</tr>
<tr>
<td>3</td>
<td>Less than 15% free space available.</td>
</tr>
<tr>
<td>4</td>
<td>A call to System.gc requested garbage collection.</td>
</tr>
<tr>
<td>5</td>
<td>Less than 5% free space available.</td>
</tr>
<tr>
<td>6</td>
<td>Less than 128K free space available.</td>
</tr>
<tr>
<td>7</td>
<td>Parameter Xcompactgc specified.</td>
</tr>
<tr>
<td>8</td>
<td>The transient heap has less than 5% free space available.</td>
</tr>
<tr>
<td>9</td>
<td>The heap is fragmented (this code marks additional reasons for compaction apart from compaction code 2).</td>
</tr>
</tbody>
</table>

Final References The number of final reference objects collected during this garbage-collection cycle. The valid format is a positive integer.

Garbage Collection Date and Time The date and time the Java Virtual Machine invoked the garbage collector. The valid format is a 16-character timestamp. This attribute was designed for logging and reporting data-collection times rather than
for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Note to Solaris and HP-UX users: Since allocation-failure information is not recorded on these platforms, this column is always empty on these platforms.

Garbage Collection Number
The number of this garbage-collection cycle. The valid format is a positive integer.

Heap Capacity (Kbytes)
The total number of kilobytes allocated to the main heap after this garbage-collection cycle. The valid format is a positive integer.

Heap Free (%) after GC
The percentage of heap space that is available after this garbage-collection cycle. The valid format is a decimal (formatted to 1 decimal place).

Heap Space Free (Kbytes)
The number of kilobytes available within the heap after this garbage-collection cycle. The valid format is a positive integer.

Interval (sec)
The length (in seconds) of the sampling interval. The valid format is a positive integer.

KBytes Free at Start of GC
The number of kilobytes available in the heap before garbage collection began. The valid format is a positive integer.

Kbytes Freed
The number of kilobytes freed by the garbage collector. The valid format is a positive integer.

Kbytes Moved
The number of kilobytes moved on the heap during this compaction. The valid format is a positive integer.

Kbytes Used
The number of kilobytes in the heap that were in use after this garbage-collection cycle. The valid format is a positive integer.

Mark (ms)
The time (in milliseconds) required for the mark phase of the garbage-collection cycle. The valid format is a positive integer.

Node Name
The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Objects Moved
The number of objects the garbage collector moved during this compaction. The valid format is a positive integer.

Origin Node
The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Phantom References
The number of phantom reference objects collected during this garbage-collection cycle. "Phantom" refers to a specific Java class that defines object reachability. The valid format is a positive integer.

Process ID
The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Sample Date and Time
The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR
and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Soft References The number of soft reference objects collected during this garbage-collection cycle. "Soft" refers to a specific Java class that defines object reachability. The valid format is a positive integer.

Sweep (ms) The time (in milliseconds) required for the sweep phase of the garbage-collection cycle. The valid format is a positive integer.

Time to Complete (ms) The time (in milliseconds) required to complete this garbage-collection cycle. The valid format is a positive integer.

Weak References The number of weak reference objects collected during this garbage-collection cycle. "Weak" refers to a specific Java class that defines object reachability. The valid format is a positive integer.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

High Availability Manager attributes

The **High Availability Manager** attributes provide aggregated information about the high availability managers.

The attributes within this group are used to build the **High Availability Manager** workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after
installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.

- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Bulletin-Board Rebuild Time The time taken (in milliseconds) to rebuild the global state of the bulletin-board. During this time no messages will be received by the subscribers. If this time is too high, and is unacceptable, you may want to increase the number of coordinators. The valid format is a decimal (formatted to 3 decimal places).

Bulletin-Board Subjects The total number of subjects managed. The valid format is a positive integer. This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Bulletin-Board Subscriptions The total number of bulletin-board subscriptions. The valid format is a positive integer. This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Group State Rebuild Time The time taken (in milliseconds) to rebuild the global group state. During the rebuild time, no fail-over can happen. If this time is too high and is unacceptable for the desired availability, you may want to increase the number of coordinators. For proper operation of this counter, you must host the active coordinator in an application server other than the deployment manager. The valid format is a decimal (formatted to 3 decimal places).

Instrumentation Level The instrumentation level for availability manager counters. For WebSphere 5, the valid values are None, Low, Medium, High, and Maximum; for WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Local Bulletin-Board Subjects The total number of subjects being posted to locally. The number includes the proxy postings (if any) done by the core group bridge service on behalf of servers belonging to different WebSphere cells. The valid format is a positive integer. This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Local Bulletin-Board Subscriptions Indicates the total number of bulletin-board subscriptions being posted to locally.
Local Groups The total number of local groups. The valid format is a positive integer. This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and Yes.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

J2C Connection Pools attributes

The **J2C Connection Pools** attribute group provides information about connectors that adhere to J2C, the WebSphere Application Server implementation of the J2C architecture.

Data counters for this category contain usage information about the J2C architecture that enables enterprise beans to connect and interact with procedural
backend systems, such as Customer Information Control System (CICS) and Information Management System (IMS). Examples include the number of managed connections or physical connections and the total number of connections or connection handles.

The attributes within this group are used to build the J2C Connection Pools workspace.

Note:
• The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
• The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Application ID Indicates J2EE application ID.

Average Free Connections The average number of free Managed Connections for the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Pool Size The average number of Managed Connections for the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Usage Time (ms) The average time (in milliseconds) that connections are in use (measured from when the connection is allocated to when it is returned). The valid format is a decimal (formatted to 3 decimal places).

Average Wait Time (ms) The average waiting time (in milliseconds) until a connection is granted for the interval. The valid format is a decimal (formatted to 3 decimal places).

Concurrent Waiting Threads The average number of threads concurrently waiting for a connection for the interval. The valid format is a positive integer. This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.
Connection Allocation Rate (per sec)
The rate (per second) of application connections allocated from Managed Connections for the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Connection Creation Rate (per sec)
The rate (per second) of Managed Connections created for the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Connection Destruction Rate (per sec)
The rate (per second) of Managed Connections destroyed for the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Connection Factory Name
The name of the connection factory. The valid format is an alphanumeric string, with a maximum of 256 characters.

Connection Handles
The number of open application connections that have been allocated from the managed connections. The valid format is a positive integer.

Connection Pool Timeout Rate (per sec)
The rate (per second) of connection pool timeouts for the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Connection Pool Timeouts
The number of faults, such as timeouts, in connection pools for the sampling interval. The valid format is a positive integer.

Connection Return Rate (per sec)
The rate (per second) of allocated application connections that have been returned for the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Connections Allocated
The number of application connections allocated from Managed Connections. The valid format is a positive integer.

Connections Created
The total number of Managed Connections created during the sampling interval. The valid format is a positive integer.

Connections Destroyed
The number of Managed Connections destroyed during the sampling interval. The valid format is a positive integer.

Connections Granted
The number of Managed Connections granted during the interval. The valid format is a positive integer.

Connections Returned
The number of allocated application connections that have been returned (closed) during the sampling interval. The valid format is a positive integer.

Connections Used
The number of Managed Connection objects available in a particular connection pool; this number includes all Managed Connection objects that have been created but not destroyed. The valid format is a positive integer.

Factory Label
The abbreviated name of the connection factory. The valid format is an alphanumeric string, with a maximum of 32 characters.

Instrumentation Level
The instrumentation level for the J2C connection pools. For WebSphere 5, the valid values are None, Low, Medium, High, and Maximum; for WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.
Interval Time The length (in seconds) of the sampling interval. The valid format is a positive integer.

Maximum Pool Size The maximum number of managed connections that can be created in this connection pool (blank for each individual managed connection). The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Percent of Time Pool at Max The average percent of the time that all connections are in use for the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Percent Used Bad The bad percent of pool usage by application. The valid format is a positive integer.

Percent Used Fair The fair percent of pool usage by application. The valid format is a positive integer.

Percent Used Good The good percent of pool usage by application. The valid format is a positive integer.

Pool Used (%) The average percent of the pool that is in use for the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Row Number The number of the row within the report, which corresponds to a bar in the Highest Miss Rates bar chart. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>
Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

Summary of J2C Connections Whether this row is a summary row of statistical totals collected for all the J2C connection pools. Valid values are No and Yes.

Total Usage (ms) The total time (in milliseconds) the connection object used. The valid format is a decimal (formatted to 3 decimal places).

Total Wait (ms) The total time (in milliseconds) the connection object waited. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

JMS Summary attributes

The JMS Summary attributes provide information about how WebSphere Application Server applications are interacting with messaging middleware (WebSphere MQ) using the Java Messaging Service (JMS). It provides such information as which queue managers and queues are being used and how many messages are being read and written.

The attributes within this group are used to build the **JMS Summary** workspace.

Note: The attributes within this attribute group contain meaningful values only if your site has set the request data monitoring level to Level2 to collect data on JMS requests.

Application ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer or -1 which means that Application ID is aggregated statistic for all applications.

ASID The identifier (decimal) assigned to the address space running this servant region.

Average Processing Time (ms) The average time (in milliseconds) per request using the JMS. The valid format is a decimal (formatted to 3 decimal places).

Browse Average Time (ms) The average time (in milliseconds) for each browse request from the queue. The valid format is a decimal (formatted to 3 decimal places).
Browse Count The number of messages browsed from the queue. The valid format is a positive integer.

Browse Rate (per sec) The number of messages (per second) browsed from a JMS queue. The valid format is a decimal (formatted to 3 decimal places).

Browse Total Time (ms) The total time (in milliseconds) consumed by browse requests from the queue. The valid format is a positive integer.

Full Name The complete name of the message queue, which consists of the queue manager name concatenated to the queue name and separated by a slash. The valid format is an alphanumeric string, with a maximum of 100 characters.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

JMS Connection Label A shortened version of the full name. The valid format is an alphanumeric string, with a maximum of 12 characters.

Manager Name The name of the WebSphere MQ queue manager. This attribute is blank if WebSphere MQ is not being used. The valid format is an alphanumeric string, with a maximum of 48 characters.

Name The name of the WebSphere MQ queue. The valid format is an alphanumeric string, with a maximum of 48 characters.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the application server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Publish Average Time (ms) The average time (in milliseconds) for each publish request to be sent to the queue. The valid format is a decimal (formatted to 3 decimal places).

Publish Count The number of publish requests sent to the queue. The valid format is a positive integer.

Publish Rate (per sec) The number of publish requests (per second) sent to a JMS queue. The valid format is a decimal (formatted to 3 decimal places).

Publish Total Time (ms) The total time (in milliseconds) consumed by all publish requests for the queue. The valid format is a positive integer.

Receive Average Time (ms) The average time (in milliseconds) for each get from the queue. The valid format is a decimal (formatted to 3 decimal places).

Receive Count The number of destructive gets from the queue. The valid format is a positive integer.

Receive Rate (per sec) The number of destructive gets (per second) made from the queue. The valid format is a decimal (formatted to 3 decimal places).
Receive Total Time (ms) The total time (in milliseconds) consumed by gets from the queue. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Send Average Time (ms) The average time (in milliseconds) for each put to the queue. The valid format is a decimal (formatted to 3 decimal places).

Send Count The number of messages put to the queue. The valid format is a positive integer.

Send Rate (per sec) The number of messages (per second) put to the queue. The valid format is a decimal (formatted to 3 decimal places).

Send Total Time (ms) The total time (in milliseconds) consumed by puts to the queue. The valid format is a positive integer.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Indicates that this row is a summary row of statistical totals for all rows.

Total Time (ms) The total time (in milliseconds) spent accessing the queue. The valid format is a positive integer.

Type The type of message manager. The valid values are Queue and Topic.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)
Log Analysis attributes

The Log Analysis attributes provide application server error and exception conditions which are recorded in the application server log files.

The log files are SystemOut.log and SystemErr.log. Use the Log Analysis attributes in situations to monitor errors and exception conditions and their severity.

The attributes within this group are used to build the Log Analysis workspace.

ASID The identifier (decimal) assigned to the address space running this servant region.

Component The name of the component that caused the error. The valid format is an alphanumeric string, with a maximum of 32 characters.

Error Date and Time The date and time the event occurred. The valid format is a timestamp. This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Job ASID The identifier (hexadecimal) assigned to the address space running this servant region. The valid format is an alphanumeric string, with a maximum of 4 characters.

Job Name The job name assigned to this servant region. The valid format is an alphanumeric string, with a maximum of 8 characters.

Message ID The identifier assigned to the message. The valid format is an alphanumeric string, with a maximum of 12 characters.

Message Origin Where the message originates; that is, the log file name and line number. The valid format is an alphanumeric string, with a maximum of 32 characters. This field is not empty only on the z/OS system.

Message Text The text of the message. The valid format is alphanumeric string, with a maximum of 256 characters. All error message text data that goes beyond 256 characters are truncated and are not shown in the portal.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The process identifier of the Java virtual machine. The valid format is an alphanumeric string, with a maximum of 8 characters. In a z/OS system, this field displays in hexadecimal format.

Sequence Number The sequence number in the JMX notifications stream. The valid format is positive integer.

Server Instance Name The name of the application server instance. This is the name of a single address space that can run application code (called a "specific server" or simply a "server"). The valid format is an alphanumeric string, with a maximum of 8 characters.
Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Severity The severity of the message. The valid values are:

<table>
<thead>
<tr>
<th>Severity</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational</td>
<td>A message intended to convey only user information</td>
</tr>
<tr>
<td>Unconditional</td>
<td>A message of type Unconditional</td>
</tr>
<tr>
<td>Dump</td>
<td>A message of type Dump</td>
</tr>
<tr>
<td>SystemOut</td>
<td>A message written directly to System.out by the user application or internal components</td>
</tr>
<tr>
<td>SystemError</td>
<td>A message written directly to System.err by the user application or internal components</td>
</tr>
<tr>
<td>User</td>
<td>A message of type User</td>
</tr>
<tr>
<td>EntryMethod</td>
<td>A message written upon entry to a method</td>
</tr>
<tr>
<td>ExitMethod</td>
<td>A message written upon exit from a method</td>
</tr>
<tr>
<td>Event</td>
<td>A message of type Event</td>
</tr>
<tr>
<td>Debug</td>
<td>A message of type Debug</td>
</tr>
<tr>
<td>Audit</td>
<td>An audit message</td>
</tr>
<tr>
<td>Warning</td>
<td>A warning message</td>
</tr>
<tr>
<td>Error</td>
<td>An error message</td>
</tr>
<tr>
<td>Terminate</td>
<td>A message of type Terminate (exit process)</td>
</tr>
<tr>
<td>Fatal</td>
<td>A fatal message</td>
</tr>
<tr>
<td>Unknown</td>
<td>A placeholder that indicates the message type was not recognized</td>
</tr>
</tbody>
</table>

Thread ID The unique identifier of the thread where the event occurred. The valid format is an alphanumeric string, with a maximum of 16 characters.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Messaging Engine Communications attributes

The Messaging Engine Communications attributes display statistics for all the messaging engines being hosted by the current application server.

The attributes within this group are used to build the Messaging Engine Communications workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
• The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

• Attributes in this group are only provided for IBM WebSphere Application Server version 6.0 or later.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

API Connections The number of sessions being used by messaging engines that are currently network connected to this application server. The valid format is a positive integer.

Buffered Reads (bytes) The number of bytes of data that have been received from the network and are held pending further processing. Large values might indicate that the application server is unable to process data fast enough to keep up with the other application server processes hosting messaging engines that it is network attached. The valid format is a positive integer.

Buffered Writes (bytes) The number of bytes of data being held pending transmission. Large values might indicate network congestion or application server processes hosting messaging engines which are unable to process data fast enough to keep up with the application server. The valid format is a positive integer.

Errors The communication errors that have occurred and resulted in a network connection to a messaging engine being disconnected. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the Messaging Engine Communications. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Message Read (bytes) The number of bytes of message data received from application server processes hosting messaging engines over network connections. This does not include data used to negotiate the transmission of messages. The valid format is a positive integer.

Message Written (bytes) The number of bytes of message data sent to application server processes hosting messaging engines over network connections. This does not include data used to negotiate the transmission of messages. The valid format is a positive integer.

Messaging Engine Attached The number of distinct application server processes hosting messaging engines currently network connected to this application server. The valid format is a positive integer.

Messaging Engine Name The name of the message engine. The value format is an alphanumeric string, with a maximum of 256 characters.
Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Reads The number of read operations used to receive data from application server processes hosting messaging engines via network connections. The valid format is a positive integer.

Reads Blocked The number of read operations that could not be completed immediately. This number can be used as an indicator of network congestion when communicating with application server processes hosting messaging engines. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Whether this row is a summary row of statistical totals for all messaging engine communications. Valid values are No and Yes.

Total Read (bytes) The Number of bytes of data received from application server processes hosting messaging engines. The valid format is a positive integer.

Total Written (bytes) The Number of bytes of data sent to application server processes hosting messaging engines. The valid format is a positive integer.

Writes The number of write operations used to transmit data to application server processes hosting messaging engines via network connections. The valid format is a positive integer.
Writes Blocked The number of write operations that could not be completed immediately. This number can be used as an indicator of network congestion when communicating with application server processes hosting messaging engines. The valid format is a positive integer.

For additional information, see:
- [Attribute groups used by the predefined workspaces](http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itcamwas.doc/toc.xml)

Messaging Engines attributes

The **Messaging Engines** attributes display aggregated information about the performance of the messaging engines supported by WebSphere server.

The attributes within this group are used to build the **Messaging Engines** workspace.

Note: Attributes in this group are only provided for IBM WebSphere Application Server version 6.0 or later.

Average Local Wait Time (ms) The time spent by messages on this durable subscription at consumption. If this time is not what was expected, view the message using the admin console to decide what action needs to be taken. The valid format is a positive integer.

Expired Messages The number of report enabled messages that expired while on this queue. The valid format is a positive integer.

Incomplete Topic Publications The number of publications not yet received by all current subscribers. If this number is unexpected, view the publication using the admin console to take any actions. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the messaging engines. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Messaging Engine Name The name of the message engine. The valid format is an alphanumeric string, with a maximum of 256 characters.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR
and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

Table 48. Format of the 12-character timestamp

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Status The status of the message engine. The valid format is a positive integer.

Summary of All Applications Whether this row is a summary row of statistical totals for all messaging engines. Valid values are No and Yes.

Total Published The total number of publications to the message engines. The valid format is a positive integer.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Portal Page Summary attributes

The **Portal Page Summary** attributes provide information about response times statistics for all portal page requests that completed on monitored WebSphere Portal server during the interval.

The attributes within this group are used to build the **Portal Pages Summary** workspace.

ASID The identifier (decimal) assigned to the address space running this servant region.

Average Response Time (ms) The average response time (in milliseconds) of requests processed by the portal pages during the current interval. The valid format is a decimal (formatted to 3 decimal places).

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.
Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Portal Page Name The name of the portal page. The value format is an alphanumeric string, with a maximum of 128 characters.

Request Count The count of requests processed by the portlet page during the current interval. The valid format is a positive integer.

Row Number The number of the row. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Indicates that this row is a summary row of statistical totals for all rows.

Total Response (ms) The total time (in milliseconds) of responses. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
Portal Summary attributes

The Portal Summary attributes provide aggregated response times statistics about all portal pages and portlet requests that completed on monitored WebSphere Portal server during the interval.

The attributes within this group are used to build the Portal Summary workspace.

ASID The identifier (decimal) assigned to the address space running this servant region.

Authentication Request Count The number of authentication requests during the interval. The valid format is a positive integer.

Authentication Total (ms) The total time (in milliseconds) of authentication requests completed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Authorization Request Count The number of authorization requests during the interval. The valid format is a positive integer.

Authorization Total (ms) The total time (in milliseconds) of authorization requests completed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Average Response Time of Portal Pages (ms) The average response time (in milliseconds) of all portal pages/Gateway Servlet requests completed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Average Response Time of Portlets (ms) The average response time (in milliseconds) of all portlets requests completed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Model Building Request Count The number of model building requests during the interval. The valid format is a positive integer.

Model Building Total (ms) The total time (in milliseconds) of model building requests completed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Page Loading Request Count The number of page loading requests during the interval. The valid format is a positive integer.

Page Loading Total (ms) The total time (in milliseconds) of page loading requests completed during the interval. The valid format is a decimal (formatted to 3 decimal places).
Portal Page Request Count The number of portal page requests during the interval. The valid format is a positive integer.

Portal Pages Total Response (ms) The total response time (in milliseconds) of all portal pages/Gateway Servlet requests completed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Portlets Request Count The number of portlets requests during the interval. The valid format is a positive integer.

Process ID The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Portlets Total Response (ms) The total response time (in milliseconds) of all portlets requests completed during the interval. The valid format is a decimal (formatted to 3 decimal places).

Response Time of Authentication (ms) The response time (in milliseconds) of authentication. The valid format is a positive integer.

Response Time of Authorization (ms) The response time (in milliseconds) of authorization. The valid format is a positive integer.

Response Time of Model Building (ms) The response time (in milliseconds) of model building. The valid format is a positive integer.

Response Time of Page loading (ms) The response time (in milliseconds) of page loading. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.
Summary Indicates that this row is a summary row of statistical totals for all rows.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Portlet Summary attributes

The Portlet Summary attributes provide information about response times of all portlet requests that completed on monitored WebSphere Portal.

The attributes within this group are used to build the Portlet Summary workspace.

ASID The identifier (decimal) assigned to the address space running this servant region.

Average Response Time (ms) The average response time for portlet during the current interval. The valid format is a decimal (formatted to 3 decimal places).

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Portlet Name The name of the portlet. The value format is an alphanumeric string, with a maximum of 256 characters.

Process ID The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Request Count The count of requests for portlet during the current interval. The valid format is a positive integer.

Request Rate The rate at which the requests processed by portlet during the current interval. The valid format is a decimal (formatted to 3 decimal places).

Row Number The number of the row. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
</tbody>
</table>

Table 51. Format of the 12-character timestamp
Table 51. Format of the 12-character timestamp (continued)

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Indicates that this row is a summary row of statistical totals for all rows.

Total Response (ms) The total response time for portlet during the current interval. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Queue attributes

The Queue attributes provide aggregated information about the point to point messaging.

The attributes within this group are used to build the Destinations workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.
- Attributes in this group are only provided for IBM WebSphere Application Server version 6.0 or later.

Aggregate Message Wait Time The time spent by messages in the bus at consumption. If this time is not what was expected, view the message using the admin console to decide what action needs to be taken. The valid format is a positive integer.

Assured Persistent Messages Consumed The number of assured persistent messages consumed, for the lifetime of this messaging engine. The valid format is a positive integer.
Assured Persistent Messages Produced The number of assured persistent messages produced, for the lifetime of this messaging engine. The valid format is a positive integer.

Available Message The number of messages available for a queue for consumption. If this number is close to the destination high messages value, review the high messages value. The valid format is a positive integer.

Best Effort Non-persistent Messages Consumed The number of best effort non-persistent messages consumed, for the lifetime of this messaging engine. The valid format is a positive integer.

Best Effort Non-persistent Messages Produced The number of best effort non-persistent messages produced, for the lifetime of this messaging engine. The valid format is a positive integer.

Express Non-persistent Messages Consumed The number of express non-persistent messages consumed, for the lifetime of this messaging engine. The valid format is a positive integer.

Express Non-persistent Messages Produced The number of express non-persistent messages produced, for the lifetime of this messaging engine. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the database connection pool for the data source. Valid values are None, Low, Medium, High, Basic, Extended, All, Custom, and Maximum. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Local Consumer The number of currently attached local consumers. The valid format is a positive integer.

Local Consumer Attaches The number of times an attachment has been made to this queue by local consumers. The lifetime of this value is the lifetime of the messaging engine. The valid format is a positive integer.

Local Message Wait Time The time spent by messages on this queue at consumption. If this time is not what was expected, view the message using the admin console to decide what action needs to be taken. The valid format is a positive integer.

Local Oldest Message Age The longest time any message has spent on this queue. If this time is not what was expected, view the message using the admin console to decide what action needs to be taken. The valid format is a positive integer.

Local Producer The number of currently attached local producers. The valid format is a positive integer.

Local Producer Attaches The number of times an attachment has been made to this queue by local producers. The lifetime of this value is the lifetime of the messaging engine. The valid format is a positive integer.

Messaging Engine Name The name of the message engine. The value format is an alphanumeric string, with a maximum of 256 characters.
Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Queue Name The name of the queue. The value format is an alphanumeric string, with a maximum of 256 characters.

Reliable Non-persistent Messages Consumed The number of reliable non-persistent messages consumed, for the lifetime of this messaging engine. The valid format is a positive integer.

Reliable Non-persistent Messages Produced The number of reliable non-persistent messages produced, for the lifetime of this messaging engine. The valid format is a positive integer.

Reliable Persistent Messages Consumed The number of reliable persistent messages consumed, for the lifetime of this messaging engine. The valid format is a positive integer.

Reliable Persistent Messages Produced The number of reliable persistent messages produced, for the lifetime of this messaging engine. The valid format is a positive integer.

Report Enabled Messages Expired The number of report enabled messages that expired while on this queue. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.
Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and Yes.

Total Messages Consumed The total number of messages consumed from this queue, for the lifetime of this messaging engine. The valid format is a positive integer.

Total Messages Produced The total number of messages produced to this queue, for the lifetime of this messaging engine. The valid format is a positive integer.

Unavailable Message The number of messages locked or uncommitted. This means messages that have been added or removed but the transaction has not been committed yet. If this number is high, check which messages are locked and why.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Remote Configuration Requests attributes
The Remote Configuration Requests attributes provide information about remote configuration.

The attributes within this group are used to build the WebSphere Agent workspace.

Command Indicates the Command of the request.

Node Name The system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node Indicates the server name subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Package Count Indicates the package count for this request/response.

Package Index Indicates the current index of the packages.

Request Context Indicates the request context.

Response Context Indicates the response context.

Request Identifier Indicates Request ID.

Return Value Indicates the return value of the request.

Target Agent Code Two-letter agent product code that specifies information about the product being configured.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
Request Analysis attributes

The Request Analysis attributes provide response times and functional decomposition information about requests (servlets, JSPs, and EJB methods) that ran on the application server.

The attributes within this group are used to build the Request Analysis workspace.

Application Name The name of the application to which the request belongs. The valid format is an alphanumeric string, with a maximum of 256 characters.

Application Time (ms) The average time (in milliseconds) this request spent processing application requests other than JCA, JMS, JNDI, and JDBC requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

Application Time (% of Average Response) The percentage of time this request spent processing application requests other than JCA, JMS, JNDI, and JDBC requests. The valid format is a decimal (formatted to 1 decimal place).

Application Bad Delay (msec) The delay time (in milliseconds) in the application tier collected during the interval. This column is non-zero value when application delay exceeds the bad threshold configured for it. The valid format is a positive integer.

Application Fair Delay (msec) The delay time (in milliseconds) in the application tier collected during the interval. This column is non-zero value when application delay exceeds the fair threshold configured for it. The valid format is a positive integer.

Application Good Delay (msec) The delay time (in milliseconds) in the application tier collected during the interval. This column is non-zero when application delay is less than fair threshold configured for it. The valid format is a positive integer.

Application Tier Delay Type This attribute defines the request type based on its delay time in the application tier. Valid values are Unknown, Good, Fair, and Bad.

Application Tier Response (msec) The actual response time in milliseconds in the application tier collected during the interval. The valid format is a positive integer.

Average Response (ms) The average time (in milliseconds) required each time this request ran during the interval. The valid format is a positive integer.

ASID The identifier (decimal) assigned to the address space running this servant region.

Backend Bad Delay (msec) The delay time (in milliseconds) in the backend tier collected during the interval. This column is non-zero value when backend delay exceeds the bad threshold configured for it. The valid format is a positive integer.

Backend Fair Delay (msec) The delay time (in milliseconds) in the backend tier collected during the interval. This column is non-zero value when backend delay exceeds the fair threshold configured for it. The valid format is a positive integer.
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backend Good Delay (msec)</td>
<td>The delay time (in milliseconds) in the backend tier collected during the interval. This column is non-zero when backend delay is less than fair threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Backend Tier Delay Type</td>
<td>This attribute defines the request type based on its delay time in the backend tier. Valid values are Unknown, Good, Fair, and Bad.</td>
</tr>
<tr>
<td>Backend Tier Response (msec)</td>
<td>The actual response time in milliseconds in the backend tier collected during the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Client Bad Delay (msec)</td>
<td>The delay time (in milliseconds) in the client tier collected during the interval. This column is non-zero value when client delay exceeds the bad threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Client Fair Delay (msec)</td>
<td>The delay time (in milliseconds) in the client tier collected during the interval. This column is non-zero value when client delay exceeds the fair threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Client Good Delay (msec)</td>
<td>The delay time (in milliseconds) in the client tier collected during the interval. This column is non-zero when client delay is less than fair threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Client Tier Delay Type</td>
<td>This attribute defines the request type based on its delay time in the client tier. Valid values are Unknown, Good, Fair, and Bad.</td>
</tr>
<tr>
<td>Client Tier Response (msec)</td>
<td>The actual response time in milliseconds in the client tier collected during the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Completion Count</td>
<td>The number of requests that successfully completed during the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Custom Request Count</td>
<td>The number of custom requests. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Custom Request Time (ms)</td>
<td>The average time (in milliseconds) the custom requests spent. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Custom Request Time (%)</td>
<td>The percentage of time the custom requests spent. The valid format is a decimal (formatted to 1 decimal place).</td>
</tr>
<tr>
<td>EJB Count</td>
<td>The number of times this request invoked an Enterprise Java Bean (EJB) request. The valid format is a positive integer.</td>
</tr>
<tr>
<td>EJB Time (ms)</td>
<td>The average time (in milliseconds) this request spent processing Enterprise Java Bean (EJB) requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.</td>
</tr>
<tr>
<td>EJB Time (%)</td>
<td>The percentage of time this request spent processing Enterprise Java Bean (EJB) requests. The valid format is a decimal (formatted to 1 decimal place).</td>
</tr>
<tr>
<td>Interval (sec)</td>
<td>The length (in seconds) of the sampling interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>JCA Count</td>
<td>The number of times this request invoked a J2EE Connector Architecture (JCA) request. The valid format is a positive integer.</td>
</tr>
</tbody>
</table>
JCA Time (ms) The average time (in milliseconds) this request spent processing J2EE Connector Architecture (JCA) requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

JCA Time (%) The percentage of time this request spent processing J2EE Connector Architecture (JCA) requests. The valid format is a decimal (formatted to 1 decimal place).

JMS Count The number of times this request invoked a Java Message Service (JMS) request. The valid format is a positive integer.

JMS Time (ms) The average time (in milliseconds) this request spent processing Java Message Service (JMS) requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

JMS Time (%) The percentage of time this request spent processing Java Message Service (JMS) requests. The valid format is a decimal (formatted to 1 decimal place).

JNDI Count The number of times this request invoked a Java Naming and Directory Interface (JNDI) request. The valid format is a positive integer.

JNDI Time (ms) The average time (in milliseconds) this request spent processing Java Naming and Directory Interface (JNDI) requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

JNDI Time (%) The percentage of time this request spent processing Java Naming and Directory Interface (JNDI) requests. The valid format is a decimal (formatted to 1 decimal place).

Level 2 Request Count The number of times this request was run with Mod Level 2 turned on. The valid format is a positive integer.

Level 2 Total Time (ms) The total time (in milliseconds) this request was run with Mod Level 2 turned on. The valid format is a positive integer.

Longest Response (ms) The maximum time (in milliseconds) it took this request to run during the interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the application server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Portal Processing Count The number of times the request invoked a WebSphere Portal page or portlet request. The valid format is a positive integer.

Portal Processing Time (ms) The average time (in milliseconds) the request spent in processing WebSphere Portal page or portlet requests. This field can have a zero value if the total time is less than the number of requests. The valid format is a positive integer.
Portal Processing Time (%) The percentage of time the request spent in processing WebSphere Portal page or portlet requests. The valid format is a decimal (formatted to 1 decimal place).

Process ID The process identifier of the Java virtual machine. The valid format is a positive integer.

Request Bad Response Threshold (msec) The threshold that defines the bad requests. A request that spends more time to complete than this threshold to complete is a bad request. The valid format is a positive integer.

Request Completion (%) The percentage of the requests that completed successfully during the interval. The valid format is a positive integer.

Request Completion Level The completion level of the requests during the interval. Valid values are Unknown, Good, Fair, and Bad.

Request Count The number of times this request ran during the interval. The valid format is a positive integer.

Request Detail The URI for servlet requests, or the method name for EJBs. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Fair Response Threshold (msec) The threshold that defines the fair requests. A request that spends more time than this threshold and less time than the **Request Bad Response Threshold (msec)** attribute to complete is a fair request. The valid format is a positive integer.

Request Bad Delay (msec) The delay time (in milliseconds) collected during the interval. This column is non-zero value when the whole request response time exceeds the bad threshold configured for it. The valid format is a positive integer.

Request Fair Delay (msec) The delay time (in milliseconds) collected during the interval. This column is non-zero value when the whole request response time exceeds the fair threshold configured for it. The valid format is a positive integer.

Request Good Delay (msec) The delay time (in milliseconds) collected during the interval. This column is non-zero value when the whole request response time is less than fair threshold configured for it. The valid format is a positive integer.

Request Delay Type The type of the request delay. Valid values are Unknown, Good, Fair, and Bad.

Request Label A shortened version of Request Name, used to display the request name in the chart view. The valid format is an alphanumeric string, with a maximum of 32 characters.

Request Name The URL for servlet requests, or the fully qualified class name for EJBs. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Rate (per sec) The number of requests completed per second during the interval. If the sampling rate is less than 100%, this number is extrapolated to estimate 100% of completed requests. The valid format is a decimal (formatted to 3 decimal places).
Request Type The type of request being run. Valid values are Servlet, EJB_Method, Custom, All_Workloads, Unknown, and Portlet.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Sampling Rate (%) The percentage of requests being sampled. The valid format is a positive integer.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Servlet Count The number of times this request invoked a Servlet request. The valid format is a positive integer.

Servlet Time (ms) The average time (in milliseconds) this request spent processing Servlet requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

Servlet Time (%) The percentage of time this request spent processing Servlet requests. The valid format is a decimal (formatted to 1 decimal place).

SQL Connect Count The number of times this request connected to a JDBC database. The valid format is a positive integer.

SQL Connect Time (ms) The average time (in milliseconds) this request spent connecting to a JDBC database; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

SQL Connect Time (%) The percentage of time this request spent connecting to a JDBC database. The valid format is a decimal (formatted to 1 decimal place).

SQL Execute Count The number of times this request executed a JDBC database. The valid format is a positive integer.
<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQL Execute Time (ms)</td>
<td>The average time (in milliseconds) this request spent executing a JDBC database; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.</td>
</tr>
<tr>
<td>SQL Execute Time (%)</td>
<td>The percentage of time this request spent executing a JDBC database. The valid format is a decimal (formatted to 1 decimal place).</td>
</tr>
<tr>
<td>SQL Query Count</td>
<td>The number of times this request queried a JDBC database. The valid format is a positive integer.</td>
</tr>
<tr>
<td>SQL Query Time (ms)</td>
<td>The average time (in milliseconds) this request spent querying a JDBC database; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.</td>
</tr>
<tr>
<td>SQL Query Time (%)</td>
<td>The percentage of time this request spent querying a JDBC database. The valid format is a decimal (formatted to 1 decimal place).</td>
</tr>
<tr>
<td>SQL Update Count</td>
<td>The number of times this request updated a JDBC database. The valid format is a positive integer.</td>
</tr>
<tr>
<td>SQL Update Time (ms)</td>
<td>The average time (in milliseconds) this request spent updating a JDBC database; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.</td>
</tr>
<tr>
<td>SQL Update Time (%)</td>
<td>The percentage of time this request spent updating a JDBC database. The valid format is a decimal (formatted to 1 decimal place).</td>
</tr>
<tr>
<td>Summary</td>
<td>Indicates that this row is a summary row of statistical totals for all rows.</td>
</tr>
<tr>
<td>Total Time (ms)</td>
<td>The total CPU time (in milliseconds) this request consumed during the interval. The valid format is a positive integer.</td>
</tr>
</tbody>
</table>

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Requests Monitoring Configuration attributes

The Requests Monitoring Configuration attributes provide information for all requests monitored in application. Use these attributes to monitor application edge requests. The agent supports three types of edge requests, Servlet/JSP, EJB, and Portal.

The attributes within this group are used to build the Request Baseline workspace.

Application Name The name of the application to which the request belongs. The valid format is an alphanumeric string, with a maximum of 256 characters.

Application ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer.
Application Tier Threshold (msec) The response time threshold in the application tier in milliseconds. The valid format is a positive integer.

Auto Threshold Bad Projection (%) The bad response time projection used for auto threshold. The valid format is a positive integer.

Auto Threshold Fair Ratio The percentage to derive the fair response time threshold from the baseline selection. The valid format is a positive integer.

Auto Threshold Fair Projection (%) The fair response time projection used for auto threshold. The valid format is a positive integer.

Auto Threshold Mode The request auto threshold mode. Valid values are Default, Custom, and Disabled.

Auto Threshold Deviation (%) The maximum allowed deviation of requests baseline data used for auto threshold. The valid format is a positive integer.

Auto Threshold Percent (%) The minimum percent of requests baseline data used for auto threshold. The valid format is a positive integer.

Backend Tier Threshold (msec) The response time threshold in the backend tier in milliseconds. The valid format is a positive integer.

Bad Response Threshold (msec) The time (in milliseconds) that defines the bad requests. A request that spends more time than this threshold to complete is a bad request. Use this attribute with Fair Response Threshold (msec) attribute and Fair Response Zone (msec) attribute. The valid format is a positive integer.

Bad Errors Rate Threshold The value of bad error rate percentage. The valid format is a positive integer.

Baselined Request Count The total number of requests accumulated in the baseline. This counter shows the data since the baseline starts. The valid format is a positive integer.

Client Tier Threshold (msec) The response time threshold in the client tier in milliseconds. The valid format is a positive integer.

Fair Response Threshold (msec) The time (in milliseconds) that defines the fair requests. A request that spends less time than this threshold to complete is a good request. Use this attribute with Fair Response Zone (msec) attribute and Bad Response Threshold (msec) attribute. The valid format is a positive integer.

Fair Response Zone (msec) The time span (in milliseconds) that defines the fair requests. This time span is between the fair response time threshold and the bad time threshold. If the response time of a request falls into this time span, the request is a fair request. Use this attribute with Fair Response Threshold (msec) attribute and Bad Response Threshold (msec) attribute. The valid format is a positive integer.

Fair Errors Rate Threshold The value of fair error rate percentage. The valid format is a positive integer.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.
Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Detail The request detail name. The valid format is an alphanumeric string, with a maximum of 256 characters.

Request ID The unique identifier of the request that belongs to the application. The valid format is a positive integer.

Request Label A shortened version of Request Name, used to display the request name in the chart view. The valid format is an alphanumeric string, with a maximum of 24 characters.

Request Name The URL for servlet requests, or the fully qualified class name for EJBs. The valid format is an alphanumeric string, with a maximum of 256 characters.

Request Type The type of request being run. Valid values are All, Servlet/JSP, EJB, and Portal.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
Request Times and Rates attributes

The Request Times and Rates attribute group provides information about historical request throughput and average response time for a particular application server.

The attributes within this group are used to build the WebSphere App Server workspace.

Application Name The name of the application to which the request belongs. The valid formats are as follows:
- An alphanumeric string, with a maximum of 256 characters.
- An empty string means that this sample is aggregated data for all applications.
- It does not support application level monitoring at all and only shows server level statistics when the agent is TEMA 6.1.

ASID The identifier (decimal) assigned to the address space running this servant region.

Average Load The average number of concurrent requests during the interval. The valid format is a decimal (formatted to 3 decimal places).

Average Request Completion Rate The average request completion rate (that is, the request throughput). If the sampling rate is less than 100%, this number is extrapolated to estimate 100% of completed requests. The valid format is a positive integer.

Average Request Response Time The average request response time, in milliseconds. The valid format is a positive integer.

Error Rate (%) The error rate of the request during the interval. The valid format is a decimal (formatted to 3 decimal places).

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID Indicates the process ID of the JVM.

Request Count The number of requests processed during the current interval. The valid format is a positive integer.

Request Data Monitoring Level Indicates request data monitoring level for application.

Request Type The type of request being run. Valid values are Servlet, EJB_Method, Custom, All_Workloads, Unknown, and Portlet.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR
and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Sampling Rate (%) The percentage of edge requests—such as servlets and JSPs—that were sampled during the interval. The valid format is a positive integer.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Indicates that this row is a summary row of statistical totals for all rows.

Total (ms) The total time used (in milliseconds) during the interval. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Selected Request attributes

The **Selected Request** attribute group provides detailed information about transactions' requests for database (that is, JDBC), messaging (that is, JMS), or EIS (that is, J2C) services.

The attributes within this group are used to build these workspaces:
- Selected Request - Datasources
- Selected Request - JMS Queues
- Selected Request - Resource Adapters
- Selected Request - Portal Processing

Note: The attributes within this attribute group contain meaningful values only if your site has set the request data monitoring level to Level2 to collect data on nested requests.

Activity Category The type of request. Valid values are n/a (not applicable), JDBC, JMS, JCA, and Unknown.
Activity Detail Detailed information about the activity performed by the selected request, for example, the SQL statement being processed. The valid format is an alphanumeric string, with a maximum of 128 characters.

Activity Label An abbreviated version of Activity Name, used to display the activity name in the chart view. The valid format is an alphanumeric string, with a maximum of 32 characters.

Activity Name The resource that the request is accessing, for example, the data source name. The valid format is an alphanumeric string, with a maximum of 128 characters.

Activity Type The type of the resource being requested. Valid values are:

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>not applicable</td>
</tr>
<tr>
<td>Servlet</td>
<td>A call to a servlet’s doGet or doPost methods</td>
</tr>
<tr>
<td>EJB_Method_Call</td>
<td>A call to a business method for an EJB class</td>
</tr>
<tr>
<td>Obtain_SQL_Connection_from_Datasource</td>
<td>A call to obtain a connection from a JDBC data source</td>
</tr>
<tr>
<td>SQL_Query</td>
<td>A Query request to a JDBC data source</td>
</tr>
<tr>
<td>SQL_Update</td>
<td>An Update request to a JDBC data source</td>
</tr>
<tr>
<td>SQL_Other</td>
<td>Any other request to a JDBC data source</td>
</tr>
<tr>
<td>JMS_Message_Browse</td>
<td>A call to browse a message from a JMS queue</td>
</tr>
<tr>
<td>JMS_Message_Get</td>
<td>A call to receive a message from a JMS queue (that is, a destructive get)</td>
</tr>
<tr>
<td>JMS_Message_Put</td>
<td>A call to put a message from a JMS queue</td>
</tr>
<tr>
<td>JMS_Publish_Message</td>
<td>A call to publish a publication to a JMS queue</td>
</tr>
<tr>
<td>JCA_CCI_Execute_interaction</td>
<td>A request by a J2EE application to execute a JCA interaction (a JDBC, JMS, or other JCA-supported operation) against a backend system</td>
</tr>
<tr>
<td>JNDI_Lookup</td>
<td>A call to JNDI to build an InitialContext or to perform a lookup</td>
</tr>
<tr>
<td>Unknown</td>
<td>The activity type cannot be determined</td>
</tr>
<tr>
<td>Portlet_Processing</td>
<td>A call for portlet processing request</td>
</tr>
<tr>
<td>Portlet_Authorization</td>
<td>A call for portlet authorization request</td>
</tr>
<tr>
<td>Portal_Authentication</td>
<td>A call for portal authentication request</td>
</tr>
<tr>
<td>Portal_Model_Building</td>
<td>A call for portal page model building request</td>
</tr>
<tr>
<td>Portal_Page>Loading</td>
<td>A call for portal page loading request</td>
</tr>
<tr>
<td>Portal_Page_Rendering</td>
<td>A call for portal page rendering request</td>
</tr>
<tr>
<td>Portal_Legacy_Action</td>
<td>A call for portal legacy action request</td>
</tr>
<tr>
<td>Portal_Standard_Action</td>
<td>A call for portal standard action (JSR-88) request</td>
</tr>
</tbody>
</table>

ASID The identifier (decimal) assigned to the address space running this servant region.

Average Response (ms) The average time (in milliseconds) executing this request, per occurrence. The valid format is a decimal (formatted to 1 decimal place).
Delay (%) The percentage of execution time this activity consumed on average when processing this request. The valid format is a decimal (formatted to 1 decimal place).

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Longest Response (ms) The worst-case response time (in milliseconds) experienced by this request. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Occurrences The number of times this request was executing during the interval. The valid format is a positive integer.

Origin Node The name of the application server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Request Detail The URI for servlet requests, or the method name for EJBs. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Name The URL for servlet requests, or the fully qualified class name for EJBs. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Type The type of transaction being run. Valid values are Servlet, EJB_Method, Custom, All_Workloads, Unknown, and Portlet.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.
Sampling Rate (%) The percentage of edge requests—such as servlets and JSPs—that were sampled for nested requests during the interval. The valid format is a positive integer.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Indicates that this row is a summary row of statistical totals for all rows.

Total Time (ms) The total CPU time (in milliseconds) consumed by this request. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Servlet Sessions attributes

The **Servlet Sessions** attribute group provides information about servlet sessions.

A session is a series of requests to a servlet, originating from the same user at the same browser. Applications running in a Web container use Sessions to monitor the actions of individual users. The attributes within this group are used to build the Sessions workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Average Concurrently Active Sessions The average number of concurrently active sessions during the sampling interval. A session is active if WebSphere Application Server is currently processing a request that uses the session. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Concurrently Live Sessions The average number of sessions cached in memory during the sampling interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an
interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Serializable Session Object Size (bytes) The average size (in bytes) of the serializable attributes of in-memory sessions. This number is at a session level only and includes only session objects that contain at least one serializable attribute object (a session may contain some attributes that are serializable and some that are not). This value is a measurement of the data at the end of the PMI sampling interval, not of the data in the entire sampling interval. The valid format is a positive integer.

Average Session Lifetime (ms) The average session lifetime (in milliseconds), calculated by subtracting the time the session was created from the time it was invalidated. The valid format is a decimal (formatted to 3 decimal places).

Broken Session Affinities The number of HTTP session affinities that broke, not counting WebSphere Application Server intentional breaks of session affinity. This is the number of requests received for sessions that were last accessed from another Web application and can indicate failover processing or a corrupted plug-in configuration. The valid format is a positive integer.

Broken Session Affinity Rate (per sec) The rate (per second) of the number of HTTP session affinities that break, not counting the WebSphere Application Server intentional breaks of session affinity, during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Cache Discard Rate (per sec) The rate (per second) at which session objects have been forced out of the cache during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Cache Discards The number of session objects that have been forced out of the cache. An LRU algorithm removes old entries to make room for new sessions and cache misses (this applies only to persistent sessions). The valid format is a positive integer.

Enterprise Application Name The name of the Enterprise application running the servlet. The valid format is an alphanumeric string, with a maximum of 256 characters.

External Read Size (bytes) The size (in bytes) of the session data read from the persistent store (applicable only to serialized, persistent sessions). The valid format is a decimal (formatted to 3 decimal places).

External Read Time (ms) The time (in milliseconds) taken to read the session data from the persistent store (applicable only to persistent sessions). For multirow sessions, the metrics are for the attributes; for single-row sessions, the metrics are for the whole session. When using a JMS persistent store, the user has the choice of whether to serialize the data being replicated; if the data are not serialized, this counter is not available. The valid format is a decimal (formatted to 3 decimal places).

External Write Size (bytes) The size (in bytes) of session data written to the persistent store (applicable only to serialized, persistent sessions). The valid format is a decimal (formatted to 3 decimal places).
External Write Time (ms) The time (in milliseconds) taken to write the session data from the persistent store (applicable only to serialized, persistent sessions). The valid format is a decimal (formatted to 3 decimal places).

Failed Session Request Rate (per sec) The rate (per second) that a request for a new session could not be handled because it would exceed the maximum session count for the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Failed Session Requests This attribute collects data from the NoRoomForNewSessionCount metric in the Servlet Sessions Counters PMI module. The number of times a request for a new session could not be handled because it would exceed the maximum session count; this applies only to a session in memory with AllowOverflow=false. The valid format is a positive integer.

Instrumentation Level The Web instrumentation level for this Web application. For WebSphere 5, the valid values are None, Low, Medium, High, and Maximum; for WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Max Serializable Session Object Size (bytes) The maximum size (in bytes) of the serializable attributes of in-memory sessions. This number is at a session level only and includes only session objects that contain at least one serializable attribute object (a session may contain some attributes that are serializable and some that are not). This value is a measurement of the data at the end of the PMI sampling interval, not of the data in the entire sampling interval. The valid format is a positive integer.

Min Serializable Session Object Size (bytes) The minimum size (in bytes) of the serializable attributes of in-memory sessions. This number is at a session level and includes only session objects that contain at least one serializable attribute object (a session may contain some attributes that are serializable and some that are not). This value is a measurement of the data at the end of the PMI sampling interval, not of the data in the entire sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumerical string, with a maximum of 128 characters.

Nonexistent Session Request Rate (per sec) The rate (per second) of requests for a session that no longer exists (presumably because the session timed out) during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Nonexistent Session Requests The number of requests for a session that no longer exists (presumably because the session timed out). Use this counter to determine if the timeout is too short. The valid format is a positive integer.

Origin Node The name of the server subnode. The valid format is an alphanumerical string, with a maximum of 128 characters.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR
and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Session Creation Rate (per sec) The rate (per second) of sessions created during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Session Invalidation Rate (per sec) The rate (per second) at which sessions were invalidated during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Sessions Created The number of sessions created during the sampling interval. The valid format is a positive integer.

Sessions Invalidated The number of sessions invalidated during the sampling interval. The valid format is a positive integer.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

Summary of Servlet Sessions Whether this row is a summary row of statistical totals collected for the servlet sessions. The valid values are No and Yes.

Time since Last Activated The time difference (in hh:mm:ss:msecs format) between the previous and current access timestamps. Does not include session timeouts. The valid format is a timestamp.

Total Serializable Session Object Size (bytes) The total size (in bytes) of all the in-memory session objects. This includes only the serializable attributes in the session object; at least one such attribute must be present to be included in this total. This value is a measurement of the data at the end of the PMI sampling interval, not of the data in the entire sampling interval. The valid format is a positive integer.
Web Application Archive The name of the Web application WAR file. The valid format is an alphanumeric string, with a maximum of 128 characters.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Servlets JSPs attributes

The Servlets JSPs attributes provide performance information for servlets and Java server pages (JSPs).

Examples of Servlets JSPs attributes include the average number of concurrent requests for a servlet and the amount of time it takes for a servlet to perform a request. Use the Servlets JSPs attributes in situations to monitor performance and the usage of servlets and JSPs.

The attributes within this group are used to build the Servlets/JSPs - Selected Web Application workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Average Concurrent Requests The average number of concurrent requests for the servlet or JSP during the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Response Time (ms) The time (in milliseconds) it took the servlet to perform a task during the interval. The valid format is a decimal (formatted to 3 decimal places).

Enterprise Application Name The name of the Enterprise application. The valid format is an alphanumeric string, with a maximum of 128 characters.

Error Count The number of errors or exceptions that have occurred in the servlet during the interval. The valid format is a positive integer.
Error Rate (per sec) The servlet exceptions or errors (per second) since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Instrumentation Level The instrumentation level for this servlet. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Count The number of total requests for the servlet during the interval. The valid format is a positive integer.

Request Rate (per sec) The servlet requests (per second) since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Servlet/JSP Name The name of the current servlet or JSP. The valid format is an alphanumeric string, with a maximum of 128 characters.

Total (ms) The total time (in milliseconds) used during the interval. The valid format is a decimal (formatted to 3 decimal places).
Type Whether this entry represents a servlet or Java server page (JSP). The valid values are Servlet and JSP.

Web Application Archive The name of the Web application WAR file. The valid format is an alphanumeric string, with a maximum of 128 characters.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Scheduler attributes

The **Scheduler** attributes display data for the Scheduler service.

The attributes within this group are used to build the **Scheduler** workspace.

Instrumentation Level The instrumentation level for the Scheduler. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Poll Count The number of polls which are collected on the intervals. The valid format is a positive integer.

Poll Duration The average alarms during the latency. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Poll Query Duration The duration of poll query. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Row Number The row number. The valid format is a positive integer.

Run Duration The run duration. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:
Table 60. Format of the 12-character timestamp

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Scheduler Name The name of the scheduler. The valid format is an alphanumeric string, with a maximum of 256 characters.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and Yes.

Task Collision Rate The rate of the task collision. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Task Delay Duration The duration of the task delay. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Task Expiration Rate The rate of the task expiration. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Task Failure Count The number of the failed tasks. The valid format is a positive integer.

Task Finish Count The number of the finished tasks which are collected on the intervals. The valid format is a positive integer.

Task Finish Rate The rate of the finished tasks. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous
time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Task Run Rate The rate of the run tasks. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Service Component Elements attributes

The **Service Component Elements** attributes provide aggregated information about the performance data for all the service components and their elements.

The attributes within this group are used to build the Service Component Elements workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.
- Attributes in this group are only provided for IBM WebSphere Application Server version 6.0 or later.

Average Response Time (ms) The average response time (in milliseconds) in the current interval. The valid format is a decimal (formatted to 3 decimal places).

Component The type of the component. The value format is an alphanumeric string, with a maximum of 256 characters.

Component Name The component name of the service. The value format is an alphanumeric string, with a maximum of 256 characters.

Element The type of the element. The valid format is a positive integer.

Element Name The name of the element. The value format is an alphanumeric string, with a maximum of 256 characters.
Error Rate (per sec) The computed error rate. The valid format is a decimal (formatted to 3 decimal places).

Failed Count The failed invocations. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the service component elements. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Count The number of requests during the interval. The valid format is a positive integer.

Request Rate (per sec) The rate of requests during the interval per second. The valid format is a decimal (formatted to 3 decimal places).

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Success Count The successful invocations. The valid format is a positive integer.
Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and Yes.

Total (ms) The total time used (in milliseconds) during the interval. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Service Components attributes

The Service Components attributes provide aggregated information about the overview performance of the key service components.

