
z/OS

Cryptographic Services
Integrated Cryptographic Service Facility
System Programmer's Guide
Version 2 Release 3

SC14-7507-07

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 433.

This edition applies to ICSF FMID HCR77C1 and Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent
releases and modifications until otherwise indicated in new editions.

Last updated: November 19, 2018

© Copyright IBM Corporation 2007, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this information. xiii
Who should use this information xiii
How to use this information xiii
Where to find more information xv

IBM Crypto Education xv

How to send your comments to IBM xvii
If you have a technical problem xvii

Summary of changes xix
Changes made in Cryptographic Support for z/OS
V2R1 - z/OS V2R3 (FMID HCR77C1) xix
Changes made in Cryptographic Support for z/OS
V2R1 - z/OS V2R2 (FMID HCR77C0) xx
Changes made in Cryptographic Support for z/OS
V1R13 - z/OS V2R2 (FMID HCR77B1) xxi
Changes made in Enhanced Cryptographic
Support for z/OS V1R13 - z/OS V2R1 (FMID
HCR77B0) xxii

Chapter 1. Introduction to z/OS ICSF . . 1
Features 1

Cryptographic hardware features 1
Server hardware 2
z/OS ICSF FMIDs 5

ICSF features 5
The Cryptographic Key Data Set (CKDS) 6
The Public Key Data Set (PKDS) 7
The Token Data Set (TKDS) 8
Additional background information 8

Running PCF applications on z/OS ICSF 8
Using RMF and SMF to monitor z/OS ICSF
events 9
Controlling access to ICSF 9

Steps prior to starting installation 10

Chapter 2. Installation, initialization,
and customization 11
Steps for installation and initialization 11

Steps to customize SYS1.PARMLIB 12
Creating the CKDS 13
Creating the PKDS 18
Creating the TKDS 21
ICSF system resource planning for random
number generation 25
Steps to create the installation options data set . 25
Creating an ICSF CTRACE configuration data set 28
Steps to create the ICSF startup procedure . . . 30
Steps to provide access to the ICSF panels . . . 31

Requiring signature verification for ICSF module
CSFINPV2 33
Steps to start ICSF for the first time 34

Customizing ICSF after the first start 36
Parameters in the installation options data set . . 36
Improving CKDS performance 61
Dispatching priority of ICSF 61
Creating ICSF exits and generic services 61

Chapter 3. Migration 63
Terminology 64
Migrating from earlier software releases 64

Actions to perform before installing ICSF FMID
HCR77C0 64
Actions to perform before the first start of ICSF
FMID HCR77C0 68
Actions to perform after the first start of ICSF
FMID HCR77C0 70
Callable services 72
CCA access control 78
Identification of cryptographic features 87
Ensure the expected P11 master key support is
available 87
Key store policy 88
DES keys 89
ICSF key data sets 89
Changing the RSA master key 92
Migrating to 24-byte DES master key 92
Installation options data set 93
Function restrictions 94
CICS attachment facility 94
Dynamic LPA load 95
Special secure mode 95
Resource Manager Interface (RMF) 95
System abend codes 95
SMF records 99
TKE workstation 99

Migrating from the IBM eServer zSeries 900 . . . 102
Migrating a CKDS and PKDS between a CCF
system and a non-CCF system. 102
Callable services 106
Functions not supported. 107
Setup considerations 107
Programming considerations 107

Migrating to PCI-HSM 2016 compliance mode . . 108
Compliance warnings 108
Migration process 109

Chapter 4. Operating ICSF 113
Starting and stopping ICSF 113
Starting ICSF during IPL-time 114
Modifying ICSF 116
Command syntax notation 116

How to read syntax diagrams 116
ICSF operator commands 118

Display ICSF 118
SETICSF 125© Copyright IBM Corp. 2007, 2018 iii

||

||

Using different configurations 135
Adding and removing cryptographic coprocessors 136

Adding cryptographic coprocessors 137
Steps for activating/deactivating cryptographic
coprocessors. 137
Steps to configure on/off cryptographic
coprocessors. 137
Steps for enabling/disabling cryptographic
coprocessors. 138

Adding and removing regional cryptographic
servers 139

Steps to add a regional cryptographic server 139
Steps to remove a regional cryptographic server 140
Configuring ICSF to use TCP/IP for
communications with regional cryptographic
servers 140

Displaying cryptographic coprocessor status using
the DISPLAY ICSF operator command 143
Adding a regional cryptographic server using the
SETICSF operator command 143
Changing regional cryptographic server status
using the SETICSF operator command 144
Performance considerations for using installation
options 144
Dispatching priority of ICSF 144
VTAM session-level encryption 144
System SSL encryption 144
Access method services cryptographic option. . . 145
Remote key loading 145
Event recording 146

System Management Facilities (SMF) recording 146
Message recording. 156

Security considerations 156
Controlling the program environment 156
Controlling access to KGUP 157
Controlling access to CSFDUTIL 157
Controlling access to the callable services . . . 157
Controlling access to cryptographic keys . . . 157
Controlling access to secure key tokens. . . . 158
Scheduling changes for cryptographic keys . . 158
Controlling access to administrative panel
functions 158
Obtaining RACF SMF log records 158

Debugging aids 159
Component trace 159
Abnormal endings. 160
IPCS formatting routine 160
VERBX 162
Detecting ICSF serialization contention
conditions 163

ENF signals 165

Chapter 5. Installation exits 167
Types of exits 167

Mainline exits 168
Exits for the services 168
The PCF CKDS conversion program exit . . . 168
The single-record, read-write exit 168
The cryptographic key data set entry retrieval
exit 169
Security exits 169

The KGUP exit 169
Entry and return specifications 169

Registers at entry 170
Registers at return 171

Exits environment 171
Mainline exits 171
Service exits 171
CKDS entry retrieval exit 171
KGUP, Conversion Programs, and Single-record,
Read-write exits 171
Security exits 172

Exit recovery 172
Mainline installation exits 172

Purpose and use of the exits 172
Environment of the exits 173
Installing the exits 173
Input 174
Return Codes 180

Services installation exits 180
Purpose and use of the exits 181
Environment of the exits 181
Installing the exits 182
Input 186
Return Codes 191
CSF_SERVICE_EXIT - ICSF callable services exit 192

Cryptographic key data set entry retrieval
installation exit 194

Purpose and use of the exit. 194
Environment of the exit 195
Installing the exit 195
Input 196
Return codes 196

PCF conversion program installation exit 197
Purpose and use of the exit. 197
Environment of the exit 197
Installing the exit 198
Input 198
Return codes 199

Single-record, Read-write installation exit 200
Purpose and use of the exit. 200
Environment of the exit 201
Installing the exit 201
Input 202
Return codes 203

Exit points for security installation exits 203
Security installation exits 203

Purpose and use of the exits 203
Environment of the exits 204
Installing the exits 205
Input 206
Return codes 207

Key generator utility program installation exit . . 208
Purpose and use of the exit. 208
Environment of the exit 209
Installing the exit 209
Input 210
The SET statement. 218
Return codes 219

iv z/OS ICSF System Programmer's Guide

Chapter 6. Installation-defined
Callable Services 221
Writing a callable service 221

Contents of registers 222
Security access control checking 223
Checking the parameters 223
Link-editing the callable service 224

Defining a callable service 224
Writing a service stub 224

Example of a service stub 225

Chapter 7. Converting a CKDS from
fixed length to variable length record
format 231

Chapter 8. Migration from PCF to z/OS
ICSF 235
Running PCF and z/OS ICSF on the same system 235

Running in compatibility mode 236
Running in coexistence mode 236
Changing the DES master key in compatibility
or coexistence mode 237
Running in noncompatibility mode 238
Specifying compatibility modes during
migration. 238

Converting a PCF CKDS to ICSF format 239
How the PCF conversion program runs . . . 239
Using the conversion program override file . . 241
Running the conversion program 247

Appendix A. Diagnosis reference
information 253
Cryptographic Key Data Set (CKDS) formats . . . 253
Public Key Data Set (PKDS) format 256

Format of the PKDS header record 257
Format of the PKDS record 257

Token data set (TKDS) format 258
Format of the header record of the token data
set 258
Format of the token and object records 259

Common record format (KDSR) 283
AES key token format 286

AES internal fixed-length key token 286
Token validation value 287

DES key token formats 287
DES fixed-length key token. 287
External RKX DES key token 290
DES null key token 291

Variable-length symmetric key token formats . . . 292
Variable-length symmetric key token 292
Variable-length symmetric null key token . . . 314

PKA key token formats 314
Internal PKA tokens 315
PKA null key token 315
RSA key token formats 315
ECC key token format 335
Trusted blocks 339

Data areas 354

The Cryptographic Communication Vector Table
(CCVT) 354
The Cryptographic Communication Vector Table
Extension (CCVE) 356
Generic Service Table (CSFMGST) 356

RMF measurements table 357

Appendix B. ICSF SMF records. . . . 363
Record type 82 (52) — ICSF record 363

Record environment 364
Record mapping 364
Subtype 1 373
Subtype 7 374
Subtype 8 374
Subtype 9 375
Subtype 13 375
Subtype 14 376
Subtype 15 377
Subtype 16 378
Subtype 18 379
Subtype 19 380
Subtype 20 381
Subtype 21 382
Subtype 22 383
Subtype 23 383
Subtype 24 383
Subtype 25 384
Subtype 26 384
Subtype 27 385
Subtype 28 386
Subtype 29 386
Subtype 30 387
Subtype 31 387
Subtype 40 390
Subtype 41 393
Subtype 42 395
Subtype 43 397
Subtype 44 398
Subtype 45 400
Subtype 46 402
Subtype 47 404
Subtype 48 405

Appendix C. CICS-ICSF Attachment
Facility 411
Installing the CICS-ICSF Attachment Facility . . . 411

Steps for installing the CICS-ICSF attachment
facility 411

Appendix D. Helpful hints for ICSF
first time startup 415
Checklist for first-time startup of ICSF 415

Step 1. Hardware setup 415
Step 2. LPAR activation profiles 415
Step 3. ICSF setup 416
Step 4. TKE setup 417
Step 5. ICSF startup 417
Step 6. Loading master keys and initializing the
CKDS through ICSF panels 417

Contents v

Step 7. Customizing TKE and loading master
keys 419
Step 8. CICS-ICSF Attachment Facility setup . . 420
Step 9. Complete ICSF initialization 421

Commonly encountered ICSF first time
setup/initialization messages 421

Appendix E. Using AMS REPRO
encryption. 423
Steps for setting up ICSF 423

Appendix F. Systems without
Cryptographic features 425
Applications and programs. 425
Callable services 425
ICSF setup and initialization 426
Secure Sockets Layer (SSL) 427

TKE workstation 427

Appendix G. Accessibility 429
Accessibility features 429
Consult assistive technologies 429
Keyboard navigation of the user interface 429
Dotted decimal syntax diagrams 429

Notices 433
Terms and conditions for product documentation 435
IBM Online Privacy Statement. 436
Policy for unsupported hardware. 436
Minimum supported hardware 436
Trademarks 437

Index 439

vi z/OS ICSF System Programmer's Guide

Figures

1. Multiple Crypto coprocessors on a complex 136
2. ICSF coprocessor management 137
3. EXPB control block for mainline exits 175
4. EXPB control block in the service exits 187
5. Example of a service entry and exit 223
6. Example of a service stub (1 of 5) 226
7. Example of a service stub (2 of 5) 227

8. Example of a service stub (3 of 5) 228
9. Example of a service stub (4 of 5) 229

10. Example of a service stub (5 of 5) 230
11. Example of a Conversion Initial Activity

Report 249
12. Example of a Conversion Update Activity

Report 251

© Copyright IBM Corp. 2007, 2018 vii

viii z/OS ICSF System Programmer's Guide

Tables

1. z/OS ICSF FMIDs. 5
2. FMID and Hardware 5
3. Exit identifiers and exit invocations 46
4. Information about this migration action 65
5. Information about this migration action 67
6. Information about this migration action 68
7. Information about this migration action 69
8. Information about this migration action 71
9. Summary of new and changed ICSF callable

services 72
10. Summary of new and changed CCA access

controls 78
11. Cryptographic adapter identification 87
12. Mapping of Enterprise PKCS #11 ACPs to

firmware levels 101
13. Syntax examples 117
14. DISPLAY GRS command syntax ICSF key

data set ENQ resources 164
15. ICSF ENF codes. 166
16. EXPB Control Block format for Mainline Exits 175
17. CSFEXIT1 parameters 176
18. CSFEXIT2 and CSFEXIT3 parameters 177
19. CSFEXIT4 and CSFEXIT5 parameters 177
20. Format of the Exit Name table 178
21. Services and their ICSF names 183
22. Compatibility services and their ICSF names 186
23. EXPB Control Block Format for Services 187
24. SPB Control Block Format 189
25. IXIB control block format 193
26. The CKDS Entry Retrieval Exit Parameters 196
27. CVXP Control Block Format 198
28. RWXP Control Block Format 202
29. Parameters received by the Security Service

Exit 206
30. Parameters received by the Security Key Exit 206
31. KGXP Control Block Format 210
32. Format of Records in the Override File 242
33. Cryptographic Key Data Set Header Record

Format. 253
34. Cryptographic Key Data Set Record Format 255
35. Variable-Length Cryptographic Key Data Set

Record Format 256
36. Public Key Data Set Header Record Format 257
37. Public Key Data Set Record Format 257
38. Format of the header record of the token data

set 258
39. Format of the common section of the token

and object records 259
40. Format of the unique section of the token

record 260
41. Format of the token object flags 261
42. Format of the token certificate object 262
43. Format of the token public key object

(Version 0) 263
44. Format of the token public key object

(Version 1) 264

45. Format of the token public key object
(Version 2) 266

46. Format of the token public key object
(Version 3) 268

47. Format of the token private key object
(Version 0) 270

48. Format of the token private key object
(Version 1) 271

49. Format of the token private key object
(Version 2) 274

50. Format of the token private key object
(Version 3) 276

51. Format of the token secret key object (Version
0) 278

52. Format of the token secret key object (Version
1) 279

53. Format of the token secret key object (Version
3) 280

54. Format of the token domain parameters
object (Version 1) 281

55. Format of the token domain parameters
object (Version 2) 282

56. Format of the token data object 283
57. Format of the KDSR record fixed data area 284
58. Format of KDSR metadata area 285
59. Format of KDSR variable-length metadata

block 285
60. AES internal fixed-length key token format 286
61. DES internal fixed-length key token format 288
62. Format of DES external fixed-length key

tokens 289
63. External RKX DES key-token format, version

X'10' 290
64. Format of Null Key Tokens 291
65. Variable-length symmetric key token 292
66. DESUSECV key-usage fields 295
67. HMAC algorithm key-usage fields 295
68. AES algorithm MAC key associated data 296
69. AES algorithm PINCALC key associated data 298
70. AES algorithm PINPROT key associated data 298
71. AES algorithm PINPRW key associated data 301
72. AES algorithm DKYGENKY key associated

data. 303
73. AES algorithm SECMSG key associated data 305
74. AES algorithm KEK key-usage fields 306
75. AES algorithm CIPHER key associated data 308
76. AES and HMAC algorithm key-management

fields 309
77. DESUSECV key-management fields 312
78. AES algorithm KDKGENKY key-usage fields 313
79. Variable-length symmetric null token 314
80. Format of PKA Null Key Tokens 315
81. RSA Public Key Token 316
82. RSA Private External Key Token Basic Record

Format. 316

© Copyright IBM Corp. 2007, 2018 ix

||

83. RSA Private Key Token, 1024-bit
Modulus-Exponent external format 318

84. RSA Private Key Token, 4096-bit
Modulus-Exponent external format 318

85. RSA Private Key Token, 4096-bit Chinese
Remainder Theorem external format 320

86. RSA private key, 4096-bit Modulus-Exponent
format with AES encrypted OPK section
(X'30') external form 321

87. RSA private key, 4096-bit Chinese Remainder
Theorem format with AES encrypted OPK
section (X'31') external form. 323

88. RSA Private Internal Key Token Basic Record
Format. 325

89. RSA Private Internal Key Token, 1024-bit
X’02’ ME Form 327

90. RSA Private Internal Key Token, 1024-bit
X’06’ ME Form 327

91. RSA private key, 4096-bit Modulus-Exponent
format with AES encrypted OPK section
internal form. 329

92. RSA private key, 4096-bit Chinese Remainder
Theorem format with AES encrypted OPK
section (X'31') internal form 331

93. RSA Private Internal Key Token, 4096-bit
Chinese Remainder Theorem Internal Format . 333

94. ECC Key Token Format 335
95. Associated Data Format for ECC Private Key

Token 338
96. AESKW Wrapped Payload Format for ECC

Private Key Token 339
97. Trusted block sections. 339
98. Trusted block header 341
99. Trusted block trusted RSA public-key section

(X'11') 342
100. Trusted block rule section (X'12') 343
101. Summary of trusted block rule subsection 345
102. Transport key variant subsection (X'0001' of

trusted block rule section (X'12') 345
103. Transport key rule reference subsection

(X'0002') of trusted block rule section (X'12') . 346
104. Common export key parameters subsection

(X'0003') of trusted block rule section (X'12') . 347
105. Source key rule reference subsection (X'0004'

of trusted block rule section (X'12') 348
106. Export key CCA token parameters subsection

(X'0005') of trusted block rule section (X'12') . 349
107. Trusted block key label (name) section X'13' 351
108. Trusted block information section X'14' 351
109. Summary of trusted block information

subsections 352
110. Protection information subsection (X'0001') of

trusted block information section (X'14') . . 352
111. Activation and expiration dates subsection

(X'0002') of trusted block information section
(X'14') 353

112. Trusted block application-defined data section
X'15' 354

113. Cryptographic communication vector table 355
114. Cryptographic Communication Vector Table

Extension 356

115. Generic Service Table Block Format 356
116. RMF measurements record format 357
117. Format of an SMF Type 82 record for

subtypes smaller than 40. 365
118. Format of an SMF Type 82 record for

subtypes 40 and higher 365
119. SMF record header. 365
120. ICSF header (for all subtypes 40 or greater) 366
121. SMF type 82 server user or end user audit

section 366
122. Tag-Length-Value (TLV) triplet structure

(SMF82AUD_TRIPLET) 366
123. TLV triplet tag values 367
124. Tag-Length-Value triplets 367
125. Service names used in SMF records 367
126. Subtype 1 Initialization/Options Refresh 373
127. Subtype 7 operational key entry 374
128. Subtype 8 Cryptographic key data set refresh 374
129. Subtype 9 Dynamic CKDS update 375
130. Subtype 13 Dynamic PKDS update 375
131. Subtype 14 Cryptographic coprocessor master

key entry 376
132. Subtype 15 PCI Cryptographic coprocessor

retained key create/delete 377
133. Subtype 16 PCI Cryptographic Coprocessor

TKE. 378
134. Subtype 16 PCI Cryptographic Coprocessor

TKE audit data 378
135. Subtype 18 Cryptographic Processor

Configuration 379
136. Subtype 19 PCI X Cryptographic Coprocessor

Timing 380
137. Subtype 20 Cryptographic Processor

Processing Times 381
138. Subtype 21 ICSF Sysplex Group Change 382
139. Subtype 22 Trusted Block Create Callable

Services 383
140. Subtype 23 Token Data Set Update 383
141. Subtype 24 Duplicate Tokens Found 383
142. Subtype 25 Key Store Policy Key Token

Authorization Checking 384
143. Subtype 26 Public Key Data Set Refresh 384
144. Subtype 27 PKA Key Management Extensions 385
145. Subtype 28 High Performance Encrypted Key 386
146. Subtype 29 TKE Workstation Audit Record 386
147. Subtype 30 Archived and inactive KDS

records. 387
148. Subtype 31 Cryptographic usage statistics 387
149. Subtype 31 SMF82_TRIPL 388
150. Subtype 31 tag values. 388
151. SMF82STAT_ALG algorithm names 389
152. Subtype 40 CCA symmetric key lifecycle

event 391
153. Subtype 41 CCA asymmetric key lifecycle

event 393
154. Subtype 42 PKCS#11 object lifecycle event 395
155. Subtype 43 Regional cryptographic server

configuration 397
156. Subtype 44 CCA symmetric key usage event 398
157. Subtype 45 CCA asymmetric key usage event 400
158. Subtype 46 PKCS#11 key usage event 402

x z/OS ICSF System Programmer's Guide

159. Subtype 47 PKCS#11 no key usage event 404 160. Subtype 48 Compliance warning event 406

Tables xi

xii z/OS ICSF System Programmer's Guide

About this information

This information describes how to initialize, customize, operate, and diagnose the
z/OS Integrated Cryptographic Service Facility (ICSF). The z/OS Cryptographic
Services includes these components:
v z/OS Integrated Cryptographic Service Facility (ICSF)
v z/OS System Secure Socket Level Programming (SSL)
v z/OS Public Key Infrastructure Services (PKI)

ICSF is a software element of z/OS that works with the hardware cryptographic
feature and the Security Server (RACF) to provide secure, high-speed
cryptographic services. ICSF provides the application programming interfaces by
which applications request the cryptographic services.

Who should use this information
This information is intended for the system programmer. It describes the tasks that
a system programmer might perform:
v Programming installation options, installation-defined callable services, and

installation exits
v Creating the data sets that ICSF uses
v Migrating the system from the Cryptographic Unit Support Program (CUSP) and

Programmed Cryptographic Facility (PCF) to ICSF
v Migrating to z/OS ICSF
v Starting and stopping ICSF
v Checking event recording
v Planning for security and performance considerations
v Debugging and recovering from problems

Defining and writing installation-defined callable services and installation exit
routines is intended to be accomplished primarily by experienced system
programmers. This information assumes that the reader has an advanced
knowledge of z/OS.

How to use this information
This information is divided into descriptions of these tasks:
v Introducing ICSF

– Chapter 1, “Introduction to z/OS ICSF,” on page 1 introduces the
cryptographic key data set (CKDS), the public key data set (PKDS), and the
token data set (TKDS) and provides basic information about running PCF
applications on ICSF and preparing for installation.

v Initializing ICSF
– Chapter 2, “Installation, initialization, and customization,” on page 11

describes how to customize SYS1.PARMLIB, create the CKDS, the PKDS, and
the TKDS, the installations options data set, the startup procedure, and
provide access to the ICSF panels. It also explains how to change the
parameters in the installation options data set after the first start and
introduces installation exits.

© Copyright IBM Corp. 2007, 2018 xiii

v Migration and coexistence issues
Chapter 8, “Migration from PCF to z/OS ICSF,” on page 235 describes how to
migrate application programs and cryptographic key data set information to
z/OS ICSF from the IBM cryptographic products CUSP/PCF.
Chapter 3, “Migration,” on page 63 describes migration to this release of ICSF
from previous releases of ICSF.

v Customizing ICSF
– Chapter 6, “Installation-defined Callable Services,” on page 221 gives

information that an experienced system programmer can use to write
installation-defined callable services. It also explains how to define these
callable services to ICSF and how to write service stubs to access them.

– Chapter 5, “Installation exits,” on page 167 describes the ICSF installation
exits you can use to customize ICSF.

v Operating ICSF
– Chapter 4, “Operating ICSF,” on page 113 describes how to add and remove

cryptographic coprocessors and to start, modify, and stop ICSF and other
operating considerations.

– “ICSF operator commands” on page 118 describes the console commands
available for ICSF.

– “Event recording” on page 146 describes ICSF event recording on the Security
Console and SMF.

v Planning ICSF
– “Security considerations” on page 156 describes methods you can use to

protect ICSF resources.
v Diagnosing ICSF

– “Debugging aids” on page 159 describes the use of component trace and
Interactive Problem Control System (IPCS) to debug ICSF.

– Appendix A, “Diagnosis reference information,” on page 253 maps the
cryptographic key data set and the cryptographic communication vector
tables as reference information for use in debugging. This appendix also maps
CCA key tokens (DES, AES, RSA, and ECC) and trusted blocks.

– Appendix B, “ICSF SMF records,” on page 363 describes SMF Record type 82,
which is used to record information about the events and operations of ICSF.
Record type 82 is written to the SMF data set at the completion of certain
cryptographic functions.

– Appendix C, “CICS-ICSF Attachment Facility,” on page 411 defines steps to
install the CICS-ICSF Attachment Facility.

– Appendix D, “Helpful hints for ICSF first time startup,” on page 415 defines
helpful hints and that you may encounter when starting ICSF for the first
time.

– Appendix E, “Using AMS REPRO encryption,” on page 423 provides
information on using IDCAMS REPRO ENCIPHER and DECIPHER options
with ICSF.

– Appendix F, “Systems without Cryptographic features,” on page 425 describes
processing and functionality support for this environment.

– Appendix G, “Accessibility,” on page 429 contains information on accessibility
features in z/OS.

– “Notices” on page 433 contains information on notices, programming
interface information and trademarks.

xiv z/OS ICSF System Programmer's Guide

Where to find more information
The publications in the z/OS ICSF library include:
v z/OS Cryptographic Services ICSF Overview

v z/OS Cryptographic Services ICSF Administrator's Guide

v z/OS Cryptographic Services ICSF System Programmer's Guide

v z/OS Cryptographic Services ICSF Application Programmer's Guide

v z/OS Cryptographic Services ICSF Messages

v z/OS Cryptographic Services ICSF Writing PKCS #11 Applications

v z/OS Cryptographic Services ICSF TKE Workstation User's Guide

This publication also refers to these publications:
v IBM ES/3090 Processor Complex Recovery Guide

v z/OS Planning for Installation

v z/OS Security Server RACF Auditor's Guide

v z/OS Security Server RACF Command Language Reference

v z/OS Security Server RACF Security Administrator's Guide

v z/OS Security Server RACF Macros and Interfaces

v z/OS Security Server RACF System Programmer's Guide

v z/OS MVS IPCS User's Guide

v z/OS MVS System Codes

v z/OS MVS System Management Facilities (SMF)

v z/OS MVS Programming: Extended Addressability Guide

v z/OS MVS Initialization and Tuning Guide

v z/OS MVS Initialization and Tuning Reference

v z/OS DFSMS Access Method Services Commands

v z/OS DFSMS Using Data Sets

v IBM Distributed Key Management System, Installation and Customization Guide

v OS/VS1 and OS/VS2 MVS Cryptographic Unit Support: Installation Manual

v OS/VS1 and OS/VS2 MVS Programmed Cryptographic Facility

v IBM 4767 Specification Sheet

v IBM 4767 Warranty Information Flyer

v IBM 4765 Specification Sheet

v IBM 4765 Warranty Information Flyer

v CCA Basic Services Reference and Guide for the IBM 4767 and IBM 4765 PCIe
Cryptographic Coprocessors

IBM Crypto Education
The IBM Crypto Education (www.ibm.com/developerworks/community/groups/
community/crypto) community provides detailed explanations and samples
pertaining to IBM cryptographic technology.

About this information xv

http://www.ibm.com/developerworks/community/groups/community/crypto
http://www.ibm.com/developerworks/community/groups/community/crypto

xvi z/OS ICSF System Programmer's Guide

How to send your comments to IBM

We invite you to submit comments about the z/OS® product documentation. Your
valuable feedback helps to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead
“If you have a technical problem.”

Submit your feedback by using the appropriate method for your type of comment
or question:

Feedback on z/OS function
If your comment or question is about z/OS itself, submit a request through
the IBM RFE Community (www.ibm.com/developerworks/rfe/).

Feedback on IBM® Knowledge Center function
If your comment or question is about the IBM Knowledge Center
functionality, for example search capabilities or how to arrange the browser
view, send a detailed email to IBM Knowledge Center Support at
ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS
product documentation library, send a detailed email to
mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following
information:
v Your name, company/university/institution name, and email address
v The following deliverable title and order number: z/OS ICSF System

Programmer's Guide, SC14-7507-07
v The section title of the specific information to which your comment

relates
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that
are provided for sending documentation comments. Instead, take one or more of
the following actions:
v Go to the IBM Support Portal (support.ibm.com).
v Contact your IBM service representative.
v Call IBM technical support.

© Copyright IBM Corp. 2007, 2018 xvii

http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xviii z/OS ICSF System Programmer's Guide

Summary of changes

ICSF is an element of z/OS, but provides independent ICSF releases as web
deliverables. These web deliverables are identified by their FMID. Each release of
z/OS includes a particular ICSF FMID level as part of its base. See “z/OS ICSF
FMIDs” on page 5 for more information on z/OS ICSF FMIDs and their
relationships to z/OS releases.

ICSF publications can be obtained from:
v The Resource Link home page (www.ibm.com/servers/resourcelink). (Select

Publications and then select the release that you are interested in under ICSF
Publications by FMID.)

v IBM z/OS downloads (www.ibm.com/systems/z/os/zos/downloads) for
Cryptographic Support.

This document contains terminology, maintenance, and editorial changes to
improve consistency and retrievability. Technical changes or additions to the text
and illustrations are indicated by a vertical line to the left of the change.

Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R3
(FMID HCR77C1)

This document contains information previously presented in z/OS ICSF System
Programmer's Guide, SC14-7507-06.

This document is for ICSF FMID HCR77C1. This release of ICSF runs on z/OS
z/OS V2R1, V2R2, and V2R3 and only on zSeries hardware.

The most recent updates are listed at the top of each section.

New
v Information about IBM z14 and IBM z14 ZR1.
v “DES keys” on page 89 (APAR OA55184).
v “Starting ICSF during IPL-time” on page 114 (APAR OA55378).
v The SMF Formatter has been updated and the newest version should be utilized

for proper formatting.
v New system abend codes are summarized in “System abend codes” on page 95.
v “Migrating to PCI-HSM 2016 compliance mode” on page 108.
v “Cryptographic usage statistics (Subtype 31)” on page 154.
v “Compliance warning event (Subtype 48)” on page 156.
v “VERBX” on page 162.
v “IPCS support for diagnosing contention issues in a dump” on page 165.
v “Subtype 48” on page 405.

Changed
v “Parameters in the installation options data set” on page 36 (APAR OA55184).
v “Callable services” on page 72 (APAR OA55184).
v “CCA access control” on page 78 (APAR OA55184).

© Copyright IBM Corp. 2007, 2018 xix

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/systems/z/os/zos/downloads

v “CICS attachment facility” on page 94 (APAR OA55184).
v “Installing the exits” on page 182 (APAR OA55184).
v “Input” on page 210 (APAR OA55184).
v “DES key token formats” on page 287 (APAR OA55184).
v “DES fixed-length key token” on page 287 (APAR OA54132).
v “Variable-length symmetric key token formats” on page 292 (APAR OA55184).
v “RMF measurements table” on page 357 (APAR OA55184).
v “Service names used in SMF records” on page 367 (APAR OA55184).
v “PKCS#11 object lifecycle event” on page 395 (APAR OA54346).
v “PKCS#11 key usage event” on page 402 (APAR OA54346).
v “Parameters in the installation options data set” on page 36.
v “System abend codes” on page 95.
v “Starting and stopping ICSF” on page 113.
v “Display ICSF” on page 118.
v “SETICSF” on page 125.
v “High Performance Encrypted Key (Subtype 28)” on page 153.
v ICSF SMF records:

– “Subtype 7” on page 374.
– “Subtype 14” on page 376.
– “Subtype 15” on page 377.
– “Subtype 16” on page 378.
– “Subtype 18” on page 379.
– “Subtype 20” on page 381.
– “Subtype 21” on page 382.
– “Subtype 28” on page 386.
– “Subtype 40” on page 390.
– “Subtype 44” on page 398.

Deleted

No content was removed from this information.

Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R2
(FMID HCR77C0)

This document contains information previously presented in z/OS ICSF System
Programmer's Guide, SC14-7507-05.

This document is for ICSF FMID HCR77C0. This release of ICSF runs on z/OS
V2R1 and z/OS V2R2 and only on zSeries hardware.

The most recent updates are listed at the top of each section.

New
v “Starting ICSF during IPL-time” on page 114 is new (APAR OA55378).
v New CSF.SCSFSTUB dataset.
v New SMF subtypes: 40, 41, 42, 44, 45, 46, and 47.
v New system abend codes are summarized in “System abend codes” on page 95.

xx z/OS ICSF System Programmer's Guide

v “ENF signals” on page 165 is new.

Changed
v “Subtype 42” on page 395 (APAR OA55958).
v “Subtype 46” on page 402 (APAR OA55958).
v “PKCS#11 object lifecycle event” on page 395 has been updated (APAR

OA54346).
v “PKCS#11 key usage event” on page 402 has been updated (APAR OA54346).
v “Starting and stopping ICSF” on page 113 has been updated.
v “High Performance Encrypted Key (Subtype 28)” on page 153 has been updated.
v “Subtype 28” on page 386 has been updated.
v SMF subtype 1 is written whenever ICSF is started or the options refresh is

performed.
v “The Cryptographic Key Data Set (CKDS)” on page 6 has been updated.
v “The Public Key Data Set (PKDS)” on page 7 has been updated.
v “Steps to create the CKDS” on page 15 has been updated.
v “Steps to create the PKDS” on page 19 has been updated.
v “Steps to create the TKDS” on page 22 has been updated.
v “Parameters in the installation options data set” on page 36 has been updated.
v “Callable services” on page 72 has been updated.
v “CICS attachment facility” on page 94 has been updated.
v “SETICSF” on page 125 has been updated.
v “Installing the exits” on page 182 has been updated.
v “Installing the exits” on page 205 has been updated.

Deleted

No content was removed from this information.

Changes made in Cryptographic Support for z/OS V1R13 - z/OS V2R2
(FMID HCR77B1)

This document contains information previously presented in z/OS ICSF System
Programmer's Guide, SC14-7507-03.

This document is for ICSF FMID HCR77B1. This release of ICSF runs on z/OS
V1R13, z/OS V2R1, and z/OS V2R2 and only on zSeries hardware.

The most recent updates are listed at the top of each section.

New
v Updated to include information about IBM z13s.
v Added information about the Encrypted PIN Translate Enhanced and Key

Encryption Translate services.
v Added information about regional cryptographic servers.
v New system abend code is summarized in “System abend codes” on page 95.
v “Server hardware” on page 2 was updated with information on regional

cryptographic servers.
v New system abend codes are summarized in “System abend codes” on page 95.

Summary of changes xxi

v “Command syntax notation” on page 116 is new.
v “ICSF operator commands” on page 118 is new and includes the “Display ICSF”

on page 118 and the “SETICSF” on page 125 commands.
v “Adding and removing regional cryptographic servers” on page 139 is new.
v “Configuring ICSF to use TCP/IP for communications with regional

cryptographic servers” on page 140 is new.
v “Displaying cryptographic coprocessor status using the DISPLAY ICSF operator

command” on page 143 is new.
v “Changing regional cryptographic server status using the SETICSF operator

command” on page 144 is new.
v “ICSF header (for all subtypes 40 or greater)” on page 366 is new.
v “Regional cryptographic server configuration (Subtype 43)” on page 155 is new.

Details about SMF record subtype 43 can be found in “Subtype 43” on page 397.

Changed
v Terminology changed from open cryptographic services to regional

cryptographic services.
v Updates to “Parameters in the installation options data set” on page 36:

– Six new EMV services added.
– New MASTERKCVLEN and REMOTEDEVICE keywords added.
– The deprecation of the HDRDATE keyword. If this option is specified, it will

be tolerated, but is no longer supported.
v “Callable services” on page 72 was updated with information on the six new

EMV services and updates to Key Generate, PKA Decrypt, and PKA Encrypt.
v “Installing the exits” on page 182 was updated with information on the six new

EMV services.
v “Secondary parameter block” on page 189 was updated.
v “Format of the header record of the token data set” on page 258 was updated.

Deleted

No content was removed from this information.

Changes made in Enhanced Cryptographic Support for z/OS V1R13 -
z/OS V2R1 (FMID HCR77B0)

This document contains information previously presented in z/OS ICSF System
Programmer's Guide, SC14-7507-01.

This document is for ICSF FMID HCR77B0. This release of ICSF runs on z/OS
V1R13 and z/OS V2R1 and only on zSeries hardware.

New
v “Server hardware” on page 2 was updated to include new information about

IBM z13®.
v The following new options have been added in “Parameters in the installation

options data set” on page 36:
– KEYARCHMSG (YES or NO)
– RNGCACHE(YES or NO)

v New system abend codes summarized in “System abend codes” on page 95.

xxii z/OS ICSF System Programmer's Guide

v New subtype for ICSF SMF record type 82 (52) in “Key Store Policy Archived
and Inactive Checking (Subtype 30)” on page 154.

v New services installation exit, “CSF_SERVICE_EXIT - ICSF callable services exit”
on page 192.

v New CCVTRLVL field added to “The Cryptographic Communication Vector
Table (CCVT)” on page 354.

Changed
v DOMAIN(n) is updated for 256 domain support on IBM z13 in “Parameters in

the installation options data set” on page 36.
v “Steps for initializing ICSF” on page 34 has been updated.
v Chapter 3, “Migration,” on page 63 has been updated for FMID HCR77B0.
v “Key store policy” on page 88 has been updated for KGUP, key material

archiving, and key material validity.
v “ICSF key data sets” on page 89 has been updated with information about

record metadata.
v “Migrating to 24-byte DES master key” on page 92 has been updated.
v “CICS attachment facility” on page 94 has been updated for FMID HCR77B0.
v “Migrating a CKDS and PKDS between a CCF system and a non-CCF system”

on page 102 has been updated.
v “Using different configurations” on page 135 is updated for 256 domain support.
v “System Management Facilities (SMF) recording” on page 146 has multiple

updates:
– “Dynamic CKDS Update (Subtype 9)” on page 149
– “Dynamic PKDS Update (Subtype 13)” on page 149
– “Key Store Policy Key Token Authorization Checking (Subtype 25)” on page

152
– “Key Store Policy Archived and Inactive Checking (Subtype 30)” on page 154
– “Subtype 1” on page 373
– “Operational Key Part Entry (Subtype 7)” on page 148
– “Subtype 14” on page 376
– “Subtype 15” on page 377
– “Subtype 16” on page 378
– “Subtype 18” on page 379
– “Subtype 25” on page 384
– “Subtype 20” on page 381

v “Common record format (KDSR)” on page 283 has been updated.

Deleted

No content was removed from this information.

Summary of changes xxiii

xxiv z/OS ICSF System Programmer's Guide

Chapter 1. Introduction to z/OS ICSF

ICSF is a software element of z/OS. ICSF works with the hardware cryptographic
features and the Security Server (RACF element) to provide secure, high-speed
cryptographic services in the z/OS environment. ICSF provides the application
programming interfaces by which applications request the cryptographic services.
ICSF is also the means by which the secure cryptographic features are loaded with
master key values, allowing the hardware features to be used by applications. The
cryptographic feature is secure, high-speed hardware that performs the actual
cryptographic functions. Your processor hardware determines the cryptographic
feature available to your applications.

Features

Cryptographic hardware features
This topic describes the cryptographic hardware features available. Information on
adding and removing cryptographic coprocessors can be found in z/OS
Cryptographic Services ICSF Administrator's Guide.

Crypto Express6 adapter (CEX6C, CEX6P, or CEX6A)

The Crypto Express6 adapter is an asynchronous cryptographic coprocessor or
accelerator. The adapter contains one cryptographic engine that can be configured
as a coprocessor (CEX6C for CCA and CEX6P for PKCS #11) or as an accelerator
(CEX6A). It is available on IBM z14 and IBM z14 ZR1.

Crypto Express5 adapter (CEX5C, CEX5P, or CEX5A)

The Crypto Express5 adapter is an asynchronous cryptographic coprocessor or
accelerator. The adapter contains one cryptographic engine that can be configured
as a coprocessor (CEX5C for CCA and CEX5P for PKCS #11) or as an accelerator
(CEX5A). It is available on IBM z13, IBM z13s, IBM z14, and IBM z14 ZR1.

Crypto Express4 adapter (CEX4C, CEX4P, or CEX4A)

The Crypto Express4 adapter is an asynchronous cryptographic coprocessor or
accelerator. The adapter may be configured as a CCA coprocessor (CEX4C), an
Enterprise PKCS #11 coprocessor (CEX4P), or as an accelerator (CEX4A). It is
available on IBM zEnterprise EC12 and IBM zEnterprise BC12.

Crypto Express3 adapter (CEX3C or CEX3A)

The Crypto Express3 adapter is an asynchronous cryptographic coprocessor or
accelerator. The adapter contains two cryptographic engines that can be
independently configured as a coprocessor (CEX3C) or as an accelerator (CEX3A).
It is available on the IBM System z10 Enterprise Class, IBM System z10 Business
Class, IBM zEnterprise 196, IBM zEnterprise 114, IBM zEnterprise EC12, and the
IBM zEnterprise BC12.

© Copyright IBM Corp. 2007, 2018 1

|

|

Crypto Express2 adapter (CEX2C or CEX2A)

The Crypto Express2 adapter is an asynchronous cryptographic coprocessor or
accelerator. The adapter contains two cryptographic engines that can be
independently configured as a coprocessor (CEX2C) or as an accelerator (CEX2A).
It is available on the IBM System z9 Enterprise Class, IBM System z9 Business
Class, IBM System z10 Enterprise Class, and IBM System z10 Business Class.

CP Assist for Cryptographic Functions (CPACF)

CPACF is a set of cryptographic instructions available on all CPs. Use of the
CPACF instructions provides improved performance. The SHA-1 algorithm is
always available. Additional algorithms are available with the appropriate
enablement. For more information, see “Server hardware.”

CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement, feature
3863, provides for clear key DES and TDES instructions. On the z9 EC / z9 BC and
later systems, this feature includes clear key AES for 128-bit keys. On z10 EC / z10
BC and later systems, this feature also includes clear key AES for 192-bit and
256-bit keys.

Server hardware
This topic describes the servers on which the cryptographic hardware features are
available.

Regional cryptographic server

Regional cryptographic servers are network-attached, stand-alone devices or
dedicated Linux LPARs that perform geography-specific cryptography. Later
generations of these servers add international algorithm support. These servers are
secure key hardware security modules (HSMs) that operate similar to IBM's PKCS
#11 secure coprocessors (CEXnP). They are marketed and serviced by third-party
vendors. Currently, the only geography-specific cryptography that is supported by
these devices is the Chinese SMx family of algorithms. Secure keys are stored in
the TKDS, protected by the Regional Cryptography Server Master Key (RCS-MK).

The network-attached, stand-alone devices require no particular zSeries hardware,
but do require communicating with z/OS V1R13 or later and ICSF FMID HCR77B1
or later. ICSF communicates with these devices using TCP/IP, with optional TLS
protection. The Linux LPARs require IBM z13 or later hardware. ICSF
communicates with the Linux LPARs using TCP/IP, with TLS protection required.

Once configured and online, ICSF makes the algorithms that are offered by these
devices available as PKCS #11 vendor-defined extensions.
v For information on configuring these devices, see z/OS Cryptographic Services

ICSF System Programmer's Guide.
v For information on the algorithms offered, see z/OS Cryptographic Services ICSF

Writing PKCS #11 Applications and z/OS Cryptographic Services ICSF Application
Programmer's Guide.

IBM z14 and IBM z14 ZR1

The IBM z14 and IBM z14 ZR1 provides constraint relief and addresses various
customer demands. It has several cryptographic features.

2 z/OS ICSF System Programmer's Guide

|

|

v CP Assist for Cryptographic Functions is implemented on every processor.
SHA-1, SHA-2, and SHA-3 secure hashing and SHAKE extendable output
functions are directly available to application programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES
Enablement - enables DES, TDES, and AES instructions on all CPs.

v Feature code 0893, Crypto Express6 adapter - optional, and only available if you
have feature 3863, CPACF DES/TDES Enablement installed. The IBM z14 and
IBM z14 ZR1 can support a maximum of 16 adapters. Each adapter code has one
hardware adapter which can be configured as a CCA coprocessor, a PKCS #11
coprocessor, or an accelerator.

v Feature code 0890, Crypto Express5 adapter - optional, and only available if you
have feature 3863, CPACF DES/TDES Enablement installed. The IBM z14 and
IBM z14 ZR1 can support a maximum of 16 adapters. Each feature code has one
hardware feature which can be configured as a CCA coprocessor, a PKCS #11
coprocessor, or an accelerator.

IBM z13 and IBM z13s

The IBM z13 and IBM z13s provide constraint relief and addresses various
customer demands. It has several cryptographic features.
v CP Assist for Cryptographic Functions is implemented on every processor.

SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 secure hashing is directly
available to application programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES
Enablement - enables clear key DES and TDES instructions on all CPs. AES
128-bit, AES 192-bit and AES 256-bit support is also available.

v Feature code 0890, Crypto Express5 adapter - optional, and only available if you
have feature 3863, CPACF DES/TDES Enablement installed. The IBM z13s can
support a maximum of 16 adapters. Each feature code has one hardware feature
which can be configured as a CCA coprocessor, a PKCS #11 coprocessor, or an
accelerator.

IBM zEnterprise EC12 (zEC12) and IBM zEnterprise BC12 (zBC12)

The IBM zEnterprise EC12 and IBM zEnterprise BC12 provide constraint relief and
addresses various customer demands. It has several cryptographic features.
v CP Assist for Cryptographic Functions is implemented on every processor.

SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 secure hashing is directly
available to application programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES
Enablement - enables clear key DES and TDES instructions on all CPs. AES
128-bit, AES 192-bit and AES 256-bit support is also available.

v Feature code 0864, Crypto Express3 adapter - optional, and only available if you
have feature 3863, CPACF DES/TDES Enablement installed. The IBM
zEnterprise EC12 can support a maximum of 8 adapters. Each feature code has
two coprocessors/accelerators.

v Feature code 0865, Crypto Express4 adapter - optional, and only available if you
have feature 3863, CPACF DES/TDES Enablement installed. The IBM
zEnterprise EC12 can support a maximum of 16 adapters. Each feature code has
one hardware feature which can be configured as a CCA coprocessor, a PKCS
#11 coprocessor, or an accelerator.

Chapter 1. Introduction to z/OS ICSF 3

|
|

|
|

IBM zEnterprise 196 (z196) and IBM zEnterprise 114 (z114)

The IBM zEnterprise 196 and IBM zEnterprise 114 provide constraint relief and
addresses various customer demands. It has several cryptographic features.
v CP Assist for Cryptographic Functions is implemented on every processor.

SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 secure hashing is directly
available to application programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES
Enablement – enables clear key DES and TDES instructions on all CPs. AES
128-bit, AES 192-bit and AES 256-bit support is also available.

v Feature code 0864, Crypto Express3 adapter – optional, and only available if you
have feature 3863, CPACF DES/TDES Enablement installed. The IBM
zEnterprise 196 and IBM zEnterprise 114 can support a maximum of 8 adapters.
Each feature code has two coprocessors/accelerators.

IBM System z10 Enterprise Class (z10EC) and IBM System z10
Business Class (z10 BC)

The IBM System z10 Enterprise Class and IBM System z10 Business Class provide
constraint relief and addresses various customer demands. It has several
cryptographic features.
v CP Assist for Cryptographic Functions is implemented on every processor.

SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 secure hashing is directly
available to application programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES
Enablement – enables clear key DES and TDES instructions on all CPs. AES
128-bit, AES 192-bit and AES 256-bit support is also available.

v Feature code 0863, Crypto Express2 adapter – optional, and only available if you
have feature 3863, CPACF DES/TDES Enablement installed. The z10 EC and z10
BC can support a maximum of 8 adapters. Each feature code has two
coprocessors/accelerators.

v Feature code 0864, Crypto Express3 adapter – optional, and only available if you
have feature 3863, CPACF DES/TDES Enablement installed. The z10 EC and z10
BC can support a maximum of 8 adapters. Each feature code has two
coprocessors/accelerators.

IBM System z9 Enterprise Class (z9 EC) and IBM System z9
Business Class (z9 BC)

The IBM System z9 Enterprise Class (z9 EC) and IBM System z9 BC provide
constraint relief and addresses various customer demands. It has several
cryptographic features.
v CP Assist for Cryptographic Functions is implemented on every processor.

SHA-1, SHA-224 and SHA-256 secure hashing is directly available to application
programs.

v Feature code 3863, CP Assist for Cryptographic Functions (CPACF) DES/TDES
Enablement – enables clear key DES and TDES instructions on all CPs. In
addition, ICSF supports hardware implementation of AES 128-bit keys and
software implementation of AES 192-bit and AES 256-bit key lengths.

v Feature code 0863, Crypto Express2 adapter – optional, and only available if you
have feature 3863, CPACF DES/TDES Enablement installed. The IBM System z9
BC can support a maximum of 8 adapters. Each feature code has two
coprocessors/accelerators.

4 z/OS ICSF System Programmer's Guide

z/OS ICSF FMIDs
These tables explain the relationships of z/OS releases, ICSF FMIDs and servers.

Table 1. z/OS ICSF FMIDs

z/OS ICSF FMID Web deliverable name

V2R1

HCR77A0 Cryptographic Support for z/OS V1R12-R13.

HCR77A1 Cryptographic Support for z/OS V1R13 - z/OS V2R1.

HCR77B0 Enhanced Cryptographic Support for z/OS V1R13 - z/OS V2R1.

HCR77B1 Cryptographic Support for z/OS V1R13 - z/OS V2R2.

HCR77C0 Cryptographic Support for z/OS V2R1 - z/OS V2R2.

HCR77C1 Cryptographic Support for z/OS V2R1 - z/OS V2R3.

V2R2

HCR77B0 Enhanced Cryptographic Support for z/OS V1R13 - z/OS V2R1.

HCR77B1 Cryptographic Support for z/OS V1R13 - z/OS V2R2.

HCR77C0 Cryptographic Support for z/OS V2R1 - z/OS V2R2.

HCR77C1 Cryptographic Support for z/OS V2R1 - z/OS V2R3.

V2R3
HCR77C0 Cryptographic Support for z/OS V2R1 - z/OS V2R2.

HCR77C1 Cryptographic Support for z/OS V2R1 - z/OS V2R3.

Refer to this chart to determine what release is associated with each ICSF FMID
and what server it will run on.

Table 2. FMID and Hardware

ICSF FMID Applicable z/OS Releases Servers where FMID will run

HCR77A0 (Base of z/OS 2.1) 1.12, 1.13, and 2.1 z800, z900, z890, z990, z9 EC, z9 BC, z10
EC, z10 BC, z114, z196, zBC12, zEC12,
z13, z13s, and z14.

HCR77A1 1.13 and 2.1 z890, z990, z9 EC, z9 BC, z10 EC, z10 BC,
z114, z196, zBC12, zEC12, z13, z13s, and
z14.

HCR77B0 (Base of z/OS 2.2) 1.13, 2.1, and 2.2 z890, z990, z9 EC, z9 BC, z10 EC, z10 BC,
z114, z196, zBC12, zEC12, z13, z13s, and
z14.

HCR77B1 1.13, 2.1, and 2.2 z890, z990, z9 EC, z9 BC, z10 EC, z10 BC,
z114, z196, zBC12, zEC12, z13, z13s, and
z14.

HCR77C0 (Base of z/OS 2.3) 2.1, 2.2, and 2.3 z9 EC, z9 BC, z10 EC, z10 BC, z114, z196,
zBC12, zEC12, z13, z13s, and z14.

HCR77C1 2.1, 2.2, and 2.3 z9 EC, z9 BC, z10 EC, z10 BC, z114, z196,
zBC12, zEC12, z13, z13s, z14, and z14
ZR1.

ICSF features
ICSF protects data from unauthorized disclosure or modification. It protects data
that is stored within a system, stored in a file on magnetic tape off a system, and
sent between systems. It can also be used to authenticate identities of senders and
receivers and to ensure the integrity of messages transmitted over a network. It
uses cryptography to accomplish these functions.

Chapter 1. Introduction to z/OS ICSF 5

|
|

Cryptography enciphers data, using an algorithm and a cryptographic key, so the
data is in an unintelligible form. Deciphering data involves reproducing the
intelligible data from the unintelligible data. To encipher and decipher data, ICSF
uses either the U.S. National Institute of Science and Technology Data Encryption
Standard (DES) algorithm, Advanced Encryption Standard (AES), Elliptic Curve
Cryptography (ECC) or the RSA algorithm.

ICSF supports several Public Key Algorithms (PKA), which do not require
exchanging a secret key. You can use these algorithms to exchange AES or DES
secret keys securely and to compute digital signatures for authenticating messages
and users. For digital signatures, you use a pair of keys: a private (secret) key to
sign a message and a corresponding public key to verify the signature. ICSF
supports the RSA, and ECC algorithms.

You can call an ICSF callable service from an application program to perform a
cryptographic function. ICSF uses keys in cryptographic functions to:
v Protect data
v Protect other keys
v Verify that messages were not altered between sender and receiver
v Generate, protect, and verify personal identification numbers (PINs)
v Distribute AES and DES keys
v Generate and verify digital signatures

You use ICSF callable services and programs to generate, maintain, and manage
keys that are used in the cryptographic functions. A unique key performs each
type of cryptographic function on ICSF. All secret keys are encrypted under
another key, a master key or a wrapping key. There are up to four CCA master
keys depending on your cryptographic coprocessors: DES, RSA, AES and ECC. All
master keys are physically secure within the boundary of the cryptographic
coprocessors. Operational secret keys are encrypted under their respective master
key.

The P11 master key is used to protect secure PKCS #11 keys. Secure PKCS #11 keys
are supported only on features configured for PKCS #11. The P11 master key is
physically secure within the boundary of the coprocessors.

The Cryptographic Key Data Set (CKDS)
Cryptographic keys that are protected under the DES or AES master key are stored
in a VSAM data set that is called the cryptographic key data set (CKDS). ICSF
provides sample CKDS allocation jobs (members CSFCKDS, CSFCKD2, and
CSFCKD3) in SYS1.SAMPLIB. An installation is not required to define a CKDS.
However, when a CKDS is not defined, secure CCA symmetric key functions are
not available and ICSF cannot be used to manage CCA symmetric key tokens. The
CKDS contains individual entries for each key that is added to it. You can store all
types of operational symmetric keys in the CKDS. Each record in the data set
contains the key value encrypted under the master key and other information
about the key. ICSF maintains two copies of the CKDS: a disk copy and an
in-storage copy.

Callable services use the in-storage copy of the CKDS to perform cryptographic
functions. For information on managing and sharing the CKDS in a sysplex
environment, see z/OS Cryptographic Services ICSF Administrator's Guide.

6 z/OS ICSF System Programmer's Guide

Applications can use the dynamic CKDS update callable services to create, write,
read, and delete CKDS records.

There are three formats of the CKDS:
v A fixed-length record format with LRECL=252 (supported by all releases of

ICSF). Sample is CSFCKDS.
v A variable-length record format with LRECL=1024 (supported by HCR7780 and

later releases). Sample is CSFCKD2.
v The common record format (KDSR) that is common to all key data sets with

LRECL=2048 (supported by ICSF FMID HCR77A1 and later). Sample is
CSFCKD3.

You should use the most current format, the common record format (KDSR), for all
your key data sets because KDSR format supports additional function to manage
cryptographic keys. For information on converting your existing CKDS to KDSR
format, see “Migrating to the common record format (KDSR) key data set” on page
91.

If variable-length AES and HMAC keys are to be stored in the CKDS, you must
use the variable-length or KDSR format of the CKDS. These formats can store all
symmetric key tokens, both fixed-length and variable-length tokens. The KDSR
format allows ICSF to track key usage if so configured.

The Public Key Data Set (PKDS)
RSA and ECC public and private keys and trusted blocks can be stored in a VSAM
data set that is called the public key data set (PKDS). ICSF provides sample PKDS
allocation jobs (member CSFPKDS) in SYS1.SAMPLIB. An installation is not
required to define a PKDS. However, when a PKDS is not defined, secure CCA
asymmetric key functions are not available and ICSF cannot be used to manage
CCA asymmetric key tokens. The PKDS contains individual entries for each key
that is added to it. You can store public key tokens, both external and internal
private key tokens, and trusted blocks in the PKDS. ICSF maintains two copies of
the PKDS: a disk copy and an in-storage copy.

Callable services use the in-storage copy of the PKDS to perform cryptographic
functions. For information on managing and sharing the PKDS in a sysplex
environment, see z/OS Cryptographic Services ICSF Administrator's Guide.

Applications can use the dynamic PKDS update callable services to create, write,
read, and delete PKDS records.

There are two formats of the PKDS: the PKDS record format (supported by all
releases of ICSF) and the common record format (KDSR) that is common to all key
data sets (supported by ICSF FMID HCR77A1 and later). The KDSR format allows
ICSF to track key usage if so configured.

You should use the most current format, the common record format (KDSR), for all
your key data sets because KDSR format supports additional function to manage
cryptographic keys. For information on converting your existing PKDS to KDSR
format, see “Migrating to the common record format (KDSR) key data set” on page
91.

Chapter 1. Introduction to z/OS ICSF 7

The Token Data Set (TKDS)
PKCS #11 tokens and objects are stored in a VSAM data set called the token data
set (TKDS). ICSF provides sample TKDS allocation jobs (members CSFTKDS and
CSFTKD2) in SYS1.SAMPLIB. The TKDS contains individual entries for each token
and object that is added to it. ICSF maintains two copies of the TKDS: a disk copy
and an in-storage copy. Only token objects are stored in the TKDS. Session objects
(which are not persistent) are stored in memory only.

The TKDS must be a key-sequenced data set with spanned variable length records
and must be allocated on a permanently resident volume. For information on
managing and sharing the TKDS in a sysplex environment, see z/OS Cryptographic
Services ICSF Administrator's Guide.

The TKDS is optional for installations that do not use PKCS #11 services or for
installations that use only clear session (non-persistent) PKCS #11 keys.

There are two formats of the TKDS: the TKDS record format (supported by all
releases of ICSF), and the common record format (KDSR) that is common to all
KDS types (supported by ICSF FMID HCR77A1 and later). KDSR allows ICSF to
track key usage if so configured.

You should use the most current format, the common record format (KDSR), for all
your key data sets because KDSR format supports additional function to manage
cryptographic keys. For information on converting your existing TKDS to KDSR
format, see “Migrating to the common record format (KDSR) key data set” on page
91.

Additional background information
These topics provide some additional background information about using ICSF
with other products, such as the Programmed Cryptographic Facility (PCF).

Running PCF applications on z/OS ICSF
If your installation uses PCF, you can run PCF applications on ICSF. You can use
an installation option to specify whether a PCF application runs on ICSF. If you are
migrating from PCF, ICSF provides a conversion program that converts a PCF
CKDS to ICSF format.

You can use your own installation services and exits to customize ICSF. You can
write, define, and call your own installation-defined callable service. You can also
write and define exits that ICSF calls during the processing of:
v ICSF mainline
v A callable service
v The PCF CKDS conversion program
v The key generator utility program
v CKDS access

For example, most callable services in ICSF call an exit before and after processing.
Such an exit can alter return codes in a service.

8 z/OS ICSF System Programmer's Guide

ICSF System SVC 143

SVC 143 (0A8F) is an ICSF system SVC that is used by CUSP and PCF macros
(GENKEY, RETKEY, CIPHER, and EMK) for SVC entry into ICSF. The SVC allows
you to run a CUSP or PCF application on ICSF. See “Running PCF and z/OS ICSF
on the same system” on page 235 for more information about running CUSP and
PCF applications on ICSF.

SVC 143 is a type 4 SVC and does not get a lock. The General Trace Facility data
is:

R15 and R0
No applicable data.

R1 Address of the parameter list. The macro that is called determines the
parameter list.

Using RMF and SMF to monitor z/OS ICSF events
You can run ICSF in different configurations and use installation options to affect
ICSF performance. While ICSF is running, you can use the Resource Management
Facilities (RMF) and System Management Facilities (SMF) to monitor certain
events. For example, ICSF records information in the SMF data set when ICSF
changes the status of a cryptographic processor or when you enter or change the
master key. ICSF also sends information and diagnostic messages to data sets and
consoles.

With the availability of cryptographic hardware on an LPAR basis, RMF provides
performance monitoring in the Postprocessor Crypto Hardware Activity report.
This report is based on SMF record type 70, subtype 2. The Monitor I gathering
options on the REPORTS control statement are CRYPTO and NOCRYPTO. Specify
CRYPTO to measure cryptographic hardware activity and NOCRYPTO to suppress
the gathering. In addition, overview criteria is shown for the Postprocessor in the
Postprocessor Workload Activity Report - Goal Mode (WLMGL) report. Refer to
z/OS RMF Programmer's Guide, z/OS RMF User's Guide, and z/OS RMF Report
Analysis for additional information.

ICSF also supports enabling RMF to provide performance measurements on ICSF
services (Decipher, Digital Signature Generate, Digital Signature Verify, Encipher,
FPE Decipher, FPE Encipher, FPE Translate, MAC Generate, MAC Verify, One Way
Hash, PIN Translate, and PIN Verify). These measurements are of the PCIXCCs or
Crypto Express coprocessors.

For diagnosis monitoring, use Interactive Problem Control System (IPCS) to access
the trace buffer and to format control blocks.

Controlling access to ICSF
For security, you should control access to ICSF resources and services. Use a
security product like the Security Server (RACF) to protect cryptographic
programs, keys, and services. You should also change the value of your master
keys periodically.

Chapter 1. Introduction to z/OS ICSF 9

Steps prior to starting installation
You use either ServerPac or CBPDO to install ICSF as part of the z/OS installation
process.

When beginning installation:
1. Refer to z/OS Planning for Installation for installation planning information.
2. Check with your IBM center or search the IBM problem database to find any

pertinent Preventative Service Planning (PSP). There may also be HOLDDATA
and PSP information for ICSF on the tape.

3. Make sure that you have all needed programs and their corequisites:
v If you use the Security Sever (RACF) and want access control and auditing

services for ICSF, you need the Security Server (RACF), an optional feature of
z/OS.

v If you are a Resource Measurement Facility (RMF) user, you need the
Resource Measurement Facility option available with z/OS.

4. Collect all required information. The Program Directory lists publications useful
during installation.

5. Confirm you have adequate DASD storage and create SMP/E DDDEF entries
for each data set. See the Program Directory for details.

10 z/OS ICSF System Programmer's Guide

Chapter 2. Installation, initialization, and customization

For this topic, you need to understand these terms:

Installation options
You create an installation options data set that specifies these options. They
become active when you start ICSF, customizing how ICSF runs on your
system.

Startup procedure
You create an ICSF startup procedure. Along with other information, this
specifies the name of the installation options data set.

SYS1.SAMPLIB
Contains samples, including an installation options data set, a CKDS
allocation job, a PKDS allocation job, a startup procedure, a CICS Wait List
data set, and sample JCL for SMP/E Delivery to load keys by using a pass
phrase. You can update this code as necessary and generally store the
updated code in SYS1.PARMLIB and SYS1.PROCLIB.

SYS1.PARMLIB
Generally contains the installation options data set. The installation options
data set can alternately be a member of a partitioned or sequential data set.

SYS1.PROCLIB
Contains the startup procedure.

Steps for installation and initialization
Refer to the z/OS Program Directory for installation instructions. Several of the
installation steps in the z/OS Program Directory refer you to this publication for
details. This publication explains these installation steps.

Note: Because it is possible for ICSF control blocks like the DACC and CCVT to
persist in storage across an ICSF restart, an IPL is required when installing a new
release of ICSF.
1. Customize SYS1.PARMLIB. “Steps to customize SYS1.PARMLIB” on page 12

describes this task.
2. Create the Cryptographic Key Data Set (CKDS). “Steps to create the CKDS” on

page 15 describes this. Create the Public Key Data Set (PKDS). “Steps to create
the PKDS” on page 19 describes this task.

3. If PKCS #11 support is desired, create the TKDS. “Steps to create the TKDS” on
page 22 describes this task.

4. Create the installation options data set. “Steps to create the installation options
data set” on page 25 describes this task.

5. Create the startup procedure. “Steps to create the ICSF startup procedure” on
page 30 describes this task.

6. Provide access to the ICSF panels. “Steps to provide access to the ICSF panels”
on page 31 describes this task.

Note: You only need to perform the first six steps once.
7. Start ICSF for the first time. See “Steps to start ICSF for the first time” on page

34. Once ICSF has been started, Master Keys can be entered.

© Copyright IBM Corp. 2007, 2018 11

For additional information on ICSF first time startup, refer to “Checklist for
first-time startup of ICSF” on page 415. See z/OS Cryptographic Services ICSF
Administrator's Guide for directions on entering Master Keys.

8. Enter Master Keys.

Other topics in this publication and z/OS Cryptographic Services ICSF Administrator's
Guide provide additional installation information.

For information on installing the CICS-ICSF Attachment Facility, refer to
Appendix C, “CICS-ICSF Attachment Facility,” on page 411.

Steps to customize SYS1.PARMLIB
The installation options data set you will create is generally stored in
SYS1.PARMLIB. If your administrator does not have access to SYS1.PARMLIB, you
need to use another data set instead.

Update the data set you are using as follows:
1. Add CEE.SCEERUN, CSF.SCSFMOD0, and CSF.SCSFSTUB to the LNKLST

concatenation. This adds the ICSF library to the z/OS library search. This is an
example of an ICSF entry to the LNKLST concatenation.
CSF.SCSFMOD0

2. APF authorize CSF.SCSFMOD0, if LNKAUTH=APFTAB. This is an example of
an ICSF entry for APF authorization.
APF ADD DSNAME(CSF.SCSFMOD0) VOLUME(******)

3. In the IKJTSOxx parameter, add CSFDAUTH and CSFDPKDS as a value in the
AUTHPGM parameter list and in the AUTHTSF parameter list. This is an
example of an ICSF entry in the IKJTSOxx member.
AUTHPGM NAMES(/* AUTHORIZED PROGRAMS */ +
....
....

CSFDAUTH /* ICSF */ +
CSFDPKDS /* ICSF */ +

....

AUTHTSF NAMES(/* PROGRAMS TO BE AUTHORIZED WHEN */ +
/* WHEN CALLED THROUGH THE TSO */ +
/* SERVICE FACILITY */ +

....

....
CSFDAUTH /* ICSF */ +
CSFDPKDS /* ICSF */

4. If your application programmers intend to use PKCS #11 token key objects for
AES Galois/Counter Mode (GCM) encryption or GMAC generation and have
ICSF generate the initialization vectors, then you need to ensure that the first
four bytes of the sysplex names (from parmlib member COUPLExx) and the
first four bytes of the system name (from the SYSNAME parameter in the
IEASYSxx parmlib member) are unique within the scope of the systems that
will be sharing these tokens. z/OS currently does not impose any restrictions
on uniqueness between sysplex names and system names. Eight character
system names have to be unique within a sysplex. ICSF requires that the first
four bytes are unique, but this is not enforced by the z/OS operating system.
This needs to be done because, for AES GCM encryption or GMAC generation,
the security of the algorithm is dependent on never repeating a key,
initialization vector combination for two or more distinct sets of data. In PKCS
#11, applications can request that ICSF generate a new (unique) initialization

12 z/OS ICSF System Programmer's Guide

vector each time AES GCM or GMAC is initiated. In fact, this is the only
permitted way to perform AES GCM or GMAC when PKCS #11 is operating in
FIPS mode. When ICSF generates initialization vectors, it uses the ECVTSPLX
(sysplex mode) or CVTSNAME (non-sysplex mode) field as the cryptographic
module name. The name ensures uniqueness if such keys are distributed to
multiple systems, but only if each system is set with a unique name.
When setting ECVTSPLX or CVTSNAME to unique values, be aware that ICSF
uses only the first (left most) 4 characters of these fields. For this reason, these
4 characters must be set to uniquely identify the system.
For example, suppose AES key value 123 is created on the current single-image
system (known as System A) and is distributed to another system residing in a
Sysplex (known as Sysplex B). Both systems will be performing GCM
encryption where ICSF generates the initialization vectors. To ensure that
unique initialization vectors are generated, set CVTSNAME=SYSA on System A
and ECVTSPLX=PLXB on Sysplex B.
CVTSNAME is normally set from the SYSNAME=value statement in the
IEASYSxx member of "SYS1.PARMLIB". For more information, see z/OS MVS
Initialization and Tuning Reference.
ECVTSPLX is normally set from the COUPLE SYSPLEX(value) in the
COUPLExx member of "SYS1.PARMLIB". For more information, see z/OS MVS
Setting Up a Sysplex.

Note:

1. If you will be using the TKE workstation on this host, you should also add
CSFTTKE as a value in the AUTHCMD parameter list.

2. To change the active IKJTSOxx member of SYS.PARMLIB without an IPL, use
the PARMLIB UPDATE command.

z/OS MVS Initialization and Tuning Guide and z/OS MVS Initialization and Tuning
Reference provide more information.

Creating the CKDS
Installations need to understand and plan for the system resources required for
managing the CKDS copy in virtual storage, particularly when the installation is
deploying a very large CKDS. Refer to “ICSF system resource planning for the
CKDS” for guidelines. Once you understand these guidelines, refer to “Steps to
create the CKDS” on page 15 for step-by-step instructions.

ICSF system resource planning for the CKDS
Like the PKDS and TKDS, ICSF manages a mirror copy of the CKDS data set in
protected, private virtual storage to optimize cryptographic workload access to
symmetric keys in the normal course of workload operation. This copy is kept
current as keys are dynamically added to, and removed from, the active CKDS key
store. Like any set of control information that is maintained in virtual storage, the
in-storage CKDS copy must be accommodated with sufficient system central
storage and auxiliary paging space resources.

Installations need to understand and plan for the system resources that are
required for managing the CKDS copy in virtual storage, particularly when the
installation is deploying a large CKDS. Note that “very large” is a relative
assessment depending upon the installation, and might be expressed, for example,
in terms of tens or hundreds of thousands of symmetric keys in the CKDS, or even
millions of keys.

Chapter 2. Installation, initialization, and customization 13

An in-storage copy of a CKDS that is not experiencing significant dynamic key
creation or deletion activity consumes a stable amount of virtual storage, and
therefore a stable amount of system backing resource. However, certain occasional
but unavoidable ICSF functions such as CKDS refresh do generate a significant
spike in the amount of used virtual storage, and therefore a greater temporary
demand for system resources backing that virtual storage.

Given these circumstances, it is important to calculate and plan for the system
central storage and auxiliary paging space that is required to support an active
in-storage copy. For a CKDS shared across a sysplex environment, every active
ICSF in the sysplex has an equivalent resource requirement.

