IBM Tivoli OMEGAMON XE on z/OS
Version 5 Release 1.1

User’s Guide
Note
Before using this information and the product it supports, read the information in "Notices" on page 391.

Edition notice
This edition applies to version 5, release 1, modification 1 of IBM Tivoli OMEGAMON XE on z/OS (product number 5698-T01) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2004, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Figures .. ix
Tables ... xi

Part 1. Getting started 1

Chapter 1. Introducing IBM Tivoli OMEGAMON XE on z/OS 3
How OMEGAMON XE on z/OS works 3
Resources provided by OMEGAMON XE on z/OS . 5
What you can do with OMEGAMON XE on z/OS . 6
Interoperability and integration with other products 9
New in V5.1.1 9
 zAware monitoring integration 9
 Enhanced classic commands 10
New in V5.1.0 10
 Support for IBM Tivoli Monitoring V6.2.3 and
 self-describing agents 10
New workspaces for the OMEGAMON
 Enhanced 3270 User Interface 10
OMEGAMON XE on z/OS Take Action
 commands 10
Health check information 11
UNIX System Services 64-bit I/O count attribute 11
Sysplex and CPC status and configuration
 information 11
New classic minor commands 11
New out-of-the-box defaults 11
Performance improvements 11

Chapter 2. Using and customizing OMEGAMON XE on z/OS 13
Using the predefined workspaces 13
 Sysplex and system managed system names . 14
 Organization of the workspaces 14
Prerequisites for data reporting 16
 Customizing workspaces 17
Using cross-product workspace links 17
Finding more information about workspaces . 18
Using the predefined situations 18
 Activating situations 18
 Distributing situations 18
 Starting situations 19
 Modifying situations 19
 Migrating situations 20
 Recreating or replacing z/OS Management
 Console situations 22
Finding more information about situations . 22
Using historical data collection and reporting . 23
 Configuring historical data collection . 23
 Starting and stopping data collection ... 24
 Reducing the impact of requests from large tables 24
 Tivoli Common Reporting reports 25
 Using the reports 25
Typical types of reports available with Tivoli
 Common Reporting 26
OMEGAMON XE on z/OS reports 27
 z/OS Status DASD Issues report 27
 z/OS Status WLM Service Class Period
 report 30
 z/OS Utilization Common Storage report 33
 z/OS Utilization LPAR Summary report ... 37
 z/OS Utilization LPAR Usage Summary
 report 38
 z/OS Utilization Real Storage report ... 40
 Finding more information about historical data
 collection 42
Using Take Action commands 43
Issuing OMEGAMON XE on z/OS commands 43
Issuing UNIX commands 44
 Environment for issuing UNIX commands . 44
 Redirecting UNIX commands output 45
 Running commands in the background 45
 Testing commands 45
 Authorizing users to issue UNIX commands 45
Launching the RMF Monitor III data portal.. 46
 Configuring the launch from Tivoli Enterprise
 Portal 46
 Configuring the launch from the command line 46

Chapter 3. Using the Inspect function 49
Invoking the Inspect function 49
 Modifying the template Inspect link 49
The Inspect Address Space CPU Use workspace . 54
Understanding the Inspect data—an example .. 55

Chapter 4. Using dynamic links to OMEGAMON for MVS 59
How dynamic linking works 59
Product-provided links 60
Creating new dynamic links 61
 Create the target workspace 61
 Modify the associated script 63
 Define the dynamic link 65
Assigning the Dynamic Link to 3270 query . 68

Part 2. Monitoring scenarios 71

Chapter 5. Monitoring shared DASD 73
Filtering collection of DASD device data 73
 Requirements and restrictions for filter situations 74
Creating a filtering situation 74
Distributing the situation 75
 Starting and stopping the situation 76
Displaying messages for the situations you create . 76
 Example situations 76
Using shared DASD data collection to identify the
cause of I/O delays 76

© Copyright IBM Corp. 2004, 2013
Chapter 11. Situations 265

Activating predefined situations 265

Sysplex situations 265

KM5 Model_Sysplex_DASD_Filter 266
KM5 No_Sysplex_DASD_Filter_Warn 266
KM5 Weak_Plex_DASD_Filter_Warn 266
MVS_CFStruct_Status_Crit ... 266
MVS_CFStruct_Status_Warn ... 267
MVS_CFStructStat_FalseLock_Crit ... 267
MVS_CFStructStat_FalseLock_Warn ... 267
MVS_CFStructToMVS_Requests_Crit ... 267
MVS_CFStructToMVS_Requests_Warn ... 268
MVS_CFStructUsers_Connect_Crit ... 268
MVS_CFStructUsers_Connect_Warn ... 268
MVS_CFSystems_Performance_Crit ... 268
MVS_CFsystems_Performance_Warn ... 269
MVS_CFSystemPathsBusy_Crit ... 269
MVS_CFSystemPathsBusy_Warn ... 269
MVS_GRS_RespTime_Crit ... 270
MVS_GRS_RespTime_Warn. ... 270
MVS_XCFGroupMembers_Status_Crit ... 270
MVS_XCFGroupMembers_Status_Warn ... 270
MVS_XCFSystemPaths_Crit ... 271
MVS_XCFSystemPaths_Warn ... 271
OS_CMD_CF_Systems_Perform_Crit ... 271
OS_CMD_DASD_Device_ConIdxWarn ... 271
OS_CMD_WLM_Performance_Idx_Crit ... 272
Sysplex_DASD_Dev_ConIdxWarn ... 272
Sysplex_DASDSys_VaryStatus_Warn. ... 272
Sysplex_GlobalEnq_Wait_Crit ... 272
Sysplex_GlobalEnq_Wait_Warn ... 273
Sysplex_Workloads_PerfIdx_Crit ... 273

Sysplex Workloads_PerfIdx_Warn ... 273
Sysplex_XCFGroups_Warn ... 273
Sysplex_XCFSystems_Status_Crit ... 274
Sysplex_XCFSystems_Status_Warn ... 274

System situations 274

Renamed situations 274

Check_Missing_UNIX_Mount_Point. ... 276
Crypto_CKDS_80PCT_Full ... 276
Crypto_CKDS_Access_Disabled ... 276
Crypto_Internal_Error ... 276
Crypto_Invalid_Master_Key ... 276
Crypto_Invalid_PKAStructure_Components ... 277
Crypto_No_Coprocessors ... 277
Crypto_No_PCI_Coprocessors ... 277
Crypto_PCIUnavailable ... 277
Crypto_PKAServices_Disabled ... 278
Crypto_PKDS_Read_Disabled ... 278
Crypto_PKDS_Write_Disabled ... 278
Crypto_ServiceUnavailable ... 278
Excess_Process_UNIX_Run_Time ... 279
Excess_UNIX_Kernel_CPU_Time ... 279
Excess_UNIX_System_Time ... 279
Excess_UNIX_User_Time ... 279
INET_Max_Sockets_Critical ... 279
INET_Max_Sockets_Warning ... 280
INET6_Max_Sockets_Critical ... 280
INET6_Max_Sockets_Warning ... 280
KM5_Avail_CSA_Warning ... 280
KM5_CPU_Loop_Warn ... 281
KM5_HDSP_Pct_BUSY_Warning ... 281
KM5_High_Severity_Check ... 281
KM5_High_Severity_Sysplex ... 281
KM5_Job_Avail_LSQA_Warning ... 282
KM5_Job_Subp_Key_Use_Warning ... 282
KM5_LPAR_Cap_Warn ... 282
KM5_LPAR_MSU_Warn ... 283
KM5_Storage_Shortage_Critical ... 283
KM5_Storage_Shortage_Warning ... 283
KM5_zAware_Analysis_Crit ... 284
KM5_zAware_Analysis_Warn ... 284
KM5_zAware_Client_Status ... 284
KM5_zAware_Server_Status ... 285
Missing_UNIX_inetd_Process ... 285
OS390_Allocated_CSA_Crit ... 286
OS390_Allocated_CSA_Warn ... 286
OS390_AvgCPU_Pct_Crit ... 286
OS390_AvgCPU_Pct_Warn ... 286
OS390_Cache_FastWriteHitPt_Crit ... 286
OS390_Cache_FastWriteHitPt_Warn ... 287
OS390_Cache_HitPct_Crit ... 287
OS390_Cache_HitPct_Warn ... 287
OS390_Cache_Write_HitPct_Crit ... 287
OS390_Cache_Write_HitPct_Warn ... 288
OS390_Frame_Buffering_Crit ... 288
OS390_Frame_Buffering_Warn ... 288
OS390_Frames_Online_Crit ... 289
OS390_Frames_Online_Warn ... 289
OS390_LPAR_Busy_Pct_Crit ... 289
OS390_LPAR_Busy_Pct_Warn ... 290
OS390_LPAR_Busy_Pct_Warn ... 290
OS390_LPAR_Busy_Pct_Warn ... 290
OS390 Channel Path Offline Crit	290
OS390 Channel Path Offline Warn	290
OS390 Common PageDSPctFull Crit	290
OS390 Common PageDSPctFull Warn	291
OS390 CSA Growth Crit	291
OS390 CSA Growth Warn	291
OS390 DASD Busy Percent Crit	291
OS390 DASD Busy Percent Warn	291
OS390 DASD Dropped Ready Crit	292
OS390 DASD Dropped Ready Warn	292
OS390 DASD NoDynamicReconn Critical	292
OS390 DASD NoDynamicReconn Warn	292
OS390 DASD Not Responding Crit	292
OS390 DASD Not Responding Warn	293
OS390 DASD Response Time Crit	293
OS390 DASD Response Time Warn	293
OS390 ECSA Allocation Pct Crit	293
OS390 ECSA Allocation Pct Warn	293
OS390 ExpandedToCentralStor Crit	294
OS390 ExpandedToCentralStor Warn	294
OS390 GlobalEnqueueReserve Crit	294
OS390 GlobalEnqueueReserve Warn	294
OS390 GRS Broken Crit	294
OS390 GRS Broken Warn	294
OS390 GTF Active Crit	295
OS390 GTF Active Warn	295
OS390 HSM RecallWait Crit	295
OS390 HSM RecallWait Warn	295
OS390 Indexed_VTOC Lost Crit	295
OS390 Indexed_VTOC Lost Warn	296
OS390 Local PageDS Errors Crit	296
OS390 Local PageDS Errors Warn	296
OS390 Local PageDS PctFull Crit	296
OS390 Local PageDS PctFull Warn	296
OS390 LPAR OverheadPercent Crit	297
OS390 LPAR OverheadPercent Warn	297
OS390 LPAR_STATUS Crit	297
OS390 LPAR_STATUS Warn	297
OS390 MAX ASIDs in Use Crit	298
OS390 MAX ASIDs in Use Warn	298
OS390 Network ResponseTime Crit	298
OS390 Network ResponseTime Warn	298
OS390 OLTEP Active Crit	299
OS390 OLTEP Active Warn	299
OS390 Outstanding_WTORs Crit	299
OS390 Outstanding_WTORs Warn	299
OS390 PageDSNotOperational Crit	299
OS390 PageDSNotOperational Warn	299
OS390 Page Rate Crit	300
OS390 Page Rate Warn	300
OS390 Physical_CPUs Online Crit	300
OS390 Physical_CPUs Online Warn	300
OS390 RMF Not Active Crit	300
OS390 RMF Not Active Warn	300
OS390 SMF Not Recording Crit	301
OS390 SMF Not Recording Warn	301
OS390 SYLOG Not Recording Crit	301
OS390 SYLOG Not Recording Warn	301
OS390 System Page Rate Crit	301
OS390 System Page Rate Warn	302
OS390 System PageFault Rate Crit	302
OS390 System PageFault Rate Warn	302
OS390 Tape Dropped Ready Crit	302
OS390 Tape Dropped Ready Warn	302
OS390 Tape Mount Pend Time Crit	302
OS390 Tape Mount Pend Time Warn	303
OS390 Tape Not Responding Crit	303
OS390 Tape Not Responding Warn	303
OS390 Tape Permanent Error Crit	303
OS390 Tape Permanent Error Warn	303
OS390 Tape Temp Errors Crit	304
OS390 Tape Temp Errors Warn	304
OS390 Undispatched Tasks Crit	304
OS390 Undispatched Tasks Warn	304
OS390 Unowned Common Stor Crit	304
OS390 Unowned Common Stor Warn	305
OS390 Unref Interval Cnt Crit	305
OS390 Unref Interval Cnt Warn	305
OS390 User Host Resp Time Crit	305
OS390 User Host Resp Time Warn	305
OS390 User Total Resp Time Crit	306
OS390 User Total Resp Time Warn	306
OS390 WTO Buffers Left Crit	306
OS390 WTO Buffers Left Warn	306
Queued UNIX File System	306
Shortage of UNIX Processes Crit	307
Shortage of UNIX Processes Warn	307
UNIX Enq Contention Critical	307
UNIX Enq Contention Warning	307
UNIX File System FreeSpace Crit	307
UNIX File System FreeSpace Warn	307
UNIX Logged On User Idle	308
UNIX Max Sockets Critical	308
UNIX Max Sockets Warning	308
Unwanted inetd UNIX Process	308

Chapter 12. Workspaces

- Organization of the workspaces: 309
- Reporting historical data: 310
- Sysplex workspaces: 311
 - Historical data collection for sysplex workspaces: 311
 - Organization of the sysplex workspaces: 311
 - Attribute groups used by sysplex-level predefined workspaces: 312
 - Address Spaces Workspace for Report Classes: 315
 - Address Spaces Workspace for Service Class Period: 316
 - Coupling Facility Policy Data for Sysplex workspace: 316
 - Coupling Facility Structures Data for Sysplex workspace: 316
 - Coupling Facility Systems Data for Sysplex workspace: 317
 - Cross-system Cryptographic Coprocessor Overview workspace: 317
 - Enterprise Enqueue and Reserve workspace: 318
 - Global Enqueue and Reserve workspace: 318
 - Global Enqueue Data for Sysplex workspace: 318
 - GRS Ring Systems Data for Sysplex workspace: 319
 - Members Workspace for XCF Group: 319
 - MVS Systems Workspace for CF Structure: 320
 - Paths Workspace for CF System: 320
<table>
<thead>
<tr>
<th>Workspaces</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periods Workspace for Service Class</td>
<td>320</td>
</tr>
<tr>
<td>Periods Workspace for Service Class System</td>
<td>321</td>
</tr>
<tr>
<td>Report Classes Data for Sysplex workspace</td>
<td>321</td>
</tr>
<tr>
<td>Resource Groups Data for Sysplex workspace</td>
<td>321</td>
</tr>
<tr>
<td>Service Classes Data for Sysplex workspace</td>
<td>322</td>
</tr>
<tr>
<td>Service Classes Workspace for Resource Group</td>
<td>322</td>
</tr>
<tr>
<td>Service Definition Data for Sysplex workspace</td>
<td>323</td>
</tr>
<tr>
<td>Shared DASD Devices workspace</td>
<td>323</td>
</tr>
<tr>
<td>Shared DASD Groups Data for Sysplex workspace</td>
<td>323</td>
</tr>
<tr>
<td>Statistics for CF Cache Structure workspace</td>
<td>324</td>
</tr>
<tr>
<td>Statistics for CF List or Lock Structures workspace</td>
<td>324</td>
</tr>
<tr>
<td>Statistics Workspace for CF System</td>
<td>324</td>
</tr>
<tr>
<td>Sysplex Level Overview workspace</td>
<td>325</td>
</tr>
<tr>
<td>Sysplex Enterprise Overview workspace</td>
<td>325</td>
</tr>
<tr>
<td>Systems Workspace for Service Class</td>
<td>327</td>
</tr>
<tr>
<td>Users Workspace for CF Structure</td>
<td>328</td>
</tr>
<tr>
<td>Workflow Analysis Enqueue Workspace for Service Class Period</td>
<td>328</td>
</tr>
<tr>
<td>Workflow Analysis Enqueue Workspace for Service Class System</td>
<td>328</td>
</tr>
<tr>
<td>Workflow Analysis Enqueue Workspace for Service Class Sysplex</td>
<td>329</td>
</tr>
<tr>
<td>Workflow Analysis I/O Workspace for Service Class</td>
<td>329</td>
</tr>
<tr>
<td>Workflow Analysis I/O Workspace for Service Class Period</td>
<td>329</td>
</tr>
<tr>
<td>Workflow Analysis I/O Workspace for Service Class Period System</td>
<td>329</td>
</tr>
<tr>
<td>Workflow Analysis I/O Workspace for Service Class Period System</td>
<td>329</td>
</tr>
<tr>
<td>Workflow Analysis I/O Workspace for Service Class</td>
<td>330</td>
</tr>
<tr>
<td>Workflow Analysis I/O Workspace for Service Class Period</td>
<td>330</td>
</tr>
<tr>
<td>Workflow Analysis I/O Workspace for Service Class Period System</td>
<td>330</td>
</tr>
<tr>
<td>Workflow Analysis Workspace for Service Class</td>
<td>330</td>
</tr>
<tr>
<td>Workflow Analysis Workspace for Service Class Period</td>
<td>330</td>
</tr>
<tr>
<td>Workflow Analysis Workspace for Service Class Period</td>
<td>330</td>
</tr>
<tr>
<td>Workflow Analysis Workspace for Service Class System</td>
<td>331</td>
</tr>
<tr>
<td>XCF Groups Data for Sysplex workspace</td>
<td>331</td>
</tr>
<tr>
<td>XCF Paths Data for Sysplex workspace</td>
<td>331</td>
</tr>
<tr>
<td>XCF Paths Workspace from System Device To</td>
<td>332</td>
</tr>
<tr>
<td>XCF Systems Data for Sysplex workspace</td>
<td>332</td>
</tr>
<tr>
<td>XCF System Statistics workspace</td>
<td>333</td>
</tr>
<tr>
<td>System workspaces</td>
<td>333</td>
</tr>
<tr>
<td>Historical data collection for system-level predefined workspaces</td>
<td>333</td>
</tr>
<tr>
<td>Organization of system-level predefined workspaces</td>
<td>333</td>
</tr>
<tr>
<td>Attribute groups used by the system-level predefined workspaces</td>
<td>333</td>
</tr>
<tr>
<td>Address Space Bottlenecks and Impact Analysis workspace</td>
<td>336</td>
</tr>
<tr>
<td>Address Space Bottlenecks Detail workspace</td>
<td>339</td>
</tr>
<tr>
<td>Address Space Bottlenecks in Service Class Period workspace</td>
<td>340</td>
</tr>
<tr>
<td>Address Space Bottlenecks in Service Class</td>
<td>341</td>
</tr>
<tr>
<td>Address Space Bottlenecks Summary workspace</td>
<td>341</td>
</tr>
<tr>
<td>Address Space Common Storage - Active Users workspace</td>
<td>342</td>
</tr>
<tr>
<td>Address Space Common Storage - Allocation Details workspace</td>
<td>342</td>
</tr>
<tr>
<td>Address Space Common Storage - Orphaned Elements workspace</td>
<td>343</td>
</tr>
<tr>
<td>Address Space Common Storage - Trend Details workspace</td>
<td>343</td>
</tr>
<tr>
<td>Address Space CPU Usage Class and Period</td>
<td>343</td>
</tr>
<tr>
<td>Address Space CPU Usage Details workspace</td>
<td>344</td>
</tr>
<tr>
<td>Address Space CPU Usage Enclaves workspace</td>
<td>344</td>
</tr>
<tr>
<td>Address Space CPU Utilization workspace</td>
<td>345</td>
</tr>
<tr>
<td>Address Space Details for Job workspace</td>
<td>346</td>
</tr>
<tr>
<td>Address Space Overview workspace</td>
<td>346</td>
</tr>
<tr>
<td>Address Space Owning Selected Enclave workspace</td>
<td>347</td>
</tr>
<tr>
<td>Address Space Storage workspace</td>
<td>347</td>
</tr>
<tr>
<td>Address Space Storage - Subpools and LSQA</td>
<td>348</td>
</tr>
<tr>
<td>Monitored Address Spaces workspace</td>
<td>349</td>
</tr>
<tr>
<td>Address Space Storage for Job workspace</td>
<td>349</td>
</tr>
<tr>
<td>Channel Path Activity workspace</td>
<td>349</td>
</tr>
<tr>
<td>Common Storage workspace</td>
<td>350</td>
</tr>
<tr>
<td>Common Storage - Subpools workspace</td>
<td>351</td>
</tr>
<tr>
<td>Cryptographic Services workspace</td>
<td>351</td>
</tr>
<tr>
<td>DASD MVS workspace</td>
<td>351</td>
</tr>
<tr>
<td>DASD MVS Devices workspace</td>
<td>352</td>
</tr>
<tr>
<td>Dubbed Address Spaces workspace</td>
<td>352</td>
</tr>
<tr>
<td>Enclave Information workspace</td>
<td>353</td>
</tr>
<tr>
<td>Enclave Details workspace</td>
<td>353</td>
</tr>
<tr>
<td>Enclaves in Selected Service Class and Period workspace</td>
<td>354</td>
</tr>
<tr>
<td>Enclaves Owned by Selected Address Space workspace</td>
<td>354</td>
</tr>
<tr>
<td>Enqueue and Reserve Detail workspace</td>
<td>354</td>
</tr>
<tr>
<td>Enqueue, Reserve, and Lock Summary workspace</td>
<td>355</td>
</tr>
<tr>
<td>Health Check Messages workspace</td>
<td>355</td>
</tr>
<tr>
<td>Health Check Status workspace</td>
<td>355</td>
</tr>
<tr>
<td>Health Checks workspace</td>
<td>356</td>
</tr>
<tr>
<td>HiperDispatch Details workspace</td>
<td>356</td>
</tr>
<tr>
<td>Inspect Address Space CPU Use workspace</td>
<td>357</td>
</tr>
<tr>
<td>LPAR Clusters workspace</td>
<td>359</td>
</tr>
<tr>
<td>LPARs Assigned to a Cluster workspace</td>
<td>360</td>
</tr>
<tr>
<td>OMEGAMON for MVS - CSA Analyzer workspace</td>
<td>360</td>
</tr>
<tr>
<td>OMEGAMON for MVS - License Manager MSU and WLM Capping workspace</td>
<td>361</td>
</tr>
<tr>
<td>OMEGAMON for MVS - LPAR PR/SM</td>
<td>361</td>
</tr>
<tr>
<td>Processor Statistics workspace</td>
<td>362</td>
</tr>
<tr>
<td>Operator Alerts workspace</td>
<td>362</td>
</tr>
<tr>
<td>Page Dataset Activity workspace</td>
<td>362</td>
</tr>
<tr>
<td>Real Storage workspace</td>
<td>362</td>
</tr>
<tr>
<td>Service Call Performance workspace</td>
<td>363</td>
</tr>
<tr>
<td>Storage Shortage Alerts workspace</td>
<td>364</td>
</tr>
<tr>
<td>Storage Shortage Alerts Details workspace</td>
<td>364</td>
</tr>
<tr>
<td>Storage Shortage Alerts Trends workspace</td>
<td>365</td>
</tr>
<tr>
<td>System CPU Utilization workspace</td>
<td>365</td>
</tr>
</tbody>
</table>
Figures

1. Agent-server-client architecture 4
2. Sysplex Enterprise Overview workspace ... 5
3. History Collection Configuration dialog box 24
4. z/OS Status DASD Issues report 28
5. z/OS Status DASD Issues report, summary table 29
6. z/OS Status WLM Service Class Period report 31
7. z/OS Utilization Common Storage report 34
8. z/OS Utilization LPAR Usage Summary report, summary table 35
9. z/OS Utilization LPAR Summary report 37
10. z/OS Utilization LPAR Usage Summary report 39
11. z/OS Utilization Real Storage report 41
12. Create Situations dialog 74
13. The Formula tab for a filter situation 75
14. Sample jobs 103
15. Event flyover for KM5_CPU_Loop Warn 104
16. Situation event workspace for KM5_CPU_Loop_Warn 105
17. Address Space Overview workspace 106
18. Address Space Bottleneck Summary workspace 107
19. Examine Details for Job BKEALCP3 screen space 108
20. Inspect results for BKEALCP3 109
21. Drill down of INSPECT data 110
22. Further drill down on INSPECT data 111
23. OMEGAMON main menu 112
24. OMEGAMON Action Commands screen 113
25. OPS CMDS screen space 114
26. Address Space Bottlenecks Summary workspace without BKEALCP3 115
Tables

1. Prerequisites for data display .. 16
2. Old and new UNIX System Services situation names .. 20
3. Old and new real storage situation names 21
4. Situations renamed for architectural reasons 21
5. Creating OMEGAMON XE on z/OS situations 22
6. OMEGAMON z/OS Management Console and OMEGAMON XE on z/OS equivalent situations 22
7. z/OS Status DASD Issues report 29
8. z/OS Status WLM Service Class Period report 32
9. z/OS Utilization Common Storage report 35
10. z/OS Utilization LPAR Summary report 37
11. z/OS Utilization LPAR Usage Summary report 39
12. z/OS Utilization Real Storage report 41
13. Product-provided dynamic links 60

© Copyright IBM Corp. 2004, 2013
Part 1. Getting started

The information in this section includes an overview of the IBM® Tivoli® OMEGAMON® XE on z/OS® product, descriptions of some of the ways you can use and customize the product, and monitoring scenarios that illustrate how the product can be used to monitor and manage the performance and availability of z/OS systems.

Chapter 1, “Introducing IBM Tivoli OMEGAMON XE on z/OS,” on page 3 contains an overview of the product and describes the new features in this release.

Chapter 2, “Using and customizing OMEGAMON XE on z/OS,” on page 13 provides information about using the predefined workspaces and situations, configuring historical data collection for the product-provided monitored attributes, issuing UNIX commands from the Tivoli Enterprise Portal, and configuring the launch of the Resource Measurement Facility Monitor III data portal.

Chapter 3, “Using the Inspect function,” on page 49 contains instructions for using the Inspect function, which lets you determine where in an address space code is spending its time.

Chapter 4, “Using dynamic links to OMEGAMON for MVS,” on page 59 discusses the predefined links and workspaces that let you access related OMEGAMON for MVS screens and describes how you can use them as the basis for creating your own context-sensitive links.

This guide is not intended to describe the features and functions of the Tivoli Enterprise Portal and the services it provides. Where appropriate, this guide refers you to the appropriate documents.
Chapter 1. Introducing IBM Tivoli OMEGAMON XE on z/OS

OMEGAMON XE on z/OS is a member of the latest generation of OMEGAMON XE on z/OS monitoring agents. Using this product, you can monitor and manage workload performance and resource utilization of entire sysplexes, as well as the individual z/OS systems that participate in them.

OMEGAMON XE on z/OS monitoring agents located on each z/OS image provide extensive system-level performance and usage information. In addition, they monitor the status and configuration of IBM cryptographic coprocessors installed in Series z servers and provide data on UNIX System Services hosted on z/OS systems.

OMEGAMON XE on z/OS also provides comprehensive usage information for sysplex-level resources such as coupling facilities, global enqueue, global resource serialization (GRS) ring systems, shared DASD groups, and cross-system coupling facilities (XCFs), as well as performance information for the service classes, report classes, and resource groups that use those resources. The product provides both system-level and sysplex-wide reporting of actual and potential usage of special processor resources.

New and migrated features allow users of 3270-based OMEGAMON products to migrate to the XE architecture without losing significant function. In addition, however, OMEGAMON XE on z/OS offers you continued access to the 3270 menu system (OMEGAMON for MVS) and CUA (OMEGAMON II for MVS) interfaces, and version 5.1.0 introduces support for the OMEGAMON OMEGAMON enhanced 3270 user interface.

Used in conjunction with other OMEGAMON XE on z/OS XE monitoring products, the data, analyses, and alerts presented by OMEGAMON XE on z/OS help you develop a holistic view of your entire computing enterprise from a single console.

This chapter explains how OMEGAMON XE on z/OS works, describes the resources it provides, provides examples of how it can be used to monitor, analyze, and manage operating systems, workloads, and shared resources in a sysplex environment, and describes new features in this release.

How OMEGAMON XE on z/OS works

OMEGAMON XE on z/OS monitoring agents collect sysplex- and LPAR-level performance data on z/OS systems. The data can be viewed through a graphical user interface called Tivoli Enterprise Portal. A subset of data can also be viewed through a 3270 interface.

The OMEGAMON XE on z/OS product takes advantage of the Tivoli Management Services on z/OS infrastructure. Tivoli Management Services components provide security, data transfer and storage, notification mechanisms, user interface presentation, and communication services for a number of products, including IBM Tivoli Monitoring and OMEGAMON XE monitoring agents, in an agent-server-client architecture (Figure 1 on page 4). For more information on the Tivoli Management Services on z/OS components, see the OMEGAMON XE and Tivoli Management Services on z/OS: Common Planning and Configuration Guide and IBM Tivoli Monitoring: Installation and Setup Guide.
In the Tivoli Enterprise Portal, real time and historical data collected by OMEGAMON XE on z/OS monitoring agents is displayed in tabular and graphic views in a set of predefined workspaces (see the example in Figure 2 on page 5).

When you open a workspace, Tivoli Enterprise Portal retrieves monitored data from the monitoring agents via the hub monitoring server and sends the results to the workspace. Chart and table views in the workspace use queries to specify what data the Tivoli Enterprise Portal requests.

The characteristics or properties of the logical and physical objects monitored by OMEGAMON XE on z/OS (for example, the amount of virtual storage allocated to a task) are known as attributes. These attributes are used to define the queries that specify the data to be displayed in the workspaces.

With the proper user authority, you can tailor these views to display critical or warning indicators when monitored values reach specified thresholds, and or to filter incoming data so you see only the information you are interested in at any given time. You can add additional views to existing workspaces or create your own workspaces and define your own queries using OMEGAMON XE on z/OS attributes.

Attributes are also used to describe situations, or conditions, that can trigger events. When situation events occur, event indicators are displayed in the Tivoli Enterprise Portal Navigator view. Situations can also trigger automated actions and policies.

You can link from an event indicator in the Navigator to a situation event workspace that provides information about conditions prevailing at the time the event occurred and about current conditions, as well as expert advice on how to handle the situation.
OMEGAMON XE on z/OS provides a set of predefined situations that you can run to monitor a wide range of conditions. You can also create your own situations using the OMEGAMON XE on z/OS attributes.

OMEGAMON XE on z/OS provides four types of resources that help you monitor your z/OS systems: attributes, workspaces, and situations that collect and display real time data, and historical data collection and reporting.

OMEGAMON XE on z/OS monitors over 50 groups of attributes. Attributes are system elements or properties being monitored by an agent, such as Shared DASD and Disk Read/Writes Per Second. These attributes provide a wealth of sysplex- and system-level data. You can use these attributes to tailor the information presented in workspaces, or to define situations that target specific thresholds, events, or performance problems you want to monitor. For descriptions of the attribute groups and the individual attributes monitored by OMEGAMON XE on z/OS, see “Sysplex attribute groups” on page 119 and “System attribute groups” on page 166.

OMEGAMON XE on z/OS also provides two sets of predefined workspaces: sysplex-level workspaces and system-level workspaces. Each workspace or group of workspaces displays a specific set of data. You can use the information provided by these workspaces to manage the performance and availability of systems and their resources, to identify potential problems, to trace the causes of alerts or exceptions, to make tuning and resource distribution decisions, and to identify particular conditions you want to monitor.
For information on locating and navigating OMEGAMON XE on z/OS workspaces, see “Using the predefined workspaces” on page 13. For a complete list and descriptions of the predefined workspaces, see “Sysplex workspaces” on page 311 and “System workspaces” on page 333. For information about creating or customizing workspaces, see IBM Tivoli Monitoring: Administrator’s Guide. and IBM Tivoli Monitoring: Tivoli Enterprise Portal User’s Guide. or the Tivoli Enterprise Portal online help.

Situations are descriptions of conditions you want to monitor for, such as rapid growth in usage of the common service area (CSA). Situations periodically verify the values of attributes used in the situation description. When they are distributed to systems monitored by OMEGAMON XE on z/OS agents, situations can, for example, alert you to a coupling facility structure that has failed, or to a service class that is failing to meet its goal. Situations can also trigger simple (reflex) actions, or complex automation policies.

If situations are associated with Navigator items, they can generate auditory or visual event indicators, which provide access to special event workspaces containing more information about the event and guidance for how it should be handled.

OMEGAMON XE on z/OS provides an extensive set of predefined situations. These situations check for conditions that are typically considered to be problematic or noteworthy. They can also serve as templates for creating customized situations of your own. All these situations include expert advice for handling these conditions should they arise.

For information on activating and customizing the predefined situations, see “Using the predefined workspaces” on page 13. For descriptions of the predefined situations, see “Sysplex situations” on page 265 and “System situations” on page 274. For more information on creating, editing, and distributing situations, see the Tivoli Enterprise Portal online help and documentation. For information on migrating an OMEGAMON II profile, see IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide.

In addition to providing real time data, OMEGAMON XE on z/OS also lets you collect data over extended periods of time. By studying the information gathered from a historical perspective, you can, for example, identify trends and determine whether current performance is typical or exceptional, or evaluate the effect of tuning decisions. You can view the historical data collected by OMEGAMON XE on z/OS in Tivoli Enterprise Portal workspaces or in reports generated by third-party reporting tools.

For more information about historical data collection for OMEGAMON XE on z/OS, see “Using historical data collection and reporting” on page 23. IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide, OMEGAMON XE and Tivoli Management Services on z/OS: Common Planning and Configuration Guide, and IBM Tivoli Monitoring: Administrator’s Guide.

Note: The OMEGAMON II for MVS component provides separate historical data collection and reporting through the EPILOG collector. (The OMEGAMON II for MVS component of OMEGAMON XE on z/OS version 550 and later supports only system-level EPILOG data.) For information about historical data collection and reporting for OMEGAMON II for MVS, see IBM Tivoli OMEGAMON XE on z/OS: EPILOG User’s Guide.

What you can do with OMEGAMON XE on z/OS

The data and resources provided by OMEGAMON XE on z/OS enable you to monitor and manage workload performance and resource usage in a variety of ways.

Monitor processor usage at the system and address space level

System CPU utilization is the percentage of time that all processors available to a system were busy dispatching work. The System CPU Utilization workspace provides information about processor usage for each monitored z/OS system. In an LPAR environment, it also provides partition management statistics.
The System CPU Utilization workspace shows the number of physical processors reported on, number of processors online, the average percentage of time that all processors collectively available in this z/OS system were busy dispatching work, and other information specific to CPU workload and partition workload. If you use defined capacity as a basis for pricing, this workspace also shows the long-term average processor service used by this system or LPAR in millions of service units (MSUs) per hour.

For each address space in a z/OS image or LPAR, the Address Space CPU Utilization workspace provides basic identifying information such as job name and ASID, basic Workload Manager information such as service class and service class period, as well as various CPU statistics. It also provides enclave data, such as the total number of dependent and independent enclaves owned by the address space that are currently active or inactive.

Manage resources and workloads across LPAR clusters

OMEGAMON XE on z/OS provides an overview of the LPAR clusters in your central processor complex/cluster processor complexes (CPCs) and allows you to look at the system level details for the members of individual clusters.

Identify service classes that are missing their goals

OMEGAMON XE on z/OS allows you to determine whether a workload is meeting its goal, determine which resources a service class is using, and which resources are affecting service class performance.

Monitor enqueues across systems and sysplexes

OMEGAMON XE on z/OS provides information on enqueues shared across systems in a sysplex (global enqueues) in several related workspace. In environments in which enqueue management spans two or more sysplexes using Unicenter® CA-MIM™ Resource Sharing, it can also provide information on resources in conflict between users in multiple sysplexes, using the concept of an enqplex. (For information on assigning sysplexes to an enqplex, see OMEGAMON XE on z/OS: Planning and Configuration Guide.)

Identify and ease bottlenecks

Bottleneck analysis is a performance monitoring technique that identifies execution states of a workload and the frequency of each state. When the results of this analysis are averaged over time, it is possible to find what states (such as waiting for CPU) prevent a workload from achieving its service goal. Identifying and easing bottlenecks are a key part of performance management.

OMEGAMON XE on z/OS provides summary bottleneck data for all monitored address spaces or for a selected service class period, displaying over 20 execution states. It also provides information for over 50 execution states for selected address spaces.

Impact analysis helps you determine how various workloads are interfering with each other, by showing which workloads are using the resources that an impacted workload needs. This helps you to reduce degradation of the monitored workloads.

The Address Space Bottlenecks and Impact Analysis workspace displays resource contention statistics for a selected address space. Bar charts let you quickly determine which address spaces are impacting the favored address space, how they are impacting it, and to what extent they are impacting it.

Monitor common storage areas usage by address space

Common storage comprises:
- Common Service Area (CSA)
- Extended Common Service Area (ECSA)
- System Queue Area (SQA)
- Extended System Queue Area (ESQA)

Common storage area reporting at the address space level includes common storage area elements in use by active address spaces and orphaned elements, and usage history (trend details) by address space.

Determine processor capacity requirements

OMEGAMON XE on z/OS provides cumulative central processor usage in seconds and percentages for address spaces (job-level CPU). The Address Space CPU Utilization attribute group provides CPU, task control block (TCB), service request block (SRB), and preemptive SRB CPU times and percentages for the job as a whole, as well as job start date and time and elapsed time. These values are displayed by default in the Address Space CPU Utilization workspace.

The On/Off Capacity on Demand feature allows z/OS users to temporarily add processors to their configuration. The job-level CPU times and percentages provided by OMEGAMON XE on z/OS help you understand what workloads are using the processors and ensure the resource is getting to the correct workloads in a timely manner.

Plan and monitor special processor resources

IBM z/Series Application Assist Processors (zAAPs) are a special class of assist processors designed to run Java™ workloads. IBM System z9® Integrated Information Processors (zIIPs) handle several types of workload for DB2® version 8 and will eventually handle other types. OMEGAMON XE on z/OS provides zAAP and zIIP data in various workspaces that can help you determine how well the assist processors configured to your environment, and the workloads running on them, are performing. OMEGAMON XE on z/OS can also help you decide how much zAAP or zIIP resource you need, based on the performance of workloads on your regular processors.

Identify inefficient or looping code

The Inspect function allows you to observe where in the executable code a z/OS address space is spending its time. Inspect provides processor usage data for a selected address space drilled down to the agent-selected level of granularity within each control sector (CSECT), for the most active task control blocks (TCBs). This information helps identify inefficient code, or where in an address space code may be looping. The Inspect CPU Usage workspace contains sampling statistics and messages sent by the Inspect agent, which enables you to evaluate the statistical accuracy of the Inspect data.

Identify looping tasks

Address spaces running within the z/OS operating system can occasionally fall into a loop executing the same set of instructions repeatedly. This looping can absorb large amounts of precious CPU resources and prevent other work from processing efficiently. The z/OS operating system, and its Workload Manager (WLM) component in particular, tries to distribute CPU resources to address spaces in an intelligent way by honoring goals established by the system administrator. The algorithms used to distribute resources will interrupt a looping task and give the CPU to other work.

While this does reduce the impact of a looping job, it also masks the job, making it hard to identify the looping task. Since the looping task continues to be given the CPU on a periodic basis, the task will continue to squander resources that could have been given to “well behaved” workloads. It is important that system administrators discover looping jobs as soon as possible. Current monitoring technology can be set to raise alerts when a task uses an excessive amount of CPU, but because of the Workload Manager’s actions, looping jobs may not clearly stand out. Setting an arbitrary threshold such as 30%, 40%, or 50% CPU utilization in an attempt to detect looping tasks will often miss looping tasks or worse produce high numbers of false positives.
The Looping CPU Index, which is one of the Address Space Bottlenecks attributes, helps you identify looping tasks.

Interoperability and integration with other products

OMEGAMON XE zSeries® products are designed to integrate with each other and with other products that use Tivoli Management Services. These products exploit the power of the Tivoli Enterprise Portal to integrate and correlate performance and availability information from a variety of sources. For example, the Tivoli Enterprise Portal allows you to create custom workspaces composed of data from a range of Tivoli service availability and performance management solutions (IBM Tivoli Monitoring, IBM Tivoli Composite Application Management, and IBM Tivoli NetView® for z/OS, as well as OMEGAMON XE products). You can create context-sensitive links between product workspaces to obtain additional information about systems, subsystems, resources or network components that are being monitored by other monitoring agents, or to TN3270-based applications.

In addition, OMEGAMON XE products are being integrated with an increasing number of other Tivoli and IBM products. Situation events reported by OMEGAMON XE monitoring agents can be forwarded to Tivoli Event Console or Tivoli Netcool/OMNIbus for event correlation and management. From the Tivoli Enterprise Portal you can launch in context into other Web-based or Web-enabled Tivoli applications like Tivoli Business Services Management without having to re-enter user credentials, and you can launch in context into the Tivoli Enterprise Portal from other Tivoli applications.

For more information on cross-product linking, see "Launching the RMF Monitor III data portal" on page 46, "Using cross-product workspace links" on page 17. For information on linking in context to OMEGAMON for MVS screens, see Chapter 4, "Using dynamic links to OMEGAMON for MVS," on page 59.

New in V5.1.1

OMEGAMON XE on z/OS introduces support for IBM Tivoli Monitoring version 6.2.3 Fix Pack 1 and later and z/OS v1.13. OMEGAMON XE on z/OS also provides support for zAware integration through workspace monitoring and alerting through the use of Tivoli Enterprise Portal defined situations.

zAware monitoring integration

OMEGAMON XE on z/OS V5.1.1 introduces a new workspace with four views in the Tivoli Enterprise Portal that you can use to monitor zAware data. The workspace provides situations that can raise alerts in OMEGAMON when zAware detects warning or critical level anomaly scores and when the zAware client or server is not active on this system.

The zAware resource type is monitored at the system level by OMEGAMON XE on z/OS on that LPAR.

The new zAware Analysis workspace consists of the following views:

- The Anomaly Scores - Last Hour bar chart
- The zAware Information table view
- The Situation Event Console.
- The zAware Analysis - Last Hour table view

The following predefined situations for zAware monitoring are provided:

- KM5_zAware_Analysis_Warn
- KM5_zAware_Analysis_Crit
- KM5_zAware_Client_Status
- KM5_zAware_Server_Status
Enhanced classic commands

Two OMEGAMON for MVS commands have been enhanced: PEEK XDATA and OSPC.

The XDATA minor command of the PEEK major command and the OSPC immediate command have been enhanced to extend reporting on statistics for the actual blocks in use within a data space allocation and the amount of real storage, pageable and fixed, backing each data space.

For more information about these commands, see the *IBM Tivoli OMEGAMON XE on z/OS: OMEGAMON for MVS Command Reference*.

New in V5.1.0

OMEGAMON XE on z/OS introduces support for IBM Tivoli Monitoring version 6.2.3 and z/OS v1.13, support for the new OMEGAMON OMEGAMON enhanced 3270 user interface, and a number of performance and monitoring enhancements.

Support for IBM Tivoli Monitoring V6.2.3 and self-describing agents

OMEGAMON XE on z/OS provides full support for Tivoli Management Services on z/OS version 6.2.3, including the self describing agent feature.

Enabling the self describing capability of OMEGAMON XE on z/OS monitoring agents ensures that the proper level of application data is installed on Tivoli Enterprise Monitoring Servers and the Tivoli Enterprise Portal Server. If the self description feature is activated, runtime verification checks for updated application data. If inconsistent conditions are detected, application data is propagated from the OMEGAMON XE on z/OS agent to the various monitoring servers, which are automatically updated without requiring recycling.

New workspaces for the OMEGAMON Enhanced 3270 User Interface

OMEGAMON XE on z/OS V5.1.0 introduces a set of workspaces designed for the new OMEGAMON enhanced 3270 user interface that support monitoring, planning, and troubleshooting of z/OS systems and resources.

These workspaces instantiate the following scenarios:

- High CPU usage from a Sysplex perspective: Identify high usage, use bottleneck analysis to determine profile of the offending address spaces, use the inspect function to evaluate which instructs in which module are consuming the cycles, and cancel looping jobs.
- High CPU usage from a CPC perspective
- LPAR CPU
- Global Enqueue delay, at the Sysplex level.
- Enqueue delay, LPAR level
- Storage scenarios

OMEGAMON XE on z/OS Take Action commands

OMEGAMON XE on z/OS V5.1.0 introduces the ability to issue commands previously available only with the OMEGAMON for MVS (OMEGAMON classic) product.

By default, any command issued on behalf of OMEGAMON XE on z/OS is issued as a z/OS command. In previous versions, you could also cause commands to be issued as UNIX commands by appending a UNIX-specific prefix. Starting with V5.1.0, you can also use a prefix to issue commands supported only by OMEGAMON XE on z/OS. For more information, see "Issuing OMEGAMON XE on z/OS commands" on page 43.
Health check information
OMEGAMON XE on z/OS now provides health check information for z/OS systems.

Collection and display of health check information require that the IBM Health Checker for z/OS software be installed, configured, and running.

UNIX System Services 64-bit I/O count attribute
Similar to the 32-bit Number of I/Os Count attribute, the Number_of I/Os_Extended_Precision attribute displays the total number of I/O operations performed by the kernel address space since it was started, extended to 64-bit precision.

The 32-bit I/O count wraps when it reaches 2,147,483,648 and revert to 0; the 64 bit I/O count does not wrap until it reaches 9,223,372,036,854,775,807.

Sysplex and CPC status and configuration information
Two new attribute groups, KM5 Host Configuration and KM5 Sysplex Configuration, provide monitoring status and configuration information for Sysplexes and Central Processing Complexes (CPCs).

New classic minor commands
Two new OMEGAMON for MVS minor commands have been added: PEEK LPAG and SYS RMLF.

The LPAG minor of PEEK displays large page usage for an address space. The metrics displayed are the number of allocated large memory objects and the number of 1 MB pages backed in real storage. The RMLF minor of SYS displays statistics for large frames and large pages.

For more information about these commands, see the IBM Tivoli OMEGAMON XE on z/OS: OMEGAMON for MVS Command Reference.

New out-of-the-box defaults
Several defaults have been changed to improve out-of-the-box performance.
- The default for the processing mode for the EPILOG data store has been changed from RESTART to BOTH.
- The auto refresh interval for OMEGAMON for MVS has been changed from 5 seconds to 30 seconds.
- The minimum value for the number of kilobytes of extended storage allocated for TMS:Engine has been increased to 76800.

Performance improvements
Several changes were made in V5.1.0 to improve performance.

In addition to the change in the OMEGAMON for MVS VTAM® mode refresh, the following changes were made to improve performance:
- The Common Storage Area Analyzer (CSA Analyzer) task has been modified to bypass detail collection when total common storage has not changed by more than 1% since the last collection, to save CPU resources.
- The OS390 Unreferenced Interval Count situations have been modified to use the Page Dataset Activity attribute group instead of the Real Storage attribute group, as the paging group requires much less resource consumption to process.
Chapter 2. Using and customizing OMEGAMON XE on z/OS

This chapter is intended to familiarize you with the monitoring resources provided by OMEGAMON XE on z/OS and to help you use them to meet your specific requirements.

The information in this chapter covers the following topics:
• Using and customizing predefined workspaces that report sysplex- and system-level data.
• Activating and customizing predefined situations to enable alerts and reflex actions.
• Configuring historical data collection and reporting.
• Issuing UNIX commands using the Take Action feature.
• Launching Resource Management Facility Monitor III.
• Finding more detailed information on workspaces, attributes, and situations.

The information on the organization and use of workspaces is useful for all OMEGAMON XE on z/OS users. The information on activating and modifying situations and configuring historical data collection is more useful for users with administrative authorities who are responsible for setting up and customizing monitoring and alerts.

Using the predefined workspaces

OMEGAMON XE on z/OS includes two sets of predefined workspaces for the Tivoli Enterprise Portal: sysplex-level workspaces and system-(or LPAR-) level workspaces. In the Tivoli Enterprise Portal, these workspaces are accessed either directly from the physical Navigator view or through links from other workspaces.

In the Navigator, the sysplex workspaces are listed under each managed sysplex name, and the system workspaces are listed under each z/OS managed system name. In a multiplex enterprise, the Navigator looks something like the following:

- Enterprise
 - Windows Systems
 - z/OS Systems
 - SYSPLEX1:MVS:SYSPLEX
 - Coupling Facility Policy Data for Sysplex
 - Coupling Facility Structures Data for Sysplex
 - Sys1
 - MVS Operating System
 - DEMOPLX:SYSI:MVSSYS
 - Address Space Overview
 - Channel Path Activity
 - Sys2
 - SYSPLEX2:MVS:SYSPLEX
Most of the predefined workspaces are capable of reporting historical data. However, you must configure and start historical data collection in order for historical data to be available for reporting (see "Using historical data collection and reporting" on page 23).

Sysplex and system managed system names

From the standpoint of OMEGAMON XE on z/OS, sysplexes and systems are managed systems. In the Tivoli Enterprise Portal Navigator, managed systems are identified by managed system names.

Sysplex managed system names take the form:

```
plexname:MVS:SYSPLEX
```

where `plexname` is typically the true name of the sysplex, but might be configured to be an alias for the sysplex.

System managed system names take the form:

```
plexname:smfid:MVSSYS
```

where `plexname` is typically the true name of the sysplex, but could be configured to be an alias for the sysplex. (This part of the system managed system name typically matches the `plexname` component of its parent sysplex in the navigation tree.) The `smfid` component is the true System Management Facility (SMF) ID for the system or LPAR being monitored.

Organization of the workspaces

The physical Navigator view of the Tivoli Enterprise Portal shows an enterprise as a mapping of platforms, computers, agents, and monitored resources. Each Navigator item can be associated with one or more workspaces that provide information relevant to that level of the Navigator.

In a Sysplex environment, monitored Sysplexes appear between the platform and system levels of the Navigator tree, listed by their managed system names:

```
 Enterprise
  Windows Systems
  z/OS Systems
    SYSPLEX1:MVS:SYSPLEX
      Coupling Facility Policy Data for Sysplex
      Coupling Facility Structures Data for Sysplex
    ...
    Sys1
   Sys2
  SYSPLEX2:MVS:SYSPLEX
```

If OMEGAMON XE on z/OS is installed, the Sysplex Enterprise Overview is the default workspace for the z/OS Systems item in the Tivoli Enterprise Portal Navigator. As its name indicates, this workspace provides an overview of all the sysplexes in your enterprise. From the table views in this workspace you can link to sysplex-level workspaces for a selected sysplex. From the workspace or the z/OS Systems Navigator item, you can also access the Cross-System Cryptographic Coprocessor Overview workspace. To access the workspace from the Navigator, select the z/OS Systems item, then right-click it and select **Workspace** from the popup menu.
Each sysplex item in the Navigator is associated with a sysplex Level Overview workspace, which provides summary data for the selected sysplex and links to more detailed workspaces. Below each sysplex item are items for the sysplex-level resources and components:

- **SYSPLEX1:MVS:SYSPLEX**
 - Coupling Facility Policy Data for Sysplex
 - Coupling Facility Structures Data for Sysplex
 - ...
- **Sys1**
- **Sys2**
- **SYSPLEX2:MVS:SYSPLEX**

Each Sysplex item is associated with one or more workspaces that report information on resources shared by the sysplex or on sysplex workloads. Each of these items has a default workspace, which opens when you select the item. This workspace may have may links to other related workspaces. For example, the default workspace for the **Shared DASD Groups Data for Sysplex** entry is the Shared DASD for Groups workspace, which displays information for all the groups in the sysplex. From this workspace you can link to a workspace that displays details for a selected group of DASD devices.

Under the sysplex items in the Navigator are items for every system (or LPAR) in the sysplex that is being monitored by an OMEGAMON XE monitoring agent. Each system has a default System Level Overview workspace. Under each system item in the Navigator tree is an item for each type of resource being monitored by an OMEGAMON XE agent. For example, if you have installed both OMEGAMON XE on z/OS and IBM Tivoli OMEGAMON XE for Storage on z/OS, you will see entries for MVS Operating System and Storage Subsystem.

- **Sys1**
 - MVS Operating System
 - Storage subsystem

If you expand **MVS Operating System** item, you see the managed system name of the system or LPAR monitored by the OMEGAMON XE on z/OS monitoring agent:

- **Sys1**
 - MVS Operating System
 - DEMOPLX:SYS:1:MVSSYS

If you expand managed system entry, the workspaces that provide information about that system are listed:

- **DEMOPLX:SYS:1:MVSSYS**
 - Address Space Overview
 - Channel Path Activity
 - Common Storage
As with the sysplex-level entries, every entry under the system name is associated with one or more workspaces. Each entry has a default workspace, which opens when you select the entry, and which may have other related workspaces you can access through links in table views in the workspace.

For more information about the organization of the product-provided workspace and the attribute groups associated with them, see “Organization of the sysplex workspaces” on page 311 and “Organization of system-level predefined workspaces” on page 333.

Prerequisites for data reporting

Some workspaces or attributes display data only if specific conditions are met.

See Table 1 for a list of these workspaces and conditions.

<table>
<thead>
<tr>
<th>Data is available in</th>
<th>Only if</th>
</tr>
</thead>
</table>
| Common storage workspaces | The Common Storage Area Analyzer (CSA Analyzer) is started.
Note: The CSA Analyzer is shipped and installed with OMEGAMON XE on z/OS. It is configured as part of the configuration of the OMEGAMON II for MVS component and is started as a separate started task. |
| Channel Path Activity workspace | The Resource Measurement Facility (RMF™) has been started. |
| GRS Ring Systems Data for Sysplex workspace | The global resource serialization (GRS) complex is in ring mode. (If the complex is in star mode, the workspace shows only the name, status, and ring acceleration of each system.) |
| Cryptographic workspaces | At least one IBM cryptographic coprocessor is installed and configured. |
| DASD MVS Workspace and DASD MVS Devices Workspace | The Resource Measurement Facility (RMF) is started. |
| Dynamic I/O device information | OMEGAMON Subsystem is running. |
| Tape Drives workspace | OMEGAMON Subsystem is running. |
| 4 Hour MSUs attribute in the System CPU Utilization workspace | A defined capacity is used as a basis for pricing and the z/OS system is not running as a guest on z/VM®. |
| User Response Time workspace | The End to End (ETE) Response Time collector is started.
Note: The ETE response time collector is shipped and installed with OMEGAMON XE on z/OS. It is configured as part of the configuration of the OMEGAMON II for MVS component and is started as a separate started task. If you start the collector after you start the Tivoli Enterprise Monitoring Server, you must restart the monitoring server. |
| Workspaces showing zIIP and zAAP (IFA) data | Either:
• System z® Application Assist Processors (zAAP) and Integrated Information Processors (zIIP) are configured on the systems, or:
• the PROJECTCPU control in the SYS1.PARMLIB IEAOPTxx member is specified as YES. |
| LPAR cluster workspaces | The z/OS system is not running as a guest on z/VM. |
| z/OS UNIX System Services attributes | The address space where the OMEGAMON XE on z/OS product is running has SUPER USER authority. This level of authority is equivalent to root (UID=0). |
Table 1. Prerequisites for data display (continued)

<table>
<thead>
<tr>
<th>Data is available in</th>
<th>Only if</th>
</tr>
</thead>
</table>
| Coupling facility, cross-system coupling facility, and system lock data collected by the Resource Management Facility (RMF) Distributed Data Server | You have enabled use of RMF data collection as described in IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide, and RMF has been started.
Note: If you enable RMF data collection, there will be no data in the Paths Workspace for CF System. |

Customizing workspaces

You can modify the product-provided workspaces in various ways, or use them as models for creating your own workspaces.

You can modify the predefined workspaces to:

- Add, delete, or modify views.
- Modify queries.
- Apply thresholds or filters.
- Change the appearance of tables and charts.
- Add links to other workspace, or make a workspace accessible using a URL.

To modify a predefined workspace, create a copy of the workspace, save it with a different name, and then modify the copy. If you retain the original name, your customized workspace will be overwritten the next time you apply updates to the product.

Tip: You must have Modify Workspace authority to modify workspaces.

If you have OMEGAMON DE on z/OS, you can create workspaces that include both mainframe and distributed sites, applications, and business processes.

Using cross-product workspace links

Dynamic workspace linking allows you to easily navigate between workspaces that are provided by multiple products. This feature aids problem determination and improves integration across the monitoring products, allowing you to quickly determine the root cause of a problem. Predefined cross-product links provided by the OMEGAMON XE products allow you to obtain additional information about systems, subsystems, resources or network components that are being monitored by other monitoring agents.

When you right-click on a link, a list of links is displayed. This list may contain links to workspaces provided by one or more monitoring products. The product you are linking to must be installed and configured and your Tivoli Enterprise Portal user ID must be authorized to access the target product in order for the link to that product's workspace to be included in the list.

Choose a workspace from the list to navigate to that workspace. You will link to the target workspace in context, meaning that you will receive additional information that is related to the system, subsystem or resource you are currently viewing.

If you choose a workspace from the list and the target workspace is not available, you will receive message KFWITM081E. Refer to the IBM Tivoli OMEGAMON XE on z/OS: Troubleshooting Guide for more information.
Predefined links in the Address Space Overview workspace for each managed system allow you to link to the IBM Tivoli OMEGAMON XE for CICS on z/OS Region Overview workspace and the IBM Tivoli OMEGAMON XE for Mainframe Networks Applications Connections workspace to obtain further information related to a selected address space.

You can also link to the OMEGAMON XE for CICS Region Overview workspace from the Address Space CPU Utilization workspace.

Dynamic workspace links in a mixed environment

If you are staging an upgrade, you may have several versions of monitoring agents installed in your environment. For example, you may have an OMEGAMON XE on z/OS V4.2.0 monitoring agent and an OMEGAMON XE on z/OS V5.1.0 monitoring agent running on the same z/OS system during the migration period.

In this migration scenario, dynamic workspace linking from an OMEGAMON XE V5.1.0 workspace to an OMEGAMON XE V4.2.0 product workspace will work as long as the target workspace exists in the V4.2.0 product. If the target workspace does not exist, you will receive message KFWITM081E.

In cases where the V5.1.0 version of the target workspace has been modified (for example to accept link parameters to limit the data displayed) you may notice different behavior when you upgrade the target product.

Finding more information about workspaces

For more information on predefined workspaces, the views they contain, and the attribute groups on which they are based, see "Sysplex workspaces" on page 311 and "System workspaces" on page 333. For more information about customizing workspaces, see IBM Tivoli Monitoring: Administrator’s Guide and the Tivoli Enterprise Portal online Help.

Using the predefined situations

To help you begin monitoring quickly, OMEGAMON XE on z/OS provides a number of predefined situations. These situations monitor for conditions that are typically considered to be problematic or noteworthy and trigger event indicators in the Navigator when those conditions occur.

You must distribute and start the predefined situations before they can begin monitoring. You should evaluate each situation carefully and adjust its thresholds before you start monitoring.

Activating situations

To activate a situation, you use the Situation editor in the Tivoli Enterprise Portal to distribute (assign) the situation to one or more managed systems or managed system lists and then start the situation. Each predefined situation is already associated with an appropriate Navigator item. After you distribute a situation, you will see its name listed under the name of its associated item in the Situation editor.

Some system-level situations are shipped with very high or very low values, which essentially disable them. Others have values that may be inconsistent with the policies, goals, or monitoring requirements of your site. Examine the predefined situations and customize them with values that are meaningful for your installation before you activate them.

Distributing situations

Distributing situations assigns them to the system or systems you want them to monitor. Distribute only the situations that you are going to set to autostart or plan to manually enable. If you distribute all the situations, they will be propagated to the agents when the Tivoli Enterprise Monitoring Server starts. This may simplify any subsequent activation procedures, but it extends startup time. Review the situations to
determine which ones you plan to use and add distribution lists for only those situations. Once the situations are distributed, their alerts will appear on the Navigator items they are associated with.

You distribute situations using the Tivoli Enterprise Portal Situation editor. To distribute a situation:

1. Open the Situation editor.

 You can access the Situation editor from the toolbar or by right-clicking an item in the Navigator and selecting Situations... from the popup menu.

2. If necessary, use Set Situation filter criteria to view the situations available for distribution.

 Check Eligible for Association to see a list of all the situations which are written for this type of managed system (MVS Sysplex or MVS System, depending on where you access the Situation editor from; if you access the editor from the toolbar, you see situations for all types of managed systems).

 Any undistributed situations show their icon partially dimmed .

3. Select (click) the situation you want to distribute.

4. Select the Distribution tab.

 The available managed systems and managed systems lists are displayed.

5. Select the systems and lists to which you want to distribute the situation, and then click the left arrow to assign the situations to the systems or system lists.

6. Click Apply to save and implement the change and continue editing; click OK to apply and save the change and close the Situation editor.

Starting situations

Some situations you might want to run for a limited time or only under specific conditions. These situations you should start and stop manually. Other situations you may want to run continuously. These situations you should set to run at Tivoli Enterprise Monitoring Server startup, so they will run across monitoring server restarts.

Initially, you might want to start situations manually to evaluate the impact of the monitoring and monitoring interval on system performance, adjust them accordingly, and then decide if you want the situation to run indefinitely, across Tivoli Enterprise Monitoring Server restarts.

To start a situation, right-click the situation name in the Situation editor tree and select Start from the popup menu.

To set a situation to start automatically when the monitoring server starts:

1. Select (click) the name of the situation in the Situation editor tree.

2. The settings for the situation are displayed in the right-hand frame of the editor.

3. On the Formula tab, check Run at startup.

4. Click Apply to save and implement the change and continue editing; click OK to apply and save the change and close the Situation editor.

To run situations at Tivoli Enterprise Monitoring Server start up, select Run at startup on the Formula tab of the situation definition in the Situation editor.

Modifying situations

You modify situations using the Situation editor. Before activating any predefined situations, examine the conditions and values they monitor and, if necessary, adjust them to ones better suited to your environment.

To modify a situation:

1. Open the Situation editor from the toolbar, or right-click a Navigator entry and select Situations... from the popup menu.
Tip: If you open the Situation editor by right-clicking a Navigator item, the situation you create is automatically associated with that item. If you open the editor from the toolbar, you must manually associate the new situation with a Navigator item in order to see an alert indicator when the situation evaluates as true.

2. Use the Set Situation filter criteria to view the situations.
 If necessary, check Associated with Monitored Application to see all situations that were written for this type of agent, regardless of where they are distributed.

3. To create a copy, right-click the situation and select Create Another... from the popup menu.

4. Type a name for the new situation and click OK.

5. Modify the situation properties as required and click OK to save the new situation and close the Situation editor.

Migrating situations
Preexisting situations for IBM OMEGAMON z/OS Management Console cannot be migrated. Any user-defined situations must be recreated using the OMEGAMON XE on z/OS Health Check attributes.

Preexisting situations built for the attribute groups CF Clients and CF Policy will not trigger events if coupling facility data is being collected by RMF. To enable these situations function, change the threshold values in the predicates slightly using the Tivoli Enterprise Portal Situation editor and then save and restart the situation. This causes the SQL for the situation to be rebuilt and in the process it switches to using the new table name. You can then re-edit the situation and set the threshold back to what it was previously.

Existing OMEGAMON XE for UNIX System Services situations are migrated when OMEGAMON XE on z/OS product-provided situations are installed into the hub monitoring server. You may continue to use the existing situations, especially if you have customized them, in which case you should not start the 4.2.0 versions. Alternatively, you can delete the original situations and activate the V4.2.0 versions. Some of these situations have been renamed, as shown in Table 2.

Table 2. Old and new UNIX System Services situation names

<table>
<thead>
<tr>
<th>OMEGAMON XE for UNIX System Services V220</th>
<th>OMEGAMON XE on z/OS V4.2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check_Missing_Mount_Point</td>
<td>Check_Missing_UNIX_Mount_Point</td>
</tr>
<tr>
<td>Excess_Kernel_CPU_Time</td>
<td>Excess_UNIX_Kernel_CPU_Time</td>
</tr>
<tr>
<td>Excess_Process_UNIX_Run_Time</td>
<td>Excess_Process_UNIX_Run_Time</td>
</tr>
<tr>
<td>Excess_UNIX_System_Time</td>
<td>Excess_UNIX_System_Time</td>
</tr>
<tr>
<td>Excess_UNIX_User_Time</td>
<td>Excess_UNIX_User_Time</td>
</tr>
<tr>
<td>ENQ_Contention_Critical</td>
<td>UNIX_ENQ_Contention_Critical</td>
</tr>
<tr>
<td>ENQ_Contention_Warning</td>
<td>UNIX_ENQ_Contention_Warning</td>
</tr>
<tr>
<td>File_System_Free_Space_Critical</td>
<td>UNIX_File_System_FreeSpace_Crit</td>
</tr>
<tr>
<td>File_System_Free_Space_Warning</td>
<td>UNIX_File_System_FreeSpace_Warn</td>
</tr>
<tr>
<td>Logged_On_User_Idle</td>
<td>UNIX_Logged_On_User_Idle</td>
</tr>
<tr>
<td>Missing_inetd_Process</td>
<td>Missing_UNIX_inetd_Process</td>
</tr>
<tr>
<td>Quiesced_File_System</td>
<td>Quiesced_UNIX_File_System</td>
</tr>
<tr>
<td>Shortage_of_Processes_Warning</td>
<td>Shortage_of_UNIX_Processes_Warn</td>
</tr>
<tr>
<td>Unwanted_inetd_Process</td>
<td>Unwanted_UNIX_inetd_Process</td>
</tr>
</tbody>
</table>
A number of situations included in earlier versions of OMEGAMON XE on z/OS were renamed in V4.1.0 and may require special handling.

- Real storage

 The real storage situations listed in Table 3 have been renamed to reflect the fact that OMEGAMON XE on z/OS reports only central storage. If you are running with a mixed environment during a staged upgrade, the older situations will continue to work with V3.1 agents and will be migrated to your V4.2.0 environment, but you can use only the new versions with V4.2.0 agents. You cannot distribute the new situations to V3.1 agents. When you have completed your upgrade, you should activate the new situations on the upgraded nodes and delete the older versions. (They will run, but they will never become true.)

<table>
<thead>
<tr>
<th>Old name</th>
<th>New name</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS390_CentralAvailFrames_Crit</td>
<td>OS390_Available_Frames_Crit</td>
</tr>
<tr>
<td>OS390_CentralAvailFrames_Warn</td>
<td>OS390_Available_Frames_Warn</td>
</tr>
<tr>
<td>OS390_CentralOnlineFrames_Crit</td>
<td>OS390_Frames_Online_Crit</td>
</tr>
<tr>
<td>OS390_CentralOnlineFrames_Warn</td>
<td>OS390_Frames_Online_Warn</td>
</tr>
</tbody>
</table>

 The following real storage situations are no longer included. They will continue to run on V3.1 agents, in a mixed environment, but you should delete them when you have completed upgrading to V4.2.0.

 - OS390_ExpandedOnlineFrames_Crit
 - OS390_ExpandedOnlineFrames_Warn
 - OS390_Real_Stor_Migrate_Age_Crit
 - OS390_Real_Stor_Migrate_Age_Warn
 - OS390_Migration_Rate_Crit
 - OS390_Migration_Rate_Warn
 - OS390_ExpandedToCentralStor_Crit
 - OS390_ExpandedToCentralStor_Warn
 - OS390_CentraltoExpandedStor_Crit
 - OS390_CentraltoExpandedStor_Warn

- Because of architectural changes, the names of the situations listed in Table 4 were shortened in V4.1.0. You should replace the old situations with the renamed versions and delete them. If you continue to use the older situations, when the situations evaluate to true, you will see correct data in the Initial Situation values column of the Situation Event Console, but not in the Current Situation column.

<table>
<thead>
<tr>
<th>Old name</th>
<th>New name</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS390_System_PageFault_Rate_Crit</td>
<td>OS390_System_PageFaultRate_Crit</td>
</tr>
<tr>
<td>OS390_System_PageFault_Rate_Warn</td>
<td>OS390_System_PageFaultRate_Warn</td>
</tr>
<tr>
<td>OS390_Channel_LPAR_Busy_Pct_Crit</td>
<td>OS390_Channel_LPAR_BusyPct_Crit</td>
</tr>
<tr>
<td>OS390_Channel_LPAR_Busy_Pct_Warn</td>
<td>OS390_Channel_LPAR_BusyPct_Warn</td>
</tr>
<tr>
<td>OS390_Cache_FastWrite_HitPt_Crit</td>
<td>OS390_Cache_FastWriteHitPt_Crit</td>
</tr>
<tr>
<td>OS390_Cache_FastWrite_HitPt_Warn</td>
<td>OS390_Cache_FastWriteHitPt_Warn</td>
</tr>
<tr>
<td>OS390_Common_PageDS_PctFull_Crit</td>
<td>OS390_Common_PageDSPctFull_Crit</td>
</tr>
<tr>
<td>OS390_Common_PageDS_PctFull_Warn</td>
<td>OS390_Common_PageDSPctFull_Warn</td>
</tr>
<tr>
<td>OS390_Tape_Permanent_Errors_Crit</td>
<td>OS390_Tape_Permanent_Error_Crit</td>
</tr>
<tr>
<td>OS390_Tape_Permanent_Errors_Warn</td>
<td>OS390_Tape_Permanent_Error_Warn</td>
</tr>
</tbody>
</table>
Recreating or replacing z/OS Management Console situations

OMEGAMON XE on z/OS V5.1.0 and later is incompatible with IBM OMEGAMON z/OS Management Console. If you previously ran z/OS Management Console situations, you can replace them with existing OMEGAMON XE on z/OS situations or recreate them using OMEGAMON XE on z/OS attributes.

Table 5 lists the Sysplex-level OMEGAMON z/OS Management Console situations that do not have OMEGAMON XE on z/OS equivalents, along with the attribute group and situation formula you can use to recreate them. Remember that you will need to distribute and start the new situations on the systems where you want them to run.

Table 5. Creating OMEGAMON XE on z/OS situations

<table>
<thead>
<tr>
<th>Situation name</th>
<th>OMEGAMON XE on z/OS attribute group</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>KHL_CF_Paths_Problem</td>
<td>CF Path</td>
<td>$status==NotOperational</td>
</tr>
<tr>
<td>KHL_CF_Policy_Reformat</td>
<td>CF Policy</td>
<td>$reformat_required==YES</td>
</tr>
<tr>
<td>KHL_CF_Structures_Problem</td>
<td>CF Structures</td>
<td>$structure_status==Failed OR $structure_status==RebuildFailed</td>
</tr>
<tr>
<td>KHL_CF_Systems_Problem</td>
<td>CF Systems</td>
<td>$status!=Okay</td>
</tr>
<tr>
<td>KHL_XCF_Paths_Problem</td>
<td>XCF Paths</td>
<td>$status!=Working</td>
</tr>
<tr>
<td>KHL_XCF_Systems_Problem</td>
<td>XCF System</td>
<td>$status!=Active</td>
</tr>
</tbody>
</table>

Table 6 lists the OMEGAMON z/OS Management Console situations that have OMEGAMON XE on z/OS equivalents. Remember that you must distribute and start the OMEGAMON XE on z/OS situations if you want to use them. Check the situation formulas to make sure they use the same values as the OMEGAMON z/OS Management Console situations you were using previously.

Table 6. OMEGAMON z/OS Management Console and OMEGAMON XE on z/OS equivalent situations

<table>
<thead>
<tr>
<th>OMEGAMON z/OS Management Console situation</th>
<th>Equivalent OMEGAMON XE on z/OS situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KHL_GTF_Active</td>
<td>OS390_GTF_Active_Crit OS390_GTF_Active_Warn</td>
</tr>
<tr>
<td>KHL_HealthChecker_Problems</td>
<td>KM5_HealthChecker_Problems</td>
</tr>
<tr>
<td>KHL_High_Severity_Check</td>
<td>KM5_High_Severity_Check</td>
</tr>
<tr>
<td>KHL_OLTEP_Active</td>
<td>OS390_OLTEP_Active_Crit OS390_OLTEP_Active_Warn</td>
</tr>
<tr>
<td>KHL_Paging_Dataset_Utilization</td>
<td>OS390_PLPA_PgeDS_PctFull_Crit OS390_PLPA_PgeDS_PctFull_Warn</td>
</tr>
<tr>
<td>KHL_RMFP_Problem</td>
<td>OS390_RMFP_Not_Active_Crit OS390_RMFP_Not_Active_Warn</td>
</tr>
<tr>
<td>KHL_SMF_Problem</td>
<td>OS390_SMF_Not_Recording_Crit OS390_SMF_Not_Recording_Warn</td>
</tr>
<tr>
<td>KHL_Syslog_Problem</td>
<td>OS390_Syslog_Not_Recording_Crit OS390_Syslog_Not_Recording_Warn</td>
</tr>
</tbody>
</table>

Note: OMEGAMON XE on z/OS does not currently have an equivalent for KHL_AddressSpace_Waiting.

Finding more information about situations

For descriptions of all the predefined situations shipped with OMEGAMON XE on z/OS, including definitions and advice, see “Sysplex situations” on page 265 and “System situations” on page 274.
Using historical data collection and reporting

In addition to monitoring and displaying real-time data, OMEGAMON XE on z/OS can log data so you can examine data for longer periods of time.

You can view the logged historical data in OMEGAMON XE on z/OS workspaces. Table and chart views for which historical data collection is enabled have a button tool for setting a time span. You can see up to 24 hours of previously collected data. If you have configured data warehousing, you can view samples for longer periods of time.

In order for historical data to be available in workspaces, you must configure and start historical data collection for the appropriate attribute groups using the Tivoli Enterprise Portal (see “Configuring historical data collection”). In addition, to store short-term data historical data for agents running on z/OS or reporting to monitoring servers on z/OS, data sets must be allocated in the persistent data store and maintenance of the data store must be configured. To warehouse data, DB2 or Microsoft SQL Server must be installed and your environment must be configured to include the Warehouse Proxy agent and Tivoli Data Warehouse. For information on setting up the persistent data store and configuring maintenance, see the OMEGAMON XE and Tivoli Management Services on z/OS: Common Planning and Configuration Guide and the IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide. For information about installing and setting up the Tivoli Data Warehouse and the Warehouse Proxy agent, see IBM Tivoli Monitoring: Installation and Setup Guide.

You can also export the logged historical data to delimited flat files for use with third-party reporting tools to produce trend analysis reports and graphics. Data warehoused to the Tivoli Data Warehouse, a relational database, can be used to produce customized history reports.

Configuring historical data collection

You configure historical data collection using the History Collection Configuration dialog box in the Tivoli Enterprise Portal.

Configuration is done on an attribute-group by attribute-group basis. This allows you to configure collection for different attribute groups at different intervals so important volatile data may be collected more often, while less dynamic data can be collected less frequently.

Not all attribute groups can collect historical data. This is because collecting history data for these attribute groups is not appropriate or would have a detrimental effect on performance. For example, collection might generate unmanageable amounts of data. Only those attribute groups for which data can be collected are listed in the Configuration dialog box.

Note that for a given attribute group, the same history collection options are applied to all Tivoli Enterprise Monitoring Servers for which collection for that attribute group is currently enabled. You cannot specify different intervals for the same attribute group for different monitoring servers.
Starting and stopping data collection

You start and stop historical data collection for individual attribute groups from the History Collection Configuration dialog box.

In the Select Attribute Group table, select the attribute group or groups for which you want to change collection status, then press the appropriate button. Collection continues until the agent or monitoring server is stopped or recycled.

Reducing the impact of requests from large tables

Requests for historical data from tables that collect a large amount of data have a negative impact on the performance of the product components involved. To reduce the performance impact on your system, set a longer collection interval for attribute groups that collect a large amount of data, in particular the Address Space groups, the DASD MVS Devices group, and the Enqueue group (for sites that are active with WebSphere®). You specify the collection interval from the Configuration tab of the History Collection Configuration dialog.
Note: No data is collected for sysplex-level shared DASD unless a DASD filter situation has been activated. This is to prevent high CPU and storage problems caused by the large amount of data that may be generated with large DASD volume counts. For more information, see Chapter 5, “Monitoring shared DASD,” on page 73.

When you are viewing historical data, set the Time Span interval to the shortest time span setting sufficient to provide the information you need, especially for tables that collect a large amount of data. Selecting a long time span interval for the report time span increases the amount of data being processed, and may have a negative impact on performance. The program must dedicate more memory and processor cycles to process a large volume of report data.

If the amount of information requested is too large, the agent may take too long to process the request and the request may time out. However, the agent continues to process the report data to completion, and remains blocked, even though the report data is not viewable.

Using summarization and pruning can also help reduce the amount of historical data you store and request. For more information about using these features, see the IBM Tivoli Monitoring: User’s Guide and the IBM Tivoli Monitoring: Administrator’s Guide.

Tivoli Common Reporting reports
OMEGAMON XE on z/OS includes reports that run under Tivoli Common Reporting, a reporting tool and strategy common across Tivoli products. Tivoli Common Reporting provides a consistent approach to viewing and administering reports. This reporting environment runs on Windows, Linux, and UNIX.

For more information about Tivoli Common Reporting platforms, see the Tivoli Common Reporting: User’s Guide. To learn more about how the OMEGAMON XE monitoring agents on zSeries use Tivoli Common Reporting, see the OMEGAMON XE and Tivoli Management Services on z/OS: Reports for Tivoli Common Reporting.

The reports provided with OMEGAMON XE on z/OS are historical reports run against data collected on a DB2–based Tivoli Data Warehouse V6.2 Fix Pack 1 or later running on Windows. Reports for OMEGAMON XE on z/OS are provided as report packages, compressed files containing reports, documentation, graphics, and dynamic link libraries. The OMEGAMON XE on z/OS report package is included as a .zip file on the application data DVD in the REPORTS directory, and the REPORTS directory is divided into subdirectories named with the three-character prefix that identifies the product (the prefix for OMEGAMON XE on z/OS is KM5). For example, on a Windows machine, if the DVD or CD drive is labelled D:, reports are in directories such as: D:\REPORTS\KM5. These reports are not installed when application support is installed. You must obtain the reports from the media.

Using the reports
Before you can use the reports in the Tivoli Common Reporting package, you must ensure that you have set up your environment.

Before you can use the reports in the report package, perform the following steps:

• Install Tivoli Common Reporting, using the information found in the Tivoli Common Reporting: User’s Guide.

• Ensure that your environment meets the requirements described in the “Prerequisites” section of the OMEGAMON XE and Tivoli Management Services on z/OS: Reports for Tivoli Common Reporting.

• Perform the setup functions described in the OMEGAMON XE and Tivoli Management Services on z/OS: Reports for Tivoli Common Reporting
 – Ensuring that historical reporting is enabled
 – Importing the report package
 – Configuring the data source
 – Generating a sample report
See the “Troubleshooting” section of the OMEGAMON XE and Tivoli Management Services on z/OS: Reports for Tivoli Common Reporting book if you have any problems performing these tasks.

To develop reports of your own or edit the reports provided with this product, you will need a Eclipse BIRT Report Designer, which is a noncharge, open-source tool. This tool is not included with Tivoli Common Reporting, but can be downloaded from http://www.eclipse.org/birt/phoenix/ or from the Tivoli Common Reporting page at IBM developerWorks® http://www.ibm.com/developerworks/

Typical types of reports available with Tivoli Common Reporting

A report can either be run on demand or a snapshot can be created at any time for viewing later. An on-demand report is a formatted version of a report run with the currently available data and viewed immediately. When you run an on-demand report, you can specify the parameter values to use; the report is then formatted using the current data and displayed in the report viewer. You can also create, save, and access snapshot reports, saved versions of a report using data from a particular time. Snapshots are useful for generating unattended reports in advance. Snapshots are of particular value in avoiding the wait for a big report to run. Reports may take a long time to run when you request a huge amount of data, such as the past month of real time measurements.

Refer to the [IBM Tivoli Common Reporting User’s Guide](http://www.ibm.com/developerworks/tivoli/library/t-tcr/) for information about snapshot reports or look in the online help for Tivoli Common Reporting.

Because Tivoli Management Services supports the summarization and pruning of data, many OMEGAMON XE packaged reports can also generate summarized reports. If a packaged report supports summarized data and the Summarization Agent has been configured to collect data for the attribute group required (at the Tivoli Enterprise Portal console), then selected reports will provide an option to specify a summarization period (Hourly, Daily, Weekly, Monthly, Quarterly, or Yearly). The resulting reports reflect data summarized at that level. You can change the summarization period dynamically from a generated report without completing the parameters definition dialog again by clicking a different summarization period in the Available Summarization Time Periods area of a summarized report. For more information about summarization and pruning, see the [IBM Tivoli Monitoring: Administrator’s Guide](http://www.ibm.com/developerworks/tivoli/library/t-tcr/).

Some OMEGAMON XE summarized reports in PDF and HTML format may also have embedded drill-through reports available. Drill-through refers to an embedded link from one report to another report that provides additional detail. You can open a drill-through report by clicking a point in a line graph or a bar in a bar graph. Table Group headings can also be selected for drill-through actions.

Note: If you are not seeing drill-through reports for your snapshot reports, first check the reports in this chapter to ensure that this report type is available. If it is available but is not displaying the correct data, check the setting on the Maximum Levels Of Drill-through Snapshots property. See the online help for information about the Properties dialog box.

OMEGAMON XE on z/OS includes the following reports:

- z/OS Status DASD Issues
- z/OS Status WLM Service Class Period
- z/OS Utilization Common Storage
- z/OS Utilization LPAR Summary
- z/OS Utilization LPAR Usage Summary
- z/OS Utilization Real Storage

These reports are described in [OMEGAMON XE on z/OS reports on page 27](http://www.ibm.com/developerworks/tivoli/library/t-tcr/). Each description includes the following information:
• A description of the report
• The most logical users of this report
• The default attribute graphed in the report
• Other attributes from the same attribute group and workspace that you could graph instead
• Resource identifiers that form the matrix for the report and are not selectable
• Other resource identifiers you can specify that act as filters for the data shown in the report. The choices in this cell usually correspond to the choices in the Report Parameters dialog.
• The name of the workspace that displays the same data as this report
• The attribute group or table in Tivoli Data Warehouse that is the source of the attributes
• The types of reports available

OMEGAMON XE on z/OS reports

This section describes the Tivoli Common Reporting reports available for OMEGAMON XE on z/OS.

Brief definitions of the attributes are provided in the tables that follow. More complete definitions for the attributes described in these tables can be found in the *IBM Tivoli OMEGAMON XE on z/OS: User’s Guide* or in the online help for Tivoli Enterprise Portal.

z/OS Status DASD Issues report:

The OMEGAMON XE on z/OS Status DASD Issues report shows DASD issues that occurred during the selected time period. Systems programmers responsible for monitoring z/OS DASD storage can use this report to determine issues with DASD devices that may require corrective action.
Figure 4. z/OS Status DASD Issues report
Table 7 describes the characteristics of the z/OS Status DASD Issues report.

Table 7. z/OS Status DASD Issues report

<table>
<thead>
<tr>
<th>LPAR Identifier</th>
<th>Date/Time</th>
<th>Dropped Ready</th>
<th>Not Responding</th>
<th>No Dynamic Path Reconnect</th>
<th>Indexed VTOC Lost</th>
<th>Cache Deactivated</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP22</td>
<td>Dec 3, 2008 6:00 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 3, 2008 7:00 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 3, 2008 8:00 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 3, 2008 9:00 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 3, 2008 10:00 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 3, 2008 11:00 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 12:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 1:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 2:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 3:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 4:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 5:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 6:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 7:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 8:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 9:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 10:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 11:00 AM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SP22</td>
<td>Dec 4, 2008 12:00 PM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Counts for each type of DASD issue. Possible DASD issues include:

- **Dropped Ready**: The count of devices in this condition. The dropped ready condition may indicate a power supply or other hardware problems, or the switch may have been turned off at the device.
- **Not Responding**: The count of devices in this condition. When a device is not responding to I/O requests, start pending messages may appear on the system console. In multiple systems having shared DASD environments, this may be caused by a RESERVE command issued by another system. If this is the cause of the problem, it may be possible to change the RESERVE to a global enqueue. If you cannot find the cause of any unknown reserves or enqueues, a hardware malfunction is possible, causing the device to show dropped ready.
- **No Dynamic Path Reconnect**: The count of devices in this condition
- **Indexed VTOC Lost**: The count of devices in this condition. Note that on heavily used volumes with many data sets, an index to a VTOC may significantly improve I/O performance. System routines at times may disable a VTOC index and return the VTOC to its non-indexed format. Use the DSF BUILIDX command to return to the VTOC to indexed format. If the problem persists, you may need to delete and rebuild the index using DSF
- **Cache Deactivated**: The count of volumes that are eligible for cache but do not have cache activated.
Table 7. z/OS Status DASD Issues report (continued)

<table>
<thead>
<tr>
<th>z/OS Status DASD Issues report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative attributes that could be graphed</td>
</tr>
<tr>
<td>Resource identifiers displayed in the report that are not selectable</td>
</tr>
<tr>
<td>Optional resource filters</td>
</tr>
<tr>
<td>• Managed System: A z/OS operating system in your enterprise that a Tivoli OMEGAMON XE for z/OS agent is monitoring.</td>
</tr>
<tr>
<td>• Time Period: The time period, both dates and duration, shown in the report. Options are:</td>
</tr>
<tr>
<td>- All</td>
</tr>
<tr>
<td>- Today</td>
</tr>
<tr>
<td>- Yesterday</td>
</tr>
<tr>
<td>- Last 24 hours</td>
</tr>
<tr>
<td>- Last 7 Days</td>
</tr>
<tr>
<td>- Last 30 Days</td>
</tr>
<tr>
<td>- Last 90 Days</td>
</tr>
<tr>
<td>- Last 365 Days</td>
</tr>
<tr>
<td>- Current® Week</td>
</tr>
<tr>
<td>- Last Week</td>
</tr>
<tr>
<td>- Current Month</td>
</tr>
<tr>
<td>- Last Month</td>
</tr>
<tr>
<td>- Last 3 Months</td>
</tr>
<tr>
<td>- Year To Date</td>
</tr>
<tr>
<td>If no time period is specified, Last 30 Days is the default.</td>
</tr>
<tr>
<td>• Summarization Level: A pre-summarized time period. If the Tivoli Data Warehouse Summarization Agent has been run for the table used by this report, summarization periods will be selectable. Selecting Not Summarized accesses detailed data (for example, every 15 minutes). Valid choices are Hourly, Daily, Weekly, Monthly, or None. If no summarization period is specified, None is the default. This value can also be changed dynamically using the Available Summarization Periods option on any report that may access summarized data.</td>
</tr>
<tr>
<td>Workspace name</td>
</tr>
<tr>
<td>DASD MVS</td>
</tr>
<tr>
<td>Attribute group or table in Tivoli Data Warehouse</td>
</tr>
<tr>
<td>DASD MVS</td>
</tr>
<tr>
<td>Types of reports available</td>
</tr>
<tr>
<td>• A line chart showing the counts of problems detected over the specified time period</td>
</tr>
<tr>
<td>• A table view showing a count of DASD devices that are in the following conditions: No Dynamic Path Reconnect, Not Responding, Indexed VTOC Lost, Dropped Ready, and Cache Deactivated.</td>
</tr>
</tbody>
</table>

z/OS Status WLM Service Class Period report:

The OMEGAMON XE on z/OS Status WLM Service Class Period report shows service class period performance relative to goals for the selected sysplex, averaged across the selected time period. A manager responsible for meeting service levels across the sysplex can use this report to determine how well service classes and periods are performing relative to goals.
Table 8 on page 32 shows the characteristics of the z/OS Status WLM Service Class Period report.

Figure 6. z/OS Status WLM Service Class Period report
Table 8. z/OS Status WLM Service Class Period report

<table>
<thead>
<tr>
<th>Default attribute graphed</th>
<th>Performance index for selected periods. These indices are supported:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Goal: Describes the service class period’s goal as a complete text string.</td>
</tr>
<tr>
<td></td>
<td>• Goal Importance: Importance level of the goal for the service class period. Goal importance for the service class is set as part of the Workload Manager (WLM) policy. When WLM cannot satisfy all goals, it will try to meet goals for more important service class periods first. Valid values are: Highest, High, Medium, Low, and Lowest.</td>
</tr>
<tr>
<td></td>
<td>• Actual Host: Measured result for this service class period, either response time (in milliseconds) or velocity (between 0 and 100), depending on the goal type.</td>
</tr>
<tr>
<td></td>
<td>• Performance Index: Measure of how the class and period are performing in relation to the goal. Values less than or equal to 1.00 indicate that the goal has been achieved. Values greater than 1.0 indicate that the goal has been missed. The larger the index, the further the service class period from the goal.</td>
</tr>
<tr>
<td></td>
<td>• Worst Performance Index: Performance index value scaled to hundredths, calculated for this service class on an individual z/OS image.</td>
</tr>
<tr>
<td></td>
<td>• Transaction Rate: Number of transactions per second currently being processed in the service class period.</td>
</tr>
<tr>
<td></td>
<td>• Actual Network: Average network response time, in milliseconds, for the service class.</td>
</tr>
<tr>
<td></td>
<td>• Actual Total: Total actual value, in milliseconds, for the service class period. Actual Total presents the measured result including network delay where applicable (for response time-oriented goals). The average measured network delay is added to the measured host response time.</td>
</tr>
<tr>
<td></td>
<td>• Workload: Name of the workload that contains the service class (for example, BATCH).</td>
</tr>
</tbody>
</table>

| Alternative attributes that could be graphed | None |
| Resource identifiers displayed in the report that are not selectable | None |
Table 8. z/OS Status WLM Service Class Period report (continued)

<table>
<thead>
<tr>
<th>Optional resource filters</th>
<th>Managed System: A z/OS operating system in your enterprise that a Tivoli OMEGAMON XE for z/OS agent is monitoring.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Period: The time period, both dates and duration, shown in the report.</td>
<td>Options are:</td>
</tr>
<tr>
<td></td>
<td>– All</td>
</tr>
<tr>
<td></td>
<td>– Today</td>
</tr>
<tr>
<td></td>
<td>– Yesterday</td>
</tr>
<tr>
<td></td>
<td>– Last 24 hours</td>
</tr>
<tr>
<td></td>
<td>– Last 7 Days</td>
</tr>
<tr>
<td></td>
<td>– Last 30 Days</td>
</tr>
<tr>
<td></td>
<td>– Last 90 Days</td>
</tr>
<tr>
<td></td>
<td>– Last 365 Days</td>
</tr>
<tr>
<td></td>
<td>– Current Week</td>
</tr>
<tr>
<td></td>
<td>– Last Week</td>
</tr>
<tr>
<td></td>
<td>– Current Month</td>
</tr>
<tr>
<td></td>
<td>– Last Month</td>
</tr>
<tr>
<td></td>
<td>– Last 3 Months</td>
</tr>
<tr>
<td></td>
<td>– Year To Date</td>
</tr>
<tr>
<td>If no time period is specified, Last 30 Days is the default.</td>
<td>Summarization Level: A pre-summarized time period. If the Tivoli Data Warehouse Summarization Agent has been run for the table used by this report, summarization periods will be selectable. Selecting Not Summarized accesses detailed data (for example, every 15 minutes). Valid choices are Hourly, Daily, Weekly, Monthly, or None. If no summarization period is specified, None is the default. This value can also be changed dynamically using the Available Summarization Periods option on any report that may access summarized data.</td>
</tr>
</tbody>
</table>
| Service Class period (Period): The service class period number. If specifying a situation where the values should represent the service class as a whole, then specify Period = ALL or Period = 9. | \n
<table>
<thead>
<tr>
<th>Workspace name</th>
<th>Sysplex WLM Service Class Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute group or table in Tivoli Data Warehouse</td>
<td>Sysplex WLM Service Class Period</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types of reports available</th>
<th>A line chart graphing the following over the selected time period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>– Performance Index: Measure of how the class and period are performing in relation to the goal. Values less than or equal to 1.00 indicate that the goal has been achieved. Values greater than 1.0 indicate that the goal has been missed. The larger the index, the further the service class period from the goal.</td>
</tr>
<tr>
<td></td>
<td>– Period: Service class period number. If specifying a situation where the values should represent the service class as a whole, then specify Period = ALL or Period = 9.</td>
</tr>
<tr>
<td></td>
<td>– Service Class: Name of the service class being reported on.</td>
</tr>
<tr>
<td></td>
<td>– A table view showing Goal, Goal Importance, Actual Host, Performance Index, Worst Performance Index, Transaction Rate, Actual Network, Actual Total, Workload, and Goal Type.</td>
</tr>
</tbody>
</table>

z/OS Utilization Common Storage report:

The OMEGAMON XE on z/OS Utilization Common Storage report shows the common storage utilization by type, for the selected z/OS system, averaged across the selected time period. Valid types are Common Service Area (CSA), Extended CSA (ECSA), System Queue Area (SQA), and Extended SQA.
(ESQA). The systems programmers who monitor z/OS memory usage can use this report to determine utilization of the four areas of common storage. A shortage in any of these critical areas requires investigation.

Figure 7. z/OS Utilization Common Storage report
Table 9 shows the characteristics of the z/OS Utilization Common Storage report.

Table 9. z/OS Utilization Common Storage report

<table>
<thead>
<tr>
<th>Default attribute graphed</th>
<th>Utilization of common storage types. These types are:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• CSA (Common Storage Area)</td>
</tr>
<tr>
<td></td>
<td>• ECSA (Extended Common Storage Area)</td>
</tr>
<tr>
<td></td>
<td>• ESQA (Extended System Queue Area)</td>
</tr>
<tr>
<td></td>
<td>• SQA (System Queue Area)</td>
</tr>
</tbody>
</table>

| Alternative attributes that could be graphed | None |
| Resource identifiers displayed in the report that are not selectable | None |
Table 9. z/OS Utilization Common Storage report (continued)

<table>
<thead>
<tr>
<th>Optional resource filters</th>
<th>z/OS Utilization Common Storage report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managed System: A z/OS operating system in your enterprise that a Tivoli OMEGAMON XE for z/OS agent is monitoring.</td>
<td></td>
</tr>
<tr>
<td>Time Period: The time period, both dates and duration, shown in the report. Options are:</td>
<td></td>
</tr>
<tr>
<td>- All</td>
<td></td>
</tr>
<tr>
<td>- Today</td>
<td></td>
</tr>
<tr>
<td>- Yesterday</td>
<td></td>
</tr>
<tr>
<td>- Last 24 hours</td>
<td></td>
</tr>
<tr>
<td>- Last 7 Days</td>
<td></td>
</tr>
<tr>
<td>- Last 30 Days</td>
<td></td>
</tr>
<tr>
<td>- Last 90 Days</td>
<td></td>
</tr>
<tr>
<td>- Last 365 Days</td>
<td></td>
</tr>
<tr>
<td>- Current Week</td>
<td></td>
</tr>
<tr>
<td>- Last Week</td>
<td></td>
</tr>
<tr>
<td>- Current Month</td>
<td></td>
</tr>
<tr>
<td>- Last Month</td>
<td></td>
</tr>
<tr>
<td>- Last 3 Months</td>
<td></td>
</tr>
<tr>
<td>- Year To Date</td>
<td></td>
</tr>
<tr>
<td>If no time period is specified, Last 30 Days is the default.</td>
<td></td>
</tr>
<tr>
<td>Summarization Level: A pre-summarized time period. If the Tivoli Data Warehouse Summarization Agent has been run for the table used by this report, summarization periods will be selectable. Selecting Not Summarized accesses detailed data (for example, every 15 minutes). Valid choices are Hourly, Daily, Weekly, Monthly, or None. If no summarization period is specified, None is the default. This value can also be changed dynamically using the Available Summarization Periods option on any report that may access summarized data.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workspace name</th>
<th>Attribute group or table in Tivoli Data Warehouse</th>
<th>Types of reports available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Storage</td>
<td>Common Storage</td>
<td>A line chart containing the percent utilization for each type of common storage area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A table view showing the following attributes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Allocation: The amount of CSA and ECSA currently allocated for the area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Allocation Percent: The amount of storage currently allocated as a percentage of total storage in this area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- In Use: The amount of storage currently in use, not including the SQA or ESQA overflow.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- In Use Percent: The amount of storage currently in use as a percentage of total storage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Total Size: The total size of each area as specified at IPL time or in the IEASYS member of the PARMLIB data set minus any CSA/ECSA storage used by SQA/ESQA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Unowned: The amount of allocated storage that is not currently owned by an address space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Growth: Growth in use during the last interval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Overflow for SQA/ESQA areas (SQA Overflow): The amount of SQA that has overflowed into the CSA.</td>
</tr>
</tbody>
</table>
z/OS Utilization LPAR Summary report:

The OMEGAMON XE on z/OS Utilization LPAR Summary report shows a summary of all defined z/OS partitions within the Central Processing Complex (CPC) for the selected time period. Managers responsible for meeting service levels across the Central Processing Complex (CPC) can use this report to determine the utilization of resources belonging to this CPC by each LPAR. This report also shows how well each LPAR is able to obtain processor resources.