The attributes within this group are used to build the Service Components workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.
- Attributes in this group are only provided for IBM WebSphere Application Server version 6.0 or later.

Count The bad request count. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the service components. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Name The component name of the service. Valid values are Service_Component_Architecture, Business Rules, Map, Mediation, Business State Machine, and Selector.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Name The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.
Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and Yes.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Thread Pools attributes

The Thread Pools attribute group provides information about the data source, as well as connection statistics, for database connection pools in a WebSphere Application Server. Use it to monitor pools activity and to spot potential throttling.

The attributes within this group are used to build the Pool Analysis and Thread Pools workspaces.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.
Note: For information about WebSphere PMI metrics, refer to Appendix A.

Application ID Indicates J2EE application ID.

Average Active Threads The average number of concurrently active threads during the sampling interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Free Threads The average number of free threads in the pool. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Pool Size The average number of threads in the pool. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Note: This value may exceed Maximum Pool Size in certain configurations where the pool is enabled to grow beyond the specified maximum size.

Instrumentation Level The instrumentation level for the thread pools. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Maximum Pool Size The configured maximum number of threads allowed in the pool. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Percent of Time Pool at Max The average percentage of time that all threads were in use during the sampling interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Percent Used Bad The bad percent of pool usage by application. The valid format is a positive integer.
Percent Used Fair The fair percent of pool usage by application. The valid format is a positive integer.

Percent Used Good The good percent of pool usage by application. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

Summary of Thread Pools Whether this row is a summary row of statistical totals collected for all thread pools. The valid values are No and Yes.

Thread Creation Rate (per sec) The rate (per second) at which threads were created during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Thread Destruction Rate (per sec) The rate (per second) at which threads were destroyed during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Thread Pool Name The name of the thread pool. The valid format is an alphanumeric string, with a maximum of 256 characters.

Threads Created The number of threads created during the sampling interval. The valid format is a positive integer.

Threads Destroyed The number of threads destroyed during the sampling interval. The valid format is a positive integer.
For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Topic Spaces attributes

The **Topic Spaces** attributes provide aggregated information about publish/subscribe messaging.

The attributes within this group are used to build the **Destinations** workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.
- Attributes in this group are only provided for IBM WebSphere Application Server version 6.0 or later.

Assured Persistent Local Subscription Hits The cumulative total of subscriptions which have matched assured persistent publications. The valid format is a positive integer.

Assured Persistent Messages Published The number of Assured Persistent messages published. The valid format is a positive integer.

Best Effort Non-persistent Local Subscription Hits The cumulative total of subscriptions which have matched best effort non-persistent publications. The valid format is a positive integer.

Best Effort Non-persistent Messages Published The number of best effort non-persistent messages published. The valid format is a positive integer.

Durable Local Subscription The number of durable subscriptions. The valid format is a positive integer.

Express Non-persistent Local Subscription Hits The cumulative total of subscriptions which have matched express non-persistent publications. The valid format is a positive integer.

Express Non-persistent Messages Published The number of express non-persistent messages published. The valid format is a positive integer.
Incomplete Publication The number of publications not yet received by all current subscribers. If this number is unexpected, view the publication using the admin console to take any actions. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the topic spaces. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Local Oldest Publication The longest time any publication has spent on this topic space. If this time is not what was expected, view the message using the admin console to decide what action needs to be taken. The valid format is a positive integer.

Local Publisher The number of local publishers to topics in this topic space. The valid format is a positive integer.

Local Publisher Attaches The number of times an attachment has been made to this topic space by local producers. The lifetime of this value is the lifetime of the messaging engine. The valid format is a positive integer.

Messaging Engine Name The name of the message engine. The value format is an alphanumeric string, with a maximum of 256 characters.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Non-Durable Local Subscription The number of non-durable subscriptions. The valid format is a positive integer.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Reliable Non-persistent Local Subscription Hits The cumulative total of subscriptions which have matched reliable non-persistent publications. The valid format is a positive integer.

Reliable Non-persistent Messages Published The number of reliable non-persistent messages published. The valid format is a positive integer.

Reliable Persistent Local Subscription Hits The cumulative total of subscriptions which have matched reliable persistent publications. The valid format is a positive integer.

Reliable Persistent Messages Published The number of reliable persistent messages published. The valid format is a positive integer.

Report Enabled Publication Expired The number of report enabled incomplete publications that expired while on this topic space. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR
and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and Yes.

Topic Space Name The name of the topic space. The valid format is an alphanumeric string, with a maximum of 256 characters.

Total Local Subscription The number of local subscriptions to topics in this topic space. Each subscription is ed once, even if the topic includes wildcards. The valid format is a positive integer.

Total Local Subscription Hits The cumulative total of subscriptions which have matched topic space publications. The valid format is a positive integer.

Total Messages Published The total number of publications to this topic space. The valid format is a positive integer.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Web Applications attributes

Use the Web Applications attributes to create situations that monitor Web application performance and application server loads.

The Web Applications attributes provide aggregated information for each Web application and for the application server running that application. These performance data describe all servlets and JSP’s deployed to that Web application as well as performance data for all servlets and JSP’s running in the application.
server. Examples include the number of loaded servlets and JSPs and total requests. The attributes within this group are used to build the Web Applications workspace.

Note:

- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Average Concurrent Requests The average number of concurrent requests for servlets and JSPs during the interval. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Average Response Time (ms) The average time (in milliseconds) required for a servlet to perform a task during the interval. Calculated by dividing the total responses by Request Count; if Request Count is zero, this value is set to blank. The valid format is a decimal (formatted to 3 decimal places).

Enterprise Application Name The name of the Enterprise application. The valid format is an alphanumeric string, with a maximum of 128 characters.

Error Count The number of errors or exceptions that have occurred in the servlet. The valid format is a positive integer.

Error Rate (per sec) The servlet exceptions or errors (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Instrumentation Level The Web instrumentation level for this Web application. For WebSphere 5, the valid values are None, Low, Medium, High and Maximum; for WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.
Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Count The number of total requests for the servlet during the interval. The valid format is a positive integer.

Request Rate (per sec) The servlet requests (per second) for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Servlets Loaded The number of servlets loaded during the interval. The valid format is a positive integer.

Servlets Reloaded The number of servlets reloaded during the interval. The valid format a positive integer.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

Subinstrumentation Level The subinstrumentation level for the Web application's servlet submodule. For WebSphere Application Server 5 the valid values are None, Low, Medium, High, and Maximum.

Note: Subinstrumentation Level is not supported in WebSphere Application Server 6.0 or higher. The Tivoli Enterprise Monitoring agent uses the Instrumentation Level instead.
Summary of All Applications Whether this row is a summary row of statistical totals for all Web applications executed during the interval. The valid values are Yes and No.

Total (ms) The total time used during the interval. The valid format is a decimal (formatted to 3 decimal places).

Web Application Archive The name of the Web application WAR file. The valid format is an alphanumeric string, with a maximum of 128 characters.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Web Services attributes

The **Web Services** attributes display aggregated information about the Web services, including the number of loaded Web services, the number of requests delivered and processed, the request response time, and the average size of requests.

The attributes within this group are used to build the Web Services workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Dispatched Requests The number of requests the service dispatched or delivered. The valid format is a positive integer.

Dispatch Response Time The average response time, in milliseconds, to dispatch a request. The valid format is a decimal (formatted to 3 decimal places).

Instrumentation Level The instrumentation level for the web services counters. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.
Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Payload Size The average payload size in bytes of a received request or reply. The valid format is a positive integer.

Processed Requests The number of requests the service successfully processed. Valid format is a positive integer.

Received Requests The number of requests the service received. The valid format is a positive integer.

Reply Payload Size The average payload size (in bytes) of a reply. The valid format is a positive integer.

Reply Response Time The average response time, in milliseconds, to prepare a reply after dispatch. The valid format is a decimal (formatted to 3 decimal places).

Request Payload Size The average payload size, in bytes, of a request. The valid format is a positive integer.

Request Response Time The average response time, in milliseconds, to prepare a request for dispatch. The valid format is a decimal (formatted to 3 decimal places).

Response Time The average response time (in milliseconds) for a successful request. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and Yes.
Total Dispatch (ms) The total time (in milliseconds) the service dispatches requests. The valid format is a decimal (formatted to 3 decimal places).

Total Prepare (ms) The total time (in milliseconds) the service prepares requests. The valid format is a decimal (formatted to 3 decimal places).

Total Processing (ms) The total time (in milliseconds) the service processes requests. The valid format is a decimal (formatted to 3 decimal places).

Web Service The name of the Web service. The valid format is an alphanumeric string, with a maximum of 256 characters.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Web Services Gate Way attributes

The **Web Services Gate Way** attributes display aggregated information about the Web Services Gateway, including synchronous requests, asynchronous requests, synchronous responses, and asynchronous responses.

The attributes within this group are used to build the **Web Services** workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Asynchronous Requests The number of asynchronous requests made. The valid format is a positive integer.

Asynchronous Responses The number of asynchronous responses made. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the Web Services Gateway counters. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.
Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary Whether this row is a summary row of statistical totals for all rows. Valid values are No and Yes.

Synchronous Requests The number of synchronous requests made. The valid format is a positive integer.

Synchronous Responses The number of synchronous responses made. The valid format is a positive integer.

Web Service The name of the Web service. The valid format is an alphanumeric string, with a maximum of 256 characters.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

WebSphere Agent Events attributes

The **WebSphere Agent Events** attributes provide information about agent-level events that affect the ability of the Tivoli Enterprise Monitoring Agent to collect data about WebSphere Application Server. These attributes provide exception and error messages, their IDs, and their severities.
The attributes within this group are used to build the **WebSphere Agent** workspace.

Event Date and Time The date and time the event occurred. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Message Description The message description. The valid format is an alphanumeric string, with a maximum of 256 characters.

Message ID The message ID. The valid format is an alphanumeric string, with a maximum of 8 characters.

Node Name The system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sequence Number The sequence number of the message. The valid format is a positive integer.

Severity The severity of the event. Valid values are Info, Warning, Error, and Severe.

For additional information, see:
- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**

WMQ Client Link Communications attributes

The **WMQ Client Link Communications** attributes display aggregated information for all the clients of WMQ Queue Managers that are or have been connected to this application server.
The attributes within this group are used to build the WMQ Client Link Communications workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then reselect it later. Each time you reselect the workspace, these attributes are updated with the latest data.
- Attributes in this group are only provided for IBM WebSphere Application Server version 6.0 or later.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

WebSphere PMI Attribute Mapping IT CAM for Application Diagnostics User Guide, available from:

API Calls Serviced The number of MQ API call requests serviced on behalf of WMQ JMS clients. The valid format is a positive integer.

Batches Sent The number of batches of messages sent to network attached WMQ JMS clients. The valid format is a positive integer.

Clients Attached The current number of WMQ JMS clients attached to this application server. The valid format is a positive integer.

Comms Errors The number of errors that have caused connections to WMQ JMS clients to be dropped. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the WMQ client link communications. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Messages Received The number of messages received from network attached WMQ JMS clients. The valid format is a positive integer.

Messages Sent The number of messages sent to network attached WMQ JMS clients. The valid format is a positive integer.

Messaging Engine Name The name of the message engine. The value format is an alphanumeric string, with a maximum of 256 characters.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.
Reads Blocked The number of read operations that could not be completed immediately. This number can be used as an indicator of network congestion when communicating with WMQ JMS clients. The valid format is a positive integer.

Received (bytes) The number of bytes of data received from network attached WMQ JMS clients. This includes bytes of message data as well as bytes of data used to control the flow of messages. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Sent (bytes) The number of bytes of data sent to network attached WMQ JMS clients. This includes bytes of message data as well as bytes of data used to control the flow of messages. The valid format is a positive integer.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Writes Blocked The number of write operations that could not be completed immediately. This number can be used as an indicator of network congestion when communicating with WMQ JMS clients. The valid format is a positive integer.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

WMQ Link Communications attributes

The WMQ Link Communications attributes display aggregated information for all the WMQ Queue Managers that are or have been connected to this application server.

The attributes within this group are used to build the WMQ Link Communications workspace.
Note:

- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.

- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

- Attributes in this group are only provided for IBM WebSphere Application Server version 6.0 or later.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Batches Received The number of batches of messages received from network attached WMQ Queue Managers. The valid format is a positive integer.

Batches Sent The number of batches of messages sent to network attached WMQ Queue Managers. The valid format is a positive integer.

Comms Errors The number of communication errors that resulted in a network connection to a WMQ Queue Manager being disconnected. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the WMQ link communications. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Long Retries The number of long retries. This indicates the number of times channels were disconnected and could not be re-established for longer periods of time. The valid format is a positive integer.

Messages Received The number of messages received from network attached WMQ Queue Managers. The valid format is a positive integer.

Messages Sent The number of messages sent to network attached WMQ Queue Managers. The valid format is a positive integer.

Messaging Engine Name The name of the message engine. The value format is an alphanumeric string, with a maximum of 256 characters.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.
QM Attached The total number of WMQ Queue Managers currently network attached to this application server. The valid format is a positive integer.

Reads Blocked The number of read operations that could not be completed immediately. This number can be used as an indicator of network congestion when communicating with WMQ Queue Managers. The valid format is a positive integer.

Receiver Received (bytes) The number of bytes of data received by receiver channels from network attached WMQ Queue Managers. The valid format is a positive integer.

Receiver Sent (bytes) The number of bytes data sent by receiver channels to network attached WMQ Queue Managers. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Sender Received (bytes) The number of bytes of data received by sender channels from network attached WMQ Queue Managers. The valid format is a positive integer.

Sender Sent (bytes) The number of bytes of data sent by sender channels to network attached WMQ Queue Managers. The valid format is a positive integer.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Short Retries The number of short retries. This indicates the number of times channels were disconnected and could not be re-established for short periods of time. The valid format is a positive integer.
Write Blocked The number of write operations that could not be completed immediately. This number can be used as an indicator of network congestion when communicating with WMQ Queue Managers. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Workload Management Client attributes

The **Workload Management Client** attribute group provides information about the client that initiates workload requests.

Workload management (WLM) optimizes the distribution of client processing tasks. Incoming work requests are distributed to the application servers, enterprise beans, servlets, and other objects that can most effectively process their requests. Workload management also provides failover when servers are not available, improving application availability. In a WebSphere Application Server environment, you implement workload management by using clusters, transports, and replication domains.

The attributes within this group are used to build the **Workload Management** workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it later. Each time you select the workspace, these attributes are updated with the latest data.

Client Cluster Update Rate (per sec) The rate (per second) at which times this client has received new server cluster information during the sampling interval. Use this metric to determine how often cluster information is being propagated. The valid format is a decimal (formatted to 3 decimal places).

Client Cluster Updates The number of times initial or updated server cluster data is sent to a WLM-enabled client from a server cluster member. Use this metric to determine how often cluster information is being propagated. The valid format is a positive integer.
Client Response Time (ms) The response time (in milliseconds) for IIOP requests sent by a client. This response time is calculated based on the time the client sends the request to the time the server sends the reply. The valid format is a decimal (formatted to 3 decimal places).

Instrumentation Level The instrumentation level for the WLM client. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Outgoing Request Rate (per sec) The rate (per second) at which outgoing IIOP requests were being sent from this client to an application server during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Outgoing Requests The number of outgoing IIOP requests being sent from this client to an application server. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.
Total Client Response (ms) The total response time (in milliseconds) for IIOP requests sent by a client. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Workload Management Server attributes

The Workload Management Server attribute group provides information about the workload management server.

Workload management (WLM) optimizes the distribution of client processing tasks. Incoming work requests are distributed to the application servers, enterprise beans, servlets, and other objects that can most effectively process those requests. Workload management also provides failover when servers are not available, improving application availability. In a WebSphere Application Server environment, you implement workload management by using clusters, transports, and replication domains.

The attributes within this group are used to build the Workload Management workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Concurrent Requests The number of remote IIOP requests being processed by this server. The valid format is a decimal (formatted to 3 decimal places). This value is an average of several values collected over an interval. The interval can be either between this time and the previous time you activated this workspace, or fixed (normally 60 seconds), depending on the configuration of the Monitoring Agent.

Incoming Non-WLM Object Request Rate (per sec) The rate (per second) of incoming IIOP requests from an application running on a non-WLM client during the sampling interval. This type of client either does not have the WLM runtime present, or the client's object reference was flagged not to participate in workload management. The valid format is a decimal (formatted to 3 decimal places).
Incoming Non-WLM Object Requests The number of incoming IIOP requests to an application from a client that does not have the WLM runtime present or whose object reference was flagged not to participate in workload management. The valid format is a positive integer.

Incoming Nonaffinity Request Rate (per sec) The rate (per second) of incoming IIOP requests to an application server based on no affinity during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Incoming Nonaffinity Requests The number of incoming IIOP requests to an application server based on no affinity. This request was sent to this server based on workload management selection policies that were decided in the client’s WLM runtime. The valid format is a positive integer.

Incoming Request Rate (per sec) The rate (per second) of incoming IIOP requests to an application server during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Incoming Requests The number of incoming IIOP requests to an application server during the sampling interval. The valid format is a positive integer.

Incoming Strong Affinity Request Rate (per sec) The rate (per second) of incoming IIOP requests to an application server that are based on a strong affinity during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Incoming Strong Affinity Requests The number of incoming IIOP requests to an application server that are based on a strong affinity. A strong affinity request is one that must be serviced by this application server because of a dependency that resides on the server. This request could not successfully be serviced by another member of the server cluster. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the WLM server. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
</tbody>
</table>

Table 72. Format of the 12-character timestamp
Table 72. Format of the 12-character timestamp (continued)

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Cluster Update Rate (per sec) The rate (per second) at which this server received new server cluster information during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Server Cluster Updates The number of times initial or updated server cluster data are sent to a server member from the deployment manager. This metric determines how often cluster information is being propagated. The valid format is a positive integer.

Server Name The name of the WebSphere application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Server Response Time (ms) The response time (in milliseconds) at which IIOP requests were serviced by an application server, calculated based on the time the request is received versus the time the reply is sent. The valid format is a decimal (formatted to 3 decimal places).

Total Server Response (ms) The total response time (in milliseconds) at which IIOP requests were serviced by an application server. The valid format is a decimal (formatted to 3 decimal places).

Set Instrumentation Level Type Indicates the WebSphere resource category, which is used by the agent to modify the Instrumentation Level for transaction data collection.

WLM Clients Serviced The number of WLM-enabled clients this application server has serviced during the interval. The valid format is a positive integer.

WLM Clients Serviced Rate (per sec) The rate (per second) at which this server has serviced WLM-enabled clients during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

WLM Server Weight A control for work directed to the application server: if the server's weight value is greater than the weight values assigned to other servers in the cluster, then the server receives a larger share of the cluster's workload. The valid format is a positive integer.

For additional information, see:

- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)
Workplace Mail IMAP/POP attributes

The Workplace Mail IMAP/POP attributes displays the usage information for the IMAP service and POP3 service connectivity.

The attributes within this group are used to build the IMAP/POP workspace.

Note:
• The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
• The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: The following WebSphere Application Diagnostics 7.1 features do not support the IMAP/POP workspace: configuration and links to the Managing Server Visualization Engine from the Tivoli Enterprise Portal.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Active Sessions The number of active sessions during the sampling interval. The valid format is a positive integer.

Active SSL Sessions The number of active, secure sessions during the sampling interval. The valid format is a positive integer.

Authentication Failures The number of authentications failures during the sampling interval. The valid format is a positive integer.

Connection (ms) The time (in milliseconds) spent connected to clients during the sampling interval. The valid format is a positive integer.

IMAP Instrumentation Level The instrumentation level for IMAP PMI module. Valid values are None, Low, Medium, High, Basic, Extended, All, Custom, and Maximum. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Peak Session load The maximum number of concurrent sessions during the sampling interval. The valid format is a positive integer.
POP Instrumentation Level The instrumentation level for POP PMI module. Valid values are None, Low, Medium, High, Basic, Extended, All, Custom, and Maximum. Blank if no instrumentation level is set.

Protocol The protocol type of the workplace mail. Valid values are IMAP and POP.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Successful Authentications The number of successful authentications during the sampling interval. The valid format is a positive integer.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Workplace Mail Queues attributes

The **Workplace Mail Queues** attributes display information about the message delivery state, including ready retry, unprocessed, and dead.

The attributes within this group are used to build the **Messages Queues** workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select again it later. Each time you select the workspace, these attributes are updated with the latest data.

Note: The following WebSphere Application Diagnostics 7.1 features do not support the Message Queues workspace: configuration and links to the Managing Server Visualization Engine from the Tivoli Enterprise Portal.

- **Dead** The number of message in the dead state in the queue during the sampling interval. The valid format is a positive integer.

- **Instrumentation Level** The instrumentation level for the service components. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

- **Interval (sec)** The length (in seconds) of the sampling interval. The valid format is a positive integer.

- **Node Name** The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

- **Origin Node** The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

- **Queue** The Lotus Workplace Mail queue name. Valid values are A, B, C, D, E, F, G, H, and Summary.

- **Ready** The number of message in the ready state in the queue during the sampling interval. The valid format is a positive integer.

- **Retry** The number of message in the retry state in the queue during the sampling interval. The valid format is a positive integer.

- **Sample Date and Time** The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Table 74. Format of the 12-character timestamp
Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Unprocessed The number of message in the unprocessed state in the queue during the sampling interval. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Workplace Mail Service attributes

The **Workplace Mail Service** attributes display aggregated usage information about the incoming mail message traffic.

The attributes within this group are used to build the Workplace Mail workspace.

Note:
- The attributes within this attribute group contain zeros for performance data if your site set configuration value Resource Data Collection Method to On Demand (for on-demand sampling) and you have not yet run applications that generate performance data. To report performance data in these attributes after installing and configuring the Data Collector, use the WebSphere administrative console to set the appropriate PMI instrumentation level.
- The Tivoli Enterprise Monitoring Agent is set by default to provide on-demand sampling; thus the attributes within this attribute group initially contain zeros until you select the workspace and then select it again later. Each time you select the workspace, these attributes are updated with the latest data.

Note: The following WebSphere Application Diagnostics 7.1 features do not support Workplace Mail Service: configuration and links to the Managing Server Visualization Engine from the Tivoli Enterprise Portal.

Note: For information about WebSphere PMI metrics, refer to Appendix A.

Active LDAP Connections The number of active LDAP connections during the sampling interval. The valid format is a positive integer.

Delivered Messages The total number of delivered messages during the sampling interval. The valid format is a positive integer.

Deliverer Dropped Messages The total number of messages rejected by the SMTP outbound server during the sampling interval. The valid format is a positive integer.
Deliverer Message (ms) The total time in milliseconds taken by SMTP outbound server to process messages during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Dropped SMTP Connections The total number of the dropped SMTP connections during the sampling interval. The valid format is a positive integer.

DSN Failure Messages The total number of failure DSNs sent during the sampling interval. The valid format is a positive integer.

Handled Messages The total number of messages processed by the mail handler server during the sampling interval. The valid format is a positive integer.

Handler Dropped Messages The total number of messages rejected by the mail handler server during the sampling interval. The valid format is a positive integer.

Instrumentation Level The instrumentation level for the service components. For WebSphere 6 or higher, the valid values are None, Basic, Extended, All, Custom. Blank if no instrumentation level is set.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Live SMTP Server Connections The number of live SMTP server connections during the sampling interval. The valid format is a positive integer.

Live SMTP Client Connections The number of live SMTP client connections during the sampling interval. The valid format is a positive integer.

Lost SMTP Client Connections The total number of lost SMTP client connections during the sampling interval. The valid format is a positive integer.

Lost SMTP Connections The total number of the lost SMTP connections during the sampling interval. The valid format is a positive integer.

Message Delivery (ms) The total time in milliseconds taken to deliver messages during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Messages Handling (ms) The total time in milliseconds taken to handle messages during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Peak LDAP Connections The maximum number of concurrent LDAP connections during the sampling interval. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:
Table 75. Format of the 12-character timestamp

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Smarthost Messages The total number of messages sent to the Smarthost during the sampling interval. The valid format is a positive integer.

SMTP Client Connections The total number of SMTP client connections during the sampling interval. The valid format is a positive integer.

SMTP Client (ms) The total time in milliseconds taken to deliver messages during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

SMTP Connections The total number of connections to the SMTP server during the sampling interval. The valid format is a positive integer.

SMTP (ms) The total time in milliseconds that SMTP has conversed during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

SMTP Server Threads The number of active SMTP outbound server threads during the sampling interval. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

ITCAM for Application Diagnostics - WebSphere Agent situations

IBM Tivoli Composite Application Manager for Application Diagnostics - WebSphere Agent has a number of predefined situations that you can use to complete the following tasks:
- Monitor your WebSphere application servers
- Monitor and manage widely dispersed WebSphere Application Server resources through localized automation
- Create your own situations using the predefined situations as examples
These predefined situations display an alert status. When these situations trigger an alert, you can investigate the event by opening its workspace. For example, you can use these situations to monitor a WebSphere application server for errors occurring within it or Web applications based at your site.

How the situations work

Situations are tests expressed in IF-TRUE format of system conditions that you want to monitor; the tested value is an ITCAM for Application Diagnostics - WebSphere Agent attribute expressed in the form `attribute-group.attribute-name`. If the specified condition occurs or exists, the situation is true, and an alert is issued.

Avoid using negative values

If you define situations that use a counter or a range of numbers, always provide a threshold or use values in a positive range of numbers. For example, use a greater-than-or-equal-to-zero expression as shown in some of the following predefined situations. This practice prevents a situation from falsely tripping. If the ITCAM for Application Diagnostics - WebSphere Agent Tivoli Enterprise Management Agent encounters an undefined attribute value, it interprets this value as a negative number and will erroneously fire a situation that specifies a negative number.

Note: For the following situations; `WASDBConPAvgWaitTimeHigh`, `DB_Connection_Pools`, `J2C_Connection_Pools`, and `Thread_PoolsApplication` the Application ID column is not supported and always displays -1 by default.

Accessing the situations

A number of the predefined situations run by default from the WebSphere Agent, for the situations that do not run automatically you need to start these situations manually. To start these situations access the situations in the Tivoli Enterprise Portal using one of the following methods:

- In the WebSphere agent, right click the specific server. Right click Enterprise then, click Manage Situations to display all the managed situations available on the server. If you want to start, stop edit or model a situation right click the situation and select the option you want.

- From the toolbar on the main menu click the Situation Editor icon and scroll to the situation you want to view.

For information on predefined situations and formulas see [Predefined situations-descriptions and formulas (that run automatically)] and [Predefined situations descriptions and formulas (that run manually)] on page 438. See also "ITCAM for Application Diagnostics- WebSphere Agent attributes" on page 301.

Predefined situations-descriptions and formulas (that run automatically)

The following predefined situations run automatically from the WebSphere Agent and support the following applications servers unless stated otherwise.

- WebSphere Application Server
- WebSphere Application Server portal
- WebSphere Application Server Process
• WebSphere Application Server ESB
• Lotus Workplace server

Note:
• If you want to start, stop or edit any of these situations see “Accessing the situations” on page 434.
• For information about situations that run manually see “Predefined situations descriptions and formulas (that run manually)” on page 438.

WASAppDiscovered monitors WebSphere applications deployed in the application server and issues an Informational alert when a new application is discovered. The monitoring agent checks for new applications each time it connects to the Data Collector or when an application is deployed when the Data Collector is already active. The formula is:

If

Application_Monitoring_Configuration.Monitoring_Status equals 0

then

the situation WASAppDiscovered is true.

Note: This situation does not support Lotus Workplace server.

The predefined Take Action command **Start_Baselining** associated with the WASAppDiscovered situation enables you to automate the baselining of newly discovered applications.

WASAppHealthBad monitors the overall application health and issues a Critical alert when the application health is bad. The formula is:

If

Application_Health_Status.Web_Tier_Health equals 3

then

the situation WASAppHealthBad is true.

The predefined Take Action command **Set_Appliction_Monitoring** associated with WASAppHealthBad situation increases the request monitoring rate for applications generated alert. This command enables you to collect more detailed performance data and helps to collect the most precise data about each application tier health level.

WASAppHealthFair monitors the overall application health and issues a warning alert when application health is fair. The formula is:

If

Application_Health_Status.Application_Health equals 2

then
the situation WASAppHealthFair is true.

The predefined Take Action command \texttt{Set Application Monitoring} associated with WASAppHealthFair situation raises the request monitoring level for applications generated alert. This command enables you to collect detailed performance data that helps to pinpoint a bottleneck down to particular application tiers.

\textbf{WASAppHealthGood} monitors the overall application health and issues an Informational alert when application health is good. The formula is:

If

\begin{equation}
\text{Application_Health_Status.Application_Health} = 1
\end{equation}

then

the situation WASAppHealthGood is true.

The predefined Take Action command \texttt{Set Application Monitoring} associated with the WASAppHealthGood situation lowers the request monitoring level for applications generated alert, and reduces the monitoring workload.

\textbf{WASError} monitors the error severity for a single WebSphere Application Server and issues a Critical condition whenever that severity is greater than 21. Its formula is:

If

\begin{equation}
\text{Log_Analysis.Severity} > 21
\end{equation}

then

the situation WASError is true.

\textbf{WASHighCPUPercentUsed} monitors the percentage of the CPU being consumed and issues a Critical condition whenever that time exceeds 80%. The formula is:

If

\begin{equation}
\text{Application_Server.CPU_Used_Percent} > 80
\end{equation}

then

the situation WASHighCPUPercentUsed is true.

\textbf{WASHighGCTimePercent} monitors the percentage of time being spent by the garbage collector and issues a Critical condition whenever that time exceeds 80%. The formula is:

If

\begin{equation}
\text{Garbage_Collection_Analysis.Real_Time_Percent} > 80
\end{equation}

then

the situation WASHighGCTimePercent is true.
WASHighResponseTime monitors the average request response time and issues a Critical condition whenever that time exceeds 2 seconds. The formula is:

If

Request_Times_and_Rates.Average_Request_Response_Time is greater than 2000

then

the situation WASHighResponseTime is true.

WASNotConnected monitors the connection between the ITCAM for WebSphere Data Collector running in an application server and the ITCAM for Application Diagnostics - WebSphere Agent monitoring agent to ensure that the monitoring agent is connected and issues a Critical condition whenever it is not. Its formula is:

If

Application_Server_Status.Status equals 0

then

the situation WASNotConnected is true.

WASOutofHeapSpace monitors the heap allocation status and issues a Critical condition whenever heap space is exhausted. The formula is:

If

Allocation_Failure.Heap_Status equals 1

then

the situation WASOutofHeapSpace is true.

Note: This situation is not available when monitoring non-IBM Java Virtual Machines, including machines commonly used on HP-UX and Solaris platforms.

WASAvgHeapSizeAfterGCHigh monitors the average heap size free percentage after garbage collection. This situation issues a Critical alert if the average heap size free percentage after garbage collection is greater than 80%. Its formula is:

If

Garbage_Collection_Cycle.Heap_Free_Percent_after_GC is greater than 80

then

the situation WASAvgHeapSizeAfterGCHigh is true.

Note: This situation does not support Lotus Workplace server.

WASJ2CConnectionPoolUsageMaxed monitors the J2C pool percentage usage and issues a Warning alert if the pool usage is greater than or equal to 100%. Its formula is:
If

J2C_Connection_Pools.Pool_Used_Percent is greater than or equal to 100%

then

the situation WASJ2CConnectionPoolUsageMaxed is true.

Note: This situation does not support Lotus Workplace server.

WASDBConnectionPoolUsageMaxed monitors the JDBC pool usage and issues a Critical alert if the pool usage is greater than or equal to 100%. Its formula is:

If

DB_Connection_Pools.Percent_Used is greater than or equal to 100%

then

the situation WASDBConnectionPoolUsageMaxed is true.

Note: This situation does not support Lotus Workplace server.

See also “ITCAM for Application Diagnostics- WebSphere Agent attributes” on page 301.

Predefined situations descriptions and formulas (that run manually)

Situations that are run manually

The following situations do not run automatically, to run them you need to access them from the Manage Situations view. These situations support the following application servers unless stated otherwise:

- WebSphere Application Server
- WebSphere Application Server portal
- WebSphere Application Server Process
- WebSphere Application Server ESB
- Lotus Workplace server

Note:

- If you want to start, stop or edit any of these situations see “Accessing the situations” on page 434.
- For information about situations that run automatically see “Predefined situations-descriptions and formulas (that run automatically)” on page 434.

WASDBConnectionPoolThreadTimeout monitors the thread timeout count. This situation issues a Critical condition whenever the timeout count is greater than zero. Its formula is:

If

DB_Connection_Pools.Threads_Timed_Out is greater than 0
then
the situation WASDBConnectionPoolThreadTimeout is true.

WASContainerTransactionRollback monitors the rollback count of the WebSphere Application Server. This situation issues a Critical alert whenever the count becomes nonzero. Its formula is:

If

Container_Transactions.Global_Transactions_Rolled_Back is greater than 0
or

Container_Transactions.Local_Transactions_Rolled_Back is greater than 0
or

Container_Transactions.Transactions_Rolled_Back is greater than 0
then

the situation WASContainerTransactionRollBack is true.

WASEJBCreateTimeHigh monitors the average time of a bean create call and issues a Critical alert when the time is longer than 2 seconds. Its formula is:

If

Enterprise_Java_Beans.Create_Average_Time is greater than 2000
then

the situation WASEJBCreateTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASEJBRemoveTimeHigh monitors the average time of a bean remove call and issues a Critical alert when the time is longer than 2 seconds. Its formula is:

If

Enterprise_Java_Beans.Remove_Average_Time is greater than 2000
then

the situation WASEJBRemoveTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASEJBMethodResponseTimeHigh monitors the average response time on remote interface methods for all beans. This situation issues a Critical alert if the response time is longer than 2 seconds. Its formula is:

If

Chapter 4. ITCAM Agent for WebSphere 439
Enterprise_Java_Beans.Method_Average_Response_Time is greater than 2000

then

the situation WASEJBMethodResponseTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASThreadFreeLow monitors the average free threads in the pool and issues a Critical alert if the number of threads is less than 200. Its formula is:

If

Thread_Pools.Average_Free_Threads is less than 200

then

the situation WASThreadFreeLow is true.

Note: This situation does not support Lotus Workplace server.

WASDataSrcConWaitTimeHigh monitors the average time an application has to wait for a connection. This situation issues a Critical alert if the wait time is longer than 2 seconds. Its formula is:

If

Datasources_Connection_Average_Wait_Time is greater than 2000

then

the situation WASDataSrcConWaitTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASReqSQLExecuteTimePercentHigh monitors the percentage of time the request spends executing a JDBC database. This situation issues a Critical alert if the percentage of time is higher than 80%. Its formula is:

If

Request_Analysis.SQL_Execute_Time_Percent is greater than 80

then

the situation WASReqSQLExecuteTimePercentHigh is true.

Note: This situation does not support Lotus Workplace server.

WASReqSQLQueryTimePercentHigh monitors the percentage of time the request spends querying a JDBC database. This situation issues a Critical Alert if the percentage of time is higher than 80%. Its formula is:

If

Request_Analysis.SQL_Query_Time_Percent is greater than 80
then
the situation WASReqSQLQueryTimePercentHigh is true.

Note: This situation does not support Lotus Workplace server.

WASReqSQLUpdateTimePercentHigh monitors the percentage of time the request spends updating a JDBC database. This situation issues a Critical Alert if the percentage of time is higher than 80%. Its formula is:

If
Request_Analysis.SQL_Update_Time_Percent is greater than 80
then
the situation WASReqSQLUpdateTimePercentHigh is true.

Note: This situation does not support Lotus Workplace server.

WASDBConPAverageTimeHigh monitors the average time that a connection in use is high. This situation issues a Critical alert if the average time the connection in use is longer than 2 seconds. Its formula is:

If
DB_Connection_Pools.Average_Usage_Time is greater than 2000
then
the situation WASDBConPAverageTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASDBConPPercentUsedTimeHigh monitors the average percentage of time the connection pool in use is high. This situation issues a Critical alert if the average percentage of time the connection pool in use is higher than 80%. Its formula is:

If
DB_Connection_Pools.Percent_Used is greater than 80
then
the situation WASDBConPPercentUsedTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASDBConPAvgWaitTimeHigh monitors the average time that a client has to wait for a connection. This situation issues a Critical alert when the time period is longer than 2 seconds. Its formula is:

If
DB_Connection_Pools.Average_Wait_Time is greater than 2000
then the situation WASDBConPAvgWaitTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASJ2CCPAverageUsageTimeHigh monitors the average time that connections are in use (it measures from when the connection is allocated to when it is returned). This situation issues a Critical alert when the combined connection allocation and return time are longer than 2 seconds. Its formula is:

\[
\text{If } J2C\text{-Connection}_\text{Pools.Average}_\text{Usage}_\text{Time} \text{ is greater than 2000}
\]

then

the situation WASJ2CCPAverageUsageTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASJ2CCPAvgWaitTimeHigh monitors the average wait time until a connection is granted. This situation issues a Critical alert if the time period is longer than 2 seconds. Its formula is:

\[
\text{If } J2C\text{-Connection}_\text{Pools.Average}_\text{Wait}_\text{Time} \text{ is greater than 2000}
\]

then

the situation WASJ2CCPAvgWaitTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASCTGlblTransDurationHigh monitors the average duration of global transactions. This situation issues a Critical alert if the time period is longer than 2 seconds. Its formula is:

\[
\text{If } \text{Container}_\text{Transactions.Global}_\text{Transaction}_\text{Duration} \text{ is greater than 2000}
\]

then

the situation WASCTGlblTransDurationHigh is true.

Note: This situation does not support Lotus Workplace server.

WASCTLclTransDurationHigh monitors the average duration of local transactions. This situation issues a Critical alert if the time period is longer than 2 seconds. Its formula is:

\[
\text{If } \text{Container}_\text{Transactions.Local}_\text{Transaction}_\text{Duration} \text{ is greater than 2000}
\]
then

the situation WASCTLcITransDurationHigh is true.

Note: This situation does not support Lotus Workplace server.

WASPo**r**al**P**age**R**es**p**ons**e**Time** monitors the portal page response time and issues a Critical alert when the average request response time is higher than 2 seconds. The formula is:

If

Portal_Page_Summary.Average_Response_Time is greater than 2000

then

the situation WASPortalPageResponseTime is true.

WASPo**r**al**P**age**R**es**p**ons**e**Time** monitors the portlet response time and issues a Critical alert when the average request response time is higher than 2 seconds. The formula is:

If

Portlet_Summary.Average_Response_Time is greater than 2000

then

the situation WASPortletResponseTime is true.

WASServletsJSPsError monitors the error count for servlets and JSPs invoked by a WebSphere Application Server application. This situation issues a Critical condition whenever the count becomes nonzero. Its formula is:

If

Servlets_JSPs.Error_Count is greater than 0

then

the situation WASServletsJSPsError is true.

Note: This situation does not support Lotus Workplace Server.

WASSrvlSessAvgActiveSessionHigh monitors the average number of concurrently active sessions. This situation issues a Critical alert if the average number of concurrently active sessions is greater than 100. Its formula is:

If

Servlet_Session.Average_Concurrently_Active_Sessions is greater than 100

then

the situation WASSrvlSessAvgActiveSessionHigh is true.
The following situations are configured to run automatically.

Note: This situation does not support Lotus Workplace server.

WASSrvlSessExtReadTimeHigh monitors the time it takes to read the session data from the persistent store. This situation issues a Critical alert if the time period is longer than 2 seconds. Its formula is:

If

Servlet_Sessions.External_Read_Time is greater than 2000

then

the situation WASSrvlSessExtReadTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASSrvlSessExtWriteTimeHigh monitors the time it takes to write session data to persistent store. This situation issues a Critical alert if the time period is longer than 2 seconds. Its formula is:

If

Servlet_Sessions.External_Write_Time is greater than 2000

then

the situation WASSrvlSessExtReadTimeHigh is true.

Note: This situation does not support Lotus Workplace server.

WASThreadPoolPercentMaxed monitors the average usage time of all threads, and issues a Critical condition whenever that time exceeds 100%. The formula is:

If

Thread_Pools.Percent_of_Time_Pool_at_Max is greater than 100

then

the situation WASThreadPoolPercentMaxed is true.

WASWebApplicationError monitors the error log status of the WebSphere server and issues a Critical condition when an error occurs. Its formula is:

If

Web_Applications.Error_Count is greater than 0

then

the situation WASWebApplicationError is true.

Note: This situation does not support Lotus Workplace Server.
ITCAM for Application Diagnostics - WebSphere Agent Take Action commands

The Take Action feature lets your interactive Tivoli Enterprise Portal users enter a command or stop or start a process at any system in your network where one or more Tivoli Enterprise Monitoring Agents are installed. The ITCAM for Application Diagnostics - WebSphere Agent Take Action commands let you use the Tivoli Enterprise Portal interface to start, stop, or recycle a WebSphere Application Server or to control the level of monitoring for the current server.

Users can invoke a Take Action command from a workspace, from the Navigator, from a situation that you create, on demand, or by recalling a saved Take Action command.

Note:

The following take action commands are for internal use only and are not for use in the Tivoli Enterprise Portal. The configuration workspaces use these take action commands to communicate internally with the monitoring agent.

- Configure
- ConfigureCancel
- ConfigurePing

Add_XD_Cell: Add an XD Cell to a WebSphere agent

Use the Add_XD_Cell command to add an XD cell to the WebSphere Agent. This take action task is used to configure XD Cell monitoring.

Command syntax

YN:AddXDCell cellName

where cellName is the name of the XD cell.

For more information, see “Configure WebSphere XD Cell monitoring” on page 457.

Enable_Auto_Threshold: set threshold parameters

Use the Enable_Auto_Threshold Take Action to set automatic threshold parameters and remove any overrides of the thresholds.

The baselining process supplies statistical information about request response times. ITCAM interprets this information to set automatic thresholds. Several parameters control this interpretation.

The default values for these parameters are sufficient for most cases. However, if the thresholds are not adequate and the baselining process was run recently, you may need to change these parameters. If there are a lot of false alarms or warnings, you need to raise the bad or fair threshold; if alarms or warnings are not triggered when needed, you need to lower the bad or fair threshold.
While you may change the parameters for the entire application or for all requests of a given type, most likely you will only do this for an individual request.

- To set threshold parameters for all requests in the application, select this application in the "Application Health workspace" on page 238 or "Application Registry workspace" on page 239, and select the Enable_Auto_Threshold take action.

- To set threshold parameters for all requests of a given type in the application, select this request type in the Application Request Configuration table of the "Application Configuration workspace" on page 274, and select the Enable_Auto_Threshold take action.

- To set threshold parameters for an individual request, select this request in the "Request Baseline workspace" on page 272, and select the Enable_Auto_Threshold take action.

In the "Request Baseline workspace" on page 272, when you select a line representing a request, you can see the bar charts representing statistical data for this request. This data was gathered during the baselining process. Colors on the bar charts show the way in which the parameters are applied. You can change the parameters using the Enable_Auto_Threshold take action, and immediately see the effects on the bar charts.

The **Response Times Distribution** chart shows the statistical distribution of response times for this request. To the left are smaller (faster) response times; to the right, larger (slower) ones. The height of every bar shows the percentage of requests that had the indicated response time during the baselining period.

Some bars represent bigger time intervals than others; more bars are devoted to most common response times. For example, if the maximum encountered time is 1000 ms but most response times are between 300 and 500 ms, then the first bar may be 0 to 50 ms, but there may also be bars like 305 to 310 ms and 400 to 402 ms.

The bars colored blue show the zone into which the "typical" response times for this application fall. The green bars show response times that are not "typical", but are below the fair threshold. Response times above the fair threshold but below the bad threshold are shown as yellow bars; for those above the bad threshold, the bars are red.
Use the Enable_Auto_Threshold take action to set the parameters that affect both the position of the "typical" zone and the way the thresholds are derived from this zone.

For more information about how the bar chart and parameters work, see "Threshold calculation detail" on page 454.

The Level2 Delays Distribution chart shows the distribution of time spent in "nested requests" within the requests that had this response time range. Each bar represents a response time of the top-level request (the same as on the top chart). Within this bar, colored sections show how much time is spent within nested requests of different types; the color legend is shown on the bar. ITCAM will use this distribution within the selection zone (that is for typical overall request types) to work out the average share of time that each nested request type takes. When an error or warning arises, ITCAM will check which of the request types takes more than its usual share of time; based on this, it will display whether the likely cause is the application, backend, or server.

Command syntax

YN:Enable_Auto_Threshold App_Id Request_Id Auto_Threshold_Percent
Auto_Threshold_Deviation Auto_Threshold_Fair_Projection
Auto_Threshold_Bad_Projection Use_Default

Parameters:

App_Id
The application ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Request_Id
The request ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Auto_Threshold_Percent
Auto_Threshold_Deviation
ITCAM uses these two parameters to calculate the borders of the "typical zone". See "Threshold calculation detail" on page 454.

Auto_Threshold_Fair_Projection
This determines the position of the fair threshold. Increase this parameter to increase the fair threshold; decrease the parameter to decrease the fair threshold. If the parameter is set to 100, the fair threshold will be at the right border of the selection zone. For details, see "Threshold calculation detail" on page 454. The bad threshold is not affected.

Auto_Threshold_Bad_Projection
This determines the position of the bad threshold. Increase this parameter to increase the bad threshold; decrease the parameter to decrease the bad threshold. If the parameter is set to 100, the bad threshold will be at the right border of the selection zone. For details, see "Threshold calculation detail" on page 454. The fair threshold is not affected.

Use_Default
If set to 0, the auto threshold settings will be modified according to the other parameters in this Take Action. If set to 1, the value of the auto threshold settings for this request will be taken from the "parent": the values that have been set for the request type, for the entire application, or the ITCAM default values.
Example: YN:Enable_Auto_Threshold 1 12 50 200 150 300 0

Override_Auto_Threshold: override threshold values

Use the Override_Auto_Threshold Take Action to override fair and bad response time threshold values for any request in the application. In this case, while the baselining statistical data is still preserved, ITCAM will not use automatically calculated thresholds.

Do not override threshold values unless you have analyzed the application performance in detail (or were instructed to override threshold values by IBM Level 3 Support). To adjust threshold values without manually overriding them, see “Enable_Auto_Threshold: set threshold parameters” on page 445.

To remove an override, select a request in the “Request Baseline workspace” on page 272 and select the Enable_Auto_Threshold take action. Leave all parameters as they are, in order to use the same auto threshold parameters as were used before the override. If you need to change these parameters, see “Enable_Auto_Threshold: set threshold parameters” on page 445.

DITA

Command syntax

YN:Override_Auto_Threshold App_Id Request_Id Fair_Response_Threshold Bad_Response_Threshold

Parameters:

App_Id

The application ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Request_Id

The request ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Fair_Response_Threshold

The fair response time threshold, in milliseconds.

Bad_Response_Threshold

The bad response time threshold, in milliseconds.

Sample

This little sample copies “here” to “there”:

copy from here to there

Remove_WebSphere_SubNode: Remove an inactive WebSphere application server

Use the Remove_WebSphere_SubNode command to remove a no-longer-active WebSphere Application Server from the Navigator tree.
Command syntax

If invoked from the Navigator’s WebSphere Agent entry, the syntax is:

YN:RemSubNode server_name

where server_name is the WebSphere server-that is, subnode-name.

If, however, this command is invoked from a subnode of the Navigator’s WebSphere Agent entry, the syntax is:

YN:RemSubNode

In this case, server_name is not required because the subnode name-that is, the server name—is already known.

Set_Application_Monitoring: Set monitoring

Use the Set_Application_Monitoring command to set monitoring of the WebSphere application.

Command syntax

YN:Set_Application_Monitoring App_Id Monitoring_Enabled Request_Data_Monitoring_Level Request_Data_Sampling_Rate

where App_Id is the application ID which is automatically assigned in the portal from the selection context when Take Action was invoked.

Monitoring_Enabled is a Boolean value and the valid values are 0 and 1. It defines whether the monitoring agent application dashboard monitoring feature is enabled for the given application.

Request_Data_Monitoring_Level is an integer value that defines custom request monitoring level for the given application. Valid values are 0 (DISABLE), 1 (LEVEL1), and 2 (LEVEL2).

Request_Data_Sampling_Rate is an integer value that defines custom request monitoring rate (in percentage) for the given application. Valid values range from 0 to 100.

Note: When this Take Action is selected for a node representing a z/OS servant region, it applies to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Reflex_Automation_Mode is a Boolean value and the valid values are 0 and 1. When you select 1, WR application health monitoring accepts reflex automation commands from WASAppHealthGood/Fair/Bad situations and adjusts the monitoring level automatically based on the current application health status. For more information about Tivoli Monitoring (ITM), reflex automation see http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/topic/com.ibm.itm.doc_6.1/itm610usersguide234.htm?resultoff=%22%72%65%66%6c%65%78%22%20%22%61%75%74%6f%6d%61%74%69%6f%6e%22%20
Set_Completion_Thresholds: Set completion thresholds

Use the Set_Completion_Thresholds command to define the thresholds of the error rate for the WebSphere application.

Command syntax

YN:Set_Completion_Thresholds App_Id Fair_Completion_Rate Bad_Completion_Rate

where App_Id is the application ID which is automatically assigned in the portal from the selection context when Take Action was invoked.

Fair_Completion_Rate and Bad_Completion_Rate are the values in percentage that define thresholds for fair and bad requests completion rates.

Set_Request_Sampling_Rate: Set the sampling rate for request data

Use the Set_Request_Sampling_Rate command to define the percentage of requests to monitor.

Command syntax

YN:SetRequestSamplingRate percent

where percent is the percentage of requests you want sampled, an integer from 1 to 100.

Start_Baselining: start the baselining process

ITCAM can run a baselining process for every application. During this process, which runs for a preset period, the Data Collector will collect statistical data on metric values for a given period. Based on this statistical data, the monitoring agent can automatically set the fair and bad thresholds, as well as the typical breakdown of response times for nested request. Use the Start_Baselining Take Action to start the baselining process.

When ITCAM begins monitoring an application for the first time, it automatically starts this process for the application. However, with time, average response times can change because of configuration, load pattern, database size, and other issues. You can manually start the baselining process again to take these changes into account. You may also use IBM Tivoli Monitoring (ITM) policies and workflow management to run the baselining process every few months.

As soon as you take the Start Baselining action, the baselining process begins. The thresholds will be updated when either the Period or the Update Interval passes.

While the baselining process is running, you can trigger a baseline update to immediately set the thresholds based on the information collected so far.

Command syntax

YN:Start_Baselining App_Id Period Update_Interval Run_Clean

Parameters:
App_Id

The application ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Period

The period of time for which the baselining process will run. The Data Collector will collect the necessary statistical information for this entire period. When ITCAM starts the baselining process automatically, it sets the period to 7 days. The format is ddd/hh:mm:ss.

Update_Interval

If you set this parameter to a time interval, ITCAM will update the thresholds according to the information already collected every time this interval passes. For example, when ITCAM starts the baselining process automatically, it sets the update interval to 1 hour. During the 7 days that the initial baselining runs, every hour the thresholds will be updated according to the statistical data collected so far (for all request types where at least one request was received during the baselining process). The format is ddd/hh:mm:ss.

Run_Clean

Set to either 0 or 1. If set to 0, statistical data collected in any previous baselining for the same requests will be kept and "amalgamated" with the new data; if set to 1, only the new data will be used for setting the thresholds. Normally, you will set this to 1.

Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Start_GC_Monitoring: Begin reporting garbage-collection data

Use the Start_GC_Monitoring command to activate the display of garbage-collection statistics. This setting is on top of the WebSphere Application Server Verbose Garbage Collection value, which must also be active for garbage-collection data to be reported.

Command syntax

YN:StartGCMonitor

Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Start_Request_Monitoring : Begin reporting request data

Use the Start_Request_Monitoring command to activate the display of request data.

Command syntax

YN:StartRequestMonitor level

where level is the resource-data collection level, either Level1 or Level2. When the collection level is set to Level1, only edge request data-such as servlets and JSPs-are collected; when set to Level2, nested request data-such as JDBC and JMS requests-are also collected.
Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Start_Resource_Monitoring: Begin reporting PMI data

Use the Start_Resource_Monitoring command to activate the display of resource (that is, PMI) data. This setting is on top of the WebSphere Application Server PMI instrumentation levels, which must also be set for resource data to be reported.

Command syntax

YN:StartResourceMonitor

Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Start_WebSphere_Server: Start a WebSphere application server

Use the Start_WebSphere_Server command to start a WebSphere Application Server.

Command syntax

If invoked from the Navigator's WebSphere Agent entry, the syntax is:

YN:StartAppSvr server_name user password

where server_name is the WebSphere server name, and user and password are your own WebSphere Application Server identifiers set via the WebSphere administrative console (required only if WebSphere global security is enabled).

If, however, this command is invoked from a subnode of the Navigator's WebSphere Agent entry, the syntax is:

YN:StartAppSvr user password

where user and password are your own WebSphere Application Server identifiers set via the WebSphere administrative console; these are required only if WebSphere global security is enabled. (In this case, server_name is not required because the subnode name—that is, the server name—is already known.)

Stop_Baselining: stop the baselining process

Use the Stop_Baselining Take Action to immediately stop the baselining process for an application, and recalculate the thresholds based on the request data available up to this point.

Normally you will not need to perform this action. To recalculate the thresholds based on the request data available up to this point, without stopping the baselining process, see “Update_Baseline: trigger a baseline update” on page 454.
Command syntax

YN:Stop_Baselining App_Id

Parameters:

App_Id
The application ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Stop_GC_Monitoring: Stop reporting garbage-collection data
Use the Stop_GC_Monitoring command to end the display of garbage-collection statistics.

Command syntax

YN:StopGCMonitor

Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Stop_Request_Monitoring: Stop reporting request data
Use the Stop_Request_Monitoring command to end the display of request data.

Command syntax

YN:StopRequestMonitor

Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Stop_Resource_Monitoring: Stop reporting PMI data
Use the Stop_Resource_Monitoring command to end the display of resource (that is, PMI) data.

Command syntax

YN:StopResourceMonitor

Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Stop_WebSphere_Server: Stop a WebSphere application server
Use the Stop_WebSphere_Server command to stop an application server.
Command syntax

If invoked from the Navigator's WebSphere Agent entry, the syntax is:

```
YN:StopAppSvr  server_name user password
```

where `server_name` is the WebSphere server name, and `user` and `password` are your own WebSphere Application Server identifiers set through the WebSphere administrative console (required only if WebSphere global security is enabled).