Each symmetric key in the CKDS is managed with one VSAM record. Installations
need to plan for the appropriate amount of combined central storage and auxiliary
paging space for each VSAM record, per active ICSF. The following formula is
provided to help you calculate the required system virtual storage backing
resource for an active in-storage CKDS. In this formula HI-A-RBA is the allocated
relative byte address for the data component of a CKDS VSAM data set. The
IDCAMS LISTCAT command output for a CKDS VSAM data set can be consulted
to determine the HI-A-RBA value for the data component. The %Free Space used
in this formula represents the percentage of free space in the CKDS VSAM data
set. The IDCAMS EXAMINE DATATEST command output can be consulted to
determine the percentage of free space.
HI-A-RBA x ((100 - %Free Space) / 100) x 6

For example, the central storage and auxiliary paging space requirement for a
CKDS VSAM data set with a HI-A-RBA of 481,787,904 for its data component entry
and 16 percent free space can be calculated as follows.
481,787,904 x ((100 - 16) / 100) x 6 = 2,428,211,036.16 bytes

This CKDS VSAM data set requires 2.26 Gigabytes of combined central storage and
auxiliary paging space for system backing resource.

As is the case with all virtual storage usage, central storage is the preferred
medium to optimize the workload performance, and to avoid system paging
overhead. Excessive system paging due to any virtual storage usage can cause
degradation across the workload and system operation, and an extreme shortage of
central storage and auxiliary paging space can lead to a catastrophic system failure.

Note: The output from the preceding formulas should be added to the outputs
calculated from the formulas in “ICSF system resource planning for the PKDS” on
page 18 and “ICSF system resource planning for the TKDS and session object
memory areas” on page 21. This gives you the required system virtual storage
backing resource for all of ICSF’s KDS data sets. This value represents the required
amount of virtual storage for a given instance of ICSF. For a set of KDS data sets
shared across a sysplex environment, every active ICSF in the sysplex has an
equivalent resource requirement.

Additional CKDS performance considerations: IBM recommends that
installations that deploy a fixed-length format CKDS with millions of symmetric
keys do not enable CKDS MAC authentication or disable it if it is already enabled.
CKDS MAC authentication adds an additional coprocessor request for each VSAM
data set read/write operation. There is a significant performance implication for
CKDS MAC authentication that would be greatly magnified with such a large
CKDS.

14 z/OS ICSF System Programmer's Guide

Steps to create the CKDS
The CKDS must be a key-sequenced data. There are three formats:
v A fixed length record format with LRECL=252.
v A variable length record format with LRECL=1024.
v The common record format (KDSR) which is common to all key data sets with

LRECL=2048.

Allocate the CKDS on a permanently resident volume.

Attention: Ensure that this volume is not subject to data set migration. If the
CKDS is migrated, message CSFM450E is issued and ICSF ends.

For detailed information about calculating space for a VSAM data set and an
explanation of keyed-direct update processing and what happens when control
area and control interval splits occur, see z/OS DFSMS Access Method Services
Commands.
1. Determine the amount of primary space you need to allocate for the CKDS.

This should reflect the total number of entries you expect the data set to
contain originally. Besides transport keys, PIN keys, data-encrypting keys,
data-translating keys, and MAC keys, the CKDS contains a header record and
system keys. ICSF no longer uses the system keys as of ICSF FMID HCR77A1,
but they remain for older releases which may share the CKDS.

Fixed length record format:
Each record is 252 bytes long. Allocate space for all of the installation
and system keys you expect to store in the CKDS.

Variable length record format:
The minimum size of a record will be 276 bytes. Records containing
fixed-length DES and AES keys will be 332 bytes long. Records
containing variable-length symmetric key tokens may be up to 993
bytes long. Allocate space for all of the installation and system keys
you expect to store in the CKDS.

KDSR format:
The minimum size of a record will be 188 bytes. Records containing
fixed-length DES and AES keys will be 244 bytes long or 300 bytes long
if the original record had user data. Records containing variable-length
symmetric key tokens may be up to 905 bytes long. In addition,
installations may add metadata to any record. If you are planning to
add metadata, account for the size of the metadata in the length of
records. Allocate space for all of the installation and system keys you
expect to store in the CKDS.

2. Determine the amount of secondary space to allocate for CKDS. This should
reflect the total number of entries you expect to add to the data set.
To access keys, VSAM uses the key label as the VSAM key. This means that
VSAM adds keys to the data set in collating sequence. That is, if two keys
named A and B are in the data set, A appears earlier in the data set than B. As
a result, adding keys to the data set can cause multiple VSAM control interval
splits and control area splits. For example, a split might occur if the data set
contains keys A, B, and E and you add C. In this case, C must be placed
between B and E. These splits can leave considerable free space in the data set
and can affect KGUP performance.
The amount of secondary space you allocate must take into account the
number of control interval and control area splits that might occur. If the disk
copy of the CKDS uses a significant amount of secondary space, you can copy

Chapter 2. Installation, initialization, and customization 15

it into another disk copy that you created with more primary space. You can do
this by using the Access Method Services (AMS) REPRO command or the AMS
EXPORT/IMPORT commands.
The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command
(required by Step 3) lets VSAM optimize space for control area and control
interval splits.

3. Create an empty VSAM data set to use as the CKDS. ICSF provides a sample
job to define the CKDS in member CSFCKDS of SYS1.SAMPLIB.
Use the AMS DEFINE CLUSTER command to define the data set and to
allocate its space.

Note: To improve security and reliability of the data that is stored on the
CKDS:
v Use the ERASE and WRITECHECK parameters on the AMS DEFINE

CLUSTER command. ERASE overwrites data records with binary zeros when
the CKDS cluster is deleted. WRITECHECK provides hardware verification
of all data that is written to the data set.

v Create a Security Server (RACF) data set profile for the CKDS. Ensure that
no one has access to the CKDS data set by protecting the CKDS data set
name resource in the DATASET class. If a data set profile is used, as opposed
to using the PROTECTALL(FAIL) option for example, the profile should have
a UACC of NONE.

Fixed length record format:
Allocate a disk copy of the CKDS by defining a VSAM cluster as in this
SYS1.SAMPLIB CSFCKDS member sample:
//CSFCKDS JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2002, 2015 *
//* *
//* This JCL defines a VSAM CKDS capable only of fixed-length records*
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your CKDS to *
//* reside. The CKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a CKDS capable of only *
//* fixed-length records. There are samples for each of the *
//* other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER (NAME(CSF.CSFCKDS) -

VOLUMES(XXXXXX) -
RECORDS(100 50) -
RECORDSIZE(252,252) -
KEYS(72 0) -
FREESPACE(10,10) -
SHAREOPTIONS(2)) -

DATA (NAME(CSF.CSFCKDS.DATA) -

16 z/OS ICSF System Programmer's Guide

BUFFERSPACE(100000) -
ERASE -
WRITECHECK) -

INDEX (NAME(CSF.CSFCKDS.INDEX))
/*

Variable length record format:
Allocate a disk copy of the CKDS by defining a VSAM cluster as in this
SYS1.SAMPLIB CSFCKD2 member sample:
//CSFCKD2 JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2010, 2013 *
//* *
//* This JCL defines a VSAM CKDS capable of variable-length records *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your CKDS to *
//* reside. The CKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a CKDS capable of *
//* variable-length records, in non-KDSR format. There are *
//* samples for each of the other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER (NAME(CSF.CSFCKDS) -

VOLUMES(XXXXXX) -
RECORDS(100 50) -
RECORDSIZE(332,1024) -
KEYS(72 0) -
FREESPACE(10,10) -
SHAREOPTIONS(2,3)) -

DATA (NAME(CSF.CSFCKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
WRITECHECK) -

INDEX (NAME(CSF.CSFCKDS.INDEX))
/*

KDSR record format:
Allocate a disk copy of the CKDS by defining a VSAM cluster as in this
SYS1.SAMPLIB CSFCKD3 member sample:
//CSFCKD3 JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2013 *
//* *
//* This JCL defines a VSAM CKDS capable of variable-length records *
//* in common record format *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *

Chapter 2. Installation, initialization, and customization 17

//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your CKDS to *
//* reside. The CKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a CKDS capable of *
//* variable-length records, in KDSR format. There are *
//* samples for each of the other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER (NAME(CSF.CSFCKDS) -

VOLUMES(XXXXXX) -
RECORDS(100 50) -
RECORDSIZE(372,2048) -
KEYS(72 0) -
FREESPACE(10,10) -
SHAREOPTIONS(2,3)) -

DATA (NAME(CSF.CSFCKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
WRITECHECK) -

INDEX (NAME(CSF.CSFCKDS.INDEX))
/*

You can change and use the Job Control Language according to the needs of
your installation. Note that the JCL to define the CKDS differs from the JCL
that defines the PKDS (RECORDSIZE and CISZ parameters). For more
information about allocating a VSAM data set, see z/OS DFSMS Access Method
Services Commands.

Creating the PKDS
Installations need to understand and plan for the system resources required for
managing the PKDS copy in virtual storage, particularly when the installation is
deploying a very large PKDS. Refer to “ICSF system resource planning for the
PKDS” for guidelines. Once you understand these guidelines, refer to “Steps to
create the PKDS” on page 19 for step-by-step instructions.

ICSF system resource planning for the PKDS
Like the CKDS and TKDS, ICSF manages a mirror copy of the PKDS data set in
protected, private virtual storage to optimize cryptographic workload access to
asymmetric keys. Again, similar to the CKDS, the in-storage PKDS copy must be
accommodated with sufficient system central storage and auxiliary paging space
resources. The same formula that is used in the system resource planning section
for the CKDS can be used to estimate the virtual storage requirement for an
existing, stable PKDS (one that is not experiencing significant dynamic asymmetric
key creation or deletion activity).
HI-A-RBA x ((100 - %Free Space) / 100) x 6

As described in “ICSF system resource planning for the CKDS” on page 13, the
output from running the IDCAMS LISTCAT and EXAMINE DATATEST commands
against a PKDS VSAM data set can be consulted to determine the data set's data
component HI-A-RBA and the percentage of free space in the data set.

Note: The output from the preceding formula should be added to the outputs
calculated from the formulas in “ICSF system resource planning for the CKDS” on
page 13 and “ICSF system resource planning for the TKDS and session object

18 z/OS ICSF System Programmer's Guide

memory areas” on page 21. This gives you the required system virtual storage
backing resource for all of ICSF’s KDS data sets. This value represents the required
amount of virtual storage for a given instance of ICSF. For a set of KDS data sets
shared across a sysplex environment, every active ICSF in the sysplex has an
equivalent resource requirement.

Steps to create the PKDS
The PKDS must be allocated and the PKDS data set name must be specified on the
PKDSN parameter of the options data set when you first start ICSF.

The PKDS must be a key-sequenced data set with variable length records. Allocate
the PKDS on a permanently resident volume.
1. Determine the amount of primary space you need to allocate for the PKDS.

This should reflect the total number of entries you expect the data set to
contain originally. The PKDS will contain both public and private PKA keys.
Each record has a maximum size of 3.5 KB. The average record length for a
private key is 1.4 KB, and for a public key is 0.5 KB. Allocate space for a
minimum of two private keys, one for digital signatures, and another for
encipherment. In addition, allocate enough space for the number of public keys
you expect to store in the PKDS. The number of public keys varies from system
to system. Generally, only those keys that are received from other users or
systems are stored in the PKDS. The public keys are used to send messages to
the owners of the public keys. In addition, installations may add metadata to
any record. If you are planning to add metadata, account for the size of the
metadata in the length of records.

2. Determine the amount of secondary space to allocate for the PKDS.
This should reflect the total number of entries you expect to add to the data
set. For detailed information about calculating space for a VSAM data set, see
z/OS DFSMS Access Method Services Commands.
To access keys, VSAM uses the key label as the VSAM key. This means that
VSAM adds keys to the data set in collating sequence. That is, if two keys
named A and B are in the data set, A appears earlier in the data set than B. As
a result, adding keys to the data set can cause multiple VSAM control interval
splits and control area splits. For example, a split might occur if the data set
contains keys A, B, and E and you add C. In this case, C must be placed
between B and E.
The amount of secondary space you allocate must take into account the
number of control interval and control area splits that might occur. If the PKDS
uses a significant amount of secondary space, you can copy it into another disk
copy that you created with more primary space. You can do this by using the
Access Method Services (AMS) REPRO command or the AMS
EXPORT/IMPORT commands.
The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command
(required by Step 3) lets VSAM optimize space for control area and control
interval splits. For a detailed explanation of keyed-direct update processing and
what happens when control area and control interval splits occur, see z/OS
DFSMS Access Method Services Commands.

3. Create an empty VSAM data set to use as the PKDS. Use the AMS DEFINE
CLUSTER command to define the data set and to allocate its space. ICSF
provides a sample job to define the PKDS in member CSFPKDS of
SYS1.SAMPLIB.

Note: To improve security and reliability of the data that is stored on the
PKDS:

Chapter 2. Installation, initialization, and customization 19

v Use the ERASE and WRITECHECK parameters on the AMS DEFINE
CLUSTER command. ERASE overwrites data records with binary zeros when
the PKDS cluster is deleted. WRITECHECK provides hardware verification of
all data that is written to the data set.

v Create a Security Server (RACF) data set profile for the PKDS. Ensure that no
one has access to the PKDS data set by protecting the PKDS data set name
resource in the DATASET class. If a data set profile is used, as opposed to
using the PROTECTALL(FAIL) option for example, the profile should have a
UACC of NONE.

v The CISZ(8192) coded in this sample in the DATA section is a hardcoded
requirement.

4. Allocate a disk copy of the PKDS by defining a VSAM cluster as in this
SYS1.SAMPLIB CSFPKDS member sample:
//CSFPKDS JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2002, 2015 *
//* *
//* This JCL defines a VSAM PKDS *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your PKDS to *
//* reside. The PKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a PKDS. There are *
//* samples for each of the other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=64M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CSF.CSFPKDS) -
VOLUMES(XXXXXX) -
RECORDS(100 50) -
RECORDSIZE(800,3800) -
KEYS(72 0) -
FREESPACE(0,0) -
SHAREOPTIONS(2,3)) -

DATA (NAME(CSF.CSFPKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
CISZ(8192) -
WRITECHECK) -

INDEX (NAME(CSF.CSFPKDS.INDEX))
/*

You can change and use the Job Control Language according to the needs of
your installation. Note that the JCL to define the PKDS differs from the JCL
that defines the CKDS (RECORDSIZE and CISZ parameters). For more
information about allocating a VSAM data set, see z/OS DFSMS Access Method
Services Commands.

20 z/OS ICSF System Programmer's Guide

Creating the TKDS
TKDS Installations need to understand and plan for the system resources required
for managing the TKDS copy in virtual storage, particularly when the installation
is deploying a very large TKDS. Refer to “ICSF system resource planning for the
TKDS and session object memory areas” for guidelines. Once you understand these
guidelines, refer to “Steps to create the TKDS” on page 22 for step-by-step
instructions.

ICSF system resource planning for the TKDS and session object
memory areas
Like the CKDS and PKDS, ICSF manages a mirror copy of the TKDS data set in
protected, private virtual storage to optimize cryptographic workload access to
persistent PKCS #11 objects (keys, certificates, and so on). Also, like the CKDS and
PKDS, the in-storage TKDS copy must be accommodated with sufficient system
central storage and auxiliary paging space resources. Unfortunately, the variable
length nature of PKCS #11 objects makes resource estimating for the TKDS
difficult. The best way to estimate the virtual storage requirement for an existing,
stable TKDS (one that is not experiencing significant dynamic PKCS #11 object
creation or deletion activity) is to determine the actual size of the used DATA
portion of the TKDS and multiply this by 3. The following formula is provided to
help you calculate the required system virtual storage backing resource for an
active in-storage TKDS. In this formula HI-A-RBA is the allocated relative byte
address for the data component of a TKDS VSAM data set. The IDCAMS LISTCAT
command output for a TKDS VSAM data set can be consulted to determine the
HI-A-RBA value for the data component. The %Free Space used in this formula
represents the percentage of free space in the TKDS VSAM data set. The IDCAMS
EXAMINE DATATEST command output can be consulted to determine the
percentage of free space.
HI-A-RBA x ((100 - %Free Space) / 100) x 3

For example, if the DATA HI-A-RBA has the value 1622016 with 56% free space,
then the virtual storage requirement estimate would be 1622016 x (44/100) x 6 =
4282122 bytes or 4182 Kilobytes.

In addition to the persistent PKCS #11 objects that are stored in the TKDS,
applications can also make use of temporary (session) objects. These too occupy
ICSF protected, private virtual storage and should be accounted for. However,
since these objects are not stored in the TKDS, it is impossible to estimate their
virtual storage requirements without having some knowledge of the applications
that are using PKCS #11. Fortunately, most applications that use PKCS #11 use only
a few PKCS #11 session objects and their storage requirements are already factored
into the preceding TKDS estimate. However, some applications, such as TCP/IP’s
IPSec, use session objects exclusively, and can use many of them. Estimating the
virtual storage requirements for these is beyond the scope of this document.
Applications that use PKCS #11 session objects have an overall upper limit of 128
Megabytes per application address space for session objects.

Note: The output from the preceding formula should be added to the outputs
calculated from the formulas in “ICSF system resource planning for the CKDS” on
page 13 and “ICSF system resource planning for the PKDS” on page 18. This gives
you the required system virtual storage backing resource for all of ICSF’s KDS data
sets. This value represents the required amount of virtual storage for a given
instance of ICSF. For a set of KDS data sets shared across a sysplex environment,
every active ICSF in the sysplex has an equivalent resource requirement.

Chapter 2. Installation, initialization, and customization 21

Steps to create the TKDS
To enable applications to create and use persistent PKCS #11 tokens and objects
using the PKCS #11 services, the TKDS must be allocated and the TKDS data set
name must be specified on the TKDSN parameter of the options data set when you
first start ICSF.

The TKDS must be a key-sequenced data set with variable length records. Allocate
the TKDS on a permanently resident volume.

For detailed information about calculating space for a VSAM data set and an
explanation of keyed-direct update processing and what happens when control
area and control interval splits occur, see z/OS DFSMS Access Method Services
Commands.
1. Determine the amount of primary space you need to allocate for the TKDS.

This should reflect the total number of entries you expect the data set to
contain originally. The TKDS will contain PKCS #11 tokens and objects. Each
record has a maximum size of 32 KB. A record for a token will use 0.1 KB. The
minimum size of a record for objects is: Data: 1 KB, Secret Key: 1.1 KB, Public
Key: 1.5 KB, Private Key: 3.4 KB, Certificate: 1 KB, Domain Parameter: 1.5KB.
Allocate enough space for the number of tokens to be supported and for the
number of objects to be created. In addition, installations may add metadata to
any record. If you are planning to add metadata, account for the size of the
metadata in the length of records. Note that session objects are not stored in the
TKDS.

2. Determine the amount of secondary space to allocate for the TKDS.
This should reflect the total number of entries you expect to add to the data
set.
To access tokens and objects, VSAM uses the token handle or object handle as
the VSAM key. This means that VSAM adds objects to the data set in collating
sequence. That is, if two objects named A and B are in the data set, A appears
earlier in the data set than B. As a result, adding objects to the data set can
cause multiple VSAM control interval splits and control area splits. For
example, a split might occur if the data set contains objects A, B, and E and
you add C. In this case, C must be placed between B and E.
The amount of secondary space you allocate must take into account the
number of control interval and control area splits that might occur. If the TKDS
uses a significant amount of secondary space, you can copy it into another disk
copy that you created with more primary space. You can do this by using the
Access Method Services (AMS) REPRO command or the AMS
EXPORT/IMPORT commands.
The BUFFERSPACE parameter on the AMS DEFINE CLUSTER command
(required by Step 3) lets VSAM optimize space for control area and control
interval splits.

3. Create an empty VSAM data set to use as the TKDS. Use the AMS DEFINE
CLUSTER command to define the data set and to allocate its space. ICSF
provides a sample job to define the TKDS in member CSFTKDS of
SYS1.SAMPLIB.

Note: To improve security and reliability of the data that is stored on the
TKDS:
v Use the ERASE and WRITECHECK parameters on the AMS DEFINE

CLUSTER command. ERASE overwrites data records with binary zeros when
the TKDS cluster is deleted. WRITECHECK provides hardware verification of
all data that is written to the data set.

22 z/OS ICSF System Programmer's Guide

v Create a Security Server (RACF) data set profile for the TKDS. Ensure that no
one has access to the TKDS data set by protecting the TKDS data set name
resource in the DATASET class. If a data set profile is used, as opposed to
using the PROTECTALL(FAIL) option for example, the profile should have a
UACC of NONE.

4. Allocate a disk copy of the TKDS by defining a VSAM cluster with one of the
following samples:
SYS1.SAMPLIB CSFTKDS member sample is used to define a TKDS in
non-KDSR format:
//CSFTKDS JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2007, 2013 *
//* *
//* This JCL defines a VSAM TKDS *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your TKDS to *
//* reside. The TKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a TKDS. There are *
//* samples for each of the other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CSF.CSFTKDS) -
VOLUMES(XXXXXX) -
RECORDS(100 50) -
RECORDSIZE(2200,32756) -
KEYS(72 0) -
FREESPACE(0,0) -
SPANNED -
SHAREOPTIONS(2,3)) -

DATA (NAME(CSF.CSFTKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
WRITECHECK) -

INDEX (NAME(CSF.CSFTKDS.INDEX))
/*

SYS1.SAMPLIB CSFTKD2 member sample is used to define a TKDS in KDSR
format:
//CSFTKD2 JOB <JOB CARD PARAMETERS>
//**
//* Licensed Materials - Property of IBM *
//* 5650-ZOS *
//* Copyright IBM CORP. 2013 *
//* *
//* This JCL defines a VSAM TKDS which is initialized to use common *
//* record format *
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *

Chapter 2. Installation, initialization, and customization 23

//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Be sure to change CSF to the appropriate HLQ if you choose *
//* not to use the default. *
//* 3) Change XXXXXX to the volid where you want your TKDS to *
//* reside. The TKDS needs to be on a permanently resident *
//* volume. *
//* *
//* NOTE: This JCL is specific for creating a TKDS which is *
//* initialized to use common record format. There are *
//* samples for each of the other key data sets and formats. *
//* *
//**
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER (NAME(CSF.CSFTKDS) -
VOLUMES(XXXXXX) -
RECORDS(100 50) -
RECORDSIZE(2200,32756) -
KEYS(72 0) -
FREESPACE(0,0) -
SPANNED -
SHAREOPTIONS(2,3)) -

DATA (NAME(CSF.CSFTKDS.DATA) -
BUFFERSPACE(100000) -
ERASE -
WRITECHECK) -

INDEX (NAME(CSF.CSFTKDS.INDEX))
/*
//*---*
//* Repro header record into the TKDS *
//*---*
//MKHEAD EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD *

//SYSUT2 DD DSN=&&GENTMP,UNIT=SYSDA,DISP=(,PASS),
// DCB=(RECFM=FB,LRECL=156,BLKSIZE=1560),SPACE=(TRK,(1,1))
//SYSIN DD *

GENERATE MAXFLDS=10,MAXLITS=156
RECORD FIELD=(20,X’00’,,1),

FIELD=(20,X’00’,,21),
FIELD=(20,X’E3C8C4D900000000000000000000000000000000’,,41),
FIELD=(20,X’00’,,61),
FIELD=(16,X’00000000000000000000000000000000’,,81),
FIELD=(16,X’00000000000000000000000000000000’,,97),
FIELD=(4,X’0000009C’,,113),
FIELD=(16,X’00000000000000000000000000000000’,,117),
FIELD=(20,X’00’,,133),
FIELD=(4,X’00000200’,,153)

/*
//REPROKSD EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSDATA DD DSN=*.MKHEAD.SYSUT2,DISP=(OLD,DELETE)
//SYSIN DD *

REPRO INFILE(SYSDATA) -
OUTDATASET(CSF.CSFTKDS)

/*

You can change and use the Job Control Language according to the needs of
your installation. For more information about allocating a VSAM data set, see
z/OS DFSMS Access Method Services Commands.

24 z/OS ICSF System Programmer's Guide

ICSF system resource planning for random number
generation

Several ICSF callable services support psuedo-random number generation on
behalf of system and application requests. ICSF's random number generation
implementation utilizes a minimum virtual storage footprint of 256 kilobytes. To
avoid system paging overhead, installations should plan for 256 kilobytes of
central storage to back this footprint. This should be sufficient for most workloads,
but for some workloads that are excessively heavy with multitasking random
number generation requests, ICSF may dynamically extend that footprint 64
kilobytes at a time to optimize random number request handling.

In some cases, the system or application random number request may require that
FIPS (Federal Information Processing Standards) certified random content be
provided. In other cases, FIPS certified random content is not required. In either
case, ICSF may employ one of multiple techniques to derive the random content.
For both FIPS certified random content and for non-FIPS certified random content,
the availability of CCA and/or PKCS #11 coprocessors enables ICSF to derive the
random content without imposing significant CPU overhead on the system. Either
type of coprocessor can be exploited for non-FIPS certified content, but only a
PKCS #11 coprocessor can be used to avoid CPU cycles for FIPS certified random
content.

Installations may wish to plan for CCA and/or PKCS #11 coprocessor availability
to avoid potentially excessive CPU cycles being exhausted on random number
content generation.

Steps to create the installation options data set
The installation options data set is a file that you create that contains installation
options. It becomes active when you start ICSF.
v The installation options data set can be a member of PARMLIB, a member of a

partitioned data set, or a sequential data set.
v The format of each record in the data set must be fixed length or fixed block

length.
v A physical line in the data set is 80 characters long. The system ignores any

characters in positions 72 to 80 of the line.
v A logical line is one or more physical lines. You can group physical lines into a

logical line by placing a comma at the end of the information. Only a comment
can appear after the comma. The system ignores any other information between
the comma and column 71.

v Continuation causes the next physical line to append immediately following the
comma. The system removes all leading blanks on the next physical line.

v You can delimit comments by /* and */ and include them anywhere within the
text. A comment cannot span physical records. The system removes comments
from a logical line before parsing it. It ignores physical lines that contain only
comments.

v Specify only one option setting or keyword on a logical line. (If you specify
more than one, the system ignores all but the last one on the line. The system
reports syntax errors, but the errors do not cause it to stop interpreting the file.)

ICSF provides a sample installation options data set. The sample data set uses the
recommended values for each option.
1. When you are starting ICSF for the first time:

Chapter 2. Installation, initialization, and customization 25

a. Change the name of the data set on the CKDSN and PKDSN statements to
the name of the empty VSAM datasets you created previously (in Step 3 on
page 16 and Step 4 on page 20).

b. For a complete description of options you may want to change after the
first start, see “Customizing ICSF after the first start” on page 36.)

2. Store the updated data set in SYS1.PARMLIB.

Note: For convenience, the installation options data set generally resides in
SYS1.PARMLIB. If your cryptographic administrator does not have update
access to SYS1.PARMLIB, store installation options in another data set, and
RACF-protect it.

The sample installation options data set is as follows in SYS1.SAMPLIB:
CSFPRM00
/***/
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5650-ZOS */
/* */
/* COPYRIGHT IBM CORP. 1990, 2013 */
/* */
/* THIS IS A SAMPLE OF THE ICSF OPTIONS DATASET */
/* */
/***/
CKDSN(CSF.CSFCKDS)
PKDSN(CSF.CSFPKDS)
COMPAT(NO)
SSM(NO)
CHECKAUTH(NO)
CTRACE(CTICSF00)
USERPARM(USERPARM)
REASONCODES(ICSF)

Note: See “Parameters in the installation options data set” on page 36 for
descriptions of these parameters.

Use of system symbols in the options data set is supported. System symbols can be
used as values for any of the parameters. System symbols must be no more than 8
characters.

Note: ICSF allows the CKDS, PKDS and TKDS data set names to be a maximum
of 44 characters with up to 21 qualifiers. Also, the first character must be
alphabetic.

See “Parameters in the installation options data set” on page 36 for additional
information.

This example shows how system symbols could be used for the CKDS and PKDS
data set names. You could use a SYS1.PARMLIB(IEASYMxx) file and modify
CSFPRM00.

IEASYMxx file could contain:
/*------------------------------------*/
/* SYSTEM SYMBOLS FOR ICSF CRYPTO */
/*------------------------------------*/
SYSDEF

26 z/OS ICSF System Programmer's Guide

SYMDEF(&CKDSN001=’CSF’)
SYMDEF(&CKDSN002=’CSFCKDS’)
SYMDEF(&PKDSN001=’CSF’)
SYMDEF(&PKDSN002=’CSFPKDS’)

CSFPRM00 could be modified as follows.
/***/
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5650-ZOS */
/* */
/* COPYRIGHT IBM CORP. 1990, 2013 */
/* */
/* THIS IS A SAMPLE OF THE ICSF OPTIONS DATASET */
/* */
/***/
CKDSN(&CKDSN001..&CKDSN002)
PKDSN(&PKDSN001..&PKDSN002)
COMPAT(NO)
SSM(NO)
CHECKAUTH(NO)
CTRACE(CTICSF00)
USERPARM(USERPARM)
REASONCODES(ICSF)

This example shows how system symbols could be used for the Regional
Cryptographic Server (RCS) port numbers. You could use a
SYS1.PARMLIB(IEASYMxx) file and modify CSFPRM00.
IEASYMxx file could contain:
/*------------------------------------*/
/* SYSTEM SYMBOLS FOR ICSF CRYPTO */
/*------------------------------------*/
SYSDEF
SYMDEF(&RDPORT=’1125’)

CSFPRM00 could be modified as follows.

/***/
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5650-ZOS */
/* */
/* COPYRIGHT IBM CORP. 2015 */
/* */
/* THIS IS A SAMPLE OF THE ICSF OPTIONS DATASET */
/* */
/***/
CKDSN(CSF.CSFCKDS)
PKDSN(CSF.CSFPKDS)
TKDSN(CSF.CSFTKDS)
COMPAT(NO)
SSM(NO)
CHECKAUTH(NO)
CTRACE(CTICSF00)
USERPARM(USERPARM)
REASONCODES(ICSF)
REMOTEDEVICE(1,MY.SERVER.DOMAIN.COM,&RDPORT,8)

When the machine or partition is IPLed, specify within the load parameter the
symbol file that should be used. For example, if the previous symbol file was
called IEASYM01, then within the load member, the IEASYM entry might look like
IEASYM(00,01); where 00 denotes the IEASYM00 file (usually the system default)
and 01 denotes the IEASYM01 file.

Chapter 2. Installation, initialization, and customization 27

When the machine or partition is IPLed, specify within the load parameter the
symbol file that should be used. For example, if the previous symbol file was
called IEASYM01, then within the load member, the IEASYM entry might look like
IEASYM(00,01); where 00 denotes the IEASYM00 file (usually the system default)
and 01 denotes the IEASYM01 file.

Creating an ICSF CTRACE configuration data set
Starting with ICSF FMID HCR77A1, ICSF CTRACE support has been enhanced to
support configurable ICSF CTRACE options from PARMLIB. During SMP/E
install, a default CTICSF00 PARMLIB member is installed in SYS1.PARMLIB. The
CTICSF00 PARMLIB member provides default component trace values for ICSF. By
default, ICSF CTRACE support will trace with the KdsIO, CardIO, RdIO, and
SysCall filters using a 2M buffer. Configurable options are commented out within
this PARMLIB member to provide examples of how to turn them on.

Note: Beginning with FMID HCR77A1, ICSF needs to have read access to all data
sets in the PARMLIB concatenation to access the CTRACE parmlib member
CTICSF00.

The CTICSF00 PARMLIB member can be used to create customized ICSF CTRACE
Configuration Data Sets in PARMLIB. A customized ICSF CTRACE Configuration
Data Set can then be specified in the ICSF Options Data Set using the new
CTRACE option.

For example, CTRACE(CTICSFxx), where xx is any 2 characters that were used when
copying the default CTICSF00 parmlib member.

Component tracing is active when ICSF starts using the trace options defined in
the CTICSFxx PARMLIB member, where 00 is the default. If the specified
PARMLIB member is incorrect or absent, ICSF CTRACE will attempt to use the
default CTICSF00 PARMLIB member. If the CTICSF00 PARMLIB member is
incorrect or absent, ICSF CTRACE will perform tracing using an internal default
set of trace options. The operator can specify trace options individually on the
TRACE CT command, or can specify the name of a CTICSFxx PARMLIB member
containing the desired trace options. Using a PARMLIB member on the TRACE CT
command can help minimize operator intervention and avoid syntax or keystroke
errors.

The contents of the CTICSF00 PARMLIB member, is as follows:
/***START OF SPECIFICATIONS***/
/* */
/* $MAC (CTICSF00) COMP(05101) PROD(CSF): */
/* */
/*01* MACRO NAME: CTICSF00 */
/* */
/*01* DESCRIPTIVE NAME: CTRACE Options for ICSF Startup */
/* */
/*01* COPYRIGHT: */
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5650-ZOS */
/* */
/* COPYRIGHT IBM CORP. 2015 */
/* */
/* STATUS = HCR77B1 */
/* */
/*01* FUNCTION: */

28 z/OS ICSF System Programmer's Guide

/* Define the default ICSF CTRACE options */
/* */
/*01* COMPONENT: 05101 (CSF) */
/* */
/*01* DISTRIBUTION LIBRARY: PARMLIB */
/* */
/***END OF SPECIFICATIONS***/
TRACEOPTS
/*---*/
/* ON OR OFF: PICK 1 */
/*---*/

ON
/* OFF */
/*---*/
/* ASID: 1 TO 16, 2-HEXBYTE VALUES */
/*---*/
/* ASID(0042,0043,0044) */
/*---*/
/* JOBNAME: 1 TO 16, 8 BYTE VALUES */
/* This option takes 1 to 16 comma-separated 8 byte values. Each */
/* value specified represents a jobname that should be traced by */
/* ICSF CTRACE support. Additionally, other jobnames that begin */
/* with the same characters will also be traced. For example, if */
/* a USERID is specified, all TSO jobs matching USERIDc, where */
/* ’c’ is a character between A-Z will be traced, and, all Unix */
/* processes matching USERIDn, where ’n’ is a number from 0-9 */
/* will be traced. */
/*---*/
/* JOBNAME(USERID,JOBNAME1) */
/*---*/
/* BUFSIZE: A VALUE IN RANGE 16K TO 16M */
/*---*/

BUFSIZE(2M)
/*---*/
/* OPTIONS: NAMES OF FUNCTIONS TO BE TRACED, OR "ALL", OR "MIN" */
/*---*/
/* OPTIONS(*/
/* ’ALL’ */
/* ,’KDSIO’ */
/* ,’CARDIO’ */
/* ,’SYSCALL’ */
/* ,’DEBUG’ */
/* ,’RDIO’ */
/* ,’RDDATA’ */
/* ,’MIN’ */
/*) */

OPTIONS(’KDSIO’,’CARDIO’,’SYSCALL’,’RDIO’)

TRACEOPTS - This option takes a value of either ON or OFF. Turning this option
OFF reduces ICSF CTRACE to use a minimal set of tracing. Turning this option
OFF disables ICSF CTRACE. When OFF is specified all other trace options within
the PARMLIB options data set should be commented out

ASID - This option takes 1 TO 16 comma-separated 2-hexbyte values. Each value
specified represents an address space ID that should be traced by ICSF CTRACE
support

JOBNAME - This option takes 1 TO 16 comma-separated 8 byte values. Each value
specified represents a jobname that should be traced by ICSF CTRACE support.
Additionally, other jobnames that begin with the same characters will also be
traced. For example, if a USERID is specified, all TSO jobs matching USERIDc,
where 'c' is a character between A-Z will be traced, and, all Unix processes
matching USERIDn, where 'n' is a number from 0-9 will be traced.

Chapter 2. Installation, initialization, and customization 29

BUFSIZE - This option takes a value in the range between 16K to 16M, where K
represents kilobytes and M represents megabytes. This value is used to specify the
ICSF CTRACE buffer size to be allocated.

OPTIONS - This option is used to specify the ICSF CTRACE filters to use for
tracing. A comma-separated list of filter names, each enclosed with single quotes,
may be specified. The following filters are supported by this option:

ALL - This filter provides output for all ICSF trace records regardless of their
filter specification.
CARDIO - This filter traces activity with requests to cryptographic
coprocessors.
DEBUG - This filter provides granular trace output for debugging specific ICSF
modules. This filter should only be turned on at the direction of IBM service
professionals. Turning this level of tracing on may degrade ICSF performance.
KDSIO - This filter traces update activity to the CKDS, PKDS, and TKDS.
MIN - This filter traces a minimum set of operations that are not covered by the
other filters.
RDDATA - This filter traces remote device request and response messages.
RDIO - This filter traces activity pertaining to remote device I/O events.
SYSCALL - This filter traces entry and exit from ICSF callable services.

The TRACEENTRY option in the ICSF Options Data Set has been deprecated. If
this option is specified, it will be ignored and will produce a CSFO0212 message.

Steps to create the ICSF startup procedure
ICSF provides this job control language program. You can use this code as the
basis for your startup procedure.
v member CSF in SYS1.SAMPLIB

//CSF PROC
//CSF EXEC PGM=CSFINIT,REGION=0M,TIME=1440,MEMLIMIT=NOLIMIT
//CSFPARM DD DSN=SYS1.PARMLIB(CSFPRM00),DISP=SHR

Store this startup PROC in SYS1.PROCLIB (or another suitable library).
1. Change or use the sample startup procedure according to your needs.

a. In the sample code, the first line is the PROC statement. You can add one or
more procedure variables to the PROC statement. For example, you can
allow the system operator to decide at start time which member of the
installation options data set to use. This example allows the operator to
enter START CSF,M=CSFPRM00, specifying an alternate set of start-up
options.
//CSF PROC M=CSFPRM00...
//CSFPARM DD DSN=MY.ICSF.PARM(&M),DISP=SHR

You can use the same principle to change the name of a sequential data set,
if you are not using a partitioned data set.

b. The last line is the CSFPARM DD statement. The sample code specifies
SYS1.PARMLIB as the data set where the installation options data set is
stored. If you stored the installation options data set elsewhere, replace
SYS1.PARMLIB with the name of the data set where you stored the
installation options.

30 z/OS ICSF System Programmer's Guide

c. The CSFPARM DD statement also specifies member CSFPRM00 as the name
of the installation options data set. If you used a different name when you
created the installation options data set (or any time you want to use other
options), change this member name.

2. Store your startup procedure in SYS1.PROCLIB (or another suitable library)
with a member name of your choice. (Depending on installation standards,
possible names include CSF, CSFPROD, and CRYPTO.)

3. If you use Security Server (RACF), you may need to update the RACF Started
Procedure Table if you define a new started task:
a. Add the new started task name
b. Add a RACF userid to associate with the started task. See z/OS Security

Server RACF System Programmer's Guide for more information.
c. Optionally, you can add a RACF group name.

Notes:

v SAF uses the userid associated with the ICSF address space when accessing
the CKDS and PKDS named in the installation options data set both at ICSF
startup and when performing coordinated functions (Coordinated
Change-MK, Coordinated Refresh, or Coordinated Convert). When you
perform a non-coordinated CKDS or PKDS task (Initialize, Change MK,
Refresh, Convert), SAF uses the identity associated with the invoker (TSO
userid when using panels under TSO/E or the userid associated with the
batch address space when using a batch job).

v If you specify a REMOTEDEVICE entry in the ICSF installation options data
set, ICSF will attempt to connect to this device using TCP/IP. Additional
setup is required. For more information, see “Adding and removing regional
cryptographic servers” on page 139.

Steps to provide access to the ICSF panels
To provide a way for the administrator to access the ICSF panels, you can create an
ICSF option on the ISPF Primary Option Menu. Access the code for the ISPF
Primary Option Menu panel body and perform these steps:
1. Under the % OPTION ===> _ZCMD line, add this line:

% <option value> - ICSF Panels

You can specify either a letter or number for the option value. Do not use an
option value that already exists in the menu.

2. On the &ZSEL= TRANS(&ZQ line, add this information:
<option value>,’’PANEL(CSF@PRIM) NEWAPPL(CSF)’’

The option value should be the same value as the option value you chose to
use in the preceding step.

When you access the ISPF Primary Option Menu panel, the ICSF panels option
appears on the menu. You can choose the ICSF option value to access the ICSF
panels.

You must also update the logon procedure that is used by ICSF administrators
who will use the ICSF panels. For example:

//SYSPROC DD ...
.
.
.
// DD DSN=CSF.SCSFCLI0,DISP=SHR
.

Chapter 2. Installation, initialization, and customization 31

.

.
//ISPPLIB DD ...
.
.
.
// DD DSN=CSF.SCSFPNL0,DISP=SHR
.
.
.
//ISPMLIB DD ...
.
.
.
// DD DSN=CSF.SCSFMSG0,DISP=SHR
.
.
.
//ISPSLIB DD ...
.
.
.
// DD DSN=CSF.SCSFSKL0,DISP=SHR
.
.
.
// ISPTLIB
.
.
.
// DD DSN=CSF.SCSFTLIB,DISP=SHR
.
.
.

An alternate method to access the ICSF panels is to use ISPF LIBDEF. Here is a
sample clist.

/* Rexx */
/* IBMs ICSF */

address ispexec

"LIBDEF ISPPLIB DATASET ID(’CSF.SCSFPNL0’) STACK"
"LIBDEF ISPMLIB DATASET ID(’CSF.SCSFMSG0’) STACK"
"LIBDEF ISPSLIB DATASET ID(’CSF.SCSFSKL0’) STACK"
"LIBDEF ISPTLIB DATASET ID(’CSF.SCSFTLIB’) STACK"

address tso "ALTLIB ACTIVATE APPLICATION(CLIST)
DATASET(’CSF.SCSFCLI0’)"

"SELECT PANEL(CSF@PRIM) NEWAPPL(CSF) PASSLIB"
address tso "ALTLIB DEACTIVATE APPLICATION(CLIST)"

"LIBDEF ISPSLIB"
"LIBDEF ISPPLIB"
"LIBDEF ISPMLIB"
"LIBDEF ISPTLIB"

The z/OS Program Directory lists additional installation steps and some of these
steps depend on the system from which you are migrating. See the z/OS Program
Directory, other topics in this publication, and z/OS Cryptographic Services ICSF
Administrator's Guide for details about the remaining steps.

32 z/OS ICSF System Programmer's Guide

Requiring signature verification for ICSF module CSFINPV2
If your installation needs to operate z/OS PKCS #11 in compliance with the FIPS
140-2 standard, then the integrity of the cryptographic functions shipped by IBM
must be verified at your installation during ICSF startup. The load module that
contains the software cryptographic functions is SYS1.SIEALNKE(CSFINPV2), and
this load module is digitally signed when it is shipped from IBM. Using RACF,
you can verify that the module has remained unchanged from the time it was built
and installed on your system. To do this, you create a profile in the PROGRAM
class for the CSFINPV2 module, and use this profile to indicate that signature
verification is required before the module can be loaded.

To require signature verification for ICSF module CSFINPV2:
1. Make sure that RACF has been prepared to verify signed programs. As

described in z/OS Security Server RACF Security Administrator's Guide, a security
administrator prepares RACF to verify signed programs by creating a key ring
for signature verification, and adding the code-signing CA certificate that is
supplied with RACF to the key ring. If RACF has been prepared to verify
signed programs, there will be a key ring dedicated to signature verification,
the code-signing CA certificate will be attached to the key ring, and the
PROGRAM class will be active.
a. If RACF has been prepared to verify signed programs, the discrete profile

IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class will
specify the name of the signature-verification key ring. To determine if a
signature key ring is already active, enter the command:
RLIST FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION

If there is no discrete profile with this name, have your security
administrator prepare RACF to verify signed programs using the
information in z/OS Security Server RACF Security Administrator's Guide.

b. If the signature verification key ring exists, the RLIST command will display
information for the discrete profile
IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class. The
name of the signature verification key ring and the name of the key ring
owner will be included in the APPLICATION DATA field of the RLIST
command output. Using this information, enter the RACDCERT LISTRING
command to make sure the code-signing CA certificate is attached to the
key ring:
RACDCERT ID(key-ring-owner) LISTRING(key-ring-name)

The label of the code-signing CA certificate is 'STG Code Signing CA'. If this
label is not shown in the RACDCERT LISTRING command output, have
your security administrator prepare RACF to verify signed programs using
the information in z/OS Security Server RACF Security Administrator's Guide.

c. Program control must be active in order for RACF to perform signature
verification processing. To make sure the PROGRAM class is active, enter
the SETROPTS LIST command.
SETROPTS LIST

The ACTIVE CLASSES field of the command output should include the
PROGRAM class. If it does not, have your security administrator prepare
RACF to verify signed programs using the information in z/OS Security
Server RACF Security Administrator's Guide.

2. Create a profile for the CSFINPV2 program module in the PROGRAM class,
indicating that the program must be signed. The following command specifies

Chapter 2. Installation, initialization, and customization 33

that the program should fail to load if the signature cannot be verified for any
reason. This command also specifies that all signature verification failures
should be logged.

Note: Due to space constraints, this command example appears on two lines.
However, the RDEFINE command should be entered completely on one line.
RDEFINE PROGRAM CSFINPV2 ADDMEM(’SYS1.SIEALNKE’//NOPADCHK) UACC(READ)
SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

You will need to activate your profile changes in the PROGRAM class.
SETROPTS WHEN(PROGRAM) REFRESH

Steps to start ICSF for the first time
Now that you have created the key data sets, the installation data set, the started
procedure, and the ICSF management panels, you can start ICSF.

For additional information on starting ICSF for the first time, see Appendix D,
“Helpful hints for ICSF first time startup,” on page 415.
v Created an empty data set for use as a CKDS
v Specified the CKDS name in the installation options data set
v Created an empty data set for use as a PKDS
v Specified the PKDS name in the installation options data set
v If PKCS #11 support is desired, create the TKDS
v Created a startup procedure
v Installed ICSF

Steps for initializing ICSF
You must initialize ICSF and the cryptographic coprocessors:
1. Enter the START command and the startup procedure name. In this example,

CSF is the name of the startup procedure.
START CSF

When you start ICSF, you specify the name of the ICSF startup procedure you
created (see “Steps to create the ICSF startup procedure” on page 30). See
“Starting and stopping ICSF” on page 113 for more information about starting
and stopping ICSF.

Note: To reuse ASIDs, the REUSASID parameter can be added to the START
comment:
START CSF,REUSASID=YES

2. Access the ICSF panels to define a master key and initialize the CKDS and
PKDS. For a description of how to use the ICSF panels to define a master key
and initialize the CKDS and PKDS at first-time startup, see z/OS Cryptographic
Services ICSF Administrator's Guide.
If you intend to use secure key PKCS #11 services, you will also need to
initialize the TKDS. This step is optional and may be deferred until a later time.
Initializing the TKDS requires entering the master key using a TKE
workstation. For more information, see z/OS Cryptographic Services ICSF TKE
Workstation User's Guide.
When defining a master key by specifying master key parts, make sure the key
parts are recorded and saved in a secure location. When you are entering the
key parts for the first time, be aware that you may need to reenter these same
key values at a later date to restore master key values that have been cleared.

34 z/OS ICSF System Programmer's Guide

If defining a master key using a pass phrase, realize that the same pass phrase
will always produce the same master key values, and is therefore as critical and
sensitive as the master key values themselves. Make sure you save the pass
phrase so that you can later reenter it if needed. Because of the sensitive nature
of the pass phrase, make sure you secure it in a safe place.

3. When you start ICSF for the first time, you will see different messages
depending on your system hardware. The following examples show the
messages returned on a IBM zEnterprise EC12 machine with one Crypto
Express4 CCA coprocessor and one Crypto Express4 EP11 cryptographic
coprocessor.
v First time startup messages before master keys have been loaded and the

CKDS, PKDS, and TKDS have not been initialized:
S CSF
CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS4 COPROCESSOR 4Pxx, SERIAL NUMBER nnnnnnnn.
CSFM131E CRYPTOGRAPHY - SECURE KEY PKCS11 SERVICES ARE NOT AVAILABLE.
CSFM102I TOKEN DATA SET, CSF.TKDS IS NOT INITIALIZED FOR SECURE KEY PKCS11.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

v First time startup messages before master keys have been loaded and sharing
an initialized CKDS, PKDS, and TKDS:
S CSF
CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM124I MASTER KEY P11 ON CRYPTO EXPRESS4 COPROCESSOR 4Pxx, SERIAL NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY DES ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY AES ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY RSA ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, NOT INITIALIZED.
CSFM124I MASTER KEY ECC ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, NOT INITIALIZED.

CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

v Normal ICSF restart messages. Master key registers are valid and match the
CKDS/PKDS/TKDS:
S CSF
CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM129I MASTER KEY P11 ON CRYPTO EXPRESS4 COPROCESSOR 4Pxx, SERIAL NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY DES ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY AES ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY RSA ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, IS CORRECT.
CSFM129I MASTER KEY ECC ON CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn, IS CORRECT.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS4 COPROCESSOR 4Cxx, SERIAL NUMBER nnnnnnnn.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS4 COPROCESSOR 4Pxx, SERIAL NUMBER nnnnnnnn.
CSFM132I SECURE KEY PKCS11 SERVICES AVAILABLE.
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.
CSFM130I CRYPTOGRAPHY - RSA SERVICES ARE AVAILABLE.
CSFM130I CRYPTOGRAPHY - DES SERVICES ARE AVAILABLE.
CSFM130I CRYPTOGRAPHY - ECC SERVICES ARE AVAILABLE.
CSFM127I CRYPTOGRAPHY - AES SERVICES ARE AVAILABLE.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

Notes:

Chapter 2. Installation, initialization, and customization 35

1. When you are starting ICSF for the first time and loading the first master key
and initializing one or more CKDS, PKDS, or TKDS, you provide the name of
the empty VSAM data set you defined previously (see “Steps to create the
PKDS” on page 19 step 3) to use for the CKDS, PKDS, and TKDS when starting
ICSF.

2. While ICSF processes the data set, it requires exclusive use so that no one can
make changes while the data set is read. ICSF releases the data set when it
completes startup processing.

3. During CKDS, PKDS, and TKDS initialization or refresh, ICSF reads the CKDS,
PKDS, or TKDS into extended private storage. Specify MEMLIMIT=NOLIMIT
to ensure that ICSF does not run out of virtual storage.

4. You can also write application programs to call services to perform
cryptographic functions. See “Exits for the services” on page 168 for details.

Customizing ICSF after the first start
The startup procedure includes a CSFPARM DD statement, which gives the name
of the installation options data set. The installation options data set includes a
CKDSN option, which gives the names of the CKDS, and a PKDSN option, which
gives the name of the PKDS.

After the first start, whenever you restart ICSF, the CKDS and PKDS named in the
installation options data set becomes the active in-storage CKDS and PKDS.

In order for changes to the installation options dataset to take effect, stop and
restart ICSF. A subset of option parameters in the installation options data set are
refreshable starting with ICSF FMID HCR77C0. See the SETICSF command or ICSF
Multi-Purpose Service (CSFMPS and CSFMPS6) for details. To change the active
in-storage CKDS or PKDS, stop and restart ICSF, or use the REFRESH option of
the Master Key Management panel.

Parameters in the installation options data set
The installation options data set is an intended programming interface.

When specifying parameter values within parentheses, leading and trailing blanks
are ignored. Embedded blanks may cause unpredictable results.

Support is provided for the use of system symbols in the installation options data
set. System symbols can be used as values for any of the parameters. System
symbols are specified in the IEASYMxx member of SYS1.PARMLIB; the IEASYM
statement of the LOADxx member of SYS1.PARMLIB specifies the IEASYMxx
member or members to be used for the resolution of system symbols. This example
shows the use of a system symbol for specifying the domain to be used for the
start of ICSF:
DOMAIN(&PARDOM.)

When the Installation Options Data Set is processed during the start of ICSF, the
value of the system symbol PARDOM will be substituted as the value of the
DOMAIN parameter.

For the first start, you specified an empty VSAM data set name for the CKDS in
the CKDSN option and an empty VSAM data set name for the PKDS in the
PKDSN option. You may want to change these and other options for subsequent
starts. Here is a complete list of installation options:

36 z/OS ICSF System Programmer's Guide

AUDITKEYLIFECKDS(TOKEN(YES or NO),LABEL(YES or NO))
Provides a set of options that control auditing of events related to the lifecycle
of symmetric CCA tokens. The audit logs are in the form of Type 82 SMF
records.

TOKEN(YES or NO)
Controls lifecycle auditing of CKDS tokens.

Value Indication

YES Indicates ICSF should audit lifecycle events related to CKDS
tokens. An SMF type 82 subtype 40 record is logged for each event.

NO No lifecycle auditing of CKDS tokens occurs.

LABEL(YES or NO)
Controls lifecycle auditing of CKDS labels.

Value Indication

YES Indicates ICSF should audit lifecycle events related to CKDS labels.
An SMF type 82 subtype 40 record is logged for each event. The
subtype 40 record replaces the subtype 9 record.

NO No lifecycle auditing of CKDS labels occurs. ICSF continues to log
an SMF type 82 subtype 9 record for CKDS updates.

If the AUDITKEYLIFECKDS option is not specified, the default is
AUDITKEYLIFECKDS (TOKEN(NO),LABEL(NO)).

Note:

1. An event that involves a token is considered to be any request that uses a
token as opposed to a label. This is true regardless of Key Store Policy
enablement.

2. If auditing of CKDS labels is enabled, the Key Generator Utility Program
(KGUP) needs access to the CSFGKF profile in the CSFSERV class in order
to generate the key fingerprint for keys it processes.

For more information about the events that are audited as well as the
information contained in the audit record, see Appendix B in z/OS
Cryptographic Services ICSF System Programmer's Guide for the description for
the subtype 40 record.

The auditing of key lifecycle events can also be controlled via the SETICSF
operator command. See the description of the SETICSF command in z/OS
Cryptographic Services ICSF System Programmer's Guide for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

AUDITKEYLIFEPKDS(TOKEN(YES or NO),LABEL(YES or NO))
Provides a set of options that control auditing of events related to the lifecycle
of asymmetric CCA tokens. The audit logs are in the form of Type 82 SMF
records.

TOKEN(YES or NO)
Controls lifecycle auditing of PKDS tokens.

Value Indication

YES Indicates ICSF should audit lifecycle events related to PKDS
tokens. An SMF type 82 subtype 41 record is logged for each event.

Chapter 2. Installation, initialization, and customization 37

NO No lifecycle auditing of PKDS tokens occurs.

LABEL(YES or NO)
Controls lifecycle auditing of PKDS labels.

Value Indication

YES Indicates ICSF should audit lifecycle events related to PKDS labels.
An SMF type 82 subtype 41 record is logged for each event. The
subtype 41 record replaces the subtype 13 record.

NO No lifecycle auditing of PKDS labels occurs. ICSF continues to log
an SMF type 82 subtype 13 record for PKDS updates.

If the AUDITKEYLIFEPKDS option is not specified, the default is
AUDITKEYLIFEPKDS (TOKEN(NO),LABEL(NO)).

Note: An event that involves a token is considered to be any request that uses
a token as opposed to a label. This is true regardless of Key Store Policy
enablement.

For more information about the events that are audited as well as the
information contained in the audit record, see Appendix B in z/OS
Cryptographic Services ICSF System Programmer's Guide for the description for
the subtype 41 record.

The auditing of key lifecycle events can also be controlled via the SETICSF
operator command. See the description of the SETICSF command in z/OS
Cryptographic Services ICSF System Programmer's Guide for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

AUDITKEYLIFETKDS(TOKENOBJ(YES or NO),SESSIONOBJ(YES or NO))
Provides a set of options that control auditing of events related to the lifecycle
of PKCS #11 objects. The audit logs are in the form of Type 82 SMF records.

TOKENOBJ(YES or NO)
Controls lifecycle auditing of PKCS #11 token objects.

Value Indication

YES Indicates ICSF should audit lifecycle events related to PKCS #11
token objects. An SMF type 82 subtype 42 record is logged for each
event. The subtype 42 record replaces the subtype 23 record.

NO No lifecycle auditing of PKCS #11 token objects occurs. ICSF
continues to log an SMF type 82 subtype 23 record for TKDS
updates.

SESSIONOBJ(YES or NO)
Controls lifecycle auditing of PKCS #11 session objects.

Value Indication

YES Indicates ICSF should audit lifecycle events related to PKCS #11
session objects. An SMF type 82 subtype 42 record is logged for
each event.

NO No lifecycle auditing of PKCS #11 session objects occurs.

If the AUDITKEYLIFETKDS option is not specified, the default is
AUDITKEYLIFETKDS (TOKENOBJ(NO),SESSIONOBJ(NO)).

38 z/OS ICSF System Programmer's Guide

For more information about the events that are audited as well as the
information contained in the audit record, see Appendix B in z/OS
Cryptographic Services ICSF System Programmer's Guide for the description for
the subtype 42 record.

The auditing of key lifecycle events can also be controlled via the SETICSF
operator command. See the description of the SETICSF command in z/OS
Cryptographic Services ICSF System Programmer's Guide for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

AUDITKEYUSGCKDS(TOKEN(YES or NO),LABEL(YES or NO),INTERVAL(n))
Provides a set of options that control auditing of events related to the usage of
symmetric CCA tokens. The audit logs are in the form of Type 82 SMF records.

TOKEN(YES or NO)
Controls usage auditing of CKDS tokens.

Value Indication

YES Indicates ICSF should audit usage events related to CKDS tokens.
An SMF type 82 subtype 44 record is logged for each event.

NO No usage auditing of CKDS tokens occurs.

LABEL(YES or NO)
Controls usage auditing of CKDS labels.

Value Indication

YES Indicates ICSF should audit usage events related to CKDS labels.
An SMF type 82 subtype 44 record is logged for each event.

NO No usage auditing of CKDS labels occurs.

INTERVAL(n)
Defines the time interval over which the audit records are aggregated.
Specify n as a decimal value in hours from 1 through 24.

If the AUDITKEYUSGCKDS option is not specified, the default is
AUDITKEYUSGCKDS(TOKEN(NO),LABEL(NO),INTERVAL(24)).

Note: An event that involves a token is considered to be any request that uses
a token as opposed to a label. This is true regardless of Key Store Policy
enablement.

For more information about the information contained in the audit record, see
Appendix B in z/OS Cryptographic Services ICSF System Programmer's Guide for
the description for the subtype 44 record.

The auditing of key usage events can also be controlled via the SETICSF
operator command. See the description of the SETICSF command in z/OS
Cryptographic Services ICSF System Programmer's Guide for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

AUDITKEYUSGPKDS(TOKEN(YES or NO),LABEL(YES or NO),INTERVAL(n))
Provides a set of options that control auditing of events related to the usage of
asymmetric CCA tokens. The audit logs are in the form of Type 82 SMF
records.

Chapter 2. Installation, initialization, and customization 39

TOKEN(YES or NO)
Controls usage auditing of PKDS tokens.

Value Indication

YES Indicates ICSF should audit usage events related to PKDS tokens.
An SMF type 82 subtype 45 record is logged for each event.

NO No usage auditing of PKDS tokens occurs.

LABEL(YES or NO)
Controls usage auditing of PKDS labels.

Value Indication

YES Indicates ICSF should audit usage events related to PKDS labels.
An SMF type 82 subtype 45 record is logged for each event.

NO No usage auditing of PKDS labels occurs.

INTERVAL(n)
Defines the time interval over which the audit records are aggregated.
Specify n as a decimal value in hours from 1 through 24.

If the AUDITKEYUSGPKDS option is not specified, the default is
AUDITKEYUSGPKDS(TOKEN(NO),LABEL(NO),INTERVAL(24)).

Note: An event that involves a token is considered to be any request that uses
a token as opposed to a label. This is true regardless of Key Store Policy
enablement.

For more information about the information contained in the audit record, see
Appendix B in z/OS Cryptographic Services ICSF System Programmer's Guide for
the description for the subtype 45 record.

The auditing of key usage events can also be controlled via the SETICSF
operator command. See the description of the SETICSF command in z/OS
Cryptographic Services ICSF System Programmer's Guide for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

AUDITPKCS11USG(TOKENOBJ(YES or NO),SESSIONOBJ(YES or NO),NOKEY(YES or
NO),INTERVAL(n))

Provides a set of options that control auditing of usage events related to PKCS
#11 services. The audit logs are in the form of Type 82 SMF records.

TOKEN(YES or NO)
Controls usage auditing of PKCS #11 token objects.

Value Indication

YES Indicates ICSF should audit usage events related to PKCS #11
token objects. An SMF type 82 subtype 46 record is logged for each
event.

NO No usage auditing of PKCS #11 token objects occurs.

SESSIONOBJ(YES or NO)
Controls usage auditing of PKCS #11 session objects.

Value Indication

40 z/OS ICSF System Programmer's Guide

YES Indicates ICSF should audit usage events related to PKCS #11
session objects. An SMF type 82 subtype 46 record is logged for
each event.

NO No usage auditing of PKCS #11 session objects occurs.

NOKEY(YES or NO)
Controls usage auditing of PKCS #11 services that do not involve an object.

Value Indication

YES Indicates ICSF should audit relevant usages that do not pertain to
a PKCS #11 object. Relevant usages include use of the PKCS #11
One-way hash, sign, or verify (CSFPPRF) and PKCS #11
Pseudo-random function (CSFPOWH) services. An SMF type 82
subtype 47 record is logged for each event.

NO No usage auditing of PKCS #11 services that do not involve an
object occurs.

INTERVAL(n)
Defines the time interval over which the audit records are aggregated.
Specify n as a decimal value in hours from 1 through 24.

If the AUDITPKCS11USG option is not specified, the default is
AUDITPKCS11USG(TOKENOBJ(NO),SESSIONOBJ(NO),NOKEY(NO),
INTERVAL(24)).

For more information about the information contained in the audit record, see
Appendix B in z/OS Cryptographic Services ICSF System Programmer's Guide for
the description for the subtypes 46 and 47 records.

The auditing of key usage events can also be controlled via the SETICSF
operator command. See the description of the SETICSF command in z/OS
Cryptographic Services ICSF System Programmer's Guide for more information.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

BEGIN(fmid)
Specifies that parameters following this BEGIN parameter are supported in
release fmid and later. There must be an END statement to complete the current
section. If not, an error message will be issued and ICSF will terminate.

There may be any number of BEGIN/END pairs in the data set, but they
cannot be nested within each other. A BEGIN must have a matching END
before another BEGIN can be specified.

If the release of ICSF you are running is at this release or later, the parameters
will be parsed and processed. If release of ICSF you are running is an earlier
release, the parameters will be ignored.

It recommended that when your systems are all running releases that support
newer parameters that the BEGIN/END pair be removed.

The following FMIDs are supported: HCR7740, HCR7750, HCR7751, HCR7770,
HCR7780, HCR7790, HCR77A0, HCR77A1, HCR77B0, HCR77B1, HCR77C0,
and HCR77C1.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

Chapter 2. Installation, initialization, and customization 41

Here is an example of the usage of the BEGIN/END parameters.
parameter4 /* parameter4 is supported by all releases */
BEGIN(HCR7751)
parameter1 /* parameter1 added in HCR7751 */
parameter3 /* parameter3 added in HCR7751 */
END
BEGIN(HCR7770)
parameter2 /* parameter2 added in HCR7770 */
END
parameter5 /* parameter5 is supported by all releases */

CHECKAUTH(YES or NO)
Indicates whether ICSF performs security access control checking of Supervisor
State or System Key callers. If you specify CHECKAUTH(YES), ICSF issues
RACROUTE calls to perform the security access control checking and the
results are logged in RACF SMF records that are cut by RACF. If you specify
CHECKAUTH(NO), the authorization checks against resources in the
CSFSERV, CSFKEYS, and XCSFKEY classes are not performed.

If you do not specify the CHECKAUTH option, the default is
CHECKAUTH(NO).

If you configure CHECKAUTH(YES) in the ICSF options dataset, the Health
Checker address space user identity must be authorized to the CSFRKL profile
in class CSFSERV for the ICSFMIG7731_ICSF_RETAINED_RSAKEY migration
check to successfully execute. However, you have no action to take if you
choose not to run the migration check. If you configure CHECKAUTH(NO),
there is no requirement to authorize the Health Checker user identity for any
ICSF profiles or classes, since the check routine executes in supervisor state.
This is not an implementation consideration, but rather a check deployment or
activation time customer administration consideration.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

CICSAUDIT(YES or NO)
Indicates whether ICSF logs CICS client identity information on SAF calls that
check the CICS address space access to the CSFSERV, CSFKEYS, and XCSFKEY
classes. CICSAUDIT(NO) is the default.

If you specify CICSAUDIT(YES), when a CICS transaction running on the
Quasi Reentrant (QR) task calls an ICSF service, ICSF subsequently calls a
CICS service to obtain the client identity information. This information is then
constructed into a log string, which is passed to the security product.

The following identity information is collected:
v Userid.
v X500 certificate information:

X500_IDN
The IDN string is truncated to 255 bytes if a longer value is present.

X500_SDN
The SDN string is truncated to 255 bytes if a longer value is present.

v Distributed Identity Data (IDID):
– IDID user name (in UTF8 format).
– IDID user name format.
– Distributed registry name (in UTF8 format).

42 z/OS ICSF System Programmer's Guide

CICSAUDIT(YES) should only be specified if you are collecting SMF type 80,
event code 2 (resource access) records.

By processing the resulting SMF log, you can determine which CICS users are
accessing which ICSF services and which keys are being used.

CKDSN(data-set-name)
Specifies the CKDS name the system uses to start ICSF. Whenever you restart
ICSF, the CKDS named in the CKDSN option becomes the active in-storage
CKDS. (At first-time startup, you should specify the name of an empty VSAM
data set you created to use as the CKDS.)

If you do not specify this keyword, you will not be able to use secure CCA
symmetric keys or use ICSF to manage CCA symmetric keys. ICSF must be
restarted in order to switch between having a CKDS and not having a CKDS.

See “Steps to create the installation options data set” on page 25 for the data
set naming format requirements.

CKTAUTH(YES or NO)
This keyword is no longer supported, but is tolerated.

COMPAT(YES, NO, or COEXIST)
Indicates whether ICSF runs in compatibility mode, non-compatibility mode, or
coexistence mode with PCF.

YES Indicates compatibility mode.

In compatibility mode, you can run a PCF application on ICSF because
ICSF supports the PCF macros. You do not have to reassemble PCF
applications to do this. You cannot start PCF at the same time as ICSF
on the same operating system.

NO Indicates non-compatibility mode. In noncompatibility mode, you run
PCF applications on PCF and ICSF applications on ICSF. You cannot
run PCF applications on ICSF because ICSF does not support the PCF
macros in this mode. PCF can be started at the same time as ICSF on
the same operating system. You can start ICSF and then start PCF, or
you can start PCF and then start ICSF.

You should use noncompatibility mode unless you are migrating from
PCF to ICSF.

COEXIST
Indicates coexistence mode.

In coexistence mode, you can run a PCF application on PCF, or you
can reassemble the PCF application to run on ICSF. To do this, you
reassemble the application against coexistence macros that are shipped
with ICSF. You can start PCF at the same time as ICSF on the same
operating system.

If you do not specify the COMPAT option, the default value is COMPAT(NO).
See “Running PCF and z/OS ICSF on the same system” on page 235 for a
complete description of the COMPAT options.

When you initialize ICSF for the first time, noncompatibility mode must be
active. Therefore, at first-time startup, you must specify COMPAT(NO) or
allow the default to be used.

COMPENC(DES or CDMF)
This keyword is no longer supported, but is tolerated.

COMPLIANCEWARN(PCIHSM2016(YES or NO or SAF))

Chapter 2. Installation, initialization, and customization 43

Indicates whether ICSF should generate compliance warning events for a
compliance mode. Compliance warning events can be used to help migrate an
application to a given compliance mode. Compliance warning events are
written in the form of SMF type 82 subtype 48 records. If you do not specify
the COMPLIANCEWARN option, the default is NO for all compliance modes.

PCIHSM2016(YES or NO or SAF)
Controls warning events for the PCI-HSM 2016 compliance mode. If you
do not specify the PCIHSM2016 option, the default is NO.

Value Indication

YES Generate compliance warning events for all applications.

NO No compliance warning events are generated.

SAF Generate compliance warning events for applications which have
READ access to the CSF.COMPLIANCEWARN.PCIHSM2016
profile in the XFACILIT SAF class.

For more information about the information contained in the SMF record, see
Appendix B, “ICSF SMF records,” on page 363 for the description of the
subtype 48 record.

The generation of compliance warning events can also be controlled with the
SETICSF,OPT REFRESH operator command. For more information, see
“SETICSF” on page 125.

CTRACE(CTICSFxx)
Specifies the CTICSFxx ICSF CTRACE configuration data set to use from
PARMLIB. CTICSF00 is the default ICSF CTRACE configuration data set that is
installed with ICSF FMID HCR77A1 and later releases. CTICSF00 may be
copied to create new PARMLIB members using the naming convention of
CTICSFxx, where xx is a unique value specified by the user.

This parameter is optional. If the specified PARMLIB member is incorrect or
absent, ICSF CTRACE will attempt to use the default CTICSF00 PARMLIB
member. If the CTICSF00 PARMLIB member is incorrect or absent, ICSF
CTRACE will perform tracing using an internal default set of trace options. By
default, ICSF CTRACE support will trace with the KdsIO, CardIO, and SysCall
filters using a 2M buffer. For more information refer to “Creating an ICSF
CTRACE configuration data set” on page 28s.

DEFAULTWRAP(internal_wrapping_method,external_wrapping_method)
Specifies the default key wrapping for DES keys. Any token generated or
updated by a service will be wrapped using the specified method unless
overridden by rule array keyword or a skeleton token. The default wrapping
method for internal and external tokens is specified independently.

Valid values for internal_wrapping_method and external_wrapping_method are:

ORIGINAL
Specifies the original CCA token wrapping be used: ECB wrapping for
DES.

ENHANCED
Specifies the new X9.24 compliant CBC wrapping is used. The
enhanced wrapping method with SHA-1 is available on IBM
zEnterprise 196, IBM zEnterprise 114 and newer servers.

If the DEFAULTWRAP parameter is not specified, the default wrapping
method is ORIGINAL for both internal and external tokens.

44 z/OS ICSF System Programmer's Guide

|
|
|

Note: Triple-length DES keys are always wrapped with the enhanced method
with SHA-256. The setting of this parameter has no effect on the wrapping of
triple-length DES keys except DATA keys with a zero control vector.

During initialization, ICSF changes the setting of the default wrapping method
for all CCA coprocessors to match the value that is specified by this parameter.

Notes:

v Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

v Starting with ICSF FMID HCR77C1 on IBM z14 servers, the ENHANCED
wrapping method should be used if you are using PCI-HSM compliant
tagged keys.

DOMAIN(n)
Specifies the number of the domain that you want to use for this start of ICSF.
You can specify only one domain in the options data set. The domain value
must match the activation profile.

DOMAIN is an optional parameter. The DOMAIN parameter is only required
if more than one domain is specified as the usage domain on the PR/SM
panels. If specified in the options data set, it will be used and it must be one of
the usage domains for the LPAR.