Table 10 shows the characteristics of the OMEGAMON XE for z/OS Utilization LPAR Summary report.

Table 10. z/OS Utilization LPAR Summary report

<table>
<thead>
<tr>
<th>Description</th>
<th>Shows a summary of all defined z/OS partitions within the Central Processing Complex (CPC) for the selected time period.</th>
</tr>
</thead>
</table>
Table 10. z/OS Utilization LPAR Summary report (continued)

| Default attribute graphed | • **Average number of CPUs online**: The average number of CPUs online for a given LPAR during the time period
	• **Average CPU utilization for each (Physical CPU Percent)**: Percent of total physical processor resource used by the LPAR or cluster, excluding LPAR Management utilization.
Alternative attributes that could be graphed	None
Resource identifiers displayed in the report that are not selectable	None
Optional resource filters	• **Managed System**: A z/OS operating system in your enterprise that a Tivoli OMEGAMON XE for z/OS agent is monitoring.
	• **Time Period**: The time period, both dates and duration, shown in the report. Options are:
	– All
	– Today
	– Yesterday
	– Last 24 hours
	– Last 7 Days
	– Last 30 Days
	– Last 90 Days
	– Last 365 Days
	– Current Week
	– Last Week
	– Current Month
	– Last Month
	– Last 3 Months
	– Year To Date
	If no time period is specified, **Last 30 Days** is the default.

| Workspace name | LPAR Clusters |
| Attribute group or table in Tivoli Data Warehouse | LPAR Clusters |
| Types of reports available | • Table view showing the following:
| | – A list of LPARs
| | – **Physical CPUs**: The number of physical CP-type processors that are online for this Central Processing Complex (CPC).
| | – **Logical CPUs (LCPs Online)**: The number of logical processors (LCPs) currently online to this LPAR.
| | – **Physical CPU Percent**: Percent of total physical processor resource used by the LPAR or cluster, excluding LPAR Management utilization.
| | – **Physical Weight Percent**: Current shared processor weight for the LPAR or Cluster as a percentage of total CPC weight.
| | – **Effective Weight Index**: The ratio (that is, velocity index) of actual logical LPAR weight (Effective%Weight) to target logical LPAR weight (Logical%Weight). |

z/OS Utilization LPAR Usage Summary report:

The OMEGAMON XE on z/OS Utilization LPAR Usage Summary report shows the average number of tasks and enclaves running on the selected z/OS partition across the selected time period. z/OS systems
programmers can use this report to view the z/OS system job mix. It shows the count of address spaces by type and enclaves by state (active or inactive) so that trends in usage over time can be identified.

Table 11. z/OS Utilization LPAR Usage Summary report

<table>
<thead>
<tr>
<th>Default attribute graphed</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Counts of active address spaces by type of the time period. Valid types are:</td>
</tr>
<tr>
<td>- Address Spaces (Address Space Count): Count of all active address spaces in this LPAR.</td>
</tr>
<tr>
<td>- Started Tasks (Started Task Count): Count of all started task address spaces in this LPAR.</td>
</tr>
<tr>
<td>- Batch Jobs (Batch Job Count): Count of all batch job address spaces in this LPAR.</td>
</tr>
<tr>
<td>- TSO Users (TSO User Count): Count of all TSO User address spaces in this LPAR.</td>
</tr>
<tr>
<td>- APPC Tasks (APPC Count): Count of all advanced program-to-program communication address spaces in this LPAR.</td>
</tr>
<tr>
<td>- Counts of enclaves over the same time period: Total number of dependent and independent enclaves owned by all address spaces.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative attributes that could be graphed</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resource identifiers displayed in the report that are not selectable</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>
Table 11. z/OS Utilization LPAR Usage Summary report (continued)

<table>
<thead>
<tr>
<th>Optional resource filters</th>
<th>Managed System: A z/OS operating system in your enterprise that a Tivoli OMEGAMON XE for z/OS agent is monitoring.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Period: The time period, both dates and duration, shown in the report. Options are:</td>
<td></td>
</tr>
<tr>
<td>- All</td>
<td></td>
</tr>
<tr>
<td>- Today</td>
<td></td>
</tr>
<tr>
<td>- Yesterday</td>
<td></td>
</tr>
<tr>
<td>- Last 24 hours</td>
<td></td>
</tr>
<tr>
<td>- Last 7 Days</td>
<td></td>
</tr>
<tr>
<td>- Last 30 Days</td>
<td></td>
</tr>
<tr>
<td>- Last 90 Days</td>
<td></td>
</tr>
<tr>
<td>- Last 365 Days</td>
<td></td>
</tr>
<tr>
<td>- Current Week</td>
<td></td>
</tr>
<tr>
<td>- Last Week</td>
<td></td>
</tr>
<tr>
<td>- Current Month</td>
<td></td>
</tr>
<tr>
<td>- Last Month</td>
<td></td>
</tr>
<tr>
<td>- Last 3 Months</td>
<td></td>
</tr>
<tr>
<td>- Year To Date</td>
<td></td>
</tr>
<tr>
<td>If no time period is specified, Last 30 Days is the default.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workspace name</th>
<th>Address Space Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute group or table in Tivoli Data Warehouse</td>
<td>Address Space Summary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types of reports available</th>
<th>A bar chart showing the average counts for address spaces by type, a second bar chart showing active and inactive enclave counts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A table view showing the average counts of address spaces by type and enclaves by state (active or inactive) for the selected system</td>
</tr>
</tbody>
</table>

z/OS Utilization Real Storage report:

The z/OS Utilization Real Storage report shows information about the use of real storage in terms of various types of frame counts on the selected z/OS system across the selected time period. Systems programmers who monitors z/OS memory usage can use this report to determine z/OS system use of real storage frames in terms of various types of frame counts. These frame counts identify real storage shortages.

[Table 12 on page 41](#) describes the characteristics of the z/OS Utilization Real Storage report.
Table 12. z/OS Utilization Real Storage report

<table>
<thead>
<tr>
<th>Default attribute graphed</th>
<th>Alternative attributes that could be graphed</th>
<th>Resource identifiers displayed in the report that are not selectable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Page Frames (Online Frames): The number of storage frames of this type that are online or accessible to this processor.</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Available Page Frames (Available Frames): The number of pageable frames available to the system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Page Frames (Total Frames): Total number of frames for this image. The Total Frames value is the sum of the Total Frames Allocated column for all the storage areas listed in the Real Central Storage view.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11. z/OS Utilization Real Storage report
Table 12. z/OS Utilization Real Storage report (continued)

<table>
<thead>
<tr>
<th>Optional resource filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managed System: A z/OS operating system in your enterprise that a Tivoli OMEGAMON XE for z/OS agent is monitoring.</td>
</tr>
<tr>
<td>Time Period: The time period, both dates and duration, shown in the report. Options are:</td>
</tr>
<tr>
<td>– All</td>
</tr>
<tr>
<td>– Today</td>
</tr>
<tr>
<td>– Yesterday</td>
</tr>
<tr>
<td>– Last 24 hours</td>
</tr>
<tr>
<td>– Last 7 Days</td>
</tr>
<tr>
<td>– Last 30 Days</td>
</tr>
<tr>
<td>– Last 90 Days</td>
</tr>
<tr>
<td>– Last 365 Days</td>
</tr>
<tr>
<td>– Current Week</td>
</tr>
<tr>
<td>– Last Week</td>
</tr>
<tr>
<td>– Current Month</td>
</tr>
<tr>
<td>– Last Month</td>
</tr>
<tr>
<td>– Last 3 Months</td>
</tr>
<tr>
<td>– Year To Date</td>
</tr>
<tr>
<td>If no time period is specified, Last 30 Days is the default.</td>
</tr>
<tr>
<td>Summarization Period: A pre-summarized time period. If the Tivoli Data Warehouse Summarization Agent has been run for the table used by this report, summarization periods will be selectable. Selecting Not Summarized accesses detailed data (for example, every 15 minutes). Valid choices are Hourly, Daily, Weekly, Monthly, or None. If no summarization period is specified, None is the default. This value can also be changed dynamically using the Available Summarization Periods option on any report that may access summarized data.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workspace name</th>
<th>Real Storage</th>
</tr>
</thead>
</table>

| Attribute group or table in Tivoli Data Warehouse | Real Storage |

<table>
<thead>
<tr>
<th>Types of reports available</th>
</tr>
</thead>
<tbody>
<tr>
<td>A line chart graphing Online, Total Fixed, and Available Frames over time.</td>
</tr>
<tr>
<td>A table view showing the following for the selected time period:</td>
</tr>
<tr>
<td>– Total Online Frames: Total number of frames for this image.</td>
</tr>
<tr>
<td>– Total Fixed Frames: Total number of fixed frames for this image. The Total Fixed Frames value is the sum of the Total Fixed Frames Allocated column for all the storage areas listed in the Real Storage view.</td>
</tr>
<tr>
<td>– Available Frames: The number of pageable frames available to the system.</td>
</tr>
<tr>
<td>– Offline Frames: The number of frames of this type that have been varied offline either by means of a z/OS command or by the system itself.</td>
</tr>
<tr>
<td>– Unreferenced Interval Count: The amount of time, in seconds, that the oldest frame of pageable storage has gone without being referenced.</td>
</tr>
</tbody>
</table>

Finding more information about historical data collection

For more information on configuring historical data collection and reporting in Tivoli Enterprise Portal, see the Tivoli Enterprise Portal online Help and IBM Tivoli Monitoring: Tivoli Enterprise Portal User’s Guide.

For more information on allocating data sets and configuring the persistent data store, see IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide.

For information on maintaining the persistent data store, exporting historical data to flat files, and warehousing historical data, see OMEGAMON XE and Tivoli Management Services on z/OS: Common Planning and Configuration Guide and the IBM Tivoli Monitoring: Administrator’s Guide.
For information on configuring the Tivoli Data Warehouse, the Warehouse Proxy Agent, and the Summarization and Pruning Agent, see IBM Tivoli Monitoring: Installation and Setup Guide.

Using Take Action commands

You can use the Tivoli Enterprise Portal Take Action feature to enter a command or to stop or start a process on any system in your network where one or more monitoring agents are installed, and you can add Take Action commands to any situations you create using OMEGAMON XE on z/OS attributes. By default, any command issued on behalf of OMEGAMON XE on z/OS is issued as a z/OS command. However, by prefixing the command, you can cause it to be issued as a UNIX command or as an OMEGAMON XE on z/OS command.

Issuing OMEGAMON XE on z/OS commands

Using the prefix `M5:`, you can issue a set of product-provided commands to terminate or alter the execution attributes of an address space.

Use the `M5:` prefix to issue any of the following commands as a Take Action command. Note that the colon (:) following the prefix is required.

<table>
<thead>
<tr>
<th>Command name</th>
<th>Description</th>
<th>Required parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kill</td>
<td>Kill a job or user with a system A22 abend.</td>
<td>Address space name, address space ID (ASID), or hexadecimal address space ID (ASIDX)</td>
</tr>
<tr>
<td>SwapIn</td>
<td>Swap in</td>
<td>ASID, ASIDX</td>
</tr>
<tr>
<td>MarkSwappable</td>
<td>Mark swappable</td>
<td>ASID, ASIDX</td>
</tr>
<tr>
<td>MarkNonSwappable</td>
<td>Mark nonswappable</td>
<td>ASID, ASIDX</td>
</tr>
<tr>
<td>ChangeTimeLimit</td>
<td>Change step CPU time limit</td>
<td>ASID or ASIDX, Time</td>
</tr>
</tbody>
</table>

The syntax for the commands is:

```
M5:command_name,keyword1=value1,keyword2=value2,...
```

The following are the valid keywords:

ASName

Value is an address name of up to 8 characters.

ASID

Valid value is a decimal ASID number.

ASIDX

Valid value is a hexadecimal ASID number.

Time

The value is expressed in the following format: ` [+|-]nnnnS|M|H`, where:

- + adds time
- - subtracts time
- Absence of + and - sets the CPU time limit to the value specified
- `nnnnS` is the time in seconds
- `nnnnM` is the time in minutes
- `nnnnH` is the time in hours

Neither the command names nor the keywords are case-sensitive.
For more information on using Take Action commands, see the IBM Tivoli Monitoring: Tivoli Enterprise Portal User's Guide or the Tivoli Enterprise Portal online Help.

Examples

For example, the following command kills job JFTESTXX, ASID 64:

```
M5:Kill ASName=JFTESTXX,ASID=64
```

The following command makes ASID 64 nonswappable:

```
M5:MarkNonSwappable ASID=64
```

The following command adds 60 minutes to the step CPU time limit:

```
M5:ChangeTimeLimit ASID=64,Time=+60M
```

The following command set the step CPU time limit to 45 seconds:

```
M5:ChangeTimeLimit ASID=64,Time=45
```

Issuing UNIX commands

Using one of several prefixes, you can issue a UNIX program name as a command. You can also issue UNIX shell commands.

Use any of the following prefixes to issue a Take Action command as a UNIX command. Note that the colon (:) following the prefix is required.

- ``OMVS:``, ``Omvs:``, or ``omvs``:
- ``UNIX:``, ``Unix:``, or ``unix``:

Thus, for example, 0 OMVS is issued as a z/OS command. Alternatively, omvs:ps -ef is issued as a UNIX command. As with z/OS commands, the only result returned is whether or not the command appears to have started successfully.

Important: The user ID of the address space where the OMEGAMON XE on z/OS product is defined (the Tivoli Enterprise Monitoring Server address space) must be defined to z/OS UNIX System Services and have superuser authority in order to collect UNIX data and relay UNIX commands. See "Authorizing users to issue UNIX commands" on page 45 and the IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide for more information on defining users to UNIX System Services. In addition, Tivoli Enterprise Portal user IDs must be authorized to issue UNIX commands.

Environment for issuing UNIX commands

UNIX commands are issued in an environment with particular characteristics.

- No terminal is available. Some commands, such as ps issued without options, will not work in this environment since they are designed to have a current terminal. Note that, in the case of ps, some options, for example, -A, enable ps to execute without requiring a terminal.
- The specified command may be any shell command or UNIX program, including any REXX program written for the shell, that does not require a terminal or a particular environmental condition (for example, a specific user ID).
- stdin is initially assigned to /dev/null (the equivalent of an empty file).
- stdout and stderr are initially assigned to /dev/console (the z/OS SYSLOG).
- stdin, stdout, and stderr can be redirected following standard UNIX redirection conventions.
- The shell is executed in a new process in a separate address space. This insulates OMEGAMON XE on z/OS from the effects of the command and vice versa.
- The shell has the same authorization as OMEGAMON XE on z/OS.
- The initial working directory is /.
The HOME environment variable is set to /.

No other environment variables are set before the shell is started. shell/bin/sh is used to issue the specified command.

The shell performs normal login profile processing starting with /etc/profile before issuing the specified command. This can result in further environment variables being set before the specified command is issued. If profile processing terminates the shell before the specified command has been issued, for example, by issuing the exit shell command, the specified command is not issued.

The specified command will not terminate when OMEGAMON XE on z/OS terminates if OMEGAMON XE on z/OS terminates first.

Termination, abnormal or otherwise, of the specified command will not cause OMEGAMON XE on z/OS to terminate.

OMEGAMON XE on z/OS does not maintain or report any status information about the shell or specified command other than that collected as part of its normal system monitoring functions.

Redirecting UNIX commands output
By default, the output of both z/OS and UNIX commands is written to the z/OS system log. You cannot redirect the output of a z/OS command. However, you can redirect both the input stream and output of a UNIX command by following standard UNIX redirection conventions.

For example, the command omvs:ps -ef>/tmp/myoutput sends the output of the ps command to a file called /tmp/myoutput. Redirect command output to a file for later examination and to avoid cluttering the z/OS log.

Running commands in the background
Each UNIX command is run as a process in a separate address space using the /bin/sh shell. When OMEGAMON XE on z/OS is used to start a long-running UNIX command, you may notice an address space that persists until the command ends. This address space is in addition to the one running OMEGAMON XE on z/OS and the one running the command itself. You can avoid the extra address space by running the command in the background.

To run the command in the background, end the command line with the UNIX shell symbol & (ampersand).

Testing commands
Before using commands as part of situations or policies, you should run some simple tests from the user interface to ensure that commands are working as expected.

For example, issuing the omvs:set>/tmp/cantest Take Action command results in the output of the set command being placed in the /tmp/cantest file.

Authorizing users to issue UNIX commands
By default, only user IDs that have been defined to z/OS UNIX System Services and that have superuser, or root, authority are allowed to issue UNIX commands through the Tivoli Enterprise Portal.

Users are defined to z/OS UNIX using RACF® commands. The z/OS UNIX attributes are kept in the OMVS segment of the RACF user’s profile. This means that to issue UNIX commands:

- The user’s Tivoli Enterprise Portal user ID must be defined in RACF.
- The profile associated with the RACF user ID must contain an OMVS segment.
- In the OMVS segment, the z/OS UNIX user identifier (UID) must have a value of 0 (superuser).

You can override the default validation behavior by adding one of two parameters to the KDSENV member of &shilev.&ertename.RKANPARU on the system or LPAR on which the command is being executed:
You can allow any RACF user ID defined to z/OS UNIX System Services to issue UNIX commands, regardless of level of authorization, by adding the variable KOE_ALLOW_ANY_UID=1 to &shilev.&rtename.RKANPARU(KDSENV) on the LPAR where the command is to be executed.

You can allow any RACF user ID to issue UNIX commands, whether or not it has been defined to z/OS UNIX System Services, by adding the variable KOE_ALLOW_UNDEFINED=1 to &shilev.&rtename.RKANPARU(KDSENV) on the LPAR where the command is to be executed.

If you want any user with a Tivoli Enterprise Portal user ID to be able to issue UNIX commands, add both KOE_ALLOW_ANY_UID=1 and KOE.Allow_UNDEFINED=1 parameters.

Tip: For commands used in situations and policies, the user ID verified is the ID of the user who last saved the situation.

Launching the RMF Monitor III data portal

OMEGAMON XE on z/OS provides a launch of the Monitor III data portal from the Sysplex Enterprise Overview workspace.

The Resource Measurement Facility (RMF) is an IBM-licensed program that measures selected areas of system activity and presents the data collected in the format of printed reports, System Management Facility (SMF) records, or display reports. RMF is used to evaluate system performance and identify reasons for performance problems. RMF Monitor III is a browser-based interactive monitor that collects data and reports contention for resources and their users. The data allows identification of system bottlenecks and determination of the reasons for possible system performance degradations.

You enable the launch by providing the location of the browser on the client host system and the URL of the Monitor III Web interface. You can configure the launch using the Create or Edit Launch Definitions window in the Tivoli Enterprise Portal, or from a command line using the LaunchConfig command.

Configuring the launch from Tivoli Enterprise Portal

You configure the launch to RMF Monitor III from Tivoli Enterprise Portal interface.

Complete the following steps to configure the launch using the Tivoli Enterprise Portal graphical user interface:

1. In the Tivoli Enterprise Portal Navigator, select z/OS Systems.
 The Sysplex Enterprise Overview workspace is displayed.
2. Right-click the z/OS Systems item and select Launch from the popup menu.
 The Create or Edit Launch Definitions window opens.
3. Type the name of the new link you are creating, for example RMFIII.
4. In the Target field, type the completely qualified path to the browser you want to use. For example: C:\Program Files\Internet Explorer\IEEXPLORE.EXE
5. In the Arguments field, enter the URL of the Monitor III Data Portal. For example: http://sys1.itdept.anywhere.company.com:27703/
6. Press OK to close the window and save the configuration. Press Launch to launch a browser window and connect to the Monitor III data portal.

Configuring the launch from the command line

You can also configure the launch to the RMF Monitor III data portal from the command line.

To configure the launch from the command line, complete the following steps:

1. Access a command-line interface.
2. Run the km5LaunchConfig command to insert, change, or remove target points for the launch feature.
Note: The command syntax must include the path for the km5LaunchConfig command, as in the following examples for a Windows installation of IBM Tivoli Monitoring in the default installation path. Alternatively, you can run the command from the directory where the code for the command is stored. (The default installation path on Windows is C:\IBM\ITM\CNP.)

- To add a new launch target use the following flags:

  ```
  C:\IBM\ITM\CNP\km5LaunchConfig -insert -loc=location
  -url=url
  ```

 where location is the fully qualified path to the browser application (for example, Microsoft Internet Explorer) on the client system and url is the URL of the Monitor III Data Portal. Both arguments must be enclosed in double quotes (" ").

 For example:
  ```
  C:\IBM\ITM\CNP>km5LaunchConfig -insert -loc="C:\Program Files\Internet Explorer\IEXPLORE.EXE"
  -url="http://sys1.itdept.anywhere.company.com:27703/"
  ```

- To make a change or add a launch target use the following flags:

  ```
  C:\IBM\ITM\CNP\km5LaunchConfig -change -loc=LOCATION
  -url=URL
  ```

 where LOCATION is the path to the browser application (for example, Microsoft Internet Explorer) on the client system and URL is the URL of the Monitor III Data Portal. Enclose both arguments in double quotes (" ").

- To remove all of the launch target points that were created by this command, use the following flags:

  ```
  C:\IBM\ITM\CNP\km5LaunchConfig -remove
  ```
Chapter 3. Using the Inspect function

Inspect is a diagnostic tool whose primary purpose is to help you understand where, within an address space, code is spending its time. You can then use that information either to optimize the code, or to identify where within the code a program might be looping. You might use the Inspect function, for example, when a workspace or situation event shows an address space with high processor usage.

Invoking the Inspect function

You run the Inspect function by selecting an Inspect link from the Address Space CPU Utilization view in Address Space CPU Utilization workspace. The parameters Inspect uses to collect the data are specified in the link definition, and the resulting data for the selected address space is displayed in the Inspect Address Space CPU Use workspace.

Two Inspect links are available from the Address Space CPU Utilization table:

- Inspect Address Space CPU Use
 This link uses default parameters of 1000 samples at 5 millisecond intervals.
- Inspect with 5000 samples at 2ms interval
 This link uses the specified parameters (5000 samples at 2 millisecond intervals), but it is intended to be used as a template to set your own sample count and sampling interval.

Modifying the template Inspect link

To specify the sample count and sampling interval used to collect Inspect data, modify the template Inspect link (Inspect with 5000 samples at 2ms interval).

Tip: The Inspect Address Space CPU Use workspace is not populated with data until the Inspect agent completes on the target system. The time it takes to complete is a function of the number of samples and the sampling interval specified in the link definition. For example, taking 1000 samples at a 5-millisecond interval (the default settings) requires 5 seconds for the data collection process to complete. When you are selecting the values for number of samples and the sampling intervals, bear in mind that if the total time taken to execute the agent exceeds the client timeout value, the Tivoli Enterprise Portal will return no data, even if the agent subsequently completes normally.

To modify the template Inspect link:

1. Open the Address Space Overview workspace for the target system.
2. In the Address Space Counts table, right-click the link button and select Address Space CPU Utilization from the pop-up window.
3. After the Address Space CPU Utilization workspace is displayed, right-click the link button for a row in the Address Space CPU Utilization table and select Link Wizard from the popup menu. The Workspace Link Wizard editor is displayed.
4. Select Modify an existing link, and then click Next.
5. In the Link to Modify window, select Inspect with 5000 samples at 2ms interval, and then click Next.
6. In the **Link Name** window, type a new name and description for the link, if you want, and then click **Next**.
The Target Filters window is displayed.
7. Click **Next** to display the Parameters window.

8. In the Parameters window, select the **INTERVAL** row, and then click **Modify Expression**.

9. In the Expression editor, type the interval, in milliseconds, at which you want Inspect to collect samples, and then click **OK**.

10. In the Parameter tree, select the **SAMPLES** row, and then click **Modify Expression**.
11. In the Expression editor, type the number of samples you want Inspect to use in deriving the data, and then OK.
The Parameters window is re-displayed with the changes.

12. Click Next.
The wizard asks you to review the changes. If they are correct, click Finish to save the changes and close the wizard.

If you right-click a link in the Address Space CPU Utilization table, you see the name you assigned to the modified link.

The new name, if any, and the parameters you set persist until you close the workspace.

The Inspect Address Space CPU Use workspace
The results of the inspection are displayed in the Inspect Address Space CPU Use workspace. The workspace contains three views: Sampling Statistics, Agent Messages, and Inspect Data.

The Sampling Statistics table view shows the number of samples requested, the sampling interval in milliseconds, the number of samples collected, and the number of samples used. Typically, the number of samples collected is the same as the number requested. However, if the job being inspected ends before the Inspect agent has finished collecting data, the number of samples collected is the number collected up to the point where Inspect detected that the target job had ended.

The number of samples used is the number of times that the Inspect agent saw CPU activity in the target address space and gives you some indication as to the statistical accuracy of the resultant inspect data. The number of samples used value does not represent the number of rows of Inspect data.
The **Agent Messages** view displays any error or informational messages returned by the Inspect agent. These messages help to explain the resultant data (or lack thereof) that you see in the other views. For example, if no CPU activity was seen by Inspect in the address space being inspected, the agent returns a message indicating that; the number of samples used column in the Sampling Statistics view would be zero; and no data would be displayed in the **Inspect Data** view.

The **Inspect Data** view contains the output from the inspection process. The Inspect agent returns data only for elements for which it saw CPU activity. The data is ordered in descending CPU activity order with the following hierarchy:

- Task control block (TCB)
- Load module within TCB
 - Control sector (CSECT) within load module
 - Block of code within CSECT
- Task control block

For each TCB for which it sees processor activity, Inspect attempts to determine the executing load modules consuming the processor time (CPU). For each load module, Inspect then attempts to map the CSECT structure of the load module and assign the load module processor time to the appropriate CSECTs. This allows you to determine which load modules and CSECTs within the load module are consuming processor time.

Inspect maps the CSECT structure for each load module (with processor activity) by scanning the target address space for load libraries and attempting to read in the load module from each library in turn. It also scans SYS1.LINKLIB, SYS1.NUCLEUS and SYS1.LPALIB for load modules. If Inspect cannot locate the load module, the CSECT name is unknown and the entire load module is considered to be one large CSECT.

Inspect then further breaks down the CPU time attributed to each CSECT into blocks of code, the size of which is calculated by Inspect once the data collection process has completed. In order to prevent Inspect from flooding the client workspace with rows of data, the Inspect agent attempts to calculate a granularity (block) size that will limit the number of rows of data returned to about 100, but where possible the Inspect agent will use a granularity size of 16 bytes (0X00000010). The granularity size used is displayed in the Agent Messages view of the Inspect CPU Use workspace. The granular data is shown in the rightmost two columns of the Inspect Data view. Again, these are displayed in descending processor use order with the most active blocks of code within each CSECT being at the top of the display rows for each CSECT.

Tip: Before you examine the Inspect data, review the Samples Used field in the Sampling Statistics view. This field indicates the statistical validity of the sampled data. A low number of samples indicates that the Inspect data may not give a truly representative view of where the code in the target address space is spending its time. Also review any messages in the Agent Messages view that may indicate that the data might be incomplete, or explain why there is no data. You can find descriptions of the Inspect messages in the online help.

For descriptions of the information in the columns of these tables, see ["Inspect Address Space CPU Use attributes"](page 196).

Understanding the Inspect data—an example

In the Inspect Data view, the data is organized in descending processor (CPU) by task control block (TCB) order, so the most active items are first in the display.
In the following example, Inspect saw one TCB active. The program that was attached to create this TCB was called KLV. Because Inspect saw only one TCB active, 100% of the processor time that Inspect saw being used is attributed to this TCB. The TCB Ended column is blank, indicating that this TCB did not end while Inspect was running.

Inspect saw two load modules in use during its sampling activities, KM5AGENT and IEAVXPCA. Since KM5AGENT is first, this was the most active load module. However, you can also see that the second load module spent some of its time executing within the PCAUTH address space, as shown by the Load Module ASID Hex and Load Module Jobname columns.

<table>
<thead>
<tr>
<th>TCB Address</th>
<th>Initial Program</th>
<th>TCB CPU % of job</th>
<th>TCB Ended</th>
<th>Load Module Name</th>
<th>Load Module ASID Hex</th>
<th>Load Module ASID Jobname</th>
</tr>
</thead>
<tbody>
<tr>
<td>0X007F83D0</td>
<td>KLV</td>
<td>100.0</td>
<td></td>
<td>KM5AGENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IEAVXPCA</td>
<td>0X0002</td>
<td>PCAUTH</td>
</tr>
</tbody>
</table>

The Load Module Address column shows where in storage in the target address space the load module is loaded. Following that are two columns which show how the CPU time used by this load module breaks down as a percentage of all the CPU time used by the address space (Load Module CPU % Job) and of this TCB (Load Module CPU % TCB). Because there is only one TCB in this instance, these numbers are the same for each load module. (If there were more TCBs active you see the CPU time used by each load module as a percentage of both the overall job and its owning TCB.)

<table>
<thead>
<tr>
<th>Load Module Address</th>
<th>Load Module CPU % of TCB</th>
<th>Load Module CPU % of job</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x12E8F670</td>
<td>73.3</td>
<td>73.3</td>
</tr>
<tr>
<td>0x123020A0</td>
<td>26.6</td>
<td>26.6</td>
</tr>
</tbody>
</table>

Next, the CSECT Name column shows that in this instance all the CPU time seen by Inspect was being consumed by one CSECT, in this case KM3PBM1.

The CSECT Offset in Load Module shows amount of offset within the load module of this CSECT, and the CSECT Address column shows the address of the CSECT within the target address space storage. You could use this information to locate the CSECT within a dump of the address space, for example to confirm an eye catcher that might contain a compile date or time or some other version information.

In the next columns, the CPU time attributed to the CSECT is displayed as a percentage of the total CPU time for the job, the load module, and the TCB. This can help you understand how much the CSECT is being used overall, by each load module, and by each task within the address space. This can help you to identify the CSECTs that are most heavily used.
In the final columns, the granular level data is shown. This breaks each CSECT down into blocks of code, based on the granularity size calculated by Inspect. The granularity size used is shown in the Agent Messages view. This allows you to further refine where within each CSECT the code is spending its time and identify areas that may be looping or that might benefit from optimization.

<table>
<thead>
<tr>
<th>Offset in CSECT</th>
<th>CPU% of CSECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0X0000AE0</td>
<td>36.3</td>
</tr>
<tr>
<td>0X0000BD0</td>
<td>33.0</td>
</tr>
<tr>
<td>0X0000CD0</td>
<td>30.6</td>
</tr>
<tr>
<td>0X0000AA0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

To understand how the granular level data relates to the program source (section of code), you can then refer to a link editor and compile listings.
Chapter 4. Using dynamic links to OMEGAMON for MVS

A Tivoli Enterprise Portal terminal view enables you to connect to any TN3270 host system with TCP/IP from inside a workspace. Terminal views also have scripting capability with record, playback, and authoring of entire scripts. If you associate a terminal view with a connection script and a query that returns appropriate values, you can configure a view that opens to a specific panel of a 3270 application. OMEGAMON XE on z/OS has taken advantage of this capability to create dynamic links from several existing workspaces to target workspaces that display related OMEGAMON for MVS screens.

The data used to connect to OMEGAMON for MVS and to navigate to the target screens is retrieved from variables specified during configuration of OMEGAMON XE on z/OS monitoring agents and from attributes identified in the dynamic link.

Like the product-provided situations, you can use the predefined workspaces, queries, and scripts used to create these links as models or templates for creating additional links. You can also create your own links and target workspaces from scratch.

This chapter covers the following topics:

- "How dynamic linking works"
- "Product-provided links" on page 60
- "Creating new dynamic links" on page 61

How dynamic linking works

Dynamic linking involves the following components:

- A source workspace that provides the context (attribute values) for the link
- A target workspace that contains a terminal emulator view associated with a query and a suitable connection and navigation script
- A dynamic link from the source workspace to the target workspace that specifies the attribute values from the source workspace that are used for navigation to the appropriate screen.
- A query that retrieves additional required values from the OMEGAMON XE agent to be used by the script associated with the terminal adapter
- A script that uses the values from the query and the link to connect to OMEGAMON for MVS session and navigate to the appropriate screen

When a dynamic link on a row in the source workspace is selected, the link picks up the values of the attributes specified in the link definition from the row and passes them to the target workspace. The query associated with the terminal view in the target workspace is executed to obtain connection information. The query is processed by the monitoring agent and discovered or configured information is passed back to the terminal emulator.

When a Tivoli Enterprise Portal user attempts to connect to a session, a TN3270 logon window prompts for a user ID and password. These credentials can be saved for the duration of the Tivoli Enterprise Portal session so they will not have to be prompted for again. They are lost when the Tivoli Enterprise Portal client is terminated. If the script associated with the session is modified to include the user ID and password for the OMEGAMON session, or if no user ID or password is required for the logon, the window can be dismissed without them.
Note: The stored user credentials are associated with the specific OMEGAMON session being linked to, as defined by its host name, port number, LU Group and APPLID. If the same terminal emulator (and workspace) is used to connect to a different classic instance, the user is prompted again for another user ID and password.

After a user clicks OK to close the prompt, the startup script file is run. The script file retrieves all the query values, link values, and any values modified during logon and uses this information to drive the 3270 interface to connect to the APPLID returned in the query and to navigate to the appropriate display in OMEGAMON for MVS.

The connection values for the OMEGAMON for MVS session (host name, port number, Logical Unit (LU) Group and APPLID) are discovered by the monitoring agent. However, these values can be overridden using. The host to which the TN3270 session connects must have an active TN3270 listener. By default, that host is assumed to be the LPAR on which the monitoring agent is located. If there is no active listener, the address of an LPAR that does have an active listener must be specified. The default port number for the Telnet listener is 23. This value can also be overridden. The Dynamic XE to 3270 (Classic) linking feature requires the VTAM Unformatted System Services (USS) screen to accept a LOGON APPLID() DATA() command. If the default Telnet USS screen does not accept this command, the name of a Logical Unit (LU) group that does accept it must be provided. The TN3270 session will be joined to that LU group. The default values are overridden on the Add Runtime Environment (3 of 3) or Update Runtime Environment (3 of 3) panel.

The default values or the override values used for the session are displayed at the TN3270 logon and can be modified for an individual TN3270 session.

The terminal connection terminates after 5 minutes of inactivity or when you end this Tivoli Enterprise Portal work session.

Product-provided links

OMEGAMON XE on z/OS provides seven launch points to four target workspaces. These links save you several time-consuming steps and the cutting and pasting of data required to navigate to the OMEGAMON for MVS screens that you require.

For example, suppose an alert is raised by OMEGAMON XE on z/OS in the Tivoli Enterprise Portal indicating there is a common storage shortage of CSA. Instead of logging on to an OMEGAMON for MVS TN3270 session and drilling down to the appropriate information, you can review the relevant information in the OMEGAMON XE on z/OS workspaces and then log on to OMEGAMON for MVS via TN3270 to display orphaned CSA storage and release it, if appropriate, freeing up this valuable resource and avoiding CSA shortage problems that might result in an IPL.

OMEGAMON for MVS screens that require level 3 authority or that are high CPU users were avoided as targets of these links. Like the product-provided situations these links are meant to be useful examples that can be built on (see "Creating new dynamic links" on page 61).

Table 13. Product-provided dynamic links

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Space Common Storage – Orphaned Elements workspace</td>
<td>OMEGAMON for MVS – CSA Analyzer workspace</td>
</tr>
<tr>
<td>LPAR Clusters workspace</td>
<td>OMEGAMON for MVS – LPAR PR/SM™ Processor Statistics workspace</td>
</tr>
<tr>
<td>System CPU Utilization workspace</td>
<td>OMEGAMON for MVS – License Manager MSU and WLM Capping</td>
</tr>
</tbody>
</table>
Table 13. Product-provided dynamic links (continued)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Space Overview workspace</td>
<td>OMEGAMON for MVS – Job Details workspace</td>
</tr>
<tr>
<td>Space Bottlenecks Summary workspace</td>
<td></td>
</tr>
<tr>
<td>Address Space CPU Utilization workspace</td>
<td></td>
</tr>
<tr>
<td>Address Space Storage workspace</td>
<td></td>
</tr>
</tbody>
</table>

Creating new dynamic links

The process of creating a dynamic OMEGAMON XE to 3270 link can be summarized as follows:

- A target workspace is created with one or more terminal adapter (3270 emulator) views.
- A script is created and associated with the terminal emulator view.
- A query is associated with the terminal adapter to fetch connection values from the monitoring agent.
- The link is created from the source report to the target workspace that includes the values from the source report that will be needed for the script invoked by the terminal adapter.

This section contains instructions for creating new links by modifying product-provided workspaces and scripts:

1. "Create the target workspace."
2. "Modify the associated script" on page 63.
3. "Define the dynamic link" on page 65.

If you want to create new workspaces and scripts, follow the instructions in the Tivoli Enterprise Portal online help or the IBM Tivoli Monitoring: User’s Guide. Any links you create should use the Dynamic Link to 3270 query (see "Assigning the Dynamic Link to 3270 query" on page 68).

Tip: You must have Workspace Author Mode permission to create the target workspaces and the dynamic links. If you want to share the links and workspaces you create with other users, you must have Workspace Administration Mode permission.

Create the target workspace

Complete the following steps to create a target workspace based on the OMEGAMON for MVS - Job Details workspace:

1. In the Navigator, open the Address Space Overview workspace.

2. In the Address Space CPU Utilization Summary table, right-click the link in the first row and select the OMEGAMON for MVS - Job Details link from the popup menu.
The OMEGAMON for MVS - Job Details workspace opens, and a prompt asks for logon credentials for the TN3270 session.

3. Cancel the prompt, then select **Save as** from the **File** menu.

4. In the Save Workspace As window, provide a name and description for the workspace and check **Only selectable as the target of a Workspace Link**, then click **OK**.
You have now created the target workspace. The terminal view in this workspace is already associated with Dynamic Link to 3270 query, so you do not need to assign it to the terminal view. However you must modify the script associated with the terminal view (see "Modify the associated script"). Leave the properties window open; otherwise you will have difficulty locating the new target workspace.

Modify the associated script
In this step you modify the script already associated with the new target workspace.

You can record or write your own scripts, using the instructions in the Tivoli Enterprise Portal online help or the IBM Tivoli Monitoring: User's Guide, but you will probably want to use the connection and sign-on code from an existing script.

Scripts can be global or local. You can only access local scripts through the Properties window of the terminal view with which they are associated.

The scripts associated with terminal views that are the target of dynamic links have essentially two parts: the first part handles the connection and logon, the second half handles the navigation to a specific OMEGAMON for MVS screen. This section of the script uses the symbol names assigned to the attributes to fetch the values it uses to navigate to the relevant screen. This is probably the only part of the script that you will need to modify.

To modify the script, take the following steps:
1. In the Properties window of the terminal view, select the Configuration tab (if necessary), then select the Scripts tab at the bottom of the Configuration pane.
2. In the Scripts for IBM 3270 (24x80) list, select OMEGAMON for MVS, then select **Open**. The script is displayed in an editing window.
3. Look for the comment:

 // We are at the OMEGAMON for MVS Main Menu

Edit the script after this point as necessary to reflect the navigation path and symbol names that the
script will need to retrieve from the link.

4. Select **Save As** from the **File** menu and name the modified script and specify a time-out value, then
 click **OK**.

5. Click **OK** to close the Properties editor.

Now you are ready to define the dynamic link.

Define the dynamic link

In this step you create a link to the target workspace. When you define the link, you identify the target
workspace and specify the attributes whose values are passed to the script to use to navigate to the
relevant OMEGAMON for MVS screen.

Follow these steps to create a link between a source OMEGAMON XE on z/OS workspace and a related
OMEGAMON for MVS screen:

1. Open the workspace that you want to link from.

2. Right-click in a row in the table view from which you want to create the link and select **Link to > Link Wizard** (if there are no existing links in the row) or **Link Wizard** (if there are existing links) from the popup menu.
3. On the Link Wizard Welcome window, select **Create a new link** and click **Next**.

4. On the Link Name window, type a **Name** and **Description** to identify the link and click **Next**.

5. On the Link Type window, select **Dynamic** as the link type and click **Next**.

6. In the Navigator pane of the Target Workspace window, expand the branches and select the Address Space Overview node. ("Cloned" workspaces are listed under the node associated with the workspace they are cloned from; in this case, the OMEGAMON for MVS - Job Details workspace, which is associated with the Address Space Overview node.)

7. In the Workspace pane, select the workspace to target and click **Next**.

8. In the Target Filters window, select Managed System Name and click **Modify Expression** to open the Expression Editor.

9. In the Expression Editor, click **Symbol** to open the Symbols list.

10. Expand the Agent node and select Node.
11. Click **OK** to close the Symbols list and **OK** again to close the Expression editor.

$\text{AGENT:NODE}\$ appears as the expression for Managed System Name.

12. Click **Next** to open the Parameters window.

13. In the Parameters window, click **Add Symbol** and provide a symbol name for the first attribute whose value you want to pass to the navigation script, then click **OK** to add the symbol to the Parameter panel.

14. Select the symbol you just added, then click **Modify Expression**.

15. In the Expression Editor, click **Symbol** and select the name of the attribute whose value you want to associate with the symbol you just named.

 The list is a reverse hierarchy of available symbols starting from the source context and the current Navigator item and ending at the root Navigator item.
16. Click OK to close the Symbol window, then click OK again to close the Expression editor. The attribute name is added in the expression window.

17. Repeat steps 12–15 until you have added all the attributes whose values you want passed to the script, then click Next. The Summary window is displayed.

18. Review the description of the link that is going to be created. If you want to change something about the link, click Back. If the description is correct, click Finish. The Wizard closes, and the link is added to the view.

Assigning the Dynamic Link to 3270 query

The values returned by the query associated with the terminal view provide the information needed to connect to the correct host, log onto the appropriate OMEGAMON for MVS session. The values passed on the link are used to navigate to a specific OMEGAMON for MVS screen. All terminal views that are the target of OMEGAMON XE on z/OS dynamic links should use the Dynamic Link to 3270 query.

Note: If you based the target workspace on an existing workspace that is the target of an OMEGAMON XE on z/OS dynamic link, you do not need to assign the query. It is already assigned.

Take the following steps to assign the Dynamic Link to 3270 query to the terminal view:

1. Right-click in the terminal view and select Properties.

 The Properties editor opens and the Configuration tab for the view is displayed.
2. Select the **Query** tab, then click **Click here to assign a query**. The Query editor opens.

3. In the left frame, expand the MVS System entry, and then the DWL to 3270 entry and select Dynamic Link to 3270.

4. Click **OK** to assign the query and return to the Properties editor.
Part 2. Monitoring scenarios

This section contains scenarios that illustrate how you can use the workspaces, attributes, and situations provided with OMEGAMON XE on z/OS to monitor your z/OS systems and sysplexes.

Chapter 5, “Monitoring shared DASD,” on page 73, provides examples of how you can use situations to monitor the performance of shared DASD in your sysplex. More importantly, this chapter includes instructions for creating situations for filtering the collection of data for DASD devices to reduce processing overhead in environments with large numbers of devices.

Chapter 6, “Monitoring virtual storage and missing jobs,” on page 79, contains two scenarios. The first illustrates how you can use OMEGAMON XE on z/OS to monitor storage usage. The second shows you how to create a monitoring situation to alert you to the failure of critical tasks.

Chapter 7, “Monitoring service class goals,” on page 83, shows you how to monitor service class goals by creating a situation notifies the appropriate parties when a service class missing its goals. It also shows you how to create a threshold in a workspace table view that matches the situation parameters to help pinpoint the problem service classes when you are doing problem analysis.

Chapter 8, “Monitoring cryptographic coprocessors,” on page 95, contains three scenarios that illustrate how you can use how the data collected and presented by OMEGAMON XE on z/OS to monitor and improve your cryptographic services.

Chapter 9, “Detecting CPU looping address spaces,” on page 101 describes the CPU Loop Index metric and how it can be used to detect CPU loops.
Chapter 5. Monitoring shared DASD

Because of the large DASD volume counts that have become common in recent years, monitoring DASD devices without a filter that eliminates some of the devices can lead to high CPU or storage problems and may even cause the monitoring server to fail. Because of these potential costs, although OMEGAMON XE on z/OS provides the capability to monitor sysplex shared DASD, it does not collect DASD device data unless a DASD filter situation is active. An autostarted warning situation (KM5_No_Sysplex_DASD_Filter_Warn) notifies you if no filtering situation is in place and no devices are being monitored.

You can turn DASD data collection on by running a DASD filter situation. OMEGAMON XE on z/OS includes a model filter situation (KM5_Model_Sysplex_DASD_Filter), which uses the DASD Device Collection Filtering attributes Average Response Time and I/O Rate. By customizing this filter to exclude well behaved devices, you can enable monitoring of devices of particular interest and avoid being overwhelmed with unwanted data. A third product-provided situation, KM5_Weak_Plex_DASD_Filter_Warn, alerts you when too many devices are being monitored and filter criteria should be strengthened.

This chapter provides instructions for creating situations for filtering the collection of data for DASD devices to reduce processing overhead in environments with large numbers of devices. This chapter also illustrates how you can use Tivoli Enterprise Portal and OMEGAMON XE on z/OS to monitor and manage the performance of shared DASD in your sysplex.

The section on identifying causes of I/O delays should be of interest to all users. The section on DASD device collection filtering should be of interest to those with administrative authority who are responsible for configuring data collection.

Filtering collection of DASD device data

With OMEGAMON XE on z/OS, the best way to reduce processing overhead is to control the amount of DASD information being sent to the sysplex proxy for sort merge processing. Six thousand unit addresses on each of nine LPARs in a sysplex, for example, requires the proxy to sort merge a considerable amount of data before the data can be evaluated. However, by creating a DASD filter situation to reduce the number of rows of data sent to the proxy and limiting data collection to DASD devices that are performing poorly or experiencing contention, you can dramatically reduce overhead.

In most cases, you create a situation to alert you to problems in the monitored system. When you create a situation for DASD device collection filtering, you are filtering the devices that are being monitored and identifying the devices that need further monitoring. You use the attributes in the DASD Device Collection Filtering attribute group to create the filter situations.

When you create a situation for DASD device collection filtering, OMEGAMON XE on z/OS builds a list of DASD devices based on the situation. This list is rebuilt on the DASD filter situation interval. The lower the interval, the more overhead is incurred as Resource Measurement Facility (RMF) data is collected on all the devices to determine if they qualify. The higher the interval, the more likely that spikes in activity on previously inactive volumes will go unnoticed, as they were not in the monitored volume list.

If a DASD device meets the requirements in the situation, all data for the device is forwarded to the sysplex proxy for sort merge. If the device does not meet the requirements in the situation, the device data is not forwarded to the sysplex proxy. Every monitored LPAR is checked to see if the device meets the filter criteria on that LPAR. If it does meet the criteria, the device is included for monitoring on every LPAR so its activity can be combined over the whole sysplex.
After you have enabled the situations, the number of devices exceeding the situation thresholds should be no more than 500 or whatever number seems viable for your site.

Requirements and restrictions for filter situations

Situations for DASD collection filtering are subject to several requirements and restrictions.

- You must create the situation using the attributes in the DASD Device Collection Filtering group.
- For each sysplex, you can have only one situation for DASD collection filtering. (For this reason, the one situation must contain all the conditions for monitoring the devices.)
- You can create one situation for DASD collection filtering and distribute the same situation to more than one sysplex.
- The collection interval can be as small as 5 minutes, but should probably be somewhere between 15 and 30 minutes. You may want to use the same interval as you use for Resource Measurement Facility (RMF).

Overhead for the situation is dependent on both DASD farm size and refresh interval. Big farms or short intervals increase overhead. In establishing the collection interval, weigh the probability of missing an important performance event. If you feel that the usage pattern of your DASD farm changes dramatically every 10 minutes, for example, make the interval 10 minutes.

Creating a filtering situation

OMEGAMON XE on z/OS provides a model filter situation, KM5_Model_Sysplex_DASD_Filter, which uses the DASD Device Collection Filtering attributes Average Response Time and I/O Rate. You can quickly create an effective filter situation by customizing this situation to suit your site requirements.

Complete the following steps to create a filter situation based on KM5_Model_Sysplex_DASD_Filter:

1. In the Tivoli Enterprise Portal Navigator, open the Situation editor.
2. Expand the MVS Sysplex node in the navigation tree
3. Select the KM5_Model_Sysplex_DASD_Filter situation and click the Create Another Situation button.
 The Create Situation dialog box is displayed.

4. Specify a name and description for the situation and click OK.
 The Formula dialog for the new situation is displayed.
5. Set the threshold values for the Average Response Time and I/O Rate attributes by clicking in the row beneath each attribute name and typing in the values.
Note: Filter criteria can be specified for other columns, but these two are the only attributes that will have a noticeable effect on refresh time and CPU consumption.

6. Use the other options of this tab to customize the situation: add additional attribute to further refine the filter criteria, change the monitoring interval, and so on.

7. Click Apply to save the new situation.

After you have customized the situation, you must distribute and start it before filtering can take effect.

Distributing the situation

After you have created a situation for DASD device collection filtering, you must distribute the situation to the systems.

Take the following steps to distribute the situation:

1. With the situation selected in the Situation editor, click the **Distribution** tab.

2. Make one of the following assignments:
 - To distribute the situation to a single sysplex, in the **Available Managed Systems** box, click the name of the Sysplex to which you want to assign the situation and click the left arrow. Tivoli Enterprise Portal moves the name of the Sysplex to the **Assigned** box.
 - To distribute the situation to all sysplexes, select *MVS_SYSPLEX* in the **Available Managed Systems List** box, and click the left arrow to add the managed system list to the Assigned box.
3. Click **OK** to distribute the situation.

Starting and stopping the situation
You can start and stop the situation using the **Situations** dialog box.
1. In the left frame of the Situation editor, right-click the name of the situation.
2. Select the appropriate option from the pop-up menu:
 - To start the situation, click **Start**.
 - To stop the situation, click **Stop**.

If you want the situation to run continuously across Tivoli Enterprise Portal restarts, check **Run at startup** on the **Formula** tab.

Displaying messages for the situations you create
OMEGAMON XE on z/OS provides messages for DASD device collection filtering. You can display these messages in the **RKLVLOG** on the Tivoli Enterprise Monitoring Server on the host. The messages for sysplex situations have the prefix KOS.

Example situations
The following are examples of situations that filter DASD device collection.

Filtering for devices that are busy
The following situation limits data collection to devices that have
- Some activity
- Long average response times
 - Average response time GT 70.0 AND
 - I/O Rate GT 2.0

Filtering for performance problems on critical volumes
The following situation limits the data collection to critical database devices that have
- A volume serial name that begins with **DB2** or contains **IMS™**
- Some activity
- Slow response times
 - (Average response time GT 70.0 AND I/O Rate GT 2.0 AND Volume Serial Number EQ DB2*) OR
 - (Average response time GT 70.0 AND I/O Rate GT 2.0 AND Volume Serial Number EQ *IMS*)

Using shared DASD data collection to identify the cause of I/O delays
OMEGAMON XE on z/OS provides three sysplex-level DASD related workspaces:
- The Shared DASD Groups Data for Sysplex workspace displays information on device contention and usage for all the groups in a sysplex. This information can help determine how equitably a device is serving all systems in the sysplex.
- The Shared DASD Devices workspace displays statistics for the individual devices in a selected group. The Shared DASD Devices workspace displays information about the activity of the shared devices for a group, averaged over all systems in the sysplex. This information can help determine how equitably a device is serving all systems in the sysplex.
- The Shared DASD Systems workspace displays information about the systems that share a device. This information helps you measure the performance and exceptions from the perspective of each system.
The following scenario illustrates how you can use these workspaces, in conjunction with a monitoring situation designed to alert you to device contention, to identify the devices and data sets responsible for significant I/O time or delays for important workloads in your sysplexes.

Getting situation event notification

You are looking at the Tivoli Enterprise Portal and see that the z/OS Systems Navigator icon is overlaid by a Warning event indicator.

You move your cursor over the icon to see a flyover list of situations that are currently true for your mainframe systems. The Sysplex_DASD_Dev_ContIdx_Warn situation, which you activated to monitor DASD device contention in your sysplexes, is listed in the flyover.

Glancing down the expanded z/OS Systems tree, you notice warning indicators for the Service Classes Data for Sysplex and the Shared DASD Group Data for Sysplex items in the SYSPLEX1 tree, which leads you to suspect the problem is in the distribution of I/O activity among your DASD volumes.

Analyzing I/O distribution

The Sysplex_DASD_Dev_ContIdx_Warn situation has alerted you to the fact that DASD device contention index has reached a level that warrants attention. Now you want to find information about the device or devices causing the contention.

In the Navigator, you select Shared DASD Groups Data for Sysplex and the default workspace is displayed. To determine if I/O activity is unevenly distributed among the devices, you examine the statistics in the following list:

- The average true busy percentage of the group. If, for example, the value ranges between 1.1 at the lower end and 60.2 at its highest, that means that on average, devices in the group spend 1.1% of their time doing work for all systems; at its busiest, one device is spending 60.2% of its time doing work for all systems.

- The average device contention for the group. For example, the value of the average contention index might be 0.75, and the highest device contention index of the group 1.5. A high number (more than 1.0) means that I/O requests for a device are substantially delayed because of contention for the device or path generated by other systems. You would like to lower the contention index for a device in contention.

Examining this information allows you to determine which group or groups of devices is experiencing uneven I/O distribution, but you need information about the specific devices involved.

Isolating the problem

To get information about the devices in a group you have identified, you click the link icon by the link name in the Shared DASD Groups table view to link to the Shared DASD Devices workspace for that group.

The Shared DASD Devices workspace displays statistics for each device in the group. With the information in this workspace, you can determine if a device is not serving all systems in the sysplex equitably. You determine this by examining:

- True percent busy. If this value is too high for one device, while other devices have a lower value, the workload should be balanced between the devices.

- Contention index. If this value is too high, this is an indication that I/Os for the device are substantially delayed due to contention for the device or path generated by other systems.

- System response time. A high value in this column indicates an inordinate amount of time is required for this device to process I/O activity.

- Cumulated I/O rate. This indicates the device is not processing I/Os at an acceptable rate.
To view additional information for a specific device to help you determine if it is causing I/O delays, you click the link button next to the volume serial number in the **Shared DASD Devices** table. The link takes you to the Shared DASD Systems workspace, which shows:

- The systems that share the device and indicates which systems have a high response time and high I/O rate.
- Performance measures and exceptions presented for each system and indicates how the device is performing for each system.

Based on this information, you can identify which devices are causing excessive I/O delays.

Taking action to resolve a shared DASD problem

From the information you have gathered, you decide to implement one of the following solutions.

- Redistribute the work among devices to eliminate the contention for resources.
- Reschedule the work for a single device to a time when device contention is usually low.
Chapter 6. Monitoring virtual storage and missing jobs

This chapter contains two scenarios. "Monitoring paging and virtual storage" illustrates how you can use OMEGAMON XE on z/OS to monitor storage usage; "Monitoring critical started tasks" on page 80 illustrates how to create a monitoring situation to alert you when critical tasks fail.

Monitoring paging and virtual storage

The maximum amount of system virtual storage is bounded by the amount of real storage plus paging space limits, so paging space performance and availability become a vital factor in the effective execution of applications. With the introduction of 64-bit or large storage objects, the memory requirements of paging became higher and storage can become exhausted more readily. When usage approaches 30%, paging efficiency begins to decline, and blocked paging disappears at about 35% occupancy. Severe problems can occur if page space used is greater than 85%. Because the percentage of paging space increases as well as paging rate, it is a good indicator that a problem may be ensuing.

The following scenario suggests how you can use the resources provided by OMEGAMON XE on z/OS to detect and analyze paging and storage problems.

Activating the OS390_Local_PageDS_PctFull_Crit situation

To alert you to impending problems and to simplify analysis when problems occur, activate the OS390_Local_PageDS_PctFull_Crit predefined situation. This situation monitors to determine whether the percentage of slots in use on a local page dataset is greater than or equal to 35% and issues a Critical alert if this condition is found to be true. (See "Activating situations" on page 18 for instructions for activating the situation.)

You can also modify this situation to include page rate as an additional indicator that the paging system performance is becoming impacted.

Using the Page Dataset Activity workspace to gather information

If you see an event indicator alerting you that the OS390_Local_PageDS_PctFull_Crit condition is true, you can start investigating the problem using the Page Dataset Activity workspace for the affected system.

This workspace provides information about availability and response time for a specific page dataset. Page data sets are auxiliary storage data sets that back up all frames of virtual storage. They must be large enough to contain all common and private virtual storage. Page data sets are used when an address space references data that is not in either real or expanded storage. The process of bringing in data is called a page-in and is coordinated by the auxiliary storage manager (ASM). If swap data sets are not defined, page data sets also contain the swapped out part of an address space.

Because the process of paging is very slow when compared to referencing data from real or expanded storage, it is important that page dataset devices be isolated from contention with other kinds of work. This is especially true if there is contention for real and expanded storage, and the page fault rate is high. The Percent Full and Response Time bar charts in this workspace provide visual representations of the availability of space in the various types of page data sets and the response times for those data sets.

Even if page rates are low, data sets over 35% percent full can indicate a performance issue is developing and some action may be required.
Your next step is to decide what action to take to resolve any problems. Rather than simply adding another dataset, you can use the Address Space Storage workspace to evaluate if there are any jobs which can be trimmed or moved to a different system or time slot to balance out system resources.

Examining storage usage
You can link to the Address Space Storage workspace from the Address Space Counts table of the Address Space Overview workspace.

In the workspace, the Fixed Storage bar graph shows who the heavy users of fixed storage are. The Virtual Memory table provides data on fixed and virtual low, extended, and large storage use. This information can be used as an application tuning tool as well as system performance tuning tool.

Check for applications using large percentages of the storage memory limits. This information can be used in deciding how to manage those applications later.

Evaluating your options
Consider the following options to address any paging problems you have detected:

- **Increase paging to align with potential virtual storage demand**
 This would mean increasing the size of paging space by adding more local page data sets or increasing the size of existing ones.

- **Redistribute larger applications to other LPARs**
 You can redistribute large applications or applications using a lot of storage to other systems where the workload is lighter or paging demand lower. Alternately or in addition, you could rebalance large jobs at different times so that they do not run concurrently and compete for virtual storage or paging space.

- **Decrease the applications memlimit to reduce storage demand on system**
 The viability of this option depends on your application service requirements, as such a change could directly impact performance in the application. This could also depend on the behavioral effects on the application, as some applications may not be able to effectively function with lowered memory limits.

Monitoring critical started tasks
In most environments, there is a set of started tasks, such as CICS® tasks or WebSphere® tasks, that should always be running. This scenario shows you how to define a situation that will alert you if one or more of these tasks fails. The situation is based on the Job Name attribute of the Address Space CPU Utilization attribute group and uses the **Check for Missing Items** function.

Creating the MissingTaskAlert situation

Note: This scenario assumes that you are already familiar with the basic steps for creating a situation. If you are not sure of the steps, see the Tivoli Enterprise Portal online help or the *IBM Tivoli Monitoring: Tivoli Enterprise Portal User's Guide*.

For this scenario, you are creating a situation to monitor two tasks, CICS1 and WEB5, running on SYSTEM1 in SYSPLEX1.

1. Navigate to the Address Space Overview workspace for SYSTEM1.
2. With the workspace displayed, access the Situation editor by right-clicking **Address Space Overview** in the Navigator and selecting **Situations** from the popup menu.

3. In the Situation editor, create a new situation.

4. In the Create Situation dialog box, type a name and description for the situation, for example, **MissingTaskAlert**.

```
Create Situation

Name: MissingTaskAlert
Description: Monitors for missing tasks
Monitored Application: MVS System
Type: Standard Situation
```

5. In the Select Attribute dialog box, select the **Address Space CPU Utilization** attribute group and the **Job Name** attribute, then click **OK**.
6. In the expression editor, set the cursor in row 1 under Job Name, then click ![cursor](image) and select the Check for Missing Items function from the dropdown menu:

7. In the Missing Item popup, enter your list of critical tasks, and then click OK.

8. If you want to make the situation trigger independently for each job name:
 a. Click the Advanced ... button.

 The Advanced Situation Options dialog box appears.
 b. Select the Display Item tab, and then select Job Name as the display item.

 This is especially helpful if you want to attach an action to the situation, such as a start command.
 c. Click OK to close the Advanced Situation Options dialog.

9. Complete the situation, for example by selecting a different sampling interval, adding any advice or instructions you want to provide, adding a Start command to restart the task, or distributing it to other systems you want it to run on.

 Remember to stop the situation if you migrate the task it is monitoring.
Chapter 7. Monitoring service class goals

This chapter presents a scenario which illustrates how you can use OMEGAMON XE on z/OS resources to monitor service class goals. The scenario also provides step-by-step instructions for creating a situation, defining a reflex action using a TSO command, and setting a threshold in a table view.

The scenario

Your DB2 and IMS transaction servers service applications that are important to your business operation. You run these address spaces on your SYSTEM1 z/OS system under the STCONLN Service Class.

You want to use OMEGAMON XE on z/OS to monitor this service class and notify the appropriate parties if the service class is missing its goals. You also want to use OMEGAMON XE on z/OS to determine why the service class is missing its goals if that happens.

To set up monitoring, alerting, and analysis, you perform the following tasks using the Tivoli Enterprise Portal:

• Create a situation that raises a Critical alert when a service class is not meeting its goals.
• Define an action for the situation that will cause a system command to be executed at the z/OS system associated with the raised situation
• Modify the WLM Service Class Resources to provide a column threshold that matches the situation parameters. This will help pinpoint the problem service classes when doing problem analysis.

Creating the zOS_Critical_SvcClass_Missed_Goal situation

Your first step is to create a situation that raises an event and notifies the appropriate personnel when a service class misses its goal.

You create a new situation named zOS_Critical_SvcClass_Missed_Goal using the Situation editor. This situation raises a Critical event indicator and sends a TSO message to a designated system administrator when the Performance Index for a service class period is greater than 1.5. You set the situation to start whenever the Tivoli Enterprise Portal Server starts (autostart).

Because you access the Situation editor from the WLM Service Class Resources Navigator item for SYSTEM1, this situation is automatically associated with that item and a Critical event indicator will appear on the item when the situation is true.

To create the zOS_Critical_SvcClass_Missed_Goal situation, complete the following steps:

1. Navigate to system SYSTEM1 in the Navigator and expand the item, if necessary.
2. Right-click the WLM Service Class Resources item for SYSTEM1 and select Situations from the popup menu.
 The Situation editor opens. The WLM Service Class Resources node and any associated situations are displayed in the left-hand frame.
3. Click the Create New Situation icon. The Create Situation dialog box appears.

4. Provide a name and description for the situation, and then click OK.

The Select attribute dialog box appears, with the WLM_Service_Class_Resources group selected.
5. Scroll down the Attribute Item list and select the Performance Index attribute, and then click OK.

The Performance Index attribute for your new situation is displayed with the Performance Index attribute added to the expression editor.
6. Create the situation expression:
 a. Click in the first row of the **Performance Index** column.
 b. Click the relational operator button and select **> Greater Than** from the popup menu.
 c. Type a value of 1.5.
7. Accept the default sampling interval of every 15 minutes, or set the sampling interval that suits your monitoring requirements.

8. By default, **Run at startup** is selected. This means that after the situation has been distributed, it will start whenever the Tivoli Enterprise Monitoring Server is started. If you want to start and stop the situation manually, for example to test the effects of the selected sampling interval, deselect **Run at startup**.

9. Click **Apply** to save the situation properties you have defined so far.

10. To generate a separate action message for each service class name, make Service Class a display item:
 a. Click the **Advanced...** button.

 The **Advanced Situation Options** dialog box appears.

 b. Select the **Display Item** tab, and then use the dropdown menu for the **Item** field and select **Service_Class**.

 c. Click **OK** to close the **Advanced Situation Options** dialog box.
Defining the Take Action command

You want to use a TSO command to send a message to the system administrator whenever a service class misses its goal. You want to include in the message the name of the service class and the value of the Performance Index attribute at the time the situation became true. You accomplish this by adding a Take Action command to the zOS_Critical_SvcClass_Missed_Goal situation.

Perform the following steps to define the Take Action command:
1. With the zOS_Critical_SvcClass_Missed_Goal Properties window open, select the Action tab.
2. In the System Command text field, type the following command, using attribute substitution for service_class and performance_index value.

```
SEND 'service_class service_class_name is missing goal. Performance Index is performance_index', USER=(userid)
```
3. If you want separate notification for every monitored item for which the situation is true, select **Take action on each item**.

4. Set the command to run at the Tivoli Enterprise Monitoring Server.

5. Click **Apply** to save the command.

Setting thresholds in the WLM Service Class Resources workspace

Now you want to set thresholds in the WLM Service Class Resources workspace that will mirror the condition you defined in the situation. This will allow you to analyze problems more easily. You decide that you also want to create a threshold that will produce a warning indicator when a service class is nearing the critical threshold. You accomplish these goals using the Properties editor for the **WLM Service Class Resources** table to add these thresholds to the **Performance Index** column.

To set the thresholds:

1. Select the **WLM Service Class Resources** item for SYSTEM1 in the Navigator.
 - The default workspace is displayed.

2. Right-click in the **WLM Service Class Resources** table view and select **Properties** from the popup menu.
The Properties editor opens.

3. In the Properties editor, select the **Thresholds** tab.
4. To create the critical threshold:
 a. Scroll in the Thresholds editor until you see the **Performance Index** attribute.
 b. Click in the first row beneath the column heading. The critical (red) indicator is already selected.
 c. Select a relational operator of **Greater Than (GT)**, then type a value of 1.5.
5. To create a warning threshold:
 a. In the second row, click the alert indicator selector next to the row number and select the warning (yellow) indicator.

 ![Thresholds Image]

 b. Click in the second row of the **Performance Index** attribute and select the Greater Than (GT) relational operator and type a value of 1.0.

 ![Thresholds Image with GT]

 c. Click **OK** to save the thresholds and close the editor.

Analyzing a problem

When the zOS_Critical_SvcClass_Missed_Goal situation is true on a monitored system, you are notified that a service class is not meeting its goal. Now you need to find out why this condition has occurred.

In Tivoli Enterprise Portal, you move your mouse pointer over the event indicator on the Enterprise icon in the Navigator to see the Event flyover. In the flyover, you right-click the zOS_Critical_SvcClass_Missed_Goal situation and select **Acknowledge** from the popup menu to create an acknowledgment to let the operators monitoring the situation in the data center know you are working on the situation. In the flyover, you click the link icon next to the service class situation to open its event workspace. You compare the initial situation values and the current situation values to see if the high performance index value is persisting. Since it has taken you several minutes to respond to the situation notification, and the value is staying high, you decide to analyze the problem further to see if you can prevent this problem from arising.

You navigate to the WLM Service Class Resources workspace for the affected system to examine the performance information. The thresholds you previously set in the Performance Index column help you pinpoint the problem service class periods, in this scenario a Critical indicator identifies the STCONLN
service class. You note the goal importance for the service class in case an adjustment is required to address the problem. In addition, you examine the overall performance of service classes with less important goals to determine if they can be adjusted to allow more resources to be available to the more important service classes.

To get more information about the problem, you use the Navigator to display the sysplex-level Service Classes Data for Sysplex workspace. From there you link to the Address Spaces Workspace for Service Class for the STCONLN service class. In this workspace you can examine data for all the address spaces in the service class. For service classes like STCONLN with a goal type of Velocio, CPU is the primary resource required for meeting this goal. You note the address spaces with the highest CPU utilization, as these may require further investigation. Sorting the table by the CPU Percent column helps you identify the address spaces with highest CPU usage. You also examine the address space list to verify that there are no unexpected address spaces.

Stepping back to the Service Classes Data for Sysplex workspace using the backward navigation arrow, you link to the Workflow Analysis Workspace for Service Class to determine the greatest resource impactor for the STCONLN service class. In this case, you determine the major bottleneck for the service class or its associated address spaces is Waiting on CPU, so you want to examine the performance information for the LPAR and central processing complex where the workload is running.

You use the LPAR Clusters workspace to examine the performance information for the LPAR and CPC where the workload is running. You examine the performance parameters listed below to determine a path for problem resolution:

- **CPU % Index**: A value of 1 or greater indicates that the actual LPAR physical processor utilization meets or exceeds the configured targets. A value less than 1 indicates that the LPAR is not able to obtain the resources it is targeted to obtain (based on its defined weight).
- **Effective Weight Index**: A value of 1 or greater indicates that the ability of the LPAR to obtain logical processor resource meets or exceeds the defined targets. A value less than 1 indicates that the LPAR is not able to obtain the resources it is targeted to demand (based on its defined weight).
- **Current, Initial, Minimum and Maximum Weights for the LPAR**: In a shared physical processor configuration, the LPAR WEIGHT determines the relative importance of the LPAR for the allocation of processor resources. In an IRD configuration, the weights will be adjusted within the maximum and minimum bounds.
- **CPU % Ready**: Indicates the percent of time that the LPAR had “ready” work and was not dispatched (for example, because no processors are available).
- **LPAR Capping Status**: Indicates if “capping” is defined for the LPAR. LPAR will prevent an LPAR from obtaining processor resource even when other LPARs are not using available resources.

In a sysplex configuration, the performance of a given service class should be examined in all the LPARs where the service class workload is running. This will help balance any performance adjustments that may be implemented to resolve the problem.
Chapter 8. Monitoring cryptographic coprocessors

This chapter contains three scenarios that illustrate how you can use how the data collected and
presented by OMEGAMON XE on z/OS to monitor and improve your cryptographic services.

- “Validating your cryptography configuration”
- “Monitoring and improving cryptography performance” on page 96
- “Monitoring and improving cross-system ICSF performance” on page 98

Validating your cryptography configuration

Many cryptography problems are the result of configuration errors such as failure to assign coprocessors
to the z/OS system, offline or unavailable coprocessors, disabled public keys, or invalid master keys. This
scenario illustrates how you can use OMEGAMON XE on z/OS to check your cryptography
configuration and correct any errors you discover.

To check the configuration of your coprocessors:

1. In the Navigator, expand the item for a system in a sysplex and scan the tree for the Cryptographic
 Coprocessor entry:
 - Enterprise
 - Windows Systems
 - z/OS Systems
 - SYSPLEX1:MVS:SYSPLEX
 - Coupling Facility Policy Data for Sysplex
 - Coupling Facility Structures Data for Sysplex
 - Sys1
 - MVS Operating System
 - DEMOPLX:SYS1:MVSSY
 - Address Space Overview
 - Channel Path Activity
 - Common Storage
 - Cryptographic Processors
 - Sys2
 - SYSPLEX2:MVS:SYSPLEX
2. Select Cryptographic Coprocessors to display the default Cryptographic Services workspace.
3. Check the data in the ICSF Subsystem Status view to make sure that
 - The ICSF subsystem is configured correctly.
 - Master keys are loaded and set correctly.
 - Coprocessors are online and active.
4. If several ICSF subsystems are installed on images that share coprocessors, and a monitoring agent is installed on each subsystem, inspect the values for each subsystem. Also, be sure to check cross-system ICSF performance (see “Monitoring and improving cross-system ICSF performance” on page 98).

Recheck the Cryptographic Coprocessor workspaces after any changes or adjustments to the cryptography configuration.

Monitoring and improving cryptography performance

The cryptographic coprocessor data collected by OMEGAMON XE on z/OS helps you make load-balancing decisions to improve cryptography performance.

Cryptography performance monitoring on each Integrated Cryptographic Service Facility (ICSF) subsystem has two main components.

- Service call performance monitoring, which involves gathering data such as arrival rate of service requests, time to complete each service call, and queue lengths.
- Top user performance monitoring, which involves determining which job names are the heaviest users of cryptography services.

Checking service call performance

Use the Service Call Performance workspace to evaluate how well service requests are being handled.

You can link to this workspace from the Service Call Performance table of the Cryptographic Services workspace for a particular system (see steps 1 and 2 of “Validating your cryptography configuration” on page 95), or from the Service Call Performance by System table of the Cross-System Cryptographic Coprocessors Overview workspace. Starting from the Cross-System workspace allows you to gain an overview of performance and to quickly check performance details for several systems in succession.

Take the following steps to review service requests, starting from the Cross-System Cryptographic Coprocessors Overview workspace:

1. Select the z/OS Systems item in the Navigator.

 The Sysplex Enterprise Overview workspace is displayed.

2. Right-click the z/OS Systems Navigator item and select Workspace > Cross-System Cryptographic Coprocessors Overview from the popup menu.

 The Cross-System Cryptographic Coprocessors Overview workspace is displayed.

3. In the Service Call Performance by System table view, click the link icon beside a system SMFID.

 The Select Target box is displayed.
4. Select the Cryptographic Coprocessors node for the system for which you want data. The Service Call Performance workspace is displayed.

5. In the Service Call Performance workspace:
 - Check the Average Arrivals per Minute bar chart to see which services are being called most frequently.
 - Check the Average Service Time per Call bar chart to see which services are taking the longest time to complete.
 Service calls that are taking the longest time to complete, but are not arriving frequently, probably do not pose a performance problem. Performance problems tend to occur when a particular service call both arrives frequently and takes a long time to complete.
 - Check the Average Pending per Call bar chart for queue length.
 A high number of pending requests for a particular service call would indicate a performance problem.
 - Use the Average Bytes per Service Call bar chart to see whether the service calls with the largest number of bytes also have the highest service times.
 Relatively high services are to be expected for calls that have the largest number of bytes.

 Note: Byte counts are available for some but not all service calls. Therefore, the data shown in the Average Bytes per Service Call bar chart are correct but incomplete. For a list of the service calls for which byte counts are available, see the online help.

6. If any of the statistics displayed in the bar charts do not seem to make sense or if you need more information about a service call’s performance, examine detailed data in the Service Call Performance table. For explanations of all the attributes in this table, see the online help.
7. To check service call performance on another system, use the Back button (on the Tivoli Enterprise Portal toolbar in desktop mode) or the Back button of your browser to return to the Cross-System Cryptographic Coprocessors Overview workspace, and then repeat steps 3–6 to view other systems.

Checking top user performance

Use the Top User Performance workspace to learn which jobs are the heaviest users of cryptography services.

You can link to this workspace from the Cryptographic Services workspace for a particular system (see steps 1 and 2 of “Validating your cryptography configuration” on page 95) or from the Top Users by System table in the Cross-System Cryptographic Coprocessors Overview workspace (see steps 1 and 2 of “Checking service call performance” on page 96).

In the workspace, check the bar charts in the Top User Performance workspace to see which jobs

- Are requesting cryptography services most frequently.
- Have the highest average service time.
- Are waiting longest for their requests to move to the top of the queue.
- Are requesting services with the highest byte counts.

Note: Byte counts are not available for all service calls. Therefore, the data shown in the Top 10 Average Bytes per Call bar chart are correct but incomplete. For a list of the service calls for which byte counts are available, see the online help.

If you need more information about top user performance, you can find detailed data in the Performance by Top Users table. One particularly useful piece of information in this table is the LastSvcDesc column, which shows the service requested most recently by each of the top users. Click the refresh button several times and see whether the same service call keeps showing up. If so, that service call is being used heavily by the top users and may be implicated in any performance problems that arise.

Improving performance

Some suggestions for improving performance

- If service times are unacceptably high, you might consider decreasing the strength of cryptography by reducing the length of the key. Conversely, if you need to increase the strength of cryptography, you can observe and weigh the performance risk.
- If any of the top job names are relatively unimportant, you might want to reduce their priority on the system.
- For the most frequently called services and the services with the highest normal service times, you might want to create your own situations. In each situation, specify combinations of arrival rate and service time that you consider worrisome (warning) or truly unacceptable (critical). Whenever a service call reaches a specified threshold, an event alert will be posted on Tivoli Enterprise Portal. You can then take immediate action to correct the problem.

For instructions on creating situations, see the Tivoli Enterprise Portal online help.

Monitoring and improving cross-system ICSF performance

If several ICSF subsystems are installed on z/OS images that share coprocessors in a sysplex or Processor Resource/System Manager (PR/SM) complex, the workloads on each subsystem can affect the performance of the other subsystems. Use the Cross-System Cryptographic Coprocessor Overview workspace to compare the subsystems’ cryptography performance and to troubleshoot performance problems.
Access the Cross-System Cryptographic Coprocessor Overview workspace as described in steps 1 and 2 of “Checking service call performance” on page 96.

To check cross-system performance:

- Check the ICSF Subsystems by System table to make sure the coprocessors are online and cryptography services are active on all systems.

 The predefined situation Crypto_No_PCI_Coprocessors defines the lack of an online PCI coprocessor as a warning condition. A matching threshold has been set for the 1 PC1 column. So when this condition occurs, warning event indicators appear in the table and in the Navigator.

 If you find configuration or availability problems, correct them immediately.

- Check the Service Call Performance by System table to determine the average request arrival rate, service time in milliseconds, queue length, and byte count per service call for each system.

 If all service calls have been processed on a single system, but service time is well under a millisecond, and the Pending column shows no request queue, there is no performance problem. However, if the same system continues to be used exclusively and the arrival rate increases, service time and queue length would also increase, and a serious performance problem might develop. In such a case, you might consider rebalancing workloads among systems to correct the problem.

- Check the Top Users by System table to see whether one or two job names seem to be monopolizing cryptographic services.

 If any of the top job names are relatively unimportant, you might want to reduce their priority on the system.

 Look at the LastSvcDesc column, which shows the service requested most recently by each of the top users. Refresh the workspace several times over various intervals and see whether the same service call keeps showing up. If so, that service call is being used heavily by the top users and may be implicated in performance problems. See “Improving performance” on page 98 for suggestions for improving service call performance.
Chapter 9. Detecting CPU looping address spaces

Address spaces can occasionally fall into a CPU loop where a task executes instructions endlessly. Looping is usually an unproductive event, using CPU resources that could be better spent on other workloads. Looping may be a symptom of a storage corruption within the application or perhaps a design flaw that did not anticipate some rare set of environmental circumstances. Whatever the cause of a loop, it has proven difficult in the past to detect that an address space has begun to loop.

On the surface, detecting a CPU loop should be simple: just look for an address space that is using 100% CPU. On z/OS, this is not a good strategy. Most logical partitions (LPARs) are defined with several logical processors (LPs) that can each run instructions for different dispatchable units such as tasks, enclaves, and service request blocks (SRBs). Under these circumstances, does 100% CPU refer to 100% of a single LP or 100% of all the logical processors in the LPAR? Typically, a looping address space is consuming a single logical processor.

Another confounding factor is the z/OS dispatching algorithms, including Workload Manager (WLM), which actively try to distribute processor resources appropriately among all the competing dispatchable units. These algorithms interrupt a looping job to dispatch other work that is not getting CPU resource which it is due under the service policy defined. Eventually, the looping job gets redispached and squanders more CPU. But because of the interrupts, the job’s measured CPU% will drop. Often looping jobs will be parked by the system policy so much that their measured CPU percentage will be too low to be detected by simple threshold settings.

Another popular strategy for detecting CPU loops is to look for address spaces with high CPU usage and low or no I/O activity. But as already noted, it is not easy to define what “high CPU usage” means; can it be said with confidence that a job using little or no I/O is clearly misbehaving? What about an application that has much of its working data cached in memory so that it can be more responsive to transactions? This is a good performance strategy, but it means that the application will also present a profile of low or no I/O activity.

OMEGAMON XE on z/OS offers a metric, CPU Loop Index, which is designed to overcome these issues and make detecting CPU loops an easier task. The purpose of this metric is to characterize the intent of an address space to use the CPU. Looping jobs will show an unrelenting intent to use CPU to the exclusion of any other resource. Even when they are parked by WLM or other z/OS policy actions, their intent to use the CPU can be detected.

The calculation of the CPU Loop Index is done over 10 or more minutes for workspace reporting. For situations, the calculation are done over either 10 minutes or the refresh period of the situation, whichever is larger. There is no need to use persistence. Service classes determined to be of low importance automatically use longer periods of calculation to avoid false positive indications.

Determining the intent of a job

The OMEGAMON XE on z/OS Bottleneck Analysis feature samples the execution state of every address space in z/OS every few seconds. An address space typically occupies one execution states at a time. These execution states are things like Using I/O, Waiting for I/O, Waiting for Enqueue, Waiting for HSM Recall, Swapped MPL Delay, Using CPU, and Waiting for CPU. OMEGAMON XE on z/OS defines more than 60 execution states. The execution states that indicate intent to use CPU are Using CPU, CPU Wait, Using IFA, IFA Wait, Using zIIP, and zIIP Wait.

On every sample taken by Bottleneck Analysis, each address space is classified into one of these execution states and a count is added to the bucket for this execution state. Over time, the profile of execution states builds up for every address space. If you divide the count in any bucket, for example the
Using I/O bucket, by the total count summed over all buckets, you get the percentage of samples where the address space was found using I/O. If you sum the counts in all the “intent to use CPU” buckets and divide by the total count, you get the CPU Loop Index. Address spaces in a CPU loop have counts almost exclusively in the “intent to use CPU” buckets. This means the index will likely be at or very near 100%.

Note: z/OS systems have three processor types that can be used by normal applications. The first type is the standard general processor, which is commonly referred to as a CPU in OMEGAMON XE on z/OS. The second processor type is the System z Application Assist Processor, which is usually referred to as a zAAP processor. In its early days, this processor was called the Integrated Facility for Applications, or IFA. OMEGAMON XE on z/OS still uses this terminology. zAAP processors are used to execute Java Virtual Machine processes. The third processor type is the System z Integrated Information Processor, or zIIP. zIIPs are most often used to execute DB2 processes, but can be used by other specialized SRB processes.

The KM5_CPU_Loop_Warn situation

OMEGAMON XE on z/OS includes a model situation, KM5_CPU_Loop_Warn, which can be distributed to all monitored LPARs and started automatically. This situation looks for jobs with a CPU Loop Index higher than 95%. The situation takes a sample every five minutes looking for this condition and requires that two consecutive samples show the condition to be true before it raises an alert.

The requirement that two consecutive samples meet the condition before an alert is raised is intended to minimize false positive results. The probability of false positives is greatly reduced by extending the time period over which an address space's behavior is watched when that address space has a high percentage of CPU Wait time.

A high CPU Loop Index value with much of the index due to CPU Wait time indicates that an address space does not have very high importance to WLM. In this case, the address space is watched for longer time periods to see if it continues to exhibit looping behavior or not. Bottleneck data for address spaces such as these is accumulated for up to 120 minutes to see if the CPU Loop Index continues to be high. This helps avoid raising an alarm for address spaces that are just starved for attention.

The thresholds established for this false positive avoidance are:

- The address space must have a CPU Loop Index value higher than 90% as seen by the monitoring agent.
- If the address space’s CPU Wait time contributes between 50% and 75% of the total CPU Loop Index, the address space is watched for up to 60 minutes before its high index value is reported. The value reported during this waiting period will grow towards 90% but will not exceed that threshold.
- If the address space’s CPU Wait time contributes more than 75% of the total CPU Loop Index, the address space is watched for up to 120 minutes before its high index value is reported. The value reported during this waiting period will grow towards 90%, but will not exceed that threshold.

Investigating and identifying looping jobs

This scenario involves three jobs that show a CPU loop: BKEALCP1, BKEALCP2, and BKEALCP3. This scenario also has three other jobs that run high CPU for a while, but then run I/O activity for a while and then return to the CPU: BKEALIO, BKEALIO2, and BKEALIO3. These jobs represent high CPU usage jobs that are not in a CPU loop.

Using normal ISPF SDSF screens, sorted for CPU% ascending, you can see that these jobs are the most CPU intensive work in the LPAR (Figure 14 on page 103). Each of the sample looping jobs is using 15.81% of the LPAR’s CPU. The I/O jobs are using about 4.33% each.
It is not likely that a performance analyst looking at this report would expect that any of these jobs was in a CPU Loop. The KM5_CPU_Loop_Warn situation, however, does see BKEALCP1, BKEALCP2, and BKEALCP3 as suspect jobs and an event is raised in the Tivoli Enterprise Portal (Figure 15 on page 104).
The situation event workspace for KM5_CPU_Loop_Warn (Figure 16 on page 105) indicates that BKEALCP1, BKEALCP2, and BKEALCP3 have very high CPU Loop Index values. The accompanying expert advice notes that a high CPU Loop Index is not a guarantee that the job is looping and it is possible that a well behaved job is in a normal period of intensive CPU activity. It is up to the site analyst to recognize jobs that normally run long periods of CPU instructions. Some scientific workloads may fit this profile, but it unlikely that a normal business workload would use this much CPU for this long (10 minutes at minimum). Users are advised to examine the address spaces.
A number of OMEGAMON XE on z/OS workspaces can be used to examine these jobs further, starting at the Address Space Overview workspace (Figure 17 on page 106).
The six jobs of interest appear first in the Address Space CPU Utilization Summary view. In this view, the rows are sorted in descending order of CPU Percent so that no higher CPU users are missed on subsequent view pages. To look at the bottleneck analysis for these jobs to see which execution states they are spending their time in, you right-click the icon in the Address Space Counts view and select the Address Space Bottleneck Summary link.

The Address Space Bottleneck Summary workspace displays the CPU Loop Index value for the three suspect looping jobs. You notice that the jobs that are using heavy CPU but are not looping, BKEALIO, BKEALIO2, and BKEALIO3, all have significantly lower indexes. When you look at the other bottleneck data you see that the Using CPU values by themselves are not unequivocal indicators of a loop. It is only when you combine the Using CPU and CPU Wait numbers that you see the dramatic effect.
To explore job BKEALCP3 in more detail, you use a dynamic link to drill down to OMEGAMON for MVS. You right-click the navigation link in the row for job BKEALCP3 and select the OMEGAMON for MVS – Job Details link. The OMEGAMON for MVS – Job Details workspace opens and a logon window is displayed. You enter a user ID and password for the terminal session (if required), and click OK. The Examine Details for Job BKEALCP3 screen space in OMEGAMON for MVS opens in the terminal view (see Figure 19 on page 108).
You can now continue exploring BKEALCP3 by running an INSPECT of the job (enter s beside F INSPECT). The INSPECT produces the results shown in Figure 20 on page 109.
So you know that all the CPU is being generated in the CSECT KOSMIGSC. You narrow this to specific instruction ranges by moving the cursor over the hot task and changing the Offset and Granularity values (see Figure 21 on page 110). So far you see that all the CPU is within the narrow range of instructions from offset x'4A0' to x'4F0'.
You narrow the granularity even further (Figure 22 on page 111). Now you find that the looping instructions lie between offsets x'4D5' and x'4DF'. With this detail you can go back to the application source and find the offending instructions. You can also take action from this interface to cancel the looping job.
To cancel the job, you navigate to the main menu for OMEGAMON for MVS by using the PF3 key until you arrive at the OMEGAMON main menu (Figure 23 on page 112).
From here you select ACTIONS to get to the Action Commands screen (Figure 24 on page 113).
And now you can select the OPS CMDS screen space (Figure 25 on page 114).

Note: Most commands, including the z/OS CANCEL command, require the user to be authorized. In OMEGAMON for MVS you can gain authorization by typing in the `/pwd` command in the top line on the screen and then entering the site specific password.)
On the OPS CMDS screen, you enter the z/OS operator command to cancel job BKEALCP3. You can now use the Backward navigation button on the Tivoli Enterprise Portal interface (upper left frame above the navigation view in the desktop client) or the back button on your browser (in a browser client) to return to the Address Space Bottleneck Summary view.

The BKEALCP3 job is no longer active (Figure 26 on page 115).
Figure 26. Address Space Bottlenecks Summary workspace without BKEALCP3
Part 3. Reference

This sections contains descriptions of the product-provided attributes, workspaces, and situations that are displayed in the Tivoli Enterprise Portal interface. The information in this section is also available as online help in the Tivoli Enterprise Portal when application support for OMEGAMON XE on z/OS is installed on the Tivoli Enterprise Portal Server.

The descriptions are divided into system-level and sysplex-level and are organized alphabetically within those two categories.
Chapter 10. Attributes

Attributes are characteristics or properties of the logical and physical objects monitored by OMEGAMON XE on z/OS (for example, the amount of allocated virtual storage). Related attributes are organized into groups (which are referred to as tables in the context of historical data collection). These attributes are used to define the queries that collect the information displayed in tables and charts in the OMEGAMON XE on z/OS workspaces and to create situations that trigger alerts and automated actions in response to specified conditions.

You can see an overview of an attribute group, or get detailed information about a specific attribute, by selecting its name under Attributes, in the IBM OMEGAMON XE on z/OS section of the Contents tab. In the listing on the Contents tab, attribute groups are divided into two types, system and sysplex, corresponding to the two levels of OMEGAMON XE on z/OS nodes in the Tivoli Enterprise Portal Server Navigator.

Attributes and workspaces

Most workspaces display data for a single attribute group.

For more information about the relationships between the predefined workspaces and the attribute groups, see "Attribute groups used by sysplex-level predefined workspaces" on page 312 and "Attribute groups used by the system-level predefined workspaces" on page 336.

Attributes and queries

Chart and table views use queries to request attribute values from the OMEGAMON XE on z/OS agents for display. You can modify predefined views by editing the queries on which they are based, or design custom views by creating your own queries that collect data for just those attributes you specify.

For information on creating custom queries, see the IBM Tivoli Monitoring: Tivoli Enterprise Portal User's Guide or the Tivoli Enterprise Portal online help.

Attributes and situations

Situations are descriptions of conditions that you want to monitor on your z/OS systems. The descriptions consist of attribute/value pairs and operators such as greater than or equal. You can alter the values of attributes used in OMEGAMON XE on z/OS predefined situations to more closely suit the requires of your site, or use the OMEGAMON XE on z/OS attributes to create your own situations.

For information on creating situations, see the IBM Tivoli Monitoring: Tivoli Enterprise Portal User’s Guide or the Tivoli Enterprise Portal online help. For information about the predefined situations available with OMEGAMON XE on z/OS, see Chapter 11, “Situations,” on page 265.

Sysplex attribute groups

Sysplex attribute groups provide detailed information about sysplex-level components such as Workload Manager, coupling facilities, cross-system coupling facilities (XCF), global enqueues and shared DASD.

For a description of a particular attribute or attribute group, select the name of the group in the list of contents.
CF Clients attributes
The CF Clients attributes group monitors user connections to coupling facility structures.

Address Space Address space name. Valid format is a simple text string of 1 through 8 characters; for example, JES2.

AllowAlter Specifies whether or not this connection allows structure alter to be initiated for the structure. Possible values are Yes and No.

AllowRebuild Specifies whether or not this connection allows user-managed structure rebuild to be initiated for the structure. Possible values are Yes and No.

Allow System Managed Duplexing Specifies whether or not this connection allows system-managed processes to be initiated for the structure. Possible values are Yes and No.

Allow User Managed Duplexing Specifies whether or not this connection allows user-managed structure rebuild with duplexing to be initiated for the structure. Possible values are Yes, No, and Not available.

ASID Hexadecimal address space ID.

CF Name Name of the coupling facility. Valid format is a simple text string from 1 through 8 characters; for example, COUPLER1.

Connection Name Name of the connection between the address space and the CF structure. Valid format is a simple text string of 1 through 16 characters; for example, JES2_SYSA.

Connection Problem Flag Flag indicating whether or not this connection is in a problem state. A Connection Status of FAILEDPERS or FAILING is considered a problem. Valid values are 1 (problem) or 0 (no problem).

Connection Status Status of the current coupling facility connection. Valid values are:
- Active. This connection is currently active.
- FailedPers. This connection has failed but is being maintained because the connector specified connection disposition of “keep”. It is expected that the failed connector will attempt to reconnect.
- Failing. The connection is attempting to fail but some connected users of the structure have not yet responded to the fail/disconnect event.
- Disconnecting. The user is attempting to disconnect from the structure but some connected users of the structure have not yet responded to the fail/disconnect event.
- ConnectedKeep. Connected with CONDISP=KEEP (that is, a persistent connection).
- ConnectedRebuild. Connected to both structures during structure rebuild.

Note: Typically, you do not see any of the following statuses for a structure. They exist for very brief periods of time. If one of these statuses persists for more than five minutes, it would indicate a severe problem with either the structure or the monitoring facility.
- RebuildActive. Structure rebuild process is in progress.
- RebuildStopped. A structure rebuild process has been stopped, usually by operator command.
- RebuildOldStr. This is the original structure in a rebuild process.
- RebuildNewStr. This is the new structure in a rebuild process.
- RebuildQuiesce. A structure rebuild has been initiated. Connections need to stop usage of the structure and confirm. This phase will be complete when all connections have issued IXLEERSP for the Rebuild Quiesce event.
RebuildComplete. A structure rebuild is in progress. Connections can connect to new structure. This phase will be complete when all connections have issued IXLREBLD REQUEST=COMPLETE.

RebuildCleanup. A structure rebuild is in progress. Connections have completed their part of the process and final cleanup is in progress. This phase will be complete when all connections have issued IXLEERSP for the Rebuild Cleanup event.

RebuildStartOperator. A rebuild process was started by the operator.

RebuildStartConnector. A rebuild process was started by one of the connecting applications.

RebuildLostOldFacility. A rebuild process was stopped because connectivity was lost to the coupling facility containing the original structure.

RebuildFailed. A rebuild process failed.

RebuildStoppedOperator. A rebuild process was stopped by operator command.

RebuildStoppedConnector. A rebuild process was stopped by one of the connected users.

RebuildLostNewFacility. A rebuild process was stopped because connectivity was lost to the coupling facility containing the new structure.

RebuildOldStrFailed. A rebuild process stopped because the original structure failed.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format `<plexname>:MVS:SYSPLEX`.

Structure Name Name of the coupling facility structure. Valid format is a simple text string of 1 through 16 characters; for example, IXCSTR1.

Structure Type Type of structure. Valid values are Cache, List, or Lock.

Suspend Specifies if this connection can tolerate suspension of work units during system-managed processing for a structure. Possible values are Yes, No, and Not available.

System Name Name of the coupling facility system; in this case, the name of the z/OS system where the address space is located. Valid format is a simple text string of 1 through 8 characters; for example, SYSA.

CF Path attributes
The CF Path attributes monitors channel path activity between z/OS systems and coupling facilities.

CF Name Name of the coupling facility system to which this z/OS system is connected. Valid format is a simple text string of from 1 through 8 characters; for example, COUPLER1.

Contention Percent Percentage of requests started on this path that were delayed due to path busy. Valid value is a numeric value in the range of 0.0 through 100.0, to one decimal point precision. An example is 10.2.

I/Os Per Second I/O rate for the channel path. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.2.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format `<plexname>:MVS:SYSPLEX`.

Status Current status of the path. Valid values are:
- NotOperational. The path, although defined, cannot be activated.
- Inactive. The path is currently offline but could be brought into service.
• Active. The path is currently available for service.

Sub Channel Path ID Hexadecimal channel path ID.

System Name Name of the z/OS image connected to the facility. Valid format is a simple text string of 1 through 8 characters; for example, SYSA.

CF Policy attributes
The CF Policy attribute group monitors resource consumption of address spaces with service classes.

Date Time Activate Date and time that the coupling facility policy was activated. Valid format is mm/dd/yy hh:mm:ss.

Policy Name Coupling facility policy name. Valid format is a simple text string of 1 through 8 characters; for example, CFRMPOL1.

Managed System A sysplex in your enterprise that is being monitored by Tivoli OMEGAMON XE for z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Reformat Required Indicates whether a reformat of the Coupling Facility Resource Manager is required. Valid values are Yes or No.

CF Structures attributes
The CF Structures attribute group is used to create situations that monitor the request activity from a z/OS image to a coupling facility structure.

Asynchronous Requests Per Minute Rate of asynchronous operations for this structure during the last interval. An asynchronous request is a request where the application does not wait for the request, but waits to be notified of the completion of the request either by an ECB (event control block) post or an entry into an exit routine. An asynchronous request is issued when the request is expected to take significant time to complete. Valid value is numeric and is a real number, with a maximum of 4 digits, to one decimal point precision; for example, 839.2.

AutoAlter Specifies the status of system-initiated alters for this structure. Yes indicates that system-initiated alters (automatic alter) are allowed for this structure; No indicates that system-initiated alters (automatic alter) are not allowed for this structure.

CF Name Name of the coupling facility where the structure is located. Valid format is a simple text string of 1 through 8 characters; for example, COUPLER1.

CF Preferences Indicates the names in order of preference where the structure would like to be allocated. Valid format is a simple text string of 1 through 35 characters.

Data Area Element Number of data area elements in the cache structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 880.

Data Element Size Size in bytes of data elements in the structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2048.