If, however, this command is invoked from a subnode of the Navigator's WebSphere Agent entry, the syntax is:

```
YN:StopAppSvr  user password
```

where `user` and `password` are your own WebSphere Application Server identifiers set through the WebSphere administrative console; these are required only if WebSphere global security is enabled. (In this case, `server_name` is not required because the subnode name—that is, the server name—is already known.)

Update_Baseline: trigger a baseline update

If the baselining process is running, the thresholds will be set automatically when either the Period or the Update Interval passes. For the initial baselining process, the first automatic update happens after one hour. With the Update_Baseline Take Action, you can force ITCAM to update the thresholds immediately, based on the information collected so far. This may be useful if you do not want to wait for the periodic automatic update. Once the automatic update time comes, the threshold will be updated again.

If a baselining process is not running for the application, an error will be raised. Also, if no requests of a given request type have been received since the baselining process has started, the update will not have any effect for this request type.

Command syntax

```
YN:Update_Baseline App_Id
```

Parameters:

App_Id

The application ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Threshold calculation detail

If you want to set parameters that affect the calculation of the automatic response time thresholds, you may need to know the details of this calculation.

ITCAM processes the baselining statistical data and applies the auto threshold parameters in the following way. The parameters are set in the **Enable_Auto_Threshold** take action, see "Enable_Auto_Threshold: set threshold parameters” on page 445.
1. The response time results are sorted into up to 64 “buckets”, from zero to the maximum response time encountered for this request. The buckets do not represent equal time intervals; for response time regions where most of the "hits" fall, the buckets will represent smaller intervals. For example, if the maximum encountered time is 1000 ms but most response times are between 300 and 500 ms, then the first bucket may be 0 to 50 ms, but there may also be buckets representing response times of 305 to 310 ms and 400 to 402 ms. ITCAM distributes the bucket borders so that the largest number of hits in any one bucket will not be more than three times the amount of hits in the smallest bucket.

ITCAM calculates the percentage of the total amount of requests that fall into each response time bucket, and divides it by the time interval width that the bucket represents. This is shown on the Response Times Distribution bar chart in the "Request Baseline workspace" on page 272.

![Response Times Distribution Chart]

Each bar represents a bucket, and the bar height shows the percentage of the requests in this bucket. All the subsequent calculations are rounded up to buckets.

2. ITCAM determines the selection zone, which contains the "typical" response time values. This zone is represented by the bars colored blue on the chart. ITCAM finds the response time interval (left border L to right border R) where the following statements are true:

- The percentage of hits that fall into this interval is no less than the Auto_Threshold_Percent parameter.
- The spread of the time interval, calculated as (R/L)*100 - 100, is not greater than the Auto_Threshold_Deviation parameter.

Note: The Auto_Threshold_Deviation parameter does not denote the statistical definition of deviation.

If several zones match these criteria, ITCAM will choose the one where the following value is the greatest: S/(R-L), where S is the total number of hits that fell into this zone.

If a zone where both requirements are true cannot be found at all, ITCAM will first determine the interval where the percentage of hits is not less than the Auto_Threshold_Percent parameter while the spread is as little as possible. Then, within this interval, it will find a zone where the spread is not greater than the Auto_Threshold_Deviation parameter and the percentage of hits is as big as possible.
ITCAM will determine the typical nested request times from the nested request times in this zone, shown on the Level2 Delays Distribution chart.

3. Finally, ITCAM calculates the thresholds.

The fair threshold is determined using the left and right borders of the selection zone and the Auto_Threshold_Fair_Projection parameter:

\[F = L + \left(\frac{R-L}{100} \times \text{Auto}_\text{Threshold}_\text{Fair}_\text{Projection}\right) \]

The bad threshold is calculated in the same way, using the Auto_Threshold_Bad_Projection parameter:

\[B = L + \left(\frac{R-L}{100} \times \text{Auto}_\text{Threshold}_\text{Bad}_\text{Projection}\right) \]

Example: the left border of the selection zone may be \(L = 1450 \) ms, and the right border \(R = 3000 \) ms. By default, \(\text{Auto}_\text{Threshold}_\text{Fair}_\text{Projection} = 150 \), and \(\text{Auto}_\text{Threshold}_\text{Bad}_\text{Projection} = 300 \). In this case:

- The fair response threshold is \(F = 1450 + \left(\frac{3000-1450}{100} \times 150\right) = 3775 \) ms
- The bad response threshold is \(B = 1450 + \left(\frac{3000-1450}{100} \times 300\right) = 6100 \) ms

ITCAM for Application Diagnostics - WebSphere XD Overview

ITCAM for Application Diagnostics 7.1 provides enhanced support for monitoring Virtual Enterprise and Compute Grid products from the WebSphere XD (Extended Deployment) suite. For each XD cell, configured for monitoring by the WebSphere agent, the Tivoli Enterprise Portal shows the subnode under the agent node in the navigation tree. The workspaces under the XD cell subnode show the XD monitoring information.

The XD monitoring data is collected through a JMX connection to the deployment manager server and does not require a data collector. However, if a data collector is installed on any WebSphere XD server, it is possible to drill down to more detailed information.

ITCAM provides the following Virtual Enterprise monitoring features:

Monitors the status and metrics of the ODR (On Demand Router) server

- ODR server status – running, not running, number of running ODR servers in the cell.
- ODR server process JVM and OS metrics.
- Collects requests metrics from ODR servers in the cell and provides summarized statistics over cell, cluster, server, and application.

Monitors the status and metrics of dynamic clusters

- Dynamic clusters topology
- Cluster configuration and state
- Application servers in cluster
- Current number running in cluster
- Max number of servers in cluster
- Dynamic WLM Weight
- ODR server process JVM and OS metrics

Monitors XD application servers JVM information

- Server process JVM and OS metrics

ITCAM provides the following Compute Grid monitoring features:
Monitors Job Scheduler servers

- Job Scheduler server status – running, not running, number of running Job Scheduler servers.
- Job performance metrics reported by job scheduler servers, summarized over cell and per job scheduler.
- Details on queued and executing jobs, including notifications and job steps.
- Job Scheduler server process JVM and OS metrics ODR server status – running, not running.

Monitors Grid Endpoint servers

- Grid Endpoint server status – running, not running.
- Job performance metrics reported by grid endpoint servers, summarized over cell, service policy, and application.
- Grid endpoint server process JVM and OS metrics.

For both XD products, there are a number of situations provided to detect problems in the XD environment and to open Tivoli Enterprise Portal events.

For more information see “WebSphere XD Cell Monitoring Prerequisites” and “Configure WebSphere XD Cell monitoring.”

WebSphere XD Cell Monitoring Prerequisites

To monitor the WebSphere XD cell, the following prerequisites must be met by the system where the WebSphere Tivoli Enterprise monitoring agent is installed:

- The WebSphere monitoring agent can be installed on any computer which has WebSphere XD installed, for example, WebSphere Virtual Enterprise or WebSphere XD Compute Grid products. You do not have to install the WebSphere monitoring agent on the same system as the deployment manager, it can be on the same or a different system.
- The XD products installed on the monitoring agent system need to be the same version and release as the XD deployment manager.
- The WebSphere monitoring agent user must have read and execute access to the WebSphere XD installed files.
- It must be possible to establish WebSphere administrative client connection to the deployment manager. A network connection must be available and not be blocked by a firewall. This connection is typically available if any of the servers assigned to the cell are running on the system.
- If security is enabled for the WebSphere XD cell then there must be an existing WebSphere user or new WebSphere user created which has rights to complete the following tasks:
 - Establish administrative client connection
 - Access ConfigService
 - Query Perf MBean (PMI) and other WebSphere MBeans

This user is specified directly or indirectly within the deployment manager connection properties during monitoring agent configuration.

For more information see “Configure WebSphere XD Cell monitoring.”

Configure WebSphere XD Cell monitoring

You can configure a WebSphere agent to monitor WebSphere XD cells. To add an XD cell to the Tivoli Enterprise Portal, you must run the Add_XD_Cell take action
option from Tivoli Enterprise Portal. Then the XD cell subnode displays in Tivoli Enterprise Portal and you can configure all connection settings using configuration workspace.

Before you configure an XD cell monitoring, see the prerequisites listed in “WebSphere XD Cell Monitoring Prerequisites” on page 457.

Complete the following steps to configure the agent to monitor the XD cell:

- This step is optional, but if you want to see any data in the jobs workspace you will need to install ITCAM CG Monitor enterprise application using itcam.cg.py wsadmin script described in the next section.
- From the Tivoli Enterprise Portal, run the `ADD_XD_Cell` take action command from the WebSphere agent node.
- Refresh the navigation tree, the XD Cell subnode displays under WebSphere agent node.
- Click the XD Cell subnode and follow the link at the bottom, to open the configuration workspace.
- In the configuration workspace, specify connection settings and optionally update monitoring settings.

Convert WebSphere keystore to JKS format

To connect the WebSphere XD cell with enabled security you need to specify the SSL truststore and keystore files in the configuration workspace on the Connection configuration tab. If you use JKS stores in your WebSphere configuration, you can specify them directly in the connection settings. If you use PKCS12 stores, you will need to create JKS stores and import keys from PKCS12 stores into JKS stores. Use the following steps to complete the import.

1. In a Windows environment, start `<WebSphere Location>in\ikeyman.bat`. In a UNIX environment, start `<WebSphere Location>/bin/ikeyman.sh`.
2. In the IBM Key Manager main menu, select Key Database File > Open.
3. From the Key Database Type, select PKCS12.
4. Click the Browse button next to the File Name field, and select the `<WebSphere Location>\profiles\<Deployment Manager Name>\etc\key.p12` file. Click OK.
5. In the Password Prompt dialog box that displays, type WebAS then click OK.
6. In the Key Database Content drop-down menu, select Personal Certificates.
7. Select the default key and click the Extract Certificate button.
8. From the Data Type drop-down menu, select Binary DER data.

 Note: Pay attention to the Certificate file name and Location fields, you can change the values or leave the default values.

9. Click OK.
10. From the IBM Key Manager main menu, click Key Database File > Open.
11. From the Key Database Type drop-down menu, select JKS.
12. Click the Browse button next to the File Name field and select the `<WebSphere Location>\profiles\<Deployment Manager Name>\etc\DummyClientTrustFile.jks` file. Click OK.
13. In the Password Prompt dialog box, type WebAS then click OK.
14. In the Key Database Content drop-down menu, select Signer Certificates.
14. Click **Add** and specify the certificate file name extracted in steps 7 and 8. Click **OK**.
15. In the Enter a Label dialog box, type **imported** label and click **OK**.
16. Select **Key Database File > Exit** in the **IBM Key Manager** main menu to exit.

Install “ITCAM CG Monitor” enterprise application

To see details on the executing jobs (Jobs workspace), an optional ITCAM CG Monitor enterprise application can be deployed to the Job Scheduler deployment target (server or cluster). This application can be deployed using the supplied wsadmin script or through the admin console. /opt/IBM/WebSphere_6.1_ND_XD/AppServer/bin/wsadmin.sh --lang jython -f ./itcam.cg.py deploy ./itcam.cg.ear.

Note: ITCAM CG monitoring enterprise application can be deployed and started on the Job Scheduler without any interruption to the Job Scheduler.

In order to deploy the ITCAM CG Monitor application using wsadmin, run the following command:

Where [connection settings] depends on environment and typically are: -user wasuser -password waspassword.

Run Add XD Cell

1. In the Tivoli Enterprise Portal, click **WebSphere Agent - WebSphere**.
2. Right click, select **Take Action > Select**.
3. In the **Select Action** dialog box, click **Add_XD_Cell**.
4. Type the cell name, click **OK**.
5. Wait for the refresh icon to appear in the navigation tree toolbar.
6. When the XD Cell node displays in the navigation tree. Click the XD Cell node, then click the link at the bottom to open the configuration workspace.

Configure the Deployment Manager Connection

The configuration workspace specifies connection settings and monitoring settings.

1. Click **WebSphere XD Cell**
2. Click the link at the bottom to open the configuration workspace. The configuration workspace displays the following tabs:
 - Connection Settings
 - Connection Security Settings
 - Collection Settings
 - Job Filter Settings
3. Complete the fields in the tabs using the hover help as a guide. You can also use the configuration options following these steps as a guide.
4. When the connection settings are saved, refresh the workspace and check the cell connection status. If all settings are correct then status changes to
Connected if not the status changes to Error. For details on the connection error see the WebSphere Agent event log in the WebSphere Agent status workspace.

SOAP Connection to WebSphere XD cell with enabled security

- **Connector Host**: The address or host name that the deployment manager is listening on.
- **Connector port**: The SOAP port that the deployment manager is listening on.
- **Connector type**: The connector type can be SOAP or RMI. In this case use SOAP.
- **Connector Security Enabled**: Set to True to enable security
- **User name**: Add the WebSphere user name.
- **User password**: Add the WebSphere user password.

Note: The password is saved on the monitoring agent to file in encrypted form. The encryption key is available with the WebSphere monitoring agent files. To have a more secure password it is recommended to use the SSL keys instead of password.

- **SSL Trust Store File**: This is a store of keys trusted by SOAP client. It stores deployment manager public SSL key. After install WebSphere creates such file in the following path -- <WAS home>/etc/DummyClientTrustFile.jks. A WebSphere administrator can customize this file.
- **SSL Trust Store Password**: This is the password for the SSL Trust Store file. The default WebSphere password is “WebAS”.
- **SSL Key Store File**: This is a store of SOAP client public and private keys. After installation WebSphere creates this file in the following path -- <WAS home>/etc/DummyClientKeyFile.jks. A WebSphere administrator can customize this file.
- **SSL Key Store Password**: This is the password for the SSL Key Store file. The default WebSphere password is “WebAS”.

Simple configuration with SOAP connection and no security configured

- **Connector Host**: The address or host name that the deployment manager is listening on.
- **Connector Port**: The SOAP port that the deployment manager is listening on.
- **Connector Type**: This can be SOAP or RMI. In this case use SOAP.
- **Connector Security Enabled**: Set to False to disable security.

See also [ITCAM for Application Diagnostics - WebSphere XD Overview](#) on page 456.

ITCAM for Application Diagnostics - WebSphere XD Cell workspaces

The Tivoli Enterprise Portal XD component has the following workspaces:

Table 76. WebSphere XD Cell Workspaces

<table>
<thead>
<tr>
<th>Navigation tree and Workspaces</th>
<th>Secondary Workspaces</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebSphere Agent</td>
<td></td>
<td>Displays the overall summary information about the XD Cell.</td>
</tr>
<tr>
<td>XD Cell</td>
<td></td>
<td>XD Cell Subnode that contains all the workspaces associated with WebSphere XD.</td>
</tr>
<tr>
<td>Navigation tree and Workspaces</td>
<td>Secondary Workspaces</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Connection Settings</td>
<td>Used to configure XD connection settings</td>
<td></td>
</tr>
<tr>
<td>Virtual Enterprise</td>
<td>Displays ODR Summary Statistics.</td>
<td></td>
</tr>
<tr>
<td>Service policies</td>
<td>Displays ODR Statistics for each service policy.</td>
<td></td>
</tr>
<tr>
<td>Service policy</td>
<td>Displays ODR Statistics for the selected policy.</td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td>Displays ODR statistics for each transaction class, application, and module.</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>Displays ODR statistics for each transaction class, application, and module for the selected application.</td>
<td></td>
</tr>
<tr>
<td>Deployment Targets</td>
<td>Displays ODR statistics for deployment targets.</td>
<td></td>
</tr>
<tr>
<td>Static Cluster</td>
<td>Displays ODR statistics for an individual static cluster.</td>
<td></td>
</tr>
<tr>
<td>Servers</td>
<td>Displays ODR and JVM operating system statistics.</td>
<td></td>
</tr>
<tr>
<td>Server</td>
<td>Displays ODR and JVM operating system statistics for the selected server.</td>
<td></td>
</tr>
<tr>
<td>ODRs</td>
<td>Displays Statistics for ODRs.</td>
<td></td>
</tr>
<tr>
<td>ODR</td>
<td>Displays Statistics for ODRs for the selected ODR server.</td>
<td></td>
</tr>
<tr>
<td>Dynamic Clusters</td>
<td>Displays dynamic clusters statistics.</td>
<td></td>
</tr>
<tr>
<td>Dynamic Cluster</td>
<td>Displays dynamic clusters statistics for the selected cluster.</td>
<td></td>
</tr>
<tr>
<td>Compute Grid</td>
<td>Displays overall performance, loading, and health statistics on the compute grid.</td>
<td></td>
</tr>
<tr>
<td>Job Service Policies</td>
<td>Displays Job Statistics per service policy and summarizes all transactions classes that belong to the service policy.</td>
<td></td>
</tr>
<tr>
<td>Job Service Policy</td>
<td>Displays Job Statistics per service policy and summarizes all transactions classes that belong to the service policy.</td>
<td></td>
</tr>
<tr>
<td>Job Applications</td>
<td>Displays Job statistics by transaction class for applications and modules.</td>
<td></td>
</tr>
<tr>
<td>Job Application</td>
<td>Displays Job statistics by transaction class for applications and modules for the selected job application.</td>
<td></td>
</tr>
<tr>
<td>Grid Endpoints</td>
<td>Displays total statistics on grid endpoints.</td>
<td></td>
</tr>
<tr>
<td>Grid Endpoint</td>
<td>Displays total statistics for the selected grid endpoint.</td>
<td></td>
</tr>
<tr>
<td>Job Scheduler Servers</td>
<td>Displays job scheduler statistics.</td>
<td></td>
</tr>
<tr>
<td>Job Scheduler Server</td>
<td>Displays job scheduler statistics for the selected server.</td>
<td></td>
</tr>
<tr>
<td>Jobs</td>
<td>Displays running jobs.</td>
<td></td>
</tr>
</tbody>
</table>
Table 76. WebSphere XD Cell Workspaces (continued)

<table>
<thead>
<tr>
<th>Navigation tree and Workspaces</th>
<th>Secondary Workspaces</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job</td>
<td>Displays running jobs for the selected job.</td>
<td></td>
</tr>
</tbody>
</table>

WebSphere XD Cell subnode workspace

The XD Cell subnode displays overall request rates, job execution rates, and service policy violations.

This workspace displays data provided by the “XD Cell attributes” on page 486.

The predefined workspace contains the following items:

- **Situation Event Console** view displays all situation events for the XD Cell.
- The **Cell Summary** table displays connections settings and versions for the cell. You can click the link icon in any table row to click the Configuration link to access the XD Configuration workspace. For more information see “Configure WebSphere XD Cell monitoring” on page 457.

Accessing the XD Cell Subnode workspace

1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the list of WebSphere agents.
4. Expand the **WebSphere XD Cell**.
5. Click **XD Cell**.

Applications workspace

The applications workspace displays (On Demand Router) ODR Statistics for each unique application, module, transaction, class, and protocol combination summarized over all ODRs in the cell.

All statistics that display are the same as the Virtual Enterprise workspace. You can view more detailed information about the selected combination by clicking the link in the Applications table.

This workspace displays data provided by the “ODRs attributes” on page 478.

The predefined workspace contains the following items:

- **Arrived Request Rate - History** chart displays the same information as the ODR request rate on the cell subnode. Rates display per second for each request.
 - Request Arrived Rate
- **Average Response Time - History** displays information about response timings in milliseconds:
 - Average Response Time gives ODR end to end request time
- The **Applications** table displays the latest status of each application.

Accessing the Applications workspace

1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent node.
4. Expand the XD Cell.
5. Click the Applications workspace.

Accessing the Application workspace
- Click the link icon to view details for a specific application.
- In the Applications report, right-click the link icon to the left of any row; then, from the pop-up menu, click Application to display details about a specific application.
 - **Service Policy** click this link to view specific server policies related to the server in the Service Policy workspace.
 - **Per ODRs** click this link to view the ODRS specific to the server in the ODRs workspace.
 - **Per Deployment Target** click this link to access Dynamic clusters specific to the server in the Deployment Target workspace.
 - Applications
 - **Link Wizard** click to create links to workspaces.
 - **Link Anchor** click to display visual indicators on tables where customized links have been defined.

Note: Only applications that have some loading through the On Demand Router (ODR) display in the Applications workspace.

The application workspace displays Request Rate History and Average Request Time History as well as the following charts Request percent History and Request Time Deviation history.

Compute Grid workspace
The Compute Grid workspace displays Job Statistics for the cell. Information includes overall performance, loading, and health statistics of the compute grid for the cell.

This workspace displays data provided by the “Compute Grid Attributes” on page 475.

The predefined workspace contains the following items:
- **Job Rate History chart:** displays the overall job rates for the cell in minutes. The rates are Dispatched, Dispatch Error, Started and Completed.
- **Average Job Time - History chart:** displays the average job timings for the cell in seconds. The values are Queue, Dispatch, Dispatch Error and Execute.
- **Job Count - History:** displays the job count for the cell. The chart displays the status as either Queued or Running.
- **Compute Grid table** displays the current job statistics for the cell.

Accessing the Compute Grid workspace
To access this workspace, complete the following steps:
1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the Compute Grid workspace.

The Compute Grid table displays details on job performance. In the table, right-click the link icon to the left of any row; then, from the pop-up menu, click Service Policies to view the Job Service Policies workspace.

Deployment Targets workspace
The deployment targets workspace displays ODR statistics per deployment target and per protocol.

This workspace displays data provided by the "ODRs attributes" on page 478.

The predefined workspace contains the following items:
- **Arrived Request Rate History** displays the arrived request rate history for each deployment target.
- **Average Response Time History** displays the average response time history for each deployment target.
- **Deployment Targets** report, displays the latest status of each deployment target.

Accessing the Deployment Targets workspace
To access this workspace, complete the following steps:
1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the Deployment Targets workspace.

Accessing the specific information from the Deployment targets table
You can view more detailed information from the Deployment targets table.
- From the Deployments Target report, right-click the link icon to the left of any row; from the pop-up menu, click one of the following options to move to the relevant workspace.

 Note: Dynamic cluster and Static cluster and Server workspace links display only for the corresponding deployment target types.
 - **Server** click this link to view the Server workspace.
 - **Dynamic Cluster** click this link to view the Dynamic Cluster workspace. Dynamic Cluster can start, stop, and, create servers on demand.
 - **Static Cluster** click this link to view the Static Cluster workspace. Static cluster servers are created and started by users.
 - **Per Service Policies:** click this link to view the service policies specific to the selected deployment target.
 - **Per Applications** click this link to view the applications specific to the selected deployment target.
Dynamic Clusters workspace
The Dynamic Clusters workspace displays the topology of the dynamic clusters, servers, nodes, and node groups in your environment.

This workspace displays data provided by the "Dynamic Clusters attributes" on page 476 and the “Dynamic Cluster Topology attributes” on page 477.

The predefined workspace contains the following items:
- Topology displays visual representation of the dynamic clusters and servers that belong to them with the corresponding nodes. You can mouse over each item for details.
- Dynamic Clusters table displays the latest information about the dynamic clusters in the cell.

Accessing the Dynamic Clusters workspace
To access this workspace, complete the following steps:
1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the Dynamic Clusters workspace.

Accessing a specific Dynamic Cluster workspace
To access this workspace from the dynamic clusters workspace, use one of the following procedures:
- From the Dynamic Clusters table, click the link icon to the left of the selected cluster row, click Dynamic Cluster.

When you click Dynamic Clusters the following information displays:
- Topology displays the selected dynamic cluster with its servers and corresponding nodes, and node groups. Mouse over the items to view additional information.
- Request Rate History chart displays the arrived request rate history in requests per second for the selected dynamic cluster.
- Average Request Time History chart displays the average request time history in milliseconds for the selected dynamic cluster.
- Dynamic Cluster table displays configuration and status data specific to the selected dynamic cluster.
- ODR statistics table displays ODR data specific to the selected dynamic cluster.
The predefined workspace contains the following items:

- Job Started Rate - History chart displays the Job Started rate per minute.
- Average Completion Time- History chart displays the Average Job Completion Time in minutes.
- The Grid Endpoints table that displays statistics for the server.

Accessing the Grid Endpoints workspace

To access this workspace, complete the following steps:
1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the Grid Endpoints workspace.

Accessing a specific Grid Endpoints workspace

- From the Grid Endpoints table, right-click the link icon to the left of any row; then, from the pop-up menu, click Grid Endpoint.

When you click Grid Endpoint the following information displays:

- Average Completion Time - History chart displays the average job completion time in minutes.
- Job Rate - History chart displays the job rate per minute. The status is Started or Completed.
- JVM Heap Size chart displays the amount of heap size in MB, the status is Used or Free.
- CPU Used - History displays the percentage of CPU used.
- The Grid Endpoint table displays the job statistics for the selected policy.
- It is also possible that other workspace links that are available depending on the configuration. Click the relevant link to view the workspace of your choice:
 - Server Diagnostic click to view the WebSphere Application Server.
 - Per Job Service Policies click to view the Job Service Policies workspace
 - Per Applications click to view the Job Applications workspace.
 - Grid Endpoint click to view details of a specific grid endpoint.
 - Link Wizard click to create links to workspaces.
 - Link Anchor click to display visual indicators on tables where customized links have been defined.

Job Applications workspace

The Job Applications workspace displays job statistics for each application, module and transaction class combination.

The predefined workspace contains the following items:

- Job Started Rate - History chart displays the Job Started rate per minute.
- Average Completion Time- History chart displays the Average Job Completion Time in seconds.
- The Job Applications table displays job statistics for each job application.
Accessing the Job Applications workspace

To access this workspace, complete the following steps:
1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the Job Applications workspace.

Accessing a specific Job Application workspace

- From the Job Applications table, right-click the link icon to the left of any row; then, from the pop-up menu, click Job Application.

When you click Job Application the following information displays:
- Jobs Running - History chart displays the jobs running per minute.
- Average Completion Time - History chart displays the average job completion time in minutes.
- Job Started Rate - History chart displays the job rate per minute. The status is Started or Completed.
- The Job Application table displays the job statistics for the selected policy.

Job Scheduler Servers workspace

The Job Scheduler Servers workspace displays job statistics for each WebSphere Application Server server where Job Scheduler is running.

This workspace displays data provided by the "Compute Grid Attributes" on page 475.

The predefined workspace contains the following items:
- Job Dispatched Rate - History chart displays the Job Dispatched rate per minute.
- Average Queue Time - History chart displays the Average Job Queue Time in minutes.
- The Job Scheduler Servers table displays job statistics for each Job Scheduler.

Accessing the Job Scheduler Servers workspace

To access this workspace, complete the following steps:
1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the Job Scheduler Servers workspace.

Accessing a specific Job Scheduler Servers workspace

- From the Job Scheduler Servers table, right-click the link icon to the left of any row; then, from the pop-up menu, click Job Scheduler Server.
When you click **Job Scheduler Server** the following information displays:

- **Job Rate - History** chart displays the job rate per minute. The status are Dispatched, Dispatched Error, or Completed.
- **Job Average Time - History** chart displays the average job completion time in seconds. The status is Queue, Dispatched, or Dispatched Error.
- **JVM Heap Size** chart displays the amount of heap size in MB, the status is Used or Free.
- **CPU Used - History** displays the percentage of CPU used.
- The **Job Scheduler Server table** displays the job statistics for the selected policy.
- **Link Wizard** click to manually add links to other workspaces.
- **Link Anchor** click to display visual indicators on tables where customized links have been defined.

Job Service Policies workspace

The Job Service Policies workspace displays jobs statistics for each service policy.

This workspace displays data provided by the **“Service Policy Violations attributes” on page 484** attributes.

The predefined workspace contains the following items:

- **Job Started Rate - History** chart displays the Job Started rate per minute.
- **Average Completion Time- History** chart displays the Average Job Completion Time in minutes.
- The **Job Service Policies table** displays job statistics for each job service policy.

Accessing the Job Service Policies workspace

To access this workspace, complete the following steps:

1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the **XD Cell**.
5. Click the **Job Service Policies** workspace.

Accessing a specific Job Service policy workspace

- From the Job Service Policies table, right-click the link icon to the left of any row; then, from the pop-up menu, click **Job Service Policy**.

When you click **Job Service Policy** the following information displays:

- **Jobs Running - History** chart displays the jobs running per minute.
- **Average Completion Time - History** chart displays the average job completion time in minutes.
- **Job Rate - History** chart displays the job rate per minute. The status is Started or Completed.
- The **Service Policy table** displays the job statistics for the selected policy.
- It is also possible that other workspace links that are available depending on the configuration. Click the relevant link to view the workspace of your choice:

 - **Job Applications** click this link to view the Job Applications workspace
• **Job Service Policy** click to view details of a specific job service policy.
• **Link Wizard** click to manually add links to other workspaces.
• **Link Anchor** click to display visual indicators on tables where customized links have been defined.

The Service Policy table displays information about jobs and the service policy goal.

Jobs workspace
The Jobs workspace displays scheduled and running jobs.

This workspace displays data provided by the "Jobs attributes" on page 481 and "Job Filter attributes" on page 482.

The predefined workspace contains the following items:
• Job Filter - table the job instances. You can also right click the link to access the Set Job Filter where you can modify the filter display fields.
• Topology - displays the submitted jobs that have passed through the filter. You can mouse over each item to view the details.
• The Jobs Instances table displays the status of each job.

Accessing the Jobs workspace
To access this workspace, complete the following steps:
1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the Jobs workspace.

Setting the Job Filter
• From the Job Filter table, right-click the link icon to the left of any row; then, from the pop-up menu, click Set Job Filter.

You can add information to the following fields to change how the job filter table displays:
• Grid Endpoint
• Job Scheduler
• Total Time Greater
• Queue Time Greater
• Job Name
• Maximum Jobs
• Sort Order The options are Ascending or Descending
• Sort By The options are Total Time and Queue Time
• Job ID

When you click OK to implement the changes, the changes display in the Job Filter view. Once you move to another workspace the Job Filter settings revert to the default settings. If you want the Job Filter to retain the changes, edit the Agent...
Configuration workspace, Job Filter Settings tab, see “Configure the Deployment Manager Connection” on page 459.

Accessing the Job Instances workspace

- From the Job Instances table, right-click the link icon to the left of any row; then, from the pop-up menu, click Job Instance.

When you click Job Instance the following information displays and relates directly to the job you selected.
- Topology displays details relating to the selected job. You can mouse over each item to view the details.
- Job Notifications chart displays the notifications received for the selected job.
- Job Steps chart displays Executed and executing job steps.
- The Job table displays the job statistics for the selected job.

ODRs workspace

The ODRs (On Demand Routers) workspace displays request statistics for each ODR server (per protocol).

This workspace displays data provided by the “ODRs attributes” on page 478.

The predefined workspace contains the following items:
- Arrived Request Rate - History chart displays the arrived request rate history in requests per second for each ODR server (per protocol).
- Average Response Time - History chart displays the average response time history in milliseconds for each ODR server (per protocol).
- The ODRs table shows the status and statistics for each ODR server (per protocol for the last interval).

Accessing the ODRs workspace

1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the ODRs workspace

Viewing an individual ODR workspace

Use the following instructions to view specific details on an individual ODR server.
- From the ODRs table report, click the link icon to the left of the selected ODR server, click ODR.

The following links are available for detailed request statistics as routed by the selected ODR:
- Service Policies click to view the service policy request statistics.
- When you click ODR (the default link) the following charts display:
 - Request Rate History
 - Average Request Time History
- JVM Heap Size History Displays the heap size used and free.
- CPU Used History displays the percentage of CPU used by JVM.

Servers workspace
The servers workspace displays ODR statistics for each server and protocol.

This workspace displays data provided by the "Servers attributes" on page 483.

The predefined workspace contains the following items:
- **Arrived Request Rate - History** chart displays the arrived request rate history in requests per second for each server (per protocol).
- **Average Response Time - History** chart displays the average response time history in milliseconds for each ODR server (per protocol).
- The **Servers** table shows current server status and statistics for each server.

Accessing the Servers workspace
To access this workspace, complete the following steps:
1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the **XD Cell**.
5. Click the **Servers** workspace

Viewing server details
- From the Servers report, click the link icon to the left of the selected server and protocol.
- If the server you select is monitored by a data collector you will also see a **Server Diagnostics** link. Click this link to access the application server data collector workspaces.
- Click **Server** to view details relating to a specific server.

When you click **Server** the following charts display:
- Request Rate History
- Average Request Time History
- JVM Heap Size History: displays the heap size used and free.
- CPU Used History: displays the percentage of CPU used by JVM.

Service Policies workspace
The Service policies workspace displays (On Demand Router) ODR statistics for service policies and protocol, summarized over all the ODRs in the XD Cell.

The statistics that display are the same as the statistics in the virtual enterprise workspace. You can view more detailed information about the selected service policy by clicking the link in the policies table.

Accessing the Service policies workspace
1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the Service Policies workspace.

This workspace displays data provided by the “Service Policy Violations” on page 484.

The predefined workspace contains the following items:
- **Arrived Request Rate - History** chart, displays the arrived request rate history in requests per second for each server (per protocol).
- **Average Response Time - History** chart displays the average response time history in milliseconds for each ODR server (per protocol).
- The Service Policies table shows a current sample of the workplace statistics.
 Click the link in a table row to view details of individual service policies.

Accessing the Service policy violations workspace

The Service Policy violations workspace displays a list of service policy violation tasks.
1. To access this workspace, from the XD Cell, select the Service Policies node.
2. Right click Service Policies > Workspaces > Service Policy Violations.
3. The Open Service Policy Violation Tasks report displays a list of all open tasks.
4. You can sort the report according to the columns displayed. Click the column you want to sort by to display the filter arrow in the column, then click the arrow up or down to sort.
5. Click the link arrow to the left of a row to view a specific service policy violation.

Accessing the Service policies workspace

1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the Service Policies workspace.

This workspace displays data provided by the “Service Policy Violations” on page 484.

The predefined workspace contains the following items:
- **Arrived Request Rate - History** chart, displays the arrived request rate history in requests per second for each server (per protocol).
- **Average Response Time - History** chart displays the average response time history in milliseconds for each ODR server (per protocol).
- The Service Policies table shows a current sample of the workplace statistics.
 Click the link in a table row to view details of individual service policies.
- From the Service policies report, click the link icon to the left of the selected row.
• Right click the link icon to view the following menu options:
 – **Service Policy** (default) displays details of the selected policy
 – **Per ODRs** click this link to view the service policy request statistics per ODR server.
 – **Per Deployment Target** click this link to view the service policy request statistics per deployment target.
 – **Applications** click this link to access the applications specific to the service policy in the Applications workspace.

This Service policy workspace displays the charts for the following information:

• **Request Rate History** chart displays request rates in requests per second.
 – **Request Arrived Rate** displays the rate per second of requests arrived at ODR during the sampling interval.
 – **Request Dispatched Rate** displays the rate per second of the requests dispatched from ODR to server during the sampling interval.
 – **Request Serviced Rate** displays the rate per second of requests returned from server to ODR during the sampling interval.

• **Average Request Time - History** displays information about request timings in milliseconds.
 – **Average Wait Time** the average wait time of the request in the queue.
 – **Average Response Time** the average response time of the request.
 – **Average Service Time** the average service time of the request.
 – **Average Service Time out** the average service time of the requests completed due to timeout during the sampling interval.
 – **Average Response Time out** the average response time of the requests completed due to timeout during the sampling interval.
 – **Average Dequeue Time** the average dequeue time of the requests dequeued during the sampling interval.

• **Request Percent History** chart displays miscellaneous request percents.
 – Failed
 – Dropped
 – Above Goal
 – Timed Out

• **Average ODR Queue Length** chart displays average number of requests in ODR queue for the selected service policy.

Virtual Enterprise workspace
The virtual enterprise workspace displays ODR statistics by protocol summarized over all the ODRs in the cell.

If you are using simple setup only the HTTP/S protocol is present.

This workspace displays data provided by the "ODRs attributes" on page 478.

The predefined workspace contains the following items:

This workspace displays the charts for the following information:

• **Request Rate History** displays the same information as the ODR request rate on the cell subnode. Rates display per second for each request.
- **Request Failed Rate** displays the rate per second of requests returned with an error indicator during the sampling interval.
- **Request Arrived Rate** displays the rate per second of requests arrived at ODR during the sampling interval.
- **Request Dropped Rate** displays the rate per second of requests dropped by ODR after arrival or later from the queue during the sampling interval.
- **Request Dispatched Rate** displays the rate per second of the requests dispatched from ODR to server during the sampling interval.
- **Request Serviced Rate** displays the rate per second of requests returned from server to ODR during the sampling interval.
- **Request Above Goal Rate** displays the rate per second of requests above response time threshold during the sampling interval.

Average Request Time - History displays information about request timings in milliseconds.
- **Average Wait Time** displays the average wait time of the request in the queue.
- **Average Response Time** displays the average response time of the request.
- **Average Service Time** displays the average service time of the request.
- **Average Service Time out** displays the average service time of the requests completed due to timeout during the sampling interval.
- **Average Response Time out** displays the average response time of the requests completed due to timeout during the sampling interval.
- **Average Dequeue Time** displays the average dequeue time of the requests dequeued during the sampling interval.
- **Average Queue Length** displays this is zero in a simple setup.
- **Average Request Time Deviation History** This is the average response time in milliseconds.
- **Response Time Deviation** displays the response time deviation.
- **Service Time Deviation** displays the average service time deviation during the sampling interval.

The Virtual Enterprise table shows a current sample of the workplace statistics.
You can also access the Service Policies workspace from this table.

Accessing the Virtual Enterprise workspace
1. In the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. In the node list, expand the entry that corresponds to the node you want to select.
3. In that node list of monitored applications, expand the WebSphere agent.
4. Expand the XD Cell.
5. Click the Virtual Enterprises workspace.

Accessing the service policy workspace

From the Virtual Enterprise report, click the link icon to the left of the selected row, then click Service Policy to access the Service Policy workspace.
ITCAM for Application Diagnostice - WebSphere XD Cell Attributes

Compute Grid Attributes

The Compute Grid attributes provide information and statistics about the WebSphere XD Compute Grid.

Average Job Dispatch Time (min) Indicates the average time spent to dispatch jobs during the sampling interval.

Average Dispatch Error Time (min) Indicates the average time spent for the failed job dispatches during the sampling interval.

Average Job Execution Time (min) Indicates the average job execution time during the sampling interval.

Average Job Queue Time (min) Indicates the average time jobs spent in queue during the sampling interval.

Cell Name Indicates the WebSphere XD Cell name.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Job Completed Count Indicates the number of jobs completed during the sampling interval.

Job Completed Rate (per min) Indicates the rate per minute of the jobs completed during the sampling interval.

Job Dispatch Error Count Indicates the number of job dispatch errors during the sampling interval.

Job Dispatch Error Rate (per min) Indicates the rate per minute of the job dispatch errors during the sampling interval.

Job Dispatched Count Indicates the number of jobs dispatched during the sampling interval.

Jobs Dispatched Rate (per min) Indicates the rate per minutes of the jobs dispatched during the sampling interval.

Jobs In Queue Indicates the current number of jobs in Job Scheduler queue.

Jobs Running Indicates the current number of running jobs.

Job Scheduler Server Name Indicates the WebSphere server name of the Job Scheduler.

Job Scheduler Server Node Indicates the WebSphere node name of the Job Scheduler.
Job Scheduler Servers Running Indicates the current number of running Job Scheduler servers.

Job Scheduler Deployment Target Name The deployment target name of the Job Scheduler.

Job Scheduler Deployment Target Type The deployment target type of the Job Scheduler.

Job Started Count Indicates the number of jobs started during the sample interval.

Job Started Rate (per min) Indicates the rate per minute of the jobs started during the sampling interval.

Label Indicates the row label.

Origin Node Indicates the XD Cell subnode.

Row Type Indicates the row type.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

Server State Indicates the WebSphere server state of the Job Scheduler. The state can be Running, Stopped, Starting, Stopping or Maintenance.

Dynamic Clusters attributes The Dynamic Clusters attributes provide information about WebSphere XD dynamic clusters.

Cell Name Indicates the WebSphere XD Cell name.

Cluster Member Type Indicates the cluster member type.

Cluster Name Indicates the cluster name.

Cluster State Indicates the cluster state.

Configured Servers Indicates the configured number of servers in the dynamic cluster.

Interval (sec) Indicates the length of the sample interval in seconds.

Maximum Servers Indicates the maximum number of servers in the dynamic cluster.

Minimum Servers Indicates the minimum number of servers in the dynamic cluster.

Origin Node Indicates the XD Cell subnode.
Running Servers Indicates the configured number of servers in the dynamic cluster.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

Dynamic Cluster Topology attributes
The WebSphere XD **Dynamic Cluster Topology** attributes provide topology information about the dynamic clusters.

The attributes within this group are used to build the ["Dynamic Clusters workspace"] on page 465.

Cell Name Indicates the WebSphere XD Cell name.

Filter Indicates the filter which is applied to the topology view.

From Node ID Indicates the incoming link topology node ID.

ID Indicates the topology node ID.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Name Indicates the topology node name.

Origin Node Indicates the XD Cell subnode.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

State Indicates the topology node state.

To Node ID Indicates the outgoing link topology node ID.

Type Indicates the topology node type.

Grid Endpoint attributes
The WebSphere XD **Grid Endpoint** attributes provide information about compute grid endpoint servers.

The attributes within this group are used to build the ["Grid Endpoints workspace"] on page 465, ["Job Applications workspace"] on page 466 and, ["Job Service Policies workspace"] on page 468.

Application Indicates the job application name.

Application Label Indicates the application label.

Average Job Completion Time (min) Indicates the average job execution time during the sampling interval.
<table>
<thead>
<tr>
<th>Cell Name</th>
<th>Indicates the WebSphere XD Cell name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval (sec)</td>
<td>The length (in seconds) of the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Job Completed Count</td>
<td>Indicates the number of jobs completed during the sampling interval.</td>
</tr>
<tr>
<td>Job Completed Rate (per min)</td>
<td>Indicates the rate per minute of the jobs completed during the sampling interval.</td>
</tr>
<tr>
<td>Jobs Running</td>
<td>Indicates the average job execution time during the sampling interval.</td>
</tr>
<tr>
<td>Job Started Count</td>
<td>Indicates the number of jobs started during the sampling interval.</td>
</tr>
<tr>
<td>Job Started Rate (per min)</td>
<td>Indicates the rate per minute of the jobs started during the sampling interval.</td>
</tr>
<tr>
<td>Label</td>
<td>Indicates the row label.</td>
</tr>
<tr>
<td>Module</td>
<td>Indicates the job module name.</td>
</tr>
<tr>
<td>Node Name</td>
<td>The name of the Grid Endpoint server node.</td>
</tr>
<tr>
<td>Origin Node</td>
<td>Indicates the XD Cell subnode.</td>
</tr>
<tr>
<td>Row Type</td>
<td>Indicates the row type.</td>
</tr>
<tr>
<td>Sample Date and Time</td>
<td>The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.</td>
</tr>
<tr>
<td>Server Name</td>
<td>The name of the Grid Endpoint server.</td>
</tr>
<tr>
<td>Service Policy</td>
<td>Indicates the job service policy name.</td>
</tr>
<tr>
<td>Service Policy Goal Value (min)</td>
<td>Indicates the service policy goal value.</td>
</tr>
<tr>
<td>Service Policy Goal Type</td>
<td>Indicates the service policy goal type.</td>
</tr>
<tr>
<td>Service Policy Importance</td>
<td>Indicates the service policy importance.</td>
</tr>
<tr>
<td>Transaction Class</td>
<td>Indicates the job transaction class name.</td>
</tr>
</tbody>
</table>

ODRs attributes
The ODRs (On Demand Routers) attributes provide information about the WebSphere XD On Demand Routers.

The attributes within this group are used to build the "ODRs workspace" on page 470.

Average Dequeue Time (msec) The average dequeue time of the requests dequeued during the sampling interval.
Average Queue Length The average ODR queue length.

Average Response Time (msec) The average response time of the request.

Average Response Timeout (msec) The average response time of the requests completed due to timeout during the sampling interval.

Average Service Time (msec) The average service time of the request.

Average Service Timeout (msec) The average service time of the requests completed due to timeout during the sampling interval.

Average Wait Time (msec) The average wait time of the request in the queue.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

ODR Server Name The ODR server name.

ODR Server Node The ODR node name.

Protocol The protocol name.

ODR Server Status The ODR server status. Status can be Stopped, Running or Maintenance.

Request Above Goal Count The number of requests above response time threshold during the sampling interval.

Request Above Goal Percent Indicates the percent of serviced requests which were above response time threshold during the sampling interval.

Request Above Goal Rate (per sec) The rate per second of requests above response time threshold during the sampling interval.

Request Arrived Count The number of requests arrived at ODR during the sampling interval.

Request Arrived Rate (per sec) The rate per second of requests that arrived at ODR during the sampling interval.

Request Failed Count The number of requests returned with an error indicator during the sampling interval.

Request Failed Percent Indicates the percent of requests that returned, during the reported interval, with an error indicator.

Request Failed Rate (per sec) The rate per second of requests returned with an error indicator during the sampling interval.

Request Dispatched Count The number of requests dispatched from ODR to server during the sampling interval.

Request Dispatched Rate (per sec) The rate per second of the requests dispatched from ODR to server during the sampling interval.
Request Dropped Count The number of requests dropped by ODR after arrival or later from the queue during the sampling interval.

Request Dropped Rate (per sec) The rate per second of requests dropped by ODR after arrival or later from the queue during the sampling interval.

Request Dropped Percent Indicates the percent of requests dropped at OnDemand Router.

Response Time Deviation (msec) The response time deviation.

Request Timed Out Percent Indicates the percent of requests that returned, during the reported interval, due to service timeout.

Request Serviced Count The number of requests returned from server to ODR during the sampling interval.

Request Serviced Rate (per sec) The rate per second of requests returned from server to ODR during the sampling interval.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

Service Time Deviation (msec) The average service time deviation during the sampling interval.

Origin Node The XD Cell subnode.

Cell Name The WebSphere XD Cell name.

Deployment Target Name The Deployment Target name.

Deployment Target Type Indicates the deployment target type. Deployment target types can be Dynamic Cluster, Static Cluster, or Server.

Row Type Indicates the row type.

Server Name Indicates the server name.

Server Node Indicates the server node name.

Server Status Indicates the server status. The Server status can be Stopped, Running or Maintenance.

Server Weight Indicates the server weight in cluster.

Application Indicates the application name.

Module Indicates the name of the module.

Transaction Class Indicates the transaction class.

Service Policy Indicates the service policy name.
Service Policy Importance Indicates the service policy importance.

Service Policy Goal Type Indicates the service policy goal type.

Service Policy Goal Value (msec) Indicates the service policy goal value.

Request Timed Out Count Indicates the number of requests that completed due to service timeout during the sampling interval.

Requests Timed Out Rate (per sec) Indicates the rate per second of requests that completed due to service timeout during the sampling interval.

Label Indicates the row label.

Application Label Indicates the application label.

Jobs attributes
The WebSphere XD Jobs may be in queue - in a submitted state or in a suspended state. The Jobs workspace provided information about jobs that are active and not finished.

The attributes within this group are used to build the “Jobs workspace” on page 469.

Cell Name Indicates the WebSphere XD Cell name.

Execute Time (min) The job execution time.

Grid Endpoint Server Name The Grid Endpoint server name where job is running.

Grid Endpoint Server Node The Grid Endpoint node name.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Job ID The job ID.

Job Type The job type.

Job Scheduler Server Name The Job Scheduler server name on which job is scheduled.

Job Scheduler Server Node The Job Scheduler node name.

Origin Node Indicates the XD Cell subnode.

Queue Time (min) The current number of minutes job spent in queue.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

Start Date and Time The job start date and time.

State Indicates the job state.
Submitter The job submitter name.

Suspended Until The job is suspended until the specified date and time.

Total Time (min) The total time passed since the job was submitted.

Job Filter attributes
The WebSphere XD Job Filter attributes provide information about the current job filter.

The attributes within this group are used to build the jobs filter table in the "Jobs workspace" on page 469.

Cell Name Indicates the WebSphere XD Cell name.

Total Time Greater (min) Indicates the filter for job total time to be greater than the specified time.

Grid Endpoint Indicates the filter for the Grid Endpoint's full server name (node:server).

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Job ID Indicates the filter for the job ID.

Job Name Indicates the filter for the job name.

Job Scheduler Server Indicates the filter for the Job Scheduler's full server name (node:server).

Maximum Jobs Indicates the maximum number of jobs to pass the filter.

Queue Time Greater (min) Indicates the filter for job time in queue to be greater than the specified time.

Sort Order Indicates the job sort order.

Sort By Indicates the jobs attribute to sort by.

Origin Node Indicates the XD Cell subnode.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

Job Notification attributes
The WebSphere XD Job Notification attributes provide information about the current job filter.

The attributes within this group are used to build the "Jobs workspace" on page 469.

Cell Name Indicates the WebSphere XD Cell name.
Date and Time Indicates the notification date and time.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Job ID Indicates the job ID.

Origin Node Indicates the XD Cell subnode.

Notification Type Indicates the notification type.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

Sequence Number Indicates the notification sequence number.

Step Name Indicates the step name.

Job Topology attributes
The WebSphere XD **Job Topology** attributes provide topology information about running jobs.

The attributes within this group are used to build the "Jobs workspace" on page 469.

Cell Name Indicates the WebSphere XD Cell name.

From Node ID Indicates the incoming link node ID.

ID Indicates the node ID.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Job ID Indicates the job ID.

Name Indicates the node name.

Origin Node Indicates the XD Cell subnode.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

State Indicates the node state.

To Node ID Indicates the outgoing link node ID.

Type Indicates the node type.

Servers attributes
The **Servers** attributes provide JVM and process information about the WebSphere XD servers.
The attributes within this group are used to build the "Servers workspace" on page 471.

Origin Node Indicates the XD Cell subnode.

Cell Name Indicates the WebSphere XD Cell name.

CPU Used Percent Indicates the server CPU usage percent.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

JVM Heap Used (MB) Indicates the size of the used JVM heap space.

JVM Heap Free (MB) Indicates the size of the free JVM heap space.

JVM Heap Total (MB) Indicates the total JVM heap size.

Process Resident Memory (MB) Indicates the server process resident memory.

Process Total Memory (MB) Indicates the server process total memory.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

Server Name The name of the server.

Server Node The name of the server node.

Service Policy Violations attributes

The WebSphere XD **Service Policy Violations** attributes provide information about open service policy violation tasks.

The attributes within this group are used to build the "Service Policies workspace" on page 471.

Cell Name Indicates the WebSphere XD Cell name.

Date and Time Indicates the date and time when the service policy violation task was open.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Origin Node Indicates the XD Cell subnode.

Row Number Indicates sequential row number.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09 16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

Service Policy Indicates the service policy name.
Service Policy Importance Indicates the service policy importance.

Service Policy Goal Type Indicates the service policy goal type.

Service Policy Goal Unit Indicates the service policy goal unit.

Service Policy Goal Value Indicates the service policy goal value.

Violation Indicates the service policy violation task description.

Steps attributes
The WebSphere XD Steps attributes provide information about current job filter.

 - The attributes within this group are used to build the “Jobs workspace” on page 469.

 - **Cell Name** Indicates the WebSphere XD Cell name.

 - **End Date and Time** Indicates the step end date.

 - **Execution Time (min)** Indicates the step execution time in minutes.

 - **Job ID** Indicates the job ID.

 - **Interval (sec)** The length (in seconds) of the interval. The valid format is a positive integer.

 - **Origin Node** Indicates the XD Cell subnode.

 - **Result Code** Indicates the finished step result code.

 - **Sample Date and Time** The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; *Example: 09/25/09 16:20:46* indicates the data was collected on September 25, 2009, at 14:20:46.

 - **Start Date and Time** Indicates the step start date.

 - **Status** Indicates the finished step status.

 - **Step Name** Indicates the step name.

XD Cell subnode attributes
The XD Cell Configuration attributes provide configuration information.

 - The attributes within this group are used to build the “WebSphere XD Cell subnode workspace” on page 462.

 - **Origin Node** Indicates the XD Cell subnode.

 - **Cell Name** Indicates the WebSphere XD Cell name.

 - **Interval (sec)** The length (in seconds) of the interval. The valid format is a positive integer.
Sample Date and Time The date and time the Tivoli Enterprise Management
Agent collected the data. The valid format is a 12-character timestamp. For the STR
and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09
16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

XD Cell attributes
The WebSphere XD Cell attributes provide information about a WebSphere XD
cell.

The attributes within this group are used to build the "WebSphere XD Cell
subnode workspace" on page 462.

Connection Status Indicates the connection status to the cell deployment manager.

Connection Host Indicates the connection address of the deployment manager.

Connection Port Indicates the connection port of the deployment manager.

Connection Type Indicates the connection type of the deployment manager.

WebSphere Version Indicates the WebSphere version.

WebSphere Location Indicates the WebSphere XD root directory.

Cell Name Indicates the WebSphere XD Cell name.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive
integer.

Origin Node Indicates the XD Cell subnode.

Sample Date and Time The date and time the Tivoli Enterprise Management
Agent collected the data. The valid format is a 12-character timestamp. For the STR
and SCAN functions, the format is MM/DD/YY HH:MM:SS; Example: 09/25/09
16:20:46 indicates the data was collected on September 25, 2009, at 14:20:46.

ITCAM for Application Diagnostics - WebSphere XD Take
Actions
Use the XD Take Action commands in the Tivoli Enterprise Portal interface to add
and remove XD cells to and from a WebSphere Application Server.

WebSphere XD uses two take action commands.
• Add_XD_Cell
• Remove_XD_Cell

You need to use the Add_XD_Cell command as part of the XD Cell configuration
process. For more information see, "Configure WebSphere XD Cell monitoring" on
page 457 and "Add_XD_Cell: Add an XD Cell to a WebSphere agent" on page 445.

To remove and XD Cell, you need to access this option from the node of the XD
cell you want to remove for more information see, "Remove_XD_Cell: Remove an
XD cell from the WebSphere XD Cell" on page 487.
Remove_XD_Cell: Remove an XD cell from the WebSphere XD Cell

Use the Remove_XD_Cell command to remove an XD cell from the WebSphere XD Cell. This take action command is available on the specific cell subnode only.