If DOMAIN is not specified in the options data set, ICSF determines which
domains are available in this LPAR. If only one domain is defined for the
LPAR, ICSF will use it. If more than one is available, ICSF will issue error
message CSFM409E.

The cryptographic processors support multiple sets of master key registers,
which the specific domain values identify.
v The PCIXCC/CEX2C has master key registers for the DES-MK, AES-MK and

RSA-MK master keys. Each domain has a master key register for the current,
new, and old DES-MK, AES-MK and RSA-MK.

v CCA cryptographic coprocessors that are CEX3C or later have master key
registers for the DES-MK, AES-MK, RSA-MK, and ECC-MK master keys.
Each domain has a master key for the current, new, and old DES-MK,
AES-MK, RSA-MK, and ECC-MK.

v The PKCS #11 cryptographic coprocessors have master key registers for the
P11-MK master key. Each domain has a master key for the current and new
P11-MK.

Note: The domain number that ICSF uses has no meaning for regional
cryptographic servers. Regional cryptographic servers use the port number to
identify the master key register to use.

For more information about partitions and running different configurations, see
z/OS Cryptographic Services ICSF Overview.

If you run ICSF in compatibility or coexistence mode, you cannot change the
domain number without re-IPLing the system. A re-IPL ensures that a program
does not access a cryptographic service with a key that is encrypted under a
different master key. If you are certain that no cryptographic applications are
still running, you can:
1. Stop CSF
2. Start CSF in COMPAT(NO) mode with a different domain number

Chapter 2. Installation, initialization, and customization 45

|
|
|

|
|

|
|
|

|
|
|

3. Stop CSF
4. Start CSF in compatibility or coexistence mode with a different domain

number.

END
Specifies the end of a section of parameters for the fmid from the
BEGIN(fmid). There must be a BEGIN(fmid) prior to the END. There must be
an END for each BEGIN(fmid). See the description for BEGIN for an example
of the usage of the BEGIN and END parameters.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

EXIT(ICSF-name,load-module-name,FAIL(fail-option))
Indicates information about an installation exit.

The ICSF -name is the identifier for each exit. Table 3 lists all the ICSF exit
names and explains when ICSF calls each exit. The load module name is the
name of the module that contains the exit. The name can be any valid name
your installation chooses.

Using the FAIL keyword of the EXIT statement, you specify the action ICSF,
the KGUP, or the PCF conversion program takes if the exit ends abnormally.
The fail action that you specify applies to subsequent calls of the exit. If an exit
ends abnormally, ICSF takes a system dump. The exit is protected with an
ESTAE or the ICSF service functional recovery routine (FRR).

In general, you can specify one of these values for a fail option:

NONE
No action is taken. The exit can be called again and will end abnormally
again.

EXIT
The exit is no longer available to be called again.

SERVICE
The service or program that called the exit is no longer available to be
called again.

ICSF
ICSF or the key generator utility program or the PCF conversion program
is ended, depending on the exit.

Some fail options are not valid for a specific exit. If you specify a fail option
that is not valid, ICSF uses the next valid fail option. For example, if SERVICE
is not a valid fail option for an exit, ICSF uses the EXIT option. EXIT is
responsible for logging in SMF the results of any authorization checks that are
made.

Table 3. Exit identifiers and exit invocations

Exit identifiers Exit invocations

CSFAPG Gets control during the Authentication Parameter Generate callable service.

CSFCKC Gets control during the CVV key combine callable service.

CSFCKDS Gets control when a callable service retrieves an entry from the CKDS.

CSFCKI Gets control during the clear key import callable service.

CSFCKM Gets control during the multiple clear key import callable service.

CSFCONVX Gets control when you run the PCF CKDS conversion program.

46 z/OS ICSF System Programmer's Guide

Table 3. Exit identifiers and exit invocations (continued)

Exit identifiers Exit invocations

CSFCPA Gets control during the clear PIN generate alternate callable service.

CSFCPE Gets control during the clear PIN encrypt callable service.

CSFCSG Gets control during the VISA CVV service generate callable service.

CSFCSV Gets control during the VISA CVV service verify callable service.

CSFCTT2 Gets control during the cipher text translate2 service.

CSFCTT3 Gets control during the cipher text translate2 (with alet) service.

CSFCVE Gets control during the cryptographic variable encipher callable service.

CSFCVT Gets control during the control vector translate callable service.

CSFDCM Gets control during the Derive ICC MK callable service.

CSFDCO Gets control during the decode callable service.

CSFDDK Gets control during the Diversify Directed Key callable service.

CSFDDPG Gets control during the DK Deterministic PIN Generate callable service.

CSFDEC Gets control during the decipher callable service.

CSFDEC1 Gets control during the decipher (with ALET) callable service.

CSFDKG Gets control during the diversified key generate callable service.

CSFDKG2 Gets control during the Diversified Key Generate2 callable service.

CSFDKX Gets control during the data key export callable service.

CSFDKM Gets control during the data key import callable service.

CSFDMP Gets control during the DK Migrate PIN callable service.

CSFDPC Gets control during the DK PIN Change callable service.

CSFDPCG Gets control during the DK PRW CMAC Generate callable service.

CSFDPMT Gets control during the DK PAN Modify in Transaction callable service.

CSFDPNU Gets control during the DK PRW Card Number Update callable service.

CSFDPT Gets control during the DK PAN Translate callable service.

CSFDRP Gets control during the DK Regenerate PRW callable service.

CSFDPV Gets control during the DK PIN Verify callable service.

CSFDRPG Gets control during the DK Random PIN Generate callable service.

CSFDSG Gets control during the digital signature generate service.

CSFDSK Gets control during the Derive Session Key callable service.

CSFDSV Gets control during the digital signature verify callable service.

CSFEAC Gets control during the EMV Transaction Service callable service.

CSFECO Gets control during the encode callable service.

CSFEDC Gets control during the compatibility service for the PCF CIPHER macro.

CSFEDH Gets control during the ECC Diffie-Hellman callable service.

CSFEMK Gets control during the compatibility service for the PCF EMK macro.

CSFENC Gets control during the encipher callable service.

CSFENC1 Gets control during the encipher (with ALET) callable service.

CSFEPG Gets control during the encrypted PIN generate callable service.

CSFESC Gets control during the EMV Scripting Service callable service.

CSFEVF Gets control during the EMV Verification Functions callable service.

Chapter 2. Installation, initialization, and customization 47

|

Table 3. Exit identifiers and exit invocations (continued)

Exit identifiers Exit invocations

CSFEXIT1 Gets control after the operator issues the START command, but before processing
takes place.
Note: You must not specify an EXIT statement for the first mainline exit, CSFEXIT1.

CSFEXIT2 Gets control after ICSF reads and interprets the installation options data set.

CSFEXIT3 Gets control before ICSF completes initialization.

CSFEXIT4 Gets control after the operator issues the STOP command to stop ICSF.

CSFEXIT5 Gets control when the operator issues the MODIFY command to modify ICSF.

CSFFPED Gets control during the FPE decipher callable service.

CSFFPEE Gets control during the FPE encipher callable service.

CSFFPET Gets control during the FPE translate callable service.

CSFGIM Gets control during the Generate Issuer MK callable service.

CSFGKC Gets control during the compatibility service for the PCF GENKEY macro.

CSFHMG Gets control during the HMAC generate callable service.

CSFHMV Gets control during the HMAC Verify callable service.

CSFKDSL Gets control during the Key Data Set List callable service.

CSFKDMR Gets control during the Key Data Set Metadata Read callable service.

CSFKDMW Gets control during the Key Data Set Metadata Write callable service.

CSFKET Gets control during the Key Encryption Translate callable service.

CSFKEX Gets control during the key export callable service.

CSFKGN Gets control during the key generate callable service.

CSFKGN2 Gets control during the key generate2 callable service.

CSFKGUP Gets control during key generator utility program initialization, processing, and
termination.

CSFKIM Gets control during the key import callable service.

CSFKPI Gets control during the key part import callable service.

CSFKPI2 Gets control during the key part import2 callable service.

CSFKRC Gets control during the CKDS key record create callable service.

CSFKRC2 Gets control during the CKDS key record create2 callable service.

CSFKRD Gets control during the CKDS key record delete callable service.

CSFKRR Gets control during the CKDS key record read callable service.

CSFKRR2 Gets control during the CKDS key record read2 callable service.

CSFKRW Gets control during the CKDS key record write callable service.

CSFKRW2 Gets control during the CKDS key record write2 callable service.

CSFKTR Gets control during the key translate callable service.

CSFKTR2 Gets control during the key translate2 callable service.

CSFKYT Gets control during the key test callable service.

CSFKYT2 Gets control during the key test2 callable service.

CSFKYTX Gets control during the key test extended callable service.

CSFMDG Gets control during the MDC generate callable service.

CSFMDG1 Gets control during the MDC generate (with ALET) callable service.

CSFMGN Gets control during the MAC generate callable service.

48 z/OS ICSF System Programmer's Guide

Table 3. Exit identifiers and exit invocations (continued)

Exit identifiers Exit invocations

CSFMGN1 Gets control during the MAC generate (with ALET) callable service.

CSFMGN2 Gets control during the MAC Generate2 callable service.

CSFMGN3 Gets control during the MAC Generate3 callable service.

CSFMPS Gets control during the ICSF Multi-Purpose Service.

CSFMVR Gets control during the MAC verify callable service.

CSFMVR1 Gets control during the MAC verify (with ALET) callable service.

CSFMVR2 Gets control during the MAC Verify2 callable service.

CSFMVR3 Gets control during the MAC Verify3 callable service.

CSFPGN Gets control during the Clear PIN generate callable service.

CSFPRR2 Gets control during the PKDS Key Record Read2 callable service.

CSFPTR Gets control during the encrypted PIN translate callable service.

CSFPTR2 Gets control during the Encrypted PIN Translate2 callable service.

CSFPTRE Gets control during the Encrypted PIN Translate Enhanced callable service.

CSFPVR Gets control during the encrypted PIN verify callable service.

CSFRTC Gets control during the compatibility service for the PCF RETKEY macro.

CSFSKM Gets control during the multiple secure key import callable service.

CSFSRRW Gets control when an access to a single record in the CKDS is made using the key
entry hardware.

CSFOWH Gets control during the one-way hash generate callable service.

CSFOWH1 Gets control during the one-way hash generate (with ALET) callable service.

CSFPCI Gets control during the PCI interface callable service.

CSFPCU Gets contol during the PIN Change/Unblock callable service

CSFPEX Gets control during the prohibit export callable service.

CSFPEXX Gets control during the prohibit export extended callable service.

CSFPFO Gets control during the Recover PIN From Offset callable service.

CSFPIC Gets control during the Public Infrastructure Certificate callable service.

CSFPKD Gets control during the PKA decrypt callable service.

CSFPKE Gets control during the PKA encrypt callable service.

CSFPKG Gets control during the PKA key generate callable service.

CSFPKI Gets control during the PKA key import callable service.

CSFPKT Gets control during the PKA key translate callable service.

CSFPKTC Gets control during the PKA key token change callable service.

CSFPKRC Gets control during the PKDS key record create callable service.

CSFPKRD Gets control during the PKDS key record delete callable service.

CSFPKRR Gets control during the PKDS key record read callable service.

CSFPKRW Gets control during the PKDS key record write callable service.

CSFPKX Gets control during the PKA Public Key Extract callable service.

CSFRKA Gets control during the restrict key attribute callable service.

CSFRKD Gets control during the retained key delete callable service.

CSFRKL Gets control during the retained key list callable service.

Chapter 2. Installation, initialization, and customization 49

|

Table 3. Exit identifiers and exit invocations (continued)

Exit identifiers Exit invocations

CSFRKX Gets control during the remote key export callable service.

CSFRNG Gets control during the random number generate callable service.

CSFRNGL Gets control during the random number generate long callable service.

CSFSBC Gets control during the SET block compose callable service.

CSFSBD Gets control during the SET block decompose callable service.

CSFSKI Gets control during the secure key import callable service.

CSFSKI2 Gets control during the secure key import2 callable service.

CSFSKY Gets control during the secure messaging for keys callable service.

CSFSMG Gets control during the symmetric MAC generate callable service.

CSFSMG1 Gets control during the symmetric MAC generate (with ALET) callable service.

CSFSMV Gets control during the symmetric MAC verify callable service.

CSFSMV1 Gets control during the symmetric MAC verify (with ALET) callable service.

CSFSPN Gets control during the secure messaging for PINs callable service.

CSFSXD Gets control during the Symmetric Key Export with Data callable service.

CSFSYG Gets control during the symmetric key generate callable service.

CSFSYI Gets control during the symmetric key import callable service.

CSFSYI2 Gets control during the symmetric key import2 callable service.

CSFSYX Gets control during the symmetric key export callable service.

CSFT31I Gets control during the TR-31 import callable service.

CSFT31X Gets control during the TR-31 export callable service.

CSFTBC Gets control during the trusted block create callable service.

CSFTRV Gets control during the transaction validation callable service

CSFUKD Gets control during the Unique Key Derive callable service

See Chapter 5, “Installation exits,” on page 167 for a detailed description of
each ICSF exit, including the valid fail options.

Note: z/OS no longer ships IBM-supplied security exit routines; the security
exit points remain. Users of z/OS should use Security Server (RACF) or an
equivalent product to obtain access checking of services and keys. ICSF no
longer needs these exit routines.

FIPSMODE(YES, FAIL(fail-option) or COMPAT, FAIL(fail-option) or
NO,FAIL(fail-option))

Indicates whether z/OS PKCS #11 services must run in compliance with the
Federal Information Processing Standard Security Requirements for
Cryptographic Modules, referred to as FIPS 140-2. FIPS 140-2, published by the
National Institute of Standards and Technology (NIST), is a standard that
defines rules and restrictions for how cryptographic modules should protect
sensitive or valuable information. The standard is available at Security
Requirements For Cryptographic Modules (nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.140-2.pdf).

By configuring z/OS PKCS #11 services to operate in compliance with FIPS
140-2 specifications, installations or individual applications can use the z/OS
PKCS #11 services in a way that allows only the cryptographic algorithms

50 z/OS ICSF System Programmer's Guide

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

(including key sizes) approved by the standard, and restricts access to the
algorithms that are not approved. For more information, see z/OS Cryptographic
Services ICSF Writing PKCS #11 Applications.

YES Indicates that the z/OS PKCS #11 services will operate in FIPS standard
mode. Any application using the PKCS #11 services will be forced to
use those services in a FIPS-compliant manner. Applications will not
have access to the algorithms or key sizes not approved by FIPS 140-2.
In addition, ICSF initialization will test that it is running on an IBM Z®

model type, and a version and release of z/OS, that supports FIPS. If
so, then ICSF will perform a series of cryptographic known answer
tests as required by the FIPS 140-2 standard. If any of these
initialization tests should fail, the action the ICSF initialization process
takes will depend on the fail-option specified.

The fail-option is either YES or NO and indicates the action that the
ICSF initialization process should take if any of the initialization tests
should fail.

YES Indicates ICSF is to terminate abnormally if there is a failure in
any of the tests performed.

NO Indicates ICSF initialization processing is to continue even if
there is a failure in any of the tests performed. However, PKCS
#11 support will be limited or nonexistent depending on the
test that failed:
v If ICSF is running on an IBM Z model type or with a version

of z/OS that does not support FIPS, most FIPS processing is
bypassed. PKCS #11 callable services will be available, but
ICSF will not adhere to FIPS 140 restrictions. Requests to
generate or use a key with CKA_IBM_FIPS140=TRUE or
those requests that explicitly ask for FIPS processing will
result in a failure return code.

v If a known answer test failed, all ICSF PKCS #11 callable
services will be unavailable.

COMPAT
Indicates that the z/OS PKCS #11 services will operate in FIPS
compatibility mode. This mode is intended for installations where only
certain z/OS PKCS #11 applications must comply with the FIPS 140-2
standard, while other applications do not. In this mode, the PKCS #11
services can be further configured so that the applications that do not
need to comply with the FIPS 140-2 standard are not restricted from
using any of the PKCS #11 algorithms, while applications that must
comply with the standard are restricted from using the non-approved
algorithms. By default, the COMPAT option will have the same effect
as the YES option, and all applications using the PKCS #11 services
will be forced to use those services in a FIPS-compliant manner.
However, additional specifications can be made:
v at the PKCS #11 token and application level, by creating

FIPSEXEMPT.token-label resource profiles in the CRYPTOZ class. A
FIPSEXEMPT.token-label resource exists for each token. User IDs with
READ access authority to a FIPSEXEMPT.token-label are exempt from
FIPS compliance, while user IDs with access authority NONE can
only use the PKCS #11 services in a FIPS-compliant manner.

v within applications themselves for individual keys. When an
application creates a key, the application can specify that the key

Chapter 2. Installation, initialization, and customization 51

must be used in a FIPS 140-2 compliant fashion. The application can
specify this by setting the Boolean key attribute CKA_IBM_FIPS140
to TRUE.

When the COMPAT option is specified, ICSF initialization will test that
it is running on an IBM Z model type, and a version and release of
z/OS, that supports FIPS. If so, then ICSF will perform a series of
cryptographic known answer tests as required by the FIPS 140-2
standard. If any of these initialization tests should fail, the action the
ICSF initialization process takes will depend on the fail-option specified.

The fail-option is either YES or NO and indicates the action that the
ICSF initialization process should take if any of the initialization tests
should fail.

YES Indicates ICSF is to terminate abnormally if there is a failure in
any of the tests performed.

NO Indicates ICSF initialization processing is to continue even if
there is a failure in any of the tests performed. However, PKCS
#11 support will be limited or nonexistent depending on the
test that failed:
v If ICSF is running on an IBM Z model type or with a version

of z/OS that does not support FIPS, most FIPS processing is
bypassed. PKCS #11 callable services will be available, but
ICSF will not adhere to FIPS 140 restrictions. Requests to
generate or use a key with CKA_IBM_FIPS140=TRUE or
those requests that explicitly ask for FIPS processing will
result in a failure return code.

v If a known answer test failed, all ICSF PKCS #11 callable
services will be unavailable.

NO Indicates that ICSF should operate in FIPS no enforcement mode, also
known as FIPS on-demand mode. Applications may request strict
adherence to FIPS 140 restrictions when requesting ICSF services.
However, applications not requesting FIPS processing are not required
to adhere to FIPS 140 restrictions. FIPSEXEMPT.token-label profiles, if
they exist in the CRYPTOZ class, will not be examined. If ICSF is
running on an IBM Z model type that does not support FIPS, requests
to generate or use a key with CKA_IBM_FIPS140=TRUE or those
requests that explicitly ask for FIPS processing will result in a failure
return code.

ICSF initialization will test that it is running on an IBM Z model type
and version/release of z/OS that supports FIPS. If so, ICSF
initialization will also perform a series of cryptographic known answer
self tests. Should a test fail, the action ICSF initialization takes is
dependent on the fail option.

The fail-option is either YES or NO and indicates the action that the
ICSF initialization process should take if any of the initialization tests
should fail.

YES Indicates ICSF is to terminate abnormally if there is a failure in
any of the tests performed.

NO Indicates ICSF initialization processing is to continue even if

52 z/OS ICSF System Programmer's Guide

there is a failure in any of the tests performed. However, PKCS
#11 support will be limited or nonexistent depending on the
test that failed:
v If ICSF is running on an IBM Z model type or with a version

of z/OS that does not support FIPS, most FIPS processing is
bypassed. PKCS #11 callable services will be available, but
ICSF will not adhere to FIPS 140 restrictions. Requests to
generate or use a key with CKA_IBM_FIPS140=TRUE or
those requests that explicitly ask for FIPS processing will
result in a failure return code.

v If a known answer test failed, all ICSF PKCS #11 callable
services will be unavailable.

If the FIPSMODE option is not specified, the default is FIPSMODE(NO,
FAIL(NO)).

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

HDRDATE(YES or NO)
This keyword is no longer supported, but is tolerated.

KDSREFDAYS(n)
Specifies, in days, how often a record should be written for a reference
date/time change. A key is referenced when it is used to perform a
cryptographic operation. If a key is referenced ICSF will check the date and
time the key was referenced previous to the current reference. If the number of
days between the current date and time and the date and time the key was last
referenced is greater than or equal to the number of days specified in the
KDSREFDAYS installation option then the key reference date/time in the KDS
will be updated to the current date and time. Otherwise the reference
date/time will remain the same. Note, in this context days are 24 hour periods
not necessarily beginning or ending at midnight.

For example: If KDSREFDAYS(7) was specified and a key was referenced on
Monday, January 1st at 8 AM, and the reference date/time for the key was
updated at that time, then any key reference before Monday, January 8th at 8
AM (7 days) will not update the reference date/time in the key record. If the
key is referenced again at 7:50 AM on Monday, January 8th, the reference
date/time for the key in the KDS will remain January 1st at 8 AM because
fewer than seven days have passed. The reference date/time will not be
updated until the next time the key is used again Monday, January 8th at 8
AM or after.

KDSREFDAYS applies to all KDS that are in the format that supports key
reference tracking. In an environment of mixed KDS formats, where some
support reference date tracking and some do not (for example, the CKDS
supports reference date tracking, but the PKDS does not) key references will
not be tracked for keys in a KDS does not support it, regardless on the value
of KDSREFDAYS, until that KDS is updated to the new format. In a SYSPLEX,
all systems must be started with the same value of KDSREFDAYS to ensure
proper tracking of reference date/times.

KDSREFDAYS(0) means that ICSF will not keep track of key reference dates.
The default is KDSREFDAYS(1). The maximum value allowed is
KDSREFDAYS(30).

Chapter 2. Installation, initialization, and customization 53

Note: Updates to records using the Key Generator Utility Program (KGUP) are
not subject to the value specified in the KDSREFDAYS option. All updates
made via KGUP will update the reference date/time if the CKDS is in a format
that supports reference date tracking (KDSR).

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

KEYARCHMSG(YES or NO)
Controls whether a joblog message is issued when an application successfully
references a key data set record that has been archived. The message is only
issued for the first successful reference of a record. The results of the service
request is not affected by this control. The default is NO.

Value Indication

YES ICSF issues a message the first time an archived record is referenced by
an application.

NO ICSF does not issue a message when an archived record is referenced
by an application.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

KEYAUTH(YES or NO)
This keyword is no longer supported, but is tolerated.

MASTERKCVLEN(2 or 3 or 4 or 5 or 6 or ALL)
Defines the number of hexadecimal digits to display on the ICSF Coprocessor
Hardware Status panel (CSFCMP40) for the verification and hash patterns for
the master keys. The patterns are also referred to as key check values. When an
integer value is specified, that number of digits will be displayed. When ALL
is specified, all the digits will be displayed.

The default is ALL.

This option can be used for compliance with the ISO11568 standard for the
display of the key check values for master keys.

Note: This option has no affect on the output of the DISPLAY ICSF,MKS
command.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

MAXLEN(n)
Defines the maximum length of characters in a text string, including any
necessary padding, for some callable service requests. For example, this option
defines the maximum length of the text the encipher service encrypts for each
call. Specify n as a decimal value from 1024 through 2147483647. If you do not
specify the MAXLEN option, the default value is MAXLEN(65535).

The MAXLEN parameter may still be specified in the options data set, but only
the maximum value limit will be enforced (2147483647). If a value greater than
this is specified, an error will result and ICSF will not start.

Note: MAXLEN is no longer displayed on the Installation Option Display
panel.

54 z/OS ICSF System Programmer's Guide

MAXSESSOBJECTS(n)
Defines the maximum number of PKCS #11 session objects and states an
unauthorized (problem state, non-system key) application may own at any one
time. Specify n as a decimal value from 1024 through 2147483647. If you do not
specify the MAXSESSOBJECTS option, the default value is
MAXSESSOBJECTS(65535).

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

PKDSCACHE
This keyword is no longer supported, but is tolerated.

PKDSN(data-set-name)
Specifies the PKDS name the system uses to start ICSF. Whenever you restart
ICSF, the PKDS named in the PKDSN option becomes the active PKDS. (At
first-time startup, you should specify the name of an empty VSAM data set
you created to use as the PKDS.)

If you do not specify this keyword, you will not be able to use secure CCA
asymmetric keys or use ICSF to manage CCA asymmetric keys. ICSF must be
restarted in order to switch between having a PKDS and not having a PKDS.

See “Steps to create the installation options data set” on page 25 for the data
set naming format requirements.

REASONCODES(ICSF or TSS)
Specifies which set of reason codes are to be returned from callable services. If
you do not specify the REASONCODES option, the default of
REASONCODES(ICSF) is used. If you specify REASONCODES(TSS), reason
codes used by the IBM 4765 PCIe, IBM 4767 PCIe, and IBM 4764 PCI-X
cryptographic coprocessors will be returned. If there is a 1-to-1 mapping, the
codes will be converted.

If you specified REASONCODES(ICSF) and your service was processed on a
CCA coprocessor, a cryptographic coprocessor reason code may be returned if
there is no corresponding ICSF reason code.

REMOTEDEVICE(index-number, ip-addr-or-hostname, port-number,
number-sockets)

Specifies the connection information for a remote regional cryptographic server
device that ICSF is to use for regional cryptographic server requests. There
may be up to 16 of these entries.

Notes:

v Each regional cryptographic server (as identified by ip-addr-or-hostname and
port-number) must be configured identically regarding master keys and other
settings. An incorrect master key value will cause the connection to not be
used.

v For use of standalone, network-attached regional cryptographic servers, IBM
zEnterprise EC12 or later hardware is required as well as servers running
z/OS V1R13 or later and ICSF FMID HCR77B1 or later.

v For use of Linux LPAR regional cryptographic servers, IBM z13 or later
hardware is required as well as servers running z/OS V1R13 or later and
ICSF FMID HCR77B1 or later.

The options are as follows:

Chapter 2. Installation, initialization, and customization 55

index-number
Specify a number between 1 and 16, inclusive. Each operational
REMOTEDEVICE must have a unique number. For indexes that are
repeated, ICSF will only save the last one specified. Additionally, if remote
devices are shared between sysplex members, it is strongly recommended
that the same index number is used for each member. This simplifies
remote device management using the SETICSF operator command.

ip-addr-or-hostname
Specify either the dotted-decimal Internet protocol (IP) version 4 address or
the hostname of the remote device. Each ip-addr-or-hostname must locate a
single device with fixed serial number. Reverse proxy arrangements where
one ip-addr-or-hostname is backed by multiple devices (with different serial
numbers) is not supported. The opposite arrangement (one serial number
assigned to multiple ip-addr-or-hostnames) is supported, but not
recommended.

Notes:

v Internet protocol (IP) version 6 is not supported.
v Hostnames are not case-sensitive and are stored and displayed by ICSF

in lowercase.
v For long hostnames, the REMOTEDEVICE entry may be split at any

comma to span multiple physical records. For example:
REMOTEDEVICE(5,some.very.long.hostname.company.com,
6901,8)

port-number
Specify the port number to be used in conjunction with the IP address or
hostname when connecting.

Note: No two ICSF instances may share the same port on a regional
cryptographic server. Additionally, it is expected that different workloads
(for example, ICSF instances using different token data sets) sharing a
regional cryptographic server would use different master keys (RCS-MKs)
and that the required RCS-MK for the TKDS would be assigned on a per
port basis.

number-sockets
Specify the maximum number of sockets ICSF is to open for connections
with the remote device. This is a value between 1 and 8, inclusive.
Multiple sockets are required in order for ICSF to process multiple
simultaneous requests. Consult the remote device's documentation to
determine this value. There is an ICSF limit of 8 sockets per server or port.
If you desire more than 8 socket connections to a single server, define
multiple REMOTEDEVICE entries for the server, assigning a unique port
number for each entry. Make sure the same master key is defined for each
port that will be connected to systems sharing the same TKDS.

RNGCACHE(YES or NO)
Indicates whether ICSF should maintain a cache of random numbers to be
used by services that require them. When YES is specified for this option, a
noticeable performance improvement may be realized by workloads requesting
a significant amount of random data.

If you do not specify the RNGCACHE option, the default value is
RNGCACHE(YES).

Value Indication

56 z/OS ICSF System Programmer's Guide

YES ICSF maintains a random number cache.

NO ICSF does not maintain a random number cache.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

SERVICE(service-number,load-module-name,FAIL(fail-option))
Indicates information about an installation-defined service.

ICSF allows an installation to define its own service similar to an ICSF callable
service. The service-number specifies a number that identifies the service to
ICSF. The valid service numbers are 1 through 32767, inclusive. This set of
service numbers is valid for both installation-defined services and UDX
services. The service number of an installation-defined service must not be the
same as the service number of a UDX service. The load-module-name is the
name of the module that contains the service. During ICSF startup, ICSF loads
this module and binds it to the service-number you specified.

The fail-option is YES or NO, indicating the action ICSF should take if loading
the service ends abnormally.

YES
Specifies that ICSF ends abnormally if your service cannot be loaded.

NO Specifies that ICSF continues to start if your service cannot be loaded.

If the service itself ends abnormally, ICSF does not end, but takes a system
dump instead. The ICSF service functional recovery routine (FRR) protects the
service.

See Chapter 6, “Installation-defined Callable Services,” on page 221 for a
description of how to write and run an installation-defined callable service.

SSM(YES or NO)
Specifies whether or not an installation can enable special secure mode (SSM)
while running ICSF. SSM lowers the security of your system to let you enter
clear keys and generate clear PINs. You must enable SSM for KGUP to permit
generation or entry of clear keys and to enable the secure key import, secure
key import2, multiple secure key import, or clear pin generate callable services.

YES Indicates that you can enable the SSM.

NO Indicates that you cannot enable the SSM.

If you do not specify the SSM option, the default value is SSM(NO).

The SSM option can be changed from NO to YES while ICSF is running by
defining the CSF.SSM.ENABLE SAF profile within the XFACILIT resource
class. To revert to your startup option, delete the CSF.SSM.ENABLE profile.
The XFACILIT class must be refreshed after each change for it to take effect.

Note: When using the SAF profiles to set the SSM, all ICSF instances sharing
the SAF database will be affected.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

When the CSF.SSM.ENABLE SAF profile is defined within the XFACILIT
resource class, attempts to update the SSM option using either the SETICSF
command or the ICSF Multi-Purpose service (CSFMPS or CSFMPS6) will be

Chapter 2. Installation, initialization, and customization 57

ignored. The SSM option value will be saved and used should the
CSF.SSM.ENABLE SAF profile ever be deleted.

STATS(value1[,...,value3])
Enables usage tracking for various cryptographic statistics. Keywords may be
combined to track multiple statistics.

ENG Enables usage tracking of cryptographic engines. Supports Crypto
Express cards, regional cryptographic servers, CPACF, and software.

SRV Enables usage tracking of cryptographic services. Supports ICSF
callable services and UDXes only.

ALG Enables usage tracking of cryptographic algorithms. Supports
cryptographic algorithms that are referenced in cryptographic
operations. Limited support for key generation, key derivation, and
key import.

For more information on the cryptographic utilization statistics monitoring, see
z/OS Cryptographic Services ICSF Administrator's Guide.

STATSFILTERS(value)
Filters the criteria that is used to aggregate crypto usage statistics when STATS
is enabled. Excluding this option means that ICSF uses all available criteria
(that is, HOME job id, HOME job name, SECONDARY job name, HOME user
id, task level user id, and ASID) to aggregate the crypto usage statistics.

NOTKUSERID
Excludes the task level user id from the stats aggregation criteria.
Enable this option in environments that have a high volume of
operations that are running under task level user ids. This option
reduces the number of SMF records written.

For more information on the cryptographic utilization statistics monitoring, see
z/OS Cryptographic Services ICSF Administrator's Guide.

SYSPLEXCKDS(YES or NO,FAIL(fail-option))

SYSPLEXCKDS(YES,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSF and this system will
participate in sysplex-wide consistency for CKDS data.

SYSPLEXCKDS(YES,FAIL(YES))
Indicates ICSF initialization will end abnormally if the ICSF
cross-system services environment cannot be established
during ICSF initialization due to a failure creating the CKDS
latch set or a failure to join the ICSF sysplex group.

SYSPLEXCKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will continue even if the
request to join the ICSF sysplex group fails. The system will
not be notified of updates to the CKDS by other members of
the ICSF sysplex group. A value of either FAIL(YES) or
FAIL(NO) will be ignored with SYSPLEXCKDS(NO,...).

SYSPLEXCKDS(NO,FAIL(fail-option))
CKDS update processing proceeds as it does today (i.e. no
Cross-System Services task will be initialized, nor will any XCF
signalling be performed when an update to a CKDS record occurs).

If you do not specify the SYSPLEXCKDS option, the default value is
SYSPLEXCKDS(NO,FAIL(NO)).

58 z/OS ICSF System Programmer's Guide

SYSPLEXPKDS(YES or NO,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSF and this system will participate
in sysplex-wide consistency for PKDS data.

SYSPLEXPKDS(YES,FAIL(fail-option))
ICSF will join the ICSF sysplex group SYSICSFP and this system will
participate in sysplex-wide consistency for PKDS data.

SYSPLEXPKDS(YES,FAIL(YES))
Indicates ICSF initialization will fail to join the sysplex if the
ICSF cross-system services environment cannot be established
during ICSF initialization due to a failure creating the PKDS
latch set or a failure to join the ICSF sysplex group.

SYSPLEXPKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will continue even if the
request to join the ICSF sysplex group fails. The system will
not be notified of updates to the PKDS by other members of
the ICSF sysplex group. A value of either FAIL(YES) or
FAIL(NO) will be ignored with SYSPLEXPKDS(NO,...).

SYSPLEXPKDS(NO,FAIL(fail-option))
PKDS update processing proceeds without trying to join the ICSF
sysplex group.

If you do not specify the SYSPLEXPKDS option, the default value is
SYSPLEXPKDS(NO,FAIL(NO)).

SYSPLEXTKDS(YES or NO,FAIL(fail-option))

ICSF will join the ICSF sysplex group SYSICSF and this system will participate
in sysplex-wide consistency for TKDS data.

Note: TKDSN needs to be specified for this to work. See TKDSN(data-set-
name).

SYSPLEXTKDS(NO,FAIL(fail-option))
Indicates no XCF signalling will be performed when an update to a
TKDS record occurs.

SYSPLEXTKDS(YES,FAIL(fail-option))
Indicates the system will be notified of updates made to the TKDS by
other members of the sysplex who have also specified
SYSPLEXTKDS(YES,FAIL(fail-option)).

SYSPLEXTKDS(YES,FAIL(YES))
Indicates ICSF will terminate abnormally if there is a failure
creating the TKDS latch set.

SYSPLEXTKDS(YES,FAIL(NO))
Indicates ICSF initialization processing will continue even if the
request to join the ICSF sysplex group fails. This system will
not be notified of updates to the TKDS by other members of
the ICSF sysplex group.

If you do not specify the SYSPLEXTKDS option, the default value is
SYSPLEXTKDS(NO,FAIL(NO)) is the default.

TKDSN(data-set-name)
The name of an existing TKDS or an empty VSAM data set to be used as the
TKDS. To enable applications to create and use persistent PKCS #11 tokens and
objects that use the PKCS #11 services, this option must be specified.

Chapter 2. Installation, initialization, and customization 59

See “Steps to create the installation options data set” on page 25 for the data
set naming format requirements.

TRACEENTRY(n)
This keyword is no longer supported, but is tolerated.

UDX(UDX-id,service-number,load-module-name,'comment_text',FAIL(fail-
option))

ICSF allows the development of User Defined Extensions for the coprocessors.
The UDX-id is supplied to the installation when the UDX is developed. The
service-number specifies a number that identifies the service to ICSF. The valid
service numbers are 1 to 32767, inclusive. This set of service numbers is valid
for both installation-defined services and UDX services. The service number of
a UDX service must not be the same as the service number of an
installation-defined service. The load-module-name is the name of the module
that contains this service. During ICSF startup, ICSF loads this module and
binds it to the service-number that was specified. A comment may be specified.
The positional parameter is required. The comment consists of up to 40
EBCDIC characters, and may include imbedded blank characters. The comment
text is enclosed by single quotes. If no comment text is desired, two contiguous
single quotes should be specified.

The fail-option is YES or NO, indicating the action ICSF should take if loading
the service ends abnormally. If the service itself ends abnormally, ICSF does
not end, but takes a system dump instead.

YES
Specifies that ICSF ends abnormally if your service cannot be loaded.

NO Specifies that ICSF continues to start if your service cannot be loaded.

The User Defined Extension (UDX) is responsible for logging in SMF the
results of any authorization checks that were made.

USERPARM(value)
Specifies an 8-byte field for installation use. The Installation Option Display
panel displays this value, which is stored in the Cryptographic Communication
Vector Table (CCVT) in the CCVT_USERPARM field. An application program
or installation exit can examine this field and use it to set system environment
information. The default is eight blanks.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

WAITLIST(data_set_name)
This optional parameter can be used if you have ICSF with CICS installed. It
specifies a customer modifiable data set will be used to determine names of
the services to be placed into the ICSF CICS Wait List. A sample data set is
provided by ICSF via member CSFWTL01 of SYS1.SAMPLIB. The sample data
set contains the same entries as the default ICSF CICS Wait List (i.e., the data
set contains the names of all ICSF callable services which, by default, will be
driven through the CICS TRUE). Non-CICS customers will not need to specify
the WAITLIST keyword. The WAITLIST option should be added to the
Installation Options data set under these conditions.
v CICS customers who do not want to make use of CICS TRUE must either

not enable the TRUE or must specify a WAITLIST keyword and point to an
empty wait list data set (or specify WAITLIST(DUMMY)) in the Installation
Options data set.

60 z/OS ICSF System Programmer's Guide

|
|

v CICS customers who wish to modify the ICSF default CICS Wait List should
modify the sample Wait List data set supplied in member CSFWTL01 of
SYS1.SAMPLIB. The WAITLIST keyword in the Installation Options Data Set
should be set to point to this modified data set.

To ensure maximum performance, any existing CICS applications which invoke
any of the ICSF services in the Wait List that were linked with ICSF stubs prior
to HCR7770 should be re-linked with the current ICSF stubs. For additional
information on the CICS Attachment Facility, see Appendix C, “CICS-ICSF
Attachment Facility,” on page 411.

Starting with ICSF FMID HCR77C0, the value for this option can be updated
without restarting ICSF by using either the SETICSF command or the ICSF
Multi-Purpose service (CSFMPS or CSFMPS6).

Improving CKDS performance
To improve the performance of CKDS operations during KGUP runs, use the Batch
Local Shared Resource (BLSR) with Deferred Write for all KGUP runs. See z/OS in
IBM Knowledge Center (www.ibm.com/support/knowledgecenter/SSLTBW/
welcome) for more information.

Dispatching priority of ICSF
To avoid performance problems, the dispatching priority of ICSF should be set at
least as high as that of the highest task using ICSF.

Creating ICSF exits and generic services
You need not code any exits or generic services before using ICSF productively.

Developing callable service exits and generic services requires skill in assembler
programming in a cross memory environment. To help with testing, the system
programmer might want to use the WTO macro with the LINKAGE=BRANCH
keyword to issue console messages while in cross-memory mode. (See “Service
exits” on page 171 for more information.)

Chapter 2. Installation, initialization, and customization 61

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

62 z/OS ICSF System Programmer's Guide

Chapter 3. Migration

This topic describes migration considerations.

Your plan for migrating to the new level of ICSF should include information from
a variety of sources. These sources of information describe topics such as
coexistence, service, hardware and software requirements, installation and
migration procedures, and interface changes.

Attention: Although you are migrating to a new release, you should review the
information in Chapter 2, “Installation, initialization, and customization,” on page
11; especially review customization steps that may have changed since your last
migration.

If this migration also includes a hardware upgrade be sure to have your Master
Keys available. Once Migration is complete, the Master Keys may need to be
loaded and set. Review Chapter 2, “Installation, initialization, and customization,”
on page 11 for information on setting Master Keys.

An IPL is required when installing a new release of ICSF (it is possible for ICSF
control blocks like the DACC and CCVT to persist in storage across an ICSF
restart).

Consult these documents for information on migration and installation:

z/OS Migration

This publication describes the migration tasks for z/OS at a system and
element level.

This publication, which is supplied with your product order, provides
information about installing your z/OS system. In addition to specific
information about ICSF, this publication contains information about all of the
z/OS elements. Consult the z/OS Migration publication for the release of z/OS
running on your system.

z/OS Planning for Installation

This publication describes the installation requirements for z/OS at a system
and element level. It includes hardware, software, and service requirements for
both the driving and target systems. It also describes any coexistence
considerations and actions.

Program Directory for Cryptographic Support for z/OS V2R1 - z/OS V2R3

This publication describes the program installation and maintenance
requirements. It contains information about the material and procedures
associated with the installation of ICSF.

The publications can be obtained from:
v The Resource Link home page (www.ibm.com/servers/resourcelink). (Select

Publications and then select the release that you are interested in under ICSF
Publications by FMID.)

v IBM z/OS downloads (www.ibm.com/systems/z/os/zos/downloads) for
Cryptographic Support for z/OS V2R1 - z/OS V2R3.

ServerPac Installing Your Order

© Copyright IBM Corp. 2007, 2018 63

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/systems/z/os/zos/downloads

This is the order-customized, installation publication for using the ServerPac
Installation method. Be sure to review 'Appendix A. Product Information',
which describes data sets supplied, jobs or procedures that have been
completed for you, and product status. IBM may have run jobs or made
updates to PARMLIB or other system control data sets. These updates could
affect your migration.

Terminology
This topic describes some terms you may need to know as you use this
publication.

Migration
Activities that relate to the installation of a new version or release of a
program to replace a previous level. Completion of these activities ensures
that the applications and resources on your system will function correctly
at the new level.

Coexistence
Two or more systems at different levels (for example, software, service or
operational levels) that share resources. Coexistence includes the ability of
a system to respond in these ways to a new function that was introduced
on another system with which it shares resources: ignore a new function,
terminate gracefully, support a new function. These are examples of
multisystem configurations in which resource sharing can occur:
v A single system running multiple LPARs
v A single processor that is time-sliced to run different levels of the system

(for example, during different times of the day)
v Two or more systems running separate processors
v A Parallel Sysplex configuration (also includes a basic sysplex)

Migrating from earlier software releases
These topics describe common activities and considerations that should be
considered when you migrate from an earlier release of ICSF to FMID HCR77C1.

Actions to perform before installing ICSF FMID HCR77C0
This topic describes migration actions that you can perform on your current (old)
system. You do not need the ICSF FMID HCR77C0 level of code to make these
changes, and the changes do not require the ICSF FMID HCR77C0 level of code to
run once they are made.

Note: You may have already performed these migration actions if you previously
migrated to ICSF FMIDs HCR77A1, HCR77B0, or HCR77B1.

ICSF: Detect any coprocessor that will not become active when
ICSF FMID HCR77A1 or later is started
Description

For ICSF FMIDS HCR7780, HCR7790, and HCR77A0, the activation procedure was
designed to maximize the number of active coprocessors by selecting the set of
master keys that are available on the majority of coprocessors. A DES master key is
no longer required in order for a coprocessor to become active. Instead, any one of
four master keys – the DES master key, the AES master key, the RSA master key
(which in earlier releases was called the asymmetric master key), or the ECC

64 z/OS ICSF System Programmer's Guide

master key – is enough for a coprocessor to become active. However, because the
goal is to select the combination of master keys that will maximize the number of
active coprocessors, if a certain master key is not set on all the same coprocessors,
that master key support will not be available.

Starting with FMID HCR77A1, the activation procedure now uses the master key
verification patterns (MKVP) in the header record of the CKDS and PKDS to
determine which coprocessors become active. If the MKVP of a master key is in the
CKDS or PKDS, that master key must be loaded and the verification pattern of the
current master key register must match the MKVP in the CKDS or PKDS. If all of
the MKVPs in the CKDS and PKDS match the current master key registers, the
coprocessor will become active. Otherwise, the status is master keys incorrect. This
applies to all master keys that the coprocessor supports. When there is a MKVP in
the CKDS or PKDS and the coprocessor does not support that master key, it is
ignored. When a MKVP is not in the CKDS or PKDS, the master key is ignored.

If there are no MKVPs in the CKDS and PKDS, the coprocessor will be active. If
the CKDS is initialized without any MKVPs, the CKDS cannot be used on a system
that has cryptographic features installed.

Table 4 provides more details about this migration action. Use this information to
plan your changes to the system.

Table 4. Information about this migration action

Element or feature: Cryptographic Services

When change was introduced: Cryptographic Support for z/OS V1R13 -
z/OS V2R1 web deliverable (FMID
HCR77A1), which installs on z/OS V1R13 or
z/OS V2R1.

Applies to migration from: z/OS V2R1 and z/OS V1R13, both without
the Cryptographic Support for z/OS V1R13 -
z/OS V2R1 web deliverable (FMID
HCR77A1) or a later ICSF web deliverable
installed.

Timing: Before installing FMID HCR77A1 or later
ICSF FMIDs.

Is the migration action required? Yes, if migrating from an ICSF FMID older
than HCR77A1 to ICSF FMID HCR77A1 or
later and if you are affected by the change in
the way master keys are processed to
determine which coprocessors become active.

Target system hardware requirements: None.

Target system software requirements: None.

Other system (coexistence or fallback)
requirements:

None.

Restrictions: None.

System impacts: None.

Chapter 3. Migration 65

Table 4. Information about this migration action (continued)

Related IBM Health Checker for z/OS check: Use check
ICSFMIG77A1_COPROCESSOR_ACTIVE to
determine which coprocessors will not
become active when Cryptographic Support
for z/OS V1R13 - z/OS V2R1 Web
Deliverable (FMID HCR77A1) is started. This
check is delivered in APAR OA42011
available for ICSF FMIDs HCR7770,
HCR7780, HCR7790 and HCR77A0.

Steps to take

Run the migration check ICSFMIG77A1_COPROCESSOR_ACTIVE to find any
coprocessors that will not become active when you start ICSF FMID HCR77A1 or a
later ICSF web deliverable.

Reference information

For more information, see the following reference:
v For information about IBM Health Checker, see IBM Health Checker for z/OS

User's Guide.

ICSF: Detect TKDS objects that are too large for the new KDSR
record format in ICSF FMID HCR77A1 or later
Description

In ICSF FMID HCR77A1, ICSF added a common key data set record format for
CCA key tokens and PKCS #11 tokens and objects. This new record format adds
new fields for key utilization and metadata. Because of the size of the new fields,
some existing PKCS #11 objects in the TKDS might cause ICSF to fail. If you do not
have a Token Data Set (TKDS) with PKDS #11 objects in it, there is no need to run
this check.

The problem exists for TKDS object records with large objects. The User data field
in the existing record will cause the TKDS not be to loaded if the object size is
greater that 32,520 bytes. The TKDSREC_LEN field in the record has the size of the
object. If the User data field is not empty and the size of the object is greater than
32,520 bytes, the TKDS cannot be loaded.

Note that ICSF does not provide any interface to modify the User data field in the
TKDS object record. A field can be created using IDCAMS. Check the contents of
the User data field and determine if the information in the field is valuable. If you
want to preserve the data, consider how the information can be stored other than
in the object record. The field can only be modified by editing the record. For
information about the TKDS object record, see “Token data set (TKDS) format” on
page 258. The IBM Health Checker migration check, ICSFMIG77A1_TKDS_OBJECT
detects any TKDS object that is too large to allow the TKDS is read into storage
during ICSF initialization starting with ICSF FMID HCR77A1. This migration check
is available for ICSF FMIDs HCR7770, HR7780, HCR7790, and HCR77A0 through
APAR OA42011

Table 5 on page 67 provides more details about this migration action. Use this
information to plan your changes to the system.

66 z/OS ICSF System Programmer's Guide

Table 5. Information about this migration action

Element or feature: Cryptographic Services

When change was introduced: Cryptographic Support for z/OS V1R13 –
z/OS V2R1 web deliverable (FMID
HCR77A1), which installs on z/OS V1R12,
z/OS V1R13 or z/OS V2R1.

Applies to migration from: z/OS V2R1 and z/OS V1R13, both without
the Cryptographic Support for z/OS V1R13 -
z/OS V2R1 web deliverable (FMID
HCR77A1) installed.

Timing: Before installing FMID HCR77A1 or later
ICSF FMIDs.

Is the migration action required? Yes, if migrating from an ICSF FMID older
than HCR77A1 to ICSF FMID HCR77A1 or
later and if you affected by the record format
changes.

Target system hardware requirements: None.

Target system software requirements: None.

Other system (coexistence or fallback)
requirements:

None.

Restrictions: None.

System impacts: None.

Related IBM Health Checker for z/OS check: Use the IBM Health Checker migration check
ICSFMIG77A1_TKDS_OBJECT to detect any
TKDS object with a value in the User data
field that is too large to preserve in the User
data field of the new format record. This
migration check is available for FMIDs
HCR7770, HR7780, HCR7790, and HCR77A0
through APAR OA42011.

Steps to take

Run the migration check ICSFMIG77A1_TKDS_OBJECT to detect if TKDS objects
are too large for the new record format in FMID HCR77A1.

Note: ICSF does not provide any interface to modify the User data field in the
TKDS object record. A flat file can be created using IDCAMS. Check the contents of
the User data field and determine if the information in the field is valuable. If you
want to preserve the data, consider how the information can be stored other than
in the object record. The field can only be modified by editing the record. For
information about the TKDS object record, see “Token data set (TKDS) format” on
page 258.

Reference information

For more information, see the following references:
v For information about the TKDS object record, see “Token data set (TKDS)

format” on page 258.
v For information about IBM Health Checker, see IBM Health Checker for z/OS

User's Guide.

Chapter 3. Migration 67

Actions to perform before the first start of ICSF FMID
HCR77C0

This topic describes migration actions that you can perform after you have
installed ICSF FMID HCR77C0, but before the first time you start it. These actions
might require the ICSF FMID HCR77C0 level of code to be installed, but does not
require it to be started.

Note: You may have already performed these migration actions if you previously
migrated to ICSF FMIDs HCR77A1, HCR77B0, or HCR77B1.

ICSF: Deprecated parameters in installation options data set
Description

The ICSF installation options data set parameters COMPENC and PKDSCACHE
were deprecated in FMID HCR7751, parameters CKTAUTH, KEYAUTH, and
TRACEENTRY were deprecated in FMID HCR77A1, and parameter HDRDATE
was deprecated in FMID HCR77B1.

Table 6. Information about this migration action

Element or feature: Cryptographic Services.

When change was introduced: ICSF FMID HCR77B1.

Applies to migration from: All ICSF FMIDs prior to FMID HCR77B1.

Timing: Before the first start of FMID HCR77B1 or
later ICSF FMIDs.

Is the migration action required? Yes.

Target system hardware requirements: None.

Target system software requirements: None.

Other system (coexistence or fallback)
requirements:

None.

Restrictions: None.

System impacts: None.

Related IBM Health Checker for z/OS check: None.

Steps to take

Edit the ICSF installation options data set and remove all the deprecated
parameters.

Note: ICSF will start with the deprecated parameters in the ICSF installation
options data set, but the parameters are ignored and message CSFO0212 is issued
for each deprecated parameter.

Reference information

For more information, see “Customizing ICSF after the first start” on page 36.

68 z/OS ICSF System Programmer's Guide

ICSF: Determine if applications using hash services have
archived hashes of long data
Description

Due to service introduced by APAR OA43937, new Hash Method Rule keywords
for the ICSF One-Way Hash Generate (CSNBOWH or CSNBOWH1 and
CSNEOWH or CSNEOWH1) and PKCS11 One-Way Hash Services (CSFPOWH and
CSFPOWH6) will support generation of legacy hash values for verification of
archived hash values generated from pre-OA43937 releases of ICSF FMIDs
HCR7770 through HCR77A1.

Note: This correction of hashing function does not apply to the case where the
sum of the length of hashed text over a series of chained calls exceeds 256
megabytes (or 512, as described further in this topic), but no single invocation
supplies an input text_length that exceeds 256 (or 512) megabytes. Correct hashes
are created when no single invocation of the callable services exceeds the described
limit prior to (and after) application of the PTFs for OA43937.

Applications that wish to verify archived hash values created by pre-OA43937
FMID HCR7770 through FMID HCR77A1 releases of ICSF callable services
One-Way Hash Generate and PKCS11 One-Way Hash may need to invoke these
callable services with new rule array keywords that support the creation of legacy
hash values. The hash generated using the new rule array keywords must be used
to verify the archived hash values.

The ICSF Callable Services One-Way Hash Generate and PKCS11 One-Way Hash,
sign, or verify have corrected the way they create hash values when the length of
the text on a single invocation of one of these services supplies an input text_length
that equals or exceeds 256 megabytes (512 megabytes on z990/z890 or later
hardware on FMID HCR7770). The hashing services are corrected with the
application of the PTFs for OA43937.

Table 7 provides more details about this migration action. Use this information to
plan your changes to the system.

Table 7. Information about this migration action

Element or feature: Cryptographic Services.

When change was introduced: PTFs for OA43937, which are applicable to:
ICSF FMIDs HCR7770 - HCR77A1 (z/OS
V1R12 - z/OS V2R1).

Applies to migration from: ICSF FMIDs HCR7770 - HCR77A1, without
the PTF for OA43937.

Timing: Before the first start of FMID HCR77A1 or
later ICSF FMIDs.

Is the migration action required? Yes, if migrating from an ICSF FMID older
than HCR77A1 to ICSF FMID HCR77A1 or
later and if you have archived hash values
created before the installation of the PTFs for
OA43937 which meet the length restrictions
described here.

Target system hardware requirements: None.

Target system software requirements: None.

Other system (coexistence or fallback)
requirements:

None.

Chapter 3. Migration 69

Table 7. Information about this migration action (continued)

Restrictions: None.

System impacts: If you do not use the legacy rule array
keywords for affected applications, then the
application may fail to verify the legacy
hashes/signatures.

Related IBM Health Checker for z/OS check: None.

Steps to take

Follow these steps:
1. Identify if your application needs to verify archived hash values created by

either of the ICSF callable service One-Way Hash Generate (CSNBOWH or
CSNBOWH1 and CSNEOWH or CSNEOWH1) or PKCS11 One-Way Hash
(CSFPOWH and CSFPOWH6) on releases pre-OA43937 at FMID HCR7770
through FMID HCR77A1. (See the ICSF Application Programmer's Guide
documentation changes in this APAR for new ICSF callable service keywords
that support the creation of hashes for the verification of archived hash values
and the input text length requirements.)

2. If your application has these archived hash values and intends to verify them,
then invocations of ICSF callable services One-Way Hash Generate, PKCS11
One-Way Hash, sign, or verify that create hashes for verification of the archived
hash values may need to be updated to use the new legacy rule array
keywords (ONLY if those archived hash values were created with input text
length exceeding the limits described).

Reference information

For more information, see z/OS Cryptographic Services ICSF Application Programmer's
Guide .

Actions to perform after the first start of ICSF FMID HCR77C0
This topic describes migration actions that you can perform only after you have
started ICSF FMID HCR77C0. You need ICSF FMID HCR77C0 started to perform
these actions.

Note: You may have already performed these migration actions if you previously
migrated to ICSF FMIDs HCR77A1, HCR77B0, or HCR77B1.

ICSF: Accommodate the TRACEENTRY option deprecation
Description

In ICSF FMID HCR77A1 and later, option TRACEENTRY has been deprecated and
ICSF CTRACE support has been enhanced to support configurable ICSF CTRACE
options from PARMLIB. A default CTICSF00 PARMLIB member is installed in
SYS1.PARMLIB. The CTICSF00 PARMLIB member provides default component
trace values for ICSF. By default, ICSF CTRACE support will trace with the KdsIO,
CardIO, and SysCall filters using a 2M buffer. Configurable options are commented
out within this PARMLIB member to provide examples of how to turn them on.

Table 8 on page 71 provides more details about this migration action. Use this
information to plan your changes to the system.

70 z/OS ICSF System Programmer's Guide

Table 8. Information about this migration action

Element or feature: Cryptographic Services

When change was introduced: Cryptographic Support for z/OS V1R13 -
z/OS V2R1 web deliverable (FMID
HCR77A1), which installs only on z/OS
V1R13 or z/OS V2R1.

Applies to migration from: z/OS V2R1 and z/OS V1R13 without the
Cryptographic Support for z/OS V1R13 -
z/OS V2R1 web deliverable (FMID
HCR77A1). Note that when the
Cryptographic Support for z/OS V1R13 -
z/OS V2R1 Web deliverable (FMID
HCR77A1) or later is not installed, this
migration item is not applicable.

Timing: After the first start of ICSF FMID HCR77B0.

Is the migration action required? Yes, if you have installed the Cryptographic
Support for z/OS V1R13 - z/OS V2R1 web
deliverable (FMID HCR77A1) or later to
handle TKDS with PKDS #11 objects for the
new format in FMID HCR77A1 or later.

Target system hardware requirements: None.

Target system software requirements: None.

Other system (coexistence or fallback)
requirements:

None.

Restrictions: None.

System impacts: If the TRACEENTRY option is specified it
will be ignored and will produce message
CSFO0212 at startup; processing continues.

Related IBM Health Checker for z/OS check: None.

Steps to take

You can code the new CTRACE option within a BEGIN(HCR77A1) END option
pair in a options data set shared between multiple releases of ICSF.
v If you share the installation options data set between FMID HCR77A1 and

pre-FMID HCR77A1 systems, you can continue to supply the TRACEENTRY
option at the lower-level systems as it is ignored, and processing will continue
on the FMID HCR77A1 systems.

v If your installation cannot tolerate the CSFO0212 message that is issued at
startup, you need to use different installation option data sets. Note that new
CTRACE options will be in effect:
– Review the default CTRACE options to ensure that they are satisfactory for

your system.
– Make any necessary changes. Use the CTICSF00 PARMLIB to create

customized ICSF CTRACE Configuration Data Sets in PARMLIB. You can use
the new CTRACE option to specify the customized ICSF CTRACE
Configuration Data Set in the ICSF Options Data Set.
For example, you can specify CTRACE(CTICSFxx), where xx is any two
characters that were used when copying the default CTICSF00 parmlib
member.

Chapter 3. Migration 71

Component tracing is active when ICSF starts using the trace options defined
in the CTICSFxx PARMLIB member, where 00 is the default. If the CTICSF00
PARMLIB member is incorrect or missing, ICSF CTRACE performs tracing
using an internal default set of trace options. The operator can specify trace
options individually on the TRACE CT command or specify the name of a
CTICSFxx PARMLIB member containing the desired trace options. Using a
PARMLIB member on the TRACE CT command can help minimize operator
intervention and avoid syntax or keystroke errors

Reference information

For more information, see the following references:
v z/OS Cryptographic Services ICSF Administrator's Guide

v For IBM Health Checker, see IBM Health Checker for z/OS User's Guide.

Callable services
The following table summarizes the new and changed callable services for ICSF
FMID HCR77C1. For complete reference information on these callable services, see
z/OS Cryptographic Services ICSF Application Programmer's Guide.

Table 9. Summary of new and changed ICSF callable services

Callable service FMID Description

Authentication Parameter
Generate

HCR77C1 Changed: Support compliant-tagged key tokens.

Ciphertext Translate2 HCR77C1 Changed: Support compliant-tagged key tokens.

Clear PIN Encrypt HCR77C1 Changed: Support compliant-tagged key tokens.

Clear PIN Generate HCR77C1 Changed: Support compliant-tagged key tokens.

Clear PIN Generate
Alternate

HCR77C1 Changed: Support compliant-tagged key tokens.

Control Vector Generate HCR77C1
OA55184

Changed: New rule array keywords in support of triple-length DES
keys.

Control Vector Generate HCR77C1 Changed: Generate control vector with the compliant-tag bit on.

Cryptographic Usage
Statistic

HCR77C1 New: Track cryptographic usage external to the ICSF address space.

Decipher HCR77C1 Changed: Support compliant-tagged key tokens.

Derive ICC MK HCR77C1 Changed: Derive compliant-tagged key tokens.

Derive Session Key HCR77C1 Changed: Derive compliant-tagged key tokens.

Digital Signature Verify HCR77C1 Changed: Allow signature verification using an X.509 digital
certificate.

Diversified Key Generate HCR77C1 Changed: Generate compliant-tagged key tokens.

Diversify Directed Key HCR77C1
OA55184

New: DK PIN support for diversified keys.

EMV Scripting Service HCR77C1 Changed: Support compliant-tagged key tokens.

EMV Transaction
(ARQC/ARPC) Service

HCR77C1 Changed: Support compliant-tagged key tokens.

EMV Verification Functions HCR77C1 Changed: Support compliant-tagged key tokens.

Encipher HCR77C1 Changed: Support compliant-tagged key tokens.

Encrypted PIN Generate HCR77C1 Changed: Support compliant-tagged key tokens.

Encrypted PIN Translate HCR77C1 Changed: Support compliant-tagged key tokens.

72 z/OS ICSF System Programmer's Guide

|

|

Table 9. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

Encrypted PIN Translate2 HCR77C1
OA55184

New: Same as Encrypted PIN Translate with support for IOS-4 PIN
blocks.

Encrypted PIN Translate
Enhanced

HCR77C1 Changed: Support compliant-tagged key tokens.

Encrypted PIN Verify HCR77C1 Changed: Support compliant-tagged key tokens.

Field Level Decipher HCR77C1 Changed: Version 05 AES CIPHER key tokens allowed.

Field Level Encipher HCR77C1 Changed: Version 05 AES CIPHER key tokens allowed.

FPE Decipher HCR77C1 Changed: Support compliant-tagged key tokens.

FPE Encipher HCR77C1 Changed: Support compliant-tagged key tokens.

FPE Translate HCR77C1 Changed: Support compliant-tagged key tokens.

Generate Issuer MK HCR77C1 Changed: Generate compliant-tagged key token.

ICSF Query Facility HCR77C1 Changed: Retrieve compliance data for a CCA coprocessor.

ICSF Query Facility2 HCR77C1 Changed: Retrieve CCA compliance information for the system.

Key Export HCR77C1 Changed: Support compliant-tagged key tokens.

Key Generate HCR77C1 Changed: Generate compliant-tagged key tokens.

Key Import HCR77C1 Changed: Support compliant-tagged key tokens.

Key Part Import HCR77C1
OA55184

Changed: New rule array keywords in support of triple-length DES
keys.

Key Record Read2 HCR77C1 Changed: Returns protected key for version 05 AES CIPHER key
tokens.

Key Test HCR77C1
OA55184

Changed: New rule array keyword in support of triple-length
encrypted DES keys.

Key Test HCR77C1 Changed: Support compliant-tagged key tokens.

Key Test2 HCR77C1
OA55184

Changed: New rule array keyword in support of triple-length
encrypted DES keys.

Key Test2 HCR77C1 Changed:

v Calculate a 3-byte or 5-byte CMACZERO verification pattern for
DES keys.

v Support compliant-tagged key tokens.

Key Test Extended HCR77C1
OA55184

Changed: New rule array keyword in support of triple-length
encrypted DES keys.

Key Test Extended HCR77C1 Changed: Support compliant-tagged key tokens.

Key Token Build HCR77C1
OA55184

Changed: New rule array keyword in support of triple-length DES
keys.

Key Token Build2 HCR77C1
OA55184

Changed: Support for new AES key attributes and KDKGENKY
key type.

Key Translate HCR77C1 Changed: Support compliant-tagged key tokens.

Key Translate2 HCR77C1 Changed: Support compliant-tagged key tokens.

Key Token Build HCR77C1 Changed: Generate compliant-tagged key token skeleton.

Key Token Build2 HCR77C1 Changed: Build version 05 key tokens that can be exported to
CPACF protected key format.

MAC Generate HCR77C1 Changed: Support compliant-tagged key tokens.

MAC Verify HCR77C1 Changed: Support compliant-tagged key tokens.

Chapter 3. Migration 73

|

|

|

|

|

|

|

Table 9. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

PIN Change/Unblock HCR77C1 Changed: Support compliant-tagged key tokens.

Prohibit Export HCR77C1 Changed: Support compliant-tagged key tokens.

Prohibit Export Extended HCR77C1 Changed: Support compliant-tagged key tokens.

Public Infrastructure
Certificate

HCR77C1 New: Create a certificate signing request.

Recover PIN from Offset HCR77C1 Changed: Support compliant-tagged key tokens.

Restrict Key Attribute HCR77C1 Changed: Support compliant-tagged key tokens.

Secure Messaging for PINs HCR77C1 Changed: Support compliant-tagged key tokens.

Symmetric Key Decipher HCR77C1 Changed: Version 05 AES CIPHER key tokens allowed.

Symmetric Key Encipher HCR77C1 Changed: Version 05 AES CIPHER key tokens allowed.

TR-31 Export HCR77C1
OA55184

Changed: Support for ISO-20038 AES key blocks and AES
key-encrypting keys.

TR-31 Export HCR77C1 Changed: Support compliant-tagged key tokens.

TR-31 Import HCR77C1
OA55184

Changed: Support for ISO-20038 AES key blocks and AES
key-encrypting keys

TR-31 Import HCR77C1 Changed: Support compliant-tagged key tokens.

Transaction Validation HCR77C1 Changed: Support compliant-tagged key tokens.

Unique Key Derive HCR77C1 Changed: Derive compliant-tagged key tokens.

VISA CVV Service Generate HCR77C1 Changed: Support compliant-tagged key tokens.

VISA CVV Service Verify HCR77C1 Changed: Support compliant-tagged key tokens.

Digital Signature Generate HCR77C0 Changed: Support for RSA-PSS digital signature scheme.

Digital Signature Verify HCR77C0 Changed: Support for RSA-PSS digital signature scheme.

Key Data Set List HCR77C0 Changed: New option to list unsupported CCA key in CKDS and
PKDS.

PKA Key Generate HCR77C0 Changed: Support for additional RSA public exponent values.

PKA Key Token Build HCR77C0 Changed: Support for additional RSA public exponent values.
Support for RSA-PSS digital signature scheme.

PKA Key Translate HCR77C0 Changed: Support for RSA-PSS digital signature scheme.

ECC Diffie-Hellman HCR77B1 Changed: Support for new derivation algorithm.

Encrypted PIN Translate
Enhanced

HCR77B1 New: Reformat a PIN block where the PAN data is encrypted Visa
Data Secure Platform (Visa DSP) processing.

Key Encryption Translate HCR77B1 New: Change the method of encryption of DES key material.

Key Test2 HCR77B1 Changed: Support new key check value algorithm based on CMAC
for DES and AES.

PKA Key Token Build HCR77B1 Changed: Support for key derivation section for EC private keys
added.

Symmetric Key Decipher HCR77B1 Changed: Support Galois/Counter Mode for AES.

Symmetric Key Decipher HCR77B1 Changed: Support Galois/Counter Mode for AES.

Field Level Decipher HCR77B0 New: Decrypt data base fields, preserving the format of the fields
using the VISA Format Preserving Encryption algorithm.

Field Level Encipher HCR77B0 New: Encrypt data base fields, preserving the format of the fields
using the VISA Format Preserving Encryption algorithm.

74 z/OS ICSF System Programmer's Guide

|

|

Table 9. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

FPE Decipher HCR77B0 New: Decrypt payment card data using Visa Data Secure Platform
(Visa DSP) processing.

FPE Encipher HCR77B0 New: Encrypt payment card data using Visa Data Secure Platform
(Visa DSP) processing.

FPE Translate HCR77B0 New: Translate payment card data from encryption under one key
to encryption under another key using Visa Data Secure Platform
(Visa DSP) processing.

ICSF Multi-Purpose Service HCR77B0 New: Validate the keys in the active CKDS or PKDS.

Key Data Set List HCR77B0 New: Generate a list of labels or handles that match a label filter
and metadata search criteria in an active key data set.

Key Data Set Metadata
Read

HCR77B0 New: Read metadata for a record in an active key data set.

Key Data Set Metadata
Write

HCR77B0 New: Add, delete, and change metadata for a list of records in an
active key data set.

PKCS #11 One-way hash
generate

HCR77B0 Changed: Legacy hash rules added.

PKCS11 One-way hash,
sign, or verify

HCR77B0 Changed: Legacy hash rules added.

Authentication Parameter
Generate

HCR77A1 New: Generate an authentication parameter (AP) and return it
encrypted under a supplied encrypting key.

ICSF Query Facility 2 HCR77A1 New: Provides information on the cryptographic environment as
currently known by ICSF.

Recover PIN From Offset HCR77A1 New: Calculate an encrypted customer-entered PIN from a PIN
generating key, account information, and an offset, returning the
PIN properly formatted and encrypted under a PIN encryption key.

Symmetric Key Export with
Data

HCR77A1 New: Export a symmetric key encrypted using an RSA key, inserted
in a PKCS#1 block type 2, with some extra data supplied by the
application.

Cipher Text Translate2
and
Cipher Text Translate2
with alet

HCR77A0 New: Translates the user-supplied ciphertext from one key to
another key.

Control Vector Generate HCR77A0 Changed:

v Support CIPHERXI, CIPHERXL, and CIPHERXO key types.

v Support DOUBLE-O rule_array keyword.

Derive ICC MK HCR77A0 New: This service generates an ICC master key from an issuer
master key.

Derive Session Key HCR77A0 New: Use this callable service to derive a session key from either
an issuer master key or an ICC master key.

Diversified Key Generate2 HCR77A0 New: Derive keys using a key-generating key.

DK Deterministic PIN
Generate

HCR77A0 New: Generate a PIN using a secret key.

DK Migrate PIN HCR77A0 New: Generate a PIN reference value (PRW) for an existing IOS-1
PIN block.

DK PAN Translate HCR77A0 New: Modify the PAN of an account while keeping the same PIN.

DK PIN Change HCR77A0 New: Allow a customer to select a personal PIN.

DK PIN Verify HCR77A0 New: Verify an ISO-1 PIN.

Chapter 3. Migration 75

Table 9. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

DK PAN Modify in
Transaction

HCR77A0 New: This service is used to obtain a new PIN reference value
(PRW) for an existing PIN when the account information changed.

DK PRW Card Number
Update

HCR77A0 New: Generate a PIN reference value (PRW) when a replacement
card is being issued.

DK PRW CMAC Generate HCR77A0 New: Generate a message authentication code (MAC) over specific
values that are involved in an account number change transaction.

DK Random PIN Generate HCR77A0 New: Generate a random PIN and PIN reference value.

DK Regenerate PRW HCR77A0 New: Generate a new PIN reference value for a changed account
number.

ECC Diffie-Hellman HCR77A0 Changed:

v Support CIPHERXI, CIPHERXL, and CIPHERXO key types.

v Support creation of DES keys with guaranteed unique key
halves.

EMV Scripting Service HCR77A0 New: This service simplifies EMV Scripting.

EMV Transaction Service HCR77A0 New: This service simplifies EMV Authorization Request
Cryptogram (ARQC) and Authorization Response Cryptogram
(ARPC) transaction processing.