Directory Element Ratio Directory-to-element target ratio for cache structures. Valid format is a numeric ratio from 1 through 10 characters; for example, 224:880.
Directory Entry Count Number of directory entries in the cache structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 224.

Dump Contention Count of operations that were queued for dump serialization. Valid value is a numeric value in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.

Dump Table Size Size in 4K blocks of dump table space used for this structure. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.

Duplex Indicates the status of duplexing rebuild for this structure. Possible values are:
- Disabled. Neither user-managed nor system-managed duplexing rebuild can be started for this structure.
- Allowed. An application can initiate its own user-managed or system-managed duplexing rebuild. z/OS will make no attempt to maintain duplexing status.
- Enabled. The system will initiate and attempt to maintain a user-managed or system-managed duplexing rebuild for this structure.

Element Count Number of data elements in a cache or queues in a list. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 880.

Entry Element Ratio Entry-to-element target ratio for list structures. Valid format is a numeric ratio from 1 through 10 characters; for example 193:167.

False Lock Table Entry Contention Count Number of lock requests that encountered contention due to storage constraints. If this number is high, more list table entries should be allocated. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 4.

First Castout Class Name of the first castout class found in the cache structure. Valid value is an integer in the range of 0 through 32767, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.

In Use List Set Entry Count Number of list set entries currently in use in the structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 19.

Last Castout Class Name of the last castout class found in the cache structure. Castout classes are integers (0, 1, 2, etc.). This attribute lists the last one assigned to this structure, if any. An example is 0.

List Set Element Count Number of elements in the list structure currently in use. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 24.

Lock Table Entry Contention Count Number of lock requests that encountered contention on a lock table entry. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.

Lock Table Entry Count Number of lock table entries in the list structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.
Managed System A sysplex in your enterprise that is being monitored by Tivoli OMEGAMON XE for z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Maximum Data List Entry Size Maximum number of data elements per list entry. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 10.

Maximum List Set Elements Maximum number of data elements in the list structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 167.

Maximum List Set Entry Count Maximum number of list set entries in the structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 193.

Maximum Structure Size Maximum size of the structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. The value is expressed in 4K pages. An example is 256.

Maximum Users Maximum number of users that may connect to the structure. Valid value is an integer in the range of 0 through 32767, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 64.

Minimum Structure Size Minimum size of the structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. The value is expressed in 4K pages for attribute purposes. The number is scaled to K or Megapages. An example is 128.

Percent CF Storage Size Percentage of the total coupling facility allocated to the structure. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision.

Percent Converted Percentage of total requests for this structure in the last interval that were converted from synchronous to asynchronous requests. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision.

Percent Queued Requests Percentage of total requests for this structure in the last interval that were queued. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision.

Percent Total Requests Asynch Percentage of the total requests that were asynchronous operations for this structure during this interval period. Valid value is a percentage that is expressed to one decimal place.

Percent Total Requests Synch The percentage of the total requests that were synchronous operations for this structure during this interval period. Valid value is a percentage that is expressed to one decimal place.

Problem Users Number of users that are connected to the structure in an exception state. The address space is not in an exception state, but the connection is. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.

Rebuild Percent Percentage of failed weighted connections at which rebuild should be automatically started by the system. Valid values are numeric values in the range 0.0 through 100.0, to one decimal point precision. An example is 35.5.
Storage Classes Highest storage class used by the structure. Storage classes are in the range 0 to this value. Valid value is an integer in the range 0 through 255.

Storage Size Storage size currently allocated to the structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. The value is expressed in 4K pages for attribute purposes. 128 pages = 512.0 K bytes. An example is 128.

Structure Exclusions Indicates the structure names in order of preference that the structure would like to avoid having allocated in the coupling facility system. Valid format is a simple text string of 1 through 67 characters.

Structure Name Name of the structure. Valid format is a simple text string of 1 through 16 characters; for example, IXCSTR1.

Structure Status Current status of the structure. Valid values are:
- ActiveDuplexPrimary
- ActiveDuplexAlternate
- ActiveInUse
- ActivePersistent
- Defined
- PolicyChange
- Transitional
- Failed
- HoldingConnectivity
- HoldingDumpPend
- Maintmode
- RebuildActive
- RebuildStopped
- RebuildOldStr
- RebuildNewStr
- RebuildQuiesce
- RebuildComplete
- RebuildCleanup
- RebuildStartOperator
- RebuildStartConnector
- RebuildLostOldFacility
- RebuildFailed
- RebuildStoppedOperator
- RebuildStoppedConnector
- RebuildLostNewFacility
- RebuildOldStrFailed

Structure Type Type of structure (cache, list or lock).

Synch Asynch Convs Per Min Rate of synchronous operations that were converted to asynchronous requests for this structure during a one minute period. Valid value is a count that is expressed to one decimal place.
Synchronous Requests Per Minute Rate of synchronous operations for this structure during the last interval. A synchronous request is one that is expected to complete so quickly that the requesting application would rather wait for completion than do other work. Valid value is a number in the range of 0 through 2147483647, to one decimal point precision, including the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 9.2.

Total Queued Requests Count of all operations that were queued in the last interval. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1389.

Total Request Cnt This Interval Total number of synchronous and asynchronous operations for this structure during this interval period. Valid value is an integer in the range of 0 through 2147483647, to one decimal point precision, including the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 9.2.

Total Users Total number of users connected to the structure. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 8.

Utilized Storage Size Percentage of the structure storage actually in use, for list structures; for cache structures the rate of changed objects for the last interval in total changed objects (entries and data elements) per second. Value is a numeric value in the range of 0.0 through 100.0, to one decimal point precision.

CF Structure to MVS attributes

The CF Structure To MVS System attribute group monitors the request activity from a z/OS image to a coupling facility structure.

Average Asynchronous Request Time Average time (in microseconds) that an asynchronous request takes to complete. An asynchronous request is a request where the requesting application does not remain idle while waiting for the request, but waits to be notified of the completion of the request either by an ECB post or an entry into an exit routine. An asynchronous request is issued when the request is expected to take significant time to complete. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision. For example, a number such as 1234.0 represents 1,234.0 microseconds.

Average Queued Request Time Average time that a request was queued to this z/OS image. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision. For example, a number such as 1234.0 represents 1,234.0 microseconds.

Average Synchronous Request Time Average time (in microseconds) that a synchronous request takes to complete. A synchronous request is one that is expected to complete so quickly that the requesting application would rather wait for completion than do other work. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision. For example, a number such as 1234.0 represents 1,234.0 microseconds.

CF Name Name of the coupling facility. Valid format is a simple text string from 1 through 8 characters; for example, COUPLER1.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE for z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.
Request Rates Number of requests per second from this system to this structure. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 12.8.

Requests Converted Total number of requests from this system to this structure over the last observation period that were issued as synchronous and were converted to asynchronous. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.

Structure Name Name of the structure that has connected users in the associated z/OS image. Valid format is a simple text string from 1 through 16 characters; for example, IXSTR1.

System Name Name of the z/OS image connected to the sysplex. Valid format is a simple text string from 1 through 16 characters; for example, SYSA.

Total Requests Number of requests from this system to this structure over the last observation interval. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 182.0.

User Count Number of users on this image connected to the structure. Valid value is numeric in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 4.0.

CF Systems attributes
The CF Systems attribute group monitors coupling facility CPU and storage demands.

Allocated Storage Amount of storage allocated to the Coupling Facility currently in use. Allocated storage is the total number of 4K pages assigned to the coupling facility. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 59328.

Asynchronous Request Per Minute Rate of asynchronous operations for this system during this interval period. Valid value is a numeric value to one decimal point precision.

Average Failed Operation Time Average service time for unsuccessful operations, in microseconds. Valid value is an integer in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *MAX, *MIN, or *SUM functions. An example is 211.

Average Sync Operation Delay Average waiting time for a subchannel to be available for a synchronous operation, in microseconds. Valid value is a number in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *MAX, *MIN, or *SUM functions. An example is 38.7.

CF Level Coupling facility architected function level. Valid value is an integer in the range of 0 through 2147483647. An example is 3.

CF Name Name of the coupling facility. Valid format is a simple text string from 1 through 8 characters; for example, COUPLER1.

Connected MVS System Count The number of z/OS images connected to the facility. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 6.

CPU Percent Percentage of CPU utilization by the coupling facility. Valid value is a number in the range of 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 37.5.
Dump Table in Use Amount (a count of 4K pages) of reserved dump storage in the coupling facility currently holding dumps. This value is not a percentage. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.

Dump Table Size Amount of storage in the coupling facility reserved for dump tables. The size is expressed as a 4K page count. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 512.

Free Control Space Amount of control storage in the named coupling facility that is not assigned to structures or dump space, given as a 4K page count. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 4416.

Highest 1 Asynch Request Structure Name of the structure with the highest Asynchronous Requests per Minute count followed by its associated count value. Valid value is a 26 character string.

Highest 2 Asynch Request Structure Name of the structure with the second highest Asynchronous Requests per Minute count followed by its associated count value. Valid value is a 26 character string.

Highest 3 Asynch Request Structure Name of the structure with the third highest Asynchronous Requests per Minute count followed by its associated count value. Valid value is a 26 character string.

Highest 1 Synch Request Structure Name of the structure with the highest Synchronous Requests per Minute count followed by its associated count value. Valid value is a 26 character string.

Highest 2 Synch Request Structure Name of the structure with the second highest Synchronous Requests per Minute count followed by its associated count value. Valid value is a 26 character string.

Highest 3 Synch Request Structure Name of the structure with the third highest Synchronous Requests per Minute followed by its associated count value.

I/Os Per Second Sustained I/O rate (I/O requests per second) by the coupling facility. Valid value is a number in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 27.6.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE for z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Maximum Sub Channels Count of subchannels that, if they were available, could be used for operations. Valid value is an integer in the range 0 to 2 billion. Values are rarely above 10. An example is 4.

Percent Converted Percentage of the total requests that were converted from synchronous operations to asynchronous operations for this system during this interval period. Valid value is a percentage with one decimal point precision.

Percent of Total Requests Asynch Percentage of the total requests that were asynchronous operations for this system during this interval period. Valid value is a percentage to one decimal point precision.

Percent of Total Requests Synch Percentage of the total requests that were synchronous operations for this system during this interval period. Valid value is a percentage to one decimal point precision.

Percent Utilized Storage Percentage of storage currently being used. Valid value is a numeric value in the range of 0 through 100, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 63.5.
Status Current status of the facility. Valid values are:

- Okay. This coupling facility is functioning properly.
- Failed. This coupling facility has failed.
- Reconcile. The coupling facility to CFRM policy reconcile process is in progress. When this bit is on, connections to structures in this coupling facility using the IXLCNN macro are not permitted.
- Maintmode. This coupling facility is in maintenance mode.
- PolChg. Policy change pending which will delete this coupling facility from the CFRM active policy when all allocated structures are gone from this coupling facility.

Structure Count In Policy Number of structures in the coupling facility that are contained in the current Coupling Facility Resource Management policy. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 31.

Structure Count Out Policy Number of structures in the coupling facility that cannot be added to the current coupling facility resource management policy. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.

Sub Channels Allocated Count of subchannels that this facility has been allocated. Valid value is an integer in the range 0 to 2 billion. Values are rarely higher than 10. An example is 4.

Sub Channels In Use Count of subchannels available for use. Valid value is an integer in the range 0 to 2 billion. Values are rarely higher than 10. An example is 4.

Synchronous Requests Per Minute Rate of synchronous operations for this system during this interval period. Valid value is a number with one decimal point precision.

Synch to Asynch Conversions Per Min Rate of synchronous operations that were converted to asynchronous requests for this system during a one minute period. Valid value is an integer with one decimal point precision.

Total Control Space Total amount of storage in the coupling facility that can be used as control storage. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 59238.

Total Request Count This Interval Total number of synchronous and asynchronous operations for this system during this interval period.

Volatility Status 1-byte flag representing the volatility state of storage in the LPAR housing the coupling facility. Valid values are:

- Volatile. Storage in the LPAR housing the coupling facility is volatile.
- Not Volatile. Storage in the LPAR housing the coupling facility is not volatile.

DASD Device Collection Filtering attributes

The attributes in this group are used to filter collection for DASD devices. When you create a situation for DASD device collection filtering, the program limits the amount of DASD device data sent to the CMS to the devices that meet the criteria of the situation. For an illustration of how to use DASD device collection filtering, see the chapter on “Monitoring Shared DASD” in *IBM Tivoli OMEGAMON XE on z/OS: User’s Guide*.

Address Device address for the system in hexadecimal. This attribute is not recommended for use in selecting devices. DASD volumes may be reorganized over device addresses from time to time.
Average Response Time Average I/O response time, in milliseconds, of the device as seen by the system. The valid format is numeric values, including the use of the *AVG, *MAX, *MIN, or *SUM functions in the range of 0 to 2147483647, one decimal point precision. Use this attribute to select devices that might have problems.

Cache Status Cache status of the device for the system. Valid values include:
- Active
- Inactive
- PendingActive
- PendingInactive
- TimedOut

Connect Time Average connect time, in milliseconds, for a typical I/O. The valid format is numeric values, including the use of the *AVG, *MAX, *MIN, or *SUM functions in the range of 0 to 2147483647 with one decimal point precision.

Control Unit Type Control unit type. The valid values include:
- Unknown
- 2105
- 3880-23
- 3990-1
- 3990-2
- 3990-3
- 3990-6

Device Contention Index Device contention index value. Device contention is an indication of I/O delay for this group caused by inter system contention for the device. The larger the number the more severe is the contention. The valid format is numeric values, including the use of the *AVG, *MAX, *MIN, or *SUM functions. In the range of 0 to 2147483647 with two decimal point precision; for example, 1.35.

Device Type The device type. Valid format is 3380 or 3390.

Disconnect Time Average disconnect time, in milliseconds, for a typical I/O. Disconnect time is the time that the I/O searches for the data that has been requested. It includes moving the device to the requested cylinder and track (SEEK + SET SECTOR) waiting for the record to rotate under the head (LATENCY) possible rotational delay as the device waits to reconnect to the channel (RPS delay). The valid format is numeric values, including the use of the *AVG, *MAX, *MIN, or *SUM functions. In the range of 0 to 2147483647 with one decimal point precision; for example, 11.3.

Group Name Name of the DASD group. The valid format is simple text strings of 1 through 30 characters; for example, SGDB2X.

I/O Rate Average I/O rate for the device. The valid format is numeric values, including the use of the *AVG, *MAX, *MIN, or *SUM functions. In the range of 0 to 2147483647 with one decimal point precision; for example, 12.8.

Indexed VTOC Status of indexed VTOC as seen from the system. On heavily used volumes with many data sets, an index to a volume table of contents may improve I/O performance. The valid values include:
- DataUnavailable
- Enabled
- Disabled
• NotIndexed

IOSQ Average IOS queue time, in milliseconds, for a typical I/O. The valid format is numeric values, including the use of the *AVG, *MAX, *MIN, or *SUM functions. In the range of 0 to 2147483647 with one decimal point precision; for example, 15.5.

Mount Status Mount status of the device for the system. The valid values include Public, Private, and Storage.

Pending Time Average pending time, in milliseconds, for a typical I/O. Although shared DASD often causes high pending time, it can be caused by channel, control unit, or head of string being busy. Use this attribute for filtering. The valid format is numeric values, including the use of the *AVG, *MAX, *MIN, or *SUM functions. In the range of 0 to 2147483647 with one decimal point precision; for example, 5.5.

Reconfiguration Status Dynamic reconfiguration status of device for the system. The valid values include:
- Static
- Dynamic
- InstallationStatic
- PinStatusUnknownStatic
- PinStatusUnknownDynamic
- PinStatusUnknownInstallationStatic
- PinnedStatic
- PinnedDynamic
- PinnedInstallationStatic

System Name of the system that shares access to this device. The valid format is simple text strings of 1 through 32 characters; for example, SYSA.

True Percent Busy Device true busy value aggregated over all systems in the sysplex. The valid format is numeric values, including the use of the *AVG, *MAX, *MIN, or *SUM functions. In the range of 0 to 100 with one decimal point precision; for example, 25.5.

Vary Status Vary status of device for the system. The valid values include:
- Online
- Offline
- PendingOffline
- Boxed
- NotReady

Volume Serial Number Volume serial number. The valid format is a simple text string of 1 through 6 characters; for example, VOL001. When used in a situation, ensures that certain devices are included for collection. It should be specified as a predicate that is joined by the OR operator to all other predicates. You can also include a group of devices by ending the volume serial number with an asterisk (*). For example, SYS*, would select all devices beginning with the characters SYS*.

Enterprise Global Enqueue attributes
The Enterprise Global Enqueue attributes provides statistics for global enqueues.

ASID Hexadecimal address space ID.
Enqplex Name The name for the enqplex. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

Major Name Major name (qname) of the resource. Valid format is a simple text string of 1 through 8 characters; for example, SYSDSN.

Maximum Wait Time Longest time that the task has been waiting for a resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 45.

Minor Name Minor name (rname) of the resource. Valid format is a simple text string of 1 through 255 characters; for example, SYS1.PROCLIB.

Owning Address Space Name of the job containing the task that owns the resource. Valid format is a simple text string from 1 through 8 characters; for example, PRODJOB1.

Owning Task Count Number of tasks owning the resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 3.

Managed system name The sysplex in your enterprise that is being monitored, in the format <plexname>:MVS:SYSPLEX.

Swapped Swap status of the address space in which the task is executing. Valid values are Swapped or Not Swapped.

Sysplex Name The name of the sysplex. Valid format is a simple text string with 1 through 8 characters; for example, SYSPLEX1.

System Name SYSNAME or SMF ID of the z/OS image where the task is executing. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

TrueOwner YES indicates ordinary jobs, which acquire resources for their own purposes; NO indicates resource integrity managers, which generally acquires resources for purely protective purposes. This column is always YES for owners and Not available for waiters. Use TrueOwner in a filter to eliminate from reports those owners of a resource which have acquired ownership for protective purposes only.

Type Type of ENQ the task has issued for the resource. Valid values are:
- Exclusive. The requester requires that no other processes have access to this resource.
- Share. The requester is capable of sharing access to the resource with other processes.

Wait Time Time in seconds that the task has been waiting for the resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 45.

Waiting Address Space Name of the address space currently waiting on the resource. Valid format is a simple text string from 1 through 8 characters; for example, PRODJOB2.

Waiting Task Count Number of tasks waiting for the resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.
Global Enqueues attributes
The Global Enqueues attribute group monitors enqueue conflicts within the sysplex.

ASID Hexadecimal address space ID.

Major Name Major name (qname) of the resource. Valid format is a simple text string of 1 through 8 characters; for example, SYSDSN.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Maximum Wait Time Longest time that the task has been waiting for a resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 45.

Minor Name Minor name (rname) of the resource. Valid format is a simple text string of 1 through 255 characters; for example, SYS1.PROCLIB.

Owning Address Space Name of the job containing the task that owns the resource. Valid format is a simple text string from 1 through 8 characters; for example, PRODJOB1.

Owning Task Count Number of tasks owning the resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 3.

Swapped Swap status of the address space in which the task is executing. Valid values are Swapped and Not swapped.

System Name SYSNAME or SMF ID of the z/OS image where the task is executing. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

Type Type of ENQ the task has issued for the resource. Valid values are:
- Exclusive. The requester requires that no other processes have access to this resource.
- Share. The requester is capable of sharing access to the resource with other processes.

Wait Time Time in seconds that the task has been waiting for the resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 45.

Waiting Address Space Name of the address space currently waiting on the resource. Valid format is a simple text string from 1 through 8 characters; for example, PRODJOB2.

Waiting Task Count Number of tasks waiting for the resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.

GRS attributes
The GRS (global resource serialization) attribute group monitors ring status and ring message delays.

Actual Response Time Actual measured ring response time in milliseconds. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 32.
Current RSA Message Size Current size, in bytes, of the outgoing RSA message. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 144.

Expected Response Time Anticipated (or average) time, in milliseconds, that a requester must wait for access to a global resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 78.

GRS Mode The serialization propagation topology. Valid values are: Ring, Star, or None.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Maximum RSA Message Size Maximum size of the RSA message in bytes. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 32768.

Resident Milliseconds Minimum amount of time, in milliseconds, the RSA message is delayed in each z/OS image in the GRS complex. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 3.

Ring Acceleration Number of consecutive z/OS images in the GRS complex that must process the RSA message before GRS grants access to a global resource. Valid value is an integer in the range of 0 through 65535, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.

Status Status of each system in the global resource serialization complex. Valid values are:

- Inactive
- Active
- Joining
- Restarting
- Quiesced

System Name Name of the z/OS image connected to the facility. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

Tolerance Interval Maximum amount of time, in milliseconds, GRS waits before it detects an overdue RSA message. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 75000.

KM5 Enterprise CPC Status attributes
This attribute group provides information about the status of the Central Processing Complex (CPC) as reported by all OMEGAMON XE on z/OS monitoring agents connected to the hub monitoring server. A single row is written for each monitored CPC.

CPC Model Number The model number of the Central Processing Complex (CPC).

CPC Serial Number The 6-character serial number of the Central Processing Complex (CPC), for example 056789.

CPs %CPU Total CP-type physical processor utilization on the Central Processing Complex (CPC).

CPs %Overhead Total CP-type physical processor used for LPAR management overhead.
CPs Weight
Sum of weights assigned to LPARs that are active and sharing CP-type processors (CPs) on the CPC.

LPAR Node
The managed system name of the parent system that collects data agent. Valid value is a character string with a maximum of 32 bytes in the format <plexname>:<smfid>:MVSSYS.

LPAR SMF ID
SMF ID as defined in the IEASYM or IEASYS PARMLIB members.

Physical CPs
Physical CP-type processors that are online for this Central Processing Complex (CPC).

Sysplex node
The through node of the parent system that collects data from the agent. This is the value of the Tivoli Enterprise Monitoring Server to which the agent reports. Valid value is a 32-byte character string.

Sysplex Originnode
The z/OS operating system in your enterprise that is being monitored. Valid value is a character string with a maximum length of 32 bytes in the format SYSPLEX:SYSPLEX:PLEXVIEW.

KM5 Enterprise CPU Overview
This attribute group provides information about CPU usage for the highest CPU consumer in a sysplex or CPC. This group also provides partition management statistics for the LPAR identified in the data row.

Average CPU Percent
The percentage of time that all processors available in this z/OS system were busy dispatching work. If an address space uses more than a single processor worth of CPU, the percentage may exceed 100%.

Average Unused Group MSUs
This value represents the number of Millions of Service Units (MSUs) that were available to the LPAR Group over the Rolling Average 4-hour period but were not used. If the value is zero or negative, this means that the LPAR is subject to LPAR Group Capping. If this capping is in effect, the Group LPAR MSU Limit can vary between the LPAR Group Entitled Minimum service and the Group Capacity Limit.

CPC Serial Number
The 6-character serial number of the Central Processing Complex (CPC), for example 056789.

Group LPAR MSU Limit
The Millions of Service Units (MSUs) per Hour limit enforced by the LPAR Group. This limit varies between the LPAR's Entitled Capacity and the LPAR Group Capacity. When a Defined Capacity is specified for the LPAR, this value will never exceed that limit. If no Defined Capacity is specified for the LPAR, the limit can be as high as the LPAR Group Limit. If the LPAR is not in an LPAR Group, this value will be displayed as "Unavailable".

Highest LPAR CPU
Percentage of the average CPU utilization of the LPAR with the highest average CPU utilization in the sysplex.

Highest LPAR Name
Name of the LPAR for this row of data. If z/OS is running as a guest under VM, this field contains the VM user ID. Valid value is an 8-byte character string.

LPAR Group Capacity Limit
The LPAR Group Capacity Limit in Millions of Service Units (MSUs) per Hour. Capping of an LPAR Group is based on the 4-hour rolling average MSUs consumed by all the member LPARs of the LPAR Group.

LPAR Group Name
The 1-8 character name of the LPAR group.

LPAR Node
The managed system name of the parent system that collects data agent. Valid value is a character string with a maximum of 32 bytes in the format <plexname>:<smfid>:MVSSYS.
LPAR SMF ID SMF ID as defined in the IEASYM or IEASYS PARMLIB members.

Percent LPAR MSU Capacity Percentage, to 1 decimal place, of this LPAR's Entitled or Defined Capacity MSUs. If no Defined Capacity is specified for the LPAR, the Entitled MSUs effectively cap the maximum service an LPAR can consume. The Entitled value is based on the number of logical standard CPs configured to the LPAR, including any that are on standby. This number multiplied by the MSU rating of a single physical standard CP sets the Entitled service. If LPAR Group Capping is in effect for this LPAR, the Group LPAR MSU Limit establishes the maximum service that the LPAR can consume.

Sysplex Name The name of the sysplex into which this system has been defined.

Sysplex Node The through node of the parent system that collects data from the agent. This is the value of the Tivoli Enterprise Monitoring Server to which the agent reports. Valid value is a 32-byte character string.

Sysplex Origin Node The z/OS operating system in your enterprise that is being monitored. Valid value is a character string with a maximum length of 32 bytes in the format SYSPLEX:SYSPLEX:PLEXVIEW.

KM5 Enterprise Exceptions attributes

This attribute group provides information about the exception conditions detected by the various OMEGAMON XE on z/OS monitoring agents connected to the hub monitoring server.

ASID The address space ID in hexadecimal. The address space ID is a unique number assigned to an address space when it is created. It is used by MVS to differentiate between address spaces.

ASVT Reserve Utilization Threshold The threshold value for the ASVT Reserve Utilization exception. An exception condition is raised when the ASVT reserve utilization exceeds the threshold value. The threshold is expressed as a percentage of the available ASVT reserve slots. The default value for the ASVT Reserve Utilization Threshold is 80.

ASVT Slot Utilization Threshold The threshold value for the ASVT Utilization exception. An exception condition is raised when the ASVT utilization exceeds the threshold value. The threshold is expressed as a percentage of the available ASVT slots. The default value for the ASVT Slot Utilization Threshold is 80.

CPC Serial Number The 6-character serial number of the Central Processing Complex (CPC), for example 056789.

CPU Loop Index Threshold The threshold value for the CPU Loop Index exception. An exception condition is raised if the CPU Loop Index value of any address space exceeds this threshold. The value is expressed as the number of 10th of a percent that an address space is either using or waiting on CPU. The default value for the CPU Loop Index is 950 (95.0).

CSA Utilization Threshold The threshold value for the CSA Utilization exception. An exception condition is raised if the CSA utilization exceeds the threshold value. The threshold is expressed as a percentage of the available CSA. The default value for the CSA Utilization Threshold is 80.

ECSA Utilization Threshold The threshold value for the ECSA Utilization exception. An exception condition is raised if the ECSA utilization exceeds the threshold value. The threshold is expressed as a percentage of the available ECSA. The default value for the ECSA Utilization Threshold is 80.

Enqueue Wait Threshold The threshold value for the Enqueue exception. An exception condition is raised when the enqueue wait time or the maximum wait time of any enqueue exceeds the threshold value. The default value for the Enqueue threshold is 30 seconds.

Exception The exception condition detected during the most recent check. The possible values are:
- WTO Buffers Remaining
- Enqueue
- ASVT_Reserve_Utilization
- ASVT_Utilization
- Performance Index
- WTO_Buffers_Remaining
- Pageable Storage
- Auxiliary_Storage
- Available_Frame_Queue_Shortage
- CPU_Loop_Index

Job Name The name of the address space (job, started task, or TSO user ID).

LPAR Name Name of the LPAR for this row of data. If z/OS is running as a guest under VM, this field contains the VM user ID. Valid name is an 8-byte character string.

LPAR Node The managed system name of the parent system that collects data from the agent. Valid value is a character string with a maximum of 32 bytes in the format <plexname>::<smfid>::MVSSYS.

LPAR SMF ID SMF ID as defined in the IEASYM or IEASYS PARMLIB members.

Maximum Wait The maximum wait time for tasks waiting on the enqueue reported in the exception.

Performance Index Threshold The threshold value for the Performance Index exception. An exception condition is raised if the Performance Index value of any service class exceeds this threshold. The threshold for the Performance Index is expressed in hundredths. The default value for the Performance Index threshold is 120 (1.20).

Sysplex Name The name of the sysplex into which this system has been defined.

Sysplex Node The through node of the parent system that collects data from the agent. This is the value of the Tivoli Enterprise Monitoring Server to which the agent reports. Valid value is a 32-byte character string.

Sysplex Originnode The z/OS operating system in your enterprise that is being monitored. Valid value is a character string with a maximum length of 32 bytes in the format SYSPLEX:SYSPLEX:PLEXVIEW.

Type The type of address space (Batch, TSO, STC, APPC, or OMVS).

Value Value of the identified exception.

Value Descriptor Additional information associated with the value attribute, currently the minor name for an enqueue exception.

Waiting Tasks The number of tasks waiting for the enqueue reported in the exception.

WTO Buffer Threshold The threshold value for the WTO Buffers exception. An exception condition is raised when the number of remaining WTO buffers falls below the threshold value. The default value for the WTO Buffer Threshold is 100.

KM5 LPAR Overview attributes
This attribute group provides information about LPAR summary information. Various statistics such as highest average CPU are collected.
Average CPU Percent The percentage of time that all processors available in this z/OS system were busy dispatching work.

CPC Serial Number The 8-character serial number of the Central Processing Complex (CPC), for example 056789.

CSA In Use Percent The amount of CSA storage currently in use as a percentage of total storage.

ECSA In Use Percent The amount of ECSA storage currently in use as a percentage of total storage.

Current Weight Current shared processor weight assigned to the LPAR or Cluster. In a shared physical processor configuration, weight determines the relative importance of the LPAR for the allocation of processor resources. Current Weight is that weight currently assigned for an LPAR that is enabled for Workload Manager LPAR CPU Weight Management.

Goal Importance The importance of this goal for the service class period. Goal importance for the service class is set as part of the Workload Manager (WLM) policy. When WLM cannot satisfy all goals, it tries to meet goals for more important service class periods first. Valid values:
 - Not available
 - Highest
 - High
 - Medium
 - Low
 - Lowest

I/O Rate The number of I/Os per second as a measurement of data set and JES spool I/O activity for all data sets associated with this service class period. Valid value is an number to one decimal place accuracy.

LPAR Cluster Name The name of the LPAR cluster. The format of this attribute is xxxxxxx.sss.tttt, where:
 - xxxxxxx specifies the sysplex name.
 - ssss are the last 4 characters of the Central Processing Complex (CPC) Serial Number.
 - tttt are the first 4 characters of the CPU Model number.

LPAR Name Name of the LPAR for this row of data. If z/OS is running as a guest under VM, this field contains the VM user ID. Valid name is an 8-byte character string.

LPAR Node The managed system name of the parent system that collects data agent. Valid value is a character string with a maximum of 32 bytes in the format <plexname>::<smfid>::MVSSYS.

LPAR SMF ID SMF ID as defined in the IEASYM or IEASYS PARMLIB members.

Major Name The major name (qname) of the resource. Valid format is a simple text string of from 1 through 8 characters; for example, SYSDSN.

Max Enqueue Wait Time Longest time, in seconds, that the task has been waiting for a resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 45.

Page Fault Rate The number of page faults per second. A page fault is an interrupt that occurs when an executing program references an address that is not in central storage. Valid value is a 4-byte integer.

Percent LPAR MSU Capacity Percentage of the Entitled or Defined Capacity MSUs of this LPAR, to 1 decimal place. If no Defined Capacity is specified for the LPAR, the Entitled MSUs effectively cap the
maximum service an LPAR can consume. The Entitled value is based on the number of logical standard CPs configured to the LPAR, including any that are on standby. This number, multiplied by the MSU rating of a single physical standard CP, sets the Entitled service. If LPAR Group Capping is in effect for this LPAR, the Group LPAR MSU Limit establishes the maximum service that the LPAR can consume.

Performance Index Performance index for the host; a measure of how well a service class period is performing relative to its goal. Valid value is a 4-byte integer in the range 0.00 - 100.00. A performance index of less than 1 indicates that the period is performing better than its goal. A performance index of 1 indicates the period is meeting its goal. A performance index greater than 1 indicates the period is performing worse than its goal.

Record Type The type of record (Detail, Summary, or Trend).

Service Class The name of the service class being reported on. Valid value is a simple text string of from 1 through 8 characters; for example, TSO. A service class represents a uniquely-named group of work having common performance requirements such as similar performance goals, availability requirements, resource requirements, or business importance.

Service Class Period The number of the service class period. If specifying a situation where the values should represent the service class as a whole, then specify Service Class Period="SUM". Period is used when building a situation for workflow thresholds at the service class level. Valid value is an integer in the range 1 through 8, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions.

Storage Events Status Whether the event is Active or Inactive. If the shortage is relieved, no status is indicated.

Sysplex Name The name of the sysplex into which this system has been defined.

Sysplex Node The through node of the parent system that collects data from the agent. This is the value of the Tivoli Enterprise Monitoring Server to which the agent reports. Valid value is a 32-byte character string.

Sysplex Originnode The z/OS operating system in your enterprise that is being monitored. Valid value is a character string with a maximum length of 32 bytes in the format SYSPLEX:SYSPLEX:PLEXVIEW.

System Page Rate The rate at which paging occurs over all storage areas (common, private, and system). Valid value is a 4-byte integer having one decimal position.

KM5 Sysplex Configuration attributes

This table attribute groups provides monitoring status and system configuration information pertinent to the sysplexes and Central Processing Complexes (CPCs) for all OMEGAMON XE for z/OS monitoring agents connected to the hub monitoring server.

CPC Model The model number of the CPU where the LPAR is running, for example 2084.

CPC Serial Number The six-character CPC serial number, for example 056789. Valid value is an eight-byte character string.

LPAR Cluster Name The name of the LPAR cluster, in the format xxxxxxxsss.sssss, where xxxxxxx specifies the sysplex name, ssss are the last four characters of the Central Processing Complex (CPC) serial number, and tttt are the first four characters of the CPU model number.

LPAR Name Name of the LPAR for this row of data. If z/OS is running as a guest under VM, this field contains the VM user ID. Valid value is an 8-byte character string.
LPAR Node A z/OS system in your enterprise that is being monitored by an OMEGAMON XE on z/OS monitoring agent, in the format: `<sysplex>:<sysplex>:PLEXVIEW`.

LPAR SMF ID The SMF ID as defined in the IEASYM or IEASYS PARMLIB members.

Monitoring Status The status of the monitoring agent running on this system, either Active or Deactivated.

Sysplex Name The name of the sysplex into which this system has been defined.

Sysplex Node The parent system that collects data from the agent, in the format `<plexname>:<smfid>:MVSSYS`.

System Name The name of the z/OS image, for example SYSA.

KM5 Top Consumers attribute group
The KM5 Top Consumers attribute group provides information on top consumers of various resources, including CPU, storage, I/O, enqueue conflicts, and Performance Index, for all LPARs in the central processing complex (CPC) or Sysplex.

% of Total CSA Percentage of total common service area (CSA) storage in use by this job. Valid value is a number in the range 0 - 100.

% of Total ECSA Percentage of total extended common service area (ECSA) storage in use by this address space. Valid value is a number in the range 0 - 100.

ASID The address space ID in hexadecimal. The address space ID is a unique number assigned to an address space when it is created. It is used by z/OS as an index to find the main control block of the address space or to differentiate between address spaces.

Central Frame Count The total number of central storage frames, including any frames that are backing user data spaces. Valid value is a 4-byte integer.

CPC Model Number The model number of the central processing complex (CPC) where the LPAR is running.

CPC Serial Number The 6-character central processing complex (CPC) serial number.

CPU Percent The percentage of CPU used by the address space over the current interval. The value can exceed 100%. The maximum value is \(n \times 00\% \), where \(n \) represents the number of processors (CPUs) assigned to the LPAR or image.

CSA in Use Amount of common service area (CSA) storage in use by this address space, in bytes. Valid value is a numeric value in the range 1 - 2147483647.

CSA Orphaned Indicates whether or not the storage is currently owned. Valid values are:
- Not available. Address space did not allocate CSA storage.
- Yes. CSA storage was orphaned by this address space and is currently unowned.
- No. Address space is active and this CSA storage is owned.

ECSA in Use Amount of extended common service area (ECSA) storage in use by this address space.

ECSA Orphaned Indicates whether or not the storage is currently owned. Valid values are:
- Unavailable. Address space did not allocate ECSA storage.
Yes. ECSA storage was orphaned by this address space and is currently unowned.
No. Address space is active and this ECSA storage is owned.

I/O Rate The average number of reads and writes (I/Os) per second during the last sample interval, to one decimal place. (By default, the sample interval is 2.3 seconds.)

Job Name The name of the job, started task, TSO user, APPC address space, and so on, consuming CPU cycles. In the OMAGAMON enhanced 3270 user interface this attribute is displayed as Address Space Name. Valid value is a string, with a maximum of eight characters.

LPAR Name Name of the LPAR for this row of data. If z/OS is running as a guest under VM, this field contains the VM UserID.

Major Name The major name (qname) of the resource. Valid format is a simple text string of from 1 through 8 characters; for example, SYSDSN.

Managed System A z/OS operating system in your enterprise that is being monitored by an OMEGAMON XE on z/OS agent. The name takes the form: <SYSPLEX>:<SYSPLEX>:PLEXVIEW.

Max Enqueue Wait Time Longest time, in seconds, that the task has been waiting for a resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 45.

Owning Job Name Name of the job containing the task that owns the resource. Valid format is a simple text string from 1 through 8 characters; for example, PRODJOB1. The column is blank for a waiting address space entry.

Performance Index Performance index for the host; a measure of how well a service class period is performing relative to its goal. Valid value is a 4-byte integer in the range 0.00 - 100.00. A performance index of less than 1 indicates that the period is performing better than its goal. A performance index of 1 indicates the period is meeting its goal. A performance index greater than 1 indicates the period is performing worse than its goal.

Average and percentile response time performance indexes are calculated by dividing the actual values by the goal values. The velocity performance index is calculated by dividing the goal value by the actual value.

Service Class The name of the service class being reported on. Valid value is a simple text string of from 1 through 8 characters; for example, TSO. A service class represents a uniquely-named group of work having common performance requirements such as similar performance goals, availability requirements, resource requirements, or business importance.

SMF ID SMF ID as defined in the IEASYM or IEASYS PARMLIB members.

Sysplex Name The name of the Sysplex into which this system has been defined.

Sysplex Node The thrunode of the parent system that collects data from the agent. This is the name of the Tivoli Enterprise Monitoring Server specified during configuration of the agent.

Sysplex Originnode The origin node of the parent system that collects data from the agent. The name takes the form: <PLEXNAME>:<SMFID>:MVSSYS.

System Name Name of the z/OS image.
Top Consumer Key Key field identifying the top consumer category of the top or highest consumers of interest. The possible values are: CPU, STORAGE, IO, ENQUEUE, or WLM. For example: SELECT CPUPCT FROM KM5TOPC WHERE TOPCKEY = 'CPU';

Total Fixed The total amount of fixed storage, in megabytes, for the address space. Valid value is a 4-byte integer.

Total Virtual The total amount of allocated virtual storage, in megabytes, for the address space. Valid value is a 4-byte integer.

VM User ID The z/VM user ID in which the guest MVS system is running.

Working Set Size The number of frames of real storage an address space has in use. Often defined as the minimum number of pages that an application needs to do work. With expanded storage installed, working set size also includes the number of expanded storage frames that the user owns. In systems with expanded storage, the working set is divided into three parts. The primary working set consists of LSQA pages, fixed pages, and at least one page per segment. The secondary working set is all other referenced pages. The remaining, unreferenced pages are contained in the nonworking set.

Report Classes attributes
The Report Class attribute group monitors workload activity accumulated by report class rather than service class.

Address Space Count Number of address spaces for this report class. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 211.

I/O Rate Number of I/Os per second experienced by the report class during the current interval. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.4.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Page Rate Number of page faults per second experienced by all address spaces in the report class during the report period. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.5.

Report Class Name of the report class. Valid format is a simple text string from 1 through 8 characters; for example, REPORTA.

Velocity Percentage of processor utilization for all address spaces in this report class. Valid value is a numeric value in the range of 0 through 100, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Resource Groups attributes
The Resource Groups attribute group monitors service class resource limits.

Description Description of the resource group. Valid format is a simple text string from 1 through 32 characters. An example is “Resource group to allow 4 MIPs”.

142 IBM Tivoli OMEGAMON XE on z/OS: User’s Guide
Group Capacity Utilization Number of unweighted service units that are currently being consumed per second by the resource group. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.

IFA on CP Utilization Service units consumed by work units within a resource group performing work eligible for a zSeries Application Assist (zAAP) processor on a standard processor.

IFA Utilization Service units consumed by work units within a resource group performing work on an Integrated Facility for Applications processor.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Maximum Capacity Maximum capacity value for the resource group. For type 1 resource groups this is the maximum unweighted number of service units that can be consumed per second by all service classes within the resource group. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 200. For type 2 resource groups, this value is the capacity as a percentage of the LPAR share between 0 and 99. For Type 3 resource groups, this value is the capacity in number of general purpose processors where 100 represents the capacity of 1 General Capacity Processor (GCP).

Minimum Capacity Minimum capacity value for the resource group. For type 1 resource groups this is the minimum unweighted number of service units that can be consumed per second by all service classes within the resource group. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 50. For Type 2 Resource Groups, this value is the capacity as a percentage of the LPAR share between 0 and 99. For Type 3 Resource Groups, this value is the capacity in number of general purpose processors where 100 represents the capacity of 1 General Capacity Processor (GCP).

Name Name of the resource group. Valid format is a simple text string from 1 through 8 characters; for example, FOURMIP.

Percent Maximum Group Capacity Used Percentage of CPU service units defined as the maximum consumable by the resource group and currently being consumed by all service classes associated with the resource group. Valid value is a numeric value in the range of 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5. For Type 2 Resource Groups, which have a system scope, this value will be NotApplicable2. For Type 3 Resource Groups, which also have a system scope, this value will be NotApplicable3.

Service Class Name of the service class that is in the resource group. Valid format is a simple text string from 1 through 8 characters; for example, STC.

zIIP On CP Utilization Service units consumed by work units within a resource group performing work eligible for a System z9 Integrated Information Processor on a standard processor.

zIIP Utilization Service units consumed by work units within a resource group performing work on a System z9 Integrated Information Processor.

Service Class Address Spaces attributes

The Service Class Address Spaces attribute group monitors resource consumption of address spaces with service classes.

Address Space Name of the address space that is running work in the service class. Valid format is a simple text string from 1 through 8 characters; for example, PLDSOS1.
Address Space Type Indicates the type of address space. The valid values are:

- **APPC**
 - Advanced Program-to-Program Communication address space
- **Server**
 - Services one or more transaction service classes
- **Batch**
 - Batch address space
- **TSO**
 - TSO address space
- **STC**
 - Started task address space

ASID Hexadecimal address space ID.

Class Flag Categorizes the service class based on the general types of transactions it manages. The valid values are:

- Transaction. Service class manages subsystem transactions such as CICS transaction or IMS transactions.
- Address space. Service class handles workloads such as batch jobs and started tasks.
- TSO. Service class handles TSO users.

CPU Percent Percentage of CPU consumed by the address space over the current interval. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

CSTOR Frames Number of working set frames in central storage for the address space. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 213.

ESTOR Frames Number of working set frames in expanded storage for the address space. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.

IFA Percent Percentage of time the address space executed on an Integrated Facility for Applications (IFA) processor.

IFA On CP Percent Percentage of time the address space executed Integrated Facility for Applications (IFA) eligible work on a standard processor.

I/O Rate Number of I/Os per second experienced by the address space over the current interval. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.2.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Page Rate Number of page faults per second experienced by the address space over the reporting period. Valid value is a numeric value in the range of 0 through 2147483647, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 10.2.

Period Service class period in which the address space is currently running. Valid format is numeric in the range 0 through 65535; for example, 1.
Report Class Name of the report class to which this address space is assigned. Valid format is a simple text string from 1 through 8 characters; for example, REPORTA.

Service Class Name of the service class to which the associated address space is assigned. Valid format is a simple text string from 1 through 8 characters; for example, STC.

System Name SMF ID of the system that is associated with the address space. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

Velocity Speed achieved for the work running in the service class from the address space. Valid value is a numeric value in the range of 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

zIIP On CP Percent Percentage of time the address space performed work eligible for System z9 Integrated Information Processor resources on standard processors. The maximum value is n00%, where n represents the number of processors assigned to the sysplex.

zIIP Percent Percentage of time the address space performed work on System z9 Integrated Information Processor resources. The maximum value is n00%, where n represents the number of processors assigned to the sysplex.

Service Class Enqueue Workflow Analysis attributes
The Service Class Enqueue Workflow Analysis attribute group monitors service class delays due to specific enqueue resources.

Level Aggregation at a z/OS image level. Data can be aggregated for an individual z/OS system or for an entire sysplex. Valid values are:
- SYSTEM - To aggregate at a z/OS image level
- SYSPLEX - To aggregate over an entire Sysplex

Major Queue Name Resource major name. Valid format is a simple text string from 1 through 8 characters; for example, SYSDSN.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Period Period number. Valid value is an integer in the range 0 through 8, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. If the situation is to be at the service class level rather than the period level, use Period = SUM. An example is 1.

Queued Percent Percentage of time queued for a major resource for a service class. This indicates the percentage of time transactions for this service class spent waiting to acquire this enqueue. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Service Class Service class name. Valid format is a simple text string from 1 through 8 characters; for example, STC.

System Name Name of the z/OS system being reported on. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.
Service Class I/O Workflow Analysis attributes

The Service Class I/O Workflow Analysis attribute group monitors service class delays due to specific device I/O activity.

Device Number Number of the device that the service class is currently using. Valid format is an integer in the range 0 through 65535. For situations, the value must be entered in its decimal equivalent. For example, device X'150' should be entered as its decimal equivalent 336.

Device Type Type of device that the service class is currently using. Valid format is a simple text string from 1 through 4 characters; for example, DASD.

I/O Active Percent Percentage of active I/O rate for the service class. This is the percentage of the transaction elapsed time spent actively doing I/O on the subject device. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

I/O Wait Percent Percentage of I/O wait for the service class. This is the percentage of the transaction elapsed time spent waiting for I/O on the subject device. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Level Aggregation at a z/OS image level. Data can be aggregated for an individual z/OS system or for an entire sysplex. Valid values are:
- SYSTEM - To aggregate at a z/OS image level
- SYSPLEX - To aggregate over an entire Sysplex

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Period Service class period number. Valid value is an integer in the range 0 through 8, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. If the situation is to be at the service class level rather than the period level, use Period = SUM. An example is 1.

Service Class Service class name. Valid format is a simple text string from 1 through 8 characters; for example, STC.

System Name Name of the z/OS system being reported on. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

Volser Volume serial number of the device that the service class is using. Valid format is a simple text string from 1 through 6 characters; for example, LST004.

Service Class Subsystem Workflow Analysis attributes

The Service Class Subsys Workflow Analysis attribute group monitors the percentage of time that transaction-oriented service classes spend in specific execution states.

Active Percent Percentage of samples in active state. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Continuation In Network Percent Percentage of samples in a state representing transactions for which there are logical continuations somewhere in the network. Valid value is a numeric value in the range 0.0
through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *
SUM functions. An example is 25.5. (In the OMEGAMON enhanced 3270 user interface this attribute is
displayed as Continuation On Local MVS %.)

Continuation In Sysplex Percent Percentage of samples in a state representing transactions for
which there are logical continuations from another z/OS image in the sysplex. Valid value is a numeric value
in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX,
*MIN, or *SUM functions. An example is 25.5.

Continuation On Local MVS Percent Percentage of samples in a state representing transactions for
which there are logical continuations on a z/OS image. Valid value is a numeric value in the range 0.0
through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or
*SUM functions. An example is 25.5.

Conversation Wait Percent Percentage of samples waiting in a conversation state. Valid value is a
numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of
the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Distribution Wait Percent Percentage of samples waiting in a distributed request state. Valid value is a
numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of
the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

I/O Wait Percent Percentage of samples waiting in I/O state. This is the percentage of the transaction
elapsed time spent waiting for I/O on the subject device. Valid value is a numeric value in the range 0.0
through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or
*SUM functions. An example is 25.5.

Idle Percent Percentage of samples in idle state. This is the percentage of tasks in this class that are
waiting for terminal output. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal
point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is
25.5.

Level Aggregation at a z/OS image level. Data can be aggregated for an individual z/OS system or for
an entire sysplex. Valid values are:

- SYSTEM - To aggregate at a z/OS image level
- SYSPLEX - To aggregate over an entire Sysplex

Local Session Wait Percent Percentage of samples waiting for a local session to be established. Valid
value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include
the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5. In the OMEGAMON
enhanced 3270 user interface this attribute is displayed as Local Session Wait %.

Lock Wait Percent Percentage of samples waiting in lock state. Valid value is a numeric value in the
range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX,
*MIN, or *SUM functions. An example is 25.5.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS
agents. Valid value is a character string with a maximum length of 32 bytes, in the format
<plexname>:MVS:SYSPLEX.

Network Session Wait Percent Percentage of samples waiting for a session to be established somewhere
in the network. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point
precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5. In
the OMEGAMON enhanced 3270 user interface this attribute is displayed as Network Session Wait %.
Other Product Wait Percent Percentage of samples waiting for another product state. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5. In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Other Product Wait %.

Phase Identifies the transaction states sampled in the phase of transactions defined by RCAEEFLG. Valid values are:
- Begin-to-End
- Execution

Ready Percent Percentage of samples in ready state. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Service Class Name Name of the service class being reported on. Valid format is a simple text string from 1 through 8 characters; for example, CICSTRN.

Subsystem Type of subsystem where the samples are processed. Valid format is a simple text string from 1 through 4 characters; for example, CICS.

Sysplex Session Wait Percent Percentage of samples waiting for a session to be established somewhere in the sysplex. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5. In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Sysplex Session Wait %.

System Name Name of the z/OS system being reported on. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

Timer Wait Percent Percentage of samples waiting in timer state. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Unidentified Resource Wait Percent Percentage of samples waiting for an unidentified resource. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5. In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Unidentified Resource Wait %.

Service Definition attributes
The Service Definition attribute group displays Workload Manager (WLM) service definition and service policy activation dates.

Definition Install Date Date that the service definition was installed.

Definition Install Time Time that the service definition was installed.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Policy Activate Date Date and time the service policy was activated.

Policy Activate System System where the service policy was activated. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.
Policy Activate Time Time that the service policy was activated. Valid format is a time in the format hhmmsssttt, where:

- hh = hour
- mm = minutes
- ss = seconds
- ttt = thousandths of seconds

Policy Activate User User that activated the service policy. Valid format is a simple text string from 1 through 8 characters; for example, JSMITH.

Service Definition Name Name of the service definition. Valid format is a simple text string from 1 through 8 characters; for example, PLEXADEF.

Service Policy Name of the service policy. Valid format is a simple text string from 1 through 8 characters; for example, POLPRIME.

Sysplex DASD attributes

The Sysplex DASD attribute group monitors sysplex-wide activity of groups of DASD devices.

Average Device Contention Index Average of the device level contention indexes for devices of the group. Device contention is an indicator of I/O delay for this group, caused by intersystem contention for the device. The larger the number, the more severe is the contention. Valid value is a numeric value in the range 0 through 2147483647, to two decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.25.

Average True Percent Busy Average of true busy calculated for devices in the group. True percent busy is a measure of the busy time accumulated for the group by all systems in the sysplex. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 12.5.

Bypass Filtering This attribute is for information only. You can use this attribute in a situation.

Group Name Name of the DASD group. Valid format is a simple text string from 1 through 30 characters; for example, SGDB2X.

Highest Device Contention Index Highest of the device-level contention indexes for devices of the group. Valid value is a numeric value in the range 0 through 2147483647, to two decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 4.25.

Highest Device Contention Index Volser Volume serial number of the device contributing the largest device contention index. Valid format is a simple text string from 1 through 6 characters; for example, VOL001.

Highest True Percent Busy Largest true busy for a device in the group. Valid value is a numeric value in the range 0.0 through 100.0, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Highest True Percent Busy Volser Volume serial number of the device contributing the largest true busy. Valid format is a simple text string from 1 through 6 characters; for example, VOL001.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.
Volume Serial Number The volume serial number. The valid format is a simple text string with 1 through 6 characters, for example, VOL001

Sysplex DASD Device attributes
The Sysplex DASD Device attribute group monitors z/OS image-by-image activity for individual DASD devices.

Address Device address for the system in hexadecimal format.

Average Response Time Average I/O response time, in milliseconds, of the device as seen by the system. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 55.2.

Bypass Filtering This attribute is for information only. You can use this attribute in a situation.

Cache Status Cache status of the device for the system. Valid values include:
- Active
- Inactive
- PendingActive
- PendingInactive
- TimedOut

Connect Time Average connect time in milliseconds, for a typical I/O. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 21.2.

Disconnect Time Average disconnect time, in milliseconds, for a typical I/O. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 12.8.

I/O Rate Average I/O rate for the device. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 12.8.

Indexed VTOC Status of the indexed volume table of contents (VTOC) as seen from the system. Valid values are:
- DataUnavailable
- Enabled
- Disabled
- NotIndexed

IOSQ Average IOS queue time, in milliseconds, for a typical I/O. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 15.5.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE for z/OS agents. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:MVS:SYSPLEX.

Mount Status Mount status of the device for the system. Valid values are:
- Public
- Private
• Storage

Pending Time Average pending time, in milliseconds, for a typical I/O. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 5.5.

Reconfiguration Status Dynamic reconfiguration status of the device for the system. Valid values are:
• Static
• Dynamic
• InstallationStatic
• PinStatusUnknownStatic
• PinStatusUnknownDynamic
• PinStatusUnknownInstallationStatic
• PinnedStatic
• PinnedDynamic
• PinnedInstallationStatic

System Name of the system that shares access to this device. Valid format is a simple text string from 1 through 32 characters; for example, SYSA.

True Percent Busy Device true busy value aggregated over all systems in the sysplex. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Vary Status Vary status of the device for the system. Valid values are:
• Online
• Offline
• PendingOffline
• Boxed
• NotReady

Volume Serial Number Volume serial number of the device. Valid format is a simple text string from 1 through 6 characters; for example, VOL001.

Sysplex DASD Group attributes
The Sysplex DASD Group attribute group monitors sysplex-wide activity of individual shared DASD devices.

Bypass Filtering This attribute is for information only. You can use this attribute in a situation.

Control Unit Type Type of control unit. Valid values are:
• Unknown
• 3880-23
• 3990-1
• 3990-2
• 3990-3
• 3990-6
Cumulative I/O Rate Sum of the I/O rate in seconds as seen from each sharing system. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 45.1.

Device Contention Index Indication of I/O delay for this group caused by intersystem contention for the device. The larger the number, the more severe is the contention. Valid value is a numeric value in the range 0 through 2147483647, to two decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.35.

Device Type Device type. Valid values are 3380 and 3390.

Group Name Name of the DASD group. Valid format is a simple text string from 1 through 30 characters; for example, SGDB2X.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

True Percent Busy Device true busy value. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Volume Serial Number Volume serial number of the device. Valid format is a simple text string from 1 through 6 characters; for example, VOL001.

Worst Disconnect Time Worst disconnect time, in milliseconds, as seen from one system. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.5.

Worst Disconnect Time System System where the worst disconnect time was observed. Valid value is a simple text string from 1 through 32 characters; for example, SYSA.

Worst Response Time Worst response time, in milliseconds, as seen from one system. Valid value is a numeric value in the range 0-2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 242.5.

Worst Response Time System System where the worst response time was observed. Valid value is a simple text string from 1 through 32 characters; for example, SYSA.

Sysplex WLM Service Class Period attributes
The sysplex WLM Service Class Period Group attribute group monitors service class period performance relative to goals.

Active I/O Indicates the percent of time transactions in this service class period spent doing active I/O over all devices.

Actual Host Measured result for this service class period, either response time (in milliseconds) or velocity (between 0 and 100), depending on the goal type.

Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. If you are setting thresholds for response time goals, express the value in milliseconds. For example, show 1.5 seconds as 1500 milliseconds. For velocity goals, the value should be between 0 and 100; for example, 85.3.
Actual Network Average network response time, in milliseconds, for the service class. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. If used in a situation, this value should be entered in milliseconds; for example, 1200.

Actual Total Total actual value, in milliseconds, for the service class period. Actual Total presents the measured result including network delay where applicable (for response time-oriented goals). The average measured network delay is added to the measured host response time. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. If used in a situation, this value should be entered in milliseconds; for example, 2200.

Average Response Time Average host response time of transactions in this service class. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. If used as a threshold in a situation, this value should be entered in milliseconds; for example, 1200.

Class Flag Categorizes the service class based on the general types of transactions that are managed by it. Valid values are:
- Transaction. This service class manages subsystem transactions such as CICS or IMS transactions.
- Address Space. This service class handles workloads such as batch jobs and started tasks.
- TSO. This service class handles TSO users.

Common Page-in Wait Wait time for the PLPA or common page-in. This indicates the percentage of time transactions in this service class spent waiting for page-in delays for common storage pages. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 10.3.

CPU Wait Total wait time on the active CPU dispatching queue. This indicates the percentage of time transactions in this service class are waiting for CPU access. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 21.8.

Cross Memory Wait Total wait time for a cross-memory request. This indicates the percentage of time transactions in this service class wait for cross memory request delays. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 3.4.

Crypto AMP Wait This value indicates the percentage of time workloads assigned to this service class spent waiting for Crypto Async Message services. Valid value is a numeric value in the range 0 through 100, to one decimal point precision.

Crypto AP Wait This value indicates the percentage of time workloads assigned to this service class spent waiting for Crypto Assist processor services. Valid value is a numeric value in the range 0 through 100, to one decimal point precision.

Duration Number of CPU service units the period may use before work is passed to the next period. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 200.

ECB Wait Total time waiting for some unknown event. This indicates the percentage of time transactions in this service class wait for an unspecified event. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 200.

End Date Time The data collection interval end date and time. This attribute has been provided for historical support purposes only and is currently not being used.
Enqueue Wait Indicates the percentage of time transactions in this service class spent waiting for enqueue delays. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 5.7.

Goal Describes the service class period’s goal as a complete text string. Valid format is a simple text string from 1 through 30 characters; for example, Pct Resp 95% < 400.0 ms.

Goal Importance Importance level of the goal for the service class period. Goal importance for the service class is set as part of the Workload Manager (WLM) policy. When WLM cannot satisfy all goals, it will try to meet goals for more important service class periods first. Valid values are:
- Highest
- High
- Medium
- Low
- Lowest

Goal Percentile Percentage of work in the service class period that completed within the expected response time. Goal percentile is valid for percentile response time goals only. It is the percentage of transactions that should complete within the goal value. This value is set by the system administrator for this service class when the WLM policy is defined. It is not a measured result. Valid value is an integer in the range 0 through 65535, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 90.

Goal Type Type of goal for the service class period. Valid values are:
- SysGoal. z/OS system task goal assigned by z/OS itself.
- Discret. Discretionary goal get whatever resources remain after all more important workloads are satisfied.
- Velocity. Velocity goals define the acceptable amount of delay for work when work is ready to run. Velocity goals are intended for subsystems which use address spaces or enclaves to represent individual work requests.
- AveResp. Average Response time is the average time for transactions in this class to complete.
- PctResp. Percentile Response time requires two thresholds, the required transaction response time and the percentage of all transactions completing for this service class. The goal is met if the specified percentage of transactions complete by or below the required response time. For example 90% of transactions complete in less than or equal to 2 seconds.

Hiperspace Page-in Wait Percentage of time transactions in this service class spent waiting for page-in delays for hiperspace pages. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 3.4.

HSM Backup/Migrate Total wait time for HSM backup and/or migrate requests. This value indicates the percentage of time transactions in this service class wait for Hierarchical Storage Manager backup and migrate delays. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.4.

HSM Other Total wait time for other Hierarchical Storage Manager requests and processing. This value indicates the percentage of time transactions in this service class wait for Hierarchical Storage Manager miscellaneous delays such as recovery, JES3 control, interval locate, read control record, etc. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.4.
HSM Recall Indicates the percentage of time transactions in this service class spent waiting for Hierarchical Storage Manager recall delays. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.4.

IFA Wait Percentage of time transactions in this service class spent waiting for Integrated Facility for Applications (IFA) resources across the sysplex.

I/O Wait I/O wait rate for the service class period. This value indicates the percentage of time transactions in this service class wait for I/O over all devices. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 12.1.

JES Wait Total wait time for JES. This value indicates the percentage of time transactions in this service class wait for JES delays. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.4.

Level Aggregation of a z/OS image level. Data can be aggregated for an individual z/OS system or for an entire sysplex. Valid values are:
- SYSTEM - to aggregate at a z/OS image level
- SYSPLEX - to aggregate over an entire sysplex

MVS Lock Wait time for z/OS locks. This value indicates the percentage of time transactions in this service class wait on the z/OS lock. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.1.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE for z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

New Other Waits Indicates the percentage of time workloads assigned to this service class spent using or waiting for execution states that fall under the category of Recently Supported Using/Wait states. Currently, this represents the sum of wait/using samples observed for Crypto and WLM Server states. Valid value is a numeric value in the range 0.0 through 100.0.

Other Waits Total wait time for other reasons. This value indicates the percentage of time transactions in this service class spent waiting for miscellaneous other conditions such as disk mounts, task quiescence, mass storage devices, etc. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 3.1.

Performance Index Measure of how the class and period are performing in relation to the goal. Values less than or equal to 1.00 indicate that the goal has been achieved. Values greater than 1.0 indicate that the goal has been missed. The larger the index, the further the service class period from the goal. Valid value is a numeric value in the range 0 through 2147483647, to two decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.85.

Period Service class period number. If specifying a situation where the values should represent the service class as a whole, then specify Period = SUM. This value is used when building a situation for workflow thresholds at the service class level. Valid value is an integer in the range 1 through 8, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.
Private Page-in Wait Wait time for a private area page-in. This value indicates the percentage of time transactions in this service class wait for page-in delays for private area pages. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.5.

Resource Group Capping Total wait time for CPU due to resource group maximum. This value indicates the percentage of time transactions in this service class wait for resource group capping delays. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.3.

Service Class Name of the service class being reported on. Valid format is a simple text string from 1 through 8 characters; for example, TSO.

Service Class Name Name of the service class being reported on. Valid format is a simple text string from 1 through 8 characters; for example, TSO.

Start Date Time Contains a 16-byte string that represents the data collection interval start date and time. This attribute has been provided for historical support purposes only and is currently not being used.

Stimer Total percentage of time waiting for the stimer. This value indicates a percentage of time transactions in this service class are waiting for a time limit. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 10.5.

Stimer ECB Wait Total wait time for some unknown event and the stimer. This value indicates the percentage of time transactions in this service class are waiting for an unspecified event or a time limit. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 65.1.

SWP Not Ready Time spent swapped out and not ready for swap-in. This value is the percentage of time transactions in this service class are waiting in a not-ready swapped state. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.1.

SWP Ready Total time waiting and ready for swap-in. this value is the percentage of time transactions in this service class are waiting in a read swapable state. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.5.

System Name Name of the z/OS system to which the data in this row applies. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

Tape Mount Total percentage of time waiting for tape mounts. This value indicates the percentage of time transactions in this service class are waiting for tapes to be mounted. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 3.6.

Transaction Rate Number of transactions per second currently being processed in the service class period. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 105.5.

Using CPU Total percentage of time transactions in this service class spent using the CPU. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.3.
Using Crypto AMP This value indicates the percentage of time workloads assigned to this service class spent using Crypto Async Message processor services. Valid value is a numeric value in the range 0 through 100, to one decimal point precision.

Using Crypto AP This value indicates the percentage of time workloads assigned to this service class spent using Crypto Assist processor services. Valid value is a numeric value in the range 0 through 100, to one decimal point precision.

Using IFA Percentage of time transactions in this service class were actively using Integrated Facility for Applications (IFA) resources across the sysplex.

Using IFA on CP Percentage of time transactions in the service class were actively performing work eligible for Integrated Facility for Applications (IFA) resources on standard processors across the sysplex.

Using zIIP Percentage of time transactions in the service class were actively using System z9 Integrated Information Processor (zIIP) resources. The maximum value is n00%, where n represents the number of processors assigned to the sysplex.

Using zIIP on CP Percentage of time transactions in the service class were actively performing work eligible for System z9 Integrated Information Processors (zIIPs) on standard processors across the sysplex. The maximum value is n00%, where n represents the number of processors assigned to the sysplex.

Velocity Velocity of the service class period. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 65.2.

VIO Wait Wait time for virtual I/O processing. This value indicates the percentage of time transactions in this service class wait for virtual I/O delays. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.5.

WLM Server Paging This value indicates the percentage of time workloads assigned to this service class spent waiting for a WLM Server address space due to paging delay. This attribute represents a roll-up of the Server paging delay counts in the following list:
- Private area paging delay samples
- VIO Space paging delay samples
- Hiperspace paging delay samples

Valid value is a numeric value in the range 0 through 100, to one decimal point precision.

WLM Server MPL This value indicates the percentage of time workloads assigned to this service class spent waiting for a WLM Server address space due to Multi-programming Level delay. Valid value is a numeric value in the range 0 through 100, to one decimal point precision.

WLM Server Swapin This value indicates the percentage of time workloads assigned to this service class spent waiting for a WLM Server address space due to swap-in delay. Valid value is a numeric value in the range 0 through 100, to one decimal point precision.

Workload Name of the workload that contains the service class. Valid format is a simple text string from 1 through 8 characters; for example, BATCH.

Worst Performance Index Performance index value scaled to hundredths, calculated for this service class on an individual z/OS image. Valid value is a numeric value in the range 0 through 2147483647, to two decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.75.
WTOR Wait Wait time for a reply to operator message. This value is the percentage of time transactions in this service class wait for virtual I/O delays. Valid value is a numeric value in the range 0 through 100, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.2.

zIIP Wait Percentage of time transactions in this service class spent waiting for System z9 Integrated Information Processor (zIIP) resources across the sysplex. The maximum value is \(n\)00%, where \(n\) represents the number of processors assigned to the sysplex.

Sysplexes Shared DASD Columns
The Sysplexes Shared DASD view contains the following columns.

Average Device Contention Index Average of the device level contention indexes for devices of the group. Device contention is an indicator of I/O delay for this group, caused by intersystem contention for the device. The larger the number, the more severe is the contention. Valid value is a numeric value in the range 0 through 2147483647, to two decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.25.

Group Name Name of the DASD group. Valid format is a simple text string from 1 through 30 characters; for example, SGDB2X.

Highest Device Contention Index Highest of the device-level contention indexes for devices of the group. Valid value is a numeric value in the range 0 through 2147483647, to two decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 4.25.

Highest Device Contention Index Volser Volume serial number of the device contributing the largest device contention index. Valid format is a simple text string from 1 through 6 characters; for example, VOL001.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

Proxy Host The managed system name of the Tivoli Enterprise Monitoring Server which is currently hosting the sysplex proxy. The valid value is a simple text string with a maximum of 32 characters.

Sysplex Name The name of the sysplex. Valid format is a simple text string with 1 through 8 characters; for example, SYSPLXA.

XCF Group attributes
The XCF Group attributes provides connected user counts and problem counts for XCF groups.

Group Name Name of the group to which the member belongs. Valid format is a simple text string from 1 through 8 characters; for example, SYSJES.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE for z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

Member Count Number of members in the group. Valid value is a numeric value in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 4.

Problem Count Number of members in the group reporting a problem status. Valid value is a numeric value in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.
XCF Members attributes

The XCF Members attribute group monitors the status and activity of the address spaces of XCF group members.

Group Name Name of the group to which the member belongs. Valid format is a simple text string from 1 through 8 characters; for example, SYSJES.

Job Name String that describes the address space job name of the task using this XCF member name. Valid format is a simple text string from 1 through 8 characters, starting with an alphabetic character and using only special characters as described in the z/OS JCL manual; for example, JESXCF.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

Member Name Name of the member itself. Valid format is a simple text string from 1 through 16 characters; for example, SYSA.

Signals Received Number of signals received by the member. Valid value is a numeric value in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 4.

Signals Sent Number of signals sent by the member. Valid value is a numeric value in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.

Status Status of the member. Valid values are:
- Missing. Information about the status of this member is missing.
- Created. A member in a created state is known to XCF, but cannot use XCF services. It can become an active user through the IXCJOIN macro.
- ActiveState. An active member is known to XCF and can use XCF services.
- Quiesced. A member in the quiesced state is disassociated from XCF services, but XCF still maintains a record of the member's existence. The IXQUIES macro places a member in the quiesced state.
- Failed. A member in the failed state is one whose associated task, job step task, address space, or system terminated before the member was explicitly deactivated by invoking an XCF service. When a member is in the failed state, other members can infer that the member did not have an opportunity to clean up its own resources, and another member should take recovery action.
- MonitorRemoved. Monitoring has been removed for this member.
- SysTermination. XCF system containing member is terminating.

Status Checking Interval An optional parameter that specifies the status checking interval in seconds. It determines the length of time that can elapse with no change to the status field before the user status routine is scheduled. Valid value is numeric and is expressed in seconds. It must be a multiple of 100 scaled to two decimal point precision. For example, a value of 3000 seconds is shown as 3000.00.

System Name Name of the z/OS image where the member is executing. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

XCF Paths attributes

The XCF Paths attribute group monitors the status and activity of XCF signaling paths between z/OS images.
Destination Device Represents the destination of the path. Destination devices may be coupling facility structures as well as CTC devices. In this case, the designation can be either ListStructure (which implies that the System To value is unknown), or CFList. It is also possible that the destination device is unknown at the time the data is collected. Valid format is a simple text string of 1 through 4 characters. To designate a structure in a situation for Destination Device:

- Use *CFST* to represent ListStructure, or
- Use *List* to represent CFList

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

Message Limit Maximum number of messages allowed to be sent by the signaling path. This is the maximum number of messages concurrently in progress. Valid value is an integer in the range 0 through 2147483647 and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 750.

Origin Device Device from which the path originates. Origin devices may be Coupling Facility structures as well as CTC devices. In this case, the designation can be either ListStructure (which implies that the System To value is unknown), or CFList. Valid format is a simple text string of 1 through 4 characters. To designate a structure in a situation for Origin Device:

- Use *CFST* to represent ListStructure, or
- Use *List* to represent CFList

Restart Count Number of times XCF restarted the signaling path. Valid value is an integer in the range 0 through 2147483647 and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.

Retry Limit Retry limit for the signaling path. Valid value is an integer in the range 0 through 2147483647 and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 60.

Retry Percent Percentage of the retry limit reached by the signaling path. Valid value is an integer in the range 0.0 through 100.0, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 25.5.

Signals Pending Transfer Number of messages waiting to be sent through the signaling path. Valid value is an integer in the range 0 through 2147483647 and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.

Signals Received Number of messages received through the signaling path. Valid value is an integer in the range 0 through 2147483647 and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1582.

Signals Sent Number of messages sent through the signaling path. Valid value is an integer in the range 0 through 2147483647 and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2176.

Status Status of the signaling path. Valid values are:

Starting Validating and initializing path hardware.

Restarting Making path ready (again) for use.
Working
Path is capable of being used.

Stopped
Stopping use, in the process of being removed from service.

WaitingForComp
Waiting for completion of initial protocol used to establish communication link.

NotOperational
Not operational. Path defined to XCF but not usable until hardware and/or definition problems are resolved.

Failed
Stop failed, intervention required.

Rebuilding
In the process of being rebuilt.

Quiescing
Quiescing the use of.

Quiesced
Use was quiesced.

Storage In Use Amount of storage that is in use by the path. Valid value is an integer in the range 0 through 2147483647 and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. The value is expressed as a count of 1K buffers. For example, 280 KB is expressed as Storage_In_Use=280.

System From Name of the z/OS image from which the signaling path originates. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

System Name Path as seen from this system. Each path has a sending and receiving system. This attribute indicates which of these systems is providing the data observation.

System To Name of the z/OS image that is the destination of the signaling path. Valid format is a simple text string from 1 to 8 characters; for example, SYSB.

Times Buffer Unavailable Number of times message receipt was delayed because no buffer was available. Valid value is an integer in the range 0 through 2147483647 and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.

Times Path Busy Number of sends issued when the path was busy. Valid value is an integer in the range 0 through 2147483647 and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.

Transport Class Name of a transport class associated with the signaling path. Valid format is a simple text string from 1 through 8 characters; for example, DEFAULT.

XCF System attributes
The XCF System attribute group monitors the status of z/OS images in a sysplex as they relate to the XCF Communication feature.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

Monitoring Interval Length of time, in seconds, it takes XCF to detect a failure in the sysplex. Valid value is a numeric value in the range 0 through 2147483647, with two decimal point precision, and
includes the use of the *AVG, *MAX, *MIN, or *SUM functions. When used in situations, specify seconds with precision to hundredths of seconds; for example, 90.00.

Operator Interval Length of time, in seconds, it takes XCF to notify the operator of a failure in the sysplex. Valid value is a numeric value in the range 0 through 2147483647, with two decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. When used in situations, specify seconds with precision to hundredths of seconds; for example, 90.00.

Status Status of the z/OS image. Valid values are:
- Active. This z/OS system is active in the Sysplex.
- BeingRemoved. This z/OS system is partitioning out of the Sysplex.
- Local. Single system, no coupling dataset, Sysplex.
- Cleanup. System has completed Sysplex partitioning but is still in the process of cleanup.
- Unknown. The status is not known.

System Level z/OS release level running on this system image. Valid format is a simple text string from 1 through 16 characters; for example, 02.05.00.

System Name Name of the z/OS image in the sysplex. Valid format is a simple text string from 1 through 8 characters; for example, SYSA.

XCF System Statistics attributes
The XCF System Statistics attributes monitors XCF signals (messages) sent between z/OS systems in the sysplex and transport class buffer utilization. The situations you create using these attributes let you identify where changes to transport class definitions can be made to optimize XCF performance and resource utilization.

Buffer Length Buffer length for the indicated transport class. Valid value is an integer.

Default Sequence A sequence number for sorting rows of this group in a meaningful order. This attribute is provided for information only. It cannot be used to create situations or queries, or to set thresholds and filters.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE for z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

Percent Degraded Percentage of messages sent where the message length was larger than the transport class buffer length and caused degraded performance. Valid value is a percentage with one decimal point precision.

Percent Fit Percentage of messages sent where the message length fit the transport class buffer length. Valid value is a percentage with one decimal point precision.

Percent Larger Percentage of messages sent where the message length was larger than the transport class buffer length, to one decimal point.

Percent Smaller Percentage of messages sent where the message length was smaller than the transport class buffer length. Valid value is a percentage with one decimal point precision.

Signals Received Number of messages received. Valid value is an integer.

Signals Sent Number of messages sent. Valid value is an integer.
System From Name of the z/OS system where the messages originated. Valid value is an 8 character string.

System Name of the z/OS system on which data was collected. Valid value is an 8 character string.

System To Name of the z/OS system that is the destination of the messages. Valid value is an 8 character string.

Transport Class Transport class used for messages sent. Transport classes are used to segregate message traffic according to message size or performance needs, and may be used to dedicate signalling paths to particular workloads. Valid value is an 8 character string.

Times Buffer Unavailable Number of times a “no buffer” condition occurred for the indicated transport class. Valid value is an integer.

Times Path Unavailable Number of times a ‘no path’ condition occurred for the indicated transport class. Valid value is an integer.

Sysplexes Global Enqueue Columns
The Sysplexes Global Enqueue workspace contains the following columns.

Major Name Major name (qname) of the resource. Valid format is a simple text string of 1 through 8 characters; for example, SYSDSN.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

Maximum Wait Time Longest time that the task has been waiting for a resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 45.

Minor Name Minor name (rname) of the resource. Valid format is a simple text string of 1 through 255 characters; for example, SYS1.PROCLIB.

Proxy Host The managed system name of the Tivoli Enterprise Monitoring Server which is currently hosting the sysplex proxy. The valid value is a simple text string with a maximum of 32 characters.

Sysplex Name The name of the sysplex. Valid format is a simple text string with 1 through 8 characters; for example, SYSPLEX1.

Waiting Task Count Number of tasks waiting for the resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.

Sysplex Coupling Facility Columns
The Sysplexes Coupling Facility view of the Sysplex Overview workspace contains the following columns.

CF Name Name of the coupling facility. Valid format is a simple text string from 1 through 8 characters; for example, COUPLER1.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE for z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.
Problem Users Number of users that are connected to the structure in an exception state. The address space is not in an exception state, but the connection is. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 2.

Proxy Host The managed system name of the Tivoli Enterprise Monitoring Server that is currently hosting the sysplex proxy. The valid value is a simple text string with a maximum of 32 characters.

Sysplex Name The name of the sysplex. Valid format is a simple text string with 1 through 8 characters; for example, SYSPLEXA.

Structure Name Name of the structure. Valid format is a simple text string of 1 through 16 characters; for example, IXCSTR1.

Total Users Total number of users connected to the structure. Valid value is an integer in the range of 0 through 2147483647 and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 8.

Sysplexes GRS Columns
The Sysplexes GRS (Global Resource System) view contains the following columns.

Actual Response Time Actual measured ring response time in milliseconds. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 32.

Expected Response Time Anticipated (or average) time, in milliseconds, that a requester must wait for access to a global resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 78.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

Proxy Host The managed system name of the Tivoli Enterprise Monitoring Server which is currently hosting the sysplex proxy. The valid value is a simple text string with a maximum of 32 characters.

Resident Milliseconds Minimum amount of time, in milliseconds, the RSA message is delayed in each z/OS image in the GRS complex. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 3.

Sysplex Name The name of the sysplex. Valid format is a simple text string with 1 through 8 characters; for example, SYSPLEXA.

Sysplexes Workloads Columns
The Sysplexes Workloads workspace contains the following columns.

Actual Host Measured result for this service class period. Depending on the goal type, it is either a response time or a velocity. Valid value is a numeric value in the range 0 through 2147483647, to one decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions.

Goal Describes the service class period’s goal as a complete text string. Valid format is a simple text string from 1 through 30 characters; for example, Pct Resp 95% < 400.0 ms.
Goal Importance Importance level of the goal for the service class period. Goal importance for the service class is set as part of the WLM policy. When WLM cannot satisfy all goals, it will try to meet goals for more important service class periods first. Valid values are:

- Highest
- High
- Medium
- Low
- Lowest

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

Performance Index Measure of how the class and period are performing in relation to the goal. Values less than or equal to 1.00 indicate that the goal has been achieved. Values greater than 1.0 indicate that the goal has been missed. The larger the index, the further the service class period from the goal. Valid value is a numeric value in the range 0 through 2147483647, to two decimal point precision, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 0.85.

Proxy Host The managed system name of the Tivoli Enterprise Monitoring Server that is currently hosting the sysplex Proxy. The valid value is a simple text string with a maximum of 32 characters.

Service Class Name of the service class to which the associated address space is assigned. Valid format is a simple text string from 1 through 8 characters; for example, STC.

Sysplex Name The name of the sysplex. Valid format is a simple text string with 1 through 8 characters; for example, SYSPROD1.

Sysplexes XCF Columns
The Sysplexes XCF workspace contains the following columns. This workspace does not have an associated attribute group.

Group Name Name of the group to which the member belongs. Valid format is a simple text string from 1 through 8 characters; for example, SYSJES.

Managed System A sysplex in your enterprise that is being monitored by OMEGAMON XE on z/OS agents, in the format <plexname>:MVS:SYSPLEX. Valid value is a character string with a maximum length of 32 bytes.

Member Count Number of members in the group. Valid value is a numeric value in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 4.

Problem Count Number of members in the group reporting a problem status. Valid value is a numeric value in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.

Proxy Host The managed system name of the Tivoli Enterprise Monitoring Server which is currently hosting the sysplex proxy. The valid value is a simple text string with a maximum of 32 characters.

Sysplex Name The name of the sysplex. Valid format is a simple text string with 1 through 8 characters; for example, SYSPLEXA.
System attribute groups

System attribute groups provide system-level data on address space CPU, storage and bottleneck usage, channel activity, common storage usage, single image DASD device usage, WLM service class resource usage, and LPAR cluster activity. System-level attributes also monitor the status and configuration of IBM cryptographic coprocessors installed in zSeries server, and provide data on UNIX System Services hosted on z/OS systems as well as information on special processor resources.

Address Space Bottleneck attributes

This attribute group provides address space-level wait state (bottleneck) information.

Active I/O The percentage of time the address space has waited for I/O requests that are being processed by the I/O subsystem. Valid range is 0.0 - 100.0.

ASID Hexadecimal address space ID. The address space ID is a unique number assigned to an address space when it is created. It is used by z/OS to differentiate between address spaces.

Common Page-in The percentage of time the address space has waited due to common area (CSA or LPA) paging. Valid range is 0.0 - 100.0.

CPU Loop Index The sum of all CPU, zIIP, zIIP on CP, zAAP, and zAAP on CP using and waiting counts, divided by total sample count. For CPU looping jobs, this value is usually more than 98%. Expressed as a percentage to one decimal place.

CPU Wait The percentage of time the address space has waited for access to the CPU. Valid range is 0.0 - 100.0.

Cross Memory Page-in The percentage of time the address space has waited due to paging activity to and from a cross-memory address space. Valid range is 0.0 - 100.0.

Crypto Assist Proc Wait The percentage of time the address space has waited for access to the Cryptographic Assist (AP) Message Processor. Valid range is 0.0 - 100.0.

Crypto Async Msg Proc Wait The percentage of time the address space has waited for access to the Cryptographic Asynchronous Message (CAM) Processor. Valid range is 0.0 - 100.0.

ECB Wait The percentage of time the address space has waited due to an ECB (Event Control Block) wait. An ECB wait is a voluntary wait that an address space goes into when it is waiting for an event or a series of events to occur. Valid range is 0.0 - 100.0.

Enqueue Wait The percentage of time the address space has waited due to enqueues. Valid range is 0.0 - 100.0.

HSM Backup The percentage of time the address space has waited for an HSM dataset backup. Valid range is 0.0 - 100.0.

HSM CDS Read The percentage of time the address space has waited for an HSM control dataset (CDS) read. Valid range is 0.0 - 100.0.

HSM Delete The percentage of time the address space has waited for an HSM dataset delete. Valid range is 0.0 - 100.0.

HSM JES3 C/I Locate The percentage of time the address space has waited for an HSM JES3 C/I Locate. Valid range is 0.0 - 100.0.
HSM Migrate The percentage of time the address space has waited for an HSM dataset migration. Valid range is 0.0 - 100.0.

HSM Recall The percentage of time the address space has waited for an HSM dataset recall from auxiliary storage. Valid range is 0.0 - 100.0.

HSM Recover The percentage of time the address space has waited for an HSM dataset recovery. Valid range is 0.0 - 100.0.

HSM TSO CLIST The percentage of time the address space has waited for an HSM TSO CLIST. Valid range is 0.0 - 100.0.

HSM Wait The percentage of time the address space has waited due to HSM. This is a roll-up of all HSM wait states. Valid range is 0.0 - 100.0.

Hiperspace Page-in The percentage of time the address space has waited due to hiperspace paging. Valid range is 0.0 - 100.0.

IFA Wait The percentage of all observed execution states where the address space was found waiting to use an IFA. Valid range is 0.0 - 100.0.

JES Wait The percentage of time the address space has waited due to JES2. This is a rollup of all JES2 wait states. Valid range is 0.0 - 100.0.

JES2 Job Cancel The percentage of time the address space has waited for a JES2 job cancel. Valid range is 0.0 - 100.0.

JES2 Job Delete The percentage of time the address space has waited for a JES2 job delete. Valid range is 0.0 - 100.0.

JES2 Job Requeue The percentage of time the address space has waited for a JES2 job requeue. Valid range is 0.0 - 100.0.

JES2 Job Status The percentage of time the address space has waited for a JES2 job status request. Valid range is 0.0 - 100.0.

JES2 SYSOUT The percentage of time the address space has waited for JES2 SYSOUT processing. Valid range is 0.0 - 100.0.

Job Name Address space name (job or started task name, or TSO user ID). In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Address Space Name. Valid value is an 8-byte character string.

Managed System A z/OS operating system in your enterprise that is being monitored by a Tivoli OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes in the format <plexname>:<smfid>:MVSSYS.

MVS Lock Wait The percentage of time the address space has waited due to a z/OS lock. Locking is a way of reserving access to a resource. Typically, locks are used to limit access to system and address space control blocks, particularly when those control blocks are being manipulated or updated. Valid range is 0.0 - 100.0.

Paging Wait The percentage of time the address space has waited due to paging activity. This is a roll-up of all paging wait states. Valid range is 0.0 - 100.0.

Period Period number. Valid value is a 2-byte integer.
Private Page-in The percentage of time the address space has waited due to private (local) area paging. Valid range is 0.0 - 100.0.

Proc Step Procedure step name. Valid value is an 8-byte character string.

Queued I/O The percentage of time the address space has waited for I/O requests that are queued to the I/O subsystem. Valid range is 0.0 - 100.0.

Report Class Report class name. Valid value is an 8-byte character string.

Resource Group Capping The percentage of time the address space has waited because the system has imposed a cap on the resource group to which this workload belongs. Valid range is 0.0 - 100.0.

Server MPL Delay The percentage of time the address space has waited for a server due to the System Resource Manager (SRM) adjusting the server multiprogramming level (MPL) to correct a resource shortage. Valid range is 0.0 - 100.0.

Server Paging The percentage of time the address space has waited due to server paging. Valid range is 0.0 - 100.0. This is a roll-up of the following server paging wait states:
- Private area paging delay
- VIO space paging delay
- Hiperspace paging delay

Server Swap-In The percentage of time the address space has waited due to server swap-in delay. Valid range is 0.0 - 100.0.

Server Wait The percentage of time the address space has waited for a server. This is a roll-up of all server wait states. Valid range is 0.0 - 100.0.

Service Class Service class name. Valid value is an 8-byte character string.

Shared Pages The percentage of time the address space has waited for shared storage paging. Valid range is 0.0 - 100.0.

Step Name Step name. Valid value is an 8-byte character string.

Stimer ECB Wait The percentage of time the address space has waited due to an ECB wait with a timer event. An ECB wait is a voluntary wait that an address space goes into when it is waiting for an event or a series of events to occur. Valid range is 0.0 - 100.0.

Stimer Wait The percentage of time the address space has waited due to a STIMER event. A STIMER wait is a voluntary wait condition that an address space issues when it expects to be waiting for a long period of time. Valid range is 0.0 - 100.0.

SWAP APPC The percentage of time the address space was swapped out waiting for service from an APPC/z/OS service. Valid range is 0.0 - 100.0.

SWAP Aux Stor The percentage of time the address space has waited for a swap to correct a shortage of auxiliary storage. Valid range is 0.0 - 100.0.

SWAP Central Stor The percentage of time the address space was swapped out to correct a shortage of storage availability. Valid range is 0.0 - 100.0.
SWAP Detected The percentage of time the address space was swapped out due to being in a detected wait state. A wait state is defined as a wait (without the LONG parameter) that exceeds a duration limit set by the System Resource Manager (SRM). Valid range is 0.0 - 100.0.

SWAP Enq Exchange The percentage of time the address space was swapped out to expedite processing of an enqueue by its owner. Valid range is 0.0 - 100.0.

SWAP Exchange The percentage of time the address space was swapped out due to the System Resource Manager (SRM) adjusting the multi-programming level (MPL) to correct a resource shortage. Valid range is 0.0 - 100.0.

SWAP In-Real The percentage of time the address space was swapped out due to the reallocation of real storage frames. Valid range is 0.0 - 100.0.

SWAP Long The percentage of time the address space was swapped out because it was in a long wait state. Valid range is 0.0 - 100.0.

SWAP OMVS Input The percentage of time the address space was swapped out due to an OpenMVS (UNIX System Services) input wait. Valid range is 0.0 - 100.0.

SWAP OMVS Output The percentage of time the address space was swapped out due to an OpenMVS (UNIX System Services) output wait. Valid range is 0.0 - 100.0.

SWAP Out Too Long The percentage of time the address space was swapped out to enable the swap-in of an address space that has been swapped out too long. Valid range is 0.0 - 100.0.

SWAP MPL Delay The percentage of time an address space was swapped out and ready to be swapped in, but the multiprogramming level (MPL) could not be increased to allow the address space to be swapped in. Valid range is 0.0 - 100.0.

SWAP Page-Ins The percentage of time the address space was swapped out waiting for its working set to be swapped in. Valid range is 0.0 - 100.0.

SWAP Real Stor The percentage of time the address space was swapped out waiting to correct a real storage shortage. Valid range is 0.0 - 100.0.

SWAP Request The percentage of time the address space was swapped out due to the requested release of the real storage frames it occupied. Valid range is 0.0 - 100.0.

SWAP Sys Paging The percentage of time the address space was swapped out to improve the system paging rate. Valid range is 0.0 - 100.0.

SWAP Terminal In The percentage of time the address space was swapped out due to a terminal input wait. Valid range is 0.0 - 100.0.

SWAP Terminal Out The percentage of time the address space was swapped out due to a terminal output wait. Valid range is 0.0 - 100.0.

SWAP Transition The percentage of time the address space was swapped out due to a change from swappable to non-swappable status. Valid range is 0.0 - 100.0.

SWAP Unilateral The percentage of time the address space was swapped out due to the number of users within the domain exceeding the target level set by the System Resource Manager (SRM). Valid range is 0.0 - 100.0.
SWAP Wait The percentage of time the address space has waited due to swapping. This is a roll-up of all swap wait states. Valid range is 0.0 - 100.0.

Tape Mount The percentage of time the address space has waited for a tape to be mounted/loaded. Valid range is 0.0 - 100.0.

Type Type of address space. Valid values are Server, Batch, TSO, STC, and APPC.

Using CPU The percentage of all observed execution states where the address space was found using CPU. Valid range is 0.0 - 100.0.

Using Crypto Assist Proc The percentage of time the address space was found using the Cryptographic Assist (AP) Processor. Valid range is 0.0 - 100.0.

Using Crypto Async Msg Proc The percentage of time the address space was found using the Cryptographic Asynchronous Message (CAM) Processor. Valid range is 0.0 - 100.0.

Using IFA The percentage of all observed execution states where the address space was found using an IFA. Valid range is 0.0 - 100.0.

Using IFA on CP The percentage of all observed execution states where the address space was found executing IFA work on a standard CP.

Using zIIP The percentage of all observed execution states where the address space was found using a System z9 Integrated Information Processor.

Using zIIP on CP The percentage of all observed execution states where the address space was found executing work eligible for a System z9 Integrated Information Processor work on a standard processor.

VIO Wait The percentage of time that the address space has waited due to virtual I/O paging. Valid range is 0.0 - 100.0.

WTOR Wait The percentage of time that the address space has waited for an operator reply to a console message. Valid range is 0.0 - 100.0.

zIIP Wait The percentage of all observed execution states where the address space was found waiting to use a System z9 Integrated Information Processor.

Address Space Bottlenecks Portrait attributes

This group provides bottleneck analysis details (multi-row) for one address space ID. These attributes are for information only, and should not be used to create queries or situations.

ASID The address space ID in hexadecimal.

Attribute The name of the attribute that is displayed on the tabular report column heading. Only attributes that have a percentage value greater than zero will be displayed in this table. Valid value is character string with a maximum length of 32 bytes.

Enqueue_Count Number of unique enqueue waits. Valid value is a 2-byte integer.

I/O_Dev_Count Number of unique I/O waits. Valid value is a 2-byte integer.

Job Name The name of the address space (either job name, started task name, or TSO user ID). Valid value is character string with a maximum length of 8 bytes.
Link Values Values passed in the link to DASD Device or Enqueue probes. The contents will be either DASD volume serial numbers (maximum of 20) or enqueue major names (maximum of 15).

Managed System A z/OS operating system in your enterprise that is being monitored by an OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes in the format <plexname>:<smfid>:MVSSYS.

Percent The percentage of time the address space was in the state defined by the associated attribute name. Valid value in the range 0 - 100.

Resource Device type, volser, and devices address, for I/O wait attributes; enqueue major name for the enqueue wait attribute. Blank for all other attributes.

Address Space ComStor Owned attributes

This attribute group provides information about common service area (CSA), extended common service area (ECSA), system queue area (SQA), and extended system queue area common storage (ESQA) information at the address space level.

Note: The CSA Analyzer must be running for data to be available for these attributes. For information on configuring the CSA Analyzer, see IBM Tivoli OMEGAMON XE for z/OS Configuration Guide.

% of Total CSA Percentage of total common service area (CSA) storage in use by this job. Valid value is a number in the range 0 - 100.

% of Total ECSA Percentage of total extended common service area (ECSA) storage in use by this address space. Valid value is a number in the range 0 - 100.

% of Total ESQA Percentage of total extended system queue area (ESQA) storage in use by this address space. Valid value is a number in the range 0 - 100.

% of Total SQA Percentage of total system queue area (SQA) storage in use by this address space. Valid value is a number in the range 0 - 100.

ASID Address space ID in hexadecimal.

CSA in Use Amount of common service area (CSA) storage in use by this address space, in bytes. Valid value is a numeric value in the range 1 - 2147483647.

CSA Orphaned Indicates whether or not the storage is currently owned. Valid values are:
- Unavailable. Address space did not allocate CSA storage.
- Yes. CSA storage was orphaned by this address space and is currently unowned.
- No. Address space is active and this CSA storage is owned.

ECSA In Use Amount of extended common service area (ECSA) storage in use by this address space.

ECSA Orphaned Indicates whether or not the storage is currently owned. Valid values are:
- Unavailable. Address space did not allocate ECSA storage.
- Yes. ECSA storage was orphaned by this address space and is currently unowned.
- No. Address space is active and this ECSA storage is owned.

ESQA In Use Amount of extended system queue area (ESQA) storage in use by this address space.

ESQA Orphaned Indicates whether or not the storage is currently owned. Valid values are:
- Unavailable. Address space did not allocate ESQA storage.
• Yes. ESQA storage was orphaned by this address space and is currently unowned.
• No. Address space is active and this ESQA storage is owned.

Job Name Name of the address space (either job name, started task name, or TSO user ID). Valid value is a string of up to eight characters.

Managed System A z/OS operating system in your enterprise that is being monitored by a Tivoli OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes, in the format <plexname>:<smfid>:MVSSYS.

SQA In Use Amount of system queue area (SQA) storage in use by this address space.

SQA Orphaned Indicates whether or not the storage is currently owned. Valid values are:
• Unavailable. Address space did not allocate SQA storage.
• Yes. SQA storage was orphaned by this address space and is currently unowned.
• No. Address space is active and this SQA storage is owned.

Address Space ComStor Owned Detail attributes
This attribute group provides common storage (CSA, ECSA, SQA, ESQA) detail information for areas owned by the selected address space.

Note: The CSA Analyzer must be running for data to be available for these attributes. For information on configuring the CSA Analyzer, see Configuring IBM Tivoli OMEGAMON XE for z/OS.

% of Total Percentage of the total common storage area in use by this address space. Valid values in the range 0-100.

Age Time since the area was allocated.

Age Units The units in which the age is reported, either hours, days, or minutes. In the format DDD:HH, HH:MM, or MM:SS.

Area Common storage area. Valid value is one of the following:
• CSA (common service area)
• ECSA (extended common service area)
• SQA (system queue area)
• ESQA (extended system queue area)

ASID Address space ID in hexadecimal. The address space ID is a unique number assigned to an address space when it is created. It is used by z/OS to differentiate between address spaces.

End Address Ending address of the common storage area. Valid value is a 4-byte hexadecimal number.

Fixed Indicates whether the area is from a fixed, non-pageable subpool (Yes, No).

Job Name Address space name (JOB/STC name, TSO User ID). Valid value is a character string with a maximum length of 8 bytes. A job name of *SYSTEM* indicates that the issuer of the request is unknown.

Managed System A z/OS operating system in your enterprise that is being monitored by a Tivoli OMEGAMON XE on z/OS agent. Value is a character string with a maximum length of 32 bytes in the format <plexname>:<smfid>:MVSSYS.
Requestor Return Address The return address of the GETMAIN request, which is the next instruction following the GETMAIN. If the return address cannot be determined (the storage was obtained before the VSM service was active), the address is given as Unknown. Valid value is a 4-byte hexadecimal number.

Size Size of the common storage area. Valid value is a 4-byte integer.

Start Address Starting address of the common storage area. Valid value is a 4-byte hexadecimal number.

Storage Key Unique key assigned to the frame to protect it from unauthorized use.

Subpool Subpool of the common storage space area. For CSA, valid values are subpools 227, 228, 231, and 241. For SQA, valid values are subpools 226, 239, and 245. Although related by common area, these subpools have different characteristics. CSA subpools 227 and 228, for example, are fixed in storage, while subpools 231 and 241 are pageable.