Command syntax

Before you remove an XD cell from the agent, disable monitoring using the configuration workspace. If you do not disable monitoring, then the Remove_XD_Cell finishes displaying an error message notifying you to disable monitoring beforehand. See “Application Diagnostics Configuration - Basic Tab” on page 223.

1. To access the command, right click the XD Cell node you want to remove. Click Take Actions > Select.
2. From the Name drop-down menu, select Remove_XD_Cell.
3. Click OK to remove the cell.

YN:RemXDCell

See also “ITCAM for Application Diagnostics - WebSphere XD Take Actions” on page 486

ITCAM for Application Diagnostics - XD Agent situations

WebSphere XD has a number of predefined situations that you can use to complete the following tasks:

- Detect importance conditions in the WebSphere XD cell you monitor.
- Create your own situations using the predefined situations as examples.

These predefined situations display an alert status. When these situations trigger an alert, you can investigate the event by opening its workspace. For example, you can use these situations to monitor a WebSphere XD cell for requests not meeting the expected goal.

How the situations work

Situations are tests expressed in IF-TRUE format of system conditions that you want to monitor; the tested value is an ITCAM for Application Diagnostics - WebSphere Agent attribute expressed in the form attribute-group.attribute-name. If the specified condition occurs or exists, the situation is true, and an alert is issued.

Avoid using negative values

If you define situations that use a counter or a range of numbers, always provide a threshold or use values in a positive range of numbers. For example, use a greater-than-or-equal-to-zero expression as shown in some of the following predefined situations. This practice prevents a situation from falsely tripping. If the ITCAM for Application Diagnostics - WebSphere Agent Tivoli Enterprise Management Agent encounters an undefined attribute value, it reports this value as a negative number and a situation that specifies a negative number can fire erroneously.
Accessing the situations

A number of predefined situations are shipped to monitor the WebSphere XD Cell. All of the situations except XDVEAppReqArrivedRateHigh are active by default. You can customize thresholds used in a situation to suit your environment. Situation XDVEAppReqArrivedRateHigh needs to be run manually. To start a situation manually, access the situations in the Tivoli Enterprise Portal using one of the following methods:

- From the toolbar on the main menu click the Situation Editor icon and scroll to the situation you want to view.
- In the WebSphere agent, right click the specific workspace. Click Manage Situations to display all the managed situations available. If you want to start, stop edit or model a situation right click the situation and select the option you want.

XDConnectionError monitors connectivity between the monitoring agent and the deployment manager and issues a Critical alert if there is no connection between the monitoring agent and the deployment manager. The formula is:

If

WebSphere_XD_Cell.Connection_Status equals error

then

the situation XDConnectionError is true.

XDCPUUsedHigh monitors the percentage of the CPU being consumed and issues a Critical alert when the CPU usage is higher than 80%. The formula is:

If

WebSphere_XD_Servers.CPU_Used_Percent is greater than 80

then

the situation XDCPUUsedHigh is true.

XDVEODRNotRunning monitors the ODR servers running in the XD cell and issues a Critical alert when the number of ODR servers running equals 0. The formula is:

If

WebSphere_XD_ODR.Servers_Running equals 0 and
WebSphere_XD_ODR.Row_Type equals ODR

then

the situation XDVEODRNotRunning is true.

XDVEODRQueueLengthHigh monitors the average ODR server queue length and issues a Critical alert when the queue length is longer than 10. The formula is:
If

WebSphere_XD_ODR.Average_Queue_Length is greater than 10 and
WebSphere_XD_ODR.Row_Type equals ODR

then

the situation XDVEODRQueueLengthHigh is true.

XDVEAppReqFailedPercentHigh monitors the percentage of failed application requests and issues a Critical alert when an application request fails. The formula is:

If

WebSphere_XD_ODR.Request_Failed_Percent is greater than 0 and
WebSphere_XD_ODR.Row_Type equals Application

then

the situation XDVEAppReqFailedPercentHigh is true.

XDVEAppReqDroppedPercentHigh monitors the percentage of application requests that drop and issues a Critical alert when an application request drops. The formula is:

If

WebSphere_XD_ODR.Request_Dropped_Percent is greater than 0 and
WebSphere_XD_ODR.Row_Type equals Application

then

the situation XDVEAppReqDroppedPercentHigh is true.

XDVEAppReqArrivedRateHigh monitors the application request arrival rate and issues a Critical alert when the request arrival rate is higher than 1000 per second. The formula is:

If

WebSphere_XD_ODR.Request_Arrived_Rate is greater than 1000 and
WebSphere_XD_ODR.Row_Type equals Application

then

the situation XDVEAppReqArrivedRateHigh is true.

Note: You will need to run this situation XDVEAppReqArrivedRateHigh manually.

XDVEAppReqAboveGoalPercentHigh monitors the number of application requests above the response time threshold during the sampling interval and issues a Critical alert when the average request response time is 0 percent. The formula is:

If

...
WebSphere_XD_ODR.Requests_Above_Goal_Percent is greater than 0 and
WebSphere_XD_ODR.Row_Type equals Application

then

the situation XDVEAppReqAboveGoalPercentHigh is true.

XDVEAppReqTimedOutPercentHigh monitors the percentage of application
requests that time out and issues a Critical alert when an application request times
out. The formula is:

If

WebSphere_XD_ODR.Request_Timed_Out_Percent is greater than 0 and
WebSphere_XD_ODR.Row_Type equals Application

then

the situation XDVEAppReqTimedOutPercentHigh is true.

XDVEServerMaintenance monitors the need for server maintenance and issues a
Critical alert when a server requires maintenance. The formula is:

If

WebSphere_XD_ODR.Server_State equals Maintenance and
WebSphere_XD_ODR.Row_Type equals Server

then

the situation XDVEServerMaintenance is true.

XDVEDynClusterPartlyRunning monitors for any dynamic clusters that are
partially running and issues a Critical alert when this is the case. The formula is:

If

WebSphere_XD_Dynamic_Clusters.Cluster_State equals Partially_Running

then

the situation WASPortletResponseTime is true.

XDVESPolicyTaskOpen searches for open service policy violation tasks and issues
a Critical alert when one occurs. The formula is:

If

WebSphere_XD_Policy_Violations.Service_Policy is not equal to "empty string"

then

the situation XDVESPolicyTaskOpen is true.
XDCGJobSchNotRunning monitors the connectivity of the Job Scheduler servers and issues a Critical alert when a Job Scheduler server is not running. The formula is:

If

WebSphere_XD_Compute_Grid.Job_Scheduler_Servers_Running equals Cell and
WebSphere_XD_Compute_Grid.Row_Type equals Cell

then

the situation XDCGJobSchNotRunning is true.

XDCGJobSchQueueLengthHigh monitors the Job Scheduler queue length and issues a Critical alert when the queue length is higher than 5000 per second. The formula is:

If

WebSphere_XD_Compute_Grid.Jobs_in_Queue is greater than 5000 and
WebSphere_XD_Compute_Grid.Row_Type equals Job_Scheduler_Server

then

the situation XDCGJobSchQueueLengthHigh is true.

XDCGJobSchDispErrorPercentHigh monitors the percentage of job scheduler jobs that fail and issues a Critical alert when a job fails. The formula is:

If

WebSphere_XD_Compute_Grid.Average_Job_Dispatch_Error_Time is greater than 0 and WebSphere_XD_Compute_Grid.Row_Type equals Job_Scheduler_Server

then

the situation XDCGJobSchDispErrorPercentHigh is true.

XDCGJobExcessiveExecTotalTime monitors the duration time of a job and issues a Critical alert when the job execution time is longer than one day (1440 mins). The formula is:

If

WebSphere_XD_Jobs.Total_Time is greater than 1440

then

the situation XDCGJobExcessiveExecTotalTime is true.

XDCGJobExcessiveQueueTime monitors job queue time and issues a Critical alert when the job is in a queue for longer than 10 minutes. The formula is:

If

WebSphere_XD_Jobs.Queue_Time is greater than 10
then

the situation XDCGJobExcessiveQueueTime is true.
Chapter 5. ITCAM Agent for J2EE

IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for J2EE provides a systems-management solution for the J2EE Application Server Version 6.2 for distributed platforms. Using ITCAM for Application Diagnostics - Agent for J2EE, you can monitor multiple J2EE application servers running on the same physical node. Each application server must have been configured with its own IBM Tivoli Composite Application Manager (ITCAM) for J2EE Data Collector.

The Tivoli Enterprise Monitoring Agent collects performance data from the following four primary sources:

- Response time data for application server requests from the ITCAM for J2EE data collector
- Resource data from the Performance Monitoring Infrastructure (PMI) of J2EE
- J2EE Application Server log messages
- Garbage-collector activity recorded by the JVM's verboseGC trace

Attributes within the product collect data about the inner workings of an application server and performance information about user applications running under its control.

Initiating data collection and reporting of data

Because of high overhead, some data items are not automatically collected and reported. The collection of some data and statistics depends upon the setting of instrumentation levels for certain attributes. If the instrumentation levels are not set appropriately, certain information will not be collected and displayed in the workspaces. Similarly, those attributes that collect request and application trace data require you to complete several configuration steps. If you need to collect this data, use one of these methods to reconfigure data collection:

- Complete configuration steps (as explained in the ITCAM for Application Diagnostics - Agent for J2EE installation and customization guide).
- Issue Take Action commands, with which you can take specific action against your J2EE application server using the Tivoli Enterprise Portal.
- Use Manage Tivoli Enterprise Services (as explained in the various IBM Tivoli Monitoring installation manuals and the ITCAM for Application Diagnostics - Agent for J2EE installation and customization guide).

Automatic baselining

To display application health status, ITCAM monitors request response times (averaged over a sampling interval, by default 60 seconds) for every application. Every top level request available in an application is monitored separately.

For every request, two *thresholds* are set, known as *fair* and *bad*. When at least one average request response time for an application rises over the fair threshold, a health warning (yellow) for this application is reported. In the same way, when at least one average request response time rises over the bad threshold, an application health alarm (red) is reported.
ITCAM also monitors the "nested" requests (for example, database calls) within every top level request. In the event of a warning or alarm, it checks which of the nested requests is taking more than its usual share of time. Depending on the type of such nested requests, ITCAM shows whether the client, application, or backend tier is the likely cause of the warning/alarm. Servlet and Portal request types are assigned to the client tier; EJB and User (Custom) request types, to the application tier; all other request types (JNDI, JDBC, JCA, JMS) to the backend tier.

When ITCAM starts to monitor a new application, it automatically starts a baselining process. In this process, which normally runs for 7 days but provides updated information every hour from the beginning, ITCAM collects statistical data for all requests in this application. Once the data is collected, ITCAM sets the thresholds automatically; it also records the typical share of response time for each nested request type.

In most cases, this automatic setting is adequate. When the 7 days are past, the alarms/warnings will correspond to real problems. There is no need to adjust baselining settings when things are working normally. (The automatic thresholds usually become usable earlier, after the application has been observed through its typical load patterns). If you need to acquire thresholds, based on whatever data is available, before the hourly automatic update, you can manually update baselining.

However, in some situations the threshold levels can become inadequate. This results in either too many false alarms/warnings, or in real problems going undetected. Such situations can be broadly split into two categories:

- If some time has passed since the baselining process for an application, its response times might have changed because of configuration alteration, database growth, changing load patterns, and so on. In this case, you may need to run the baselining process again. It is good practice to do it after any configuration or infrastructure change.
- If the thresholds are incorrect immediately after the baselining process has been completed, you may need to adjust the auto threshold settings.

As a last resort, you can also override the thresholds with fixed values. However, do not do this unless you know a lot about the monitored application, or unless instructed by IBM Level 3 Support.

If you need to have the thresholds set before they are updated automatically for the first time, you can trigger a baseline update. This will immediately set the thresholds based on the request data collected so far.

Additional information

For additional usage information about this agent, see:

- Workspaces
- Attributes
- Situations
- Take Action commands
ITCAM for Application Diagnostics - Agent for J2EE workspaces

As part of the IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for J2EE product's integration with the Tivoli Enterprise Portal, the workspaces offer views of monitoring data that provide detailed, current data about the J2EE application servers running on your site's UNIX and Windows platforms. In addition to reports and graphs, a workspace can contain other views (that is, windows), such as a Notepad editor session, a browser session, a telnet session, an event console, or a Take Action view from which you can issue commands.

Several views of high-level information

Several workspaces provide high-level information to help you meet your site's monitoring and administrative needs. These workspaces report current status and availability for both the J2EE administrative server and its application server instances. They let you easily monitor the availability of your enterprise, the J2EE Application Server, and application server instances.

Primary and secondary workspaces

The workspaces listed in the Navigator are directly accessible and are called primary workspaces. Some of these also contain secondary workspaces, which are not accessible directly from the Navigator. Instead, you must select and display the primary workspace and then use either a menu option or a special link icon in the primary workspace's views to reach the secondary workspaces (sometimes called subsidiary workspaces).

Workspaces with historical data links

Several workspaces provide secondary workspaces that display historical data. You can specify a time span over which to collect historical data, which accumulates and summarizes the data in the primary workspaces that generate them. (The default setting is 15 minutes; you can modify this setting to suit your needs.) The descriptions of the historical workspaces follow the descriptions of the primary workspaces that generate them in the workspace helps.

Available Tivoli Enterprise Portal workspaces

For an overview of the organization of the available workspaces, see Organization of the predefined workspaces.

Organization of the predefined workspaces

The IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for J2EE workspaces for the Tivoli Enterprise Portal define data displays that display in the Navigator's physical view. In addition to the workspaces that the Navigator lists, you can reach their subsidiary (or secondary) workspaces from the primary workspaces (those listed in the Navigator).

Accessing the subsidiary workspaces

You can access a primary workspace's subsidiary workspaces by using one or more of the following methods:

- From the Navigator:
 1. Select the primary workspace.
2. Right-click the name of the selected workspace in the Navigator.
3. Select Workspaces from the context menu.
4. Select the desired subsidiary workspace.

• From the View menu:
 1. Select the primary workspace.
 2. In the menu bar at the top of the Tivoli Enterprise Portal, select View > Workspaces.
 3. Select the desired subsidiary workspace.

• From a report:
 1. Select the primary workspace.
 2. If the workspace’s report (which displays by default at the bottom of the workspace) contains a link icon to the left of each row as shown in the following example:

 ![Link Icon Example]

 You can either click the icon to select the row or right-click the icon and select a subsidiary workspace from the context menu.

• From a chart view:
 The data displayed in some bar charts and plot charts is linked to subsidiary workspaces. To search for a link, right-click a bar or data point in the chart. If Link to displays in the context menu, you can select a subsidiary workspace pertaining to the data in the chart.

Workspace organization

The hierarchy levels shown in the Navigator depend upon your enterprise’s customization of the Tivoli Enterprise Portal. However, ITCAM for Application Diagnostics - Agent for J2EE provides a set of predefined workspaces, which do not require customization. The following list shows the order and hierarchy of the predefined workspaces provided by the IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for J2EE Tivoli Enterprise Monitoring Agent. It is a representation of how the predefined workspaces are organized in the Navigator. For more detailed information about a workspace, click its name in the list.

operating system [for example, Windows]
• system [or nodename]
 –
 – [J2EE Agent]
 - [JBoss App Server]
 • Application Health Summary
 – Selected Application - Application Tier Analysis
 – Selected Application - Configuration
 – Selected Application - Backend Tier Analysis
- Selected Application - Request Analysis
- Selected Application - Health History
- Selected Application - Client Tier Analysis
- Application Registry
 - Selected Request - Baseline
- Request Analysis
 - Selected Request - Datasources
 - Selected Request - JMS Queues
 - Selected Request - Resource Adapters
 - Selected Request - History
- Garbage Collection Analysis
 - Allocation Failures
 - Garbage Collections - Selected Allocation Failure
- Log Analysis
- Datasources
 - Selected Datasource - History
- JMS Summary
- Web Applications
 - Servlets / JSPs - Selected Web Application
- EJB Modules
 - Enterprise Java Beans
- JCA Connection Pools
- JTA Resources
- SAP NetWeaver Server Workspace
- Application Health Summary
 - Selected Application - Application Tier Analysis
 - Selected Application - Configuration
 - Selected Application - Backend Tier Analysis
 - Selected Application - Request Analysis
 - Selected Application - Health History
 - Selected Application - Client Tier Analysis
 - Application Registry
 - Selected Request - Baseline
- Request Analysis
 - Selected Request - Datasources
 - Selected Request - JMS Queues
 - Selected Request - Resource Adapters
 - Selected Request - History
- Garbage Collection Analysis
 - Allocation Failures
 - Garbage Collections - Selected Allocation Failure
- Log Analysis
- Datasources
 - Selected Datasource - History
- JMS Summary
- Web Container
- Enterprise Java Beans
- DB Connection Pools
 - Selected DB Connection Pool - History
- JTA Summary
- Tomcat Server Workspace
 - Application Health Summary
 - Selected Application - Application Tier Analysis
 - Selected Application - Configuration
 - Selected Application - Backend Tier Analysis
 - Selected Application - Health History
 - Selected Application - Client Tier Analysis
 - Application Registry
 - Selected Request - Baseline
 - Request Analysis
 - Selected Request - Datasources
 - Selected Request - JMS Queues
 - Selected Request - Resource Adapters
 - Selected Request - History
 - Garbage Collection Analysis
 - Allocation Failures
 - Garbage Collections - Selected Allocation Failure
 - Log Analysis
 - Datasources
 - Selected Datasource - History
- JMS Summary
- Oracle App Server Workspace
 - Application Health Summary
 - Selected Application - Application Tier Analysis
 - Selected Application - Configuration
 - Selected Application - Backend Tier Analysis
 - Selected Application - Health History
 - Selected Application - Client Tier Analysis
 - Application Registry
 - Selected Request - Baseline
 - Request Analysis
 - Selected Request - Datasources
 - Selected Request - JMS Queues
 - Selected Request - Resource Adapters
 - Selected Request - History
 - Garbage Collection Analysis
 - Allocation Failures
 - Garbage Collections - Selected Allocation Failure
 - Log Analysis
 - Datasources
Allocation Failures workspace

This workspace summarizes all the heap-allocation failures that occurred within the Java Virtual Machine (JVM) over the current interval and that caused the JVM to initiate garbage collection.

This workspace displays data provided by the Allocation Failure attributes.

Note to Solaris and HP-UX users: Allocation-failure information is not recorded on these platforms. Consequently this workspace is always empty.

The predefined workspace contains the following items:

- Allocation Failure Elapsed Times bar chart, which displays the number of allocation failures during the current interval.
Heap Usage bar chart, which displays the heap usage for this JVM. The bar’s hover help gives the allocation-failure ID number followed by a range of recording times. This allocation-failure number displays in the Allocation Failures report and associates each bar with that particular row within the report.

Allocation Failures report, which displays information about the heap-allocation failure that caused the JVM hosting the application server to invoke its garbage-collection routine.

Accessing the Allocation Failures workspace

Complete the following steps to access this workspace from the Garbage Collection Analysis workspace on page 509:

1. From the Garbage Collection Analysis report, right-click the link icon to the left of any row.
2. From the pop-up menu, click Allocation Failures.

For additional information, see:

Organization of the predefined workspaces
Attribute groups used by the predefined workspaces

Application Health Summary workspace

The workspace displays the information about the real-time health status of applications monitored by the Tivoli Enterprise Monitoring Agent.

The health status information is collected from the following sources.

- Request Metrics - performance data that measures request execution time collected from the ITCAM instrumentation points in the application code.
- Garbage Collection Metrics - metrics on garbage collection frequency and performance collected from parsing of the GC verbose log file when it is enabled for the application server JVM.
- Operating System metrics - metrics collected about the JVM process and the whole system execution, such as CPU used percentage, paging rate, etc.

Additionally, the monitoring agent uses thresholds, called Application Health Indicators, to determine the quality of the application service. These thresholds are assigned automatically during baselining or you can manually customize them. There are 3 monitored application tiers evaluated for health status.

- Client Tier provides performance data and status of application execution in servlets/JSPs or portal containers as well as corresponding thread pools servicing these containers.
- Application Tier provides application execution metrics of EJB containers and custom requests.
- Backend Tier provides application execution in JDBC, JCA, JMS, and JNDI API calls.

This workspace displays data provided by the Application Health Status attributes.

The predefined workspace contains:

- Situation Event console view, which shows the event console with activity associated with the Application Health Summary Navigator item and any other workspaces in the group, as well as linked workspaces. The Navigator will display an event icon overlaid on the Application Health Summary node when a
situation becomes true. The report is useful when multiple alerts are raised as you can see them all in a single filtered view.

- Application Health Summary report, which shows the report of the application name, status, and health indicator for client, application, and backend tiers health status.

Accessing the Application Health Summary workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, or z/OS Systems, as appropriate for the node you're monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2EE application server entry of your choice.
5. Within that server's list of available J2EE application Server workspaces, click the **Application Health** entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Application Registry workspace

This workspace displays the information about the server configuration for the application.

This workspace displays data provided by the **Application Monitoring Configuration** attributes.

The predefined workspace contains:
- Situation Event Console report, which shows the event activity for situations associated with the current Navigator item. The Navigator alerts you when a situation becomes true by displaying an event indicator on the Navigator item. This report is useful when multiple alerts are raised and you might not know newly arrived alerts just by looking at the indicator.
- Application Configuration report, which shows the configurations that are discovered, stored and managed for J2EE applications running within that application server.

Accessing the Application Registry workspace

To access this workspace from the **Application Health Summary** workspace, use one of the following procedures:
- Within the Navigator, right-click the **Application Health** entry; and select **Workspace -> Application Registry**.
- From the primary Tivoli Enterprise Portal menu, select **View -> Workspace -> Application Registry**.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
BEA WebLogic Application Server workspace

This workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.

The predefined workspace contains the following items:

• Heap Usage - History bar chart, which displays free memory size and used memory size (in KB) within the J2EE Application Server's heap over time. The chart's hover help display the exact values.

 This view displays data provided by the Garbage Collection Analysis attributes.

• Response Time - History graph, which shows the server's response time to requests over time.

 This view displays data provided by the Request Times and Rates attributes.

• Request Rate - History graph, which shows the rate at which requests have been received by this server over time.

 This view displays data provided by the Request Times and Rates attributes.

• Percent CPU Used - History graph, which shows the percentage of the CPU that this server consumed over time.

 This view displays data provided by the Application Server attributes.

• Application Server Summary report, which displays overall information about this BEA WebLogic Application Server, including JVM statistics and CPU usage statistics.

 This view displays data provided by the Application Server attributes.

Accessing BEA WebLogic Application Server Workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, select the BEA WebLogic Application Server entry.

See also:

• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

Data sources workspace

This workspace displays statistical data for the data sources that your applications reference when accessing databases.

This workspace displays data provided by the Datasources attributes.

The predefined workspace contains the following items:

• Worst Data source Query Times bar chart, which shows the longest times (in milliseconds) the application spent waiting to retrieve data from the database during the specified interval

• Worst Data source Update Times bar chart, which shows the longest times (in milliseconds) the application spent updating data within the database during the specified interval
• Data sources - Current Interval report, which displays database usage information. For example, this report shows traffic information such as the time the application spent trying to connect to the database and total and average processing times for database queries and updates.

Accessing the Data sources workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node’s name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2EE application server entry of your choice.
5. Within that server’s list of available J2EE application server workspaces, click the Datasources entry.

Selected Data source - History workspace

This workspace displays the historical information that corresponds to the information in the Data source workspace for a selected data source. Historical information is collected over a specific time span. See the online help for Tivoli Enterprise Portal for a detailed explanation of historical reporting.

Accessing the Selected Data source - History workspace

To access this workspace from the Data source workspace, use one of the following procedures:
• From the Data sources - Current Interval report, right-click the link icon to the left of any row; then, from the pop-up menu, click Selected Datasource - History.
• From Worst Data source Query Times bar chart or the Worst Data source Update Times bar chart, right-click any bar; then, from the pop-up menu, select Link To > Selected Datasource - History.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

DB Connection Pools workspace

This workspace displays information about the database connection pools associated with SAP NetWeaver application server.

This workspace displays data provided by the “DB Connection Pools - NetWeaver attributes” on page 547.

The predefined workspace contains the following items:
• Pool Sizes bar chart, shows the current size of data source pool
• DB Connection Pools report, which displays information about the database connection pool for each defined data source, and an aggregated value that aggregates over all data sources. For example, this report displays the number of threads waiting for a connection and the number of connections created and released.
Accessing the DB Connection Pools workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the SAP NetWeaver application server entry of your choice.
5. Within SAP NetWeaver server's list of available J2EE application server workspaces, select the **DB Connection Pools** entry.

Selected DB Connection Pool - History workspace

This workspace displays the historical information that corresponds to the information in the DB Connection Pools workspace for a selected connection pool. Historical information is collected over a particular measured time span. See the online help for Tivoli Enterprise Portal for a detailed explanation of historical reporting.

This workspace displays data provided by the **“DB Connection Pools - NetWeaver attributes” on page 547.**

The predefined workspace contains the following items:

- Active and Available Connections - History table, which displays the history of active and available connections
- Highest Wait Times - History table, which displays the history of the highest wait times (in milliseconds) for each database connection pool
- Selected DB Connection Pool - History report, which displays historical data and statistics in the DB connection pools for a selected connection pool

Accessing the Selected DB Connection Pool - History workspace

To access this workspace from the DB Connection Pools workspace, use one of the following procedures:

- From the DB Connection Pools report, right-click the link icon to the left of any row and select **Selected DB Connection Pool - History**.
- From Pool Size bar chart, right-click any bar, and select **Link To > Selected DB Connection Pool - History**.

For additional information, see:

- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

DC Message Events workspace

This workspace displays the information about messages generated by the ITCAM for J2EE Data Collector and the event activity for situations associated with the Navigator item.

This workspace displays data provided by the **“DC Messages - J2EE attributes” on page 548.**

The predefined workspace contains the following items:
• Situation Event Console report, which shows the event activity for situations associated with the current Navigator item. The Navigator alerts you when a situation becomes true by overlaying the Navigator item with an event indicator. This report is useful when multiple alerts are raised and you might not know newly arrived alerts just by looking at the indicator.

• DC Message Events report, which displays the messages generated by the ITCAM for J2EE Data Collector and the related information of the messages. This information includes message identifier, sequence number and the component from which the messages were generated.

Accessing the DC Message Events workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2SE application server of your choice.
5. Within that server's list of available J2SE application server workspaces, select the **DC Message Events** entry.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)
- “ITCAM for Application Diagnostics - Agent for J2EE situations” on page 603

EJB Components workspace

This workspace displays runtime information for an EJB component in the BEA WebLogic Server.

This workspace displays data provided by the “Enterprise Java Bean Components - WebLogic attributes” on page 550.

The predefined workspace contains the following items:
• Activated EJ Bs bar chart, which displays the number of activated EJ Bs
• EJB Components report, which displays runtime information for an EJB component

Accessing the EJB Components workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the BEA WebLogic application server entry.
5. Within BEA WebLogic server's list of available J2EE application server workspaces, select the **EJB Components** entry.

For additional information, see:
Enterprise Java Beans workspace

This workspace reports information about each Enterprise Java Bean (EJB) defined for an EJB module. The workspace provides information that relates to their identity, instrumentation level settings, creation and destruction of bean objects, response times, invocations, calls, and rates for retrievals, returns, and discards.

For JBoss and Oracle application servers, this workspace displays data provided by the “Enterprise Java Bean Modules - J2EE attributes” on page 551.

The predefined workspace contains the following items:

- Message Driven Beans report, which displays performance statistics for message driven beans in the given EJB module
- Entity Beans report, which displays performance statistics for entity beans in the given EJB module
- Stateful Session Beans report, which displays performance statistics for stateful session beans in the given EJB module
- Stateless Session Beans report, which displays performance statistics for stateless session beans in the given EJB module

Accessing the Enterprise Java Beans - JBoss and Oracle application servers workspace

You access this workspace from the “EJB Modules workspace” on page 508. To list the EJBs, use one of the following procedures:

- From the primary Tivoli Enterprise Portal menu, select View -> Workspace -> Enterprise Java Beans.
- In the Navigator, right-click the EJB Modules entry and select Workspace -> Enterprise Java Beans.

To see the EJBs referenced by a specific EJB module, from the EJB modules report, right-click the link icon to the left of any row and select Enterprise Java Beans.

Enterprise Java Beans - NetWeaver workspace

In SAP NetWeaver server, this workspace displays data provided by the “Enterprise Java Bean Service - NetWeaver attributes” on page 553.

The predefined workspace contains the following items:

- Highest Creation Counts bar chart, which displays the highest count of times of a "create" method was invoked on the bean
- Most Active Session Time outs, which displays the most timeout for the active sessions. If a session stays idle and not passivated for that long, it is removed
- Enterprise Java Beans report, which displays information about the each Enterprise Java Bean (EJB)

Accessing the Enterprise Java Beans - NetWeaver workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node’s name.
3. Within that node’s list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the SAP NetWeaver application server entry of your choice.
5. Within SAP NetWeaver server’s list of available J2EE application server workspaces, click the **Enterprise Java Beans** entry.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

EJB Modules workspace

This workspace displays aggregated information about each defined EJB. It displays aggregated bean performance data for all Enterprise beans deployed to an EJB module. It also displays aggregated information for the application server that aggregates bean performance data for all Enterprise beans deployed to the application server.

This workspace displays data provided by the **“Enterprise Java Bean Modules - J2EE attributes”** on page 551.

Note to OracleAS9 users: This workspace is not supported on OracleAS9 and no data is provided, hence this workspace is always empty.

The predefined workspace contains the following items:
- Highest Creation Count bar chart, which displays the largest number of times that beans were created during the interval
- EJB Modules report, which displays aggregated information for each defined EJB module that aggregates bean performance data for all Enterprise beans deployed to that module. The report also displays aggregated information for the application server that aggregates bean performance data for all Enterprise beans deployed to the application server

Accessing the EJB Modules workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node’s name.
3. Within that node’s list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2EE application server entry of your choice.
5. Within that server’s list of available J2EE application server workspaces, select **EJB Modules**.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)
EJBs - Selected Enterprise Application workspace

This workspace displays resource statistics for selected EJB module. It displays performance statistics about individual EJBs deployed to the J2EE application.

This workspace displays data provided by the Enterprise Java Bean Components - WebLogic attributes.

The predefined workspace contains the following items:
- Highest Activation Rates bar chart, which displays the highest number of beans from this EJB Home that have been activated per second for the interval since the previous sample.
- EJBs - Selected Enterprise Application report, which displays resource statistics for selected EJB module.

Accessing the EJBs - Selected Enterprise Application workspace

You access this workspace from the EJB Components workspace. To list the EJBs, use one of the following procedures:
- From the primary Tivoli Enterprise Portal menu, pull down the View menu, then click Workspace > EJBs - Selected Enterprise Application.
- Within the Navigator, right-click the EJB Components entry and select Workspace> EJBs - Selected Enterprise Application.
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Garbage Collection Analysis workspace

This workspace summarizes all the Java Virtual Machine's garbage-collector activity over a user-defined interval. The JVM generates detailed garbage collection logs for an application server when started with the verbose:gc runtime parameter.

This workspace displays data provided by the Garbage Collection Analysis attributes.

The predefined workspace contains the following items:
- Garbage Collection Rate - History graph, which displays the rate at which the garbage-collection algorithm is being invoked.
- Heap Usage - History bar chart, which displays the high water mark of free storage (in kilobytes) available in the heap after each garbage-collector run.
- Percentage of Time Garbage Collector Running - History graph, which displays the percentage of real time the garbage collector was running during the current interval, for each server region.
- Garbage Collection Analysis report, which displays information about the garbage-collection activities within the Java Virtual Machine that is hosting the application server. For example, this report displays the number of times the collector ran during the interval and the resulting number of objects that the collector freed.

Accessing the Garbage Collection Analysis workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2EE application server of your choice.
5. Within that server's list of available J2EE application server workspaces, click the Garbage Collection Analysis entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Garbage Collections - Selected Allocation Failure workspace

This workspace provides detailed information about the garbage-collection cycles that occurred in response to a specific heap-allocation failure that occurred within the Java Virtual Machine.

This workspace displays data provided by the Garbage Collection Cycle attributes.

Note to Solaris and HP-UX users: Allocation-failure information is not recorded on these platforms; hence this workspace is always empty.

The predefined workspace contains the following items:
- GC Elapsed Times bar chart, which breaks down the mark, sweep, and compact times (in milliseconds) for each garbage-collection cycle that occurred for the selected allocation failure
- Heap Usage bar chart, which displays the JVM's heap usage (kilobytes in use, freed, and free at start of garbage collection) for each garbage-collection cycle
- Garbage Collections - Selected Allocation Failure report, which displays information about a single garbage-collection cycle that the Java Virtual Machine hosting the application server performed. For example, this report displays the free heap space both before and after garbage collection, the heap space freed, and the number of objects moved during garbage collection

Accessing the Garbage Collections - Selected Allocation Failure workspace

To access this workspace from the "Allocation Failures workspace" on page 500, use one of the following procedures:
- From the Allocation Failures report, right-click the link icon to the left of any row and select Garbage Collections - Selected Allocation Failure.
- From the Allocation Failure Elapsed Times bar chart or the Heap Usage - History bar chart, right-click any bar and select Link To -> Garbage Collections - Selected Allocation Failure.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

J2EE Agent workspace

This workspace displays product events that affect the ability of the J2EE Application Server agent to collect data. This workspace displays events occurring
within the J2EE Application Server agent and J2EE application servers that are installed on the host computer. It also displays the status of the Tivoli Enterprise Monitoring Agent.

The predefined workspace contains the following items:

- **J2EE Agent Events report**, which displays information about agent-level events that affect the ability of the Tivoli Enterprise Monitoring Agent to collect data for the J2EE application server. You can use this view to see exception and error messages, their IDs, and their severity. Agent Events report also shows the result of issuing a Take Action command. Place your cursor over a truncated message to display the text of the complete message.

 This report displays data reported by the "J2EE Agent Events attributes" on page 562.

- **Application Servers Summary report** displays information about status of the J2EE server.

 This report displays data reported by the Application Server Status attributes.

Accessing the J2EE Agent workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of available Tivoli Enterprise Monitoring Agents, click the **J2EE Agent** entry.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
- "ITCAM for Application Diagnostics - Agent for J2EE situations" on page 603

J2SE Application workspace

This workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.

The predefined workspace contains the following items:

- **Heap Usage - History bar chart**, which displays free memory size and used memory size (in kilo bytes) within the J2SE Application Server's heap over time. The chart's hover help displays the exact values.

 This view displays data provided by the Garbage Collection Analysis attributes.

- **Response Time - History graph**, which shows the server's response time to requests over time.

 This view displays data provided by the Request Times and Rates attributes.

- **Request Rate - History graph**, which shows the rate at which requests have been received by this server over time.

 This view displays data provided by the Request Times and Rates attributes.

- **Percent CPU Used - History graph**, which shows the percentage of the CPU that this server consumed over time.

 This view displays data provided by the Application Server attributes.
Application Server Summary report, which displays overall information about this J2SE Application Server, including JVM statistics and CPU usage statistics. This view displays data provided by the Application Server attributes.

Accessing J2SE Application Workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, click the J2SE Application entry of your choice.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JBoss App Server workspace

This workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.

The predefined workspace contains the following items:

- Heap Usage - History bar chart, which displays free memory size and used memory size (in kilo bytes) within the J2EE Application Server's heap over time. The chart's hover help displays the exact values. This view displays data provided by the Garbage Collection Analysis attributes.
- Response Time - History graph, which shows the server's response time to requests over a period of time. This view displays data provided by the Request Times and Rates attributes.
- Request Rate - History graph, which shows the rate at which requests have been received by this server over a period of time. This view displays data provided by the Request Times and Rates attributes.
- Percent CPU Used - History graph, which shows the percentage of the CPU that this server consumed over a period of time. This view displays data provided by the Application Server attributes.
- Application Server Summary report, which displays overall information about this JBoss application server, including JVM statistics and CPU usage statistics. This view displays data provided by the Application Server attributes.

Accessing the JBoss App Server workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, select the JBoss App Server entry of your choice.
For additional information, see:

- “Organization of the predefined workspaces” on page 495
- “Attribute groups used by the predefined workspaces” on page 532

JCA Connection Pools workspace

This workspace displays information about resource adapters and connectors that adhere to JCA, the J2EE Connector Architecture (JCA).

In JBoss Application Server, this workspace displays data provided by the "JCA Connection Pools - J2EE attributes" on page 565.

The predefined workspace contains the following items:

- Highest Pool Usage bar chart, which shows the largest pool usage for each JCA connection pool. The Y-axis headings correspond to the row number of the JCA Connection Pools report.
- Worst Wait Times bar chart, which shows the worst wait time (in milliseconds) for each of the JCA connection pools. The Y-axis headings correspond to the row number of the JCA Connection Pools report.
- Worst Use Times bar chart, which shows the worst use time (in milliseconds) for each of the JCA connection pools. The Y-axis headings correspond to the row number of the JCA Connection Pools report.
- JCA Connection Pools report, which displays information about the JCA connection pool for each Connection Factory.

In the BEA WebLogic Application Server, this workspace displays data provided by the "J2EE Connector Connection Pools - WebLogic attributes” on page 563.

The predefined workspace contains the following items:

- Highest Active Connections bar chart, which shows the current highest active connections.
- Worst Connection Rejection Rates, which shows the worst connection rejection rates (in milliseconds) for each JCA connection pools.
- JCA Connection Pools report, which displays information about the JCA connection pool for each Connection Factory.

Accessing the JCA Connection Pools workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2EE application server of your choice.
5. Within that server's list of available J2EE application server workspaces, select the JCA Connection Pools entry.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
JDBC Connection Pools workspace

This workspace provides usage information about the JDBC connection pools for a database in the BEA WebLogic Server.

This workspace displays data provided by the “JDBC Connection Pools - WebLogic attributes” on page 566.

The predefined workspace contains the following items:

- Highest Active Connections bar chart, which shows the current highest active connections
- Worst Wait Times bar chart, which shows the worst wait times (in milliseconds) for each database connection pool
- DB Connection Pools report, which displays information about the database connection pool for each defined data source, and an aggregated value that aggregates over all data sources. For example, this report displays the number of threads waiting for a connection and the number of connections created and released

Accessing the JDBC Connection Pools workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node’s name.
3. Within that node’s list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the BEA WebLogic application server entry.
5. Within BEA WebLogic server’s list of available J2EE application server workspaces, click the JDBC Connection Pools entry.

Selected JDBC Connection Pool - History workspace

This workspace displays the historical information that corresponds to the information in the JDBC Connection Pools workspace for a selected connection pool. Historical information is collected over a particular measured time span. See the online help for Tivoli Enterprise Portal for a detailed explanation of historical reporting.

The predefined workspace contains the following items:

- Active and Available Connections - History table, which displays the history of active and available connections.
- Highest Wait Times - History table, which displays the history of the highest wait times (in milliseconds) for each database connection pool.
- Selected JDBC Connection Pool - History report, which displays historical data and statistics in the JDBC connection pools for a selected connection pool.

Accessing the Selected JDBC Connection Pool - History workspace

To access this workspace from the DC Connection Pools workspace, use one of the following procedures:
• From the JDBC Connection Pools report, right-click the link icon to the left of any row. Then from the pop-up menu, click **Selected JDBC Connection Pool - History**.

• From the Highest Active Connection bar chart, the Worst Wait Times bar chart, right-click any bar and select **Link To -> Selected JDBC Connection Pool - History**.

For additional information, see:
• **Organization of the predefined workspaces**
• **Attribute groups used by the predefined workspaces**

JMS Sessions workspace

This workspace displays statistics for Java Message Service (JMS) sessions in BEA WebLogic Server.

In **BEA WebLogic Server**, the workspace displays data provided by the "JMS Sessions - WebLogic attributes" on page 574.

The predefined workspace contains the following items:
• Most Messages Sent bar chart, which displays the largest number of messages sent
• Most Messages Received bar chart, which displays the largest number of messages received
• JMS Sessions report, which displays statistics for JMS sessions
• Message Producers report, which displays information about message producers
• Message Consumers report, which displays information about message consumers

Accessing the JMS Sessions workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the BEA WebLogic application server.
5. Within that server's list of available J2EE application workspaces, click the **JMS Sessions** entry.

For additional information, see:
• **Organization of the predefined workspaces**
• **Attribute groups used by the predefined workspaces**

JMS Summary workspace

The JMS Summary workspace displays information about queues being used by your applications via the JMS interface and about how J2EE Application Server applications are using J2EE MQ. It displays such information as the number of messages read and written and which queue managers and queues were used during the interval.

This workspace displays data provided by the "JMS Summary attributes".
The predefined workspace contains the following items:

- Worst JMS Send Times bar chart, which displays the longest times (in milliseconds) your application spent putting messages onto a queue during the interval.
- Worst JMS Receive Times bar chart, which displays the longest times (in milliseconds) your application spent getting messages from a queue during the interval.
- Worst JMS Browse Times bar chart, which displays the longest times (in milliseconds) your application spent browsing messages on a queue during the interval.
- JMS Summary - Current Interval report, which displays detailed information on the send, receive, browse, and publish times for your J2EE Application Server applications’ use of messaging middleware (J2EE MQ) using JMS. It includes such information as which queue managers and queues are being used and how many messages are being read and written.

Accessing the JMS Summary workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node’s name.
3. Within that node’s list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2EE application server of your choice.
5. Within that server’s list of available J2EE application server workspaces, click the **JMS Summary** entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JTA Resources workspace

This workspace displays information about the Java Transaction API (JTA) resources.

This workspace displays data provided by the "JTA Resources - J2EE attributes" on page 581 for JBoss and Oracle application servers. For WebLogic application server, this workspace displays data provided by "Java Transaction Service - WebLogic attributes" on page 578.

The predefined workspace contains the following items:

- Active Transactions bar chart, which shows the number of active transactions
- JTA Resources report, which displays information about the JTA resources

Accessing the JTA Resources workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you’re monitoring.
2. Within the node list, expand the entry that corresponds to your node’s name.
3. Within that node’s list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2EE application server of your choice.
5. Within that server's list of available J2EE application server workspaces, click the **JTA Resources** entry.

For additional information, see:
- “Organization of the predefined workspaces” on page 495
- “Attribute groups used by the predefined workspaces” on page 532

JTA Summary workspace

This workspace displays the performance summary statistics information about transactions in SAP NetWeaver application server.

This workspace displays data provided by “JTA Summary - NetWeaver attributes” on page 582.

The predefined workspace contains the following items:
- Transactions - History graph, which shows the history of transactions
- Transaction Service report, which displays performance data of the Transaction Service

Accessing the JTA Summary workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the SAP NetWeaver application server entry of your choice.
5. Within SAP NetWeaver server's list of available J2EE application server workspaces, click the **JTA Summary** entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JVM Statistics workspace

This workspace reports the detailed statistics of the operating system on which the J2SE application server is running and the Java Virtual Machine (JVM) information.

This workspace displays data provided by “JDK - Operation System attributes” on page 568, “JDK - Memory attributes” on page 570, “JDK - JVM attributes” on page 571, and “JDK - Threading attributes” on page 573.

The predefined workspace contains the following items:
- Memory Usage - History graph, which displays the amount of used heap memory and non heap memory (in kilobytes) in the JVM over time
- Pending Objects - History graph, which displays the amount of objects that are not finalized
• Heap Sizes - History graph, which displays the maximum heap memory size and non heap memory size (in kilobytes) in the JVM over time
• Threads - History graph, which displays the information about threads, such as peak threads and daemon threads
• JVM Statistics report, which shows the overall JVM information that the current J2SE application server uses, such as JVM name, version, and vendor
• Operating System report, which shows the overall information about the operating system on which the J2SE application server is running

Accessing the JVM Statistics workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2SE Application entry of your choice.
5. Within J2SE Application's list of available workspaces, click the JVM Statistics entry.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

Log Analysis workspace

This workspace reports application server error and exception conditions as recorded in the application server's log file.

This workspace displays data provided by the Log Analysis attributes.

The predefined workspace contains the following items:
• DC Message Events report, which displays information about the Data Collector Messages
 This report displays data reported by the "DC Messages - J2EE attributes" on page 548.
• Log Analysis report, which displays application server error and exception conditions as recorded in the application server log file, SystemOut.log. This information includes the exception severity as well as the ID and text of the associated message

Accessing the Log Analysis workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2EE application server of your choice.
5. Within that server’s list of available J2EE application server workspaces, click the **Log Analysis** entry.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)
- “ITCAM for Application Diagnostics - Agent for J2EE situations” on page 603

Oracle App Server workspace

This workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.

The predefined workspace contains the following items:
- Heap Usage - History bar chart, which displays free memory size and used memory size (in kilobytes) within the J2EE Application Server’s heap over time. The chart’s hover help displays the exact values.
 - This view displays data provided by the **Garbage Collection Analysis attributes**.
- Response Time - History graph, which shows the server’s response time to requests over time.
 - This view displays data provided by the **Request Times and Rates attributes**.
- Request Rate - History graph, which shows the rate at which requests have been received by this server over time.
 - This view displays data provided by the **Request Times and Rates attributes**.
- Percent CPU Used - History graph, which shows the percentage of the CPU that this server consumed over time.
 - This view displays data provided by the **Application Server attributes**.
- Application Server Summary report, which displays overall information about this Oracle Application Server, including JVM statistics and CPU usage statistics.
 - This view displays data provided by the **Application Server attributes**.

Accessing Oracle App Server Workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node’s name.
3. Within that node’s list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, click the **Oracle App Server** entry of your choice.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Request Analysis workspace

The workspace reports response times and functional decomposition information about requests (including servlets, JSPs, and EJB methods) that completed during the interval. A historical version of this workspace provides a long-term view of a single request that you select.

This workspace displays data provided by the **Request Analysis attributes**.
The predefined workspace contains the following items:

- Worst Response Times bar chart, which displays the five worst response times for requests processed during the current interval
- Worst Completion Rates bar chart, which displays the ten requests that have the worst completion rates
- Requests - Current Interval report, which displays detailed information about the response times recorded for each request

Accessing the Request Analysis workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2EE application server of your choice.
5. Within that server's list of available J2EE application server workspaces, select the Request Analysis entry.

Selected Request - History workspace

The Selected Request - History workspace displays the historical information that corresponds to the information in the Request Analysis workspace for a single request type that you select. Historical information is collected over a specific time span. See the online help for Tivoli Enterprise Portal for a detailed explanation of historical reporting.

Accessing the Selected Request - History workspace

To access this workspace from the Request Analysis workspace, use one of the following procedures:

- From the Requests - Current Interval report, right-click the link icon to the left of any row, then from the pop-up menu, click **Selected Request - History**.
- From the Worst Response Times bar chart, right-click any bar, then from the pop-up menu, click **Link To > Selected Request - History**.

For additional information, see:

- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**

Selected Request - Baseline workspace

This workspace displays aggregated information about the request baseline. The baselining collects statistical information about an application requests completion times and uses this information to assign fair and bad thresholds on the application requests. The product divides the whole request response times into buckets and collects individual hits into each bucket. Use these attributes to get statistics from individual requests collected during baselining interval.

This workspace displays data provided by the **Baseline** attributes.

The predefined workspace contains:
• Baseline Data report, which shows lower and upper boundaries for each bucket request as well as the breakdown of nested request types in percentage.
• Request Label report, which shows the monitoring configuration settings for selected requests, including auto-threshold settings and actual thresholds calculated from the baseline data.
• Nested Delays Distribution bar chart, which displays a bar for each bucket of response times across the different nested types (JDBC, JCA, JMS, etc.). This chart provides you with additional hints and insight about how to interpret response times distribution displayed in the distribution chart.
• Response Time Distribution bar chart, which displays the distribution of the servlet response times on the baselining interval, also called zones.

Accessing the Selected Request - Baseline workspace

To access this workspace from the Application Registry workspace, use the following procedures:
• From the Application Configurations report report, right-click the link icon to the left of any row and select **Selected Request - Baseline**.

For additional information, see:
• [Organization of the predefined workspaces](#)
• [Attribute groups used by the predefined workspaces](#)

Selected Application - Application Tier Analysis workspace

The workspace displays detailed information about application tier health for a selected J2EE application.

The application tier health is derived from the following performance statistics:
• Calculated application request delays in EJB container or custom requests delays compared against corresponding thresholds assigned in application configuration.
• Completion rates for application edge EJB requests.
• Application server ORB thread pool utilization level.

This workspace displays data provided by the **Application Health Status** attributes.

The predefined workspace contains:
• Application Tier Analysis report, which shows the overall health status of the Application tier for a selected application.
• Worst Application Tier Delays - Top 10 bar chart, which displays the top ten delayed requests in the application tier. This view displays data provided by the **Request Analysis** attributes.
• Worst Application Tier Completion Rates - Top 10 bar chart, which displays the top ten worst requests in the application tier. This view displays data provided by the **Request Analysis** attributes.
• JVM Health - CPU Used % graph, which displays the percentage of the CPU used by the Java Virtual Machine (JVM) during the interval. This view displays data provided by the **Application Server** attributes.
• JVM Health - Heap Used % graph, which displays the current heap usage for the monitored JVM. This view displays data provided by the **Garbage Collection Analysis** attributes.
• JVM Health - GC Time % graph, which displays the percentage of real time that
the garbage collector was active during the interval. This view displays data
provided by the Garbage Collection Analysis attributes.

Accessing the Selected Application - Application Tier Analysis workspace

To access this workspace from the Application Health Summary workspace, use
the following procedures:
• From the Application Health Summary report, right-click the link icon to the left
of any row and select **Selected Application - Application Tier Analysis**.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

Selected Application - Configuration workspace

This workspace displays the information about the configuration details of the
selected application. The workspace contains information about application
requests and the corresponding thresholds assigned to them, and information
about status and configuration for application baseline activity. An entry is created
for each application in the configuration report when a J2EE application is
discovered by the monitoring agent. The data is also stored in a context file local to
monitoring agent where it can persist between monitoring agent restarts.

This workspace displays data provided by the Application Monitoring
Configuration attributes.

The predefined workspace contains:
• Longest Request Thresholds - Top 10 bar chart, which displays the ten longest
(in time) request thresholds configured for the given application (Servlet/JSP
URL or EJB class/method call).
• Application Requests report, which shows the discovered application requests
and thresholds assigned to them.
• Application report, which shows the common details about application
configuration, including custom requests monitoring levels for application and
current baseline status.

Accessing the Selected Application - Configuration workspace

Use the following steps to access this workspace.
1. Click **Application Health Summary** > Application Health Summary Report.
2. Right-click the link icon to the left of any row and select **Selected Application -
Configuration**

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

Selected Application - Backend Tier Analysis workspace

This workspace displays the information about the details of the Backend tier for a
selected application.
This workspace displays data provided by the **Application Health Status** attributes.

The predefined workspace contains:

- **Backend Tier Analysis report**, which shows the overall health status of the backend tier for a selected application.
- **Worst Backend Tier Delays - Top 10 bar chart**, which displays the top ten delayed requests in the backend tier. This view displays data provided by the **Request Analysis** attributes.
- **Most Used Data sources - Top 10 bar chart**, which displays the average time per request used by queries and updates to the data source. This view displays data provided by the **Datasources** attributes.
- **Most Used JMS Resources - Top 10 bar chart**, which displays the longest times your application spent in getting messages from a queue, putting messages onto a queue, publishing messages to a queue, or browsing messages on a queue during the interval. This view displays data provided by the **JMS Summary** attributes.
- **JVM Health - CPU Used % graph**, which displays the percentage of the CPU used by the Java Virtual Machine (JVM) during the interval. This view displays data provided by the **Application Server** attributes.
- **JVM Health - Heap Used % graph**, which displays the current heap usage for the monitored JVM. This view displays data provided by the **Garbage Collection Analysis** attributes.
- **JVM Health - GC Time % graph**, which displays the percentage of real time that the garbage collector was active during the interval. This view displays data provided by the **Garbage Collection Analysis** attributes.

Accessing the Selected Application - Backend Tier Analysis workspace

To access this workspace from the **Application Health Summary** workspace, use the following procedures:

- From the Application Health Summary report, right-click the link icon to the left of any row; then, from the pop-up menu, click **Selected Application - Backend Tier Analysis**.

For additional information, see:

- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**

Selected Application - Health History workspace

The workspace displays the information about the historical health status of a selected application. By default, the history data is collected for the last 24 hours.

This workspace displays data provided by the **Application Health Status** attributes.

The predefined workspace contains:

- **Availability/Throughput - History graph**, which displays average request processing rate by application over the time. This view displays data provided by the **Request Times and Rates** attributes.
- **Availability/Completion Rate - History graph**, which displays the average request completion rate by application over the time; Completion rate is defined
as ratio of successfully completed requests count to the total count of requests processed by application on the interval. This view displays data provided by the Request Times and Rates attributes.

- **Availability/Average Load- History graph**, which displays the average number of concurrent application requests over the time. This view displays data provided by the Request Times and Rates attributes.

- **Response Time - History graph**, which displays the average application response time over the time. This view displays data provided by the Request Times and Rates attributes.

- **Server Resources/CPU Used - History graph**, which displays the percent of CPU time used by the application JVM process over the time. This view displays data provided by the Application Server attributes.

- **Server Resources/Paging Rate - History graph**, which displays the system paging rate in kilobytes per second over the time. This view displays data provided by the Application Server attributes.

- **Server Resources/GC Active Time - History graph**, which displays the percentage of total CPU time for which the garbage collector was active over the time. This view displays data provided by the Garbage Collection Analysis attributes.

Accessing the Selected Application - Health History workspace

To access this workspace from the Application Health Summary workspace, use the following procedures:

- From the Application Health Summary report, right-click the link icon to the left of any row and select **Selected Application - Health History**.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Selected Application - Client Tier Analysis workspace

This workspace displays detailed information about the client tier health for a selected J2EE application.

The client tier health indicator is derived from the following performance statistics:

- Calculated application request delays inside Servlet/JSP or Portal container compared against corresponding thresholds assigned in application configuration.

- Completion rates for edge Servlet/JSP and Portal application requests.

This workspace displays data provided by the Application Health Status attributes.

The predefined workspace contains:

- **Client Tier Analysis report**, which shows the overall health status of application execution in Web or portal containers.