EMV Verification Functions HCR77A0 New: This service provides additional functions that are used by
MasterCard for their EMV cards in addition to application
cryptograms and scripting.

Generate Issuer MK HCR77A0 New: This callable service helps with the initial steps of EMV setup
by generating and storing the issuer master keys.

Key Export HCR77A0 Changed: Support CIPHERXI, CIPHERXL, and CIPHERXO key
types.

Key Generate HCR77A0 Changed:

v Generate DES DATAC, DATAM, and CIPHER keys as a single
key in key forms OP, IM, and EX.

v Support CIPHERXI, CIPHERXL, and CIPHERXO key types.

v Support DOUBLE-O key_length.

Key Generate2 HCR77A0 Changed:

v Support generating AES DKYGENKY, MAC, PINCALC,
PINPROT, and PINPRW keys for DK AES PIN services.

v Support generating AES CIPHER keys for use in Cipher Text
Translate2 callable service.

Key Import HCR77A0 Changed: Support CIPHERXI, CIPHERXL, and CIPHERXO key
types.

Key Part Import2 HCR77A0 Changed: Support AES DKYGENKY, MAC, PINCALC, PINPROT,
and PINPRW keys for DK AES PIN services.

Key Test2 HCR77A0 Changed: Support AES DKYGENKY, MAC, PINCALC, PINPROT,
and PINPRW keys for DK AES PIN services.

Key Token Build HCR77A0 Changed:

v Support CIPHERXI, CIPHERXL, and CIPHERXO key types.

v Support DOUBLE-O rule_array keyword.

Key Token Build2 HCR77A0 Changed:

v Support generating AES DKYGENKY, MAC, PINCALC,
PINPROT, and PINPRW key tokens.

v Support C-XLATE keyword for AES CIPHER key type.

76 z/OS ICSF System Programmer's Guide

Table 9. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

Key Translate2 HCR77A0 Changed: Support changing variable-length key tokens with
variable-length payloads to fixed-length payloads.

ICSF Query Facility HCR77A0 Changed: Retrieve weak PIN table from coprocessor.

MAC Generate2 HCR77A0 New: Generate a MAC using AES or HMAC keys.

MAC Verify2 HCR77A0 New: Verify a MAC using AES or HMAC keys.

Multiple Secure Key Import HCR77A0 Changed: Support CIPHERXI, CIPHERXL, and CIPHERXO key
types

PKA Decrypt HCR77A0 Changed: Support formatting data as RSA-OAEP block and both
SHA-1 and SHA-256 hashing.

PKA Encrypt HCR77A0 Changed: Support formatting data as RSA-OAEP block and both
SHA-1 and SHA-256 hashing.

PKA Key Generate HCR77A0 Changed: Support generating RSA keys that can be wrapped by
AES keys.

PKA Key Import HCR77A0 Changed: Support importing RSA keys that are wrapped by an
AES key-encrypting key.

PKA Key Token Build HCR77A0 Changed: Support building RSA-AESC and RSA-AESM skeleton
tokens.

PKA Key Token Change HCR77A0 Changed: Support reenciphering RSA keys wrapped by an ECC
master key.

PKA Key Translate HCR77A0 Changed: Support translating the object protection key (OPK) in an
RSA private key token from a DES key to an AES key.

PKCS #11 Private Key
Structure Decrypt

HCR77A0 New: Decrypt data using a clear private key structure.

PKCS #11 Private Key
Structure Sign

HCR77A0 New: Sign data using a clear private key structure.

PKCS #11 Public Key
Structure Encrypt

HCR77A0 New: Encrypt data using a public key structure.

PKCS #11 Public Key
Structure Verify

HCR77A0 New: Verify a signature using a public key structure.

Restrict Key Attribute HCR77A0 Changed:

v Support AES DKYGENKY, MAC, PINCALC, PINPROT, and
PINPRW keys for DK AES PIN services.

v Support C-XLATE rule_array keyword for AES CIPHER keys.

v Support DOUBLE-O rule_array keyword for DES keys.

Secure Key Import HCR77A0 Changed: Support CIPHERXI, CIPHERXL, and CIPHERXO key
types.

Secure Key Import2 HCR77A0 Changed: Support AES DKYGENKY, MAC, PINCALC, PINPROT,
and PINPRW keys for DK AES PIN services.

Symmetric Key Export HCR77A0 Changed: Support AES DKYGENKY, MAC, PINCALC, PINPROT,
and PINPRW keys for DK AES PIN services.

Symmetric Key Import2 HCR77A0 Changed: Support AES DKYGENKY, MAC, PINCALC, PINPROT,
and PINPRW keys for DK AES PIN services.

Chapter 3. Migration 77

Table 9. Summary of new and changed ICSF callable services (continued)

Callable service FMID Description

Unique Key Derive HCR77A0 New: Use the Unique Key Derive callable service to derive a key
using the Base Derivation Key and the Derivation Data. The
following key types can be derived:

v CIPHER

v ENCIPHER

v DECIPHER

v MAC

v MACVER

v IPINENC

v OPINENC

v DATA token containing a PIN Key

CCA access control
The following table summarizes the new and changed CCA access controls for
ICSF FMID HCR77C1. For complete reference information on these CCA access
controls, see z/OS Cryptographic Services ICSF Application Programmer's Guide.

Table 10. Summary of new and changed CCA access controls

Access control Description
FMID or APAR
number Services affected Offset

Disallow translation from AES wrapping to DES
wrapping

New HCR77C1
OA55184

CSNBKTR2
CSNBPTR2
CSNDPKT

01C5

Disallow translation from AES wrapping to
weaker AES wrapping

New HCR77C1
OA55184

CSNBKTR2
CSNBPTR2
CSNDPKT

01C6

Disallow translation from DES wrapping to
weaker DES wrapping

New HCR77C1
OA55184

CSNBAPG
CSNBEPG
CSNBKTR
CSNBKTR2
CSNBPFO
CSNBPTR
CSNBPTRE
CSNBPTR2
CSNBSKY
CSNDPKT

01C7

Diversify Directed Key New HCR77C1
OA55184

CSNBDDK 0080

Diversify Directed Key – Allow KDFFM DERIVE New HCR77C1
OA55184

CSNBDDK 0081

Diversify Directed Key – Allow KDFFM
GENERATE

New HCR77C1
OA55184

CSNBDDK 0082

T31X - Permit version A TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31X 014D

T31X - Permit version B TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31X 014E

T31X - Permit version C TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31X 014F

78 z/OS ICSF System Programmer's Guide

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Table 10. Summary of new and changed CCA access controls (continued)

Access control Description
FMID or APAR
number Services affected Offset

T31I - Permit version A TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31I 0150

T31I - Permit version B TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31I 0151

T31I - Permit version C TR-31 key blocks Name change HCR77C1
OA55184

CSNBT31I 0152

T31I - Permit override of default wrapping
method

Name change HCR77C1
OA55184

CSNBT31I 0153

T31X - Permit any CCA DES key if INCL-CV is
specified

Name change HCR77C1
OA55184

CSNBT31X 0158

T31I - Permit C0:G/C/V to DES
MAC/MACVER:CVVKEY-A

Name change HCR77C1
OA55184

CSNBT31I 015A

T31I - C0:G/C/V to DES MAC/
MACVER:AMEX-CSC

Name change HCR77C1
OA55184

CSNBT31I 015B

T31I - K0:E to DES EXPORTER/OKEYXLAT Name change HCR77C1
OA55184

CSNBT31I 015C

T31I - K0:D to DES IMPORTER/IKEYXLAT Name change HCR77C1
OA55184

CSNBT31I 015D

T31I - K0:B to DES EXPORTER/OKEYXLAT Name change HCR77C1
OA55184

CSNBT31I 015E

T31I - K0:B to DES IMPORTER/IKEYXLAT Name change HCR77C1
OA55184

CSNBT31I 015F

T31I - Permit K1/K4:E to DES
EXPORTER/OKEYXLAT

Name change HCR77C1
OA55184

CSNBT31I 0160

T31I - Permit K1/K4:D to DES
IMPORTER/IKEYXLAT

Name change HCR77C1
OA55184

CSNBT31I 0161

T31I - Permit K1/K4:B to DES
EXPORTER/OKEYXLAT

Name change HCR77C1
OA55184

CSNBT31I 0162

T31I - Permit K1/K4:B to DES
IMPORTER/IKEYXLAT

Name change HCR77C1
OA55184

CSNBT31I 0163

T31I - Permit M0/M1/M3:G/C/V to DES
MAC/MACVER:ANY-MAC

Name change HCR77C1
OA55184

CSNBT31I 0164

T31I - Permit P0:E to DES OPINENC Name change HCR77C1
OA55184

CSNBT31I 0165

T31I - Permit P0:D to DES IPINENC Name change HCR77C1
OA55184

CSNBT31I 0166

T31I - Permit V0:N/G/C to DES
PINGEN:NO-SPEC NOOFFSET

Name change HCR77C1
OA55184

CSNBT31I 0167

T31I - Permit V0:N/V to DES PINVER:NO-SPEC
NOOFFSET

Name change HCR77C1
OA55184

CSNBT31I 0168

T31I - Permit V1:N/G/C to DES
PINGEN:IBM-PIN/IBM-PINO NOOFFSET

Name change HCR77C1
OA55184

CSNBT31I 0169

T31I - Permit V1:N/V to DES
PINVER:IBM-PIN/IBM-PINO NOOFFSET

Name change HCR77C1
OA55184

CSNBT31I 016A

T31I - Permit V2:N/G/C to DES
PINGEN:VISA-PVV

Name change HCR77C1
OA55184

CSNBT31I 016B

Chapter 3. Migration 79

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Table 10. Summary of new and changed CCA access controls (continued)

Access control Description
FMID or APAR
number Services affected Offset

T31I - Permit V2:N/V to DES
PINVER:VISA-PVV

Name change HCR77C1
OA55184

CSNBT31I 016C

T31I - Permit E0:N/X to DES
DKYGENKY:DKYL0+DMAC

Name change HCR77C1
OA55184

CSNBT31I 016D

T31I - Permit E0:N/X to DES
DKYGENKY:DKYL0+DMV

Name change HCR77C1
OA55184

CSNBT31I 016E

T31I - Permit E0:N/X to DES
DKYGENKY:DKYL1+DMAC

Name change HCR77C1
OA55184

CSNBT31I 016F

T31I - Permit E0:N/X to DES
DKYGENKY:DKYL1+DMV

Name change HCR77C1
OA55184

CSNBT31I 0170

T31I - Permit E1:N/E/D/B/X to DES
DKYGENKY:DKYL0+DMPIN

Name change HCR77C1
OA55184

CSNBT31I 0171

T31I - Permit E1:N/E/D/B/X to DES
DKYGENKY:DKYL0+DDATA

Name change HCR77C1
OA55184

CSNBT31I 0172

T31I - Permit E1:N/E/D/B/X to DES
DKYGENKY:DKYL1+DMPIN

Name change HCR77C1
OA55184

CSNBT31I 0173

T31I - Permit E1:N/E/D/B/X to DES
DKYGENKY:DKYL1+DDATA

Name change HCR77C1
OA55184

CSNBT31I 0174

T31I - Permit E2:N/X to DES
DKYGENKY:DKYL0+DMAC

Name change HCR77C1
OA55184

CSNBT31I 0175

T31I - Permit E2:N/X to DES
DKYGENKY:DKYL1+DMAC

Name change HCR77C1
OA55184

CSNBT31I 0176

T31I - Permit E3:N/E/D/B/G/X to DES
ENCIPHER

Name change HCR77C1
OA55184

CSNBT31I 0177

T31I - Permit E4:N/B/X to DES
DKYGENKY:DKYL0+DDATA

Name change HCR77C1
OA55184

CSNBT31I 0178

T31I - Permit E5:N/G/C/V/E/D/G/X to DES
DKYGENKY:DKYL0+DMAC

Name change HCR77C1
OA55184

CSNBT31I 0179

T31I - Permit E5:N/G/C/V/E/D/G/X to DES
DKYGENKY:DKYL0+DDATA

Name change HCR77C1
OA55184

CSNBT31I 017A

T31I - Permit E5:N/G/C/V/E/D/G/X to DES
DKYGENKY:DKYL0+DEXP

Name change HCR77C1
OA55184

CSNBT31I 017B

T31I - Permit V0/V1/V2:N to DES
PINGEN/PINVER

Name change HCR77C1
OA55184

CSNBT31I 017C

T31X - Permit DES KEYGENKY: DUKPT to
B0:N/X

Name change HCR77C1
OA55184

CSNBT31I 0180

T31X - Permit DES MAC/MACVER:AMEX-CSC
to C0:G/C/V

Name change HCR77C1
OA55184

CSNBT31I 0181

T31X - Permit DES MAC/MACVER: CVV-KEYA
to C0:G/C/V

Name change HCR77C1
OA55184

CSNBT31I 0182

T31X - Permit DES MAC/MACVER: ANY-MAC
to C0:G/C/V

Name change HCR77C1
OA55184

CSNBT31I 0183

T31X - Permit DES DATA/DATAM/DATAMV
to C0:G/C/V

Name change HCR77C1
OA55184

CSNBT31I 0184

T31X - Permit DES ENCIPHER/DECIPHER/
CIPHER to D0:E/D/B

Name change HCR77C1
OA55184

CSNBT31I 0185

80 z/OS ICSF System Programmer's Guide

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Table 10. Summary of new and changed CCA access controls (continued)

Access control Description
FMID or APAR
number Services affected Offset

T31X - Permit DES DATA to D0:E/D/B Name change HCR77C1
OA55184

CSNBT31I 0186

T31X - Permit DES EXPORTER/OKEYXLAT to
K0:E

Name change HCR77C1
OA55184

CSNBT31I 0187

T31X - Permit DES IMPORTER/IKEYXLAT to
K0:D

Name change HCR77C1
OA55184

CSNBT31I 0188

T31X - Permit DES EXPORTER/OKEYXLAT to
K1/K4:E

Name change HCR77C1
OA55184

CSNBT31I 0189

T31X - Permit DES IMPORTER/IKEYXLAT to
K1/K4:D

Name change HCR77C1
OA55184

CSNBT31I 018A

T31X - Permit DES MAC/DATA/DATAM to
M0:G/C

Name change HCR77C1
OA55184

CSNBT31I 018B

T31X - Permit DES MACVER/DATA/DATAMV
to M0:V

Name change HCR77C1
OA55184

CSNBT31I 018C

T31X - Permit DES MAC/DATA/DATAM to
M1:G/C

Name change HCR77C1
OA55184

CSNBT31I 018D

T31X - Permit DES MACVER/DATA/DATAMV
to M1:V

Name change HCR77C1
OA55184

CSNBT31I 018E

T31X - Permit DES MAC/DATA/DATAM to
M3:G/C

Name change HCR77C1
OA55184

CSNBT31I 018F

T31X - Permit DES MACVER/DATA/DATAMV
to M3:V

Name change HCR77C1
OA55184

CSNBT31I 0190

T31X - Permit DES OPINENC to P0:E Name change HCR77C1
OA55184

CSNBT31I 0191

T31X - Permit DES IPINENC to P0:D Name change HCR77C1
OA55184

CSNBT31I 0192

T31X - Permit DES PINVER: NO-SPEC to
V0:N/V

Name change HCR77C1
OA55184

CSNBT31I 0193

T31X - Permit DES PINGEN: NO-SPEC to
V0:N/C

Name change HCR77C1
OA55184

CSNBT31I 0194

T31X - Permit DES PINVER:
NO-SPEC/IBM-PIN/IBM-PINO to V1:N/V

Name change HCR77C1
OA55184

CSNBT31I 0195

T31X - Permit DES PINGEN:
NO-SPEC/IBM-PIN/IBM-PINO to V1:N/V

Name change HCR77C1
OA55184

CSNBT31I 0196

T31X - Permit DES PINVER:
NO-SPEC/VISA-PVV to V2:N/V

Name change HCR77C1
OA55184

CSNBT31I 0197

T31X - Permit DES PINGEN:
NO-SPEC/VISA-PVV to V2:N/C

Name change HCR77C1
OA55184

CSNBT31I 0198

T31X - Permit DES DKYGENKY: DKYL0+DMAC
to E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 0199

T31X - Permit DES DKYGENKY: DKYL0+DMV
to E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 019A

T31X - Permit DES DKYGENKY: DKYL0+DALL
to E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 019B

T31X - Permit DES DKYGENKY: DKYL1+DMAC
to E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 019C

Chapter 3. Migration 81

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Table 10. Summary of new and changed CCA access controls (continued)

Access control Description
FMID or APAR
number Services affected Offset

T31X - Permit DES DKYGENKY: DKYL1+DMV
to E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 019D

T31X - Permit DES DKYGENKY: DKYL1+DALL
to E0:N/X

Name change HCR77C1
OA55184

CSNBT31I 019E

T31X - Permit DES DKYGENKY:
DKYL0+DDATA to E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 019F

T31X - Permit DES DKYGENKY:
DKYL0+DMPIN to E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A0

T31X - Permit DES DKYGENKY: DKYL0+DALL
to E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A1

T31X - Permit DES DKYGENKY:
DKYL1+DDATA to E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A2

T31X - Permit DES DKYGENKY:
DKYL1+DMPIN to E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A3

T31X - Permit DES DKYGENKY: DKYL1+DALL
to E1:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A4

T31X - Permit DES DKYGENKY: DKYL0+DMAC
to E2:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A5

T31X - Permit DES DKYGENKY: DKYL0+DALL
to E2:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A6

T31X - Permit DES DKYGENKY: DKYL1+DMAC
to E2:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A7

T31X - Permit DES DKYGENKY: DKYL1+DALL
to E2:N/X

Name change HCR77C1
OA55184

CSNBT31I 01A8

T31X - Permit DES DATA/DATAM/CIPHER/
MAC/ENCIPHER to E3:N/G/E/X

Name change HCR77C1
OA55184

CSNBT31I 01A9

T31X - Permit DES DKYGENKY:
DKYL0+DDATA to E4:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AA

T31X - Permit DES DKYGENKY: DKYL0+DALL
to E4:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AB

T31X - Permit DES DKYGENKY: DKYL0+DEXP
to E5:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AC

T31X - Permit DES DKYGENKY: DKYL0+DMAC
to E5:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AD

T31X - Permit DES DKYGENKY:
DKYL0+DDATA to E5:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AE

T31X - Permit DES DKYGENKY:DKYL0+DALL
to E5:N/X

Name change HCR77C1
OA55184

CSNBT31I 01AF

T31X - Permit DES PINGEN to V0:N and DES
PINVER to V1/V2:N

Name change HCR77C1
OA55184

CSNBT31I 01B0

T31X - Permit AES CIPHER to D0:E/D/B New HCR77C1
OA55184

CSNBT31X 01D0

T31X - Permit AES MAC: CMAC to M6:G/C/V New HCR77C1
OA55184

CSNBT31X 01D1

T31X - Permit AES PINPROT to P0:E/D New HCR77C1
OA55184

CSNBT31X 01D2

82 z/OS ICSF System Programmer's Guide

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Table 10. Summary of new and changed CCA access controls (continued)

Access control Description
FMID or APAR
number Services affected Offset

T31X - Permit AES EXPORTER to K0:E New HCR77C1
OA55184

CSNBT31X 01D3

T31X - Permit AES EXPORTER to K1:E New HCR77C1
OA55184

CSNBT31X 01D4

T31X - Permit AES EXPORTER to K4:E New HCR77C1
OA55184

CSNBT31X 01D5

T31X - Permit AES IMPORTER to K0:D New HCR77C1
OA55184

CSNBT31X 01D6

T31X - Permit AES IMPORTER to K1:D New HCR77C1
OA55184

CSNBT31X 01D7

T31X - Permit AES IMPORTER to K4:D New HCR77C1
OA55184

CSNBT31X 01D8

T31X - Permit AES DKYGENKY:D-ALL/DMAC
to E0:X

New HCR77C1
OA55184

CSNBT31X 01D9

T31X - Permit AES DKYGENKY:D-ALL/
DCIPHER to E1:X

New HCR77C1
OA55184

CSNBT31X 01DA

T31X - Permit AES DKYGENKY:D-ALL/D-MAC
to E2:X

New HCR77C1
OA55184

CSNBT31X 01DB

T31X - Permit AES CIPHER to
E3/E/B,DKYGENKY:D-ALL/DCIP to E3:X

New HCR77C1
OA55184

CSNBT31X 01DC

T31X - Permit AES DKYGENKY:D-ALL/D-
CIPHER to E4:X

New HCR77C1
OA55184

CSNBT31X 01DD

T31X - Permit AES DKYGENKY:D-MAC to E5:X New HCR77C1
OA55184

CSNBT31X 01DE

T31I - Permit D0:E/D/B to AES
CIPHER:ENC/DEC/ENC+DEC

New HCR77C1
OA55184

CSNBT31I 01E0

T31I - Permit M6:G/C/V to AES
MAC:CMAC+GENONLY/GEN/VER

New HCR77C1
OA55184

CSNBT31I 01E1

T31I - Permit P0:E/D to AES
PINPROT:ENC/DEC+CBC+ISO-4

New HCR77C1
OA55184

CSNBT31I 01E2

T31I - Permit K0:E to AES EXPORTER New HCR77C1
OA55184

CSNBT31I 01E3

T31I - Permit K0:D to AES IMPORTER New HCR77C1
OA55184

CSNBT31I 01E4

T31I - Permit K1/K4:E to AES
EXPORTER:EXPTT31D+VARDRV-D

New HCR77C1
OA55184

CSNBT31I 01E5

T31I - Permit AES K1/K4:D to AES
IMPORTER:IMPTT31D+VARDRV-D

New HCR77C1
OA55184

CSNBT31I 01E6

T31I - Permit E0:X to AES DKYGENKY:DKYL0/
L1/L2+D-MAC+GEN+CMAC

New HCR77C1
OA55184

CSNBT31I 01E7

T31I - Permit E1:X to AES DKYGENKY:DKYL0/
L1/L2+D-SECMSG+SMPIN

New HCR77C1
OA55184

CSNBT31I 01E8

T31I - Permit E2:X to AES DKYGENKY:DKYL0/
L1/L2+D-MAC+GEN+CMAC

New HCR77C1
OA55184

CSNBT31I 01E9

T31I - Permit E3:X to AES DKYGENKY:D-
CIPHER+ENC+DEC+CBC

New HCR77C1
OA55184

CSNBT31I 01EA

Chapter 3. Migration 83

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Table 10. Summary of new and changed CCA access controls (continued)

Access control Description
FMID or APAR
number Services affected Offset

T31I - Permit E3:E/B to AES
CIPHER:ENCRYPT/ENC+DEC

New HCR77C1
OA55184

CSNBT31I 01EB

T31I - Permit E4:X to AES DKYGENKY:DKYL0/
L1/L2+D-CIPHER+ENC+DEC

New HCR77C1
OA55184

CSNBT31I 01EC

T31I - Permit E5:X to AES DKYGENKY:DKYL0/
L1/L2/D-MAC+GEN+CMAC

New HCR77C1
OA55184

CSNBT31I 01ED

T31X - Permit version D TR-31 key blocks New HCR77C1
OA55184

CSNBT31X 0382

T31X - Permit AES KDKGENKY: KDKTYPEA to
11:X

New HCR77C1
OA55184

CSNBT31X 0383

T31X - Permit AES KDKGENKY: KDKTYPEB to
10:X

New HCR77C1
OA55184

CSNBT31X 0384

T31X - Permit DES DKYGENKY: DKYL0:DMPIN
to 12:X

New HCR77C1
OA55184

CSNBT31X 0385

T31I - Permit version D TR-31 key blocks New HCR77C1
OA55184

CSNBT31I 0386

Encrypted PIN Translate2 – Permit ISO-4 to
ISO-4 Translate

New HCR77C1
OA55184

CSNBPTR2 038A

Encrypted PIN Translate2 – Permit ISO-4
Reformat with PAN Change

New HCR77C1
OA55184

CSNBPTR2 038B

Encrypted PIN Translate2 – Permit ISO-4 to
ISO-4 Reformat

New HCR77C1
OA55184

CSNBPTR2 038C

Encrypted PIN Translate2 – Permit ISO-1 to
ISO-4 Reformat

New HCR77C1
OA55184

CSNBPTR2 038D

Encrypted PIN Translate2 – Permit ISO-4 to
ISO-1 Reformat

New HCR77C1
OA55184

CSNBPTR2 038E

Encrypted PIN Translate2 – Permit ISO-0 to
ISO-4 Reformat

New HCR77C1
OA55184

CSNBPTR2 038F

Encrypted PIN Translate2 – Permit ISO-4 to
ISO-0 Reformat

New HCR77C1
OA55184

CSNBPTR2 0390

Encrypted PIN Translate2 – REFORMAT New HCR77C1
OA55184

CSNBPTR2 0391

Encrypted PIN Translate2 – TRANSLATE New HCR77C1
OA55184

CSNBPTR2 0392

Encrypted PIN Translate2 – Permit ISO-1 to
ISO-4 RFMT1TO4

New HCR77C1
OA55184

CSNBPTR2 0393

Public Infrastructure Certificate New HCR77C1 CSNDPIC 0070

Public Infrastructure Certificate - PK10SNRQ New HCR77C1 CSNDPIC 007C

Allow weak wrapping of compliance-tagged
keys by DES MK

New HCR77C1 All callable
services that use
compliant tagged
DES key tokens.

02EB

84 z/OS ICSF System Programmer's Guide

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Table 10. Summary of new and changed CCA access controls (continued)

Access control Description
FMID or APAR
number Services affected Offset

Authenticated Key Export - SETSNKEY New HCR77C1 CSNBSYD
CSNBSYD1
CSNBSYE
CSNBSYE1
CSNBFLD
CSNBFLE
CSNBKRR2

02F5

Authenticated Key Export - DRVTXKEY New HCR77C1 CSNBSYD
CSNBSYD1
CSNBSYE
CSNBSYE1
CSNBFLD
CSNBFLE
CSNBKRR2

02F6

Authenticated Key Export - EXPTSK New HCR77C1 CSNBSYD
CSNBSYD1
CSNBSYE
CSNBSYE1
CSNBFLD
CSNBFLE
CSNBKRR2

02F7

Key Translate2 – COMP-TAG New HCR77C1 CSNBKTR2 02F8

Key Translate2 - COMP-CHK New HCR77C1 CSNBKTR2 02F9

Digital Signature Verify - PKCS-PSS allow not
exact salt length

New HCR77C0 CSNDDSV 033B

Digital Signature Generate - PKCS-PSS allow
small salt

New HCR77C0 CSNDDSG 033C

Key Test2 - AES, CMACZERO New OA49064 CSNBKTY2 0022

Key Test2 - DES, CMACZERO New OA49064 CSNBKTY2 0023

PKA Key Import - Disallow clear key import New OA49064 CSNDPKI 003A

Symmetric Algorithm Encipher - Galois/Counter
mode AES

New OA49064 CSNBSAE 01CD

Symmetric Algorithm Decipher - Galois/Counter
mode AES

New OA49064 CSNBSAD 01CE

Encrypted PIN Translate Enhanced New OA49064 CSNBPTRE 02D5

ECC Diffie-Hellman - Allow DRIV02 New OA49064 CSNDEDH 035F

Key Encryption Translate - CBC to ECB New OA49443 CSNBKET 030D

Key Encryption Translate - ECB to CBC New OA49443 CSNBKET 030E

PKA Decrypt - Disallow PKCS-1.2 New OA47781 CSNDPKD 0206

PKA Decrypt - Disallow ZEROPAD New OA47781 CSNDPKD 0207

PKA Decrypt - Disallow PKCSOAEP New OA47781 CSNDPKD 0208

PKA Encrypt - Disallow PKCS-1.2 New OA47781 CSNDPK3 0209

PKA Encrypt - Disallow ZEROPAD New OA47781 CSNDPK3 020A

PKA Encrypt - Disallow MRP New OA47781 CSNDPK3 020B

PKA Encrypt - Disallow PKCSOAEP New OA47781 CSNDPKE 020C

Diversified Key Generate2 - MK-OPTC New OA46466 CSNBDKG2 02D2

Chapter 3. Migration 85

Table 10. Summary of new and changed CCA access controls (continued)

Access control Description
FMID or APAR
number Services affected Offset

Diversified Key Generate2 - KDFFM-DK New OA46466 CSNBDKG2 02D3

Diversified Key Generate2 - Allow length option
for KDFFM-DK

New OA46466 CSNBDKG2 02D4

FPE Encrypt New HCR77B0 CSNBFPEE 02CF

FPE Decrypt New HCR77B0 CSNBFPED 02D0

FPE Translate New HCR77B0 CSNBFPET 02D1

DK Migrate PIN New OA44444 CSNBDMP 02CE

DK PRW Card Number Update New OA43906 CSNBPNU 02C3

DK PRW CMAC Generate New OA43906 CSNBDPCG 02C4

DK Deterministic PIN Generate New OA43906 CSNBDDPG 02C6

DK PAN Translate New OA43906 CSNBDPT 02C7

DK Regenerate PRW New OA43906 CSNBDRP 02C8

MAC Generate2 - AES CMAC New OA43906 CSNBMGN2 0336

MAC Verify2 - AES CMAC New OA43906 CSNBMVR2 0337

PKA Key Translate - From CCA RSA CRT to
EMV DDA format

New OA43816 CSNDPKT 0338

PKA Key Translate - From CCA RSA CRT to
EMV DDAE format

New OA43816 CSNDPKT 0339

PKA Key Translate - From CCA RSA CRT to
EMV CRT format

New OA43816 CSNDPKT 033A

Key Generate2 - DK PIN key set New OA42246 CSNBKGN2 02BB

Key Generate2 - DK PIN print key New OA42246 CSNBKGN2 02BC

Key Generate2 - DK PIN admin1 key set
PINPROT

New OA42246 CSNBKGN2 02BD

Key Generate2 - DK PIN admin1 key set MAC New OA42246 CSNBKGN2 02BE

Key Generate2 - DK PIN admin2 key set MAC New OA42246 CSNBKGN2 02BF

DK Random PIN Generate New OA42246 CSNBDRPG 02C0

DK PIN Verify New OA42246 CSNBDPV 02C1

DK PIN Change New OA42246 CSNBDPC 02C2

DK PAN Modify in Transaction New OA42246 CSNBDPMT 02C5

Diversified Key Generate2 - SESS-ENC New OA42246 CSNBDKG2 02CC

Diversified Key Generate2 - DALL New OA42246 CSNBDKG2 02CD

Remote Key Export - Include RKX in default
wrap config

New HCR77A1 CSNDRKX 013F

Remote Key Export - Allow wrapping override
keywords

New HCR77A1 CSNDRKX 02BA

Unique Key Derive – K3IPEK New HCR77A1 CSNBUKD 0335

Recover PIN From Offset New HCR77A1 CSNBPFO 02B0

Authentication Parameter Generate New HCR77A1 CSNBAPG 02B1

Authentication Parameter Generate - Clear New HCR77A1 CSNBAPG 02B2

Symmetric Key Export - AESKWCV New HCR77A1 CSNDSYX 02B3

86 z/OS ICSF System Programmer's Guide

Table 10. Summary of new and changed CCA access controls (continued)

Access control Description
FMID or APAR
number Services affected Offset

Symmetric Key Import2 - AESKWCV New HCR77A1 CSNDSYI2 02B4

Symmetric Key Export with Data New HCR77A1 CSNDSXD 02B5

Symmetric Key Export with Data - Special New HCR77A1 CSNDSXD 02B6

Key Translate2 - Translate fixed to variable
payload

New HCR77A1 CSNBKTR2 0334

Identification of cryptographic features
Starting in ICSF FMID HCR77B0, the prefix used to identify Crypto Express2,
Crypto Express3, and Crypto Express4 adapters has changed. The following table
lists the prefix for these adapters for FMIDs prior to HCR77B0 and the prefix for
these adapters for FMID HCR77B0 and later releases. This change applies to ICSF
messages, panels, and publications. The TKE workstation uses this same
identification starting with TKE release 8.0.

Table 11. Cryptographic adapter identification

Cryptographic adapter
Prefix for FMIDs prior to
HCR77B0

Prefix for FMID HCR77B0
and later

Crypto Express2 coprocessor E 2C

Crypto Express2 accelerator F 2A

Crypto Express3 coprocessor G 3C

Crypto Express3 accelerator H 3A

Crypto Express4 CCA
coprocessor

SC 4C

Crypto Express4 EP11
coprocessor

SP 4P

Crypto Express4 accelerator SA 4A

Note: All newer cryptographic adapters use the convention where n is the number
in the adapter name. For regional cryptographic servers, n represents the
generation number of the server:

nA Crypto Expressn accelerators.

nC Crypto Expressn CCA coprocessors.

nP Crypto Expressn EP11 coprocessors.

nR Regional cryptographic servers. Note: 2R requires ICSF FMID HCR77B1
with PTF OA49069 or later.

Ensure the expected P11 master key support is available
ICSF introduced support for the Enterprise PKCS #11 (EP11) coprocessor and its
associated P11 master key with FMID HCR77A0. ICSF uses the master key
validation pattern (MKVP) in the header record of the TKDS to determine which
EP11 coprocessors to make active. In FMID HCR77A0, an EP11 coprocessor was
considered "active" if the MKVP in the current master key register matched the
MKVP in the header record of the TKDS. If the MKVP did not match, or if the
TKDS was never initialized, the EP11 coprocessor was considered "online", usable
only for a limited number of non-secure key PKCS #11 services.

Chapter 3. Migration 87

Staring with FMID HCR77A1, the online status no longer exists. Coprocessors are
either active or in some error state. If the TKDS has been initialized, then any EP11
coprocessor that does not have a current master key register MKVP that matches
the TKDS is not made active and, thus, not usable. Note, however, if the the TKDS
has not been initialized, then all EP11 coprocessors will be made active even
though they would only be usable for non-secure key PKCS #11 services.

Key store policy
KGUP

ICSF enhanced KGUP to enforce key store policy for duplicate key tokens in the
CKDS. When the SAF XFACILIT resource CSF.CKDS.TOKEN.NODUPLICATES is
enabled, KGUP checks for duplicate encrypted tokens in the CKDS for ADD and
UPDATE control statements. When a duplicate token is found, the processing of
that control statement is terminated.

This change might cause KGUP to fail if your ICSF administrator has enabled the
CSF.CKDS.TOKEN.NODUPLICATES resource. If you are generating keys with
random key values and the job fails because it is a duplicate key token, you should
be able to rerun the job to generate a different key value. If you are adding keys
with a specific key value and the job fails, you should contact your ICSF
administrator to determine what action to take.

Key material archiving

ICSF implemented a way to archive records in the key data sets. The record
remains in the data set, but the key material in the record cannot be used. Any
attempt to use the key material will fail unless the optional key archive use control
(a SAF XFACILIT resource) is enabled, which allows the request to complete. An
SMF record is logged in both cases. An optional joblog message is issued for the
first successful reference if the key archive message control (KEYARCHMSG) is
enabled. For more information, see z/OS Cryptographic Services ICSF Administrator's
Guide.

To use this function, the key data sets must be in the common record format
(KDSR), introduced in FMID HCR77A1. Existing data sets can be converted to the
KDSR format by using the Coordinated KDS Administration callable service. For
more information, see z/OS Cryptographic Services ICSF Application Programmer's
Guide.

Key material validity

ICSF implemented a way to specify a period when the key material of a key data
set record is active. The ICSF administrator can specify the start and end dates
when the key material is active and ICSF allows only the key material to be used
by applications within those dates. For more information, see z/OS Cryptographic
Services ICSF Administrator's Guide.

To use this function, the key data sets must be in the common record format
(KDSR), introduced in FMID HCR77A1. Existing data sets can be converted to the
KDSR format by using the Coordinated KDS Administration callable service. For
more information, see z/OS Cryptographic Services ICSF Application Programmer's
Guide.

88 z/OS ICSF System Programmer's Guide

DES keys
Triple-length key support

Additional triple-length DES key support is introduced by APAR OA55184 for
ICSF FMID HCR77C1 and later releases and licensed internal code for the z13,
z13s, z14, and later servers. In general, any service where a double-length key can
be used, a triple-length key can be used as well. The service description should be
checked for any restrictions.

NOCV Key-encrypting keys

DES NOCV key-encrypting keys are used to export and import keys where the
external token has no control vector (a zero control vector is used). This allows
communication with non-CCA crypto providers.

Starting with APAR OA55184 for ICSF FMID HCR77C1 and later releases and
licensed internal code for the z13, z13s, z14, and later servers, any IMPORTER or
EXPORTER can be a NOCV KEK when the control vector is the default control
vector with these exceptions:
v The form bits may be any value other than single length key (000).
v The ENH-ONLY (bit 56) attribute may be enabled. For triple-length keys, the

ENH-ONLY attribute is enabled.

ICSF key data sets

Record metadata
ICSF implemented additional metadata for key data sets records. The metadata
include key material validity dates, last referenced, archive and recall dates, and
IBM and installation metadata blocks. This metadata can be used as search criteria
for the Key Data Set List callable service. The metadata can be read by using the
Key Data Set Metadata Read service. Some of the metadata can be added, deleted,
and changed by using the Key Data Set Metadata Write service. For more
information, see z/OS Cryptographic Services ICSF Administrator's Guide.

To use this function, the key data sets must be in the common record format
(KDSR), introduced in FMID HCR77A1. Existing data sets can be converted to the
KDSR format by using the Coordinated KDS Administration callable service. For
more information, see z/OS Cryptographic Services ICSF Application Programmer's
Guide.

CKDS
There are three formats of the CKDS:
v A fixed length record format with LRECL=252 (supported by all releases of

ICSF). Sample is CSFCKDS.
v A variable length record format with LRECL=1024 (supported by HCR7780 and

later releases). Sample is CSFCKD2.
v The common record format (KDSR)which is common to all key data sets with

LRECL=2048 (supported by ICSF FMID HCR77A1 and later releases). Sample is
CSFCKD3.

The variable length record format is only required if variable-length key tokens are
to be stored in the CKDS. All fixed-length and variable-length symmetric key
tokens can be stored in the variable-length record format CKDS. See “Migrating to
the variable length CKDS” on page 90 for more information.

Chapter 3. Migration 89

|

|

|
|
|
|
|

|

|
|
|

|
|
|
|

|

|
|

|

In addition to supporting all symmetric key tokens, the KDSR format CKDS
provides support for metadata for each record including tracking usage of the
records. See “Migrating to the common record format (KDSR) key data set” on
page 91 for more information.

When new key types are added to the CKDS, these following consideration applies
when sharing the CKDS:
v When clear DES or AES keys are added to the CKDS, RACF-protect all clear

DES and AES keys by label name on all systems sharing the CKDS.

If you have no coprocessor, you can initialize the CKDS for use with clear AES and
DES data keys. This CKDS cannot be used on a system with cryptographic
coprocessors.

Note: The CKDS exits (single-record, read-write and retrieval) are not enabled for
either variable-length record format of the CKDS. See Chapter 5, “Installation
exits,” on page 167 for more information.

Migrating to the variable length CKDS: If variable-length symmetric key tokens
are to be stored in the CKDS, any existing CKDS must be converted to a variable
length record format.

To convert to the LRECL = 1024 format, ICSF provides the conversion utility
program, CSFCNV2, that converts a CKDS to the variable length format. See
Chapter 7, “Converting a CKDS from fixed length to variable length record
format,” on page 231 for more information.

To convert to the KDSR format (ICSF FMID HCR77A1 or later), see “Migrating to
the common record format (KDSR) key data set” on page 91 for more information.

There is no reason to migrate a variable length record CKDS if your applications
are not using AES or HMAC keys in variable-length tokens. You can migrate to the
variable length record at any time.

Note: All systems that will share a CKDS with the variable length record format
must be running ICSF FMID HCR7780 or later. Those with KDSR format must be
running ICSF HCR77A1 or later.

To migrate to a variable length CKDS (LRECL=1024):
1. Install the HC7780 or later release of ICSF on all systems that will share the

CKDS.
2. Allocate a new CKDS with the variable length record format. The new CKDS

should be large enough to hold all key in the current CKDS.
3. Disable dynamic CKDS updates on all systems.
4. Run the CKDS Conversion2 utility to convert the existing CKDS records to the

new record format
5. Refresh the new CKDS on all systems that are sharing the CKDS
6. Enable dynamic CKDS updates on all systems

PKDS
There are two formats of the PKDS: original and KDSR. Both formats use the same
LRECL. The KDSR format provides support for metadata for each record including

90 z/OS ICSF System Programmer's Guide

tracking usage of the record. To convert the original format PKDS to common
record (KDSR) format, see “Migrating to the common record format (KDSR) key
data set.”

The process of re-enciphering the PKDS is different for IBM zEnterprise 196 or
newer servers.

TKDS
There are two formats of the TKDS: original and KDSR. Both formats use the same
LRECL. The KDSR format provides support for metadata for each record including
tracking usage of the record. To convert the original format TKDS to common
record (KDSR) format, see “Migrating to the common record format (KDSR) key
data set.”

For secure PKCS #11 support (either Enterprise PKCS #11 or regional cryptographic
services), the TKDS must be initialized with the appropriate master key. This is the
PKCS #11 master key (P11-MK) for Enterprise PKCS #11 services or the regional
cryptographic services master key (RCS-MK) for regional cryptographic services.
For P11-MK, support to INITIALIZE TKDS and UPDATE TKDS is available in the
Master Key Management Panels. For RCS-MK, TKDS initialization implicitly
happens the first time a regional cryptographic server is connected.

For information on managing and sharing the TKDS in a sysplex environment, see
z/OS Cryptographic Services ICSF Administrator's Guide.

Access authorization of the new callable services will be determined via SAF calls.
No support will be provided for invocation of an installation security exit for these
new services. The CSFSERV class controls access to the ICSF PKCS #11 callable
services.

Migrating to the common record format (KDSR) key data set
All key data sets can be converted to KDSR format. Any system that will share the
KDSR format key data set must be running ICSF FMID HCR77A1 or later.

The conversion is done with the active key data set, and a new key data set with
the proper attributes for the KDSR format must be allocated.

The conversion can be done by either calling the CSFCRC callable service or by
using the ICSF panels. While the conversion is happening, all updates to the key
data set being converted are suspended. At the end of the conversion, all systems
in the sysplex sharing the key data set will be using the KDSR format key data set
as the active key data set. All new updates are made to the KDSR format key data
set.

Converting to KDSR format using the CSFCRC callable service: A application
must be written to invoke the CSFCRC callable service in order to convert a key
data set to KDSR format. See z/OS Cryptographic Services ICSF Application
Programmer's Guide for details about the CSFCRC callable service.

Converting to KDSR format using the ICSF panels: To convert a key data set to
KDSR format using the ICSF panels, do the following:
1. On the ICSF Primary Menu panel, select option 2, KDS MANAGEMENT, and

press ENTER.
2. When the ICSF Key Data Set Management panel appears, select the type of key

data set you want to convert to KDSR format and press ENTER.

Chapter 3. Migration 91

3. On the next panel, select the COORDINATED xKDS CONVERSION option and
press ENTER.

4. When the ICSF Coordinated KDS conversion panel appears, fill in the required
fields and press ENTER.

Changing the RSA master key
The process to reencipher the PKDS and change the RSA master key is different for
IBM zEnterprise 196 and newer servers. For these systems, RSA master key change
will be processed in the same manner as master key change for the DES, AES and
ECC master keys.

This is the original procedure for changing the RSA master key for systems
without CEX3C or newer coprocessors and at least the Sep. 2011 LIC, this
procedure has not changed.
1. Disable dynamic PKDS updates control (recommended)
2. Disable PKA callable services control
3. Load the new RSA master key
v TKE: load and set RSA master key
v ICSF panels: loading the final key part causes the current master key to be

set
4. Reencipher the PKDS (old to current master key)
5. Refresh the reenciphered PKDS
6. Enable PKA callable services control
7. Enable dynamic PKDS updates control

For systems with CEX3C or newer coprocessors and at least the Sep. 2011 LIC with
the RSA master key loaded, this is the procedure for changing the RSA master key.
See z/OS Cryptographic Services ICSF Administrator's Guide for more information.
1. Disable dynamic PKDS updates control (recommended)
2. Load the new RSA master key (TKE or ICSF panels)
3. Reencipher the PKDS (current to new master key)
4. Change the RSA master key (the current master key is set and the reenciphered

PKDS becomes active PKDS)
5. Enable dynamic PKDS updates control

Note: When the new RSA master key change process is used:
v The PKA callable services control will not appear on the Administrator Control

Functions panel.
v The availability of callable services that required the RSA master key is

controlled by the state of the RSA master key. When the RSA master key is
active (the master key verification pattern in the PKDS matches the verification
pattern of the current RSA master key), RSA callable service are available.
Message CSFM130I will be issued.

v The RSA master key cannot be set from the TKE workstation.

Migrating to 24-byte DES master key
ICSF and TKE accept a 16-byte key value for the DES master key. CCA
coprocessors with the September 2012 licensed internal code (LIC) or later installed
on a CEX3C or later will support both a 16- and 24-byte key value. ICSF and TKE
will support loading both key value lengths.

92 z/OS ICSF System Programmer's Guide

To load a 24-byte DES master key, the DES master key – 24-byte key access
control point must be enabled in the ICSF role in all CCA coprocessors for the
domain where you wish to use a 24-byte DES master key. If the DES master key –
24-byte key access control point is not enabled consistently for all coprocessors
available to a instance of ICSF, the DES new master key register cannot be loaded.
The master key entry utility will fail. A TKE workstation is required to enable the
access control point.

It is not possible to share a CKDS between systems with both 16- and 24-byte DES
master keys. The master key verification pattern algorithm for the 24-byte DES
master key is different from the algorithm for the 16-byte master key. The
algorithms are described in the z/OS Cryptographic Services ICSF Administrator's
Guide.

The CKDS Reencipher and Symmetric Change Master Key utilities support both
length key values. The coordinated CKDS administration functions support both
length key values. The Passphrase KDS Initialization utility will load a 24-byte DES
master key if the DES master key – 24-byte key access control point is enabled.

Warning: Due to control block changes required to support the 24-byte DES
master key, after a 24-byte DES master key has been loaded, the LIC cannot be
changed to an earlier version that does not support the 24-byte DES master key. If
a change to an earlier LIC is required, all DES master keys must be changed back
to 16-byte keys. This can be done using symmetric change master key.

Installation options data set
v AUDITKEYLIFECKDS – Controls auditing of key lifecycle events for CCA

symmetric tokens.
v AUDITKEYLIFEPKDS – Controls auditing of key lifecycle events for CCA

asymmetric tokens.
v AUDITKEYLIFETKDS – Controls auditing of key lifecycle events for PKCS #11

objects.
v AUDITKEYUSGCKDS – Controls auditing of key usage events for CCA

symmetric tokens.
v AUDITKEYUSGPKDS – Controls auditing of key usage events for CCA

asymmetric tokens.
v AUDITPKCS11USG – Controls auditing of usage events for PKCS #11 services.
v CKTAUTH - This option has been deprecated. If this option is specified, it is

ignored and produces a CSFO0212 message.
v CTRACE - Specifies the CTUCSFxx ICSF CTRACE configuration data set to use

from PARMLIB. CTICSF00 is the default ICSF CTRACE configuration data set
that is installed with ICSF FMID HCR77A1 and later releases. CTICSF00 may be
copied to create new PARMLIB members using the naming convention of
CTUCSFxx, where xx is a unique value specified by the user.
This parameter is optional. If the specified PARMLIB member is incorrect or
absent, ICSF CTRACE will attempt to use the default CTICSF00 PARMLIB
member. If the CTICSF00 PARMLIB member is incorrect or absent, ICSF
CTRACE will perform tracing using an internal default set of trace options. By
default, ICSF CTRACE support will trace with the KdsIO, CardIO, and SysCall
filters using a 2M buffer. For more information refer to “Creating an ICSF
CTRACE configuration data set” on page 28.

v HDRDATE - This option has been deprecated. If this option is specified, it is
ignored and produces a CSFO0212 message.

Chapter 3. Migration 93

v KEYARCHMSG - Controls whether a joblog message is issued when an
application successfully references a key data set record that has been archived.

v KEYAUTH - This option has been deprecated. If this option is specified, it is
ignored and produces a CSFO0212 message.

v MASTERKCVLEN - Control the number of hexadecimal digits displayed for the
CCA master keys on the ICSF Hardware Status panel.

v RNGCACHE - Controls whether ICSF maintains a cache of random numbers to
be used by services that require them.

v TRACEENTRY - This option has been deprecated. If this option is specified, it is
ignored and produces a CSFO0212 message. See the description of CTRACE for
more information.

Function restrictions
Retained keys are RSA private keys that are stored in a cryptographic coprocessor
instead of in the public key storage data set. This change does not affect retained
keys that you are currently using, that is, keys that are stored on the cryptographic
coprocessor. However, the ICSF services do no allow you to store in a
cryptographic coprocessor RSA keys intended for key management use. Your
applications can continue to store in the cryptographic coprocessor RSA private
keys intended for signature usage. The modulus length of these private keys is
limited to 2048-bits.

The 2048-bit RSA keys may have an public exponent, e, in the range of 1<e<22048.
and e must be odd. The RSA public key exponents for 2049-bit to 4096-bit RSA
keys are restricted to the values 3 and 65537

CICS attachment facility
If you have the CICS Attachment Facility installed and you specify your own CICS
wait list data set, you need to modify the wait list data set to include the new
callable services.

Modify and include:

For FMID HCR77C1:
CSFPIC, CSFPTR2, CSFDDK (APAR OA55184)

For FMID HCR77B1:
CSFPTRE

For FMID HCR77B0:
CSFFLD, CSFFLE, CSFFPED, CSFFPEE, CSFFPET, CSFKDMW, CSFKDSL,
CSFMPS.

For FMID HCR77A1:
CSFAPG, CSFPFO, CSFSXD.

For FMID HCR77A0:
CSFCTT2, CSFCTT3, CSFDCM, CSFDDPG, CSFDKG2, CSFDMP, CSFDPC,
CSFDPCG, CSFDPMT, CSFDPNU, CSFDPT, CSFDPV, CSFDRP, CSFDRPG,
CSFDSK, CSFEAC, CSFESC, CSFEVF, CSFGIM, CSFKET, CSFMGN2,
CSFMGN3, CSFMVR2, CSFMVR3, CSF1PD2, CSF1PE2, CSF1PS2, CSF1PV2,
CSFUDK.

Note: If no Wait List is specified, the default wait list will be used. See sample
CSFWTL01 for the contents of the default wait list.

94 z/OS ICSF System Programmer's Guide

|
|

Dynamic LPA load
ICSF uses dynamic LPA to load the pre-PC routines, CICS related routines, and
other modules which must reside in common storage into above-the-line ECSA.
The dynamic LPA load will occur the first time that ICSF is started within an IPL,
and the modules will persist across subsequent restarts of ICSF.

Special secure mode
Use of some ICSF services requires that ICSF be in special secure mode:
CSNBPGN, CSNBSKI, CSNBSKI2, and CSNBSKM.

Resource Manager Interface (RMF)
Support to enable RMF to provide performance measurements on these selected
ICSF services and functions. The measurements refer to these services processing
on cryptographic coprocessors except for one-way hash. One-way hash is
processed on CPACF.
v Decipher (CSNBDEC)
v Digital Signature Generate (CSNDDSG)
v Digital Signature Verify (CSNDDSV)
v Encipher (CSNBENC)
v Encrypted PIN Translate (CSNBPTR)
v Encrypted PIN Translate Enhanced (CSNBPTRE)
v FPE Decipher (CSNBPFED)
v FPE Encipher (CSNBPFEE)
v FPE Translate (CSNBPFET)
v MAC Generate (CSNBMGN)
v MAC Generate2 (CSNBMGN2)
v MAC Verify (CSNBMVR)
v MAC Verify2 (CSNBMVR2)
v One-Way Hash (CSNBOWH)
v PIN Verify (CSNBPVR)
v Symmetric Algorithm Decipher (CSNBSAD)
v Symmetric Algorithm Encipher (CSNBSAE)

System abend codes
A complete list of the reason codes for the ICSF abend (X'18F') is contained in z/OS
MVS System Codes, which is published on release boundaries. As a migration aid
for FMID HCR77C1, which is not on a release boundary, new and changed codes
for FMID HCR77C1 are listed here. Release codes introduced in the previous web
deliverables, FMIDs HCR77C0, HCR77B1, HCR77B0, HCR77A1, and HCR77A0, are
also listed.

An 18F code indicates an abend from ICSF.

FMID HCR77C1 reason codes are as follows:

Code Hex (Dec)
Meaning

488 (1160)
An error occurred during ATTACH of the CSFMISTT task.

Chapter 3. Migration 95

489 (1161)
Unknown results from compliance warnings processing.

FMID HCR77C0 reason codes are as follows:

Code Hex (Dec)
Meaning

484 (1156)
An error occurred during ATTACH of the CSFMIKUT task.

487 (1159)
An error occurred during ATTACH of the CSFMIAKT task.

48C (1164)
ASCRE failed during early ICSF processing. This abend results in a wait
state (X'040').

FMID HCR77B1 reason codes are as follows:

Code Hex (Dec)
Meaning

47C (1148)
The regional cryptographic server returned a response parameter that has a
length error.

47D (1149)
Error attaching CSFMICST.

47E (1150)
Received OPIN larger than should be possible.

480 (1152)
The regional cryptographic server configuration subtask ended.

481 (1153)
The regional cryptographic server request subtask ended.

482 (1154)
A regional cryptographic server encountered a toxic request.

483 (1155)
The regional cryptographic server returned an unsupported OID.

485 (1157)
Cleanup error: A Crypto block has been double freed.

486 (1158)
Cleanup error: Caller release.

FMID HCR77B0 reason codes are as follows:

Code Hex (Dec)
Meaning

477 (1143)
Crypto processor encountered a toxic request (APAR OA43012).

478 (1144)
Damaged variable metadata detected.

479 (1145)
An error occurred during ATTACH of the CSFKSMPT task.

96 z/OS ICSF System Programmer's Guide

|
|
|

47A (1146)
ISGQUERY returned unexpected results.

47B (1147)
KDS bound to multiple KDS tokens.

47F (1151)
Received CC1 from protected-key operation.

The following reason codes are no longer issued as of FMID HCR77B0:
v 2 (2)
v 5 (5)
v A (10)
v 2C (44)
v 50 (80)
v A2 (162)
v 187 (391)
v 40A (1034)
v 40B (1035)
v 40C (1036)
v 40D (1037)
v 416 (1046)
v 429 (1065)
v 42A (1066)
v 475 (1141)

FMID HCR77A1 reason codes are as follows:

Code Hex (Dec)
Meaning

7E (126)
CSFMIRDT subtask cannot be restarted.

18F(44F)
Error while loading an ICSF module on startup. The load abend and
reason codes are in registers 2 and 3. The most likely problem is the
loading of signed module CSFINPV2. A signature verification failure
would be indicated by R2 = 00000360, R3 = 00000040, which should be
accompanied by security manager messages detailing the problem.

447 (1095)
Malformed request caused processor recovery.

46F (1135)
PKCS #11 Services detected an error in DER encoded data returned from
the Enterprise PKCS #11 coprocessor.

473 (1139)
Data returned from XCP in invalid BER format.

474 (1140)
Data returned from XCP has unexpected attrs.

475 (1141)
XCF problems in the sysplex.

Chapter 3. Migration 97

476 (1142)
PKCS #11 Services detected an error from the Enterprise PKCS #11
coprocessor on a derived key decryption request.

The following reason codes are no longer issued as of FMID HCR77A1:
v 470 (1136)
v 471 (1137)

For FMID HCR77A0, the descriptions of the following reason codes have changed:

Code Hex (Dec)
Meaning

1E (30)
Entry code to CSFKSTRE routine not valid.

76 (118)
Error from ATTACH in sysplex subtask control routine.

DB (219)
Error in ISGENQ during KDS sysplex serialization.

DC (220)
Error in IXCMSGO during KDS sysplex serialization.

DD (221)
Error in IEAVPSE2 during KDS sysplex serialization.

EA (234)
Error establishing ESTAE for KDS sysplex subtask.

ED (237)
Error initializing KDS sysplex subtask.

F0 (240)
Error in IXCJOIN for ICSF KDS sysplex group.

45D (1117)
CSFPLCMD/CSFPLMRT pause failure (XCF notify exit).

Reason codes for application services routines introduced in FMID HCR77A0 are:

Code Hex (Dec)
Meaning

467 (1127)
Bad XCP message payload length detected.

468 (1128)
Bad XCP message encoding length detected.

469 (1129)
Bad XCP responses length detected.

46A (1130)
CSFSMBTI inconsistent internal control information.

46B (1131)
Terminate stuck I/O subtask.

46D (1133)
Message response too large.

98 z/OS ICSF System Programmer's Guide

46E (1134)
Reencipher of TKDS failed due to an error on coprocessor.

46F (1135)
PKCS #11 Services detected an error in DER encoded data returned from
the Enterprise PKCS #11 coprocessor

470 (1136)
CSFNCCMK error in internal ICSF service call parms

471 (1137)
CSFNCRNC error in internal ICSF service call parms

472 (1138)
CSFKSCS2 detects unusable KDS

473 (1139)
CSFNCUWK data returned from XCP invalid BER format

474 (1140)
CSFNCUWK data returned from XCP has unexpected attrs

475 (1141)
CSFPLXNU XCF problems in the sysplex

476 (1142)
PKCS #11 Services detected an error from the Enterprise PKCS #11
coprocessor on a derived key decryption request.

SMF records
SMF record information for ICSF is documented in Appendix B, “ICSF SMF
records,” on page 363. Refer there for information on SMF records.

Subtypes 19, and 20 are written periodically to record processing times for requests
being processed on a cryptographic coprocessor or accelerator. Subtype 19 is
written for the PCIXCC. Subtype 20 is written for all supported processors.

TKE workstation
The Trusted Key Entry (TKE) workstation provided secure management of master
and operational keys and management of access control points. Refer to z/OS
Cryptographic Services ICSF TKE Workstation User's Guide for more information.

Access to callable services
Access to services that are executed on cryptographic coprocessors is through
access control points in the Domain Role. To execute callable services on the
coprocessor, access control points must be enabled for each service in the Role. For
systems that do not use the optional TKE Workstation, all access control points
(current and new) are enabled in the role with the appropriate microcode level on
the cryptographic coprocessor.

For TKE users who have modified the Domain Role, all new access control points
must be enabled using the TKE workstation. For non-TKE users, all new access
control points are enabled.

Note: Some access control points are disable by default in the Coprocessor Role.
See the ICSF Application Programmer's Guide and z/OS Cryptographic Services ICSF
Administrator's Guide for these access control points. A TKE Workstation is required
to enable these access control points

Chapter 3. Migration 99

TKE enablement from the support element
You must enable TKE commands on each cryptographic coprocessor from the
support element. This is true for new TKE users and those upgrading their level of
LIC. See Support Element Operations Guide and z/OS Cryptographic Services ICSF
TKE Workstation User's Guide for more information.

Enabling access control points for PKCS #11 coprocessor
firmware
A new or a zeroized Enterprise PKCS #11 coprocessor (or domain) comes with an
initial set of Access Control Points (ACPs) that are enabled by default. All other
ACPs, representing potential future support, are left disabled. When a firmware
upgrade is applied to an existing Enterprise PKCS #11 coprocessor , the upgrade
may introduce new ACPs. The firmware upgrade does not retroactively enable
these ACPs, so they are disabled by default. These ACPs must be enabled via the
TKE (or subsequent zeroize) in order to utilize the new support they govern. See
Table 28. PKCS #11 Access Control Points in Writing PKCS #11 Applications for a
complete description of the Access Control Points.

100 z/OS ICSF System Programmer's Guide

Table 12. Mapping of Enterprise PKCS #11 ACPs to firmware levels

Enterprise
PKCS #11
firmware
level ACPs supported at this level

ACPs that need to
be enabled when
this code level is
obtained via
firmware upgrade

Initial
release

Control Point Management

Allow addition (activation) of Control Points(0)

Allow removal (deactivation) of Control Points(1)

Cryptographic Operations

Sign with private keys(2)

Sign with HMAC or CMAC(3)

Verify with HMAC or CMAC(4)

Encrypt with symmetric keys(5)

Decrypt with private keys(6)

Decrypt with private keys(7)

Key export with public keys(8)

Key export with symmetric keys(9)

Key import with private keys(10)

Key import with symmetric keys(11)

Generate asymmetric key pairs(12)

Generate symmetric keys(13)

Cryptographic Algorithms

RSA private-key use(30)

DSA private-key use(31)

EC private-key use(32)

Brainpool (E.U.) EC curves(33)

NIST/SECG EC curves(34)

Allow non-BSI algorithms (as of 2009) (21)

Allow non-FIPS-approved algorithms (as of 2011) (35)

Allow non-BSI algorithms (as of 2011) (36)

Key Size

Allow 80 to 111-bit algorithms(24)

Allow 112 to 127-bit algorithms(25)

Allow 128 to 191-bit algorithms(26)

Allow 192 to 255-bit algorithms(27)

Allow 256-bit algorithms(28)

Allow RSA public exponents below 0x10001(29)

Miscellaneous

Allow backend to save semi-retained keys not applicable(14)

Allow keywrap without attribute-binding(16)

Allow changes to key objects (usage flags only) (17)

Allow mixing external seed to RNG not applicable(18)

Allow non-administrators to mark key objects TRUSTED(37)

Do not double-check sign/decrypt operations(38)

Allow dual-function keys - key wrapping and data encryption(39)

Allow dual-function keys - digital signature and data encryption(40)

Allow dual-function keys - key wrapping and digital signature(41)

Allow non-administrators to mark public key objects ATTRBOUND(42)

Allow clear passphrases for password-based-encryption(43)

Allow wrapping of stronger keys by weaker keys(44)

Allow clear public keys as non-attribute bound wrapping keys(45)

None - all default
ACPs enabled in the
initial release.

Chapter 3. Migration 101

Table 12. Mapping of Enterprise PKCS #11 ACPs to firmware levels (continued)

Enterprise
PKCS #11
firmware
level ACPs supported at this level

ACPs that need to
be enabled when
this code level is
obtained via
firmware upgrade

Version 2
Sept. 2013
or later
licensed
internal
code (LIC)

Set for initial release plus

Cryptographic Operations

Allow key derivation (47)

Cryptographic Algorithms

DH Private Key Use (46)

Cryptographic
Operations

Allow key
derivation (47)

Cryptographic
Algorithms

DH Private Key
Use (46)

Migrating from the IBM eServer zSeries 900
This topic discusses migration from the IBM eServer zSeries 900.

Migrating a CKDS and PKDS between a CCF system and a
non-CCF system

The Cryptographic Coprocessor Feature (CCF) systems are the z900 and z800. The
PCI Cryptographic Coprocessor (PCICC) is an optional feature.

The following systems will be referred to as non-CCF systems in this section. A
cryptographic feature is required on the non-CCF systems.
v z9 EC and z9 BC with the optional Crypto Express2 Coprocessor (CEX2C).
v z10 EC and z10 BC with the optional Crypto Express2 Coprocessor (CEX2C) and

Crypto Express3 Coprocessor (CEX3C).
v z114 and z196 with the optional Crypto Express3 Coprocessor (CEX3C).
v zBC12 and zEC12 with the optional Crypto Express3 Coprocessor (CEX3C) and

Crypto Express4 Coprocessor (CEX4C).
v z13 and z13s with the optional Crypto Express5 Coprocessor (CEX5C).
v z14 and z14 ZR1 with the optional Crypto Express6 Coprocessor (CEX6C).

The processing of the RSA-MK on a non-CCF system depends on the
cryptographic features on your system. See “Changing the RSA master key” to
determine which processing must be done to load and set the RSA-MK. The PKA
Callable Services control is not active on all systems.

CCF only system
SMK equal to KMMK
v Using Master Key Entry

1. Start ICSF on a non-CCF system, pointing to the initialized CKDS/PKDS.
You will see one or more of these messages depending on your system's
cryptographic features: CSFM124I MASTER KEY xxx ON CRYPTO
EXPRESSn COPROCESSOR xxnn, SERIAL NUMBER nnnnnnnn, NOT
INITIALIZED.

2. Using Master Key Entry, load the value of the CCF DES master key into the
new DES-MK register. Load the value of the CCF SMK/KMMK master key
into the new RSA-MK register. You will need the checksums for each of these
values.

3. If the non-CCF system has coprocessors (CEX3C or later) with the September,
2011 LIC or later, set the DES and RSA master keys using the SET MK utility.

102 z/OS ICSF System Programmer's Guide

|

4. If the non-CCF system has coprocessors (CEX3C or earlier) without the
September, 2011 LIC, do the following steps.
– Set the DES master key using the SET MK utility.
– The ASYM-MK will have already been set when the last master key value

was entered.
– Enable the Dynamic PKDS Access control and the PKA Callable Services

control.
v Using Pass Phrase Initialization

1. Start ICSF on a non-CCF system, specifying the initialized CKDS and PKDS
in the options data set.

2. Using PPINIT, type in the same pass phrase used to initialize CCF system,
select the Reinitialize system option and type in the CKDS and PKDS names.

SMK not equal to KMMK

Without a PCICC, the PKDS reencipher must run on any CCA Cryptographic
coprocessor. If it is not, the non-CCF system will not be able to use the tokens
encrypted under the KMMK. This procedure requires that you switch between
your CCF and non-CCF TSO sessions.
v Using Master Key Entry

If the non-CCF system has coprocessors (CEX3C or later) with the September,
2011 LIC or later, you must reencipher to the KMMK. On older systems, it does
not matter whether you reencipher to the KMMK or the SMK.
This procedure reenciphers to the KMMK.
1. Start ICSF on a non-CCF system, pointing to the initialized CKDS and

PKDS.
2. Define an empty PKDS.
3. Load the value of the CCF DES master key into the new DES-MK register.

You will need the checksum.
4. Set the DES master key using the SET MK utility.
5. Load the value of the CCF SMK master key into the new RSA-MK register.

You will need the checksum.
If the non-CCF system has coprocessors (CEX3C or later) with the
September, 2011 LIC or later, do the following steps:
– Set the RSA-MK using the SET MK utility
– Load the value of the CCF KMMK master key into the new RSA-MK

register. You will need the checksum.
– Reencipher the active PKDS to the empty PKDS.
– Change the RSA-MK using the CHANGE ASYM MK utility.

If the non-CCF system has coprocessors (CEX3C or earlier) without the
September, 2011 LIC, do the following steps:
– Load the value of the CCF KMMK master key into the new RSA-MK

register. You will need the checksum. The RSA-MK will be set
automatically when the last key part is loaded.

– Reencipher the active PKDS to the empty PKDS.
– Refresh the new PKDS. Enable PKA Callable Services and Dynamic

PKDS Access control.
6. Update options data set to point to the new PKDS.
7. On CCF system, disable PKA Callable Services.

Chapter 3. Migration 103

8. Reset the SMK register.
9. Load the value of the CCF KMMK master key into the SMK register.

10. Activate the new PKDS.
11. Enable PKA Callable Services and Dynamic PKDS Access controls.
12. Update options data set to point to the new PKDS.

v Using Pass Phrase Initialization
1. On a CCF system, use PPKEYS utility to get the clear key values of the SMK

and KMMK from a pass phrase. You will need the checksum for each of
these values.

2. On a non-CCF system, start ICSF pointing to initialized CKDS and PKDS.
3. Define an empty PKDS.

If the non-CCF system has coprocessors (CEX3C or later) with the September,
2011 LIC or later, do the following steps:
a. Using PPINIT, type in the same pass phrase used to initialize CCF

system, select the Reinitialize system option and type in the CKDS and
PKDS names.

b. Using Master Key Entry, load the value of the CCF KMMK master key
into the new RSA-MK register. You will need the checksum. Load a final
key part of zeroes.

c. Reencipher the PKDS to the empty PKDS.
d. Change the RSA-MK using the CHANGE ASYM MK utility
e. Update the options data set to point to the new PKDS.
f. On a CCF system, disable PKA Callable Services.
g. Using Master Key Entry, reset the SMK register.
h. Load the value of the KMMK into the SMK register. You can get the clear

key value of the KMMK using the PPKEYS utility. You will need the
KMMK checksum.

i. Activate the new PKDS.
j. Enable PKA Callable Services/Dynamic PKDS Access.
k. Update the options data set to point to the new PKDS.

If the non-CCF system has coprocessors (CEX3C or earlier) without the
September, 2011 LIC, do the following steps:
a. Using Master Key Entry, load the value of the CCF KMMK master key

into the new RSA-MK register. You will need the checksum. Load a final
key part of zeroes. The RSA-MK is automatically set when the final key
part is loaded.

b. Using PPINIT, type in the same pass phrase used to initialize CCF
system, select the Reinitialize system option and type in the CKDS and
PKDS names.

c. Reencipher the PKDS to the empty PKDS.
d. Refresh the new PKDS.
e. Update the options data set to point to the new PKDS.
f. On a CCF system, disable PKA Callable Services.
g. Using Master Key Entry, reset the KMMK register.
h. Load the value of the SMK into the KMMK register. You can get the clear

key value of the SMK using the PPKEYS utility. You will need the SMK
checksum.

i. Activate the new PKDS.

104 z/OS ICSF System Programmer's Guide

j. Enable PKA Callable Services/Dynamic PKDS Access.
k. Update the options data set to point to the new PKDS.

CCF with PCICCs
SMK equal to KMMK
v Using Master Key Entry

1. Start ICSF on a non-CCF system, pointing to the initialized CKDS/PKDS.
You will see one or more of these messages depending on your system's
cryptographic features: CSFM124I MASTER KEY xxx ON CRYPTO
EXPRESSn COPROCESSOR xxnn, SERIAL NUMBER nnnnnnnn, NOT
INITIALIZED.

2. Using Master Key Entry, load the value of the CCF DES master key into the
new DES-MK register. Load the value of the CCF SMK/KMMK master key
into the new RSA-MK register. You will need the checksums for each of these
values.

3. If the non-CCF system has coprocessors (CEX3C or later) with the September,
2011 LIC or later, set the DES-MK and RSA-MK using the SET MK utility.

4. If the non-CCF system has coprocessors (CEX3C or earlier) without the
September, 2011 LIC, do the following steps:
– Set the DES-MK using the SET MK utility.
– The RSA-MK will have already been set when the last master key value

was entered.

SMK not equal to KMMK

Make the SMK equal to KMMK prior to sharing the CKDS and PKDS on a
non-CCF system.
v Using Master Key Entry

1. Define an empty PKDS.
2. On the CCF system, disable the PKA Callable Services control.
3. Using Master Key Entry, reset ALL-PKA registers. Load the value of the

CCF KMMK master key into the SMK/KMMK/ASYM-MK registers on all
CCF and PCICC coprocessors. You will need the checksum. The ASYM-MK
is automatically set when the final key part is loaded.