Address Space ComStor Trends attributes
The attributes in this group provide common storage (CSA, ECSA, SQA, ESQA) usage information for the selected address space over time.

Note: The CSA Analyzer must be running for data to be available for these attributes. For information on configuring the CSA Analyzer, see Configuring IBM Tivoli OMEGAMON XE for z/OS.

% of Total The percentage of the total common storage area in use, to one decimal precision. Valid value is in the range 0.0 to 100.0.

Area The common area, either CSA (common service area), ECSA (extended common service area), SQA (system queue area), or ESQA (extended system queue area).

ASID Address space ID in hexadecimal.

Date The month and day the sample was taken, in the format mm/dd.

In Use Amount of the common storage area in use, in bytes. Valid value is a number in the range 0 through 2147483647.

Job Name The name of the address space (job name, STC name, or TSO user ID). Valid value is a character string with a maximum length of 8 bytes.

Managed System A z/OS system in your enterprise that is being monitored by a Tivoli OMEGAMON XE for z/OS agent. Valid value is a character string with a maximum length of 32 bytes in the format <plexname>:<smfid>:MVSSYS.

Time The hour and minute the sample was taken, in the format hh:mm.

Address Space ComStor Unowned attributes
Reports virtual storage address of unowned common storage areas (CSA, SQA, ECSA, or ESQA), as well as the name and ID of the address space that allocated the storage.

% of Total Percentage of the total common storage area in use by this address space.

Age Time since the area was allocated (see Age Units).

Age Units The units in which the age is reported, either hours, days, or minutes. In the format DDD:HH, HH:MM, or MM:SS.
Area Common storage area. Valid value is one of the following:
- CSA (common service area)
- ECSA (extended common service area)
- SQA (system queue area)
- ESQA (extended system queue area)

ASID Address Space ID in hexadecimal. The address space ID is a unique number assigned to an address space when it is created. It is used by z/OS to differentiate between address spaces.

End Address Ending address of the common storage area. Valid value is a 4-byte hexadecimal number.

Fixed Indicates whether the area is from a fixed, non-pageable subpool (Yes, No).

In Use Amount of the common storage area in use by this address space.

Job Name Address space name (JOB/STC name, TSO User ID). In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Address Space Name. Valid value is a character string of up to 8 bytes.

Managed System A z/OS operating system in your enterprise that is being monitored by OMEGAMON XE on z/OS. Value is a character string with a maximum length of 32 bytes in the format <plexname>:<smfid>:MVSSYS.

Requestor Return Address The return address of the GETMAIN request, which is the next instruction following the GETMAIN. Valid value is a 4-byte hexadecimal number.

Size Size of the common storage area. Valid value is a 4-byte integer.

Start Address Starting address of the common storage area. Valid value is a 4-byte integer.

Storage Key Unique key assigned to the frame to protect it from unauthorized use.

Subpool Subpool of the common storage space area. For CSA, valid values are subpools 227, 228, 231, and 241. For SQA, valid values are subpools 226, 239, and 245. Although related by common area, these subpools have different characteristics. CSA subpools 227 and 228, for example, are fixed in storage, while subpools 231 and 241 are pageable.

Address Space CPU Utilization attributes
The Address Space CPU Utilization attribute group provides basic address space identifying information and CPU usage information for all address spaces. It also provides enclave data.

Active Enclave Count The total number of dependent, independent, or unknown enclaves owned by the address space that are currently active. Valid range is 0-2147483647.

ASID The address space ID in hexadecimal. The address space ID is a unique number assigned to an address space when it is created. It is used by z/OS as an index to find the main control block of the address space or to differentiate between address spaces.

CPU Percent The percentage of CPU used by the address space over the current interval. The value can exceed 100%. The maximum value is $n\times 00\%$, where n represents the number of processors (CPUs) assigned to the LPAR or image.

CPU Percent Excluding Home SRB Time The percentage of CPU used by the address space over the interval. The value can exceed 100%. The maximum value is $n\times 00\%$, where n is the number of processors
(CPUs) assigned to the LPAR or image. Enclave home SRB time is not included. In some OMEGAMON enhanced 3270 user interface workspaces this attribute is displayed as CPU% Excluding Home SRB Time.

Dependent Active Enclave Count The total number of dependent enclaves owned by the address space that are currently active. Valid range is 0-2147483647.

Dependent Enclave CPU Percent Total CPU time for all dependent enclaves owned by the address space, expressed as a percentage. The value can exceed 100%. The maximum value is \(n \times 00\% \), where \(n \) represents the number of processors (CPUs) assigned to the LPAR or image.

Dependent Enclave IFA % The percentage of IFA used by dependent enclaves owned by the address space over the interval. The value can exceed 100%. The maximum value is \(n \times 00\% \), where \(n \) is the number of processors (IFAs) assigned to the LPAR or image.

Dependent Enclave IFA % On CP The percentage of regular processor time used by dependent enclaves owned by the address space performing work eligible for a zSeries Application Assist Processor. The value can exceed 100%. The maximum value is \(n \times 00\% \), where \(n \) is the number of processors (IFAs) assigned to the LPAR or image.

Dependent Enclave zIIP % The percentage of System z9 Integrated Information Processor (zIIP) time consumed by dependent enclaves owned by the address space. The maximum value is \(n \times 00\% \), where \(n \) represents the number of processors assigned to the LPAR or image.

Dependent Enclave zIIP % On CP The percentage of standard processor time consumed by dependent enclaves owned by the address space performing work eligible for a System z9 Integrated Information Processor (zIIP). The maximum value is \(n \times 00\% \), where \(n \) represents the number of processors assigned to the LPAR or image.

Dependent Inactive Enclave Count The total number of dependent enclaves owned by the address space that are currently inactive. Valid range is 0-2147483647.

I/O Rate The average number of reads and writes (I/Os) per second during the last sample interval, to one decimal place. (By default, the sample interval is 2.3 seconds.)

IFA Percent The percentage of IFA used by tasks in the address space over the interval. The value can exceed 100%. The maximum value is \(n \times 00\% \), where \(n \) is the number of processors (IFAs) assigned to the LPAR or image.

IFA Percent Including Enclave Home SRB Time The percentage of IFA used by tasks in the address space, including Enclave home SRBs running on IFAs, over the interval. The value can exceed 100%. The maximum value is \(n \times 00\% \), where \(n \) is the number of processors (IFAs) assigned to the LPAR or image. In some OMEGAMON enhanced 3270 user interface workspaces this attribute is displayed as IFA% with Enclave Home SRB Time.

IFA on CP The percentage of CPU used by tasks performing IFA work in the address space over the interval. The value can exceed 100%. The maximum value is \(n \times 00\% \), where \(n \) represents the number of processors (CPUs) assigned to the LPAR or image.

Inactive Enclave Count The total number of dependent, independent, and unknown enclaves owned by the address space that are currently inactive. Valid range is 0-2147483647.

Independent Enclave CPU% CPU time for all independent enclaves owned by the address space, expressed as a percentage. The value can exceed 100%. The maximum value is \(n \times 00\% \), where \(n \) represents the number of processors (CPUs) assigned to the LPAR or image.
Independent Enclave IFA % The percentage of IFA used by independent enclaves owned by the address space over the interval. The value can exceed 100%. The maximum value is \(n \times 0.0 \%), where \(n \) represents the number of processors (CPUs) assigned to the LPAR or image.

Independent Enclave IFA % On CP The percentage of CPU used by independent enclaves owned by the address space performing IFA work. The value can exceed 100%. The maximum value is \(n \times 0.0 \%), where \(n \) is the number of processors (IFAs) assigned to the LPAR or image.

Independent Enclave zIIP % The percentage of System z9 Integrated Information Processor (zIIP) time consumed by independent enclaves owned by the address space. The value can exceed 100%. The maximum value is \(n \times 0.0 \%), where \(n \) represents the number of processors assigned to the LPAR or image.

Independent Enclave zIIP % On CP The percentage of standard processor time consumed by independent enclaves owned by the address space performing work eligible for a System z9 Integrated Information Processor (zIIP). The maximum value is \(n \times 0.0 \%), where \(n \) represents the number of processors assigned to the LPAR or image.

Independent Active Enclave Count The total number of independent enclaves owned by the address space that are currently active. Valid range is 0-2147483647.

Independent Inactive Enclave Count The total number of independent enclaves owned by the address space that are currently inactive. Valid range is 0-2147483647.

JESJOBID The JES job ID of the address space. This column can be blank if the address space is not using JES services. (Note that tasks started using SUB=MSTR generally will not be using JES services and therefore will not have a JESJOBID. Address spaces started prior to JES initialization will generally not use JES services. However, a JESJOBID commonly does exist for the Master Scheduler, since it uses a JES service for SYSLOG.) Valid value is a string, with a maximum of eight characters.

Job Additional SRB Service Percent Cumulative additional SRB service percentage, to one decimal place, for the address space since collection started. This is \(\frac{(Job_Additional_SRB_Service_Time \times 1000)}{Job_Elapsed_Time} \). Since multiple CPs may be active, this value can exceed 100%.

Job Additional SRB Service Time Cumulative additional SRB service time (ASST) in seconds with two decimal places for the address space since it started. CPU time is accumulated here for this address space’s preemptable SRBs and for client related SRBs for which this address space is the client.

Job CPU Percent Cumulative CPU percentage, to one decimal place, for the address space since collection started. This will be \(\frac{(Job_CPU_Time \times 1000)}{Job_Elapsed_Time} \). Since multiple CPs may be active, this value can exceed 100.0%.

Job CPU Time Cumulative CPU time in seconds with two decimal places for the address space since collection started. This is a sum of Job TCB Time, Job SRB Time, and Job Additional SRB Service Time. Together, these fields plus Owned Enclave time make up the CPU time that this address space is accountable for.

Job Elapsed Time Elapsed time since collection for this job started.

Job Name The name of the job, started task, TSO user, APPC address space, and so on, consuming CPU cycles. In the OMEGAMON enhanced 3270 user interface, this attribute is displayed as Address Space Name. Valid value is a string, with a maximum of eight characters.

Job Preemptable Home SRB Service Percent Cumulative preemptable home SRB service percentage to one decimal place for the address space since collection started. This is \(\frac{(Job_Preemptable_Home_SRB_Service_Time \times 1000)}{Job_Elapsed_Time} \). Since multiple CPs may be active, this value can exceed 100.0%.
Job Preemptable Home SRB Service Time Cumulative preemptable home SRB service time (PHTM) in seconds with two decimal places for the address space since it started. The CPU time for all types of preemptable SRBs (PSRB, CRSRB, ESRB) executing within this address space as their home space is accumulated here. CPU time is accumulated here for SRBs dispatched in this address space on behalf of a client address space.

Job SRB Percent Cumulative SRB percent to one decimal place for the address space since collection started. This is \((\text{Job_SRB_Time} \times 1000) / \text{Job_Elapsed_Time}\). Since multiple CPs may be active this value can exceed 100.0%.

Job SRB Time Cumulative SRB time in seconds with two decimal places for the address space since it started.

Job Start Time When the OMEGAMON XE on z/OS agent started tracking this address space. If the address space was active before the agent was started then this will not be the address space’s start time.

Job TCB Percent Cumulative TCB percentage, to one decimal place, for the address space since collection started. This is \((\text{Job_TCB_Time} \times 1000) / \text{Job_Elapsed_Time}\). Since multiple CPs may be active, this value can exceed 100.0%.

Job TCB Time Cumulative TCB time in seconds with two decimal places for the address space since it started.

Managed System A z/OS operating system in your enterprise that is being monitored by a Tivoli OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes.

Proc Step The step name of the procedure. Valid value is a string, with a maximum of eight characters.

SRB Percent The percentage of CPU used by SRBs in the address space over the interval. The value can exceed 100%. The maximum value is \(n00\%\), where \(n\) represents the number of processors (CPUs) assigned to the LPAR or image.

Start Up Monitored Indicates whether or not the start of the job was monitored. “No” indicates that total CPU times may not reflect the entire job. Valid values are: Yes, No.

Step Name The name of the step. Valid value is a string, with a maximum of eight characters.

SvcClass The service class name. This field will contain Not available if the system is in compatibility mode. Valid value is a string, with a maximum of eight characters.

SvcClass Period The service class period. This field will contain Not available if the system is in compatibility mode. Valid range is 0-2147483647.

TCB Percent The percentage of CPU used by tasks in the address space over the interval. The value can exceed 100%. The maximum value is \(n\ 00\%\), where \(n\) represents the number of processors (CPUs) assigned to the LPAR or image.

Total Enclave Count The total number of dependent, independent, and unknown enclaves owned by the address space that are currently active or inactive. (“Unknown” enclaves refers to an enclave not being identifiable as either a dependent or an independent enclave. This can occur if an operating system level introduces a new type of enclave classification and the version of Tivoli OMEGAMON XE on z/OS monitoring agent does not support this type.) Valid range is 0-2147483647.

Type Address space type flag. The valid types are:
- Batch
• TSO
• STC
• APPC

Unknown Active Enclave Count The total number of active enclaves owned by the address space that could not be classified as dependent or as independent. Valid range is 0-2147483647.

Unknown Inactive Enclave Count The total number of inactive enclaves owned by the address space that could not be classified as dependent or as independent. Valid range is 0-2147483647.

WorkDependent Active Enclave Count Total number of work-dependent enclaves that are owned by the address space that are currently active.

WorkDependent Inactive Enclave Count Total number of work-dependent enclaves that owned by the address space that are currently inactive.

zIIP Percent The percentage of System z9 Integrated Information Processor (zIIP) used by tasks in the address space over the interval. The value can exceed 100%. The maximum value is \(n \)00% where \(n \) is the number of processors (zIIPs) assigned to the LPAR or image.

zIIP Percent Including Enclave Home SRB Time The percentage of zIIP used by tasks in the address space, including Enclave Home SRBs running on zIIPs over the interval. The value can exceed 100%. The maximum value is \(n \)00%, where \(n \) is the number of processors (zIIPs) assigned to the LPAR or image. In some OMEGAMON enhanced 3270 user interface workspaces this attribute is displayed as zIIP% with Enclave Home SRB Time.

zIIP on CP Percent The percentage of CPU used by tasks performing System z9 Integrated Information Processor (zIIP) work in the address space over the interval. The value can exceed 100%. The maximum value is \(n \)00% where \(n \) is the number of processors (CPUs) assigned to the LPAR or image.

Address Space IA Impact attributes

Use the Address Space IA Impact attributes to determine how various workloads within your system may be interfering with each other. Impact analysis assists you in arriving at quick and accurate solutions to problems caused by workload contention.

ASID Address space ID in hexadecimal. The address space ID is a unique number assigned to an address space when it is created. It is used by z/OS as an index to find the main control block of the address space or to differentiate between address spaces.

CPU Percent The percentage of the total delay to the favored workload that this Impactor contributed during the collection period that resulted from CPU contention. Valid value is a 2-byte integer in the range 0.0 - 100.0.

Enqueue Percent The percentage of the total delay to the favored workload that this Impactor contributed during the collection period that resulted from waiting for an enqueue. Valid value is a 2-byte integer in the range 0.0 - 100.0.

Favored ASID The hexadecimal address space ID of the favored address space.

Favored Job Name The job name of the favored address space. Valid value is a string, with a maximum of 8 characters.

Favored Type The type of the favored address space. The value in this column should be AS, identifying this as an address space. Valid value is a string, with a maximum of 2 characters.
IFA Percent The amount that this impactor contributed towards the delay of the favored address space due to IFA contention during the collection period. Valid range is 0.0 - 100.0.

IFC Percent The amount that this Impactor contributed towards the delay of the favored address space due to IFA on CP contention during the collection period. Valid value is a 4-byte integer in the range is 0.0 - 100.0.

Impact Percent The percentage of the total delay, for any reason, to the favored workload that this Impactor contributed during the collection period. Valid value is a 4-byte integer in the range from 0.0 to 100.0.

Impactor IFA Count The number of samples that this impactor has delayed the favored address space during the collection period for which the delay was due to IFA contention. Valid value is a 4-byte integer in the range 0-2147483647.

Impactor IFC Count The number of samples that this impactor has delayed the favored address space during the collection period for which the delay was due to IFA on CP contention. Valid value is a 4-byte integer in the range 0-2147483647.

Impactor zIIP Count The number of samples this Impactor has delayed the favored address space during the collection period for which the delay was due to contention for System z9 Integrated Information Processor resources.

I/O Percent The percentage of the total delay to the favored address space that this Impactor contributed during the collection period that resulted from I/O contention. Valid value is a 4-byte integer in the range from 0.0 to 100.0.

Job Name The job name of the impactor that is delaying the favored workload. In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Address Space Name. Valid value is an 8-byte character string.

Job Number The JES job ID of the Impactor. Valid value is an 8-byte character string.

Managed System A z/OS operating system in your enterprise that a Tivoli OMEGAMON XE on z/OS agent is monitoring. Valid value is a character string with a maximum length of 32 bytes in the format <plexname>:<smfid>:MVSSYS.

Performance Index Performance index defined for the impactor's service class. Valid value is a 2-byte integer.

Service Class Name of the service class in which the Impactor is running. Valid value is an 8-byte character string.

Total IFA Count The total number of samples that have been taken for the favored address space during the collection period for which the delay was due to IFA contention. Valid value is a 4-byte integer.

Total IFC Count Total number of samples that have been taken for the favored address space during the collection period for which the delay was due to IFA on CP contention. Valid value is a 4-byte integer in the range 0-2147483647.

Total zIIP Count Total number of samples taken for the favored address space during the collection period for which the delay was due to contention for System z9 Integrated Information Processor resources.

zIIP Percent The amount that this impactor contributed towards the delay of the favored address space due to contention for System z9 Integrated Information Processor resources during the collection period.
zIIP on CP Percent The amount that this impactor contributed towards the delay of the favored address space due to System z9 Integrated Information Processor (zIIP) on CP contention during the collection period. The value can exceed 100%. The maximum value is $n\times 100\%$ where n is the number of processors (CPUs) assigned to the LPAR or image.

Address Space Real Storage attributes
The Address Space Real Storage attribute group provides information about the real storage allocated to an address space in terms of various types of frame counts and slot counts, as well as the management status of a given address space.

Address Space Name The name of the job, TSO user, started task, or APPC address space reported on in the row. Valid value is a simple text string of from 1 to 8 characters.

ASID The identifier of the address space for which data is being displayed.

Central Frame Count The total number of central storage frames, including any frames that are backing user dataspaces. Valid value is a 4-byte integer.

Central Shared Pages Shared pages in central storage that are valid in the current address space.

Dispatching Priority The dispatching priority of an address space. Dispatching priorities are set either in the IEAIPS member of PARMLIB or without an IPS, through JCL, or a corresponding TSO logon. Dispatching priorities control the access of an address space to the CPU relative to other jobs and users. Dispatching priorities can range from 1 to 255, with larger numbers indicating higher priority.

Expanded Frame Count The total number of expanded storage frames, including any dataspace frames that have been paged out to expanded storage.

Fixed Frame Count The total number of fixed frames, including fixed frames found on the pageable frame queue and all frames found on the fixed frame queue. Valid value is a 4-byte integer.

High UIC How long the oldest frame of pageable storage has gone without being referenced, in seconds. The unreferenced interval count (UIC) is inversely related to contention for real storage—the lower the UIC, the more quickly frames are being referenced. When SRM determines that there is a shortage of available frames, it uses the high UIC of all address spaces in deciding which pages to steal. Frames with the highest UIC are the most likely to be stolen.

Hiperspace Frame Count The total number of hiperspace frames. Hiperspace allows a program to store and retrieve data directly from expanded storage, thus avoiding the overhead of DASD I/O. Valid value is a 4-byte integer.

Managed System A z/OS operating system in your enterprise that is being monitored by a Tivoli OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes.

Management Status The management status of the address space. Valid values are:

- Monitored. The Working Set Manager has noticed that the address space is using an excessive amount of CPU for paging and is actively keeping track of its central storage use and paging rates.
- Managed. The Working Set Manager has determined that the paging rate of the monitored address space continues to be excessive and some type of action must be taken.
- Isolated. The address space is storage isolated. An address space in this state is exempt from Working Set Manager action.
- NonSwap. The address space is nonswappable and is therefore beyond Working Set Manager control.
- OK. The address space is of no interest to the Working Set Manager.
- Unknown. The management status of the address space is unknown.
Non-virtual I/O Slot Count The number of 4K blocks allocated in auxiliary storage for pages other than virtual I/O pages. Valid value is a 4-byte integer.

Other Aux Storage Slots Other virtual storage slots in use by the address space.

Page ins per second The page fault rate, which does not include page reclaims or pages brought in for either VIO datasets or swap-ins. A consistently high number may be an indication that work is being delayed by contention for real and expanded storage.

Page outs per second The number of page-outs per second. It includes those pages that were stolen by the real storage manager (RSM) in an attempt to increase the number of available frames. The number does not include page-outs for VIO or swap-ins requests. Although a high page-out value may not necessarily mean that workload performance is being affected by paging, it may be a sign of contention for real storage.

Shared Page views Member of a group of virtual addresses that are backed by the same frame of processor storage.

Status The current status of the job or user, including the dispatchability and swap status of the job. Dispatchability is displayed in the first part of the Status field, while swap status is displayed in the last part of the field. Dispatchability may be either CPU (waiting for CPU) or WAT (Waiting). Swap status may be LSW (logically swapped), NSW (Nonswapable), RES (Swapped in; resident), SWP (swapped out), or DLY (waiting for other reasons, which may include an enqueue, SRM delay, or voluntary wait. An asterisk may appear in the middle of the field, indicating that the task is currently in transaction.

Swap Status The swap status of the address space. Valid values are:
- IN. The address space is swapped in and occupies central storage.
- OUT. The address space is swapped out and does not occupy central storage.
- INNSW. The address space is in central storage and is nonswapable.
- OUTLSW. The address space is logically swapped and occupies central storage.
- UNKNOWN. Swap status is unknown.

User Key Dataspace The maximum number of 4K virtual storage blocks of user key dataspace that can be used by this address space. Valid value is a 4-byte integer.

Virtual I/O Slot Count The number of 4K blocks allocated in auxiliary storage for virtual I/O pages. Valid value is a 4-byte integer.

Working Set Size The number of frames of real storage an address space has in use. Often defined as the minimum number of pages that an application needs to do work. With expanded storage installed, working set size also includes the number of expanded storage frames that the user owns. In systems with expanded storage, the working set is divided into three parts. The primary working set consists of LSQA pages, fixed pages, and at least one page per segment. The secondary working set is all other referenced pages. The remaining, unreferenced pages are contained in the nonworking set.

Address Space Summary attributes
This attribute group provides summary address space information such as count of active address spaces and total enclave counts.

Active Enclave Count Total number of dependent and independent enclaves owned by all address spaces that are currently active. Valid value is a 4-byte integer.

Address Space Count Count of all active address spaces in this LPAR. Valid value is a 4-byte integer.
APPC Count Count of all advanced program-to-program communication address spaces in this LPAR. Valid value is a 4-byte integer.

Batch Job Count Count of all batch job address spaces in this LPAR. Valid value is a 4-byte integer.

Inactive Enclave Count Total Number of dependent and independent enclaves owned by all address spaces that are currently inactive. Valid value is a 4-byte integer.

Managed System A z/OS operating system in your enterprise that is being monitored by a Tivoli OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes.

Started Task Count Count of all started task address spaces in this LPAR. Valid value is a 4-byte integer.

Total Enclave Count Total number of dependent and independent enclaves owned by all address spaces that are currently active or inactive. Valid value is a 4-byte integer.

TSO User Count Count of all TSO User address spaces in this LPAR. Valid value is a 4-byte integer.

Address Space Virtual Storage attributes

The Address Space Virtual Storage attribute group provides information about the virtual storage allocated to an address space. The attributes report on low, extended, and large storage. Low storage is that below the 16 Megabyte (MB) line. Extended storage is in the range from 16 MB to 2 Gigabytes (GB). Above 2 GB, storage is referred to as large storage, or "above the bar". For each category, both fixed and virtual storage are reported on.

ASID The address space identifier as it is known to z/OS in hexadecimal.

Address Space Name The name of the job, TSO user, started task, or APPC address space reported on in the row. Valid value is an alphanumeric string, with a maximum of 8 characters.

Extended Fixed The amount of fixed storage (in megabytes) between 16 MB and 2 GB. If an accurate value cannot be determined, the value is displayed as Unavailable. If the address space is physically swapped, Swapped is displayed.

Extended Virtual The allocated virtual storage (in megabytes) between 16 MB and 2 GB. If an accurate value cannot be determined, the value is displayed as Unavailable. If the address space is physically swapped, Swapped is displayed.

Large Fixed The amount of fixed storage above the 2 GB (or above the bar) address range. If an accurate value cannot be determined, the value is displayed as Unavailable. If the address space is physically swapped, Swapped is displayed.

Large Inuse Percent The percent of storage in use above the bar, relative to the maximum allowed. Valid value is a 2-byte integer in the range 0.0 - 100.0. If an accurate value cannot be determined, the value is displayed as Unavailable. If the address space is physically swapped, Swapped is displayed.

Large Max The maximum amount of storage above the bar (2 GB boundary) that could be allocated by the address space. If an accurate value cannot be determined, the value is displayed as Unavailable. If the address space is physically swapped, Swapped is displayed. The following are the suffixes and names for values in 64-bit:

- K (kilobyte, $2^{10} = 1,024$)
- M (megabyte, $2^{20} = 1,048,576$)
- G (gigabyte, $2^{30} = 1,073,741,824$)
- T (terabyte, $2^{40} = 1,099,511,627,762$)
- P (petabyte, $2^{50} = 1,125,899,906,842,624$)
E (exabyte, \(2^{60} = 1,152,921,504,606,846,976\))
64 bit = \(16E = 2^{64}\)

Large Virtual The amount of allocated virtual storage above 2 GB (above the bar). If an accurate value cannot be determined, the value is displayed as Unavailable. If the address space is physically swapped, Swapped is displayed.

Low Fixed The storage below the 16 MB line, which is fixed in megabytes. If an accurate value cannot be determined, the value is displayed as Unavailable. If the address space is physically swapped, Swapped is displayed.

Low Virtual The amount of allocated virtual storage for this address space below the 16 MB line, in megabytes. If an accurate value cannot be determined, the value is displayed as Unavailable. If the address space is physically swapped, Swapped is displayed.

Managed System A z/OS operating system in your enterprise that is being monitored by a Tivoli OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes in the format `<plexname>:<smfid>:MVSSYS`.

Management Status The management status of the address space. Valid values are:
- MONITORED. The Working Set Manager has noticed that the address space is using an excessive amount of CPU for paging and is actively keeping track of its central storage use and paging rates. Monitored address spaces are associated with a central storage target value of 0. An address space can be swapped out and still be monitored by the Working Set Manager.
- MANAGED. The Working Set Manager has determined that the paging rate of the monitored address space continues to be excessive and some type of action must be taken.
- ISOLATED. The address space is storage isolated. An address space in this state is exempt from Working Set Manager action.
- NONSWAP. The address space is nonswappable. An address space in this state is beyond Working Set Manager control.
- OK. The address space is nonswappable. An address space in this state is beyond Working Set Manager control.
- Unknown. If the agent cannot determine a value, it defaults to Unknown.

Step Name The address space stepname currently executing. Valid value is an alphanumeric string, with a maximum of 8 characters.

Swap Status The swap status of the address space. Valid values are:
- IN. The address space is swapped in and occupies central storage.
- OUT. The address space is swapped out and does not occupy central storage.
- INNSW. The address space is in central storage and is nonswappable.
- OUTLSW. The address space is logically swapped and occupies central storage.
- UNKNOWN. Swap status is unknown.

Total Fixed The total amount of fixed storage, in megabytes, for the address space. If an accurate value cannot be determined, the value is displayed as Unavailable. If the address space is physically swapped, Swapped is displayed.

Total Virtual The total amount of allocated virtual storage, in megabytes, for the address space. If an accurate value cannot be determined, the value is displayed as Unavailable. If the address space is physically swapped, Swapped is displayed.
Channel Paths attributes

The Channel Paths attribute group provides information about the utilization of a channel path.

Cluster Name The name of the LPAR Cluster to which the host LPAR is assigned. The name corresponds to the I/O Cluster to which the Channel Path is assigned. The format for the name is `xxxxxxxx.ssss.tttt`, where:
- `xxxxxxxx` is the name of the Sysplex.
- `ssss` is the last 4 characters of the CPC serial number.
- `tttt` is the first 4 characters of the CPC Model number.

This format is consistent with the Cluster Name provided in the LPAR Clusters workspace. A value of "Not available" is provided if the channel path is not managed by Dynamic Channel Path Management (DCM). Valid value is an 18-byte character string.

Complex Percent The percentage of time that the channel was busy within the complex. Valid value is a 4-byte integer in the range 0.0 to 100.0.

Configured A description of how the channel path was reconfigured during the RMF interval. Valid values:
- Unknown.
- Add. Channel path was added during the RMF interval.
- Mod. Channel path was modified during the RMF interval.
- Del. Channel path was deleted during the RMF interval.
- Not available. Status cannot be determined because an RMF substitute is being used and no CPDT is present.
- Nothing. No data was returned.

CPMF The Channel Path Measurement Facility (CPMF) calculates channel path utilization. Valid values are:
- Unknown
- Available. In LPAR mode, CPMF calculates LPAR channel path utilization, which in turn determines complex-wide channel path utilization. If the channel path is shared, complex-wide utilization is calculated by other channel measurement techniques.
- Unavailable. CPMF is supported but is unavailable for use. All channel path utilization information is calculated by other channel measurement means. In LPAR mode, for shared channel paths, values for LPAR channel utilization are blank. In basic mode, only complex-wide values are displayed. If you restart CPMF, this status changes to available and channel path utilization is calculated as described under Available.
- Not Installed. CPMF is not supported on your system. All channel path utilization information is calculated by other channel measurement techniques. Only complex-wide values are available for both LPAR and basic modes.
- Compatibility.
- Extended.

DCM Status Indicates whether Dynamic Channel Path Management (DCM) is enabled for this channel path. It is possible that the Intelligent Resource Director (IRD) can change the channel’s configuration to help meet Workload Manager goals. Valid values are YES or NO.

LPAR Percent The percentage of time the channel was busy working for the logical partition. This column can be blank or non-blank. The column is blank when: a) the system is running in basic mode; b) the channel path is offline; c) the ESCON Multiple Image Facility (EMIF) is not installed; or d) CPMF is unavailable or not installed.
Valid values range from 0 to 100% when the system is running in LPAR mode, EMIF is installed, and the channel path is online. If the channel path is shared, this value represents the LPAR's utilization of the channel path from the start of the RMF interval. If the channel path is not shared, the LPAR utilization value is the same as the complex-wide utilization value.

This value can be greater than the utilization of the channel by the entire complex, since the LPAR value is obtained from the hardware, whereas the Complex value is sampled and may not include channel utilization.

Managed System A z/OS operating system in your enterprise that an OMEGAMON XE for z/OS agent is monitoring. Valid value is a character string with a maximum length of 32 bytes.

Mode The mode of the channel path. Valid values are:
- Unknown
- Basic (no partitions)
- LPAR (partitioned)

Online An indicator showing whether the channel is online. Valid values are Y or N.

Path ID The channel path ID. Valid value is 1-byte hexadecimal.

RMF Interval Start The time in HH:MM:SS format when the current RMF interval started.

Sample Count The number of samples in this measurement interval. Valid value is a 4-byte integer.

Shared An indicator of whether the channel is shared with other logical partitions. Only ESCON channels (ESChn) or directors (ESdir) can be shared channels. Valid values are Y or N.

Type The channel data type. Some of the valid values are shown in the following list. Because the list of possible values is long and changes often, please refer to IBM's RMF Report Analysis Manual for the most current list.
- Block. Block multiplexor channel
- Byte. Byte multiplexor channel
- ESchn. ESCON channel
- ESctc. ESCON channel-to-channel adapter
- EScnv. Channel connected to an ESCON converter
- ESdir. ESCON channel attached to an ESCON director
- Unkn. Unknown type.

Common Storage attributes
The Common Storage attribute group displays information about four important areas of common storage: common service area (CSA), extended CSA, system queue area (SQA), and extended SQA.

Allocation The amount of storage currently allocated for the area. For SQA and ESQA, under normal conditions, this value is the same as Total Size. If an overflow has occurred, then the value may exceed Total Size. Valid value is a numeric in the range 0 to 2147483647.

Allocation Percent The amount of storage currently allocated as a percentage of total storage in this area. Valid range is 0 - 100.

Area The name of the common storage area presented in this row of the table view. For SQA and ESQA, under normal conditions, this will be 100%. If an overflow has occurred, then the value may exceed 100%. Valid values are:
- CSA. Common Storage Area
- ECSA. Extended Common Storage Area
- SQA. System Queue Area
- ESQA. Extended System Queue Area

ESQA Overflow The amount of ESQA that has overflowed into the ECSA. Valid value is a numeric in the range 0 to 2147483647.

Growth Growth in use during the last interval. Valid value is a numeric in the range 0 to 2147483647.

In Use The amount of storage currently in use, not including the SQA or ESQA overflow. Valid value is a 4-byte integer.

In Use Percent The amount of storage currently in use as a percentage of total storage.

Initial Size Size of CSA and ECSA at IPL, before any CSA or ECSA conversion to SQA or ESQA.

Managed System A z/OS operating system in your enterprise that an OMEGAMON XE for z/OS agent is monitoring. Valid value is a character string with a maximum length of 32 bytes.

SQA Overflow The amount of SQA that has overflowed into the CSA. Valid value is a numeric in the range 0 to 2147483647.

Total Size The total size of each area as specified at time of IPL or in the IEASYS member of the PARMLIB data set, minus any CSA/ECSA storage used by SQA/ESQA. Valid value is a numeric in the range 0 to 2147483647.

Unowned The amount of allocated storage that is not currently owned by an address space. Valid value is a numeric in the range 0 to 2147483647.

DASD MVS attributes

The DASD MVS attribute group monitors various z/OS error conditions collectively for a group of devices.

Cache Deactivated The count of volumes that are eligible for cache but do not have cache activated. Valid value is a 4-byte integer.

Dropped Ready Count of DASD showing a dropped ready status. The dropped ready condition may indicate a power supply or other hardware problems, or the switch may have been turned off at the device. Valid value is a 4-byte integer.

Indexed VTOC Lost Count of DASD with Indexed VTOC disabled (that is, non-indexed format VTOC). Note that on heavily used volumes with many data sets, an index to a VTOC may significantly improve I/O performance. System routines at times may disable a VTOC index and return the VTOC to its non-indexed format. Use the DSF BUILDX command to return to the VTOC to indexed format. If the problem persists, you may need to delete and rebuild the index using DSF. Valid value is a 4-byte integer.

Managed System A z/OS operating system in your enterprise that an OMEGAMON XE for z/OS agent is monitoring. Valid value is a character string with a maximum length of 32 bytes.

No Dynamic Path Reconnect The count of devices with dynamic path reconnect disabled. Valid value is a 4-byte integer.

Not Responding Count of DASD not responding to I/O requests. When a device is not responding to I/O requests, start pending messages may appear on the system console. In multiple systems having
shared DASD environments, this may be caused by a RESERVE command issued by another system. If this is the cause of the problem, it may be possible to change the RESERVE to a global enqueue. If you cannot find the cause of any unknown reserves or enqueues, a hardware malfunction is possible, causing the device to show dropped ready. Valid value is a 4-byte integer.

DASD MVS Devices attributes

The DASD MVS Devices attribute group permits you to monitor z/OS activity for individual DASD devices.

Address The device address for this DASD volume.

Cache Read Hit Percent This value represents a successful I/O request to read data from the cache. The ratio of successful reads to total read requests is the hit percentage. Valid value is a 4-byte integer.

Cache Status The cache status of the device for the system. Valid values are:
- Unknown
- Active
- Inactive
- PendingActive
- PendingInactive
- TimedOut

Cache Write Hit Percent This value represents a successful I/O request to write temporary data to the cache. The ratio of successful writes to total write requests is the hit percentage. Valid value is a 4-byte integer.

CU Busy Delay Time Control Unit busy delay time in milliseconds. Valid value is a 4-byte integer.

Dev Allocations Average number of allocated datasets that are open on the device.

Dev Busy Delay Time Device busy delay time in milliseconds. Valid value is a 4-byte integer.

Director Port Busy Delay ESCON Director Port busy delay time in milliseconds. Valid value is a 4-byte integer.

Fast Write Hit Percent This value represents write requests that are cached and later placed in nonvolatile storage (NVS) and written to the DASD device. Valid value is a 4-byte integer.

HyperPAV Indicates whether or not HyperPAV is enabled for this device. Valid values are yes and no.

I/O Connect Time The time, in milliseconds, attributable to data transfer (search + transfer). Valid value is a 4-byte integer.

I/O Disconnect Time The time, in milliseconds, that an I/O request spends freed from the channel. This is the time that the I/O searches for the data that has been requested. This includes moving the device to the requested cylinder and track (SEEK + SET SECTOR), waiting for the record to rotate under the head (LATENCY), and possible rotational delay as the device waits to reconnect to the channel (RPS delay). Valid value is a 4-byte integer.

I/O Pending Time The time, in milliseconds, that the I/O is delayed in the path to the device. Pending time may be attributable to the channel, control unit, or head of string being busy, although it is often caused by shared DASD. Valid value is a 4-byte integer.

I/O Rate Number of I/Os per second to the device. Valid value is a 4-byte integer.
IOS Queue Time The average time, in milliseconds, that an I/O waits because the device is busy. Valid value is a 4-byte integer.

LCU Number A device’s Logical Control Unit (LCU) number (a number that represents the aggregate paths to the device). Valid value is a 4-byte integer in the range 0 - 255.

Model The control unit model type/number. Valid value is an 8-byte character string.

Managed System A z/OS operating system in your enterprise monitored by an OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes.

PAV Count The number of Parallel Access Volumes (PAVs) assigned to this DASD volume, or, in the case of base HyperPAV volumes, the average number of HyperPAV aliases assigned over the interval. If none, a value of "Not available" is displayed. Valid value is a 4-byte integer.

Percent Busy The percentage of time the device was busy doing I/O during the last measurement interval. Valid value is a 4-byte integer in the range 0.0 to 100.0.

Percent Reserve The percentage of time the device was observed to be in a Reserved state. Valid value is a 4-byte integer.

Response The average response time for I/Os to this device, in milliseconds.

Storage Group Name of the storage group to which the device is assigned. Valid value is an 8-byte character string.

Volume The volume serial number of the device. Valid value is a 6-byte character string.

Enclave Detail attributes
The Enclave Detail attributes permit you to view performance and extended classification information for a selected enclave. These attributes cannot be used to create situations or collect history.

Account Information A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

Collection A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

Connection A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

Correlation A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

CPU Percent The percentage of CPU recently consumed by the enclave. This value cannot be determined for a very recently created enclave, in which case Not available is displayed. In some unusual cases, restarting a transaction can make the value appear as a negative number. In that case, the value NEG is displayed. This value can exceed 100%. The maximum value is $n \times 00\%$, where n is the number of processors (CPUs) assigned to the LPAR or image.

Export Token The 32-byte export token in hexadecimal.

Function Name A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".
IFA Percent The percentage of IFA recently consumed by the enclave. The determination of this value is not possible for a very recently created enclave. Unusual circumstances involving the restarting of a transaction can make the value on which this number is based appear negative. In that case, NEG is displayed. The value can exceed 100%. The maximum value is \(n \) 00% *IFA normalization factor, where \(n \) is the number of IFAs configured to the LPAR and IFA normalization factor is a multiplier that allows normalization of IFA speeds to standard CP speeds on “knee-capped” processors.

IFA Percent on CP Average percentage of time the system consumes regular CP resource executing IFA work across all regular CPs configured to this LPAR.

Independent Enclave Token If this enclave is a work-dependent enclave, the 8-byte token, in hexadecimal, of the independent enclave that owns it. Note that the entire token is displayed, including any leading 0s. If you are relating this information to information provided by other products, be aware that some products do not display the leading 0s.

LUName The logical unit name. This column represents a Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

Managed System A z/OS operating system in your enterprise that is being monitored by an OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes.

NetID A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

Number of Work Dependent Enclaves If this enclave is an independent enclave, the number of work-dependent enclaves that it owns.

Owning ASID ID of the owning address space in hexadecimal. This column may contain 0 if the enclave is foreign, or in unusual recovery situations.

Owning JESJOBID The JES job ID of the address space. In the following circumstances, this information is not available:
- blank. The owning address space is not using JES services.
- *OTHSYS*. The report was produced by a system other than the owning system.
- *GONE*. The owning job is no longer executing. This may mean that the address space of the owning job no longer exists, or that the address space is now assigned to a different job.

At any one instant in time, both an enclave and its owning address space will or will not exist. However, it is not possible for a Tivoli OMEGAMON XE for z/OS agent to gather all enclave and address space information in one atomic operation. Thus, when an address space owning an enclave has recently ceased to exist, it is possible for the agent to have enclave information and still be unable to locate information associated with the owning address space.

Owning Jobname The job name of the owning address space. This attribute is not available on all levels of z/OS.

Owning System Name of the system where the owning address space is executing. This attribute is not available on all levels of z/OS.

Package A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

Perform A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".
Plan A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

Procedure Name A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

Process Name A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

ResGroup The resource group name.

RptClass The report class name.

Scheduling Environment A Workload Manager classification attribute. If the data is not available, "Not available" is displayed. "Not available" is also displayed if this and other classification attributes are not available.

Status The enclave's status. This value will be one of the following:
- Active
- Inactive. An enclave is considered inactive if there is no unit of work currently associated with the enclave.
- Not available. For older or unsupported releases of the system.

Subsystem Collection A Workload Manager classification attribute. "Not available" is displayed if this and other classification attributes are not available.

Subsystem Name A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display Not available.

Subsystem Parameter A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display Not available.

Subsystem Priority A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display Not available.

Subsystem Type A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display Not available.

Subtype Type of subsystem to which the enclave belongs. This attribute is not available on all levels of z/OS. If the information is not available, the column contains Not available.

SvcClass The service class name.

SvcClass Period The service class period.

Token The 8-byte token name in hexadecimal format. The entire token is displayed including any leading zeroes. If you are relating information in this report to information provided by other products, you should be aware that some products do not display the leading zeroes. The token can be used to RESET the enclave. There is no z/OS command for this function, but it is supported by SDSF.

Total CPU The total CPU consumption in seconds. For a multisystem enclave, this value does not include CPU consumption on systems other than the system that produced the report.

Total IFA Total IFA consumption, in seconds. Valid value is an integer in the range 1 - 2147483647.
Total IFA on CP Total regular CP resource consumption executing IFA work, in seconds. For a multisystem enclave, IFA consumed on systems other than the system which produced the report is not included in this figure. Valid value is an integer in the range 1 - 2147483647.

Total zIIP Total System z9 Integrated Information Processor (zIIP) consumption, in seconds.

Total zIIP on CP Total standard process resource consumed performing work eligible for a System z9 Integrated Information Processor (zIIP), in seconds. For a multisystem enclave, zIIP consumed on systems other than the system which produced the report is not included in this figure.

Transaction Class A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display Not available.

Transaction Program Name A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns will display "Not available".

Type The enclave type. This value will be one of the following:
- Dep. Dependent
- Indep. Independent
- WorkDep. Work Dependent
- ForeignDep. Foreign Dependent
- ForeignIndep. Foreign Independent
- Unknown. All other types

Userid A Workload Manager classification attribute. If this value is unavailable, this column, as well as all other classification attribute columns displays "Not available".

Workload The name of the workload.

zIIP on CP Percent The percentage of regular processor resource recently consumed by the enclave performing work eligible for a System z9 Integrated Information Processor.

zIIP Percent The percentage of System z9 Integrated Information Processor (zIIP) resources recently consumed by the enclave. The determination of this value is not possible for a very recently created enclave. Unusual circumstances involving the restarting of a transaction can make the value on which this number is based appear negative. In that case, NEG is displayed.

This value can exceed 100%. The maximum value is \(n \times 100 \%) \times zIIP normalization factor, where \(n \) is the number of zIIPs configured to the LPAR and the zIIP normalization factor is a multiplier that allows normalization of zIIP speeds to standard processor speeds on restricted processors.

Enclave Table attributes
An enclave is defined as a transaction that can span multiple dispatchable units (SRBs and tasks) in one or more address spaces and is classified and managed as a unit. The Enclave Table attributes permit you to view information about or create situations that report on the status of various resources belonging to the enclave.

CPU Percent The percentage of regular processor time recently consumed by the enclave. This value cannot be determined for a very recently created enclave, in which case Not available is displayed. In some unusual cases, restarting a transaction can make the value appear as a negative number. In that case, the value NEG is displayed. This value can exceed 100%. The maximum value is \(n \times 100 \%), where \(n \) is the number of processors (CPUs) assigned to the LPAR or image.

Export Token The 32-byte export token in hexadecimal.
IFA Percent The percentage of IFA recently consumed by the enclave. The determination of this value is not possible for a very recently created enclave. Unusual circumstances involving the restarting of a transaction can make the value on which this number is based appear negative. In that case, NEG is displayed. The value can exceed 100%. The maximum value is $n\times\%$IFA normalization factor, where n is the number of IFAs configured to the LPAR and IFA normalization factor is a multiplier that allows normalization of IFA speeds to standard CP speeds on restricted processors.

IFA Percent on CP Average percentage of time the system consumes regular CP resource executing IFA work across all regular CPs configured to this LPAR.

Independent Enclave Token If this enclave is a work-dependent enclave, the 8-byte token, in hexadecimal, of the independent enclave that owns it. Note that the entire token is displayed, including any leading 0s. If you are relating this information to information provided by other products, be aware that some products do not display the leading 0s.

Managed System A z/OS operating system in your enterprise that is being monitored by an OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes.

Number of Work Dependent Enclaves If this enclave is an independent enclave, the number of work-dependent enclaves that it owns. In the OMEGAMON enhanced 3270 user interface this attribute is displayed as WorkDependent Enclaves.

Owning ASID ID of the owning address space in hexadecimal. This column may contain 0 if the enclave is foreign, or in unusual recovery situations.

Owning JESJOBID The JES job ID of the address space. In the following circumstances, this information is not available:
- blank. The owning address space is not using JES services.
- *OTH SYS*. The report was produced by a system other than the owning system.
- **GONE**. The owning job is no longer executing. This may mean that the owning job's address space no longer exists, or that the address space is now assigned to a different job.

At any one instant in time, both an enclave and its owning address space will or will not exist. However, it is not possible for a Tivoli OMEGAMON XE for z/OS agent to gather all enclave and address space information in one atomic operation. Thus, when an address space owning an enclave has recently ceased to exist, it is possible for the agent to have enclave information and still be unable to locate information associated with the owning address space.

Owning Jobname The job name of the owning address space. This attribute is not available on all levels of z/OS.

Owning System Name of the system where the owning address space is executing. This attribute is not available on all levels of z/OS.

ResGroup The resource group name.

RptClass The report class name.

Status The enclave's status. This value will be one of the following:
- Active
- Inactive. An enclave is considered inactive if there is no unit of work currently associated with the enclave.
- Not available. For older or unsupported releases of the system.
Subtype Type of subsystem to which the enclave belongs. This attribute is not available on all levels of z/OS. If the information is not available, the column contains Not available.

SvcClass The service class name.

SvcClass Period The service class period.

Token The 8-byte token name in hexadecimal format. The entire token is displayed including any leading zeroes. If you are relating information in this report to information provided by other products, you should be aware that some products do not display the leading zeroes. The token can be used to RESET the enclave. There is no z/OS command for this function, but it is supported by SDSF.

Total CPU The total CPU consumption in seconds. For a multisystem enclave, this value does not include CPU consumption on systems other than the system that produced the report.

Total IFA Total IFA consumption, in seconds. Valid value is an integer in the range 1 - 2147483647.

Total IFA on CP Total regular processor resource consumption performing work eligible for a zSeries Application Assist Processor (zAAP), in seconds. For a multisystem enclave, zAAP consumed on systems other than the system which produced the report is not included in this figure. Valid value is an integer in the range 1 - 2147483647.

Total zIIP Total System z9 Integrated Information Processor consumption in seconds.

Total zIIP on CP Total standard resource consumed performing work eligible for System z9 Integrated Information Processors (zIIPs), in seconds. For a multisystem enclave, zIIP resources consumed on systems other than the system which produced the report is not included in this figure.

Type The type of enclave. This value can be one of the following types:
- Dep. Dependent
- Indep. Independent
- WorkDep. Work Dependent
- ForeignDep. Foreign Dependent
- ForeignIndep. Foreign Independent
- Unknown. All other types

Workload The name of the workload.

zIIP on CP Percent The percentage of regular processor resource recently consumed by the enclave performing work eligible for a System z9 Integrated Information Processor (zIIP). The determination of this value is not possible for a very recently created enclave. Unusual circumstances involving the restarting of a transaction can make the value on which this number is based appear negative. In that case, NEG is displayed. The value can exceed 100%. The maximum value is \(n\times 100\% \times zIIP\) normalization factor, where \(n \) is the number of zIIPs configured to the LPAR and the zIIP normalization factor is a multiplier that allows normalization of zIIP speeds to standard processor speeds on "knee-capped" processors.

zIIP Percent The percentage of System z9 Integrated Information Processor resources recently consumed by the enclave. The determination of this value is not possible for a very recently created enclave. Unusual circumstances involving the restarting of a transaction can make the value on which this number is based appear negative. In that case, NEG is displayed.
Enqueue Conflicts attributes
The Enqueue Conflicts attributes assist you in determining those system resources that have contention and those address spaces that are being delayed because they cannot acquire the needed resources.

ASID Hexadecimal address space ID.

Major Name The major name (qname) of the resource. Valid format is a simple text string of from 1 through 8 characters; for example, SYSDSN.

Managed System A z/OS operating system in your enterprise that an OMEGAMON XE for z/OS agent is monitoring. Valid value is a character string with a maximum length of 32 bytes.

Maximum Wait Time Longest time, in seconds, that the task has been waiting for a resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 45.

Minor Name The minor name (rname) of the resource. Valid format is a simple text string of from 1 through 255 characters; for example, SYS1.PROCLIB.

Owning Address Space Name of the job containing the task that owns the resource. Valid format is a simple text string from 1 through 8 characters; for example, PRODJOB1. The column is blank for a waiting address space entry.

Owning Task Count Number of tasks owning the resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.

Swapped Swap status of the address space in which the task is executing. Valid values are SWAPPED or NOT SWAPPED.

System Name System name or SMF ID of the z/OS image where the task is executing. Valid format is a simple text string of from 1 through 8 characters; for example, SYSA.

Type Type of ENQ the task has issued for the resource. Valid values are:
- Shared. Capable of sharing with other resources
- Exclusive. No other processes have access to the resource

Wait Time Time in seconds that the task has been waiting for the resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 45.

Waiting Address Space Name of the address space currently waiting for the resource. Valid format is a simple text string from 1 through 8 characters; for example, PRODJOB2. The column is blank for an owning address space entry.

Waiting Task Count Number of tasks waiting for the resource. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. An example is 1.

HiperDispatch Logical Processors attributes
The HiperDispatch Logical Processors attributes show the processor type and HiperDispatch statistics like priority, share percentage, and status for each processor configured in an LPAR.

CPU Type Type of processor. The possible values are:
• Standard. A standard processor
• zAAP. zSeries Application Assist Processor, a special class of assist processor designed to run Java workloads. For reporting purposes, a zAAP is sometimes referred to as an integrated facility for applications (IFA).
• zIIP. zSeries Integrated Information Processor, a special class of assist processor used mostly for DB2 workloads.

HiperDispatch Priority The HiperDispatch priority of work dispatched on the logical processor. The possible values are:
• High. 90% of the processor’s execution time is spent running high priority work.
• Medium. 90% of the processor’s execution time is spent running either high or medium priority work.
• Low. All other processors.

LCPU ID ID of the logical processor. This is a hexadecimal formatted value.

Managed System Name of the managed system where this data is collected. It has the format `<plexname>:<smfid>:MVSSYS`, where `plexname` is the sysplex this LPAR resides in and `smfid` is the name of the system management facility for this LPAR.

Management Percent The percentage of physical processor time spent in this logical processor managing this LPAR, formatted to three decimal places.

MVS Pct Logical processor MVS percentage (online time minus wait time and parked time).

Parked Pct Logical processor parked percentage.

Physical CP Dispatch Pct The percentage of time that a physical processor was dispatched to this logical processor, formatted to three decimal places.

Share Percent The percentage of a physical processor that the logical processors are entitled to receive, formatted to 1 decimal place. For HiperDispatch, High-priority logical processors this should be 100%. Low priority logical processors should be 0%. Medium priority logical processors will have a share percentage proportional to their Polar Weight.

Status Status of the logical processor. The possible values are:
• Online. The logical processor is configured and allowed to have work dispatched on it.
• Offline. The logical processor is configured but is currently not available for work to be dispatched. Intelligent Resource Director has likely reduced the relative weight of this partition in favor of other partitions.
• Parked. This logical processor is configured online but will not dispatch any work. The processor can be unparked under the right conditions and start dispatching work for this LPAR.
• Park Pending. The logical processor is in the process of being parked.
• Reserved. The logical processor is configured but has never been brought online.

HiperDispatch Management attributes
The HiperDispatch Management attributes provide information about the weight and status of a logical processor when the LPAR is in HiperDispatch mode.

Current Weight Current weight for logical processors of this type in this LPAR. The range is 0 – 999 for shared processors, unless the LPAR uses dedicated CPs, in which case the value is 65,535. If the associated processor type is not used in the LPAR, this value is shown as “undefined”.

Logical Processor Type Type of logical processor. The possible values are:
• Standard. A standard processor
• zAAP. zSeries Application Assist Processor, a special class of assist processor designed to run Java workloads. For reporting purposes, a zAAP is sometimes referred to as an integrated facility for applications (IFA).
• zIIP. zSeries Integrated Information Processor, a special class of assist processor used mostly for DB2 workloads.

HiperDispatch Management The status of the HiperDispatch feature. The possible values are:
• Unavailable. Either the required hardware is not installed or the operating system does not support it.
• On. This LPAR is in HiperDispatch management mode.
• Off. This LPAR is not in HiperDispatch management mode. Either HiperDispatch management mode has not been enabled in the SYS1.PARMLIB, or the LPAR does not have enough work to warrant its use.

LPAR Cluster Name of the cluster to which the LPAR belongs, as defined in the hardware console. LPARs that are members of the same cluster may share central processor and channel resources through the Intelligent Resource Director.

LPAR Group Name of the group to which the LPAR belongs, as defined in the hardware console. LPARs in the same group may have a group capacity defined. The sum of 4-hour rolling MSUs for the group may not exceed the group capacity. LPARs may also have individual capacity limits. An LPAR could be capped if either its individual limit is reached or the group total is reached.

LPAR Name Name of the logical processor, as defined in the hardware console.

Managed System Name of the managed system where this data is collected. It has the format <plexname>:<smfid>:MVSSYS, where plexname is the sysplex this LPAR resides in and smfid is the name of the system management facility for this LPAR.

Maximum Weight Maximum weight that can be assigned to the set of logical CPUs of the associated type within the logical partition. The weight is in the range 0-999, except that it is 65,535 if the logical partition uses dedicated CPUs, and 0 if no maximum weight was specified. If this processor type is not present in this LPAR the weight is shown as "undefined".

Minimum Weight Minimum weight that can be assigned to the set of logical processors of the associated type within the logical partition. The weight is in the range 0-999, except that it is 65,535 if the logical partition uses dedicated CPUs, and 0 if no minimum weight was specified. If this processor type is not present in this LPAR the weight is shown as "undefined".

System MVS Pct MVS percentage across all online standard logical processors in the LPAR.

System PCPD Pct Physical CPU Percentage across all online standard logical processors in the LPAR.

Inspect Address Space CPU Use attributes
These attributes provide the Inspect data for the active task control blocks (TCBs) within the selected address space. You cannot use these attributes to create situations.

ASID IN Used to pass the ID of the address space to be inspected to the agent.

CSECT Address Hexadecimal address of the control section (CSECT) in storage within the owning load module. If Inspect is unable to determine the CSECT name, the value of this field will be the same as the load module address.
CPU % of CSECT CPU percentage usage for this granular section of the control section (CSECT). If the name of the CSECT is unknown, this value will be the same as Load Module. Valid value is a number in the range 0.0 - 100.0.

CSECT CPU % of Job CPU usage for this control section (CSECT) as a percentage of the CPU usage for all task control blocks (TCBS) in the address space. This value will be the same as Load Module CPU % of Job if CSECT name is unknown, since in that case the CSECT is mapped to the entire load module. Valid value is an integer in the range 0.0 - 100.0. This value will be 100% if the CSECT name is unknown, since the CSECT is then mapped to the entire load module.

CSECT CPU % of Load Module CPU usage for this control section (CSECT) as a percentage of the CPU usage for the owning load module. This value will be 100% if the CSECT name is unknown, since the CSECT is then mapped to the entire load module. Valid value is a number in the range 0.0 - 100.0.

CSECT CPU % of TCB CPU usage for this control section (CSECT) as a percentage of the CPU usage for the owning task control block (TCB). This value will be the same as Load Module CPU % of TCB if the CSECT name is unknown, since in this case the CSECT is mapped to the entire load module. Valid value is a number in the range 0.0 - 100.0.

CSECT Name Name of the control section (CSECT) within the load module in which Inspect detected the execution. This column is blank if Inspect is unable to determine the load library that the module was loaded from. This may occur if the module was loaded from a link list library. Valid value is a string of up to 8 characters.

CSECT Offset in Load Module Offset of the control section in the load module. Valid value is a hexadecimal number in the range 0 - 7FFFFFFF.

Initial Program Name of the top level program that was attached to create this task control block (TCB). If the target address space is a CICS TS 1.3 or higher region, this field may contain the CICS transaction ID and task number instead. Valid value is a string of up to 8 characters.

Interval The time, in milliseconds, between samples taken by the Inspect agent. Valid value is an integer in the range 0-2147483647.

INTERVAL IN Used to specify the sampling interval to the agent. Valid value is an integer in the range 0-2147483647.

Jobname Used by the Inspect agent to check that the same job is still running in the target address space. Valid value is a string of up to 8 characters.

Load Module Address Address of the load module in the target address space. A value of *-CSA-* indicates that execution was in code resident in the common storage area; a value of *-ECSA-* indicates that execution was in code resident in the extended common storage area. A zero indicates that Inspect could not determine the load module name.

Load Module ASID Decimal Decimal ID of the address space when execution was seen to be in an address space other than the one being inspected.

Load Module ASID Hex Hexadecimal ID of the address space when execution was seen to be in an address space other than the one being inspected.

Load Module ASID Jobname Name of the job running within the address space when execution was seen to be in an address space other than the one being inspected. Valid value is a string of up to 8 characters.
Load Module CPU % of Job: CPU usage for this load module as a percentage of the total CPU time seen by Inspect for all task control blocks (TCBs) in the address space. Valid value is a number in the range 0.0 - 100.0.

Load Module CPU % of TCB: CPU usage for this load module as a percentage of the total CPU time seen by Inspect for the owning task control block (TCB). Valid value is a number in the range 0.0 - 100.0.

Load Module Name: The name of the load module that Inspect saw was executing when it took one or more samples. This field may contain *-CSA-* or *-ECSA-* if execution was within resident code within the CSA or ECSA. It may contain *-UNKN-* if Inspect was unable to determine the load module name. Valid value is a string of up to 8 characters.

Managed System: A z/OS operating system in your enterprise that is being monitored by OMEGAMON XE on z/OS. Valid value is a string of up to 32 characters, in the format <plexname>:<smfid>:MVSSYS.

Message: Text of messages issued by the agent. Valid value is a string of up to 80 characters.

Offset in CSECT: Offset in the control section (CSECT) of the granular CPU usage. Valid value is a hexadecimal number in the range 0 - 7FFFFFFF.

Row: An incrementing number returned for each row of data, starting at 1. This value is used to restore the data order in the table if you have sorted the data display by another column. This attribute is for internal use only. It should not be used in situations or queries.

Samples: Number of samples to be taken by the Inspect agent.

SAMPLES IN: Used to pass to the agent the number of samples to be taken. Valid value is an integer in the range 0-2147483647.

Samples Taken: Number of samples taken by the Inspect process. The Inspect process ends when the number of samples taken equals the number of samples specified to be taken by the Inspect process in the SAMPLES IN parameter, or when the job in the address space being inspected ends, in which case the number of samples used will be less than SAMPLES IN and Samples. Valid value is an integer in the range 0-2147483647.

Samples Used: Number of samples used to create the Inspect data, that is, the number of samples where the Inspect agent saw the target address space actually using CPU. You can use this value to determine the statistical accuracy of the sampled Inspect data. Valid value is an integer in the range 0-2147483647.

TCB Address: Address of the task control block (TCB) within the target address space, in hexadecimal.

TCB CPU % of Job: The percentage of CPU usage for this task control block (TCB), as a percentage of all the CPU time seen by Inspect for all TCBs in the address space. Valid value is a number in the range 0.0 - 100.0.

TCB Ended: Indicates if task control block (TCB) ended (Yes) or not (blank) while Inspect was running.

Integrated Cryptographic Services Facilities Subsystems (ICSF) attributes

One row emitted per cryptographic agent to display subsystem and coprocessor status.

ICSF is a z/OS subsystem that provides cryptographic services to system functions and application servers. It provides publicly-documented service call exits that you may use. You can specify exits for each callable cryptographic service and other administrative function of ICSF. The following table lists the entry points.
Note: If you need to define your own exits, use the ICSF security exits as alternatives to the two service call exits, CSFEXIT3 and CSFEXIT4. If the monitoring agent discovers a user-defined exit that conflicts with an IBM performance-monitoring exit, it replaces the user-defined exit, issues a warning message, and proceeds with data collection.

<table>
<thead>
<tr>
<th>Cryptographic Service or Function</th>
<th>Entry Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI X9.17 EDC Generate</td>
<td>CSFAEGN</td>
</tr>
<tr>
<td>ANSI X9.17 Key Export</td>
<td>CSFAKEX</td>
</tr>
<tr>
<td>ANSI X9.17 Key Import</td>
<td>CSFAKIM</td>
</tr>
<tr>
<td>ANSI X9.17 Key Translate</td>
<td>CSFAKTR</td>
</tr>
<tr>
<td>ANSI X9.17 Transport Key Partial Notarize</td>
<td>CSFATKN</td>
</tr>
<tr>
<td>Clear Key Import</td>
<td>CSFCKI</td>
</tr>
<tr>
<td>Clear PIN Encrypt</td>
<td>CSFCPE</td>
</tr>
<tr>
<td>Clear PIN Generate</td>
<td>CSFPGN</td>
</tr>
<tr>
<td>Clear PIN Generate Alternate</td>
<td>CSFCPA</td>
</tr>
<tr>
<td>Cipher/Decipher</td>
<td>CSFEDC</td>
</tr>
<tr>
<td>Ciphertext Translate</td>
<td>CSFCTT</td>
</tr>
<tr>
<td>Ciphertext Translate (with ALET)</td>
<td>CSFCTT1</td>
</tr>
<tr>
<td>Control Vector Translate</td>
<td>CSFCVT</td>
</tr>
<tr>
<td>Cryptographic Variable Encipher</td>
<td>CSFCVE</td>
</tr>
<tr>
<td>Data Key Export</td>
<td>CSFDKX</td>
</tr>
<tr>
<td>Data Key Import</td>
<td>CSFDKM</td>
</tr>
<tr>
<td>Decipher</td>
<td>CSFDEC</td>
</tr>
<tr>
<td>Decipher (with ALET)</td>
<td>CSFDEC1</td>
</tr>
<tr>
<td>Decode</td>
<td>CSFDCO</td>
</tr>
<tr>
<td>Digital Signature Generate</td>
<td>CSFDSG</td>
</tr>
<tr>
<td>Digital Signature Verify</td>
<td>CSFDSV</td>
</tr>
<tr>
<td>Diversified Key Generate</td>
<td>CSFDKG</td>
</tr>
<tr>
<td>Encipher under Master Key</td>
<td>CSFEMK</td>
</tr>
<tr>
<td>Cryptographic Service or Function</td>
<td>Entry Point</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Encipher</td>
<td>CSFENC</td>
</tr>
<tr>
<td>Encipher (with ALET)</td>
<td>CSFENC1</td>
</tr>
<tr>
<td>Encode</td>
<td>CSFECO</td>
</tr>
<tr>
<td>Encrypted PIN Generate</td>
<td>CSFEPG</td>
</tr>
<tr>
<td>Encrypted PIN Translate</td>
<td>CSFPTR</td>
</tr>
<tr>
<td>Encrypted PIN Verify</td>
<td>CSFPVR</td>
</tr>
<tr>
<td>Generate a key</td>
<td>CSFGKC</td>
</tr>
<tr>
<td>Import a key</td>
<td>CSFRRTC</td>
</tr>
<tr>
<td>Key Export</td>
<td>CSFKEX</td>
</tr>
<tr>
<td>Key Generate</td>
<td>CSFKGN</td>
</tr>
<tr>
<td>Key Import</td>
<td>CSFKIM</td>
</tr>
<tr>
<td>Key Part Import</td>
<td>CSFKPI</td>
</tr>
<tr>
<td>Key Record Create</td>
<td>CSFKRC</td>
</tr>
<tr>
<td>Key Record Delete</td>
<td>CSFKRD</td>
</tr>
<tr>
<td>Key Record Read</td>
<td>CSFKRR</td>
</tr>
<tr>
<td>Key Record Write</td>
<td>CSFKRW</td>
</tr>
<tr>
<td>Key Test</td>
<td>CSFKYT</td>
</tr>
<tr>
<td>Key Test Extended</td>
<td>CSFKYTX</td>
</tr>
<tr>
<td>Key Translate</td>
<td>CSFKTR</td>
</tr>
<tr>
<td>MAC Generate</td>
<td>CSFMGN</td>
</tr>
<tr>
<td>MAC Generate (with ALET)</td>
<td>CSFMGN1</td>
</tr>
<tr>
<td>MAC Verify</td>
<td>CSFMVR</td>
</tr>
<tr>
<td>MAC Verify (with ALET)</td>
<td>CSFMVR1</td>
</tr>
<tr>
<td>MDC Generate</td>
<td>CSFMDG</td>
</tr>
<tr>
<td>MDC Generate (with ALET)</td>
<td>CSFMDG1</td>
</tr>
<tr>
<td>Multiple Clear Key Import</td>
<td>CSFCKM</td>
</tr>
<tr>
<td>Cryptographic Service or Function</td>
<td>Entry Point</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Multiple Secure Key Import</td>
<td>CSFSKM</td>
</tr>
<tr>
<td>One Way Hash Generate</td>
<td>CSFOWH</td>
</tr>
<tr>
<td>One Way Hash Generate (with ALET)</td>
<td>CSFOWH1</td>
</tr>
<tr>
<td>PCI Interface</td>
<td>CSFPCI</td>
</tr>
<tr>
<td>PKA Decrypt</td>
<td>CSFPKD</td>
</tr>
<tr>
<td>PKA Encrypt</td>
<td>CSFPKE</td>
</tr>
<tr>
<td>PKA Key Generate</td>
<td>CSFPKG</td>
</tr>
<tr>
<td>PKA Key Import</td>
<td>CSFPKI</td>
</tr>
<tr>
<td>PKA Public Key Extract</td>
<td>CSFPKX</td>
</tr>
<tr>
<td>PKDS Record Create</td>
<td>CSFPKRC</td>
</tr>
<tr>
<td>PKDS Record Delete</td>
<td>CSFPKRD</td>
</tr>
<tr>
<td>PKDS Record Read</td>
<td>CSFPKRR</td>
</tr>
<tr>
<td>PKDS Record Write</td>
<td>CSFPKRW</td>
</tr>
<tr>
<td>PKSC Interface</td>
<td>CSFPKSC</td>
</tr>
<tr>
<td>Prohibit Export</td>
<td>CSFPEX</td>
</tr>
<tr>
<td>Prohibit Export Extended</td>
<td>CSFPEXX</td>
</tr>
<tr>
<td>Random Number Generate</td>
<td>CSFRNG</td>
</tr>
<tr>
<td>Retained Key Delete</td>
<td>CSFRKD</td>
</tr>
<tr>
<td>Retained Key List</td>
<td>CSFRKL</td>
</tr>
<tr>
<td>Secure Key Import</td>
<td>CSFSKI</td>
</tr>
<tr>
<td>SET Block Compose</td>
<td>CSFSBC</td>
</tr>
<tr>
<td>SET Block Decompose</td>
<td>CSFSBD</td>
</tr>
<tr>
<td>Symmetric Key Export</td>
<td>CSFSYX</td>
</tr>
<tr>
<td>Symmetric Key Generate</td>
<td>CSFSYG</td>
</tr>
<tr>
<td>Symmetric Key Import</td>
<td>CSFSYI</td>
</tr>
<tr>
<td>Transform CDMF Key</td>
<td>CSFTCK</td>
</tr>
<tr>
<td>Cryptographic Service or Function</td>
<td>Entry Point</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>User Derived Key</td>
<td>CSFUDK</td>
</tr>
<tr>
<td>VISA CVV Service Generate</td>
<td>CSFCSG</td>
</tr>
<tr>
<td>VISA CVV Service Verify</td>
<td>CSFCSV</td>
</tr>
</tbody>
</table>

1. **CC Cryptographic Coprocessor Available** Indicates whether at least one cryptographic coprocessor is available. The values are Yes, No, or Unknown.

1. **CMOS** Indicates whether at least one CMOS cryptographic coprocessor is available. The values are: The values are Yes, No, or Unknown.

1. **PCI** Indicates whether at least one PCI coprocessor is available. The values are: The values are Yes, No, or Unknown.

ASID The address space ID of the ICSF subsystem.

AvgWait The average internal wait time in seconds per sample.

CCC A cryptographic configuration control bit hexadecimal string.

CCMKeyOK Indicates whether a valid master key has been loaded into a coprocessor. The values are Yes, No, or Unknown.

CDMF Indicates whether Commercial Data Masking Facility is enabled. The values are Enabled, Disabled, or Unknown.

CICSWAITL Indicates the address of the CICS wait list represented as a hexadecimal string. A value of 0 indicates the wait list is not configured.

CKDS_80Full Indicates 80% or more utilization of the Cryptographic Key Dataset space. The values are Yes, No, or Unknown.

CKDSAccess Indicates whether dynamic Cryptographic Key Dataset access is enabled. The values are Enabled, Disabled, or Unknown.

CKDSname The name of the Cryptographic Key Data set.

CryptoSvcs Indicates the status of the cryptographic services. The possible values are Active or Inactive.

DES Indicates whether DES is enabled. The possible values are Enabled, Disabled, or Unknown.

DomainIdx The Domain Index used to access coprocessors from an LPAR. An LPAR is a Logical Partition in a PR/SM environment. See PR/SM for more information.

KMMK_CMOS0 Indicates the state of the Public Key Algorithm, Key Management Master Key in CMOS coprocessor C0. The values are Valid, Reset, and Unknown.

KMMK_CMOS1 Indicates the state of the Public Key Algorithm, Key Management Master Key in CMOS coprocessor C1. The values are Valid, Reset, and Unknown.

KMMKey The Public Key Algorithm Key Management Master Key hash pattern.
MKey The Master Key verification pattern and authentication pattern.

MKVer The current Master Key version.

MonStatus Indicates the internal monitor state. The values are Enabled or Disabled, or Unknown.

Note: You can correct the Overrun condition by recycling the ICSF subsystem.

ORIGINNODE The z/OS operating system in your enterprise monitored by an OMEGAMON XE on z/OS agent from which the data is derived.

PCIStatus Indicates the status of PCI coprocessors. The possible values are Active, Online, Present, or None.

PKACall Indicates whether Public Key Algorithm callable services are enabled. The possible values are Enabled, Disabled, Unknown.

PKAMKeys Indicates whether the Public Key Algorithm Master Keys are valid. The possible values are Valid, Invalid, Unknown.

PKDSname The Public Key Dataset name.

PKDSRead Indicates whether Public Key Dataset read access is enabled. The possible values are Enabled, Disabled, or Unknown.

PKDSWrite Indicates whether Public Key Dataset write access is enabled. The possible values are Enabled, Disabled, or Unknown.

PRSM Indicates whether the coprocessors are operating in a PR/SM configuration. The values are Yes, No, or Unknown. PR/SM stands for Processor Resource/System Manager and is a function that allows the processor unit to operate several system control programs simultaneously in LPAR mode.

SCEDisabled The number of service call exits disabled due to a KCGSEXIT ABEND. If this value is 0, all collector exits are operational.

SMFID The z/OS system associated with the ICSF subsystem executing.

SMK_CMOS0 Indicates the state of the Public Key Algorithm, Signature Master Key in CMOS coprocessor C0. The possible values are Valid, Reset, or Unknown.

SMK_CMOS1 Indicates the state of the Public Key Algorithm, Signature Master Key in CMOS coprocessor C1. The possible values are Valid, Reset, or Unknown.

SMKey The Public Key Authentication Signature Master Key hash pattern.

SSMODE Indicates whether Special Secure Mode is enabled. The values are Enabled, Disabled, or Unknown.

Status Indicates the status of the ICSF subsystem. The possible values are Active, Inactive, Not_Found, Initializing, or Terminating.

Version The ICSF subsystem version and release level.

WLDSname The CICS wait list dataset name.
KM5 Address Space Storage SubKey attributes

These attributes collect data on address space storage by subpool and storage protect key, and LSQA (Local System Queue Area) and ELSQA (Extended Local System Queue Area) usage data.

Address Lowest Block The address of the block with the lowest address.

Address Space Name The name of the address space.

Allocated Blocks The number of noncontiguous blocks of storage allocated to the subpool.

Allocation (K) The amount of storage currently allocated to the subpool, in kilobytes.

ASID The hexadecimal address space ID.

ELSQA Allocated Amount of Extended Local System Queue Area (ELSQA) storage allocated.

ELSQA Available Amount of Extended Local System Queue Area (ELSQA) storage available (unallocated). This storage is also available for SWA and USER allocation.

ELSQA Largest Available Largest area of contiguous storage available for Extended Local System Queue Area (ELSQA) allocation. This storage may also available for SWA and USER allocation.

ELSQA Total Total amount of Extended Local System Queue Area (ELSQA) storage (allocated plus available).

Extended Private available Amount of above-the-line storage available for private area expansion.

Free Blocks The number of free noncontiguous blocks within the subpool, where each block can be any number of bytes.

Free Storage The amount of free storage in the subpool, in bytes.

Largest Free Block The size of the largest free block in the subpool.

Low Private available Amount of below-the-line storage available for private area expansion.

LSQA Allocated Amount of Local System Queue Area (LSQA) storage allocated.

LSQA Available Amount of Local System Queue Area (LSQA) storage available (unallocated). This storage is also available for SWA and USER allocation.

LSQA Largest Available Largest area of contiguous storage available for Local System Queue Area (LSQA) allocation.

LSQA Total Total amount of Local System Queue Area (LSQA) storage (allocated plus available).

Managed System The name of the managed system where this data is collected. The name has the format `<plexname>:<smfid>:MVSSYS`, where `<plexname>` is the Sysplex this LPAR resides in and `<smfid>` is the unique identifier for the system.

Percent ELSQA Allocated Percentage of total Extended Local System Queue Area (ELSQA) that is allocated, to one decimal point.

Percent LSQA Allocated Percentage of total Local System Queue Area (LSQA) that is allocated, to one decimal point.
Percent Used The percentage of storage allocated to the subpool that is in use, to one decimal place.

Private Available Total storage available for private area expansion. This is the sum of below-the-line and above-the-line storage available for private area expansion.

Program (TCB) Instance Instance of this program (TCB). As there can be multiple TCBs with the same program name, this number associates the data with the correct instance. In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Instance.

Program (TCB) Name The program (TCB) name associated with this subpool and key data.

Real Storage (K) The amount of real storage backing the virtual allocation, in kilobytes.

Record Type The type of record. One of the following types:
- Below the Line
- Above the Line
- Subpool Key Total
- TCB Total
- Total

Storage Key A hardware feature that protects each frame of central storage from unauthorized use by assigning it a unique storage key.

Subpool The number of the subpool.

Usage Ownership of the subpool, either Owned or Shared.

KM5 Common Storage SubKey attributes

These attributes provide information by subpool and storage protect key for each common storage area (CSA, ECSA, SQA, and ESQA).

Allocated Percent Area The amount of storage allocated to the subpool as a percentage of the total area, to one decimal point.

Area The area of common storage for which the data is collected: CSA, ECSA, SQA, or ESQA.

Extents Number of noncontiguous blocks of storage allocated to the subpool.

Free Storage Percent Unused storage as a percentage of the area, to one decimal place.

Free Storage Total (K) The sum of unused storage in the area, in kilobytes.

Largest Free Block Largest unused piece of storage in the subpool allocation.

Largest Free Block Pct Allocated Largest unused piece of storage in the subpool as a percentage of the subpool allocation, to one decimal place.

Managed System The name of the managed system where the data was collected. The name has the format `<plexname>:<smfid>:MVSSYS`, where `<plexname>` is the sysplex to which this LPAR belongs and `<smfid>` is the SMF identifier for the system.

Record Type The type of record, either detail (containing subpool usage data) or summary (total allocated and free storage).
Storage Allocated The amount of storage allocated to the subpool, in kilobytes.

Storage Key A unique storage key that protects each frame of central storage from unauthorized use.

Storage Used (K) The amount of the subpool allocation that has been used to satisfy GETMAIN requests, in kilobytes.

Storage Used Percent Allocated Percentage of the subpool allocation that has been used to satisfy GETMAIN requests in the subpool, to one decimal place.

Storage Used Percent Area Percentage of the total area that has been used to satisfy GETMAIN requests, to one decimal place.

Subpool CSA is divided into subpools 227, 228, 231, and 241; SQA has subpools 226, 239, and 245. Although related by common area, these subpools have different characteristics. CSA subpools 227 and 228, for example, are fixed in storage, while subpools 231 and 241 are pageable.

Total Size (K) Total size of the area, in kilobytes.

KM5 Health Check Messages attributes

Use the KM5 Health Check Messages attributes to obtain detailed information from each health check.

Note:
1. Collection and display of the attributes in this group require that IBM Health Checker for z/OS software be installed, configured, and running.
2. Deleted checks have no message text.
3. Product security settings might prevent the display of messages for certain checks. For information about configuring product security, see the IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide.

Check Name The name of the selected check. The valid format is a character string with a maximum length of 32 bytes.

Check Owner The owner of the selected check. The valid format is a character string with a maximum length of 16 bytes.

Check Text The text of the message resulting from the selected check. The valid format is a character string with a maximum length of 126 bytes.

Managed System An identifier of a z/OS system being monitored by an OMEGAMON XE on z/OS monitor agent. The valid format is a character string with a maximum length of 32 bytes and the syntax sysplex_name:smfid:HEALTHCHECK.

MsgToken An internal attribute not intended to be used as a search target. The valid format is a character string with a maximum length of 32 bytes.

SMFID The System Management Facility (SMF) identifier for the z/OS system where the OMEGAMON XE on z/OS monitor agent collected the data. The valid format is a character string with a maximum length of 4 bytes.

Sysplex Name The name of the sysplex where the OMEGAMON XE on z/OS monitoring agent collected the data. The valid format is a character string with a maximum length of 8 bytes.

System Name The name of the z/OS system where the OMEGAMON XE on z/OS monitor agent collected the data. The valid format is a character string with a maximum length of 8 bytes.
Timestamp The date and time when the OMEGAMON XE on z/OS monitoring agent retrieved the data. This attribute is intended for logging and reporting data, not for creating situations and queries. To specify a time of day for monitoring, use attributes from the Universal Time or Local Time groups.

KM5 Health Check Status attributes

Use the Health Check Status attributes to investigate the status of the IBM Health Checker for z/OS environment.

Note: Collection and display of the attributes in this group require that IBM Health Checker for z/OS software be installed, configured, and running.

Checks Deleted The number of checks that have been deleted. The value must be an integer in the range of 0-2147483647.

Checks DeletePending The number of checks currently pending deletion. The value must be an integer in the range of 0-2147483647.

Checks Eligible The number of checks eligible to run in the next check interval. The value must be an integer in the range of 0-2147483647.

Checks Ineligible The number of checks that are neither deleted nor pending deletion, but are not eligible to run. The value must be an integer in the range of 0-2147483647.

A check can become ineligible for a number of reasons, including the following:
- A DEACTIVATE command is issued against the check.
- An update changes the state of the check to INACTIVE.
- The check determines that it does not apply to the current system environment.
- The check experiences repeated errors.
- The check detects an error with input parameter values.

Checks NotDeleted The number of checks that are neither deleted nor pending deletion. The value must be an integer in the range of 0-2147483647.

Exceptions SevHigh The number of high-severity exceptions detected. The value must be an integer in the range of 0-2147483647.

Exceptions SevLow The number of low-severity exceptions detected. The value must be an integer in the range of 0-2147483647.

Exceptions SevMed The number of medium-severity exceptions detected. The value must be an integer in the range of 0-2147483647.

Exceptions SevNone The number of exceptions with a severity level of None detected. The value must be an integer in the range of 0-2147483647.

Exceptions Outstanding The number of exceptions detected. The value must be an integer in the range of 0-2147483647.

Managed System An identifier of a z/OS system being monitored by an OMEGAMON XE on z/OS monitoring agent. The valid format is a character string with a maximum length of 32 bytes and the syntax `sysplex_name:smfid:HEALTHCHECK`
Parmlib Members A comma-separated list of the two-character suffixes of the names of PARMLIB members used during initialization of the IBM Health Checker for z/OS software. The valid format is a character string with a maximum length of 371 bytes.

Proc Name The procedure name used by the IBM Health Checker for z/OS software. Use this name in modify commands. The valid format is a character string with a maximum length of 8 bytes.

SMFID The System Management Facility (SMF) identifier for the z/OS system where the OMEGAMON XE on z/OS monitoring agent collected the data. The valid format is a character string with a maximum length of 4 bytes.

Status The status of the IBM Health Checker for z/OS started task. The possible values are:
- Active. The IBM Health Checker for z/OS started task is active and accepting requests.
- Available. The IBM Health Checker for z/OS services are available.
- InitComplete. Initialization of the IBM Health Checker for z/OS started task is complete.
- Initializing. Initialization of the IBM Health Checker for z/OS started task is in progress.
- StopIssued. A request to stop the IBM Health Checker for z/OS started task has been issued.
- Terminating. Termination of the IBM Health Checker for z/OS started task is in progress.

Sysplex Name The name of the sysplex where the OMEGAMON XE on z/OS monitoring agent collected the data. The valid format is a character string with a maximum length of 8 bytes.

System Name The name of the z/OS system where the OMEGAMON XE on z/OS monitoring agent collected the data. The valid format is a character string with a maximum length of 8 bytes.

Task Identifier The task name associated with the IBM Health Checker for z/OS started task. The valid format is a character string with a maximum length of 8 bytes.

Timestamp The date and time when the OMEGAMON XE on z/OS monitoring agent retrieved the data. This attribute is intended for logging and reporting data, not for creating situations and queries. To specify a time of day for monitoring, use attributes from the Universal Time or Local Time groups.

Version Identifier The version of the z/OS system and of the IBM Health Checker for z/OS software. The valid format is a 25-byte character string.

KM5 Health Checks attributes
Use the KM5 Health Checks attributes to summarize information about each check.

Notes:
1. Collection and display of the attributes in this group require that IBM Health Checker for z/OS software be installed, configured, and running.
2. Deleted checks have no message text.
3. Product security settings might prevent the display of messages for certain checks. For information about configuring product security, see the *IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide*.

Notes:

Category1 The name of the first category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category2 The name of the second category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.
Category3 The name of the third category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category4 The name of the fourth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category5 The name of the fifth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category6 The name of the sixth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category7 The name of the seventh category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category8 The name of the eighth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category9 The name of the ninth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category10 The name of the tenth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category11 The name of the eleventh category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category12 The name of the twelfth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category13 The name of the thirteenth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category14 The name of the fourteenth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category15 The name of the fifteenth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Category16 The name of the sixteenth category in which the check is defined. The valid format is a character string with a maximum length of 16 bytes.

Check Name The name of the selected check. The valid format is a character string with a maximum length of 32 bytes.

Check Owner The owner of the selected check. The valid format is a character string with a maximum length of 16 bytes.

Check PQE_Type This internal attribute is not intended for display; it controls the link to the Check Messages workspace. The possible values are Normal, Deleted, and Disabled.

Check State Indicates whether the selected check is set to run. The valid format is a character string with a maximum length of 16 bytes. The possible values are:

- ACTIVE(DISABLED). The check is active, but has been disabled or cannot be run on the selected z/OS system (for example, if the selected check is a global check running on a different z/OS system).
• ACTIVE(ENABLED). The check is active and ready to run.
• INACTIVE(ENABLED). The check can be run but is inactive. A check becomes inactive when it is added to the IBM Health Checker for z/OS software in the inactive state, or when it is deactivated by the PARMLIB or by the UPDATE command.
• INACTIVE(DISABLED). The check is inactive, and has been disabled or cannot be run.
• DELETED. The check has been deleted.

Check Status Indicates the most recent status of the selected check. The valid format is a character string with a maximum length of 16 bytes. The possible values are:
• ABEND. The check ended abnormally during its most recent iteration.
• DELETE ERROR. The check stopped because of an error reported during check deletion.
• DELETE PENDING. Deletion of the check is in progress.
• DELETED. The check was deleted.
• ENV N/A. The check does not apply to the current system environment.
• EXCEPTION-HIGH. The check, designated to have a severity level of High, ran at least one time. Exceptions were found during the most recent iteration of the check.
• EXCEPTION-LOW. The check, designated to have a severity level of Low, ran at least one time. Exceptions were found during the most recent iteration of the check.
• EXCEPTION-MED. The check, designated to have a severity level of Medium, ran at least one time. Exceptions were found during the most recent iteration of the check.
• EXCEPTION-NONE. The check, designated to have a severity level of None, ran at least one time. Exceptions were found during the most recent iteration of the check.
• GLOBAL-sysname. The specified global check is active on the specified system.
• INACTIVE. The check is inactive. A check becomes inactive when it is added to the IBM Health Checker for z/OS software in the inactive state, or when it is deactivated by the PARMLIB or by the UPDATE command.
• INIT ERROR. The check stopped because of an error reported during initialization.
• NEW COPY. The check is a new instance of a check that is pending deletion.
• PARAMETER ERROR. The check was disabled because the user parameters contained an invalid value. The check does not run again until the user parameters are updated.
• RAN ELSEWHERE. When the system attempted to run the specified check, the check was active on another system. The check is no longer active on any system in the Sysplex, and it becomes active on the first system that tries to run it.
• RUNNING. The check is running.
• SCHEDULED. The check is currently scheduled to run.
• STARTING. The first iteration of the check is starting.
• SUCCESSFUL. The check ran at least one time. No exceptions occurred during the most recent iteration of the check.
• UNEXP ERROR. The check stopped because of an unexpected error.
• USS NOT AVAIL. The check requires UNIX System Services, but those services are not currently available.

Debug Mode Indicates the current debug mode setting. The possible values are OFF and ON.

DefDate The default date of the check, in the format yymmdd.

Deleted-Date-Time The date and time the check was deleted. This attribute is intended for logging and reporting data, not for creating situations and queries. To specify a time of day for monitoring, use attributes from the Universal Time or Local Time groups.
Diag1 The first word of diagnostic data from the check. The valid format is a character string with a maximum length of 8 bytes.

Diag2 The second word of diagnostic data from the check. The valid format is a character string with a maximum length of 8 bytes.

DiagFrom The source of the diagnostic data. The possible values are ABEND, CHECKRTN, HCHECKER, and Unknown.

ExcCount The number of exceptions detected in the most recent iteration of the check. The value must be an integer in the range of 0-2147483647.

ExitName The name of the exit module that added the check. The valid format is a character string with a maximum length of 8 bytes.

FailCount The number of times the check has failed since the last time it succeeded. The value must be an integer in the range of 0-2147483647.

Global Indicates whether the check is a global check. The possible values are YES (the check pertains to a global resource or function, and runs on only one member of the sysplex) and NO (the check pertains to a system-level resource or function, and runs on all members of the sysplex).

GlobalSys The system where the global check is running (if that system is not the system that provided the health check data); the column is blank for a global check running on the system that provided the health check data. The valid format is a character string with a maximum length of 8 bytes.

Interval The time interval at which the check runs. The possible values are ONETIME and hhh:mm, with a maximum value of 999:59.

Log-Date-Time The date and time of the last successful write to the System Logger. This attribute is intended for logging and reporting data, not for creating situations and queries. To specify a time of day for monitoring, use attributes from the Universal Time or Local Time groups. See the Tivoli Enterprise Portal online help for instructions on specifying timestamp attributes in situations and queries.

Managed System An identifier of a z/OS system being monitored by an OMEGAMON XE on z/OS monitoring agent. The valid format is a character string with a maximum length of 32 bytes and the syntax sysplex_name:smfid:HEALTHCHECK.

ModifiedBy How the check was modified. The valid format is a character string with a maximum length of 24 bytes.

ModName The name of the check module. The valid format is a character string with a maximum length of 8 bytes.

MsgName The name of the message load module. The valid format is a character string with a maximum length of 8 bytes.

MsgToken This internal attribute is not intended for display; it filters the MessageText table by relating each instance of a check to the messages produced.

NextSch-Date-Time The date and time the check is next scheduled to run. This attribute is intended for logging and reporting data, not for creating situations and queries. To specify a time of day for monitoring, use attributes from the Universal Time or Local Time groups. See the Tivoli Enterprise Portal online help for instructions on specifying timestamp attributes in situations and queries.
NextSch-Int The time remaining (in the format hh:mm:ss) until the check is next scheduled to run. The maximum value is 999:59:00.

NumCat The number of categories in which the check is defined. The value must be an integer in the range of 0-2147483647.

Parameters The check parameters, with unprintable characters translated as dots. The valid format is a character string with a maximum length of 256 bytes.

PolicyStatus The policy error status; the possible values are DATE-EXCEPTION (a policy statement matches the check, but the date on that policy statement is earlier than the check's date) and blank (no date exception has been detected).

Proc Name The procedure name used by the IBM Health Checker for z/OS software. Use this name in modify commands. The valid format is a character string with a maximum length of 8 bytes.

Reason A description of the reason for the check. The valid format is a character string with a maximum length of 126 bytes.

Result The numeric value of the result from the most recent invocation of the check. The possible values are:
- 0. No exceptions were found, or exceptions of severity level None were found.
- 4. Low-severity exceptions were found.
- 8. Medium-severity exceptions were found.
- 12. High-severity exceptions were found.
- 16. A system or check error occurred.

RunCount The number of times the check has been invoked since the last time it was initialized or refreshed. The value must be an integer in the range of 0-2147483647.

SevCode The integer value of the severity level of the check.

Severity The severity level of the check. The possible values are LOW, HIGH, MEDIUM, and NONE.

SMFID The System Management Facility (SMF) identifier for the z/OS system where the OMEGAMON XE on z/OS monitoring agent collected the data. The valid format is a character string with a maximum length of 4 bytes.

Start-Date-Time The date and time the check last started. This attribute is intended for logging and reporting data, not for creating situations and queries. To specify a time of day for monitoring, use attributes from the Universal Time or Local Time groups. See the Tivoli Enterprise Portal online help for instructions on specifying timestamp attributes in situations and queries.

Sysplex Name The name of the sysplex where the OMEGAMON XE on z/OS monitoring agent collected the data. The valid format is a character string with a maximum length of 8 bytes.

System Name The name of the z/OS system where the OMEGAMON XE on z/OS monitoring agent collected the data. The valid format is a character string with a maximum length of 8 bytes.

Timestamp The date and time when the OMEGAMON XE on z/OS monitoring agent retrieved the data. This attribute is intended for logging and reporting data, not for creating situations and queries. To specify a time of day for monitoring, use attributes from the Universal Time or Local Time groups. See the Tivoli Enterprise Portal online help for instructions on specifying timestamp attributes in situations and queries.
UpdateReason A description of updates to the check. The valid format is a character string with a maximum length of 126 bytes.

UserDate The current date of the check, in the format *yyyyymmdd*.

WTONum The number of outstanding exception WTOs issued by the check. The value must be an integer in the range of 0-2147483647.

WTOType The WTO type or descriptor code. The possible values are CRITICAL, EVENTUAL, HARDCOPY, IMMEDIATE, INFO, and NONE.

KM5 Host Configuration attributes

This attribute group provides system configuration information pertinent to the sysplex and Central Processing Complex (CPC) on which a given OMEGAMON XE on z/OS monitoring agent is running.

CPC Model The model number of the CPU where the LPAR is running, for example 2084.

CPC Serial Number The six-character CPC serial number, for example 056789. Valid value is a six-byte character string.

LPAR Name The name of the LPAR for this row of data. If z/OS is running as a guest under VM, this field contains the VM user ID.

Managed System A z/OS operating system in your enterprise that is being monitored by an OMEGAMON XE on z/OS monitoring agent, in the format `<plexname>:`<smfid>:MVSSYS.

SMF ID The SMF ID as defined in the IEASYM or IEASYS PARMLIB members.

Sysplex Name The name of the sysplex into which this system has been defined.

System Name The name of the z/OS image, for example SYSA.

VM User ID The name of the z/VM user ID in which the guest MVS system is running.

KM5 License Manager MSU WLM Cap

This attribute group provides MSU (Millions of Service Units per hour) utilization information. This information includes summary and detailed 4-Hour Rolling Average MSU, LPAR and LPAR Group usage, limits, and WLM capping. LPAR group attributes are shown as "Unavailable" if the LPAR is not in an LPAR group.

4 Hour MSUs Four-hour rolling average value of the millions of service units per hour (MSUs). The value is updated every five minutes. It is the average of the previous 48 5-minute samples, which in turn are the average of 30 samples, taken every 10 secs. To avoid capping during system start up (IPL), the calculation of the 4-hour rolling average assumes that the system has run for four hours without load, so for the first four hours after IPL the rolling average is not valid. Valid value is an integer in the range 0 to 2147483647.

Average Percent Time Capped If the LPAR has a Defined Capacity set, the percentage to 1 decimal place, of time during the 4-Hour Rolling Average MSU period when the LPAR was capped by WLM.

Average Percent Time Uncapped If the LPAR has a Defined Capacity set, the percentage to 1 decimal place, of time during the 4-Hour Rolling Average MSU period when the LPAR was uncapped.

Average Unused Group MSUs The number of Millions of Service Units per Hour that were available to the LPAR Group over the Rolling Average 4-hour period, but were not used. If the value is zero or
negative, the LPAR is subject to LPAR Group Capping. If this capping is in effect, the Group LPAR MSU Limit can vary between the LPAR Group Entitled Minimum service and the Group Capacity Limit.

Capped MSUs/Hour The Millions of Service Units per Hour consumed by the LPAR during the time period while capped by WLM soft-capping.

Group LPAR MSU Limit The MSU limit enforced by the LPAR Group. This limit varies between the LPAR’s entitled capacity and the LPAR group capacity. When a defined capacity is specified for the LPAR, this value never exceeds that limit. If no defined capacity is specified for the LPAR, the limit can be as high as the LPAR group limit. If the LPAR is not in an LPAR Group, this value is displayed as “Unavailable”.

LPAR Capacity Limit The LPAR Capacity Limit in Millions of Service Units per Hour (MSUs).

LPAR Capacity Limit Basis The basis used to establish the LPAR Capacity Limit. Entitled means the LPAR Capacity Limit is based on the aggregate service units that could be delivered to the LPAR if all the logical CPUs configured to the LPAR used 100% of a physical CPU. Defined means that the LPAR Capacity Limit is set through the LPAR Configuration panel of the Hardware Management Console. The z/OS Workload Manager will cap the service delivered to the LPAR when the 4-Hour Rolling Average MSUs reaches this level.

LPAR Defined Capacity Set The LPAR Defined Capacity in Millions of Service Units per Hour (MSUs).

LPAR Group Capacity Limit If this LPAR is a member of an LPAR group, the LPAR Group Capacity Limit in Millions of Service Units per Hour (MSUs). Capping of an LPAR Group is based on the 4-hour Rolling Average MSUs consumed by all the member LPARs of the LPAR Group. If the LPAR is not in an LPAR group, this value appears as Unavailable.

LPAR Group Name The name of the LPAR Group, from 1 to 8 characters.