- **Worst Client Tier Delays - Top 10 bar chart**, which displays the top ten requests with biggest delays (threshold violations) in the client tier. This view displays data provided by the Request Analysis attributes.

- **Worst Client Tier Completion Rates - Top 10 bar chart**, which displays the top ten Servlet/JSP/Portal edge requests with the worst completion rates. This view displays data provided by the Request Analysis attributes.
• JVM Health - CPU Used % graph, which displays the percentage of the CPU used by the Java Virtual Machine (JVM) during the interval. This view displays data provided by the Application Server attributes.
• JVM Health - Heap Used % graph, which displays the current heap usage for the monitored JVM. This view displays data provided by the Garbage Collection Analysis attributes.
• JVM Health - GC Time % graph, which displays the percentage of real time that the garbage collector was active during the interval. This view displays data provided by the Garbage Collection Analysis attributes.

Accessing the Selected Application - Client Tier Analysis workspace

To access this workspace from the Application Health Summary workspace, use the following procedures:
• From the Application Health Summary report, right-click the link icon to the left of any row and select Selected Application - Client Tier Analysis.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

Selected Request - Data sources workspace

The Selected Request - Data sources workspace displays information about JDBC activity performed by the request you selected in the primary Request Analysis workspace.

This workspace displays data provided by the Selected Request attributes.

The predefined workspace contains the following items:
• Worst Data sources Response Times bar chart, which shows the worst response times (in milliseconds) for data sources accessed by this request
• Selected Request - Data sources report, which displays detailed information about the data sources accessed for the selected request

Accessing the Selected Request - Data sources workspace

To access this workspace from the "Request Analysis workspace" on page 519, use one of the following procedures:
• From the Requests - Current Interval report, right-click the link icon to the left of any row and select Selected Request - Datasources.
• From Worst Average Response Times bar chart, right-click any bar and select Link To > Selected Request - Datasources.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces

Selected Request - JMS Queues workspace

The Selected Request - JMS Queues workspace displays information about message queues owned by messaging middleware and accessed by the request that you selected in the primary Request Analysis workspace.
This workspace displays data provided by the Selected Request attributes.

The predefined workspace contains the following items:
- Worst JMS Queues Response Times bar chart, which shows the worst response times (in milliseconds) for JMS resources accessed by this request
- Selected Request - JMS Queues report, which displays detailed information about the JMS resources accessed by the selected request

Accessing the Selected Request - JMS Queues workspace

To access this workspace from the Request Analysis workspace, use one of the following procedures:
- From the Requests - Current Interval report, right-click the link icon to the left of any row and select **Selected Request - JMS Queues**.
- From Worst Average Response Times bar chart, right-click any bar and select **Link To > Selected Request - JMS Queues**.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Selected Request - Resource Adapters workspace

The Selected Request - Resource Adapters workspace displays response-time information about the JCA resources adapters referenced by the request you selected in the primary Request Analysis workspace.

This workspace displays data provided by the Selected Request attributes.

The predefined workspace contains the following items:
- Worst Resource Adaptor Response Times bar chart, which shows the worst-performing JCA resource adapter's nested requests, in milliseconds
- Selected Request - Resource Adapters report, which displays detailed information about each JCA resource adapter that was accessed by the selected request

Accessing the Selected Request - Resource Adapter

To access this workspace from the Request Analysis workspace, use one of the following procedures:
- From the Requests - Current Interval report, right-click the link icon to the left of any row and select **Selected Request - Resource Adapters**.
- From Worst Average Response Times bar chart, right-click any bar and select **Link To > Selected Request - Resource Adapters**.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

SAP NetWeaver Server workspace

This workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.
The predefined workspace contains the following items:

- Heap Usage - History bar chart, which displays free memory size and used memory size (in kilo bytes) within the J2EE Application Server's heap over time. The chart's hover help displays the exact values. This view displays data provided by the Garbage Collection Analysis attributes.
- Response Time - History graph, which shows the server's response time to requests over time. This view displays data provided by the Request Times and Rates attributes.
- Request Rate - History graph, which shows the rate at which requests have been received by this server over time. This view displays data provided by the Request Times and Rates attributes.
- Percent CPU Used - History graph, which shows the percentage of the CPU that this server consumed over time. This view displays data provided by the Application Server attributes.
- Application Server Summary report, which displays overall information about this SAP NetWeaver Server, including JVM statistics and CPU usage statistics. This view displays data provided by the Application Server attributes.

Accessing SAP NetWeaver Server workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, click the SAP NetWeaver Server entry of your choice.

For additional information, see:
- Organization of the predefined workspaces on page 495
- Attribute groups used by the predefined workspaces on page 532

Servlets/JSPs - Selected Enterprise Application workspace

This workspace displays performance statistics for Servlets/JSPs running in the given Enterprise Application.

This workspace displays data provided by the Servlets and JSPs - WebLogic attributes on page 598.

The predefined workspace contains the following items:

- Worst Execution Times bar chart, which displays the worst amount of time the invocations of the servlet have executed for the interval since the previous sample.
- Servlets/JSPs - Selected Enterprise Application report, which displays performance information for servlets and JavaServer pages.

Accessing the Servlets/JSPs - Selected Enterprise Application workspace

To access this workspace from the Web Applications workspace on page 529 in BEA WebLogic application server, use one of the following procedures:
From the Web Applications report, right-click the link icon to the left of any row and select Servlets/JSPs - Selected Enterprise Application.

From the Worst Response Times bar chart, the Most Popular Web Applications bar chart, the Worst Error Rates bar chart, or the Worst Execution Time bar chart, right-click any bar and select Link To > Servlets/JSPs - Selected Enterprise Application.

For additional information, see:
- "Organization of the predefined workspaces” on page 495
- “Attribute groups used by the predefined workspaces” on page 532

Servlets/JSPs - Selected Web Application workspace

This workspace displays statistical data regarding the servlets and JSPs invoked by a single Web application.

This workspace displays data provided by the "Servlets JSPs - J2EE attributes” on page 596.

The predefined workspace contains the following items:
- Worst Response Times bar chart, which displays the worst average response times (in milliseconds) for servlets invoked by the selected Web application.
- Servlets/JSPs - Selected Web Application report, which displays performance information about the servlets and JSPs invoked by the application. For example, this report displays the average number of concurrent requests for a servlet and the amount of time it takes a servlet to respond to a request.

Accessing the Servlets/JSPs - Selected Web Application workspace

To access this workspace from the "Web Applications workspace” on page 529, use one of the following procedures:
- From the Web Applications report, right-click the link icon to the left of any row and select Servlets/JSPs - Selected Web Application.
- From the Worst Response Times bar chart, the Most Popular Web Applications bar chart, the Worst Error Rates bar chart, or the Worst Execution Time bar chart, right-click any bar and select Link To > Servlets/JSPs - Selected Web Application.

For additional information, see:
- “Organization of the predefined workspaces” on page 495
- “Attribute groups used by the predefined workspaces” on page 532

Tomcat Server workspace

This workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.

The predefined workspace contains the following items:
- Heap Usage - History bar chart, which displays free memory size and used memory size (in kilo bytes) within the J2EE Application Server’s heap over time.
 The chart’s hover help displays the exact values.
 This view displays data provided by the Garbage Collection Analysis attributes.
- Response Time - History graph, which shows the server’s response time to requests over time.
This view displays data provided by the Request Times and Rates attributes.

- **Request Rate - History graph**, which shows the rate at which requests have been received by this server over time.

This view displays data provided by the Request Times and Rates attributes.

- **Percent CPU Used - History graph**, which shows the percentage of the CPU that this server consumed over time.

This view displays data provided by the Application Server attributes.

- **Application Server Summary report**, which displays overall information about this Tomcat server, including JVM statistics and CPU usage statistics.

This view displays data provided by the Application Server attributes.

Accessing Tomcat Server Workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, click the Tomcat Server entry of your choice.

For additional information, see:
- “Organization of the predefined workspaces” on page 495
- “Attribute groups used by the predefined workspaces” on page 532

Web Applications workspace

This workspace displays information about the Web applications running in J2EE application servers.

Note to OracleAS9 users: This workspace is not supported on OracleAS9 and no data is provided, hence this workspace is always empty.

This workspace displays data provided by the “Web Applications - J2EE attributes” on page 601.

The predefined workspace contains the following items:

- **Worse Response Times bar chart**, which shows the worst servlet response times (in milliseconds) during the interval.
- **Most Popular Web Applications bar chart**, which shows the servlet exception and request rates (in events per second).
- **Web Applications report**, which displays aggregated performance data for each Web application about all servlets and JSPs deployed to that Web application, including response and error rates and response times.

In the BEA WebLogic Application Server, this workspace displays data provided by the “Web Applications - WebLogic attributes” on page 602.

The predefined workspace contains the following items:

- **Most Active Sessions bar chart**, which shows the high water mark of the total number of open sessions in this server.
- **Most Popular Web Applications bar chart**, which shows the servlet exception and request rates (in events per second).
• Web Applications report, which displays aggregated performance data for each Web application about all servlets and JSPs deployed to that Web application, including response and error rates and response times

Accessing the Web Applications workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the J2EE application server of your choice.
5. Within that server's list of available J2EE application server workspaces, click the Web Applications entry.

For additional information, see:
• “Organization of the predefined workspaces” on page 495
• “Attribute groups used by the predefined workspaces” on page 532

Web Container workspace

This workspace displays summary statistics about servlets/JSPs invocations in SAP NetWeaver Web Container.

This workspace displays data provided by the Web Container - NetWeaver attributes on page 599.

The predefined workspace contains the following items:
• Security Sessions bar chart, which displays the number of current valid, invalid and also timed out security sessions
• Http Sessions bar chart, which displays the number of current valid, invalid and also timed out http sessions
• Servlets/JSPs report, which displays performance information about the servlets and JSPs invoked by the application

Accessing the Web Container workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, expand the SAP NetWeaver application server.
5. Within SAP NetWeaver server's list of available J2EE application server workspaces, click the Web Container entry.

For additional information, see:
• Organization of the predefined workspaces
• Attribute groups used by the predefined workspaces
WebSphere App Server CE workspace

This workspace displays overall statistics for each application server being monitored by the Tivoli Enterprise Monitoring Agent.

The predefined workspace contains the following items:

- **Heap Usage - History bar chart**, which displays free memory size and used memory size (in kilo bytes) within the J2EE Application Server's heap over time. The chart's hover help displays the exact values. This view displays data provided by the Garbage Collection Analysis attributes.
- **Response Time - History graph**, which shows the server's response time to requests over time. This view displays data provided by the Request Times and Rates attributes.
- **Request Rate - History graph**, which shows the rate at which requests have been received by this server over time. This view displays data provided by the Request Times and Rates attributes.
- **Percent CPU Used - History graph**, which shows the percentage of the CPU that this server consumed over time. This view displays data provided by the Application Server attributes.
- **Application Server Summary report**, which displays overall information about this WebSphere App Server CE application server, including JVM statistics and CPU usage statistics. This view displays data provided by the Application Server attributes.

Accessing WebSphere App Server CE workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of J2EE agents.
4. Within the list of available agents, click the WebSphere App Server CE entry of your choice.

For additional information, see:

- “Organization of the predefined workspaces” on page 495
- “Attribute groups used by the predefined workspaces” on page 532

ITCAM for Application Diagnostics - Agent for J2EE attributes

IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for J2EE is a Tivoli Enterprise Management Agent that is located within your distributed system. This agent gathers data about running J2EE Application Server processes that have been collected and stored by the ITCAM for J2EE data collector, and stores this data in elements called attributes. Each attribute is a characteristic of an object. For example, the Receive Count attribute in the JMS Summary attribute group counts the number of messages your applications have retrieved from JMS messages queues.

Attribute groups

The IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for J2EE attributes are organized into groups of related items. These
attribute groups comprise the attribute tables for this agent. For example, the Garbage Collection Analysis attribute group provides information about the frequency with which the Java Virtual Machine (JVM) invokes its garbage collector.

Attributes and workspaces

Various attributes are referenced by the product's predefined situations. You can also use the IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for J2EE attributes to create your own situations to monitor the performance of your J2EE application servers and their applications. These situations can monitor your J2EE Application Server resources or correlate multiple conditions to alert you to problems that may have occurred when attribute values exceed thresholds that you define.

Attribute groups used by the predefined workspaces

A workspace contains graphical data or report columns that correspond directly to particular attributes in an attribute group. The table shows the correlations between the predefined workspaces and the attribute groups. The workspaces, primary and secondary, are listed alphabetically, not in the order in which they display in the Navigator.

Table 77. Workspaces and the attribute groups they reference

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Related Attribute Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Health Summary</td>
<td>Application Health Status</td>
</tr>
<tr>
<td>Application Registry</td>
<td>Application Monitoring Configuration</td>
</tr>
<tr>
<td>Allocation Failures</td>
<td>Allocation Failure - J2EE</td>
</tr>
<tr>
<td>BEA WebLogic App Server</td>
<td>Application Server - J2EE</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates - J2EE</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis - J2EE</td>
</tr>
<tr>
<td>Datasources</td>
<td>Datasources - J2EE</td>
</tr>
<tr>
<td>Selected Datasource - History</td>
<td></td>
</tr>
<tr>
<td>DB Connection Pools</td>
<td>DB Connection Pools - NetWeaver</td>
</tr>
<tr>
<td>Selected DB Connection Pool - History</td>
<td></td>
</tr>
<tr>
<td>EJB Components</td>
<td>Enterprise Java Bean Components - WebLogic</td>
</tr>
<tr>
<td>EJB Modules</td>
<td>Enterprise Java Bean Modules - J2EE</td>
</tr>
<tr>
<td>EJBs - Selected Enterprise Application</td>
<td>Enterprise Java Bean - WebLogic</td>
</tr>
<tr>
<td>Enterprise Java Beans</td>
<td>Enterprise Java Bean Service - NetWeaver</td>
</tr>
<tr>
<td></td>
<td>Enterprise Java Bean Modules - J2EE</td>
</tr>
<tr>
<td>Garbage Collection Analysis</td>
<td>Garbage Collection Analysis - J2EE</td>
</tr>
<tr>
<td>Garbage Collections - Selected Allocation Failure</td>
<td>Garbage Collection Cycle - J2EE</td>
</tr>
<tr>
<td>J2EE Agent</td>
<td>J2EE Agent Events</td>
</tr>
<tr>
<td></td>
<td>Application Server Status - J2EE</td>
</tr>
<tr>
<td>J2SE Application</td>
<td>Application Server - J2EE</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates - J2EE</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis - J2EE</td>
</tr>
<tr>
<td>JBoss App Server</td>
<td>Application Server - J2EE</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates - J2EE</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis - J2EE</td>
</tr>
<tr>
<td>JCA Connection Pools</td>
<td>JCA Connection Pools - J2EE</td>
</tr>
<tr>
<td></td>
<td>J2EE Connector Connection Pools - WebLogic</td>
</tr>
</tbody>
</table>
Table 77. Workspaces and the attribute groups they reference (continued)

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Related Attribute Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>JDBC Connection Pools</td>
<td>JDBC Connection Pools - WebLogic</td>
</tr>
<tr>
<td>Selected JDBC Connection Pool - History</td>
<td></td>
</tr>
<tr>
<td>JMS Session</td>
<td>JMS Sessions - WebLogic</td>
</tr>
<tr>
<td>JMS Summary</td>
<td>JMS Summary</td>
</tr>
<tr>
<td>JTA Resources</td>
<td>JTA Resources - J2EE</td>
</tr>
<tr>
<td></td>
<td>Java Transaction Service - WebLogic</td>
</tr>
<tr>
<td>JTA Summary</td>
<td>JTA Summary - NetWeaver</td>
</tr>
<tr>
<td>JVM Statistics</td>
<td>JDK - Operating System</td>
</tr>
<tr>
<td></td>
<td>JDK - Memory</td>
</tr>
<tr>
<td></td>
<td>JDK - JVM</td>
</tr>
<tr>
<td></td>
<td>JDK - Threading</td>
</tr>
<tr>
<td>Log Analysis</td>
<td>Log Analysis - J2EE</td>
</tr>
<tr>
<td>DC Message Events</td>
<td>DC Messages - J2EE</td>
</tr>
<tr>
<td>Oracle App Server</td>
<td>Application Server - J2EE</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates - J2EE</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis - J2EE</td>
</tr>
<tr>
<td>Request Analysis</td>
<td>Request Analysis - J2EE</td>
</tr>
<tr>
<td>Selected Request - History</td>
<td></td>
</tr>
<tr>
<td>Selected Request - Baseline</td>
<td>Baseline attributes</td>
</tr>
<tr>
<td>Selected Application - Tier Analysis</td>
<td>Application Health Status</td>
</tr>
<tr>
<td>Selected Application - Backend Tier Analysis</td>
<td></td>
</tr>
<tr>
<td>Selected Application - Health History</td>
<td></td>
</tr>
<tr>
<td>Selected Application - Client Tier Analysis</td>
<td></td>
</tr>
<tr>
<td>Selected Application - Configuration</td>
<td>Application Monitoring Configuration</td>
</tr>
<tr>
<td>Selected Request - Datasources</td>
<td>Selected Request - J2EE</td>
</tr>
<tr>
<td>Selected Request - JMS Queues</td>
<td>Selected Request - J2EE</td>
</tr>
<tr>
<td>SAP NetWeaver Server workspace</td>
<td>Application Server - J2EE</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates - J2EE</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis - J2EE</td>
</tr>
<tr>
<td>Selected Request - Resource Adapters</td>
<td>Selected Request - J2EE</td>
</tr>
<tr>
<td>Servlets/JSPs - Selected Enterprise Application</td>
<td>Servlets and JSPs - WebLogic</td>
</tr>
<tr>
<td>Servlets/JSPs - Selected Web Application</td>
<td>Servlets JSPs - J2EE</td>
</tr>
<tr>
<td>Tomcat Server</td>
<td>Application Server - J2EE</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates - J2EE</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis - J2EE</td>
</tr>
<tr>
<td>Web Applications</td>
<td>Web Applications - J2EE</td>
</tr>
<tr>
<td></td>
<td>Web Applications - WebLogic</td>
</tr>
<tr>
<td>Web Containers</td>
<td>Web Container - NetWeaver</td>
</tr>
<tr>
<td>WebSphere App Server CE</td>
<td>Application Server - J2EE</td>
</tr>
<tr>
<td></td>
<td>Request Times and Rates - J2EE</td>
</tr>
<tr>
<td></td>
<td>Garbage Collection Analysis - J2EE</td>
</tr>
</tbody>
</table>

Allocation Failure - J2EE attributes

The **Allocation Failure - J2EE** attribute group provides information about the heap-allocation failure that caused the Java Virtual Machine hosting the application.
server to invoke its garbage-collection routine. Use the Allocation Failure attributes when you need to determine the events that caused the JVM to invoke garbage collection.

The attributes within this group are used to build the "Allocation Failures workspace" on page 500.

Allocation Failure Number
The identifier assigned to the current allocation-failure block, which is associated with a bar in the Heap Usage - History bar chart. The valid format is a positive integer.

Bytes Needed
The number of bytes needed on the heap when this allocation failure occurred. The valid format is a positive integer.

GC Cycle Count
The number of Garbage Collection cycles ran for this allocation. The valid format is a positive integer.

Heap Expanded
The total number of kilobytes by which the heap expanded or contracted as a result of garbage collection. The valid format is a positive integer.

Heap Free (%) after GC
The percentage of heap that is free after allocation failure. The valid format is a positive integer.

Heap Status
Indicates whether the out-of-heap-space alert has been raised. Valid values are Normal, Out_of_heap_space, Heap_space_is_low, and Insufficient_space.

Interval (sec)
The length of the interval in seconds. The valid format is a positive integer.

Kbytes Free at Start of GC
The number of kilobytes that were available in the heap before garbage collection began in response to this allocation failure. The valid format is a positive integer.

Kbytes Freed by GC
The number of kilobytes freed for this allocation failure. The valid format is a positive integer.

Kbytes Used
The number of kilobytes in the heap that were in use when this allocation failure occurred. The valid format is a positive integer.

Node Name
The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum length of 256 characters.

Objects Moved
The total objects moved during compaction available. The valid format is a positive integer.

Origin Node
The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID
The process ID of the Java Virtual Machine (JVM). The valid format is a positive integer.

Sample Date and Time
The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:
Table 78. Format of the 12-character timestamp

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data were collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Time since Last Failure (ms) The time elapsed since the last allocation failure. The valid format is a positive integer.

Time to Complete (ms) The time (in milliseconds) taken to complete the action that resulted from this allocation failure. The valid format is a positive integer.

Total Kbytes Freed by GC The total number of kilobytes freed by the garbage collector in response to this allocation failure. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Application Health Status attributes

The Application Health Status attributes provide information for real-time and historical application health status.

The attributes within this group are used to build the Application Health Summary workspace.

Application Health The combined application health level. Valid values are Unknown, Good, Fair, and Bad.

Application ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer.

Application Name The name of the application to which the request belongs. The valid format is an alphanumeric string, with a maximum of 256 characters.

Application Status The current status of the monitored application. Valid values are Standby, Discovered, Unknown, Starting, Running, Stopping, Stopped, and Failed.
Application Tier Health The health level of the application tier. Valid values are Unknown, Good, Fair, and Bad. Application tier health indicator is determined from EJB or custom request delays collected on the interval and compared against thresholds configured for application requests.

Backend Tier Health The health level of the backend tier. Backend tier health indicator is determined from JDBC, JCA, JNDI, JMS delays collected on the interval and compared against thresholds configured for application requests. Valid values are Unknown, Good, Fair, and Bad.

Client Tier Health The health level of the client tier. Valid values are Unknown, Good, Fair, and Bad. Client tier health indicator is determined from servlet/JSP or portal delays collected on the interval and compared against thresholds configured for application requests.

Completion Level The completion level of the requests during the interval. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from request data as the percentage of number of failed requests to the total number of application requests on the interval.

Custom Requests The availability indicator of custom requests. Valid values are Unknown, Good, Fair, and Bad.

EJB Container The health level of the EJB container. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from EJB delay types collected during the interval and compared against application thresholds.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

JCA The overall health status of J2EE Connector Architecture (JCA) resources used by applications. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from JCA delay types collected during the interval and compared against application thresholds.

JDBC The overall health status of Java DataBase Connectivity (JDBC) resources used by applications. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from JDBC delay types collected during the interval and compared against application thresholds.

JNDI The overall health status of Java Naming and Directory Interface (JNDI) resources used by applications. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from JNDI delay types collected during the interval and compared against application thresholds.

JMS The overall health status of Java Message Service (JMS) resources used by applications. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from JMS delay types collected during the interval and compared against application thresholds.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.
Portal Container The health level of the portal container. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from portal delay types collected during the interval and compared against application thresholds.

Response Level The health level of the response time for the requests. Valid values are Unknown, Good, Fair, and Bad. This attribute is determined from application requests response times collected during the interval and compared against application thresholds.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Web Container The health level of the Web container. Valid values are Unknown, Good, Fair, and Bad.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Application Monitoring Configuration attributes

The **Application Monitoring Configuration** attributes provide information for the Application Monitoring Configuration. Use these attributes to monitor different J2EE applications running within an application server.

The attributes within this group are used to build the **Selected Application - Configuration** workspace.

Application Alias The alias name that you can optionally assign for the application. In practice, this attribute enables you to combine multiple applications under the same common alias and report their request in the Tivoli Enterprise Portal as it would come from same application. This attribute is blank by default.
You can assign the value to it from Take Actions at any time in the application monitoring life cycle. The valid format is an alphanumeric string, with a maximum of 256 characters.

App ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer.

Application Name The name of the application to which the request belongs. You can define the pattern of this name in the Application Registry workspace. The valid format is an alphanumeric string, with a maximum of 256 characters.

Bad Completion Rate (%) The bad completion rate threshold for the requests. The valid format is an alphanumeric string, with a maximum of 256 characters.

Baselining Elapsed Time The number of seconds during which the application baselining has been running. The valid format is a positive integer.

Baselining Status The current status of the application baselining process. Valid values are Idle, Running, and Standby.

Baselining Scheduled Stop Time The date and time baselining is scheduled to finish. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Baselining Start Time The date and time when the application baselining was started. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>
Baselining Update Interval The number of seconds that defines how often active baselining data is incrementally updated to the monitoring agent. The valid format is a positive integer.

Fair Completion Rate (%) The fair completion rate threshold for the requests. The valid format is an alphanumeric string, with a maximum of 256 characters.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Monitoring Status The current application monitoring status. Valid values are Discovered, Enabled, Disabled, and Standby.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Data Monitoring Level The custom request aggregation level for all application requests. Valid values are Default, Disabled, Level1, and Level2. This attribute is set to Default when the application is first discovered.

Request Data Sampling Rate The custom request aggregation rate for all application requests. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

For additional information, see:

- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)
Application Server Status - J2EE attributes

The Application Server Status - J2EE attributes provide status information for all J2EE application servers as well as the J2EE administrative server being monitored by the OMEGAMON XE agent.

The attributes within this group are used to build the "J2EE Agent workspace" on page 510.

Cluster Name The name of the server group (cluster) that the application server belongs to. The valid format is an alphanumeric string, with a maximum of 128 characters. This is supported for WebLogic application server only.

J2EE Configuration Repository Directory Name The name of the J2EE configuration repository directory, which normally resides in the config subdirectory of the product installation root directory. The valid format is an alphanumeric string, with a maximum of 128 characters.

J2EE Node Name The name of the J2EE node group that the application server belongs to. The valid format is an alphanumeric string, with a maximum of 64 characters.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The process identifier of the Java virtual machine. The valid format is a positive integer.

Sample Date and Time The date and time that the OMEGAMON XE for J2EE Application Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.
Start Date and Time The date and time when the J2EE application server started. The valid format is a timestamp. This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Status The status of the J2EE Application Server. The valid values are Starting, Running, Stopping, Stopped, and Failed.

Server Type The type of J2EE server. The valid values are Unknown, AppServer, AdminServer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Application Server - J2EE attributes

The Application Server - J2EE attributes gather status and summary data for a specific J2EE application server. They provide performance data for the J2EE Application Server runtime (JVM memory), HTTP sessions, and configuration parameters. They also provide some information from other attribute groups to provide an overall view of the J2EE application server. Use the Application Server attributes in situations to monitor the health and performance of a J2EE application server.

The attributes within this group are used to build the J2EE application servers workspaces.

CPU Used (ms) The number of milliseconds used during the interval. The valid format is a positive integer.

CPU Used (%) The percentage of the CPU used during the interval. The valid format is a decimal (formatted to 1 decimal place).

Garbage Collection Monitoring This attribute indicates whether Garbage Collection is being monitored. Valid values are Disabled and Enabled.

Instrumentation Level The JVM instrumentation level. Valid values are None, Low, Medium, High, Basic, Extended, All, Custom and Maximum. This field is blank if no instrumentation level is set.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

JVM Memory Free (bytes) The amount of JVM memory that is free (in bytes). Minimum instrumentation level required to collect these data: Low. The valid format is a positive integer.

JVM Memory Total (bytes) The total amount of JVM memory (in bytes). Minimum instrumentation level required to collect these data: Low. The valid format is a positive integer.

JVM Memory Used (bytes) The amount of JVM memory that has been used (in bytes). Minimum instrumentation level required to collect these data: Low. The valid format is a positive integer.
Node Name The name of the system on which the server is running. The value format is an alphanumeric string, maximum 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, maximum 128 characters.

Process CPU Utilization (ms) The process CPU utilization. The valid format is a positive integer.

Process ID The process identifier of the Java virtual machine. The valid format is a positive integer.

Resource Data Monitoring This attribute indicates whether resource data is being monitored. Valid values are Disabled and Enabled.

Request Data Monitoring Level The monitoring level for request data stored by the Data Collector. Valid values are Disabled, Level1 (in other words, only edge request data-such as servlets and JSPs- are displayed), and Level2 (nested request data-such as JDBC and JMS requests-are also displayed).

Request Data Sampling Rate (%) The percentage of requests being sampled. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, maximum 256 characters.

Start Date and Time The date and time when the J2EE application server started. The valid format is a timestamp. This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.
Status The current status of the J2EE application server. The valid values are Starting, Running, Stopping, Stopped, and Failed.

System Paging Rate (Kbytes/sec) The system paging rate during the interval. The valid format is a positive integer.

Version The version of the J2EE Application Server. The valid format is an alphanumeric string maximum 8 characters.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Baseline attributes

The **Baseline** attributes provide information for baseline extract data for the given application. The baselining collects statistical information about an application requests completion times and uses this information to assign fair and bad thresholds on the application requests. The product divides the whole request response times into buckets and collects individual hits into each bucket. Use these attributes to get statistics from individual requests collected during baselining interval.

The attributes within this group are used to build the [Selected Request - Baseline](#) workspace.

Application ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer.

Bad Hits (%) The percentage of bucket hits in the metric bad value zone. The valid format is a positive integer.

Bucket Number The bucket number of the baselining data. The valid format is a positive integer.

EJB (%) The average percent of time that bucket requests were executed inside EJB container. The valid format is a positive integer.

Fair Hits (%) The percentage of bucket hits in the metric fair value zone. The valid format is a positive integer.

Good Hits (%) The percentage of bucket hits in the metric good value zone. The valid format is a positive integer.

Hits (%) The percentage of hits for the bucket during the baselining. The valid format is a positive integer.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

JCA (%) The average percent of time that bucket requests spent for JCA access. The valid format is a positive integer.

JDBC (%) The average percent of time that bucket requests spent for JDBC access. The valid format is a positive integer.
JMS (%) The average percent of time that bucket requests spent for JMS access. The valid format is a positive integer.

JNDI (%) The average percent of time that bucket requests spent for JNDI access. The valid format is a positive integer.

Lower Boundary (msec) The lower boundary of bucket response times in milliseconds. The valid format is a positive integer.

Metric ID The metric identifier of the baselining data. The valid format is a positive integer.

Metric Type The metric type of the baselining data. Valid formats are Request, Error, and Resource.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Portal (%) The average percent of time that bucket requests were executed inside portal container. The valid format is a positive integer.

Response Time Mean (msec) The mean time of bucket response times. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Selection Hits (%) The percentage of bucket hits in the metric selection value zone. The valid format is a positive integer.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.
Servlet JSP (%) The average percent of time that bucket requests were executed inside the servlet container. The valid format is a positive integer.

Total Hits The total hits number for the bucket during the baselining. The valid format is a positive integer.

Upper Boundary (msec) The upper boundary of bucket response times. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Data sources - J2EE attributes

The Data sources - J2EE attributes provide database usage information. For example, these attributes provide traffic information such as response times for database requests, the frequencies at which database connections are created and destroyed, and how often databases are being accessed.

The attributes within this group are used to build the Data sources workspace.

Note: The attributes within this attribute group contain meaningful values only if your site has set the request data monitoring level to Level2 to collect data on data source requests.

Application ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer.

Average Processing Time (ms) The total average processing time (in milliseconds) that the data source is used by an application. The valid format is a decimal (formatted to 3 decimal places).

Average Query Processing Time (ms) The average time (in milliseconds) per request used by queries to the data source. The valid format is a decimal (formatted to 3 decimal places).

Average Update Processing Time (ms) The average time (in milliseconds) per request used by updates to the data source. The valid format is a decimal (formatted to 3 decimal places).

Connection Average Wait Time (ms) The average time (in milliseconds) that applications had to wait for a connection. The valid format is a decimal (formatted to 3 decimal places).

Connection Count The longest amount of time (in milliseconds) that applications had to wait for a connection. The valid format is a positive integer.

Connection Max Wait Time (ms) The maximum amount of time (in milliseconds) that applications had to wait for a connection to the data source. The valid format is a positive integer.

Connection Rate (per sec) The number of connection requests (per second) created for the data source. The valid format is a decimal (formatted to 3 decimal places).
Connection Total Wait Time (ms) The total time (in milliseconds) that applications had to wait for a connection to the data source. The valid format is a positive integer.

Database Product The name of the database product. The valid format is an alphanumeric string, with a maximum of 128 characters.

Database Product Version The version of the database product. The valid format is an alphanumeric string, with a maximum of 128 characters.

Datasource Label A shortened version of Data source Name, used to display the data source name in the chart view. The valid format is an alphanumeric string, with a maximum of 12 characters.

Datasource Name The name of the data source. The valid format is an alphanumeric string, with a maximum of 256 characters.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the application server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The unique identifier of the process running the Java Virtual Machine (JVM). The valid format is a positive integer.

Query Count The number of queries performed against the data source. The valid format is a positive integer.

Query Rate (per sec) The number of queries (per second) being made to the data source. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.
This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Sampling Rate % The percentage of edge requests—such as servlets and JSPs—that were sampled for data source requests during the interval. The valid format is a positive integer.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Total Query Processing Time (ms) The total time (in milliseconds) used to process queries made to the data source. The valid format is a positive integer.

Total Update Processing Time (ms) The total time (in milliseconds) used to update the data source. The valid format is a positive integer.

Total Wait Time (ms) The time (in milliseconds) that applications had to wait for connections to the data source. The valid format is a positive integer.

Update Count The number of updates performed against the data source. The valid format is a positive integer.

Update Rate (per sec) The number of updates (per second) made to the data source. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

DB Connection Pools - NetWeaver attributes

The **DB Connection Pools - NetWeaver** attributes collect information about the database connection pool for each defined data source.

The attributes within this group are used to build the [“DB Connection Pools workspace” on page 504](#).

Current Size The current size of data source pool. The valid format is a positive integer.

Datasource Name The name of the data source. The valid format is an alphanumeric string, with a maximum of 256 characters.

Increment Step The increment step of data source pool. The valid format is a positive integer.

Init Size The initial size of data source pool. The valid format is a positive integer.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Max Size The maximum size of data source pool. The valid format is a positive integer.
Min Size The minimum size of data source pool. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data were collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

UsedConnectionsCount The number of used connections. The valid format is a positive integer.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

DC Messages - J2EE attributes

The DC Messages - J2EE attribute group provides information about the Data Collector Messages.

The attributes within this group are used to build both the “Log Analysis workspace” on page 518 and the “DC Message Events workspace” on page 505.

Component The name of the component that caused the error. The valid format is an alphanumeric string, maximum 32 characters.
Event Date and Time The date and time that the event occurred. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

File Name The name of the file. The valid format is an alphanumeric string, with a maximum of 256 characters.

Message Description The description of the message. The valid format is an alphanumeric string, with a maximum of 256 characters.

Message ID The ID of the message. The valid format is an alphanumeric string, with a maximum of 8 characters.

Method Name The name of the method. The valid format is an alphanumeric string, with a maximum of 256 characters.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Severity The severity of the message. Valid values are Info, Warning, Error, and Severe.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Sequence Number The sequence number in JMX notification stream. The valid format is a positive integer.

Thread ID The ID of the thread where the event occurred. The valid format is an alphanumeric string, with a maximum of 16 characters.
Enterprise Java Bean Components - WebLogic attributes

The WebLogic EJB Components - WebLogic attributes provide the runtime information for an EJB component.

The attributes within this group are used to build the “EJB Components workspace” on page 506.

Current Entity EJBs The number of current entity EJBs. The valid format is a positive integer.

Current Message Driven EJBs The number of current message driven EJBs. The valid format is a positive integer.

Current Stateful EJBs The number of current stateful EJBs. The valid format is a positive integer.

Current Stateless EJBs The number of current stateless EJBs. The valid format is a positive integer.

Deployment State The current deployment state of the component. Valid values are Unprepared, Prepared, Activated and New.

Enterprise Application Name The J2EE application name. The valid format is an alphanumeric string, with a maximum of 128 characters.

EJB Component Name The EJB Component name. The valid format is an alphanumeric string, with a maximum of 128 characters.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Table 89. Format of the 12-character timestamp
Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Enterprise Java Bean Modules - J2EE attributes

The Enterprise Java Bean Modules - J2EE attributes collect performance information about each Enterprise Java Bean (EJB) deployed to the application server.

The attributes within this group are used to build the "EJB Modules workspace" on page 508 and "Enterprise Java Beans workspace" on page 507.

Bean Name The name of the Enterprise Java Bean (EJB); this name prefixes the application name and the EJB jar name. The valid format is an alphanumeric string, with a maximum of 128 characters.

Bean Type The type of bean. Valid values are Stateless, Stateful, Entity, and Message_Driven.

Create Count The number of times that beans were created during the interval. Minimum instrumentation level required to collect these data: Low. The valid format is a positive integer.

EJB Module The name of the EJB Module. The valid format is an alphanumeric string, with a maximum of 128 characters.

EJB Count The number of EJBs in the EJB module. The valid format is a positive integer.

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Message Count The number of messages delivered to the bean on Message method. The valid format is a positive integer.

Method Ready Count The number of bean instances in ready state. The valid format is a positive integer.

Method Ready Count High The high water mark of the number of bean instances in ready state. The valid format is a positive integer.

Method Ready Count Low The low water mark of the number of bean instances in ready state. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.
Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Passive Count The number of beans that are in a passivated state (entity and stateful). Minimum instrumentation level required to collect these data: Low. The valid format is a positive integer.

Passive Count High The high water mark of the beans that are in a passivated state (entity and stateful). The valid format is a positive integer.

Passive Count Low The low water mark of the beans that are in a passivated state. The valid format is a positive integer.

Pooled Count The average number of objects in the pool. The valid format is a positive integer.

Pooled Count High The high water mark of the average number of objects in the pool. The valid format is a positive integer.

Pooled Count Low The low water mark of the average number of objects in the pool. The valid format is a positive integer.

Ready Count The number of bean instances in ready state. The valid format is a positive integer.

Ready Count High The high water mark of bean instances in ready state. The valid format is a positive integer.

Ready Count Low The low water mark of bean instances in ready state. The valid format is a positive integer.

Remove Count The number of times that beans were removed. Minimum instrumentation level required to collect these data: Low. The valid format is a positive integer.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.
This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Summary of All EJB Modules The summary of statistical totals for all EJB modules. Valid values are EJB, No, and Yes.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Enterprise Java Bean Service - NetWeaver attributes

The Enterprise Java Bean Service - NetWeaver attributes collect performance information about each Enterprise Java Bean deployed to SAP NetWeaver application server.

The attributes within this group are used to build the Enterprise Java Beans workspace on page 507 in SAP NetWeaver Server.

Activations Number The number of activations. The valid format is a positive integer.

Active Sessions Count The count of not passivated sessions. The valid format is a positive integer.

Active Sessions Timeout The timeout for the active sessions. If a session stays idle and not passivated for that long, it is removed. The valid format is a positive integer.

Application Name The name of application using EJB. The valid format is an alphanumeric string, with a maximum of 128 characters.

Bean Name The bean class name. The valid format is an alphanumeric string, with a maximum of 128 characters.

Bean Type The type of Bean. Valid formats are Stateless, Stateful, Entity, Message_Driven, and [Summary].

Create Count The count of times of a "create" method was invoked on the bean. The valid format is a positive integer.

Current Pool Size The current size of pool. The valid format is a positive integer.

Completed Sessions The count of already completed sessions. The valid format is a positive integer.

EJB Count The number of EJB in the EJB module. The valid format is a positive integer.

EJB Module The name of the EJB Module. The valid format is an alphanumeric string, with a maximum of 128 characters.
Initial Pool Size The initial size of pool. The valid format is a positive integer.

Interval Time The length of the interval in seconds. The valid format is a positive integer.

Loads Number The number of loads. The valid format is a positive integer.

Max Pool Size The maximum size of pool. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Passive Sessions Count The count of passivated sessions. The valid format is a positive integer.

Passive Sessions Timeout The timeout for the passive sessions. If a session stays idle and passivated for that long, it is removed. The valid format is a positive integer.

Passivations Number The number of passivations. The valid format is a positive integer.

PoolCurrUsedObj The number of currently used pool objects. The valid format is a positive integer.

Pool Increment Size The size of pool increment. The valid format is a positive integer.

Remove Count The count of times of a "remove" method was invoked on the bean. The valid format is a positive integer.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.
This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Stores Number The number of the stores. The valid format is a positive integer.

Summary of All EJB Modules The summary row of statistical totals for all EJB modules. Valid values are EJB and Yes.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Enterprise Java Beans - WebLogic attributes

The Enterprise Java Beans - WebLogic attributes collect performance information about each Enterprise Java Bean deployed to the WebLogic application server.

The attributes within this group are used to build the "EJBs - Selected Enterprise Application workspace" on page 509.

Activation Rate The number of beans from this EJB Home that have been activated per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Beans Destroyed Percent The percent of the number of beans destroyed from the number of requests for a bean for the interval since the previous sample. The valid format is a decimal (formatted to 1 decimal place).

Cache Accesses The number of attempts to access a bean from the cache for the interval since the previous sample. The valid format is a positive integer.

Cache Access Rate The number of attempts per second to access a bean from the cache for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Cache Miss Percent The percent of the number of times a container cannot find a bean in the cache to the number of times it attempts to find a bean in the cache for the interval since the previous sample. The valid format is a decimal (formatted to 1 decimal place).

Current Cached Beans The total number of beans from this EJB Home currently in the EJB cache. The valid format is a positive integer.

Current Lock Entries The current number of beans currently locked. The valid format is a positive integer.

Current Lock Waiters The current number of threads that wait for a lock on a bean. The valid format is a positive integer.

Current Pool Beans The summary number of free and in-use beans in the pool. The valid format is a positive integer.

Current Pool Free Percent The percent of the free beans available in the pool. The valid format is a decimal (formatted to 1 decimal place).
Current Pool Waiters The number of threads currently waiting for an available bean instance from the free pool. The valid format is a positive integer.

Enterprise Application Name The J2EE application name. The valid format is an alphanumeric string, with a maximum of 128 characters.

EJB Component Name The EJB Component name. The valid format is an alphanumeric string, with a maximum of 128 characters.

EJB Name The EJB-name for this EJB. It is as defined in the ejb-jar.xml deployment descriptor. The valid format is an alphanumeric string, with a maximum of 128 characters.

EJB Type The type of EJB. Valid values are Stateless, Stateful, Entity and Message Driven.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Lock Manager Accesses The number of attempts to obtain a lock on a bean since the previous sample. The valid format is a positive integer.

Lock Manager Access Rate The number of attempts to obtain a lock on a bean per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Lock Timeout Percent The percent of timeouts to accesses for the lock manager for the interval since the previous sample. The valid format is a decimal (formatted to 1 decimal place).

Lock Waits Percent The percent of times a thread had to wait to obtain a lock on a bean comparing to the total amount of lock requests issued for the interval since the previous sample. The valid format is a decimal (formatted to 1 decimal place).

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Passivation Rate The number of beans from this EJB Home that have been passivated per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Pool Accesses The number of times an attempt was made to get an instance from the free pool since the previous sample. The valid format is a positive integer.

Pool Access Rate The number of times per second an attempt was made to get an instance form the free pool for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Pool Miss Percent The percent of times a request was made to get a bean from the pool when no beans were available. The valid format is a decimal (formatted to 1 decimal place).
Pool Timeout Percent The percent of requests that have timed out waiting for a bean from the pool from the total number of requests made for the interval since the previous sample. The valid format is a decimal (formatted to 1 decimal place).

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Transactions Processed The number of transactions processes. The valid format is a positive integer.

Transaction Process Rate The number of transactions processed per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Transaction Rolled Back Percent The percent transactions that have rolled back to the number of total transactions involving the EJB for the interval since the previous sample. The valid format is a decimal (formatted to 1 decimal place).

Transactions Timed Out Percent The percent of transactions that have timed out to the number of total transactions involving the EJB for the interval since the previous sample. The valid format is a decimal (formatted to 1 decimal place).

Garbage Collection Analysis - J2EE attributes

The Garbage Collection Analysis - J2EE attribute group provides information from the profiler about the garbage collector in the Java Virtual Machines that are hosting an application server. For example, these attributes report the number of times the collector ran during the interval and the resulting number of objects that...
the collector freed. Use the Garbage Collection Analysis attributes in situations to monitor garbage-collection performance and possible problems.

The attributes within this group are used to build the "Garbage Collection Analysis workspace" on page 509 and the J2EE application servers workspaces.

GC Rate (per min) The rate (per minute) at which the Java Virtual Machine is invoking its garbage-collection routine. The valid format is a decimal (formatted to 3 decimal places).

Heap Used (%) The percentage of heap used at the end of interval. The valid format is a decimal (formatted to 1 decimal places).

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Kbytes Free The total number of free kilobytes in the heap at the end of the last garbage-collection cycle during the interval. The valid format is a positive integer.

Kbytes Used The number of kilobytes in the heap that were in use at the end of the last garbage collection cycle during the interval. The valid format is a positive integer.

Kbytes Used Delta The delta value between the "Kbytes in Use" value for this interval and the "Kbytes in Use" value for the prior interval. A positive value indicates that the number of kbytes in use grew during the interval. The valid format is a positive or negative integer.

Kbytes Total Freed by GC The total number of kbytes freed by the garbage collector during the interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Objects Freed The number of objects the garbage collector freed during the interval. The valid format is a positive integer.

Objects Moved The number of objects the garbage collector moved during the interval. The valid format is a positive integer.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The process ID of the JVM. The valid format is a positive integer.

Real Time (ms) The total real time (in milliseconds) that the garbage collector required during the most recent cycle. The valid format is a positive integer.

Real Time % The percentage of real time that the garbage collector was active during the interval. The valid format is a decimal (formatted to 1 decimal place).

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:
Table 93. Format of the 12-character timestamp

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Times Run The number of times the garbage collector ran during the interval. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Garbage Collection Cycle - J2EE attributes

The Garbage Collection Cycle - J2EE attribute group provides information about a single garbage-collection cycle that the Java Virtual Machine hosting the application server performed. For example, these attributes report the free heap space both before and after garbage collection, the heap space freed, and the number of objects moved during garbage collection. Use the Garbage Collection Cycle attributes in situations to examine the results of a particular garbage collection.

The attributes within this group are used to build the Garbage Collections - Selected Allocation Failure workspace.

Allocation Failure Number The allocation failure block number for which this cycle ran. The valid format is a positive integer.

Compact (ms) The time (in milliseconds) required for the compaction phase of the garbage-collection cycle. The valid format is a positive integer.

Compaction Reason The code describing the reason garbage collection was initiated. The valid format is a positive integer.

The compaction codes are shown in the following table:
<table>
<thead>
<tr>
<th>Compaction Code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insufficient free space for the allocation request following the mark and sweep phases.</td>
</tr>
<tr>
<td>2</td>
<td>The heap is fragmented and will benefit from a compaction.</td>
</tr>
<tr>
<td>3</td>
<td>Less than 15% free space available.</td>
</tr>
<tr>
<td>4</td>
<td>A call to System.gc requested garbage collection.</td>
</tr>
<tr>
<td>5</td>
<td>Less than 5% free space available.</td>
</tr>
<tr>
<td>6</td>
<td>Less than 128K free space available.</td>
</tr>
<tr>
<td>7</td>
<td>Parameter Xcompactgc specified.</td>
</tr>
<tr>
<td>8</td>
<td>The transient heap has less than 5% free space available.</td>
</tr>
<tr>
<td>9</td>
<td>The heap is fragmented (this code marks additional reasons for compaction apart from compaction code 2).</td>
</tr>
</tbody>
</table>

Final References The Final references that are collected. The valid format is a positive integer.

Garbage Collection Number The garbage collection cycle number. The valid format is a positive integer.

GC Date and Time The date and time the Java Virtual Machine invoked the garbage collector. The valid format is a 16-character timestamp. This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Note to Solaris and HP-UX users: Because allocation-failure information is not recorded on these platforms, this column is always empty on these platforms.

Heap Capacity The total number of kilobytes allocated to the main heap after this garbage-collection cycle. The valid format is a positive integer.

Heap Free % after GC The percentage of heap space that is available after this garbage-collection cycle. The valid format is a decimal (formatted to 1 decimal place).

Heap Space Free (kbytes) The number of kilobytes available within the heap after this garbage-collection cycle. The valid format is a positive integer.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Kbytes Free at Start of GC The number of kilobytes available in the heap before garbage collection began. The valid format is a positive integer.

Kbytes Freed The number of kilobytes freed by the garbage collector. The valid format is a positive integer.

Kbytes Moved The number of kilobytes moved on the heap during this compaction. The valid format is a positive integer.
Kbytes Used The number of kilobytes in the heap that were in use after this garbage-collection cycle. The valid format is a positive integer.

Mark (ms) The time (in milliseconds) required for the mark phase of the garbage-collection cycle. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Objects Moved The number of objects the garbage collector moved during this compaction. The valid format is a positive integer.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Phantom References The number of phantom reference objects collected during this garbage-collection cycle. "Phantom" refers to a specific Java class that defines object reachability. The valid format is a positive integer.

Process ID The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Soft References The number of soft reference objects collected during this garbage-collection cycle. "Soft" refers to a specific Java class that defines object reachability. The valid format is a positive integer.

Sweep (ms) The time (in milliseconds) required for the sweep phase of the garbage-collection cycle. The valid format is a positive integer.
Time to Complete (ms) The time (in milliseconds) required to complete this garbage-collection cycle. The valid format is a positive integer.

Weak References The number of weak reference objects collected during this garbage-collection cycle. "Weak" refers to a specific Java class that defines object reachability. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

J2EE Agent Events attributes

The J2EE Agent Events attributes collect information about agent-level events that affect the ability of the OMEGAMON XE agent to collect data about J2EE Application Server. These attributes provide error messages, their IDs, and their severities.

The attributes within this group are used to build the **J2EE Agent workspace** on page 510.

Event Date and Time The date and time that the event occurred. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

File Name The name of the file. The valid format is an alphanumeric string, with a maximum of 64 characters.

Function Indicates the description of the message. The valid format is an alphanumeric string, with a maximum of 32 characters.

Message Description The message description. The valid format is an alphanumeric string, with a maximum of 256 characters.

Message ID The message ID. The valid format is an alphanumeric string, with a maximum of 8 characters.
Node Name The system on which the server is running. The valid format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Severity The severity of the message. Valid values are Info, Warning, Error, and Severe.

For additional information, see:

- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

J2EE Connector Connection Pools - WebLogic attributes

The J2EE Connector Connection Pools - WebLogic attributes provide data and statistics for the BEA WebLogic Connector Connection Pools.

The attributes within this group are used to build the "JCA Connection Pools workspace" on page 513.

Connection Creation Rate The number of Connector connections created in this Connection Pool per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Connection Destroy Rate The number of Connector connections destroyed in this Connector Pool per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Connections Matched The number of times a request for a Connector connections was satisfied via the use of an existing created connection since the previous sample. The valid format is a positive integer.

Connection Match Rate The number of times a request for a Connector connections was satisfied per second via the use of an existing created connection since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Connections Recycled The number of Connector connections that have been recycled in this Connector Pool since the previous sample. The valid format is a positive integer.

Connection Recycled Rate The number of Connector connections that have been recycled in this Connector Pool per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Connection Rejected The number of rejected requests for a Connector connections since the previous sample. The valid format is a positive integer.

Connection Rejection Rate The number of rejected requests for a Connector connections per second since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Cumulative Average Active Connections Usage The running average usage of created connections that are active in the Connector Pool since the pool was last shrunk. The valid format is a positive integer.
Current Active Connections The current number of active connections. The valid format is a positive integer.

Current Free Connections The current number of free connections. The valid format is a positive integer.

Interval (ms) The length of the interval in seconds. The valid format is a positive integer.

JNDI Name The configured JNDI Name for the Connection Factory using this Connector connection pool. The valid format is an alphanumeric string, with a maximum of 128 characters.

Highest Active Connections The high water mark of active connections in this Connector Pool since the pool was instantiated. The valid format is a positive integer.

Highest Free Connections The high water mark of free connections in this Connector Pool since the pool was instantiated. The valid format is a positive integer.

Idle Connections Detected The number of idle connections detected for the interval since the previous sample. The valid format is a positive integer.

Leaked Connections Detected The number of leaked connections detected for the interval since the previous sample. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Maximum Capacity The maximum capacity configured for this Connector connection pool. The valid format is a positive integer.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent for WebLogic Server agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>
Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JCA Connection Pools - J2EE attributes

The JCA Connection Pools - J2EE attribute group collects information about the JCA connection pools for each connection factory.

The attributes within this group are used to build the JCA Connection Pools workspace.

Average Usage Time (ms) The average time in milliseconds that a connection was in use. The valid format is a decimal (formatted to 3 decimal places).

Average Pool Size The average number of Managed Connections for the interval. Minimum instrumentation level required to collect these data: High. The valid format is a decimal (formatted to 3 decimal places).

Average Wait Time (ms) The average time in milliseconds that a client waited to be granted a connection. The valid format is a decimal (formatted to 3 decimal places).

Connections Closed The number of connections released. The valid format is a positive integer.

Connections Created The total number of Managed Connections created during the sampling interval. Minimum instrumentation level required to collect these data: Low. The valid format is a positive integer.

Connection Factory The name of Connection Factory. The valid format is an alphanumeric string, with a maximum of 256 characters.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

JCA Pool Label The short name of the JCA Pool. The valid format is an alphanumeric string, with a maximum of 32 characters.

JCA Pool Usage % The percentage of the pool that was used during the sampling interval. The valid format is a decimal (formatted to 3 decimal places).

Maximum Pool Size The maximum number of managed connections that can be created in this connection pool (the field is blank for each individual managed connection). The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.
Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Total Usage (ms) The total time used. The valid format is a decimal (formatted to 3 decimal places).

Total Wait (ms) The total time wait. The valid format is a decimal (formatted to 3 decimal places).

Waiting Threads The number of threads waiting for a connection. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JDBC Connection Pools - WebLogic attributes

The JDBC Connection Pools - WebLogic attributes provide data and statistics for JDBC connection pools.

The attributes within this group are used to build the "JDBC Connection Pools workspace" on page 514.

Average Connection Delay The averaged time necessary to get a connection from the database for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Connections Created The number of JDBC connections created during the interval. The valid format is a positive integer.
Connection Creation Rate The number of JDBC connections per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Cumulative Average Active Connections The running average of active connections in this pool. The valid format is a positive integer.

Current Active Connections The current number of active connections in this pool. The valid format is a positive integer.

Current Available Connections The current number of connections that are available to applications. The valid format is a positive integer.

Current Capacity The current number of database connection in this pool. The valid format is a positive integer.