4. Reencipher the PKDS to the empty PKDS.
5. Activate the new PKDS.
6. Enable the PKA Callable Services and Dynamic PKDS Access controls.
7. Update the options data set to point to the new PKDS.
8. Start ICSF on the non-CCF system pointing to initialized CKDS and PKDS.
9. Load the value of the CCF DES master key into the new DES-MK register.

10. Set the DES-MK using the SET MK utility.
If the non-CCF system has coprocessors (CEX3C or later) with the September,
2011 LIC or later, do the following steps:
– Load the value of the CCF KMMK master key into the new RSA-MK register.

You will need the checksum.
– Set the RSA-MK using the SET MK utility.
If the non-CCF system has coprocessors (CEX3C or earlier) without the
September, 2011 LIC, do the following steps:

Chapter 3. Migration 105

– Load the value of the CCF KMMK master key into the new RSA-MK register.
You will need the checksum. The RSA-MK is automatically set when the final
key part is loaded.

– Enable the PKA Callable Services and Dynamic PKDS Access controls. The
current RSA-MK now has the same value as the SMK/KMMK on the CCF.

v Using Pass Phrase Initialization
1. On the CCF system, use PPKEYS to get the clear key values of the SMK

and KMMK from a pass phrase. You will also need the checksum for each
of these values.

2. Define an empty PKDS. Disable PKA Callable Services.
3. Using Master Key Entry, load the value of the CCF KMMK master key into

the new ASYM-MK register on the PCICC or PCICCs. You will need the
checksum. Load a final key part of zeroes. The ASYM-MK is automatically
set when the final key part is loaded. The current ASYM-MK is now the
same as the KMMK value.

4. Load the value of the CCF SMK into the new ASYM-MK register on the
PCICC or PCICCs. You will need the checksum. Load a final key part of
zeroes. The ASYM-MK is automatically set when the final key part is
loaded. The current ASYM-MK is now the same as the SMK value. The
KMMK value is now in the old ASYM-MK register.

5. Reset the KMMK register on the CCFs. Load the SMK value into the
KMMK register. Now the KMMK = SMK.

6. Reencipher the PKDS to the empty PKDS.
7. Activate the new PKDS.
8. Enable the PKA Callable Services and Dynamic PKDS Access controls.
9. Update options data set to point to the new PKDS.

10. Start ICSF on a non-CCF system, pointing to the initialized CKDS and
PKDS (the one just reenciphered previously).

11. Using PPINIT, type in the same pass phrase used to initialize CCF system,
select the Reinitialize system option and type in the CKDS and PKDS
names.

Callable services
These services were only available on the IBM eServer zSeries 900. These services
are not supported on newer servers.
v ANSI X9.17 EDC Generate (CSNAEGN)
v ANSI X9.17 Key Export (CSNAKEX)
v ANSI X9.17 Key Import (CSNAKIM)
v ANSI X9.17 Key Translate (CSNAKTR)
v ANSI X9.17 Transport Key Partial Notarize (CSNAKTR)
v Ciphertext Translate (CSNBCTT)
v PKSC Interface Service (CSFPKSC)
v Transform CDMF Key (CSNBTCK)
v User Derived Key (CSFUDK)

A migration check, ICSFMIG_DEPRECATED_SERV_WARNINGS, was provided to
detect the use of these services. You must migrate away from the use of these
services, because support is removed. You should investigate applications using
these services, and determine the appropriate actions to remove or replace them.

106 z/OS ICSF System Programmer's Guide

Functions not supported
This topic lists functions not supported without a CCF installed.
1. There is no KMMK (key management master key).
2. The Commercial Data Masking Facility (CDMF) is no longer supported. The

CDMF keyword on KGUP control statements and panels are no longer
supported.

3. The Public Key Algorithm Digital Signature Standard is not supported. This
affects callable services CSNDPKG, CSNDPKI, CSNDDSG, and CSNDDSV.

4. The PBVC keyword is not supported. This affects callable services Clear PIN
Generate Alternate (CSNBCPA), PIN Translate (CSNBPTR) and PIN Verify
(CSNBPVR).

Setup considerations
This topic lists setup changes that should be considered when migrating from a
IBM eServer zSeries 900.

Consideration should be given to:
1. CICS wait list should be updated for services now executing on

PCIXCCs/CEX2Cs. The sample CICS wait list, CSFWTL01, supplied by IBM
includes these services and can be used as a reference.

2. PKDS initialization is required.
3. Options data set keywords have changed. See “Parameters in the installation

options data set” on page 36.
4. If sharing a PKDS with a PCICC and PCIXCC/CEX2C, delete the PKDS records

for labelnames of retained keys on PCICCs no longer in use.
5. Customers who run CSFEUTIL to setup ICSF for automated electronic delivery

process no longer need to execute CSFEUTIL on a newer servers. SHA-1 is
available without entering ICSF master keys.

Programming considerations
This topic lists setup changes that should be considered when migrating from a
IBM eServer zSeries 900.

Consideration should be given to:
1. The DATAC key type cannot be used on the newer servers.
2. The PIN block format checking on the new cryptographic coprocessors is

more rigorous than with a CCF.
For CSNBPVR, CSNBPTR and CSNBCPA services, the input PIN block must
have the correct format as specified in the PIN Profile parameter. On a CCF
system, the PIN block format checking is incomplete.
For example, the REFORMAT processing mode of PIN Translate (CSNBPTR)
may now fail when it was previously successful on a CCF. On a CCF, if input
to the PIN verify service (CSNBPVR) is a malformed encrypted PIN block, the
service will fail with return code 4, reason code 3028 (verification failed); on
newer servers, the service may fail with return code 8 and some appropriate
reason code for invalid PIN format.

3. 512 to 2048 bit modulus for RSA keys is supported in all PKA services except
SET services (Set Block Compose and Set Block Decompose).

4. All CCF functions are now executed on the coprocessors. This may cause
some impact on the performance of customer applications.

Chapter 3. Migration 107

5. Reason codes from the new servers may be different from previous
cryptographic hardware.

6. On new servers, the requirement that caller must be in supervisor state to use
NOCV tokens is lifted for the CKDS Key Record Write (CSNBKRW) service.

7. The z/OS SCHEDULE and IEAMSCHD macros are used to schedule SRBs.
On the newer servers, since there are no CCFs on the system, applications
should delete FEATURE=CRYPTO on the SCHEDULE and IEAMSCHD
macros or the SRB being scheduled will not run.

8. External tokens that are export prohibited are imported differently on z990
and later servers with PCIXCC or CCA Crypto Express coprocessors. The
imported internal token will have the same control vector as the external
token with export prohibited. These tokens will only be usable on z990 and
later servers with a PCIXCC/CEX2C or on CCF systems with PCICCs. On
previous hardware (CCF systems) the imported internal token had a control
vector that allowed export, and export prohibition was enforced by the export
flag in the token.

9. Prohibit Export service can now be used for MAC and MACVER keys.
10. A RACF check is added to the Key Generation Utility (CSFKGUP).
11. The CSFKGUP utility exit control block has been changed for AES. See

Chapter 5, “Installation exits,” on page 167 for the new format.

Migrating to PCI-HSM 2016 compliance mode
Beginning with the Crypto Express6 adapter, when configured as a CCA
coprocessor, the CCA coprocessor is capable of running in a compliance mode. In
order for the requirements of PCI-HSM 2016 to apply to a workload, the workload
must be using compliant-tagged key tokens. Therefore, migrating an application to
PCI-HSM 2016 involves converting the key tokens that are used to
compliant-tagged key tokens.

Compliance warnings
ICSF has support for generating warning events for operations that might need
modifications to meet requirements for the request to be compliant. The
compliance warning event indicates whether the request was compliant or not.
v When the request is compliant, the key tokens that are used can be converted to

compliant-tagged key tokens and the operation would still be successful.
v When the request is non-compliant, the key tokens, the service, or the service

and rule combination must be updated to be compliant before the key tokens
used can be converted to be compliant-tagged.

Warning events are generated for successful requests where at least one of the key
tokens that are used is an internal, version 00 or version 01 DES key token and
none of the key tokens is already compliant-tagged. This includes external key
tokens and output key tokens. For services that do not accept compliant-tagged
key tokens, only internal key tokens that are used as input to the service are
included in the event. For services that accept compliant-tagged key tokens, all key
tokens that are used are included in the event.

Warning events are in the form of SMF type 82 subtype 48 records. The generation
of warning events is controlled by the COMPLIANCEWARN keyword in the ICSF
installation options data set.

108 z/OS ICSF System Programmer's Guide

Migration process
The migration process completes with existing key tokens that are converted to
being compliant-tagged. Before you complete the migration, it is important that the
necessary steps are taken so that upon completion of the migration, future key
tokens can be created as compliant-tagged. For information about creating
compliant-tagged key tokens, see z/OS Cryptographic Services ICSF Application
Programmer's Guide.

Identifying key tokens to be converted using compliance warning
events
Except for the Cipher Text Translate2 (CSNBCTT2/CSNECTT2) service, a
compliant-tagged key cannot be used in a cryptographic operation with a
non-compliant-tagged key. Therefore, with that one exception, the key migration
process needs to ensure that for each key that is to be compliant-tagged, all keys it
can be used with must also be compliant-tagged. The compliance warning event
includes a few pieces of information that can help uniquely identify keys: the key
label, key fingerprint, and token identification value. One procedure for migrating
keys is to put them into one of the following five categories in precedent order
from top to bottom:
1. Keys that are used in non-compliant or unsupported ways. These keys are

included in compliance warning events with any of the following results:
Non-compliant service, Compliance not supported, or Non-compliant service
operation. Before these keys can be compliant-tagged, there must be a change
to use them in a supported, compliant way.

2. Keys that are used with a key in category (1). Since keys in this category are
used with keys that should not be compliant-tagged, by extension they should
not be compliant-tagged.

3. Keys that are not compliant. The overall warning event result would indicate
that a non-compliant key was used and this key is marked as a non-compliant
key. The reason for the non-compliance needs to be determined and fixed
before the key can be compliant-tagged.

4. Keys that are used with a key in category (3). Since keys in this category are
used with keys that cannot be compliant-tagged, by extension these keys
should not be compliant-tagged.

5. Keys that are compliant and only used in compliant ways. These keys are only
included in warning events with an overall result of compliant.

For help interpreting the compliance warning events, see z/OS Cryptographic
Services ICSF Application Programmer's Guide. It contains information such as: which
services are compliant, which services are not compliant, which services do not
support compliance, which service operations are not compliant, and what
constitutes a compliant and non-compliant key token.

As the issues in categories 1 - 4 are resolved, you are left only with keys in
category 5. At this point, you can successfully compliant-tag all your keys. It might
be the case that not all keys can become compliant-tagged. For instance, when a
key is used in a service that does not support compliance. In this case, you have a
key or keys that are remaining in category 1 and possibly also in category 2 that
should not be compliant-tagged. The keys in category 5 can still be
compliant-tagged. A similar situation arises when a key that is used in an
otherwise compliant way is itself non-compliant. In this case, you have a key or
keys that are remaining in category 3 and possibly also in category 4 that should
not be compliant-tagged. Once again, the keys in category 5 can still be
compliant-tagged. These scenarios are not mutually exclusive so you might end up

Chapter 3. Migration 109

with keys in categories 1 - 5 at migration time. If the categories are strictly adhered
to, you can compliant-tag the keys in category 5. This means that the workload
would continue by using one or more non-compliant-tagged key tokens. If
necessary, the key usage audit records (SMF type 82 subtype 44) can be used to
identify how non-compliant-tagged key tokens are used by the application.

All requests that are selected for compliance warning processing get routed by
ICSF to a CEX6C. If a CEX5C is also available, depending on the nature of the
workloads on your system, you might notice an imbalance in requests that are
processed across the CCA cryptographic coprocessors.

Identifying key tokens outside of compliance warning events
Since compliance warnings are based on actual usage, be especially aware of
operations (for example, infrequent operations) which might not be started during
the period where warnings are being collected. These operations would not show
up in a warning log and so must be discovered and analyzed independently.

It might be necessary to do an analysis of the CKDS to identify the key tokens to
be converted. If the key labels follow a naming convention in the CKDS, the Key
Data Set List (CSFKDSL/CSFKDSL6) callable service can be used to produce a list
of labels according to a filter. ICSF provides a sample REXX program (CSFCMPLC)
which lists all DES tokens in the CKDS. It can be modified to produce a list of
labels based on a filter. This sample uses the Key Data Set List callable service and
the listing can be modified by modifying the label_filter parameter.

You can also look at the profiles within the CSFKEYS SAF class that an application
has access to as an indication of the key tokens the application can use.

Key tokens that are identified in this way do not have any information about how
they are used so either the usage of such key tokens must be understood or all the
key tokens that are used must be converted together.

Ensure the key tokens identified can become compliant-tagged
When the key tokens to be converted have been identified, you need to ensure that
the process of compliant-tagging the key tokens is successful. Compliant-tagged
key tokens cannot be used with non-compliant-tagged key tokens so you do not
want the conversion of some tokens to fail while others succeed. You do this by
compliance-checking the key tokens first. Key tokens are compliance-checked by
using the Key Translate2 (CSNBKTR2/CSNEKTR2) callable service with the
COMP-CHK keyword. To simplify this process, ICSF provides a sample REXX
program (CSFCMPCC) that compliance-checks a list of CKDS labels. Any key
token that cannot become compliant-tagged is identified in the output. For each
such key, the cause of the compliance-check failure must be resolved before you
attempt to convert the key tokens.

Converting key tokens to become compliant-tagged
When the key tokens to be converted have been identified, are not being used in a
non-compliant way, and verified to be compliant, they can be converted to
compliant-tagged key tokens. At this point, you must decide what backup strategy,
if any, to pursue. Depending on the nature of the ICSF workloads, your backup
strategy can include, but is not be limited to:
1. Making a backup copy of the CKDS.
2. Retrieving the key tokens to be converted from the CKDS and storing them in

a data set.

110 z/OS ICSF System Programmer's Guide

In lieu of doing a backup copy of the CKDS, you can opt to instead write the
compliant-tagged key tokens to new CKDS labels.

Key tokens are converted to compliant-tagged tokens by using the Key Translate2
(CSNBKTR2/CSNEKTR2) callable service with the COMP-TAG keyword. To
simplify this process, ICSF provides a sample REXX program (CSFCMPTC) that
compliance-tags a list of CKDS labels. The sample can be modified to write the
compliant-tagged key tokens to new CKDS labels instead of overwriting the
original key tokens. To begin the conversion, at least one CCA coprocessor must be
placed in migration mode by using the TKE workstation. To confirm the
compliance mode of a CCA coprocessor, view the hardware status panel or issue
the DISPLAY ICSF,CARDS command. Also, take note of the number of CCA
coprocessors in PCI-HSM 2016 mode without being in migration mode. A
coprocessor in migration mode cannot handle requests that contain
compliant-tagged key tokens. Therefore, if workloads that use compliant-tagged
key tokens are already in use (for example, you previously converted some key
tokens to compliant-tagged), you must keep one or more coprocessors in PCI-HSM
2016 compliance mode, but not in migration mode.

At this point in the process, none of the key tokens should fail because they were
previously compliance-checked. However, if for some reason there is a failure such
that some of the key tokens were converted and others were not, the key tokens
should be brought back to a consistent state as soon as possible. This means that
the key tokens should be updated such that they are all compliant-tagged or all
non-compliant-tagged. If a backup copy of the CKDS was made, it can be used to
make all the key tokens non-compliant-tagged until the issue can be resolved. If
the process involves creating compliant-tagged key tokens under new key labels,
the old labels can still be used until the issue is resolved.

Chapter 3. Migration 111

112 z/OS ICSF System Programmer's Guide

Chapter 4. Operating ICSF

You use certain commands to operate ICSF. Also, there are different conditions for
operating ICSF that you should consider. This topic describes the ICSF operating
tasks.

Starting and stopping ICSF
To start ICSF, issue the operator START command. You must issue the START
command after each IPL. You can start ICSF only as a started task.

ICSF should be started as early in initialization as possible as one of first
commands in COMMNDxx, rather than later automation. ICSF should be started
with SUB=MSTR to eliminate any need to wait for JES. This also allows ICSF to be
shut down after JES.

This example shows the format of the START command to start ICSF, assuming
that CSF is the name of the start procedure:
START CSF,SUB=MSTR

To reuse ASIDs, the REUSASID parameter can be added to the START comment:
START CSF,SUB=MSTR,REUSASID=YES

To stop ICSF, issue the operator STOP command. After you issue the STOP
command, all ICSF processing stops. If ICSF stops successfully, a message that
states that ICSF is stopped appears on the console.

During shutdown, ideally ICSF is shut down after OMVS and JES are taken down.
This allows any final updates to encrypted file systems to be successfully
processed. By shutting down ICSF gracefully, it allows ICSF to complete all
processing for updates to the key data sets.

This example shows the format of the STOP command to stop ICSF, assuming that
CSF is the name of the started procedure:
STOP CSF

If ICSF is unresponsive to the STOP command, be aware that you are not able to
use the CANCEL command to stop ICSF processing. Instead, use the force
command:
FORCE csfproc,arm

Master key validation

When ICSF is started, the master keys are checked against the key data sets.

For CCA, master key verification patterns (MKVP) stored in the cryptographic key
data set (CKDS) and the public key data set (PKDS) are compared to the current
master keys. A CCA coprocessor becomes active if the current master keys match
the MKVPs found in the CKDS and PKDS. If there is any mismatch, the
coprocessor does not become active. When an MKVP is not in the CKDS or PKDS,
the master key is ignored.

© Copyright IBM Corp. 2007, 2018 113

For an Enterprise PKCS #11 (EP11) coprocessor, ICSF uses the master key
validation pattern (MKVP) in the header record of the TKDS to determine which
EP11 coprocessors to make active. An EP11 coprocessor is active if the MKVP in
the current master key register matched the MKVP in the header record of the
TKDS or the TKDS has not been initialized.

When ICSF successfully starts, a message indicating that initialization is complete
appears on the console.

Note:

1. If a problem is detected with a cryptographic coprocessor or with an accelerator
during initialization, message CSFM540I is generated and the device is
bypassed.

2. The ICSF_COPROCESSOR_STATE_NEGCHANGE health check monitors the
state of the coprocessors and accelerators daily to detect a negative change in
state. For more information about this health check, see z/OS Cryptographic
Services ICSF Administrator's Guide.

3. The ICSF_MASTER_KEY_CONSISTENCY health check evaluates the master
key states of the coprocessors to detect potential master key problems. For
more information about this health check, see z/OS Cryptographic Services ICSF
Administrator's Guide.

Starting ICSF during IPL-time
In addition to starting ICSF manually, ICSF can be started automatically during
IPL-time. Starting ICSF during IPL-time allows callers of ICSF to take advantage of
ICSF functionality during IPL-time. This functionality is available on ICSF FMID
HCR77C0 and later running on z/OS V2R3, with PTF for APAR OA55378 applied,
and later.

Both the ICSFPROC and ICSF system parameters must be specified in order to
start ICSF automatically during IPL-time. You can specify the values of the
ICSFPROC and ICSF system parameters in one or more of the following places:
v The IEASYSxx parmlib member.
v By the operator, in response to message IEA101A SPECIFY SYSTEM

PARAMETERS.

If you define the values in only the IEASYSxx parmlib member, the system uses
that definition. Otherwise, the system determines the ICSFPROC and ICSF system
parameters using the values specified via the operator response to message
IEA101A SPECIFY SYSTEM PARAMETERS.

To configure ICSF to start during IPL-time:
1. Configure the ICSFPROC system parameter. The ICSFPROC system parameter

specifies the ICSF startup procedure to be used during early ICSF initialization.
ICSFPROC can be omitted or ‘NONE’ can be specified to prevent ICSF from
starting early. If ‘NONE’ is specified, ICSF must be started manually. The
procedure must reside in a SYS1.PROCLIB data set or an equivalent that is
specified by the IEFPDSI DD card specification of the MSTJCLxx PARMLIB
member. If the procedure is not in this location, ICSF will not start. For
information about MSTJCL, see z/OS MVS Initialization and Tuning Reference.
ICSFPROC=CSF2

ICSFPROC=NONE

114 z/OS ICSF System Programmer's Guide

|

|
|
|
|
|

|
|
|

|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|

|

2. Configure the ICSF system parameter. The ICSF system parameter specifies the
xx value of the CSFPRMxx member containing the installation options data set.
For example, a value of 00 would correspond to the CSFPRM00 member. ICSF
can be omitted or ‘NONE’ can be specified to prevent ICSF from starting early.
If ‘NONE’ is specified, ICSF must be started manually.
ICSF=00

ICSF=NONE

3. Modify the ICSF startup procedure. The ICSF startup procedure must be
modified to accept the PRM procedure variable. The PRM procedure variable
must be set to the xx value of the CSFPRMxx member containing the
installation options data set. The following example shows how this would
look using the CSFPARM DD statement:
//CSF PROC PRM=00
//CSF EXEC PGM=CSFINIT,REGION=0M,TIME=1440,MEMLIMIT=NOLIMIT
//CSFPARM DD DSN=USER.PARMLIB(CSFPRM&PRM),DISP=SHR

4. IPL the system. If both the ICSFPROC and ICSF system parameters are
configured correctly and the ICSF startup procedure exists and is coded
correctly, ICSF starts during IPL-time.

Notes:

v For information on the syntax of the ICSFPROC and ICSF system parameters,
see IEASYSxx (system parameter list) in MVS Initialization and Tuning Reference.

v For information on how to setup the ICSF startup procedure, see “Steps to create
the ICSF startup procedure” on page 30.

v It is recommended that you set up an AUTOR policy to auto reply to the
BCF005A and BCF006A messages after a specified amount of time has passed. In
the example below, ICSF must be started manually if the auto reply is NONE
after 60 seconds.
MSGID(BCF005A) DELAY(60S) REPLY(NONE)

MSGID(BCF006A) DELAY(60S) REPLY(NONE)

v You should remove any existing invocations that start ICSF and rely on ICSF
startup at IPL-time. For example, look for any commands that start ICSF in the
COMMNDxx parmlib member. After the system brings up ICSF automatically,
the system rejects any attempt to bring up a second instance of ICSF. The system
issues the following warning message and terminates the second instance of
ICSF:
CSFM004A ICSF TERMINATING. ICSF ALREADY ACTIVE.

v ICSF, when started during IPL-time, is started as a system address space. Any
processing (including automation) that relies on ICSF being started as a job
(started task) might need to make changes. For example, ICSF would not be
included in the output of the DISPLAY JOBS,LIST or DISPLAY A,LIST system
commands.

Note: ICSF address space is still included in the output of the DISPLAY
JOBS,ALL and DISPLAY A,ALL system commands.

Chapter 4. Operating ICSF 115

|
|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

|
|
|
|

|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|

Modifying ICSF
When you issue the MODIFY command, ICSF gives control to the installation exit
CSFEXIT5, if it exists. Your installation can write an exit routine for CSFEXIT5 that
changes ICSF operations. For example, you might have the installation exit change
the CHECKAUTH installation option without having to stop and restart ICSF. See
Chapter 5, “Installation exits,” on page 167 for a description of the installation
exits.

If your installation does not write an exit routine for CSFEXIT5, no action occurs
when you enter the MODIFY command.

Command syntax notation
You must follow certain syntactical rules when you code the ICSF commands.

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments)
that comprise a command statement. They are read from left to right and from top
to bottom, following the main path of the horizontal line.

For users accessing IBM Knowledge Center using a screen reader, syntax diagrams
are provided in dotted decimal format.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol
Definition

►►─── Indicates the beginning of the syntax diagram.

───► Indicates that the syntax diagram is continued to the next line.

►─── Indicates that the syntax is continued from the previous line.

───►◄ Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:
v Keywords - a command name or any other literal information.
v Variables - variables are italicized, appear in lowercase, and represent the name

of values you can supply.
v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.
v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.
v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.
v Separators - a separator separates keywords, variables or operators. For example,

a comma (,) is a separator.

116 z/OS ICSF System Programmer's Guide

|

Note: If a syntax diagram shows a character that is not alphanumeric (for
example, parentheses, periods, commas, equal signs, a blank space), enter the
character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type
Definition

Required
Required items are displayed on the main path of the horizontal line.

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

Table 13. Syntax examples

Item Syntax example

Required choice.

A required choice (two or more items)
appears in a vertical stack on the main
path of the horizontal line. You must
choose one of the items in the stack.

►► KEYWORD required_choice1
required_choice2

►◄

Required item.

Required items appear on the main path
of the horizontal line. You must specify
these items.

►► KEYWORD required_item ►◄

Optional item.

Optional items appear below the main
path of the horizontal line.

►► KEYWORD
optional_item

►◄

Optional choice.

An optional choice (two or more items)
appears in a vertical stack below the
main path of the horizontal line. You
may choose one of the items in the stack.

►► KEYWORD
optional_choice1
optional_choice2

►◄

Default.

Default items appear above the main
path of the horizontal line. The remaining
items (required or optional) appear on
(required) or below (optional) the main
path of the horizontal line. The following
example displays a default with optional
items.

►►
default_choice1

KEYWORD
optional_choice2
optional_choice3

►◄

Variable.

Variables appear in lowercase italics.
They represent names or values.

►► KEYWORD variable ►◄

Chapter 4. Operating ICSF 117

Table 13. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the
main path of the horizontal line indicates
an item that can be repeated.

A character within the arrow means you
must separate repeated items with that
character.

An arrow returning to the left above a
group of repeatable items indicates that
one of the items can be selected,or a
single item can be repeated.

►► ▼KEYWORD repeatable_item ►◄

►► ▼

,

KEYWORD repeatable_item ►◄

Fragment.

The fragment symbol indicates that a
labelled group is described below the
main syntax diagram. Syntax is
occasionally broken into fragments if the
inclusion of the fragment would overly
complicate the main syntax diagram.

►► KEYWORD fragment ►◄

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

ICSF operator commands
Beginning with ICSF FMID HCR77B1 and later, ICSF provides support for the
following operator commands:

“Display ICSF”
Displays information about ICSF.

“SETICSF” on page 125
Used to perform specific administration functions.

Note: Installation options modified by the SETICSF command are in effect
only until ICSF is stopped or restarted. When ICSF is restarted, the installation
options will be re-initialized from the ICSF installation options data set. If you
want to make the changes permanent, the installation options data set must be
manually updated as needed.

Display ICSF
Use the Display ICSF command to:
v Display the status for available cryptographic devices.
v Display certain ICSF options.
v Display cryptographic usage tracking options.
v Display key lifecycle auditing options.
v Display key usage auditing options.
v Display information about regional cryptographic servers (remote devices).
v Display information pertaining to active key data sets (KDS).
v Display the status of the master key registers for the available cryptographic

devices.

118 z/OS ICSF System Programmer's Guide

v List the systems that are available to participate in commands with a SYSPLEX
scope.

Syntax

►►
,LIST

Display ICSF
,CARDS
,KDS
,MKS
,OPTions
,REMOTEdevice | RD

, SYSPLEX No
Yes

►◄

Parameters

CARDS
The system displays the following (message CSFM668I) information about the
cryptographic devices available on the system or sysplex:
v The active domain.
v For each available device:

– The device type (for example, CRYPTO EXPRESS5 COPROCESSOR).
– The device index (for example, 5C36).
– The device status (for example, Active).
– The device serial number (for example, 99EA6059).
– The firmware level of the device (for example, 6.0.5z).
– The total number of requests since ICSF initialization. This field supports

up to 10 digits where the maximum value is 232 - 1. If the number of
requests exceeds the maximum, ICSF wraps the count and displays a “+”
in the high order digit to indicate wrapping (for example, +000000000).

– The number of requests both active and in the work queue for the device.
– The compliance mode of the CCA coprocessor, where applicable (for

example, PCI-HSM 2016).

For example:
D ICSF,CARDS
CSFM668I 16.36.34 ICSF CARDS 259
ACTIVE DOMAIN = 044
CRYPTO EXPRESS5 COPROCESSOR 5C00

STATUS=Active SERIAL#=DV4CK428 LEVEL=5.3.13z
REQUESTS=0122008567 ACTIVE=0000

CRYPTO EXPRESS5 ACCELERATOR 5A02
STATUS=Active
REQUESTS=0615576059 ACTIVE=0000

CRYPTO EXPRESS5 COPROCESSOR 5P03
STATUS=Active SERIAL#=DV4CB353 LEVEL=05.03 CLiC=040D
REQUESTS=0000000070 ACTIVE=0000

CRYPTO EXPRESS6 COPROCESSOR 6C05
STATUS=Active SERIAL#=DV777392 LEVEL=6.0.5z
REQUESTS=0158807665 ACTIVE=0000

If you are running on a lower release of ICSF, where the highest adapter
supported by ICSF is the CEX5S, the display shows the Crypto Express6
coprocessor as 5C05 and the firmware level is 6.0.5.

Chapter 4. Operating ICSF 119

D ICSF,CARDS
CSFM668I 16.42.34 ICSF CARDS 259
ACTIVE DOMAIN = 044
CRYPTO EXPRESS6 COPROCESSOR 5C05
STATUS=Active SERIAL#=DV777392 LEVEL=6.0.5
REQUESTS=0158807003 ACTIVE=0000

KDS
The system displays (message CSFM668I) information about the active key
data sets (KDS) on the system or sysplex:
v The dataset name for each active KDS (CKDS, PKDS, and TKDS).
v The format of the KDS (for example, KDSR):

– Possible values are KDSR, FIXED, and VARIABLE.
v The communication level in place for the KDS (for example, 3). This is only

displayed is a sysplex environment.
v Whether the KDS is being shared in a sysplex group (for example, Y).
v The MKVPs initialized in the KDS (for example, DES AES).

– The possible values are:
- DES, AES, or both for CKDS.
- RSA, ECC, or both for PKDS.
- P11, RCS, or both for TKDS.

For example:
SYSA D ICSF,KDS

SYSA CSFM668I 14.38.31 ICSF KDS 040
CKDS RACFDRVR.SHERID.CKDSPLX
FORMAT=KDSR COMM LVL=3 SYSPLEX=Y MKVPs=DES AES

PKDS RACFDRVR.SHERID.PKDSPLX
FORMAT=KDSR COMM LVL=3 SYSPLEX=Y MKVPs=RSA ECC

TKDS RACFDRVR.SHERID.TKDSPLX
FORMAT=KDSR COMM LVL=3 SYSPLEX=Y MKVPs=P11 RCS

MKS
The system displays (message CSFM668I) master key information:
v The name of the system (for example, SYSA).
v The active domain (for example, 003).
v For each device on the system:

– The device index (for example, 5C38).
– The device serial number (for example, 99EA6059).
– The status of the device.
– A status indicator for each possible master key.

For more information on the possible display values, see the Displaying
Coprocessor or Accelerator Status topic in z/OS Cryptographic Services ICSF
Administrator's Guide.

For example:
SYSA D ICSF,MKS

SYSA CSFM668I 09.45.18 ICSF MKS 852
SYSNAME: SYSA DOMAIN: 003 CPC Name: PR2827A
FEATURE SERIAL# STATUS AES DES ECC RSA P11
5C38 99EA6059 Active A A A A
5P39 97006054 Active A

120 z/OS ICSF System Programmer's Guide

LIST
The system displays (message CSFM668I) members of a sysplex who are
eligible to participate in Display ICSF and SETICSF commands. LIST is the
default option.

For example:
SYSA D ICSF,LIST

SYSA CSFM668I 14.57.29 ICSF LIST 984
Systems supporting SETICSF and Display ICSF commands:
SYSA HCR77B1 DOMAIN = 003
SYSB HCR77B1 DOMAIN = 003

OPTions
The system displays (message CSFM668I information):
v The name of the system (for example, SYSA).
v The ICSF release that is active (for example, HCR77B1).
v The most recent build date of ICSF executable code (for example, 01/09/16

or the latest ICSF code change).
v How much time must elapse between key references before a refdate change

is recorded in the KDS record (refdate update interval).
v How often KDS refdate updates are hardened to the KDS dataset (refdate

update period).
v The number of master key verification pattern digits.
v The cryptographic usage statistics that are being tracked.
v The COMPLIANCEWARN and AUDIT information.

For example:
SYSA D ICSF,OPTIONS
SYSA CSFM668I 10.23.21 ICSF OPTIONS 833

SYSNAME = SYSA ICSF LEVEL = HCR77C1
LATEST ICSF CODE CHANGE = 08/22/17
Refdate update interval in Days/HH.MM.SS = 030/00.00.00
Refdate update period in Days/HH.MM.SS = 000/01.00.00
MASTERKCVLEN = display 3 digits
AUDITKEYLIFECKDS: Audit CCA symmetric key lifecycle events

SYSNAME LABEL TOKEN
SYSA Yes Yes

AUDITKEYLIFEPKDS: Audit CCA asymmetric key lifecycle events
SYSNAME LABEL TOKEN
SYSA Yes Yes

AUDITKEYLIFETKDS: Audit PKCS #11 key lifecycle events
SYSNAME TOKOBJ SESSOBJ
SYSA Yes Yes

AUDITKEYUSGCKDS: Audit CCA symmetric key usage events
SYSNAME LABEL TOKEN Interval Days/HH.MM.SS
SYSA Yes Yes 000/01.00.00

AUDITKEYUSGPKDS: Audit CCA asymmetric key usage events
SYSNAME LABEL TOKEN Interval Days/HH.MM.SS
SYSA Yes Yes 000/01.00.00

AUDITPKCS11USG: Audit PKCS #11 usage events
SYSNAME TOKOBJ SESSOBJ NOKEY Interval Days/HH.MM.SS
SYSA Yes Yes Yes 000/01.00.00

STATS:
SYSA ENG, SRV, ALG

COMPLIANCEWARN: Compliance warning events
SYSA PCI-HSM 2016 Yes

REMOTEdevice|RD
Displays information about regional cryptographic servers (remote devices) on
either the local system or if SYSPLEX=YES, all systems in the sysplex.

Chapter 4. Operating ICSF 121

Notes:

v At least one REMOTEDEVICE option must have been specified in the ICSF
installation options data set prior to ICSF being started in order for the
Display ICSF,REMOTEDEVICE command to be operational.

v In addition, the current machine type must be an IBM zEnterprise EC12 or
later machine.

v If ICSF is started without any REMOTEDEVICE entries specified in the ICSF
installation options data set or while running on a machine type other than
an IBM zEnterprise EC12 or later machine, the Display ICSF,REMOTEdevice
command fails, and ICSF issues message CSFM669I.

The results of the command are displayed through message CSFM668I:
v The dataset name for the active TKDS (for example, CSF.TKDS2).
v The first three hexadecimal bytes of the regional cryptographic server master

key verification pattern from the TKDS (for example, AB1122).
v For each device on the system:

– The device serial number (for example, 87651130).
– The device port number (for example, 8001).
– The level indicating the generation of card code (for example,

LEVEL=01.00).
– The HOST/IP of the device (for example, HOST/IP@=123.45.34.100).
– The remote device identifier (REGIONAL CRYPTO SRV); for example,

1R09, where:
- 1 = Generation of the device.
- R = Remote regional cryptographic server.
- 09 = Index as defined in the options dataset.

– The status of the device (for example, Active).
– The current number of socket connections / the maximum number of

socket connections as defined in the options dataset (for example, 7/8).

Note: If the current number of sockets = the maximum number of sockets
defined, only one number is displayed (as with the second example
showing Sockets=8).

– The current number of active cryptographic requests on the device (In
this example, 5 for the first remote device (serial number 87651130) and 6
for the second remote device (serial number 87661276).

– The total number of cryptographic requests on the device since ICSF
initialization. This field supports up to 10 digits where the maximum
value is 232 - 1. If the number of requests exceeds the maximum, ICSF
wraps the count and displays a “+” in the high order digit to indicate
wrapping (for example, +000000000).

– Optional new master key information: The first three hexadecimal bytes
of the regional cryptographic server new master key verification pattern
and the state of the new master key (for example, FULL COMMITTED).

Note: During heavy workloads or when SYSPLEX=YES is specified, the
display command may be unable to retrieve a recently updated new
master key value. If the new master key verification pattern that is
displayed does not match the new master key loaded from the RCS
utility, wait 10 minutes for an implicit RCS check and then reissue the
display command. Otherwise, issue the SETICSF RESTART command for
each RCS device.

122 z/OS ICSF System Programmer's Guide

– Optional diagnostic information: Displays the device MKVP when the
regional cryptographic server master key does not match that in the
TKDS.

For example, when SYSPLEX=NO is specified or used by default from SYSA
with 2 remote devices:
SYSA D ICSF,RD

SYSA CSFM668I 04.47.06 ICSF RD 424
TKDS = CSF.TKDS2
RCS MKVP FROM TKDS = AB1122 ...

SERIAL NUMBER=87651130 PORT=8001 LEVEL=01.00
HOST/IP@=123.45.34.100
REGIONAL CRYPTO SRV 1R06
SYSA Active Sockets=7/8
REQUESTS ACTIVE=0005

SERIAL NUMBER=87661276 PORT=8001 LEVEL=01.00
HOST/IP@=123.45.34.101
REGIONAL CRYPTO SRV 1R09
SYSA Active Sockets=8
REQUESTS ACTIVE=0006

When SYSPLEX=YES is specified, ICSF collects the remote device information
from all the systems in the sysplex for display through message CSFM668I.
The output of message CSFM668I is sorted and grouped using the sort keys:
v TKDS
v SERIAL NUMBER
v PORT

For example, when SYSPLEX=YES is specified:
SYSA D ICSF,RD,SYSPLEX=Y

SYSA CSFM668I 05.54.31 ICSF RD 502
TKDS = CSF.TKDS2

RCS MKVP FROM TKDS = AB1122 ...
SERIAL NUMBER=87651130 PORT=8001 LEVEL=01.00
HOST/IP@=123.45.34.100
REGIONAL CRYPTO SRV 1R06

SYSA Active Sockets=8
REQUESTS ACTIVE=0000

SERIAL NUMBER=87651130 PORT=8002 LEVEL=01.00
HOST/IP@=123.45.34.100
REGIONAL CRYPTO SRV 1R06

SYSB Active Sockets=8
REQUESTS ACTIVE=0000

SERIAL NUMBER=87651130 PORT=8003 LEVEL=01.00
HOST/IP@=123.45.34.100
REGIONAL CRYPTO SRV 1R06

SYSC Active Sockets=8
REQUESTS ACTIVE=0000

SERIAL NUMBER=87661062 PORT=8003 LEVEL=01.00
HOST/IP@=123.45.34.103
REGIONAL CRYPTO SRV 1R16

SYSC Active Sockets=8
REQUESTS ACTIVE=0000

SERIAL NUMBER=87661276 PORT=8001 LEVEL=01.00
HOST/IP@=123.45.34.101
REGIONAL CRYPTO SRV 1R09

SYSA Active Sockets=8
REQUESTS ACTIVE=0000

SERIAL NUMBER=87661276 PORT=8002 LEVEL=01.00
HOST/IP@=123.45.34.101
REGIONAL CRYPTO SRV 1R09

SYSB Active Sockets=8

Chapter 4. Operating ICSF 123

REQUESTS ACTIVE=0000
SERIAL NUMBER=87661276 PORT=8003 LEVEL=01.00
HOST/IP@=123.45.34.101
REGIONAL CRYPTO SRV 1R09
SYSC Active Sockets=8
REQUESTS ACTIVE=0000

SERIAL NUMBER=87671176 PORT=8003 LEVEL=01.00
HOST/IP@=123.45.34.102
REGIONAL CRYPTO SRV 1R13
SYSC Active Sockets=8
REQUESTS ACTIVE=0000

SYSPLEX(YES or NO)
The SYSPLEX keyword increases the scope of the Display ICSF command to all
participating members of the sysplex. The Display ICSF output is grouped
according to CPC Name and shows the results of the Display ICSF command
as it was executed on each member. Specify SYSPLEX=Yes to execute the
command on all systems. Otherwise, specify SYSPLEX=No to execute the
command only on the local (initiating) system. SYSPLEX=No is the default.

For example:
D ICSF,CARDS,SYSPLEX=Y

CSFM668I 11.49.49 ICSF CARDS 919
CPC Name = R01 CPC Sequence# = 0000000000042E08
CRYPTO EXPRESS6 COPROCESSOR 6C57 SERIAL#=99EA6003 LEVEL=6.0.00z

SYSA DOMAIN=000 Active REQUESTS=0000
PCI-HSM=2016 MIGRATION

SYSB DOMAIN=002 Active
REQ=4294967295 ACT=0008

SYSC DOMAIN=008 Active
REQ=N/A ACT=0001

CRYPTO EXPRESS5 COPROCESSOR 5P58 SERIAL#=97006035 LEVEL=02.09
SYSA DOMAIN=000 Active

REQ=0000000100 ACT=0005
SYSB DOMAIN=002 Active

REQ=0000000010 ACT=0003
SYSC DOMAIN=008 Active

REQ=N/A ACT=0007
CPC Name = R02 CPC Sequence# = 0000000000042E09
CRYPTO EXPRESS5 COPROCESSOR 5P59 SERIAL#=97006102 LEVEL=02.09

SYSA DOMAIN=000 Active
REQ=0000000030 ACT=0006

CRYPTO EXPRESS5 ACCELERATOR 5P60
SYSC DOMAIN=008 Active

REQ=+000085315 ACT=0004

SYSA D ICSF,OPT,SYSPLEX=Y

SYSA CSFM668I 11.36.35 ICSF OPTIONS 995
SYSNAME = SYSA ICSF LEVEL = HCR77B1
LATEST ICSF CODE CHANGE = 01/09/15
Refdate update interval in Days/HH.MM.SS = 030/00.00.00
Refdate update period in Days/HH.MM.SS = 000/01.00.00
MASTERKCVLEN = display 3 digits

SYSNAME = SYSB ICSF LEVEL = HCR77B1
LATEST ICSF CODE CHANGE = 01/09/15
Refdate update interval in Days/HH.MM.SS = 005/00.00.00
Refdate update period in Days/HH.MM.SS = 000/01.00.00
MASTERKCVLEN = display 3 digits

Usage Notes

For information on how to limit the use of MVS console commands to a specific
set of users, see the System Operations topic in z/OS MVS System Commands.

124 z/OS ICSF System Programmer's Guide

SETICSF
The SETICSF command is used to perform the following specific administration
functions:
v Activate, deactivate, or restart a cryptographic device.
v Add, check, or delete a regional cryptographic device.
v Attempt to reopen sockets that were not previously opened.
v Change a subset of ICSF's installation options.
v Enable or disable updates to a key data set (KDS).
v Change cryptographic usage tracking options.
v Change key lifecycle auditing options.
v Change key usage auditing options.
v Refresh some options in the installation options data set.

Note: For additional information on these administrative functions and their
impact on ICSF and cryptographic devices, see z/OS Cryptographic Services ICSF
Administrator's Guide.

Syntax

►►

▼

▼

▼

▼

▼

▼

▼

▼

SETICSF ACTivate , SN = serialnumber
DEACTivate , REMOTEdevice | RD , INDEX = indexlist
RESTART
CHECK , REMOTEdevice | RD , SN = serialnumber
DELETE , INDEX = indexlist
ENable , CKDS
DISable , PKDS

, TKDS

OPTions , AUDITKEYLIFECKDS , TOKen={Yes|No}
AUDKLC , LABel={Yes|No}

AUDITKEYLIFEPKDS , TOKen={Yes|No}
AUDKLP , LABel={Yes|No}

AUDITKEYLIFETKDS , TOKenObj={Yes|No}
AUDKLT , SESSionObj={Yes|No}

AUDITKEYUSGCKDS , TOKen={Yes|No}
AUDKUC , LABel={Yes|No}

, INTerval = usginterval

AUDITKEYUSGPKDS , TOKen={Yes|No}
AUDKUP , LABel={Yes|No}

, INTerval = usginterval

AUDITPKCS11USG , TOKenObj={Yes|No}
AUDP11U , SESSionObj={Yes|No}

, NOKEY={Yes|No}
, INTerval = usginterval

,

MKCVLEN = value
RISEC = interval
RPSEC = period

REFRESH
,

STATS = (ENG)
SRV
ALG

NONE

►

Chapter 4. Operating ICSF 125

►

, SYSPLEX No
Yes

►◄

Add keyword:

ADD , REMOTEdevice | RD , INDEX = indexlist
, IP = ip-addr-or-hostname
, PORT = port-number
, SOCK = number-sockets

Parameters

ACTivate
Activates the specified cryptographic device or devices. The valid device
specifications are:

REMOTEdevice
The regional cryptographic server or servers (remote device or devices).
REMOTEdevice is optional.

Notes:

v At least one REMOTEDEVICE option must have been specified in the
ICSF installation options data set prior to ICSF being started in order for
the SETICSF ACTivate,REMOTEdevice command to be operational.

v In addition, the current machine type must be an IBM zEnterprise EC12
or later machine.

v If ICSF is started without any REMOTEDEVICE entries specified in the
ICSF installation options data set or while running on a machine type
other than an IBM zEnterprise EC12 or later machine, the command
fails, and ICSF issues message CSFM670I.

SN=serialnumber
Specify the serial number or numbers of the device or devices to be
activated. The serialnumber value can be a single serial number or a list of
serial numbers separated by commas. When more than one value is
provided, the set of values must be enclosed in parentheses. For example:
SN=99AE6012
SN=(99AE6012,99AE6013,99AE6014)

INDEX=indexlist
Specify the index or indexes of the device or devices to be activated. The
valid range is 0 to 63, or 1-16 when REMOTEdevice is specified. The
indexlist value can be a single device index, a range of indexes separated
by a colon, or a combination of the two separated by commas. When more
than one value is provided, the set of values must be enclosed in
parentheses. For example:
INDEX=01
INDEX=(02:08)
INDEX=(02,04:07,09)

Note: To understand how the use of the INDEX value with the SYSPLEX
parameter can result in devices with different serial numbers being
modified on other systems sharing the KDS, see the explanation of the
SYSPLEX parameter.

126 z/OS ICSF System Programmer's Guide

|
|
|
|

ADD
Adds a regional cryptographic server (single system only).

Notes:

v At least one REMOTEDEVICE option must have been specified in the ICSF
installation options data set prior to ICSF being started in order for the
SETICSF ADD,REMOTEdevice command to be operational.

v In addition, the current machine type must be an IBM zEnterprise EC12 or
later machine.

v If ICSF is started without any REMOTEDEVICE entries specified in the ICSF
installation options data set or while running on a machine type other than
an IBM zEnterprise EC12 or later machine, the ADD command fails and
ICSF issues message CSFM670I.

v SYSPLEX=YES is not supported for the SETICSF ADD,REMOTEdevice
command.

REMOTEdevice|RD
The regional cryptographic server or servers (remote device or devices). All
of the following operands must be specified:

INDEX=index-number
Specify the index of the device to be added. Specify a number between
1 and 16, inclusive. Each operational REMOTEDEVICE must have a
unique number so SETICSF ADDing a index that already exists will
fail. For indexes that are repeated, ICSF will only save the last one
specified. Additionally, if remote devices or ports are shared between
sysplex members, it is strongly recommended that the same index
number is used for each member.

IP=ip-addr-or-hostname
Specify the dotted-decimal Internet protocol (IP) version 4 address or
the hostname of the remote device. Each ip-addr-or-hostname must
locate a single device with fixed serial number. Reverse proxy
arrangements where one ip-addr-or-hostname is backed by multiple
devices (with different serial numbers) is not supported. The opposite
arrangement (one serial number assigned to multiple
ip-addr-or-hostnames) is supported, but not recommended.

Notes:

v Hostnames are not case-sensitive and are stored and displayed by
ICSF in lowercase.

PORT=port-number
Specify the port number to be used in conjunction with the IP address
or hostname when connecting.

Note: No two ICSF instances may share the same port on a regional
cryptographic server. Additionally, it is expected that different
workloads (for example, ICSF instances using different token data sets)
sharing a regional cryptographic server would use different master
keys (RCS-MKs) and that the required RCS-MK for the TKDS would be
assigned on a per port basis.

SOCK=number-sockets
Specify the maximum number of sockets ICSF is to open for
connections with the remote device. This is a value between 1 and 8,
inclusive. Multiple sockets are required in order for ICSF to process

Chapter 4. Operating ICSF 127

multiple simultaneous requests. Consult the remote device's
documentation to determine this value. There is an ICSF limit of 8
sockets per REMOTEDEVICE entry. If you desire more than 8 socket
connections to a single server, then configure multiple ports on the
server and define multiple REMOTEDEVICE entries, one per port.
Note that the index value must be unique for each entry.

CHECK
Attempts to reopen sockets that were not previously opened.

REMOTEdevice
The regional cryptographic server or servers (remote device or devices).

Notes:

v At least one REMOTEDEVICE option must have been specified in the
ICSF installation options data set prior to ICSF being started in order for
the SETICSF CHECK,REMOTEdevice command to be operational.

v In addition, the current machine type must be an IBM zEnterprise EC12
or later machine.

v If ICSF is started without any REMOTEDEVICE entries specified in the
ICSF installation options data set or while running on a machine type
other than an IBM zEnterprise EC12 or later machine, the command
fails, and ICSF issues message CSFM670I.

SN=serialnumber
Specify the serial number or numbers of the device or devices to be
checked. The serialnumber value can be a single serial number or a list of
serial numbers separated by commas. When more than one value is
provided, the set of values must be enclosed in parentheses. For example:
SN=99AE6012
SN=(99AE6012,99AE6013,99AE6014)

INDEX=indexlist
Specify the index or indexes of the device or devices to be checked. Specify
a number between 1 and 16, inclusive. The indexlist value can be a single
device index, a range of indexes separated by a colon, or a combination of
the two separated by commas. When more than one value is provided, the
set of values must be enclosed in parentheses. For example:
INDEX=01
INDEX=(02:08)
INDEX=(02,04:07,09)

DEACTivate
Deactivates specified cryptographic devices. The valid device specification are:

REMOTEdevice
The regional cryptographic server or servers (remote device or devices).
REMOTEdevice is optional.

Notes:

v At least one REMOTEDEVICE option must have been specified in the
ICSF installation options data set prior to ICSF being started in order for
the SETICSF DEACTivate,REMOTEdevice command to be operational.

v In addition, the current machine type must be an IBM zEnterprise EC12
or later machine.

v If ICSF is started without any REMOTEDEVICE entries specified in the
ICSF installation options data set or while running on a machine type

128 z/OS ICSF System Programmer's Guide

other than an IBM zEnterprise EC12 or later machine, the command
fails, and ICSF issues message CSFM670I.

SN=serialnumber
Specify the serial number or numbers of the device or devices to be
deactivated. The serialnumber value can be a single serial number or a list
of serial numbers separated by commas. When more than one value is
provided, the set of values must be enclosed in parentheses. For example:
SN=99AE6012
SN=(99AE6012,99AE6013,99AE6014)

INDEX=indexlist
Specify the index or indexes of the device or devices to be deactivated. The
valid range is 0 to 63, or 1-16 when REMOTEdevice is specified. The
indexlist value can be a single device index, a range of indexes separated
by a colon, or a combination of the two separated by commas. When more
than one value is provided, the set of values must be enclosed in
parentheses. For example:
INDEX=01
INDEX=(02:08)
INDEX=(02,04:07,09)

Note: To understand how the use of the INDEX value with the SYSPLEX
parameter can result in devices with different serial numbers being
modified on other systems sharing the KDS, see the explanation of the
SYSPLEX parameter.

DELETE
Removes a regional cryptographic server from a system or systems.

REMOTEdevice
The regional cryptographic server or servers (remote device or devices).

Notes:

v At least one REMOTEDEVICE option must have been specified in the
ICSF installation options data set prior to ICSF being started in order for
the SETICSF DELETE,REMOTEdevice command to be operational.

v In addition, the current machine type must be an IBM zEnterprise EC12
or later machine.

v If ICSF is started without any REMOTEDEVICE entries specified in the
ICSF installation options data set or while running on a machine type
other than an IBM zEnterprise EC12 or later machine, the command
fails, and ICSF issues message CSFM670I.

SN=serialnumber
Specify the serial number or numbers of the device or devices to be
deleted. The serialnumber value can be a single serial number or a list of
serial numbers separated by commas. When more than one value is
provided, the set of values must be enclosed in parentheses. For example:
SN=99AE6012
SN=(99AE6012,99AE6013,99AE6014)

INDEX=indexlist
Specify the index or indexes of the device or devices to be deleted. Specify
a number between 1 and 16, inclusive. The indexlist value can be a single
device index, a range of indexes separated by a colon, or a combination of
the two separated by commas. When more than one value is provided, the
set of values must be enclosed in parentheses. For example:

Chapter 4. Operating ICSF 129

|
|
|
|

INDEX=01
INDEX=(02:08)
INDEX=(02,04:07,09)

DISable
Disables updates for the specified key data set. The valid KDS specifications
are:
v CKDS
v PKDS
v TKDS

ENable
Enables updates for the specified key data set. The valid KDS specifications
are:
v CKDS
v PKDS
v TKDS

OPTions
Changes the value of an ICSF option. The supported options are:

AUDITKEYLIFECKDS,AUDKLC
Changes one or more options related to lifecycle auditing of CKDS labels
and tokens.

LABEL,LAB = YES|NO

YES Enables key lifecycle auditing of CKDS labels.

NO Disables key lifecycle auditing of CKDS labels.

TOKEN,TOK = YES|NO

YES Enables key lifecycle auditing of CKDS tokens.

NO Disables key lifecycle auditing of CKDS tokens.

Example:
AUDITKEYLIFECKDS,LABEL=YES,TOKEN=NO

AUDITKEYLIFEPKDS,AUDKLP
Changes one or more options related to lifecycle auditing of PKDS labels
and tokens.

LABEL,LAB = YES|NO

YES Enables key lifecycle auditing of PKDS labels.

NO Disables key lifecycle auditing of PKDS labels.

TOKEN,TOK = YES|NO

YES Enables key lifecycle auditing of PKDS tokens.

NO Disables key lifecycle auditing of PKDS tokens.

Example:
AUDKLP,TOK=NO,LABEL=YES

AUDITKEYLIFETKDS,AUDKLT
Changes one or more options related to lifecycle auditing of TKDS token
objects and session objects.

TOKENOBJ,TOKO = YES|NO

130 z/OS ICSF System Programmer's Guide

YES Enables key lifecycle auditing of TKDS token objects.

NO Disables key lifecycle auditing of TKDS token objects.

SESSIONOBJ,SESSO = YES|NO

YES Enables key lifecycle auditing of TKDS token objects.

NO Disables key lifecycle auditing of TKDS token objects.

Example:
AUDKLT,TOKO=YES
AUDKLT,TOKO=YES,SESSO=YES

AUDITKEYUSGCKDS,AUDKUC
Changes one or more options related to key usage auditing of CKDS labels
and tokens.

LABEL,LAB = YES|NO

YES Enables key usage auditing of CKDS labels.

NO Disables key usage auditing of CKDS labels.

TOKEN,TOK = YES|NO

YES Enables key usage auditing of CKDS tokens.

NO Disables key usage auditing of CKDS tokens.

INTERVAL,INT = usginterval[H|M|S]
The interval over which key usage records are aggregated before being
written out to SMF. The time unit may be specified as H – hours, M –
minutes, or S – seconds. If the time unit is not specified, the default is
S - seconds. The minimum value of usginterval is 1 second. The
maximum value is 24 hours.

Example:
AUDKUC,LABEL=YES,TOK=YES
AUDKUC,INT=8H

AUDITKEYUSGPKDS,AUDKUP
Changes one or more options related to key usage auditing of PKDS labels
and tokens.

LABEL,LAB = YES|NO

YES Enables key usage auditing of PKDS labels.

NO Disables key usage auditing of PKDS labels.

TOKEN,TOK = YES|NO

YES Enables key usage auditing of PKDS tokens.

NO Disables key usage auditing of PKDS tokens.

INTERVAL,INT = usginterval[H|M|S]
The interval over which key usage records are aggregated before being
written out to SMF. The time unit may be specified as H – hours, M –
minutes, or S – seconds. If the time unit is not specified, the default is
S - seconds. The minimum value of usginterval is 1 second. The
maximum value is 24 hours.

Example:

Chapter 4. Operating ICSF 131

AUDITKEYUSGPKDS,LAB=YES,TOKEN=NO
AUDKUP,LAB=YES,TOKEN=NO,INT=3600

AUDITPKCS11USG,AUDP11U
Changes one or more options related to usage auditing of PKCS #11
services.

TOKENOBJ,TOKO = YES|NO

YES Enables key usage auditing of PKCS #11 token objects.

NO Disables key usage auditing of PKCS #11 token objects.

SESSIONOBJ,SESSO = YES|NO

YES Enables key usage auditing of PKCS #11 session objects.

NO Disables key usage auditing of PKCS #11 session objects.

NOKEY = YES|NO

YES Enables usage auditing of PKCS #11 services which do not
involve an object.

NO Disables usage auditing of PKCS #11 services which do not
involve an object.

INTERVAL,INT = usginterval[H|M|S]
The interval over which key usage records are aggregated before being
written out to SMF. The time unit may be specified as H – hours, M –
minutes, or S – seconds. If the time unit is not specified, the default is
S - seconds. The minimum value of usginterval is 1 second. The
maximum value is 24 hours.

Example:
AUDP11U,TOKO=YES,SESSIONOBJ=NO
AUDP11U,TOKO=YES,SESSIONOBJ=NO,NOKEY=YES,INTERVAL=1440M

MKCVLEN = value
Specifies the number of hexadecimal digits to display on the ICSF
Coprocessor Hardware Status panel (CSFCMP40) for the verification and
hash patterns for the master keys. The patterns are also referred to as key
check values. The value may be 2, 3, 4, 5, 6, or ALL. When an integer value
is specified, that number of digits will displayed. When ALL is specified,
all digits will be displayed.

This option can be used to be in compliance with the ISO11568 standard
for display of the key check values for master keys.

Notes:

v This option corresponds to the MASTERKCVLEN option in the ICSF
installation options data set. Be aware that when ICSF is restarted, the
value will revert to the value specified by the MASTERKCVLEN option
in the ICSF installation options data set.

v This option has no effect on the output of the DISPLAY ICSF,MKS
command.

REFRESH
Refreshes supported option parameters whose values have been updated
in the current installation options data set listed in the ICSF startup
procedure on the CSFPARM DD statement.

132 z/OS ICSF System Programmer's Guide

Refreshable option parameters are AUDITKEYLIFECKDS,
AUDITKEYLIFEPKDS, AUDITKEYLIFETKDS, AUDITKEYUSGCKDS,
AUDITKEYUSGPKDS, AUDITPKCS11USG, BEGIN, CHECKAUTH,
CICSAUDIT, COMPLIANCEWARN, DEFAULTWRAP, END, FIPSMODE,
KEYARCHMSG, KDSREFDAYS, MASTERKCVLEN, MAXSESSOBJECTS,
RNGCACHE, SSM, USERPARM, and WAITLIST.

RISEC = interval
Specifies, in seconds, how often a record should be written for a reference
date/time change. The values must be between 0 (write a record for every
reference) and 2592000 (30 days) seconds. For example:
RISEC=300

Note: OPTions,RISEC corresponds to the KDSREFDAYS option in the ICSF
options data set, which can only be specified in full days. When the RISEC
option has been used to change the refdate interval, the value for
KDSREFDAYS on the Installation Options Display panel is set to SETICSF
to indicate that the current value has been modified from the value that is
set in the installation options dataset.

RPSEC = period
Specifies how often in seconds ICSF hardens refdate updates to the
appropriate key data set. The value must be between 10 and 3600. For
example:
RPSEC=30

Note: There is no corresponding keyword in the ICSF options data set for
the RPSEC option. The value can only be changed using the SETICSF
command.

STATS
Updates cryptographic usage tracking options. Keywords can be combined
to track multiple statistics.

Each issuance of the command replaces the prior settings. For example, if
ENG is tracked and SRV is to be added, then STATS=(ENG,SRV) must be
issued.

ENG Enables usage tracking of cryptographic engines. Supports Crypto
Express adapters, regional cryptographic servers, CPACF, and
software.

SRV Enables usage tracking of cryptographic services. Supports ICSF
callable services and UDXes only.

ALG Enables usage tracking of cryptographic algorithms. Supports
cryptographic algorithms that are referenced in cryptographic
operations. Limited support for key generation, key derivation, and
key import.

NONE
Disables usage tracking of cryptographic statistics.

Installation options that are modified by the SETICSF command are in effect
only until ICSF is stopped or restarted. When ICSF is restarted, the installation
options are re-initialized from the ICSF installation options data set. If you
want to make the changes permanent, the installation options data set must be
manually updated as needed.

Chapter 4. Operating ICSF 133

RESTART
Restarts specified cryptographic devices. For the specified devices, the work
queues are cleared and ICSF runs through normal configuration processing in
an attempt to return a device that is in an error state to an active state. This is
most appropriate for a device that has had an error such as CARD BUSY. The
valid device specification are:

REMOTEdevice
The regional cryptographic server or servers (remote device or devices).
REMOTEdevice is optional.

Notes:

v At least one REMOTEDEVICE option must have been specified in the
ICSF installation options data set prior to ICSF being started in order for
the SETICSF RESTART,REMOTEdevice command to be operational.

v In addition, the current machine type must be an IBM zEnterprise EC12
or later machine.

v If ICSF is started without any REMOTEDEVICE entries specified in the
ICSF installation options data set or while running on a machine type
other than an IBM zEnterprise EC12 or later machine, the command
fails, and ICSF issues message CSFM670I.

SN=serialnumber
Specify the serial number or numbers of the device or devices to be
restarted. The serialnumber value can be a single serial number or a list of
serial numbers separated by commas. When more than one value is
provided, the set of values must be enclosed in parentheses. For example:
SN=99AE6012
SN=(99AE6012,99AE6013,99AE6014)

INDEX=indexlist
Specify the index or indexes of the device or devices to be restarted. The
valid range is 0 to 63, or 1-16 when REMOTEdevice is specified. The
indexlist value can be a single device index, a range of indexes separated
by a colon, or a combination of the two separated by commas. When more
than one value is provided, the set of values must be enclosed in
parentheses. For example:
INDEX=01
INDEX=(02:08)
INDEX=(02,04:07,09)

Note: To understand how the use of the INDEX value with the SYSPLEX
parameter can result in devices with different serial numbers being
modified on other systems sharing the KDS, see the explanation of the
SYSPLEX parameter.

SYSPLEX(YES or NO)
The SYSPLEX keyword increases the scope of the SETICSF command to all
participating members of the sysplex. The SETICSF command is executed
locally on the initiating system and then again on each participating member
of the sysplex. The output indicates which systems were able to process the
request as well as those systems that were not able to process the request due
to a lack of support or an error.

Specify SYSPLEX=Yes to execute the command on all systems. When
SYSPLEX=YES is specified, the command may affect cryptographic devices on
all systems within the sysplex as follows:

134 z/OS ICSF System Programmer's Guide

|
|
|
|

v When SN is specified, all cryptographic devices that have the specified serial
number or numbers are affected. No other filtering criteria is applied.

v When INDEX is specified instead of SN, additional filtering criteria is
applied. Cryptographic devices that do not meet this criteria are skipped:
– The command will only affect those systems within the sysplex that share

the same TKDS via the SYSPLEXTKDS(YES,...) ICSF installation option.
This includes the originating system.

– For each such system, both the index or indexes and serial number or
numbers must match that of the system where the command was issued.
For example:
- The command SETICSF DEACT,REMOTE,INDEX=1,SYSPLEX=YES

would deactivate the remote device at index 01 on the originating
system as well as the remote device at index 01 on any system sharing
the TKDS provided that the remote device at index 01 on that system
represents the same regional cryptographic server (same serial number).

- If the REMOTE keyword is not specified, the use of SYSPLEX with
INDEX results in the command action being performed on all devices
at that index on the originating system as well as the cryptographic
device at index 01 on any system that is sharing the KDS.
For example, the command SETICSF DEACT,INDEX=1,SYSPLEX=YES
would deactivate the cryptographic device at index 01 on the
originating system as well as the cryptographic device at index 01 on
any system sharing the KDS. In this case, it is better to use SN rather
than INDEX as the SETICSF DEACT command can affect devices that
have different serial numbers when INDEX is used with SYSPLEX=YES
and the command is issued without the REMOTE keyword.

Specify SYSPLEX=No to execute the command only on the local (initiating)
system. When SYSPLEX=NO is specified or defaulted, the command affects
only the remote device connections on the system where the command was
issued.

SYSPLEX=No is the default.

Usage Notes

Installation options modified by the SETICSF command are in effect only until
ICSF is stopped or restarted. When ICSF is restarted, the installation options will
be re-initialized from the ICSF installation options data set. If you want to make
the changes permanent, the installation options data set must be manually updated
as needed.

For information on how to limit the use of MVS console commands to a specific
set of users, see the System Operations topic in z/OS MVS System Commands.

Using different configurations
A central processor complex can have multiple cryptographic features of various
types. This topics describes some of the different configurations available.

You can divide your processor complex into PR/SM logical partitions. When you
create logical partitions on your processor complex, you use the usage domain
index on the Support Element Customize Image Profile page only if you have, or
plan to add a cryptographic feature.

Chapter 4. Operating ICSF 135

|
|
|
|

|
|
|
|
|
|
|

The DOMAIN parameter is optional. The number that is specified for the usage
domain index must correspond to the domain number you specified with the
DOMAIN(n) keyword in the installation options data set – if you specified one.
The DOMAIN keyword is required if more than one domain is specified as the
usage domain on the PR/SM panels.

A cryptographic feature can be configured and shared across multiple partitions.

Note: The domain assigned to the TKE Host LPAR must be unique if TKE is to
control all the coprocessor cards in the environment. No other LPAR can use the
domain assigned to the TKE Host.

The maximum number of LPARs depends on your server. The maximum number
of usage domains matches the maximum number of LPARs available on the server.
A usage domain can be configured to be unique to one LPAR or assigned to
different LPARs accessing different cryptographic features. This is illustrated by
LPAR 1 and LPAR 3 in Figure 1. They are both assigned to usage domain 0, but on
two different CEXnAs.

Adding and removing cryptographic coprocessors
It may become necessary for your installation to add or remove cryptographic
features. This topic gives you a brief overview of the hardware implications. For
more detailed information, refer to the zSeries PR/SM Planning Guide and the zSeries
Hardware Management Console Operations Guide (OS/2).

Domain 0

Domain 0

Domain 1

Domain 1

Domain 2

Domain 2

Domain nnn

Domain nnn

=

=

=

=

CEXnA 1

CEXnC 1

Domain 0

Domain 1

Domain 2

Domain nnn

= =

CEXnA 2

Operating
System

LPAR 1
Domain 0

LPAR 3
Domain 0

Operating
System

Operating
System

LPAR 2
Domain 1

Processor Complex

Figure 1. Multiple Crypto coprocessors on a complex

136 z/OS ICSF System Programmer's Guide

There are several terms associated with removing the features. Use the Support
Element (SE) panel to configure cryptographic features online and offline
(standby). Use the ICSF Coprocessor Management panel from your TSO user ID to
activate and deactivate cryptographic features. Use the TKE workstation to enable
and disable cryptographic coprocessors.

Adding cryptographic coprocessors
You can dynamically add cryptographic features. You must have feature 3863
installed on your system.

The cryptographic feature number must be in the Candidates list of the LPAR
Activation panel. Configure On the card. Each feature will display. For
coprocessors, once the master keys are entered, they become active. The accelerator
will automatically become active.

Note: ALL crypto coprocessors cards must be loaded with the same level of code.
Otherwise, unpredictable results can occur. When updating licensed internal code
(LIC) on the coprocessors:
v You can migrate to new LIC levels on the coprocessors one at a time without

taking an outage, and
v you need to complete the LIC upgrade on all coprocessors before trying to

exploit a new function introduced by the new LIC.

Steps for activating/deactivating cryptographic coprocessors
From your TSO userid, select option 1, Coprocessor Mgmt. On the Coprocessor
Management panel, you can select the features you want to activate or deactivate.

When a coprocessor or accelerator is deactivated through the Coprocessor
Management Panel, the card is only deactivated for that one LPAR.

Note: On systems running ICSF FMID HCR77B1 or later, the SETICSF ACTivate
and the SETICSF DEACTivate commands can also be used to activate or deactivate
coprocessors and accelerators.

Steps to configure on/off cryptographic coprocessors
To configure the cryptographic features online and offline, you must use the
support element (SE) panel.

CSFCMP00 ---------------- ICSF Coprocessor Management -------- Row 1 to 5 of 5
COMMAND ===> SCROLL ===> PAGE

Select the cryptographic features to be processed and press ENTER.
Action characters are: A, D, E, K, R and S. See the help panel for details.

CRYPTO SERIAL
FEATURE NUMBER STATUS AES DES ECC RSA P11
------- -------- -------------------- --- --- --- --- ---

. 4A00 N/A Active

. 4P38 97006070 Active A
a 4C39 93X06044 Deactivated
d 4C40 93X06077 Master key incorrect C C U C
. 4C41 93X06071 Active A A A A
******************************* Bottom of data ********************************

Figure 2. ICSF coprocessor management

Chapter 4. Operating ICSF 137

Before configuring a feature offline, it is strongly recommended that you deactivate
the feature first from the ICSF Coprocessor Management panel. You need to
'deactivate' the feature in ALL partitions that are using that feature. This allow jobs
to complete before the feature is varied offline. You use the Configure On/Off
service on the Support Element panel to take the feature offline (standby).

After you configure the feature offline from the SE panel, press ENTER on the
Coprocessor Management panel to verify that the feature is offline. This
configuring is done to remove and replace features or to load new code for the
cryptographic features.

To bring a feature back online, use the SE panel again. If a feature was deactivated
and then configured offline, you will need to activate it again through the
Coprocessor Management panel.

There are no z/OS operator commands to configure the devices online or offline.

Steps for enabling/disabling cryptographic coprocessors
With TKE you can disable/enable coprocessors. When a coprocessor is deactivated
through the Coprocessor Management Panel, the coprocessor is only deactivated
for that one LPAR. When a coprocessor disabled by TKE, the card is disabled for
the entire system, not just the LPAR that issued the disable.

Intrusion latch on the cryptographic coprocessors
Under normal operation, the intrusion latch on a coprocessor is tripped when the
feature is removed. This causes all installation data, master keys, retained keys,
roles and authorities to be zeroized in the feature when it is reinstalled.

If a situation arises where a coprocessor needs to be removed, for example, you
need to remove your feature for service, and you do not want the installation data
to be cleared, perform this procedure to disable the coprocessor before removing.