Managed System The z/OS operating system in your enterprise where the OMEGAMON XE on z/OS monitoring agent collected the data. Valid value is a character string with a maximum length of 32 bytes.

Percent LPAR Capped The percentage of the LPAR capacity consumed by the LPAR while capped by WLM soft-capping.

Percent LPAR MSU Capacity Percentage of the Entitled or Defined Capacity MSUs of this LPAR, to 1 decimal place. If no Defined Capacity is specified for the LPAR, the Entitled MSUs effectively cap the maximum service an LPAR can consume. The Entitled value is based on the number of logical standard CPUs configured to the LPAR, including any that are on standby. This number, multiplied by the MSU rating of a single physical standard CP, sets the Entitled service. If LPAR Group Capping is in effect for this LPAR, the Group LPAR MSU Limit establishes the maximum service that the LPAR can consume.

Percent LPAR Uncapped The percentage of the LPAR capacity Millions of Service Units per Hour consumed by the LPAR while uncapped.

Percent Time Capped The percentage of the time period that the LPAR was capped by WLM soft capping.

Percent Time Uncapped The percentage of the time period that the LPAR was uncapped.

Record Type The type of record type, either Summary or Detail. There is one Summary record and several Detail records.

Note: Data for this attribute is available only if you have opted to use a defined capacity limit, otherwise Not available is displayed.
Time Period
The time period covered in the sample for this row. This is a 5-minute period, except for the most recent entry, which will be from 0 to 5 minutes. Format is HH:MM-HH:MM, for example, 13:46-13:51.

Uncapped MSUs/Hour
The Millions of Service Units per Hour consumed by the LPAR during the time period while uncapped.

Unused Group MSUs/Hour
If this LPAR is a member of an LPAR group, the number of Millions of Service Units per Hour that were available to the LPAR group over the time period but was not used. If the value is zero or negative, the LPAR is subject to LPAR Group Capping. If this capping is in effect, the previous Group LPAR MSU Limit can vary between the LPAR Group Entitled Minimum service and the Group Capacity Limit. If the LPAR is not in an LPAR Group, this value is displayed as Unavailable.

KM5 Spin Lock attributes
These attributes collect spin lock data retrieved from Resource Management Facility (RMF). For data to be available for these attributes, OMEGAMON XE on z/OS must be configured to use RMF lock data and RMF must be configured to collect lock data. For other dependencies, see the prerequisites section of Attributes topic.

ASID
The unique system-assigned identifier for the address space in which the job is running. This value is displayed only when Mode is blank.

Held Percent
The percentage of samples where the address space has been found holding the lock. Values are reported to two decimal places of precision.

Job Name
The name of the address space spinning due to lock request. This value is displayed only when Mode is blank. In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Address Space Name.

Managed System
The name of the managed system from which this data is collected. The name has the format: <plexname>:<smfid>:MVSSYS, where <plexname> is the sysplex this LPAR resides in, and <smfid> is the system’s SMF identifier.

Mode
Indicates whether the lock is held exclusively or shared. Possible values are: Exclusive, Shared, Warning. Warning mode is used only when RMF Status is an exception state (2 or 3).

Requesting Address
The instruction address where the lock was requested. This value is displayed only when Mode is blank.

Resource Name
The resource name of the spin lock.

RMF Status
Indicates the availability of Resource Management Facility (RMF) and lock data. The valid values are:
- 1= Spin_lock_active
- 2=No_spin_lock_activity or Monitor_III_set_to_ NOLOCK
- 3=RMF_DDS_not_available

Sample Period
Sample period, in seconds.

Spin Percent
The percentage of samples, to two decimal places, where the address space has been found spinning due to a lock request. This value is displayed only when Mode is blank.
KM5 Storage Shortage Status attributes

This attribute group collects information about storage shortage alerts raised on a given system or LPAR. The alerts reported depend upon the version level of the operating system.

The following alerts are reported for version 1.10:
- Real Storage Shortage
- Real Storage Shortage Relieved
- Real Storage Warning
- Auxiliary Storage Critical Shortage
- Auxiliary Storage Shortage Relieved
- Auxiliary Storage Shortage Warning

In addition, the following alerts are reported for version 1.11 and later:
- Real Storage Critical Shortage
- Real Storage Application Warning
- Real Storage Application Warning Relieved
- Auxiliary Storage Application Warning
- Auxiliary Storage Application Warning Relieved
- Available Frame Queue Shortage
- Available Frame Queue Shortage Relieved

Address Space Name The name of the address space (job).

ASID The hexadecimal ID of the address space.

Events Per Day Rate at which this type of storage shortage is occurring (average number of occurrences per day to two decimal points).

Events Status Whether the event is Active or Inactive. If the shortage is relieved, no status is indicated.

Frame Type Required The type of frame required. Valid values are:
- Pageable_Frames_DREF_Fixed
- Pageable_Frames_In_Real
- Pageable_Frames_Low
- Pageable_Frames_Extended
- Auxiliary_Frames
- Available_Queue_Frames

Frames In Use Number of frames in use by the address space. (Provided only if address space name is provided.)

Frames Required Number of frames required to relieve the system shortage. This value is zero for all Relieved and AFQ Shortage alerts.

Managed System The name of the managed system where this data was collected. The managed system name has the format `<plexname>:<smfid>:MVSSYS`, where `<plexname>` is the sysplex in which this LPAR resides and `<smfid>` is the SMF identifier of the system.

Percent Frames Required Percentage of frames required to relieve shortage that are in use by this address space, to one decimal point.
Record Type
The type of record (Detail, Summary, or Trend).

Storage Shortage Level
Severity level for the shortage. The possible levels are:
- Unavailable
- Warning
- Shortage
- Critical
- Relieved
- Appl_Warning
- Appl_Warning_Relieved

Storage Shortage Type
The type of shortage. Possible types are:
- Unavailable
- Pageable_Storage
- Auxiliary_Storage
- Available_Frame_Queue_Shortage

Time of Event
Date and time of storage shortage event.

Time Span (Days)
Number of days for which data is available.

KM5 Suspend Lock attributes
This attribute group collects suspend lock data retrieved from Resource Management Facility (RMF). For data to be available for these attributes, OMEGAMON XE on z/OS must be configured to use RMF lock data and RMF must be configured to collect lock data. For other dependencies, see the prerequisites section of Attributes topic.

ASID
The unique system-assigned identifier for the address space in which the job is running.

Dispatchable Percent
The percentage of samples where the address space has been found dispatchable while holding the lock. Values are reported to two decimal places of precision.

Held Percent
The percentage of samples where the address space has been found holding the lock. Values are reported to two decimal places of precision.

Interrupted Percent
The percentage of samples where the address space has been found interrupted while holding the lock, to two decimal places.

Job Name
The name of the address space that holds the lock.

Lock Type
The type of lock: Global or Local.

Managed System
The name of the managed system from which this data is collected. The name has the format: `<plexname>:<smfid>:MVSSYS`, where `<plexname>` is the sysplex this LPAR resides in, and `<smfid>` is the system's SMF identifier.

Requesting Address
The instruction address where the lock was obtained.

Resource Name
The resource name of the suspend lock. For Local locks, this is the name of the home address space, which is equal to the holder's jobname. For CML locks, this is the name of the primary address space, which is different from the holder's name.

RMF Status
Indicates the availability of RMF and lock data. Possible values are:
- Suspend_lock_active
- No_suspend_lock_activity
- Monitor_III_set_to_NOLOC
- RMF_DDS_not_available

Sample Period Sample period, in seconds.

Suspend Percent The percentage of samples where the address space has been found suspended while holding the lock, to two decimal places of precision.

KM5 zAware Analysis attributes

These attributes provide zAware analytical data that indicates if the current system is experiencing deviations in behavior when compared to the training model. The indicators are 10-minute interval anomaly scores, and unique message counts covering the last hour. The anomaly score is a measure of how unusual this interval is compared to the model. The unique message count is the number of different message IDs seen in this interval. High anomaly scores mean something unusual is happening. It does not necessarily mean something bad is happening.

Current Anomaly Score The anomaly score for the current interval, the first of six intervals. Each interval of the last hour is 10 minutes in length. Valid format is \textit{nnn.n}. Valid value is a 4-byte integer.

Anomaly Score 02 The anomaly score for the interval before the current interval, this interval is the second of six. Each interval of the last hour is 10 minutes in length. Valid format is \textit{nnn.n}. Valid value is a 4-byte integer.

Anomaly Score 03 The anomaly score for the third of six intervals. Each interval of the last hour is 10 minutes in length. Valid format is \textit{nnn.n}. Valid value is a 4-byte integer.

Anomaly Score 04 The anomaly score for the fourth of six intervals. Each interval of the last hour is 10 minutes in length. Valid format is \textit{nnn.n}. Valid value is a 4-byte integer.

Anomaly Score 05 The anomaly score for the fifth of six intervals. Each interval of the last hour is 10 minutes in length. Valid format is \textit{nnn.n}. Valid value is a 4-byte integer.

Anomaly Score 06 The anomaly score for the sixth and final interval. Each interval of the last hour is 10 minutes in length. Valid format is \textit{nnn.n}. Valid value is a 4-byte integer.

Current Interval Time The date and time at the start of the current interval, the first of six intervals, the time system is Coordinated Universal Time. Each interval of the last hour is 10 minutes in length. Valid format is \textit{MM/DD/YY hh:mm:ss}.

Interval Time 02 The date and time at the start of the second of six 10 minute intervals. There are six intervals per hour. Valid format is \textit{MM/DD/YY hh:mm:ss}.

Interval Time 03 The date and time at the start of the third of six 10 minute intervals. There are six intervals per hour. Valid format is \textit{MM/DD/YY hh:mm:ss}.

Interval Time 04 The date and time at the start of the fourth of six 10 minute intervals. There are six intervals per hour. Valid format is \textit{MM/DD/YY hh:mm:ss}.

Interval Time 05 The date and time at the start of the fifth of six 10 minute intervals. There are six intervals per hour. Valid format is \textit{MM/DD/YY hh:mm:ss}.

Interval Time 06 The date and time at the start of the sixth and final 10 minute interval. There are six intervals per hour of 10 minutes each in length. Valid format is \textit{MM/DD/YY hh:mm:ss}.
Interval Size The size or duration of an interval. Valid format is *sss* seconds.

Managed System The name of the managed system from which this data is collected. The name has the format `<plexname>:<smfid>:MVSSYS`, where `<plexname>` is the Sysplex this LPAR resides in and `<smfid>` is the unique identifier for the system.

SMF ID SMF ID as defined in the IEASYM or IEASYS PARMLIB members.

Sysplex Name The name of the Sysplex into which this system is defined.

System Name Name of the z/OS image.

Current Unique Messages The count of unique messages for the current interval, the first of six intervals. Each interval of the last hour is 10 minutes in length. Valid value is a 4-byte integer.

Unique Messages 02 The count of unique messages for the interval before the current interval, this interval is the second of six. Each interval of the last hour is 10 minutes in length. Valid value is a 4-byte integer.

Unique Messages 03 The count of unique messages for the third of six intervals. Each interval of the last hour is 10 minutes in length. Valid value is a 4-byte integer.

Unique Messages 04 The count of unique messages for the fourth of six intervals. Each interval of the last hour is 10 minutes in length. Valid value is a 4-byte integer.

Unique Messages 05 The count of unique messages for the fifth of six intervals. Each interval of the last hour is 10 minutes in length. Valid value is a 4-byte integer.

Unique Messages 06 The count of unique messages for the sixth and final interval. Each interval of the last hour is 10 minutes in length. Valid value is a 4-byte integer.

zAware Client Status The status of the z/OS Logger connection with the zAware server. Valid values are:
- Not Available - The user did not establish an environment for communication with a zAware server.
- Available - The user established an environment for communication with a zAware server, but data is not being successfully sent.
- Active Client - At least one zAware log stream client is established or being established on this system.
- Quiesced Client - The logger environment for communicating with a zAware server is quiesced on this z/OS image.

zAware Server Status The status of the zAware server. Valid values are:
- Credentials Not Found - No logon credentials are available for the zAware server that is associated with this LPAR. An OMEGAMON administrator must configure credentials.
- Credentials Invalid - The user ID and password combination are invalid for zAware. This status is probably because the password associated with the user ID supplied is expired. New credentials must be configured to allow data collection to resume.
- Certificate Expired - The certificate that is installed with RACF for the zAware Server reached its expiration date. It must be replaced with a current certificate.
- AT-TLS Configuration Error - A secure connection to zAware cannot be established. This error is probably because of incomplete AT-TLS configuration. Look for the message KM5ZAA020E in the monitoring server RKLVLOG for further details.
- ICSF Configuration Error - Usage of ICSF for password encryption or decryption failed. Look for the message KM5ZAA020E in the monitoring server RKLVLOG for further details.
• SEGG Processing Error - The password received from the Enhanced 3270 user interface is corrupted. Try the credentials setting again.
• Parse Failure - A problem is encountered when processing data returned from the zAware API. See error messages in the monitoring server RKLVLOG.
• Server Undefined - The z/OS Logger service either did not report the address of a zAware appliance that can be used or did not successfully connect to the zAware appliance named.
• Credentials Save Error - The attempt to store credentials for zAware logon failed. Contact IBM support.
• Credentials_Syntax_Error - The credential that is supplied from the Enhanced 3270 user interface failed syntax checking. See KM5ZAA056E in the monitoring server RKLVLOG.
• Credentials_Stored - The credentials that are specified by the Enhanced 3270 user interface are stored for use by the zAware appliance logon API.
• Active - zAware connectivity is operating normally.

zAware Location The zAware server location, the IP address, or host name. The server value of NONE indicates no z/OS zAware log stream clients.

zAware Port The z/OS Logger port number that is used to connect with zAware.

zAware Version The zAware version that is being used.

KM5 zFS Directory Cache attributes
This attribute group is used to examine the numbers of requests, hits, and discards from the directory cache to determine how well the cache is performing.

Buffer Count Number of buffers in the cache.

Buffer Size Size of each buffer, in kilobytes.

Cache Discards Discards of data from the cache.

Cache Hits Hits in the cache.

Cache Hits Ratio Cache hit ratio.

Cache Requests Requests to the cache.

Collection Interval Time between collections, in seconds.

Managed System The z/OS operating system in your enterprise monitored by an OMEGAMON XE on z/OS agent from which data is derived.

SMFID z/OS system producing this data.

System Name Name of the system that is reporting zFS statistics.

Timestamp Timestamp showing the date and time of day when data was recorded.

Total KBytes Total kilobytes in cache.

zFS Address Space Name of the address space running zFS. For z/OS 1.10, OMEGAMON XE on z/OS uses an address space name of ZFS, unless the parameter KM3KZFSASNM=xxxxxxxx (where xxxxxxxx is the started task (STC) name of the zFS address space) has been added to the &rhlerv.

&rte.RKANPARU(KDSENV). This field is blank if zFS is not implemented (that is, there is no
FILESTYPE TYPE(ZFS) specified in SYS1.PARMLIB(BPXPRMxx). For z/OS 1.11 and later, the zFS name is obtained from the system, so this parameter does not need to be coded.

KM5 zFS Kernel attributes

This attribute group is used to determine the number of kernel operations and average time for the operations. A longer average may indicate that a larger user, metadata, or directory cache is needed.

Average Wait Time Average wait time for this operation, in milliseconds.

Collection Interval The time between collections, in seconds.

Managed System A z/OS operating system in your enterprise that is being monitored by Tivoli OMEGAMON XE on z/OS. Valid value is a string of up to 32 characters, in the format <plexname>:<smfid>:MVSSYS.

Operation Count Number of times the kernel operation was called.

Operation Name The name of the kernel operation.

Operation Rate The operation rate over the collection interval.

Record Type The type of record, either detail or summary.

SMFID z/OS system producing this data.

System Name The name of the system that is reporting zFS statistics.

Timestamp Timestamp showing the date and time of day when data was recorded.

Total Operations Grand total of operations.

Total Wait Time Wait time for all operations, in milliseconds.

zFS Address Space The name of the address space running zFS.

KM5 zFS Metadata Cache attributes

This attribute group is used to monitor the performance of the metadata cache. Metadata includes control structures and directory contents and exists in the zFS address space.

Backing Buffer Size Size of each buffer in kilobytes.

Backing Buffers Number of buffers in backing cache.

Backing Discards Discards of data from the cache.

Backing Hits Total backing hits in the cache.

Backing KBytes Size of backing cache, in kilobytes.

Backing Hit Ratio Backing cache hit ratio.

Backing Requests Requests to the cache.

Collection Interval Time between collections, in seconds.
Managed System The z/OS operating system in your enterprise monitored by a Tivoli OMEGAMON XE on z/OS agent from which data is derived.

Primary Buffer Size Size of each buffer in K bytes.

Primary Buffers Number of buffers in primary cache.

Primary Hit Ratio Primary hits ratio.

Primary Hits Hits in the cache.

Primary KBytes Size of primary cache in kilobytes.

Primary Requests Requests to the cache.

Primary Updates Updates to buffers in the cache.

SMFID z/OS system producing this data.

System Name System name reporting zFS statistics.

Timestamp Timestamp showing the date and time of day when data was recorded.

zFS Address Space Name of the address space running zFS.

KM5 zFS Storage attributes

This attribute group provides a breakdown of zFS virtual storage usage.

Collection Interval Time between collections, in seconds.

Component Alloc Req Allocation requests for this component.

Component Bytes Bytes allocated for this component.

Component Desc Component description.

Component Free Req Free requests for this component.

Component Pieces Pieces allocated for this component.

Managed System The z/OS operating system in your enterprise monitored by a Tivoli OMEGAMON XE on z/OS agent from which data is derived.

SMFID z/OS system producing this data.

System Name System name reporting zFS statistics.

Timestamp Timestamp showing the date and time of day when data was recorded.

Total Alloc Requests Total allocation requests across all components.

Total Bytes Total bytes allocated across all components.

Total Free Requests Total free requests across all components.
Total Pieces Total pieces allocated across all components.

zFS Address Space Name of the address space running zFS.

KM5 zFS User Cache attributes

This attribute group is used to monitor the performance of the User File Cache. The User File Cache is a Least Recently Used (LRU) cache which holds only the most recently accessed blocks of files which are cached. The KM5 zFS User Cache attributes return two sets of statistics, direct and client.

Async Reads Number of asynchronous reads.

Cache Page Number of pages in cache.

Collection Interval The time between collections, in seconds.

Dataspace Count Number of data spaces.

Error Waits Number of error waits.

Error Writes Number of error writes.

Flushes Number of cache flush calls.

Free Pages Number of free pages.

Fsync Waits Number of fsync waits.

Fsynchs Number of fsync calls.

Getattrs Number of getattr calls.

Local Segment Size Local segment size in kilobytes.

Managed System The z/OS operating system in your enterprise monitored by a Tivoli OMEGAMON XE on z/OS agent from which data is derived.

Page Size Size of a page in kilobytes.

Pages Per Dataspace Number of pages in a dataspace.

Read Fault Ratio Read fault ratio.

Read IOs Number of read I/Os.

Read Wait Ratio Read wait ratio.

Read Waits Number of read waits.

Reads Number of read calls.

Reads Faulted Number of read faults.

Reclaim Steals Number of reclaim steals.

Reclaim Waits Number of reclaim waits.
Reclaim Writes Number of reclaim writes.

Request Type The request type, direct or client.

Scheduled Deletes Number of scheduled deletes.

Scheduled Writes Number of scheduled writes.

Schedules Number of schedule calls.

Setattrs Number of setattr calls.

SMFID z/OS system producing this data.

System Name The name of the system reporting zFS statistics.

Timestamp Timestamp showing the date and time of day when data was recorded.

Unmaps Number of unmap calls.

VM Segtable Cachesize Table size of the VM segment.

Waits For Reclaim Number of waits for reclaim.

Write Fault Ratio Write fault ratio.

Write Wait Ratio Write wait ratio.

Write Waits Number of write waits.

Writes Number of write calls.

Writes Faults Number of write faults.

zFS Address Space Name of the address space running zFS.

KM5 zFS User Cache Dataspaces attributes

This attribute group contains metrics returned by a request for User Cache statistics and shows the number of dataspaces used to manage the User Cache instances.

Cache Pages Number of pages in cache.

Collection Interval Time between collections, in seconds.

Dataspace Alloc Segs Number of allocated segments.

Dataspace Count Number of data spaces.

Dataspace Free Pages Number of free pages in cache.

Dataspace Name Data space name.

Free Pages Number of free pages.
Local Segment Size Local segment size in K.

Managed System The z/OS operating system in your enterprise monitored by a Tivoli OMEGAMON XE on z/OS agent from which data is derived.

Page Size Size of a page in kilobytes.

Pages Per Dataspace Number of pages per data space.

SMFID z/OS system producing this data.

System Name System name reporting zFS statistics.

Timestamp Timestamp showing the date and time of day when data was recorded.

VM Segtable Cachesize Table size of the VM segment.

zFS Address Space Name of the address space running zFS.

LPAR Clusters attributes
The LPAR Cluster attributes permit you to view information about, or create situations that report on, the status of various resources belonging to an LPAR Cluster.

Capping Percent The defined soft capping percent. Valid value is a 4-byte integer in the range 0.0 to 100.0.

Capping Status The status of LPAR capping for this LPAR as defined by the LPAR configuration. LPAR capping ensures that a logical processor’s use of the physical CPs cannot exceed a specified amount. Valid values are:

- HARD - Traditional LPAR capping as specified in the HMC profile
- SOFT - Software license capping
- NONE - No capping

CBU Adjustments Indicates whether or not Capacity Backup (CBU) adjustments have been made.

Cluster LPARs In a Cluster summary data row, the number of LPARs that are assigned to the LPAR Cluster. In an LPAR data row, this number is 0. Valid value is a 4-byte integer.

Cluster Name The name of the LPAR cluster. The format of this attribute is xxxxxxx.ssss.tttt, where:

xxxxxxx specifies the Sysplex name

ssss are the last four characters of the Central Processing Complex (CPC) serial number

tttt are the first four characters of the CPU model number

CP Online Time Logical processor online time (in seconds). Valid value is a 4-byte integer.

CP Status LPAR processor status flag. Valid values are:

- DED - Dedicated
- SHR - Shared

Chapter 10. Attributes 225
• MIX - Both shared and Dedicated

CPs Dispatch Time The CPC total CP-type processor dispatch time. Valid value is a 4-byte integer.

CPC CPU Overhead The total CP-type processor utilization for LPAR management overhead. Valid value is a 4-byte integer in the range 0.0 to 100.0.

CPC CPU Percent The total CPC CP-type processor utilization. Valid value is a 4-byte integer in the range 0.0 to 100.0.

CPC Model The model number of the CPU where the LPAR is running; for example, 2064-103. Valid value is an 8-byte character string.

CPC MSUs The total CPC CP-type capacity in millions of service units (MSUs) per hour. Valid value is a 4-byte integer.

CPC Serial # The 6-character CPC Serial Number; for example, 010567. Valid value is an 8-byte character string.

CPC Storage Total Central Storage (in megabytes) assigned to LPARs that are sharing or using CP-type processors. Valid value is an 8-byte character string.

CPC Total Weight Sum of the weights assigned to LPARs that are active and sharing CP-type processors on the CPC. Valid value is a 4-byte integer.

CPU Index Ratio of actual physical CPU percent (Physical%CPU) utilization to target (Physical%Weight). Valid value is a 4-byte integer in the range 0.0 to 100.0.

CPU Ready Percent Percent of time the LPAR had available (ready) work and was not dispatched. Valid value is a 4-byte integer in the range 0.0 through 100.0.

Current Weight Current shared processor weight assigned to the LPAR or Cluster. In a shared physical processor configuration, weight determines the relative importance of the LPAR for the allocation of processor resources. Current Weight is that weight currently assigned for an LPAR that is enabled for Workload Manager LPAR CPU Weight Management.

Dispatch Time Logical processor dispatch time (in seconds). Valid value is a 4-byte integer.

Effective Weight Index The ratio (that is, velocity index) of actual logical LPAR weight (Effective%Weight) to target logical LPAR weight (Logical%Weight). Valid value is a 4-byte integer.

Effective Weight Percent Actual Logical Weight Percent for the LPAR (that is, velocity), a measure of how well the LPAR is able to obtain processor resources. Valid value is a 4-byte integer in the range 0.0 through 100.0.

Host LPAR Flag An indicator that identifies the Host LPAR data row. Valid values are Y or N.

Host LPAR Name Name of the LPAR for this host system (that is, the system where the data was collected). Valid value is an 8-byte character string.

Initial Weight The shared processor weight assigned to the LPAR at startup. The attribute will not contain a value if the LPAR is assigned dedicated CPs.

Interval Time Data collection time interval duration (in seconds). Valid value is a 4-byte integer.
LCPs Offline The number of LCPs currently offline that were online to this LPAR and have been brought offline by IRD or the operator.

LCPs Online The number of logical processors (LCPs) currently online to this LPAR.

LCPs Reserved The number of configured logical processors that cannot be varied online to this LPAR. That is, a configuration change such as Capacity Upgrade on Demand would be required to make this processor available. Valid value is a 4-byte integer.

LCPs Standby The number of logical processors that are not online to the LPAR, but could be varied online via operator intervention. Valid value is a 4-byte integer.

Logical CPU Percent The percent of time that the LPAR was utilizing online logical processors. Valid value is a 4-byte integer in the range 0.0 through 100.0.

Logical Weight Percent The demand that the LPAR could place on its online logical processors relative to the LPAR's defined (physical) weight. Valid value is a 4-byte integer in the range 0.0 through 100.0.

LPAR Name Name of the LPAR for this row of data. A value of _CPTotal indicates that this is a CPC summary data row. A value of _CLTotal indicates that this is a cluster summary data row. Valid value is an 8-byte character string.

LPAR Number LPAR number. Valid value is a 4-byte integer.

LPAR SMFID LPAR SMF ID as defined in the IEASYM or IEASYS PARMLIB members. This field is defined for future use and currently will contain no value.

LPAR Status Status of the LPAR. Valid values are ACTIVE or DEACTIVATED.

Managed System The z/OS operating system in your enterprise from which an OMEGAMON XE on z/OS agent collected the data. Valid value is a character string with a maximum length of 32 bytes.

Maximum Weight The defined maximum shared processor weight that Workload Manager LPAR Weight Management can assign to the LPAR. A value of 0 indicates that IRD is to determine the value. The attribute will not contain a value if the LPAR is assigned dedicated CPs.

Minimum Weight The defined minimum shared processor weight that Workload Manager LPAR Weight Management can assign to the LPAR. A value of 0 indicates that IRD is to determine the value. The attribute will not contain a value if the LPAR is assigned dedicated CPs.

Model Capacity ID The processor model capacity ID representing the service the CPC is currently capable of delivering.

Model Capacity Rating The processor model capacity, in millions of service units (MSUs), that the CPC is currently capable of delivering.

Model Permanent Capacity ID The processor model capacity ID representing the service the CPC is capable of delivering, exclusive of capacity temporarily added through On/Off Capacity on Demand (OOCoD) and capacity temporarily replaced through Capacity Backup (CBU). Valid value is a character string with a maximum length of 16 bytes. This value appears as Unavailable if the hardware does not support Capacity provisioning management (CPM).

Model Permanent Capacity Rating The processor model capacity, in millions of service units (MSUs), that the CPC is capable of delivering, exclusive of capacity temporarily added through On/Off Capacity on Demand (OOCoD) and capacity temporarily replaced through Capacity Backup (CBU). This value appears as Unavailable if the hardware does not support Capacity provisioning management (CPM).
Model Temporary Capacity ID The processor model capacity ID representing the service that the CPC is capable of delivering by adding the Model Permanent Capacity and capacity added through On/Off Capacity on Demand (OOCoD), but excluding any capacity added through Capacity Backup (CBU). This value appears as Unavailable if the hardware does not support Capacity provisioning management (CPM).

Model Temporary Capacity Rating The processor model capacity, in millions of service units (MSUs), that the CPC is capable of delivering by adding the Model Permanent Capacity and capacity added through On/Off Capacity on Demand (OOCoD) but excluding any capacity added through Capacity Backup (CBU). This value appears as Unavailable if the hardware does not support Capacity provisioning management (CPM).

OOCoD/CPM Adjustments Indicates whether On/Off Capacity on Demand (OOCoD) or Capacity Provisioning Manager (CPM) adjustments have been made (Yes or No).

Overhead CPU Percent Percent of total physical processor resource used by the LPAR or Cluster for LPAR Management. Valid value is a 4-byte integer in the range 0.0 through 100.0.

Overhead Time The amount of time used for LPAR management (in seconds). Valid value is a 4-byte integer.

Physical CPs The number of physical CP-type processors that are online for this Central Processing Complex (CPC).

Physical CPU Percent Percent of total physical processor resource used by the LPAR or cluster, excluding LPAR Management utilization. Valid value is a 4-byte integer in the range 0.0 through 100.0.

Physical Weight Percent Current shared processor weight for the LPAR or Cluster as a percentage of total CPC weight. Valid value is a 4-byte integer in the range 0.0 to 100.0.

Ready Time Logical processor ready time (in seconds). This value represents the amount of time that the LPAR had available (ready) work and was not dispatched. Valid value is a 4-byte integer.

Special CPs The number of ICF/IFL/IFA/zIIP-type physical processors that are online for this Central Processing Complex (CPC). This count includes processors of the following types:
- Integrated Coupling Facility (ICF)
- Integrated Facility for Linux (IFL)
- zSeries Application Assist Processor (zAAP), also known as Integrated Facility for Applications (IFA)
- System z9 Integrated Information Processor (zIIP)

Storage (Meg) Amount of central storage, in megabytes, assigned to this LPAR. Valid value is a 4-byte integer.

Wait Completion LPAR processor(s) wait completion flag. Valid values are NO, YES, or MIX.

Wait Time Logical processor wait time (in seconds). This value represents the amount of time the LPAR was idle (that is, having no work to do; PSW Wait bit on). Valid value is a 4-byte integer.

WLM CPU Flag Indicates whether the LPAR is enabled for Intelligent Resource Director (IRD) WLM CPU management. Valid values are YES or NO.

Operator Alerts attributes
The Operator Alerts attribute group identifies the various types of operator alerts that can be issued by OMEGAMON XE on z/OS.
ASVT Slot Utilization A percentage that represents the maximum number of address space vector table slots that are in use or unavailable. ASVT slots contain the list of address spaces and are used to allocate address space control blocks (ASCBs). The system cannot create new address spaces when it runs out of slots. Valid value is a 4-byte integer.

GRS Status Status of the GRS configuration and connection. Valid values are BROKEN, RING, or STAR.
- BROKEN indicates the configuration is broken.
- RING indicates the configuration of the GRS is a ring.
- STAR indicates the configuration of the GRS is a star.

GTF Active Whether or not GTF is active. Valid values are TRUE or FALSE.

HSM Recall Wait Time The wait time in seconds of the longest single HSM recall that is waiting. Valid value is a 4-byte integer.

Managed System The z/OS operating system in your enterprise that is being monitoring by an OMEGAMON XE on z/OS monitoring agent. Valid value is a character string with a maximum length of 32 bytes.

OLTEP Active Whether or not OLTEP is active. Valid values are TRUE or FALSE. OLTEP is used primarily by your hardware representative to run diagnostics on hardware devices. It can drastically affect the performance of your system because of its high resource utilization.

Outstanding Operator Replies Count of outstanding Write to Operator with Reply operations. Valid value is a 4-byte integer.

Reserve Utilization The ASVT Reserve utilization. The RSVNONR specification reserves a number of ASVT slots to replenish ASVT slots in the MAXUSER or RSVSTRT pools, which are marked nonreusable at address space termination. There are times in the life of an IPL when an address space will go away and its corresponding slot in the ASVT will be marked nonreusable. When this occurs, the nonreusable slot is replaced by a slot from the RSVNONR pool. However, when the RSVNONR pool is exhausted, the slots in the MAXUSER or RSVSTRT pool cannot be replaced and are often lost for the remainder of the IPL. When the number of RSVNONR slots falls below 5% of that specified in IEASYSxx, the system produces: `msgIEA061E REPLACEMENT ASID SHORTAGE HAS BEEN DETECTED`. IEA061E is an indication that address space termination may soon result in a decrease in the number of active ASIDs that may be running.

RMF Not Active Whether or not RMF is active. Valid values are TRUE or FALSE. The RMF Monitor I is a background subtask of the RMF address space. It collects performance information such as resource utilization and response time data and can be used to help identify performance problems.

SMF Not Recording Whether or not SMF is recording information. Valid values are TRUE or FALSE.

SYSLOG Not Recording Whether or not the SYSLOG is recording information. Valid values are TRUE or FALSE. The SYSLOG records all console activity, providing an information trail that can be used to research problems or verify that jobs have run in the proper sequence.

WTO Buffers Remaining The count of remaining WTO buffers. You can use the z/OS DISPLAY CONSOLES command to list all of the defined consoles and the number of WTO buffers each one is holding. Note: If you run out of WTO buffers, the Master console may become locked out, causing the system to hang. Valid value is a 4-byte integer.

Page Dataset Activity attributes
The Page Dataset Activity attribute group provides information about availability and response time for specific page data set.
Address The hexadecimal device address for this page dataset.

Dataset Type The type of dataset. Valid values are:
- Unknown
- Local — Page datasets that back up the private area of all address spaces and the Virtual I/O (VIO) pages of the system
- Common — Page dataset containing CSA, MLPA, and SQA (that is, containing the common area that is other than PLPA)
- PLPA — Page dataset containing only frames of Pageable Link Pack Area
- Swap — Page datasets containing the swapped out part of an address space

Errors The number of errors for this dataset. Valid value is a 4-byte integer.

Managed System A z/OS operating system in your enterprise monitored by a Tivoli OMEGAMON XE on z/OS agent. Valid value is a character string with a maximum length of 32 bytes.

Page Rate The pages per second read or written for this dataset. Valid value is a 4-byte integer.

Percent Full The percentage of slots on this page (or swap) dataset that are in use. Valid value is a 4-byte integer in the range 0.0 to 100.0. In this field, the value 123 would represent 12.3%.

Response Time The average response time in milliseconds for an I/O operation to this dataset. Valid value is a 4-byte integer.

Volume The volume serial number of this page dataset. Valid value is a 6-byte character string.

Real Storage attributes
The Real Storage attribute group provides information about the use of real storage on a z/OS system in terms of various types of frame counts, slot counts, and paging rates.

Area End Address The ending address of an area, in hexadecimal. The end address of the high private area (above the bar area) is shown as 16EB. For a Storage Type of Extended Nucleus, the Area End Address is the higher of the end address of the Extended Read Only Nucleus and the Extended Read Write Nucleus areas. For a Storage Type of Nucleus, Area End Address is the higher of the end address of the Read Only Nucleus and the Read Write Nucleus areas.

Area Start Address The starting address of an area, in hexadecimal. The starting address of the high private area (above the bar area) is shown as 2G. 6. For a Storage Type of Extended Nucleus, Area Start Address is the lower of the start address of the Extended Read Only Nucleus and the Extended Read Write Nucleus areas. For a Storage Type of Nucleus, Area Start Address is the lower of the start address of the Read Only Nucleus and the Read Write Nucleus areas.

Available Frames The number of pageable frames available to the system. Valid value is a 4-byte integer.

Frames Used Percent Percentage of frames used (online frames - available frames)/online frames * 100), to one decimal point.

Managed System A z/OS operating system in your enterprise that OMEGAMON XE on z/OS is monitoring. Valid value is a character string with a maximum length of 32 bytes.

Migration Age The time in seconds that has passed since the oldest frame of expanded storage was last referenced. This column is applicable to expanded storage, but not to central storage. Valid value is a 4-byte integer. This attribute is deprecated in version 4.1.
Migration Rate The number of pages per second that are being moved from expanded to auxiliary storage. This column is applicable to expanded storage, but not to central storage. Valid value is a 4-byte integer to one decimal precision. This attribute is deprecated in version 4.1.

Offline Frames The number of frames of this type that have been varied offline either by means of a z/OS command or by the system itself. Valid value is a 4-byte integer.

Online Frames The number of storage frames of this type that are online or accessible to this processor. Valid value is a 4-byte integer.

Pages Read From Expanded The number of pages per second that are being moved from expanded to central storage. Valid value is a 4-byte integer. This attribute is deprecated in version 4.1.

Pages Written To Expanded The number of pages per second that are being moved from central to expanded storage. Valid value is a 4-byte integer. This attribute is deprecated in version 4.1.

Storage Type Type of storage area. Valid values are:
- Summary
- Shared
- Data Spaces
- Available
- Other
 where "Other" is the sum of Top double frames, Bottom double frames, SQA reserved frames, Sdump buffer frames, V=R waiting frames, Deferred freemain frames, IDA frames, HSA frames, Flawed frames, Unitialized frames, VIO frames, Local quad frames, Page table frames, Unknown frame types, PSA frames, and Nucleus DAT off frames.
- Extended private
- Extended CSA
- Extended PLPA
- Extended MLPA
- Extended FLPA
- Extended SQA
- Extended NUC
 where "Extended NUC" is the sum of Extended Read Only nucleus and Extended Read/Write nucleus.
- NUC
 where "NUC" is the sum of Read Only nucleus and Read/Write nucleus.
- SQA
- PLPA
- MLPA
- FLPA
- CSA
- Private
- High Private (above 2G)

Total Fixed Frames Total number of fixed frames for this image. The Total Fixed Frames value is the sum of the Total Fixed Frames Allocated column for all the storage areas listed in the Real Storage view. Valid value is a 4-byte integer.

Total Fixed Frames Allocated Number of fixed frames allocated to an area. Valid value is a 4-byte integer.
Total Frames Total number of frames for this image. The Total Frames value is the sum of the Total Frames Allocated column for all the storage areas listed in the Real Central Storage view. Valid value is a 4-byte integer.

Total Frames Allocated The total number of frames allocated to an area. Valid value is a 4-byte integer.

Total Kilobytes Allocated The size of the area, in kilobytes. Valid value is a 4-byte integer.

Unreferenced Interval Count Represents the time in seconds for a complete steal cycle. A complete steal cycle is the time the stealing routine needs to check all frames in the system. When there is a demand for storage, the stealing routine tests the reference bit of a frame, decides whether to steal the frame, and schedules the page-out. Valid value is a 4-byte integer.

Service Call Type Detail (SVCDET) attributes

The Service Call Type Detail attributes monitor performance by service call type detail. The agent monitors performance by collecting data at the beginning and end of each service call.

ArrivalRate The average arrival rate (moving average) in service calls per minute. The averages are computed for the last ten minutes of observation. They are read three places to the right of the decimal. Valid values are 0-99999999.

Bytes The average number of bytes (moving average) processed per service call. The averages are computed for the last ten minutes of observation. They are read three places to the right of the decimal. Valid values are 0-99999999.

ORIGINNODE The managed system name of the z/OS system being monitored by a Tivoli OMEGAMON XE on z/OS agent.

Pending The average calls pending (rolling average) per service call. The averages are computed for the last ten minutes of observation. The calls are read three places to the right of the decimal. Valid values are: 0-10000.

SvcCall The service call name or entry point. Valid values are:
- CSFAEGN
- CSFAKEX
- CSFAKIM
- CSFAKTR
- CSFATKN
- CSFCKI
- CSFCPE
- CSFPGN
- CSFCPA
- CSFEDC
- CSFCTT
- CSFCTT1
- CSFCVT
- CSFCVE
- CSFDKX
- CSFDKM
- CSFDEC
- CSFDEC1
- CSFDCO
- CSFDSG
- CSFDSV
- CSFDKG
SvcDesc The service call description. Valid values are:
- ANSI X9.17 EDC Generate
- ANSI X9.17 Key Export
- ANSI X9.17 Key Import
- ANSI X9.17 Key Translate
- ANSI X9.17 Transport Key Partial Notarize
- Clear Key Import
- Clear PIN Encrypt
- Clear PIN Generate
- Clear PIN Generate Alternate
- Cipher/Decipher
- Ciphertext Translate
- Ciphertext Translate (with ALET)
- Control Vector Translate
- Cryptographic Variable Encipher
- Data Key Export
- Data Key Import
- Decipher
- Decipher (with ALET)
- Decode
- Digital Signature Generate
- Digital Signature Verify
- Diversified Key Generate
- Encipher under Master Key
- Encipher
- Encipher (with ALET)
- Encode
- Encrypted PIN Generate
- Encrypted PIN Translate
- Encrypted PIN Verify
- Generate a key
- Import a key
- Key Export
- Key Generate
- Key Import
- Key Part Import
- Key Record Create
- Key Record Delete
- Key Record Read
- Key Record Write
- Key Test
- Key Test Extended
- Key Translate
- MAC Generate
- MAC Generate (with ALET)
• MAC Verify
• MAC Verify (with ALET)
• MDC Generate
• MDC Generate (with ALET)
• Multiple Clear Key Import
• Multiple Secure Key Import
• One Way Hash Generate (with ALET)
• One Way Hash Generate
• PCI Interface
• PKA Decrypt
• PKA Encrypt
• PKA Key Generate
• PKA Key Import
• PKA Public Key Extract
• PKDS Record Create
• PKDS Record Delete
• PKDS Record Read
• PKDS Record Write
• PKSC Interface
• Prohibit Export
• Prohibit Export Extended
• Random Number Generate
• Retained Key Delete
• Retained Key List
• Secure Key Import
• SET Block Compose
• SET Block Decompose
• Symmetric Key Export
• Symmetric Key Generate
• Symmetric Key Import
• User Derived Key
• Transform CDMF Key
• VISA CVV Service Generate
• VISA CVV Service Verify

SvcTime The average service call completion time (moving average) in milliseconds per call. The averages are computed for the last ten minutes of observation. They are read three places to the right of the decimal.

SMFID The z/OS system associated with the service call.

System CPU Utilization attributes

The System CPU Utilization Attribute Group provides information about CPU usage for the system. In an LPAR environment, this group also provides partition management statistics.

4 Hour MSUs Four-hour rolling average value of the millions of service units (MSUs) per hour. The value is updated every five minutes. It is the average of the previous 48 5-minute samples, which in turn
are the average of 30 samples, taken every 10 secs. To avoid capping during system bringup (IPL), the calculation of the 4-hour rolling average assumes that the system has run for four hours without load, so for the first four hours after IPL the rolling average is not valid. Valid value is an integer in the range 0 to 2147483647.

Note: Data for this attribute is available only if you have opted to use a defined capacity limit, otherwise Not available is displayed.

Average CPU Percent The percentage of time that all processors available in this z/OS system were busy dispatching work.

Average IFA Percent Average percentage of time the system consumes zSeries Application Assist Processor (zAAP) resources across all zAAPs configured to this LPAR.

Average IFA Percent on CP Average percentage of time the system consumes regular processor resource executing zSeries Application Assist Processor (zAAP) work across all regular processors configured to this logical partition (LPAR).

Average Unused Group MSUs The number of MSUs that were available to the LPAR Group over the Rolling Average 4-hour period, but were not used. If the value is zero or negative, the LPAR is subject to LPAR Group Capping. If this capping is in effect, the Group LPAR MSU Limit can vary between the LPAR Group Entitled Minimum service and the Group Capacity Limit.

Average zIIP Percent Average percentage of System z9 Integrated Information Processor (zIIP) time the system consumed for all zIIPs configured to this LPAR.

Average zIIP Percent on CP Average percentage of regular processor time the system consumes performing work eligible for System z9 Integrated Information Processor work for all regular processors configured to this LPAR.

CPU Flag A flag that indicates how the Average CPU Percent value is calculated. Valid values can be:

- **RMF**
 As reported by Resource Management Facility (RMF), this value is represented as a running average for this partition over the RMF interval.

- **Native**
 This value applies to systems running in native mode or in PR/SM or Amdahl Multiple domain Facility (MDF) environments, and is based on hardware timers. It is calculated by adding TCB, SRB, and z/OS overhead times.

CPUs Offline A string of CPU sequence numbers, separated by commas, that identifies those processors that are offline to this LPAR. Valid value is a 32-byte character string.

CPUs Online A string of processor sequence numbers, separated by commas, that identifies those processors that are online to this LPAR. Valid value is a 32-byte character string.

Group LPAR MSU Limit The MSU limit enforced by the LPAR Group. This limit varies between the LPAR's entitled capacity and the LPAR group capacity. When a defined capacity is specified for the LPAR, this value never exceeds that limit. If no defined capacity is specified for the LPAR, the limit can be as high as the LPAR group limit. If the LPAR is not in an LPAR Group, this value is displayed as Unavailable.

HiperDispatch Management Status of the HiperDispatch feature. The possible values are: On, Off, and Unavailable.
IFA Crossover Indicates whether IFA crossover of IFA work to regular processors is allowed (Yes) or not allowed (No).

IFA Honor Priority Indicates whether IFA work that has crossed over to a regular processor has its dispatch priority honored (Yes) or not (No).

IFA Relative Processor Speed Speed of IFAs relative to regular processors. Expressed as a ratio in the format \(nn :nn :1 \).

IFAs Offline IFAs offline to this LPAR, as a string of comma-delimited hexadecimal 2-digit processor IDs.

IFAs Online IFAs online to this LPAR as a string of comma-delimited hexadecimal 2-digit processor IDs.

LPAR Group Capacity Limit The LPAR Group Capacity Limit in Millions of Service Units per Hour. Capping of an LPAR Group is based on the 4-hour Rolling Average MSUs consumed by all the member LPARs of the LPAR Group.

LPAR Group Name The name of the LPAR Group, from 1 to 8 characters.

Managed System The z/OS operating system in your enterprise that is being monitored by an OMEGAMON XE on z/OS monitoring agent. Valid value is a character string with a maximum length of 32 bytes.

MVS Overhead The CPU utilization percentage that is not attributable to any user or address space. It is calculated as the difference between the total software utilization times and the total hardware time ((TCB + SRB)-CPU) over the last reporting interval. Valid value is a 4-byte integer.

In a complex with more than one CPU, z/OS overhead can be computed based on the number of processors, or normalized to a maximum of 100%.

Partition LCPD% In an LPAR environment, the percentage of time on average that a logical processor was dispatched in the logical partition during the interval.

This value is based on dispatch time, not CPU busy time. The value is calculated by dividing dispatch time by elapsed time and then dividing that product by the number of logical processors. Thus, if an LPAR has been defined as having two logical processors and the sum of their dispatch times was 90 seconds over a 60 second interval, the logical CPU percent for the partition would be \((90 \text{ seconds} / 60 \text{ seconds}) / 2\) which equals 75%.

When the number of logical processors assigned to a partition is the same as the number of physical processors, the partition’s physical and logical CPU utilization should be the same.

Partition Overhead% In an LPAR environment, the percentage of time the system spends managing a logical partition. This column is valid for systems at z/OS SP4.2 or later. The value is calculated as the difference between the total software times (TCB and SRB) and the total hardware time (CPU) over the last reporting interval. Typically, z/OS overhead increases as workloads make greater demands on resources. Valid value is a 4-byte integer in the range 0 to 100.

Partition PCPD% In an LPAR environment, the percentage of time on average that a physical processor was dispatched in the logical partition during the interval. This value is based on dispatch time, not CPU busy time.

The value is calculated by dividing dispatch time by elapsed time and then dividing that product by the number of physical processors in the LPAR. Thus, if an LPAR has been defined as having four physical processors and the sum of their dispatch times was 120 seconds over a 60 second interval, the physical CPU percent for the partition would be \((120 \text{ seconds} / 60 \text{ seconds}) / 4\) which equals 50%.
When the number of logical processors assigned to a partition is the same as the number of physical processors, the partition's physical and logical CPU utilization should be the same.

Percent LPAR MSU Capacity Percentage of the Entitled or Defined Capacity MSUs of this LPAR, to 1 decimal place. If no Defined Capacity is specified for the LPAR, the Entitled MSUs effectively cap the maximum service an LPAR can consume. The Entitled value is based on the number of logical standard CPs configured to the LPAR, including any that are on standby. This number, multiplied by the MSU rating of a single physical standard CP, sets the Entitled service. If LPAR Group Capping is in effect for this LPAR, the Group LPAR MSU Limit establishes the maximum service that the LPAR can consume.

Physical CPU Count A count of the physical CPUs online to this LPAR. Valid value is a 4-byte integer.

RMF LPAR CPU Percent Average system CPU percentage as seen by the LPAR hosting the z/OS system, calculated over the most recent RMF interval. The first RMF interval after the agent is started contains partial values. Valid value is an integer in the range 0.0 to 100.0. If RMF is not active, this value will be zero. “NoRMF” indicates that this value is not available because the RMF API (ERBSMFI) is not active. “NoStorage” indicates that this value is not available because the CMS address space did not have sufficient storage for the RMF API answer area.

Note: The initial display will contain zeros for the RMF LPAR CPU Percent attribute. It is most likely that the collection agent will be started somewhere in the middle of an already running RMF interval. Therefore, at the completion of the first RMF interval after the collection agent was started, these attributes will contain partial values. Only after completion of the first full RMF interval will these attributes display complete and correct values. If Resource Measurement Facility (RMF) is not started, the value for this attribute will be 0.0.

RMF MVS CPU Percent Average system CPU percentage as seen by z/OS, calculated over the most recent RMF interval. If RMF is not active, this value will be zero. The first RMF interval after the agent is started contains partial values. Valid value is an integer in the range 0.0 to 100.0. “NoRMF” indicates that this value is not available because the RMF API (ERBSMFI) is not active. “NoStorage” indicates that this value is not available because the CMS address space did not have sufficient storage for the RMF API answer area.

Note: The initial display will contain zeros for the RMF MVS CPU Percent attribute. It is most likely that the collection agent will be started somewhere in the middle of an already running RMF interval. Therefore, at the completion of the first RMF interval after the collection agent was started, these attributes will contain partial values. Only after completion of the first full RMF interval will these attributes display complete and correct values. If Resource Measurement Facility (RMF) is not started, the value for this attribute will be 0.0.

Total Enclave Percent The percentage of total CPU time spent doing enclave work.

In a complex with more than one CPU, z/OS overhead can be computed based on the number of processors, or normalized to a maximum of 100%.

Total SRB% The percentage of total CPU time spent doing SRB work.

In a complex with more than one CPU, z/OS overhead can be computed based on the number of processors, or normalized to a maximum of 100%.

Total TCB% The percentage of total CPU time spent doing TCB work.

In a complex with more than one CPU, z/OS overhead can be computed based on the number of processors, or normalized to a maximum of 100%.
Undispatched Tasks The number of tasks or address spaces that have not been dispatched by the SRM due to constraints. Valid value is a 4-byte integer.

WLM Mode The workload manager mode. Valid values are Goal or Compatibility.

zIIP Honor Priority Indicates whether System z9 Integrated Information Processor work that has crossed over to a regular processor has its dispatch priority honored (Yes) or not (No).

zIIP Relative Processor Speed Speed of System z9 Integrated Information Processors relative to regular processors. Expressed as a ratio in the format \(nn.nn:1\).

zIIPs Offline System z9 Integrated Information Processors offline to this LPAR, as a string of comma-delimited hexadecimal 2-digit processor IDs.

zIIPs Online System z9 Integrated Information Processors online to this LPAR, as a string of comma-delimited hexadecimal 2-digit processor IDs.

System Paging Activity attributes
The System Paging Activity attribute group provides information about factors taking place in your z/OS system that affect system paging rates, including the paging rate, page fault rate, and number of I/O requests waiting for processing.

ASM Queue Length The number of I/O requests waiting to be processed by the Auxiliary Storage Manager (ASM). Valid value is a 4-byte integer.

Datasets Not Operational The number of page datasets that are not operational. This condition can occur if there are a number of I/O errors to the device or the device has not responded to an I/O request. Valid value is a 4-byte integer.

Expanded Storage Pages Moved The total number of pages moved per second to and from expanded storage. Valid value is a 4-byte integer having one decimal position.

Managed System The z/OS operating system in your enterprise that is being monitoring. Valid value is a character string with a maximum length of 32 bytes.

Page Fault Rate The number of page faults per second. A page fault is an interrupt that occurs when an executing program references an address that is not in central storage. Valid value is a 4-byte integer.

System Page Rate The rate at which paging occurs over all storage areas (common, private, and system). Valid value is a 4-byte integer having one decimal position.

Unreferenced Interval Count Represents the time in seconds for a complete steal cycle. A complete steal cycle is the time the stealing routine needs to check all frames in the system. When there is a demand for storage, the stealing routine tests the reference bit of a frame, decides whether to steal the frame, and schedules the page-out. Valid value is a 4-byte integer.

Tape Drives attributes
The Tape Drives Attribute Group provides information about various factors that affect the performance and availability of the tape drives on your system.

Address The device address. Valid value is a 2-byte integer displayed as a hexadecimal value.

DDR Swaps in Progress The number of Dynamic Device Reconfiguration (DDR) swaps in progress. DDR permits tapes to be remounted on another drive without ABENDING a running job. However, if not acted
upon promptly, DDR may create severe system I/O performance degradation, since all I/O allocations must wait until the DDR swap is completed. Valid value is a 4-byte integer.

Dropped Ready The number of devices in a dropped ready condition. Valid value is a 4-byte integer.

I/O Count The count of I/O operations for this device since it was mounted. Valid value is a 4-byte integer.

Managed System The z/OS operating system in your enterprise that is being monitored by an OMEGAMON XE on z/OS monitoring agent. Valid value is a character string with a maximum length of 32 bytes.

Not Responding The number of tape drives that have not responded to an I/O request. Valid value is a 4-byte integer.

Permanent Errors The number of permanent, nonrecoverable I/O errors that have occurred for this device. Valid value is a 4-byte integer.

Status The status of the device. Valid values are:
- Unknown
- Free
- Allocated
- Mount
- Dropped
- Not Responding
- DDR Swap

Tape Mount Wait Time The amount of time the task has been waiting for a tape volume to be mounted on this device, in seconds. For multitasking jobs that run multiple threads simultaneously, this may not reflect the total amount of time the tape mount has been pending.

Tape Mounts Pending The number of tape drives waiting for a tape to be mounted. Valid value is a 4-byte integer.

Temporary Errors The number of temporary, recoverable I/O errors that have occurred on this device. Valid value is a 4-byte integer.

User The name of the address space that has the device allocated. If this name is not available, the column is blank. Valid value is an 8-byte character string.

Volume The volume serial number in the mounted tape label. If this number is not available, the column is blank. Valid value is a 6-byte character string.

Top User Performance attributes
The Top User Performance attributes provide information on performance by top users of cryptographic services.

ArrivalRate The average arrival rate (moving average) in service calls per minute issued by the address space. The averages are computed for the last ten minutes of observation. They are read three places to the right of the decimal. Valid values are 0-99999999.

Bytes The average number of bytes (moving average) processed per service call issued by the address space. The averages are computed for the last ten minutes of observation. They are read three places to the right of the decimal. Valid values are 0-99999999.
JOBNAME The address space name issuing cryptographic service calls.

LastSvcCall The last service call name issued by the address space.
- CSFAEGN
- CSFAKEX
- CSFAKIM
- CSFAKTR
- CSFATKN
- CSFCKI
- CSFCPE
- CSFPGN
- CSFCPA
- CSFEDC
- CSFCTT
- CSFCTT1
- CSFCVT
- CSFCVE
- CSFDKX
- CSFDKM
- CSFDEC
- CSFDEC1
- CSFDCO
- CSFDSG
- CSFDSV
- CSFDKG
- CSFEMK
- CSFENC
- CSFENC1
- CSFECO
- CSFEPG
- CSFPR
- CSFPVR
- CSFGKC
- CSFRTC
- CSFKEX
- CSFKGN
- CSFKIM
- CSFKPI
- CSFKRC
- CSFKRD
- CSFKRR
- CSFKRW
- CSFKYT
- CSFKYTX
- CSFKTR
LastSvcDesc The service call description.

- ANSI X9.17 EDC Generate
- ANSI X9.17 Key Export
- ANSI X9.17 Key Import
- ANSI X9.17 Key Translate
- ANSI X9.17 Transport Key Partial Notarize
- Clear Key Import
- Clear PIN Encrypt
• Clear PIN Generate
• Clear PIN Generate Alternate
• Cipher/Decipher
• Ciphertext Translate
• Ciphertext Translate (with ALET)
• Control Vector Translate
• Cryptographic Variable Encipher
• Data Key Export
• Data Key Import
• Decipher
• Decipher (with ALET)
• Decode
• Digital Signature Generate
• Digital Signature Verify
• Diversified Key Generate
• Encipher under Master Key
• Encipher
• Encipher (with ALET)
• Encode
• Encrypted PIN Generate
• Encrypted PIN Translate
• Encrypted PIN Verify
• Generate a key
• Import a key
• Key Export
• Key Generate
• Key Import
• Key Part Import
• Key Record Create
• Key Record Delete
• Key Record Read
• Key Record Write
• Key Test
• Key Test Extended
• Key Translate
• MAC Generate
• MAC Generate (with ALET)
• MAC Verify
• MAC Verify (with ALET)
• MDC Generate
• MDC Generate (with ALET)
• Multiple Clear Key Import
• Multiple Secure Key Import
• One Way Hash Generate
• One Way Hash Generate (with ALET)
• PCI Interface
• PKA Decrypt
• PKA Encrypt
• PKA Key Generate
• PKA Key Import
• PKA Public Key Extract
• PKDS Record Create
• PKDS Record Delete
• PKDS Record Read
• PKDS Record Write
• PKSC Interface
• Prohibit Export
• Prohibit Export Extended
• Random Number Generate
• Retained Key Delete
• Retained Key List
• Secure Key Import
• SET Block Compose
• SET Block Decompose
• Symmetric Key Export
• Symmetric Key Generate
• Symmetric Key Import
• Transform CDMF Key
• User Derived Key
• VISA CVV Service Generate
• VISA CVV Service Verify

ORIGINNODE The z/OS operating system in your enterprise where the data was collected by an OMEGAMON XE on z/OS monitoring agent.

Pending The average calls pending (moving average) per service call issued by the address space. The averages are computed for the last ten minutes of observation. They are read three places to the right of the decimal. 0-10000.

SvcTime The average service call completion time (moving average) in milliseconds per call issued by the address space. The averages are computed for the last ten minutes of observation. They are read three places to the right of the decimal.

SMFID The z/OS system associated with the address space issuing cryptographic services.

User Response Time attributes
The User Response Time Attribute Group provides an overview of the activities of your system users, as well as the average response time a user is experiencing.

Host Response The average time between the receipt of input by VTAM and the receipt of output by VTAM from the application. Valid value is a 4-byte integer representing time in seconds, to two decimal places.
Managed System The z/OS operating system in your enterprise where the data was collected by an OMEGAMON XE on z/OS monitoring agent. Valid value is a character string with a maximum length of 32 bytes.

Network Response The average time between VTAM's sending output to the terminal and VTAM's receiving the response. Valid value is a 4-byte integer representing time in seconds, to two decimal places.

Total Response The sum of the host and network response times. Valid value is a 4-byte integer representing time in seconds, to two decimal places.

Transaction Count The total number of group transactions that ended during the RMF interval. Valid value is a 4-byte integer.

User ID The TSO user name. Valid value is an 8-byte character string.

USS Address Spaces attributes
The USS Address Spaces attributes provide information about all z/OS address spaces (so-called dubbed address spaces) that have issued a call to the UNIX System Services application programming interface (API).

A/S Name The name of the address space. For a batch job, this is the jobname from the job statement. For a TSO address space, this is the userid of the logged-on user. Tivoli OMEGAMON XE on z/OS may also generate address space names. An address space name consists of alphanumeric characters and follows the z/OS rules for address space names. (In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Address Space Name.)

A/S Type Identifies the type of address space that is using UNIX System Services services. In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Type. Valid values are JOB (batch job), STC (started task), or TSO (TSO user login).

ASID The numeric address space identifier. Its form is a positive integer in the range 0 through 65535. (This value is generally not useful when defining situations.)

Central Storage Frames Number of frames currently in use by this address space. Valid value is a 4-byte integer.

Client Seconds Service request block (SRB) time for this address space's preemptable SRBs and for the client; or related SRBs for which this address space is the client. Valid value is a 4-byte integer.

Client Time% Percentage of service request block (SRB) time for this address space's preemptable SRBs and for client-related SRBs for which this address space is the client. Valid value is a 4-byte integer.

Cold Frames Number of frames in UIC interval 4 as set by the System Resources Manager (SRM) via the RCEFRV# fields. Valid value is a 4-byte integer.

Cool Frames Number of frames in UIC interval 3 as set by the System Resources Manager (SRM) via the RCEFRV# fields. Valid value is a 4-byte integer.

CPU Seconds The total CPU time of the application using services provided by UNIX System Services. (Note that this attribute is not just UNIX System Services CPU Time.) Valid values are positive integers in the range 0 through 2147483647 and can include the use of the *AVG, *MIN, *MAX, or *SUM functions.

CPU Time% Overall CPU percent (a value that represents TCB time + SRB time + Client time). Valid value is a 4-byte integer in the range 0-100.
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Valid Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclave Active Time</td>
<td>The time the enclave has been active. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>Enclave CPU Seconds</td>
<td>CPU seconds used by the enclave. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>Enclave CPU Service</td>
<td>CPU service units received by the enclave. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>Enclave TX Count</td>
<td>Enclave transaction count. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>Expanded Storage Frames</td>
<td>Number of pages on expanded storage. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>Home SRB Seconds</td>
<td>CPU time for all types of preemptable SRBs (PSRB, CRSRB, ESRB) that are executing with this address space as their home address space. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>Home SRB Time%</td>
<td>Percentage of home CPU time for all types of preemptable SRBs (PSRB, CRSRB, ESRB). Valid value is a 4-byte integer in the range 0 - 100.</td>
<td>4-byte integer in the range 0 - 100</td>
</tr>
<tr>
<td>Hot Frames</td>
<td>Number of frames in UIC interval 1 as set by SRM via the RCEFRV# fields. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>ORIGINNODE</td>
<td>The monitored z/OS operating system on which UNIX System Services is hosted. Valid value is a character string with a maximum length of 32 bytes.</td>
<td>character string with a maximum length of 32 bytes</td>
</tr>
<tr>
<td>Performance Group</td>
<td>The performance group of the address space that is using services provided by z/OS UNIX System Services. A performance group is a class specified at installation that regulates the turnaround time of a user’s jobs, jobsteps, and system interactions. This attribute is valid only when the system is in Workload Manager compatibility mode. Valid value is a positive integer in the range 0 through 65535.</td>
<td>positive integer in the range 0 through 65535</td>
</tr>
<tr>
<td>Service Class</td>
<td>The service class of the address space that is using services provided by z/OS UNIX System Services. This attribute is valid only when the system is in Workload Manager goal mode. Valid value is an 8-character alphanumeric name.</td>
<td>8-character alphanumeric name</td>
</tr>
<tr>
<td>SRB Seconds</td>
<td>Accumulated SRB time. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>SRB Time%</td>
<td>The percentage of CPU time used by the SRB. Valid value is a 4-byte integer in the range 0 - 100.</td>
<td>4-byte integer in the range 0 - 100</td>
</tr>
<tr>
<td>Step Name</td>
<td>The name used on the execute statement for the program that is using z/OS UNIX System Services. For a batch job, for example, this is the name of a cataloged procedure specified by an EXEC statement. A stepname consists of alphanumeric characters and follows the z/OS rules for job name.</td>
<td>alphanumeric characters</td>
</tr>
<tr>
<td>TCB Seconds</td>
<td>Elapsed seconds of TCB CPU usage. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>TCB Time%</td>
<td>Percentage of TCB CPU usage. Valid value is a 4-byte integer in the range 0 - 100.</td>
<td>4-byte integer in the range 0 - 100</td>
</tr>
<tr>
<td>Total Fixed Pages</td>
<td>Total number of fixed pages in this address space. This value does not include shared pages. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>Total Shared Pages</td>
<td>Total number of shared page views in this address space. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>UNIX System Time</td>
<td>System CPU time for UNIX work. Valid value is a 4-byte integer.</td>
<td>4-byte integer</td>
</tr>
<tr>
<td>UNIX System Time%</td>
<td>Percentage of system CPU time for UNIX work. Valid value is a 4-byte integer in the range 0 - 100.</td>
<td>4-byte integer in the range 0 - 100</td>
</tr>
</tbody>
</table>
UNIX User Time User CPU time for UNIX work. Valid value is a 4-byte integer.

UNIX User Time% Percentage of user CPU time for UNIX work. Valid value is a 4-byte integer in the range 0 - 100.

Userid The user ID associated with the address space. For a batch job, the value is taken from the USER= specification on the job statement. Userid consists of alphanumeric characters and follows the z/OS rules for job name.

Warm Frames Number of frames in UIC interval 2 as set by SRM via the RCEFRV# fields. Valid value is a 4-byte integer.

Working Set Total of hot plus warm plus fixed pages. Valid value is a 4-byte integer.

USS BPXPRMxx Value attributes
The USS BPXPRMxx Value attributes provide information about the BPXPRMxx members that establish defaults for UNIX System Service. These members reside in the SYS1.PARMLIB data set.

ORIGINNODE The monitored z/OS operating system on which UNIX System Services is hosted. Valid value is a character string with a maximum length of 32 bytes.

Parameter Keyword identifying a BPXPRMxx parameter. Valid value is an alphanumeric string of maximum length 64 bytes.

Source Identifies the source of a BPXPRMxx parameter. Valid value:
- Member. Source is a current BPXPRMxx member.
- Active. Source is active system value.
- System. Source is system-generated.

Value Value or values associated with a BPXPRMxx parameter. Valid value is an alphanumeric string of maximum length 1024 bytes.

USS Files attributes
The USS File Information attributes provide file, path, and time information for the files in your monitored systems.

Access Defines the access permissions associated with the file. Valid value is a positive integer that has a 3-digit octal number. Access is the numeric form of the Permissions attribute. From left to right, the digits have the following meanings:

1st
 Set user ID of the file upon execution

2nd
 Permissions for the file owner

3rd
 Permissions for the group

4th
 Permissions for other users

Blocks The number of blocks of size Blocksize used to store the data for the file. Valid value is a positive integer in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions.
Blocksize The size of a physical block of data in bytes. Valid value is a positive integer in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions.

Creation Time The date and time the directory or file was created. Valid value is a timestamp in the form mm/dd/yy hh:mm:ss.

Extended Attributes The file's extended attributes. Each character position represents one of the extended attributes as follows:
- a In the first position, indicates that the program runs as APF-authorized if linked with AC=1.
- p In the second position, indicates the program is program-controlled.
- s In the third position, indicates the program runs in a shared address space.
- A dash in any of these positions indicates that the attribute is not set.

Valid value is an 8-byte character string, of which only the first three positions are used.

File The name of the file or directory. Use file names to identify a regular file, directory, special character file, pipe, link, symbolic link, or socket. Valid value is a string of 1 through 255 characters; the string may not include the slash (/) or null characters.

GID The numeric group ID of the owner of the file. Valid value is a positive integer in the range 0 through 2147483647.

Group The logical group to which the owner of the file belongs. Valid value consists of up to 8 alphanumeric characters and follows the rules for z/OS userid.

ORIGINNODE The monitored z/OS operating system on which UNIX System Services is hosted. Valid value is a character string with a maximum length of 32 bytes.

Last-Accessed Time The date and time the file was last accessed for any purpose by any user or process. Valid value is a timestamp in the form mm/dd/yy hh:mm:ss.

Last-Changed Time The date and time the file was last changed by any user or process. Valid value is a timestamp in the form mm/dd/yy hh:mm:ss.

Links The number of files that are linked to the same data. Use links information to understand how many references are made to the same file data. In order to remove the data pointed to by a file, all links to the file must be deleted as well. Valid value is a positive integer in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions.

Owner The user name or number (if the name is unknown) of the userid that created or has been given ownership of the file. Valid value consists of up to 8 alphanumeric characters and follows the rules for z/OS userid.

Path Specifies the file(s) of directory type that are selected to access a file. Use paths to organize files to more easily find information; for example, by project, type, purpose, or access permission. Valid value is a sequence of directory files, separated by the slash (/), pointing to a set of files. The length of the path is limited to 1024 characters including the slash character. An example path is /u/IBM/Candle/OE/src

Permissions Defines the permissions that are set for a given user or for a given file. This is a 9-character field. Permissions is the character form of the Access attribute.

To analyze permissions for a file, divide the 9 characters that comprise this attribute into three sets of 3. From left to right, these sets show permissions for:
rwx the owner of the file
rwx the owner’s group
rwx persons other than those already listed

For files:
\[r \] the file can be read
\[w \] the file can be written to
\[x \] the file can be executed
\[\text{blank} \] the corresponding permission is not granted

For directories:
\[r \] the directory can be read
\[w \] entries in the directory can be created, moved, copied, or removed
\[x \] the directory can be searched
\[\text{blank} \] the corresponding permission is not granted

Note: For both files and directories, the following characters can appear only in the execution permission (x) position:
\[s \] In the owner permissions section, indicates that the set-userid bit is on. In the group permissions section, indicates that the set group ID bit is on.
\[S \] provides the same indication as s, but the execute bit is turned off.
\[T \] indicates the sticky bit is on.
\[\text{T} \] indicates the sticky bit is on but the execute bit is turned off.

Size An alias for SizeLo.

SizeHi For files greater than 4 gigabytes, the value that, when multiplied by 4GB and added to the value in the Size field, represents the size of the file. Valid value is a positive integer in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions.

SizeLo The value contained in the first 32 bits of the 64-bit value z/OS UNIX System Services uses to contain the file size. This value will represent the true file size for any but exceptionally large files. Valid value is a positive integer in the range 0 through 2147483647, and includes the use of the *AVG, *MAX, *MIN, or *SUM functions.

Type The type of file. A file can be one of the following types:

- **Dir** Directory File
- **Char** Character Special File
- **File** Regular File
Pipe
 Named Pipe (FIFO) File
Link
 Symbolic Link
Block
 Reserved for Block
Socket
 Socket File

UID Represents the numeric form of the userid that created or has been given ownership of the file. Valid value is a positive integer in the range 0 through 2147483647.

USS HFS ENQ Contention attributes
The USS HFS ENQ Contention attributes describe contention for a given hierarchical file system (HFS). The attributes are only available when enqueue contention exists. Since the HFS uses a scope of Systems to serialize HFS datasets, these attributes contain Scope Systems enqueue contention information only.

ASID ID of the address space issuing the enqueue. Valid format is a 4-byte integer.

Jobname Job name of the address space issuing the enqueue. In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Address Space Name. Valid format is an 8-character string.

ORIGINNODE The monitored z/OS operating system on which UNIX System Services is hosted. Valid value is a character string with a maximum length of 32 bytes.

Status Indicates whether the issuer of the enqueue is waiting for the resource or currently owns the resource. Valid values may be OWNER or WAITER.

System The system in which the issuer of the enqueue is executing. Valid format is an 8-character string.

Time (Secs) Indicates how long, in seconds, OMEGAMON XE on z/OS has observed the issuer of the enqueue waiting for or owning the resource. The time displayed does not represent true ownership. It represents the time the issuer of the enqueue spent waiting for the resource to become available. If issuer has been waiting longer than the time the monitoring agent has been watching, the time represents the amount of time the monitoring agent has been watching. Valid format is a 4-byte integer.

Type Indicates whether the issuer of the enqueue requested exclusive (EXC) or shared (SHR) control.

USS Kernel attributes
The USS Kernel attributes provide information about the kernel address space.

CPU% The percent of CPU time used by the Kernel. Valid value is a 4-byte integer.

CPU Seconds The total CPU time of the application using services provided by UNIX System Services. (Note that this attribute is not just UNIX System Services CPU Time.) Valid values are positive integers in the range 0 through 2147483647.

I/Os Rate The number of I/Os per second. Valid value is a 4-byte integer.

I6Sock Current The number of Internet V6 sockets currently in use.

I6Sock Curr Pct Percentage of maximum sockets allowed which are Internet V6.
I6Sock HW Mark Most Internet V6 sockets in use at one time (high water mark).

I6Sock HW PCT Percentage of maximum sockets in use at one time (high water mark) which are Internet V6.

I6Sock Maximum Maximum Internet V6 sockets allowed.

ISock Current Number of Internet sockets currently in use.

ISock Curr Pct Percentage of maximum sockets in use which are Internet sockets.

ISock HW Mark Most Internet sockets in use at one time (high water mark).

ISock HW Pct Percentage of maximum sockets in use at one time (high water mark) that are Internet.

ISock Maximum Maximum Internet sockets allowed.

Kernel Address Space The name of the address space containing the z/OS support for the services of z/OS UNIX System Services. This address space can also be called the kernel. Valid value is an 8-byte alphanumeric character string and follows the z/OS rules for job name.

ORIGINNODE The monitored z/OS operating system on which UNIX System Services is hosted. Valid value is a character string with a maximum length of 32 bytes.

Max Processes The maximum permissible number of processes in the system. Valid value is a 2-byte integer in the range 5 - 32767.

Message Queue ID Limit The maximum permissible number of message queue IDs. Valid value is a 4-byte integer.

Message Queue IDs Current number of message queue IDs. Valid value is a 4-byte integer.

Message Queue IDs% Ratio of used message queue IDs to maximum message queue IDs. Valid value is a 4-byte integer in the range 0 - 100.

mmap Storage Pages Current number of mmap storage pages. Valid value is a 4-byte integer.

mmap Storage Pages Limit Maximum number of mmap storage pages. Valid value is a 4-byte integer.

mmap Storage Pages% Ratio of used mmap storage pages to the maximum shared mmap storage pages. Valid value is a 4-byte integer in the range 0 - 100.

Number of Active Userids All active users, whether logged on or not. A started task or a batch job could be included in this count. The number of logged-on z/OS UNIX System Services users. Valid value is a positive integer in the range 0 through 32768.

Number of I/Os The total number of I/O operations performed by the kernel address space since it was started. When the value in this field reaches the field maximum, the value wraps to 0 again. Valid value is a positive integer in the range 0 through 2147483647.

Number of I/Os Extended Precision The total number of I/O operations performed by the kernel address space since it was started, with extended precision. The 64-bit I/O count will not wrap until it reaches 9,223,372,036,854,775,807.

Number of Processes The number of processes currently executing (active) in the system. Valid value is a positive integer in the range 0 through 32768.
Number of Syscalls The number of system calls made to the kernel address space since the address space was started. Some trivial system calls are not included. When the value in this field reaches the field maximum, the value wraps to 0 again. Valid value consists of a positive integer in the range 0 through 2147483647.

Release UNIX system's release number in standard format. Valid value is a 16-byte character string.

Semaphore ID Limit Maximum number of semaphore IDs. Valid value is a 4-byte integer.

Semaphore IDs Current number of semaphore IDs. Valid value is a 4-byte integer.

Semaphore ID% Ratio of used semaphore IDs to the maximum number of semaphore IDs. Valid value is a 4-byte integer in the range 0 - 100.

Shared Memory ID Limit Maximum number of shared memory IDs. Valid value is a 4-byte integer.

Shared Memory IDs Current number of shared memory IDs. Valid value is a 4-byte integer.

Shared Memory IDs% Ratio of used shared memory IDs to the maximum number of shared memory IDs. Valid value is a 4-byte integer in the range 0 - 100.

Shared Memory Pages The current total number of shared memory pages in use by all processes in the system. Valid value is a 4-byte integer.

Shared Memory Pages Limit Maximum number of shared memory pages for all segments. Valid value is a 4-byte integer.

Shared Memory Pages% Ratio of used shared memory pages for all segments to the maximum number of shared memory pages for all segments. Valid value is a 4-byte integer in the range 0 - 100.

Shared Storage Pages The current total number of shared pages in use by the system and all of the functions and services that share storage. Valid value is a 4-byte integer.

Shared Storage Pages Limit Maximum number of shared storage pages. Valid value is a 4-byte integer.

Shared Storage Pages% Ratio of used shared storage pages to the maximum number of shared storage pages. Valid value is a 4-byte integer in the range 0 - 100.

Syscall Rate The number of syscalls per second. Valid value is a 4-byte integer.

Sysname Standard format UNIX system name. Valid value is a 16-byte character string.

Total Shared CSTOR Pages Total number of groups in central storage including shared segment pages. Valid value is a 4-byte integer.

Total Shared ESTOR Pages Total number of shared page groups in expanded storage including shared segment pages. Valid value is a 4-byte integer.

Total Shared Fixed Pages Total number of shared page groups fixed in the system, including shared segments pages. Valid value is a 4-byte integer.

Total Shared Pages SYS Total number of shared page groups in the system including shared segments. Valid value is a 4-byte integer.

Used Processes Ratio of the current number of processes to the maximum number of processes that can be supported in the system. Valid value is a 4-byte integer in the range 0 - 100.
USock Current UNIX system's current number of sockets in use.

USock Curr Pct UNIX system's percentage of maximum sockets in use.

USock HW Mark UNIX system's most sockets in use (high water mark) at one time.

USock Maximum UNIX system's maximum of sockets allowed.

USock HW Pct UNIX system's percentage of maximum sockets in use at one time (high water mark).

Version UNIX system version in standard format. Valid value is an 8-byte character string.

zFS Address Space The name of the address space running zFS.

USS Logged on Users attributes

The USS Logged on Users attributes supply terminal identification and time data for each user logged into your monitored systems.

Idle Time (Mins) The elapsed time, in minutes, since the user last caused a system interrupt. If the idle time for a remote user is high, you may want to take action to prevent the misuse of system resources. Valid value is a numeric value in the range 0 through 2147483647 and can include the use of *AVG, *MIN, *MAX, or *SUM functions.

Login Name The name recognized by the system to permit a user to log in. This is a character form of the userid; generally a TSO userid. Valid value is comprised of alphanumeric characters and follows the z/OS rules for userid. An example is JDOE.

Login Time The day and time the user logged into the system. Valid value is a timestamp in the form mm/dd/yy hh:mm:ss.

Name The user's real name specified in alphanumeric characters; for example, John Doe or Doe, John.

ORIGINNODE The monitored z/OS operating system on which UNIX System Services is hosted. Valid value is a character string with a maximum length of 32 bytes.

Process ID Name of the executing process associated with this logged-on user. Valid value is a 4-byte integer.

Remote Host The name of the system host from which a login (rlogin) connection was established. When the connection is local or established via telnet, the remote host is displayed as a blank. Only the first 16 characters of the host name are displayed.

Terminal The identification code of the terminal associated with the logged-in user. Valid value is comprised of alphanumeric characters and follows the z/OS rules for user ID.

UID The numerical ID of the user. Valid value is a positive integer in the range 0 through 2147483647.

USS Mounted File Systems attributes

The USS Mounted File Systems attributes provide basic status and activity information for the Mounted File Systems.

Bytes Read/S The number of bytes read per second. A value may not be available for recently mounted file systems. If a value is not available, Not available is displayed. Valid value is a 4-byte integer.
Bytes Written/S The number of bytes written per second. A value may not be available for recently mounted file systems. If a value is not available, Not available is displayed. Valid value is a 4-byte integer.

DDNAME The DDNAME of the hierarchical file system. This attribute is not applicable to Temporary File Systems, automount directories, or file systems owned by another system (such as in the case of shared HFSs). Valid value is an 8-character string.

Dir I/Os/S The number of directory I/Os per second. A value may not be available for recently mounted file systems. If a value is not available, Not available is displayed. Valid value is a 4-byte integer.

File System Name z/OS name of the HFS dataset that contains the file system. *AMD indicates an automount mount point. /TMP indicates a Temporary File System (TFS). Valid value is a string with maximum length of 44.

ORIGINNODE The monitored z/OS operating system on which UNIX System Services is hosted. Valid value is a character string with a maximum length of 32 bytes.

Members The number of members in the file system (number of files plus number of subdirectories). For Temporary File Systems (TFSs), Not available is displayed. Valid value is a 4-byte integer.

Mode Indicates whether the file is read or write. Valid values are READ or RDWR.

Mount Point Mount point or file system root. Sometimes referred to as the mount point path name or mount point directory. Valid value is a string with a maximum length of 1024.

Own Sys Identifies the system that 'owns' the mount.

Percent Used Percentage of allocated space in the file system that has been used. For automount file systems, Not available is displayed. Valid value is a 4-byte integer.

Quiesce Job Name of the job that issued a quiesce for this file system. Valid value is an 8-byte character string.

Quiesce PID Process ID of the process that issued a quiesce for this file system. Valid value is a 4-byte integer.

Quiesce Sys Name of the system that issued a quiesce for this file system. Valid value is an 8-byte character string.

Read I/Os/S Number of data blocks read per second. One or more data blocks may be required to satisfy an application's call to the z/OS UNIX System Services read API. The data block may have been read from DASD or from a cache. The value shown here is the upper bound with respect to actual device I/O caused by read requests to this file system. A value may not be available for recently mounted file systems. If a value is not available, Not available is displayed. Valid value is a 4-byte integer.

Reads/S Number of reads per second. In this context, a read is an application's call to the z/OS UNIX System Services read API. A value may not be available for recently mounted file systems. If a value is not available, Not available is displayed. Valid value is a 4-byte integer.

Security Specifies the security available for this file system. Valid values are SECURITY and NOSECURITY.

SETUID Specifies whether SETUID and SETGID mode bits are honored when a program in the file system is executed. Valid values are SETUID and NOSETUID.
Status Status of the file system. Valid values are:
- Active
- Dead
- Resetting
- Unmounting (Drain)
- Unmounting (Force)
- Unmounting (Immediate)
- Unmounting
- Unmount (immediate) failed
- Quiiesced
- Mounting
- Mounting (asynchronous)

Status Duration The length of time in seconds that the file system has been observed in its current status. Valid value is a 4-byte integer or Not available.

SYSZDSN ENQ Wait Ct The number of contenders for the SYSZDSN resource. The HFS data sets are protected by enqueues using major names SYSZDSN and SYSDSN. Both enqueues are for SHARED control unless the HFS is mounted as Read/Write (RDWR). In that case, the SYSZDSN enqueue is for EXCLUSIVE control.

Normally, the OMVS address space should hold this resource and there should be no contention; that is, this column normally contains the value 0. If contention exists (that is, this column contains a value of 2 or greater), right-click on a value in the row to navigate to a report showing all contenders for the resource. Valid value is a 4-byte integer.

SYSDSN ENQ Wait Ct The number of contenders for the SYSDSN resource. The HFS data sets are protected by enqueues using major names SYSZDSN and SYSDSN. Both enqueues are for SHARED control unless the HFS is mounted as Read/Write (RDWR). In that case, the SYSDSN enqueue is for EXCLUSIVE control. Valid value is a 4-byte integer or Not available.

Normally, the OMVS address space should hold this resource and there should be no contention; that is, this column normally contains the value 0. If contention exists (that is, this column contains a value of 2 or greater), right-click on a value in the row to navigate to a report showing all contenders for the resource. Valid value is a 4-byte integer or Not available.

SYSZDSN Wait Seconds The longest time, in seconds, that any one waiter has been waiting for the SYSZDSN resource. The enqueue contention status of the HFS data sets is observed periodically. A waiter that is waiting for a resource for two consecutive observations is assumed to have been waiting for the resource for the entire observation interval. If ERR appears in this column, the wait time could not be determined. This value occurs rarely and could be the result of too many resource conflicts. If you are seeing this value occur regularly, you may want to write a situation triggered by this condition to determine the cause of the problem.

(See also SYSZDSN Wait Ct for general information about the enqueues the OMVS address space uses for HFS data sets.) Valid value is a 4-byte integer or Not available.

SYSDSN Wait Seconds The longest time, in seconds, that any one waiter has been waiting for the SYSDSN resource. The enqueue contention status of the Hierarchical File System (HFS) data sets is observed periodically. A waiter that is waiting for a resource for two consecutive observations is assumed to have been waiting for the resource for the entire observation interval. If ERR appears in this column, the wait time could not be determined. This value occurs rarely and could be the result of too many
resource conflicts. If you are seeing this value occur regularly, you may want to write a situation triggered by this condition to determine the cause of the problem.

(See also SYSDSN Wait Ct for general information about the enqueues the OMVS address space uses for HFS data sets.) Valid value is a 4-byte integer or Not available.

Total Size The total size of the file system in units of 1K (1024) bytes. Not available may be displayed if an error was encountered when determining this value. Valid value is a 4-byte integer.

Total Used Total used space in units of 1K (1024) bytes. Not available may be displayed if an error was encountered when determining this value. Valid value is a 4-byte integer.

VOLSER The volume serial number of the volume or volumes on which the HFS resides. Up to 20 volseres can be displayed. Valid value is a string of length 139.

Write I/Os/S Number of data blocks written per second. One or more data blocks may be required to satisfy an application's call to the z/OS UNIX System Services write API. The data block may have been written to DASD or to a cache. The value shown here is the upper bound with respect to actual device I/O caused by write requests to this file system. A value may not be available for recently mounted file systems. If a value is not available, Not available is displayed. Valid value is a 4-byte integer.

Writes/S The number of writes per second. In this context, a write is an application's call to the z/OS UNIX System Services write API. A value may not be available for recently mounted file systems. If a value is not available, Not available is displayed. Valid value is a 4-byte integer.

USS Processes attributes
The USS Processes attributes provide detailed information about each process your system is currently executing.

ASID The numeric identifier of the address space containing this process. Valid value is a positive integer in the range 0 through 65535. (This value is generally not useful when defining situations.)

Command The individual command that initiated the process, together with any specified arguments. The column contains the command as entered; path information might not have been specified. The **Path** column always contains the path to the command, but does not contain any arguments, even if arguments were entered. This attribute can be any valid command.

z/OS UNIX System Services permits the total length of a command and its arguments to be up to 1024 bytes. If the command and its arguments are longer than the width of the column, the information is truncated and a plus sign (+) is displayed in the last position of the column.

If this is a traditional z/OS load module residing in a partitioned data set (PDS) or PDS/E (as opposed to an z/OS UNIX executable residing in an HFS file), this column will contain the 8-character load module name.

Command Name The command name alone, stripped of any parameters, to be used in situations.

Current VNode Tokens The current number of VNode tokens. A VNode token is an internal identifier used to refer to a file or a directory. Valid value is a 4-byte integer.

Effective Group ID The current group ID, but not necessarily the user's own ID. For example, a user logged in under a particular group ID may be able to change to another group ID. The ID to which the user changes becomes the effective group ID. Generally, this attribute contains a copy of the effective
group identifier at the time a program is executed. The effective group ID, along with the effective userid, is used to determine file access permissions. Valid value is a positive integer in the range 0 through 2147483647.

Effective User A character representation of the effective userid. If the effective user ID is 0 (superuser), and if more than one user is assigned superuser (or root) authority, then the information in this column is unpredictable. A valid value consists of alphanumeric characters and follows the z/OS rules for user IDs.

Effective Userid The current user ID, but not necessarily the user's login ID. For example, if a user changes to another user's ID (assuming the proper authority), the ID to which the user changes becomes the effective user ID until the user switches back to the original login ID. The effective userid, together with the effective group ID, is used to determine file access permissions. Initially, this value is the same as the numeric userid (UID), but can be changed as the result of issuing an EXEC or SETUID. Valid value is a positive integer in the range 0 through 2147483647.

Execution State The execution state of the process. Valid values are:
- Unknown
- IPC_MSGRCV_WAIT
- IPC_MSGSND_WAIT
- Communication_kernel_wait
- IPC_SEMOP_WAIT
- Quiesce_freeze
- File_system_kernel_wait
- MVSPAUSE
- Process_terminated_still_group_leader
- Other_kernel_wait
- Quiesce_termination_wait
- Running_not_in_kernel_wait
- Sleep().issued
- Waiting_for_child_process
- Fork()_a_new_process
- Process_terminated_parent_not

Foreground Process Group A process group whose member processes have certain privileges when accessing the controlling terminal. These privileges are denied to processes in background process groups. Valid value is a positive integer in the range 0 through 2147483647.

Jobname The z/OS name of the batch job, started task, or TSO address space containing this process. In the OMEGAMON enhanced 3270 user interface this attribute is displayed as Address Space Name.

Leader Session ID The process ID of the process that created the session to which this process belongs. (A session is a collection of one or more process groups.) Valid value is a positive integer in the range 0 through 2147483647.

Maximum VNode Tokens The maximum number of VNode tokens. A VNode token is an internal identifier used to refer to a file or a directory. Valid value is a 4-byte integer.

MVS Status The status of the z/OS subsystem process. Valid values are Normal, Swapped_Out, or Not_Used.

ORIGINNODE The monitored z/OS operating system on which UNIX System Services is hosted. Valid value is a character string with a maximum length of 32 bytes.
Parent Process ID The process ID of the parent process; that is, the process that created this process. When a process terminates, its children will be adopted by PID 1. This attribute is not useful in defining a situation. Valid value is a positive integer in the range 0 through 2147483647.

Path The full path to the command. This differs from the Command column in that the Command column contains the command as entered (path might not have been specified) and any specified options. The information in this column may be truncated if it contains too many characters. If truncation occurs, a plus sign (+) is displayed in the last column position.

Process Group A collection of processes that permits the signalling of related processes. Each process in the system is a member of a process group that is identified by a process group ID. Valid value is a positive integer in the range 0 through 2147483647.

Process ID Numerical identifier that z/OS UNIX System Services assigns to a process. Valid value is a positive integer in the range 0 through 2147483647.

Process Status The current state of the process. This information is generally meaningful only to persons having knowledge of z/OS UNIX System Services internals. Valid values are:
- One_Regular_Task_in_One_Process_in_Addr_Space
- Stopped_Process
- PTrace_Active__Multiple_Processes_In_Addr_Space
- PTrace_Active
- Multiple_Tasks_in_Process__Pthread_Task_in_Process
- Multiple_Tasks_in_Process__Multiple_Processes_in_Addr_Space
- More_Than_One_Open_Task_in_Process
- Pthread_Task_in_Process
- More_Than_One_Process_in_Addr_Space
- Not_Used

Real Group ID The group ID of the user who created the process and is defined in the password file. Valid value is a positive integer in the range 0 through 2147483647.

Real User A character representation of the real userid. If the real userid is 0 (superuser), and if more than one user is assigned superuser (or root) authority, then the information in this column is unpredictable. A valid value consists of alphanumeric characters and follows the z/OS rules for userid.

Real Userid The user ID specified in the /etc/password file. The attribute of a process that, at the time of process creation, identifies the user who created the process. Valid value is a positive integer in the range 0 through 2147483647.

Saved-Set Group ID The effective group ID at the time the setgid function was invoked (usually by exec) to change the effective group id; that is, the effective group ID before it was last changed. Valid value is a positive integer in the range 0 through 2147483647.

Saved-Set User A character representation of the saved-set userid. If the saved set userid is 0 (superuser), and if more than one user is assigned superuser (or root) authority, then the information in this column is unpredictable. A valid value consists of alphanumeric characters and follows the z/OS rules for userid.

Saved-Set Userid The effective userid at the time the setuid function was invoked (usually by exec) to change the effective userid; that is, the effective userid before it was last changed. Valid value is a positive integer in the range 0 through 2147483647.

Server Flags Server Flags.
Server Name The name of the server. Valid value is a string of length 32.

Server Type The type of server. Valid values are Not available, File, or Lock.

ServTypeH The Server Type in hexadecimal.

Start Time The time the process started executing. Valid value is a timestamp in the form mm/dd/yy hh:mm:ss.

Starting Time The time the process started executing. Valid value is a 4-byte integer.

System CPU Time The CPU time devoted to executing z/OS UNIX System Services system kernel code. System CPU time includes time spent executing system calls and performing administrative functions. It does not include some trivial calls. The value displayed is in seconds to the nearest hundredth of a second. For example, a displayed value of 1.23 would be 1 23/100 seconds. Valid values are numeric in the range 0 through 2147483647 and include the use of the *AVG, *MAX, *MIN, or *SUM functions.

Terminal Device The name of the terminal device that started the process. A valid value consists of alphanumeric characters and follows the z/OS rules for userid.

Total Size Represents the amount of virtual storage (in bytes) allocated to the process or to all processes running in a given address space. This value applies to extended (above the line) private storage only. It is calculated by subtracting the lowest allocated address in extended private storage from the highest allocated address. In the Tivoli Enterprise Portal, this value is displayed in bytes. In the OMEGAMON enhanced 3270 user interface, this value may be converted to kilobytes or megabytes.

UNIX Run Time CPU time for UNIX work. Valid value is a 4-byte integer.

UNIX Run Time% Percentage of CPU execution for UNIX work. Valid value is a 4-byte integer in the range 0 - 100.

User CPU Time The CPU time that has been used by this process (excluding execution of kernel code). User CPU time includes time spent executing both user programs and library functions. It does not include CPU time spent executing system calls. The value displayed is in seconds to the nearest hundredth of a second. For example, a displayed value of 1.23 would be 1 23/100 seconds. Valid values are numeric in the range 0 through 2147483647 and include the use of the *AVG, *MAX, *MIN, or *SUM functions.

USS Threads attributes
The USS Threads attribute group shows information about all threads for a given process.

ASID ID of the address space containing this thread. Valid value is a 4-byte integer.

ORIGINNODE The monitored z/OS operating system on which UNIX System Services is hosted. Valid value is a character string with a maximum length of 32 bytes.

Process ID ID of the process this thread belongs to. Valid value is a 4-byte integer.

Process ID Hex Hexadecimal representation of the ID of the process this thread belongs to. Valid value is a 4-byte integer.

Thread ID The ID of the thread. Valid value is a character string of maximum length 20.

Thread Sequence Sequence portion of the thread ID. Valid value is a 4-byte integer.
UNIX Run Time CPU time for UNIX work. Valid value is a 4-byte integer.

UNIX Run Time% Percentage of CPU time for UNIX work. Valid value is a 4-byte integer in the range 0 - 100.

Weight Weight of the thread. Valid value may be NORMAL or LIGHT.

WLM Service Class Resources attributes

The WLM Service Class Resources Attribute Group monitors service class period performance relative to goals.

Actual Host Host actual value, either a response time in milliseconds or a percentage, based on the goal type. The value in this column is 0 if the goal type is Discret or Sysgoal. Valid value is 4-byte integer having 1 decimal place.

Average Response Time The average host response time of transactions in this service class. Valid value is an integer in the range of 0 through 2147483647, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions. If used as a threshold in a situation, this value should be expressed in milliseconds; for example 1200.

Average Storage The average storage for this service class, excluding private virtual storage allocated in this service class through cross-memory services on behalf of other service classes. Valid value is a 4-byte integer.

CSS Priority Average Channel Subsystem (CSS) DASD I/O priority observed for address spaces with I/O Activity for a given Service Class Period (SCP). For SCPs with no observed I/O activity, or if CSS I/O priority management is disabled in the CPC Reset Profile, a value of Not available will be reported. Valid value is a 4-byte integer in the range 0 -255.

Class Flag Categorizes the service class based on the general types of transactions managed by it. Valid values:
- Transaction. Service class manages subsystem transactions such as CICS or IMS transactions.
- Address Space. Service class handles workloads such as batch jobs and started tasks.
- TSO. Service class handles TSO users.

Duration The number of processor service units the period may use before work is passed to the next period. Valid value is an integer in the range of 0 through 2147483647 and can include the use of the *AVG, *MAX, *MIN, or *SUM functions.

Goal Importance The importance of this goal for the service class period. Goal importance for the service class is set as part of the Workload Manager (WLM) policy. When WLM cannot satisfy all goals, it tries to meet goals for more important service class periods first. Valid values:
- Not available
- Highest
- High
- Medium
- Low
- Lowest

Goal Percentile The percentage of work in the service class period (that is, the percentage of transactions) that completed within the expected response time (or goal value). Goal percentile is valid for percentile response time goals only. This value is set by the system administrator for this service class when the
WLM policy is defined. It is not a measured result. Valid value is an integer in the range 0 to 100. This value can include the use of the *AVG, *MAX, *MIN, or *SUM functions.

Goal Type The type of goal for the service class period. Valid values:
- Not available
- SysGoal. Indicates that z/OS is to assign as high a priority as necessary to complete the work. It is reserved for use by the operating system to help prioritize system-related tasks.
- Discret (Discretionary). Indicates that no specific service goal was defined for this service policy for the period. Work should run when resources are available. If multiple periods exist for a service class, this goal type applies only to the last period.
- Velocity. A percentage value indicating how fast work should execute when ready, without being delayed for processor or storage access. Velocity goals reflect the ratio of time when a unit of work was ready to use the CPU to the time work was actually using the CPU. This type of goal is useful for managing long-running non-transaction servers such as job entry subsystem (JES) or hierarchical storage management (HSM). A high percentage indicates that work should process quickly; a low percentage indicates that a greater amount of delay is acceptable.
- AvgResp. Specifies the average amount of time in which all work should complete.
- PctResp. %Resp mmm < mmmmuu, where mmm is the percentage of work to be completed, mmmm is the response time to be achieved, and uu is a unit of time (milliseconds, seconds, minutes, or hours).
- Velocio. A percentage value indicating how fast work should execute when ready, without being delayed for processor or storage access. Velocity goals reflect the ratio of time when a unit of work was ready to use the CPU to the time work was actually using the CPU or I/O. This type of goal is useful for managing long-running non-transaction servers such as job entry subsystem (JES) or hierarchical storage management HSM. A high percentage indicates that work should process quickly; a low percentage indicates that a greater amount of delay is acceptable.