Current Unavailable Connections The current number of connections in this pool that are being tested or refreshed and not available to the applications. The valid format is a positive integer.

Current Waiters The current number of waiters for a connection. The valid format is a positive integer.

Leaked Connections Detected The number of leaked connections for the interval since the previous sample. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Highest Active Connections The high water mark of active connections in this pool. The valid format is a positive integer.

Highest Available Connections The highest number of connections that were available to applications. The valid format is a positive integer.

Highest Unavailable Connections The highest number of connections in this pool that are being tested or refreshed and not available to the applications. The valid format is a positive integer.

Highest Waiters The highest number of waiters for a connection. The valid format is a positive integer.

Highest Wait Time (sec) The number of seconds the longest waiter for a connection waited. The valid format is a positive integer.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

JDBC Pool Name The JDBC connection pool name. The valid format is an alphanumeric string, with a maximum of 128 characters.

Maximum Capacity The maximum capacity of this connection pool. The valid format is a positive integer.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.
Pool State The current state of the connection pool. Valid values are Running, Suspended, Unhealthy, and Unknown.

Prepared Statement Cache Access The number of prepared statement cache access. The valid format is a positive integer.

Prepared Statement Cache Misses Percent The percent of the number of times a prepared statement was not found in the cache to the total number of requests for a prepared statement for the interval since the previous sample. The valid format is a decimal (formatted to 1 decimal place).

Reconnect Failures The number of cases when a connection pool attempted to refresh a connection to a database and failed. The valid format is a positive integer.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JDK - Operation System attributes

The JDK - Operation System attributes provide data and statistics of the operating system on which the J2SE application server is running. The information includes the operating system’s architecture, name, version, and the available memory information. The data for attributes is gathered from JVM MBeans, which are supported in JVM version 1.5 and higher. No data will be available for JVM with versions lower than 1.5.

The attributes within this group are used to build the JVM Statistics workspace on page 517.
Architecture The architecture of the operating system on which the J2SE application server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Available Processors The number of available processors of the operation system on which the J2SE application server is running. The valid format is a positive integer.

Committed Virtual Memory Size The committed virtual memory size in kilobytes. The valid format is a positive integer or N/A if this attribute is not applicable.

Free Physical Memory The free physical memory (in kilobytes) of the operation system. The valid format is a positive integer or N/A if this attribute is not applicable.

Free Swap Space Size The free swap space size (in kilobytes) of the operating system. The valid format is a positive integer or N/A if this attribute is not applicable.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

OS Name The name of the operating system, such as Windows 2003. The valid format is an alphanumeric string, with a maximum of 256 characters.

OS Version The version of the operating system on which the J2SE application server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Processing Capacity The processing capacity of operation system. The valid format is a positive integer or N/A if this attribute is not applicable.

Sample Date and Time The date and time that the monitoring agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>
Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Total Physical Memory The total physical memory (in kilobytes) of the operating system. The valid format is a positive integer or N/A if this attribute is not applicable.

Total Swap Space Size The total swap space size (in kilobytes) of the operating system. The valid format is a positive integer or N/A if this attribute is not applicable.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JDK - Memory attributes

The JDK - Memory attributes provide the memory usage information of the operating system on which the J2SE application server is running. This includes heap memory information, heap memory usage information and pending objects. The data for attributes is gathered from JVM MBeans, which are supported in JVM version 1.5 and higher. No data will be available for JVM with versions lower than 1.5.

The attributes within this group are used to build the "JVM Statistics workspace" on page 517.

Committed Heap Memory Size The amount of committed heap memory (in kilobytes) allocated to the JVM. The valid format is a positive integer.

Committed Non Heap Memory Size The amount of committed non heap memory (in kilobytes) allocated to the JVM. The valid format is a positive integer.

Initial Heap Memory Size The initial amount of the heap memory (in kilobytes) for the JVM of the J2SE application server. The valid format is a positive integer.

Initial Non Heap Memory Size The initial amount of the non heap memory (in kilobytes) for the JVM of the J2SE application server. The valid format is a positive integer.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Maximum Heap Memory Size The maximum amount of the heap memory (in kilobytes) used by the JVM of the J2SE application server. The valid format is a positive integer.

Maximum Non Heap Memory Size The maximum amount of the non heap memory (in kilobytes) used by the JVM of the J2SE application server. The valid format is a positive integer.
Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Object Pending Finalization Count The number of objects that are not finalized. The valid format is a positive integer.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sample Date and Time The date and time that the monitoring agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

```
<table>
<thead>
<tr>
<th>Character</th>
<th>String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td></td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td></td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td></td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td></td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td></td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td></td>
<td>Second</td>
</tr>
</tbody>
</table>
```

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Used Heap Memory Size The amount of heap memory (in kilobytes) used by the JVM of the J2SE application server. The valid format is a positive integer.

Used Non Heap Memory Size The amount of non heap memory (in kilobytes) used by the JVM of the J2SE application server. The valid format is a positive integer.

Organization of the predefined workspaces

Attribute groups used by the predefined workspaces

JDK - JVM attributes

The JDK - JVM attributes provide overall information about the Java Virtual Machine (JVM) that the J2SE application server is using. This includes the information of JVM name, version and uptime. The data for attributes is gathered from JVM MBeans, which are supported in JVM version 1.5 and higher. No data will be available for JVM with versions lower than 1.5.

The attributes within this group are used to build the "JVM Statistics workspace" on page 517.
Formatted Uptime The time with a specific format during which the Java Virtual Machine is running. The format is DDd HHh MMm SSs; For example, 1d 2h 44m 23s.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

JVM Name The name of the Java Virtual Machine. The valid format is an alphanumeric string, with a maximum of 256 characters.

JVM Vendor The producer of the Java Virtual Machine. The valid format is an alphanumeric string, with a maximum of 256 characters.

JVM Version The version of the Java Virtual Machine. The valid format is an alphanumeric string, with a maximum of 256 characters.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sample Date and Time The date and time that the monitoring agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Start Time The date and time when the Java Virtual Machine was started. The valid format is a 12-character timestamp. This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.
Uptime The amount of time (in seconds) the JVM has been running. The valid format is a positive integer.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JDK - Threading attributes

The JDK - Threading attributes provide overall information about the threads, including peak thread and daemon thread. A thread is the basic unit of program execution in the Java Virtual Machine. A process can have several threads running concurrently, each performing a different job. When a thread has finished its job, it is suspended or destroyed. The data for attributes is gathered from JVM MBeans, which are supported in JVM version 1.5 and higher. No data will be available for JVM with versions lower than 1.5.

The attributes within this group are used to build the "JVM Statistics workspace" on page 517.

Current Thread CPU Time The CPU time (in seconds) used to process the current thread. The valid format is a positive integer.

Current Thread User Time The user time (in seconds) used for the current thread. The valid format is a positive integer.

Daemon Thread Count The number of threads which run unattended to perform continuous or periodic functions. The valid format is a positive integer.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Peak Thread Count The maximum number of threads executed in the Java Virtual Machine. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Table 103. Format of the 12-character timestamp
Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JMS Sessions - WebLogic attributes

The JMS Sessions - WebLogic attribute group provides statistic for JMS session in WebLogic application server.

The attributes within this group are used to build the "JMS Sessions workspace" on page 515.

Acknowledge Mode The acknowledge mode. The valid format is an alphanumeric string, with a maximum of 64 characters.

Bytes Received The number of bytes received by this session since the previous sample. The valid format is a positive integer.

Byte Receive Rate The number of bytes received by this session per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Bytes Sent The number of bytes sent by this session since the previous sample. The valid format is a positive integer.

Byte Send Rate The number of bytes sent by this session per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Connection Name The name of the connection. The valid format is an alphanumeric string, with a maximum of 128 characters.

Consumers Created The number of consumers instantiated by this session since the previous sample. The valid format is a positive integer.

Consumer Creation Rate The number of consumers instantiated by this session per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Current Bytes Pending The number of bytes pending (uncommitted and unacknowledged) for this session. The valid format is a positive integer.

Current Consumers The current number of consumers for this session. The valid format is a positive integer.

Current Messages Pending The number of messages pending (uncommitted and unacknowledged) for this session. The valid format is a positive integer.
Current Producers The current number of producers for this session. The valid format is a positive integer.

Highest Consumers The peak number of consumers for this session since the last reset. The valid format is a positive integer.

Highest Producers The peak number of producers for this session since the last reset. The valid format is a positive integer.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Is Transacted Whether the session is transacted. Valid values are Yes and No.

Messages Received The number of messages received by this session since the previous sample. The valid format is a positive integer.

Message Receive Rate The number of messages received by this session per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Messages Sent The number of messages sent by this session since the previous sample. The valid format is a positive integer.

Message Send Rate The number of messages sent by this session per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Row Number The row number. The valid format is a positive integer.

Producers Created The number of producers for this session created since the previous sample. The valid format is a positive integer.

Producer Creation Rate The number of producers for this session created per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
</tbody>
</table>

Table 104. Format of the 12-character timestamp

Chapter 5. ITCAM Agent for J2EE 575
Table 104. Format of the 12-character timestamp (continued)

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Session Name The name of the session. The valid format is an alphanumeric string, with a maximum of 128 characters.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

- **Organization of the predefined workspaces**
- **Attribute groups used by the predefined workspaces**

JMS Summary - J2EE attributes

The **JMS Summary - J2EE** attributes provide information about how J2EE Application Server applications are interacting with messaging middleware (J2EE MQ) via the Java Messaging Service (JMS). It provides such information as which queue managers and queues are being used and how many messages are being read and written.

The attributes within this group are used to build the [JMS Summary workspace](#).

Note: The attributes within this attribute group contain meaningful values only if your site has set the request data monitoring level to Level2 to collect data on JMS requests.

Application ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application lifecycle. The valid format is a positive integer.

Average Processing Time (ms) The average time (in milliseconds) per request using the JMS. The valid format is a decimal (formatted to 3 decimal places).

Browse Average Time (ms) The average time (in milliseconds) that it takes for each browse request from the queue to be processed. The valid format is a decimal (formatted to 3 decimal places).

Browse Count The number of messages browsed from the queue. The valid format is a positive integer.

Browse Rate (per sec) The number of messages (per second) browsed from a JMS queue. The valid format is a decimal (formatted to 3 decimal places).

Browse Total Time (ms) The total time (in milliseconds) used by browse requests from the queue. The valid format is a positive integer.
Full Name The complete name of the message queue, which consists of the queue manager name concatenated to the queue name and separated by a slash. The valid format is an alphanumeric string, with a maximum of 100 characters.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

JMS Connection Label A shortened version of the full name. The valid format is an alphanumeric string, with a maximum of 12 characters.

Manager Name The name of the J2EE MQ queue manager. This attribute is blank if J2EE MQ is not being used. The valid format is an alphanumeric string, with a maximum of 48 characters.

Name The name of the J2EE MQ queue. The valid format is an alphanumeric string, with a maximum of 48 characters.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the application server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Publish Average Time (ms) The average time (in milliseconds) that it takes for each publish request to be sent to the queue. The valid format is a decimal (formatted to 3 decimal places).

Publish Count The number of publish requests sent to the queue. The valid format is a positive integer.

Publish Rate (per sec) The number of publish requests (per second) sent to a JMS queue. The valid format is a decimal (formatted to 3 decimal places).

Publish Total Time (ms) The total time (in milliseconds) used by all publish requests for the queue. The valid format is a positive integer.

Receive Average Time (ms) The average time (in milliseconds) for each get from the queue. The valid format is a decimal (formatted to 3 decimal places).

Receive Count The number of destructive gets from the queue. The valid format is a positive integer.

Receive Rate (per sec) The number of destructive gets (per second) made from the queue. The valid format is a decimal (formatted to 3 decimal places).

Receive Total Time (ms) The total time (in milliseconds) consumed by gets from the queue. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:
Table 105. Format of the 12-character timestamp

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Send Average Time (ms) The average time (in milliseconds) for each put to the queue. The valid format is a decimal (formatted to 3 decimal places).

Send Count The number of messages put to the queue. The valid format is a positive integer.

Send Rate (per sec) The number of messages (per second) put to the queue. The valid format is a decimal (formatted to 3 decimal places).

Send Total Time (ms) The total time (in milliseconds) consumed by puts to the queue. The valid format is a positive integer.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Total Time (ms) The total time (in milliseconds) spent accessing the queue. The valid format is a positive integer.

Type The type of message manager. The valid values are Queue and Topic.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Java Transaction Service - WebLogic attributes

The **Java Transaction Service - WebLogic** attributes provides statistics within a WebLogic server.

The attributes within this group are used to build the **JTA Resources workspace** on page 516.

Committed Transactions Time (ms) The summary number of seconds for all committed transactions since the previous sample. The valid format is a positive integer.
Current Active Transactions The number of active transactions on the server. The valid format is a positive integer.

Health State The health state of the JTA subsystem. Valid values are Warning, Critical and Failed.

Health Reason Code The reason code of the health of the JTA subsystem. The valid format is an alphanumeric string, with a maximum of 128 characters.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Transactions Abandoned The number of transactions that were abandoned since the previous sample. The valid format is a positive integer.

Transaction Abandon Rate The number of transactions that were abandoned per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Transactions Committed The number of committed transactions since the previous sample. The valid format is a positive integer.
Transaction Commit Rate The number of committed transactions per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Transaction Heuristic Completions The number of transactions that completed with a heuristic status since the previous sample. The valid format is a positive integer.

Transaction Heuristic Completion Rate The number of transactions that completed with a heuristic status per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Transactions Processed The number of transactions proceeded since the previous sample. The valid format is a positive integer.

Transaction Process Rate The number of transactions processed per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Transaction Rolled Back The number of transactions that were rolled back since the previous sample. The valid format is a positive integer.

Transaction Rolled Back by Application The number of transactions that were rolled back due to an application error since the previous sample. The valid format is a positive integer.

Transaction Rolled Back by Application Percent The percent of transactions that were rolled back due to an application error. The valid format is a decimal (formatted to 1 decimal place).

Transaction Rolled Back by Resource The number of transactions that were rolled back due to a resource error since the previous sample. The valid format is a positive integer.

Transactions Rolled Back by Resource Percent The percent of transactions that were rolled back due to a resource error since the previous sample. The valid format is a decimal (formatted to 1 decimal place).

Transaction Rolled Back by System The number of transactions that were rolled back due to an internal system error since the previous sample. The valid format is a positive integer.

Transactions Rolled Back by System Percent The percent of transactions that were rolled back due to an internal system error since the previous sample. The valid format is a decimal (formatted to 1 decimal place).

Transaction Rolled Back by Timeout The number of transactions that were rolled back since the previous sample due to a timeout expiration. The valid format is a positive integer.

Transaction Rolled Back by Timeout Percent The percent of transactions that were rolled back due to a timeout expiration since the previous sample. The valid format is a decimal (formatted to 1 decimal place).
Transaction Rollback Rate The number of transactions that were rolled back per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JTA Resources - J2EE attributes

The **JTA Resources - J2EE** attributes group collects information about the Java Transaction API (JTA) Resources.

The attributes within this group are used to build the "JTA Resources workspace" on page 516.

Active Count The number of active transactions. The valid format is a positive integer.

Committed Count The number of committed transactions. The valid format is a positive integer.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

JTA Resource The name of the JTA Resources. The valid format is an alphanumeric string, with a maximum of 256 characters.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Rollback Count The number of Rollback transactions. The valid format is a positive integer.

Row Number The row number. The valid format is a positive integer.

For additional information, see:

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>
Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

JTA Summary - NetWeaver attributes

The JTA Summary - NetWeaver attributes provide Transaction Service performance data.

The attributes within this group are used to build the "JTA Summary workspace" on page 517

Active Transactions Count The number of active transactions. The valid format is a positive integer.

Committed Transactions Count The number of transactions that have been committed. The valid format is a positive integer.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Rolled Back Transactions Count The number of transactions that have been rolled back. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.
This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Suspended Transactions Count The number of suspended transactions. The valid format is a positive integer.

Timeouted Transactions Count The number of transactions that have timed out.

Log Analysis - J2EE attributes

The **Log Analysis - J2EE** attributes provide application server error and exception conditions as recorded in the application server log file. The log file is SystemOut.log. Use the Log Analysis attributes in situations to monitor errors and exception conditions and their severity.

The attributes within this group are used to build the Log Analysis workspace.

Component The name of the component that caused the error. The valid format is an alphanumeric string, with a maximum of 32 characters.

Event Date and Time The date and time when the event occurred. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Job ASID The identifier assigned to the address space running this servant region. The valid format is an alphanumeric string, with a maximum of 4 characters.

Job Name Where the message originates; that is, the log file name and line number. The valid format is an alphanumeric string, with a maximum of 8 characters.
Message ID The identifier assigned to the message. The valid format is an alphanumeric string, with a maximum of 12 characters.

Message Origin Where the message originates; that is, the log file name and line number. The valid format is an alphanumeric string, with a maximum of 32 characters.

Message Text The text of the error message. The valid format is alphanumeric string, with a maximum of 256 characters. All error message text data that goes beyond 256 characters will be truncated and not shown in the portal.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The process identifier of the Java virtual machine. The valid format is an alphanumeric string, with a maximum of 8 characters.

Sequence Number The sequence number in JMX notifications stream. The valid format is a positive integer.

Server Instance Name The name of the application server instance. This is the name of a single address space that can run application code (called a "specific server" or simply a "server"). The valid format is an alphanumeric string, with a maximum of 8 characters.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Severity The severity of the message. The valid values are shown in the following table:

<table>
<thead>
<tr>
<th>Severity</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informational</td>
<td>A message intended to convey only user information</td>
</tr>
<tr>
<td>Unconditional</td>
<td>A message of type Unconditional</td>
</tr>
<tr>
<td>Dump</td>
<td>A message of type Dump</td>
</tr>
<tr>
<td>SystemOut</td>
<td>A message written directly to System.out by the user application or internal components</td>
</tr>
<tr>
<td>SystemError</td>
<td>A message written directly to System.err by the user application or internal components</td>
</tr>
<tr>
<td>User</td>
<td>A message of type User</td>
</tr>
<tr>
<td>EntryMethod</td>
<td>A message written upon entry to a method</td>
</tr>
<tr>
<td>ExitMethod</td>
<td>A message written upon exit from a method</td>
</tr>
<tr>
<td>Event</td>
<td>A message of type Event</td>
</tr>
<tr>
<td>Debug</td>
<td>A message of type Debug</td>
</tr>
<tr>
<td>Audit</td>
<td>An audit message</td>
</tr>
<tr>
<td>Warning</td>
<td>A warning message</td>
</tr>
<tr>
<td>Error</td>
<td>An error message</td>
</tr>
</tbody>
</table>

Table 110. Message severities and their meanings
<table>
<thead>
<tr>
<th>Severity</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminate</td>
<td>A message of type Terminate (exit process)</td>
</tr>
<tr>
<td>Fatal</td>
<td>A fatal message</td>
</tr>
<tr>
<td>Unknown</td>
<td>A placeholder that indicates the message type was not recognized</td>
</tr>
</tbody>
</table>

Thread ID The unique identifier of the thread where the event occurred. The valid format is an alphanumeric string, maximum 16 characters.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
- “ITCAM for Application Diagnostics - Agent for J2EE situations” on page 603

Request Analysis - J2EE attributes

The **Request Analysis - J2EE** attributes provide response times and functional decomposition information about requests (servlets, JSPs, and EJB methods) that ran on the application server.

The attributes within this group are used to build the **Request Analysis workspace**.

Application Name The name of the application to which the request belongs. The valid format is an alphanumeric string, with a maximum of 256 characters.

Application Time (ms) The average time (in milliseconds) this request spent processing application requests other than JCA, JMS, JNDI, and JDBC requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

Application Time (% of Average Response) The percentage of time this request spent processing application requests other than JCA, JMS, JNDI, and JDBC requests. The valid format is a decimal (formatted to 1 decimal place).

Application Bad Delay (msec) The delay time (in milliseconds) in the application tier collected during the interval. This column is non-zero value when application delay exceeds the bad threshold configured for it. The valid format is a positive integer.

Application Fair Delay (msec) The delay time (in milliseconds) in the application tier collected during the interval. This column is non-zero value when application delay exceeds the fair threshold configured for it. The valid format is a positive integer.

Application Good Delay (msec) The delay time (in milliseconds) in the application tier collected during the interval. This column is non-zero when application delay is less than fair threshold configured for it. The valid format is a positive integer.

Application Tier Delay Type This attribute defines the request type based on its delay time in the application tier. Valid values are Unknown, Good, Fair, and Bad.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Tier Response (msec)</td>
<td>The actual response time in milliseconds in the application tier collected during the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Average Response (ms)</td>
<td>The average time (in milliseconds) required each time this request ran during the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Backend Bad Delay (msec)</td>
<td>The delay time (in milliseconds) in the backend tier collected during the interval. This column is non-zero value when backend delay exceeds the bad threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Backend Fair Delay (msec)</td>
<td>The delay time (in milliseconds) in the backend tier collected during the interval. This column is non-zero value when backend delay exceeds the fair threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Backend Good Delay (msec)</td>
<td>The delay time (in milliseconds) in the backend tier collected during the interval. This column is non-zero when backend delay is less than fair threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Backend Tier Delay Type</td>
<td>This attribute defines the request type based on its delay time in the backend tier. Valid values are Unknown, Good, Fair, and Bad.</td>
</tr>
<tr>
<td>Backend Tier Response (msec)</td>
<td>The actual response time in milliseconds in the backend tier collected during the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Client Bad Delay (msec)</td>
<td>The delay time (in milliseconds) in the client tier collected during the interval. This column is non-zero value when client delay exceeds the bad threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Client Fair Delay (msec)</td>
<td>The delay time (in milliseconds) in the client tier collected during the interval. This column is non-zero value when client delay exceeds the fair threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Client Good Delay (msec)</td>
<td>The delay time (in milliseconds) in the client tier collected during the interval. This column is non-zero when client delay is less than fair threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Client Tier Delay Type</td>
<td>This attribute defines the request type based on its delay time in the client tier. Valid values are Unknown, Good, Fair, and Bad.</td>
</tr>
<tr>
<td>Client Tier Response (msec)</td>
<td>The actual response time in milliseconds in the client tier collected during the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Completion Count</td>
<td>The number of requests that successfully completed during the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Custom Request Count</td>
<td>The number of custom requests. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Custom Request Time (ms)</td>
<td>The average time (in milliseconds) the custom requests spent. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Custom Request Time (%)</td>
<td>The percentage of time the custom requests spent. The valid format is a decimal (formatted to 1 decimal place).</td>
</tr>
<tr>
<td>EJB Count</td>
<td>The number of times this request invoked an Enterprise Java Bean (EJB) request. The valid format is a positive integer.</td>
</tr>
</tbody>
</table>
EJB Time (ms) The average time (in milliseconds) this request spent processing Enterprise Java Bean (EJB) requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

EJB Time (%) The percentage of time this request spent processing Enterprise Java Bean (EJB) requests. The valid format is a decimal (formatted to 1 decimal place).

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

JCA Count The number of times this request invoked a J2EE Connector Architecture (JCA) request. The valid format is a positive integer.

JCA Time (ms) The average time (in milliseconds) this request spent processing J2EE Connector Architecture (JCA) requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

JCA Time (%) The percentage of time this request spent processing J2EE Connector Architecture (JCA) requests. The valid format is a decimal (formatted to 1 decimal place).

JMS Count The number of times this request invoked a Java Message Service (JMS) request. The valid format is a positive integer.

JMS Time (ms) The average time (in milliseconds) this request spent processing Java Message Service (JMS) requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

JMS Time (%) The percentage of time this request spent processing Java Message Service (JMS) requests. The valid format is a decimal (formatted to 1 decimal place).

JNDI Count The number of times this request invoked a Java Naming and Directory Interface (JNDI) request. The valid format is a positive integer.

JNDI Time (ms) The average time (in milliseconds) this request spent processing Java Naming and Directory Interface (JNDI) requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

JNDI Time (%) The percentage of time this request spent processing Java Naming and Directory Interface (JNDI) requests. The valid format is a decimal (formatted to 1 decimal place).

Longest Response (ms) The maximum time (in milliseconds) it took this request to run during the interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the application server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.
<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process ID</td>
<td>The process identifier of the Java virtual machine. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Request Bad Response Threshold (msec)</td>
<td>The threshold that defines the bad requests. A request that spends more time to complete than this threshold to complete is a bad request. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Request Completion (%)</td>
<td>The percentage of the requests that completed successfully during the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Request Completion Level</td>
<td>The completion level of the requests during the interval. Valid values are Unknown, Good, Fair, and Bad.</td>
</tr>
<tr>
<td>Request Count</td>
<td>The number of times this request ran during the interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Request Detail</td>
<td>The URI for servlet requests, or the method name for EJBs. The valid format is an alphanumeric string, with a maximum of 128 characters.</td>
</tr>
<tr>
<td>Request Delay Type</td>
<td>The type of the request delay. Valid values are Unknown, Good, Fair, and Bad.</td>
</tr>
<tr>
<td>Request Fair Response Threshold (msec)</td>
<td>The threshold that defines the fair requests. A request that spends more time than this threshold and less time than the Request Bad Response Threshold (msec) attribute to complete is a fair request. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Request Bad Delay (msec)</td>
<td>The delay time (in milliseconds) collected during the interval. This column is non-zero value when the whole request response time exceeds the bad threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Request Fair Delay (msec)</td>
<td>The delay time (in milliseconds) collected during the interval. This column is non-zero value when the whole request response time exceeds the fair threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Request Good Delay (msec)</td>
<td>The delay time (in milliseconds) collected during the interval. This column is non-zero value when the whole request response time is less than fair threshold configured for it. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Request Label</td>
<td>A shortened version of Request Name, used to display the request name in the chart view. The valid format is an alphanumeric string, with a maximum of 128 characters.</td>
</tr>
<tr>
<td>Request Name</td>
<td>The URL for servlet requests, or the fully qualified class name for EJBs. The valid format is an alphanumeric string, with a maximum of 128 characters.</td>
</tr>
<tr>
<td>Request Rate (per sec)</td>
<td>The number of requests completed per second during the interval. If the sampling rate is less than 100%, this number is extrapolated to estimate 100% of completed requests. The valid format is a decimal (formatted to 3 decimal places).</td>
</tr>
<tr>
<td>Request Type</td>
<td>The type of request being run. Valid values are Servlet, EJB_Method, Custom, All_Workloads, Unknown, and Portlet.</td>
</tr>
</tbody>
</table>
Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Sampling Rate (%) The percentage of requests being sampled. The valid format is a positive integer.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Servlet Count The number of times this request invoked a Servlet request. The valid format is a positive integer.

Servlet Time (ms) The average time (in milliseconds) this request spent processing Servlet requests; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

Servlet Time (%) The percentage of time this request spent processing Servlet requests. The valid format is a decimal (formatted to 1 decimal place).

SQL Connect Count The number of times this request connected to a JDBC database. The valid format is a positive integer.

SQL Connect Time (ms) The average time (in milliseconds) this request spent connecting to a JDBC database; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

SQL Connect Time (%) The percentage of time this request spent connecting to a JDBC database. The valid format is a decimal (formatted to 1 decimal place).

SQL Execute Count The number of times this request executed a JDBC database. The valid format is a positive integer.
SQL Execute Time (ms) The average time (in milliseconds) this request spent executing a JDBC database; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

SQL Execute Time (%) The percentage of time this request spent executing a JDBC database. The valid format is a decimal (formatted to 1 decimal place).

SQL Query Count The number of times this request queried a JDBC database. The valid format is a positive integer.

SQL Query Time (ms) The average time (in milliseconds) this request spent querying a JDBC database; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

SQL Query Time (%) The percentage of time this request spent querying a JDBC database. The valid format is a decimal (formatted to 1 decimal place).

SQL Update Count The number of times this request updated a JDBC database. The valid format is a positive integer.

SQL Update Time (ms) The average time (in milliseconds) this request spent updating a JDBC database; this field can have a zero value if the total time is less than the number of requests, due to truncation. The valid format is a positive integer.

SQL Update Time (%) The percentage of time this request spent updating a JDBC database. The valid format is a decimal (formatted to 1 decimal place).

Total Time (ms) The total CPU time (in milliseconds) this request consumed during the interval. The valid format is a positive integer.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Requests Monitoring Configuration attributes

The **Requests Monitoring Configuration** attributes provide information for all requests monitored in application. Use these attributes to monitor application edge requests. The agent supports three types of edge requests, Servlet/JSP, EJB, and Portal.

The attributes within this group are used to build the **Request Baseline** workspace.

Application Name The name of the application to which the request belongs. The valid format is an alphanumeric string, with a maximum of 256 characters.

Application ID The unique identifier that is assigned automatically when the application is first configured and is preserved during the whole application life cycle. The valid format is a positive integer.

Application Tier Threshold (msec) The response time threshold in the application tier in milliseconds. The valid format is a positive integer.
<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Threshold Bad Projection (%)</td>
<td>The bad response time projection used for auto threshold. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Auto Threshold Fair Ratio</td>
<td>The percentage to derive the fair response time threshold from the baseline selection. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Auto Threshold Fair Projection (%)</td>
<td>The fair response time projection used for auto thresholds. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Auto Threshold Mode</td>
<td>The request auto threshold mode. Valid values are Default, Custom, and Disabled.</td>
</tr>
<tr>
<td>Auto Threshold Deviation (%)</td>
<td>The maximum allowed deviation of requests baseline data used for auto threshold. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Auto Threshold Percent (%)</td>
<td>The minimum percent of requests baseline data used for auto threshold. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Backend Tier Threshold (msec)</td>
<td>The response time threshold in the backend tier in milliseconds. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Bad Response Threshold (msec)</td>
<td>The time (in milliseconds) that defines the bad requests. A request that spends more time than this threshold to complete is a bad request. Use this attribute in conjunction with Fair Response Threshold (msec) attribute and Fair Response Zone (msec) attribute. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Bad Errors Rate Threshold</td>
<td>The value of bad error rate percentage. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Client Tier Threshold (msec)</td>
<td>The response time threshold in the client tier in milliseconds. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Fair Response Threshold (msec)</td>
<td>The time (in milliseconds) that defines the fair requests. A request that spends less time than this threshold to complete is a good request. Use this attribute in conjunction with Fair Response Zone (msec) attribute and Bad Response Threshold (msec) attribute. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Fair Response Zone (msec)</td>
<td>The time span (in milliseconds) that defines the fair requests. This time span is between the fair response time threshold and the bad time threshold. If the response time of a request falls into this time span, the request is a fair request. Use this attribute in conjunction with Fair Response Threshold (msec) attribute and Bad Response Threshold (msec) attribute. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Fair Errors Rate Threshold</td>
<td>The value of fair error rate percentage. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Interval (sec)</td>
<td>The length (in seconds) of the sampling interval. The valid format is a positive integer.</td>
</tr>
<tr>
<td>Node Name</td>
<td>The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.</td>
</tr>
</tbody>
</table>
Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Detail The request detail name. The valid format is an alphanumeric string, with a maximum of 256 characters.

Request ID The unique identifier of the request that belongs to the application. The valid format is a positive integer.

Request Label A shortened version of Request Name, used to display the request name in the chart view. The valid format is an alphanumeric string, with a maximum of 24 characters.

Request Name The URL for servlet requests, or the fully qualified class name for EJBs. The valid format is an alphanumeric string, with a maximum of 256 characters.

Request Type The type of request being run. Valid values are All, Servlet/JSP, EJB, and Portal.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Request Times and Rates - J2EE attributes

The Request Times and Rates - J2EE attribute group provides information about historical request throughput and average response time for a particular application server.
The attributes within this group are used to build the J2EE application servers workspaces.

Application Name The name of the application to which the request belongs. The valid format is an alphanumeric string, with a maximum of 256 characters.

Average Load The average number of concurrent requests during the interval. The valid format is a decimal (formatted to 3 decimal places).

Average Request Completion Rate The average request completion rate (that is, the request throughput). If the sampling rate is less than 100%, this number is extrapolated to estimate 100% of completed requests. The valid format is a positive integer.

Average Request Response Time (ms) The average request response time, in milliseconds. The valid format is a positive integer.

Error Rate (%) The error rate of the request during the interval. The valid format is a decimal (formatted to 3 decimal places).

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Count The number of times this request ran during the interval. The valid format is a positive integer.

Request Type The type of request being run. Valid values are Servlet, EJB_Method, Custom, All_Workloads, Unknown, and Portlet.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.
This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Sampling Rate (%) The percentage of edge requests such as servlets and JSPs that were sampled during the interval. The valid format is a positive integer.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Total (ms) The total time. The valid format is a decimal (formatted to 3 decimal places).

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Selected Request - J2EE attributes

The **Selected Request - J2EE** attribute group provides detailed information about transactions' requests for database (that is, JDBC), messaging (that is, JMS), or EIS (that is, JCA) services.

The attributes within this group are used to build these workspaces:
- "Selected Request - Data sources workspace" on page 525
- "Selected Request - JMS Queues workspace" on page 525
- "Selected Request - Resource Adapters workspace" on page 526

Note: The attributes within this attribute group contain meaningful values only if your site has set the request data monitoring level to Level2 to collect data on nested requests.

Activity Category The type of request. Valid values are n/a (not applicable), JDBC, JMS, and JCA.

Activity Detail Detailed information about the activity performed by the selected request, for example, the SQL statement being processed. The valid format is an alphanumeric string, maximum 128 characters.

Activity Label An abbreviated version of Activity Name, used to display the activity name in the chart view. The valid format is an alphanumeric string, with a maximum of 128 characters.

Activity Name The resource that the request is accessing, for example, the data source name. The valid format is an alphanumeric string, with a maximum of 128 characters.

Activity Type The type of the resource being requested. Valid values display in the following table:

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>not applicable</td>
</tr>
<tr>
<td>Servlet</td>
<td>A call to a servlet's doGet or doPost methods</td>
</tr>
</tbody>
</table>
Table 114. Activity types (continued)

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJB_Method_Call</td>
<td>A call to a business method for an EJB class</td>
</tr>
<tr>
<td>Obtain_SQL_Connection_from_Datasource</td>
<td>A call to obtain a connection from a JDBC data source</td>
</tr>
<tr>
<td>SQL_Query</td>
<td>A Query request to a JDBC data source</td>
</tr>
<tr>
<td>SQL_Update</td>
<td>An Update request to a JDBC data source</td>
</tr>
<tr>
<td>SQL_Other</td>
<td>Any other request to a JDBC data source</td>
</tr>
<tr>
<td>JMS_Message_Browse</td>
<td>A call to browse a message from a JMS queue</td>
</tr>
<tr>
<td>JMS_Message_Get</td>
<td>A call to receive a message from a JMS queue (that is, a destructive get)</td>
</tr>
<tr>
<td>JMS_Message_Put</td>
<td>A call to put a message from a JMS queue</td>
</tr>
<tr>
<td>JMS_Publish_Message</td>
<td>A call to publish a publication to a JMS queue</td>
</tr>
<tr>
<td>JCA_CCI_Execute_interaction</td>
<td>A request by a J2EE application to execute a JCA interaction (a JDBC, JMS, or other JCA-supported operation) against a backend system</td>
</tr>
<tr>
<td>JNDI.Lookup</td>
<td>A call to JNDI to build an Initial Context or to perform a lookup</td>
</tr>
<tr>
<td>Unknown</td>
<td>The activity type cannot be determined</td>
</tr>
</tbody>
</table>

Average Response (ms) The average time (in milliseconds) executing this request, per occurrence. The valid format is a decimal (formatted to 1 decimal place).

Delay (%) The percentage of execution time this activity consumed on average when processing this request. The valid format is a decimal (formatted to 1 decimal place).

Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Longest Response (ms) The worst-case response time (in milliseconds) experienced by this request. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Occurrences The number of occurrences. The valid format is a positive integer.

Origin Node The name of the application server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The unique identifier of the JVM process (the class ID of the JVM). The valid format is a positive integer.

Request Detail The URI for servlet requests, or the method name for EJBs. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Name The URL for servlet requests, or the fully qualified class name for EJBs. The valid format is an alphanumeric string, with a maximum of 128 characters.
Request Type The type of transaction being run. Valid values are Servlet and EJB_Method, Custom, All_Workloads, Unknown, Portlet.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Sampling Rate (%) The percentage of edge requests—such as servlets and JSPs—that were sampled for nested requests during the interval. The valid format is a positive integer.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Total Time (ms) The total CPU time (in milliseconds) consumed by this request. The valid format is a positive integer.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Servlets JSPs - J2EE attributes

The Servlets JSPs - J2EE attributes collect performance information for servlets and Java server pages (JSPs).

The attributes within this group are used to build the [Servlets/JSPs - Selected Web Application workspace](#) on page 528.

Average Response Time (ms) The average servlet service time in milliseconds. The valid format is a decimal (formatted to 3 decimal place). This attribute may be empty if servlet is not invoked yet.

Error Count The number of servlets that are in error. The valid format is a positive integer.
Interval (sec) The length (in seconds) of the interval. The valid format is a positive integer.

Invocation Count The number of invocations. The valid format is a positive integer. This attribute may be empty if servlet is not invoked yet.

Max Time (ms) The longest service time in milliseconds. The valid format is a decimal (formatted to 3 decimal place).

Min Time (ms) The shortest service time in milliseconds. The valid format is a decimal (formatted to 3 decimal place).

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Servlet/JSP Name The name of the Web application. The valid format is an alphanumeric string, with a maximum of 128 characters.

Total Time (ms) The total service time in milliseconds. The valid format is a decimal (formatted to 3 decimal place).

Web Application Name The name of the Web application. The valid format is an alphanumeric string, with a maximum of 128 characters.
For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Servlets and JSPs - WebLogic attributes

The **Servlets and JSPs - WebLogic** attributes provide performance information for servlets and JavaServer pages (JSPs).

The attributes within this group are used to build the "Servlets/JSPs - Selected Enterprise Application workspace" on page 527.

Average Execution Time (ms) The average amount of time (in milliseconds) the invocations of the servlet have executed for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Context Path The context path. The valid format is an alphanumeric string, with a maximum of 256 characters.

Cumulative Average Execution Time (ms) The average amount of time (in milliseconds) all invocations of the servlet have executed since created. The valid format is a positive integer.

Enterprise Application Name The J2EE application name. The valid format is an alphanumeric string, with a maximum of 128 characters.

Execution Time (ms) The amount of time (in milliseconds) all invocations of the servlet has executed since the previous sample. The valid format is a positive integer.

Highest Execution Time (ms) The amount of time (in milliseconds) the single longest invocation of the servlets has executed since created. The valid format is a positive integer.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Invocations The number of times the servlet has been invoked since the previous sample. The valid format is a positive integer.

Invocation Rate The number of times the servlet has been invoked per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Lowest Execution Time (ms) The amount of time (in milliseconds) the single shortest invocation of the servlet has executed since created. The valid format is a positive integer.

Maximum Pool Capacity The maximum capacity of this servlet for single thread model servlets. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.
Reloads The number of times the servlet has been reloaded for interval since the previous sample. The valid format is a positive integer.

Reload Rate The number of times the servlet has been reloaded per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Servlet Name The servlet or JSP name. The valid format is an alphanumeric string, with a maximum of 128 characters.

Servlet Path The servlet path. The valid format is an alphanumeric string, with a maximum of 256 characters.

Web Application Name The web application component name. The valid format is an alphanumeric string, with a maximum of 128 characters.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Web Container - NetWeaver attributes

The Web Container - NetWeaver attributes collect performance information about servlets and Java Server pages (JSPs).

The attributes within this group are used to build the "Web Container workspace" on page 530.

All Requests Count The number of all requests since server startup. The valid format is a positive integer.
Current Http Sessions The number of the currently valid http sessions. The valid format is a positive integer.

Current Security Sessions The number of the currently valid security sessions created for http clients. The valid format is a positive integer.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Invalidated Http Sessions The number of http sessions invalidated by application. The valid format is a positive integer.

Invalidated Security Sessions The number of security sessions which have been invalidated by application. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Timed Out Http Sessions The number of http sessions which have timed out. The valid format is a positive integer.

Timed Out Security Sessions The number of security sessions which have timed out. The valid format is a positive integer.
Web Applications - J2EE attributes

The Web Applications - J2EE attributes provide aggregated information for each Web application and for the application server running that application. These performance data describe all servlets and JSPs deployed to that Web application as well as performance data for all servlets and JSPs running in the application server. Examples include the number of loaded servlets and JSPs and total requests. Use the Web Applications - J2EE attributes to create situations that monitor Web application performance and application server loads.

The attributes within this group are used to build the Web Applications workspace.

Average Response Time The average response time of the application, in milliseconds. The valid format is a decimal (formatted to 3 decimal place). This attribute may be empty if servlet is not invoked yet.

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Invocation Count The total invocation count for application. The valid format is a positive integer. This attribute may be empty if servlet is not invoked yet.

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the application server. The valid format is an alphanumeric string, with a maximum of 256 characters.
Servlet Count The number of servlets in this web application. The valid format is a positive integer.

Total Time The total time. The valid format is a decimal (formatted to 3 decimal places).

Web Application Name The name of the Web application. The valid format is an alphanumeric string, with a maximum of 128 characters.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Web Applications - WebLogic attributes

The Web Applications - WebLogic attributes provide data and aggregated statistics for Web application components.

The attributes within this group are used to build the "Web Applications workspace" on page 529.

Context Root The context root (context path) for the Web application. The valid format is an alphanumeric string, with a maximum of 256 characters.

Current Servlet Sessions The current number of open servlet sessions. The valid format is a positive integer.

Enterprise Application Name The J2EE application name. The valid format is an alphanumeric string, with a maximum of 128 characters.

Highest Servlet Sessions The high water mark of the total number of open sessions in this server. The valid format is a positive integer.

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Row Number The row number. The valid format is a positive integer.

Sample Date and Time The date and time that the monitoring agent for WebLogic Server agent collected data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
</tbody>
</table>

Table 120. Format of the 12-character timestamp
Table 120. Format of the 12-character timestamp (continued)

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data-collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Name The name of the J2EE application server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Servlet Invocation Rate The number of servlet requests per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Session Monitoring Enabled Whether servlet sessions monitoring is enabled. It can be enabled in weblogic.xml. Valid values are Enabled and Disabled.

Servlet Reload Rate The servlets reloads per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Servlet Sessions Opened The number of servlet sessions opened since the previous sample. The valid format is a positive integer.

Servlet Session Creation Rate The number of servlet sessions opened per second for the interval since the previous sample. The valid format is a decimal (formatted to 3 decimal places).

Status The component's status. The valid format is an alphanumeric string, with a maximum of 64 characters.

Web Application Name The web application component name. The valid format is an alphanumeric string, with a maximum of 128 characters.

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

ITCAM for Application Diagnostics - Agent for J2EE situations

IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for J2EE provides 11 predefined situations that you can use to:

- Immediately begin monitoring your J2EE application servers
- Monitor and manage widely dispersed J2EE Application Server resources through localized automation
- Use models for creating your own situations

These predefined situations have an alert status of Critical. When these situations trigger an alert, you can investigate the event by opening its workspace. For example, you can use these situations to monitor a J2EE application server for errors occurring within it or your site's Web applications.
How the situations work

Situations are tests expressed in an IF-TRUE format of system conditions that you want to monitor; the tested value is an ITCAM for Application Diagnostics - Agent for J2EE attribute expressed in the form attribute-group.attribute-name. Thus, if the specified condition occurs or exists, the situation is true, and an alert is issued.

Avoid using negative values

If you define situations that use a counter or a range of numbers, always provide a threshold or use values in a positive range of numbers. For example, use a greater-than-or-equal-to-zero expression as shown in some of the following predefined situations. Using this kind of expression prevents a situation from falsely tripping. If the ITCAM for Application Diagnostics - Agent for J2EE Tivoli Enterprise Management Agent encounters an undefined attribute value, it interprets this as a negative number and erroneously fires a situation that specified a negative number.

Predefined situations-descriptions and formulas

J2EEServletsJSPsError Monitors the error count for servlets and JSPs invoked by a J2EE Application Server application and issues a Critical condition whenever the count becomes nonzero. The J2SE application server does not support this situation. Its formula is as follows:

If

Servlets_JSPs.Error_Count is greater than 0

then

the situation J2EEServletsJSPsError is true.

J2EEError Monitors the error severity for a single J2EE Application Server and issues a Critical condition whenever that severity is greater than 21. The J2SE application server does not support this situation. Its formula is as follows:

If

Log_Analysis.Severity is greater than 21

then

the situation J2EEError is true.

J2EENotConnected Monitors the connection between the ITCAM for J2EE Data Collector running in an application server and the ITCAM for Application Diagnostics - Agent for J2EE monitoring agent to ensure the monitoring agent is connected and issues a Critical condition whenever it is not. Its formula is as follows:

If

Application_Server_Status.Status equals 0

then
the situation J2EENotConnected is true.

J2EEOutOfHeapSpace Monitors the heap allocation status and issues a Critical condition whenever heap space is exhausted. The formula is as follows:

If

Allocation_Failure.Heap_Status equals 1

then

the situation J2EEOutOfHeapSpace is true.

J2EEHighResponseTime Monitors the average request response time and issues a Critical condition whenever that time exceeds two seconds. The formula is as follows:

If

Request_Times_and_Rates.Average_Request_Response_Time is greater than 2000

then

the situation J2EEHighResponseTime is true.

J2EEHighCPUPercentUsed Monitors the percentage of the CPU being consumed and issues a Critical condition whenever that time exceeds 80%. The formula is as follows:

If

Application_Server.CPU_Used_Percent is greater than 80

then

the situation J2EEHighCPUPercentUsed is true.

J2EEHighGCTimePercent Monitors the percentage of time being spent by the garbage collector and issues a Critical condition whenever that time exceeds 80%. The formula is as follows:

If

Garbage_Collection_Analysis.Real_Time_Percent is greater than 80

then

the situation J2EEHighGCTimePercent is true.

J2EEAppDiscovered monitors J2EE applications deployed in the application server and issues an Informational alert when a new application is discovered. The monitoring agent checks for new applications each time when it connects to the Data Collector or when an application is deployed when the Data Collector is already active. The J2SE application server does not support this situation. The formula is:
If
Application_Monitoring_Configuration.Monitoring_Status equals 0
then
the situation J2EEAppDiscovered is true.

The predefined Take Action command Start_Baselining associated with the
J2EEAppDiscovered situation enables you to automate the baselining of newly
discovered applications.

J2EEAppHealthGood monitors the overall application health and issues an
Informational alert when application health is good. The J2SE application server
does not support this situation. The formula is:

If
Application_Health_Status.Application_Health equals 1
then
the situation J2EEAppHealthGood is true.

The predefined Take Action command Set_Application_Monitoring associated with
the J2EEAppHealthGood situation lowers the request monitoring level for
applications generated alert, and reduces the monitoring overhead.

J2EEAppHealthFair monitors the overall application health and issues a warning
alert when application health is fair. The J2SE application server does not support
this situation. The formula is:

If
Application_Health_Status.Application_Health equals 2
then
the situation J2EEAppHealthFair is true.

The predefined Take Action command Set_Application_Monitoring associated with
J2EEAppHealthFair situation raises the request monitoring level for applications
generated alert, and enables you to collect detailed performance data that will help
to pinpoint a bottleneck down to particular application tiers.

J2EEAppHealthBad monitors the overall application health and issues a Critical
alert when the application health is bad. The J2SE application server does not
support this situation. The formula is:

If
Application_Health_Status.Web_Tier_Health equals 3
then
the situation J2EEAppHealthBad is true.
The predefined Take Action command **Set_Application_Monitoring** associated with J2EEAppHealthBad situation increases the request monitoring rate for applications generated alert, and enables you to collect more detailed performance data that will help to collect the most precise data about each application tier health level.

For additional information, see:

“ITCAM for Application Diagnostics - Agent for J2EE attributes” on page 531

ITCAM for Application Diagnostics - Agent for J2EE Take Action commands

Using Take Action feature, your interactive Tivoli Enterprise Portal users can enter a command that stops or starts a process at any system in your network where one or more Tivoli Enterprise Monitoring Agents are installed. With the ITCAM for Application Diagnostics - Agent for J2EE Take Action commands, you can use the portal interface to start, stop, or recycle a J2EE application server or to control the level of monitoring for the current server.

You can start a Take Action command from a workspace, from the Navigator, from a situation that you create, in an ad hoc mode, or by recalling a saved Take Action command. For details on using these general features, see the online help for Tivoli Enterprise Portal.

Enable_Auto_Threshold: set threshold parameters

Use the Enable_Auto_Threshold Take Action to set automatic threshold parameters and remove any overrides of the thresholds.

The baselining process supplies statistical information on request response times. ITCAM interprets this information to set automatic thresholds. Several parameters control this interpretation.

The default values for these parameters are sufficient for most cases. However, if the thresholds are not adequate and the baselining process was run recently, you may need to change these parameters. If there are a lot of false alarms or warnings, you need to raise the bad or fair threshold; if alarms or warnings are not triggered when needed, you need to lower the bad or fair threshold.

While you may change the parameters for the entire application or for all requests of a given type, most likely you will only do this for an individual request.

- To set threshold parameters for all requests in the application, select this application in the "Application Health Summary workspace" on page 501 or "Application Registry workspace" on page 502, and select the Enable_Auto_Threshold take action.
- To set threshold parameters for all requests of a given type in the application, select this request type in the Application Request Configuration table of the "Selected Application - Configuration workspace" on page 522, and select the Enable_Auto_Threshold take action.
- To set threshold parameters for an individual request, select this request in the "Selected Request - Baseline workspace" on page 520, and select the Enable_Auto_Threshold take action.

In the "Selected Request - Baseline workspace" on page 520, when you select a line representing a request, you can see the bar charts representing statistical data for
this request. This data was gathered during the baselining process. Colors on the bar charts show the way in which the parameters are applied. You can change the parameters using the Enable_Auto_Threshold take action, and immediately see the effects on the bar charts.

![Response Times Distribution chart](chart1.png)

The **Response Times Distribution** chart shows the statistical distribution of response times for this request. To the left are smaller (faster) response times; to the right, larger (slower) ones. The height of every bar shows the percentage of requests that had the indicated response time during the baselining period.

Some bars represent bigger time intervals than others; more bars are devoted to most common response times. For example, if the maximum encountered time is 1000 ms but most response times are between 300 and 500 ms, then the first bar may be 0 to 50 ms, but there may also be bars like 305 to 310 ms and 400 to 402 ms.

The bars colored blue show the zone into which the "typical" response times for this application fall. The green bars show response times that are not "typical", but are below the fair threshold. Response times above the fair threshold but below the bad threshold are shown as yellow bars; for those above the bad threshold, the bars are red.

Use the Enable_Auto_Threshold take action to set the parameters that affect both the position of the "typical" zone and the way the thresholds are derived from this zone.

For more information on how the bar chart and parameters work, see "Threshold calculation detail" on page 616.

![Level2 Delays Distribution chart](chart2.png)

The **Level2 Delays Distribution** chart shows the distribution of time spent in "nested requests" within the requests that had this response time range. Each bar represents a response time of the top level request (the same as on the top chart). Within this bar, colored sections show how much time is spent within nested requests of different types; the color legend is shown on the bar. ITCAM will use this distribution within the selection zone (that is for typical overall request types) to work out the average share of time that each nested request type takes. When an error or warning arises, ITCAM will check which of the request types takes more than its usual share of time; based on this, it will display whether the likely cause is the application, backend, or server.
Command syntax

YN:Enable_Auto_Threshold App_Id Request_Id Auto_Threshold_Percent Auto_Threshold_Deviation Auto_Threshold_Fair_Projection Auto_Threshold_Bad_Projection Use_Default

Parameters:

App_Id
The application ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Request_Id
The request ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Auto_Threshold_Percent
Auto_Threshold_Deviation
ITCAM uses these two parameters to calculate the borders of the "typical zone". See "Threshold calculation detail" on page 616.

Auto_Threshold_Fair_Projection
This determines the position of the fair threshold. Increase this parameter to increase the fair threshold; decrease the parameter to decrease the fair threshold. If the parameter is set to 100, the fair threshold will be at the right border of the selection zone. For details, see "Threshold calculation detail" on page 616. The bad threshold is not affected.

Auto_Threshold_Bad_Projection
This determines the position of the bad threshold. Increase this parameter to increase the bad threshold; decrease the parameter to decrease the bad threshold. If the parameter is set to 100, the bad threshold will be at the right border of the selection zone. For details, see "Threshold calculation detail" on page 616. The fair threshold is not affected.

Use_Default
If set to 0, the auto threshold settings will be modified according to the other parameters in this Take Action. If set to 1, the value of the auto threshold settings for this request will be taken from the "parent": the values that have been set for the request type, for the entire application, or the ITCAM default values.

Example: YN:Enable_Auto_Threshold 1 12 50 200 150 300 0

Override_Auto_Threshold: override threshold values

Use the Override_Auto_Threshold Take Action to override fair and bad response time threshold values for any request in the application. In this case, while the baselining statistical data is still preserved, ITCAM will not use automatically calculated thresholds.

Do not override threshold values unless you have analyzed the application performance in detail (or were instructed to override threshold values by IBM Level 3 Support). To adjust threshold values without manually overriding them, see "Enable_Auto_Threshold: set threshold parameters" on page 607.

To remove an override, select a request in the "Selected Request - Baseline workspace" on page 520 and select the Enable_Auto_Threshold take action. Leave all parameters as they are, in order to use the same auto threshold parameters as
were used before the override. If you need to change these parameters, see “Enable_Auto_Threshold: set threshold parameters” on page 607.

Command syntax

YN:Override_Auto_Threshold App_Id Request_Id Fair_Response_Threshold
Bad_Response_Threshold

Parameters:

App_Id
The application ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Request_Id
The request ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Fair_Response_Threshold
The fair response time threshold, in milliseconds.

Bad_Response_Threshold
The bad response time threshold, in milliseconds.

Recycle_Application_Server: Recycle a J2EE application

Use the Recycle_Application_Server command to stop and then restart an application server. The J2SE application server does not support this take action command.

Command syntax

If invoked from the Navigator's J2EE Agent entry, the syntax is:

YJ:CycleAppSrv server_name user password

Where server_name is the J2EE server name, and the user and password are your own J2EE Application Server identifiers set by the J2EE administrative console (required only if J2EE global security is enabled.)