This process will require you to switch between the TKE application, the ICSF
Coprocessor Management panel, and the Support Element.
1. Open an Emulator Session on the TKE workstation and logon to your TSO

userid on the Host System where the coprocessor will be removed.
2. From the ICSF Primary Option Menu on TSO, select Option 1 for Coprocessor

Management.
3. Leave the Coprocessor Management panel displayed during the rest of this

procedure. You will be required to press ENTER on the Coprocessor
Management panel at different times. DO NOT EXIT this panel.

4. Open the TKE Host where the coprocessor will be removed. Open the
coprocessor. Click on Disable Crypto Module.

5. After the coprocessor has been disabled from TKE, press ENTER on the
Coprocessor Management panel. The status should change to DISABLED.

Note: You do not need to deactivate a disabled card.
6. Configure Off the coprocessor from the Support Element.
7. After the card has been taken Offline, press ENTER on the Coprocessor

Management panel. The status should change to OFFLINE.
8. Remove the coprocessor. Perform whatever operation needs to be done.

Replace the coprocessor.
9. Configure On the coprocessor from the Support Element.

138 z/OS ICSF System Programmer's Guide

10. When the initialization process is complete, press ENTER on the Coprocessor
Management panel. The status should change to DISABLED.

11. From the TKE Workstation Crypto Module General page, click on Enable
Crypto Module.

12. After the coprocessor has been enabled from TKE, press ENTER on the
Coprocessor Management panel. The Status should return to its original state.
If the Status was ACTIVE in step 2, when the coprocessor is enabled it should
return to ACTIVE.

All installation data, master keys, retained keys, roles, and authorities should still
be available. The coprocessor data was not cleared with the card removal because
it was Disabled first via the TKE workstation.

Adding and removing regional cryptographic servers
Regional cryptographic servers are network-attached, standalone devices or
dedicated Linux LPARs that perform geography-specific cryptography. These
servers are secure key hardware security modules (HSMs) that operate similar to
IBM's PKCS #11 secure coprocessors (CEXnP). They are marketed and serviced by
third party vendors. Currently, the only geography-specific cryptography
supported by these devices is the Chinese SMx family of algorithms. Secure keys
are stored in the TKDS, protected by the Regional Cryptography Server Master
Key (RCS-MK).

The network-attached, stand-alone devices require no particular zSeries hardware,
but does require communicating with z/OS V1R13 or later and ICSF FMID
HCR77B1 or later. ICSF communicates with these devices using TCP/IP, with
optional TLS protection. The Linux LPARs require IBM z13 or later hardware. ICSF
communicates with the Linux LPARs using TCP/IP, with TLS protection required.

Once configured and online, ICSF makes the algorithms offered by these devices
available as PKCS #11 vendor-defined extensions. For information on the
algorithms offered, see z/OS Cryptographic Services ICSF Writing PKCS #11
Applications and z/OS Cryptographic Services ICSF Application Programmer's Guide.

Steps to add a regional cryptographic server
To enable ICSF to use a regional cryptographic server, you need to complete the
following tasks:
1. Follow the vendor's documentation to setup the regional cryptographic server.

At a minimum, you must perform the following operations and record the
necessary information:
v Establish the TCP/IP hostname or IP address for the device. Record the

value: ________
v Configure the device to listen on a specified port. Record the port number:

Note: It is important that a unique port be opened for each instance of ICSF
that will use the device.

v Determine the optimal number of sockets to be opened by a given instance
of ICSF on the port it will be using. Record the number of sockets: ________

v Set the socket inactivity timeout value.

Note: It is important that you configure the device such that the sockets will
never time out.

Chapter 4. Operating ICSF 139

v Set the regional cryptographic server master key (RCS-MK) to be used for
the port.

Notes:

a. All regional cryptographic servers in use by a given instance of ICSF
must have the same RCS-MK set on each port used by this particular
instance of ICSF.

b. All instances of ICSF that share a given TKDS must have the same
RCS-MK set on the ports that these ICSF instances will use.

v If TLS protection is desired, configure the device to use TLS. Record whether
your device is configured with TLS protection or with no TLS protection:

Note: See “Setup AT-TLS (optional)” on page 141 if you need to provision
the device with an X.509 certificate for use with TLS.

2. Allocate and assign a TKDS to ICSF if one is not already assigned. For
additional information, see “Creating the TKDS” on page 21.

3. Configure ICSF to use TCP/IP. See “Configuring ICSF to use TCP/IP for
communications with regional cryptographic servers” for additional
information.
If TLS is desired, optionally generate the certificates necessary using Security
Server (RACF) or an equivalent product and provision the regional
cryptographic server accordingly.

4. Define the REMOTEDEVICE entry in the ICSF options data set for this regional
cryptographic server and restart ICSF.
v Optionally, you can issue the SETICSF ADD,REMOTEDEVICE console

command to dynamically add the regional cryptographic server to ICSF as
long as at least one REMOTEDEVICE entry was added to the ICSF options
data set prior to the current start of ICSF and your system is running ICSF
FMID HCR77B1 or later.

Steps to remove a regional cryptographic server
A regional cryptographic server may be dynamically removed by issuing the
SETICSF DELETE,REMOTEDEVICE console command. For additional information
on the SETICSF console command, see “Changing regional cryptographic server
status using the SETICSF operator command” on page 144.

If the regional cryptographic server being removed was defined to ICSF using a
REMOTEDEVICE entry in the ICSF options data set, remove the entry from the
options data set to make the removal of this regional cryptographic server
permanent.

Configuring ICSF to use TCP/IP for communications with
regional cryptographic servers

The Transmission Control Protocol (TCP) and the Internet Protocol (IP) is a
protocol suite that allows communications in a network. If you intend to use
regional cryptographic servers with ICSF, you must configure ICSF to use TCP/IP.
z/OS Communications Server provides the TCP/IP networking protocol on z/OS.
It also provides Application Transparent Transport Layer Security (AT-TLS), which
allows client and server applications to communicate safely using TCP/IP. While
ICSF does not require the use of AT-TLS, it is highly recommended.

For information about configuring TCP/IP, see:

140 z/OS ICSF System Programmer's Guide

v z/OS Communications Server: IP Configuration Guide

v z/OS Communications Server: IP Configuration Reference

Note: In an ICSF regional cryptographic server network, ICSF goes outbound to
connect to the regional cryptographic server or servers and never listens on a port
for incoming connections. Therefore, ICSF always plays the role of a client, not a
server, when using TCP/IP.

Steps to configure ICSF to use TCP/IP
You need to perform the following tasks to set up ICSF to use TCP/IP:
v “Setup the ICSF address space for z/OS UNIX System Services”
v “Give the ICSF address space access to the TCP/IP stack”
v “Setup AT-TLS (optional)”

Setup the ICSF address space for z/OS UNIX System Services: In order to use
TCP/IP, the ICSF started task address space must be DUBBED as a z/OS UNIX
System Services process. This requires that the user ID associated with the ICSF
started task be assigned a z/OS UNIX UID and that its default group is assigned a
GID. There are multiple ways this may be done:
1. Use the BPX.UNIQUE.USER facility to automatically assign permanent OMVS

segments (with unique IDs) to user IDs the first time they are needed. This is
the preferred way.

2. Use the BPX.NEXT.USER facility in conjunction with the AUTOUID and
AUTOGID keywords on the ALTUSER and ALTGROUP commands to add the
next available UID and GID to the user ID and group assigned to the ICSF
started task.

3. Manually determine and assign the GID and UID to be used and add the
appropriate OMVS segment to the user ID assigned to the ICSF started task.

For information about assigning UIDs and GIDs, see z/OS Security Server RACF
Security Administrator's Guide.

Give the ICSF address space access to the TCP/IP stack: Stack access control
provides a way to allow or disallow users or groups of users to access a TCP/IP
stack. The TCP/IP stack to be protected is represented by the resource
EZB.STACKACCESS.sysname.tcpname in the SERVAUTH class. If you have a SAF
profile protecting this resource, the user ID assigned to the ICSF started task must
have access to it.

For more information, see the topic on stack access control in z/OS Communications
Server: IP Configuration Guide.

Default Key Label Checking: If your configuration has the Default Key Label
Checking controls for Key Store Policy enabled and the CHECKAUTH(YES) option
is in effect, you need to permit the ICSF started task ID to the
CSF-PKDS-DEFAULT profile in the CSFKEYS class. To determine access to tokens
that are not stored in the CKDS or PKDS, see z/OS Cryptographic Services ICSF
Administrator's Guide.

Setup AT-TLS (optional): If you want to encrypt ICSF's communications with a
regional cryptographic server or servers, you need to configure the z/OS
Communications Server for AT-TLS. You will also need to configure each related
regional cryptographic server to perform the server role for TLS.

Chapter 4. Operating ICSF 141

Note: ICSF is the client. The steps to do this are specific to the regional
cryptographic server. See the vendor provided documentation associated with the
regional cryptographic server for more information. At a minimum, the regional
cryptographic server needs to be provisioned with a TLS server certificate and its
associated certificate authority (CA). How you acquire these certificates is your
choice. You may use z/OS Security Server (RACF) or equivalent certificate
commands or use the z/OS Public Key Infrastructure Services (PKI). You may also
choose to purchase your certificates from a commercial certificate authority.

The following are sample z/OS Security Server (RACF) TSO commands to create
the CA and server certificates. The samples assume the following:
v The CA is to be labeled 'Regional Server CA'.
v One server certificate is to be created, where the hostname is nacc.company.com.
v The user ID assigned to the ICSF started task is ICSFU.
v All certificates are to be valid from January 1, 2015, through December 31, 2024.
v All certificates will have RSA 2048-bit keys.
v For RACDCERT EXPORT, 'hlq' is to be replaced with the desired data set

high-level qualifier.
/* Create the CA certificate */
RACDCERT CERTAUTH GENCERT SUBJECTSDN(C(’CN’) O(’Company.com’)
OU(’Regional Server CA’)) WITHLABEL(’Regional Server CA’) SIZE(2048)
NOTBEFORE(DATE(2015-01-01)) NOTAFTER(DATE(2024-12-31))

/* Create the server certificate */
RACDCERT SITE GENCERT SUBJECTSDN(C(’CN’) O(’Company.com’) CN(’nacc.company.com’))
WITHLABEL(’nacc.company.com’) SIZE(2048) NOTBEFORE(DATE(2015-01-01))
NOTAFTER(DATE(2024-12-31)) SIGNWITH(CERTAUTH LABEL(’Regional Server CA’))

/* Export the server certificate and private key to be installed on the regional
server.
The password is ’RegionalServer1’ */
RACDCERT SITE EXPORT(LABEL(’nacc.company.com’)) FORMAT(PKCS12DER)
PASSWORD(’RegionalServer1’) DSN(’hlq.NACC.P12’)

AT-TLS policy

The following is a sample z/OS Communications Server AT-TLS policy agent
configuration file that may be used to enable AT-TLS whenever ICSF connects to a
regional cryptographic server:
##
AT-TLS Policy Agent Configuration file for ICSF Regional Crypto
##
TTLSRule ICSF-Client
{

JobName CSF
LocalAddr ALL
RemoteAddr ALL
RemotePortRange 1024-65535
Direction Outbound
Priority 255
TTLSGroupActionRef ICSF-ClientGrp
TTLSEnvironmentActionRef ICSF-ClientEnv

}
TTLSGroupAction ICSF-ClientGrp
{

TTLSEnabled On
}
TTLSEnvironmentAction ICSF-ClientEnv
{

HandshakeRole Client
EnvironmentUserInstance 0

142 z/OS ICSF System Programmer's Guide

TTLSEnvironmentAdvancedParms
{
TLSv1 On
TLSv1.1 On
TLSv1.2 On
}
TTLSKeyringParms
{
Keyring CSF.ICSF.KEYRING

}
}

Notes:

1. Check the JobName rule to ensure it matches the name of the ICSF started
procedure.

2. The keyring name may be changed if desired.

AT-TLS Authorization

The ICSF started task userid must have authorization to the CSFPKE and CSFDSV
profiles in the CSFSERV class. See z/OS Communication Server: IP Configuration
Guide for details on encryption algorithms.

The keyring

The client keyring (named CSF.ICSF.KEYRING in the AT-TLS policy topic) must be
created and populated with the certificate authority certificates used to issue the
server certificates to the regional cryptographic servers.

The following are sample z/OS Security Server (RACF) TSO commands to
provision the keyring using the certificate created in the AT-TLS policy topic:
/* Create the keyring under user ID ICSFU */
RACDCERT ID(ICSFU) ADDRING(CSF.ICSF.KEYRING)

/* Add the CA certificate */
RACDCERT ID(ICSFU) CONNECT(CERTAUTH LABEL(’Regional Server CA’)
RING(CSF.ICSF.KEYRING))

For more information on AT-TLS, see the topic, Application Transparent Transport
Layer Security data protection, in z/OS Communications Server: IP Configuration
Guide.

Displaying cryptographic coprocessor status using the DISPLAY ICSF
operator command

Use the DISPLAY ICSF operator command to display information about your
regional cryptographic servers if your system is running ICSF FMID HCR77B1 and
later. For additional information, see the REMOTEDEVICE keyword in “Display
ICSF” on page 118.

Adding a regional cryptographic server using the SETICSF operator
command

Use the SETICSF operator command to add a regional cryptographic server if your
system is running ICSF FMID HCR77B1 and later. For additional information, see
the ADD,REMOTEDEVICE keyword in “SETICSF” on page 125.

Chapter 4. Operating ICSF 143

Changing regional cryptographic server status using the SETICSF
operator command

Use the SETICSF operator command to change the status of your regional
cryptographic servers if your system is running ICSF FMID HCR77B1 and later.
For additional information, see the REMOTEDEVICE keyword in “SETICSF” on
page 125.

Performance considerations for using installation options
You specify installation options in the installation options data set. The
CHECKAUTH installation option provides additional security checking, but affects
performance.

In ICSF, the Security Server (RACF) always checks non-Supervisor State callers.
The CHECKAUTH option allows you to specify whether CSF performs access
control checking of Supervisor State and System Key callers. Specify
CHECKAUTH(NO) if you do not want CSF to check Supervisor State and System
Key callers. Specify CHECKAUTH(YES) if you want CSF to check Supervisor State
callers. Checking Supervisor State and System Key callers significantly affects
performance.

The SYSPLEXCKDS, SYSPLEXPKDS and SYSPLEXTKDS options specify whether
sysplex-wide data consistency for the CKDS, PKDS, and TKDS is desired. For a
description of the subkeywords, see “Parameters in the installation options data
set” on page 36.

The RNGCACHE option specifies whether ICSF should maintain a cache of
random numbers for services that return or use random numbers. Specifying
RNGCACHE(NO) turns off this caching which will decrease performance for
services that use random numbers.

Dispatching priority of ICSF
To avoid performance problems, the dispatching priority of ICSF should be set at
least as high as that of the highest task using ICSF.

VTAM session-level encryption
ICSF supports VTAM session-level encryption. VTAM session-level encryption
provides protection for messages within SNA sessions, that is, between pairs of
logical units that support their respective end users. When this method of
protection is in effect, data is enciphered by the originating logical unit and
deciphered only by the destination logical unit. Thus, the data never appears in the
clear while passing through the network.

ICSF places no restrictions on the addressing mode of calling programs. In
particular, when VTAM session-level encryption is used with ICSF, VTAM can use
storage greater than 16 megabytes.

System SSL encryption
ICSF supports System SSL encryption on all servers. A cryptographic feature is
required. For more information, For more information, see z/OS Cryptographic
Services System SSL Programming.

144 z/OS ICSF System Programmer's Guide

Access method services cryptographic option
In compatibility mode, ICSF supports the Access Method Services Cryptographic
Option. The option enables the user of the Access Method Services REPRO
command to use the Data Encryption Algorithm to encipher data.

The Access Method Services user can use REPRO to encipher data that is written
to a data set, and then store the enciphered data set offline. When desired, you can
bring the enciphered data set back online, and use REPRO to decipher the
enciphered data. You can decipher the data either on the host processor on which
it was enciphered, or on another host processor that contains the Access Method
Services Cryptographic Option and the same cryptographic key that was used to
encipher the data. You can either use ICSF to create the cryptographic keys, or use
keys that the Access Method Services user supplies.

With the exception of catalogs, all data set organizations that are supported for
input by REPRO are eligible as input for enciphering. Similarly, with the exception
of catalogs, all data set organizations supported for output by REPRO are eligible
as output for deciphering. The resulting enciphered data sets are always
sequentially organized (SAM or VSAM entry-sequenced data sets).

See Appendix E, “Using AMS REPRO encryption,” on page 423 for more
information in using this method.

Remote key loading
The process of remote key loading is loading DES keys to automated teller
machines (ATMs) from a central administrative site. Because a new ATM has none
of the bank's keys installed, getting the first key securely loaded is currently done
manually by loading the first key-encrypting key (KEK) in multiple cleartext key
parts. A new standard ANSI X9.24-2 defines the acceptable methods of doing this
using public key cryptographic techniques, which will allow banks to load the
initial KEKs without having to send anything to the ATMS. This method is quicker,
more reliable and much less expensive.

Once an ATM is in operation, the bank can install new keys as needed by sending
them enciphered under a KEK it installs at a previous time. Cryptographic
architecture in the ATMs is not Common Cryptographic Architecture (CCA) and it
is difficult to export CCA keys in a form understood by the ATM. Remote key
loading will make it easier to export keys to non-CCA systems without
compromising security.

In order to use ATM Remote Key Loading, TKE users will have to enable the
access control points for these functions:
v Trusted Block Create - API Keyword = Inactive
v Trusted Block Create - API Keyword = Active
v Public Key Import - Source Key Token = Trusted Block
v Public Key Import - Source Key Token = PKA96 Key Token
v Remote Key Export

Chapter 4. Operating ICSF 145

Event recording
ICSF records certain ICSF events in the System Management Facilities (SMF) data
set. ICSF also sends messages that are generated during processing to the ICSF job
log and consoles. The SMF recording and messages help you detect problems and
track events. This topic describes the events that ICSF records in the SMF record
and describes where ICSF sends certain messages.

These records can be used with RACF SMF type 80 record to audit use of the
callable services and the keys. The RACF type 80 records are extracted and
formatted using the RACF SMF Unload Utility. See z/OS Security Server RACF
Auditor's Guide for information on how to use this utility. For information about
the formatted SMF records see z/OS Security Server RACF Macros and Interfaces.

System Management Facilities (SMF) recording
ICSF uses SMF record type 82 to record certain ICSF events. Record type 82
contains:
v A fixed header / self-defining section: This section contains the common SMF

record headers fields and the triplet fields (offset/length/number), if applicable,
that locate the other sections on the record.

v A ICSF event specific (subtype) section: Each subtype contains information about
the event that caused ICSF to write to the SMF record. For subtypes that log
state changes, the SMF record will contain additional auditing sections.

v An auditing header section: This section is present in the record for subtypes
that log state changes. It describes the number and overall length of the auditing
sections that follow.

v A server user section and, optionally, an end user section: If both sections are
present, they can appear in either order.

You can map record type 82 by using the CSFSMF82 macro.

ICSF records information in the SMF data set when these events occur:
v ICSF starts.
v You use the ICSF panels to process an operational key loaded using the TKE

workstation.
v The in-storage CKDS is refreshed.
v A dynamic change is made to a record in the CKDS.
v A dynamic change is made to a record in the PKDS.
v You use the ICSF panels to load master keys on a coprocessor.
v An RSA retained key is created or deleted.
v The TKE workstation issues a coprocessor command request or receives a reply

response from a coprocessor.
v A cryptographic processor is configured online or offline.
v ICSF records processing times for coprocessors and accelerators.
v ICSF joins or leaves the ICSF sysplex group.
v A trusted block is created or activated.
v A dynamic change is made to a record in the TKDS.
v Duplicate tokens were detected in a key data set.
v The in-storage PKDS is refreshed.
v Key store policy checking detects the unauthorized use of a key token.

146 z/OS ICSF System Programmer's Guide

v Key store policy PKA key extensions checking detects the unauthorized use of a
key.

v A secure symmetric key token is used for CPACF encryption.
v The TKE workstation sends an audit record to ICSF.
v Key store policy checking detects an attempt to use an archived or inactive KDS

record.
v Cryptographic usage statistics are recorded.
v Compliance warning event information is recorded.

Each of these events causes ICSF to record information in a separate subtype in the
SMF record.

Recording and Formatting type 82 SMF Records in a Report: Sample jobs are
available (in SYS1.SAMPLIB) to assist in the recording and formatting of type 82
SMF data:
v CSFSMFJ - JCL that executes the code to dump and format SMF type 82 records

for ICSF. Before executing the JCL, you need to make modifications to the JCL
(see the prologue in the sample for specific instructions). After the JCL has been
modified, terminate SMF recording of the currently active dump dataset (by
issuing I SMF) to allow for the unloading of SMF records. After SMF recording
has been terminated, execute the JCL. The output goes into the held queue. This
is an example of CSFSMFJ.
//CSFSMFJ JOB <JOB CARD PARAMETERS>
//**
//* LICENSED MATERIALS - PROPERTY OF IBM *
//* (C) COPYRIGHT IBM CORP. 2002 *
//* *
//* This JCL reads Type 82 SMF records and formats them in a report.*
//* *
//* CAUTION: This is neither a JCL procedure nor a complete JOB. *
//* Before using this JOB step, you will have to make the following *
//* modifications: *
//* *
//* 1) Add the job parameters to meet your system requirements. *
//* 2) Change the DUMPIN DSN=hlq.smfdata.input to be the name of *
//* the dataset where you currently have SMF data being *
//* recorded. *
//* 3) Change the STEPLIB VOL=SER=ttttt1 and VOL=SER=ttttt2 to *
//* be the volumes where these sort datasets reside. *
//* 4) Change the SYSPROC DSN=hlq.rexx.dataset to be the name of *
//* the dataset where you have placed the CSFSMFR REXX sample. *
//* *
//* Prior to executing this job, you need to terminate SMF *
//* recording of the currently active dump dataset for allow the *
//* unload of SMF records. *
//* *
//**
//*
//*--*
//* UNLOAD SMF 82 RECORDS FROM VSAM TO VBS *
//*--*
//SMFDMP EXEC PGM=IFASMFDP
//DUMPIN DD DISP=SHR,DSN=hlq.smfdata.input
//DUMPOUT DD DISP=(NEW,PASS),DSN=&&VBS,UNIT=3390,
// SPACE=(CYL,(1,1)),DCB=(LRECL=32760,RECFM=VBS,BLKSIZE=4096)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

INDD(DUMPIN,OPTIONS(DUMP))
OUTDD(DUMPOUT,TYPE(82))

//*
//*--*

Chapter 4. Operating ICSF 147

//* COPY VBS TO SHORTER VB AND SORT ON DATE/TIME *
//*--*
//COPYSORT EXEC PGM=SORT,REGION=6000K
//STEPLIB DD DISP=SHR,DSN=SYS1.SORTLPA,VOL=SER=ttttt1,UNIT=3390
// DD DISP=SHR,DSN=SYS1.SICELINK,VOL=SER=ttttt2,UNIT=3390
//SYSOUT DD SYSOUT=*
//SORTWK01 DD UNIT=3390,SPACE=(CYL,10)
//SORTIN DD DISP=(OLD,DELETE),DSN=&&VBS
//SORTOUT DD DISP=(NEW,PASS),DSN=&&VB,UNIT=3390,
// SPACE=(CYL,(1,1)),DCB=(LRECL=3000,RECFM=VB)
//SYSIN DD *
SORT FIELDS=(11,4,A,7,4,A),FORMAT=BI,SIZE=E4000

//*
//*--*
//* FORMAT TYPE 82 RECORDS *
//*--*
//FMT EXEC PGM=IKJEFT01,REGION=5128K,DYNAMNBR=100
//SYSPROC DD DISP=SHR,DSN=hlq.rexx.dataset
//SYSTSPRT DD SYSOUT=*
//INDD DD DISP=(OLD,DELETE),DSN=&&VB
//OUTDD DD SYSOUT=*
//SYSTSIN DD *

%CSFSMFR

v CSFSMFR - An exec that formats the SMF type 82 records into a readable report.
Use the report from the ICSF system with the latest FMID running on your
sysplex.

ICSF Initialization (Subtype 1)
When ICSF starts, ICSF writes to subtype 1 after initialization is completed.
Subtype 1 describes the values of installation options that are specified in the
installation options data set.

Subtype 1 contains this information:
v Special secure mode (SSM) option
v Security Server (RACF) checking of Supervisor State and System Key callers

(CHECKAUTH) option
v Compatibility mode with CUSP or PCF (COMPAT) option
v Cryptographic domain number (DOMAIN) option
v CKDS name (CKDSN) option
v Maximum length for data in a callable service (MAXLEN) option

Beginning with z/OS V1 R2, the MAXLEN parameter may still be specified in
the options data set, but only the maximum value limit will be enforced
(2147483647). If a value greater than this is specified, an error will result and
ICSF will not start.

v User parameter (USERPARM) option
v PKDS name (PKDSN) option
v TKDS name (TKDSN) option

SMF records for this subtype will also contain a server user audit section.

Operational Key Part Entry (Subtype 7)
ICSF writes to subtype 7 when key parts are entered using the TKE workstation
and are processed using the operational key entry ICSF panels. Subtype 7 contains
this information:
v The ENC-ZERO verification pattern of the completed key
v A bit indicating whether the verification pattern is valid

148 z/OS ICSF System Programmer's Guide

v The cryptographic coprocessor domain number
v The cryptographic coprocessor number
v The name of the CKDS that contains the entry with the key part
v The label of the CKDS entry that contains the key part

SMF records for this subtype will also contain server user and end user audit
sections.

CKDS Refresh (Subtype 8)
ICSF writes to subtype 8 when the in-storage CKDS is successfully refreshed. ICSF
refreshes the in-storage CKDS by reading a disk copy of a CKDS into storage.
Subtype 8 contains this information:
v Name of the current in-storage CKDS that ICSF refreshes
v Name of the disk copy of the CKDS that ICSF read into storage to replace the

current CKDS

SMF records for this subtype will also contain server user and end user audit
sections.

Dynamic CKDS Update (Subtype 9)
ICSF writes to subtype 9 when an application uses the dynamic CKDS update or
the KDS metadata write services to write to the CKDS. Subtype 9 contains this
information:
v Name of the changed CKDS
v An indication of the operation performed.
v The CKDS entry (which includes the label name and key type) that was changed

SMF records for this subtype will also contain server user and end user audit
sections.

Dynamic PKDS Update (Subtype 13)
ICSF writes to subtype 13 when an application uses the dynamic PKDS update or
the KDS metadata write services to change the PKDS. Subtype 13 contains this
information:
v The name of the changed PKDS
v An indication of the operation performed.
v The name of the changed entry in the PKDS

SMF records for this subtype will also contain server user and end user audit
sections.

Cryptographic Coprocessor Clear Master Key Entry (Subtype 14)
ICSF writes to subtype 14 whenever you use ICSF panels to update AES-MK,
DES-MK, ECC-MK, or RSA-MK in the new master key register on a coprocessor.
Subtype 14 contains this information:
v The master Key valid indicator
v The type of coprocessor
v The new master key verification pattern
v The key part verification pattern
v The cryptographic coprocessor processor number
v The cryptographic coprocessor serial number
v The cryptographic coprocessor domain index

Chapter 4. Operating ICSF 149

SMF records for this subtype will also contain server user and end user audit
sections.

Cryptographic Coprocessor Retained Key Create or Delete
(Subtype 15)
ICSF writes to subtype 15 whenever you create or delete a retained private key in
a coprocessor. Subtype 15 contains this information:
v The operation performed (created, deleted from coprocessor, deleted from PKDS)
v The type of coprocessor
v The retained key label
v The cryptographic coprocessor processor number
v The cryptographic coprocessor serial number
v The domain index

SMF records for this subtype will also contain server user and end user audit
sections.

Cryptographic Coprocessor TKE Command Request or Reply
(Subtype 16)
ICSF writes to subtype 16 whenever a TKE workstation either issues a command
request to, or receives a reply response from a coprocessor. Subtype 16 contains
this information:
v The indicator for request or reply
v The type of coprocessor
v The cryptographic coprocessor processor number
v The cryptographic coprocessor serial number
v The cryptographic coprocessor domain index
v The request command block or reply response block length
v The request command data block or reply response data block length
v The request or reply CPRB
v The length of the fixed audit data
v The number of relocate sections
v The function id
v The function return code
v The function description - describes the function id.

SMF records for this subtype will also contain server user and end user audit
sections.

Cryptographic Coprocessor Configuration (Subtype 18)
ICSF writes subtype 18 when the configuration of a coprocessor or accelerator
changes. Subtype 18 contains this information:
v The operation performed (coprocessor brought online, taken offline, had a

compliance change).
v The coprocessor number.
v The coprocessor serial number, or accelerator number.

PCI X Cryptographic Coprocessor Timing (Subtype 19)
ICSF periodically records processing times for PCIXCC operations in subtype 19.
Subtype 19 contains this information:
v The time immediately before the operation begins

150 z/OS ICSF System Programmer's Guide

v The time immediately after the operation ends
v The time immediately after the results of the operation have been communicated

to the caller address space
v The number of processes waiting to submit work to the same PCIXCC, domain,

and reference slot used by this operation
v The function code for this operation
v The PCIXCC processor number
v The PCIXCC serial number
v The PCIXCC domain
v A reference number that identifies an internal ICSF queue element

Cryptographic Coprocessor Timing (Subtype 20)
ICSF periodically records processing times for coprocessor or accelerator operations
in subtype 20. Subtype 20 contains this information:
v The device type
v The time immediately before the operation begins
v The time immediately after the operation ends
v The time immediately after the results of the operation have been communicated

to the caller address space
v The number of processes waiting to submit work to the same coprocessor,

domain, and reference slot used by this operation
v The function code for this operation
v The coprocessor or accelerator processor number
v The coprocessor or accelerator serial number
v The coprocessor or accelerator domain
v A reference number that identifies an internal ICSF queue element

ICSF Sysplex Group (Subtype 21)
ICSF writes subtype 21 when ICSF joins or leaves the ICSF sysplex group. Subtype
21 contains this information:
v The name of the ICSF sysplex group
v The name of the sysplex member
v An indication of whether the member joined or left the sysplex group
v An indication of whether the join or leave was due to normal

initialization/termination processing
v An indication of whether the leave was due to error recovery processing
v The time of the join or leave
v The name of the active CKDS

Trusted Block Create (Subtype 22)
ICSF writes subtype 22 when the Trusted Block Create callable services are
invoked. Subtype 22 contains this information:
v Type of call, Active or Inactive
v If a Public Key Section was present in the Trusted Block Token
v ASID of the Caller
v If Input Trusted Block Token is in the PKDS, save it's Label
v If Output Trusted Block Token is in the PKDS, save it's Label
v If the Transport Key Token is in the CKDS, save it's Label

Chapter 4. Operating ICSF 151

SMF records for this subtype will also contain server user and end user audit
sections.

Token Data Set (TKDS) (Subtype 23)
ICSF writes subtype 23 when the Token Data Set (TKDS) record is updated
(created, modified, deleted) of PKCS #11 tokens or token objects. Token Data Set
callable services are invoked. Subtype 23 contains this information:
v The name of the changed TKDS
v An indication of the operation performed
v The name of the changed entry in the TKDS

SMF records for this subtype will also contain server user and end user audit
sections.

Duplicate Key Tokens (Subtype 24)
ICSF writes subtype 24 when the security administrator has indicated that
duplicate key tokens must be identified. Subtype 24 contains this information:
v The data set name
v The number of key labels
v The key labels

Key Store Policy Key Token Authorization Checking (Subtype 25)
ICSF writes subtype 25 when a callable service is called and the key token
authorization checking detects the key token is not authorized to the caller. The
key token is a duplicate of one or more records in the key data set. The check of
the CSFKEYS profiles of the record with the key token found the user was
unauthorized to use the records. Subtype 25 contains this information:
v Key store and list information.
v The number of key labels.
v The unauthorized duplicate key label and key type.

SMF records for this subtype will also contain server user and end user audit
sections.

PKDS Refresh (Subtype 26)
ICSF writes to subtype 26 when the in-storage PKDS is successfully refreshed. ICSF
refreshes the in-storage PKDS by reading a disk copy of a PKDS into storage.
Subtype 26 contains this information:
v Name of the current in-storage PKDS that ICSF refreshes
v Name of the disk copy of the PKDS that ICSF read into storage to replace the

current PKDS

SMF records for this subtype will also contain server user and end user audit
sections.

Key Store Policy PKA Key Management Extensions (Subtype 27)
When PKA Key Management Extensions are enabled, ICSF writes to subtype 27 to
record operational and error information related to PKA Key Management
Extensions. A subtype 27 record is written:
v when a CSF.PKAEXTNS.ENABLE or CSF.PKAEXTNS.ENABLE.WARNONLY

profile in the XFACILIT class uses the APPLDATA field to specify a trusted
certificate repository, an SMF record is cut to indicate if the trusted certificate
repository was successfully changed, or whether there was an error. The

152 z/OS ICSF System Programmer's Guide

APPLDATA field and the repository it specifies will be checked at startup and
whenever the XFACILIT class is RACLISTed. ICSF will write a subtype 27 record
if the certificate repository is changed, or if there is an error. In this case,
subtype 27 will indicate if:
– the trusted certificate repository was changed
– the specified trusted certificate repository is empty
– an error was detected while extracting the APPLDATA
– the specified repository was not found
– one or more certificates could not be parsed

v when an application calls a service attempting to use a key in a way that is not
allowed by the ICSF segment specifications within the CSFKEYS or XCSFKEY
profile that covers the key. The SMF record will be written at the completion of
the callable service, which, depending on whether PKA Key Management
Extensions had been enabled in warning or fail mode, may or may not allow the
requested operation on the key. Subtype 27 contains this information. In this
case, subtype 27 will indicate if:
– an asymmetric key may not be used for the requested function
– a symmetric key cannot be exported by the provided asymmetric key

SMF records for this subtype will also contain server user and end user audit
sections.

High Performance Encrypted Key (Subtype 28)
Symmetric Key Encipher (CSNBSYE, CSNBSYE1, CSNESYE and CSNESYE1),
Symmetric Key Decipher (CSNBSYD, CSNBSYD1, CSNESYD and CSNESYD1),
Field Level Encipher (CSNBFLE, CSNEFLE), and Field Level Decipher (CSNBFLD,
CSNEFLD) callable services exploit CP Assist for Cryptographic Functions
(CPACF) for improved key management performance. An encrypted DATA key
stored in the CKDS can be used in these services, but only when
SYMCPACFWRAP(YES) is specified in the ICSF segment of the CSFKEYS class
profile that covers the key. For Field Level Encipher and Field Level Decipher, an
encrypted DATA key that is not stored in the CKDS can be used, but only when
SYMCPACFWRAP(YES) is specified in the ICSF segment of the
CSF-PROTECTED-KEY-TOKEN CSFKEYS class profile. ICSF writes to subtype 28
at the completion of functions that attempt to wrap an encrypted key under the
CPACF wrapping key. Subtype 28 will indicate if the rewrapping operation is:
v Permitted for this symmetric key
v Not permitted for this symmetric key

SMF records for this subtype will also contain server user and end user audit
sections.

For more information about protected-key CPACF, see z/OS Cryptographic Services
ICSF Overview.

TKE Workstation Audit Record (Subtype 29)
If you have the optional TKE Workstation, you can use the TKE Audit Record
Upload Configuration Utility to send Trusted Key Entry workstation security audit
records to a Z host, where they will be saved in the z/OS System Management
Facilities (SMF) dataset. Each TKE security audit record is stored in the SMF
dataset as a type 82 subtype 29 record. For more information on the TKE Audit
Record Upload Configuration Utility, refer to the z/OS Cryptographic Services ICSF
TKE Workstation User's Guide.

Chapter 4. Operating ICSF 153

Key Store Policy Archived and Inactive Checking (Subtype 30)
ICSF writes subtype 30 when a callable service attempts to use an archived record.
ICSF writes subtype 30 when a callable service attempts to use an inactive (outside
the key material validity dates) record. Subtype 30 contains this information:
v The reference activity.
v Key data set name.
v The entry that was referenced.

SMF records for this subtype will also contain server user and end user audit
sections.

Cryptographic usage statistics (Subtype 31)
ICSF writes subtype 31 whenever cryptographic usage tracking is enabled. Each
ICSF instance can track the usage of cryptographic engines (ENG), cryptographic
services (SRV), and cryptographic algorithms (ALG) for that LPAR. Subtype 31
contains information about the cryptographic user's HOME address space job ID,
SECONDARY address space job name, HOME address space user ID, HOME task
level user ID, and ASID. See the STATS option in “Parameters in the installation
options data set” on page 36 for more details about enabling these events.

CCA symmetric key lifecycle event (Subtype 40)
ICSF writes subtype 40 whenever a CCA symmetric key undergoes a lifecycle
event. A lifecycle event is any event that changes a key, the key's metadata, or the
key's state. Examples of lifecycle events include generating a key, updating a key,
and a key becoming active. Subtype 40 contains information about the event,
information identifying the key, metadata about the key, and information
identifying the user. See the AUDITKEYLIFECKDS option in “Parameters in the
installation options data set” on page 36 for more details about enabling these
events.

SMF records for this subtype will also contain server user and end user audit
sections.

CCA asymmetric key lifecycle event (Subtype 41)
ICSF writes subtype 41 whenever a CCA asymmetric key undergoes a lifecycle
event. A lifecycle event is any event which changes a key, the key's metadata, or
the key's state. Examples of lifecycle events include generating a key, updating a
key, and a key becoming active. Subtype 41 contains information about the event,
information identifying the key, metadata about the key, and information
identifying the user. See the AUDITKEYLIFEPKDS option in “Parameters in the
installation options data set” on page 36 for more details about enabling these
events.

SMF records for this subtype will also contain server user and end user audit
sections.

PKCS #11 key lifecycle event (Subtype 42)
ICSF writes subtype 42 whenever a PKCS #11 key undergoes a lifecycle event. A
lifecycle event is any event which changes a key, the key's metadata, or the key's
state. Examples of lifecycle events include generating a key, updating a key, and a
key becoming active. Subtype 42 contains information about the event, information
identifying the key, metadata about the key, and information identifying the user.
See the AUDITKEYLIFETKDS option in “Parameters in the installation options
data set” on page 36 for more details about enabling these events.

154 z/OS ICSF System Programmer's Guide

SMF records for this subtype will also contain server user and end user audit
sections.

Regional cryptographic server configuration (Subtype 43)
ICSF writes to subtype 43 when a regional cryptographic server is configured
online or offline. Subtype 43 contains this information:
v The regional cryptographic server index.
v The regional cryptographic server serial number.
v The regional cryptographic server port number.
v The length of the regional cryptographic server host name.
v The regional cryptographic server host name.

SMF records for this subtype will also contain server user and end user audit
sections.

CCA symmetric key usage event (Subtype 44)
ICSF writes subtype 44 whenever a CCA symmetric key is used. Subtype 44
contains information about the event, information identifying the key, metadata
about the key, and information identifying the user. See the AUDITKEYUSGCKDS
option in “Parameters in the installation options data set” on page 36 for more
details about enabling these events.

SMF records for this subtype will also contain server user and end user audit
sections.

CCA asymmetric key usage event (Subtype 45)
ICSF writes subtype 45 whenever a CCA asymmetric key is used. Subtype 45
contains information about the event, information identifying the key, metadata
about the key, and information identifying the user. See the AUDITKEYUSGPKDS
option in “Parameters in the installation options data set” on page 36 for more
details about enabling these events.

SMF records for this subtype will also contain server user and end user audit
sections.

PKCS #11 key usage event (Subtype 46)
ICSF writes subtype 46 whenever a PKCS #11 key is used. Subtype 46 contains
information about the event, information identifying the key, metadata about the
key, and information identifying the user. See the AUDITPKCS11USG option in
“Parameters in the installation options data set” on page 36 for more details about
enabling these events.

SMF records for this subtype will also contain server user and end user audit
sections.

PKCS #11 no key usage event (Subtype 47)
ICSF writes subtype 47 whenever a supported PKCS #11 event does not involve a
key or object. Subtype 47 contains information about the event and information
identifying the user. See the AUDITPKCS11USG option in “Parameters in the
installation options data set” on page 36 for more details about enabling these
events.

SMF records for this subtype will also contain server user and end user audit
sections.

Chapter 4. Operating ICSF 155

Compliance warning event (Subtype 48)
ICSF writes subtype 48 for CCA compliance warning events. These events can
assist when migrating applications to a compliance standard. Subtype 48 contains
the result of the operation, information identifying any keys involved, metadata
about the key or keys, and information identifying the user. See the
COMPLIANCEWARN option in “Parameters in the installation options data set”
on page 36 for information about enabling these events.

SMF records for this subtype will also contain server user and end user audit
sections.

Message recording
ICSF writes messages to the job log, and to the security console and the operator
console.

ICSF writes most of its messages to the job log. Messages that demand action from
the master console operator will display on the operator console, and messages
related to system security will display on the security console. Some of these
console messages will appear only on the console, and some will also be written to
the job log. Messages that are not displayed on either the operator or security
console are written to the job log.

For a description of each ICSF message, see z/OS Cryptographic Services ICSF
Messages.

Security considerations
You can provide enhanced security on ICSF by controlling access to resources and
changing the values of your keys periodically. This topic describes these aspects of
security:
v Controlling access to utility programs - KGUP, CSFDUTIL
v Controlling access to the callable services
v Controlling access to cryptographic keys
v Controlling access to CCA key tokens
v Scheduling changes for cryptographic keys
v Controlling access to panel functions
v Controlling access to RACF SMF log records

Controlling the program environment
Some programs or applications, which use ICSF, require that the environment is
program controlled. In a program controlled environment, programs within the
address space are defined to the Security Server (RACF). Defining a program to
RACF requires the program name and the name of the data set that contains the
program.

If there is not already an * or ** profile in PROGRAM class, you must define one
using RDEFINE instead of RALTER for the first command.
RALTER PROGRAM ** ADDMEM(’CSF.SCSFMOD0’/volser/NOPADCHK)
RALTER PROGRAM ** ADDMEM(’CSF.SCSFMOD1’/volser/NOPADCHK)
RALTER PROGRAM ** ADDMEM(’CSF.SCSFSTUB’/volser/NOPADCHK)
RDEFINE PROGRAM CSF* ADDMEM(’SYS1.SIEALNKE’/volser/NOPADCHK)
RDEFINE PROGRAM CSN* ADDMEM(’SYS1.SIEALNKE’/volser/NOPADCHK)

156 z/OS ICSF System Programmer's Guide

The VOLSER specification is optional.

For more information, see z/OS Security Server RACF Security Administrator's Guide.

Controlling access to KGUP
Anyone running the key generator utility program can read and alter an
unprotected cryptographic key data set (CKDS). Therefore, only authorized users
should have access to the key generator utility program. To make it difficult for an
unauthorized person to execute the key generator utility program, store the
program in an APF-authorized library that is protected by the Security Server
(RACF). Additionally, a security administrator can define a CSFKGUP profile in the
CSFSERV class and permit or deny users access to the utility.

Controlling access to CSFDUTIL
CSFDUTIL reads through a CKDS or PKDS and generates a report for duplicate
secure key tokens. Only authorized users should have permission to access the
CKDS or PKDS datasets directly.

Controlling access to the callable services
Unauthorized persons should not perform the cryptographic or key management
functions that the callable services provide. The security administrator should be
the only one able to access some services like those used in managing keys. The
security administrator can give access to some services, such as enciphering and
deciphering data, to persons who are authorized on the system.

You can use the Security Server (RACF) to control which users can use ICSF
callable services. For example, you can use the key export service to export any
type of key. Your installation may want only the security administrator to be able
to use the key export function.

ICSF provides security exit points that you can use to control access to a callable
service instead of Security Server (RACF). For information about the security exit
points, see “Security installation exits” on page 203.

Your installation may want other users to just be able to export data keys, because
sending encrypted data between systems is a common function. The data key
export callable service permits the export of data keys only. Your security
administrator can have access to the key export service and can use the Security
Server (RACF) to give other users access to the data key export service. For more
information on controlling who can use ICSF callable services, see z/OS
Cryptographic Services ICSF Administrator's Guide.

Access control points for specific functions may be enabled/disabled through the
TKE workstation. See the z/OS Cryptographic Services ICSF TKE Workstation User's
Guide for additional information.

Controlling access to cryptographic keys
Besides the key generator utility program and services, your installation should
also control access to the cryptographic keys. First, it is highly recommended that
you store cryptographic keys in data sets that are protected by RACF or an
equivalent product. You should limit access to authorized persons or applications.
Second, you can use RACF to control access to keys in the in-storage cryptographic
key data set. For more information on protecting cryptographic keys, see z/OS
Cryptographic Services ICSF Administrator's Guide.

Security Considerations

Chapter 4. Operating ICSF 157

When clear DES or AES keys are added to the CKDS, RACF-protect all clear keys
by label name on all systems sharing the CKDS.

ICSF also provides security exit points that you can use to control access to keys in
the in-storage CKDS and in the PKDS. For information about the security exit
points, see “Security installation exits” on page 203.

Controlling access to secure key tokens
You and your installation have the option of controlling access to a secure tokens
that have the same token value and different key labels. To do this, define a key
store policy. Key store policy are a system wide setting, using RACF profiles to
define the policy. Because key store policy makes use of additional RACF checks,
careful planning should occur before implementing the support.

For details on key store policy, see z/OS Cryptographic Services ICSF Administrator's
Guide.

Scheduling changes for cryptographic keys
You should periodically change the value of cryptographic keys to reduce the
possibility of exposing a key value. It is recommended that you change the master
keys at least every 12 months.

The security administrator can use the key generator utility program (KGUP) to
change the cryptographic keys. KGUP updates keys in the disk copy of the
cryptographic key data set while the callable services access keys in the in-storage
copy of the cryptographic key data set. Therefore, you can change the keys without
affecting cryptographic operations. For more information on using KGUP, refer to
z/OS Cryptographic Services ICSF Administrator's Guide.

Controlling access to administrative panel functions
You can perform many ICSF administration functions by using the TSO panels.
RACF can protect access to these functions. The functions include:
v Refreshing the CKDS or PKDS
v Setting the master keys
v Changing the master keys
v Clear key entry (access can also be controlled through the TKE workstation,

domain controls)
v Pass phrase MK/KDS initialization
v Administrative control functions (enabling and disabling dynamic CKDS access,

PKA callable services, and dynamic PKDS access)

These functions are treated the same way as callable services. To view and change
system status, see z/OS Cryptographic Services ICSF Administrator's Guide for more
information.

Obtaining RACF SMF log records
For information on how to capture SMF log records for RACF access events, see
z/OS Security Server RACF Auditor's Guide and z/OS Security Server RACF Command
Language Reference.

Security Considerations

158 z/OS ICSF System Programmer's Guide

You can extract RACF log records from the SMF data set that can be correlated to
the ICSF log records. For more information on how to obtain RACF log records
from the SMF data set, see z/OS Security Server RACF Auditor's Guide.

Debugging aids
This topic contains information you can use when diagnosing problems on ICSF.
This topic describes:
v Component trace
v Abnormal endings
v Using the IPCS formatting routine
v Detecting ICSF serialization contention conditions

Component trace
ICSF component trace is on all of the time. How much is traced depends on the
CTRACE options that are specified in the CTICSFxx parmlib member.

ICSF Component Trace is configured by using a PARMLIB member. A default
PARMLIB member, CTICSF00, is shipped and installed with ICSF starting at the
ICSF FMID HCR77A1 release level. This PARMLIB member can be specified with
the CTRACE option within the ICSF options data set.

Optionally, this PARMLIB member can be copied and customized to a CTICSFxx
PARMLIB data set, where xx is a value that is used to make a copy. The new
CTICSFxx PARMLIB member can then be specified at ICSF startup time by using
the CTRACE option within the ICSF options data set.

For more information on creating a CTICSFxx PARMLIB member, see “Creating an
ICSF CTRACE configuration data set” on page 28.

The TRACEENTRY option in the ICSF Options data set is deprecated. If this option
is specified, it is ignored and produces a CSFO0212 message.

ICSF Component Trace can also be dynamically updated by using the TRACE CT
command. A CTICSFxx PARMLIB member can be passed to the TRACE CT
command. Specific ICSF Component Trace options can also be specified through
replies to the TRACE CT command on the operator console.

Following are examples of how to use the TRACE CT command to specify a
CTICSFxx PARMLIB member and individual command options.
v To configure ICSF CTRACE to use minimal tracing, use this TRACE OFF

command:
TRACE CT,OFF,COMP=CSF

v To specify a new CTICSFxx PARMLIB member, issue this command:
TRACE CT,ON,COMP=CSF,PARM=CTICSFxx

v To specify that you want to trace ASID 0042, issue this command:
TRACE CT,ON,COMP=CSF

Follow the TRACE ON command with this reply:
R nn,ASID=(0042),END

v To specify that you want to trace JOBNAME MYJOB, issue this command:
TRACE CT,ON,COMP=CSF

Follow the TRACE ON command with this reply:

Security Considerations

Chapter 4. Operating ICSF 159

R nn,JOBNAME=(MYJOB),END

v To specify that you want to change the trace buffer size to 250K, issue this
command:
TRACE CT,250K,COMP=CSF

Follow the TRACE command with this reply:
R nn,END

v To specify that you want to change the trace filtering to CARDIO, issue this
command:
TRACE CT,ON,COMP=CSF

Follow the TRACE ON command with this reply:
R nn,OPTIONS=(CARDIO),END

v To display the current active trace options, issue this command:
DISPLAY TRACE,COMP=CSF

Abnormal endings
ICSF has an abnormal ending in these cases only:
v When an error occurs during ICSF initialization.
v When you specify FAIL(ICSF) in the callable service exit installation option.
v When the setting of a cryptographic domain index fails.

If an abnormal end occurs in any other cases, your application or unit of work
ends; however, ICSF is still available.

ICSF has an abnormal end code unique to ICSF. Errors specific to ICSF result in an
abnormal end code of X'18F' and a unique reason code. In general, all abnormal
ends occurring within ICSF result in an appropriate system dump, user dump, or
LOGREC recording.

Review the reason code to see whether the abnormal end was an installation or
user error. For a list of the reason codes for abnormal end code X'18F', refer to z/OS
MVS System Codes. If you cannot resolve the problem, save the dump and contact
the IBM Support Center.

IPCS formatting routine
When you look at a dump, you can format ICSF CTRACE entries or request some
analysis functions.

CTRACE COMP(CSF) FULL
Formats the trace entries in the trace buffers within the dump or CTRACE
captured to an external writer.

This data is most likely to be used by ICSF service.

CTRACE COMP(CSF) OPTIONS((COUNTS))
Shows you which services are being used in the trace entries within the
dump.

Sample output:
ICSF COUNTS FROM CTRACE:
SERVICE CALLS_FOUND = 00004349
FAILING SERVICES = 00000145
SERVICE #SUCCESS #FAILED
CSFTCTRC 00002106 00000145
CSFTCTRD 00002098 00000000

Security Considerations

160 z/OS ICSF System Programmer's Guide

When you see that there are some service failures, you can request more
details. If you want more details about who is calling which services, you
can use the IPCS statistics support that generates SMF records.

CTRACE COMP(CSF) OPTIONS((FAILURES)) FULL
Sample output:
SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

S24 ICSF 00000001 11:49:57.925969 ICSF
ASID H=0047 S=0047 TCB=007B96E8 MOD=CSFVCAPC SrvExit
Stack=1EEFA010 Service=CSFTCTRC
Return code = 00000008
Reason code = 00000BCD

This sample output shows that ASID 47 called service CSFPTRC
(CSFTCTRC is the internal ICSF routine) and this request failed with return
code 8 (application error) and reason code BCD:
BCD (3021)
The call to add a z/OS PKCS #11 token failed because the token already
exists in the TKDS data space or a request to add a z/OS PKCS #11 token
object failed because an object with the same handle already exists.

For more information about return codes, see z/OS Cryptographic Services
ICSF Application Programmer's Guide.

CTRACE COMP(CSF) OPTIONS((PERFC))
Pairs up start and end trace entries for requests to cryptographic
coprocessors.

You can use the Interactive Problem Control System (IPCS) to format and display
the certain ICSF control blocks. The IPCS CBFORMAT command displays the
control block's eye-catcher name, its location in the address space, and its field
names with their offsets. ICSF provides format routines for many of its control
blocks.

To see a complete list of the control blocks that can be formatted, you can browse
SYS1.PARMLIB(CSFIPCSP). This parmlib member provides the definition of all
ICSF format and analysis routines to IPCS.

You can also run IPCS command:
IPCSDATA CURRENT ACTIVE

This command provides an internal view of all format routines and exits defined
to IPCS. Look for CSF to find all the routines that are provided by ICSF.

Some ICSF control blocks can be formatted by symbol name. CSFCCVT, CSFCCVE,
CSFMGST, and CSFENT can be formatted with the IPCS command below when
you specify the control block name as the symbol.
CBFORMAT symbolname

For example,
CBF CSFCCVT

This command locates the CCVT and formats it.

Most of the blocks that can be formatted must be located by the user:
CBF address STR(structurename)

Security Considerations

Chapter 4. Operating ICSF 161

For example,
CBF 7F60EF18 STR(CSFZTSKT)

For more information about using the CBFORMAT command, see z/OS MVS IPCS
User's Guide.

VERBX
ICSF supports two verb exits:

VERBX CSFDATA 'options'
Use to specify a category of control blocks to format. If you specify VERBX
CSFDATA without options, the output shows the options that are valid:
VERBX CSFDATA
VERBX CSFDATA Output:

No valid options were specified on VERBX CSFDATA.
Valid options are CELL,CCPA,CCPS,CACB,CCPD,OCSV,OCSK,STACKS

Each option formats the control blocks that are relevant to the selected
option:

CELL Formats the ICSF storage management cell pool control blocks.

CCPA Formats the control blocks that keep track of cryptographic
coprocessors.

CCPS Formats the control blocks for active requests to cryptographic
coprocessors.

CACB Formats the control blocks for I/O to CKDS, PKDS, and TKDS.

CCPD Formats the main control block that is used to manage
cryptographic coprocessors.

OCSV Formats the control blocks for each Regional Cryptographic Server
(RCS).

OCSK Formats the control blocks for active RCS requests.

STACKS
Formats all the dynamic area stacks in ICSF.

VERBX CSF2 'options'
Use to populate the IPCS pointer panel with the control block definitions
based on the selected options. If you specify VERBX CSF2 without options,
the output shows the options that are valid:
VERBX CSF2
VERBX CSF2 Output:

No valid options were specified on VERBX CSF2.
Valid options are BASE,CCMK,PLEX,CKDS,PKDS,TKDS,CARD,RCS,KU,STAT,WARN

The pointers that are added to the IPCS pointer panel:

BASE Creates pointers for CCVT, CCVE, and TSKT. Also finds the active
stack and related blocks.

CCMK
Creates pointers for any active or residual coordinated change
master key requests.

PLEX Creates pointers for sysplex-related control blocks. Combine with
CKDS/PKDS/TKDS.

Security Considerations

162 z/OS ICSF System Programmer's Guide

CKDS Creates pointers relating to I/O for the KDS. Also, tailors PLEX.

PKDS Creates pointers relating to I/O for the KDS. Also, tailors PLEX.

TKDS Creates pointers relating to I/O for the KDS. Also, tailors PLEX.

CARD
Creates pointers for control blocks that are used to keep track of
cryptographic coprocessors.

RCS Creates pointers for control blocks that are used to keep track of
regional cryptographic servers.

KU Creates pointers for control blocks that are used for Key Usage
tracking.

STAT Creates pointers for control blocks that are used for Statistics
monitoring.

WARN
Creates pointers for control blocks that are used for Warn mode
processing.

At a minimum, when you are looking at a dump of ICSF, issue:
VERBX CSF2 ’BASE’

Detecting ICSF serialization contention conditions
If a user task or address space holds an ENQ or latch for an extended period of
time, it is likely hung and needs to be canceled so that other work can obtain the
ENQ or latch. Some applications might provide controls or document procedures
for addressing situations in which the application appears to be gating the rest of
the workload. The ICSF system programmer should consult the application's
system programmer or administrator regarding actions to take for or against the
application. Such action might include stopping or canceling the application.

ICSF requires Global Resource Serialization (GRS) ENQ resources to manage
concurrent operations involving the key data sets (CKDS, PKDS and TKDS), and
the ICSF ENQ scheme has ICSF itself obtaining any necessary data set ENQ, in a
proxy fashion, on behalf of an application unit of work driving an ICSF API
request requiring an ENQ. ICSF also manages any set of extra, different application
requests that might be waiting for that same ENQ resource. For this reason, GRS
always perceives only ICSF as a key data set ENQ resource owner or waiter, and a
DISPLAY GRS,CONTENTION command would not illustrate key data set ENQ
contention between two or more competing application requests within a single
system scope. For sysplex scope ENQ contention, DISPLAY GRS,CONTENTION
would, without any internal assistance, illustrate only ICSF itself as an ENQ holder
or waiter, and would not reflect any client application identity or information that
is associated with ICSF's ENQ resource usage.

ICSF provides an internal capability to embellish the DISPLAY GRS command
output to illustrate the ICSF client applications for which ICSF is holding an ENQ
resource, and on the general conditions involving client waiters for an ENQ
resource. This enhanced capability is transparently provided and requires no
additional ICSF or GRS installation or configuration action. The ICSF support to
enhance the DISPLAY GRS output is relevant on a DISPLAY GRS,CONTENTION
command only if GRS can detect contention, which is not the case when two or
more ICSF client application requests are competing for the same ENQ resource
within a single system scope. The ICSF support is relevant on a DISPLAY
GRS,RES=(qname-rname) command whenever the ENQ resource specified in the

Security Considerations

Chapter 4. Operating ICSF 163

qname-rname option is held, regardless of whether contention exists. For this reason,
the DISPLAY GRS,RES=() command version is recommended as the reliable
technique for obtaining information about ICSF key data set ENQ serialization
conditions. The DISPLAY GRS command syntax for the various ICSF key data set
ENQ resources can be summarized as follows:

Table 14. DISPLAY GRS command syntax ICSF key data set ENQ resources

This command: Displays ENQ information for the:

DISPLAY GRS,RES=(SYSZCKT.*) CKDS

DISPLAY GRS,RES=(SYSZPKT.*) PKDS

DISPLAY GRS,RES=(SYSZTKT.*) TKDS

Sample command output for the DISPLAY GRS,RES=(SYSZCKT.*) command:
ISG343I 12.01.33 GRS STATUS 360
S=SYSTEM SYSZCKT SYSZCKT
SYSNAME JOBNAME ASID TCBADDR EXC/SHR

SY1 CSFJM70 /APPL107 0040/0045 007D8E88 EXCLUSIVE

ADDITIONAL RESOURCE INFORMATION FROM: ICSF Managed ENQ
Owner: APPL107 TTOKEN: 000001200000000300000003007FF050 Waiters: 005

In this example, the display command result illustrates that ICSF on system SY1
started under jobname CSFJM70 and executing in ASID 40, has obtained the CKDS
ENQ resource exclusively on behalf of the client application running with a
jobname of APPL107 and executing in ASID 45. Furthermore, the APPL107
application unit of work that caused ICSF to obtain this ENQ was the task that is
identified by task token 000001200000000300000003007FF050, and there are five
more application requests on system SY1 that are awaiting access to this ENQ
resource.

The DISPLAY GRS,RES=() command must be executed on (or routed to) all of the
systems within the scope of a sysplex to obtain the comprehensive understanding
of an ICSF key data set ENQ resource.

ICSF also exploits Global Resource Serialization (GRS) latches for serializing
resources that are managed within the scope of a single system. In the case of ICSF
latches, whenever a client application request requires an ICSF latch for
serialization, the latch is obtained under the application's unit of work (not proxied
like the ENQ), and therefore, the DISPLAY GRS,CONTENTION command always
illustrates the application information for the current latch owner or owners.

The following operational steps are recommended when ICSF serialization
contention is suspected as a cause for a workload slowdown or hang:
1. Issue the DISPLAY GRS,CONTENTION command to illustrate sysplex scope

contention on ICSF ENQ serialization resources, or system level contention on
ICSF latch serialization resources. If the command result demonstrates latch
contention, go to step 3. If the command result demonstrates ICSF key data set
ENQ contention and discloses the ENQ owner client application information,
go to step 3. If the command result does not demonstrate contention, or does
not disclose the ENQ owner client application information, proceed to the next
step.

2. Issue the following commands as needed (depending on the key data sets you
are using):

Security Considerations

164 z/OS ICSF System Programmer's Guide

DISPLAY GRS,RES=(SYSZCKT.*)
DISPLAY GRS,RES=(SYSZPKT.*)Issue this command only if you are utilizing a PKDS
DISPLAY GRS,RES=(SYSZTKT.*)Issue this command only if you are utilizing a TKDS

The commands need to be executed either on all systems within a sysplex, or
on the local system where the ENQ resource is known to be owned. The
command result should disclose the ENQ owner client application information.

3. Initiate an action for or against the client application to end the unit of work on
behalf of which ICSF has obtained the ENQ resource. Such action might
include stopping or canceling the application.

IPCS support for diagnosing contention issues in a dump
ICSF uses GRS ENQs and latches to serialize resources such as the CKDS, PKDS,
and TKDS, and serialization for the cryptographic coprocessors and regional
cryptographic servers. Latches are heavily used to serialize ICSF structures.

When you are looking at a dump, you can use the command ANALYZE.
ANALYZE drives analyze exits in IPCS. The GRS analyze exit and the ICSF
analyze exit combine data to give you a picture of resources that are in contention.
If there is contention, the analyze command generates output. For example,

CONTENTION EXCEPTION REPORT

JOBNAME=CSFALLR ASID=003A TCB=007D2430

JOBNAME=CSFALLR HOLDS THE FOLLOWING RESOURCE(S):

RESOURCE #0002: There are 0020 units of work waiting for this resource
NAME=SYSZTKT ENQ 7F5B7EC0 STR(DCTL)
DATA=CSFMISDT task: 007D2430 requested ENQ

ICSF manages the ENQ SYSZTKT to serialize access to the TKDS. If you see this
sort of problem, enter the following command to load up the pointer panel with
control blocks that are related to TKDS updates:
ip verbx csf2 ’tkds plex’

ENF signals
ICSF sends an ENF signal to listeners in the following situations:
v Whenever ICSF is started.
v Whenever ICSF is terminating.
v Whenever a master key is changed.

Listener exit routines are invoked synchronously. Listeners of these signals should
follow the guidelines documented in z/OS MVS Programming: Authorized Assembler
Services Guide on coding listener exit routines. In particular, avoid any processing
that may take an extended period of time to complete.

Security Considerations

Chapter 4. Operating ICSF 165

Table 15. ICSF ENF codes

Event code Description Qualifier
Parameter list passed to
the user exit

Exit type /
Cross-system
capable

19 ICSF has
encountered a
change.

None A four-byte parameter area.

X'00000002'
ICSF has started
and is ready for
requests.

X'00000003'
ICSF is terminating
and will no longer
accept requests.

X'nn000004'

One or more
master keys (MKs)
have been
changed. Byte nn
indicates the MKs
that have been
changed as
follows.

Bit Meaning when set:

0 DES MK changed.

1 AES MK changed.

2 RSA MK changed.

3 ECC MK changed.

4 P11 MK changed.

5 RCS MK changed.

6-7 Reserved.

EXIT or
SRBEXIT /
NO

Security Considerations

166 z/OS ICSF System Programmer's Guide

Chapter 5. Installation exits

Your installation can define exit routines to supplement the Integrated
Cryptographic Service Facility (ICSF), the key generator utility program (KGUP),
and the PCF conversion program. Exit routines are programs that programmers at
your installation write to allow you to “customize” an application. Your installation
may need to perform specific functions with the data that your cryptographic
application manipulates. At various points in processing, ICSF, KGUP, and the PCF
conversion program release control to an exit routine.

Some common uses for installation exits include:
v Identifying and verifying users
v Accessing alternate data sets
v Manipulating input commands
v Manipulating output data

This topic describes the various types of exit points in ICSF and the functions that
your exits can perform.

Attention: Only an experienced system programmer should use the ICSF
installation exits. Writing an exit routine and installing a new exit are tasks that
require a thorough knowledge of system programming in an OS/390 and z/OS
environment. An unknowledgeable programmer who attempts to write exit
routines or to install new exit points, runs the risk of seriously degrading the
performance of your system and causing complete system failure.

Types of exits
ICSF provides several types of exit points:
v Exits that are called during initialization, stopping, and modification of ICSF

itself, which are known as the mainline exits
v Exits that are called from the services
v An exit called when a record is read from or written to a fixed length record

CKDS.
v An exit called when you update the CKDS with a key that is entered through

the key entry hardware or during conversion program processing
v An exit called when records are retrieved from the in-storage CKDS
v Security exits that are called during initialization and stopping of ICSF, during a

call to a service, and when accessing a CKDS entry
v An exit called at various points during KGUP processing

These topics briefly describe the different types of exits available in ICSF.

Note: Although IBM no longer supplies security exit routines, the exit points still
remain.

© Copyright IBM Corp. 2007, 2018 167

Mainline exits
You can supply three exits that are called during ICSF initialization. You can also
define an exit routine to run after an operator issues the STOP command and
another exit to run after the MODIFY command. Thus, mainline exits can run at
these five different points:
v Initialization points

– Before ICSF initialization
– After ICSF reads and interprets the installation options
– Before the completion of ICSF initialization

v When an operator issues a STOP ICSF command
v When an operator issues a MODIFY ICSF command

You can use a mainline exit to alter values in the Cryptographic Communication
Vector Table, to end ICSF, or to change ICSF installation options. For more
information about the mainline exits, see “Mainline installation exits” on page 172.

Exits for the services
Each of the services in ICSF calls an exit before and after processing. z/OS
Cryptographic Services ICSF Application Programmer's Guide describes the services in
greater detail.

You can use a service exit to change, augment, or replace processing or to bypass
the IBM-supplied processing for the service entirely. “Services installation exits” on
page 180 gives further details about exits for the services.

The PCF CKDS conversion program exit
The PCF conversion program changes a CKDS from PCF to ICSF CKDS format.
See Chapter 8, “Migration from PCF to z/OS ICSF,” on page 235 for more
information about the conversion program.

ICSF provides three exit points for the same exit routine:
v During the initialization of the conversion program
v While the conversion program is processing individual records
v During the ending of the conversion program

See “PCF conversion program installation exit” on page 197 for more information
about the conversion program installation exit (CSFCONVX).

The single-record, read-write exit
Certain ICSF processes read records from or write records to the CKDS. These
processes include running a conversion program, refreshing and reenciphering the
CKDS, and using the key entry hardware to enter a key. When these processes
read or write CKDS records, they call the exit. You can customize the processing of
a CKDS record read-write with the single-record, read-write exit (CSFSRRW). See
“Single-record, Read-write installation exit” on page 200 for more information
about the single-record, read-write exit.

Note: This exit is given control only for a fixed-length record CKDS. The exit is
not given control for the variable-length record format or KDSR format of the
CKDS.

168 z/OS ICSF System Programmer's Guide

The cryptographic key data set entry retrieval exit
You can use certain services to manage keys on ICSF. A service can access a key in
the in-storage CKDS by specifying a key label. For more information about the
services, see z/OS Cryptographic Services ICSF Application Programmer's Guide.

When a service requests a record from the in-storage CKDS by label, ICSF calls the
CKDS entry retrieval exit. For instance, you can use this exit to perform a specific
search of the installation data field in the record. See “Cryptographic key data set
entry retrieval installation exit” on page 194 for more information about the CKDS
entry retrieval exit.

Note: This exit is given control only for a fixed-length record CKDS. The exit does
not work with the variable-length record format of the CKDS.

Security exits
You can supply four different exits to control access to resources on ICSF. ICSF
calls the security exits at these points:
v During CSF initialization
v During CSF termination
v When an application calls an ICSF service
v When an entry in the in-storage CKDS is accessed

See “Security installation exits” on page 203 for more information about the
security exits.

The KGUP exit
You use KGUP to generate and maintain keys in the CKDS. KGUP creates key
values that systems can use in key exchanges. The ICSF administrator uses job
control language to start KGUP and specifies information to KGUP through the use
of a control statement.

As opposed to the five different mainline exits, ICSF provides one exit for KGUP
processing that is called at four different points. ICSF calls the KGUP exits at these
points:
v During KGUP initialization
v Before KGUP processes a key that is identified by a control statement
v Before KGUP updates the CKDS
v During KGUP termination

The KGUP exit receives a parameter that identifies the exit's calling point. Thus,
the installation exit can perform different functions at each of the calls.

You can use the KGUP exit to change key values, make a copy of a CKDS entry, or
end KGUP. “Key generator utility program installation exit” on page 208 gives a
more detailed description of the KGUP exit.

Entry and return specifications
All of the exits described in “Types of exits” on page 167 use standard linkage
conventions on entry and return from the exits.

Chapter 5. Installation exits 169

Registers at entry
The mainline exits have these register contents on entry:

Register
Contents

0 Address of the exit parameter block (EXPB)

1 Address of a parameter list

2–12 Not applicable

13 Address of register save area

14 Return address

15 Entry point address

The service exits have these register contents on entry:

Register
Contents

0 Address of the exit parameter block (EXPB)

1 Address of a parameter list

2–13 Not applicable

14 Return address

15 Entry point address

The CKDS entry retrieval installation exit has these register contents on entry:

Register
Contents

0 Not applicable

1 Address of a parameter list

2–12 Not applicable

13 Address of register save area

14 Return address

15 Entry point address

The conversion program, single-record, read-write, and KGUP exits have these
register contents on entry:

Register
Contents

0 Not applicable

1 Address of a control block (CVXP, RWXP, or KGXP, depending on the exit)

2–12 Not applicable

13 Address of register save area

14 Return address

15 Entry point address

170 z/OS ICSF System Programmer's Guide

The particular control blocks that are passed through register 0 or register 1 are
described with each exit.

Registers at return
Registers for all exits must contain the original contents on entry with the
exception of register 15 which must contain a valid return code. See each exit for a
list of valid return codes. The registers should contain this information on return.

Register
Contents

0–14 Same as entry contents

15 Valid return code

Exits environment
ICSF calls different types of exits in distinct environments. The exits differ
regarding the mode in which they run and how they address data.

Mainline exits
ICSF mainline exits run in task mode in the ICSF address space. All the passed
storage pointers specify addresses in the ICSF address space and are not ALET
qualified. There are essentially no restrictions on the use of z/OS services for these
exits.