Goal Value A value representing the goal assigned to the service class period. Values corresponding to goal types appear on the workspace as follows:
- SysGoal. Actual goal values display as Not available. This type of goal indicates that z/OS is to assign as high a priority as necessary to complete the work, and is reserved for use by the operating system to help prioritize system-related tasks.
- Discret (Discretionary). Actual goal values display as Not available. No service goal was defined for this service policy for the period.
- Velocity. Velocity > mnn%, where mnn is a numeric value indicating how fast work should complete.
- AvgResp. AvgResp < mmmmuu, where mmm.nn is the average amount of time in which all work should complete and uu is a unit of time (milliseconds, seconds, minutes, or hours).
- PctResp. %Resp mmm < mmmmuu, where mmm is the percentage of work to be completed, mmmm is the response time to be achieved, and uu is a unit of time (milliseconds, seconds, minutes, or hours).
- Velocio. Velocio > mnn%, where mnn is a numeric value indicating how fast work should complete.

I/O Priority Average I/O Subsystem - UCB/Control Unit (IOS) priority observed for address spaces with I/O activity for a given Service Class Period (SCP). For Service Class Periods with no observed I/O activity, or if I/O priority management has been set to NO in the Workload Manager (WLM) policy, a value of Not available will be reported. Valid value is a 4-byte integer in the range 0-255.

I/O Rate The number of I/Os per second as a measurement of data set and JES spool I/O activity for all data sets associated with this service class period. Valid value is a number to one decimal place accuracy.

IFA Service Units zSeries Application Assist Processor (zAAP) service units as standard CP service units in floating point. This column is valid only on z/OS Version 1.6 and later. Valid value is a string consisting of a floating number followed by a decimal point and up to 22 numbers. You cannot use any numerical functions such as *AVG, *MAX, *MIN with this attribute.
IFA on CP Service Units zSeries Application Assist Processor (zAAP) work on regular processor service units as standard CP service units. This column is only valid on z/OS Version 1.6 and later. Valid value is a string consisting of a floating number followed by a decimal point and up to 22 numbers. You cannot use any numerical functions such as *AVG, *MAX, *MIN with this attribute.

Managed System z/OS operating system in your enterprise that an OMEGAMON XE on z/OS agent is monitoring. Valid value is a character string with a maximum length of 32 bytes.

Percent CPU The percentage of CPU time consumed by this service class period. Valid value is a 4-byte integer in the range 0.00 - 100.00.

Percent IFA Percentage of Integrated Facility for Applications (IF) resource used by the service class period. The value is normalized to reflect the faster speed of an IFA compared to a standard processor if LPAR is dispatched on a knee-capped processor. Valid range is 0.00 - 100.00.

Percent IFA on CP Percentage of standard processor resource used by the service class period performing Integrated Facility for Applications (IF) related work. This occurs when IFACrossOver=YES is specified in IEAOPTx. This column is Valid range is 0.00 - 100.00.

Percent zIIP Percentage of System z9 Integrated Information Processors (zIIP) resource used by the service class period. The value is normalized to reflect the faster speed of a zIIP compared to a standard processor if the LPAR is dispatched on a restricted processor. Valid range is 0.00 - 100.00.

Percent zIIP On CP Percentage of standard processor resource used by the service class period performing System z9 Integrated Information Processors (zIIP) related work. This occurs when zIIP processors need help and zIIP-eligible work is place on the standard processor dispatch queue. Valid range is 0.00 - 100.00.

Performance Index Performance index for the host; a measure of how well a service class period is performing relative to its goal. Valid value is a 4-byte integer in the range 0.00 - 100.00. A performance index of less than 1 indicates that the period is performing better than its goal. A performance index of 1 indicates the period is meeting its goal. A performance index greater than 1 indicates the period is performing worse than its goal.

Average and percentile response time performance indexes are calculated by dividing the actual values by the goal values. The velocity performance index is calculated by dividing the goal value by the actual value.

Period The service class period number. If specifying a situation where the values should represent the service class as a whole, then specify Period=“SUM”. Period is used when building a situation for workflow thresholds at the service class level. Valid value is an integer in the range 1 through 8, and can include the use of the *AVG, *MAX, *MIN, or *SUM functions.

Promoted Percent The percentage of time the service class workload ran at a promoted dispatching priority.

Resource Group A group that specifies how much processor capacity is available to one or more service classes. Resource groups are used to limit or guarantee some amount of processing capacity to a service class or set of service classes.

Service Class The name of the service class being reported on. Valid value is a simple text string of from 1 through 8 characters; for example, TSO. A service class represents a uniquely-named group of work having common performance requirements such as similar performance goals, availability requirements, resource requirements, or business importance.

Service Class Description The text describing this service class as specified in the active service policy.
Workload The name of the workload that contains the service class. Valid value is a simple text string of from 1 through 8 characters; for example, BATCH.

Workload Description The text describing this workload as specified in the active service policy.

zIIP Service Units Number of service units consumed by the service class period performing work on a System z9 Integrated Information Processor.

zIIP on CP Service Units Number of service units consumed by the service class period performing work eligible for System z9 Integrated Information Processors on a standard processor.
Chapter 11. Situations

Situations are descriptions of conditions that you want to monitor on your z/OS systems. OMEGAMON XE on z/OS provides predefined situations which check for system conditions that are typically considered to be problematic or noteworthy and trigger event indicators in the Tivoli Enterprise Portal Navigator.

Predefined situations must be distributed and started before they can begin monitoring. Evaluate each situation carefully and adjust its thresholds before you activate them. Some situations are shipped with very high or very low values, which essentially disable them. You should examine these situations and customize them with values that are meaningful for your installation.

You can examine the conditions or values being monitored using the Situation editor in the Tivoli Enterprise Portal and, if necessary, change them to ones better suited to your environment. You can also use the predefined situations as models for creating your own situations using OMEGAMON XE on z/OS attributes.

Note: If you choose to make changes to a predefined situation, create a copy of the situation and edit the copy to preserve the original situation in the form in which it was shipped and so your new situation is not overwritten when the product is updated.

Activating predefined situations

Only two of the Tivoli Enterprise Portal predefined situations have been activated. All of the other predefined situations must be activated before they can begin monitoring and issuing alerts.

The KM5_No_Sysplex_DASD_Filter_Warn and KM5_Weak_Plex DASD_Filter_Warn are shipped active. This means that these situations are set to run at when the Tivoli Enterprise Monitoring Server starts up and distributed to the MVS_SYSPLEX managed system list. The monitoring server automatically populates this managed system list with each online sysplex proxy node and these situations begin monitoring when the Tivoli Enterprise Monitoring Server starts.

All the other predefined situations must be activated.

To activate a situation, you distribute (assign) it to one or more managed systems or managed system lists and start it. If you want the situation to continue running across Tivoli Enterprise Monitoring Server restarts, check the Run at startup option. For instructions for activating situations, see IBM Tivoli OMEGAMON XE for z/OS: User’s Guide or the Tivoli Enterprise Portal online Help.

Sysplex situations

The sysplex situations monitor the performance and status of sysplex-level resources such as coupling facilities, global enqueue, global resource serialization (GRS) ring systems, shared DASD groups, and cross-system coupling facilities (XCFs), as well as the service classes, report classes, and resource groups that use those resources.

Descriptions of sysplex situations are list in alphabetical order. You can access the description of a specific situation by selecting its name in the Contents tab.
KM5_Model_Sysplex_DASD_Filter

KM5_Model_Sysplex_DASD_Filter uses the DASD Device Collection Filtering attributes Average Response time and I/O Rate, but does not provide any preset values. This situation is intended for use as the basis for creating your own DASD filter. The formula is:

\[
*\text{VALUE DASD Device Collection Filtering.Average Response Time} * \gt 0.0 \quad \text{AND} \quad *\text{VALUE DASD Device Collection Filtering.I/O Rate} * \gt 0.0
\]

No DASD device data is collected unless a DASD filter situation is activated. To create a DASD filter, use the Situation editor in the Tivoli Enterprise Portal to create a copy of this situation and specify values appropriate to your environment. You can further refine the filter criteria using other attributes in the DASD Device Collection Filtering attribute group. Set the situation to autostart, and distribute it to the *MVS_SYSPLEX managed system list.

KM5_No_Sysplex_DASD_Filter_Warn

KM5_No_Sysplex_DASD_Filter_Warn is raised when no data is being reported. This indicates either that no DASD filter situation is being used or that the filter being used is too strong and all devices are eliminated by the criteria. The formula is:

\[
*\text{IF COUNT Sysplex DASD Group.Volume Serial Number} * \eq 1 * \text{AND} *\text{VALUE Sysplex DASD Group.Volume Serial Number} * \eq none
\]

This situation is set to run at startup and distributed to the *MVS_SYSPLEX managed system list.

If there is no sysplex DASD filter in place and you want to start monitoring DASD information, add a sysplex DASD situation. You can use the product-provided situation KM5_Model_Sysplex_DASD_Filter as the basis for your filtering situation. To use the model:

- Adjust the threshold for Average Response Time and I/O Rate to appropriate values for your environment.
- Use the Save as option to save the situation with a new name, then distribute it to the *MVS_SYSPLEX managed system list.
- On the Formula tab, select the required sampling interval.
- Set the situation to run at startup.

If there is a sysplex DASD filter in use, weaken the filtering criteria to allow some devices to be monitored.

KM5_Weak_Plex_DASD_Filter_Warn

KM5_Weak_Plex_DASD_Filter_Warn monitors for a high count of DASD devices, which indicates either that the DASD filtering criteria are not strong enough or that the threshold needs to be raised to reduce the number of reported devices. The provided threshold is 1000, but you change the threshold to avoid false positive results. The formula is:

\[
*\text{COUNT Sysplex DASD Group.Volume Serial Number} * \gt 1000
\]

This situation is auto-started and distributed to the *MVS_SYSPLEX managed system list.

MVS_CFStruct_Status_Crit

MVS_CFStruct_Status_Crit monitors the status of coupling facility structures and raises a Critical alert when a structure has failed.

The formula is:
VALUE CF_Structures.Structure_Status EQ Failed

If this situation is raised, an immediate rebuild is necessary. If another coupling facility is available as a backup, it should be made the primary facility.

MVS_CFStruct_Status_Warn

MVS_CFCFStruct_Status_Warn monitors the status of coupling facility structures and raises a Warning alert when a structure is in “Rebuild” status.

The formula is:

\[
\text{VALUE CF_Structures.Structure_Status GT 0X14}
\]

If this situation is raised, a coupling facility structure is about to fail. A rebuild may soon be necessary. If another coupling facility is available as a backup, it should be made the primary facility.

MVS_CFStructStat_FalseLock_Crit

MVS_CFCFStructStat_FalseLock_Crit monitors the statistics related to coupling facility structures and raises a Critical alert when the false lock table contention count reaches a high level.

The formula is:

\[
\text{VALUE CF_Structures.False_Lock_Table_Entry_Contention_Count GT 100}
\]

False contention should be less than half of total lock contention or less than 0.5% of total lock requests. If this condition occurs frequently, the size of the lock structure should be increased.

MVS_CFStructStat_FalseLock_Warn

MVS_CFCFStructStat_FalseLock_Warn monitors the statistics related to coupling facility structures and raises a Warning alert when false contention for lock structures is approaching a high level.

The formula is:

\[
\text{VALUE CF_Structures.False_Lock_Table_Entry_Contention_Count GT 0 AND VALUE CF_Structures.False_Lock_Table_Entry_Contention_Count LE 100}
\]

False contention should be less than half of total lock contention or less than 0.5% of total lock requests. If this condition occurs frequently, the size of the lock structure should be increased.

MVS_CFStructToMVS_Requests_Crit

MVS_CFCFStructToMVS_Requests_Crit monitors the number of requests that the coupling facility makes to a given z/OS system and raises a Critical alert when the coupling facility performance has deteriorated severely.

The formula is:

\[
\text{VALUE CF_Structure_to_MVS_System.Average_Queued_Request_Time GT 100 OR VALUE CF_Structure_to_MVS_System.Request_Rates GT 1000}
\]

If this situation is raised, check the status of the coupling links and the performance data for the coupling facility machine or LPAR. A link may be down or a processor maybe offline or malfunctioning. If the coupling facility is in an LPAR with shared processors, the overall CPC may be fully loaded, thus causing the LPAR weights to come into effect. If more LPs are assigned to the CF than its share of total weight can support, try varying an LP offline.
MVS_CFStructToMVS_RequestsWarn

MVS_CFStructToMVS_RequestsWarn monitors the number of requests that the coupling facility makes to a given z/OS system and raises a Warning alert when the coupling facility performance has deteriorated to the extent that requests may begin to time out or otherwise fail.

The formula is:

\[(\text{VALUE CF_Structure_to_MVS_System.Average_Queued_Request_Time GT 20.0 AND VALUE CF_Structure_to_MVS_System.Average_Queued_Request_Time LE 100.0)} \text{ OR (VALUE CF_Structure_to_MVS_System.Request_Rates GT 500.0 AND VALUE CF_Structure_to_MVS_System.Request_Rates LE 1000.0)} \text{ OR VALUE CF_Structure_to_MVS_System.Requests_Converted GT 50}\]

If this situation is raised, you may have exhausted the current capacity. Check the status of the coupling links and the performance data for the coupling facility machine or LPAR.

MVS_CFStructUsers_Connect_Crit

MVS_CFStructUsers_Connect_Crit monitors the connectivity status of coupling facility structure users and raises a Critical alert when a connection has failed and a rebuild is not working.

The formula is:

\[\text{VALUE CF_Clients.Connection_Status EQ Failing}\]

If another coupling facility is available as a backup, it should be made the primary facility. Check the links and the status of the coupling facility hardware.

MVS_CFStructUsers_Connect_Warn

MVS_CFStructUsers_Connect_Warn monitors the connectivity status of coupling facility structure users and raises a Warning alert when the connection status indicates a reconnection, or when there are any problem connections ("Failed" or "Failed Persistent").

The formula is:

\[\text{VALUE CF_Clients.Connection_Status EQ ConnectedRebuild OR VALUE CF_Clients_Connection_Problem_Flag GT 0}\]

If this situation is raised, it indicates that coupling facility connections are failing and a rebuild is in effect. If another coupling facility is available as a backup, it should be made the primary facility. Check the links and the status of the coupling facility hardware.

MVS_CFSystems_Performance_Crit

MVS_CFSystems_Performance_Crit monitors the performance of coupling facility systems and raises a Critical alert when CPU utilization exceeds 95%, an indicator shows coupling facility system status as "Failed", or the I/Os per second exceed 500.

The formula is:

\[\text{VALUE CF_Systems.CPU_Percent GT 95 OR VALUE CF_Systems.Status EQ Failed OR VALUE CF_Systems.I_Os_Per_Second GT 5000}\]

If this situation is raised, it may indicate that coupling facility is in an overload condition. Check the performance data for the coupling facility and, if it is unacceptable, determine if some large structures...
can be replicated in another facility to reduce the data rate. The long term solution may require an increase in coupling facility capacity or a technology upgrade to faster coupling links.

MVS_CFSSystems_Performance_Warn

MVS_CFSSystems_Performance_Warn monitors the performance of coupling facility systems and raises a Warning alert when:

- CPU utilization is between 80% and 95%
- a path is not operational
- the system status is “Reconcile”
- I/O rates are between 200 and 500 per second or structures out-of-policy count is greater than 0.

The formula is:

\[
\]

If this situation is raised, it may indicate that coupling facility is in an overload condition. Check the performance data for the coupling facility and, if it is unacceptable, determine if some large structures can be replicated in another facility to reduce the data rate. The long term solution may require an increase in coupling facility capacity or a technology upgrade to faster coupling links.

MVS_CFSSystemPaths_Busy_Crit

MVS_CFSSystemPaths_Busy_Crit monitors the number of times a system path was busy when a request was made and raises a Critical alert when a path busy condition occurs greater than 95% of the time.

The formula is:

\[
\text{VALUE CF_Path.Contention_Percent GT 95}
\]

Severe performance degradation will continue until action is taken to reduce the traffic or increase the data bandwidth to the coupling facility. Traffic may be reduced by adding coupling facilities; bandwidth may be increased by using more links or faster links. See the IBM Redbook OS/390 Parallel Sysplex Configuration Volume 2: Cookbook, publication number SG24-5638, for details and further recommendations.

MVS_CFSSystemPaths_Busy_Warn

MVS_CFSSystemPaths_Busy_Warn monitors the number of times a system path was busy when a request was made and raises a warning when a path busy condition occurs between 60% and 95% of the time, or a path is not operational.

The formula is:

\[
((\text{VALUE CF_Path.Contention_Percent GT 60 AND VALUE CF_Path.Contention_Percent LE 95}) \text{ OR \text{VALUE CF_Path.Status EQ NotOperational}})
\]

This situation is raised when coupling facility path contention is high, or a link is down. Performance degradation may continue until action is taken to reduce the traffic or increase the data bandwidth to the coupling facility. Traffic may be reduced by adding coupling facilities; bandwidth may be increased by using more links or faster links. See the IBM Redbook OS/390 Parallel Sysplex Configuration Volume 2: Cookbook, publication number SG24-5638, for details and further recommendations.
MVS_GRS_RespTime_Crit

MVS_GRS_RespTime_Crit monitors the response time in the global resource serialization (GRS) complex and raises a Critical alert when response time exceeds the specified threshold, 25 milliseconds by default.

The formula is:

```
VALUE GRS_Ring.Response_Time *GT 25
```

If no hardware problem is indicated, this situation indicates that there is probably a bottleneck in one of the connected systems, causing the GRS token to become stalled. If the sysplex is a parallel sysplex, this kind of problem can be eliminated by changing to a GRS Star configuration, using the coupling facility to hold and exchange GRS data across all systems in the sysplex.

MVS_GRS_RespTime_Warn

MVS_GRS_RespTime_Warn monitors the response time in the global resource serialization complex (GRS) and raises a Warning alert when response time is high or one of the systems in the ring is inactive.

The formula is:

```
```

If this situation is raised, use operator commands to display GRS status and attempt to restart the GRS ring. If no hardware problem is indicated, there is probably a bottleneck in one of the connected systems, causing the GRS token to become stalled. If the sysplex is a parallel sysplex, this kind of problem can be eliminated by changing to a GRS Star configuration, using the coupling facility to hold and exchange GRS data across all systems in the sysplex.

MVS_XCFGroupMembers_Status_Crit

MVS_XCFGroupMembers_Status_Crit monitors the status of the members of cross-coupling facility groups and raises a Critical alert when XCF connection to one or more systems has been lost.

The formula is:

```
VALUE XCF_Member.Status EQ Missing
```

If this situation is raised, check that the systems are up, then use operator commands to try to restart the connections.

MVS_XCFGroupMembers_Status_Warn

MVS_XCFGroupMembers_Status_Warn monitors the status of the members of cross-coupling facility groups and raises a Warning alert when an XCF connection to one or more systems has failed.

If this situation is raised, use operator commands to try to restart the connections.

The formula is:

```
VALUE XCF_Member.Status EQ Failed
```
MVS_XCFSystemPaths_Crit

MVS_XCFSystemPaths_Crit monitors the number of times a cross system coupling facility path was busy when a request was made and raises a Critical alert when that count exceeds 95% of the defined limit.

The formula is:

\[\text{VALUE XCF_Path.Retry_Percent GT 95} \]

If this situation is raised, an XCF path is experiencing a very high number of retries and failure may occur soon. If another path is available, it should be brought online.

MVS_XCFSystemPaths_Warn

MVS_XCFSystemPaths_Warn monitors the number of times a cross system coupling facility path was busy when a request was made and raises a warning when the retry percent is between 80% and 95%, or the path's status is "Failed", "Rebuilding", or "Quiescing".

The formula is:

\[\left(\text{VALUE XCF_Path.Retry_Percent GT 80 AND VALUE XCF_Path.Retry_Percent LE 95} \right) \text{ OR VALUE XCF_Path.Status GT 0X07} \]

If this situation is raised, an XCF path is experiencing a high number of retries and failure may occur soon. If another path is available, it should be brought online.

OS_CMD_CF_Systems_Perform_Crit

OS_CMD_CF_Systems_Perform_Crit monitors the performance of a coupling facility system and issues a Critical alert when a coupling facility is experiencing a very high activity rate or has failed. The situation will send a message to designated TSO user IDs when this situation is true.

The formula is:

\[\text{VALUE CF_Systems.CPU_Percent GT 95 OR VALUE CF_Systems.Status EQ Failed OR VALUE CF_Systems.I/Os_Per_Second GT 5000} \]

If this situation is raised, use the details view to determine which problem is occurring. If the status is "failed", switch to the secondary coupling facility and restart and rebuild the failed one. If request rate or CPU usage is high, bring the situation to the attention of a system programmer. Reconfiguration or load balancing may be necessary.

OS_CMD_DASD_Device_ContIdx_Warn

OS_CMD_DASD_Device_ContIdx_Warn monitors the contention index of a DASD device and issues a Warning alert when the contention index reaches the specified threshold (0.5 by default). It will send a message to designated TSO user IDs indicating this situation is true.

The formula is:

\[\text{VALUE Sysplex_DASD.Average_Device_Contention_Index GT .500} \]

If this situation is raised, give this information to a system programmer or DASD specialist. If the device is on a cached storage subsystem with RAID, this may not be much of a problem. If that is the case, the threshold should be adjusted to an appropriate value for the subsystem.
OS_CMD_WLM_Performance_Idx_Crit

OS_CMD_WLM_Performance_Idx_Crit monitors the workload manager performance index of a service class period and issues a Critical alert when the performance index exceeds the specified threshold (1.50, by default). It will send a message to designated TSO user IDs indicating this situation is true.

The formula is:

```
VALUE Sysplex_WLM_Service_Class_Period.Performance_Index GT 1
```

This situation is raised when a service class is failing to meet its goal. If this situation persists, the person responsible for the Workload Manager service definition should determine if the missed goal needs to be changed. Bottleneck analysis of the service class should provide useful information.

Sysplex_DASD_Dev_ContIndx_Warn

Sysplex_DASD_Dev_ContIndx_Warn monitors contention for a DASD device and issues a Warning alert when the index is greater than the specified threshold (.5 by default).

The formula is:

```
VALUE Sysplex_DASD.Average_Device_Contention_Index GT .500
```

If this situation is raised, notify a system programmer or DASD specialist. If the device is on a cached storage subsystem with RAID, this may not be much of a problem. If that is the case, the threshold should be adjusted to an appropriate value for the subsystem.

Sysplex_DASDSys_VaryStatus_Warn

Sysplex_DASDSys_VaryStatus_Warn monitors DASD devices and issues a Warning alert if a device vary status is “Boxed” or “Not Ready.”

The formula is:

```
VALUE Sysplex_DASD_Device.Vary_Status *EQ 0X04 OR VALUE Sysplex_DASD_Device.Vary_Status *EQ 0X05
```

This situation is raised when a DASD volume is in a “Boxed” or “Not Ready” status and is not available. If needed data sets are on the device and no backup devices are available, a system or subsystem failure may occur. If you cannot use the VARY command to return the device to online status, there may be a hardware malfunction and a Severity 1 or 2 hardware incident should be opened with the hardware vendor.

Sysplex_GlobalEnq_Wait_Crit

Sysplex_GlobalEnq_Wait_Crit monitors the wait time on a global enqueue and issues a Critical alert when either the wait time or maximum wait time exceeds 60 seconds.

The formula is:

```
VALUE Global_Enqueues.Maximum_Wait_Time GT 60 OR VALUE Global_Enqueues.Wait_Time GT 60
```

This situation is raised when enqueue delay is high and has remained so for over a minute. Check the details to determine who is holding the ENQ. If it is a batch job that can be canceled and requeued, the deadlock can be broken by doing so. If it is a started task or on-line user, a system programmer should be called.
Sysplex_GlobalEnq_Wait_Warn

Sysplex_GlobalEnq_Wait_Warn monitors the wait time on a global enqueue and issues a Warning alert when either the wait time or maximum wait time falls between 30 and 60 seconds.

The formula is:

This situation is raised when ENQueue delay is high. Check the details to determine who is holding the ENQ. If it is a batch job that can be canceled and requeued, the deadlock can be broken by doing so. If it is a started task or on-line user, a system programmer should be called.

Sysplex_Workloads_PerfIdx_Crit

Sysplex_Workloads_PerfIdx_Crit monitors the performance index related to workload on the sysplex and issues a Critical alert when the performance index of any service class period exceeds the specified threshold (1.50 by default).

The formula is:

\[\text{VALUE Sysplex_WLM_Service_Class_Period.Performance_Index GT 1.50}\]

This situation is raised when a service class is failing to meet its goal. If this situation persists, the person responsible for the Workload Manager service definition should determine if the missed goal needs to be changed. Bottleneck analysis of the service class should provide useful information.

Sysplex_Workloads_PerfIdx_Warn

Sysplex_Workloads_PerfIdx_Warn monitors the performance index related to workload on the sysplex and issues a Warning alert when the performance index of any service class period falls between 1.20 and 1.50.

The formula is:

\[\text{VALUE Sysplex_WLM_Service_Class_Period.Performance_Index GT 1.20 AND VALUE Sysplex_WLM_Service_Class_Period.Performance_Index LE 1.50}\]

This situation is raised when a service class is failing to meet its goal. If this situation persists, the person responsible for the Workload Manager service definition should determine if the missed goal needs to be changed. Bottleneck analysis of the service class should provide useful information.

Sysplex_XCFGroups_Warn

Sysplex_XCFGroups_Warn monitors cross coupling facility (XCF) groups and issues a Warning alert when the problem count (member status of “Failed” or “Missing”) is greater than 0.

The formula is:

\[\text{VALUE XCF_Group.Problem_Count GT 0}\]

This situation is raised when there is a problem in XCF. A system programmer should be contacted to research and correct the problem.
Sysplex_XCFSystems_Status_Crit
Sysplex_XCFSystems_Status_Crit monitors the status of a cross system coupling facility (XCF) and issues a Critical alert when cross-system communication within the sysplex is disabled.

The formula is:
VALUE XCF_System.Status EQ Missing

A system programmer should be contacted to determine why XCF is down and to restore it as soon as possible.

Sysplex_XCFSystems_Status_Warn
Sysplex_XCFSystems_Status_Warn monitors the status of a cross system coupling facility (XCF) and issues a Warning alert when a system's status shows it is being shut down.

The formula is:
VALUE XCF_System.Status EQ BeingRemoved

When this situation is raised, a sysplex communication failure can be expected imminently. System programmer help is required to determine why the shutdown is occurring and to restart the facility as soon as possible.

System situations
System situations monitor LPAR-level performance and usage, such as memory, cpu, storage, enclaves, hiperdispatch, status and configuration of cryptographic coprocessors, UNIX System Services, paging activity.

The descriptions of the system-level predefined situations are listed in alphabetical order.

Renamed situations
The names of several pre-existing situations were changed in version 4.1.0 when the OMEGAMON XE for UNIX System Services product was merged with OMEGAMON XE on z/OS.

The old and new names are shown in the following table. If you are migrating from OMEGAMON XE for UNIX System Services, existing situations are migrated when support for OMEGAMON XE for z/OS is installed into the hub monitoring server. You may continue to use those situations, in which case you should not start the OMEGAMON XE on z/OS versions. Alternatively, you can delete the original situations and use the OMEGAMON XE on z/OS versions.

<table>
<thead>
<tr>
<th>OMEGAMON XE for UNIX System Services</th>
<th>OMEGAMON XE on z/OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check_Missing_Mount_Point</td>
<td>Check_Missing_UNIX_Mount_Point</td>
</tr>
<tr>
<td>Excess_Kernel_CPU_Time</td>
<td>Excess_UNIX_Kernel_CPU_Time</td>
</tr>
<tr>
<td>Excess_Process_UNIX_Run_Time</td>
<td>Excess_Process_UNIX_Run_Time</td>
</tr>
<tr>
<td>Excess_UNIX_System_Time</td>
<td>Excess_UNIX_System_Time</td>
</tr>
<tr>
<td>Excess_UNIX_User_Time</td>
<td>Excess_UNIX_User_Time</td>
</tr>
<tr>
<td>ENQ_Contention_Critical</td>
<td>UNIX_ENQ_Contention_Critical</td>
</tr>
<tr>
<td>ENQ_Contention_Warning</td>
<td>UNIX_ENQ_Contention_Warning</td>
</tr>
<tr>
<td>File_System_Free_Space_Critical</td>
<td>UNIX_File_System_FreeSpace_Crit</td>
</tr>
<tr>
<td>File_System_FreeSpace_Warning</td>
<td>UNIX_File_System_FreeSpace_Warn</td>
</tr>
</tbody>
</table>
Four situations that monitor real storage were renamed in version 4.1.0 to reflect that fact that z/OS no longer distinguishes between central and expanded storage. If you are running with a mixed environment during a staged upgrade, the older situations will continue to work with V3.1 agents, but you must use the new versions with V4.1 or later agents. You cannot distribute the new situations to V3.1 agents. When you have completed your upgrade, you should replace and delete the older versions. (They will run, but they will never become true.)

<table>
<thead>
<tr>
<th>Old name</th>
<th>New name</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS390_CentralAvailFrames_Crit</td>
<td>OS390_Available_Frames_Crit</td>
</tr>
<tr>
<td>OS390_CentralAvailFrames_Warn</td>
<td>OS390_Available_Frames_Warn</td>
</tr>
<tr>
<td>OS390_CentralOnlineFrames_Crit</td>
<td>OS390_Frames_Online_Crit</td>
</tr>
<tr>
<td>OS390_CentralOnlineFrames_Warn</td>
<td>OS390_Frames_Online_Warn</td>
</tr>
<tr>
<td>OS390_Unref_Interval_Cnt_Crit</td>
<td>OS390_Unref_Interval_Cnt_Crit</td>
</tr>
<tr>
<td>OS390_Unref_Interval_Cnt_Warn</td>
<td>OS390_Unref_Interval_Cnt_Warn</td>
</tr>
</tbody>
</table>

OS390_Unref_Interval_Cnt_Crit and OS390_Unref_Interval_Cnt_Warn situations are still shipped, but they have changed slightly to allow for the new table data format.

Note: Situations which monitor expanded storage are no longer shipped with V4.1. For more information, see *IBM Tivoli OMEGAMON XE on z/OS: User’s Guide.*

Because of architectural changes, the names of the situations listed in the following table have been shortened. You should replace the old situations with the renamed versions and delete the old ones. If you continue to use the older situations, when the situations evaluate to true, you will see correct data in the Initial Situation values column of the Situation Event Console, but not in the Current Situation column.

<table>
<thead>
<tr>
<th>Old name</th>
<th>New named</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS390_System_PageFault_Rate_Crit</td>
<td>OS390_System_PageFaultRate_Crit</td>
</tr>
<tr>
<td>OS390_System_PageFault_Rate_Warn</td>
<td>OS390_System_PageFaultRate_Warn</td>
</tr>
<tr>
<td>OS390_Channel_LPAR_Busy_Pct_Crit</td>
<td>OS390_Channel_LPAR_BusyPct_Crit</td>
</tr>
<tr>
<td>OS390_Channel_LPAR_Busy_Pct_Warn</td>
<td>OS390_Channel_LPAR_BusyPct_Warn</td>
</tr>
<tr>
<td>OS390_Cache_FastWrite_HitPct_Crit</td>
<td>OS390_Cache_FastWriteHitPct_Crit</td>
</tr>
<tr>
<td>OS390_Cache_FastWrite_HitPct_Warn</td>
<td>OS390_Cache_FastWriteHitPct_Warn</td>
</tr>
<tr>
<td>OS390_Common_PageDS_PctFull_Warn</td>
<td>OS390_Common_PageDS_PctFull_Warn</td>
</tr>
<tr>
<td>OS390_Tape_Permanent_Errors_Crit</td>
<td>OS390_Tape_Permanent_Error_Crit</td>
</tr>
<tr>
<td>OS390_Tape_Permanent_Errors_Warn</td>
<td>OS390_Tape_Permanent_Error_Warn</td>
</tr>
</tbody>
</table>
Check_Missing_UNIX_Mount_Point
Check_Missing_UNIX_Mount_Point raises a Critical alert when a specified mount point is missing. The formula is:

\[
\text{IF } *\text{MISSING }\text{USS}_{-}\text{Mounted}_{-}\text{File}_{-}\text{Systems}.Mount_{-}\text{Point} *\text{EQ}(\) / ()
\]

If this alert is raised, a system programmer should be notified.

Crypto_CKDS_80PCT_Full
Crypto_CKDS_80PCT_Full monitors the Cryptographic Key Dataset (CKDS) and issues a Critical alert when it reaches 80% or more of its maximum capacity.

The formula is:

\[
\text{VALUE ICSF.Status EQ Active AND VALUE ICSF.CKDS}_{-}80\text{Full EQ Yes}
\]

The CKDS is a VSAM linear dataset used to store keys encryption and authorization keys. If the dataset is at 80% or more of its maximum capacity, a new dataset should be created using a new master key and all keys contained in the dataset should be re-enciphered into the new dataset. The name of the current CKDS is shown in the CKDSname attribute. Refer to the ICSF Administration Guide for further details.

Crypto_CKDS_Access_Disabled
Crypto_CKDS_Access_Disabled monitors the Cryptographic Key Dataset (CKDS) and raises a Warning alert if access has been disabled.

The formula is:

\[
\text{VALUE ICSF.CKDSAccess EQ Disabled}
\]

The CKDS is a VSAM linear dataset used to store keys encryption and authorization keys. Access is normally disabled when a new master key or CKDS is being initialized. This interruption is temporary and access is enabled after key management operations are completed.

Crypto_Internal_Error
Crypto_Internal_Error monitors for internal errors and issues a Critical alert if one is detected.

The formula is:

\[
\text{VALUE ICSF.MonStatus NE Enabled}
\]

Contact IBM Support with the event attributes to report the error and for assistance in correcting the problem. MonStatus = Overrun indicates that an internal queue overflow has been detected. SCEDisabled > 0 indicates one or more service call exits have ABENDed and is no longer collecting performance data.

Crypto_Invalid_Master_Key
Crypto_Invalid_Master_Key monitors for the existence of a valid master key and raises a Critical alert if none is detected.

The formula is:

\[
\text{VALUE ICSF.Status EQ Active AND VALUE ICSF.CCMKeyOK EQ No}
\]
A valid master key must be loaded into at least one of the cryptographic coprocessors. Use the ICSF ISPF
dialog, TKE, or the system element to load the master key into each cryptographic coprocessor. A
different master key may be loaded into coprocessors shared by PRSM Logical Partitions. Each LPAR is
associated with a separate Domain Index to isolate cryptographic keys. For PCI coprocessors, the master
key must be the same value as the symmetric-keys master key (SYM-MK).

Crypto_Invalid_PKA_Master_Keys
Crypto_Invalid_PKA_Master_Keys monitors for the existence of a valid Key Management Master Key
(KMMK) and a valid Signature Master Key (SMK) and raises a Critical alert if either is invalid or missing.

The formula is:

VALUE ICSF.PKAMKeys EQ Invalid

If this situation is raised, ensure that the KMMK and SMK are loaded into each coprocessor. For PCI
coprocessors, the SMK key must be the same value used for the asymmetric-keys master key
(ASYM-MK). Use the KMMK and SM attributes to validate the values of the verification hash patterns for
these keys.

Crypto_No_Coprocessors
Crypto_No_Coprocessors monitors for cryptographic coprocessors and raises a Critical alert if none is
online.

The formula is:

VALUE ICSF.Status EQ Active AND VALUE ICSF.1_CC EQ No

At least one cryptographic coprocessor must be online for cryptographic services to become available.
Verify that at least one coprocessor has been configured for the z/OS system. Use the System Element
console to configure the coprocessors for use by systems.

Crypto_No_PCI_Coprocessors
Crypto_No_PCI_Coprocessors monitors for PCI cryptographic coprocessors and raises a Warning alert if
none is detected.

The formula is:

VALUE ICSF.1_PCI EQ No

Several Public Key Algorithm (PKA) service calls will not function without a PCI coprocessor available.
Since PCI coprocessors are optimized for operations, PKA services will run slower on CMOS
coprocessors.

Crypto_PCI_Unavailable
Crypto_PCI_Unavailable monitors for PCI coprocessors and raises a Critical alert if one is detected but is
not online or active.

The formula is:

VALUE ICSF.1_PCI EQ Yes AND VALUE ICSF.PCIStatus NE Active

PCI coprocessors are optimized for Public Key Algorithm (PKA) operations and will run slower on
CMOS coprocessors. Also, several PKA services will not run without a PCI coprocessor available.
Crypto_PKA_Services_Disabled

Crypto_PKA_Services_Disabled monitors PKA services calls and raises a Warning alert if the service calls are disabled.

The formula is:

```
VALUE ICSF.Status EQ Active AND VALUE ICSF.PKACall EQ Disabled
```

Disable the services only to update PKA Key Management Master Key (KMMK) or Signature Master Key (SMK), or to manage the Public Key Dataset (PKDS). Enable PKA services calls only after PKA management operations are completed.

Crypto_PKDS_Read_Disabled

Crypto_PKDS_Read_Disabled monitors the status of the Public Key Dataset (PKDS) and issues a Warning alert if read operations have been disabled.

The formula is:

```
VALUE ICSF.PKDSRead EQ Disabled
```

The PKDS is a VSAM data set used to store Public Key Algorithm (PKA) keys used for encryption and authentication. Read operations may be temporarily disabled for management operations on the PKDS. Read access to the PKDS is restored following completion of management operations. The PKDSname attribute displays the name of the current PKDS.

Crypto_PKDS_Write_Disabled

Crypto_PKDS_Write_Disabled monitors the status of the Public Key Dataset (PKDS) and issues a Warning alert if write operations have been disabled.

The formula is:

```
VALUE ICSF.PKDSWrite EQ Disabled
```

The PKDS is a VSAM data set used to store Public Key Algorithm keys used for encryption and authentication. Write access to the dataset may be temporarily disabled to allow key management operations to occur. Write access should be enabled following completion of PKDS key management operations. The PKDSname attribute displays the name of the current PKDS.

Crypto_Service_Unavailable

Crypto_Service_Unavailable monitors the status of cryptographic services and raises a Critical alert if they are unavailable.

The formula is:

```
VALUE ICSF.CryptoSvcs EQ Inactive
```

If this situation is raised, verify that the ICSF subsystem is running on this system. If the ICSF subsystem is active, ensure that cryptographic coprocessors are online and available to this system. Also verify that a valid master key has been loaded in each coprocessor configured for this system.
Excess_Process_UNIX_Run_Time
Excess_Process_UNIX_Run_Time detects when a process exceeds 50% UNIX run time. The formula is:

\[
\text{IF } \text{*VALUE USS_Processes_UNIX_Run_Time\% } \text{GT } 50
\]

CPU utilization attributable to UNIX work for the indicate process exceeds the threshold defined as excessive. This condition might not be a matter of immediate concern. It may indicate that the process is in a loop requesting UNIX System Services.

Excess_UNIX_Kernel_CPU_Time
Excess_UNIX_Kernel_CPU_Time detects when the UNIX kernel is using more than 50% CPU. The formula is:

\[
\text{IF } \text{*VALUE USS_Kernel_CPU\% } \text{GT } 50
\]

UNIX System Services kernel CPU utilization exceeds the threshold defined as excessive. This condition might not be a matter of immediate concern. It may indicate that a process or address space is in a loop requesting kernel services. Look for processes or address spaces with abnormally high CPU utilization.

Excess_UNIX_System_Time
Excess_UNIX_System_Time detects when a dubbed address space exceeds 50% UNIX run time. The formula is:

\[
\text{IF } \text{*VALUE USS_Address_Spaces_UNIX_System_Time\% } \text{GT } 50
\]

CPU utilization attributable to execution of z/OS UNIX System Services kernel code exceeds the threshold currently defined as excessive. This condition might not be a matter of immediate concern. It may indicate that the address space is in a loop requesting UNIX System Services.

Excess_UNIX_User_Time
Excess_UNIX_User_Time detects when a dubbed address space exceeds 50% UNIX user time. The formula is:

\[
\text{IF } \text{*VALUE USS_Address_Spaces_UNIX_User_Time\% } \text{GT } 50
\]

Address space CPU utilization attributable to UNIX work exceeds the threshold currently defined as excessive. This condition might not be a matter of immediate concern. It may indicate that the address space is in a loop.

INET_Max_Sockets_Critical
INET_Max_Sockets_Critical detects when the percentage of internet sockets in use has reached 95%. The formula is:

\[
\text{*VALUE USS_Kernel_ISock_Curr_Pct } \text{GE } 95.0
\]

This situation indicates when internet socket usage is near maximum. If the maximum is reached, UNIX System Services will not be accessible by Internet connections. Help from a system programmer is needed immediately. Consider increasing the value of NETWORK DOMAINNAME(AF_INET)- MA XSOCKETS(). Use the SETOMVS RESET command to dynamically change the MAXSOCKETS value or to make a permanent change, edit the BPXPRMxx member in SYS1.PARMLIB.
INET_Max_Sockets_Warning

INET_Max_Sockets_Warning detects when the percentage of internet sockets in use is between 80 and 95%. The formula is:

\[
\text{IF } \text{VALUE USS_Kernel.ISock_Curr_Pct } \geq 80.0 \ \text{AND} \ \text{VALUE USS_Kernel.ISock_Curr_Pct } < 95.0
\]

This situation indicates when internet socket usage is approaching the maximum. If the maximum is reached, UNIX System Services will not be accessible by Internet connections. Consider increasing the value of NETWORK DOMAINDNAME(AF_INET)- MAXSOCKETS(). Use the SETOMVS RESET command to dynamically change the MAXSOCKETS value or to make a permanent change, edit the BPXPRMxx member in SYS1.PARMLIB.

INET6_Max_Sockets_Warning

INET6_Max_Sockets_Warning detects when the percentage of Internet v6 sockets in use is between 80 and 95%. The formula is:

\[
\text{IF } \text{VALUE USS_Kernel.I6Sock_Curr_Pct } \geq 80.0 \ \text{AND} \ \text{VALUE USS_Kernel.I6Sock_Curr_Pct } < 95.0
\]

This situation indicates when Internet V6 socket usage is approaching the maximum. If the maximum is reached, UNIX System Services will not be accessible by Internet connections. Consider increasing the value of NETWORK DOMAINDNAME(AF_INET6)- MAXSOCKETS(). Use the SETOMVS RESET command to dynamically change the MAXSOCKETS value or to make a permanent change, edit the BPXPRMxx member in SYS1.PARMLIB.

INET6_Max_Sockets_Critical

INET6_Max_Sockets_Critical detects when the percentage of Internet v6 sockets in use has reached 95%. The formula is:

\[
\text{IF } \text{VALUE USS_Kernel.I6Sock_Curr_Pct } \geq 95.0
\]

This situation indicates when Internet V6 socket usage is near the maximum. If the maximum is reached, UNIX System Services will not be accessible by Internet connections. Help from a system programmer is needed immediately. Consider increasing the value of NETWORK DOMAINDNAME(AF_INET6)- MAXSOCKETS(). Use the SETOMVS RESET command to dynamically change the MAXSOCKETS value or to make a permanent change, edit the BPXPRMxx member in SYS1.PARMLIB.

KM5_Avail_CSA_Warning

KM5_Avail_CSA_Warning raises a Warning alert when CSA or ECSA Available Free Storage bytes goes below a required threshold, as it may not be possible to start a workload that is required to meet operational demands. The formula is:

\[
\text{KM5_Common_Storage_SubKey.Record_Type } \text{EQ Summary} \ \text{AND} \ \text{KM5_Common_Storage_SubKey.Area} \ \text{EQ CSA} \ \text{AND} \ \text{KM5_Common_Storage_SubKey.Free_Storage_Total} < 1024 \\
\| \text{OR KM5_Common_Storage_SubKey.Record_Type } \text{EQ Summary} \ \text{AND} \ \text{KM5_Common_Storage_SubKey.Area} \text{EQ ECSA} \\
\| \ \text{AND} \ \text{KM5_Common_Storage_SubKey.Free_Storage_Total} < 4096
\]

Examine the running workload (address spaces) and determine whether a workload of a lower priority that is utilizing ECSA or CSA can be stopped to free up the storage for higher priority workload.

To examine common storage usage by address space, navigate to the Address Space Overview workspace and from the Address Space Counts view, link to the Address Space Common Storage – Active Users workspace. In this last workspace, the table view can be sorted by the CSA In Use or ECSA In Use columns.
KM5_CPU_Loop_Warn

This situation detects when the value of all CPU, zIIP, zIIP on CP, zAAP, and zAAP on CP using and waiting counts, divided by total sample count, is greater than 98.0%.

The formula is:
*IF *VALUE Address_Space_Bottlenecks.CPU_Loop_Index *GT 98.0

This situation indicates that address space CPU usage is high. A high value indicates either that the address space is in a CPU loop or that it is in a very CPU-intensive phase of processing. Examine each address space. If the application is known to be a heavy CPU user, then continue monitoring it. It may not actually be in a loop. If the address space is using unexpectedly large amounts of CPU, it is a candidate for cancellation. Note that very CPU intensive jobs may read high without being in a loop, so the CPU Loop Index value is a guide, not a guarantee.

This situation is refreshed once every 5 minutes, but a minimum of 10 minutes is used to calculate the loop index value. Any address space that reaches the 90% loop index value after 10 minutes and is considered either medium or low importance extend its calculation over longer time periods to avoid false positives. The extended refresh period and workload importance considerations makes false positives unlikely.

KM5_HDSP_Pct_Busy_Warning

KM5_HDSP_Pct_Busy_Warning raises a Warning alert when overall System MVS Percent utilization on a system running with HiperDispatch Management enabled exceeds the specified threshold. In a system running with HiperDispatch Management, the Logical Processor Parked Time is accounted for in the calculation of MVS Percent utilization. In such a system, a high (for example, greater than 95%) overall System MVS Percent utilization may be an indication of latent demand.

The formula is:
*IF *VALUE HiperDispatch_Management.System_MVS_Pct *GT 95

Monitor and examine the LPAR and CPC CPU utilization and configuration (LPAR Weights, Logical Processor configuration) to determine if there is a need to shift CPC workload or resource to relieve the LPAR that is exhibiting high overall System MVS Percent utilization.

KM5_HealthChecker_Problems

This situation raises an alert if the IBM Health Checker for z/OS facility is not active on a system.

The formula is:
*IF *VALUE KM5_Health_Check_Status.Status *NE Active

If you do not intend to install the Health Checker software, do not start this situation.

KM5_High_Severity_Check

This situation raises an alert if the Health Checker software detects at least one high-severity exception.

The formula is:
*IF *VALUE KM5_Health_Checks.Result *EQ 12

To investigate a problem, navigate to the detailed messages associated with the check. The message text provides additional information to help you resolve the problem.
KM5_Job_Avail_LSQA_Warning

KM5_Job_Avail_LSQA_Warning raises a Warning alert when available LSQA goes below a required threshold. This may be an indication of an impending operational issue. The formula is:

```
KM5_Address_Space_Storage_SubKey.ASNAME =EQ "D81*"
*AND KM5_Address_Space_Storage_SubKey.Record_Type =EQ Total
*AND KM5_Address_Space_Storage_SubKey.Percent_LSQA_Allocated >GT 84
```

Note: This formula should be edited to provide an appropriate address space name.

Examine the address space or spaces for the workload of interest and determine whether one or more of the address spaces may need to be recycled to avoid an operational issue.

To examine address space storage usage, navigate to the Address Space Overview workspace and, from the Address Space CPU Utilization Summary view, select a row for an address space of interest. From the link-to pull-down menu, select Address Space Storage Subpools and LSQA.

KM5_Job_Subp_Key_Use_Warning

KM5_Job_Subp_Key_Use_Warning raises a Warning alert when utilization of a specified storage subpool and key by any of a similarly named group of address spaces exceeds a target threshold. This may be an indication of impending operational issues. The formula is:

```
KM5_Address_Space_Storage_SubKey.ASNAME =EQ "D81*"
*AND KM5_Address_Space_Storage_SubKey.SUBPOOL =EQ 241
*AND KM5_Address_Space_Storage_SubKey.Allocation >GT 4096
*AND KM5_Address_Space_Storage_SubKey.Storage_Key =EQ 0
```

Note: This formula should be edited to provide an appropriate address space name.

Examine the address space or spaces for the workload of interest and determine whether one or more of the address spaces may need to be recycled or stopped to avoid an operational issue.

To examine address space storage usage by subpool and key, navigate to the Address Space Overview workspace and, from the Address Space CPU Utilization Summary view, select a row for an address space of interest. From the link-to pull-down menu, select Address Space Storage Subpools and LSQA.

KM5_LPAR_Cap_Warn

KM5_LPAR_Cap_Warn detects when an LPAR is being soft-capped. This situation is raised if the average physical standard CP resource consumed by the LPAR has exceeded its Defined MSU Capacity (WLM Soft Cap) or its entitled limit based on guaranteed physical standard CP resources over the last 4 hours. This situation is also true if the LPAR is a member of an LPAR group and it is being soft-capped by the LPAR group 4-Hour MSU Limit being exceeded. The formula is:

```
System_CPU_Utilization.Percent_LPAR_MSU_Capacity >GE 100.0
*OR (System_CPU_Utilization.Average_Unused_Group_MSU =LE 0
*AND System_CPU_Utilization.LPAR_Group_Capacity_Limit >GT 0)
```

If a WLM soft cap is defined for the LPAR, consider re-evaluating this limit based on the service goals of the workload or workloads running on the LPAR.

Check that LPAR weights are established such that the LPAR is getting a sufficient share of the CPC’s physical CPU resources. This applies if the CPC physical CPU resources are not fully used at the time of the high utilization and the entitled physical standard CP resource available to the LPAR is insufficient to meet workload demands.

In the case of capping due to the LPAR group 4-Hour Rolling Average MSU Limit being exceeded, the consumption of CPU resources across all the LPAR Group members requires evaluation.
KM5_LPAR_MSU_Warn

KM5_LPAR_MSU_Warn detects when the LPAR 4-Hour Rolling average is high. This situation is raised if the average physical standard CP resource consumed by the LPAR has reached, or is near to, its Defined MSU Capacity (WLM Soft Cap) or its entitled limit based on guaranteed physical standard CP resources over the last 4 hours. The formula is:

```plaintext
System_CPU_Utilization.Percent_LPAR_MSU_Capacity > 95.0 OR
(System_CPU_Utilization.Average_Unused_Group_MSUs < 5 AND
  LPAR_Group_Capacity_Limit > 0)
```

If a WLM soft cap is defined for the LPAR, consider re-evaluating this limit based on the service goals of the workload or workloads running on the LPAR.

Check that LPAR weights are established such that the LPAR is getting a sufficient share of the CPC’s physical CPU resources. This applies if the CPC physical CPU resources are not fully used at the time of the high utilization and the entitled physical standard CP resource available to the LPAR is insufficient to meet workload demands.

KM5_Storage_Shortage_Critical

KM5_Storage_Shortage_Critical raises an alert when a critical-level storage shortage signal (an ENF Event) has been raised. One of the following Storage Shortage Types is displayed with a critical-level storage shortage alert:

- Pageable_Storage
- Auxiliary_Storage
- Available_Frame_Queue_Shortage

The formula is:

```plaintext
KM5_Storage_Shortage_Status.Storage_Shortage_Level = Critical
```

A possible cause of the storage shortage condition might be one or more address spaces which are allocating and fixing too much storage or using too much auxiliary storage. Identify address spaces representing the most significant cause of the storage shortage. From the Real Storage workspace, navigate to the Storage Shortage Alerts workspace, then to the Storage Shortage Details workspace. This workspace displays the top twenty contributing address spaces. Consider stopping or canceling one or more of these address spaces to relieve the storage shortage. Note that SRM, with guidance from PARMLIB OPT settings, will take steps to relieve the storage shortage condition. Action may be required only if the critical storage condition persists (that is, if SRM actions are ineffective).

KM5_Storage_Shortage_Warning

KM5_Storage_Shortage_Warning raises an alert when a warning-level storage shortage signal (that is, an ENV Event) has been raised. One of the following Storage Shortage Types is displayed with a warning-level storage shortage alert:

- Pageable_Storage
- Auxiliary_Storage
- Available_Frame_Queue_Shortage

The formula is:

```plaintext
KM5_Storage_Shortage_Status.Storage_Shortage_Level = Appl_Warning
  OR KM5_Storage_Shortage_Status.Events_Status = Active_Events
```

A possible cause of the storage shortage condition might be one or more address spaces which are allocating and fixing too much storage or using too much auxiliary storage. Identify address spaces
representing the most significant cause of the storage shortage. From the Real Storage workspace, navigate to the Storage Shortage Alerts workspace then to the Storage Shortage Details workspace. This workspace displays the top twenty contributing address spaces. Consider stopping or canceling one or more of these address spaces to relieve the storage shortage. Note that SRM, with guidance from PARMLIB OPT settings, will take steps to relieve the storage shortage condition. Action may only be required if problem reaches a critical threshold condition.

KM5_zAware_Analysis_Crit
KM5_zAware_Analysis_Crit raises an alert when a critical level of anomaly score has been detected.

The formula is:

```plaintext
*IF VALUE KM5_zAware_Analysis.Anomaly_Score_02 GE 101.0
```

The anomaly score exceeds the critical threshold. This score indicates an interval with the anomaly score that exhibits the most significant differences from the system model. This interval represents the most recent interval of data that completed. IBM zAware assigns this score to intervals that contain:

- Unique message IDs that the server has not detected previously in the client model.
- Unusual or unexpected messages.
- Messages that IBM rules define as critical.
- A much higher volume of messages than expected.

For more details on this interval see the IBM zAware user interface.

KM5_zAware_Analysis_Warn
KM5_zAware_Analysis_Warn raises an alert when a warning level of anomaly score has been detected.

The formula is:

```plaintext
*IF VALUE KM5_zAware_Analysis.Anomaly_Score_02 GE 99.6 AND VALUE KM5_zAware_Analysis.Anomaly_Score_02 LT 101.0
```

The anomaly score exceeds the warning threshold for the most recent interval that completed. Intervals with this score contain rarely seen messages (these messages appear in the model only once or twice), or many messages that are unexpected or issued out of context. This score indicates intervals with more differences from the system model. These intervals can contain messages that might help you diagnose anomalous system behavior. In the bar graph display, these intervals are the color gold.

KM5_zAware_Client_Status
KM5_zAware_Client_Status raises an alert when the zAware Client is not active on this system.

The formula is:

```plaintext
*IF VALUE KM5_zAware_Analysis.zAware_Client_Status NE Active_Client
```

This situation raises an alert if the zAware Client Status is in any of the following states:

1. **Not_Available:** The logger did not establish an environment for communicating with an IBM zAware server.

 In this case, the OMEGAMON system administrator can contact the appropriate z/OS system programmer to verify that the logger condition is appropriate.

2. **Available:** The logger established an environment for communicating with an IBM zAware server. The logger is therefore waiting for the zAware appliance to be activated.

 In this case, the user must try to log on to zAware from a browser. If the logon is unsuccessful, the owner of the zAware appliance must be contacted about the status of the appliance. If the logon is successful, then there might be a firewall issue or some other configuration error that is blocking the logger’s connection.
3. Quiesced Client: The logger environment for communicating with an IBM zAware server is quiesced on this z/OS image.
 In this case, the OMEGAMON system administrator can contact the appropriate z/OS system programmer to verify whether the logger condition is expected to be corrected. For more information about this status, see the IBM zAware user interface.

KM5_zAware_Server_Status

KM5_zAware_Server_Status raises an alert when the zAware Server is not active on this system.

The formula is:

*IF *VALUE KM5_zAware_Analysis.zAware_Server_Status *NE Active

This situation raises an alert if the zAware Server Status is in the following states:

1. Credentials_Not_Found: No logon credentials are available for the zAware associated with this LPAR.
 An OMEGAMON administrator must configure credentials.

2. Credentials_Invalid: The user ID and password combination are invalid for zAware. This status is probably because the password associated with the user ID supplied expired.
 New credentials must be configured to allow data collection to resume.

3. Certificate_Expired: The certificate that is installed with RACF for the zAware Server reached its expiration date.
 The certificate must be replaced with a current certificate.

4. AT-TLS Configuration Error: A secure connection to zAware cannot be established.
 This error is probably because of incomplete AT-TLS configuration. Look for the message KM5ZAA020E in the monitoring server RKLVLOG for further details.

5. ICSF Configuration Error: Usage of ICSF for password encryption or decryption failed.
 Look for the message KM5ZAA020E in the monitoring server RKLVLOG for further details.

6. SEGG Processing Error: The password received from the Enhanced 3270 user interface is corrupted.
 Try the credentials setting again.

7. Parse_Failure: A problem was encountered processing data that is returned from zAware API.
 See error messages in RKLVL0G.

8. Server_Undefined: The z/OS Logger service either did not report the address of a zAware appliance that can be used or did not successfully connect to the zAware appliance named.
 Check the Client Status. It is likely that the logger is not enabled for zAware or the zAware appliance is not active. For more information about this status, see the IBM zAware user interface.

9. Credentials_Save_Error: The attempt to store credentials for zAware logon failed.
 Contact IBM support.

10. Credentials_Syntax_Error: The credential that is supplied from the Enhanced 3270 user interface failed syntax checking.
 See KM5ZAAxxxE in the monitoring server RKLVLOG.

Missing_UNIX_inetd_Process

Missing_UNIX_inetd_Process detects a missing inetd process. The formula is:

*IF *MISSING USS_Processes.Command_Name +EQ (inetd)

The inetd daemon that provides UNIX networking services is not active. Start the inetd daemon.

OS390_Allocated_CSA_Crit

OS390_Allocated_CSA_Crit monitors to determine whether the percentage of the Common Storage Area allocated is equal to or greater than 95% and issues a Critical alert if the condition is true.
The formula is:

IF VALUE Common_Storage.Area EQ CSA AND VALUE Common_Storage.Allocation_Percent GE 95

A system crash can occur because of exhausted CSA. Use this situation to identify the address spaces using high amounts of CSA and stop or cancel nonessential address spaces with high usage.

OS390_Allocated_CSA_Warn

OS390_Allocated_CSA_Warn monitors to determine whether the percentage of the Common Storage Area (CSA) allocated is between 90% and 94.9% inclusive and issues a Warning if the condition is true.

The formula is:

IF VALUE Common_Storage.Area EQ CSA AND VALUE Common_Storage.Allocation_Percent GE 90 AND VALUE Common_Storage.Allocation_Percent LT 95

A system crash can occur due to exhausted CSA. Identify the address spaces using high amounts of CSA and stop or cancel nonessential address spaces with high usage.

OS390_AvgCPU_Pct_Crit

OS390_AvgCPU_Pct_Crit monitors to determine the average percentage of time that all processors available in this z/OS system were busy dispatching work and issues a Critical alert if the average percent value is equal to or greater than 100.

The formula is:

IF VALUE System_CPU_Utilization.Average_CPU_Percent GE 100

This condition might not be a matter of immediate concern. If it arises suddenly on a uniprocessor, it may indicate that a unit of work is in a loop. If it is a chronic condition, it may be that the system is kept busy with low priority work. However, if service classes are missing their goals, a capacity increase may be needed.

OS390_AvgCPU_Pct_Warn

OS390_AvgCPU_Pct_Warn monitors to determine the average percent of time that all processors available in this system were busy dispatching work, and issues a Warning if the average percent value is between 95 and 99% inclusive.

The formula is:

IF VALUE System_CPU_Utilization.Average_CPU_Percent GE 95 AND VALUE System_CPU_Utilization.Average_CPU_Percent LT 100

This condition might not be a matter of immediate concern. If it arises suddenly on a uniprocessor, it may indicate that a unit of work is in a loop. If it is a chronic condition, it may be that the system is kept busy with low priority work. However, if service classes are missing their goals, a capacity increase may be needed.

OS390_Cache_FastWriteHitPt_Crit

OS390_Cache_FastWrite_HitPt_Crit monitors the percentage of successful I/O requests to write data to the cache and issues a Critical alert if the percentage is between 0 and 50%. If there is no service class that is missing its goal, this situation's thresholds may need to be adjusted.

The formula is:
IF VALUE DASD_MVS_DEVICES.Fast_Write_Hit_Percent GT 0 AND VALUE DASD_MVS_Devices.Fast_Write_Hit_Percent LE 50

If service class periods are missing goals due to delay from the indicated device, datasets may need to be moved so that the Fast Write Cache capacity is better matched to the workload.

OS390_Cache_FastWriteHitPt.Warn

OS390_Cache_FastWriteHitPt.Warn monitors the percentage of successful I/O requests to write data to the cache and issues a Warning alert if the percentage is between 50% and 70% inclusive.

The formula is:

IF VALUE DASD_MVS_DEVICES.Fast_Write_Hit_Percent LE 70 AND VALUE DASD_MVS_DEVICES.Fast_Write_Hit_Percent GT 50

If there is no service class that is missing its goal, this situation's thresholds may need to be adjusted. If service class periods are missing goals due to delay from the indicated device, datasets may need to be moved so that the Fast Write Cache capacity is better matched to the workload.

OS390_Cache_Read_HitPct_Crit

OS390_Cache_Read_HitPct_Crit monitors the percentage of successful I/O requests to read data from the cache and issues a Critical alert if the percentage is greater than 0 and less than or equal to 50%.

The formula is:

IF VALUE DASD_MVS_DEVICES.Cache_Read_Hit_Percent GT 0 AND VALUE DASD_MVS_DEVICES.Cache_Read_Hit_Percent LE 50

If this situation raises, determine whether dataset placement should be adjusted (I/O tuning). If goals are being missed, tuning may be required. If no goals are being missed, the threshold may need to be adjusted.

OS390_Cache_Read_HitPct_Warn

OS390_Cache_Read_HitPct_Warn monitors the percentage of successful I/O requests to read data from the cache and issues a Warning alert if the percentage is between 51% and 70% inclusive.

The formula is:

IF VALUE DASD_MVS_DEVICES.Cache_Read_Hit_Percent LE 70 AND VALUE DASD_MVS_DEVICES.Cache_Read_Hit_Percent GT 50

If this situation raises, determine whether dataset placement should be adjusted (I/O tuning). If goals are being missed, tuning may be required. If no goals are being missed, the threshold may need to be adjusted.

OS390_Cache_Write_HitPct_Crit

OS390_Cache_Write_HitPct_Crit monitors the percentage of successful I/O requests to write temporary data to the cache and issues a Critical alert if the percentage is greater than 0 and less than or equal to 50%.

The formula is:

IF VALUE DASD_MVS_Devices.Cache_Write_Hit_Percent GT 0 AND VALUE DASD_MVS_Devices.Cache_Write_Hit_Percent LE 50
If this situation is raised, determine whether any address spaces that have this device number allocated are in service classes that are missing their goals. If goals are being missed, dataset placement (I/O tuning) may be required.

OS390_Cache_Write_HitPct_Warn

OS390_Cache_Write_HitPct_Warn monitors the percent of successful I/O requests to write temporary data to the cache and issues a Warning alert if the percentage is between 51% and 70% inclusive.

The formula is:

\[
\text{IF VALUE DASD_MVS_Devices.Cache_Write_Hit_Percent LE 70 AND VALUE DASD_MVS_Devices.Cache_Write_Hit_Percent GT 50}
\]

If this situation is raised, determine whether any address spaces that have this device number allocated are in service classes that are missing their goals. If goals are being missed, dataset placement (I/O tuning) may be required.

OS390_Available_Frames_Crit

OS390_Available_Frames_Crit monitors to determine when available frames of real storage are less than the specified threshold and issues a Critical alert when the condition is true. This problem should correct itself in a short time by means of page stealing. However, if the problem occurs more often than once a day, there may be a performance problem in the paging subsystem or an address space is using an excessive number of pages.

The formula is:

\[
\text{IF VALUE Real_Storage.Storage_Type EQ Summary AND VALUE Real_Storage.Available_Frames LE 0}
\]

The available frame queue is a list of frames that are available to the system. If the number of frames is too low, the system resources manager (SRM) automatically replenishes the queue by stealing frames that have not been recently referenced. Controlling the available frame queue is the method SRM uses to manage central storage use. A low available frame queue is a problem only if it causes contention for central storage.

OS390_Available_Frames_Warn

OS390_Available_Frames_Warn monitors to determine when available frames of real storage are less than the specified threshold and issues a Warning alert when the condition is true. This problem should correct itself in a short time by means of page stealing. However, if the problem occurs more often than once a day, there may be a performance problem in the paging subsystem or an address space is using an excessive number of pages.

The formula is:

\[
\text{IF VALUE Real_Storage.Storage_Type EQ Summary AND VALUE Real_Storage.Available_Frames LT 1 AND VALUE Real_Storage.Available_Frames GT 0}
\]

The available frame queue is a list of frames that are available to the system. If the number of frames is too low, the system resources manager (SRM) automatically replenishes the queue by stealing frames that have not been recently referenced. Controlling the available frame queue is the method SRM uses to manage central storage use. A low available frame queue is a problem only if it causes a high page fault rate.
OS390_Frames_Online**_Crit**

OS390_CentralOnlineFrames_Crit monitors the central storage online frame count and issues a Critical alert when the condition is true. This situation indicates that central (real) storage available to this system is less than the threshold. If this alert results from a deliberate reconfiguration action, you should reset this situation's threshold using the Situation editor. Otherwise, check for a possible hardware problem.

The formula is:

```
IF VALUE Real_Storage.Storage_Type EQ Summary AND VALUE Real_Storage.Online_Frames LE 0
```

Set the critical threshold for central storage that should be online. The value must be less than the warning threshold. To be alerted of any loss of storage, you might want to set the threshold to the amount of central storage that should always be online.

OS390_Frames_Online**_Warn**

OS390_CentralOnlineFrames_Warn monitors the central storage online frame count and issues a Warning alert when the condition is true. This situation indicates that central (real) storage available to this system is less than the threshold. If this alert results from a deliberate reconfiguration action, you should reset this situation's threshold using the Situation editor. Otherwise, check for a possible hardware problem.

The formula is:

```
IF VALUE Real_Storage.Storage_Type EQ Summary AND VALUE Real_Storage.Online_Frames LT 1 AND VALUE Real_Storage.Online_Frames GT 0
```

Set the warning threshold (in frames) for online central storage. The value must be greater than the critical threshold. You might want to leave this situation off, and use the critical situation to alert you to any storage loss.

OS390_ChannelComplexBusy_Crit

OS390_ChannelComplexBusy_Crit monitors channel path activity and has determined that one or more channel paths is busier on all systems than the current Critical threshold. A Critical alert is issued. Check to determine the particular channels that are unusually active and if the threshold provided in this situation is low, adjust it using the Situation editor. Note that acceptable busy levels for tape channels, ESCON channels, and FICON channels are typically much higher than for parallel DASD channels.

The formula is:

```
IF VALUE Channel_Paths.Complex_Percent GE 100
```

OS390_ChannelComplexBusy_Warn

OS390_ChannelComplexBusy_Warn monitors channel path activity and has determined that one or more channel paths is busier on all systems than the current Warning threshold. A Warning is issued. Check to determine the particular channels that are unusually active and if the threshold provided in this situation is low, adjust it using the Situation editor. Note that acceptable busy levels for tape channels, ESCON channels, and FICON channels are typically much higher than for parallel DASD channels.

The formula is:

```
IF VALUE Channel_Paths.Complex_Percent GE 100
```
OS390_Channel_LPAR_BusyPct_Crit
OS390_Channel_LPAR_Busy_Pct_Crit monitors the activity of the channel paths and issues a Critical alert if one or more channel paths is busier than the threshold. Identify the particular channel or channels that are unusually active. Note that the acceptable busy levels for tape channels, ESCON channels, and FICON channels are much higher than typical levels for parallel DASD channels. If the threshold for this situation is too low, adjust it using the Situation editor.

The formula is:

IF VALUE Channel.Paths.LPAR_Percent GE 100

OS390_Channel_LPAR_BusyPct_Warn
OS390_Channel_LPAR_Busy_Pct_Warn monitors the activity of the channel paths and issues a Warning alert if one or more channel paths is busier than the threshold. Identify the particular channel or channels that are unusually active. Note that the acceptable busy levels for tape channels, ESCON channels, and FICON channels are much higher than typical levels for parallel DASD channels. If the threshold for this situation is too low, adjust it using the Situation editor.

The formula is:

IF VALUE Channel.Paths.LPAR_Percent GE 100

OS390_Channel_Path_Offline_Crit
OS390_Channel_Path_Offline_Crit monitors to determine whether a channel path is offline and issues a critical alert when this condition is true. This may be a normal condition if the indicated channel path is dynamically managed.

The formula is:

IF VALUE Channel_Paths.Online EQ N

If this situation is raised, check the configuration matrix for the current image and determine whether this channel path should be online. If so, attempt to VARY it online.

OS390_Channel_Path_Offline_Warn
OS390_Channel_Path_Offline_Warn monitors to determine whether a channel is offline and issues a warning when this condition is true. This may be a normal condition if the indicated channel path is dynamically managed. Check the configuration matrix for the current image and determine whether this channel path should be online. If so, attempt to VARY it online.

The formula is:

IF VALUE Channel_Paths.Online EQ N

If this situation is raised, check the configuration matrix for the current image and determine whether this channel path should be online. If so, attempt to VARY it online.

OS390_Common_PageDSPctFull_Crit
OS390_Common_PageDS_PctFull_Crit monitors to determine whether the percentage of slots in use on the common page dataset is greater than or equal to 80% and issues a Critical alert if the condition is true. If the common page data set becomes full, a system crash is imminent.

The formula is:
IF VALUE Page_Dataset_Activity.Dataset_Type EQ Common AND VALUE Page_Dataset_Activity.Percent_Full GE 80

If this situation is raised, determine which address spaces are using the largest number of common slots and terminate those that can be shut down at this time. If this situation occurs more frequently than once a month, a larger common page data set should be created and activated at the next IPL.

OS390_Common_PageDSPctFull_Warn

OS390_Common_PageDS_PctFull_Warn monitors to determine whether the percentage of slots in use on the common page dataset is greater than or equal to 60% and less than 80% and issues a Warning if the condition is true. If the common page data set becomes full, a system crash is imminent.

The formula is:

IF VALUE Page_Dataset_Activity.Dataset_Type EQ Common AND VALUE Page_Dataset_Activity.Percent Full GE 60 AND VALUE Page_Dataset_Activity.Percent Full LT 80

If this situation is raised, determine which address spaces are using the largest number of common slots and terminate those that can be shut down at this time. If this situation occurs more frequently than once a month, a larger common page data set should be created and activated at the next IPL.

OS390_CSA_Growth_Crit

OS390_CSA_Growth_Crit monitors to determine whether the growth in use of the Common Storage Area is greater than or equal to 50 and issues a Critical alert if the condition is true. The formula is:

IF VALUE Common_Storage.Area EQ CSA AND VALUE Common_Storage.Growth GE 50

If this situation is raised, identify the address spaces using high amounts of CSA and showing rapid growth in its use. Stop or cancel nonessential address spaces to avert a crash.

OS390_CSA_Growth_Warn

OS390_CSA_Growth_Warn monitors to determine whether the growth in use of the Common Storage Area is between 35 and 49 inclusive and issues a Warning alert if the condition is true. The formula is:

IF VALUE Common_Storage.Area EQ CSA AND VALUE Common_Storage.Growth GE 35 AND VALUE Common_Storage.Growth LT 50

If this situation is raised, identify the address spaces using high amounts of CSA and showing rapid growth in its use. Stop or cancel nonessential address spaces to avert a crash.

OS390_DASD_Busy_Percent_Crit

OS390_DASD_Busy_Percent_Crit monitors DASD device utilization and issues a Critical alert when the percentage of time a device is busy is greater than or equal to 100. The formula is:

IF VALUE DASD_MVS_Devices.Percent_Busy GE 100

This condition may represent a current or pending performance problem if any service class period is missing its goal because of I/O delay for this device. This threshold is set to 100% by default, which can be set to a lower value only when troubleshooting a chronic DASD performance problem.

OS390_DASD_Busy_Percent_Warn

OS390_DASD_Busy_Percent_Warn monitors DASD device utilization and issues a Warning alert when the percentage of time a device is busy is greater than or equal to 100. The formula is:
IF VALUE DASD_MVS_Devices.Percent_Busy GE 100

This condition may represent a current or pending performance problem if any service class period is missing its goal because of I/O delay for this device. This threshold is set to 100% by default and should be set to a lower value only when pursuing a chronic DASD performance problem.

OS390_DASD_Dropped_Retry_Crit

OS390_DASD_Dropped_Retry_Crit monitors the count of devices in this condition and issues a Critical alert if the number is greater than or equal to 5. The formula is:

IF VALUE DASD_MVS_Dropped_Retry GE 5

Should this rare situation occur, a hardware service person should be notified.

OS390_DASD_Dropped_Retry_Warn

OS390_DASD_Dropped_Retry_Warn monitors the count of devices in this condition and issues a Warning alert if the number is greater than 0 but less than 5. The formula is:

IF VALUE DASD_MVS_Dropped_Retry *GT 0 AND VALUE DASD_MVS_Dropped_Retry LT 5"

Should this rare situation occur, a hardware service person should be notified.

OS390_DASD_NoDynamicReconn_Critical

OS390_DASD_NoDynamicReconn_Critical monitors the count of devices in this condition and issues a Critical alert if the number is greater than or equal to 5.

The formula is:

IF VALUE DASD_MVS_No_Dynamic_Path_Reconnect GE 5

This problem should be referred to appropriate personnel to determine whether the devices should be offloaded.

OS390_DASD_NoDynamicReconn_Warn

OS390_DASD_NoDynamicReconn_Warn monitors the count of devices in this condition and issues a Warning if the number is greater than 0 and less than 5.

The formula is:

IF VALUE DASD_MVS_No_Dynamic_Path_Reconnect GT 0 AND VALUE DASD_MVS_No_Dynamic_Path_Reconnect LT 5

This problem should be referred to appropriate personnel to determine whether the devices should be offloaded.

OS390_DASD_Not_Responding_Crit

OS390_DASD_Not_Responding_Crit monitors the count of devices in this condition and issues a Critical alert if the number is greater than or equal to 5.

The formula is:

IF VALUE DASD_MVS_Not_Responding GE 5
Should this rare situation occur, a hardware service person should be notified.

OS390_DASD_Not_Responding_Warn

OS390_DASD_Not_Responding_Warn monitors the count of devices in this condition and issues a Warning if the number is greater than 0 but less than 5. Should this rare situation occur, a hardware service person should be notified.

The formula is:

```plaintext
IF VALUE DASD_MVS_Not_Responding_GT 0 AND VALUE DASD_MVS_Not_Responding_LT 5
```

OS390_DASD_Response_Time_Crit

OS390_DASD_Response_Time_Crit monitors the response time for a DASD device and issues a Critical alert when the threshold value is exceeded. This situation is distributed as disabled by default and should be activated only when attempting to solve a problem where excessive DASD response time is likely to be the cause.

The formula is:

```plaintext
IF VALUE DASD_MVS_Devices_Response_GT 1000000000
```

OS390_DASD_Response_Time_Warn

OS390_DASD_Response_Time_Warn monitors the response time for a DASD device and issues a Warning when the threshold value is exceeded. This situation is distributed as disabled by default and should be activated only when attempting to solve a problem where excessive DASD response time is likely to be the cause.

The formula is:

```plaintext
IF VALUE DASD_MVS_Devices_Response_GT 1000000000
```

OS390_ECSA_Allocation_Pct_Crit

OS390_ECSA_Allocation_Pct_Crit monitors to determine whether the percentage of the Extended Common Storage Area allocated is greater than or equal to 95% and issues a Critical alert if the condition is true. Check the current size of ECSA (the second CSA subparameter in IEASYSxx). The value may need to be adjusted before the next IPL. Attempt to determine who is using excessive ECSA or causing it to grow rapidly.

The formula is:

```plaintext
IF VALUE Common_Storage.Area_EQ ECSA AND VALUE Common_Storage.Allocation_Percent_GE 95
```

OS390_ECSA_Allocation_Pct_Warn

OS390_ECSA_Allocation_Pct_Warn monitors to determine whether the percentage of the Extended Common Storage Area allocated is between 90% and 94.9% inclusive and issues a Warning if the condition is true. Check the current size of ECSA (the second CSA subparameter in IEASYSxx). The value may need to be adjusted before the next IPL. Attempt to determine who is using excessive ECSA or causing it to grow rapidly.

The formula is:

```plaintext
IF VALUE Common_Storage.Area_EQ ECSA AND VALUE Common_Storage.Allocation_Percent_GE 90 AND VALUE Common_Storage.Allocation_Percent_LT 95
```
OS390_ExpandedToCentralStor_Crit

OS390_ExpandedToCentralStor_Crit monitors the page movement rate from expanded storage to central storage and issues a Critical alert when the threshold value is exceeded. This situation is disabled by default and should be activated only when attempting to solve a problem where excessive page movement is likely to be a cause.

The formula is:

```
IF VALUE Real_Storage.Storage_Type EQ CentralStorage AND VALUE Real_Storage.Pages_Read_From_Expanded GE 1000000000
``` 

OS390_GlobalEnqueueReserve_Crit

OS390_GlobalEnqueueReserve_Crit monitors to determine whether the maximum wait time or the current wait time of any enqueue is greater than 60 seconds and issues a Critical alert if the condition is true. Check to determine who is holding the ENQ. If it is a batch job that can be cancelled and requeued, you can break the deadlock by so doing. If it is a started task or online user, report the problem to the appropriate personnel.

The formula is:

```
IF VALUE Enqueues.Maximum_Wait_Time GT 60 OR VALUE Enqueues.Wait_Time GT 60
``` 

OS390_GlobalEnqueueReserve_Warn

OS390_GlobalEnqueueReserve_Warn monitors to determine whether the maximum wait time or the current wait time of any enqueue is between 31 and 60 seconds inclusive and issues a Warning if the condition is true. Check to determine who is holding the ENQ. If it is a batch job that can be cancelled and requeued, you can break the deadlock by so doing. If it is a started task or online user, report the problem to the appropriate personnel.

The formula is:

```
``` 

OS390_GRS_Broken_Crit

OS390_GRS_Broken_Crit monitors to determine whether the Global Resource Serialization (GRS) complex is broken and issues a Critical alert if it is. If the GRS complex is broken, it may be necessary to attempt to restart GRS from the console. You can display the status of the channel-to-channel adaptors on each system by entering the command D GRS.

The formula is:

```
IF VALUE Operator_Alerts.GRS_Status EQ Broken
``` 

OS390_GRS_Broken_Warn

OS390_GRS_Broken_Warn monitors to determine whether the Global Resource Serialization (GRS) complex is broken and issues a Warning if it is. If the GRS complex is broken, it may be necessary to attempt to restart GRS from the console. You can display the status of the channel-to-channel adaptors on each system by entering the command D GRS.

The formula is:

```
IF VALUE Operator_Alerts.GRS_Status EQ Broken
```
OS390_GTF_Active_Crit
OS390_GTF_Active_Crit monitors to determine whether the Generalized Trace Facility is active and issues a Critical alert if the condition is true. While the Generalized Trace Facility is a useful diagnostic tool, it can cause performance degradation. Ensure that GTF is active for the minimum time required to obtain the needed data.

The formula is:

IF VALUE Operator_Alerts.GTF_Active EQ True

OS390_GTF_Active_Warn
OS390_GTF_Active_Warn monitors to determine whether the Generalized Trace Facility is active and issues a Warning if the condition is true. While the Generalized Trace Facility is a useful diagnostic tool, it can cause performance degradation. Ensure that GTF is active for the minimum time required to obtain the needed data.

The formula is:

IF VALUE Operator_Alerts.GTF_Active EQ True

OS390_HSM_RecallWait_Crit
OS390_HSM_RecallWait_Crit monitors to determine whether the wait time in seconds of the longest single HSM recall that is waiting is greater than or equal to 1200 seconds and issues a Critical alert if the condition is true. Make sure that there is no outstanding tape mount for an HSM tape. In some cases, a wait can occur when a Migration Level 1 volume is tied up by a RESERVE or other conflicting activity such as a volume backup.

The formula is:

IF VALUE Operator_Alerts.HSM_Recall_Wait_Time GE 1200

OS390_HSM_RecallWait_Warn
OS390_HSM_RecallWait_Warn monitors to determine whether the wait time in seconds of the longest single HSM recall that is waiting is between 600 and 1199 seconds inclusive and issues a Warning if the condition is true. Make sure that there is no outstanding tape mount for an HSM tape. In some cases, a wait can occur when a Migration Level 1 volume is tied up by a RESERVE or other conflicting activity such as a volume backup.

The formula is:

IF VALUE Operator_Alerts.HSM_Recall_Wait_Time GE 600 and VALUE Operator_Alerts.HSM_Recall_Wait_Time LT 1200

OS390_Indexed_VTOC_Lost_Crit
OS390_Indexed_VTOC_Lost_Crit monitors the count of devices in this condition and issues a Critical alert if the count is greater than or equal to 5. Refer this problem to an appropriate storage management specialist.

The formula is:

IF VALUE DASD_MVS.Indexed_VTOC_Lost GE 5
OS390_Indexed_VTOC_Lost_Warn

OS390_Indexed_VTOC_Lost_Warn monitors the count of devices in this condition and issues a Warning if the number is greater than 0 but less than 5. Refer this problem to an appropriate storage management specialist.

The formula is:

\[
\text{IF VALUE DASD_MVS.Indexed_VTOC_Lost GT 0 AND VALUE DASD_MVS.Indexed_VTOC_Lost LT 5}
\]

OS390_Local_PageDS_Errors_Crit

OS390_Local_PageDS_Errors_Crit monitors to determine whether the number of errors in a local page dataset is greater than or equal to 5 and issues a Critical alert if the condition is true. Identify the failing dataset or datasets. Check for a spare page dataset slot, and if there is no spare, increase the PAGETOT parameter in IEASYSxx. There should be at least one spare slot per two page datasets. Remove the failing dataset from the PAGE parameter in IEASYSxx. If there is a spare slot, PAGEADD a dataset and use PAGEDEL REPLACE to move the pages to a good dataset.

The formula is:

\[
\text{IF VALUE Page_Dataset_Activity.Errors GE 5}
\]

OS390_Local_PageDS_Errors_Warn

OS390_Local_PageDS_Errors_Warn monitors to determine whether the number of errors in a local page dataset is greater than or equal to 1 and less than 5 and issues a Warning if the condition is true. Identify the failing dataset or datasets. Check for a spare page dataset slot, and if there is no spare, increase the PAGETOT parameter in IEASYSxx. There should be at least one spare slot per two page datasets. Remove the failing dataset from the PAGE parameter in IEASYSxx. If there is a spare slot, PAGEADD a dataset and use PAGEDEL REPLACE to move the pages to a good dataset.

The formula is:

\[
\text{IF VALUE Page_Dataset_Activity.Errors GE 1 and VALUE Page_Dataset_Activity.Errors LT 5}
\]

OS390_Local_PageDS_PctFull_Crit

OS390_Local_PageDS_PctFull_Crit monitors to determine whether the percentage of slots in use on a local page dataset is greater than or equal to 35% and issues a Critical alert if the condition is true. When usage approaches 30%, paging efficiency begins to decline, and blocked paging disappears at about 35% occupancy. If this situation occurs, prepare to PAGEADD another dataset if the critical threshold is passed. If the current PAGTOTL setting in IEASYSxx does not allow another dataset to be added, it should be increased before the next IPL.

The formula is:

\[
\text{IF VALUE Page_Dataset_Activity.Dataset_Type EQ Local and VALUE Page_Dataset_Activity.Percent_Full GE 35}
\]

OS390_Local_PageDS_PctFull_Warn

OS390_Local_PageDS_PctFull_Warn monitors to determine whether a local page dataset is greater than or equal to 25% full and less than 35% full and issues a Warning if the condition is true. When usage approaches 30%, paging efficiency begins to decline, and blocked paging disappears at about 35% occupancy. If this situation occurs, prepare to PAGEADD another dataset if the critical threshold is passed. If the current PAGTOTL setting in IEASYSxx does not allow another dataset to be added, it should be increased before the next IPL.
The formula is:

IF VALUE Page_Dataset_Activity.Dataset_Type EQ Local and VALUE Page_Dataset_Activity.Percent Full GE 25 and VALUE Page_Dataset_Activity.Percent Full LT 35

OS390_LPAR_OverheadPercent_Crit

OS390_LPAR_OverheadPercent_Crit monitors to determine whether the percentage of time the system spends managing a logical partition is greater than or equal to 20% and issues a Critical alert if the condition is true. Possible causes include saturation of the CPU capacity leading to excessive overhead switching CPUs between LPARs. This can be compounded when there are too many logical processors assigned to an LPAR.

The formula is:

IF VALUE System_CPU_Utilization.Partition_Overhead% GE 20

OS390_LPAR_OverheadPercent_Warn

OS390_LPAR_OverheadPercent_Warn monitors to determine whether the percentage of time the system spends managing a logical partition is greater than or equal to 10% and less than 20% and issues a Warning if the condition is true. Possible causes include saturation of the CPU capacity leading to excessive overhead switching CPUs between LPARs. This can be compounded when there are too many logical processors assigned to an LPAR.

The formula is:

IF VALUE System_CPU_Utilization.Partition_Overhead% GE 10 and VALUE System_CPU_Utilization.Partition_Overhead% LT 20

OS390_LPAR_STATUS_Crit

OS390_LPAR_STATUS_Crit monitors to determine whether LPAR CPU Management Overhead or Velocity Index have exceeded thresholds and if so, issues a Critical alert. These conditions might not be of immediate concern. In the case of LPAR CPU Management Overhead, if the number of configured LPARs is substantial, it may trigger this situation. If the conditions persist, you may consider reducing the number of configured LPARs. In the case of the Velocity Index, you may want to adjust LPAR weights if the LPARs' workloads are not meeting expected service levels.

The formula is:

IF (VALUE LPAR_Clusters.LPAR_Name NE _CLTotal AND VALUE LPAR_Clusters.LPAR_Name NE _CPTotal AND VALUE LPAR_Clusters.LPAR_Name NE PHYSICAL AND VALUE LPAR_Clusters.LPAR_Effective_Weight_Index LT 0.9) OR (VALUE LPAR_Clusters.LPAR_NAME NE _CLTotal AND VALUE LPAR_Clusters.LPAR_Name NE _CPTotal AND VALUE LPAR_Clusters.LPAR_Name NE _CPTotal AND VALUE LPAR_Clusters.LPAR_Name NE PHYSICAL AND VALUE LPAR_Clusters.Host_LPAR_Flag EQ Y AND VALUE LPAR_Clusters.CPC_CPU_Overhead GT 15.0)

OS390_LPAR_STATUS_Warn

OS390_LPAR_STATUS_Warn monitors to determine whether LPAR CPU Management Overhead or Velocity Index have exceeded thresholds and if so, issues a Warning. These conditions might not be of immediate concern. In the case of LPAR CPU Management Overhead, if the number of configured LPARs is substantial, it may trigger this situation. If the conditions persist, you may consider reducing the number of configured LPARs. In the case of the Velocity Index, you may want to adjust LPAR weights if the LPARs' workloads are not meeting expected service levels.

The formula is:
IF (VALUE LPAR_Clusters.LPAR_Name NE _CLTotal AND VALUE LPAR_Clusters.LPAR_Name NE _CPTotal AND VALUE LPAR_Clusters.LPAR_Name NE PHYSICAL AND VALUE LPAR_Clusters.LPAR_Effective_Weight_Index LT 1.0) OR (VALUE LPAR_Clusters.LPAR_Name NE _CLTotal AND VALUE LPAR_Clusters.LPAR_Name NE _CPTotal AND VALUE LPAR_Clusters.LPAR_Name NE PHYSICAL AND VALUE LPAR_Clusters.Host_LPAR_Flag EQ Y AND VALUE LPAR_Clusters.CPC_CPU_Overhead GT 10.0)

OS390_MAX_ASIDs_in_Use_Crit

OS390_MAX_ASIDs_in_Use_Crit monitors to determine whether the percentage that represents the maximum number of address space vector table slots that are in use or unavailable is greater than or equal to 90% and issues a Critical alert if the condition is true. Check the values of the MAXUSER, RSVNONR, and RSVSTART parameters as well as for any problems that could lead to address space IDs becoming unusable.

The formula is:

IF VALUE Operator_Alerts.ASVT_Slot_Utilization GE 90

OS390_MAX_ASIDs_in_Use_Warn

OS390_MAX_ASIDs_in_Use_Warn monitors to determine whether the percentage that represents the maximum number of address space vector table slots that are in use or unavailable is between 80 and 89% inclusive, and issues a Warning if the condition is true. Check the values of the MAXUSER, RSVNONR, and RSVSTART parameters as well as for any problems that could lead to address space IDs becoming unusable.

The formula is:

IF VALUE Operator_Alerts.ASVT_Slot_Utilization GE 80 and VALUE Operator_Alerts.ASVT_Slot_Utilization LT 90

OS390_Network_ResponseTime_Crit

OS390_Network_ResponseTime_Crit monitors the Network Response Time and when it equals or exceeds 10, issues a Critical alert. Appropriate personnel should be notified if the condition persists.

The formula is:

IF VALUE User_Response_Time.Network_Response GE 10

OS390_Network_ResponseTime_Warn

OS390_Network_ResponseTime_Warn monitors the Network Response Time and when it equals or exceeds 5 but is less than 10, issues a Warning. Appropriate personnel should be notified if the condition persists.

The formula is:

OS390_OLTEP_Active_Crit

OS390_OLTEP_Active_Crit monitors to determine whether OLTEP is active and issues a Critical alert if the situation is true. Determine who is using OLTEP and minimize the time of its use.

The formula is:
OS390 OLTEP_Active.Warn
OS390 OLTEP_Active.Warn monitors to determine whether OLTEP is active and issues a Warning alert if it is. Determine who is using OLTEP and minimize the time of its use.

The formula is:

IF VALUE Operator_Alerts.OLTEP_Active EQ True

OS390 Outstanding_WTORs.Crit
OS390_Outstanding_WTORs_Crit monitors to determine whether the number of outstanding Write to Operator with Reply requests is greater than or equal to 12 and issues a Critical alert if the condition is true. Check the operator console for outstanding replies and address these. If all of the outstanding replies are correct and routine, you may want to adjust this situation's threshold.

The formula is:

IF VALUE Operator_Alerts.Outstanding_Operator_Replies GE 12

OS390 Outstanding_WTORs.Warn
OS390_Outstanding_WTORs_Warn monitors to determine whether the number of outstanding Write to Operator with Reply requests is between 10 or 11 inclusive and issues a Warning if the condition is true. Check the operator console for outstanding replies and address these. If all of the outstanding replies are correct and routine, you may want to adjust this situation's threshold.

The formula is:

OS390 PageDSNotOperational.Crit
OS390_PageDSNotOperational_Crit monitors the number of page datasets in this condition and issues a Critical alert if the number is greater than or equal to 5. Verify that paging devices are operational. If a device is not operational, attempt to VARY it online. If a page data set was drained by a prior PAGEDEL DRAIN command, it may now be removed by a PAGEDEL DELETE command. If this alert occurs without warning, an IPL may be imminent. Prepare to shut down and request appropriate assistance.

The formula is:

IF VALUE System_Paging_Activity.Datasets_Not_Operational GE 5

OS390 PageDSNotOperational.Warn
OS390_PageDSNotOperational_Warn monitors the number of page datasets in this condition and issues a Warning if the number is from 1 to 4 inclusive. Verify that paging devices are operational. If a device is not operational, attempt to VARY it online. If a page data set was drained by a prior PAGEDEL DRAIN command, it may now be removed by a PAGEDEL DELETE command. If this alert occurs without warning, an IPL may be imminent. Prepare to shut down and request appropriate assistance.

The formula is:

IF VALUE System_Paging_Activity.Datasets_Not_Operational GT 0 AND VALUE System_Paging_Activity.Datasets_Not_Operational LT 5
OS390_Page_Rate_Crit
This situation monitors the current paging rate and raises a Critical alert when the rate exceeds the
threshold. The formula is:

IF VALUE Page_Dataset_Activity.Page_Rate *LT 0

Excessive paging may increase application wait and response time. Because system page rate is
dependent on processor type, real storage configuration, and workload you may need to adjust your
paging system based on your installation defined service requirements. This situation is disabled by
default and should be activated only when necessary to characterize a chronic excessive paging problem.

OS390_Page_Rate_Warn
This situation monitors the current paging rate and raises a Warning alert when the rate exceeds the
threshold. The formula is:

IF VALUE Page_Dataset_Activity.Page_Rate *LT 0

Because system page rate is dependent on processor type, real storage configuration, and workload you
may need to adjust your paging system based on your installation defined service requirements. This
situation is disabled by default and should be activated only to diagnose a chronic high paging rate.

OS390_Physical_CPUs_Online_Crit
OS390_Physical_CPUs_Online_Crit monitors the number of online CPUs and issues a Critical alert when
the number is less than the current threshold. This situation is disabled (set to 0) by default and should
be activated only to diagnose chronic configuration problems.

The formula is:

IF VALUE System_CPU_Utilization.Physical_CPU_Count LT 0

OS390_Physical_CPUs_Online_Warn
OS390_Physical_CPUs_Online_Warn monitors the number of online CPUs and issues a warning when the
number is less than the current threshold. This situation is disabled (set to 0) by default and should be
activated only to diagnose chronic configuration problems.

The formula is:

IF VALUE System_CPU_Utilization.Physical_CPU_Count LT 0

OS390_RMF_Not_Active_Crit
OS390_RMF_Not_Active_Crit monitors to determine whether the RMF monitor is inactive and issues a
Critical alert if the condition is true. RMF data is essential to performance management and problem
analysis. If you cannot restart the RMF, notify appropriate personnel.

The formula is:

IF VALUE Operator_Alerts.RMF_Not_Active EQ True

OS390_RMF_Not_Active_Warn
OS390_RMF_Not_Active_Warn monitors to determine whether the RMF monitor is inactive and issues a
Warning if the condition is true. RMF data is essential to performance management and problem analysis.
If you cannot restart the RMF, notify appropriate personnel.
The formula is:

IF VALUE Operator_Alerts.RMF_Not_Active EQ True

OS390_SMF_Not_Recording_Crit

OS390_SMF_Not_Recording_Crit monitors to determine whether the SMF is recording information and issues a Critical alert if the condition is true. SMF data has numerous uses including resource accounting and capacity management. Check the SMF datasets and restart the collection process as soon as possible. If you cannot restart the SMF datasets, notify appropriate personnel.

The formula is:

IF VALUE Operator_Alerts.SMF_Not_Recording EQ True

OS390_SMF_Not_Recording_Warn

OS390_SMF_Not_Recording_Warn monitors to determine whether the SMF is recording information and issues a Warning if the condition is true. SMF data has numerous uses including resource accounting and capacity management. Check the SMF datasets and restart the collection process as soon as possible. If you cannot restart the SMF datasets, notify appropriate personnel.

The formula is:

IF VALUE Operator_Alerts.SYSLOG_Not_Recording EQ True

OS390_SYSLOG_Not_Recording_Crit

OS390_SYSLOG_Not_Recording_Crit monitors to determine whether the System Log is recording information and issues a Critical alert if the condition is true. Determine why logging has stopped. A possibility is that JES spool space is exhausted.

The formula is:

IF VALUE Operator_Alerts.SYSLOG_Not_Recording EQ True

OS390_SYSLOG_Not_Recording_Warn

OS390_SYSLOG_Not_Recording_Warn monitors to determine whether the System Log is recording information and issues a Warning if the condition is true. Determine why logging has stopped. A possibility is that JES spool space is exhausted.

The formula is:

IF VALUE Operator_Alerts.SYSLOG_Not_Recording EQ True

OS390_System_Page_Rate_Crit

This situation monitors the system page rate and raises a Critical alert when the threshold is reached. The formula is:

IF VALUE System_Paging_Activity.System_Page_Rate *LT 0

Excessive paging may increase application wait and response time. Because system page rate is dependent on processor type, real storage configuration, and workload you may need to adjust your paging system based on your installation defined service requirements. This situation is disabled by default and should be activated only to diagnose a chronic high paging rate.
OS390_System_Page_Rate.Warn
This situation monitors the system page rate and raises a Warning alert when the threshold is reached.
The formula is:

IF VALUE System_Paging_Activity.System_Page_Rate *LT 0

Excessive paging may increase application wait and response time. Because system page rate is dependent on processor type, real storage configuration, and workload you may need to adjust your paging system based on your installation defined service requirements. This situation is disabled by default and should be activated only to diagnose a chronic high paging rate.