If, however, this command is invoked from a subnode of the Navigator's J2EE Agent entry, the syntax is:

YJ: CycleAppSvr user password

Where user and password are your own J2EE Application Server identifiers set by the J2EE administrative console; these are required only if J2EE global security is enabled. (In this case, server_name is not required because the subnode name—that is, the server name is already known.)

Remove_J2EE_Application: Remove a J2EE Application

You can use the Remove_J2EE_Application command to remove an application that is in an undeployed state.
Command syntax

If invoked from the Navigator’s WebSphere Agent entry the syntax is:

YN:Remove Application &App_Id

where &App_Id is the application ID.

If this command is invoked from a subnode of the Navigator’s J2EE Agent entry, the syntax is:

YN:Remove Application App_Id

In this case you need to enter the value for the App_Id where App_Id is the application ID.

Remove_J2EE_SubNode: Remove an inactive J2EE application server

Use the Remove_SubNode command to remove a J2EE application server that is no longer active from the Navigator tree.

Command syntax

If invoked from the Navigator’s J2EE Agent entry, the syntax is:

YJ:RemSubNode server_name

where server_name is the J2EE server (the subnode name).

If, however, this command is invoked from a subnode of the Navigator’s J2EE Agent entry, the syntax is:

YJ:RemSubNode

In this case, the server_name value is not required because the subnode name (server name) is already known.

Set_Application_Monitoring: Set monitoring

Use the Set_Application_Monitoring command to set monitoring of the J2EE application. The J2SE application server does not support this take action command.

Command syntax

YJ:Set_Application_Monitoring App_Id Monitoring_Enabled Request_Data_Monitoring_Level Request_Data_Sampling_Rate

where App_Id is the application ID which is automatically assigned in the portal from the selection context when Take Action was invoked.

Monitoring_Enabled is a Boolean value and the valid values are 0 and 1. It defines whether monitoring agent application dashboard monitoring feature is enabled for the given application.
Request_Data_Monitoring_Level is an integer value that defines custom request monitoring level for the given application. Valid values are 0 (DISABLE), 1 (LEVEL1), and 2 (LEVEL2).

Request_Data_Sampling_Rate is an integer value that defines custom request monitoring rate (in percentage) for the given application. Valid values range from 0 to 100.

Set_Completion_Thresholds: Set completion thresholds
Use the Set_Completion_Thresholds command to define the thresholds of the error rate for the J2EE application. The J2SE application server does not support this take action command.

Command syntax

YJ:Set_Completion_Thresholds App_Id Fair_Completion_Rate Bad_Completion_Rate

where App_Id is the application ID which is automatically assigned in the portal from the selection context when Take Action was invoked.

Fair_Completion_Rate and Bad_Completion_Rate are the values in percentage that define thresholds for fair and bad requests completion rates.

Set_Request_Sampling_Rate: Set the sampling rate for request data
Use the Set_Request_Sampling_Rate command to define the percentage of requests to monitor.

Command syntax

YJ:SetRequestSamplingRate percent

where percent is the percentage of requests you want sampled. Specify a value in the range 1 - 100.

Start_Application_Server: Start a J2EE application server
Use the Start_Application_Server command to start a J2EE application server. The J2SE application server does not support this take action command.

Command syntax

If invoked from the Navigator’s J2EE Agent entry, the syntax is:

YJ:StartAppSrv server_name user password

where server_name is the J2EE server name, and user and password are your own J2EE Application Server identifiers set by the J2EE administrative console (required only if J2EE global security is enabled).

If, however, this command is invoked from a subnode of the Navigator’s J2EE Agent entry, the syntax is:

YJ:StartAppSrv user password
where user and password are your own J2EE Application Server identifiers set by the J2EE administrative console; these are required only if J2EE global security is enabled. (In this case, server_name is not required because the subnode name—that is the server name—is already known.

Start_Baselining: start the baselining process

ITCAM can run a baselining process for every application. During this process, which runs for a preset period, the Data Collector will collect statistical data on metric values for a given period. Based on this statistical data, the monitoring agent can automatically set the fair and bad thresholds, as well as the typical breakdown of response times for nested request. Use the Start_Baselining Take Action to start the baselining process.

When ITCAM begins monitoring an application for the first time, it automatically starts this process for the application. However, with time, average response times can change because of configuration, load pattern, database size and other issues. You can manually start the baselining process again to take these changes into account. You may also use IBM Tivoli Monitoring (ITM) policies and workflow management to run the baselining process every few months.

As soon as you take the Start Baselining action, the baselining process begins. The thresholds will be updated when either the Period or the Update Interval passes.

While the baselining process is running, you can trigger a baseline update to immediately set the thresholds based on the information collected so far.

Command syntax

YN:Start_Baselining App_Id Period Update_Interval Run_Clean

Parameters:

- **App_Id**
 - The application ID, automatically assigned in the portal from the selection context when Take Action was invoked.

- **Period**
 - The period of time for which the baselining process will run. The Data Collector will collect the necessary statistical information for this entire period. When ITCAM starts the baselining process automatically, it sets the period to 7 days. The format is **ddd/hh:mm:ss**.

- **Update_Interval**
 - If you set this parameter to a time interval, ITCAM will update the thresholds according to the information already collected every time this interval passes. For example, when ITCAM starts the baselining process automatically, it sets the update interval to 1 hour. During the 7 days that the initial baselining runs, every hour the thresholds will be updated according to the statistical data collected so far (for all request types where at least one request was received during the baselining process). The format is **ddd/hh:mm:ss**.

- **Run_Clean**
 - Set to either 0 or 1. If set to 0, statistical data collected in any previous baselining for the same requests will be kept and "amalgamated" with the new data; if set to 1, only the new data will be used for setting the thresholds. Normally, you will set this to 1.
Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Start_GC_Monitoring: Begin reporting garbage-collection data

Use the `Start_GC_Monitoring` command to activate the display of garbage-collection statistics. This setting is on top of the J2EE Application Server Verbose Garbage Collection value, which must also be active for garbage-collection data to be reported.

Command syntax

```
YJ:StartGCMonitor
```

Start_Request_Monitoring: Begin reporting request data

Use the `Start_Request_Monitoring` command to activate the display of request data.

Command syntax

```
YJ:StartRequestMonitor level
```

where `level` is the resource-data collection level, either Level1 or Level2. When the collection level is set to Level1, only edge request data-such as servlets and JSPs-are collected; when set to Level2, nested request data (such as JDBC and JMS requests) are also collected.

Start_Resource_Monitoring: Begin reporting PMI data

Use the `Start_Resource_Monitoring` command to activate the display of resource (that is, PMI) data. This setting is on top of the J2EE Application Server PMI instrumentation levels, which must also be set for resource data to be reported.

Command syntax

```
YJ:StartResourceMonitor
```

Stop_Application_Server: Stop a J2EE application server

Use the `Stop_Application_Sever` command to stop an application server. The J2SE application server does not support this take action command.

Command syntax

If invoked from the Navigator's J2EE Agent entry, the syntax is:

```
YJ:StopAppSvr server_name user password
```

where `server_name` is the J2EE server name, and `user` and `password` are your own J2EE Application Server identifiers set by the J2EE administrative console (required only if J2EE global security is enabled).

If, however, this command is invoked from a subnode of the Navigator's J2EE Agent entry, the syntax is:

```
YJ:StopAppSvr user password
```
where *user* and *password* are your own J2EE Application Server identifiers set by the J2EE administrative console; these are required only if J2EE global security is enabled. (In this case, *server_name* is not required because the subnode name—that is, the server name—is already known.)

Stop_Baselining: stop the baselining process

Use the Stop_Baselining Take Action to immediately stop the baselining process for an application, and recalculate the thresholds based on the request data available up to this point.

Normally you will not need to perform this action. To recalculate the thresholds based on the request data available up to this point, without stopping the baselining process, see “**Update_Baseline: trigger a baseline update.**”

Command syntax

YN:Stop_Baselining *App_Id*

Parameters:

App_Id

The application ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Stop_GC_Monitoring: Stop reporting garbage-collection data

Use the Stop_GC_Monitoring command to end the display of garbage-collection statistics.

Command syntax

YJ:StopGCMonitor

Stop_Request_Monitoring: Stop reporting request data

Use the Stop_Request_Monitoring command to end the display of request data.

Command syntax

YJ:StopRequestMonitor

Stop_Resource_Monitoring: Stop reporting PMI data

Use the Stop_Resource_Monitoring command to end the display of resource (that is, PMI) data.

Command syntax

YJ:StopResourceMonitor

Update_Baseline: trigger a baseline update

If the baselining process is running, the thresholds will be set automatically when either the Period or the Update Interval passes. For the initial baselining process,
the first automatic update happens after one hour. With the Update_Baseline Take Action, you can force ITCAM to update the thresholds immediately, based on the information collected so far. This may be useful if you do not want to wait for the periodic automatic update. Once the automatic update time comes, the threshold will be updated again.

If a baselining process is not running for the application, an error will be raised. Also, if no requests of a given request type have been received since the baselining process has started, the update will not have any effect for this request type.

Command syntax

YN:Update_Baseline App_Id

Parameters:

App_Id

The application ID, automatically assigned in the portal from the selection context when Take Action was invoked.

Note: when this Take Action is selected for a node representing a z/OS servant region, it will apply to all servant regions in the same managed system (IBM WebSphere Application Server instance).

Threshold calculation detail

If you want to set parameters that affect the calculation of the automatic response time thresholds, you may need to know the details of this calculation.

ITCAM processes the baselining statistical data and applies the auto threshold parameters in the following way. The parameters are set in the Enable_Auto_Threshold take action, see “Enable_Auto_Threshold: set threshold parameters” on page 607.

1. The response time results are sorted into up to 64 "buckets", from zero to the maximum response time encountered for this request. The buckets do not represent equal time intervals; for response time regions where most of the "hits" fall, the buckets will represent smaller intervals. For example, if the maximum encountered time is 1000 ms but most response times are between 300 and 500 ms, then the first bucket may be 0 to 50 ms, but there may also be buckets representing response times of 305 to 310 ms and 400 to 402 ms. ITCAM distributes the bucket borders so that the largest number of hits in any one bucket will not be more than three times the amount of hits in the smallest bucket.

ITCAM calculates the percentage of the total amount of requests that fall into each response time bucket, and divides it by the time interval width that the bucket represents. This is shown on the Response Times Distribution bar chart in the “Selected Request - Baseline workspace” on page 520.
Each bar represents a bucket, and the bar height shows the percentage of the requests in this bucket. All the subsequent calculations are rounded up to buckets.

2. ITCAM determines the selection zone, which contains the “typical” response time values. This zone is represented by the bars colored blue on the chart. ITCAM finds the response time interval (left border L to right border R) where the following is true:
 - The percentage of hits that fall into this interval is no less than the Auto_Threshold_Percent parameter.
 - The spread of the time interval, calculated as \((R/L)*100 - 100\), is not greater than the Auto_Threshold_Deviation parameter.

 Note: The Auto_Threshold_Deviation parameter does not denote the statistical definition of deviation.

 If several zones match these criteria, ITCAM will choose the one where the following value is the greatest: \(S/(R-L)\), where S is the total number of hits that fell into this zone.

 If a zone where both requirements are true can not be found at all, ITCAM will first determine the interval where the percentage of hits is not less than the Auto_Threshold_Percent parameter while the spread is as little as possible. Then, within this interval, it will find a zone where the spread is not greater than the Auto_Threshold_Deviation parameter and the percentage of hits is as big as possible.

 ITCAM will determine the typical nested request times from the nested request times in this zone, shown on the **Level2 Delays Distribution** chart.

3. Finally, ITCAM calculates the thresholds.

 The fair threshold is determined using the left and right borders of the selection zone and the Auto_Threshold_Fair_Projection parameter:
 \[F = L + ((R-L) \times \text{Auto_Threshold_Fair_Projection} / 100) \]

 The bad threshold is calculated in the same way, using the Auto_Threshold_Bad_Projection parameter:
 \[B = L + ((R-L) \times \text{Auto_Threshold_Bad_Projection} / 100) \]

 Example: the left border of the selection zone may be \(L=1450\) ms, and the right border \(R=3000\) ms. By default, \(\text{Auto_Threshold_Fair_Projection}=150\), and \(\text{Auto_Threshold_Bad_Projection}=300\). In this case:
 - The fair response threshold is \(F = 1450 + ((3000-1450) \times 150 / 100) = 3775\) ms
- The bad response threshold is $B = 1450 + ((3000-1450) \times 300 / 100) = 6100$ ms
Chapter 6. ITCAM Agent for HTTP Servers

IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for HTTP Servers provides a systems-management solution for the Web Servers for distributed platforms. Using ITCAM for Application Diagnostics - Agent for HTTP Servers, you can monitor multiple Web servers running on the same physical node.

The Tivoli Enterprise Monitoring Agent collects performance data using the following methods:

• Apache servers parse the config file to get the server name and collect data by the module. The module handles all the HTTP requests.

• IIS servers collect data in two ways:
 1. For static information about server configuration, it uses Admin Base Object (ABO) interface, which provides access to the IIS metabase.
 2. For dynamic information about server availability and performance metrics, it uses Windows Management Instrumentation (WMI) interface.

• Sun Web servers collect data by polling SNMP service for Web server statistics and parsing Web server configuration files to get information not provided by the SNMP subagent.

Attributes within ITCAM for Application Diagnostics - Agent for HTTP Servers collect data about the inner workings of a Web server and performance information about user applications running under its control.

For additional usage information about this agent, see:

• Workspaces
• Attributes
• Situations
• Take Action commands

ITCAM for Application Diagnostics - Web Servers Agent workspaces

As part of the integration of IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for HTTP Servers with the Tivoli Enterprise Portal, the workspaces show views of monitoring data that provide detailed current data about the Web servers running on your site’s UNIX and Windows platforms. In addition to reports and graphs, a workspace can contain other views (that is, windows), such as a Request Rate - History view, or a Take Action view from which you can issue commands.

Several views of high-level information

Several workspaces provide high-level information to help you meet your site’s monitoring and administrative needs. These workspaces report current status and availability for both the Web Server administrative server and its Web server instances. They let you easily monitor the availability of your enterprise, the Web servers, and Web server instances.
Available Tivoli Enterprise Portal workspaces

For an overview of the organization of the available workspaces, see Organization of the predefined workspaces.

Organization of the predefined workspaces

The IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for HTTP Servers workspaces for the Tivoli Enterprise Portal define data displays that display in the Navigator's Physical view.

Workspace organization

The hierarchy levels shown in the Navigator depend upon your enterprise's customization of the Tivoli Enterprise Portal. However, ITCAM for Application Diagnostics - Agent for HTTP Servers does provide a set of predefined workspaces, which do not require customization. The following list shows the order and hierarchy of the predefined workspaces provided by the ITCAM for Application Diagnostics - Agent for HTTP Servers Tivoli Enterprise Monitoring Agent. It is a representation of how the predefined workspaces are organized in the Navigator. For more detailed information about a workspace, click its name in this list.

operating system [for example, Windows]

- system [that is, nodename]
 - “Web Server Agent workspace” on page 625
 - “Apache Web Server workspace”
 - “Apache Web Sites workspace” on page 621
 - “Microsoft IIS Web Server workspace” on page 623
 - “ASP Overview workspace” on page 622
 - “IIS Web Sites workspace” on page 622
 - “Sun Java System Web Server workspace” on page 624
 - “Sun Web Sites workspace” on page 625

For additional information, see: Attribute groups used by the predefined workspaces

Apache Web Server workspace

This workspace shows the Apache Web Server information, including the summary rates over all Web sites (virtual hosts).

This workspace displays data provided by the “Apache Web Server attributes” on page 627.

The predefined workspace contains the following items:

- Request Rate - History graph, which shows the historical rate at which HTTP requests were made per second
- Server Failure Rate - History graph, which shows the historical rate at which server internal errors occurred per minute
- Transfer Rate - History graph, which shows the number of kilobytes received and sent by the Web server per second
- Failed Request Rate - History graph, which shows the historical number of failed requests per minute
Server Summary report, which displays summarized information about the Apache Web server, including server status, request rate, kilobytes rate, and login rate

Accessing the Apache Web Server workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of Web Server agents.
4. Within the list of available agents, click the Apache Web Server entry of your choice.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Apache Web Sites workspace

This workspace shows the list of the Web sites (virtual hosts) configured for the Apache Web Server along with their status. Clicking the link in the Web Sites table will show data for the selected Web site in the same workspace.

This workspace displays data provided by the "Apache Web Sites attributes" on page 628.

The predefined workspace contains the following items:
- Request Rate - History graph, which shows the historical rate at which HTTP requests were made, per second, for the selected Apache Web site
- Transfer Rate - History graph, which shows the number of kilobytes, per second, received and sent by the selected Web service
- Pages Failed Rate - History graph, which shows the number of requests per minute that could not be satisfied by the server because the requested document could not be found or forbidden. This rate applies to the collection interval for a selected Apache Web site
- Failed Login Rate - History graph, which shows the historical number of failed logins per minute for the selected Apache Web site
- Web Sites report, which displays the status of each Apache Web site
- Selected Web Site report, which displays aggregated information about all Apache Web sites

Accessing the Apache Web Sites workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of Web Server agents.
4. Within the list of available agents, click the Web server of your choice.
5. Within that server's list of available Web Server workspaces, click the **Apache Web Sites** entry.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

ASP Overview workspace

This workspace displays aggregated statistics for Active Server Pages (ASP) performance.

This workspace displays data provided by the “IIS Web Server attributes” on page 630.

The predefined workspace contains the following items:

- ASP Requests per second - History graph, which shows the historical total number of ASP requests per second
- ASP Requests Failed per second - History graph, which shows the historical number of ASP requests that failed, per second, as a result of errors, authorization failure and rejections
- ASP Requests Queued - History graph, which shows the number of ASP requests waiting in the queue for service
- ASP Sessions per second - History graph, which shows the historical number of sessions that were serviced per second
- ASP Overview report, which displays aggregated information about the ASP data, including ASP errors rate, ASP sessions count, ASP requests rate, and ASP transactions rate

Accessing the ASP Overview workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of Web Server agents.
4. Within the list of available agents, expand the Web server of your choice.
5. Within that server's list of available Web Server workspaces, click the **ASP Overview** entry.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

IIS Web Sites workspace

This workspace shows the list of the IIS Web sites along with their status. Clicking the link in the Web Site table will show data for the selected Web site in the same workspace.

This workspace displays data provided by the “IIS Web Sites attributes” on page 633.
The predefined workspace contains the following items:

- Requests per second graph, which shows the total number of requests, per second, that were received during the collection interval for a selected IIS Web site
- Pages not Found per minute graph, which shows the number of requests per minute that could not be satisfied by the server because the requested document could not be found. This rate is for the collection interval for a selected IIS Web site
- Kilobytes Sent per second - History graph, which shows the aggregated rate at which data kilobytes were sent by the selected IIS Web service
- Kilobytes Received per second - History graph, which shows the aggregated rate at which data kilobytes were received by the selected IIS Web service
- Web Sites report, which displays the status of each IIS Web site
- Selected Web Site report, which displays aggregated information about all IIS Web sites

Accessing the IIS Web Sites workspace

To access this workspace:

1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of Web Server agents.
4. Within the list of available agents, expand the Web server of your choice.
5. Within that server's list of available Web Server workspaces, click the IIS Web Sites entry.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Microsoft IIS Web Server workspace

This workspace shows the IIS Web Server (Web Service) information, including the summary rates over all Web sites.

This workspace displays data provided by the "IIS Web Server attributes" on page 630.

The predefined workspace contains the following items:

- Requests per second - History graph, which shows the total number of requests received, per second, during the collection interval
- Connection Attempts per second - History graph, which shows the historical rate at which the connection attempts to the Web service
- Kilobytes per second graph, which shows the number of kilobytes sent per second by the Web service
- Failed Logins per minute graph, which shows the number of requests that failed, per minute, as a result of errors, authorization failure, and rejections
- Server Summary report, which displays summarized information about the Microsoft® IIS Web server, including server status, request rate, kilobytes rate, and login rate
Accessing the Microsoft IIS Web Server workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node’s name.
3. Within that node’s list of monitored applications, expand the list of Web Server agents.
4. Within the list of available agents, click the **Microsoft IIS Web Server** entry of your choice.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Sun Java System Web Server workspace

This workspace shows the Sun Java System Web Server information, including the summary rates over all Web sites (virtual servers).

This workspace displays data provided by the “Sun Web Server attributes” on page 636.

The predefined workspace contains the following items:
- Requests per second - History graph, which shows the rate, per second, at which requests have been processed by the virtual server
- Kilobytes per second - History graph, which shows the aggregated number of kilobytes received and sent per second
- Server Error per minute graph, which shows the rate at which the number of 500-level (Server Error) responses issued (per minute) by the Web Server during the collection interval
- Connection Queue Count - Which shows the number of connections currently in the Web server connection queue
- Server Summary report, which displays the summarized information about the Sun Java System Web Server

Accessing the Sun Java System Web Server workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node’s name.
3. Within that node’s list of monitored applications, expand the list of Web Server agents.
4. Within the list of available agents, click the **Sun Java System Web Server** entry of your choice.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces
Sun Web Sites workspace

This workspace shows the list of the Sun Web sites (virtual servers) configured for the server along with their status. Clicking the link in the Web Site table will show data for the selected Web site in the same workspace.

The predefined workspace contains the following items:
- Request per second - History graph, which shows the rate, per second, at which requests have been processed by the server
- Pages not Found per minute - History graph, which shows the number, per minute, of 404-level responses (Pages Not Found) issued by the virtual server during the collection interval
- Kilobytes per second - History graph, which shows the aggregated number of kilobytes received and sent per second
- Failed Logins per minute - History graph, which shows the historical number of 401-level responses (Failed Login) issued, per minute, by the virtual server during the collection interval
- Web Sites report, which displays the status of each Sun Web site
- Selected Web Site report, which displays aggregated information about all the Sun Web sites

Accessing the Sun Web Sites workspace

To access this workspace, perform the following steps:
1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node's name.
3. Within that node's list of monitored applications, expand the list of Web Server agents.
4. Within the list of available agents, expand the Web server of your choice.
5. Within that server's list of available Web Server workspaces, click the Sun Web Sites entry.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Web Server Agent workspace

This workspace shows the status on all monitored web servers and the web server agent events.

The predefined workspace contains the following items:
- Web Servers Summary report, which displays the overall status of Web servers, including server type, server name, server status, uptime, and process ID
- Agent Events report, which displays information about Web server agent events, including severity, message ID, and message description
Accessing the Web Server Agent workspace

To access this workspace, perform the following steps:

1. Within the Navigator, expand Windows Systems, Linux Systems, or UNIX Systems, as appropriate for the node you are monitoring.
2. Within the node list, expand the entry that corresponds to your node’s name.
3. Within that node’s list of monitored applications, click Web Server Agent.

For additional information, see:

- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

ITCAM for Application Diagnostics - Agent for HTTP Servers attributes

IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for HTTP Servers is a Tivoli Enterprise Management Agent that is located within your distributed systems. This agent gathers data about Web Server processes that are running, and stores this data in elements called attributes. Each attribute is a characteristic of an object. For example, the Kilobytes Rate (per second) attribute in the Apache Web server attribute group reports the rate at which kilobytes were sent and received, per second, during the collection interval.

Attribute groups

The ITCAM for Application Diagnostics - Agent for HTTP Servers attributes are organized into groups of related items. These attribute groups comprise the attribute tables for this agent.

Attributes and workspaces

Within the Tivoli Enterprise Portal workspaces, these attributes are displayed in, and correspond to, the columns in the reports and the items in the graphic displays for charts and graphs. You can use the collected data to analyze and monitor the performance of your Web servers and the applications running within them. For an overview of the correlations between the predefined workspaces and the attribute groups, see Attribute groups used by the predefined workspaces.

Attributes and situations

Various attributes are referenced by the product's predefined situations. You can also use the ITCAM for Application Diagnostics - Agent for HTTP Servers attributes to create your own situations to monitor the performance of your Web servers and their applications. These situations can monitor your Web server resources or correlate multiple conditions to alert you to problems that might occur when attribute values exceed thresholds that you defined.

Attribute groups used by the predefined workspaces

A workspace contains graphical data or report columns that correspond directly to particular attributes in an attribute group. The table shows the correlations between the predefined workspaces and the attribute groups. The workspaces are listed alphabetically, not in the order in which they display in the Navigator.
Table 121. Workspaces and the attribute groups they reference

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Related Attribute Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Apache Web Server workspace” on page 620</td>
<td>"Apache Web Server attributes"</td>
</tr>
<tr>
<td>"Apache Web Sites workspace” on page 621</td>
<td>"Apache Web Sites attributes” on page 628</td>
</tr>
<tr>
<td>"ASP Overview workspace” on page 622</td>
<td>"IIS Web Server attributes” on page 630</td>
</tr>
<tr>
<td>"Microsoft IIS Web Server workspace” on page 623</td>
<td>"IIS Web Sites attributes” on page 633</td>
</tr>
<tr>
<td>"IIS Web Sites workspace” on page 622</td>
<td>"IIS Web Sites attributes” on page 633</td>
</tr>
<tr>
<td>"Sun Java System Web Server workspace” on page 624</td>
<td>"Sun Web Server attributes” on page 636</td>
</tr>
<tr>
<td>"Sun Web Sites workspace” on page 625</td>
<td>"Sun Web Sites attributes” on page 639</td>
</tr>
<tr>
<td>"Web Server Agent workspace” on page 625</td>
<td>"Web Servers Status attributes” on page 643</td>
</tr>
<tr>
<td></td>
<td>HTTP Servers Agent Events attributes” on page 642</td>
</tr>
</tbody>
</table>

Apache Web Server attributes

The Apache Web Server attributes provide status information about the Apache Web Server.

The attributes within this group are used to build the "Apache Web Server workspace” on page 620.

Configuration File The fully qualified path of the Apache HTTP Server configuration file name. The valid format is an alphanumeric string, with a maximum of 256 characters.

Failed Login Rate (per min) The average number of failed logins that occurred, per minute. The valid format is a decimal (formatted to 3 decimal places).

Failed Requests Rate (per min) The average number (per minute) of failed requests. The valid format is a decimal (formatted to 3 decimal places).

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Kilobytes Rate (per sec) The number of kilobytes that are sent and received per second. The valid format is a decimal (formatted to 3 decimal places).

Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum 256 of characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The identifier of the Apache Server process. The valid format is a positive integer.

Request Rate (per sec) The rate at which HTTP requests were made. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:
Table 122. Format of the 12-character timestamp

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Failures Rate (per min) The average number of internal server errors. The valid format is a decimal (formatted to 3 decimal places).

Start Date and Time The date and time when the Web server started. The valid format is a timestamp. This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Status The status of the Apache HTTP server. Valid values are Not_Running, Running, and Error.

Successful Login Rate (per min) The average number of successful logins that occurred per minute. The valid format is a decimal (formatted to 3 decimal places).

Version The version of the Apache web server. The valid format is an alphanumeric string, with a maximum of 64 characters.

Web Server Name The name of the Web server. The valid format is an alphanumeric string, with a maximum of 256 characters.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Apache Web Sites attributes

The Apache Web Sites attributes provide status and performance information about the Apache Web Sites workspace.

The attributes within this group are used to build the "Apache Web Sites workspace" on page 621.

Failed Login Rate (per min) The average number of failed logins that occurred per minute. The valid format is a decimal (formatted to 3 decimal places).
Failed Pages Rate (per min) The rate (per minute) of pages not found or forbidden. The valid format is a decimal (formatted to 3 decimal places).

Failed Request Rate (per min) The average number, per minute, of failed requests made to the server. The valid format is a decimal (formatted to 3 decimal places).

Interval (sec) The length (in seconds) of the sampling interval. The valid format is a positive integer.

Kilobytes Rate (per sec) The rate, per second, at which kilobytes sent and received. The valid format is a decimal (formatted to 3 decimal places).

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Request Rate (per sec) The rate at which HTTP requests were made. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Failures Rate (per min) The rate (per minute) at which Apache web server failures occurred during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

SSL Whether SSL is enabled for the virtual host. Valid values are Disabled and Enabled.

Successful Login Rate (per min) The average number of successful logins that were made per minute. The valid format is a decimal (formatted to 3 decimal places).
Successful Request Rate (per sec) The average number of requests that were fulfilled, per second, during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Web Server Name The name of the Web server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Web Site Name The name of the Web site. The valid format is an alphanumeric string, with a maximum of 256 characters.

Web Site Status The status of the Apache Web site. Valid values are Not_Running, Running, and Error.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

IIS Web Server attributes

The **IIS Web Server** attributes provide aggregated information about all related IIS Web Server (W3SVC service).

The attributes within this group are used to build both the "Microsoft IIS Web Server workspace" on page 623 and the "ASP Overview workspace" on page 622.

Admin Status The status of the admin service. Valid values are Error, Stopped, Start_Pending, Stop_Pending, Running, Continue_Pending, Pause_Pending, and Paused.

Anonymous Users Count The number of users who established an anonymous connection to the Web service during the collection interval. The valid format is a positive integer.

Anonymous Connections Rate (per min) The rate at which anonymous connections were established, per minute, to the Web service. The valid format is a decimal (formatted to 3 decimal places).

ASP Errors Rate (per sec) The number of errors that occurred per second. The valid format is a decimal (formatted to 3 decimal places).

ASP Request Execution Time (ms) The number of milliseconds that it took for the most recent request to be fulfilled. The valid format is a positive integer.

ASP Request Wait GT Execution Time (ms) The difference between ASP Request and ASP Execution time in milliseconds. The valid format is an integer. When ASP Request Wait time is greater than ASP Execution Time, the value is positive and it will be negative otherwise.

ASP Request Wait Time (ms) The number of milliseconds the most recent request waited in the queue. The valid format is a positive integer.

ASP Requests Disconnected Rate (per sec) The number of request, per second, that were disconnected as a result of communication failure. The valid format is a decimal (formatted to 3 decimal places).
ASP Requests Executing Count The number of requests currently running. The valid format is a positive integer.

ASP Requests Failed Rate (per sec) The number of requests failed, per second, as a result of errors, authorization failure, or rejections. The valid format is a decimal (formatted to 3 decimal places).

ASP Requests Queued Count The number of requests in the queue waiting for service. The valid format is a positive integer.

ASP Requests Queued Delta The delta since the previous sample of the number of ASP requests waiting for service on the queue. The valid format is a positive integer.

ASP Requests Rate (per sec) The number of requests that were received per second. The valid format is a decimal (formatted to 3 decimal places).

ASP Requests Succeeded Rate (per sec) The number of requests that completed successfully per second. The valid format is a decimal (formatted to 3 decimal places).

ASP Requests Timed Out Rate (per sec) The number of request, per second, that timed out. The valid format is a decimal (formatted to 3 decimal places).

ASP Sessions Count The number of sessions that were serviced. The valid format is a positive integer.

ASP Sessions Rate (per sec) The rate at which ASP sessions were serviced per second. The valid format is a decimal (formatted to 3 decimal places).

ASP Transactions Aborted Rate (per sec) The number of transactions that were aborted per second. The valid format is a decimal (formatted to 3 decimal places).

ASP Transactions Committed Rate (per sec) The number of transaction that were committed per second. The valid format is a decimal (formatted to 3 decimal places).

ASP Transactions Pending Count The number of transactions that are pending. The valid format is a positive integer.

ASP Transactions Rate (per sec) The number of transactions that occurred per second. The valid format is a decimal (formatted to 3 decimal places).

Connection Attempts Rate (per sec) The rate at which connection attempts to the Web service per second. The valid format is a decimal (formatted to 3 decimal places).

Failed Logons Rate (per minute) The number of logons that failed per minute. The valid format is a decimal (formatted to 3 decimal places).

GET Request Rate (per sec) The number of GET requests that were received (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).
HEAD Request Rate (per sec) The number of HEAD requests that were received (per second) for the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Interval (sec) The length of the interval in seconds. The valid format is a positive integer.

Kilobytes Rate (per sec) The summary rate at which data kilobytes are received and sent for the web site during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Kilobytes Received Rate (per sec) The rate at which data kilobytes are received by the Web service. The valid format is a decimal (formatted to 3 decimal places).

Kilobytes Sent Rate (per sec) The rate at which data kilobytes are sent by the Web service. The valid format is a decimal (formatted to 3 decimal places).

Logon Attempts Rate (per min) The number of logons that attempt per minute. The valid format is a decimal (formatted to 3 decimal places).

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Non Anonymous Users Count The number of users who established a non-anonymous connection with the Web service counted for the collection interval. The valid format is a positive integer.

Non Anonymous Connections Rate (per min) The rate at which non-anonymous connections were established, per minute, to the Web service. The valid format is a decimal (formatted to 3 decimal places).

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Page Not Found Rate (per min) The number of requests (per minute) that could not be satisfied by the server because the requested document could not be found during the collection interval. These are generally reported as an HTTP 404 error code to the client. The valid format is a decimal (formatted to 3 decimal places).

Process ID The process identifier of the Java virtual machine. The valid format is an alphanumeric string, with a maximum of 64 characters.

POST Request Rate (per sec) The number of POST requests that were received (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

PUT Request Rate (per sec) The number of PUT requests that were received (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Request Rate (per sec) The total number of requests that were received (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR
and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

Table 124. Format of the 12-character timestamp

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Start Date and Time The date and time when the Web server started. The valid format is a timestamp. This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Version The IIS product version. It is implicit the support for 5.0, 5.1 & 6.0. The valid format is an alphanumeric string, with a maximum of 16 characters.

Web Server Name The name of the Web server. The valid format is an alphanumeric string, with a maximum of 256 characters.

WWW Service Status The status of the Web service. Valid values are Error, Stopped, Start_Pending, Stop_Pending, Running, Continue_Pending, Pause_Pending, and Paused.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

IIS Web Sites attributes

The **IIS Web Sites** attributes show overall information about related IIS Web Sites. Every IIS Web service (W3SVC) can manage multiple Web Sites (note: Windows Server or Advanced Server is required to manage multiple Web Sites). Each string in the table corresponds to one installed Web Site.

The attributes within this group are used to build the “IIS Web Sites workspace” on page 622.

Anonymous Users Count The number of users who established an anonymous connection to the Web service counted for the collection interval. The valid format is a positive integer.
Anonymous Connections Rate (per min)
The rate at which anonymous connections were established, per minute, to the Web service. The valid format is a decimal (formatted to 3 decimal places).

Failed Login Rate (per min)
The rate of failed logon attempts to the Web site. The valid format is a decimal (formatted to 3 decimal places).

GET Request Rate (per sec)
The number of GET requests that were received (per second) for the collection interval. The valid format is a decimal (formatted to 3 decimal places).

HEAD Request Rate (per sec)
The number of HEAD requests that were received (per second) for the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Interval (sec)
The length of the interval in seconds. The valid format is a positive integer.

IP Address
One or more IP addresses to which the Web site is listening to. The valid format is an alphanumeric string, with a maximum of 256 characters or the asterisk "*" wildcards for all.

Kilobytes Rate (per sec)
The summary rate at which data is received and sent for the Web site during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Kilobytes Received Rate (per sec)
The rate at which data kilobytes are received by the Web service. The valid format is a decimal (formatted to 3 decimal places).

Kilobytes Sent Rate (per sec)
The rate at which data kilobytes are sent by the Web service. The valid format is a decimal (formatted to 3 decimal places).

Logon Attempts Rate (per min)
The number of logons that were attempted per minute. The valid format is a decimal (formatted to 3 decimal places).

Node Name
The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Non Anonymous Users Count
The number of users who established a non-anonymous connection to the Web service during the collection interval. The valid format is a positive integer.

Origin Node
The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Page Not Found Rate (per min)
The number of requests (per second) that could not be satisfied by the server because the requested document could not be found during the collection interval. These are generally reported as an HTTP 404 error code to the client. The valid format is a decimal (formatted to 3 decimal places).

Ports
The port that the virtual host listens on. The valid format is a positive integer.

POST Request Rate (per sec)
The number of POST requests that were received (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).
PUT Request Rate (per sec) The number of PUT requests that were received (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

SSL Whether SSL is enabled or not for the virtual host. Valid values are Disabled and Enabled.

Successful Login Rate (per min) The rate of successful logon attempts to the Web site per minute. The valid format is a decimal (formatted to 3 decimal places).

Total Request Rate (per sec) The total number of requests that were received, per second, during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Web Server Name The name of the Web server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Web Site Name The name of the Web site. The valid format is an alphanumeric string, with a maximum of 256 characters.

Web Site Number The Web site unique number. The valid format is an integer.

Web Site Status The status of the IIS Web site. Valid values are Error, Starting, Started, Stopping, Stopped, Pausing, Paused, and Continuing.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)
Sun Web Server attributes

The Sun Web Server attributes provide status information about the Sun Web Server.

The attributes within this group are used to build the "Sun Java System Web Server workspace" on page 624.

Client Errors Rate (per sec) The number of 400-level (Client Error) responses issued by the Web Server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Connection Queue Count The number of connections currently in the Web Server connection queue. The valid format is a positive integer.

Connection Queue Max The maximum number of connections allowed in the Web Server connection queue. The valid format is a positive integer.

Connection Queue Overflows The number of connections rejected as a result of connection queue overflow. The valid format is a positive integer.

Connection Queue Peak The largest number of connections that were queued simultaneously. The valid format is a positive integer.

Connection Queue Total The number of connections that were accepted. The valid format is a positive integer.

Failed Login Rate (per min) The number of 401-level (Failed Login) responses issued by the Web Server (per minute) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Idle Threads Count The number of Web Server request processing threads currently idle. The valid format is a positive integer.

Interval (sec) The length of the sampling interval in seconds. The valid format is a positive integer.

Keepalive Queue Count The number of connections currently in the Web server keepalive queue. The valid format is a positive integer.

Keepalive Queue Max The maximum number of connections allowed in the Web server keepalive queue. The valid format is a positive integer.

Kilobytes Rate (per sec) The summary rate at which kilobytes are received and transmitted on the network (per second). The valid format is a decimal (formatted to 3 decimal places).

Kilobytes Received Rate (per sec) The rate at which kilobytes are received on the network (per second). The valid format is a decimal (formatted to 3 decimal places).

Kilobytes Sent Rate (per sec) The rate at which Kilobytes are transmitted on the network (per second). The valid format is a decimal (formatted to 3 decimal places).
Node Name The name of the system on which the server is running. The valid format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Other Responses Rate (per sec) The number of responses at a level other than 2xx, 3xx, 4xx, or 5xx that were issued by the Web server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Pages Not Found Rate (per min) The number of 404 (Pages Not Found) responses issued by the Web server (per minute) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Process ID The process identifier of the Java virtual machine. The valid format is an alphanumeric string, with a maximum of 64 characters.

Process Size Fraction System Memory Usage The fraction of system memory that is being used by the Web server instance process. The valid format is a positive integer.

Process Size Resident The Web server instance process resident size in kilobytes. The valid format is a positive integer.

Process Size Virtual The Web server instance process size in kilobytes. The valid format is a positive integer.

Redirected Request Rate (per sec) The number of 300-level (Redirection) responses issued by the Web server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Request Rate (per sec) The number of requests processed, per second. The valid format is a decimal (formatted to 3 decimal places).

Response Bad Request Rate (per sec) The number of 400® (Bad Request) responses issued by the Web server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Response Forbidden Rate (per min) The number of 403 (Forbidden) responses issued by the Web server (per minute) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Response Moved Temporarily Rate (per sec) The number of 302 (Moved Temporarily) responses issued by the Web server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Response Not Modified Rate (per sec) The number of 304 (Not Modified) responses issued by the Web server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Response Successful Rate (per sec) The number of 200 (OK) responses issued by the Web server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).
Response Unavailable Rate (per min) The number of 503 (Unavailable) responses issued by the Web server (per minute) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Contact The contact information for people responsible for server instance. The valid format is an alphanumeric string, with a maximum of 256 characters.

Server Death Times The number of times that the server instance processes stopped during the collection interval. The valid format is a positive integer.

Server Description The description of the server instance. The valid format is an alphanumeric string, with a maximum of 256 characters.

Server Directory The directory of the server instance. The valid format is an alphanumeric string, with a maximum of 256 characters.

Server Failures Rate (per min) The number of 500-level (Server Error) responses issued by the Web server (per minute) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Server Instance The MIB index for the Web server instance. The valid format is a positive integer.

Server Location The location of the server instance. The valid format is an alphanumeric string, with a maximum of 256 characters.

Server Organization The organization that is responsible for the server instance. The valid format is an alphanumeric string, with a maximum of 256 characters.

Start Date and Time The date and time when the Web server started. The valid format is a timestamp. This attribute was designed for logging and reporting data
collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Status The status of the Sun Web server. Valid values are Non_Running and Running.

Successful Request Rate (per sec) The number of 200-level (Successful) responses issued by the Web server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Thread Count The number of Web server request processing threads. The valid format is a positive integer.

Thread Pool Count The number of threads in the pool. The valid format is a positive integer.

Thread Pool Instance The thread pool MIB index. The valid format is a positive integer.

Thread Pool Max The maximum number of threads allowed in pool. The valid format is a positive integer.

Thread Pool Name The thread pool identifier. The valid format is an alphanumeric string, with a maximum of 256 characters.

Thread Pool Peak The maximum number of threads in the pool. The valid format is a positive integer.

Version The software version of the server instance. The valid format is an alphanumeric string, with a maximum of 256 characters.

Web server Name The name of the Web server. The valid format is an alphanumeric string, with a maximum of 256 characters.

For additional information, see:
- [Organization of the predefined workspaces](#)
- [Attribute groups used by the predefined workspaces](#)

Sun Web Sites attributes

The Sun Web Sites attributes provide status information about the Sun Web Sites workspace of the Sun Java System Web Server.

The attributes within this group are used to build the "Sun Web Sites workspace" on page 625.

Address Port SSL The Sun Web site IP address, port and whether security is enabled. The valid format is an alphanumeric string, with a maximum of 256 characters.

Client Errors Rate (per sec) The number of 400-level (Client Error) responses issued by the virtual server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).
Failed Login Rate (per min) The number of 401 (Failed Login) responses issued by the virtual server (per minute) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Failed Responses Percent The percentage of failed responses of the total request count. The valid format is a positive integer.

Interval (sec) The length of the sampling interval in seconds. The valid format is a positive integer.

Kilobytes Rate (per sec) The summary rate at which kilobytes are received and transmitted on the network per second. The valid format is a decimal (formatted to 3 decimal places).

Kilobytes Received Rate (per sec) The rate at which kilobytes are received on the network (per second). The valid format is a decimal (formatted to 3 decimal places).

Kilobytes Sent Rate (per sec) The rate at which kilobytes are transmitted on the network (per second). The valid format is a decimal (formatted to 3 decimal places).

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Other Responses Rate (per sec) The number of responses at a level other than 2xx, 3xx, 4xx, or 5xx that were issued by the virtual server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Pages Not Found Rate (per min) The number of 404 (Pages Not Found) responses issued by the virtual server (per minute) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Redirected Request Rate (per sec) The number of 302 (Moved Temporarily) responses issued by the virtual server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Request Rate (per sec) The number of requests processed per second by the virtual server during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Response Bad Request Rate (per sec) The number of 400 (Bad Request) responses issued by the virtual server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Response Forbidden Rate (per min) The number of 403 (Forbidden) responses issued by the virtual server (per minute) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Response Moved Temporarily Rate (per sec) The number of 302 (Moved Temporarily) responses issued by the virtual server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).
Response Not Modified Rate (per sec) The number of 304 (Not Modified) responses issued by the virtual server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Response Successful Rate (per sec) The number of 200 (OK) responses issued by the virtual server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Response Unavailable Rate (per min) The number of 503 (Unavailable) responses issued by the virtual server (per minute) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Server Failures Rate (per min) The number of 500-level (Server Error) responses issued by the virtual server (per minute) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Server Failures Percent The percentage of server failures of the total request count. The valid format is a positive integer.

Server Instance The Web server MIB index for the Web server instance. The valid format is a positive integer.

Successful Request Rate (per sec) The number of 200-level (Successful) responses issued by the virtual server (per second) during the collection interval. The valid format is a decimal (formatted to 3 decimal places).

Successful Requests Percent The percentage of successful requests of the total request count. The valid format is a positive integer.

Unauthorized Requests Percent The percentage of unauthorized requests of the total request count. The valid format is a positive integer.
Web Server Name The name of the Web server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Web Site Instance The Web server MIB index for the virtual server instance. The valid format is a positive integer.

Web Site Name The name of the Web site. The valid format is an alphanumeric string, with a maximum of 128 characters.

Web Site Status The status of the SUN Web site. Valid values are Running, Error, and AddressPortUnavailable.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

HTTP Servers Agent Events attributes

The **HTTP Servers Agent Events** attributes collect information about agent-level events that affect the ability of the IBM Tivoli Composite Application Manager for Web Servers agent to collect data for Web Servers, including Microsoft IIS Web server, Apache Web server, and Sun Java Web server.

The attributes within this group are used to build the “Web Server Agent workspace” on page 625.

Event Date and Time The date and time the event occurred. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Message Description The description of the message. The valid format is an alphanumeric string, with a maximum of 256 characters.

Message ID The unique identifier of the message. The valid format is an alphanumeric string, with a maximum of 8 characters.
Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 128 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Sequence Number The sequence number of the message. The valid format is a positive integer.

Severity The severity of the message. Valid values are Info, Warning, Error, and Severe.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

Web Servers Status attributes

The **Web Servers Status** attributes provide status about the monitored Web servers.

The attributes within this group are used to build the [“Web Server Agent workspace” on page 625](#).

Node Name The name of the system on which the server is running. The value format is an alphanumeric string, with a maximum of 256 characters.

Origin Node The name of the server subnode. The valid format is an alphanumeric string, with a maximum of 128 characters.

Process ID The identifier of the Web server process. The valid format is an alphanumeric string, with a maximum of 64 characters.

Sample Date and Time The date and time the Tivoli Enterprise Management Agent collected the data. The valid format is a 12-character timestamp. For the STR and SCAN functions, the format is MM/DD/YY HH:MM:SS; the following table shows the values contained in this character string:

<table>
<thead>
<tr>
<th>Character String</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Month</td>
</tr>
<tr>
<td>DD</td>
<td>Day</td>
</tr>
<tr>
<td>YY</td>
<td>Year</td>
</tr>
<tr>
<td>HH</td>
<td>Hour</td>
</tr>
<tr>
<td>MM</td>
<td>Minute</td>
</tr>
<tr>
<td>SS</td>
<td>Second</td>
</tr>
</tbody>
</table>

Example: 09/13/06 18:32:03 indicates the data was collected on September 13, 2006, at 18:32:03.

This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.
Server Directory The directory of the Web server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Server Name The name of the Web server. The valid format is an alphanumeric string, with a maximum of 256 characters.

Server Type The type of the Web Server. Valid values are Apache, Sun_Web_Server, and IIS.

Start Date and Time The date and time when the Web server started. The valid format is a timestamp. This attribute was designed for logging and reporting data collection times rather than for creating situations. To specify a time and date for comparison and testing, use attributes from the Universal Time or Local Time groups.

Status The status of the Web server. Valid values are Error, Stopped, Start_Pending, Stop_Pending, Running, Continue_Pending, Pause_Pending, and Paused.

For additional information, see:
- Organization of the predefined workspaces
- Attribute groups used by the predefined workspaces

ITCAM for Application Diagnostics - Agent for HTTP Servers situations

IBM Tivoli Composite Application Manager for Application Diagnostics - Agent for HTTP Servers provides a number of predefined situations that you can use to complete the following tasks:

- Monitor your Web servers
- Monitor and manage widely dispersed Web server resources through localized automation
- Create your own situations using the predefined situations as examples

These predefined situations have alert status of Critical and Warning. When these situations trigger an alert, you can investigate the event by opening its workspace.

How the situations work

Situations are tests expressed in IF-TRUE statements of system conditions that you want to monitor; the tested value is an ITCAM for Application Diagnostics - Agent for HTTP Servers attribute expressed in the form `attribute-group.attribute-name`.

Thus, if the specified condition occurs or exists, the situation is true, and an alert is issued.

Avoid using negative values

If you define situations that use a counter or a range of numbers, always provide a threshold or use values in a positive range of numbers. For example, use a greater-than-or-equal-to-zero expression as shown in some of the following predefined situations. This practice prevents a situation from falsely tripping. If the ITCAM for Application Diagnostics - Agent for HTTP Servers Tivoli Enterprise Management Agent encounters an undefined attribute value, it interprets this as a negative number and erroneously triggers a situation that specified a negative number.
Predefined situations, descriptions and formulas

Apache_HTTP_Stopped Monitors the status of the Apache Web server and issues a Critical condition when the Apache HTTP server is not active. Its formula is as follows:

If

Apache_Web_Server.Server_Status does NOT equal 1

then

the situation Apache_HTTP_Stopped is true.

Apache_Site_Down Monitors the status of the Apache Web site and issues a Critical condition when one of the virtual hosts run by the Apache HTTP Server is not available. Its formula is as follows:

If

Apache_Web_Sites.Web_Site_Status does NOT equal 1

then

the situation Apache_Site_Down is true.

Apache_Site_failed Monitors the server failure rate of Apache web server and issues a Critical condition whenever the server failures rate is greater than 1. Its formula is as follows:

If

Apache_Web_Sites.Server_Failures_Rate is greater than 1

then

the situation Apache_Site_failed is true.

Apache_Site_traffic Monitors the count of kilobytes sent and received and issues a Warning condition whenever the kilobytes rate is greater than 10,000,000. Its formula is as follows:

If

Apache_Web_Sites.Kilobytes_Rate is greater than 10,000,000

then

the situation Apache_Site_traffic is true.

Apache_Site_requests Monitors the rate at which the Apache HTTP requests were made and issues a Warning condition whenever the request rate is greater than 100,000. Its formula is as follows:

If
Apache_Web_Sites.Request_Rate is greater than 100,000
then
the situation Apache_Site_requests is true.

Apache_Site_fail_logins Monitors the count of failed logins and issues a Warning condition whenever the failed login rate is greater than 100. Its formula is as follows:

If
Apache_Web_Sites.Failed_Login_Rate is greater than 100
then
the situation Apache_Site_fail_logins is true.

Apache_Site_fail_pages Monitors the rate of failed pages and issues a Warning condition whenever the failed pages rate is greater than 1,000. Its formula is as follows:

If
Apache_Web_Sites.Failed_Pages_Rate is greater than 1,000
then
the situation Apache_Site_fail_pages is true.

IISWWWFailing Monitors the status of the IIS Web server and issues a Critical condition when an error occurs. Its formula is as follows:

If
IIS_Web_Server.WWW_Server_Status is less than 1
then
the situation IISWWWFailing is true.

IISWWWStopped Monitors the status of the IIS Web server and issues a Critical condition when the IIS WWW server stops. Its formula is as follows:

If
IIS_Web_Server.WWW_Server_Status does NOT equal 4
then
the situation IISWWWStopped is true.

IISWebSitesNotAvailable Monitors the status of the IIS Web site and issues a Critical condition when the IIS hosted Web Site is not available. Its formula is as follows:
If

IIS_Web_Sites.Site_Status does NOT equal 2

then

the situation IISWebSiteIsNotAvailable is true.

ASPQueueIncreasing Monitors the count of requests waiting in the queue for service and issues a Warning condition when the number of ASP requests does not decrease. Its formula is as follows:

If

IIS_Web_Server.ASP_Requests_Queued_Delta is greater than 0

then

the situation ASPQueueIncreasing is true.

ASPSlowRequests Monitors waiting time subtracted by the execution time for the most recent request and issues a Warning condition when requests are being dispatched too slowly. Its formula is as follows:

If

IIS_Web_Server.ASP_Request_Wait_Greater_Then_Execution_Time is greater than 0

then

the situation ASPSlowRequests is true.

ASPQueueLarge Monitors the count of requests waiting in the queue for service and issues a Warning condition when the size of the requests queue is too large. Its formula is as follows:

If

IIS_Web_Server.ASP_Requests_Queued_Count is greater than 1,000

then

the situation ASPQueueLarge is true.

ASPErrorsHigh Monitors the number of errors and issues a Critical condition whenever the ASP errors rate is greater than 1. Its formula is as follows:

If

IIS_Web_Server.ASP_Errors_Rate is greater than 1

then

the situation ASPErrorsHigh is true.
IISWebSiteTooManyAnonymousUsers Monitors the number of users who established an anonymous connection with the Web service during the collection interval and issues a Warning condition whenever the anonymous users delta is greater than 1,000. Its formula is as follows:

If

\[\text{IIS_Web_Sites.\text{Anonymous_Users_Delta}} \text{ is greater than 1,000} \]

then

the situation IISWebSiteTooManyAnonymousUsers is true.

IISWebSiteTooManyRequests Monitors the total amount of requests received and issues a Critical condition whenever the number of requests is greater than 100,000. Its formula is as follows:

If

\[\text{IIS_Web_Sites.\text{Total_Requests_Rate}} \text{ is greater than 100,000} \]

then

the situation IISWebSiteTooManyRequests is true.

IISWebSiteTooManySent Monitors the rate that data kilobytes are sent by the Web service and issues a Warning condition whenever the rate is greater than 10,000,000 per second. Its formula is as follows:

If

\[\text{IIS_Web_Sites.\text{Kilobytes_Sent_Rate}} \text{ is greater than 10,000,000} \]

then

the situation IISWebSiteTooManySent is true.

IISWebSiteTooManyRecieved Monitors the rate that data kilobytes are received by the Web service and issues a Warning condition whenever the rate is greater than 10,000,000 per second. Its formula is as follows:

If

\[\text{IIS_Web_Sites.\text{Kilobytes_Recieved_Rate}} \text{ is greater than 10,000,000} \]

then

the situation IISWebSiteTooManyRecieved is true.

SWebSrvStoped Monitors the status of the Sun Web server and issues a Critical condition when the server stops. Its formula is as follows:

If

\[\text{Sun_Web_Server.\text{Server_Status}} \text{ equals 0} \]
then

the situation SWebSrvStoped is true.

SWebSrvHFrMEM Monitors the fraction of system memory that is being used by the Web server instance process and issues a Warning condition whenever the system memory usage is greater than 80%. Its formula is as follows:

If

Sun_Web_Server.Process_Size_Fraction_System_Memory_Usage is greater than 80

then

the situation SWebSrvHFrMEM is true.