Service exits
ICSF calls the service exits in cross memory mode after a space switch PC. The
exits run in the ICSF address space, which is the primary address space. The exits
need to address parameters in the caller's address space, which is the secondary
address space. In general, user-passed parameters, including the parameter list
itself, are in the secondary address space. An exit that is running in access register
(AR) mode using an ALET of 1 can access these parameters. For information about
cross memory mode and AR mode, see z/OS MVS Programming: Extended
Addressability Guide.

CKDS entry retrieval exit
The exit runs in cross memory mode. The addresses of the CKDS records that are
used by the exit are ALET-qualified. The exit receives both the current CKDS
record address and the record's associated ALET as parameters in the exit
parameter list. The exit must run in AR mode, and must use the information
passed in the exit parameter list to access CKDS entries. For information about
cross memory mode and AR mode, see z/OS MVS Programming: Extended
Addressability Guide.

KGUP, Conversion Programs, and Single-record, Read-write
exits

The exits run in task mode in the caller's home address space. The exits do not run
in cross memory mode and are not passed ALET-qualified storage pointers. There
are essentially no restrictions on the use of z/OS services for these exits.

Chapter 5. Installation exits 171

Security exits
The initialization and termination security exits run in task mode in the ICSF
address space. The passed storage pointers specify an address in the ICSF address
space and are not ALET-qualified. There are essentially no restrictions on the use of
z/OS services for these exits.

ICSF calls the security service exit and the security keys exit in cross memory
mode after a space switch PC. The security service exit runs in the ICSF address
space, which is the primary address space. The security key exit runs in cross
memory and AR mode.

Exit recovery
An ESTAE routine provides recovery for the mainline exits; the single-record,
read-write exit; and the security initialization and termination exits. If an exit ends
abnormally, the ESTAE routine intercepts the abnormal ending code and schedules
a system dump. If the conversion program exit ends abnormally, the conversion
program ends abnormally. If the KGUP exit ends abnormally, KGUP also ends
abnormally. ESTAE routines provide recovery for the conversion program and
KGUP.

The ICSF Functional Recovery Routine (FRR) provides recovery for the service
exits, the CKDS entry retrieval exit, and the security service and key exits. If an
exit ends abnormally, the FRR intercepts the abnormal ending code and schedules
a system dump.

There are times during ICSF processing that ICSF suppresses dumps. For example,
ICSF does not schedule dumps when integrity checking user data. This action
avoids the possibility of user errors that can severely affect system performance.
However, ICSF does write a record to SYS1.LOGREC if the error occurs.

When writing exits, you may also want to suppress dumps under certain
circumstances. You can suppress dumps by setting a bit on in the SPB. This bit, the
SPBTERM bit, is the third bit of the flag byte at offset 18 in the SPB. An exit might
want to suppress dumps whenever the exit writes user storage. The exit can turn
the bit on before the WRITE instruction and turn the bit off again after the
instruction.

Mainline installation exits
ICSF begins when an operator issues a START command from the operator
console. When ICSF issues this command, the initialization process begins.

After ICSF starts, operators can issue the MODIFY or STOP commands. You can
define installation exits to customize ICSF at the initialization, stopping, and
modification points.

Purpose and use of the exits
ICSF calls the mainline exits during the startup, modification, and shutdown
stages. The exits allow your installation to change the initialization options, issue
special messages, and bypass operator commands. This is a description of each
point at which ICSF calls mainline exit routines.

172 z/OS ICSF System Programmer's Guide

CSFEXIT1
ICSF calls this exit after an operator issues a START command, but before any
processing takes place. You can use this exit to change the allocation of the
installation options data set.

ICSF always calls the exit. If this exit does not exist, ICSF continues normal
processing. If this exit exists, ICSF starts it.

CSFEXIT2
ICSF calls this exit during the initialization process after the installation options
data set is read and interpreted. You can use this exit to change certain installation
options.

CSFEXIT3
ICSF calls this exit just before ICSF initialization is complete. You can use this exit
to issue commands to start other cryptographic work.

CSFEXIT4
ICSF calls this exit when an operator issues a STOP command. You can use this
exit to decide to allow or disallow the STOP command.

CSFEXIT5
CSFEXIT5 receives the command input block (the string that is entered by the
operator), so you can customize CSFEXIT5 to perform any processing you require.
ICSF calls this exit when an operator issues a MODIFY command. ICSF provides
the MODIFY command exit to allow each installation the flexibility of defining its
own command. ICSF does no processing when an operator uses the MODIFY
command. The MODIFY command is simply a call to CSFEXIT5.

Environment of the exits
The exits receive control with these characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB mode
v Address Space Control mode=access register mode
v AMODE(31) orAMODE(64)

The exit receives control in AMODE(64) if the service was invoked in
AMODE(64); otherwise the exit receives control in AMODE(31). If you have a
callable service exit for a service which supports invocation by an AMODE(64)
caller, once HCR7720 is installed, you should recode your exit to be sure it can
handle being invoked in AMODE(64).

v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to ICSF with the same characteristics as on entry.

Installing the exits
Because ICSF calls CSFEXIT1 before any initialization occurs, the exit is not defined
in the same way as the other exits. For all the mainline exits, install the load
module that contains the exit into an APF-authorized library. ICSF uses this normal
z/OS search order to locate the exit:
v Job pack area

Chapter 5. Installation exits 173

v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

You must define CSFEXIT2, CSFEXIT3, CSFEXIT4, and CSFEXIT5 in the installation
options data set. However, you must not define CSFEXIT1 in the installation
options data set, and the load module name for the exit must be CSFEXIT1.

To define the exits in the installation options data set, define the ICSF exit point
name and load module name on the EXIT keyword in the installation options data
set. For information about the installation options data set, see “Parameters in the
installation options data set” on page 36. The EXIT keyword has this syntax:

EXIT (ICSF exit point name, load module name, FAIL (options))

The ICSF exit point name portion of the keyword refers to the ICSF name for each
exit, CSFEXIT2, CSFEXIT3, CSFEXIT4, and CSFEXIT5. The load module name is
the name of the load module that contains the exit. The name can be any valid
name your installation chooses. The FAIL portion of the EXIT keyword specifies
the action ICSF takes if the exit cannot be loaded. The valid FAIL options are:

NONE
Initialization continues even if exits cannot be loaded.

SERVICE
Initialization continues even if exits cannot be loaded.

EXIT Initialization continues even if exits cannot be loaded.

ICSF End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message,
abnormally ends, and generates an SVC dump when attempting to load the exit.

Input
All mainline exits receive the address of an exit parameter block (EXPB) passed in
register 0. Each exit receives the address of an address list passed in register 1.
Each address in the list points to a parameter.

Figure 3 on page 175 illustrates the contents of register 0 and EXPB for the
mainline exits.

174 z/OS ICSF System Programmer's Guide

Both the mainline exits and the services exits receive the address of EXPB in
register 0. Some of the fields in EXPB are used only by the service exits and are
reserved fields for the mainline exits.

The Exit Parameter Block
Table 16 describes the contents of the exit parameter block.

Table 16. EXPB Control Block format for Mainline Exits

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. This field contains the
character string EXPB.

4 2 Version.

The version of the control block. This field contains the
character string 01.

6 2 Length.

The length of the control block. The value of this field is 40
in decimal.

8 4 Dynamic area address.

The address of a 400-byte area that the exit can use as a
dynamic area.

12 4 Exit area address.

The address of an 8-byte area the exits can use to
communicate with each other. ICSF does not check or
change this field.

16 4 Exit communication area.

A character string that can be used for communication
between the exits. The field is initialized to zero before
CSFEXIT1 is called, and ICSF does not modify this field.

Register 0

EXPB EXPB

NAME

VERSION LENGTH

DYNAMIC AREA

DYNAMIC AREA

400 BYTES

8 BYTES

EXIT AREA
EXIT AREA

EXIT COMMUNICATION

RESERVED

RESERVED

CCVT
CCVT

. . .

. . .
MODULE NAME

Figure 3. EXPB control block for mainline exits

Chapter 5. Installation exits 175

Table 16. EXPB Control Block format for Mainline Exits (continued)

Offset (Dec)
Number of
Bytes Description

20 4 Flags.

Reserved. The flag field is used only by the exits for the
services. The field contains binary zeros for the mainline
exits.

24 4 Secondary parameter block (SPB) address.

Reserved. The SPB is used only by the exits for the services.
The field contains binary zeros for the mainline exits.

28 4 CCVT address.

Address of the Cryptographic Communication Vector Table
(CCVT). “The Cryptographic Communication Vector Table
(CCVT)” on page 354 describes the CCVT in greater detail.

32 8 Module name.

The installation exit's load module name. The field contains
the value of the load module name you specified on the
EXIT keyword in the installation options data set. The field
is 8 bytes of characters, and the value is left-justified and
padded with blanks.

Parameters
All mainline exits receive an address list that uses standard entry linkage. Register
1 points to the address list. Each address in the list points to a parameter. Tables in
the next four topics describe the parameters for each of the mainline exits.

CSFEXIT1

This table describes the parameters for CSFEXIT1:

Table 17. CSFEXIT1 parameters

Parameter
Number of
Bytes Description

1 8 The data set name (DDNAME) of the installation
options data set.

2 Variable The command input block for the START command. The
command control block is mapped by IEZCIB.

When ICSF calls this, the Cryptographic Communication Vector Table exists, but
the table is not yet complete.

CSFEXIT2 and CSFEXIT3

Both CSFEXIT2 and CSFEXIT3 receive the same parameters. Table 18 on page 177
describes these parameters.

176 z/OS ICSF System Programmer's Guide

Table 18. CSFEXIT2 and CSFEXIT3 parameters

Parameter
Number of
Bytes Description

1 44 A character string that is the CKDS name specified in the
CKDSN installation option.

2 4 A decimal value that is the maximum length permitted
for data passed to services specified in the MAXLEN
installation option.

Beginning with z/OS V1 R2, the MAXLEN parameter
may still be specified in the options data set, but only the
maximum value limit will be enforced (2147483647). If a
value greater than this is specified, an error will result
and ICSF will not start.

3 4 ICSF environmental options.
Note: Do not change bits 1 - 5.

Byte 1:

Bit Meaning When Set On

0 Special secure mode enabled.

1 - 5 Reserved.

6 Security Sever (RACF) checking required for
authorized callers.

7 PCF coexistence.

Bytes 2–4: Reserved

4 4 Address of the exit name table. Table 20 on page 178
describes the exit name table.

CSFEXIT4 and CSFEXIT5

Both CSFEXIT4 and CSFEXIT5 receive the same parameters. Table 19 describes
these parameters.

Table 19. CSFEXIT4 and CSFEXIT5 parameters

Parameter
Number of
Bytes Description

1 44 A character string that is the CKDS name specified in
the CKDSN installation option.

2 4 A decimal value that is the maximum length permitted
for data passed to services specified in the MAXLEN
installation option.

Beginning with z/OS V1 R2, the MAXLEN parameter
may still be specified in the options data set, but only
the maximum value limit will be enforced (2147483647).
If a value greater than this is specified, an error will
result and ICSF will not start.

Chapter 5. Installation exits 177

Table 19. CSFEXIT4 and CSFEXIT5 parameters (continued)

Parameter
Number of
Bytes Description

3 4 ICSF environmental options.
Note: Do not change bits 1 - 5.

Byte 1:

Bit Meaning When Set On

0 Special secure mode enabled.

1 - 5 Reserved.

6 Security Server (RACF) checking required for
authorized callers.

7 PCF coexistence.

Bytes 2–4: Reserved

4 4 Address of the exit name table. Table 20 describes the
exit name table.

5 Variable The command input block. You can use the IEZCIB
mapping macro to map the control block.

The Exit Name Table

The exit name table contains a list of all of the exits and their load module names.
Table 20 describes the format of the exit name table.

Table 20. Format of the Exit Name table

Offset (Dec)
Number of
Bytes Description

0 4 Exit name table ID. The value is always the character
string ENT.

4 2 Exit name table version. The value is always the character
string 01.

6 2 Length of the exit name table. This value is in decimal.

8 4 Number of entries in the array which is the number of
exits ICSF supplies. This value is in decimal.

12 4 Subpool that the exit name table is in.

16 4 Reserved.

20 4 Reserved.

24 4 Reserved.

28 4 Reserved.

32 8 ICSF exit name 1. This value is a character string.

40 8 Installation load module name 1. This value is a character
string.

178 z/OS ICSF System Programmer's Guide

Table 20. Format of the Exit Name table (continued)

Offset (Dec)
Number of
Bytes Description

48 4 Flags.

Flag bytes. Only the first two bytes are used; bytes 3 and 4
are reserved.

Byte 1:

Bit Meaning When Set On

0 Exit has been requested by the installation.

1 Exit has been loaded.

2 Exit is active.

3 If exit fails, end ICSF.

4 If exit fails, do not call the exit again.

5 If exit fails, fail the service.

6 If exit fails, do nothing.

7 Exit has failed previously.

Byte 2:

Bit Meaning When Set On

0 The exit should be called.

1 The exit is available to the installation.

2 If the security exit fails, fail the service.

3–7 Reserved.

52 4 Address of the exit.

56 4 Reserved.

60 4 Reserved.

64 8 ICSF exit name 2. This value is a character string.

72 8 Installation load module name 2. This value is a character
string.

80 4 Flags.

See offset +48 for flag byte definitions.

84 4 Address of the exit.

88 4 Reserved.

92 4 Reserved.

x 8 ICSF exit name a.

x+8 8 Installation load module name a.

x+16 4 Flags.

See offset +48 for flags.

x+20 4 Address of the exit.

x+24 4 Reserved.

x+28 4 Reserved.

Chapter 5. Installation exits 179

Return Codes
All mainline exits can pass back a return code in register 15. CSFEXIT1, CSFEXIT2,
and CSFEXIT3 support these decimal return codes:

Return Code
Description

0 Proceed with initialization.

16 End ICSF.

Any return codes other than those listed cause ICSF to end abnormally.

CSFEXIT4 supports these decimal return codes:

Return Code
Description

0 Proceed with the STOP command.

4 Do not allow the STOP command to proceed.

Any return codes other than those listed cause processing of the STOP command
to end abnormally.

CSFEXIT5 supports these decimal return codes:

Return Code
Description

0 Continue processing.

4 End ICSF.

Any return codes other than those listed cause processing of the MODIFY
command to end abnormally.

Services installation exits
ICSF provides services that you can use to perform various cryptographic
functions. Examples of these functions include enciphering and deciphering data,
generating and verifying message authentication codes, generating and verifying
PINs, and dynamically updating the CKDS and PKDS. You can define an
installation exit for each of the services to customize processing.

Starting with FMID HCR77B0, ICSF provides a single service exit called
CSF_SERVICE_EXIT that gets control for all services. The intent of this exit is for
statistics generation. For more information, see “CSF_SERVICE_EXIT - ICSF
callable services exit” on page 192.

For a detailed description of the services, see z/OS Cryptographic Services ICSF
Application Programmer's Guide.

Use this general format to request a service:
CALL CSNBxxx (

return_code
,reason_code
,exit_data_length
,exit_data
,parameter_5
,parameter_6

180 z/OS ICSF System Programmer's Guide

.

.

.
,parameter_N)

Table 21 on page 183 lists the ICSF exit names for each of the services. The
parameters that the application passes to a service are known as the service
parameter list, and the parameters vary from service to service. “Parameters” on
page 191 describes the services parameter lists in more detail.

Purpose and use of the exits
Each of the services has an installation exit. Each installation exit for a service has
two exit points:
v The Preprocessing exit point. This exit point occurs after an application

program calls a service, but before the service starts processing. For example,
you can use this exit point to check or change the parameters that the
application passes on the call, or to end the call. You can also perform additional
security checks.

v The Postprocessing exit point. This exit point occurs after the service has
finished processing, but before the service returns control to the application
program. For example, you can use this exit point to check and change the
return code from the service or perform cleanup processing.

Environment of the exits
The exits receive control with these characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB or SRB mode
v Cross memory mode
v AR mode
v AMODE(31) orAMODE(64)

The exit receives control in AMODE(64) if the callable service was invoked in
AMODE(64); otherwise the exit receives control in AMODE(31). If you have a
callable service exit for a service which supports invocation by an AMODE(64)
caller, you must recode your exit to be sure it can handle being invoked in
AMODE(64).

v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to their caller with the same characteristics as on entry.

You must write the exits in assembler, because you are in AR and cross memory
mode and the addresses of some of the parameters you may access are
ALET-qualified. In particular, parameters passed into a service are in the user's
address space which you can access with an ALET of 1.

For information about cross memory and AR mode, see z/OS MVS Programming:
Extended Addressability Guide.

Chapter 5. Installation exits 181

Installing the exits
You install an exit for a service by installing the load module that contains the exit
into an APF-authorized library. ICSF uses this normal search order to locate the
exit:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and the load module name as a value on the EXIT keyword
in the installation options data set. For more information about the installation
options data set, see “Parameters in the installation options data set” on page 36.
The EXIT keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for each service
exit. Note that the ICSF name for each service exit is the same as its name. Table 21
on page 183 lists the ICSF names for each of the service exits. Table 22 on page 186
lists the ICSF names for each of the compatibility service exits. The load module
name is the name of the load module that contains the exit. The name can be any
valid name that your installation chooses. The FAIL portion of the EXIT keyword
specifies the action ICSF takes if the exit cannot be loaded or it ends abnormally.
When the exit fails to load, the valid FAIL options mean:

NONE
Initialization continues. The exit is not available to be called.

EXIT Initialization continues. The exit is not available to be called.

SERVICE
Initialization continues. The exit is not available to be called.

ICSF ICSF is ended.

When the exit ends abnormally, the valid FAIL options are:

NONE
No action is taken. The exit can be called again and will end abnormally
again.

EXIT The exit is no longer available to be called again.

SERVICE
The service or program that called the exit is no longer available to be
called again.

ICSF ICSF is ended.

You must specify a FAIL option. If you do not, ICSF returns an error message,
ends abnormally, and generates an SVC dump when attempting to load the exit. If
the exit ends abnormally, the service call fails regardless of the fail option you
specified. Fail options apply only to subsequent requests for the service.

Note: In this table, CSFPCI (PCI interface) is a part of the product-sensitive
programming interface.

182 z/OS ICSF System Programmer's Guide

Table 21. Services and their ICSF names

Service ICSF name

Authentication Parameter Generate CSFAPG

Ciphertext Translate2 CSFCTT2

Ciphertext Translate2 (with ALET) CSFCTT3

CKDS Key Record Create CSFKRC

CKDS Key Record Create2 CSFKRC2

CKDS Key Record Delete CSFKRD

CKDS Key Record Read CSFKRR

CKDS Key Record Read2 CSFKRR2

CKDS Key Record Write CSFKRW

CKDS Key Record Write2 CSFKRW2

Clear Key Import CSFCKI

Clear PIN Encrypt CSFCPE

Clear PIN Generate CSFPGN

Clear PIN Generate Alternate CSFCPA

Control Vector Translate CSFCVT

Cryptographic Variable Encipher CSFCVE

CVV Key Combine CSFCKC

Data Key Export CSFDKX

Data Key Import CSFDKM

Decipher CSFDEC

Decipher (with ALET) CSFDEC1

Decode CSFDCO

Derive ICC MK CSFDCM

Derive Session Key CSFDSK

Digital Signature Generate CSFDSG

Digital Signature Verify CSFDSV

Diversified Key Generate CSFDKG

Diversified Key Generate2 CSFDKG2

Diversify Directed Key CSFDDK

DK Deterministic PIN Generate CSFDDPG

DK Migrate PIN CSFDMP

DK PAN Modify in Transaction CSFDPMT

DK PAN Translate CSFDPT

DK PIN Change CSFDPC

DK PIN Verify CSFDPV

DK PRW Card Number Update CSFDPNU

DK PRW CMAC Generate CSFDPCG

DK Random PIN Generate CSFDRPG

DK Regenerate PRW CSFDRP

ECC Diffie-Hellman CSFEDH

Chapter 5. Installation exits 183

|

Table 21. Services and their ICSF names (continued)

Service ICSF name

EMV Scripting Service CSFESC

EMV Transaction Service CSFEAC

EMV Verification Functions CSFEVF

Encipher CSFENC

Encipher (with ALET) CSFENC1

Encode CSFECO

Encrypted PIN Generate CSFEPG

Encrypted PIN Translate CSFPTR

Encrypted PIN Translate2 CSFPTR2

Encrypted PIN Translate Enhanced CSFPTRE

Encrypted PIN Verify CSFPVR

FPE Decipher CSFFPED

FPE Encipher CSFFPEE

FPE Translate CSFFPET

Generate Issuer MK CSFGIM

HMAC Generate CSFHMG

HMAC Generate (with ALET) CSFHMG1

HMAC Verify (with ALET) CSFHMV1

HMAC Verify CSFHMV

ICSF Multi-Purpose Service CSFMPS

Key Data Set List CSFKDSL

Key Data Set Metadata Read CSFKDMR

Key Data Set Metadata Write CSFKDMW

Key Encryption Translate CSFKET

Key Export CSFKEX

Key Generate CSFKGN

Key Generate2 CSFKGN2

Key Import CSFKIM

Key Part Import CSFKPI

Key Part Import2 CSFKPI2

Key Test CSFKYT

Key Test2 CSFKYT2

Key Test Extended CSFKYTX

Key Translate CSFKTR

Key Translate2 CSFKTR2

MAC Generate CSFMGN

MAC Generate (with ALET) CSFMGN1

MAC Generate2 CSFMGN2

MAC Generate3 CSFMGN3

MAC Verify CSFMVR

184 z/OS ICSF System Programmer's Guide

|

Table 21. Services and their ICSF names (continued)

Service ICSF name

MAC Verify (with ALET) CSFMVR1

MAC Verify2 CSFMVR2

MAC Verify3 CSFMVR3

MDC Generate CSFMDG

MDC Generate (with ALET) CSFMDG1

Multiple Clear Key Import CSFCKM

Multiple Secure Key Import CSFSKM

One Way Hash Generate CSFOWH

One Way Hash Generate (with ALET) CSFOWH1

PCI Interface CSFPCI

PIN change/unblock CSFPCU

PKA Decrypt CSFPKD

PKA Encrypt CSFPKE

PKA Key Generate CSFPKG

PKA Key Import CSFPKI

PKA Key Translate CSFPKT

PKA Key Token Change CSFPKTC

PKA Public Key Extract CSFPKX

PKDS Key Record Create CSFPKRC

PKDS Key Record Delete CSFPKRD

PKDS Key Record Read CSFPKRR

PKDS Key Record Read2 CSFPRR2

PKDS Key Record Write CSFPKRW

Prohibit Export CSFPEX

Prohibit Export Extended CSFPEXX

Public Infrastructure Certificate CSFPIC

Random Number Generate CSFRNG

Random Number Generate Long CSFRNGL

Recover PIN From Offset CSFPFO

Remote Key Export CSFRKX

Restrict Key Attribute CSFRKA

Retained Key Delete CSFRKD

Retained Key List CSFRKL

Secure Key Import CSFSKI

Secure Key Import2 CSFSKI2

Secure Messaging for Keys CSFSKY

Secure Messaging for PINs CSFSPN

SET Block Compose CSFSBC

SET Block Decompose CSFSBD

Symmetric Key Export CSFSYX

Chapter 5. Installation exits 185

Table 21. Services and their ICSF names (continued)

Service ICSF name

Symmetric Key Export with Data CSFSXD

Symmetric Key Generate CSFSYG

Symmetric Key Import CSFSYI

Symmetric Key Import2 CSFSYI2

Symmetric MAC Generate CSFSMG

Symmetric MAC Generate (with ALET) CSFSMG1

Symmetric MAC Verify CSFSMV

Symmetric MAC Verify (with ALET) CSFSMV1

TR-31 Export CSFT31X

TR-31 Import CSFT31I

Transaction Validation CSFTRV

Trusted Block Create CSFTBC

Unique Key Derive CSFUKD

VISA CVV Service Generate CSFCSG

VISA CVV Service Verify CSFCSV

Note:

1. The aliases for the PKA services is CSNDxxx or or CSNFxxx.
2. The aliases for the symmetric key services are CSNBxxx or CSNExxx.

Table 22. Compatibility services and their ICSF names

Compatibility Service ICSF Name

Encipher under Master Key CSFEMK

Generate a key CSFGKC

Import a key CSFRTC

Cipher/Decipher CSFEDC

Input
The installation exit for each service gets the address of the exit parameter block
(EXPB) in register 0. ICSF obtains and initializes an EXP for every service call.
Figure 4 on page 187 illustrates the contents of register 0, and Table 23 on page 187
illustrates the EXPB for the service exits.

Register 1 contains the address of an address list. Each address in the list points to
a parameter. “Parameters” on page 191 describes the service parameter list. The
parameters the exit receives are the same parameters that are passed on the call to
the service. For more information about the parameters for each service, see z/OS
Cryptographic Services ICSF Application Programmer's Guide.

186 z/OS ICSF System Programmer's Guide

Exit parameter block
Table 23 describes the contents of the exit control block.

Table 23. EXPB Control Block Format for Services

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string EXPB.

4 2 Version.

The version of the control block. The field contains the
character string 01.

6 2 Length.

The length of the control block. The value is 40 in decimal.

8 4 Dynamic area.

The address of a 400-byte area that the exit can use as a
dynamic area.

12 4 Exit area address.

The address of an 8-byte area for the preprocessing and
postprocessing invocations of the exit to use for
communication. ICSF does not check or change this field.

Register 0

EXPB EXPB

NAME

VERSION LENGTH

DYNAMIC AREA

DYNAMIC AREA

400 BYTES

8 BYTES

NAME

VERSION

LENGTH

CCVT

SIF

FLAGS

RESERVED

EXIT AREA
EXIT AREA

EXIT COMMUNICATION

FLAGS

SERVICE PARMS
SERVICE PARM BLOCK

CCVT

CCVT

. . .

. . .

MODULE NAME

Figure 4. EXPB control block in the service exits

Chapter 5. Installation exits 187

Table 23. EXPB Control Block Format for Services (continued)

Offset (Dec)
Number of
Bytes Description

16 4 Exit communication area.

A character string that can be used for communication
between preprocessing and postprocessing invocations of a
service exit.

20 4 Flags.

A flag byte. Each bit setting (on/off) indicates a particular
condition. ICSF sets bit 0 and an exit cannot change that
bit. Your exit can set any of the other bits.

Bit Meaning When Set On/Off

0 Postprocessing invocation./Preprocessing
invocation.

1 Reserved.

2 Use the return and reason code that the exit
places in register 0 and register 15 as the service's
return code/reason code. Do not use the exit's
return code as the service return code in registers
0 and 15.

The exit can pass any valid return code in register
15 and any valid reason code in register 0. If this
bit is set on, ICSF uses these codes as the service's
return and reason codes. See “Return Codes” on
page 191 for more information about using exit
return codes.

3 Do not call the postprocessing invocation of the
service exit./Call the postprocessing invocation of
the service exit.

4 Bypass the service./Run the service.

5 Use the return and reason code that the exit
places in the service's parameter list./Do not store
codes the exit places in the service's parameter
list.

The exit can pass any valid return and reason
code in the first two parameters of the service's
parameter list. “Parameters” on page 191
describes the service parameter list.

6 CSFSKRC bypass input label parsing./CSFSKRC
parse the input label.

7–31 Reserved.

24 4 Secondary parameter block.

The address of the secondary parameter block. The exit
can use the SPB to determine the environmental
information of the service. For a description of the SPB,
see “Secondary parameter block” on page 189.

188 z/OS ICSF System Programmer's Guide

Table 23. EXPB Control Block Format for Services (continued)

Offset (Dec)
Number of
Bytes Description

28 4 CCVT.

Address of the Cryptographic Control Vector Table
(CCVT). For a description of the CCVT, see “The
Cryptographic Communication Vector Table (CCVT)” on
page 354.

32 8 Module name.

The installation exit's load module name. The field
contains the value of the load module name you specified
on the EXIT keyword in the installation options data set.
The field is 8 bytes of characters, and the value is
left-justified and padded with blanks.

Secondary parameter block
Offset +24 of EXPB contains the address of the secondary parameter block (SPB).
The exit can use the SPB to determine the environmental conditions of the service.
Table 24 describes the contents of SPB.

Table 24. SPB Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the character string
SPB.

4 2 Version.

The version of the control block. The field contains the character
string 04.

6 2 Length.

The length of the control block.

8 4 CCVT.

The address of the Cryptographic Communication Vector Table
(CCVT). For a description of the CCVT, see “The Cryptographic
Communication Vector Table (CCVT)” on page 354.

12 4 Signal Information Word.

Bytes 1–2 Reserved.

Bytes 3–4 of the field contain the installation-assigned code number
for an installation-defined service.

Chapter 5. Installation exits 189

Table 24. SPB Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

16 4 Flags and Indicators. Each byte of this field is either an indicator byte
or contains flag bits. The contents of each byte in the field are:

Byte 1—PSW key. This byte contains the original caller's program
status word key. The first four bits are the key and the remaining
four bits are zeros.

Byte 2—Caller's state. Each bit in byte 2 indicates a condition of the
caller's state.

Bit Meaning When Set On

0 ICSF was entered via SVC entry from a PCF compatibility
macro.

1 Original caller in AMODE(31).

2 Original caller in AR mode.

3 Original caller in SRB mode.

4 Original caller in supervisor state or system key.

5 Original caller in AMODE(64).

6–7 Reserved.

Byte 3—Flag byte 1. The first flag byte. Each bit that is set on
indicates a particular condition.
Note: These bits are informational. Do not change bits 0 and 1.

Bit Meaning When Set On

0 Reserved.

1 Reserved.

2 The recovery routine should not retry.

3 - 7 Reserved.

Byte 4—Flag byte 2

Bit Meaning When Set On

0 The service parameter list has a position for a return code.

1 The service parameter list has a position for a reason code.

2 Reserved.

3 The caller has no exit data.

4 and 5 Reserved.

6-7 Reserved.

20 4 Reserved.

24 4 Auxiliary SPB Pointer

28 4 EDC buffer pointer.

32 4 EDC buffer length.

36 4 Address of XPB.

40 8 ID for latch manager.

48 4 Address for ERPB.

52 8 Original caller's register 1.

60 4 Address of CPRB request storage.

190 z/OS ICSF System Programmer's Guide

Table 24. SPB Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

64 4 Length of CPRB request storage.

68 4 Address of CPRB reply storage.

72 4 Length of CPRB reply storage.

76 4 CCPS address.

80 4 Serialization block address.

84 4 Recovery token.

88 8 Recovery footprint for hash tables.

96 4 Reserved.

100 4 Pointer to metal C stack.

104 2 Entry point index of metal C caller.

106 2 Flags and indicators

Byte 1 - Reserved.

Byte 2 - Saved value of the caller's key.

108 4 ASCB of SPB owner.

112 4 Register 14 from CSFMIREC.

116 4 Reserved.

120 4 ENVR object address.

124 4 ENVR object length.

128 4 Regional cryptographic request block address.

132 20 Reserved.

152 512 CTRACE buffer.

Parameters
Each service has a unique parameter list. Parameters 1–4 are always the return
code, reason code, exit data length, and exit data. The other parameters differ with
each service. The installation exit gets passed the address of the service parameter
list in Register 1. For a description of each service's parameter list, refer to z/OS
Cryptographic Services ICSF Application Programmer's Guide.

Return Codes
To use a return code and reason code that are set in the postprocessing exit, you
must set bit 2 in Offset +20 of EXPB. Setting bit 2 on causes ICSF to return the
return code from the exit in register 15 and the reason code in register 0. Even
though the application program receives the codes from the exit in the registers,
the program still receives the codes from the service in the parameter list. The
return code is the first parameter, and the reason code is the second parameter in
the list.

Some control languages can access registers more easily than others. For this
reason, ICSF allows you to return the return code and the reason code in both the
registers and the parameter list. To do this, set bit 5 as well as bit 2 in Offset +20 of
EXPB. The application then receives the return code and the reason code from the
exit in both the registers and the parameter list.

If you do not set either of or both of the flag bits, the service ignores any return or
reason code from the exit. The application program receives the codes from the
service in both the registers and the parameter list.

Chapter 5. Installation exits 191

The exit can pass back any valid return code for each service. For a listing of each
service's return codes, see z/OS Cryptographic Services ICSF Application Programmer's
Guide.

CSF_SERVICE_EXIT - ICSF callable services exit
The ICSF callable services exit CSF_SERVICE_EXIT can be used to generate
statistics for all ICSF callable services. This exit point occurs after the callable
service finished processing, but before the service returns control to the application
program. The intent of this exit is for statistics generation.

Controlling the exit routine through the dynamic exits facility

ICSF defined CSF_SERVICE_EXIT to the dynamic exits facility. You can refer to the
exit by the name CSF_SERVICE_EXIT. You can use the EXIT statement of the
PROGxx parmlib member, the SETPROG EXIT operator command, or the
CSVDYNEX macro to control this exit and its exit routines.

If you do not associate any exit routines with CSF_SERVICE_EXIT in the PROGxx
parmlib member, the system defaults to having no exit routine.

To limit the number of times the exit routine abnormally ends before it becomes
inactive, use the ADDABENDNUM and ABENDCONSEC parameters on the
CSVDYNEX REQUEST=ADD macro or the ABENDNUM and CONSEC parameters
of the SETPROG EXIT operator command or of the EXIT statement of the PROGxx
parmlib member. An ABEND is counted when both of the following conditions
exist:
v The exit routine does not provide recovery or the exit routine does provide

recovery, but percolates the error.
v The system allows a retry; that is, the recovery routine is entered with bit

SDWACLUP off.

By default, the system disables the exit routine after two consecutive ABENDs.

Exit routine environment

CSF_SERVICE_EXIT receives control in the following environment:
v Enabled for I/O and external interrupts.
v In supervisor state with PSW key 0.
v In AMODE(31) or AMODE(64), depending on the AMODE of the exit routine.
v In Primary ASC mode.
v In cross-memory mode with P = ICSF's address space and S = user's address

space. Home might or might not equal secondary.
v With no locks held.
v Task or SRB mode.

If the callable service was started in AMODE(64) and an exit routine, which is
AMODE(31), needs to access the user's parameters, the exit routine needs to switch
to AMODE(64). Regardless of AMODE, the exit routine must not rely on the high
32 bits of any general register having a specific value on entry.

An exit routine can change characteristics (AMODE, ASC mode, locks-held state,
cross-memory state, and so on) during its processing. However, the exit routine
must return with the same characteristics as on entry. If you plan to access the

192 z/OS ICSF System Programmer's Guide

user's parameters, you must write the exits in a language that can access
ALET-qualified variable. This is because you are in AR mode and all the user's
parameters, including the parameter list itself, are ALET-qualified. In particular,
parameters that are passed into a service are in the user's address space, which you
can access with an ALET of 1 (secondary).

Exit recovery

If an exit routine ABENDs and does not have recovery that retries, the system
records the error to LOGREC and ICSF calls any exit routines that remain to be
called. Whether the exit routine continues to be started depends on the ABEND
processing of the dynamic exits facility.

Note: ICSF recommends, for system performance reasons, that the exit not
establish recovery unless it modifies critical resources.

Entry specifications

ICSF passes the address of the IXIB (ICSF exit interface block) to exit
CSF_SERVICE_EXIT.

The contents of the registers on entry to the exit are as follows.

Register
Contents

R0 N/A

R1 Address of IXIB - ICSF exit interface block.

R2 - R12
N/A

R13 Address of 144-byte save area.

R14 Return address.

R15 Entry point address of exit.

AR0 First 4 bytes of 8-byte PARAM area that is provided by the exit routine
owner on CSVDYNEX ADD.

AR1 Second 4 bytes of 8-byte PARAM area that is provided by the exit routine
owner on CSVDYNEX ADD.

Parameter list contents: Register 1 contains the address of the ICSF exit interface
block (IXIB), which resides in the primary address space (ICSF's address space).
The IXIB is mapped by macro CSFZIXIB and the layout is shown in Table 25.

Table 25. IXIB control block format

Offset (Dec)
Number of
bytes Description

0 4 Parmlist with a single entry that points to the IXIB.

4 4 EBCDIC ID.

8 2 Version number of this IXIB.

Chapter 5. Installation exits 193

Table 25. IXIB control block format (continued)

Offset (Dec)
Number of
bytes Description

10 1 Flags

X'80' Bit = 1
Caller is AMODE(31).

X'40' Bit = 1
Caller is AMODE(64).

11 1 PSW key is in the first 4 bits.

12 4 Address of 2048-byte work area.

16 2 IBM assigned service number.

18 2 Installation service number.

20 4 Reserved.

24 8 Service name.

32 8 Original caller's R1.

40 4 Return code from service.

44 4 Reason code from service.

48 16 STCKE value before service called.

64 16 STCKE value after service called.

80 32 Reserved.

Note on original caller's R1

Each ICSF callable service has a unique parameter list. For a description of each
service's parameter list, see z/OS Cryptographic Services ICSF Application
Programmer's Guide.

Note on exit behavior

Exit routines that are registered to CSF_SERVICE_EXIT must not change any
parameters, including the IXIB or anything it points to.

Cryptographic key data set entry retrieval installation exit
The cryptographic key data set entry retrieval installation exit (CSFCKDS) is called
when a service requests an entry from the in-storage cryptographic key data set
(CKDS) by label. ICSF calls this exit after it finds the record in the CKDS and
before it returns the record to the service.

Note: This exit is given control only for a fixed-length record CKDS. The exit does
not work with the variable-length record format of the CKDS.

Purpose and use of the exit
The exit point lists the entry that matches a certain label and type. You can use the
exit to check fields in a record and decide whether to use the record. The exit sets
a return code that specifies whether to use the record or not. Use the exit_data
parameter in the service to specify what the exit should use as a search value.

194 z/OS ICSF System Programmer's Guide

For example, you can use the CKDS entry retrieval exit to perform a specific search
of the installation data field. An installation can specify whatever it chooses to in
the installation data field. The exit can select a record that matches a certain key
label and key type. You can check the record and accept or reject it based on the
installation data field.

Note: The cryptographic key data set entry retrieval installation exit will not be
given control if SYSPLEXCKDS(YES,FAIL(xxx)) is specified in the ICSF installation
options data set.

Environment of the exit
The exit receives control with these characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB or SRB mode
v AR mode
v AMODE(31)
v RMODE(ANY)
v Cross memory mode

The exit can change the characteristics during its processing. However, the exit
must return to its caller with the same characteristics as on entry.

The exit runs in the cross memory mode in the ICSF address space. The CKDS
records are ALET-qualified. ICSF supplies the address and the ALET of a CKDS
record as parameters to the CKDS retrieval exit.

For information about cross memory mode and AR mode, see z/OS MVS
Programming: Extended Addressability Guide.

Installing the exit
Install the CKDS entry retrieval exit by installing the load module that contains the
exit into an APF-authorized library. ICSF uses this normal z/OS search order to
locate the exit:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and the load module name on the EXIT keyword in the
installation options data set. “Parameters in the installation options data set” on
page 36 describes the installation options data set in further detail. The EXIT
keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The
ICSF name for the CKDS entry retrieval exit is CSFCKDS. The load module name
is the name of the load module that contains the exit. The name can be any valid
name that your installation chooses. The FAIL portion of the EXIT keyword
specifies the action ICSF takes if the exit cannot be loaded or if it ends abnormally.
The valid FAIL options are:

Chapter 5. Installation exits 195

NONE
Do not take any action.

EXIT Do not call this exit again. The exit will not receive control during
subsequent attempts at CKDS retrieval.

SERVICE
Fail the service. All subsequent attempts at CKDS entry retrieval fail.

ICSF End ICSF.

You must specify a FAIL option. If you do not, ICSF returns an error message,
ends abnormally, and generates an SVC dump when attempting to load the exit. If
the exit ends abnormally, the attempt at CKDS entry retrieval fails, regardless of
the FAIL option you specified. FAIL options only apply to subsequent attempts at
CKDS entry retrieval.

Input
The CKDS entry retrieval exit receives the address of an address list passed in
register 1. Each address in the list points to a parameter. The address list exists in
the ICSF address space, and register 1 is not ALET-qualified.

Table 26 describes the parameters for the CKDS entry retrieval exit.

Table 26. The CKDS Entry Retrieval Exit Parameters

Parameter Description

1 The address of the current CKDS record. See “Cryptographic Key Data
Set (CKDS) formats” on page 253 for a description of the CKDS record
format.

2 The address of the ALET of the current CKDS record. This record is a
fullword address.

3 The address of the record that matches a certain label and type. This
value is a fullword integer. The parameter is in the ICSF address space
and the exit can access the parameter using an ALET of 0.

4 The address of the record chosen. This value is a fullword integer. The
parameter is in the ICSF address space and the exit can access the
parameter using an ALET of 0.

5 The address of the exit data length. This value is a fullword integer. The
parameter is in the caller's address space, which is the secondary address
space, and the exit can access the parameter using an ALET of 1.

6 The address of the exit data. For a description of exit data, see z/OS
Cryptographic Services ICSF Application Programmer's Guide. The parameter
is in the caller's address space, which is the secondary address space, and
the exit can access the parameter using an ALET of 1.

7 The address of the secondary parameter block. See “Secondary parameter
block” on page 189 for a description of the secondary parameter block.
The parameter is in the ICSF address space and the exit can access the
parameter using an ALET of 0.

Return codes
You can pass a return code back in register 15.

The valid decimal return codes are:

196 z/OS ICSF System Programmer's Guide

Return Code
Description

0 Use the record.

4 Do not use the record.

If you specify not to use any of the records that match the search value, ICSF
returns control to the application. It returns with return code 12 and reason code
10024, which indicate that the exit rejected all the keys in the search.

PCF conversion program installation exit
Use the PCF conversion program to convert a CKDS from the Programmed
Cryptographic Facility (PCF) format to the ICSF format. The conversion program
converts each record in the PCF CKDS to the CKDS format that ICSF uses, and
then writes the new record to an ICSF CKDS. The conversion program extends the
label field to 64 bytes.

An ICSF CKDS record contains an installation data field that you can use to
further identify the record. This field can contain any information about a record
that your installation would like to use. You can use the conversion program exit
to change the information in this field. You can also use the conversion program
exit to have the conversion program not place a converted CKDS entry in the ICSF
CKDS.

Chapter 8, “Migration from PCF to z/OS ICSF,” on page 235 contains more
information about the PCF conversion program.

Purpose and use of the exit
The PCF conversion program installation exit (CSFCONVX) is called at three
points during processing of the conversion program:
v During conversion program initialization. This is known as the conversion

preprocessing invocation. At this point, you can use the exit to change the ICSF
CKDS header record installation data field.

v During conversion program individual record processing. This is known as the
record processing invocation. At this point, the conversion program is converting
the PCF entry but has not yet placed the entry into the ICSF CKDS. You can use
the exit to change the installation data field in the entry for the ICSF CKDS. You
can also specify that the conversion program not place the entry into the ICSF
CKDS.

v Just prior to conversion program termination. This is known as the conversion
postprocessing invocation. At this point, like the preprocessing exit point, you
can use the exit to change the ICSF CKDS header record installation data field.

Environment of the exit
The exit receives control with these characteristics:
v Problem program state.
v APF-authorized
v TCB mode
v Address Space Control mode=primary
v AMODE(31)
v RMODE(ANY)

Chapter 5. Installation exits 197

The exit can change the characteristics during its processing. However, the exit
must return to its caller with the same characteristics as on entry.

The exit runs in task mode in the caller's own address space.

Installing the exit
Install the load module that contains the exit into an APF-authorized library. ICSF
uses this normal z/OS search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Joblib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword in the
installation options data set. For more information about the installation options
data set, see “Parameters in the installation options data set” on page 36. The EXIT
keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The
ICSF name for the conversion program exit is CSFCONVX. The load module name
is the name of the load module that contains the exit. This name can be any valid
name that your installation chooses. The FAIL portion of the EXIT keyword
specifies the action ICSF takes if the exit cannot be loaded. The valid FAIL options
are NONE, EXIT, SERVICE, and CSF. For the conversion program exit, you can
use these options only:

NONE
Initialization continues even if exit cannot be loaded.

ICSF Initialization ends if exit cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message,
ends abnormally, and generates an SVC dump when attempting to load the exit.

If the exit ends abnormally, the conversion program does also.

Input
ICSF supplies the address of the conversion program exit parameter block (CVXP)
in register 2 each time it calls the PCF conversion program exit. The exit does not
receive a parameter list. “Entry and return specifications” on page 169 gives a
complete list of the registers on entry to the conversion program exit.

Table 27 describes the contents of the exit control block.

Table 27. CVXP Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string CVXP.

198 z/OS ICSF System Programmer's Guide

Table 27. CVXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

4 2 Version.

The version of the control block. The field contains the
character string 01.

6 2 Length.

The length of the control block. The value is 28 in decimal.

8 4 Return Code.

The value the exit returns. Valid decimal values for this
field are:

Return Code
Description

0 Normal.

4 Do not process the entry.

8 End conversion program.

12 4 Address of the ICSF CKDS installation data area.

16 4 The value in decimal of the length of the ICSF CKDS
installation data area.

20 1 Action.

Bit 0 is set on if the action was to change an entry on the
ICSF CKDS. Bit 0 is set off if the action was to add an
entry to the ICSF CKDS. The rest of the bits in this byte
are reserved.

21 1 Call Point.

Indicates the invocation point of the exit. The exit cannot
change this field and the conversion program does not use
this field on return from the exit. You can determine the
invocation point by the bit that is set on.

Bit Meaning When Set On

0 Conversion preprocessing invocation.

1 Conversion postprocessing invocation.

2 Record processing invocation.

3-7 Reserved.

22 6 Reserved.

Return codes
You can pass a return code back to the conversion program in the CVXP control
block (offset +8). The exit can use return codes to reject records for conversion
processing or end the conversion program.

Return Code
Description

0 Normal.

4 Do not process the entry.

Chapter 5. Installation exits 199

8 End conversion program.

Single-record, Read-write installation exit
ICSF provides an exit that is called when a record is read from or written to a
CKDS. ICSF calls the single-record, read-write (CSFSRRW) exit under these
conditions:
v The PCF conversion program converts a record into ICSF CKDS format. The

conversion program calls the exit before it writes a converted record to the ICSF
CKDS.

v ICSF reenciphers a disk copy of a CKDS under a new master key. ICSF calls the
exit two times during this processing; after ICSF reads a record to reencipher it
and before ICSF writes the reenciphered record.

v ICSF refreshes the in-storage copy of a CKDS. ICSF calls this exit after reading a
record from the disk copy to place into storage.

Using the exit, you can do such things as prevent the record from being processed,
or add user information to the record.

Note: This exit is given control only for a fixed-length record CKDS. The exit does
not work with the variable-length record format of the CKDS.

Purpose and use of the exit
The exit receives a parameter block that describes the CKDS record and the action
occurring to the record. By setting a return code in the parameter block, the exit
may affect the processing of the record. Depending on the return code, one of these
actions occurs:
v ICSF continues to read the record.
v ICSF does not read or write the record.
v ICSF does not read or write the entire CKDS.

The parameter block contains the address of the CKDS record. The exit can add
information into the installation data field of the record. For integrity reasons, ICSF
receives only changes to this particular field. If the exit sets a return code to
continue processing, ICSF processes the record with this information.

The KGUP exit, the PCF conversion program exit, and the single-record, read-write
exit can add information to the installation data field of the CKDS header record to
identify the data set. If the header record installation data field contains
information identifying the CKDS, the single-record, read-write exit can check the
field to ensure that it is processing the correct data set. If the exit finds that it is
processing the wrong CKDS, the exit can set a return code to stop the processing
of the entire data set.

You can use the exit to prevent processing of a record. You can check certain fields
in the record and specify that the record not be processed. For example, during
postprocessing conversion, you can prevent the processing of any record of a
certain key type. However, the exit should never prevent processing of a record
containing a system key because ICSF uses these keys in its processing. You
differentiate a system key record from other key records by its key label. A system
key record label contains all binary zeros. All other key labels contain an alphabetic
first character with the remaining characters as either alphabetic or numeric.

200 z/OS ICSF System Programmer's Guide

Environment of the exit
The exit receives control with these characteristics:
v Problem program state
v APF-authorized
v TCB mode
v Address Space Control mode=primary
v AMODE(31)
v RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit
must return to ICSF with the same characteristics as on entry.

When the single-record, read-write exit is called, the exit parameter block is in the
caller's address space. The exit is loaded in the caller's address space. The caller is
either the PCF conversion program, the utility program (CSFEUTIL), or an ICSF
panel.

Installing the exit
Install the load module that contains the exit into an APF-authorized library. ICSF
uses this search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Joblib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword of the
installation options data set. For more information about the installation options
data set, see “Parameters in the installation options data set” on page 36. The EXIT
keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the exit. The
ICSF name for the single-record, read-write exit is CSFSRRW. The load module
name is the name of the load module that contains the exit. The name can be any
valid name that your installation chooses. The FAIL portion of the EXIT keyword
specifies the action ICSF takes if the exit cannot be loaded or ends abnormally. The
valid FAIL options are:

NONE
Do not take any action.

EXIT Do not call this exit again.

SERVICE
Fail the service that called the exit.

ICSF Fail the service that called the exit.

You must specify a FAIL option. If you do not, ICSF returns an error message,
ends abnormally, and generates an SVC dump when attempting to load the exit. If
you specify FAIL(ICSF) and the exit cannot be loaded, ICSF initialization does not
continue. If you specify FAIL(ICSF) and the exit ends abnormally, ICSF issues an
advisory message that ICSF should be ended.

Chapter 5. Installation exits 201

Input
The single-record, read-write exit receives the address of the address list passed in
register 1. The first address in the address list is for the read-write exit parameter
block (RWXP). The exit does not receive a parameter list. “Entry and return
specifications” on page 169 gives a complete list of the registers on entry to the
single-record, read-write exit.

The RWXP parameter block contains the address of the CKDS record that is being
processed and information about the situation in which the exit is called. The exit
sets a return code in a field in the block to specify whether the processing should
continue. Table 28 describes the RWXP control block.

Table 28. RWXP Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Name.

The name of the control block. The field contains the
character string RWXP.

4 2 Version.

The version of the control block. The field contains the
character string 01.

6 2 Length.

The length of the control block. The value of this field is
32 in decimal.

8 4 Return Code.

The value the exit returns. Valid decimal values for this
field are:

Return Code
Description

0 Process current CKDS record

4 Do not process current CKDS record

8 End processing

12 4 Address of the CKDS record.

16 4 The value in decimal of the length of the CKDS record.

20 7 Action.

The field is a 7-byte character string describing the action
performed on the CKDS record. The field can contain
these values:

v READ

v WRITE

v DELETE

v REWRITE

Note that the value of the field is left-justified and padded
with blanks.

202 z/OS ICSF System Programmer's Guide

Table 28. RWXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

27 1 Exit Invocation Reason

The reason that the exit was invoked. The field relates to
only the CKDS and can contain one of these values:

2 Refresh of the in-storage CKDS with a disk copy
of a CKDS. The value of the Action field is
READ.

3 Reencipher of the in-storage CKDS from a disk
copy of a CKDS. The value of the Action field is
READ or WRITE.

5 Conversion record postprocessing. The value of
the Action field is WRITE.

8 Key entry hardware input. The value of the
Action field is READ or WRITE.

28 4 Data set type.

Return codes
You can pass a return code back to the single-record, read-write process in the
RWXP control block (offset +8). The exit can use the return code to reject records or
to end the single record read-write process. These values are valid decimal return
codes:

Return Code
Description

0 Process the current CKDS record.

4 Do not process the current CKDS record.

8 End processing.

Exit points for security installation exits
IBM-supplied security exit routines were removed in ICSF/MVS Version 2 Release
1. The exit points themselves are still available.

Security installation exits
ICSF provides these exit points to control access to the keys in the in-storage CKDS
and to the services.
v Security Initialization Exit
v Security Termination Exit
v Security Service Exit
v Security Key Exit

Purpose and use of the exits
There are two groups of security exits. The security initialization exit (CSFESECI)
and security termination exit (CSFESECT) are called during ICSF mainline
processing to maintain a security communication area that is used by the other
security exits.

Chapter 5. Installation exits 203

Next is a description of each point where ICSF calls security exit routines.

Security initialization exit
ICSF calls this exit during initialization just before calling the ICSF mainline exit
CSFEXIT. You can use this exit to anchor resource lists, work areas, and other data
to the security communication area. The security service exit (CSFESECS) and
security key exit (CSFESECK) can be used to control access to resources on ICSF
and for logging in SMF the results of any authorization checks that are made. The
security initialization exit defined in the options data set is only invoked if
CSFESECS, CSFESECK, or both are also defined.

Security termination exit
ICSF calls this exit as the last function when ICSF ends, before deleting all the
installation exits. You can use this exit to free whatever is anchored to the security
communication area.

Security service exit
ICSF calls this exit when an application uses an IBM-supplied service, before
calling any other installation exit that is associated with that service. You can use
this exit to control access to a service. Refer to Table 21 on page 183 for a list of
services.

Security key exit
ICSF calls this exit when an application uses a key in the in-storage CKDS, before
any other installation exit associated with that use of the key is called. You can use
this exit to control access to the keys in the CKDS.

Environment of the exits
The security initialization and termination exits receive control with these
characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB mode
v Address Space Control mode=access register mode
v AMODE(31)
v RMODE(ANY)

The exits can change the characteristics during their processing. However, the exits
must return to ICSF with the same characteristics as on entry.

The security service and key exits receive control with these characteristics:
v Supervisor state
v Key 0
v APF-authorized
v TCB mode
v Cross memory mode
v AR mode
v AMODE(31)
v RMODE(ANY)

204 z/OS ICSF System Programmer's Guide

The exits can change the characteristics during their processing. However, the exits
must return to ICSF with the same characteristics as on entry.

Note: The security exits are not called in SRB mode.

Installing the exits
You install the security exits by installing the load module that contains the exit
into an APF authorized library. ICSF uses this normal search order to locate the
exit:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Use the EXIT keyword in the installation options data set to define the ICSF name
and load module name. For information about the installation options data set, see
“Parameters in the installation options data set” on page 36. The EXIT keyword
has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF identifier for each exit,
CSFESECI, CSFESECT, CSFESECS, and CSFESECK. The load module name is the
name of the load module that contains the exit. The name can be any valid name
your installation chooses. The action that the FAIL portion of the EXIT keyword
specifies depends on the type of security exit.

For the security initialization and termination exits, the FAIL portion specifies the
action ICSF takes if the exit cannot be loaded. The valid FAIL options mean:

NONE
Continue initialization even if exits cannot be loaded.

SERVICE
Continue initialization even if exits cannot be loaded.

EXIT Continue initialization even if exits cannot be loaded.

ICSF End ICSF if exits cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message,
ends abnormally, and generates an SVC dump when attempting to load the exit.

If the security initialization exit ends abnormally, ICSF ends. If the security
termination exit ends abnormally, ICSF continues to end.

For the security service and key exits, the FAIL portion specifies the action ICSF
takes if the exit cannot be loaded or ends abnormally. When the service or key exit
is loaded, the valid FAIL options mean:

NONE
Continue initialization even if exits cannot be loaded.

SERVICE
Continue initialization even if exits cannot be loaded.

EXIT Continue initialization even if exits cannot be loaded.

ICSF End ICSF if exits cannot be loaded.

Chapter 5. Installation exits 205

You must specify a FAIL option. If you do not, ICSF returns an error message,
ends abnormally, and generates an SVC dump when attempting to load the exit.

When the security service exit ends abnormally, the valid FAIL options mean:

NONE
Process subsequent calls to the service as if no abnormal ending occurred.
Call the exit for each call of a service.

SERVICE
Fail on subsequent calls to the particular service.

EXIT Do not call the exit again. Bypass the exit on subsequent calls to any IBM
service.

ICSF End ICSF.

If the security service exit ends abnormally, ICSF ends the service call before
performing the service.

When the security key exit ends abnormally, subsequent attempts to access the
in-storage CKDS are processed as if no abnormal ending occurred. The exit
continues to be called for each access attempt regardless of the FAIL option.

If the security key exit ends abnormally, ICSF ends the attempt to access the CKDS
before performing the access.

Input
The security initialization and termination exits receive the address of an 8-byte
security communication area in register 1. When ICSF starts, the security
initialization exit can use this area as an anchor for resource lists, work areas, or
any other data that your service or keys security exits need to check
authorizations. When ICSF ends, the security termination exit can free any system
resources that are anchored to this area and used by the service or keys security
exits. For example, the exit can free storage that is allocated from the common
storage area (CSA).

When a call to a service occurs, the security service exit receives the address of an
address list passed in register 1. Table 29 describes the parameters the exit receives:

Table 29. Parameters received by the Security Service Exit

Parameter
Number of
Bytes Description

1 8 The security communication area.

2 8 The character string CSFSERV.

3 8 The name of the service being called.

When an attempt to access a CKDS entry occurs, the security key exit receives the
address of an address list passed in register 1. Table 30 describes the parameters
this exit receives:

Table 30. Parameters received by the Security Key Exit

Parameter
Number of
Bytes Description

1 8 The security communication area.

206 z/OS ICSF System Programmer's Guide

Table 30. Parameters received by the Security Key Exit (continued)

Parameter
Number of
Bytes Description

2 8 The character string representing the SAF class being
checked. May be CSFKEYS or XCSFKEY.

3 64 The label of the key entry being accessed.

Register 0 contains the address of the exit parameter block (EXPB). See Figure 4 on
page 187 and Table 23 on page 187.

Return codes
All the security exits can pass back a return code in register 15. The security
initialization exit supports these decimal return codes:

Return Code
Description

0 Proceed with initialization.

16 End ICSF.

Any return codes other than those listed cause ICSF to end abnormally.

The security termination exit supports these decimal return codes:

Return Code
Description

0 or 16
Proceed with termination.

Any return codes other than those listed cause ICSF to end abnormally.

The security service exit supports these decimal return codes:

Return Code
Description

0 or 4 Proceed with the service call.

Any return codes other than those that are listed cause the service call to fail.

The security key exit supports these decimal return codes:

Return Code
Description

0 Proceed with the access of the CKDS entry.

4 If the second input parameter is CSFKEYS, proceed with the access of the
CKDS entry. Otherwise, the access is failed.

Any return codes other than those that are listed cause the access of the key to fail.

Chapter 5. Installation exits 207

Key generator utility program installation exit
The key generator utility program (KGUP) generates and maintains keys in the
cryptographic key data set (CKDS). You can use KGUP to generate or supply a key
to update the CKDS. KGUP generates keys to use in key exchange with other
systems. ICSF provides an exit for customizing KGUP processing. For information
about using KGUP to managing cryptographic keys, see z/OS Cryptographic Services
ICSF Administrator's Guide.

Purpose and use of the exit
You can use the KGUP installation exit (CSFKGUP) to modify records in the CKDS,
write copies of records to alternate data sets, or put additional information in the
SMF record. There are many other uses for the KGUP exit depending on your
installation's needs. Examine the calling points for an exit and the active control
block fields at each calling point to determine other applications for the exit.

KGUP calling points
After an ICSF administrator submits a KGUP job for processing, KGUP calls exits
at four points in processing:
1. During KGUP initialization. This is known as the KGUP preprocessing exit.

After the KGUP job begins but before KGUP starts processing a control
statement, KGUP calls this exit.
You can use this exit to place additional information in the installation data
field of the CKDS header record. You may want to do this if you need to
process different cryptographic key data sets differently. You can place
information in the installation data field of the record, and then subsequent
calls of the exit can use this information as the basis for performing processes.

2. Before KGUP processes a key that is identified by a control statement. This is
known as the record preprocessing exit. Before KGUP accesses the CKDS to
retrieve the key that is requested in the control statement, KGUP calls the exit
again.

Note: This call occurs before KGUP accesses the CKDS. If an exit routine alters
a key entry at this call, KGUP accesses the CKDS with the altered entry.
You can use this exit to provide additional security for entering clear key
values. When a user enters a clear key in a control statement, use the exit to
change the value. In this way, the user never knows the actual clear value in
the CKDS. For example, a user enters zeros for clear key values. Your exit
generates some random number and replaces the user's clear key value. KGUP
then processes the exit's random number as the value to write to the CKDS.

3. Before KGUP updates the CKDS with a key entry. This is known as the
record postprocessing exit. After KGUP processes a key and before KGUP
updates the CKDS, KGUP calls the exit a third time.
At this call, the installation exit can change any information in the Key Output
Data Set. Changing the Key Output Data Set also enters the changed keys into
the Control Statement Output Data Set, if the keys are exportable. You can use
this exit to create audit trails.
KGUP will not call the exit for this calling point when the CKDS is in KDSR
format.

4. During KGUP termination. This is known as the KGUP postprocessing exit.
Calls to this exit occur after KGUP completes processing but before KGUP
returns control to ICSF.

208 z/OS ICSF System Programmer's Guide

Note: If an error occurs in exit processing, KGUP does not call the remaining exit
invocations. If an error occurs in KGUP processing that does not result in an
abnormal ending, KGUP does not call the remaining exit invocations.

Processing in the exit
At each call, the exit receives the address of the KGUP exit parameter block
(KGXP) in register 1. The exit can access any of the data in KGXP. The exit can
alter some of the fields in KGXP, while others are simply references. Also, the
KGUP exit can alter some fields at some calls but not at other calls.

A field in KGXP gives the calling point of the exit. The exit uses this field to
determine when to call the exit to perform appropriate processing. “Input” on page
210 gives a more detailed explanation of the KGXP control block, the values it
contains, and when an exit can use or change the values.

Environment of the exit
The KGUP calls the exit only in the address space where KGUP is running. The
exit receives control with these characteristics:
v Supervisor state
v APF-authorized
v TCB mode
v Address Space Control mode=primary
v AMODE(31)
v RMODE(ANY)

The exit can change the characteristics during its processing. However, the exit
must return to its caller with the same characteristics as on entry.

Installing the exit
Install the load module that contains the exit into an APF authorized library. ICSF
uses this search order to locate the exit:
v Job pack area
v Steplib (if one exists)
v Joblib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Define the ICSF name and load module name on the EXIT keyword in the
installation options data set.

Note: The load module name must not be named CSFKGUP

For more information about the installation options data set, see “Parameters in the
installation options data set” on page 36. The EXIT keyword has this syntax:

EXIT (ICSF name, load module name, FAIL (options))

The ICSF name portion of the keyword refers to the ICSF name for the KGUP exit.
The ICSF name for the KGUP exit is CSFKGUP. The load module name is the
name of the load module that contains the exit. The name can be any valid name
that your installation chooses. The FAIL portion of the EXIT keyword specifies the
action ICSF takes if the exit cannot be loaded. The valid FAIL options are NONE,
EXIT, SERVICE, and ICSF. The FAIL options available to the KGUP exit are:

Chapter 5. Installation exits 209

NONE
Initialization continues even if exit cannot be loaded.

ICSF Initialization ends if exit cannot be loaded.

You must specify a FAIL option. If you do not, ICSF returns an error message,
ends abnormally, and generates an SVC dump when attempting to load the exit. If
the exit ends abnormally, KGUP also ends abnormally.

Input
At each of the invocation points, the exit receives the address of the KGUP exit
parameter block (KGXP) in register 1. The exit does not receive a parameter list.
“Entry and return specifications” on page 169 gives a complete list of the registers
on entry to the KGUP exit.

The KGUP exit can alter some of the fields in KGXP. Some fields only provide
information to the exit and cannot be changed, and some fields do not apply to
particular calls to the exit.

Table 31 describes the KGXP control block.

Table 31. KGXP Control Block Format

Offset (Dec)
Number of
Bytes Description

0 4 Block Identifier.

The name of the control block. The field must contain the
character string KGXP. The exit must not change the value and
KGUP does not use the field upon return from the exit.

4 2 Block Version Number.

The version of the control block. The field must contain the
character string 03. The exit cannot change this field and
KGUP does not use this field on return from the exit.

6 2 Block Length.

The length of the control block. The decimal value of the field
is 408. The exit cannot change the field and KGUP does not
use this field on return from the exit.

8 4 Return Code.

The return code the exit supplies upon completion. Upon
entry, KGUP initializes this field to zeros. The valid decimal
return codes for each of the invocation points are:

Record Pre- or postprocessing.

0 Normal, continue processing.

4 Reject control statement, but do not end KGUP.

8 End KGUP immediately.

KGUP pre- or postprocessing.

0 Normal, continue processing.

> 0 End KGUP immediately.

210 z/OS ICSF System Programmer's Guide

Table 31. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

12 1 Call Point.

Indicates the invocation point of the exit. The exit cannot
change this field and KGUP does not use this field on return
from the exit. You can determine the invocation point by the
bit that is set on.

Bit Meaning When Set On

0 KGUP preprocessing invocation.

1 KGUP postprocessing invocation.

2 Record preprocessing invocation.

3 Record postprocessing invocation.

4-7 Reserved.

13 1 Options.

Indicates the keywords specified on the KGUP control
statement. The exit cannot change this field and KGUP does
not use the field upon return from the exit. The field is used
only during the record preprocessing and postprocessing
invocations. You can determine the keywords on the control
statement by the bits that are set on.

Bit Meaning When Set On

0 LABEL with multiple values specified.

1 RANGE specified.

2 KEY specified.

3 CLEAR specified.

4 SINGLE specified.

5 NOCV specified.

6 OUTTYPE specified.

7 DOUBLEO specified.

Chapter 5. Installation exits 211

Table 31. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

14 1 Verb Type.

Indicates the verb used on the KGUP control statement. The
exit cannot change this field and KGUP does not use this
field on return from the exit. The field is used only for the
record preprocessing and record postprocessing invocations.
You can determine the verb on the control statement by the
bit that is set on.

Bit Meaning When Set On

0 ADD

1 UPDATE

2 DELETE

3 RENAME

4 SET

5 OPKYLOAD

6–7 Reserved.

15 1 KGUP Flags.

Indicates the processing conditions encountered by KGUP at
the record postprocessing invocation. The exit cannot change
this field and KGUP does not use the field upon return from
the exit. The field is not used for the KGUP pre- or
postprocessing invocations or the record preprocessing
invocation. The processing conditions can be determined by
examining whether bit 0 is set on.

Bit Meaning When Set On

0 Non-odd parity key was imported.

1 Algorithm is AES.

2 Algorithm is DES.

3 $TRIPLEO keyword specified.

4–7 Reserved.

212 z/OS ICSF System Programmer's Guide

||

Table 31. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

16 72 Action Key.

Contains the key index accessed by the KGUP control
statement. The key index consists of the key label and type
fields of a CKDS record entry (“Debugging aids” on page 159
describes the CKDS record format in greater detail). The key
index is the first 72 bytes of a CKDS record, and the
information in the key index is used to differentiate one key
from another.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing invocation or the record postprocessing
invocation.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
in this field:

v The key label or key old label from the LABEL or key label
from the RANGE keyword of the control statement

v The key type from the TYPE keyword of the control
statement

The exit cannot modify the key label, key old label, or key
type.

88 72 Rename Key.

Contains the key index used to rename a key when RENAME
is the verb on the control statement. The key index consists of
the key label and type fields of a CKDS record entry.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing or record postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
information in this field:

v The key new label from the LABEL keyword of the control
statement.

v The key type from the TYPE keyword of the control
statement.

The exit cannot modify the key new label or the key type.

Chapter 5. Installation exits 213

Table 31. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

160 72 Transkey key-label1.

The key index of the TRANSKEY key-label1 on the KGUP
control statement. The key index is the key label and type of
the CKDS record entry.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing and record postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
information in this field:

v The key-label1 from the TRANSKEY keyword of the
control statement.

v The key type. The type is IMPORTER, if keys are supplied;
the type is EXPORTER, if keys are not supplied.

The exit cannot modify the key-label1 or the key type.

232 72 Transkey key-label2.

The key index of the TRANSKEY key-label2 on the KGUP
control statement. The key index is the key label and type of
the CKDS record entry.

The exit can modify the field at the record preprocessing
invocation. The field is not used for the KGUP pre- or
postprocessing and record postprocessing invocations.

If the exit modifies the field, KGUP uses the modified field to
access the CKDS upon return from the exit.

Before the record preprocessing invocation, KGUP places this
information in this field:

v The key-label2 from the TRANSKEY keyword of the
control statement.

v The key type. The key type is IMPORTER, if keys are
supplied; the type is EXPORTER, if keys are not supplied.

The exit cannot modify the key-label2 or the key type.

304 8 The OUTTYPE value, if specified. If no OUTTYPE is
specified, this field set to binary zeros.

312 4 Key length in bytes.

The value supplied by the LENGTH keyword or the byte
length of the key value if the KEY option was selected.

This value is for ease of processing the key values. The exit
may not modify this value.

214 z/OS ICSF System Programmer's Guide

Table 31. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

316 16 Key key-value 1.

The value of the key supplied on the KGUP control
statement. The 16 bytes are hexadecimal characters
representing the 8-byte hexadecimal key value. The field
contains a value only if the KEY option was specified and a
key value was supplied on the control statement. You can
determine whether the KEY option was used by examining
bit 2 at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP
decrypts key-value1 under the transport key specified with
the TRANSKEY keyword. If CLEAR was specified on the
control statement, KGUP does not decrypt key-value1.

The exit can modify the field at the record preprocessing
invocation. This field is not used for the KGUP pre- or
postprocessing invocations or the record postprocessing
invocation. The field does not contain a value when
generating keys.

The exit is permitted to put values in this field only if a key
was supplied on the control statement. The exit-supplied
value must be edited for hexadecimal values and it then
replaces the values entered on the input control statement.

332 16 Key key-value 2.

The value of the second key supplied on the KGUP control
statement. The 16 bytes are hexadecimal characters
representing the 8-byte hexadecimal key value. The field
contains a value only if the KEY option was specified and a
key value was supplied on the control statement. You can
determine whether the KEY option was used by examining
bit 2 at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP
decrypts the key-value 2 under the transport key specified
with the TRANSKEY keyword. If SINGLE was specified on
the control statement, the key-value 2 will be equal to the
key-value. If CLEAR was specified on the control statement,
KGUP does not decrypt the key-value 2.

The exit can modify the field at the record preprocessing
invocation. This field is not used at the KGUP pre- or
postprocessing invocation or the record postprocessing
invocation.

The field does not contain a value when generating keys.

The exit can put values in this field only if a key was
supplied on the control statement. The exit-supplied value
must be edited for hexadecimal values; it then replaces the
values entered on the input control statement.

Chapter 5. Installation exits 215

Table 31. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

348 16 Key key-value 3.

The value of the third key supplied on the KGUP control
statement. The 16 bytes are hexadecimal characters
representing the 8-byte hexadecimal key value. The field
contains a value only if the KEY option was specified and a
key value was supplied on the control statement. You can
determine whether the KEY option was used by examining
bit 2 at offset +13 in KGXP.