OS390_System_PageFault_Rate_Crit
OS390_System_PageFault_Rate_Crit monitors the system page fault rate and issues a Critical alert when the threshold is exceeded. This situation is shipped disabled by default.

The formula is:

IF VALUE System_Paging_Activity.Page_Fault_Rate GE 1000000000

OS390_System_PageFault_Rate.Warn
OS390_System_PageFault_Rate.Warn monitors the system page fault rate and issues a Warning when the threshold is exceeded. This situation is shipped disabled by default.

The formula is:

IF VALUE System_Paging_Activity.Page_Fault_Rate GE 1000000000

OS390_Tape_Dropped_Ready_Crit
OS390_Tape_Dropped_Ready_Crit monitors the number of tape drives in this condition and issues a Critical alert if the threshold is exceeded. Check the devices and attempt to make them ready. If this is not possible, report the condition to the appropriate personnel.

The formula is:

IF VALUE Tape_Drives.Dropped_Ready GE 5

OS390_Tape_Dropped_Ready_Warn
OS390_Tape_Dropped_Ready_Warn monitors the number of tape drives in this condition and issues a Warning if the threshold is exceeded. Check the devices and attempt to make them ready. If this is not possible, report the condition to the appropriate personnel.

The formula is:

IF VALUE Tape_Drives.Dropped_Ready GT 0 AND VALUE Tape_Drives.Dropped_Ready LT 5

OS390_Tape_Mount_Pend_Time_Crit
This situation issues a Critical alert when any tape unit has been waiting for a tape mount for more than 1200 seconds (20 minutes) or more. The situation has a monitoring interval of 5 minutes. The situation message displays the volume or volumes being requested to allow tape operators to know which tape volumes require mounts.

The formula is: IF VALUE Tape_Drives.Tape_Mount_Pending_Time *GE 1200
A tape mount pending time that exceeds the threshold might require contacting operations to ensure that the MOUNT request has been recognized by personnel responsible for mounting tapes on the requested tape unit.

OS390_Tape_Mount_Pend_Time_Warn

This situation issues a Warning alert when any tape unit has been waiting for a tape mount for more than 600 seconds (10 minutes) and less than 1200 seconds (20 minutes). The situation has a monitoring interval of 2 minutes. The warning situation message displays the volume or volumes being requested to allow tape operators to know which tape volumes require mounts.

The formula is: \[\text{IF VALUE Tape_Drives.Tape_Mount_Pending_Time GT 600 AND VALUE Tape_Drives.Tape_Mount_Pending_Time LT 1200} \]

OS390_Tape_Not_Responding_Crit

OS390_Tape_Not_Responding_Crit monitors the number of tape drives in this condition and issues a Critical alert if the threshold is exceeded. If the condition is persistent and the devices cannot be activated by VARYing them online, report the problem to the appropriate personnel.

The formula is:

\[\text{IF VALUE Tape_Drives.Not_Responding GE 5} \]

OS390_Tape_Not_Responding_Warn

OS390_Tape_Not_Responding_Warn monitors the number of tape drives in this condition and issues a Warning if the threshold is exceeded. If the condition is persistent and the devices cannot be activated by VARYing them online, report the problem to the appropriate personnel.

The formula is:

\[\text{IF VALUE Tape_Drives.Not_Responding GT 0 AND VALUE Tape_Drives.Not_Responding LT 5} \]

OS390_Tape_Permanent_Error_Crit

OS390_Tape_Permanent_Errors_Crit monitors the count of permanent errors on a tape drive and issues a Critical alert if the number is greater than or equal to 30.

The formula is:

\[\text{IF VALUE Tape_Drives.Permanent_Errors GE 30} \]

OS390_Tape_Permanent_Error_Warn

OS390_Tape_Permanent_Errors_Warn monitors the count of permanent errors on a tape drive and issues a Warning if the number is between 5 and 29 inclusive.

The formula is:

\[\text{IF VALUE Tape_Drives.Permanent_Errors GE 5 AND VALUE Tape_Drives.Permanent_Errors LT 30} \]
OS390_Tape_Temp_Errors_Crit

OS390_Tape_Temp_Errors_Crit monitors the count of temporary errors on a tape drive and issues a Critical alert if the number is greater than or equal to 30. The problem could be caused either by the media or by the device. Monitor to determine whether there is additional degradation and if so, report the problem to appropriate personnel.

The formula is:

IF VALUE Tape_Drives.Temporary_Errors GE 30

OS390_Tape_Temp_Errors_Warn

OS390_Tape_Temp_Errors_Warn monitors the count of temporary errors on a tape drive and issues a Warning if the number is between 5 and 29 inclusive. The problem could be caused either by the media or by the device. Monitor to determine whether there is additional degradation and if so, report the problem to appropriate personnel.

The formula is:

IF VALUE Tape_Drives.Temporary_Errors GE 5 and VALUE Tape_Drives.Temporary_Errors LT 30

OS390_Undispatched_Tasks_Crit

OS390_Undispatched_Tasks_Crit monitors to determine whether the number of tasks or address spaces that have not been dispatched by the SRM due to constraints is greater than or equal to 20 and issues a Critical alert if the condition is true. If the condition persists for more than an hour, a capacity upgrade may be required. Determine whether any important service classes are missing their goals.

The formula is:

IF VALUE System_CPU_Utilization.Undispatched_Tasks GE 20

OS390_Undispatched_Tasks_Warn

OS390_Undispatched_Tasks_Warn monitors to determine whether the number of tasks or address spaces that have not been dispatched by the SRM due to constraints is greater than or equal to 5 and less than 20 and issues a Warning if the condition is true. If the condition persists for more than an hour, a capacity upgrade may be required. Determine whether any important service classes are missing their goals.

The formula is:

IF VALUE System_CPU_Utilization.Undispatched_Tasks GE 5 AND VALUE System_CPU_Utilization.Undispatched_Tasks LT 20

OS390_Unowned_Common_Stor_Crit

OS390_Unowned_Common_Stor_Crit monitors the amount of unowned storage in the Common Services Area and issues a Critical alert if the threshold is exceeded. Ensure that the CSA Analyzer collector is running.

The formula is:

IF VALUE Common_Storage.Area EQ CSA AND VALUE Common_Storage.Unowned GE 1000000000
OS390_Unowned_Common_Stor_Warn
OS390_Unowned_Common_Stor_Warn monitors the amount of unowned storage in the Common Services Area and issues a Warning alert if the threshold is exceeded. Ensure that the CSA Analyzer collector is running.

The formula is:

IF VALUE Common_Storage.Area EQ CSA AND VALUE Common_Storage.Unowned GE 1000000000

OS390_Unref_Interval_Cnt_Crit
OS390_Unref_Interval_Cnt_Crit monitors to determine whether the value of the unreferenced interval count of the System Paging Activity attribute group is less than or equal to 10, and issues a Critical alert if the condition is true.

The formula is:

IF VALUE PAGING.UNREFINT <= 10

If this situation is raised, determine whether any important service classes are failing to meet their goals and if Private Page-in Wait is a significant reason. If so, central storage may be overcommitted, possibly the result of a capacity problem.

Because lower values indicate resource contention, the unreferenced interval count (UIC) is an alert where the critical threshold must be less than the warning threshold.

OS390_Unref_Interval_Cnt_Warn
OS390_Unref_Interval_Cnt_Warn monitors to determine whether the unreferenced interval count of the System Paging Activity attribute groups is between 10 and 20, and issues a Warning if the condition is true. Determine whether any important service classes are failing to meet their goals and, if Private Page-in Wait is a significant reason. If so, central storage may be overcommitted, possibly the result of a capacity problem.

The formula is:

IF VALUE PAGING.UNREFINT <20 AND PAGING.UNREFINT > 10

Because lower values indicate resource contention, the unreferenced interval count (UIC) is an alert where the warning threshold must be greater than the critical.

OS390_User_Host_Resp_Time_Crit
OS390_User_Host_Resp_Time_Crit monitors to determine whether the host (internal) response time for the indicated TSO user is exceeding the Critical threshold and if so, issues a Critical alert. If the user's service class is meeting its goal, there may be a specific problem in this user's address space. If the service class is missing its goal, the goal may be too demanding and may need to be adjusted.

The formula is:

IF VALUE User_Response_Time.Host_Response GE 100000000

OS390_User_Host_Resp_Time_Warn
OS390_User_Host_Resp_Time_Warn monitors to determine whether the host (internal) response time for the indicated TSO user is exceeding the Warning threshold and if so, issues a Warning alert. If the user's
service class is meeting its goal, there may be a specific problem in this user's address space. If the service class is missing its goal, the goal may be too demanding and may need to be adjusted.

The formula is:

```
IF VALUE User_Response_Time.Host_Response GE 100000000
```

OS390_User_Total_Resp_Time_Crit

OS390_User_Total_Resp_Time_Crit monitors the total response time (host plus network) for a TSO user and issues a Critical alert if the threshold is exceeded. If the service class for this user is meeting its goal, the problem may be a network response time problem. The formula is:

```
IF VALUE User_Response_Time.Total_Response GE 100000000.0
```

OS390_User_Total_Resp_Time_Warn

OS390_User_Total_Resp_Time_Warn monitors the total response time (host plus network) for a TSO user and issues a Warning alert if the threshold is exceeded. If the service class for this user is meeting its goal, the problem may be a network response time problem.

The formula is:

```
IF VALUE User_Response_Time.Total_Response GE 100000000.0
```

OS390_WTO_Buffers_Left_Crit

OS390_WTO_Buffers_Left_Crit monitors to determine whether the remaining WTO buffer pool is becoming dangerously small and issues a Critical alert if the condition is true. Determine whether a console device is down and if so, switch the message stream to another device.

The formula is:

```
IF VALUE Operator_Alerts.WTO_Buffers_Remaining LE 20
```

OS390_WTO_Buffers_Left_Warn

OS390_WTO_Buffers_Left_Warn monitors to determine whether the remaining WTO buffer pool is becoming short of resources and issues a Warning if the condition is true. Determine whether a console device is down and if so, switch the message stream to another device.

The formula is:

```
IF VALUE Operator_Alerts.WTO_Buffers_Remaining GT 20 AND VALUE Operator_Alerts.WTO_Buffers_Remaining LE 100
```

Quiesced_UNIX_File_System

Quiesced_UNIX_File_System detects a quiesced file system. The formula is:

```
IF *VALUE USS_Mounted_File_Systems.Status *EQ Quiesced
```

The file system indicated is in a Quiesced state. This condition might not be a matter of immediate concern. For example, this could be due to an HSM backup recovery in progress. If this condition persists, a system programmer should be notified.
Shortage_of_UNIX_Processes_Crit
Shortage_of_UNIX_Processes_Crit checks to determine if the current number of processes is very close to 90. The formula is:

*VALUE USS_Kernel.Used_Processes *GE 90

If the maximum is reached, no more processes can be started. If this condition is due to expected growth, increase the maximum value. Otherwise, a system programmer should be notified.

Shortage_of_UNIX_ProcessesWarn
Shortage_of_UNIX_Processes_Warn checks to determine if the current number of processes is between 80 and 90. The formula is:

*VALUE USS_Kernel.Used_Processes *GE 80 *AND *VALUE USS_Kernel.Used_Processes *LT 90

If the maximum number of processes is reached, no more processes can be started. If this condition is due to expected growth, increase the maximum value. Otherwise, a system programmer should be notified.

UNIX_ENQ_Contention_Critical
UNIX_ENQ_Contention_Critical detects when an HFS enqueue contention has lasted 30 seconds or more. The formula is:

*VALUE USS_HFS_ENQ_Contention.Time *GE 30

If this condition occurs, check the details to determine who is holding the enqueue. If it is a batch job that can be canceled and requeued, the deadlock can be broken by doing that. If it is a started task, a UNIX process, or an online user, a system programmer should be notified.

UNIX_ENQ_Contention_Warning
UNIX_ENQ_Contention_Warning detects when an HFS enqueue contention has lasted 10 seconds or more. The formula is:

*VALUE USS_HFS_ENQ_Contention.Time *GE 10 *AND *VALUE USS_HFS_ENQ_Contention.Time *LT 30

If this condition occurs, check the details to determine who is holding the enqueue. If it is a batch job that can be canceled and requeued, the deadlock can be broken by doing that. If it is a started task, a UNIX process, or an online user, a system programmer should be notified.

UNIX_File_System_FreeSpace_Crit
UNIX_File_System_FreeSpace_Crit detects when any file system has less than 10% free space. The formula is:

\IF *VALUE USS_Mounted_File_Systems.Percent_Used *GE 90

If this condition occurs, the file system space should be extended. This can be accomplished with UNIX System Services commands. If this condition becomes chronic, a system programmer should be notified.

UNIX_File_System_FreeSpace_Warn
UNIX_File_System_FreeSpace_Warn detects when any file system has less than 20% free space. The formula is:
IF *VALUE USS_Mounted_File_Systems.Percent_Used *GE 80 *AND *VALUE
USS_Mounted_File_Systems.Percent_Used *LT 90

If this condition occurs, consider extending the file system space. This can be accomplished with UNIX
System Services commands. If this condition becomes chronic, a system programmer should be notified.

UNIX_Logged_On_User_Idle
Logged_On_User_Idle detects a logged-on user with excessive idle time. The formula is:

IF *VALUE USS_Logon_Users.Idle_Time_Mins *GT 480

This condition might not be a matter of immediate concern. Consult installation procedures for
appropriate action.

UNIX_Max_Sockets_Critical
UNIX_Max_Sockets_Critical detects when the percentage of UNIX sockets in use has reached 95%. The
formula is:

IF *VALUE USS_Kernel.USock_Curr_Pct *GE 95.0

This situation indicates that usage of UNIX sockets is near the maximum. If the maximum is reached,
UNIX System Services functionality will be adversely affected. Help from a system programmer is
needed immediately. Consider increasing the value of NETWORK DOMAINNAME(AF_UNIX)-
MAXSOCKETS(). Use the SETOMVS RESET command to dynamically change the MAXSOCKETS value,
or, to make a permanent change, edit the BPXPROMxx member in SYS1.PARMLIB.

UNIX_Max_Sockets_Warning
UNIX_Max_Sockets_Warning indicates that the percentage of UNIX sockets in use is between 80 and
95%. The formula is:

*IF *VALUE USS_Kernel.USock_Curr_Pct *GE 80.0 *AND *VALUE USS_Kernel.USock_Curr_Pct *LT 95.0

This situation indicates that usage of UNIX sockets is approaching the maximum. If the maximum is
reached, UNIX System Services functionality will be adversely affected. Consider increasing the value of
NETWORK DOMAINNAME(AF_UNIX)-MAXSOCKETS(). Use the SETOMVS RESET command to
dynamically change the MAXSOCKETS value, or, to make a permanent change, edit the BPXPROMxx
member in SYS1.PARMLIB.

Unwanted_inetd_UNIX_Process
Unwanted_inetd_UNIX_Process detects a missing or unwanted inetd process. The formula is:

IF *VALUE USS_Processes.Command_Name *EQ inetd

The inetd daemon provides UNIX networking services. If the active process is unwanted, consult the
installation procedures for appropriate action. If the inetd daemon should be, stop or do not start this
situation.
Chapter 12. Workspaces

OMEGAMON XE on z/OS provides two sets of predefined workspaces for the Tivoli Enterprise Portal: Sysplex-level and system-level. These workspaces provide data in tabular and graphic form and enable you to effectively monitor the availability, resource consumption and performance of your Sysplexes and their component z/OS systems.

The Sysplex Enterprise Overview workspace allows you to monitor the status and performance of your sysplexes and shared resources at a glance. Additional sysplex-level workspaces provide data on coupling facilities, global enqueues, GRS ring systems, report classes, service classes, resource groups, shared DASD groups, and cross-system coupling facilities (XCFs) used by each sysplex.

The system-level workspaces report data on address space CPU utilization, storage usage and bottlenecks, channel activity, common storage usage, single image DASD device usage, Workload Manager service class resource usage, and LPAR cluster activity for the z/OS images that participate in the sysplex. There are also workspaces that provide information about the status and configuration of any installed IBM cryptographic coprocessors and information about the use of UNIX System Services.

In addition to table and graph views, a workspace modified to contain other views, such as a notepad view, a browser session, an event console, a 3270 console, or a Take Action view that gives you the ability to send commands to the operator console.

The descriptions of each workspace apply to the default settings (the components of the workspace in its original configuration). Any changes or updates that you make to a workspace are not reflected in the description of the workspace. For additional information about workspaces, as well as information about sorting and filtering table view data, refer to IBM Tivoli OMEGAMON XE on z/OS: User’s Guide and the Tivoli Enterprise Portal online help.

Organization of the workspaces

The physical view of the Tivoli Enterprise Portal Navigator shows an enterprise as a mapping of platforms, systems, agents, and monitored resources. In a Sysplex environment, monitored Sysplexes appear between the platform and system levels of the Navigator tree, listed by their managed system names.

- Enterprise
 - z/OS Systems
 - SYSPLEX1:MVS:SYSPLEX
 - SYSPLEX2:MVS:SYSPLEX

Below each Sysplex name are entries that represent a set of common objects shared by the Sysplex that are monitored by OMEGAMON XE on z/OS, and entries that represent z/OS systems or LPARs being monitoring by OMEGAMON XE on z/OS.

- SYSPLEX1:MVS:SYSPLEX
 - Coupling Facility Policy Data for Sysplex
 - Coupling Facility Structures Data for Sysplex...
Each entry is associated with one or more workspaces which provide information on those monitored objects. For example, the Shared DASD Groups Data for Sysplex entry is associated with the Shared DASD for Groups workspace, which provides information about Sysplex-wide activity of shared DASD devices. From the Shared DASD for Groups workspace you can link to the Shared DASD Devices workspace, which displays information about the activity of the shared devices for a selected group, averaged over all systems in the Sysplex.

Under each system name is a or entry for each type of resource monitored by an OMEGAMON XE monitoring agent on that LPAR. (Multiple-instance agents that have child items are usually grouped into one folder.) For example, if you have installed both OMEGAMON XE on z/OS and OMEGAMON XE for IMS, you will see two entries at this level:

- Sys1
 - MVS Operating System
 - DEMOPLX:SYS1:MVSSYS
- IMS

Under each agent entry is an entry for the managed system.

Sysplex managed system names take the form plexname :MVS:SYSPLEX, where plexname is normally the true name of the Sysplex, but could be configured to be an alias name for the Sysplex.

LPAR managed system names take the form plexname : smfid :MVSSYS, where plexname is normally the true name of the Sysplex but could be configured to be an alias name for the Sysplex. (This part of the LPAR managed system name typically matches the plexname component of its parent Sysplex in the navigation tree.) The smfid component is the true SMF ID for the LPAR being monitored.

To see a description of a particular workspace, or to find instructions for accessing it, select its name in the Contents tab. Workspaces are listed alphabetically by type (Sysplex-level or system-level).

Reporting historical data

All the system-level workspaces, except the Address Space Bottlenecks workspace, and all of the Sysplex-level workspaces, except the Users Data for CF Structure and GRS Ring Systems Data for Sysplex workspaces, can record and report historical data.

For historical data to be available, historical data collection must be configured and enabled on all Tivoli Enterprise Monitoring Servers in a Sysplex. (Collection must be configured on all systems in the Sysplex because the identity of the monitoring server acting as the Sysplex proxy can vary, and the Tivoli Enterprise Portal cannot know which address space is currently serving as the proxy.) Workspace views that have history recording enabled display the history icon.

For information on configuring and reporting of historical data collection with the Tivoli Enterprise Portal, see the Tivoli Enterprise Portal online Help or the *IBM Tivoli Monitoring: Tivoli Enterprise Portal User's Guide.*
Sysplex workspaces

The predefined sysplex workspaces help you to determine if there is a problem within a sysplex and, if so, which component of the sysplex is in trouble. The topics in this section provide descriptions of the predefined sysplex-level workspaces and the navigational links between them.

Historical data collection for sysplex workspaces

All the sysplex-level workspaces can record history, except the Users Data for CF Structure, GRS Ring Systems Data for Sysplex, and the Members Data for XCF Group workspaces.

For information on historical data collection and reporting, see the Tivoli Enterprise Portal help, and the IBM Tivoli Monitoring Administrator’s Guide.

Organization of the sysplex workspaces

Primary workspaces can be accessed directly from the Navigator. Other, secondary workspaces can be accessed only from another workspace.

The following table shows the organization of the sysplex-level predefined workspaces, beginning with the “Sysplex Enterprise Overview workspace” on page 325. From the Sysplex Enterprise Overview workspace you can link to all of the sysplex-level workspaces listed in the Navigator. The other primary workspaces are listed in alphabetical order. All other workspaces are shown nested beneath the primary or secondary workspaces from which they can be linked.

- “Sysplex Level Overview” on page 327
- “Coupling Facility Policy Data for Sysplex workspace” on page 316
- “Coupling Facility Structures Data for Sysplex workspace” on page 316
 - “MVS Systems Workspace for CF Structure” on page 320
 - “Statistics for CF List or Lock Structures workspace” on page 324
 - “Statistics for CF Cache Structure workspace” on page 324
 - “Users Workspace for CF Structure” on page 328
- “Coupling Facility Systems Data for Sysplex workspace” on page 317
 - “Paths Workspace for CF System” on page 320
 - “Statistics Workspace for CF System” on page 324
- “Global Enqueue Data for Sysplex workspace” on page 318
 - “Global Enqueue and Reserve workspace” on page 318
- “GRS Ring Systems Data for Sysplex workspace” on page 319
- “Report Classes Data for Sysplex workspace” on page 321
 - “Address Spaces Workspace for Report Classes” on page 315
- “Resource Groups Data for Sysplex workspace” on page 321
 - “Service Classes Workspace for Resource Group” on page 322
- “Service Classes Data for Sysplex workspace” on page 322
 - “Workflow Analysis Workspace for Service Class” on page 330
 - “Workflow Analysis Enqueue Workspace for Service Class Sysplex” on page 329
 - “Workflow Analysis I/O Workspace for Service Class” on page 329
 - “Periods Workspace for Service Class” on page 320
 - “Workflow Analysis Workspace for Service Class Period” on page 330
 - “Workflow Analysis Enqueue Workspace for Service Class Period” on page 328
Attribute groups used by sysplex-level predefined workspaces

Typically, a workspace contains data from a single attribute group. Overview workspaces may contain data from several different attribute groups.

This table shows the relationships between the predefined workspaces and the attribute groups. (The workspaces are listed in alphabetical order.)

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Related Attribute Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Address Spaces Workspace for Report Classes" on page 315</td>
<td>"Service Class Address Spaces attributes" on page 143</td>
</tr>
<tr>
<td>"Address Spaces Workspace for Service Class" on page 315</td>
<td>"Service Class Address Spaces attributes" on page 143</td>
</tr>
<tr>
<td>"Address Spaces Workspace for Service Class Period" on page 316</td>
<td>"Service Class Address Spaces attributes" on page 143</td>
</tr>
<tr>
<td>"Coupling Facility Policy Data for Sysplex workspace" on page 316</td>
<td>"CF Policy attributes" on page 122</td>
</tr>
<tr>
<td>"Coupling Facility Structures Data for Sysplex workspace" on page 316</td>
<td>"CF Structures attributes" on page 122</td>
</tr>
<tr>
<td>"Coupling Facility Systems Data for Sysplex workspace" on page 317</td>
<td>"CF Systems attributes" on page 127</td>
</tr>
<tr>
<td>Workspace</td>
<td>Related Attribute Group</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>“Cross-system Cryptographic Coprocessor Overview workspace” on page 311</td>
<td>“Integrated Cryptographic Services Facilities Subsystems (ICSF) attributes” on page 198</td>
</tr>
<tr>
<td>“Enterprise Enqueue and Reserve workspace” on page 318</td>
<td>“Service Call Type Detail (SVCDET) attributes” on page 233</td>
</tr>
<tr>
<td>“Global Enqueue Data for Sysplex workspace” on page 318</td>
<td>“Top User Performance attributes” on page 240</td>
</tr>
<tr>
<td>“Global Enqueues attributes” on page 133</td>
<td></td>
</tr>
<tr>
<td>“GRS Ring Systems Data for Sysplex workspace” on page 319</td>
<td>“GRS attributes” on page 133</td>
</tr>
<tr>
<td>“Members Workspace for XCF Group” on page 319</td>
<td>“XCF Members attributes” on page 159</td>
</tr>
<tr>
<td>“MVS Systems Workspace for CF Structure” on page 320</td>
<td>“CF Structure to MVS attributes” on page 126</td>
</tr>
<tr>
<td>“Paths Workspace for CF System” on page 320</td>
<td>“CF Path attributes” on page 121</td>
</tr>
<tr>
<td>“Periods Workspace for Service Class” on page 320</td>
<td>“Sysplex WLM Service Class Period attributes” on page 152</td>
</tr>
<tr>
<td>“Periods Workspace for Service Class System” on page 321</td>
<td>“Sysplex WLM Service Class Period attributes” on page 152</td>
</tr>
<tr>
<td>“Report Classes Data for Sysplex workspace” on page 321</td>
<td>“Report Classes attributes” on page 142</td>
</tr>
<tr>
<td>“Resource Groups Data for Sysplex workspace” on page 321</td>
<td>“Resource Groups attributes” on page 142</td>
</tr>
<tr>
<td>“Service Classes Data for Sysplex workspace” on page 322</td>
<td>“Sysplex WLM Service Class Period attributes” on page 152</td>
</tr>
<tr>
<td>“Service Classes Workspace for Resource Group” on page 322</td>
<td>“Resource Groups attributes” on page 142</td>
</tr>
<tr>
<td>“Service Definition Data for Sysplex workspace” on page 323</td>
<td>“Service Definition attributes” on page 148</td>
</tr>
<tr>
<td>“Shared DASD Devices workspace” on page 323</td>
<td>“Sysplex DASD Device attributes” on page 150</td>
</tr>
<tr>
<td>“Shared DASD Groups Data for Sysplex workspace” on page 323</td>
<td>“Sysplex DASD Group attributes” on page 151</td>
</tr>
<tr>
<td>“Shared DASD Systems workspace” on page 323</td>
<td>“Sysplex DASD attributes” on page 149</td>
</tr>
<tr>
<td>“Statistics for CF Cache Structure workspace” on page 324</td>
<td>“CF Structures attributes” on page 122</td>
</tr>
<tr>
<td>Workspace</td>
<td>Related Attribute Group</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>“Statistics for CF List or Lock Structures workspace” on page 324</td>
<td>“CF Structures attributes” on page 122</td>
</tr>
<tr>
<td>“Statistics Workspace for CF System” on page 324</td>
<td>“CF Systems attributes” on page 127</td>
</tr>
<tr>
<td>“Subsystem Workflow Analysis for Service Class workspace” on page 325</td>
<td>“Service Class Subsystem Workflow Analysis attributes” on page 146</td>
</tr>
<tr>
<td>“Sysplex Enterprise Overview workspace” on page 325</td>
<td>The overview workspace does not have a single associated attribute group. For information about the columns in the table, see:</td>
</tr>
<tr>
<td></td>
<td>“Sysplex Coupling Facility Columns” on page 163</td>
</tr>
<tr>
<td></td>
<td>“Sysplexes Global Enqueue Columns” on page 163</td>
</tr>
<tr>
<td></td>
<td>“Sysplexes GRS Columns” on page 164</td>
</tr>
<tr>
<td></td>
<td>“Sysplexes Shared DASD Columns” on page 158</td>
</tr>
<tr>
<td></td>
<td>“Sysplexes Workloads Columns” on page 164</td>
</tr>
<tr>
<td></td>
<td>“Sysplexes XCF Columns” on page 165</td>
</tr>
<tr>
<td>“Sysplex Level Overview” on page 327</td>
<td>The views in the Sysplex Level Overview workspace are associated with these attribute groups:</td>
</tr>
<tr>
<td></td>
<td>“Enqueue Conflicts attributes” on page 194</td>
</tr>
<tr>
<td></td>
<td>“GRS attributes” on page 133</td>
</tr>
<tr>
<td></td>
<td>“Sysplex WLM Service Class Period attributes” on page 152</td>
</tr>
<tr>
<td></td>
<td>“CF Structures attributes” on page 122</td>
</tr>
<tr>
<td></td>
<td>“Sysplex DASD Group attributes” on page 151</td>
</tr>
<tr>
<td></td>
<td>“XCF Paths attributes” on page 159</td>
</tr>
<tr>
<td>“Systems Workspace for Service Class” on page 327</td>
<td>“Sysplex WLM Service Class Period attributes” on page 152</td>
</tr>
<tr>
<td>“Users Workspace for CF Structure” on page 328</td>
<td>“CF Clients attributes” on page 120</td>
</tr>
<tr>
<td>“Workflow Analysis Enqueue Workspace for Service Class Period” on page 328</td>
<td>“Service Class Enqueue Workflow Analysis attributes” on page 145</td>
</tr>
<tr>
<td>“Workflow Analysis Enqueue Workspace for Service Class Period System” on page 328</td>
<td>“Service Class Enqueue Workflow Analysis attributes” on page 145</td>
</tr>
<tr>
<td>“Workflow Analysis Enqueue Workspace for Service Class System” on page 328</td>
<td>“Service Class Enqueue Workflow Analysis attributes” on page 145</td>
</tr>
<tr>
<td>“Workflow Analysis Enqueue Workspace for Service Class Sysplex” on page 329</td>
<td>“Service Class Enqueue Workflow Analysis attributes” on page 145</td>
</tr>
<tr>
<td>“Workflow Analysis I/O Workspace for Service Class” on page 329</td>
<td>“Service Class I/O Workflow Analysis attributes” on page 146</td>
</tr>
<tr>
<td>“Workflow Analysis I/O Workspace for Service Class Period” on page 329</td>
<td>“Service Class I/O Workflow Analysis attributes” on page 146</td>
</tr>
<tr>
<td>“Workflow Analysis I/O Workspace for Service Class Period System” on page 329</td>
<td>“Service Class I/O Workflow Analysis attributes” on page 146</td>
</tr>
</tbody>
</table>
Address Spaces Workspace for Report Classes

This workspace provides performance and resource usage information for all workspaces in a selected report class. Use this information to help determine which address spaces may be having performance problems.

The Address Spaces for Report Class table view provides the system name, address space ID, and service class associated with each address space, as well as the number of working set frames in central and extended storage for the address space, velocity, page and I/O rate, and CPU percentage. The latter statistics are presented graphically in bar chart views.

You can link to this workspace from the Address Spaces Workspace for Service Class on page 330.

This workspace can record history.

Related topics: Organization of the sysplex workspaces on page 311, Attribute groups used by sysplex-level predefined workspaces on page 312

Address Spaces Workspace for Service Class

The Address Spaces workspace for Service Class displays information about the performance and resource utilization of all address spaces in the Sysplex that are currently running in a given service class.

The Address Spaces for Service Class table view provides the system name, address space ID, and report class associated with each address space, as well as the number of working set frames in central and extended storage for the address space, velocity, page and I/O rate, and CPU percentage. The latter statistics are presented graphically in bar chart views.
Address Spaces Workspace for Service Class Period

The Address Spaces workspace for Service Class Period displays information about the performance and resource utilization of all address spaces in the Sysplex that are currently running in a selected service class period.

For each address space, the Address Spaces for Service Class table view shows the system name, address space ID, report class, velocity, page rate, the number of working set frames in central and expanded storage, number of I/Os per second experienced in the current interval, and the percentage of CPU used in the current interval.

Bar chart views graphically display the velocity and CPU usage percentages, page rates and I/O per second, and number of frames in central and expanded storage.

You can link to this workspace from the “Periods Workspace for Service Class” on page 320. This workspace can record history.

Related topics: “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Coupling Facility Policy Data for Sysplex workspace

The Coupling Facility Policy Data for Sysplex workspace displays Coupling Facility Resource Management (CFRM) policy information. It lists the policy name and the date the policy was activated, and indicates whether a reformat of the CFRM is required.

Related topics: “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Coupling Facility Structures Data for Sysplex workspace

Coupling facilities provide communication between members of a sysplex to coordinate locking and buffer pool information. The Coupling Facility Structures Data for Sysplex workspace, accessed from the Navigator, presents information for each coupling facility structure throughout the sysplex.

The User Count bar chart graphically displays the total number of connected users and the number of users connected in an exception state for all structures with a problem user count greater than zero.

The Percentage of CF System Total Storage bar chart show the amount of the total allocated storage currently in use.

The Coupling Facility Structures table view provides the name, type, and status of each structure and statistics such as synchronous and asynchronous requests, allocated storage and percentage of storage in use, number of maximum possible and current users.

From the Coupling Facility Structures table you can link to the following workspaces, which provide detailed information on the selected structure:

“Users Workspace for CF Structure” on page 328
“MVS Systems Workspace for CF Structure” on page 320
“Statistics for CF List or Lock Structures workspace” on page 324
This workspace can record history.

Coupling Facility Systems Data for Sysplex workspace

The Coupling Facility Systems Data for Sysplex workspace displays status, performance, and resource usage information on each system for all coupling facilities defined to the sysplex.

The Resource Usage bar chart graphically displays the percentage of CPU and percentage of storage currently being used by each facility.

The Coupling Facilities Systems table provides such information as the number of connected z/OS systems, the number of structures in and out of policy, and the amount of allocated storage currently in use.

From the Coupling Facilities Systems table view you can link to workspaces that provide path information or detailed statistics for a selected coupling facility.

Cross-system Cryptographic Coprocessor Overview workspace

The Cross-system Cryptographic Coprocessor Overview workspace shows summary information for Integrated Cryptographic Service Facility (ICSF) subsystems on each z/OS image, service call performance information by system, and top users by system.

The Cross-System ICSF report contains a row for each system which is being monitored. Each row indicates the number of active coprocessors (CMOS and PCI). Because coprocessors can be shared by LPARs, the total number of physical coprocessors cannot easily be determined from the the ICSF view. For example, if three systems are monitored and they are all LPARs of the same complex, they may show that they have two coprocessors each. But there may only be two physical coprocessors being shared by the 3 LPARs. (This is true of all LPAR hardware resources, like CECs and real storage.)

This workspace contains three table views:

- **ICSF Subsystem by System table view**
 - From this view you can link to the Cryptographic Services workspace for the system you select.

- **Service Call Performance by System table view**
 - From this view you can link to the Service Call Performance workspace for the system you select.

- **Top Users by System table view**
 - From this view you can link to the Top Users Performance workspace for the system you select.

To access this workspace:
1. Select (click) the z/OS Systems Navigator item.
2. When the default workspace appears, right-click the Navigator item and select Workspace > Cross-system Cryptographic Coprocessor Overview from the pop-up menu.
Enterprise Enqueue and Reserve workspace

In configurations in which enqueue management spans two or more Sysplexes, each z/OS image can be
deﬁned as belonging to an enqplex (a group of z/OS images under common enqueue management). A
resource in one enqplex is distinct from a resource having the same name in another enqplex. Systems
(that is, z/OS images) that do not deﬁne the enqplex to which they belong are assigned to the "DEFAULT
enqplex and are assumed to share resources and enqueue management. Two or more Sysplexes having
the same enqplex name share qname/rname resources.

The Enterprise Enqueue and Reserve workspace displays information about resource owners and waiters
over the enterprise for a selected major.minor name. Since resources are unique to an enqplex, all owners
and waiters will be from the same enqplex. The system name, sysplex name, and address space are
provided to uniquely identify contenders using the same job name.

You can link to this workspace from the Enterprise Global Enqueue table of the Sysplex Enterprise
Overview workspace.

This workspace cannot record history.

Related topics: “Sysplex Enterprise Overview workspace” on page 325, “Global Enqueue and Reserve
workspace,” “Organization of the sysplex workspaces” on page 311, “Attribute groups used by
sysplex-level predefined workspaces” on page 312

Global Enqueue and Reserve workspace

The Global Enqueue and Reserve workspace displays information on the global enqueues and reserves in
the sysplex. It shows all of the owners and waiters for a particular resource within the sysplex. You can
link to this workspace from the Global Enqueue Data for Sysplex workspace.

The Global Enqueue and Reserve table view provides:
• the name of the job containing the task that owns the resource
• the name of the address space currently waiting on the resource
• the hexadecimal ID of the address space
• the SYSNAME or SMF ID of the z/OS image where the task is executing
• the swap status of the address space in which the task is executing
• the type of enqueue the task has issued for the resource
• the amount of time (in seconds) that the task has been waiting for the resource

A bar graph graphically presents the task wait times.

You can link to this workspace from the Global Enqueue Data for Sysplex workspace.

Related topics: “Global Enqueue Data for Sysplex workspace,” “Organization of the sysplex workspaces”
on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Global Enqueue Data for Sysplex workspace

The Global Enqueue Data for Sysplex workspace displays information on all global enqueues for the
sysplex. It provides data on enqueue conﬂicts in the sysplex, including its contribution to conﬂicts
between sysplexes in conﬁgurations in which enqueue management spans two or more sysplexes.

In this workspace, two bar charts graphically illustrate the number of address spaces waiting for a
resource and the amount of time each has been waiting.

You can link to this workspace from the Sysplexes Global Enqueues table of the Sysplex Enterprise
Overview workspace.
From this workspace you can link to the Global Enqueue and Reserve workspace.

This workspace can record history.

Related topics: “Sysplex Enterprise Overview workspace” on page 325, “Global Enqueue and Reserve workspace” on page 318, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

GRS Ring Systems Data for Sysplex workspace

A global resource serialization (GRS) ring consists of one or more systems connected to each other by communication links. The links are used to pass information about requests for global resources from one system to another in the complex. Requests are made by passing a message or token, called the ring system authority (RSA) message, between systems in a round-robin or ring fashion.

The GRS Ring Systems Data for Sysplex workspace enables you to monitor the condition of the ring connections, the traffic on the rings, and the rings relevant to specific z/OS systems and their activities and response times. You can use the view to understand when GRS response time is elongating or if there are disruptions on the ring. This information is important for analyzing enqueue delays in workloads.

The Response Time bar chart graphically displays the actual measured ring response time, the anticipated or average time a requestor must wait for access to a global resource, and the minimum amount of time the RSA message is delayed in each z/OS image in the GRS complex.

The Global GRS Ring Systems table view displays information about the RSA messages issued by the z/OS image and the time required to allocate a resource.

Note: If the GRS complex is not in ring mode, this workspace will display data in only two fields: GRS Mode and Ring Acceleration. In such instances, use the GRS structure information in the coupling facility workspaces.

This workspace cannot record historical data.

Related topics: “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Members Workspace for XCF Group

This workspace provides information on the status and performance of members of a selected cross-system coupling facility (XCF) group.

The information provided by the Members of XCF Group table includes the job name of the task using this member’s name, the name of the z/OS system on which the member is executing, the member’s status and the status checking interval, and the number of signals sent and received by the member. The last two numbers are illustrated graphically in a bar chart.

You can link to this workspace from the XCF Groups Data for Sysplex workspace.

This workspace can record history.

Related topics: “XCF Groups Data for Sysplex workspace” on page 331, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312
MVS Systems Workspace for CF Structure
The MVS Systems workspace for CF Structure displays information for each system or image that currently has users connected to the selected coupling facility structure.

The I/O Activity bar chart shows the average time (in milliseconds) synchronous and asynchronous requests take to complete on each image, as well as the average time requests are queued to the image. The User Count and Request Counts bar chart shows the number of users on each image connected to the structure, the number of requests to the structure from the system over the last interval, the number of requests per second from the system, and the number of synchronous requests over the last interval that were converted to asynchronous.

The MVS Systems view shows the same data in tabular form.

You can link to this workspace from the Coupling Facilities Structures Data for Sysplex workspace.

This workspace can record history.

Related topics: "Coupling Facility Structures Data for Sysplex workspace" on page 316, "Organization of the sysplex workspaces" on page 311, "Attribute groups used by sysplex-level predefined workspaces" on page 312

Paths Workspace for CF System
The Paths workspace for CF System displays information about the XCF signaling used by the z/OS systems attached to the coupling facility. (A path can be an IBM 3088 MCCU data link, a parallel channel-to-channel (CTC) adapter, an Enterprise Systems Connection (ESCON) channel operating in CTC or basic mode or, if appropriate, a list structure in a coupling facility.)

Two bar charts display graphically the I/O rate for each channel and the percentage of requests that were delayed.

The Path Details for CF System Details view shows the same information in tabular form, as well as the status of each path.

You can link to this workspace from the Coupling Facility Systems Data for Sysplex workspace. This workspace can record history.

Note: When Resource Management Facility (RMF) is used as the data source for coupling facility data, this workspace has no data.

Related topics: "Coupling Facility Systems Data for Sysplex workspace" on page 317, "Organization of the sysplex workspaces" on page 311, "Attribute groups used by sysplex-level predefined workspaces" on page 312

Periods Workspace for Service Class
The Periods Workspace for Service Class displays performance information for periods in a service class, such as transaction rate, average response time, and velocity. Use this view to determine whether a problem is occurring in a particular service class.

The Performance Index bar chart graphically displays how the service class and periods are performing in relation to goal. Other bar charts illustrate the average host response time of transactions in this service class, the velocity of the service class periods, and the numbers of transactions per second being processed by each service class period.

You can link to this workspace from the Service Classes Data for Sysplex workspace.
From this workspace you can link to the following types of workspaces:

- A workflow analysis workspace for a selected service class period
- An address spaces workspace for a selected service class period

Periods Workspace for Service Class System

Periods Workspace for Service Class System displays performance information about the various periods in a selected service class for a selected system.

The Periods Details for Service Class System table provides information about transaction rate, average host response time, velocity, goal type and importance, the number of CPU service units the period may use before work is passed to the next period, and the performance index.

Four bar charts graphically display the performance index, average response time, velocity, and transaction rate per second.

You can link to this workspace from the Systems Workspace for Service Class. You can link from this workspace to Workflow Analysis Workspace for Service Class Period System.

Report Classes Data for Sysplex workspace

Incoming work can be assigned a report class as well as a service class. Even though the workload manager uses the service class to manage the workloads, report classes can be used for additional reporting across workloads or service classes.

The Report Classes Data for Sysplex workspace provides an overview of all the report classes in a sysplex. The Report Classes table view presents data on number of address spaces in each report class, the number of page faults per second experienced by the address spaces, the percentage of processor used by the address spaces (velocity), and the number of I/O per second experienced by the report class during the current interval. This data is also presented graphically in three bar charts.

From this workspace you can link to an Address Spaces for Report Class workspace for more information about a particular address space in the report class.

Related topics: “Address Spaces Workspace for Report Classes” on page 315, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Resource Groups Data for Sysplex workspace

The Resource Groups Data for Sysplex workspace displays information about individual resource groups.

The Resource Group table provides information about minimum and maximum number of service units per second that can be consumed by the service classes in the resource group, the number of service units currently being consumed by the services in the group, and the percentage of the maximum consumable service units currently in use. You can also select a specific resource group in this table and link to service class information for that group.
A resource group can be used to limit the processing capability available to a service class or to guarantee some minimum processing capability to a service class. This information can be used when specifying a minimum and maximum amount of capacity, in service units, to a resource group. You can also assign multiple service classes to the same resource group.

Related topics: “Service Classes Workspace for Resource Group,” “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Service Classes Data for Sysplex workspace

The Service Classes Data for Sysplex workspace displays performance information for the service classes defined for the sysplex.

Use the information in this workspace to determine which workloads are not meeting their goals. Open a service class to obtain more detailed performance information.

The Service Classes table view provides goal, performance, and workload information for each service class in the sysplex. Three bar charts graphically present performance indices, measured results for the service class period, and transactions per second.

From the Service Classes tables you can select a service class and link to one of the following types of workspaces for the service class:

- Workflow analysis
- Address spaces
- Periods
- Systems
- Subsystem workflow analysis (This link is active only when the selected service class has a class flag value of “Transaction”.)

Related topics:

- “Workflow Analysis Workspace for Service Class” on page 330
- “Periods Workspace for Service Class” on page 320
- “Address Spaces Workspace for Service Class” on page 315
- “Systems Workspace for Service Class” on page 327
- “Subsystem Workflow Analysis for Service Class workspace” on page 325
- “Organization of the sysplex workspaces” on page 311
- “Attribute groups used by sysplex-level predefined workspaces” on page 312

Service Classes Workspace for Resource Group

This workspace provides capacity information for the service classes assigned to a selected resource group. You can link to this workspace from the Resource Groups Data for Sysplex.

The Service Classes for Resource Groups table shows the percentage of the maximum consumable service units currently being consumed by all services class in the group and the number of unweighted service units currently being consumed by the group. Two bar charts present this information graphically.

Related topics: “Resource Groups Data for Sysplex workspace” on page 321, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312
Service Definition Data for Sysplex workspace
The Service Definition Data for Sysplex workspace displays information about the service definition currently active for the sysplex, such as its name and when it was activated. Use this view to obtain the information about the installation needed for workload management processing.

Related topics: "Organization of the sysplex workspaces" on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Shared DASD Devices workspace
The Shared DASD Devices workspace displays information about the activity of the shared devices for a group, averaged over all systems in the sysplex. Use the information to help determine how equitably a device is serving all systems in the sysplex.

The Shared DASD Devices table shows information for each device, such as control unit and device type, volume serial number, and statistics such as the device contention index or system with the worst response time or worst disconnect time.

Bar charts graphically display the true busy value and the device contention index for all devices.

You link to this workspace from the Shared DASD Groups Data for Sysplex workspace. From this workspace you can link to a workspace that displays information about the systems that share a selected device.

Note: No data is displayed in this workspace unless a DASD filter situation is enabled.

Related topics: "Shared DASD Groups Data for Sysplex workspace," "Shared DASD Systems workspace," "Organization of the sysplex workspaces" on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Shared DASD Groups Data for Sysplex workspace
The Shared DASD Groups Data for Sysplex workspace displays information to help identify the devices and datasets responsible for significant I/O time or delays for important workloads. Use the information to determine how equitably a device is serving all systems in the sysplex. Select a DASD group in the table view to display details for that particular group of DASD devices.

Note: The group name is the system managed storage (SMS) managed group name.

The Shared DASD Groups table provides statistics on device contention and percentage busy for all the groups in the sysplex. The Group True Busy bar chart graphically displays the average and highest true busy percentages for all groups, and the Group Contention Index chart shows the average and highest device contention indices for each group.

From the Shared DASD Groups table, you can link to a workspace displaying statistics for the individual devices in a selected group.

Note: No data is displayed in this workspace unless a DASD filter situation is enabled.

Related topics: "Shared DASD Devices workspace," "Organization of the sysplex workspaces" on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Shared DASD Systems workspace
The Shared DASD Systems workspace displays information about the systems that share a device. Use the information to see the systems that share a particular device and to help measure the performance and exceptions from the perspective of each system.
The Shared DASD Systems table provides the system name and device address for each system; vary, cache, mount, and reconfiguration status for the devices; and statistics for the device as seen from the system such as average response, average pending, connect, and disconnect time for average I/O.

Average response time and average I/O rate for the device are presented graphically in bar charts.

You link to the Shared DASD Systems workspace from the Shared DASD Devices workspace.

Note: No data is displayed in this workspace unless a DASD filter situation is enabled.

Related topics: “Shared DASD Devices workspace” on page 323, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Statistics for CF Cache Structure workspace

The Statistics for CF Cache Structure workspace displays additional information about a cache structure selected in the Coupling Facility Structures table of the Coupling Facility Structures Data for Sysplex workspace.

This workspace offers three views:

- The Storage Usage bar chart graphically displays the amount of storage currently allocated to the structure and the minimum and maximum size of the structure.

- The Request Rates bar chart illustrates the number of synchronous and asynchronous operations per minute for this structure in the last monitoring interval.

- The Statistics Report for CF Cache Structure table view provides information about the configuration, size, and operation of the structure.

Related topics: “Coupling Facility Structures Data for Sysplex workspace” on page 316, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Statistics for CF List or Lock Structures workspace

The Statistics for CF List or Lock Structures workspace displays additional information about a list or lock structure selected in the Coupling Facility Structures table of the Coupling Facility Structures Data for Sysplex workspace.

This workspace offers three views:

- The Storage Usage bar chart graphically displays the amount of storage currently allocated to the structure and the minimum and maximum size of the structure.

- The Request Rates bar chart illustrates the number of synchronous and asynchronous operations per minute for this structure in the last monitoring interval.

- The Statistics Report for CF List or Lock Structure table view provides information about the configuration, size, storage usage, and operation of the structure.

Related topics: “Coupling Facility Structures Data for Sysplex workspace” on page 316, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Statistics Workspace for CF System

The Statistics Workspace for CF System displays detailed statistics about a selected coupling facility. Use this workspace to determine what structures are receiving many requests, what applications are using the structures, and whether resources need to be adjusted.

You access this workspace from the Coupling Facilities Systems Data for Sysplex workspace.
Subsystem Workflow Analysis for Service Class workspace

This workspace shows the execution states of the work processed by a selected service class. This view is displayed for transaction-type service classes only. Use the information in this workspace to see where the work in this service class is spending its time.

You access this workspace from the Service Classes Data for Sysplex workspace.

Sysplex Enterprise Overview workspace

This workspace provides an overview of all the sysplexes in your enterprise. You can use it to view at a glance information about the sysplexes in your network and select a specific sysplex to investigate in more detail. The Sysplex Enterprise Overview workspace is the default workspace for the z/OS Systems Navigator entry.

The Sysplex Enterprise Overview workspace presents seven views, one for every area of information provided by Tivoli OMEGAMON XE on z/OS, as well as information about enterprise-wide global enqueues.

Sysplexes Global Enqueue

The Sysplexes Global Enqueue table view provides information on all global enqueues conflicts in a sysplex. In terms of business goals, this view enables you to expedite the release of a particular resource.

From this table you can link to a workspace providing details for a selected workspace, such as a list of contenders for resources, as well as the amount of time a user has been waiting for a resource. See “Global Enqueue Data for Sysplex workspace” on page 318.

Sysplexes GRS

The Sysplexes GRS (Global Resource Serialization) table provides information about the condition of ring connections, the traffic on the rings, and the rings relevant to specific z/OS systems and their activities and response times. You can use the view to understand when GRS response time is elongating or if there are disruptions on the ring. The information is important for analyzing enqueue delays in workloads.

From this view, you can link to a workspace displaying GRS ring systems data for a selected Sysplex. See “GRS Ring Systems Data for Sysplex workspace” on page 319.

Enterprise Global Enqueue

The Enterprise Global Enqueue table view displays detailed information on all global enqueues in the enterprise. It contains data on all enqueue conflicts in the enterprise, including conflicts between Sysplexes in those configurations in which enqueue management spans two or more Sysplexes. In such configurations, each z/OS image can be defined as belonging to an enqplex.

An enqplex is a group of z/OS images under common enqueue management. A resource in one enqplex is distinct from a resource having the same name in another enqplex. Systems (that is, z/OS images) that do not define the enqplex to which they belong are assigned to the *DEFAULT* enqplex and are assumed to share resources and enqueue management. Two or more Sysplexes having the same enqplex name share qname and rname resources.

From this workspace, you can link to a workspace displaying global enqueue data for a selected Sysplex. See “Enterprise Enqueue and Reserve workspace” on page 318.
Crypto Coprocessor Overview

The Crypto Coprocessor Overview table displays the name and status of Integrated Cryptographic Service Facility (ICSF) subsystems on all monitored z/OS images and the status of cryptographic services in those subsystems.

From this workspace, you can link to a workspace displaying summary information about Integrated Cryptographic Service Facility (ICSF) subsystems on each z/OS image, service call performance information by system, and top users by system. See "Cross-system Cryptographic Coprocessor Overview workspace" on page 317.

Sysplexes Workloads

The Sysplexes Workloads table displays information that enables you to determine whether your workloads are meeting their performance goals. Through detailed views, you are able to examine how a particular business workload is performing without regard to the number of address spaces or z/OS images involved in processing the work. You are also able to identify specific address spaces and systems hindering the performance of a workload.

From this table, you can link to workspaces that provide information about the services classes, service definitions, resource groups, and report classes associated with a selected Sysplex. See "Service Classes Data for Sysplex workspace" on page 322, "Service Definition Data for Sysplex workspace" on page 323, "Resource Groups Data for Sysplex workspace" on page 321, "Report Classes Data for Sysplex workspace" on page 321.

Sysplexes Coupling Facility

The Sysplexes Coupling Facility view displays coupling facility information for all your monitored Sysplexes. The coupling facility acts as a shared storage device, allowing address spaces on separate z/OS images to share data buffers and messages. This table provides an overview of coupling facility resources, which allows you to ensure that connections are working, that an acceptable number of structures are defined within the coupling facility, that CPU and storage are used properly, and that I/O rates are maximized.

From this table you can link to workspaces displaying data for the coupling facility policy, structures, and systems associated with a selected Sysplex. See "Coupling Facility Systems Data for Sysplex workspace" on page 317, "Coupling Facility Structures Data for Sysplex workspace" on page 316, "Coupling Facility Policy Data for Sysplex workspace" on page 316.

Sysplex Shared DASD

The Sysplexes Shared DASD table enables you to view information regarding DASD shared by systems in a monitored Sysplex.

From this view, you can link to a workspace which provides detailed information about the DASD groups shared by a selected Sysplex. See "Shared DASD Groups Data for Sysplex workspace" on page 323.

Sysplexes XCF

The Sysplexes XCF view provides information on cross-system coupling facilities (XCF) use by all the sysplexes. XCF allows address spaces on different systems of a sysplex to communicate with one another in order to process work cooperatively. You can use the Sysplexes XCF view and related workspaces to perform the following tasks:

- Examine all XCF systems together and scrutinize individual systems
- Track defined XCF clusters
- Identify the status of each system and each signaling path in the sysplex
- Identify the groups, members of each group, and the status of the members
- Be alerted when a member or signaling path is not available

This report makes it easy to uncover problems that may require a path redefinition or adjustments to hardware (such as the failure of a link).
From this table, you can link to workspaces that display information about the XCF groups, systems, and paths associated with a selected Sysplex. See “XCF Systems Data for Sysplex workspace” on page 332, “XCF Groups Data for Sysplex workspace” on page 331, and “XCF Paths Data for Sysplex workspace” on page 331.

Related topics: “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Sysplex Level Overview

The Sysplex Level Overview workspace provides an overview of the sysplex you selected. The six table views in this workspace display information about global enqueues, GRS ring systems, services classes, shared DASD groups, coupling facilities structures, and cross-system coupling facilities (XCF) groups.

- From the Service Classes table, you can navigate to the following workspaces:
 - “Report Classes Data for Sysplex workspace” on page 321
 - “Resource Groups Data for Sysplex workspace” on page 321
 - “Service Definition Data for Sysplex workspace” on page 323
 - “Workflow Analysis Workspace for Service Class Period” on page 330
 - “Periods Workspace for Service Class” on page 320
 - “Address Spaces Workspace for Service Class” on page 315
 - “Systems Workspace for Service Class”

 (If you are linking from a CICS service class, you can also link to a “Subsystem Workflow Analysis for Service Class workspace” on page 325.)

- From the Shared DASD Groups table, you can link to the “Shared DASD Devices workspace” on page 323 workspace.

- From the Coupling Facility Structures table, you can link to:
 - “Statistics for CF Cache Structure workspace” on page 324 (if structure type selected is cache)
 - “Statistics for CF List or Lock Structures workspace” on page 324 (if structure type selected is list or lock)
 - “Coupling Facility Policy Data for Sysplex workspace” on page 324
 - “Coupling Facility Systems Data for Sysplex workspace” on page 317
 - “Users Workspace for CF Structure” on page 328
 - “MVS Systems Workspace for CF Structure” on page 320

- From the XCF Groups table, you can link to the “Members Workspace for XCF Group” on page 319.
- From the Global Enqueue table, you can link to the “Global Enqueue and Reserve workspace” on page 318.

Related topics: “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Systems Workspace for Service Class

The Systems Workspace for Service Class displays performance information for systems on which the selected service class runs.

The Systems Details for Service Class table view provides goal, goal importance, actual host, performance index, transaction rate, actual network, actual total, and workload information for each system.

The performance index, actual host, and transactions per second for all systems are shown in graphic views.

You access this workspace from the Service Classes Data for Sysplex workspace.

From this workspace you can link to workspaces displaying workflow analysis or period information for a selected system.
Users Workspace for CF Structure

Users Workspace for CF Structure displays information for each user currently connected to the selected coupling facility structure. Use this workspace to determine which address spaces are connected to and using the structure and whether or not there is a problem with the connection. For example, there may be failed persistent connections that need to be cleaned up if the number of connections available is limited.

You access this workspace from the Coupling Facilities Structures Data for Sysplex.

Workflow Analysis Enqueue Workspace for Service Class Period

The Workflow Analysis Enqueue Workspace for Service Class Period workspace displays the major names of the enqueues which are affecting the selected service class period. For each major name, information is provided about the percent of wait time compared to all wait reasons. This information helps you locate where the service class is spending its time.

You link to this workspace from the Workflow Analysis Workspace for Service Class Period.

Workflow Analysis Enqueue Workspace for Service Class Period System

The Workflow Analysis Enqueue Workspace for Service Class Period System workspace displays enqueue details for a selected service class period system. The workspace shows the percentage of time a service class spent queued for a resource.

You access this workspace from the Workflow Analysis Workspace for Service Class Period System.

Workflow Analysis Enqueue Workspace for Service Class System

The Workflow Analysis Enqueue Workspace for Service Class System displays the major names of enqueues which are affecting the selected service class. Information about each major name is the percentage of wait time compared to all wait reasons.

You access this workspace from the Workflow Analysis Workspace for Service Class System.
Workflow Analysis Enqueue Workspace for Service Class Sysplex
This workspace provides information on what major name enqueue conflicts are outstanding over the entire sysplex and what percentage of the time a selected service class is spending waiting for that enqueue.

Queued Percent Distribution bar chart shows the percentage of time a service class spent queued for a major resource.

You access this workspace from the Workflow Analysis Workspace for Service Class.

This workspace can record history.

Related topics: “Workflow Analysis Workspace for Service Class” on page 330, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Workflow Analysis I/O Workspace for Service Class
Workflow Analysis I/O Workspace for Service Class displays devices which are active or queued for the selected service class. The Workflow Analysis I/O Details for Service Class table view provides the device number, type, and serial number, and the I/O active and I/O wait percentages for each device.

A bar chart graphically shows the distribution of I/O active and wait percentages by device.

You access this workspace from the Workflow Analysis Workspace for Service Class.

Related topics: “Workflow Analysis Workspace for Service Class” on page 330, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Workflow Analysis I/O Workspace for Service Class Period
Workflow Analysis I/O Workspace for Service Class Period displays devices which are active or queued for the selected service class period.

You access this workspace from the Workflow Analysis Workspace for Service Class Period.

Related topics: “Workflow Analysis Workspace for Service Class Period” on page 330, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312

Workflow Analysis I/O Workspace for Service Class Period System
Workflow Analysis I/O Workspace for Service Class Period System displays devices which are active or queued for the selected service class period system.

You access this workspace from the Workflow Analysis Workspace for Service Class Period System.

Related topics: “Workflow Analysis Workspace for Service Class Period System” on page 330, “Organization of the sysplex workspaces” on page 311, “Attribute groups used by sysplex-level predefined workspaces” on page 312
Workflow Analysis I/O Workspace for Service Class System

Workflow Analysis I/O Workspace for Service Class displays devices which are active or queued for the selected service class on a selected system. The Workflow Analysis I/O Details for Service Class table view provides the device number, type, and serial number, and the I/O active and I/O wait percentages for each device.

A bar chart graphically shows the distribution of I/O active and wait percentages by device.

You access this workspace from the Workflow Analysis Workspace for Service Class System.

Related topics:
- “Workflow Analysis Workspace for Service Class System” on page 331
- “Organization of the sysplex workspaces” on page 311
- “Attribute groups used by sysplex-level predefined workspaces” on page 312

Workflow Analysis Workspace for Service Class

The Workflow Analysis Workspace for Service Class shows the execution states of the work processed by this service class. Use the information in this workspace to understand where the work in this service class is spending its time.

You access this workspace from the Service Classes Data for Sysplex workspace.

From this workspace you can link to
- Workflow Analysis Enqueue Workspace for Service Class Sysplex
- Workflow Analysis I/O Workspace for Service Class

Related topics:
- “Service Classes Data for Sysplex workspace” on page 322
- “Workflow Analysis Enqueue Workspace for Service Class Sysplex” on page 329
- “Workflow Analysis I/O Workspace for Service Class” on page 329
- “Organization of the sysplex workspaces” on page 311
- “Attribute groups used by sysplex-level predefined workspaces” on page 312

Workflow Analysis Workspace for Service Class Period

The Workflow Analysis Workspace for Service Class shows the execution states of the work processed by this service class period. Use the information in this view to see where the work in this service class is spending its time.

You access this workspace from the Periods Workspace for Service Class.

From this workspace you can link to
- Workflow Analysis Enqueue Workspace for Service Class Period
- Workflow Analysis I/O Workspace for Service Class Period

Related topics:
- “Periods Workspace for Service Class” on page 320
- “Workflow Analysis Enqueue Workspace for Service Class Period” on page 328
- “Workflow Analysis I/O Workspace for Service Class Period” on page 329
- “Organization of the sysplex workspaces” on page 311
- “Attribute groups used by sysplex-level predefined workspaces” on page 312

Workflow Analysis Workspace for Service Class Period System

The Workflow Analysis Workspace for Service Class Period System shows the execution states of the work processed by the service class period on the selected system. Use the information in this view to see where the work in this service class period is spending its time.

You access this workspace from the Periods Workspace for Service Class System.
Workflow Analysis Workspace for Service Class System

The Workflow Analysis Workspace for Service Class System shows the execution states of the work processed by the service class on the selected system. Use the information in this view to see where the work in this service class is spending its time.

You access this workspace from the Systems Workspace for Service Class.

From this workspace you can link to

- Workflow Analysis Enqueue Workspace for Service Class System
- Workflow Analysis I/O Workspace for Service Class Period System

Related topics: "Workflow Analysis Enqueue Workspace for Service Class Period System" on page 328, "Workflow Analysis I/O Workspace for Service Class Period System" on page 329, "Organization of the sysplex workspaces" on page 311, "Attribute groups used by sysplex-level predefined workspaces" on page 312

XCF Groups Data for Sysplex workspace

The XCF Groups Data for Sysplex workspace displays information about the cross-system coupling facility (XCF) groups defined in the sysplex. Use the information in this view to determine the number of members in a group that are in a problem state.

The XCF Groups table view provides the member and problem count for each group. A bar chart presents the same data graphically.

From this workspace you can link to the Members Workspace for XCF to see information about the members in a selected group.

This workspace can record history.

Related topics: "Members Workspace for XCF Group" on page 319, "Organization of the sysplex workspaces" on page 311, "Attribute groups used by sysplex-level predefined workspaces" on page 312

XCF Paths Data for Sysplex workspace

The XCF Paths Data for Sysplex workspace displays the status of each of the cross-system coupling facility (XCF) paths that connect systems to one another throughout the sysplex. You access this workspace from the Navigator.

The workspace contains two table views:

- The XCF Systems table shows the status of z/OS images in a sysplex as they relate to the XCF communication feature. It provides the name and status of the system and the release version of the operating system, as well as the length of time it takes for XCF to detect a failure in the sysplex and the time it takes for XCF to report a failure to the operator.
The XCF Paths table provides the origin and destination systems of each signaling path, the device from which the path originates and its destination device, its status, the name of an associated transport class, and the percentage of its retry limit it has reached.

Performance information such as the Status and Retry Percent indicates whether any of the XCF paths are causing performance problems for the sysplex. If a path becomes overloaded or unavailable, or the retry percentage is consistently high, you might need to adjust the parameters in the COUPLEExx member of SYS1.PARMLIB.

From the XCF Paths table you can link to the XCF Paths Workspace from System Device To.

This workspace can collect history data.

Related topics: "XCF Paths Workspace from System Device To," "Organization of the sysplex workspaces" on page 311,""Attribute groups used by sysplex-level predefined workspaces" on page 312

XCF Paths Workspace from System Device To

XCF Paths Workspace from System Device To displays statistics for the paths from a selected system and device to a selected system and device. You can link to this workspace from the XCF Paths Data for Sysplex workspace.

A bar chart graphically displays signal activity for the path, including signals sent, signals pending transfer, signals received, and times receipt of message was delayed because no buffer was available.

The XCF Path table also includes the retry and message limits for the path, the number of sends issued when the path was busy, the amount of storage in use by the path, and the number of times the XCF restarted the path.

Related topics: "XCF Paths Data for Sysplex workspace" on page 331,""Organization of the sysplex workspaces" on page 311,""Attribute groups used by sysplex-level predefined workspaces" on page 312

XCF Systems Data for Sysplex workspace

The XCF Systems Data for Sysplex shows path information for all cross-system coupling facilities (XCF) defined to the sysplex, as well as the status of each system in the sysplex.

The workspace contains two table views:

- The XCF Systems table shows the status of z/OS images in a sysplex as they relate to the XCF communication feature. It provides the name and status of the system and the release version of the operating system, as well as the length of time it takes for XCF to detect a failure in the sysplex and the time it takes for XCF to report a failure to the operator.

- The XCF Paths table provides the origin and destination systems of each signaling path, the device from which the path originates and its destination device, its status, the name of an associated transport class, and the percentage of its retry limit it has reached.

Performance information such as the Status and Retry Percent indicates whether any of the XCF paths are causing performance problems for the sysplex. If a path becomes overloaded or unavailable, or the retry percentage is consistently high, you might need to adjust the parameters in the COUPLEExx member of SYS1.PARMLIB.

From the XCF Systems table you can link to the XCF System Statistics workspace, which provides information on message traffic to or from the selected system.

This workspace can collect history data.
XCF System Statistics workspace

The XCF System Statistics workspace displays information about cross system coupling facilities (XCF) signals (messages) sent between z/OS systems in the sysplex. The workspace lets you identify where changes to transport class definitions can be made to optimize XCF performance and resource utilization. You can link to this workspace from the XCF Systems table of the XCF Systems Data for Sysplex workspace.

The XCF System Statistics table provides the system from and the system to which the signals are sent, the transport class, the number of signals sent and received, the times the path or transport buffer was unavailable, the buffer length, the number of messages that fit or were larger or smaller than the buffer, and the percentage of all messages which were degraded because the length was larger than the buffer.

By default, the Times Path Unavailable, Times Buffer Unavailable, and Percent Degraded columns have predefined thresholds that trigger a warning indicator when the value is greater than 0.

This workspace also has a bar chart that graphically shows XCF outbound buffer utilization for the sysplex.

System workspaces

System workspaces provide information about the z/OS operating systems.

Historical data collection for system-level predefined workspaces

All of the system-level workspaces, with the exception of the Enqueue, Reserve, and Lock Summary workspace, the Address Space Bottlenecks workspaces, the Cross-system workspace, and the Integrated Cryptographic Service Facility (ICSF) workspace, can record history.

For information on historical data collection and reporting, see the Tivoli Enterprise Portal online help and the IBM Tivoli OMEGAMON: Administrator’s Guide.

Organization of system-level predefined workspaces

OMEGAMON XE on z/OS provides a set of predefined workspaces that appear in the Tivoli Enterprise PortalNavigator in the Physical view.

Primary workspaces are accessible directly from the Navigator. The hierarchical tree that following this paragraph lists these workspaces in alphabetical order. Some workspaces are accessible only as links from other workspaces. These are called either secondary or subsidiary workspaces and are shown nested beneath their parent, primary workspace. For example, if you right-click on either a row or the link icon in a table view in the Address Space Overview workspace and choose Link To, you can link to the Address Space Bottlenecks and Impact Analysis workspace. Some workspaces can be accessed from multiple places
- “Page Dataset Activity workspace” on page 362
- “Real Storage workspace” on page 362
 - “Storage Shortage Alerts workspace” on page 364
 - “Storage Shortage Alerts Details workspace” on page 364
 - “Address Space Details for Job workspace” on page 346
 - “Storage Shortage Alerts Trends workspace” on page 365
 - “Page Dataset Activity workspace” on page 362
- “System CPU Utilization workspace” on page 365
 - “HiperDispatch Details workspace” on page 356
- “System Paging Activity workspace” on page 366
- “Tape Drives workspace” on page 366
- “User Response Time workspace” on page 370
- “WLM Service Class Resources workspace” on page 371
 - “Address Space Bottlenecks in Service Class Period workspace” on page 341
 - “Enclaves in Selected Service Class and Period workspace” on page 354
 - “Address Space CPU Usage Class and Period” on page 343
- “zAware Analysis workspace” on page 372
- “z/OS System Overview workspace” on page 373
 - “Address Space Common Storage - Active Users workspace” on page 342
 - “Address Space CPU Utilization workspace” on page 345
 - “Common Storage workspace” on page 350
 - “Enqueue, Reserve, and Lock Summary workspace” on page 355
 - “System CPU Utilization workspace” on page 365
- “z/OS UNIX System Services Overview workspace” on page 374
 - “Address Space CPU Usage Details workspace” on page 344 (filtered on the OMVS address space name)
 - “Address Space CPU Usage Details workspace” on page 344 (filtered on the zFS address space name)
 - “Dubbed Address Spaces workspace” on page 352 (filtered for OMVS address space name)
 - “UNIX Processes workspace” on page 352 (filtered for processes in the address space)
 - “Dubbed Address Spaces workspace” on page 352 (filtered for zFS address space name)
 - “UNIX Processes workspace” on page 352 (filtered for processes in the address space)
 - “UNIX BPXPRMxx Values workspace” on page 367
 - “UNIX Files workspace” on page 367 (for a selected subdirectory)
 - “UNIX Mounted File Systems workspace” on page 369 (for the mounted file system containing the directory or file)
 - “UNIX Kernel workspace” on page 368
 - “UNIX Logged-on Users workspace” on page 368
 - “UNIX Processes workspace” on page 369 (for UID and PID)
 - “UNIX Mounted File Systems workspace” on page 369
 - “UNIX Files workspace” on page 367 (for the mount point)
 - “UNIX HFS ENQ Contention workspace” on page 368 (for SYSDSN and SYSZDSN Enqueues)
 - “UNIX Processes workspace” on page 369 (for processes using a selected mounted file system)
 - “UNIX Mounted File Systems workspace” on page 369 (for a selected process)
 - “UNIX Processes workspace” on page 369
 - “Dubbed Address Spaces workspace” on page 352 (for address spaces containing processes)
 - “UNIX Mounted File Systems workspace” on page 369 (for files systems in use by a process
 “UNIX Threads workspace” on page 370 (for threads in a process)
 “UNIX Processes workspace” on page 369 (for child processes)
 - “UNIX Threads workspace” on page 370
 - “zFS Overview workspace” on page 372
 - “zFS User Cache workspace” on page 373
- “z/OS System Overview workspace” on page 373
 - “Address Space CPU Utilization workspace” on page 345
 - “Address Space Common Storage - Active Users workspace” on page 342
 - “Common Storage workspace” on page 350
Attribute groups used by the system-level predefined workspaces

Most system workspaces display data from a single attribute group. Some workspaces, especially overview workspaces, may display data from several attribute groups.

This table shows the relationships between the system-level predefined workspaces and attribute groups. (The workspaces are listed in alphabetical order.)

<table>
<thead>
<tr>
<th>Workspace</th>
<th>Related Attribute Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Address Space Bottlenecks and Impact Analysis workspace" on page 338</td>
<td>"Address Space IA Impact attributes" on page 178</td>
</tr>
<tr>
<td>"Address Space Bottlenecks Detail workspace" on page 340</td>
<td>"Address Space Bottleneck attributes" on page 166</td>
</tr>
<tr>
<td>"Address Space Bottlenecks in Service Class Period workspace" on page 341</td>
<td>"Address Space Bottleneck attributes" on page 166</td>
</tr>
<tr>
<td>"Address Space Bottlenecks Summary workspace" on page 341</td>
<td>"Address Space Bottleneck attributes" on page 166</td>
</tr>
<tr>
<td>"Address Space Common Storage - Active Users workspace" on page 342</td>
<td>"Address Space ComStor Owned attributes" on page 171</td>
</tr>
<tr>
<td>"Address Space Common Storage - Allocation Details workspace" on page 342</td>
<td>"Address Space ComStor Owned Detail attributes" on page 172</td>
</tr>
<tr>
<td>"Address Space Common Storage - Orphaned Elements workspace" on page 343</td>
<td>"Address Space ComStor Unowned attributes" on page 173</td>
</tr>
<tr>
<td>"Address Space Common Storage - Trend Details workspace" on page 343</td>
<td>"Address Space ComStor Trends attributes" on page 173</td>
</tr>
<tr>
<td>"Address Space CPU Usage Class and Period" on page 343</td>
<td>"Address Space CPU Utilization attributes" on page 174</td>
</tr>
<tr>
<td>"Address Space CPU Usage Details workspace" on page 344</td>
<td>"Address Space CPU Utilization attributes" on page 174</td>
</tr>
<tr>
<td>"Address Space CPU Usage Enclaves workspace" on page 344</td>
<td>"Address Space CPU Utilization attributes" on page 174</td>
</tr>
<tr>
<td>"Address Space CPU Utilization workspace" on page 345</td>
<td>"Address Space CPU Utilization attributes" on page 174</td>
</tr>
<tr>
<td>"Address Space Overview workspace" on page 346</td>
<td>"Address Space Summary attributes" on page 181</td>
</tr>
<tr>
<td>"Address Space Owning Selected Enclave workspace" on page 347</td>
<td>"Address Space CPU Utilization attributes" on page 174</td>
</tr>
<tr>
<td>"Address Space Storage workspace" on page 347</td>
<td>"Address Space Real Storage attributes" on page 180</td>
</tr>
<tr>
<td></td>
<td>"Address Space Virtual Storage attributes" on page 182</td>
</tr>
<tr>
<td>Workspace</td>
<td>Related Attribute Group</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>“Address Space Storage – Subpools and LSQA workspace” on page 348</td>
<td>“KM5 Address Space Storage SubKey attributes” on page 204</td>
</tr>
<tr>
<td>“Address Space Storage – Subpools and LSQA: Monitored Address Spaces workspace” on page 349</td>
<td>“KM5 Address Space Storage SubKey attributes” on page 204</td>
</tr>
<tr>
<td>“Address Space Storage for Job workspace” on page 349</td>
<td>“Address Space Real Storage attributes” on page 180</td>
</tr>
<tr>
<td>“Address Space Storage for Job workspace” on page 349</td>
<td>“Address Space Virtual Storage attributes” on page 182</td>
</tr>
<tr>
<td>“Channel Path Activity workspace” on page 349</td>
<td>“Channel Paths attributes” on page 184</td>
</tr>
<tr>
<td>“Common Storage - Subpools workspace” on page 351</td>
<td>“KM5 Common Storage SubKey attributes” on page 205</td>
</tr>
<tr>
<td>“Common Storage workspace” on page 350</td>
<td>“Common Storage attributes” on page 185</td>
</tr>
<tr>
<td>“Cross-system Cryptographic Coprocessor Overview workspace” on page 317</td>
<td>“Integrated Cryptographic Services Facilities Subsystems (ICSF) attributes” on page 198</td>
</tr>
<tr>
<td>“Cross-system Cryptographic Coprocessor Overview workspace” on page 317</td>
<td>“Service Call Type Detail (SVCDET) attributes” on page 232</td>
</tr>
<tr>
<td>“Cross-system Cryptographic Coprocessor Overview workspace” on page 317</td>
<td>“Top User Performance attributes” on page 240</td>
</tr>
<tr>
<td>“Cryptographic Services workspace” on page 351</td>
<td>“Integrated Cryptographic Services Facilities Subsystems (ICSF) attributes” on page 198</td>
</tr>
<tr>
<td>“DASD MVS workspace” on page 351</td>
<td>“DASD MVS attributes” on page 186</td>
</tr>
<tr>
<td>“DASD MVS Devices workspace” on page 352</td>
<td>“DASD MVS Devices attributes” on page 187</td>
</tr>
<tr>
<td>“Dubbed Address Spaces workspace” on page 352</td>
<td>“USS Address Spaces attributes” on page 245</td>
</tr>
<tr>
<td>“Enclave Information workspace” on page 353</td>
<td>“Enclave Table attributes” on page 191</td>
</tr>
<tr>
<td>“Enclave Information workspace” on page 353</td>
<td>“Address Space CPU Utilization attributes” on page 174</td>
</tr>
<tr>
<td>“Enclaves Owned by Selected Address Space workspace” on page 354</td>
<td>“Enclave Table attributes” on page 191</td>
</tr>
<tr>
<td>“Enclave Details workspace” on page 353</td>
<td>“Enclave Detail attributes” on page 188</td>
</tr>
<tr>
<td>“Enclaves in Selected Service Class and Period workspace” on page 354</td>
<td>“Enclave Table attributes” on page 191</td>
</tr>
<tr>
<td>“Enqueue and Reserve Detail workspace” on page 354</td>
<td>“Enqueue Conflicts attributes” on page 194</td>
</tr>
<tr>
<td>“Enqueue, Reserve, and Lock Summary workspace” on page 355</td>
<td>“Enqueue Conflicts attributes” on page 194</td>
</tr>
<tr>
<td>“Enqueue, Reserve, and Lock Summary workspace” on page 355</td>
<td>“KM5 Suspend Lock attributes” on page 217</td>
</tr>
<tr>
<td>“Enqueue, Reserve, and Lock Summary workspace” on page 355</td>
<td>“KM5 Spin Lock attributes” on page 215</td>
</tr>
<tr>
<td>“Inspect Address Space CPU Use workspace” on page 357</td>
<td>“Inspect Address Space CPU Use attributes” on page 196</td>
</tr>
<tr>
<td>“Health Check Messages workspace” on page 355</td>
<td>“KM5 Health Check Messages attributes” on page 206</td>
</tr>
<tr>
<td>“Health Check Status workspace” on page 355</td>
<td>“KM5 Health Check Status attributes” on page 207</td>
</tr>
<tr>
<td>Workspace</td>
<td>Related Attribute Group</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>“Health Checks workspace” on page 356</td>
<td>“KM5 Health Checks attributes” on page 208</td>
</tr>
<tr>
<td>“HiperDispatch Details workspace” on page 356</td>
<td>“HiperDispatch Logical Processors attributes” on page 194</td>
</tr>
<tr>
<td></td>
<td>“HiperDispatch Management attributes” on page 195</td>
</tr>
<tr>
<td>“LPAR Clusters workspace” on page 359</td>
<td>“LPAR Clusters attributes” on page 225</td>
</tr>
<tr>
<td>“LPARs Assigned to a Cluster workspace” on page 360</td>
<td>“LPAR Clusters attributes” on page 225</td>
</tr>
<tr>
<td>“OMEGAMON for MVS - CSA Analyzer workspace” on page 360</td>
<td>OMEGAMON for MVS</td>
</tr>
<tr>
<td>“OMEGAMON for MVS - Job Details workspace” on page 361</td>
<td>OMEGAMON for MVS</td>
</tr>
<tr>
<td>“OMEGAMON for MVS – License Manager MSU and WLM Capping workspace” on page 361</td>
<td>OMEGAMON for MVS</td>
</tr>
<tr>
<td>“OMEGAMON for MVS – LPAR PR/SM Processor Statistics workspace” on page 362</td>
<td>OMEGAMON for MVS</td>
</tr>
<tr>
<td>“Operator Alerts workspace” on page 362</td>
<td>“Operator Alerts attributes” on page 228</td>
</tr>
<tr>
<td>“Page Dataset Activity workspace” on page 362</td>
<td>“Page Dataset Activity attributes” on page 229</td>
</tr>
<tr>
<td>“Real Storage workspace” on page 362</td>
<td>“Real Storage attributes” on page 230</td>
</tr>
<tr>
<td>“Service Call Performance workspace” on page 363</td>
<td>“Service Call Type Detail (SVCDET) attributes” on page 232</td>
</tr>
<tr>
<td>“Storage Shortage Alerts workspace” on page 364</td>
<td>“KM5 Storage Shortage Status attributes” on page 216</td>
</tr>
<tr>
<td>“Storage Shortage Alerts Details workspace” on page 364</td>
<td>“KM5 Storage Shortage Status attributes” on page 216</td>
</tr>
<tr>
<td>“Storage Shortage Alerts Trends workspace” on page 365</td>
<td>“KM5 Storage Shortage Status attributes” on page 216</td>
</tr>
<tr>
<td>“System CPU Utilization workspace” on page 365</td>
<td>“System CPU Utilization attributes” on page 235</td>
</tr>
<tr>
<td>“System Paging Activity workspace” on page 366</td>
<td>“System Paging Activity attributes” on page 239</td>
</tr>
<tr>
<td>“Tape Drives workspace” on page 366</td>
<td>“Tape Drives attributes” on page 239</td>
</tr>
<tr>
<td>“Top Users Performance workspace” on page 366</td>
<td>“Top User Performance attributes” on page 240</td>
</tr>
<tr>
<td>“UNIX BPXPRMxx Values workspace” on page 367</td>
<td>“USS BPXPRMxx Value attributes” on page 247</td>
</tr>
<tr>
<td>“UNIX Files workspace” on page 367</td>
<td>“USS Files attributes” on page 247</td>
</tr>
<tr>
<td>“UNIX HFS ENQ Contention workspace” on page 368</td>
<td>“USS HFS ENQ Contention attributes” on page 250</td>
</tr>
</tbody>
</table>
Address Space Bottlenecks and Impact Analysis workspace

Bottleneck analysis is a performance-monitoring technique that identifies execution states of a workload and the frequency of each state. When the results of this analysis are averaged over time, it is possible to find which states (such as waiting for CPU) prevent the workload from achieving its service goal. Identification and easing of bottlenecks is a key part of performance management.

This workspace displays resource contention information for the address space you selected from the Address Space CPU Utilization Summary table in the Address Space Overview workspace. It shows which workloads are using the resources that the impacted workload needs, which allows you to determine how various workloads are interfering with each other. This helps you to reduce degradation of the monitored workloads.
The first table in the workspace is the Execution States table, which provides a snapshot of any nonzero execution states that this particular job or address space is in for this period. This table contains three columns: Attribute, Percent, and Resource. Each attribute listed under the Attribute heading is one whose percentage value is greater than 0.0 in the Address Space Bottlenecks Detail workspace. The Percent column shows the percentage of time associated with an attribute for the specific address space in question. The Resource column only applies to enqueues and I/O waits. For an I/O Wait, it lists the device type, the volume serial number, and the device address. For an enqueue, it lists the enqueue major name.

The Active I/O Wait row contains a link to the "Shared DASD Devices workspace" on page 323. The Enqueue Wait attribute row contains a link to the "Enqueue, Reserve, and Lock Summary workspace" on page 355.

The workspace also contains an Impactors for job name bar chart, which shows which address spaces are impacting the favored address space, how they are impacting it, and to what extent they are impacting it.

The Address Space Bottlenecks Detail - Contention (%) by Resource table shows detailed information about the waits the address space is experiencing for various resources. By default, the Tape Mount column has a preset threshold (GT 0.0) that provides an informational alert when the job is being delayed for a tape mount.

The Impact Analysis for job name table view provides the same information as the Impactors for job name bar chart, along with the Job Name, address space ID, and the percentage of the total delay for which each impactor is responsible.

You can link to this workspace from the Address Space Overview workspace.

Related topics: "Address Space Overview workspace" on page 346, "Organization of system-level predefined workspaces" on page 333, "Attribute groups used by the system-level predefined workspaces" on page 336

Address Space Bottlenecks Detail workspace

This workspace provides wait state (bottleneck) information, showing contention percentages by resource for the address space you have chosen to investigate on the Address Space Bottlenecks Summary workspace or the Address Space CPU Utilization Summary table of the Address Space Overview workspace.

This workspace displays the Address Space Bottlenecks Detail - Contention (%) by Resource table view, which provides lower-level information about the address space you selected. By default, the Tape Mount column has a preset threshold (GT 0.0) that provides an informational alert when the job is being delayed for a tape mount.

The Execution States table is a portrait view of the single row of data presented in the Address Space Bottlenecks Detail - Contention (%) by Resource table. This table contains three columns: Attribute, Percent, and Resource. Each attribute listed under the Attribute heading is one whose percentage value is greater than 0.0 in the Bottlenecks Detail workspace. The Percent column shows the percentage of time associated with an attribute for the specific address space in question. The Resource column only applies to Enqueue Wait and Active I/O. For Active I/O wait, it lists the device type, the volume serial number, and the device address. For Enqueue Wait, it contains the enqueue major name.

The Active I/O Wait row contains a link to the "DASD MVS Devices workspace" on page 352. The Enqueue Wait attribute row contains a link to the "Enqueue, Reserve, and Lock Summary workspace" on page 355.
Address Space Bottlenecks in Service Class Period workspace

This workspace provides address space-level wait state (bottleneck) information, showing contention percentages by resource for a selected service class period. Various types of wait states are identified, including CPU wait percent, I/O wait percent, and enqueue wait percent. (For the full list of address space wait states, see the “Address Space Bottleneck attributes” on page 166.)

To use this workspace effectively, review the Address Space Bottlenecks Summary - Contention (%) by Resource table view to determine whether any address space is exceeding the wait threshold you have specified. This can easily be seen by locating the cells of this table that show either red or yellow alerts to indicate Critical or Warning conditions.

By default, the Tape Mount column has a preset threshold (GT 0.0) that provides an informational alert when the job is being delayed for a tape mount.

This workspace also contains the Selected Execution States bar chart. The bar chart provides data for address spaces whose jobs have been in one or more of five execution states for at least 5% of time.

The five execution states are:
- Using CPU
- CPU Wait
- Active I/O
- Queued I/O
- Enqueue Wait

You can link to this workspace from the WLM Service Class Resources workspace.

Note: This workspace cannot collect historical data.

Address Space Bottlenecks Summary workspace

This workspace provides address space-level wait state (bottleneck) information, showing contention percentages by resource. Various types of wait states are identified, including CPU wait percent, I/O wait percent, and enqueue wait percent. (For the full list of address space wait states, see the “Address Space Bottleneck attributes” on page 166.)

To use this workspace effectively, review the Address Space Bottlenecks Summary - Contention (%) by Resource table view to determine whether any address space is exceeding the wait threshold you have specified. This can easily be seen by locating the cells of this table that show either red or yellow alerts to indicate Critical or Warning conditions. For any such address spaces, click the link to drill down to the Address Space Bottlenecks Detail workspace and review the lower-level data presented there. From this view, you can also link to the OMEGAMON for MVS - Job Details workspace for the job in the selected row.
By default, the Tape Mount column has a preset threshold (GT 0.0) that provides an informational alert when the job is being delayed for a tape mount.

This workspace also contains the Selected Execution States bar chart. The bar chart provides data for address spaces whose jobs have been in one or more of five execution states for at least 5% of time.

The five execution states are:
- Using CPU
- CPU Wait
- Active I/O
- Queued I/O
- Enqueue Wait

You can link to this workspace from the Address Space Counts table in the Address Space Overview workspace on page 346.

From this workspace, you can link to the Address Space Bottlenecks and Impact Analysis workspace on page 339.

This workspace cannot collect historical data.

Related topics:
- Organization of system-level predefined workspaces on page 333
- Attribute groups used by the system-level predefined workspaces on page 336

Address Space Common Storage - Active Users workspace

This workspace displays the name and ASID of current users of common storage (CSA, SQA, ECSA, or ESQA), as well as the amount and percentage of total common storage in use. This information can be used to identify address spaces that have allocated a higher than normal percentage of common storage. Details of common storage allocation or trends for an address space can be obtained via links.

Note: The CSA Analyzer must be running for data to be available in this workspace. For information on configuring the CSA Analyzer, see Configuring IBM Tivoli OMEGAMON XE for z/OS.

You can link to this workspace from the Address Space Counts view of the Address Space Overview workspace.

From this workspace, you can link to workspaces that provide allocation and trend details and data on orphaned elements.

This workspace can collect historical data.

Related topics:
- Address Space Common Storage - Allocation Details workspace
- Address Space Common Storage - Orphaned Elements workspace on page 343
- Address Space Common Storage - Trend Details workspace on page 343
- Organization of system-level predefined workspaces on page 333
- Attribute groups used by the system-level predefined workspaces on page 336

Address Space Common Storage - Allocation Details workspace

This workspace displays the attributes, including the size and beginning address, of each common storage area (CSA, SQA, ECSA, or ESQA) allocated by the selected address space. It also shows the return address (address of the next instruction after the GETMAIN request). This information can help identify problems in cases where there is an extremely large allocation or repeated allocations made by the same GETMAIN request.
Note: The CSA Analyzer must be running for data to be available in this workspace. For information on configuring the CSA Analyzer, see Configuring IBM Tivoli OMEGAMON XE for z/OS.

You can link to this workspace from the Address Space Common Storage - Active Users workspace.

This workspace cannot collect historical data.

Address Space Common Storage - Orphaned Elements workspace

This workspace displays storage attributes and age of orphaned (unowned) common storage areas (CSA, SQA, ECSA, or ESQA), as well as the name and ID of the address space which allocated the storage. This information can be used to help identify and isolate problems with a program's common storage management. From each of the four table views you can link to the OMEGAMON for MVS - CSA Analyzer workspace for the selected job in that area.

Note: The CSA Analyzer must be running for data to be available in this workspace. For information on configuring the CSA Analyzer, see IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide.

You can link to this workspace from the Common Storage workspace.

This workspace cannot record history data.

Address Space Common Storage - Trend Details workspace

This workspace displays the trend in common storage (CSA, SQA, ECSA, and ESQA) use by the selected address space, measured at five-minute intervals over the period specified in the parameters for the CSA Analyzer. This information can be used to readily identify common storage usage trends.

Note: The CSA Analyzer must be running for data to be available in this workspace. For information on configuring the CSA Analyzer, see Configuring IBM Tivoli OMEGAMON XE for z/OS.

You can link to this workspace from the Address Space Common Storage - Active Users workspace.

This workspace cannot record history data.

Address Space CPU Usage Class and Period

This workspace provides information about CPU utilization by address space for a selected service class and period. The workspace contains a table view and bar chart that illustrate the CPU utilization for each address space in the selected class and period.

The name of the system, class, and period being reported on is found directly following the table view within the workspace. The table view displays basic identifying information such as job name and ASID, basic Workload Manager information such as service class and service class period, and various CPU
statistics. It also provides enclave data, such as the total number of dependent and independent enclaves owned by the address space that are currently active or inactive.

The CPU Usage bar chart presents the CPU percentage, TCB percentage, and SRB percentage for each job listed in the workspace's table view. (The bar chart does not reflect enclave CPU utilization. For enclave CPU utilization, see the "Enclave Information workspace" on page 353.)

You can link to the Address Space CPU Usage Class and Period workspace from a row of the WLM Service Class Resources table view in the WLM Service Class Resources workspace.

Related topics: “WLM Service Class Resources workspace” on page 371, “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Address Space CPU Usage Details workspace
This workspace displays job level CPU percentages and related details for the selected address space in a tabular view.

In addition, the workspace contains are two graphical views. The Short Term CPU Usage bar chart plots this address space's total CPU, TCB, and SRB percentage usage over the last few seconds (2.3 seconds by default). The Job CPU Usage bar chart shows the CPU accumulated since tracking started for this address space. It shows the chargeable CPU, which is TCB + SRB + Additional SRB Service.

You can link to this workspace from the Address Space CPU Utilization Summary table in the Address Space Overview workspace, or from the Address Space CPU Utilization table in the Address Space CPU Utilization workspace.

Related topics: “Address Space Overview workspace” on page 346, “Address Space CPU Utilization workspace” on page 345, “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Address Space CPU Usage Enclaves workspace
This workspace provides detailed information about the enclaves in the selected address space.

This workspace contains three default views:
- The Address Space CPU Usage Enclaves table view provides the enclaves usage details, since monitoring started (at Tivoli Enterprise Monitoring Server startup or at the start of the job, whichever comes later).
- The Short Term CPU Usage bar chart plots this address space's total CPU, TCB, and SRB percentage usage over the last few seconds (2.3 seconds, by default).
- The Job CPU Usage bar chart shows the CPU accumulated since monitoring started for this address space (at Tivoli Enterprise Monitoring Server start up or start of job, whichever comes later). It shows the chargeable CPU, which is TCB + SRB + Additional SRB Service.

You can link to this workspace from the Address Space CPU Utilization Summary table in the Address Space Overview workspace, or from the Address Space CPU Utilization table in the Address Space CPU Utilization workspace.

Related topics: “Address Space Overview workspace” on page 346, “Address Space CPU Utilization workspace” on page 345, “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336
Address Space CPU Utilization workspace

This workspace provides information about CPU utilization by address space for all address spaces in this LPAR. The workspace contains a table view and bar chart that illustrate the CPU utilization for each address space on the selected system.

The name of the system being reported on is found directly beneath the Address Space CPU Utilization table view within the workspace. For each address space, the table view displays basic identifying information such as job name and address space ID, basic Workload Manager information such as service class and service class period, and various CPU statistics. It also provides enclave data, such as the total number of dependent and independent enclaves owned by the address space that are currently active or inactive.

The CPU Usage bar chart shows the CPU percentage, TCB percentage, and SRB percentage for each job listed in the workspace's table view. (The bar chart does not reflect enclave CPU utilization. For enclave CPU utilization, see the Enclave Information workspace on page 353.)

From the Address Space CPU Utilization table, you can link to the
- Enclave Information workspace on page 353 to view just those enclaves owned by a particular address space.
- WLM Service Class Resources workspace on page 371 to view service class period information for the service class and period in which the selected address space is executing.
- Address Space CPU Usage Details workspace on page 344.
- Address Space CPU Usage Enclaves workspace on page 344.
- Inspect Address Space CPU Use workspace on page 357 to see data drilled down to the CSECT level of data for the most active TCBs, for a selected address space.

The help for the Inspect Address Space CPU Use workspace contains information on the Inspect function, the default links, and customizing the Inspect parameters used to collect the data in the workspace.

There are two links to the Inspect Address Space CPU Use workspace:
- The Inspect Address Space CPU Use link uses the default parameters of 1000 samples at 5 millisecond intervals to collect the data presented in the workspace.
- The Inspect with 5000 samples at 2ms interval link uses the specified parameters, but it can also be modified to use the sample count and sampling interval you specify to collect the data to be presented in the workspace.

- OMEGAMON for MVS - Job Details workspace on page 361 for information about the job in the selected row.
- The IBM Tivoli OMEGAMON XE for CICS on z/OS Region Overview workspace for the selected address space.

Note: The OMEGAMON XE for CICS monitoring agent must be installed and running on the target system for the link to be functional.

You can link to the Address Space CPU Utilization workspace from the following locations:
- The Address Space Count view of the Address Space Overview workspace on page 346.
- A row of the Enclave Information table view in the Enclave Information workspace on page 353.
- A row of the WLM Service Class Resources table view in the WLM Service Class Resources workspace on page 371 to see information related to those address spaces executing in the service class and period of the navigated-from row of the WLM Service Class table view.

Related topics:
- Organization of system-level predefined workspaces on page 333.
Address Space Details for Job workspace

The Address Space Details for Job workspace provides a more comprehensive overview of the resource being used by a specific address space. The workspace comprises the following views:

- CPU Usage Details table view and CPU Usage Details bar graph. These views provide basic CPU usage, including zIIP and zAAP eligible work running on regular processors. From this view you can link to the following workspaces:
 - “Inspect Address Space CPU Use workspace” on page 357
 - “Address Space CPU Usage Enclaves workspace” on page 344
 - “Address Space Bottlenecks and Impact Analysis workspace” on page 339
 - “Dubbed Address Spaces workspace” on page 352
- Common Storage Usage table view. This table shows total common storage percentage used by the address space for each of the main common storage areas (CSA, ECSA, SQA, and ESQA). From this view you can link to the “Address Space Common Storage - Allocation Details workspace” on page 342 workspace.
- Enqueue Conflicts table view. This view shows enqueue conflicts that the job name may be involved with, either as an owner or as a waiter. In addition, it shows the wait time in seconds that the job has been waiting for each enqueue name. When the time is zero, the job is (probably) the owner of the enqueue. A time of greater than zero seconds indicates that the job has been waiting for the enqueue for that number of seconds. This may or may not indicate a problem, since waiting for certain enqueues may be part of the normal operation of the job. From this view you can link to the “Global Enqueue and Reserve workspace” on page 318.
- Address Space Details table view. This table displays basic address space information, including job start time, duration, and service class and period. From this view you can link to the “WLM Service Class Information for Selected Address Space workspace” on page 371.
- Address Space Real Storage table view. This table shows real storage usage by the address space.
- Address Space Virtual Storage table view. This table shows virtual storage usage details for the address space.
- Address Space Resource Details table view. This table shows resource usage details for the address space.