SWebSrvCONQLIM Monitors the numbers of connections in the connection queue and issues a Warning condition whenever the count is greater than 100. Its formula is as follows:

If

Sun_Web_Server.Connection_Queue_Count is greater than 100

then

the situation SWebSrvCONQLIM is true.

SWebSrvKPALQLIM Monitors the number of connections in the keepalive queue and issues a Warning condition whenever the number exceeds 100. Its formula is as follows:

If

Sun_Web_Server.Keepalive_Queue_Count is greater than 100

then

the situation SWebSrvKPALQLIM is true.

SWebSrvHNetSent Monitors the kilobytes transmitted on the network of the Sun Web server and issues a Warning condition whenever the number exceeds 10,000,000 kilobytes per second. Its formula is as follows:

If

Sun_Web_Server.Kilobytes_Out_Rate is greater than 10,000,000

then

the situation SWebSrvHNetSent is true.

SWebSrvHNetRecv Monitors the kilobytes received on the network of the Sun Web server and issues a Warning condition whenever the number exceeds 10,000,000 kilobytes per second. Its formula is as follows:
If
Sun_Web_Server.Kilobytes_In_Rate is greater than 10,000,000
then
the situation SWebSrvHNetRecv is true.

SVWebStHNetRecv Monitors the kilobytes received on the network of the Sun Web site and issues a Warning condition whenever the number exceeds 10,000,000 kilobytes per second. Its formula is as follows:

If
Sun_Web_Sites.Kilobytes_In_Rate is greater than 10,000,000
then
the situation SWebStHNetRecv is true.

SVWebStHNetSent Monitors the kilobytes transmitted on the network of the Sun Web site and issues a Warning condition whenever the number exceeds 10,000,000 kilobytes per second. Its formula is as follows:

If
Sun_Web_Sites.Kilobytes_Out_Rate is greater than 10,000,000
then
the situation SWebStHNetSent is true.

SVWebStFailed Monitors the percentage of failed responses violation and issues a Critical condition whenever the percentage exceeds 50%. Its formula is as follows:

If
Sun_Web_Sites.Percentage_of_failed_responses_violation is greater than 50
then
the situation SVWebStFailed is true.

SVWebStServErr Monitors the percentage of server errors violation and issues a Critical condition whenever the percentage exceeds 50%. Its formula is as follows:

If
Sun_Web_Sites.Percentage_of_server_errors_violation is greater than 50
then
the situation SVWebStServErr is true.
SVWebStUnAuthErr Monitors the percentage of unauthorized responses violation and issues a Warning condition whenever the percentage exceeds 50%. Its formula is as follows:

If

Sun_Web_Sites.Percentage_of_unauthorized_responses_violation is greater than 50

then

the situation SVWebStUnAuthErr is true.

SVWebStSucssfResp Monitors the percentage of successful responses violation and issues a Critical condition whenever the percentage exceeds 50%. Its formula is as follows:

If

Sun_Web_Sites.Percentage_of_successful_responses_violation is greater than 50

then

the situation SVWebStSucssfResp is true.

ITCAM for Application Diagnostics - Agent for HTTP Servers Take Action commands

The Take Action commands let your interactive Tivoli Enterprise Portal users enter a command or stop or start a process at any system in your network where one or more Tivoli Enterprise Monitoring Agents are installed. The ITCAM for Application Diagnostics - Agent for HTTP Servers Take Action commands let you use the Tivoli Enterprise Portal interface to start, stop, or restart a Web server or a Web site.

Users can launch a Take Action command from a workspace, from the Navigator, from a situation that you create, in an ad hoc mode, or by recalling a saved Take Action command. For details about using these general commands, see the online help for Tivoli Enterprise Portal.

Predefined Take Action commands for Apache Web servers

StartServer: Start an Apache Web server

Use the StartServer command to start an Apache Web server instance.

Command syntax

HT:startServer

StopServer: Stop an Apache Web server

Use the StopServer command to stop an Apache Web server instance.
Command syntax
HT:stopServer

RestartServer: Restart an Apache Web server
Use the RestartServer command to restart an Apache Web server instance.

Command syntax
HT:restartServer

Predefined Take Action commands for IIS Web servers

Start_Server: Start an IIS service
Use the Start_Server command to start an IIS service.

Command syntax
HT:startService

Stop_Server: Stop an IIS service
Use the Stop_Server command to stop an IIS service.

Command syntax
HT:stopService

Restart_Server: Restart an IIS service
Use the Restart_Server command to restart an IIS service.

Command syntax
HT:restartService

Pause_Server: Pause an IIS service
Use the Pause_Server command to pause an IIS service.

Command syntax
HT:pauseService

Continue_Server: Continue an IIS service
Use the Continue_Server command to continue an IIS service.

Command syntax
HT:continueService
Start_WWW_Server: Start a WWW service
Use the Start_WWW_Server command to start a WWW service.

Command syntax
HT:startWWWService

Stop_WWW_Server: Stop a WWW service
Use the Stop_WWW_Server command to stop a WWW service.

Command syntax
HT:stopWWWService

Restart_WWW_Server: Restart a WWW service
Use the Restart_WWW_Server command to restart a WWW service.

Command syntax
HT:restartWWWService

Pause_WWW_Server: Pause a WWW service
Use the Pause_WWW_Server command to pause a WWW service.

Command syntax
HT:pauseWWWService

Continue_WWW_Server: Continue a WWW service
Use the Continue_WWW_Server command to continue a WWW service.

Command syntax
HT:continueWWWService

Start_Web_Server: Start a Web server
Use the Start_Web_Server command to start a Web server.

Command syntax
HT:startWebSite Site_Number

Where Site_Number is your Windows identifier for the web site.

Stop_Web_Server: Stop a Web server
Use the Start_Web_Server command to stop a Web server.
Command syntax

HT:stopWebSite Site_Number

Where Site_Number is your Windows identifier for the web site.

Restart_Web_Server: Restart a Web server

Use the Restart_Web_Server command to restart a Web server.

Command syntax

HT:restartWebSite Site_Number

Where Site_Number is your Windows identifier for the web site.

Pause_Web_Server: Pause a Web server

Use the Pause_Web_Server command to pause a Web server.

Command syntax

HT:pauseWebSite Site_Number

Where Site_Number is your Windows identifier for the web site.

Continue_Web_Server: Continue a Web server

Use the Continue_Web_Server command to continue a Web server.

Command syntax

HT:continueWebSite Site_Number

Where Site_Number is your Windows identifier for the web site.

Predefined Take Action commands for Sun Web servers

StartServer: Start a Sun Web server

Use the StartServer command to start a Sun Web server.

Command syntax

HT:startServer

StopServer: Stop a Sun Web server

Use the StopServer command to stop a Sun Web server.

Command syntax

HT:stopServer
RestartServer: Restart a Sun Web server

Use the RestartServer command to restart a Sun Web server.

Command syntax

HT:restartServer
Part 3. Appendixes
Appendix. Appendix A. WebSphere PMI Attribute Mapping

The tables in this appendix are invaluable in showing how the data displayed in the ITCAM for Application Diagnostics resource workspaces map to their corresponding WebSphere PMI categories and their attributes. It also provides the monitoring overhead incurred when turning on these attributes. By default, ITCAM changes the PMI collection level based on its monitoring level. Go to the ITCAM for Application Diagnostics infocenter and search for “Modifying PMI Settings” to learn more about this behavior and how to turn to turn it off for custom monitoring.

TEP Console Workspace Columns to WebSphere PMI Attribute Mapping

<table>
<thead>
<tr>
<th>AppServer--High Availability Manager</th>
<th>ITM Table Name: KYNHAMGMT</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEP Console Column Name</td>
<td>WebSphere PMI Attribute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Groups</td>
<td>LocalGroupCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Group State Rebuild Time</td>
<td>GroupStateRebuildTime</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Bulletin-Board Subjects</td>
<td>BulletinBoardSubjectCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Bulletin-Board Subscriptions</td>
<td>BulletinBoardSubscriptionCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Bulletin-Board Rebuild Time</td>
<td>BulletinBoardRebuildTime</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Local Bulletin-Board Subjects</td>
<td>LocalBulletinBoardSubjectCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AppServer-DCS Stacks</th>
<th>ITM Table Name: KYNDCSSTK</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEP Console Column Name</td>
<td>WebSphere PMI Attribute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message Buffer Reallocations</td>
<td>MessageBufferReallocationCount</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Sent Messages</td>
<td>SentMessageCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Average Outgoing Message Size</td>
<td>OutgoingMessageSize</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Minimum Outgoing Message Size</td>
<td>OutgoingMessageSize</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Maximum Outgoing Message Size</td>
<td>OutgoingMessageSize</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Outgoing Messages</td>
<td>SentMessageCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Average Incoming Message Size</td>
<td>IncomingMessageSize</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Minimum Incoming Message Size</td>
<td>IncomingMessageSize</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Maximum Incoming Message Size</td>
<td>IncomingMessageSize</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Incoming Messages</td>
<td>ReceivedMessageCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Synchronization Completion Time</td>
<td>SynchronizationCompleteTime</td>
<td>All</td>
<td>All</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Synchronization Timeouts</td>
<td>SynchronizationTimeoutCount</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>High Severity Congestion Events</td>
<td>HighSeverityCongestionEventCount</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Web Applications</td>
<td>ITM Table Name: KYNAPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WebSphere PMI Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEP Console Column Name</td>
<td>WebSphere PMI Attribute</td>
<td>WAS 6.0</td>
<td>WAS 6.1/7.0</td>
<td>Overhead</td>
<td></td>
</tr>
<tr>
<td>Category: Web Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Request Count</td>
<td>RequestCount (Servlet Info)</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Request Rate (per sec)</td>
<td>RequestCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Error Count</td>
<td>ErrorCount (Servlet Info)</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Error Rate (per sec)</td>
<td>ErrorCount (Servlet Info)</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Average Response Time (ms)</td>
<td>ServiceTime (Servlet Info)</td>
<td>Basic</td>
<td>Basic</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Average Concurrent Requests</td>
<td>ConcurrentRequests (Servlet Info)</td>
<td>Extended</td>
<td>Extended</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Servlets Loaded</td>
<td>LoadedServletCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Servlets Reloaded</td>
<td>ReloadCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WebApplications</th>
<th>ITM Table Name: KYNSERVS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WebSphere PMI Level</td>
</tr>
<tr>
<td>TEP Console Column Name</td>
<td>WebSphere PMI Attribute</td>
</tr>
<tr>
<td>Category: Servlet Session Manager</td>
<td></td>
</tr>
<tr>
<td>Sessions Created</td>
<td>CreateCount</td>
</tr>
<tr>
<td>Session Creation Rate (per sec)</td>
<td>CreateCount</td>
</tr>
<tr>
<td>Sessions Invalidated</td>
<td>InvalidateCount</td>
</tr>
<tr>
<td>Session Invalidation Rate (per sec)</td>
<td>InvalidateCount</td>
</tr>
<tr>
<td>Average Session Lifetime (ms)</td>
<td>LifeTime</td>
</tr>
<tr>
<td>Average Concurrently Active Sessions</td>
<td>ActiveCount</td>
</tr>
<tr>
<td>Average Concurrently Live Sessions</td>
<td>LiveCount</td>
</tr>
<tr>
<td>Failed Session Requests</td>
<td>NoRoomForNewSessionCount</td>
</tr>
<tr>
<td>Failed Session Request Rate (per sec)</td>
<td>NoRoomForNewSessionCount</td>
</tr>
<tr>
<td>Cache Discards</td>
<td>CacheDiscardCount</td>
</tr>
<tr>
<td>Cache Discard Rate (per sec)</td>
<td>CacheDiscardCount</td>
</tr>
<tr>
<td>External Read Time (ms)</td>
<td>ExternalReadTime</td>
</tr>
<tr>
<td>External Read Size (bytes)</td>
<td>ExternalReadSize</td>
</tr>
<tr>
<td>External Write Time (ms)</td>
<td>ExternalWriteTime</td>
</tr>
<tr>
<td>External Write Size (bytes)</td>
<td>ExternalWriteSize</td>
</tr>
<tr>
<td>Broken Session Affinities</td>
<td>AffinityBreakCount</td>
</tr>
<tr>
<td>Broken Session Affinity Rate (per sec)</td>
<td>AffinityBreakCount</td>
</tr>
<tr>
<td>Metric</td>
<td>Attribute</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Time since Last Activated</td>
<td>TimeSinceLastActivated</td>
</tr>
<tr>
<td>Nonexistent Session Requests</td>
<td>NonExistSessionRequests</td>
</tr>
<tr>
<td>Nonexistent Session Request Rate (per sec)</td>
<td>NonExistSessionRequestRate</td>
</tr>
<tr>
<td>Total Serializable Session Object Size (bytes)</td>
<td>SessionObjectSize</td>
</tr>
<tr>
<td>Average Serializable Session Object Size (bytes)</td>
<td>SessionObjectSize</td>
</tr>
<tr>
<td>Min Serializable Session Object Size (bytes)</td>
<td>SessionObjectSize</td>
</tr>
<tr>
<td>Max Serializable Session Object Size (bytes)</td>
<td>SessionObjectSize</td>
</tr>
</tbody>
</table>

EJB Containers

ITM Table Name: KYNCONTNR

<table>
<thead>
<tr>
<th>Category</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method Average Response Time (ms)</td>
<td>MethodResponseTime</td>
<td>Basic</td>
<td>Basic</td>
</tr>
<tr>
<td>Method Invocation Count</td>
<td>MethodCallCount</td>
<td>Basic</td>
<td>Basic</td>
</tr>
<tr>
<td>Method Invocation Rate (per sec)</td>
<td>MethodCallCount</td>
<td>Basic</td>
<td>Basic</td>
</tr>
<tr>
<td>Create Average Time (ms)</td>
<td>CreateTime</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Remove Average Time (ms)</td>
<td>RemoveTime</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Average Concurrently Ready Beans</td>
<td>ReadyCount</td>
<td>Basic</td>
<td>Basic</td>
</tr>
<tr>
<td>Average Concurrently Live Beans</td>
<td>LiveCount</td>
<td>Extended</td>
<td>Extended</td>
</tr>
<tr>
<td>Active Method Count</td>
<td>ActiveMethodCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Create Count</td>
<td>CreateCount</td>
<td>Basic</td>
<td>Basic</td>
</tr>
<tr>
<td>Creation Rate (per sec)</td>
<td>CreateCount</td>
<td>Basic</td>
<td>Basic</td>
</tr>
<tr>
<td>Remove Count</td>
<td>RemoveCount</td>
<td>Basic</td>
<td>Basic</td>
</tr>
<tr>
<td>Removal Rate per sec</td>
<td>RemoveCount</td>
<td>Basic</td>
<td>Basic</td>
</tr>
<tr>
<td>Activate Count</td>
<td>ActivateCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Activation Rate (per sec)</td>
<td>ActivateCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Passivate Count</td>
<td>PassivateCount</td>
<td>Basic</td>
<td>Basic</td>
</tr>
<tr>
<td>Passivation Rate (per sec)</td>
<td>PassivateCount</td>
<td>Basic</td>
<td>Basic</td>
</tr>
<tr>
<td>Entity Bean Load Count</td>
<td>LoadCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Entity Bean Load Rate (per sec)</td>
<td>LoadCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Entity Bean Store Count</td>
<td>StoreCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Entity Bean Store Rate (per sec)</td>
<td>StoreCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Instantiate Count</td>
<td>InstantiateCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Instantiation Rate (per sec)</td>
<td>InstantiateCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Destroy Count</td>
<td>FreedCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Destruction Rate (per sec)</td>
<td>FreedCount</td>
<td>All</td>
<td>All</td>
</tr>
</tbody>
</table>

Appendix. Appendix A. WebSphere PMI Attribute Mapping

---Enterprise Java Beans

ITM Table Name: KYNEJB
<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category: Enterprise Beans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method Invocations</td>
<td>MethodCallCount</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Method Invocation Rate (per sec)</td>
<td>MethodCallCount</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Method Average Response Time (ms)</td>
<td>MethodResponseTime</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Create Count</td>
<td>CreateCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Creation Rate (per sec)</td>
<td>CreateCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Create Average Time (ms)</td>
<td>CreateTime</td>
<td>All</td>
<td>All</td>
<td>Max</td>
</tr>
<tr>
<td>Remove Count</td>
<td>RemoveCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Removal Rate (per sec)</td>
<td>RemoveCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Remove Average Time (ms)</td>
<td>RemoveTime</td>
<td>All</td>
<td>All</td>
<td>Max</td>
</tr>
<tr>
<td>Activate Count</td>
<td>ActivateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Activation Rate (per sec)</td>
<td>ActivateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Passivate Count</td>
<td>PassivateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Passivation Rate</td>
<td>PassivateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Entity Bean Load Count</td>
<td>LoadCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Entity Bean Load Rate (per sec)</td>
<td>LoadCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Entity Bean Store Count</td>
<td>StoreCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Entity Bean Store Rate (per sec)</td>
<td>StoreCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Instantiate Count</td>
<td>InstantiateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Destroy Count</td>
<td>FreedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Destruction Rate (per sec)</td>
<td>FreedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Find Count</td>
<td>RetrieveFromPoolSuccessCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Find Rate (per sec)</td>
<td>RetrieveFromPoolSuccessCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Get Count</td>
<td>RetrieveFromPoolCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Get Rate (per sec)</td>
<td>RetrieveFromPoolCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Return Count</td>
<td>ReturnsToPoolCount</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Return Rate (per sec)</td>
<td>ReturnsToPoolCount</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Discard Count</td>
<td>ReturnsDiscardCount</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Discard Rate (per sec)</td>
<td>ReturnsDiscardCount</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Drain Count</td>
<td>DrainsFromPoolCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Drain Rate (per sec)</td>
<td>DrainsFromPoolCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Average Concurrently Ready Beans</td>
<td>ReadyCount</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Average Concurrently Live Beans</td>
<td>LiveCount</td>
<td>Extended</td>
<td>Extended</td>
<td>High</td>
</tr>
<tr>
<td>Active Method Count</td>
<td>ActiveMethodCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Average Objects Discarded</td>
<td>Drainsize</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
</tr>
<tr>
<td>Average Objects in Pool</td>
<td>PooledCount</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EJB Containers</th>
<th>EJB Containers—Container Transactions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
</table>

EJB Containers
--- Container Transactions

EJB Containers—Container Transactions
<table>
<thead>
<tr>
<th>Category: Transaction Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Transactions Begun</td>
</tr>
<tr>
<td>Global Transactions Begin Rate (per sec)</td>
</tr>
<tr>
<td>Local Transactions Begun</td>
</tr>
<tr>
<td>Local Transactions Begin Rate (per sec)</td>
</tr>
<tr>
<td>Global Transactions Active</td>
</tr>
<tr>
<td>Local Transactions Active</td>
</tr>
<tr>
<td>Global Transactions Committed</td>
</tr>
<tr>
<td>Local Transactions Committed</td>
</tr>
<tr>
<td>Global Transactions Rolled Back</td>
</tr>
<tr>
<td>Local Transactions Rolled Back</td>
</tr>
<tr>
<td>Global Transactions Commit Rate (per sec)</td>
</tr>
<tr>
<td>Local Transactions Commit Rate (per sec)</td>
</tr>
<tr>
<td>Local Transactions Rollback Rate (per sec)</td>
</tr>
<tr>
<td>Global Transaction Timeout Rate (per sec)</td>
</tr>
<tr>
<td>Local Transaction Timeout Rate (per sec)</td>
</tr>
<tr>
<td>Global Transactions Optimized</td>
</tr>
<tr>
<td>Global Transaction Optimize Rate (per sec)</td>
</tr>
<tr>
<td>Global Transactions Involved</td>
</tr>
<tr>
<td>Global Transactions Involve Rate (per sec)</td>
</tr>
<tr>
<td>Global Transaction Duration (ms)</td>
</tr>
<tr>
<td>Local Transaction Duration (ms)</td>
</tr>
<tr>
<td>Global Transaction before Completion Duration (ms)</td>
</tr>
<tr>
<td>Local Transaction before Completion Duration (ms)</td>
</tr>
<tr>
<td>Global Transaction Commit Duration (ms)</td>
</tr>
<tr>
<td>Local Transaction Commit Duration (ms)</td>
</tr>
<tr>
<td>Global Transaction Prepare Duration (ms)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EJB Containers ---Container Object Pools</th>
<th>ITM Table Name: KYNCNTROP</th>
</tr>
</thead>
</table>

Appendix. Appendix A. WebSphere PMI Attribute Mapping 663
<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Objects in Pool</td>
<td>PooledCount</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Average Objects Discarded</td>
<td>DrainSize</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
</tr>
<tr>
<td>Find Count</td>
<td>RetrieveFromPoolSuccessCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Find Rate</td>
<td>RetrieveFromPoolSuccessCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Get Count</td>
<td>RetrieveFromPoolCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Get Rate</td>
<td>RetrieveFromPoolCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Return Count</td>
<td>ReturnsToPoolCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Return Rate</td>
<td>ReturnsToPoolCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Discard Count</td>
<td>ReturnsDiscardCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Discard Rate</td>
<td>ReturnsDiscardCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Drain Count</td>
<td>DrainsFromPoolCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Drain Rate</td>
<td>DrainsFromPoolCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
</tbody>
</table>

DB Connection Pools

ITM Table Name: KYNDBCONP

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Pool Size</td>
<td>PoolSize</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Average Pool Size</td>
<td>PoolSize</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Average Waiting Threads</td>
<td>WaitingThreadCount</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Average Wait Time (ms)</td>
<td>WaitTime</td>
<td>Basic</td>
<td>Basic</td>
<td>Medium</td>
</tr>
<tr>
<td>Average Usage Time (ms)</td>
<td>UseTime</td>
<td>Basic</td>
<td>Basic</td>
<td>Medium</td>
</tr>
<tr>
<td>Average Free Pool Size</td>
<td>FreePoolSize</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>JDBC Time(ms)</td>
<td>JDBCTime</td>
<td>Extended</td>
<td>Extended</td>
<td>Medium</td>
</tr>
<tr>
<td>Percent Used</td>
<td>PercentUsed</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Percent of Time Pool at Max</td>
<td>PercentMaxed</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Connections Created</td>
<td>CreateCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Connection Creation Rate (per sec)</td>
<td>CreateCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Connections Allocated</td>
<td>AllocateCount</td>
<td>All</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Connection Allocation Rate (per sec)</td>
<td>AllocateCount</td>
<td>All</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Connections Destroyed</td>
<td>CloseCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Connection Destruction Rate (per sec)</td>
<td>CloseCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Threads Timed Out</td>
<td>FaultCount</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Thread Timeout Rate (per sec)</td>
<td>FaultCount</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Prep Statement Cache Discards</td>
<td>PrepStmtCacheDiscardCount</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Prep Statement Cache Discard Rate (per sec)</td>
<td>PrepStmtCacheDiscardCount</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Return Count</td>
<td>ReturnCount</td>
<td>All</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Return Rate(per sec)</td>
<td>ReturnCount</td>
<td>All</td>
<td>Extended</td>
<td>Low</td>
</tr>
</tbody>
</table>
J2C Connection Pools

ITM Table Name: KYNJ2C
Category: J2C Connection Pools

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Pool Size</td>
<td>PoolSize</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Average Pool Size</td>
<td>PoolSize</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Average Free Connections</td>
<td>FreePoolSize</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Connections Used</td>
<td>ManagedConnectionCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Connection Handles</td>
<td>ConnectionHandleCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Average Wait Time (ms)</td>
<td>WaitTime</td>
<td>Basic</td>
<td>Basic</td>
<td>Medium</td>
</tr>
<tr>
<td>Concurrent Waiting Threads</td>
<td>WaitingThreadCount</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Average Usage Time (ms)</td>
<td>UseTime</td>
<td>Basic</td>
<td>Basic</td>
<td>Medium</td>
</tr>
<tr>
<td>Pool Used (%)</td>
<td>PercentUsed</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Percent of Time Pool at Max</td>
<td>PercentMaxed</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Connections Created</td>
<td>CreateCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Connection Creation Rate (per sec)</td>
<td>CreateCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Connections Allocated</td>
<td>AllocateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Connection Allocation Rate (per sec)</td>
<td>AllocateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Connections Returned</td>
<td>FreedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Connection Return Rate (per sec)</td>
<td>FreedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Connections Destroyed</td>
<td>CloseCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Connection Destruction Rate (per sec)</td>
<td>CloseCount</td>
<td>Basic</td>
<td>Basic</td>
<td>Low</td>
</tr>
<tr>
<td>Connection Pool Timeouts</td>
<td>FaultCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Connection Pool Timeout Rate (per sec)</td>
<td>FaultCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
</tbody>
</table>

Thread Pools

Table Name: KYNTHRDP
Category: Thread Pools

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Pool Size</td>
<td>PoolSize</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Average Pool Size</td>
<td>PoolSize</td>
<td>Basic</td>
<td>Basic</td>
<td>High</td>
</tr>
<tr>
<td>Average Active Threads</td>
<td>ActiveCount</td>
<td>Extended</td>
<td>Extended</td>
<td>High</td>
</tr>
<tr>
<td>Average Free Threads</td>
<td>PoolSize - ActiveCount</td>
<td>Extended</td>
<td>Extended</td>
<td>High</td>
</tr>
<tr>
<td>Percent of Time Pool at Max</td>
<td>PercentMaxed</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Threads Created</td>
<td>CreateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Thread Creation Rate (per sec)</td>
<td>CreateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Threads Destroyed</td>
<td>DestroyCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Thread Destruction Rate (per sec)</td>
<td>DestroyCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
</tbody>
</table>

Alarm Manager

ITM Table Name: KYNALARMM

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
</table>
| Category: Alarm Manager
Alarms Cancelled | AlarmsCancelledCount | All | All | High |
| Alarms Latency Duration | AlarmLatencyDuration | All | All | High |
| Alarms Rate | AlarmRate | All | All | High |
| Alarms Created | AlarmsCreatedCount | All | All | High |
| Alarms Fired | AlarmsFiredCount | All | All | High |
| Alarms Pending Size | AlarmsPendingSize | All | All | High |

Dynamic Cache
ITM Table Name: KYNCACHE

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
</table>
| Category: Dynamic Caching
Maximum In-Memory Cache Size | MaxInMemoryCacheEntryCount | All | All | Low |
| Current In-Memory Cache Size | InMemoryCacheEntryCount | All | All | Low |
| In-Memory and Disk Timeouts | TimeoutInvalidationCount | All | All | Low |
| In-Memory and Disk Timeout Rate (per sec) | TimeoutInvalidationCount | All | All | Low |

Dynamic Cache
Templates
ITM Table Name: KYNCACHT

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
</table>
| Category: Templates
Current Cache Size | InMemoryAndDiskCacheEntryCount | All | All | Low |
<p>| Disk Hits | HitsOnDiskCount | All | All | Low |
| Disk Hit Rate(per sec) | HitsOnDiskCount | All | All | Low |
| Memory Hits | HitsInMemoryCount | Extended | Extended | Low |
| Memory Hit Rate(per sec) | HitsInMemoryCount | Extended | Extended | Low |
| Remote Hits | RemoteHitCount | All | All | Low |
| Remote Hit Rate(per sec) | RemoteHitCount | All | All | Low |
| Cache Misses | MissCount | Extended | Extended | Low |
| Cache Miss Rate(per sec) | MissCount | Extended | Extended | Low |
| Remote Cache Entries Received | RemoteCreationCount | All | All | Low |
| Remote Cache Entry Receive Rate(per sec) | RemoteCreationCount | All | All | Low |
| Client Requests | ClientRequestCount | All | All | Low |
| Client Request Rate(per sec) | ClientRequestCount | All | All | Low |
| Cluster Requests | DistributedRequestCount | All | All | Low |
| Cluster Request Rate(per sec) | DistributedRequestCount | All | All | Low |
| Total Explicit Invalidations | ExplicitInvalidationCount | All | All | Low |</p>
<table>
<thead>
<tr>
<th>Total Explicit Invalidation Rate (per sec)</th>
<th>ExplicitInvalidationCount</th>
<th>All</th>
<th>All</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeout Invalidation</td>
<td>TimeoutInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Timeout Invalidation Rate (per sec)</td>
<td>TimeoutInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Least Recently Used Invalidation</td>
<td>LruInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Least Recently Used Invalidation Rate (per sec)</td>
<td>LruInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Explicit Memory Invalidation</td>
<td>ExplicitMemoryInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Explicit Memory Invalidation Rate (per sec)</td>
<td>ExplicitMemoryInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Explicit Disk Invalidation</td>
<td>ExplicitDiskInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Explicit Disk Invalidation Rate (per sec)</td>
<td>ExplicitDiskInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Explicit Local Invalidation</td>
<td>LocalExplicitInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Explicit Local Invalidation Rate (per sec)</td>
<td>LocalExplicitInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Explicit Remote Invalidation</td>
<td>RemoteExplicitInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Explicit Remote Invalidation Rate (per sec)</td>
<td>RemoteExplicitInvalidationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
</tbody>
</table>

Workload Management Client

ITM Table Name: KYNWLML

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category: Workload Management client</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outgoing Requests</td>
<td>OutgoingIIOPRequestCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Outgoing Request Rate (per sec)</td>
<td>OutgoingIIOPRequestCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Client Cluster Updates</td>
<td>ClientClusterUpdateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Client Cluster Update Rate (per sec)</td>
<td>ClientClusterUpdateCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Client Response Time</td>
<td>ClientResponseTime</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
</tr>
</tbody>
</table>

Workload Management Server

ITM Table Name: KYNWLMSR

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category: Workload Management server</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incoming Requests</td>
<td>IIOPRequestCount</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Incoming Request Rate (per sec)</td>
<td>IIOPRequestCount</td>
<td>Extended</td>
<td>Extended</td>
<td>Low</td>
</tr>
<tr>
<td>Incoming Strong Affinity Requests</td>
<td>StrongAffinityIIOPRequestCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Incoming Strong Affinity Request Rate (per sec)</td>
<td>StrongAffinityIIOPRequestCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Incoming Nonaffinity Requests</td>
<td>NoAffinityIIOPRequestCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Metric Description</td>
<td>ITM Table Name</td>
<td>WebSphere PMI Level</td>
<td>WAS 6.0</td>
<td>WAS 6.1/7.0</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Scheduler ITM Table Name: KYN_SCHED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEP Console Column Name</td>
<td>WebSphere PMI Attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category: Schedulers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poll Count</td>
<td>PollCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Poll Duration</td>
<td>PollDuration</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Poll Query Duration</td>
<td>PollQueryDuration</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Run Duration</td>
<td>RunDuration</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Task Collision Rate</td>
<td>TaskCollisionRate</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Task Delay Duration</td>
<td>TaskDelayDuration</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Task Expiration Rate</td>
<td>TaskExpirationRate</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Task Failure Count</td>
<td>TaskFailureCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Task Finish Count</td>
<td>TaskFinishCount</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Task Finish Rate</td>
<td>TaskFinishRate</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Task Run Rate</td>
<td>TaskRunRate</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Web Services ITM Table Name: KYN_WEBSVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEP Console Column Name</td>
<td>WebSphere PMI Attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category: Web services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Received Requests</td>
<td>ReceivedRequestCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Dispatched Requests</td>
<td>DispatchedRequestCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Processed Requests</td>
<td>ProcessedRequestCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Response Time</td>
<td>ResponseTime</td>
<td>All</td>
<td>All</td>
<td>High</td>
</tr>
<tr>
<td>Request Response Time</td>
<td>RequestResponseTime</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
</tr>
<tr>
<td>Dispatch Response Time</td>
<td>DispatchResponseTime</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
</tr>
<tr>
<td>Reply Response Time</td>
<td>ReplyResponseTime</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
</tr>
<tr>
<td>Payload Size</td>
<td>PayloadSize</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
</tr>
<tr>
<td>Reply Payload Size</td>
<td>ReplyPayloadSize</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
</tr>
<tr>
<td>Request Payload Size</td>
<td>RequestPayloadSize</td>
<td>All</td>
<td>All</td>
<td>Medium</td>
</tr>
</tbody>
</table>
WebServices Gateway
ITM Table Name: KYNWEBSGW

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Requests</td>
<td>SynchronousRequestCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Synchronous Responses</td>
<td>SynchronousResponseCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Asynchronous Requests</td>
<td>AsynchronousRequestCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Asynchronous Responses</td>
<td>AsynchronousResponseCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
</tbody>
</table>

Category: Web services Gateway

Messaging Engines
ITM Table Name: KYNMSGENG

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Local Wait Time (ms)</td>
<td>LocalMessageWaitTime</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Expired Messages</td>
<td>ReportEnabledMessagesExpired Count</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Incomplete Topic Publications</td>
<td>IncompletePublicationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Total Published</td>
<td>TotalMessagesPublishedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
</tbody>
</table>

Category: SIB Service > SIB Messaging Engines

Client Communications
ITM Table Name: KYNCLICOM

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clients Attached</td>
<td>ClientsAttachedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>API Connections</td>
<td>APIConnectionsCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Errors</td>
<td>ErrorsCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Writes</td>
<td>WritesCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Reads</td>
<td>ReadsCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Writes Blocked</td>
<td>WritesBlockedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Reads Blocked</td>
<td>ReadsBlockedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Multicast Write (bytes)</td>
<td>MulticastWriteBytesCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Multicast Send Messages</td>
<td>MulticastSendMessageCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Buffered Write (bytes)</td>
<td>BufferedWriteBytesCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Buffered Read (bytes)</td>
<td>BufferedReadBytesCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Message Written (bytes)</td>
<td>MessagesBytesWrittenCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Message Read (bytes)</td>
<td>MessageBytesReadCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Total Written (bytes)</td>
<td>TotalBytesWrittenCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Total Read (bytes)</td>
<td>TotalBytesReadCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Category: Detailed Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Sent at Highest Priority (bytes)</td>
<td>BytesSentAtHighestPriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at Very High Priority (bytes)</td>
<td>BytesSentAtVeryHighPriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at High Priority (bytes)</td>
<td>BytesSentAtHighPriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at JMS 9 Priority (bytes)</td>
<td>BytesSentAtJMS9PriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at JMS 8 Priority (bytes)</td>
<td>BytesSentAtJMS8PriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at JMS 7 Priority (bytes)</td>
<td>BytesSentAtJMS7PriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at JMS 6 Priority</td>
<td>BytesSentAtJMS6PriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at JMS 5 Priority (bytes)</td>
<td>BytesSentAtJMS5PriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at JMS 4 Priority (bytes)</td>
<td>BytesSentAtJMS4PriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at JMS 3 Priority (bytes)</td>
<td>BytesSentAtJMS3PriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at JMS 2 Priority (bytes)</td>
<td>BytesSentAtJMS2PriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at JMS 1 Priority (bytes)</td>
<td>BytesSentAtJMS1PriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at JMS 0 Priority (bytes)</td>
<td>BytesSentAtJMS0PriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at Low Priority (bytes)</td>
<td>BytesSentAtLowPriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at Very Low Priority (bytes)</td>
<td>BytesSentAtVeryLowPriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Sent at Lowest Priority (bytes)</td>
<td>BytesSentAtLowestPriorityCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category: Detailed Statistics</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Received at Highest Priority (bytes)</td>
<td>BytesReceivedAtHighestPriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at Very High Priority (bytes)</td>
<td>BytesReceivedAtVeryHighPriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at High Priority (bytes)</td>
<td>BytesReceivedAtHighPriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at JMS 9 Priority (bytes)</td>
<td>BytesReceivedAtJMS9PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at JMS 8 Priority (bytes)</td>
<td>BytesReceivedAtJMS8PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at JMS 7 Priority (bytes)</td>
<td>BytesReceivedAtJMS7PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at JMS 6 Priority (bytes)</td>
<td>BytesReceivedAtJMS6PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at JMS 5 Priority (bytes)</td>
<td>BytesReceivedAtJMS5PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at JMS 4 Priority (bytes)</td>
<td>BytesReceivedAtJMS4PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at JMS 3 Priority (bytes)</td>
<td>BytesReceivedAtJMS3PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at JMS 2 Priority (bytes)</td>
<td>BytesReceivedAtJMS2PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at JMS 1 Priority (bytes)</td>
<td>BytesReceivedAtJMS1PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at JMS 0 Priority (bytes)</td>
<td>BytesReceivedAtJMS0PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at Low Priority (bytes)</td>
<td>BytesReceivedAtLowPriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at Very Low Priority (bytes)</td>
<td>BytesReceivedAtVeryLowPriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Received at Lowest Priority (bytes)</td>
<td>BytesReceivedAtLowestPriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category: Detailed Statistics</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages Sent at JMS 9 Priority</td>
<td>MessagesSentAtJMS9PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Messages Sent at JMS 8 Priority</td>
<td>MessagesSentAtJMS8PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Messages Sent at JMS 7 Priority</td>
<td>MessagesSentAtJMS7PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Messages Sent at JMS 6 Priority</td>
<td>MessagesSentAtJMS6PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Messages Sent at JMS 5 Priority</td>
<td>MessagesSentAtJMS5PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Messages Sent at JMS 4 Priority</td>
<td>MessagesSentAtJMS4PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Messages Sent at JMS 3 Priority</td>
<td>MessagesSentAtJMS3PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Messages Sent at JMS 2 Priority</td>
<td>MessagesSentAtJMS2PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Messages Sent at JMS 1 Priority</td>
<td>MessagesSentAtJMS1PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Messages Sent at JMS 0 Priority</td>
<td>MessagesSentAtJMS0PriorityCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Messaging Engine</td>
<td>ITM Table Name: KYNMECOM</td>
<td>WebSphere PMI Level</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEP Console Column Name</td>
<td>WebSphere PMI Attribute</td>
<td>WAS 6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Category: SIB Communications > Messaging Engines > Standard Statistics</td>
<td></td>
</tr>
<tr>
<td>Messaging Engine Attached</td>
<td>MEAttachedCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>API Connections</td>
<td>APIConnectionsCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Errors</td>
<td>ErrorsCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Writes</td>
<td>WritesCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Reads</td>
<td>ReadsCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Writes Blocked</td>
<td>WritesBlockedCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Reads Blocked</td>
<td>ReadsBlockedCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Buffered Write (bytes)</td>
<td>BufferedWriterBytesCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Buffered Reads (bytes)</td>
<td>BufferedReaderBytesCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Message Written (bytes)</td>
<td>MessageBytesWrittenCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Message Read (bytes)</td>
<td>MessageBytesReadCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Total Written (bytes)</td>
<td>TotalBytesWrittenCount</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Total Read (bytes)</td>
<td>TotalBytesReadCount</td>
<td>All</td>
<td>All</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Durable Subscriptions</th>
<th>ITM Table Name: KYNDURSUB</th>
<th>WebSphere PMI Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEP Console Column Name</td>
<td>WebSphere PMI Attribute</td>
<td>WAS 6.0</td>
</tr>
</tbody>
</table>
Queue

<table>
<thead>
<tr>
<th>ITM Table Name: KYNMSGQUE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
</table>

WebSphere PMI Level

- **Category:** SIB Service > SIB Messaging Engines > Destinations > Queues

<table>
<thead>
<tr>
<th>Available Message</th>
<th>AvailableMessageCount</th>
<th>All</th>
<th>All</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unavailable Message</td>
<td>UnavailableMessageCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Local Producer attaches</td>
<td>LocalProducerAttachesCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Local Producer</td>
<td>LocalProducerCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Local Consumer attaches</td>
<td>LocalConsumerAttachesCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Local Consumer</td>
<td>LocalConsumerCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Total Messages Produced</td>
<td>TotalMessagesProducedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Best Effort Non-persistent Messages Produced</td>
<td>BestEffortNonPersistentMessagesProducedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Express Non-persistent Messages Produced</td>
<td>ExpressNonPersistentMessagesProducedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Reliable Non-persistent Messages Produced</td>
<td>ReliableNonPersistentMessagesProducedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Reliable Persistent Messages Produced</td>
<td>ReliablePersistentMessagesProducedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Assured Persistent Messages Produced</td>
<td>AssuredPersistentMessagesProducedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Total Messages Consumed</td>
<td>TotalMessagesConsumedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Best Effort Non-persistent Messages Consumed</td>
<td>BestEffortNonPersistentMessagesConsumedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Express Non-persistent Messages Consumed</td>
<td>ExpressNonPersistentMessagesConsumedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Reliable Non-persistent Messages Consumed</td>
<td>ReliableNonPersistentMessagesConsumedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Topic Spaces</td>
<td>ITM Table Name: KYNTOPICSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WebSphere PMI Level</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEP Console Column Name</th>
<th>WebSphere PMI Attribute</th>
<th>WAS 6.0</th>
<th>WAS 6.1/7.0</th>
<th>Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomplete Publication</td>
<td>IncompletePublicationCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Local Publisher Attachés</td>
<td>LocalPublisherAttachesCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Local Publisher</td>
<td>LocalPublisherCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Total Local Subscription</td>
<td>TotalLocalSubscriptionCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Non-Durable Local Subscription</td>
<td>NonDurableLocalSubscriptionCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Durable Local Subscription</td>
<td>DurableLocalSubscriptionCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Total Messages Published</td>
<td>TotalMessagesPublishedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Best Effort Non-persistent Messages Published</td>
<td>BestEffortNonPersistentMessagesPublishedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Express Non-persistent Messages Published</td>
<td>ExpressNonPersistentMessagesPublishedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Reliable Non-persistent Messages Published</td>
<td>ReliableNonPersistentMessagesPublishedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Reliable Persistent Messages Published</td>
<td>ReliablePersistentMessagesPublishedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Assured Persistent Messages Published</td>
<td>AssuredPersistentMessagesPublishedCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Total Local Subscription Hits</td>
<td>TotalLocalSubscriptionHitCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Best Effort Non-persistent Local Subscription Hits</td>
<td>BestEffortNonPersistentLocalSubscriptionHitCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Express Non-persistent Local Subscription Hits</td>
<td>ExpressNonPersistentLocalSubscriptionHitCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Reliable Non-persistent Local Subscription Hits</td>
<td>ReliableNonPersistentLocalSubscriptionHitCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Reliable Persistent Local Subscription Hits</td>
<td>ReliablePersistentLocalSubscriptionHitCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Assured Persistent Local Subscription Hits</td>
<td>AssuredPersistentLocalSubscriptionHitCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Report Enabled Publication Expired</td>
<td>ReportEnabledPublicationsExpiredCount</td>
<td>All</td>
<td>All</td>
<td>Low</td>
</tr>
<tr>
<td>Local Oldest Publication Age</td>
<td>LocalOldestPublicationAge</td>
<td>All</td>
<td>All</td>
<td>Max</td>
</tr>
</tbody>
</table>
Index

A
account
creating a user account 44
deleting a user account 46
modifying a user account 45
action
alert 150
data 150
action history, trap 150
active request
canceling 121, 138
lock contention 118
priority 121, 137
searching 113
server activity display 114, 115
administration
account management 43, 44
role configuration 46, 47, 48
user profiles 44, 45, 46
managing server 79
system properties 79, 80, 81
Monitoring on Demand (TM) 73, 75, 76, 77, 78
server management 49
data collector configuration 52, 55, 56, 57, 58, 59, 60
self-diagnosis 82, 83, 84
server group 50, 51, 52
user profiles 44
alert action 150
alerts 106, 107
escalating 107
analysis
capacity 165
heap 132
lock 160
memory 131
method 157
MQI 159
program 157
request 156
server availability 164
SQL 158
system resource 163
transaction 156
application trap
creating 140
defining 140
setting 140
archive agent
self-diagnosis 82
audit trail
user 194
audit-ms.log 194
authoritative server 153, 154
authorization
component request 188
availability
recent activity 95
creating a report 95
availability (continued)
server statistics overview
configuring 93
SMF data 105
system resources 96, 97
browser 96
systems overview 84
alerts 106
alerts, escalating 107
portal overview 88
portlet summary 89
Problem Center 108
Problem Center, closing 111
Problem Center, details 109
Problem Center, manually adding 111
server, WLM associated service
class period detail 91
server, WLM associated service
class summary 90
server, WLM enclave 91
B
baselining 616
browser
system resources 96
metrics 97
WebSphere, PMI 97
WebSphere, z/OS 97
C
calculating baseline 616
calculating threshold 616
capacity
analysis 165
CICS
composite requests 182, 185
data collectors 184, 186
CICS transaction 97, 184
comparison
installed binary 153
results 153
runtime environment 154
comparison server 153, 154
component trace 122, 189
searching 123
composite
indicator 190, 191
request 181, 183, 184, 185, 186, 190, 191
detail 190, 191
indicator 187, 188, 191, 192
method trace 183, 184
space 183, 184, 185
stack trace 183, 184
transaction 183, 184, 185
transaction 181, 184, 186
composite request indicator 187, 188
configuration 52
applying 58
data collector 52
deleting 60
duplicating 59
modifying 59
role 46
contention
lock 118
D
daily statistics
deleting 177
overview
viewing 176
data
PMI 97
SMFviewing 105
data action 150
data collection settings
configuring 79
data collector
configuring 52, 55
MQ 186
controller
self-diagnosis 84
disabling 57
enabling 56
removing 56
unconfiguring 56
data collector profiles 61
data collector profiles, adding 62
data collector profiles, configuring 64
data collector profiles, editing 61
data collector profiles, importing 63
data collector profiles, installing 72
data collector profiles, removing 62
data collector profiles, uninstalling 72
data collector profiles, viewing 61
database connection pools 97
date range settings 167
default
system properties 79
Delta Normal CP time 94
Delta zAAP time 94
Delta zAAP-eligible time 94
Delta zAAP-eligible time on CP 94
detail
request 119, 190
diagnosis
memory 127
directory
logs 194
display
JVM thread 135, 137
recent activity 95
creating a report 95
server activity 114, 117
activating a thread 120
active requests 115
display (continued)
server activity (continued)
canceling a request 121
changing a thread's priority 121
e-mailing a PDF 124
exporting to a file 125
lock contention 118
request detail 119
searching a method trace 123
suspending a thread 120
viewing a method trace 122
viewing a PDF 125
viewing a stack trace 122
viewing the request object and
session object 123

E

e-mailing
PDF 124
edata collector profiles, exporting 64
EJB 97
enterprise overview
configuring 80
environment
runtime
comparison 154

F

file name match 153
file name/path/size match 153
filter list
exclude 58
exclude override 58
flow view 122
full match 153

G

global publish server
self-diagnosis 83
group
access rights 45
create 50
creating 50
deleting 51
duplicating 52
modifying 51
server 49

H

heap analysis 132
heap dump
scheduling 130
heap dump management 127
history
trap action 150
HTTP
session
Web Session Browser 125, 126

I

IBM Support Assistant
downloading
Memory Dump Diagnostic for
Java 128
in-flight request
searching 187
in-flight request search 112, 113, 181,
182, 183, 184, 185, 186, 187, 188
composite
method trace 191
stack trace 190
request 190
sorting 113
installed binary
comparison
setting 153
viewing, results 153
interface
Request Mapper 198

J

JCA connection pools 97
JTA transactions 97
JVM thread display 135
canceling a thread 138
changing a thread's priority 137
stack trace 137
thread dump 138
JVM/system 97

K

kernel
self-diagnosis 82

L

L1, monitoring level 73
L2, monitoring level 73
L3, monitoring level 73
level
monitoring 73, 75, 77
lock
analysis
decomposition 160
detail 160
contention 118
logs
directory 194

M

managed space 182, 183, 184, 185
management
account 43
schedule
applying 76
creating 75
deleting 78
duplicating 78
modifying 77
server 49
traps 139

N

network
configuring the SNMP 81
O
object request 123
session 123
Object Request Brokers (ORB)
detail/interceptor 97
ORB detail/interceptor 97
original request string (ORS) 195, 196
ORS, original request string 195, 196
overview 94
e enterprise
configuring 80
memory leak
c confirmation 132
diagnosis 133
memory leak candidate finder
creating 134
viewing 134
portal page summary 88
portlet summary 89
server
WLM associated service class
period detail 91
WLM associated service class
summary 90
WLM enclave 91
server statistics
configuring 93
S
server
WLM associated service class
period detail 91
WLM associated service class
summary 90
WLM enclave 91
server statistics
configuring 93
systems 84
P
PDF
e-mailing 124
viewing 125
performance analysis 156, 187, 191, 192
create application reports 156
capacity analysis 165
lock analysis 160
MQI 159
portal 161, 162
request/transaction 157
schedule 166
server availability 164
SQL 158
system resource 163
top reports 163
method profiling 175, 176
view saved reports 170
deleting a report 173
duplicating a report 172
e-mailing a report 173
exporting to a file 174
modifying a report 170
modifying a top report 170
running a report 171
understanding the date range
settings 167
viewing a PDF 174
viewing the detail report 168
viewing the reports 172
performance analysis and reporting 155
PMI data 97
portal 161
portal page summary 88
portlet 162
portlet summary
overview 89
Problem Center 108
closing 111
details 109
manually adding 111
problem determination 73
in-flight request
composite requests 181, 182, 183,
184, 185, 186, 188
server activity display 187
in-flight request search 112, 187
application request 113
composite method trace 191
composite stack trace 190
request detail 190
JVM thread display 135
canceling a thread 138
changing a thread’s priority 137
stack trace 137
thread dump 138
memory diagnosis 127
heap analysis 132
heap dump management 127, 130
memory analysis 131
memory leak 132, 133, 134, 135
server activity display 114, 115, 117
activating a thread 120
canceling a request 121
changing a thread’s priority 121
component trace 122, 123, 189
exporting to file 125
lock contention 118
method trace 122, 123, 189
PDF 124, 125
request detail 119, 190
request object 123
session object 123
stack trace 122, 189
suspending a thread 120
software consistency check 152
comparison 153
installed binary comparison 153
runtime environment
comparison 154
trap and alert management
activating 147
alert actions 150
application trap 140
data actions 150
deactivating 148
deleting 149
duplicating 149
managing 139
modifying 148
server resource trap 145
trap action history 150
Web Session Browser 125, 126
production 73
overriding 77
problem determination 77
tracing 77
profiles
user 44
properties, system 79
publications, online x
publish server
self-diagnosis 83
Q
queue 97
queue manager 97
R
recent activity display 95
creating a report 95
recent request
server activity display 114, 117
references to live objects on the
heap 135
reports 170
capacity analysis 165
create 155
creating 156
date range settings 167
decomposition 156, 157, 158, 159,
160, 163
defining 156
deleting 173
detail 160, 168
duplicating 172
e-mailing 173
exporting 174
lock analysis 160
memory analysis 131
memory leak
candidate finder 134
confirmation 132
diagnosis 133
method 157
method analysis 157
modifying 170
top 170
MQI analysis 159
portal page 161
portlet 162
program analysis 157
references to live objects on the
heap 135
request
analysis 156
detail 156
running 171
scheduled 166
server availability analysis 164
setting 156
SQL analysis 158
system resource analysis 163
top 163
transaction
analysis 156
trend 157, 158, 159, 163
view 155
viewing 172
PDF 174
request
active
application 113
authorization 188
ITCAM for Application Diagnostics: User Guide

request (continued)
composite 181, 182, 183, 184, 185, 186, 187, 188
detail 190
detail, PAR 191
detail, SAD 190
method trace 191
method trace, PAR 192
stack trace 190
detail
viewing 119
mapping behavior 196
name 194, 195
sampling rate 79
string 194, 195
Request Mapper 194
data 194, 195
deploying 197
interface 198
sample 199
writing 197
resident time - misbehaving transactions 143
resource
installed binary 153
role
assigning 47
configuring 46
creating 47
deleting 48
duplicating 48
modifying 47
runtime
environment comparison 154
running 154

S
sample
Request Mapper 199
schedule
applying 76
creating 75
deleting 78
duplicating 78
modifying 77
reports 166
viewing, management 75
self-diagnosis 82
archive agent 82
data collector controller 84
global publish server 83
kernel 82
message dispatcher 84
publish server 83
server 97
authoritative 153, 154
availability
analysis 164
comparison 153, 154
groups 49
management 49
managing 79
regions 97
server activity 94
server activity display 114, 115, 117, 187
activating a thread 120
server activity display (continued)
canceling a request 121
changing a thread’s priority 121
component trace 122, 189
searching 123
lock contention 118
method trace 122, 189
searching 123
PDF 124, 125
exporting to file 125
request detail 119, 190
request object 123
session object 123
stack trace 122, 189
suspending a thread 120
server resource trap
creating 145
defining 145
setting 145
server statistics overview
configuring 93
session
Web Session Browser 125
viewing 126
session manager 97
settings
configuring the data collection 79
data collection 79
date range 167
SMF data 105
SNMP network
configuring 81
software consistency check 152
installed binary
comparison 153
runtime environment
comparison 154
SQL 97
stack trace 189
composite 190
string
original request 195, 196
request 194, 195
system
properties 79
resources
polling frequency 79
system resource analysis 163
system resources 96
browser 96
metrics 97
WebSphere, PMI 97
WebSphere, z/OS 97
systems overview 84
alerts 106
escalating 107
portal page summary 88
portlet summary 89
Problem Center 108
closing 111
details 109
manually adding 111
server
WLM associated service class
summary 90
WLM associated service period
detail 91
systems overview (continued)
server (continued)
WLM enclave 91
T
thread
activating 120
canceling 121, 138
dump 138
pools 97
priority 121, 122, 137
suspending 120
threshold 616
Tivoli Enterprise Portal 39
top reports 163
trace
component 122, 189
searching 123
composite
method 191, 192
stack 190
exporting 125
method 122, 150, 189
searching 123
stack 122, 137, 189
tracing 73
trap
action history 150
activating 147
alert action 150
application 140
creating 58
data action 150
deactivating 148
deleting 149
duplicating 149
modifying 148
server resource 145
trap action history 150
trap and alert management 139
U
user account 44
creating 44
deleting 46
modifying 45
user audit trail
accessing 194
user ids 196
user profiles 44
V
view
flow 122
W
Web applications 97
Web Session Browser 125, 126

678
Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
This information was developed for products and services offered in the U.S.A. IBM might not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM might have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements or changes in the product(s) or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2009
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information might be available, subject to appropriate terms and conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments might vary significantly. Some measurements might have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement might have been estimated through extrapolation. Actual results might vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM’s application programming interfaces.