You can link to this workspace from the Address Space CPU Utilization Summary view of the “Address Space Overview workspace.”

Related topics:
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

Address Space Overview workspace

The Address Space Overview workspace contains bar charts providing information on CPU usage, central storage frame counts, and fixed storage for a selected managed system. It also contains Address Space Count and Address Space CPU Utilization Summary table views. From these tables, you can navigate to other workspaces which provide more detail about a particular job, TSO user, started task, or APPC address space.

From the Address Space Counts table, you can link to the following workspaces. When linked to from this table, these workspaces present information for all relevant address spaces.

- “Address Space CPU Utilization workspace” on page 345
- “Address Space Bottlenecks Summary workspace” on page 341
- “Address Space Storage workspace” on page 347
From the **Address Space CPU Utilization Summarization** table, you can link to the following workspaces. When linked from this table, these workspaces limit their presentation to the job, TSO user, started task, or APPC address space named in the parent row.

- “Address Space Bottlenecks and Impact Analysis workspace” on page 339
- “Address Space Bottlenecks Detail workspace” on page 340
- “Address Space CPU Usage Details workspace” on page 344
- “Address Space CPU Usage Enclaves workspace” on page 344
- “Address Space Details for Job workspace” on page 346
- “Address Space Storage for Job workspace” on page 349
- “Enclaves Owned by Selected Address Space workspace” on page 354
- “Periods Workspace for Service Class” on page 320
- “OMEGAMON for MVS - Job Details workspace” on page 361
- IBM Tivoli OMEGAMON XE for CICS on z/OS Region Overview workspace
- IBM Tivoli OMEGAMON XE for Mainframe Networks Application Connections workspace

Note: For cross-product links to be available, the monitoring agent for the linked-to product must be installed and running on the target system.

Related topics:

- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

Address Space Owning Selected Enclave workspace

This workspace displays information about CPU usage by the address space which owns the selected enclave.

Bar charts display usage percentages for the current sampling interval (Short Term CPU) and cumulative percentages since collection began (Job CPU Usage) for, TCBs, SRBs, IFAs, and IFAs on CP.

The **CPU Utilization for Address Space Owning Enclave: <Enclave_ID>** provides detailed statistics on CPU usage for the address space.

You can access this workspace from the Enclave Information workspace.

This workspace can collect historical data.

Related topics: “Enclave Information workspace” on page 353, “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Address Space Storage workspace

This workspace provides information about the storage allocated to an address space. It contains two table views and two bar charts.

The **Address Space Real Storage** table view provides information about the real storage allocated to an address space in terms of various types of frame counts and slot counts, as well as the management status of a given address space. From this view you can link to the “OMEGAMON for MVS - Job Details workspace” on page 361 for more information on the job in the selected row.
A frame is the basic unit of real and expanded storage. A slot is the basic unit of auxiliary storage. Each frame or slot consists of 4096 bytes of contiguous storage. An address space's pages are located either on frames or in slots. Central Frames are those frames that are online or accessible to the processor or have been varied offline using a z/OS command or by the system itself. Fixed Frames are those pages of real storage that have been reserved in real storage by the address space and cannot be paged out or used by other address spaces. Expanded Frames are the number of frames of expanded storage owned by an address space. Hiperspace Frames are the number of frames of hiperspace storage owned by an address space. Hiperspace allows a program to store and retrieve data directly from expanded storage, avoiding the overhead of DASD I/O.

The **Address Space Virtual Storage** table view provides information about virtual storage use in three categories: Low, Extended, and Large. This new table provides tuning insight and opportunity for system and applications purposes. At a systems level, the large storage users can be identified, while at an applications level, analysis of how much storage is being used in each category as well as how much of the large storage object pace is in use can be performed.

The **Central Storage Frame Counts** bar chart graphs the counts of central frames and fixed frames. Pages are often fixed to prevent paging delays or when certain operations require that real addresses remain constant over time.

The **Fixed Storage** bar chart graphs fixed frame counts in terms of Low, Extended, and Large storage allocations, in megabytes. Low storage is that below 16 megabytes (MB), often referred to as “below the line.” From 16 MB to 2 gigabytes (GB), storage is referred to as Extended or “above the line,” and storage over 2 GB is referred to as Large or “above the bar.”

You can link to this workspace from the Address Space Counts table of the **Address Space Overview** workspace on page 346.

This workspace can record history.

Related topics:
- [“Address Space Storage for Job workspace” on page 349](#)
- [“Organization of system-level predefined workspaces” on page 333](#)
- [“Attribute groups used by the system-level predefined workspaces” on page 336](#)

Address Space Storage – Subpools and LSQA workspace

This workspace provides information that describes the apportionment of storage for a selected address space level by subpool and storage protect key. In addition, the workspace provides information about address space utilization of LSQA (local system queue area) storage. The workspace provides information on storage utilization as well as information about available and free storage.

This workspace contains a bar chart that charts LSQA usage through percentage of LSQA and ELSQA (extended local system queue area) allocated and a table that shows details of LSQA usage. Three additional table views present details of storage by subpool and key and totals for TCB and address space.

You can link to this workspace from the Address Space CPU Utilization view of the Address Space Overview workspace and the Address Space Virtual Storage view of the Address Space Storage workspace. From this workspace, you can link to the Address Space Storage - Subpools and LSQA: Monitored Address Spaces.

History data is available only for address spaces that are being monitored by situations.

Related topics:
Address Space Storage – Subpools and LSQA: Monitored Address Spaces workspace

This workspace displays all the address spaces that are currently being monitored by a situation. Only these address spaces are eligible to record historical data. The workspace provides essentially the same information as the Subpools and LSQA workspace.

You can link to this workspace from the Address Space Counts view of the Address Space Overview workspace and from all the table views in the Address Space Storage - Subpools and LSQA workspace.

Related topics:

- “Address Space Overview workspace” on page 346
- “Address Space Storage workspace” on page 347
- “Address Space Storage – Subpools and LSQA workspace” on page 348
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

Address Space Storage for Job workspace

This workspace contains the same information as the Address Space Storage workspace for a selected job. It contains two table views and two bar charts:

The Address Space Real Storage table view provides information about the real storage allocated in terms of various types of frame counts and slot counts, as well as the management status of a given address space.

The Address Space Virtual Storage table view provides information about virtual storage use in three categories: Low, Extended, and Large. Low storage is that below 16 megabytes (MB), often referred to as “below the line.” From 16 MB to 2 gigabytes (GB), storage is referred to as Extended or “above the line,” and storage over 2 GB is referred to as Large or “above the bar.”

The Central Storage Frame Counts bar chart graphs the counts of central frames and fixed frames. Pages are often fixed to prevent paging delays or when certain operations require that real addresses remain constant over time.

The Fixed Storage Frame Counts bar chart graphs fixed frame counts in terms of Low, Extended, and Large storage allocations, in megabytes.

You can link to this workspace from the Address Space CPU Utilization table of the Address Space Overview workspace on page 346.

Related topics: “Address Space Overview workspace” on page 346, “Address Space Storage workspace” on page 347, “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Channel Path Activity workspace

Note: The Resource Measurement Facility (RMF) must be started for this workspace to display data.
The Channel Path Activity workspace shows utilization for each channel path. If the utilization of a channel path is excessive, check

- DASD devices on the path, to determine whether there is contention for the path.
- Workloads, to determine whether they are doing excessive I/O to devices on the path
- Past utilization of the channel path

Excessive use of a channel path often indicates contention for poorly balanced resources. In the case of DASD, heavily used datasets should be evenly distributed among devices and channels. If a path is excessively busy only at a particular time, you may want to reschedule jobs that are affected by this contention.

In addition to a table view that provides information about various factors affecting utilization, two bar graphs provide easy-to-read information.

The LPAR Percent chart graphs the LPAR Percent column of the table view. LPAR Percent is the percentage of time the channel was busy working for the logical partition. This column can be blank or non-blank. The column is blank when:

a) the system is running in basic mode;
b) the channel path is offline;
c) the ESCON Multiple Image Facility (EMIF) is not installed; or
d) Channel Path Measurement Facility (CPMF) is unavailable or not installed.

Valid values range from 0 to 100% when the system is running in LPAR mode, EMIF is installed, and the channel path is online. If the channel path is shared, this value represents the LPAR's utilization of the channel path from the start of the RMF interval. If the channel path is not shared, the LPAR utilization value is the same as the complex-wide utilization value.

This value can be greater than the utilization of the channel by the entire complex, since the LPAR value is obtained from the hardware, whereas the Complex value is sampled and may not include channel utilization.

The Complex Percent chart graphs the values in the Complex Percent column of the table view. Complex percent is the percentage of time that a given channel was busy within the complex. Each bar in the chart represents a given channel path.

This workspace can record history.

Related topics: [Organization of system-level predefined workspaces](on page 333) [Attribute groups used by the system-level predefined workspaces](on page 336)

Common Storage workspace

Note: The Common Storage Area Analyzer (CSA Analyzer), supplied with Tivoli OMEGAMON XE products, must be started for this workspace to display data.

This workspace, accessed from the Navigator, displays information about four important areas of common storage: common service area (CSA), extended CSA (ECSA), system queue area (SQA), and extended SQA (ESQA). The information provided includes

- the percentage and amount of CSA and ECSA currently allocated. The percentage is calculated by dividing the amount of storage currently allocated by the total amount of storage available and includes storage in use and unowned storage.
- the amount of SQA and ESQA that is overflowing into CSA and ECSA, respectively. The overflow values are not included in SQA and ESQA total sizes.
- the amount of storage currently in use
- the total size of each area. If the bottom of CSA or the top of ECSA is not on a megabyte boundary, further rounding occurs to move either the bottom of CSA or the top of ECSA to the next megabyte boundary.
The amount of allocated storage that is not owned by an address space
the growth in use during the last interval.

The in-use percentage and amount of growth are also illustrated as bar charts. CSA and SQA use is
typically stable, growing only when a subsystem, for example, DB2, is started, at IPL time, or when many
new users log on. Therefore, you can use growth in common storage to spot potential problems as well
as trends in CSA use.

This workspace can record history.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups
used by the system-level predefined workspaces” on page 336

Common Storage - Subpools workspace
This workspace reports on the apportionment of common storage at the system and LPAR level by
subpool and storage protect key. The information reported includes the number of bytes used or allocated
for those subpools that are not in fetch-protected memory.

The workspace contains a table view with data for each area of common storage (CSA, SQA, ECSA,
ESQA) and one for total common storage. In the Totals table, the Storage Used Percent Area column
displays a warning indicator when the percentage used is between 90 and 96%, and a critical indicator
when the percentage used is greater than 95%.

OMEGAMON XE cannot access protected subpools. These subpools display *AUTH* in the Storage Used
column.

You can link to this workspace from the Common Storage workspace.

This workspace can record history.

Related topics:
• “Common Storage workspace” on page 350
• “Organization of system-level predefined workspaces” on page 333
• “Attribute groups used by the system-level predefined workspaces” on page 336

Cryptographic Services workspace
The Cryptographic Services workspace provides an overview of monitored cryptographic coprocessors.

The upper half of the workspace contains status information on situations monitoring cryptographic
coprocessors and situation event history data. The lower half contains ICSF Subsystem Status table, which
displays current configuration and status values for the subsystem.

Note: Tivoli OMEGAMON XE on z/OS cannot monitor cryptographic service calls unless at least one
coprocessor is installed and configured.

Related topics: “Cross-system Cryptographic Coprocessor Overview workspace” on page 317, “Service
Call Performance workspace” on page 363, “Top Users Performance workspace” on page 366,
“Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the
system-level predefined workspaces” on page 336

DASD MVS workspace

Note: The Resource Measurement Facility (RMF) must be started in order for this workspace to display
data.
This workspace assists you in monitoring various error conditions for a group of devices. It identifies problem conditions and lets you know how many devices are in the stated condition. The columns in the table view are represented graphically in a bar chart.

This workspace can record history.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

DASD MVS Devices workspace

Note: The Resource Measurement Facility (RMF) must be started for this workspace to display data.

The DASD MVS Devices workspace permits you to monitor activity for individual DASD devices. Individual bar charts graphically display data found in the various columns of the DASD MVS Devices table view. Use this workspace to determine those devices in your enterprise where problems are occurring.

This workspace can record history.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Dubbed Address Spaces workspace

The Dubbed Address Spaces workspace contains information about all z/OS address spaces that have been marked as being a user of UNIX System Services requests. Such address spaces are referred to as “dubbed”.

Dubbing is the process of making an address space known to the z/OS UNIX System Services kernel. Address spaces created by fork() are automatically dubbed when they are created. Other address spaces become dubbed if they invoke a z/OS UNIX service, either directly or indirectly. *Indirectly* means that the address space does not itself invoke the OS/390 UNIX System Services APIs, but uses an application that does. For example, address space MYJOB does not directly use the z/OS UNIX System Services APIs. However, it does use TCP/IP running on the current version of z/OS. Since this version of TCP/IP uses the z/OS UNIX System Services APIs, address space MYJOB is dubbed and is included in the Address Spaces workspace.

This workspace contains two views. The CPU Time% bar chart shows the percentage of CPU time used by each dubbed address space. The UNIX Address Spaces table view provides further information about those address spaces, including the name of the address space; the type of address space, batch, started task, or TSO user; the TSO userid associated with the address space; and the service class (if the system is in goal mode) or performance group (if the system is in compatibility mode) of the address space. For a batch job or started task, the name of the address space is the jobname from the job statement. For a TSO address space, this is the user ID of the logged-on user. The address space name may also have been generated by z/OS UNIX System Services.

You can link to this workspace from the “z/OS UNIX System Services Overview workspace” on page 374 and the “UNIX Processes workspace” on page 369.

You can link from this workspace to the “UNIX Processes workspace” on page 369 to see information about the processes running in a selected address space.

This workspace can report historical data.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336
Enclave Information workspace

An enclave is a transaction that spans more than one dispatchable unit of work and more than one address space, and even multiple systems, but is reported on and managed as a single unit of work.

This workspace contains two views. The Enclave Information table view provides information about the owner, characteristics, and CPU utilization of each enclave. The Enclave CPU % by Address Space bar chart summarizes enclave CPU utilization at the address space level. In the chart, there are two bars for each address space: one for dependent enclaves and one for independent enclaves.

Note: The Enclave Information table view and the Enclave CPU % by Address Space bar chart derive information from different attribute groups. The Enclave Information table view provides data derived from the Enclave Table attributes, while the bar chart provides data derived from the Address Space CPU Utilization attributes. Since the data is not gathered in one atomic operation, there may be discrepancies in the information provided by the table view and bar chart. For example, if an enclave has just completed, it is possible that its owner will be represented in the bar chart even though the enclave does not appear in the Enclave Information table view. When you display this workspace as the result of navigating from another workspace, the Enclave Information table view generally displays only a subset of all of the enclaves in the system. However, the bar chart always reflects all address spaces owning enclaves.

This workspace can be reached from the Navigation view, from the Address Space CPU workspaces, or from the WLM Service Class Resources workspace. When accessed from the Navigator, the Enclave Information workspace provides performance data for all existing enclaves. When accessed by the link from the Address Space CPU Utilization workspace, only the enclaves associated with the address space selected in the link are presented. When accessed from the service class view, only the enclaves in that service class and period are shown.

From the Enclave Information workspace, you can navigate to
- the "Enclave Details workspace," which shows performance and extended classification information for a selected enclave
- the "Address Space Owning Selected Enclave workspace" on page 347, which shows the CPU utilization for the address space owning the selected enclave
- the "WLM Service Class Resources workspace" on page 371, which provides view service class period information for the service class and period in which the enclave is executing

This workspace can record history.

Related topics: "Address Space CPU Utilization workspace" on page 345, "Address Space Owning Selected Enclave workspace" on page 347, "Enclave Details workspace," "WLM Service Class Resources workspace" on page 371, "Organization of system-level predefined workspaces" on page 333, "Attribute groups used by the system-level predefined workspaces" on page 336

Enclave Details workspace

This workspace provides detailed performance and extended classification information for a selected enclave.

This workspace contains two views. The Enclave CPU% bar chart shows all enclave-related CPU usage for the address space that owns the selected enclave. The Enclave Details table view displays the performance and Workload Manager classification data for the selected enclave.

You can link to this workspace from the Enclave Table view of the Enclave Information workspace.

This workspace does not support historical data collection.
Enclaves in Selected Service Class and Period workspace

This workspace provides the same information as the Enclave Information workspace, but for a selected service class and period. The Enclave CPU % by Address Space bar chart shows CPU usage by independent and dependent enclaves for all address spaces owning enclaves in the service class and period.

You can link to this workspace from the WLM Service Class Resources workspace, or from the Enclave Information table in the Enclave Information workspace.

This workspace can record history.

Related topics: “Enclave Information workspace” on page 353, “WLM Service Class Resources workspace” on page 371, “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Enclaves Owned by Selected Address Space workspace

This workspace provides enclave information for a selected address space.

The Enclave CPU % by Address Space bar chart shows information for all address spaces owning enclaves. The data in the Enclaves Owned by <Address Space Name> table is limited to the enclaves owned by a selected address space.

You can link to this workspace from the Address Space CPU Utilization Summary table in the Address Space Overview workspace, the Address Space CPU Utilization workspace, or the Enclave Information workspace.

This workspace can record history.

Related topics:
• “Enclave Information workspace” on page 353
• “Enclave Table attributes” on page 191
• “Address Table attributes” on page 194
• “Address Space Overview workspace” on page 346
• “Address Space CPU Utilization workspace” on page 345
• “Address Space CPU Utilization attributes” on page 174
• “Organization of system-level predefined workspaces” on page 333
• “Attribute groups used by the system-level predefined workspaces” on page 336

Enqueue and Reserve Detail workspace

The Enqueue and Reserve Detail workspace provides detailed information on all the global enqueue conflicts and reserves in the system. It shows all of the owners and waiters for a particular resource within the system, together with their identifying information and descriptive information about the type of resource requested.

You link to this workspace from the Enqueue, Reserve, and Lock Summary workspace.

Related topics: “Enqueue, Reserve, and Lock Summary workspace” on page 355, “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336
Enqueue, Reserve, and Lock Summary workspace

Enqueues, reserves, and locks are methods of serializing resources to ensure only one updater at a time.

This workspace provides summary information about all global enqueue conflicts and reserves for the system. The workspace contains all enqueue conflicts and reserves in the system, including its contribution to conflicts between systems in those configurations in which enqueue management spans two or more systems. The workspace also provides information on suspend and spin lock.

This workspace contains the following views:
- Count of Enqueue and Reserve Waiting Address Spaces bar chart
- Wait Time of Enqueue and Reserve Waiting Address Spaces bar chart
- Enqueue and Reserve Summary table
- Suspend Lock Activity table
- Spin Locks Held table
- Spin Lock Waiters table

From this workspace you can link to the Enqueue and Reserve Details workspace.

Historical data collection is available for this workspace.

Related topics:
- “Enqueue and Reserve Detail workspace” on page 354
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

Health Check Messages workspace

The Check Messages workspace displays the messages resulting from each health check. This workspace displays data provided by the “KM5 Health Check Messages attributes” on page 206.

The predefined workspace is accessed from links in the Health Checker Checks table of the Health Checks workspace, and contains the text of messages resulting from the selected check. If no messages are available for a check, the link icon is dimmed to indicate the unavailability of the Check Messages workspace corresponding to the check.

Note:
1. Data display in this workspace requires that IBM Health Checker for z/OS software be installed, configured, and running. If the IBM Health Checker for z/OS software is not running, the health check workspaces will not return data. For more information about the IBM Health Checker for z/OS software, see http://www.ibm.com/servers/eserver/zseries/zos/hchecker/.
2. Deleted and disabled checks have no message text.
3. Product security settings might prevent the display of messages for certain checks. For information about configuring product security, see the IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide.

Health Check Status workspace

The Health Check Status workspace reports the status of the IBM Health Checker for z/OS environment. This workspace displays data provided by the “KM5 Health Check Status attributes” on page 207.

The predefined workspace contains the following views:
- The Health Checker Counts bar chart shows the numbers of checks and exceptions in several status categories.
• The Health Checker Status table displays identifying information and status for the IBM Health Checker for z/OS environment.

Note: Data display in this workspace requires that IBM Health Checker for z/OS software be installed, configured, and running. If the IBM Health Checker for z/OS software is not running, the HEALTHCHECK node is not available in the Navigator. For more information about the IBM Health Checker for z/OS software, see http://www.ibm.com/servers/eserver/zseries/zos/hchecker/

Health Checks workspace
The Health Checks workspace gives a summary of information about each check. This workspace displays data provided by the “KM5 Health Checks attributes” on page 208.

The predefined workspace contains the following views:
• The Exception Check Counts bar chart shows the number of exceptions detected in the most recent iteration of each check.
• The Run Counts bar chart shows the number of times each check has been invoked since the last time it was initialized or refreshed.
• The Health Checker Checks table displays identifying information, status, and other information about each check. From this table, you can link to the Health Check Messages workspace for the selected check. If no messages are available for a check, the link icon is dimmed to indicate the unavailability of the Check Messages workspace corresponding to the check.

Note:
1. Data display in this workspace requires that IBM Health Checker for z/OS software be installed, configured, and running. If the IBM Health Checker for z/OS software is not running, the HEALTHCHECK node is not available in the Navigator. For more information about the IBM Health Checker for z/OS software, see http://www.ibm.com/servers/eserver/zseries/zos/hchecker/
2. Deleted and disabled checks have no message text.
3. Product security settings might prevent the display of messages for certain checks. For information about configuring product security, see the *IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide*.

HiperDispatch Details workspace
This workspace provides HiperDispatch-related topology and utilization statistics at the LPAR and individual logical processor level for an LPAR on which an OMEGAMON XE on z/OS agent is running, if the LPAR is in HiperDispatch mode. This information can help you determine how your HiperDispatch configuration is performing.

The HiperDispatch feature, which is available on System z10 and later, makes efficient use of CPU-level hardware caching, by dispatching of work, where possible, on the same physical CPU or another CPU on the same book, to take advantage of cache hits in L1, L1.5, or local L2 caches.

HiperDispatch Management at the z/OS image level can be deployed on one or more of the LPARs in a complex. HiperDispatch is activated for an LPAR by specifying HiperDispatch=Yes in the SYS1.PARMLIB IEAOPT member. If HiperDispatch=No (the default), physical CPUs are assigned equally across all of the logical CPUs in an LPAR.

For HiperDispatch information to be available, the following conditions must be in effect:
• The HiperDispatch parameter in SYS1.PARMLIB(IEAOPT) must be specified YES.
• The hardware must support HiperDispatch.
• The z/OS operating system must support HiperDispatch.
If these conditions are in effect, the Workload Manager (WLM) can determine if the LPAR should be in HiperDispatch mode or not. If there is sufficient work in this LPAR to keep 1.5 physical CPUs busy, WLM places the LPAR in HiperDispatch mode. If demand falls below this threshold, WLM takes the LPAR out of HiperDispatch mode.

Two views present information at the LPAR level:

- The LPAR Attributes table displays the status of the HiperDispatch Management (On, Off, or Unavailable), the LPAR Name, the LPAR Cluster Name, the LPAR Group Name.
- The LPAR Information table displays the current, minimum, and maximum weights by processor type (standard, zAAP, zIIP).

When HiperDispatch Management is on, three additional views display the logical CPU ID, entitlement (High, Medium or Low), percentage entitlement, physical CPU percentage, physical overhead percentage managing the CPU within the LPAR, and a status (Online, Offline, Parked, Park Pending, or Reserved) for each CPU, by logical type.

In analyzing the performance of an LPAR in HiperDispatch-mode, two views of CPU resource consumption are important: the LPAR view of CPU consumption and the z/OS view of CPU consumption. The LPAR view evaluates how much physical CPU resource is being consumed of the LPAR’s share of the total Central Processing Complex (CPC). The z/OS view of the CPU consumption takes into account the parked time of each CPU when calculating the CPU Busy Percentage. Parked Time is the time which discretionary CPU resources (Low share processors) in an LPAR spend not being considered for CPU dispatching. A resulting high value percentage is usually indicative of latent demand from the LPAR, an important indicator for performance analysis purposes. Additionally, the percentage of time during a reporting interval that the CPU was parked is displayed (MVS Busy Percentage) and the reporting also provides the LPAR-wide LPAR Busy Percentage and MVS Busy percentages.

You can link to this workspace from a row in the System CPU Utilization workspace.

Related topics:
- “System CPU Utilization workspace” on page 365
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

Inspect Address Space CPU Use workspace

The information in the Inspect Address Space CPU Use workspace allows you to observe where in the executable code a z/OS address space is spending its time. This workspace contains three views:

- **Sampling Statistics view**
 This view shows the values used by the agent to collect the data. The four columns of this view show the number of samples requested, the interval at which the samples were taken in milliseconds, the number of samples collected and the number of samples used.
 Normally the number of samples collected will be same as the number requested unless the job being inspected ends before the inspect agent has finished collecting data. In this case, the number of samples collected will be the number collected up to the point where Inspect detected that the target job had ended.
 The number of samples used is the number of times that the Inspect agent saw CPU activity in the target address space and gives you some indication as to the statistical accuracy of the resultant Inspect data. The more samples that actually see activity during the time the Inspect agent is running, the more accurate the overall sample will be. The number of samples used value does not represent the number of rows of Inspect data.

- **Agent Messages view**
 This view displays any messages returned by the Inspect agent. These messages help to explain the resultant data (or lack thereof) that you see in the other views. For example, if no CPU activity was
seen by Inspect in the address space being inspected, the agent would return a message indicating that; the number of samples used column in the Sampling Statistics view would be zero; and no data would be displayed in the Inspect Data view.

• CPU Usage for ASID view
 This view contains data, drilled down to the agent-selected level of granularity within each CSECT for the most active TCBs, sorted in descending order of CPU usage percentage. (If the agent is unable to determine CSECT information for a module, the data is returned for the load module as a whole.) The Inspect agent returns data only for elements for which it saw CPU activity.
 The information in this table helps you to identify where in the code an address space is spending its time. When used in conjunction with link edit and compile or assembly listings, this information can help you to identify looping code or code that may be a candidate for a rework to improve its efficiency.

“Accessing the workspace” “About the Inspect links” “Using custom inspect parameters”

Accessing the workspace
You can link to the Inspect Address Space CPU Use workspace using one of two predefined links from the Address Space CPU Utilization table in the Address Space CPU Utilization workspace. When you select the link for a particular address space, the Inspect workspace is populated with data gathered using the parameters specified in the link definition.

The workspace is not populated by data until the Inspect agent completes on the host system. The time it takes to complete is a function of the number of samples and the sampling interval. For example, if 1000 samples are take at a 5-millisecond interval (the default settings), it will take 5 seconds for the data collection process to complete.

About the Inspect links
There are two Inspect links:
• The Inspect Address Space CPU Use link uses the default parameters of 1000 samples at 5 millisecond intervals.
• The Inspect with 5000 samples at 2ms interval link uses the specified parameters, but it can also be modified to use the sample count and sampling interval you specify.

Using custom inspect parameters

Note: The changes you make to the Inspect link cannot be saved unless you save and rename the workspace using Save As. They are deleted when you close the Inspect workspace.

When you are selecting the values for number of samples and the sampling intervals, bear in mind that if the total time taken to execute the agent exceeds the client timeout value in the Tivoli Enterprise Monitoring Server, the Tivoli Enterprise Portal will return no data, even if the agent subsequently completes normally.

To modify the Inspect with custom parameters link:
1. Navigate to the Address Space CPU Utilization workspace by linking from the Address Space Counts table of the Address Space Overview workspace for the target system.
2. Right-click the link icon for a row in the Address Space CPU Utilization table and select Link Wizard from the popup menu. The Link Wizard editor appears.
3. In the Selection area, select Inspect with 5000 samples at 2ms interval, then click Next.
4. In the Link Identity field, type a new name for the link and a description, if required, then click Next. Note that changing the name of the link will change its name in the link popup menu.
5. In the Properties tree, select the INTERVAL symbol under Query - Inspect Address Space CPU Use. The Expression editor appears instead of the help in the right frame.
6. In the Expression field, type the interval, in milliseconds, at which you want Inspect to collect samples.
7. In the Properties tree, select the **SAMPLES** symbol under Query - Inspect Address Space CPU Use.
8. In the Expression field, type the number of samples you want Inspect to use in deriving the data.
9. Click **Finish** to save your changes and close the editor.

The new name is displayed in the popup menu if you right-click a link icon in the Address Space CPU Utilization table.

LPAR Clusters workspace

An LPAR cluster is a collection of z/OS images (logical partitions, or LPARs) that are carved from the resources of a single Central Processing Complex (CPC) and are part of a single sysplex. Because the LPAR’s resources are all derived from a common pool of resources in the CPC, the resources can be redistributed as needed among the LPARs. This permits the operating system’s Workload Manager to move resources from LPARs with less important work to LPARs with more important work when that important work is missing its goals.

The LPAR Clusters workspace assists you in answering the following questions:
1. What is the reason that this work cannot obtain sufficient processor resource?
2. Do I have less important work that is meeting or exceeding its service goals? Is the reason that LPARs where this workload is running are obtaining more than their fair share of the processor resource?

This workspace permits you to examine and monitor performance information for the LPARs or clusters associated with a given workload. The workspace contains two charts:

- The **LPAR Logical Utilization** bar chart graphically shows how well each LPAR is able to obtain CPU resources by charting the Effective Weight Percent (that is, actual) and Logical Weight Percent (target) values for a given LPAR. LPARs that are not accomplishing their target weight show an Effective Weight bar shorter than their Logical % Weight bar. The Effective Weight Index attribute in the CPC LPARs Status report is provided as a measure of this comparison.
- The **LPAR Physical Utilization** bar chart graphically shows, for each LPAR, the Physical CPU Percent Busy (actual utilization) graphed against the Current Weight Percent (target utilization). Examine this chart to locate those LPARs having a significant discrepancy between the height of the two bars. These LPARs may warrant further examination. A significant discrepancy is not necessarily an indication that there is a performance problem. The CPU Index attribute in the CPC LPARs Status report is provided as a measure of this comparison.

Tables in this workspace provide information about CPC status, LPAR cluster information, and CPC LPARs status. The first two tables provide CPC and Cluster summary information. The **CPC Status** table also contains information about model capacity IDs and capacity ratings. The default positioning of the capacity columns is at the end of the columns displayed in the **CPC Status** view. If you deploy Capacity Provisioning Manager or On/Off Capacity on Demand, consider reorganizing the sequence of columns so that these columns appear closer to the beginning of the column sequence.

Note: Some LPARs cannot easily be associated with a cluster. These are collected under the umbrella cluster labeled "N/A". Some LPAR attributes may not be available or may not apply to one of more of these LPARs. And since "N/A" is not a real cluster, it is not included in the **LPARs Clusters** view.

The **CPC LPARs Status** table provides detailed performance information for the LPARs that are configured on the CPC. The **CPC LPARs Status** table has the following predefined thresholds set:
If LPAR Name not equal to “PHYSICAL” and Effective Weight Index equal to 0.9, you will see a warning indicator.
If LPAR Name not equal to “PHYSICAL” and Effective Weight Index less than 0.9, you will see a critical indicator.

From the LPAR Cluster table, you can link to the LPARs Assigned to a Cluster workspace.

From the CPC Status table, you can link to the OMEGAMON for MVS – LPAR PR/SM Processor Statistics workspace on page 362.

Related topics:
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

LPARs Assigned to a Cluster workspace

This workspace is displayed when you select a specific row in the LPAR Cluster table of the LPAR Clusters workspace. It provides a filtered view of information for the specific cluster you selected.

The workspace contains two charts: the LPAR Logical Utilization (Velocity) chart and the LPAR Physical Utilization chart.

The LPAR Logical Utilization bar chart graphically shows how well each LPAR is able to obtain CPU resources by charting the Effective Weight Percent (that is, actual) and Logical Weight Percent (target) values for a given LPAR. LPARs that are not accomplishing their target weight show an Effective %Weight bar that is shorter than their Logical %Weight bar. The Effective Weight Index attribute in the CPC LPARs Status report is provided as a measure of this comparison.

The LPAR Physical Utilization bar chart graphically shows, for each LPAR, the Physical CPU Percent Busy (actual utilization) graphed against the Current Weight Percent (target utilization). Examine this chart to locate those LPARs having a significant discrepancy between the height of the two bars. These LPARs may warrant further examination. A significant discrepancy is not necessarily an indication that there is a performance problem. The CPU Index attribute in the CPC LPARs Status report is provided as a measure of this comparison.

Tables in this workspace provide information about CPC status, LPAR Cluster status, and statistics for LPARs assigned to the selected cluster. The first two tables provide CPC and Cluster summary information. The third table provides detailed performance information for the LPARs that are configured in the cluster. The Effective Weight Index column has two predefined thresholds.
- If Effective Weight Index equal to 0.9, you will see a warning indicator.
- If Effective Weight Index less than 0.8 you will see a critical indicator.

You can link to this workspace from the LPAR Clusters table of the LPAR Clusters workspace.

This workspace can record history.

OMEGAMON for MVS - CSA Analyzer workspace

This workspace consists of a single terminal emulator view. The OMEGAMON for MVS screen presented in the view is initialized with the common storage area and job name of the row in the source workspace from which the link was selected. This screen displays summary data on common storage utilization collected by the OMEGAMON for MVS CSAA Immediate command. This command can be used to
display other information, such as utilization trends at the job or system level, top common storage users for each of the four areas (CSA, SQA, ECSA, ESQA). Use PF1 to learn more about the CSAA command.

You can link to this workspace from all four table views in the "Address Space Common Storage - Orphaned Elements workspace” on page 343.

Related topics:
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

OMEGAMON for MVS - Job Details workspace
This workspace consists of a single terminal emulator view. The OMEGAMON for MVS screen presented in the view is initialized with the job name from the selected row in the source workspace. This screen provides access to detailed information about that job, including:
- A graphic display of task resource contention
- A graphic display of workload contention, by performance group or individual jobs
- A summary of task resource utilization, swap status, proc and step names
- CPU, I/O, and storage utilization and System Resources Manager (SRM) information
- Enqueues owned by this task
- An Inspect sample of CPU use, by TCB, module, and CSECT
- Common service area, system queue area, extended common service area, and extended system queue area allocation by the task as a whole
- Detailed breakdown of virtual storage usage by task

You can link to this workspace from the following workspaces:
- Address Space CPU Utilization Summary view of the "Address Space Overview workspace” on page 346
- Contention (%) by Resource view of the “Address Space Bottlenecks Summary workspace” on page 341
- Address Space CPU Utilization view of the "Address Space CPU Utilization workspace” on page 345
- Address Space Real Storage view of the "Address Space Storage workspace” on page 347

Related topics:
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

OMEGAMON for MVS – License Manager MSU and WLM Capping workspace
This workspace consists of a single terminal emulator view. The OMEGAMON for MVS screen in the view displays data collected by the XRMSU minor command of the SYS major command. This information includes License Manager MSUs (millions of service units per hour) consumed by the LPAR. The amount of service, capped and uncapped, is displayed at the summary level and with a detailed breakdown of the 4-Hour Rolling Average MSU value used by Workload Manager to implement soft-capping, if a Defined LPAR Capacity limit is in effect. You can use the PF1 key to obtain help for this screen.

You can link to this workspace from the System CPU Utilization table view of the “System CPU Utilization workspace” on page 365.

Related topics:
- “Organization of system-level predefined workspaces” on page 333
OMEGAMON for MVS – LPAR PR/SM Processor Statistics workspace

This workspace consists of a single terminal emulator view. The OMEGAMON for MVS screen displayed in the view shows LPAR information for all logical partitions and for LPAR management overhead, collected by the LPAR command. If supported by the hardware, a number of statistics relevant to On/Off Capacity on Demand (OOCoD), Capacity Provisioning Management (CPM), and Capacity Backup (BU) may be displayed. Use PF1 to get help with the information displayed.

You can link to this workspace from the CPC Status table view of the “LPAR Clusters workspace” on page 359.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Operator Alerts workspace

This workspace permits you to monitor various conditions in your enterprise that can raise operator alerts. Some of these conditions are informational, while others require that the operator take some action to avoid or resolve a problem. Bar charts graphically illustrate the information provided in columns of the Operator Alerts table view.

This workspace can record history.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Page Dataset Activity workspace

This workspace provides information about availability and response time for a specific page dataset. Page datasets are auxiliary storage datasets that back up all frames of virtual storage. They must be large enough to contain all common and private virtual storage. Page datasets are used when demand for real storage is greater than the space available and data has been paged out. The process of bringing in data is called a page-in and is coordinated by the auxiliary storage manager (ASM). If swap datasets are not defined, page datasets also contain the swapped out part of an address space.

Because the process of paging is very slow when compared to referencing data from real or expanded storage, it is important that page dataset devices be isolated from contention with other kinds of work. This is especially true if there is contention for real and expanded storage, and the page fault rate is high.

The Percent Full and Response Time bar charts in this workspace provide visual representations of the availability of space in the various types of page datasets and the response times for those datasets.

This workspace can record history.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Real Storage workspace

This workspace provides information about the use of real storage on your z/OS system in terms of various types of frame counts. The workspace contains four views.

The first bar chart in the workspace illustrates the system level unreferenced interval count. The unreferenced interval count is inversely related to contention for real storage. The lower the unreferenced
interval count, the more quickly frames are being referenced. In some cases, a low count is not necessarily indicative of a paging problem. To determine whether real storage is being overused, use this factor in conjunction with the Page Fault Fate displayed in the "System Paging Activity workspace" on page 366.

The second bar chart illustrates available frames. This chart gives you a sense of how much uncommitted storage is available for use.

The Real Storage table view provides information about the factors that may be affecting performance as determined by the number of frames allocated real storage by storage type.

The Real Storage Summary table view provides summary data for all types of real storage. The Frames Used Percent column displays a Warning indicator when the percentage of frames used exceeds 90%, and a Critical indicator when the percentage exceeds 95%.

This workspace can record history.

You can access this workspace directly from the Navigator. From this workspace, you can link to the "Storage Shortage Alerts workspace" on page 364.

Related topics: "Organization of system-level predefined workspaces" on page 333, "Attribute groups used by the system-level predefined workspaces" on page 336

Service Call Performance workspace

The Service Call Performance workspace shows bar charts of top ten service calls by Arrival Rate, Service Time, Pending, and Bytes Processed. A table shows details of all 78 service calls monitored.

You can link to this workspace from the following workspaces:
- The Service Call Performance by System table of the Cross-System Cryptographic Coprocessor Overview workspace
- The Top User Performance workspace
- The Cryptographic Services workspace

From this workspace you can link to the following workspaces:
- The Top User Performance workspace
- The Cryptographic Services workspace
- The Cross-System Cryptographic Coprocessor Overview workspace

This workspace can collect history data.

Note: Since the attributes that report data in this workspace report rolling averages of 10 minutes of collected data, historical sampling should occur at 5-minute intervals (half the length of the data averaging interval).

Related topics:
- "Cross-system Cryptographic Coprocessor Overview workspace" on page 317
- "Cryptographic Services workspace" on page 351
- "Top Users Performance workspace" on page 366
- "Organization of system-level predefined workspaces" on page 333
- "Attribute groups used by the system-level predefined workspaces" on page 336
Storage Shortage Alerts workspace

This workspace provides summary information about storage shortage alerts that have been raised on a given system or LPAR. More information can be obtained by navigating to the Alert Trends or Alert Details workspaces.

This workspace contains two views: Summary and Status. The Summary view provides a summary row for each type and level of alert that has occurred. At any given time, there can be no active alerts, or up to three (Pageable, Auxiliary, or AFQ) storage alerts. The Storage Shortage Level column shows a warning indicator for Warning level alerts, and a critical indicator for Critical level alerts. If there are no active alerts, previous alerts that have occurred since the Tivoli Enterprise Monitoring Server was started are shown.

You can link to this workspace from the Real Storage Summary view of the Real Storage workspace.

From the Summary view, you can link to the following workspaces:
- Storage Shortage Alerts Trends (filtered on Time of Event and Shortage Type)
- Storage Shortage Alerts Details (active only if Storage Shortage Level is Shortage or Critical and Storage Shortage Type is not Unavailable or Available_Frame_Queue_Shortage; filtered on Time of Event and Shortage Type)
- Page Dataset Activity (active only if Storage Shortage Type is Auxiliary Storage and Storage Shortage Level is not Relieved)

From the Status view you can link to the Storage Shortage Alert Trends workspace (filtered on Record Type = Summary).

Collection of historical data is enabled for this workspace.

Related topics:
- "Storage Shortage Alerts Details workspace"
- "Storage Shortage Alerts Trends workspace" on page 365
- "Page Dataset Activity workspace” on page 362
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

Storage Shortage Alerts Details workspace

This workspace provides information about the top 20 address spaces that are consuming pageable or auxiliary storage. This information can help identify unexpected address spaces behavior or a need for system resource or workload changes to mitigate a storage shortage problem.

You can link to this workspace from the Summary view of the Storage Shortage Alerts workspace. From this workspace, you can link to the Address Space Details for Job workspace. The link is filtered by Address Space Name and ASID.

Collection of historical data is enabled for this workspace.

Related topics:
- "Storage Shortage Alerts workspace"
- "Address Space Details for Job workspace” on page 346
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336
Storage Shortage Alerts Trends workspace

This workspace provides trend information for a given category of storage shortage alert. Recent history is provided for the alerts, which can help determine the frequency and duration of a given category of storage shortage.

You can link to this workspace from the Summary view of the Storage Shortage Alerts workspace.

Collection of historical data is enabled for this workspace.

Related topics:
- “Storage Shortage Alerts workspace” on page 364
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

System CPU Utilization workspace

System CPU utilization is the percentage of time that all processors available to a system were busy dispatching work. This workspace provides information about CPU usage for the selected system. In an LPAR environment, this group also provides partition management statistics.

The System CPU Utilization workspace contains the following views:

• The System CPU Utilization table view shows the number of physical processors reported on, number of processors online, the average percentage of time that all processors collectively available in this z/OS system were busy dispatching work, and other information specific to CPU workload and partition workload.

The System CPU Utilization table also shows the long-term average CPU service used by this LPAR in millions of service units (MSUs) per hour. Data for this attribute is available only if you use defined capacity as a basis for pricing.

If CPU utilization information for an address space requires analysis, see “Address Space CPU Utilization workspace” on page 345.

If the HiperDispatch Management mode is on, you can see details about utilization by linking to the “HiperDispatch Details workspace” on page 356.

If overall system CPU utilization is too high, you may want to review
- how competition for the CPU has affected a workload’s performance
- CPU use throughout the day

In a complex with more than one CPU, the utilization values can be computed based on the total number of processors, or normalized to a maximum of 100%. From this view, you can link to the “OMEGAMON for MVS – License Manager MSU and WLM Capping workspace” on page 361.

• The Workload CPU Usage bar chart provides information on CPU workload, showing the percentage of time spent doing SRB work and TCB work, as well as z/OS overhead. The chart permits you to understand what part of your workload is having the greatest impact on CPU resources.

• The Partition CPU bar chart illustrates the percentage of time on average that a logical processor was dispatched in the logical partition during the interval, and the percentage of time on average that a physical processor was dispatched in the logical partition during the interval. For a given partition, when the number of logical processors assigned to a partition is the same as the number of physical processors, the partition’s physical and logical CPU utilization should be the same.

This workspace can record history.

Related topics:
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336
System Paging Activity workspace

The System Paging Activity workspace provides information about factors that affect system paging rates. Because the process of paging is very slow when compared to referencing data from real or expanded storage, it is important that page dataset devices be isolated from contention with other kinds of work. This is especially true if there is contention for real and expanded storage, and the page fault rate is high.

Bar charts on this workspace graphically illustrate the factors enumerated in the table view. In the Page Rates bar chart, a high page fault rate (the number of page-ins per second) may indicate contention for storage. A high system page rate may indicate high paging activity over one or more of the storage areas (common, system, or private) resulting in storage contention.

A high number of expanded storage pages moved may indicate that expanded storage is being depleted. This may cause increased z/OS overhead.

The unreferenced interval count is inversely related to contention for real storage. The lower the unreferenced interval count, the more quickly frames are being referenced. In some cases, a low count is not necessarily indicative of a paging problem. To determine whether real storage is being overused, use this factor in conjunction with the page fault rate.

The auxiliary storage manager (ASM) is the z/OS component responsible for managing page dataset I/O. A large ASM queue can negatively impact system performance.

This workspace can record history.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Tape Drives workspace

The Tape Drives workspace provides information about various factors that affect the performance and availability of the tape drives on your system.

Two bar charts, Tape Errors and I/O Counts, visually illustrate factors affecting performance of specific devices charted by device address. If the number of tape errors for a device is high, the device may need to be cleaned or adjusted, or the tape may be bad.

The Tape Drive Overview thermometer chart illustrates the total number of devices in each of the conditions shown: DDR Swaps in Progress, Dropped Ready, Not Responding. The thermometer chart also shows the total number of Tape Mounts Pending on your system.

A Dropped Ready condition may indicate power supply or other hardware problems, or that the switch may have been turned off at the device.

Dynamic Device Reconfiguration (DDR) permits tapes to be remounted on another drive without ABENDING a running job. Unless acted upon promptly, performing a DDR swap can create severe system I/O performance degradation.

This workspace can record history.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Top Users Performance workspace

The Top Users Performance workspace displays bar charts for top ten users by Arrival Rate, Service Time, Pending, and Bytes Processed. A table shows details of up to 32 top users on the current system.
You can link to this workspace from the Top Users by System view of the Cross-System Cryptographic Coprocessor workspace, or from the Service Call Performance or the Cryptographic Services workspace.

This workspace can collect history data.

Note: Since the attributes that report data in this workspace report rolling averages of 10 minutes of collected data, historical sampling should occur at 5 minute intervals (half the length of the data averaging interval).

Related topics:
- “Cross-system Cryptographic Coprocessor Overview workspace” on page 317
- “Service Call Performance workspace” on page 363
- “Cryptographic Services workspace” on page 351
- “Organization of system-level predefined workspaces” on page 333
- “Attribute groups used by the system-level predefined workspaces” on page 336

UNIX BPXPRMxx Values workspace

As part of the customization of UNIX System Services, you can create BPXPRMxx members in SYS1.PARMLIB (where xx is a suffix used to distinguish between various customized PARMLIB members) to establish defaults for UNIX System Services.

The UNIX BPXPRMxx Values workspace reports three types of data about these members and their contents:
- A list of active BPXPRMxx member suffixes from SYS1.PARMLIB.
- Contents of the BPXPRMxx members, with comments eliminated, override rules applied to duplicates, and each individual statement on a separate row of the table view.
- Active individual values of many of the system parameters set by BPXPRMxx members or overridden by z/OS console commands.

Use this workspace to see at a glance what values are in use, and to compare active values with what is specified in SYS1.PARMLIB. Because the table view that is displayed resolves the somewhat complicated override rules of the BPXPRMxx members, it shows more clearly the values that are being used and is more easily understood than looking at the BPXPRMxx members directly.

You can link to this workspace from the “z/OS UNIX System Services Overview workspace” on page 374.

This workspace can report historical data.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

UNIX Files workspace

The UNIX Files workspace lists file attributes, path, and time information for the datasets in your monitored systems. Use this report to obtain detailed information about a specific directory or file.

The table views contained in this workspace displays directories and files. If you link to this workspace from the UNIX Kernal workspace, it displays the files and directories in the root directory. To view the files in a subdirectory, right-click in the appropriate row in the Directories in / table and select Link to > Subdirectory from the pop-up menu.
You can link to this workspace from the "z/OS UNIX System Services Overview workspace" on page 374 and the "UNIX Mounted File Systems workspace" on page 369. If you link to the workspace from the UNIX Mounted File Systems workspace, you see only the directories and files for the file system using the selected mount point.

From this workspace you can link to the "UNIX Mounted File Systems workspace" on page 369 to see file information for the mount point.

UNIX HFS ENQ Contention workspace

The UNIX Hierarchical File System ENQ Contention workspace shows the enqueue contentions, if any, for the given file system. Use this workspace to investigate Hierarchical File System (HFS) enqueue problems. This workspace permits you to see who is holding a resource and who is waiting for the resource. It also shows the amount of time contention for the resource has been in effect.

You can link to the HFS Enqueue Contention workspace from the table view of the "UNIX Mounted File Systems workspace" on page 369 when an enqueue exists.

Historical data collection is not available for this workspace.

Related topics: "Organization of system-level predefined workspaces" on page 333, "Attribute groups used by the system-level predefined workspaces" on page 336

UNIX Kernel workspace

The UNIX Kernel workspace displays information about the kernel address space.

This workspace contains four views:

- The UNIX Identity table view provides the system name, version, and release number of the selected system.
- The Process Utilization bar chart show graphically the number of processes currently used by the system and the maximum number used during the reporting interval.
- The UNIX Kernal table provides performance and usage statistics.
- The Take Action view allows you issue commands directly to the UNIX system.

You can link to the the UNIX Kernel workspace from the "z/OS UNIX System Services Overview workspace" on page 374.

This workspace cannot display historical data.

Related topics: "Organization of system-level predefined workspaces" on page 333, "Attribute groups used by the system-level predefined workspaces" on page 336

UNIX Logged-on Users workspace

The UNIX Logged-on Users workspace supplies terminal identification and time data for each user logged on to your monitored systems. You can also use the information in this workspace to report process information for individual users. To see information about the process owned by a user, right-click the row of data for the user in the UNIX System Services Logged-on Users table view. If the user logged in with root authority, this view will contain all processes descended from users having root authority.

Use this workspace to obtain information about individual users and to check for problems caused by user behavior. For example, a high Idle Time value for a remote user may indicate a potential security problem.
You can link to this workspace from the “z/OS UNIX System Services Overview workspace” on page 374.

From this workspace to a UNIX Processes workspace for the single process which represents a logged on user, or to one which shows all processes related to a logged-on user’s UID. (A process can have more than one UID associated with it. For this navigation, a process is considered related to the logged-on user if the logged-on user’s UID is the same as the process’s "real UID."

This workspace can display historical data.

Related topics: “UNIX Processes workspace,” “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

UNIX Mounted File Systems workspace

The UNIX Mounted File System workspace contains basic status and activity information for the UNIX System Services mounted file systems. It contains two views.

The UNIX Mounted File Systems table displays information that indicates the path to a given mounted file system and the data set and volume on which it physically resides. Other information includes the size of the system and how much of the system is currently in use. The Mounted File Systems with ENQ Contention table shows those file systems experiencing enqueue contention, if any, for SYSDSN and SYSZDSN resources.

Use this workspace to determine which file systems are actually mounted and what state they are in. For example, it is possible to see those file systems having very little free space or having lots of wasted space. You can also see when enqueue contentions occur and can navigate from this workspace to the HFS Enqueue Contention workspace to get more detailed information.

You can link to this workspace from the “z/OS UNIX System Services Overview workspace” on page 374, the “UNIX Files workspace” on page 367 and the “UNIX Processes workspace.” If you link to the workspace from the UNIX Files workspace, you see information for the mounted file system for the selected directory or file. If you link from the UNIX Processes workspace, you see information for the mount point for the selected process.

From a row in the UNIX Mounted File Systems table, you can link to a UNIX Files workspace” on page 367 for the mountpoint, a UNIX Processes workspace for processes using the file system, and one of two UNIX HFS ENQ Contention workspace on page 368, one for SYSDSN enqueues and one for SYSZDSN enqueues. Links to the contention workspaces are visible only when an enqueue exists.

This workspace can collect historical data.

UNIX Processes workspace

The UNIX Processes workspace provides detailed information about each process your systems are currently executing.

The UNIX Processes workspace contains two views. The UNIX Run Time % bar chart graphically illustrates the percentage of CPU execution for UNIX work. The UNIX Processes table displays identifying and performance information for each process.

Use this workspace to check the status of processes and identify the ones causing system problems. For example, you may find that the execution time of a process is abnormally high. A problem program that is looping might be causing this problem. You can use this workspace to identify the process and its owner.
You can link to the UNIX Processes workspace from the z/OS UNIX System Services Overview workspace on page 374, the Dubbed Address Spaces workspace on page 352 (for information about the processes associated with a selected address space), the UNIX Mounted File Systems workspace on page 369 (for processes using the file system), and the UNIX Logged-on Users workspace on page 368 (for user ID and process IDs).

From this workspace you can link to information about children of a selected process, the threads of the process, the address space in which the process is executing, and the mounted file systems being used by the process.

This workspace can record historical data.

Related topics:
- Dubbed Address Spaces workspace on page 352
- UNIX Mounted File Systems workspace on page 369
- UNIX Threads workspace
- Organization of system-level predefined workspaces on page 333
- Attribute groups used by the system-level predefined workspaces on page 336

UNIX Threads workspace

The UNIX Threads workspace shows all threads for a given process. Use this report to determine which thread or threads use the most CPU time in a busy process.

You can navigate to this workspace only from the Process table view by linking from the row of the particular process for which you want to see thread data.

This workspace can collect historical data.

Related topics:
- Organization of system-level predefined workspaces on page 333
- Attribute groups used by the system-level predefined workspaces on page 336

User Response Time workspace

Note: The End to End Response Time collector, supplied with IBM Tivoli OMEGAMON XE products, must be started for this workspace to display data.

The User Response Time workspace provides an overview of the activities of system users logged in through VTAM using SNA, arranged according to user ID. The User Activity Overview table view identifies, for each user ID, the number of transactions a given user has executed and the total response time for the transactions. The total response time is broken down into the average response time attributable to traffic on the network and average response time for host processing.

Use this workspace to identify bottlenecks in your system that may be due to processor or network problems or due to poorly designed transactions. For example, if a user is running a low number of transactions but is experiencing very high host or total response time, it would be advisable to examine the transactions to understand the reasons for the bottleneck.

Two bar charts, User Response Times and Transaction Counts, illustrate the contents of the table view's columns.

This workspace can record history.

Related topics:
- Organization of system-level predefined workspaces on page 333
- Attribute groups used by the system-level predefined workspaces on page 336
WLM Service Class Resources workspace

Use the WLM Service Class Resources table view to determine how well your defined service classes are performing against the goals you have set for their performance. Use the Performance Index to see how well services are meeting their goals. If the z/OS V1.9 Workload Manager blocked workload capability is enabled, this table will also show the percentage of time service class workloads ran at a promoted dispatching priority.

In addition to the table view, the workspace contains three bar charts that illustrate the information provided in various columns of the WLM Service Class Resources table view:

- The CPU Percentage bar chart permits you to determine those jobs that are consuming the largest percentage of processing time and to compare the processing time consumed by given jobs.
- The I/Os per Second bar chart illustrates the contents of the I/O Rate column in the workspace’s table view. This bar chart permits you to determine which jobs are performing the largest amount of I/O and to determine those jobs that are responsible for excessive I/Os.
- The Average Storage Use in Bytes chart illustrates the contents of the Average Storage column in the table view and permits you to see at a glance the amount of storage consumed by a given job.

You can link to this workspace from a row in the Enclave Information table view in the Enclave Information workspace. In this case, information is displayed for the service class period in which the navigated-from enclave is executing.

From a row in the WLM Service Class Resources table view, you can navigate to:

- a workspace to view summary information about the bottlenecks that are occurring for the selected service class period
- a workspace that contains information about those enclaves executing in the selected service class and period
- a workspace to view the CPU utilization of those address spaces executing in the selected service class and period

This workspace can record history.

WLM Service Class Information for Selected Address Space workspace

This workspace provides service class period information for a selected address space. This workspace contains four views:

- The CPU Percentage bar chart enables you to determine the percentage of processing time consumed by a given service class.
- The I/Os per Second bar chart illustrates the information in the I/O Rate column in the workspace’s table view. This bar chart enables you to determine the amount of I/O consumed by a given service class.
- The Average Storage Use in Bytes chart illustrates the contents of the Average Storage column in the table view and permits you to see at a glance the amount of storage consumed by a given service class.
- The Service Class and Period Information for ASID: <address_space_ID> table view presents information that enables you to determine how well the service class periods are performing against the goals set for their performance.

You can link to this workspace from:
• the Address Space CPU Utilization Summary view in the Address Space Overview workspace. (Select Service Class Period Information from the link pop-up.)
• the Address Space CPU Utilization table view in the Address Space CPU Utilization workspace.

This workspace can record history.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

Workloads for Classes workspace

The Workloads for Classes workspace contains individual report classes that you can open to obtain information.

Incoming work can be assigned a report class as well as a service class. Even though workload manager uses the service class to manage the workloads, report classes can be used for additional reporting across workloads or service classes. Workload Management provides data for reporting at a service class level. You can extend this reporting capability to report on similar types of work units, even if the work units are members of different service classes, by assigning these work units to a report class.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

zAware Analysis workspace

Use the zAware Analysis workspace to determine if a z/OS system is experiencing unusual console message traffic by examining anomaly scores and unique message counts.

Use the information from this workspace along with situations to monitor alerts in OMEGAMON when zAware detects warning or critical level anomaly scores.

The system level zAware Analysis workspace uses the KM5 zAware Analysis attribute group as the basis for the following views:
• Anomaly Scores - The Last Hour bar chart graphically shows the anomaly scores of message data analysis for the last hour (six intervals).
• zAware Information - This table view shows the zAware server location, the zAware port number, the zAware client and server status, and the zAware version in use.
• Situation Event Console - This console shows any critical or warning conditions as defined by the predefined zAware situations.
• zAware Analysis - The Last Hour table view shows the anomaly scores, unique message counts, and the interval time for the last hour for each of the six intervals.

Related topics: “Organization of system-level predefined workspaces” on page 333, “Attribute groups used by the system-level predefined workspaces” on page 336

zFS Overview workspace

As its name indicates, this workspace provides an overview of the system-level activity on the z/OS zSeries File System (zFS). zFS is a file system that can be used in addition to the “legacy” UNIX System Services Hierarchical File System (HFS).

This workspace contains six views:
• Average Operation Wait Time bar chart
• zFS Kernel Summary table
• zFS Storage Summary table
• zFS Directory Cache table
• zFS Metadata Cache table
• zFS Kernel Detail table

Together, these views give you a good overall picture of the health of the zFS workload and indicates what zFS operations are taking the longest.

You can link to this workspace from the “z/OS UNIX System Services Overview workspace” on page 374. From the zFS Kernel Summary view you can link to the “zFS User Cache workspace.”

Related topics:
 • “Organization of system-level predefined workspaces” on page 333
 • “Attribute groups used by the system-level predefined workspaces” on page 336
 • “zFS User Cache workspace”
 • “z/OS UNIX System Services Overview workspace” on page 374

zFS User Cache workspace
This workspace contains the following six views which contain data that can be used to adjust configuration parameters for the user cache.
• zFS User Cache Statistics bar chart
• External Requests table
• File System Reads table
• File System Writes table
• Page Management table
• Dataspaces table

You can link to this workspace from the zFS Overview workspace.

Related topics:
 • “Organization of system-level predefined workspaces” on page 333
 • “Attribute groups used by the system-level predefined workspaces” on page 336
 • “zFS Overview workspace” on page 372

z/OS System Overview workspace
The z/OS System Overview workspace is the default workspace for each z/OS managed system item in the Navigator. This workspace contains six views that summarize key performance aspects of the LPAR:
• Workload CPU Usage bar chart view. This chart shows overall CPU utilization for the LPAR, including both standard CPU and special processors. The view provides a link to the “System CPU Utilization workspace” on page 365.
• Common Storage bar chart view. This chart shows utilization for common service area (CSA), extended common service area (ECSA), System queue area (SOA), and extended system queue area (ESQA). The view provides a link to the “Common Storage workspace” on page 350.
• System Event Console view. This view shows raised situations originating from this managed system.
• Address Space CPU Utilization table view. This table shows CPU usage by each address space in this LPAR, including information about usage of each of the specialty engines, enclave activity, and job level CPU usage, as well as short term usage. The view provides a link to the “Address Space CPU Utilization workspace” on page 345.
• Active Users of Common Storage table view. This table shows how common storage is being used by each address space in the LPAR. The view links to the “Address Space Common Storage - Active Users workspace” on page 342.
• Enqueue and Reserve Summary table view. This table summarizes Major and Minor enqueue names that have contention or are the target of reserve requests. The view provides a link to the "Enqueue, Reserve, and Lock Summary workspace" on page 355.

Related topics:
- "Organization of system-level predefined workspaces" on page 333
- "Attribute groups used by the system-level predefined workspaces" on page 336

z/OS UNIX System Services Overview workspace
As its name indicates, this workspace provides an overview of the information provided about z/OS UNIX System Services running on a z/OS image. The workspace contains six views, each showing selected attributes for a different attribute group:
• The Dubbed Address Spaces table view shows the address space ID, name and the percentage of central processor time (CPU) used for z/OS address spaces marked as being users of UNIX System Services requests.
• The UNIX Processes table view shows the command name, job name, run time percentage, process status, and execution state for all currently running processes.
• The Process Utilization bar chart shows the number of processes currently used by the system and the max number used during the reporting interval.
• The UNIX Logged-On Users table view lists provides the login name, user name, and login time for all users logged on to the monitored system.

From the UNIX System Services Overview workspace, you can link to the following workspaces:
- "Address Space CPU Usage Details workspace" on page 344 (filtered on the OMVS address space name)
- "Address Space CPU Usage Details workspace" on page 344 (filtered on the zFS address space)
- "Dubbed Address Spaces workspace" on page 352 (the default link)
- "UNIX BPXPRMxx Values workspace" on page 367
- "UNIX Files workspace" on page 367
- "UNIX Kernel workspace" on page 368
- "UNIX Logged-on Users workspace" on page 368
- "UNIX Mounted File Systems workspace" on page 369
- "UNIX Processes workspace" on page 369
- "zFS Overview workspace" on page 372

Related topics:
- "Organization of system-level predefined workspaces" on page 333
- "Attribute groups used by the system-level predefined workspaces" on page 336
Chapter 13. Inspect messages

These messages are issued by the Inspect agent and displayed in the Agent Messages view of the Inspect Address Space CPU Use workspace.

KM3IN001I: NO CPU ACTIVITY WAS DETECTED BY INSPECT
The Inspect agent did not see any CPU activity when it looked at the target address space. The target address space may be consuming CPU time but Inspect only considers it if it sees the address space executing during a sample since it needs to assign the CPU time to a component within the address space.

System action
None.

User Action
Refresh the workspace to run Inspect again.

KM3IN002E: ASID PASSED TO INSPECT IS ZERO
The address space ID passed to the Inspect agent by the query was zero. Either the Inspect workspace was invoked from the physical navigation tree or the address space was not assigned to the query by the link.

System action
No data is returned.

User action
Determine why the address space ID value being passed to the query is zero. Possibly the workspace linkage has been changed.

KM3IN003E: ASID PASSED TO INSPECT IS INVALID
The address space ID passed to the Inspect agent by the query was not a valid address space number on the z/OS system. The link to the Inspect workspace may be assigning the incorrect field to the ASID parameter of the query.

System action
No data is returned.

User action
Determine why the ASID value being passed to the query is invalid. Possibly the workspace linkage has been changed.

KM3IN004I: ADDRESS SPACE PRIORITY GREATER THAN INSPECT
The priority of the target address space is greater than that of the Tivoli Enterprise Monitoring Server in which the Inspect agent is executing. Inspect may not obtain enough CPU cycles to collect a reasonable sample of data from the target address space.

System action
Processing continues.

User Action
None

KM3IN005I: DATA COLLECTION MAY BE INCOMPLETE
Part two of message KM3IN004I informing the user of the consequences of the priority difference.

System action
Processing continues.

User Action
None
KM3IN006E: SAMPLER TASK ABENDED WITH CODE code
The Inspect agent sampler program task ABENDed with the specified code.

System action
No data is returned.

User Action
Determine the cause of the ABEND and possibly obtain a system dump of the ABEND.

KM3IN007E: SELECTED JOB NOT IN TARGET ADDRESS SPACE
The Inspect agent will check that the job name passed is executing within the target ASID. If not either the wrong job name or ASID was passed by the link to the workspace or the job may have ended. If the job has not ended, check that the link to the Inspect workspace is passing the correct values to the Inspect query.

System action
No data is returned.

User Action
If the job has not ended, check that the link to the Inspect workspace is passing the correct values to the Inspect query.

KM3IN008I: GRANULARITY SET TO size
The Inspect agent attempts to limit the amount of detail returned to the client to about 100 rows of data by dynamically calculating the “grain” size used split each CSECT of code into “blocks” to which CPU activity is attributed.

Since the user cannot know in advance how diverse the execution activity map will be, nor the sizes of the load modules and CSECT that have activity, nor even which modules and CSECTs will have activity, it is not reasonable to allow the user to set this parameter before the Inspect agent is executed, therefore the Inspect agent attempts to calculate a suitable size once all the Inspect data has been collected.

Size is displayed as a hexadecimal value.

System Action
Processing continues.

User Action
None

KM3IN009E: ATTACH OF program FAILED WITH RC= rc
The Inspect agent attempted to attach the Inspect sampling program program as a separate z/OS task within the Tivoli Enterprise Monitoring Server address space but the ATTACH failed with return code rc.

System action
No data is returned.

User Action
Determine the meaning of the return code for the ATTACH function and correct the error.

KM3IN010I: INSPECT WAS NOT EXECUTED
Part two of messages KM3IN009E and KM3IN011E. Explains that no data was collected because of the error reported by the previous message.

KM3IN011E UNABLE TO LOAD program
The Inspect agent attempted to load the Inspect sampling program but the load operation failed.

System action
No data is returned.
User Action
Determine the cause of the failure to load program by scanning the Tivoli Enterprise Monitoring Server and z/OS logs for any appropriate messages.

KM3IN012E OPEN ERROR FOR DATASET dsn
The Inspect agent attempts to obtain CSECT information for each load module by accessing and load libraries allocated to the job step TCB of the target address space. The Inspect agent was unable to open the specified dataset.

System action
Processing continues

User Action
The person responsible for Tivoli Enterprise Monitoring Server operations on the target host should browse the monitoring server and z/OS logs to determine the cause of the failure.

KM3IN013I: SOME CSECT DATA MAY NOT BE AVAILABLE
Part two of messages KM3IN012E, KM3IN013E, KM3IN015E and KM3IN016E. Indicates that CSECT information may not be available for some load modules due to the previous error.

KM3IN014E: UNABLE TO ALLOCATE DATASET dsn
The Inspect agent attempts to obtain CSECT information for each load module by accessing and load libraries allocated to the job step TCB of the target address space.

The Inspect agent was unable to allocate the specified dataset.

System action
Processing continues.

User Action
The person responsible for Tivoli Enterprise Monitoring Server operations on the target host should browse the monitoring server and z/OS logs to determine the cause of the failure.

KM3IN015E: UNABLE TO READ FORMAT 1 DSCB FOR DATASET dsn
The Inspect agent attempts to obtain CSECT information for each load module by accessing and load libraries allocated to the job step TCB of the target address space.

The Inspect agent was unable to read the format 1 DSCB for the specified dataset.

System action
Processing continues.

User Action
The person responsible for Tivoli Enterprise Monitoring Server operations on the target host should browse the monitoring server and z/OS logs to determine the cause of the failure.

KM3IN016E: UNABLE TO SUPPORT PDSE FOR DATASET dsn
The Inspect agent attempts to obtain CSECT information for each load module by accessing and load libraries allocated to the job step TCB of the target address space.

The Inspect agent determined that the specified dataset was a PDSE but the IEBBIND program could not be loaded by the Inspect agent.

System action
Processing continues.

User Action
The person responsible for Tivoli Enterprise Monitoring Server operations on the target host should browse the monitoring server and z/OS logs to determine why IEBBIND could not be located by the Inspect agent.
Chapter 14. Acronyms used

The following acronyms are used in the OMEGAMON XE on z/OS help.

CBU Capacity Backup. Enables alternative System z processors to take over workload from another server in case of an emergency or unusual high demand.

CF Coupling facility. On z/OS, a special logical partition that provides high-speed caching, list processing, and locking functions in a sysplex.

CFRM Coupling Facility Resource Manager. A component of z/OS that provides the services to manage coupling facility resources in a sysplex. This management includes the enforcement of CFRM policies to ensure that the coupling facility and structure requirements are satisfied.

CP Central processor. The part of the computer that contains the sequencing and processing facilities for instruction execution, initial program load, and other machine operations.

CPC Central processor complex. In a z/OS or OS/390 environment, a physical collection of hardware (such as an ES/3090) that consists of main storage, one or more central processors, timers, and channels.

CPM Capacity provisioning management. The ability to dynamically provision physical processors to, and deprovision them from, a System z10 complex based on an installation policy, with or without operator intervention.

CPU Central processing unit. The part of a computer that includes the circuits that control the interpretation and running of instructions.

CSA Common storage area. Also, common service area, used interchangeably. A shared region of memory.

CSECT Control section.

ECB Event control block. A control block used to represent the status of an event.

ECKD Extended Count Key Data. An extension of the count-key-data (CKD) architecture. Count-key data is a data-record format employing self-defining record formats in which each record is represented by up to three fields: a count field identifying the record and specifying its format, an optional key field that can be used to identify the data area contents, and an optional data field that typically contains the user data.

ECSA Extended common storage area. A major element of z/OS virtual storage above the 16MB line. This area contains pageable system data areas that are addressable by all active virtual storage address spaces. It duplicates the common storage area (CSA) which exists below the 16MB line.

ELSQA Extended local system queue area.

ESCON Enterprise Systems Connection. A peripheral interface for an Enterprise Systems Architecture/390 and zSeries computer. The I/O interface uses ESA/390 logical protocols over a serial interface that configures attached units to a communication fabric.

ESQA Extended system queue area. A major element of z/OS virtual storage above the 16MB line. This storage area contains tables and queues relating to the entire system. It duplicates above the 16MB line the system queue area (SQA) .
GRS ring Global resource serialization ring. Consists of one or more systems connected to each other by communication links. The links are used to pass information about requests for global resources from one system to another in the complex. Requests are made by passing a message or token, called the ring system authority (RSA) message, between systems in a round-robin or ring fashion.

HSA Hardware system area. A logical area of central storage, not addressable by application programs, used to store Licensed Internal Code and control information.

HSM Hierarchical storage management. A function that automatically distributes and manages data on disk, tape, or both by regarding devices of these types and potentially others as levels in a storage hierarchy that range from fast, expensive devices to slower, cheaper, and possibly removable devices. The objectives are to minimize access time to data and maximize available media capacity.

ICF Integrated Coupling Facility. A processor used by multiple systems to coordinate work. ICFs must be assigned to LPARs that then become coupling facilities.

ICSF Integrated Cryptographic Service Facility. Provides the administrative interface and a large set of application interfaces to the cryptographic coprocessor hardware.

IFA Integrated Facility for Applications. A special type of processor.

IRD Intelligent Resource Director. A key feature of the zSeries architecture, which automatically directs resources to priority workloads. IRD gives users the capability of managing resource and workload across z/OS LPARs that are members of a common group called an LPAR cluster. The Intelligent Resource Director is made up of three parts: LPAR CPU Management, Dynamic Channel Path Management (DCM), and Channel Subsystem Priority Queuing (CSSPQ).

JES Job Entry Subsystem. An IBM licensed program that receives jobs into the system and processes all output data that is produced by jobs.

LSQA Local System Queue Area. One or more segments associated with each virtual storage region that contain job-related system control blocks.

MSU Millions of service units. A measure of the amount of processing a computer can perform in one hour.

OOCoD On/Off Capacity On Demand. The ability of z990 and later servers to temporarily activate and deactivate processors and memory units to handle fluctuating workloads.

RMF Resource Management Facility. An IBM licensed program or optional element of z/OS that measures selected areas of system activity and presents the data collected in the format of printed reports, System Management Facility (SMF) records, or display reports. RMF is used to evaluate system performance and identify reasons for performance problems.

RSA Ring system authority. Requests between systems in a GRS ring system are sent in a round-robin or ring fashion by passing a message or token, called the ring system authority (RSA) message.

SQA System queue area. An area of virtual storage below the 16MB line reserved for system-related control blocks.

SRB Service request block. A unit of work that is scheduled to execute in another address space.

SRM System resources manager. A group of programs that controls the use of system resources, such as programs, devices, and storage areas that are assigned for use in jobs.
TCB Task control block. A z/OS control block used to communicate information about tasks, within an address space, that are connected to a z/OS subsystem.

VIO Virtual input/output. Temporary data sets can be handled by a facility called virtual input/output (VIO). VIO data sets reside in the paging space but appear to the access method to reside on a direct access storage device.

VTOC Volume table of contents. A table on a direct access volume that describes the location, size and other characteristics of each data set on the volume. Each entry is a data set control block (DSCB).

WLM Workload Manager. A z/OS component that prioritizes workloads running on z/OS and matches workloads with available resources.

XCF Cross-system coupling facility. A special logical partition that provides high-speed caching, list processing, and locking functions in a sysplex. XCF provides the z/OS coupling services that allow authorized programs on z/OS systems in a multisystem environment to communicate with (send data to and receive data from) authorized programs on other z/OS systems.

zAAP zSeries Application Assist Processor. A special class of assist processor designed to run Java workloads. For reporting purposes, a zAAP is usually referred to as an integrated facility for applications (IFA).

zIIP zSeries Integrated Information Processor. A special class of assist processor used mostly for DB2 workloads.
Part 4. Appendixes
Documentation library

This appendix contains information about the publications in the OMEGAMON XE on z/OS library and about other publications related to OMEGAMON XE on z/OS.

For information about accessing and using the publications, select Using the publications in the Contents pane of the IBM Tivoli Monitoring and OMEGAMON XE Information Center at http://pic.dhe.ibm.com/infocenter/tivihelp/v61r1/index.jsp.

To find a list of new and changed publications, click What's new on the Welcome page of the IBM Tivoli Monitoring and OMEGAMON XE Information Center. To find publications for the previous version of a product, click Previous information centers on the Welcome page for the product.

OMEGAMON XE on z/OS library

The following documents are available for OMEGAMON XE on z/OS:

- **Program Directory GI13-2207**
 Contains information about the material and procedures associated with the installation of IBM Tivoli OMEGAMON XE on z/OS. The Program Directory is intended for the system programmer responsible for program installation and maintenance.

- **Planning and Configuration Guide SC27-4032**
 Provides information that helps plan the deployment and configuration of OMEGAMON XE on z/OS and the required common services component. It also provides detailed instructions for configuring product components. This document is intended for system administrators and others who are responsible for configuring OMEGAMON XE on z/OS.

- **User’s Guide SC27-4028**
 Introduces the features, workspaces, attributes, and predefined situations for the OMEGAMON XE on z/OS product and supplements the user assistance provided with this product. This document is written for data center operators and analysts responsible for monitoring and troubleshooting system performance and availability or performing trend analysis for resource planning.

- **Parameter Reference SC27-4033**
 Provides names and descriptions for all OMEGAMON XE on z/OS configuration parameters.

- **Troubleshooting Guide GC27-4029**
 Provides explanations for the messages issued by the OMEGAMON XE on z/OS product, its OMEGAMON II for MVS component, and common agent components. This book also provides troubleshooting advice for installation and configuration, security, and usage problems, and instructions for setting up tracing on z/OS.

- **OMEGAMON for MVS User’s Guide SC27-4030**
 Describes the features and commands used in OMEGAMON for MVS. Reference information for OMEGAMON major and minor commands is included by functional area, along with a description of the following features: User Profile Facility, Exception Analysis, CSA Analyzer, End-to-End Response Time Feature, Bottleneck Analysis, DEXAN, Impact Analysis, Workload Profile Facility.

- **OMEGAMON for MVS Command Reference SC27-4031**
 Contains complete descriptions of OMEGAMON for MVS commands, organized alphabetically by command name. Includes a chapter on “Command Groupings” that is an introduction organized by topic (exception analysis, hipspace, paging, and so on) where you can refresh your memory as to the proper spelling of a command or keyword.

- **EPILOG User’s Guide SC27-4034**
Describes the basic reporting features of EPILOG for MVS. The introduction provides a product overview and a discussion of the EPILOG approach to performance management. The rest of the manual explains how to use the reporter, including the various types of reports and the use of the DISPLAY command. Topics, such as advanced reporting options, the Workload Profile Facility, exception filtering, exporting historical data, and reporting with SAS graphics are also documented.

- **EPILOG Command Reference SC27-4035**
 Contains complete descriptions of EPILOG for MVS commands, organized alphabetically by command name.

OMEGAMON XE and Tivoli Management Services on z/OS common library

The books in this library are common to some or all of the OMEGAMON XE products or Tivoli Management Services on z/OS:

- **Quick Start Guide, G111-8918**
 Provides an overview of the installation and setup process for a monitoring agent on z/OS.

- **Common Planning and Configuration Guide, SC23-9734**
 Covers planning and configuration information common to the OMEGAMON XE V4.2.0 monitoring agents and to the components of Tivoli Management Services on z/OS V6.2.1.

- **Common Parameter Reference, SC14-7280**
 Provides reference information on parameters used for setting up runtime environments and configuring hub and remote Tivoli Enterprise Monitoring Servers on z/OS.

- **PARMGEN Reference, SC22-5435**
 Provides six configuration scenarios using the PARMGEN method.

- **OMEGAMON Enhanced 3270 User Interface Guide, SC22-5426**
 Describes the features of the interface and provides operating instructions and reference material.

- **Upgrade Guide, SC23-9745**
 Provides an overview and instructions for performing the upgrades from prior versions of OMEGAMON XE monitoring agents and Tivoli Management Services components.

- **End-to-End Response Time Feature Reference, SC27-2303**
 Documents the End to End Response Time feature, a common component used by four OMEGAMON XE monitoring agents on z/OS: CICS, z/OS, IMS, and Mainframe Networks.

- **Reports for Tivoli Common Reporting, SC27-2304**
 Provides information about the Tivoli Common Reporting tool that is specific to products that run under the Tivoli Enterprise Portal and use the Tivoli Data Warehouse database.

OMEGAMON II for MVS V520 library

The OMEGAMON II documentation has not been updated since V520. Any changes relevant to configuration of the version currently incorporated into OMEGAMON XE on z/OS V5.1.0 are documented in the IBM Tivoli OMEGAMON XE on z/OS: Planning and Configuration Guide. The existing documents refer to the Candle Support structure rather than to IBM software support. References to Candle Support processes and procedures are invalid. Direct questions to IBM Software Support. For details about the IBM support structure, see "Support information" on page 389.

The following information sources are available in the OMEGAMON II for MVS V520 library.

- **Configuration and Customization Guide, GC32-9277**
 Describes how to configure and customize the OMEGAMON II for MVS product. It provides background on the product components, addresses maintenance and migration considerations, gives an overview of the configuration and customization process, and documents step-by-step procedures.
• **User’s Guide, GC32-9280**
 Contains an overview of OMEGAMON II features, the types of panels displayed, and how to navigate from one panel to another; instructions for adjusting an OMEGAMON II environment; usage scenarios describing how to use OMEGAMON II to monitor realtime and historical performance; instructions for using some of the commands for creating OMEGAMON screen spaces described in the OMEGAMON for MVS Command Language Reference Manual and commands for generating EPILOG reports described in the EPILOG for MVS Command Language Reference Manual.

• **OMEGAMON for MVS Command Language Reference Manual, GC32-9276**
 Provides the syntax and available keywords for OMEGAMON II for MVS commands

 Documents the syntax and available keywords for EPILOG for MVS commands.

IBM Tivoli Monitoring library

The following publications provide information about IBM Tivoli Monitoring V6.2 and about the commonly shared components of Tivoli Management Services:

• **Quick Start Guide, GI11-8058**
 Introduces the components of IBM Tivoli Monitoring.

• **Installation and Setup Guide, GC32-9407**
 Provides instructions for installing and configuring IBM Tivoli Monitoring components on Windows, Linux, and UNIX systems.

• **Program Directory for IBM Tivoli Management Services on z/OS, GI11-4105**
 Gives instructions for the SMP/E installation of the Tivoli Management Services components on z/OS.

• **Configuring the Tivoli Enterprise Monitoring Server on z/OS, SC27-2313**
 Gives detailed instructions for using the Configuration Tool to configure Tivoli Enterprise Monitoring Server on z/OS systems. Includes scenarios for using batch mode to replicate monitoring environments across the z/OS enterprise. Also provides instructions for setting up security and for adding application support to a Tivoli Enterprise Monitoring Server on z/OS.

• **Administrator’s Guide, SC32-9408**
 Describes the support tasks and functions required for the Tivoli Enterprise Portal Server and clients, including Tivoli Enterprise Portal user administration.

• **Tivoli Enterprise Portal online help**
 Provides context-sensitive reference information about all features and customization options of the Tivoli Enterprise Portal. Also gives instructions for using and administering the Tivoli Enterprise Portal.

• **User’s Guide, SC32-9409**
 Complements the Tivoli Enterprise Portal online help. The guide provides hands-on lessons and detailed instructions for all Tivoli Enterprise Portal features.

• **Command Reference, SC32-6045**
 Provides detailed syntax and parameter information, as well as examples, for the commands you can use in IBM Tivoli Monitoring.

• **Troubleshooting Guide, GC32-9458**
 Provides information to help you troubleshoot problems with the software.

• **Messages, SC23-7969**
 Lists and explains messages generated by all IBM Tivoli Monitoring components and by z/OS-based Tivoli Management Services components (such as Tivoli Enterprise Monitoring Server on z/OS and TMS:Engine).
Other sources of documentation

You can also obtain technical documentation about Tivoli Monitoring and OMEGAMON XE products from the following sources:

• IBM Tivoli Integrated Service Management Library

 [http://www.ibm.com/software/brandcatalog/ismlibrary/]

 The Integrated Service Management Library is an online catalog that contains integration documentation as well as other downloadable product extensions. This library is updated daily.

• Redbooks®

 [http://www.redbooks.ibm.com/]

 IBM Redbooks, Redpapers, and Redbooks Technotes provide information about products from platform and solution perspectives.

• Technotes

 You can find Technotes through the IBM Software Support Web site at [http://www.ibm.com/software/support/probsub.html], or more directly through your product Web site, which contains a link to Technotes (under Solve a problem).

 Technotes provide the latest information about known product limitations and workarounds.
Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability workbench that helps you resolve questions and problems with IBM software products. The ISA provides quick access to support-related information and serviceability tools for problem determination. To install the ISA software, go to http://www.ibm.com/software/support/isa

Troubleshooting Guide
For more information about resolving problems, see the product's Troubleshooting Guide.
Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:
IBM Corporation
22A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

If you are viewing this information in softcopy form, the photographs and color illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Privacy policy considerations

IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect each user’s user name for purposes of session management, authentication, and single sign-on configuration. These cookies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.
For more information about the use of various technologies, including cookies, for these purposes, See IBM’s Privacy Policy at [http://www.ibm.com/privacy] and IBM’s Online Privacy Statement at [http://www.ibm.com/privacy/details] the section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at [http://www.ibm.com/software/info/product-privacy]
Index

Special characters
-Xifa:force switch 8, 16
*MVS_SYSPLEX managed system list 75

Numerics
4 Hour MSUs attribute 16

A
accessing the Cross-System Cryptographic Coprocessors Overview workspace 96
acronyms 379
Action tab 88
activating predefined situations 18
activating situations 265
Address Space Bottleneck Summary workspace 106
Address Space Counts view 49, 80
Address Space CPU Utilization Attribute group 81
Address Space CPU Utilization Summary view 106
Address Space CPU Utilization view 49
Address Space CPU Utilization workspace 8
Address Space Overview workspace 49, 61, 80, 105
Address Space Storage workspace 80
Address Spaces for Report Class table view 315
Address Spaces for Service Class table view 316
Address Spaces Workspace for Report Classes 315
Address Spaces Workspace for Service Class 93
Address Spaces Workspace for Service Class Period 316
Advanced Situation Options dialog 82, 87
Agent Messages view 54, 375
analyzing I/O activity 77
Associated with Monitored Application 19
attribute groups
Address Space CPU Utilization Attribute 81
WLM_Service_Class_Resources 84
attributes (continued)
Minimum Weight 93
Offset in CSECT 57
Performance Index 85
Waiting on CPU 93
authorizing UNIX commands 45
automation policies 5
auxiliary storage manager (ASM) 79
Average Arrivals per Minute view 97
Average Bytes per Service Call view 97
Average Pending per Call view 97
Average Service Time per Call view 97

B
Bottleneck Analysis feature 101
bottlenecks
identifying 7

C
CF Clients attributes 120
Channel Path Activity workspace 16
Check 82
Check for Missing Items function 82
Check_Missing_Mount_Point situation 20
Check_Missing_UNIX_Mount_Point situation 20
command output, redirecting 45
command prefixes 44
commands
OMEGAMON XE on z/OS 10, 43
running from Tivoli Enterprise Portal 46
Take Action 43
UNIX 44
commands, UNIX shell 44
Common Storage Area Analyzer 16
common storage workspaces 16
critical tasks, monitoring 80, 82
cross-product dynamic links 17
Configuration tab 25
configuring historical data collection 23
connection scripts
OMEGAMON for MVS script 63
contention index 77
cookies 392
CPU % Index 93
CPU Loop Index attribute 101
CPU looping address spaces, detecting 101
CPU loops 101
CPU usage data for a selected address space 8
CPU% of CSECT attribute 57
Create Situation dialog 84
creating a DASD collection filtering situation 74
creating dynamic XE to 3270 classic links 61
critical tasks, monitoring 80, 82
cross-product dynamic links 17
Cross-System Cryptographic Coprocessor Overview workspace 14
Cross-System ICSF workspace 99
Crypto_No_PCI_Coprocessors situation 99
Cryptographic Coprocessor Navigator entry 95

© Copyright IBM Corp. 2004, 2013
new defaults 11

O
Offset in CSECT attribute 57
OMEGAMON DE on z/OS creating workspaces with 17
OMEGAMON for MVS - Job Details workspace 61, 108
OMEGAMON for MVS script 63
OMEGAMON II for MVS library 386
OMEGAMON II for MVS historical data collection 6
OMEGAMON XE on z/OS overview 3
z/OS Status DASD Issues report 27
z/OS Status WLM Service Class Period report 30
z/OS Utilization Common Storage report 34
z/OS Utilization LPAR Summary report 37
z/OS Utilization LPAR Usage Summary report 39
z/OS Utilization Real Storage report 40
OMEGAMON XE on z/OS commands 43
OMEGAMON XE on z/OS reports 27
omvs: 44
Omvs: 44
OMVS: 44
on-demand reports 26
On/Off Capacity on Demand 8
ordering of data returned from Inspect function 55
organization of predefined workspaces 14
OS/390 Systems Navigator icon 77
OS390_Local_PageDS_PctFull_Crit situation 79
OSPC immediate command 10

P
Page Dataset Activity workspace 79
Page datasets 79
page rate 79
paging
 monitoring 79, 80
paging problems, options for correcting 80
performance
 cryptography 96, 99
 of a given service class 93
 service calls 96
top users 98
Performance by Top Users view 98
performance impact
 requests for historical data from large tables 25
performance improvements 11
Performance Index attribute 85
persistent data store (PDS) 23
physical Navigator view 14
pre-emptive service request block data 8
predefined situations 20
about 5
activating 18
Crypto_No_PCI_Coprocessors 99
distributing 19
modifying 19
overview 18
starting 19
using 18, 22
predefined workspaces
 customizing 17
defined 5
predefined workspaces (continued)
 organization of 14
 overview 13
 prerequisites for data in 16
 using 13, 18
prefixes, command 44
privacy policy 392
processor capacity requirements, determining 8
 Processor Resource/System Manager (PR/SM) 99
product integration 9
publications
 Integrated Service Management Library 388
 OMEGAMON XE on z/OS 385
 Redbooks 388
 Technotes 388
types 385

Q
queries 3
queue length 97
Quiesced_File_System situation 20
Quiesced_UNIX_File_System situation 20

R
Redbooks 388
redirecting UNIX command output 45
reflex actions 5
renamed 20
renamed situations 20
report description tables 27
report types
 drill-through 26
 on-demand 26
 snapshot 26
 summarized 26
reports
 OMEGAMON XE on z/OS 27
requirements for DASD device collection filtering situations 74
resolving DASD problems 78
resource contention statistics 7
Resource Measurement Facility 16
Resource Measurement Facility (RMF) 46
Resource Measurement Facility (RMF) data 73, 74
restrictions on DASD device collection filtering attributes 74
RMF Monitor III 46
RMF Monitor III data portal
 launching
 from the command line 46
 from the Tivoli Enterprise Portal client 46
RMF, see Resource Measurement Facility 16
RMLF minor command 11

S
sample number, default 49
Sampling Statistics view 54
scenarios
 missing service class goals 83
Select Attribute dialog 81
Service Call Performance by System view 99
Service Call Performance table 96
Service Call Performance view 97
Service Call Performance workspace 96, 97
service class data 6
Service Classes Data for Sysplex workspace 93
service request block data 8
shared DASD
monitoring 76
Shared DASD Devices view 78
Shared DASD Devices workspace 76, 77
Shared DASD Groups Data for Sysplex Navigator entry 77
Shared DASD Groups Data for Sysplex workspace 76
Shared DASD Groups view 77
Shared DASD Systems workspace 76, 78
Shared DASD view 77
Shared DASD workspace 76, 78
Simple actions 5
simple actions 5
situation event workspace 4
situation events 3
Situation Filter 19
situation notification 89
situations 3, 265
acknowledging 92
activating 265
and automation policies 5
and reflex actions 5
auto-started 265
Check_Missing_Mount_Point 20
Check_Missing_UNIX_Mount_Point 20
creating your own 5
customizing situations 5
DASD Collection Filtering 74
definition of 5
distributing 75, 265
ENQ_Contention_Critical 20
ENQ_Contention_Warning 20
Excess_Kernel_CPU_Time 20
Excess_Process_UNIX_Run_Time 20
Excess_UNIX_Kernel_CPU_Time 20
Excess_UNIX_System_Time 20
Excess_UNIX_User_Time 20
File_System_Free_Space_Critical 20
File_System_Free_Space_Warning 20
KM5_CPU_Loop_Warn 102
KM5_Model_Sysplex_DASD_Filter 73
KM5_No_Sysplex_DASD_Filter_W 73
Logged_On_User_Idle 20
M5_Weak_Plex_DASD_Filter_Warn 73
Missing_inetd_Process 20
Missing_UNIX_inetd_Process 20
OS390_Local_PageDS_PctFull_Crit 79
predefined 5
Quiesced_File_System 20
Quiesced_UNIX_File_System 20
renamed 20
restrictions on DASD device collection filtering 74
Shortage_of_Processes_Critical 20
Shortage_of_Processes_Warning 20
Shortage_of_UNIX_Processes_Crit 20
Shortage_of_UNIX_Processes_Warn 20
starting 76
stopping 76
Sysplex_DASD_ContIdx_Warn 77
UNIX_ENQ_Contention_Critical 20
situations (continued)
UNIX_ENQ_Contention_Warning 20
UNIX_File_System_FreeSpace_Crit 20
UNIX_File_System_FreeSpace_Warn 20
UNIX_Logged_On_User_Idle 20
Unwanted_inetd_Process 20
Unwanted_UNIX_inetd_Process 20
z/OS Management Console 22
zOS_Critical_SvcClass_Missed_Goal 83
situations, predefined
Crypto_No_PCI_Coprocessors 99
situations, predefined 18
snapshot reports 26
Software Support 389
starting situations 19, 76
stopping situations 76
storage usage, examining 80
summarized reports 26
support assistant 389
SYS1.LINKLIB load library 55
SYS1.LPALIB load library 55
SYS1.NUCLEUS load library 55
Sysplex attribute groups 119
sysplex attributes
CF Clients 120
Sysplex Enterprise Overview workspace 14
Sysplex Level Overview workspace, 15
sysplex situations
KM5_Model_Sysplex_DASD_Filter 266
sysplex workspaces 311
Address Spaces Workspace for Report Classes 315
and attributes 312
and historical data collection 311
organization of 311
Sysplex workspaces
Address Spaces Workspace for Service Class Period 316
Sysplex_DASD_Dev_ContIdx_Warn situation 77
Sysplex_DASD_Dev_ContIdx_Crit situation 77
sysplex-level workspaces 15
System Command text field 88
System CPU Utilization workspace 6
system CPU utilization, monitoring 6
system response time 77
system workspaces
and attribute groups 336
organization of 333
System z Application Assist Processor 101
System z Integrated Information Processor 101
system-level workspaces 15

T

tabular views 3
Take Action command, defining 88
Take Action commands 43
task control block (TCB) 55
task control block data 8
Technotes 388
thresholds 5
Thresholds editor 89
Thresholds tab 89
thresholds, setting 89
Time Span interval 25
Tivoli Common Reporting
about 25
OMEGAMON XE on z/OS reports 26
types of reports 26

Index 399
Tivoli Common Reporting (continued) using 25
Tivoli Data Warehouse using 23
Tivoli Enterprise Portal viewing data in 3
Top 10 Average Bytes per Call view 98
top user performance 98
Top User Performance workspace 98
top user performance, monitoring 96
Top Users by System view 98, 99
True percent busy 77
TSO command, using 88

U
Unicenter CA-MIM Resource Sharing 7
UNIX command output, redirecting 45
UNIX commands 44
 authorizing 45
 environment for 44
 redirecting output 45
 required prefixes 44
 running in background 45
testing 45
UNIX shell commands 44
UNIX System Services situations 20
UNIX_ENQ_Contention_Critical situation 20
UNIX_ENQ_Contention_Warning situation 20
UNIX_File_System_FreeSpace_Crit situation 20
UNIX_File_System_FreeSpace_Warn situations 20
UNIX_Logged_On_User_Idle situation 20
Unwanted_inetd_Process situation 20
User Response Time workspace 16
using Inspect data 57
using predefined workspaces 13, 18

V
Velocio 93
viewing historical data 23
views
 Address Space Counts 49, 80
 Address Space CPU Utilization 49
 Address Space CPU Utilization Summary 106
 Events 77
 Fixed Storage 80
 ICSF Subsystem Status 96
 ICSF Subsystems by System 99
 Inspect Data 55, 56
 Performance by Top Users 98
 Sampling Statistics
 Agent Messages 54
 Inspect Data 54
 Service Call Performance 97
 Service Call Performance by System 99
 Shared DASD Devices 78
 Shared DASD Groups 77
tabular 3
 Top 10 Average Bytes per Call 98
 Top Users by System 98, 99
 Virtual Memory 80
 WLM Service Class Resources 89
 Virtual Memory view 80
virtual storage
 monitoring 79, 80

W
Waiting on CPU attribute 93
Warehouse Proxy agent 23
WLM Service Class Resources node 84
WLM Service Class Resources view 89
WLM Service Class Resources workspace 89, 93
WLM_Service_Class_Resources attribute group 84
workspaces
 Address Space Bottleneck Summary 106
 Address Space CPU Utilization 8
 Address Space Overview 49, 61, 80, 105
 Address Space Storage 80
 Address Spaces Workspace for Service Class 93
 Address Spaces Workspace for Service Class Period 316
 Channel Path Activity 16
 common storage 16
 Cross-System Cryptographic Coprocessor Overview 14
 Cross-System ICSF 99
cryptographic 16
 Cryptographic Services 95
customizing 17
 GRS Ring Systems Data for Sysplex 16
 Inspect Address Space CPU Use 49
 LPAR Clusters 93
 OMEGAMON for MVS - Job Details 61, 108
 organization of 309
 overview 309
 overview of 5
 Page Dataset Activity 79
 predefined, 13
 Service Classes Data for Sysplex 93
 Shared DASD Devices 76, 77
 Shared DASD Groups Data for Sysplex 76
 Shared DASD systems 76
 Shared DASD Systems 78
 situation event 4
 sysplex 311
 Address Spaces Workspace for Report Classes 315
 and attributes 312
 and historical data collection 311
 organization of 311
 Sysplex 316
 Sysplex Enterprise Overview 14
 system
 and attribute groups 336
 organization of 333
 System CPU Utilization 6
 Top User Performance 98
 User Response Time 16
 WLM Service Class Resources 89, 93
 workspaces, predefined, 13

X
XDATA minor command 10

Z
z/OS Management Console situations 22
z/OS Status DASD Issues report 27
z/OS Status WLM Service Class Period report 30
z/OS Utilization Common Storage report 34