If TRANSKEY was specified on the control statement, KGUP
decrypts the key-value 3 under the transport key specified
with the TRANSKEY keyword. If CLEAR was specified on
the control statement, KGUP does not decrypt the key-value
3.

The exit can modify the field at the record preprocessing
invocation. This field is not used at the KGUP pre- or
postprocessing invocation or the record postprocessing
invocation.

The field does not contain a value when generating keys.

The exit can put values in this field only if a key was
supplied on the control statement. The exit-supplied value
must be edited for hexadecimal values; it then replaces the
values entered on the input control statement.

364 16 Key key-value 4.

The value of the fourth key supplied on the KGUP control
statement. The 16 bytes are hexadecimal characters
representing the 8-byte hexadecimal key value. The field
contains a value only if the KEY option was specified and a
key value was supplied on the control statement. You can
determine whether the KEY option was used by examining
bit 2 at offset +13 in KGXP.

The exit can modify the field at the record preprocessing
invocation. This field is not used at the KGUP pre- or
post-processing invocation or the record post-processing
invocation. The field does not contain a value when
generating keys.

The exit can put values in this field only if a key was
supplied on the control statement. The exit-supplied value
must be edited for hexadecimal values; it then replaces the
values entered on the input control statement.

216 z/OS ICSF System Programmer's Guide

Table 31. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

380 4 CSFKEYS record for transkey, key-label1.

The address of the CSFKEYS data set record that is output
for transkey key-label1 on the KGUP control statement. This
field only contains a value when CLEAR keys are generated.

The exit can modify the field at the record postprocessing
invocation. KGUP sets the address to zero for the KGUP pre-
or postprocessing and record preprocessing invocations.

KGUP does not check the field upon return from the exit.
Normal CSFKEYS processing applies. KGUP uses key values
on control statement creation.

For the format of the CSFKEYS record, refer to z/OS
Cryptographic Services ICSF Administrator's Guide.

384 4 CSFKEYS record for transkey, key-label2.

The address of the CSFKEYS data set record that is output
for transkey key-label2 on the KGUP control statement. This
field only contains a value when TRANSKEY key-label2 is
specified for generated keys.

The exit can modify the field at the record postprocessing
invocation. KGUP sets the address to zero for the KGUP pre-
or postprocessing and record preprocessing invocations.

KGUP does not check the field upon return from the exit.
Normal CSFKEYS processing applies. KGUP uses key values
on control statement creation.

388 4 CSFCKDS header record.

The address of the CSFCKDS data set header record.

The exit can check the field at the KGUP pre- or
postprocessing invocations. However, the exit can modify the
field only at the KGUP postprocessing invocation. KGUP sets
the value of the field to zero for the record pre- or
postprocessing invocations.

The exit can modify the installation data field of the CKDS
header record (see “Debugging aids” on page 159 for a
description of the CKDS header record. Offset +196 of the
CKDS header record is the installation data field). The
installation data field supplied by the exit is placed in the
CKDS header record after the KGUP postprocessing
invocation returns control to KGUP.

Chapter 5. Installation exits 217

Table 31. KGXP Control Block Format (continued)

Offset (Dec)
Number of
Bytes Description

392 4 CSFCKDS record.

The address of the CSFCKDS data set record processed by
the KGUP control statement. KGUP sets the address to zero if
the TRANSKEY keyword has two labels of transport keys.

The exit can check the field only at the record postprocessing
invocation. KGUP sets the address to zero for the record
preprocessing and KGUP pre- or postprocessing invocations.

The exit can modify the record area if the TRANSKEY
keyword does not have two labels.

396 4 RENAME CSFCKDS record.

The address of the CSFCKDS data set record processed when
the RENAME verb is used in a control statement. You can
determine whether the RENAME verb was used by
examining bit 3 at offset +14 in KGXP.

The exit can modify the field at the record postprocessing
invocation. KGUP sets the address to zero for the record
preprocessing and KGUP pre- or postprocessing invocations.

The exit can modify the record area. KGUP does not check
this field upon return from the invocation. Normal CSFCKDS
processing applies.

400 4 Installation data.

The address of the data specified on the INSTDATA keyword
of the KGUP control statement. The address of the area is
zero if a SET control statement has not been processed. “The
SET statement” describes how to use the field in greater
detail.

404 4 Installation exit area.

The address of an area set by the installation that is
preserved across all invocations of the exit. The first byte of
the area contains the length of the area (including the length
byte). After KGUP completes, the first 64 bytes of the area are
written to the SMF data set. The exit has exclusive control of
modifying this area. The area is only used as input to SMF
processing upon completion of KGUP.

The SET statement
Use the SET control statements to specify data to send to a KGUP installation exit.
For a more detailed description of the SET statement, see z/OS Cryptographic
Services ICSF Administrator's Guide.

The installation data field in KGXP (offset +396) contains the address of the data
SET statement specifies. Data that is specified on a SET statement can be especially
useful if you alter key entries. You may want to keep track of the entries you
change by putting the original data and the changed data in the installation data
area.

218 z/OS ICSF System Programmer's Guide

Return codes
You can pass a return code back to KGUP in the KGXP control block (offset +8).
The exit can use the return code to cause KGUP to reject control statements or to
end KGUP. Return code values, in decimal, for record pre- or postprocessing exit
calls are:

Return Code
Description

0 Normal, continue processing.

4 Reject control statement, but do not end KGUP.

8 End KGUP.

All other return codes are not valid and cause KGUP to end.

Return code values, in decimal, for the KGUP pre- or postprocessing invocations
are:

Return Code
Description

0 Normal, continue processing.

>0 End KGUP.

Chapter 5. Installation exits 219

220 z/OS ICSF System Programmer's Guide

Chapter 6. Installation-defined Callable Services

This topic contains Programming Interface information.

ICSF provides callable services that perform cryptographic functions. For example,
the ICSF encipher callable service enciphers data. You call and pass parameters to
a callable service from an application program. See z/OS Cryptographic Services ICSF
Application Programmer's Guide for a description of the ICSF callable services.

Besides the callable services that ICSF provides, you can write your own callable
services; these are known as installation-defined callable services.

Attention: Only an experienced system programmer should attempt to write an
installation-defined callable service. The writing and installation of such a service
require a thorough knowledge of system programming in an z/OS environment. If,
without having this knowledge, you attempt to write or to install
installation-defined callable services, you run the risk of seriously degrading the
performance of your system and causing complete system failure.

To write an installation-defined callable service, you must first write the callable
service and link-edit it into a load module. Then define the service in the
installation options data set. Use the SERVICE installation option keyword to
specify a number to identify the service and the load module that contains the
service.

You must also write a service stub. To run an installation-defined callable service,
you call a service stub from your application program. The service stub connects
the application program with the installation-defined callable service. In the service
stub, you specify the service number that identifies the callable service.

During ICSF startup, ICSF loads the load module that contains the service into the
ICSF address space with the ICSF callable services. ICSF binds the service with the
service number that you specified in the installation options data set.

This topic describes how to perform these tasks:
v Write a callable service.
v Define a callable service.
v Write a service stub.

Writing a callable service
An installation-defined callable service receives parameters from the application
program when the program calls the service stub that is associated with the
service. An installation-defined service can also access information in the secondary
parameter block (SPB). The address of the SPB is passed in register 0. See
“Secondary parameter block” on page 189 for a description of the SPB.

The service receives control with these characteristics.
v Supervisor state
v Key 0
v APF authorized

© Copyright IBM Corp. 2007, 2018 221

v TCB or SRB mode
v Cross memory mode
v AR mode
v AMODE(31) or AMODE(64)
v RMODE(ANY)

The service can change the characteristics during their processing. However, the
service must return to its caller with the same characteristics as on entry.

You must write the services in assembler, because you are in Access Register and
cross memory mode, and the addresses of some of the parameters you may access
are ALET-qualified. In particular, parameters passed into a callable service are in
the user's address space, which you can access with an ALET of 1. See z/OS MVS
Programming: Extended Addressability Guide for information about cross memory and
AR mode.

Contents of registers
The contents of the registers on entry to the callable service are:

Register 0
Address of the secondary parameter block (SPB)

Register 1
Address of the parameter list

Register 2–13
Unpredictable

Register 14
Return address

Register 15
Service entry point address

The contents of the registers on exit from the callable service are:

Register 0
Reason code

Register 1–14
Same as on entry

Register 15
Return code

Figure 5 on page 223 shows an example of entry and exit code for a generic
service.

222 z/OS ICSF System Programmer's Guide

The example uses the instructions BAKR and PR to replace standard linkage. With
these instructions, you no longer need to pass the save area in a register.

If the callable service ends abnormally, ICSF takes a system dump. The ICSF
service functional recovery routine (FRR) PROTECTS an installation-defined
service. You can, however, write your own recovery routine.

Security access control checking
For the ICSF-defined services, ICSF performs security access control checking to
determine if the caller is authorized to access the service and the results of the
authorization check can be logged in SMF. This checking is not performed by ICSF
for installation-defined services or UDXs. Any security access control checking
must be performed by the installation-defined service or UDX itself.

Checking the parameters
For the ICSF-defined services, ICSF checks the integrity of user-passed parameters.
An error in a parameter that causes a system abend does not cause a system
dump. For an installation-defined callable service, you must perform your own
integrity checking of parameters. An error in a user parameter that results in a
system abend causes a system dump. You can suppress the system dump by
setting a bit on in the SPB. To suppress the dump, set the bit on before you check
the integrity of the parameters. This bit (the SPBTERM bit) is the third bit of the
flag byte at offset 16 in the SPB.

MYSERV CSECT
MYSERV AMODE 31
MYSERV RMODE ANY

USING *,15
B PROLOG Branch around header text
DC C’some text’
DC C’compile date/time’

PROLOG EQU *
DROP 15
BSM R14,0
BAKR 14,0 Save callers info on stack
LAE 12,0 Clear access register 12
LR 12,15 Load reg 15 into 12

PROGSTRT EQU *
USING MYSERV,12 Set up base register

* addressability
.
.
.
Get dynamic area for program
.. STORAGE OBTAIN or CELLPOOL or own scheme ...
.
.
Free dynamic area for program
.
.
.

RETURN L 0,REASON_CODE Put reason code in reg 0
L 15,RETURN_CODE Put return code in reg 15
PR

Figure 5. Example of a service entry and exit

Chapter 6. Installation-defined Callable Services 223

Link-editing the callable service
After you write the callable service, you need to link-edit it into a load module,
and install the load module into an APF authorized library. ICSF uses this normal
search order to locate the service:
v Job pack area
v Steplib (if one exists)
v Link pack area (LPA)
v Link list (SYS1.LINKLIB concatenation)

Defining a callable service
Use the SERVICE keyword in the installation options data set to specify
information about the callable service. ICSF uses this information at ICSF startup
to enable the service. See “Steps to create the installation options data set” on page
25 for more information about ICSF installation options.

The SERVICE keyword has this syntax:
SERVICE(service-number,load-module-name,FAIL(fail-option))

The service-number is a number that identifies the service to ICSF. The valid
service numbers are 1 through 32767, inclusive. The load-module-name is the name
of the module that contains the service your installation wrote. During ICSF
startup, ICSF loads the module and binds it to the service number you specified.

Using the fail-option, you specify the action ICSF takes if the loading of the service
ends abnormally. ICSF loads all installation-defined services at ICSF startup.

Specify one of these values for the fail-option:

YES
ICSF abends if your service cannot be loaded.

NO ICSF continues to start if your service cannot be loaded.

If the callable service ends abnormally while it is processing, ICSF does not end.

This SERVICE installation option statement identifies a specific installation-defined
service to ICSF:

SERVICE(50,KSUST,FAIL(NO))

When ICSF starts, it binds the service number 50 to the load module KSUST,
which contains the callable service you wrote. Because the fail option is NO, if
your service cannot be loaded, ICSF continues to start anyway.

Writing a service stub
Besides writing the callable service itself, you must write a service stub, which is
the connection between the application program and the installation-defined
service. In an application program, you call the service stub, which accesses the
installation-defined service. The service stub can be any name you choose to call it.

The service stub must:
v Check that ICSF is active.

224 z/OS ICSF System Programmer's Guide

v Place the service number for the installation-defined callable service into register
0.

v Call the IBM-supplied processing routine, CSFAPRPC.

CSFAPRPC is used to access the callable services on ICSF. In the service stub, you
must call CSFAPRPC. ICSF stores the address of the CSFAPRPC entry point in the
CCVTPRPC field of the ICSF cryptographic communication vector table (CCVT). If
running in a CICS address space, then, after you call CSFVCCPP, the system calls
the callable service that corresponds to the service number in register 0. “The
Cryptographic Communication Vector Table (CCVT)” on page 354 describes the
format of the CCVT.

The contents of the registers on entry to the service stub are:

Register 0
Unpredictable

Register 1
Address of the parameter list

Register 2–13
Unpredictable

Register 14
Return address

Register 15
Service stub entry point address

The contents of the registers on exit from the service stub are:

Register 0
Reason code

Register 1–14
Same as on entry

Register 15
Return code

To run an installation-defined callable service, an application program calls the
service stub. You must link-edit the service stub with the application program that
calls the service stub. Any application program that calls a service stub must be
link-edited with the service stub.

To call an installation-defined service from an application program, use this
statement:

CALL <service-stub-name> <service-parameters>

The service-stub-name is the name of the service stub for the installation-defined
callable service. The service-parameters are the parameters you want to pass to the
installation-defined service. You supply the parameters according to the syntax of
the programming language that you use to write the application program.

Example of a service stub
Figure 6 on page 226 through Figure 10 on page 230 show an example of a service
stub for an installation-defined callable service.

Chapter 6. Installation-defined Callable Services 225

**** START OF SPECIFICATIONS ***
* *
* MODULE NAME = CSFGEN *
* DESCRIPTIVE NAME = SERVICE STUB *
* *
* FUNCTION = *
* THIS IS A SAMPLE SERVICE STUB. IT IS MEANT TO BE LINKEDITED *
* WITH THE APPLICATION AND ENTERED VIA A CALL CSFGEN. THIS STUB *
* CAUSES THE EXECUTION OF THE SERVICE WITH SERVICE NUMBER = 50 *
* (DECIMAL). *
* MODULE TYPE = ASSEMBLER *
* PROCESSOR = ASSEMBLER *
* MODULE SIZE = ONE BASE REGISTER *
* *
**** END OF SPECIFICATIONS ***
CSFGEN START 0
GENSNUM EQU 50
CSFGEN CSECT
CSFGEN AMODE 31
CSFGEN RMODE ANY
MAINENT DS 0H

USING *,R15
LAE R15,0(R15,0)
L R15,=A(CICSTEST)
BAKR 0,R15 PR from CICSTEST will restore GPRs
LTR R15,R15
BC 2,NOCICS

*
YESCICS DS 0H

SAC 0
STM R14,R12,12(R13)
LR R12,R15
DROP R15
USING MAINENT,R12
LR R3,R0
B NORMAL

*
NOCICS DS 0H
USING MAINENT,R12
BSM R14,0
BAKR R14,0
LAE R12,0
LR R12,R15
SLR R13,R13

* At this point, R0 must contain the service number.
* If we are to call the TRUE, R13 is non-zero
* R1 points to the caller’s parameter list.

NORMAL DS 0H

LA R0,GENSNUM R0 gets service number
SLR R10_ZERO,R10_ZERO
LR RC,R10_ZERO
L R2,CVTPTR
USING CVT,R2
L R2,CVTABEND

Figure 6. Example of a service stub (1 of 5)

226 z/OS ICSF System Programmer's Guide

CLR R2,R10_ZERO
BC 8,NOICSF
USING SCVTSECT,R2
L R2,SCVTCCVT
CLR R2,R10_ZERO
BC 8,NOICSF
USING CCVT,R2
TM CCVTSFG1,B’00110000’ IS ICSF ACTIVE
BC 1,YESICSF

NOICSF LA RC,12 Set return code to 12 decimal
L R7,RETURN_CODE_PTR(,R1)
ST RC,RETURN_CODE(,R7)
SLR R0,R0
L R7,REASON_CODE_PTR(,R1)
ST R0,REASON_CODE(,R7)
B FINISHED

YESICSF DS 0H
**
* Note that, if we’re in CICS, the prolog code pointed R3 at the AFCB
* and R13 at the caller’s savearea--they’re still pointing. Also, R0
* contains the service number, with the high order bit ON if the TRUE
* has been tried and found wanting. In this last case, CSFVCCPP will
* check the high order bit and not attempt to call the TRUE.
* If R13 is zero, we’re using the linkage stack. That means we can
* call CSFAPRPC.
* If R13 is not zero, we’re using non-stack linkage. That means the
* caller’s savearea will be used. CSFVCCPP uses this kind of linkage.
* But note that CSFVCCPP will not return here. Instead, it will return
* directly to the caller--that is, to the owner of the only save
* area around.
**

CLR R13,R10_ZERO
BC 8,EXECPRPC
L R15,CCVTPRPD
BALR R14,R15

LR RC,R15
B FINISHED

EXECPRPC L R15,CCVTPRPC
BALR R14,R15
LR RC,R15

FINISHED DS 0H
*
**
* This routine uses the linkage stack to save the caller’s regs
* if this is not a CICS environment. In CICS, it uses the save
* area pointed to by register 13. So the epilog code takes one
* of two forms. If this is CICS (i.e. if R13 is non-zero),
* return is via LM and BR 14. If this is not CICS, return is
* via PR.
*
* On return, the PR of ESA linkage does not restore registers
* 0, 1, 14 and 15. In the LM of normal BR 14 linkage, however,
* everything but 13 gets restored. Since this routine has no
* autodata, there’s no way to pass back return and reason codes
* unless we leave 0 and 15 intact. The solution is to deviate
* slightly from normal BR 14 linkage and restore only registers
* 1 through 12 and 14.
**

LTR R13,R13
BC 8,ENDNOCICS

Figure 7. Example of a service stub (2 of 5)

Chapter 6. Installation-defined Callable Services 227

ENDCICS LR R15,RC
L R14,SAVE14(,R13)
LM R1,R12,24(R13)
BR R14

*
EDNOCICS DS 0H

LR R15,RC
LA R7,12
CR R15,R7
BNE ENDSVC
LA R7,16
CR R0,R7
BNE ENDSVC
L R7,RETURN_CODE_PTR(,R1)
ST R15,RETURN_CODE(,R7)
L R7,REASON_CODE_PTR(,R1)
ST R0,REASON_CODE(,R7)

ENDSVC LR R15,RC
PR

**
**
** CICSTEST: Decides whether this is a CICS environment
**
**
CICSTEST DS 0H

LAE R12,0 Clear AR 12
LR R12,R15 Addressability via R12
USING CICSTEST,R12
L R15,=A(CSFGEN) R15 gets caller’s base reg
L R2,CVTPTR GET CVT POINTER
USING CVT,R2
L R2,CVTABEND AND SECONDARY CVT POINTER
USING SCVTSECT,R2
L R2,SCVTCCVT POINT TO CSF CCVT
LTR R2,R2 IS CRYPTO INSTALLED?
BZ RETRN IF NOT, GO HOME
USING CCVT,R2
TM CCVTSFG1,B’00110000’ IS ICSF ACTIVE
BNO RETRN IF NOT , GO HOME

* Check for wait list routine
*

TM CCVTCICS,B’10000000’ Q. CCVTPRPA ON?
BZ RETRN no---No CICS capability
TM CCVTCICS,B’01000000’ Q. CCVTCKWL ON?
BZ CKWLHERE no---use imbedded routine

* yes--use installed routine
LA R0,GENSNUM R0 gets service number
LR R3,R1 R3 saves R1
LR R4,R14 R4 saves R14
LR R5,R15 R5 saves R15
L R15,CCVTCKWL R15 gets routine address
BALR R14,R15 Go check for CICS
LR R0,R15 Save return code in R0
LR R15,R5 Restore R15
LR R14,R4 Restore R14
LR R1,R3 Restore R1
LTR R0,R0 Q. CICS?
BZ RETRN no---return

* yes--pass info along
O R15,M_CICS Enable high bit of R15 to CICS
B RETRN Return

Figure 8. Example of a service stub (3 of 5)

228 z/OS ICSF System Programmer's Guide

* Cannot use installed routine. Use imbedded routine
*
CKWLHERE DS 0H Imbedded check for TRUE routine

SLR R0,R0 Init R0 to 0
CPYA R8,R12 Zero AR 8
SLR R8,R8 Init R8 to 0
USING PSA,R8
L R8,PSATOLD R8->TCB
USING TCB,R8
LTR R8,R8 Q. Is there a TCB?
BC 8,RETRN no---return

* yes--check state and key
CPYA R11,R12 Zero AR 11
LA R11,1 Get PSW state and key in R6
ESTA R6,R11
LR R7,R6 Copy of state & key in R7
N R7,M_KEY Q. problem key?
BZ RETRN no---return

* yes--check state
N R6,M_STATE Q. problem state?
BZ RETRN no---return

* yes--get the CICS eye-catcher
LA R6,2 Set ARs 6 and 8 to home
SAR R6,R6
SAR R8,R6
L R8,TCBEXT2 R8->TCB extension
USING TCBXTNT2,R8
ICM R4,B’1111’,TCBCAUF R4 gets AFCX address

* Q. Address there?
BZ RETRN no---return

* yes--check eye-catch
CLC 0(4,R4),CICS_EYE Q. CICS?
BNE RETRN no---return

* yes--pass info along
LR R0,R4 R0 gets the AFCX pointer
O R15,M_CICS Enable high order bit of R15

RETRN DS 0H
DROP R12 Free R12
PR Return from CICSTEST subroutine

*
LTORG
DS 0D

*
GENSDATA DS 0F
R10_ZERO EQU 10
RC EQU 05
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*

Figure 9. Example of a service stub (4 of 5)

Chapter 6. Installation-defined Callable Services 229

In Figure 6 on page 226, the service stub, CSFGEN, checks that ICSF is active,
places the service number 50 into register 0, and calls CSFAPRPC.

The service number 50 (in the case of this example) must be bound to the
installation-defined service by using the SERVICE keyword in the installation
options data set. The service number is bound to the service when ICSF interprets
the SERVICE installation option statement and loads the service at ICSF startup. To
run the callable service that is associated with service number 50, call the service
stub CSFGEN from an application program.

For flexibility, to create a service stub for a different installation-defined callable
service, you can copy an existing service stub and just change the service number
that you load into register 0.

INPUT_PARMS EQU 0,8,C’C’
RETURN_CODE_PTR EQU INPUT_PARMS,4,C’A’
REASON_CODE_PTR EQU INPUT_PARMS+4,4,C’A’
RETURN_CODE EQU 0,4,C’F’
REASON_CODE EQU 0,4,C’F’
*
SAVAREA EQU 0,72,C’C’
SAVE14 EQU SAVAREA+12,4,C’A’
SAVE01 EQU SAVAREA+24,4,C’A’
SCVTSPTR EQU CVTABEND,4,C’F’
TCBPTR EQU PSATOLD,4,C’F’

DS 0D
*

DS 0F Align
M_KEY DC X’00800000’ Problem key mask
M_STATE DC X’00010000’ Problem state mask
M_NOCICS DC X’7FFFFFFF’ Not-CICS mask
M_CICS DC X’80000000’ Yes-CICS mask

DS 0D
CICS_EYE DC CL4’AFCX’ CICS eye catcher
*

IHAPSA
TITLE ’DSECT CVT’
CVT DSECT=YES
TITLE ’DSECT SCVT’
IHASCVT DSECT=YES
TITLE ’DSECT TCB’
IKJTCB
TITLE ’DSECT CCVT’
CSFCCVT

*
LA R7,12
CR R15,R7
BNE ENDGSVC
LA R7,16
CR R0,R7
BNE ENDGSVC
L R7,RETURN_CODE_PTR(,R1)
ST R15,RETURN_CODE(,R7)
L R7,REASON_CODE_PTR(,R1)
ST R0,REASON_CODE(,R7)
ENDGSVC DS 0H

END

Figure 10. Example of a service stub (5 of 5)

230 z/OS ICSF System Programmer's Guide

Chapter 7. Converting a CKDS from fixed length to variable
length record format

ICSF provides a CKDS conversion program, CSFCNV2, that converts a fixed length
record format CKDS to a variable length record format. There will be no changes
to the key token in the CKDS record. Only the format of the record will be
changed.

Note: There are three formats of the CKDS:
v The original fixed-length record format.
v The variable-length record format (introduced in HCR7780).
v The KDSR variable-length record format (introduced in ICSF FMID HCR77A1).

The CSFCNV2 utility converts a fixed-length format CKDS to a variable-length
format. To convert a fixed-length or variable-length format CKDS to the KDSR
format, see “Migrating to the common record format (KDSR) key data set” on page
91.

You can also use the CSFCNV2 utility to rewrap encrypted DES values in the
CKDS. For more information on this capability of the CSFCNV2 utility, refer to
z/OS Cryptographic Services ICSF Administrator's Guide.

There is no conversion from variable length to fixed length records.

You run the conversion utility program by submitting a batch job. On the EXEC
statement, specify PGM=CSFCNV2.

This example is a JCL that runs the conversion program:
//CKDSCNV2 EXEC PGM=CSFCNV2,PARM=’FORMAT,OLD.CKDS,NEW.CKDS’

Where:

OLD.CKDS
The fixed length record format CKDS to be converted. This is the source
CKDS for the conversion.

NEW.CKDS
An empty disk copy of a variable length record format CKDS. This is the
CKDS into which the conversion utility writes the converted records. The
data set must be defined and empty before you run the conversion
program.

Refer to the SYS1.SAMPLIB CSFCKD2 member sample described in “Steps to
create the CKDS” on page 15 for example JCL that defines a VSAM CKDS for
variable length records.

The CSFV0560 message in the joblog will indicate the results of processing.

Return Code
Meaning

0 Process successful.

4 Minor error occurred.

© Copyright IBM Corp. 2007, 2018 231

8 RACF authorization check failed.

12 Process unsuccessful.

60 or 92
CKDS processing has failed. A return code 60 indicates the error was
detected in the new KDS. A return code 92 indicates the error was detected
with the old KDS.

When the program is invoked from another program, the invoking program
receives the reason code in General Register 0 along with the return code in
General Register 15. The following list describes the meaning of the reason codes.
If a particular reason code is not listed, refer to the listing of ICSF and TSS return
and reason codes in the z/OS Cryptographic Services ICSF Application Programmer's
Guide.

Return code 0 has this reason code:

Reason Code
Meaning

36132 CKDS reencipher/Change MK processed only tokens encrypted under the
DES master key.

Return code 4 has these reason codes:

Reason Code
Meaning

0 Parameters are incorrect.

4004 Rewrapping is not allowed for one or more keys.

36112 CKDS conversion completed successfully but some tokens could not be
rewrapped because the control vector prohibited rewrapping from the
enhanced wrapping method.

36164 Input CKDS is already in the variable-length record format. No conversion
is necessary.

Return code 8 has this reason code:

Reason Code
Meaning

16000 Invoker has insufficient RACF access authority to perform function.

Return code 12 has these reason codes:

Reason Code
Meaning

0 ICSF has not been started

11060 The required cryptographic coprocessor was not active or the master key
has not been set

36000 Unable to change master key. Check hardware status.

36008 Crypto master key register or registers in improper state.

36020 Input CKDS is empty or not initialized (authentication pattern in the
control record is invalid).

232 z/OS ICSF System Programmer's Guide

36036 The new master key register for Coprocessor 1 (C1) is not full, but C0 is
ready and the current master key is valid.

36040 The new master key register for C0 is not full, but C1 is ready and the
current master key is valid.

36044 The master key authentication pattern for the CKDS does not match the
authentication pattern of the coprocessors, which are not equal.

36048 The master key authentication pattern for the CKDS does not match the
authentication pattern of either of the coprocessors, which are not equal.

36052 A valid new master key is present in C0, but its authentication pattern
does not match that of C1 or the CKDS, which are equal.

36056 A valid new master key is present in C1, but its authentication pattern
does not match that of C0 or the CKDS, which are equal.

36060 The new master key register or registers are not full.

36064 Both new master key registers are full but not equal.

36068 The input KDS is not enciphered under the current master key.

36076 The new master key register for C0 is not full, but the CPUs are online.

36080 The new master key register for C1 is not full, but the CPUs are online.

36084 The master key register cannot be changed since ICSF is running in
compatibility mode.

36104 Option not available. There were no Cryptographic Coprocessors available
to perform the service that was attempted.

36108 PKA callable services are enabled, and the PKDS is the active PKDS as
specified in the options data set.

36120 The CKDS is unusable. The CKDS does not support record level
authentication.

36124 The CKDS is unusable. The CKDS only supports encrypted AES keys and
encrypted DES support is required.

36128 The CKDS is unusable. The CKDS does not support encrypted DES keys
which is required.

36160 The attempt to reencipher the CKDS failed because there is an enhanced
token in the CKDS.

36168 A CKDS has an invalid LRECL value for the requested function. For
wrapping, the input and output CKDS LRECLs must be the same.

36172 The level of hardware required to perform the operation is not available.

Return code 60 or 92 has these reason codes:

Reason Code
Meaning

3078 The CKDS was created with an unsupported LRECL.

5896 The CKDS does not exist.

6008 A service routine has failed.

The service routines that may be called are:

Chapter 7. Converting a CKDS from fixed length to variable length record format 233

CSFMGN
MAC generation

CSFMVR
MAC verification

CSFMKVR
Master key verification

6012 The single-record, read-write installation exit (CSFSRRW) returned a return
code greater than 4.

6016 An I/O error occurred reading or writing the CKDS.

6020 The CSFSRRW installation exit abended and the installation options EXIT
keyword specifies that the invoking service should end.

6024 The CSFSRRW installation exit abended and the installation options EXIT
keyword specifies that ICSF should end.

6028 The CKDS access routine could not establish the ESTAE environment.

6040 The CSFSRRW installation exit could not be loaded and is required.

6044 Information necessary to set up CSFSRRW installation exit processing
could not be obtained.

6048 The system keys cannot be found while attempting to write a complete
CKDS data set.

6052 For a write CKDS record request, the current master key verification
pattern (MKVP) does not match the CKDS header record MKVP.

6056 The output CKDS is not empty.

Note: It is possible that you will receive MVS reason codes rather than ICSF
reason codes, for example, if the reason code indicates a dynamic allocation failure.
For an explanation of Dynamic Allocation reason codes, see z/OS MVS
Programming: Authorized Assembler Services Guide.

234 z/OS ICSF System Programmer's Guide

Chapter 8. Migration from PCF to z/OS ICSF

If your installation uses the cryptographic product, Programmed Cryptographic
Facility (PCF), ICSF helps you migrate PCF applications to ICSF. You can run PCF
applications on ICSF to gain the enhanced performance and availability of ICSF
and to test ICSF. Eventually, you should convert these applications to use ICSF
services, rather than the PCF macros.

During migration, you can run PCF applications on ICSF because ICSF continues
to support the PCF macros (GENKEY, RETKEY, EMK, and CIPHER). If GENKEY
or RETKEY macro exits exist, you should reevaluate their applicability to ICSF. If
an exit performs a necessary function, you need to rewrite the exit for ICSF. Exits
exist for the compatibility services on ICSF.

If a PCF application uses a key in the PCF cryptographic key data set, you must
convert the key to an ICSF cryptographic key data set before you run the PCF
application on ICSF. ICSF provides a program to make this conversion.

Running PCF and z/OS ICSF on the same system
You can run PCF and ICSF simultaneously on the same z/OS system or separately
in three different modes. You can run ICSF in compatibility, coexistence, or
noncompatibility mode.

In compatibility mode, you can run either PCF or ICSF, but you cannot run them
simultaneously on the same z/OS system. You can continue to run PCF
applications on PCF or you can run PCF applications on ICSF. ICSF supports the
PCF macros that the PCF applications call. However, you cannot run the PCF key
generator utility program (KGUP) on ICSF. You do not have to reassemble PCF
applications to run the applications on ICSF.

In coexistence mode, you can run PCF and ICSF simultaneously on the same z/OS
system. You can continue to run a PCF application on PCF or you can reassemble
the PCF application to run on ICSF. In this mode, ICSF supports the PCF macros
when a reassembled PCF application calls these macros.

In noncompatibility mode, you can run PCF and ICSF simultaneously and
independently on the same z/OS system. You can run PCF applications on PCF
and ICSF applications on ICSF. You cannot run PCF applications on ICSF, because
ICSF does not support the PCF macros in this mode.

You can run PCF simultaneously and independently in coexistence and
noncompatibility mode. Therefore, in these modes, you can run PCF KGUP on PCF
while running ICSF. The PCF KGUP updates keys on a PCF CKDS.

The ICSF installation option COMPAT(YES, COEXIST or NO) allows you to specify
which mode you want ICSF to run in. You specify COMPAT(YES) for compatibility
mode, COMPAT(COEXIST) for coexistence mode, and COMPAT(NO) for
noncompatibility mode. See “Steps to create the installation options data set” on
page 25 for information about creating the installation options data set and
“Parameters in the installation options data set” on page 36 for details about these
options.

© Copyright IBM Corp. 2007, 2018 235

Running in compatibility mode
In compatibility mode, you can run a PCF application on ICSF without
reassembling the application. A PCF application running on ICSF can still use PCF
macros, because ICSF supports these macros. The PCF application gains the
enhanced performance, reliability, and availability of ICSF.

You cannot run PCF and ICSF simultaneously on the same z/OS system in
compatibility mode. If you start PCF, you must stop PCF before you can start ICSF.
If you start ICSF, you must stop ICSF before you can start PCF.

A PCF application may have used keys on the PCF cryptographic key data set
(CKDS). When you run the application on ICSF, these keys must be in the ICSF
CKDS. The format of a key entry on the PCF CKDS differs from the format of a
key entry on the ICSF CKDS. Therefore, you need to run a conversion program to
convert the PCF CKDS entries and place the entries in the ICSF CKDS. See
“Converting a PCF CKDS to ICSF format” on page 239 for a description of how to
convert a PCF CKDS.

For encryption, ICSF supports the Data Encryption Standard (DES).

PCF macros receive identical error return codes if they run on ICSF or PCF, with
one exception. If a key is installed on the ICSF CKDS with the correct label but
with the wrong key type, an attempt to use that key by RETKEY or GENKEY
results in a return code of 8 from PCF. This indicates that the key was not of the
correct type. ICSF issues return code 12, indicating that it could not find the key.
Ensure that PCF LOCAL or CROSS 1 keys are installed in the ICSF CKDS as
EXPORTER keys. Also, ensure that REMOTE and CROSS 2 keys are installed in the
ICSF CKDS as IMPORTER keys.

In compatibility mode, the safest method for changing the master key is to re-IPL
the system. To change the master key in compatibility mode, see “Changing the
DES master key in compatibility or coexistence mode” on page 237.

Note: To use AMS REPRO encryption, you need to run ICSF in compatibility
mode.

Running in coexistence mode
In coexistence mode, you can run ICSF and PCF simultaneously on the same z/OS
system and run a PCF application on PCF or on ICSF. A PCF application running
on ICSF gains the enhanced performance, reliability, and availability of ICSF.

A PCF application running on ICSF can still use PCF macros, because ICSF
supports these macros. ICSF ships changed PCF macros in SAMPLIB that run only
on ICSF. Because these changed PCF macros already exist unchanged on PCF, the
changed PCF macros shipped with ICSF are named differently.

On ICSF, in SAMPLIB:
v The changed PCF EMK macro is named CSFEMK.
v The changed PCF CIPHER macro is named CSFCIPH.
v The changed PCF RETKEY macro is named CSFRKY.
v The changed PCF GENKEY macro is named CSFGKY.

You can rename these macros to the PCF names when you want to run a PCF
application on ICSF.

236 z/OS ICSF System Programmer's Guide

To run a PCF application on ICSF, you must:
v Rename the changed PCF macro shipped in ICSF SAMPLIB to the appropriate

PCF name.
v Place the macro in the appropriate macro library.
v Reassemble the PCF application against the changed PCF macro.

Then the application can run only on ICSF. To run a PCF application on PCF, just
run the application without reassembling the application.

During migration, you can start ICSF and start PCF so that both products are
running simultaneously. If you want to run a PCF application using the PCF
macros on PCF, do not reassemble the application. If you want to run a PCF
application using the changed PCF macros on ICSF, reassemble the application
against the changed macros. Coexistence mode enables you to run the products
simultaneously and choose whether to run a PCF application on PCF or ICSF.

A PCF application can use keys on the PCF CKDS. When you run the application
on ICSF, those keys must be in the ICSF CKDS. The format of a key entry on the
PCF CKDS differs from the format of a key entry on the ICSF CKDS. Therefore,
you need to run a conversion program to convert the PCF CKDS entries and place
the entries in the ICSF CKDS. See “Converting a PCF CKDS to ICSF format” on
page 239 for a description of how to convert a PCF CKDS.

In coexistence mode, the safest method for changing the master key is to re-IPL the
system. See “Changing the DES master key in compatibility or coexistence mode”
for a description of the process used to change the master key in coexistence mode.

Changing the DES master key in compatibility or coexistence
mode

In compatibility and coexistence modes, the safest way to activate the DES master
key after changing it is to re-IPL the system. This process is different from the
usual process for entering and activating a master key. For information about
changing the master key, see z/OS Cryptographic Services ICSF Administrator's Guide.

A re-IPL ensures that a program does not access a cryptographic service with a key
that is encrypted under a different master key. If a program is using an operational
key, the program either re-creates the key or imports the key again.

In compatibility or coexistence mode, the ICSF administrator can use the ICSF
panels to enter the key value into the new master key register. However, the
master key cannot be activated using the panels in compatibility or coexistence
mode. The value entered remains in the new master key register until you re-IPL
the system. (In noncompatibility mode, the ICSF administrator can use the ICSF
panels to enter the key value into the new master key register and to activate the
master key.)

If the new master key is different than the current master key, the ICSF
administrator must reencipher the CKDS under this new master key. To do this,
choose the REENCIPHER CKDS option on the master key management panel. This
reenciphers a CKDS under the master key in the new master key register.
Reencipher all the disk copies of the CKDSs, and leave the ICSF panels without
changing the master key.

Chapter 8. Migration from PCF to z/OS ICSF 237

Then re-IPL the system and restart ICSF. In the installation options data set, the
CKDSN installation option must specify a disk copy of the CKDS that is
reenciphered under the new master key. When ICSF starts again, it detects that the
current master key is not the one that enciphered the CKDS that is specified in the
installation options data set. ICSF detects that the CKDS is enciphered under the
new master key and makes that master key active.

If your installation requires 24-hour availability and it is not possible to re-IPL the
system, an alternative method is to stop all cryptographic applications, especially
those using PCF macros. This helps eliminate inadvertent use of operational keys
that are encrypted under the old master key. After you restart CSF, applications
using an operational key can either re-create or reimport the key.

Running in noncompatibility mode
In noncompatibility mode PCF and ICSF can run simultaneously and
independently. You can run both ICSF and PCF at the same time. Just start one and
then the other. Both ICSF and PCF run completely separate from each other. Each
has its own applications and each uses its own services and CKDS.

You cannot run a PCF application on ICSF, even if you reassemble it. If you run an
application on ICSF that calls a PCF macro, the application ends abnormally,
because ICSF does not support the PCF macros in noncompatibility mode.

Because each product runs separately, neither product loses any function in
exchange for compatibility. When ICSF is in compatibility or coexistence mode, you
can no longer change the master key dynamically. In noncompatibility mode, this
function is still possible. Therefore, except for when your installation is migrating
to ICSF, you probably want to run ICSF in noncompatibility mode.

Note: When you initialize ICSF for the first time, noncompatibility mode must be
active.

Specifying compatibility modes during migration
The process and duration to migrate from PCF to ICSF depend on your
installation. You can use different modes in different stages of migration. To change
modes, change the COMPAT option in the installation options data set and restart
ICSF. When you complete migration to ICSF, you can run in noncompatibility
mode to use the full function of ICSF.

When you first install an ICSF system, you can continue to run PCF for production
and just test ICSF. Because you are running the products separately but
simultaneously on the same z/OS system, you can run in noncompatibility or
coexistence mode. To run in compatibility mode, you need more than one z/OS
system. You can run the test applications on ICSF on one z/OS system while you
run your production on PCF on another z/OS system.

When you begin testing ICSF, you can run existing applications in either
compatibility mode or coexistence mode to test the PCF macros on ICSF. After you
run the test applications, you may want to bring up production using PCF
applications on ICSF. When you bring over PCF applications to ICSF, you can run
in coexistence mode. In this mode, you can run an application on PCF and then
reassemble the application to run the application on ICSF.

While, or after, you bring PCF applications into production on ICSF, you can run
test applications that call ICSF services. You can then convert the applications that

238 z/OS ICSF System Programmer's Guide

call PCF macros to applications that call the ICSF services. The ICSF services
provide enhanced key separation, performance, and function. After you convert all
your PCF applications to ICSF applications, you can activate noncompatibility
mode and have the full function of ICSF.

Converting a PCF CKDS to ICSF format
During migration, you may need to convert a PCF CKDS into ICSF CKDS format
if:
v PCF applications running on ICSF use keys stored in a PCF CKDS.
v Your installation uses the PCF key generator utility program to create keys and

uses ICSF for other cryptographic operations. To use the keys in ICSF
applications, you must convert the PCF CKDS.

ICSF provides a PCF conversion program, CSFCONV, that converts a PCF CKDS
into an ICSF CKDS. The conversion program runs with certain defaults. The
program converts all the entries in a PCF CKDS and converts the PCF key types
into certain corresponding ICSF key types. You can use the conversion program
override file to instruct the conversion program not to convert certain entries. You
can also tell the conversion program to convert a PCF key type into a different
ICSF key type than the default.

These topics describe how:
v The conversion program runs with certain defaults
v To use the override file to make it run differently
v To run the conversion program

How the PCF conversion program runs
You can run the PCF conversion program only after you initialize the master key
and CKDS for ICSF.

When the conversion program processes a PCF CKDS, the program duplicates the
single length key values to create double length keys.

The conversion program merges the PCF CKDS with an input ICSF CKDS. The
input ICSF CKDS is an existing disk copy of an ICSF CKDS. The input ICSF CKDS
must contain a header record. For information about initializing an ICSF CKDS, see
z/OS Cryptographic Services ICSF Administrator's Guide.

The PCF conversion program places the input ICSF CKDS entries and the
converted PCF entries into an output CKDS. You must create an empty VSAM data
set to be the output CKDS before running the conversion program. See “Steps to
create the CKDS” on page 15 for information about creating the data set.

The PCF conversion program converts all the entries in a PCF CKDS. When you
run the PCF conversion program, the program does these conversions of PCF key
types into ICSF key types:
v Converts each PCF local key entry into an ICSF NOCV exporter key-encrypting

key entry.
v Converts each PCF remote key entry into an ICSF NOCV importer

key-encrypting key entry.
v Converts each PCF cross key entry into two ICSF key entries: an NOCV exporter

key-encrypting key and an NOCV importer key-encrypting key.

Chapter 8. Migration from PCF to z/OS ICSF 239

You use the override file to not convert all the entries in a PCF CKDS or to convert
a PCF key into a different key type than the default key type.

When the PCF conversion program converts a PCF entry, the program places any
installation data from the installation data field of the PCF entry into the ICSF
entry. You can use the override file to place different installation data into the ICSF
entry.

Note: ICSF copies any installation data in the input CSF CKDS header record into
the output ICSF CKDS header record.

As the conversion program reads the PCF CKDS, the input ICSF CKDS, and the
override file, the program places key entries into a virtual image of the output
ICSF CKDS. When the virtual image CKDS is complete, the conversion program
reenciphers the key values of the PCF entries from under the PCF master key to
under the ICSF master key. The conversion program places the reenciphered
entries into the actual output CKDS.

As the conversion program creates the virtual image ICSF CKDS, the conversion
program takes information from the PCF entry and possibly the override file. For
each PCF entry, the conversion program checks if its key label exists in the
override file. If the label does exist in the override file, the conversion program
takes the action that is specified in the override file. The program either converts
or bypasses the entry. If the key label does not exist in the override file, ICSF
converts the entry.

The conversion program compares the converted PCF entries by label and type
with the ICSF entries that already exist in the input ICSF CKDS. If there is a
match, the conversion program replaces the key value from the converted entry of
the PCF source into the virtual image CKDS. If there is not a match, the conversion
program converts each PCF entry after checking the override file. If the label
matches and the type does not, the conversion program checks to see if the type
requires a unique label. If a unique label is not required, the conversion program
converts the PCF entry after checking the override file. If a unique label is
required, the conversion program does not convert the PCF entry and issues an
error message. If the record type is DATA, DATAXLAT, MAC, MACVER, or NULL
the CKDS record requires a unique label. The CKDS record also requires a unique
label if the record has ever been updated by the dynamic CKDS update callable
services. The conversion program also places all the input ICSF CKDS entries into
the virtual image CKDS.

Calling installation exits during conversion
You can call two installation exits during conversion program processing: the
conversion program exit (CSFCONVX) and the single-record, read-write exit
(CSFSRRW). The conversion program calls the exit at three different times: before,
during, and after conversion program processing. See Chapter 5, “Installation
exits,” on page 167 for a description of the conversion program and single-record,
read-write exit control blocks.

The conversion program calls the CSFCONVX exit after you submit the conversion
program job, but before the program actually begins processing. At this point, you
can use the exit to change the output ICSF CKDS header record installation data
field.

The conversion program also calls the CSFCONVX exit during processing as the
conversion program completes the virtual image ICSF CKDS, but before the

240 z/OS ICSF System Programmer's Guide

conversion program reenciphers the key values. The conversion program calls the
exit as it writes each record to the virtual image ICSF CKDS. At this point, you can
use the exit to specify that the conversion program not place an entry into the
output ICSF CKDS.

The conversion program also calls the CSFCONVX exit after the conversion
program completes processing. At this point, you can use the exit to change the
output ICSF CKDS header record installation data field.

As the conversion program reads the records from the virtual image ICSF CKDS to
the actual output ICSF CKDS, it calls the single-record, read-write exit. The
conversion program calls the single-record, read-write exit as it writes each record
to the output ICSF CKDS. You can use this exit to specify that the conversion
program not place an entry into the output ICSF CKDS.

The conversion program writes every entry from the PCF CKDS and input ICSF
CKDS into the output ICSF CKDS unless an override record or installation exit
indicates that the conversion program should bypass the entry from the PCF
CKDS.

Using the conversion program override file
The conversion program converts all entries in a PCF CKDS into ICSF entries. The
conversion program also converts each type of PCF key into a specific ICSF key
type. If you want the conversion program to bypass certain key entries or convert
a specific key or key type differently than it does by default, use the override file.

By specifying override records, you can have the conversion program:
v Bypass conversion of key entries.
v Include information in key entries.
v Convert key types differently than it does by default.

These actions can relate to entries explicitly identified with a key label or entries
that are identified globally.

You specify information in certain fields in an override record and leave other
fields blank, depending on the action you want the conversion program to take.
You can specify a global record affecting more than one PCF CKDS entry or a
record that affects only one PCF CKDS entry.

All the override data set records should be in ascending sequence by key label and
old key type. If you use global entries, they must be the initial entries in the
override record. Table 32 on page 242 shows the syntax of a record in the override
file.

Note: All the fields should contain character values and be left-justified.

If you specify a key label in an override record, the conversion program processes
the key entry identified by that key label. If you do not specify a key label in an
override record, you are using a global override record. The conversion program
processes all the key labels that pertain to the information specified by the override
file.

You can use a global override record to affect all the entries in a CKDS and then
use override records to explicitly affect entries you did not want to have that
global override record affect.

Chapter 8. Migration from PCF to z/OS ICSF 241

Table 32. Format of Records in the Override File

Column Length Description

1 8 Key Label

The key label of the PCF entry you want to convert

The field can have these values:

v Blanks

v A key label existing in the PCF CKDS that you want to
convert

9 1
This field must be blank.

10 8 Old Key Type

The key type of the key entry you want to convert in the
PCF CKDS.

The field can have these values:

v Blanks

v LOCAL

v REMOTE

18 1
This field must be blank.

19 8 New Key Type

The key type that you want the converted key entry to be
in the ICSF CKDS. The master key variant for the key type
enciphers the key in the ICSF CKDS entry that the
conversion program creates.

The field can have these values:

v Blanks

v OPINENC

v EXPORTER

v IPINENC

v IMPORTER

27 1
This field must be blank.

28 8 Ignored

In ICSF/MVS Version 1 Release 1, this field contained the
key qualifier. The CKDS for ICSF/MVS Version 1 Release 2
or higher does not support key qualifiers. If your
installation has a PCF conversion program override file
created with ICSF/MVS Version 1 Release 1, you can still
use it with z/OS ICSF. Any key qualifier entries are
ignored.

36 1
This field must be blank.

242 z/OS ICSF System Programmer's Guide

Table 32. Format of Records in the Override File (continued)

Column Length Description

37 1 Bypass Flag

Used to indicate that an input CKDS entry is not to be
included in the new ICSF CKDS. If you set this field to Y,
the conversion program does not convert the entry.

The field can have these values:

v Blank (same as N)

v N

v Y

38 1
This field must be blank.

39 52 Installation Data

Any additional information your installation records about
a key. The information appears in the installation data field
of the new ICSF CKDS.

The field can contain any value.

Bypassing conversion of entries
Using an override record, you can bypass a PCF entry so it is not converted and
placed in the ICSF CKDS. You can use a global override record to bypass all the
entries in the data set and then use explicit override records to convert certain
entries. You can also convert most of a PCF CKDS and just bypass certain entries
using explicit override records.

These are some examples of override records for bypassing conversion.

Example 1

This example shows an override record specifying that the conversion program not
convert any PCF CKDS entry with a certain key label.

EXTOATM3 Y

The conversion program bypasses any PCF CKDS entry with the label EXTOATM3.

Example 2

This example shows an override record specifying that the conversion program not
convert any PCF CKDS entry with a certain key label and key type.

CRLABEL4 REMOTE Y

The conversion program bypasses any PCF CKDS entry with the label CRLABEL4
and key type REMOTE.

Example 3

This example shows a global override record specifying that the conversion
program bypass all the entries in a PCF CKDS.

Y

The conversion program does not convert any of the entries in the PCF CKDS.

Chapter 8. Migration from PCF to z/OS ICSF 243

After you specify this global override record, you can use explicit override records
to convert certain entries in the PCF CKDS. For example, you can use an override
record like this one to explicitly convert PCF entries with a certain label.

ATM03 N

In this example, the conversion program converts any PCF CKDS entry with the
label ATM03.

Example 4

This example shows a global override record specifying that the conversion
program bypass all the entries with a certain PCF key type in a PCF CKDS.

REMOTE Y

The conversion program does not convert any of the entries with a key type of
REMOTE in the PCF CKDS. After you specify this global override record, you can
use explicit override records to convert specific entries with a key type of REMOTE
in the PCF CKDS.

Including information in a key entry
An ICSF key entry contains an installation data field that an installation can use to
further identify a key. The installation data field contains any information that an
installation wants to supply about a key.

PCF records contain an installation data field. The conversion program places the
information in the field into the installation data field of the converted entry in the
output ICSF CKDS. You can use an override record to specify installation data
information for the converted entry in the output ICSF CKDS. The installation data
information supplied in the override record overrides any information from the
PCF installation data field. If you do not use an override record, the conversion
program places any installation data from the PCF entry into the leftmost 8 bytes
of the ICSF entry.

These are examples of override records for including key information.

Example 1

This example shows an override record providing the conversion program with
installation data information to place in the ICSF CKDS for any converted PCF
entry with a certain key label.

ATMKEY12 CONVERTED FROM CUSP1.CKDS 10/01/98

When the conversion program converts an entry that is labeled ATMKEY12, it
places CONVERTED FROM CUSP1.CKDS 10/01/98 in the installation data field for the
converted entry.

Example 2

This example shows an override record providing the conversion program with
installation data information to place in the ICSF CKDS for any converted PCF
entry with a certain key label and key type.

LOCAL890 LOCAL CONVERTED FROM PCF12.CKDS

244 z/OS ICSF System Programmer's Guide

When the conversion program converts an entry that is labeled LOCAL890 with a
key type of LOCAL, it places CONVERTED FROM PCF12.CKDS in the installation data
field for the converted entry.

Example 3

This example shows a global override record that provides the conversion program
with installation data information to place in the ICSF CKDS for all converted
entries.

CONVERTED FROM PCF10.CKDS

When the conversion program converts the PCF CKDS, it places CONVERTED FROM
PCF10.CKDS in the installation data field. The information is placed into every
converted key entry. After you specify this global override record, you can use
explicit override records to provide different information for specific entries in the
PCF CKDS.

Converting key types
By default, the conversion program converts PCF keys into certain ICSF key types.
You can use the override file to override the defaults. For example:
v Instead of automatically converting a PCF local key into a NOCV exporter

key-encrypting key, you can convert the local key into an output PIN-encrypting
key.

v Instead of automatically converting a PCF remote key into a NOCV importer
key-encrypting key, you can convert the remote key into an input
PIN-encrypting key.

v Instead of automatically converting a PCF cross key into a NOCV exporter
key-encrypting key and a NOCV importer key-encrypting key, you can convert
the cross key into an output PIN-encrypting key and an input PIN-encrypting
key.

You can use a global override record to convert all keys of a certain type into a
type other than the conversion program default key type. Then using an explicit
override record, you can specify that the conversion program convert a specific
record into a the default key type. For example, you can use a global override
record to convert all remote keys into input PIN-encrypting keys, and then use an
override record to convert specific remote entries into importer key-encrypting
keys.

These are some examples of override records for key type conversion.

Example 1

This example shows an override record specifying that the conversion program
convert a local key to an output PIN-encrypting key for any PCF CKDS entry with
a certain key label. The override record also provides the conversion program with
installation data.

CRLABEL1 LOCAL OPINENC OPINENC FOR ATM123

When the conversion program converts any PCF entry labeled CRLABEL1 with a
key type of local, it converts the key from a local key type to an output
PIN-encrypting key type. The program also places OPINENC FOR ATM123 in the
installation data field.

Chapter 8. Migration from PCF to z/OS ICSF 245

If you did not specify this override record, the conversion program would
automatically convert the entry from a local key type to an exporter key-encrypting
key type.

Example 2

This example shows an override record specifying that the conversion program
convert a remote key to an input PIN-encrypting key for any PCF CKDS entry
with a certain key label. The override record also provides the conversion program
with installation data.

CRLABEL2 REMOTE IPINENC IPINENC FOR ATM123

When the conversion program converts any PCF CKDS entry labeled CRLABEL2
with a key type of remote, it converts the key from a remote key type to an input
PIN-encrypting key type. The program also places IPINENC FOR ATM123 in the
installation data field.

If you did not specify this override record, the conversion program would
automatically convert the entry from a remote key type to an importer
key-encrypting key type.

Example 3

This example shows an override record specifying that the conversion program
convert a local key to an exporter key-encrypting key for any PCF CKDS entry
with a certain key label. The override record also provides the conversion program
with installation data.

LOLABEL1 LOCAL EXPORTER EXPORTER CONVERTED FROM CUSP12.CKDS

The conversion program automatically converts a local key to an exporter
key-encrypting key. You can use this override record if you previously submitted
an override record that had the conversion program convert all the local key types
to output PIN-encrypting keys. You can use this override record to explicitly
convert the key entry that is labeled LOLABEL1 from a local key type to an
exporter key-encrypting key type.

With the example override record, when the conversion program converts any PCF
entry labelled LOLABEL1 with a key type of local, it converts the key from a local
key type to an exporter key-encrypting key type. The program also places
EXPORTER CONVERTED FROM CUSP12.CKDS in the installation data field.

Example 4

This example shows an override record specifying that the conversion program
convert a remote key to an importer key-encrypting key for any PCF CKDS entry
with a certain key label. The override record also provides the conversion program
with installation data.

RECKDS12 REMOTE IMPORTER IMPORTER CONVERTED FROM CUSP12.CKDS

The conversion program automatically converts remote keys to importer
key-encrypting keys. You can use this override record if you supplied an override
record to convert all the remote key types to input key-encrypting keys. Use this
override record to explicitly convert key entries labeled RECKDS12 from remote
key types to importer key-encrypting key types.

246 z/OS ICSF System Programmer's Guide

With the example override record, when the conversion program converts any PCF
entry labeled RECKDS12 with a key type of remote, it converts the key from a
remote key type to an importer key-encrypting key type. The program also places
IMPORTER CONVERTED FROM CUSP12.CKDS in the installation data field.

Example 5

This example shows a global override record specifying that the conversion
program convert a local key to an output PIN-encrypting key for any PCF CKDS
entry with a key type of local. The override record also provides the conversion
program with installation data.

LOCAL OPINENC OPINENC FROM CUSP.PIN12.CKDS

When the conversion program converts any PCF entry with a key type of local, the
program converts the key from a local key type to an output PIN-encrypting key
type. The program also places OPINENC FROM CUSP.PIN12.CKDS in the installation
data field. After you specify this global override record, you can use explicit
override records to place different installation data in the ICSF CKDS entries.

Example 6

This example shows a global override record specifying that the conversion
program convert a remote key to an input PIN-encrypting key for any PCF CKDS
entry with a key type of remote. The override record also provides the conversion
program with installation data.

REMOTE IPINENC IPINENC FROM CUSP.PIN12.CKDS

When the conversion program converts any CUSP/PCF entry with a key type of
remote, it converts the key from a remote key type to an input PIN-encrypting key
type. The program also places IPINENC FROM CUSP.PIN12.CKDS in the installation
data field for the entry in the ICSF CKDS. After you specify this global override
record, you can use explicit override records to place different installation data
information in the ICSF CKDS entries.

Running the conversion program
You can run the conversion program only after you initialize the master key and
CKDS for ICSF. The CKDS you specify at ICSF startup must be initialized to
contain NOCV-enablement keys. For information about defining keys on ICSF, see
z/OS Cryptographic Services ICSF Administrator's Guide.

If the PCF master key and the ICSF master key are not the same, you must define
the PCF master key in the input ICSF CKDS. Define the PCF master key as an
importer key-encrypting key in the input ICSF CKDS. You define the key by
entering the key through the key entry hardware, or by importing the key using
the ICSF key generator utility program. For information about direct key entry
through the key entry hardware and the key generator utility program, see z/OS
Cryptographic Services ICSF Administrator's Guide.

Note: Be careful defining the PCF master key in the input ICSF CKDS, because
there is no programmed way to determine its validity.

You run the conversion program by submitting a batch job. On the EXEC
statement, specify PGM=CSFCONV. If the PCF master key and ICSF master key
are not the same in the PARM= field on the EXEC statement, specify the label of

Chapter 8. Migration from PCF to z/OS ICSF 247

the PCF master key entry in the input ICSF CKDS. If you do not specify the
parameter, the conversion program assumes that the PCF master key and ICSF
master key are the same.

This example is a JCL that runs the conversion program:
//CKDSCONV EXEC PGM=CSFCONV,PARM=’CUSPMKEY’
//CSFVSRC DD DSN=PROD.CUSP.CKDS,DISP=SHR
//CSFVINP DD DSN=TEST.CSF.CKDS,DISP=SHR
//CSFVOVR DD DSN=OVERRIDE.DATA,DISP=OLD
//CSFVNEW DD DSN=MERGED.CSF.CKDS,DISP=OLD
//CSFVRPT DD SYSOUT=A
//

In the example, CUSPMKEY is the label of the entry in the input ICSF CKDS for
the PCF master key in importer key-encrypting key form. All the data sets
necessary to run the conversion program are specified using DD statements.

The conversion program uses these data sets:

CSFVSRC
The PCF CKDS containing entries that you want to convert into ICSF format
and place in the output ICSF CKDS. This is the source CKDS for the
conversion. For a description of the PCF CKDS record format, see OS/VS1 and
OS/VS2 MVS Programmed Cryptographic Facility.

CSFVINP
A disk copy of the input ICSF CKDS. The input CKDS should already contain
the header record and the ICSF system keys and can contain other ICSF key
entries. If the CKDS does not contain NOCV-enablement keys, the output ICSF
CKDS will not contain NOCV-enablement keys. For more information about
NOCV-enablement keys, see z/OS Cryptographic Services ICSF Administrator's
Guide.

Note: The input ICSF CKDS does not have to be the CKDS you specify when
you start ICSF.

CSFVOVR
The override file with information specifying how you want the conversion
program to process PCF key entries. If no override data is required, this data
set is optional. However, you must code a dummy DD statement in the JCL.

This JCL is an example of a dummy DD statement for an override file:
//CSFVOVR DD DUMMY,DCB=(RECFM=FB,LRECL=90,BLKSIZE=3600)

See “Using the conversion program override file” on page 241 for a description
of when and how to use the override file.

CSFVNEW
An empty disk copy of an ICSF CKDS. This is the ICSF CKDS into which the
conversion program places key entries. The conversion program places key
entries from the input ICSF CKDS and the PCF CKDS into the output ICSF
CKDS. The data set must be defined and empty before you run the conversion
program.

CSFVRPT
The activity report that the conversion program creates. The report describes
any override records and gives a summary of CKDS entries that were affected
by the conversion program.

248 z/OS ICSF System Programmer's Guide

Attention: If a conversion program run ends prematurely, the results of the job
are unpredictable. You should not read a CKDS involved in the conversion into
storage for use. For a description of the conversion program return codes, see the
explanation of message CSFV0026 in z/OS Cryptographic Services ICSF Messages.

When you run the conversion program, the program produces information about
the conversion in an activity report. The activity report lists each override entry,
the action each override entry applies to the input PCF CKDS, and any error
messages. The activity report also lists the data sets that were used in the
conversion and a summary of processing. The summary of processing contains
totals that apply to CKDS entries in the conversion program job.

Example of a Conversion Initial Activity Report
Figure 11 is an example of an activity report with five explicit override records and
no global override records.

In the report, the first override record specifies that when the conversion program
converts a PCF entry labeled CRLABEL3 with a key type of local, the program
should convert the entry into an output PIN-encrypting key. The conversion
program also places the information Used in transfers to Main Office in the
installation data field of the output ICSF CKDS entry.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 1
OVERRIDE--> CRLABEL3 LOCAL OPINENC Used in transfers to Main Office.
>>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 LOCAL CONVERTED TO OPINENC.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 OPINENC SET TO Used in transfers to Main Office

OVERRIDE--> CRLABEL3 REMOTE IPINENC Used in receiving from the Main Office
>>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 REMOTE CONVERTED TO IPINENC.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 IPINENC SET TO Used in receiving from the Main Office.

OVERRIDE--> KGLABEL1 LOCAL OPINENC Used for sending encrypted PINs
>>>CSFV0292 NO KEY ENTRY FOUND FOR KGLABEL1 LOCAL.

OVERRIDE--> LOLABEL2 Valid for January 2001
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY LOLABEL2 EXPORTER SET TO Valid for January 2001.

OVERRIDE--> ZZZZ1 LOCAL Y Eliminate Key from output CKDS
>>>CSFV0382 ADD/CHANGE SPECIFICATIONS IGNORED ON OVERRIDE ENTRY. BYPASS_FLAG VALUE IS "Y".
>>>CSFV0292 NO KEY ENTRY FOUND FOR ZZZZ1 LOCAL.

>>>CSFV0012 CONVERSION PROCESSING COMPLETED. RETURN CODE = 4.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 2

CKDS DDNAME Data Set Name
------------ --------------
CSFVSRC PROD.CUSP.CKDS
CSFVINP TEST.CSF.CKDS
CSFVNEW MERGED.CSF.CKDS

PROCESSING SUMMARY

Source CKDS Entries Converted Entries ICSF Entries
-------------------------------- ----------------------------------- -----------------------------------

LOCAL 4 * Candidates 16 + Changed Input Entries 2
REMOTE 4 Bypassed by Overrides (0) Unchanged Input Entries 13
CROSS 4 --------------------------------
----------------------------- -------------------------------- TOTAL ICSF Input Entries 15

* TOTAL Source Entries 12 TOTAL Converted Entries 16 + Entries Added from Source 14
Entries Bypassed by Exit (0)

TOTAL Output ICSF Entries 29

* One Source CKDS CROSS entry converts to two Candidates.
+ Total Converted Entries = Changed Input Entries + Entries Added from Source.

Figure 11. Example of a Conversion Initial Activity Report

Chapter 8. Migration from PCF to z/OS ICSF 249

The second override record specifies that when the conversion program converts a
PCF entry labeled CRLABEL3 with a key type of remote, the program should
convert the key into an input PIN-encrypting key. The conversion program places
the information Used in receiving from the Main Office in the installation data
field of the output ICSF CKDS entry.

The label specified by the third override record does not exist in the PCF CKDS.
Therefore, the conversion program ignores this override record.

The fourth override record specifies that when the conversion program converts a
PCF entry labelled LOLABEL2, the program should place the information Valid
for January 2001 in the installation data field of the output ICSF CKDS record.

The label specified by the fifth override record does not exist on the PCF CKDS
that the conversion program is converting. Therefore, the conversion program
ignores this override record.

The message that the conversion processing has been completed is followed by a
return code. Return codes are listed under message CSFV0026 in z/OS
Cryptographic Services ICSF Messages.

After describing the five override records, the conversion report lists the data sets
the conversion program used in the conversion. PROD.CUSP.CKDS is the PCF
CKDS that the program converted. TEST.CSF.CKDS is the input ICSF CKDS
containing the ICSF entries input during the conversion. MERGED.CSF.CKDS is
the output ICSF CKDS where the conversion program placed the converted entries.

Then the activity report lists totals pertaining to the conversion. The PCF CKDS
has a total of 12 entries: four with a key type of local, four with a key type of
remote, and four with a key type of cross. Because the conversion of each cross key
entry results in two ICSF entries, the total ICSF entries that are candidates for
conversion from the PCF is 16. None of these candidates was bypassed because of
an override record, so 16 PCF entries were converted.

There were 15 entries in the input ICSF CKDS, and two of these entries were
updated because they had identical key labels in the PCF CKDS. Fourteen new
output ICSF CKDS entries were added from the PCF CKDS. The total number of
entries in the output ICSF CKDS is 29. This includes the 15 entries in the input
ICSF CKDS and the 14 entries added from the PCF CKDSN. No entries were
bypassed because of the conversion program exit.

Example of a Conversion Update Activity Report
Figure 12 on page 251 is an example of an activity report with a global override
record that has the conversion program bypass all the entries in the PCF CKDS.
Then two override records are used to convert specific entries.

250 z/OS ICSF System Programmer's Guide

The first override record specifies that the conversion program bypass all the
entries in the PCF CKDS. The second override record specifies that the conversion
program convert a PCF entry labeled CRLABEL3 with a key type of local into an
output PIN-encrypting key. This second override record also instructs the
conversion program to place the phrase Used in transfers to Main Office in the
installation data field of the output ICSF CKDS entry. The third override record
specifies that the conversion program convert a PCF entry labeled LOLABEL2 and
place Valid for January 2001 in the installation data field of the output ICSF
CKDS entry.

After describing the three override records, the conversion report lists the data sets
the conversion program used in the conversion. PROD.PCF.CKDS is the PCF CKDS
that the program converted. INTEST.CSF.CKDS is the input ICSF CKDS that
contains the ICSF entries input containing the ICSF entries input during the
conversion. NEWTEST.CSF.CKDS is the output ICSF CKDS where the conversion
program placed the converted entries.

Then the activity report lists totals pertaining to the conversion. The PCF CKDS
has a total of 12 entries: four with a key type of local, four with a key type of
remote, and four with a key type of cross. Because the conversion of each cross key
entry results in two ICSF entries, the total ICSF records that are candidates for
conversion from PCF is 16. Fourteen of those 16 entries were bypassed because of
the global override record.

There were 28 entries in the input ICSF CKDS, and one of these entries was
updated because it had an identical key label in the PCF CKDS. The total number
of entries in the output ICSF CKDS is 29. This includes the 28 entries in the input

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 1
OVERRIDE--> Y
>>>CSFV0172 ALL ENTRIES BYPASSED.

OVERRIDE--> CRLABEL3 LOCAL OPINENC Used in transfers to Main Office
>>>CSFV0222 KEY ENTRY CRLABEL3 LOCAL NOT BYPASSED.
>>>CSFV0192 TYPE FOR KEY ENTRY CRLABEL3 LOCAL CONVERTED TO OPINENC.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY CRLABEL3 OPINENC SET TO Used in transfers to Main Office.

OVERRIDE--> LOLABEL2 Valid for January 2001
>>>CSFV0222 KEY ENTRY LOLABEL2 LOCAL NOT BYPASSED.
>>>CSFV0232 INSTALLATION DATA FOR KEY ENTRY LOLABEL2 EXPORTER SET TO Valid for January 2001.

>>>CSFV0012 CONVERSION PROCESSING COMPLETED. RETURN CODE = 0.

CRYPTOGRAPHIC CONVERSION ACTIVITY REPORT DATE: 2001/06/01 (YYYY/MM/DD) TIME: 10:13:09 PAGE: 2

CKDS DDNAME Data Set Name
------------ --------------
CSFVSRC PROD.PCF.CKDS
CSFVINP INTEST.CSF.CKDS
CSFVNEW NEWTEST.CSF.CKDS

PROCESSING SUMMARY

Source CKDS Entries Converted Entries ICSF Entries
-------------------------------- ----------------------------------- -----------------------------------

LOCAL 4 * Candidates 16 + Changed Input Entries 1
REMOTE 4 Bypassed by Overrides (14) Unchanged Input Entries 27
CROSS 4 --------------------------------
----------------------------- -------------------------------- TOTAL ICSF Input Entries 28

* TOTAL Source Entries 12 TOTAL Converted Entries 2 + Entries Added from Source 1
Entries Bypassed by Exit (0)

TOTAL Output ICSF Entries 29

* One Source CKDS CROSS entry converts to two Candidates.
+ Total Converted Entries = Changed Input Entries + Entries Added from Source.

Figure 12. Example of a Conversion Update Activity Report

Chapter 8. Migration from PCF to z/OS ICSF 251

ICSF CKDS plus the one added from the PCF CKDS. No entries were bypassed
because of the conversion program exit.

252 z/OS ICSF System Programmer's Guide

Appendix A. Diagnosis reference information

This appendix contains Diagnosis, Modification, or Tuning Information.

This appendix contains descriptions of the cryptographic key data set (CKDS), the
public key data set (PKDS), PKA key tokens, the Cryptographic Communication
Vector Table (CCVT), and Cryptographic Communication Vector Table Extension
(CCVE) data areas.

For more information about key tokens, refer to z/OS Cryptographic Services ICSF
Application Programmer's Guide.

Cryptographic Key Data Set (CKDS) formats
There are three formats of the CKDS: a fixed length record format (supported by
all releases of ICSF), a variable length record format (supported by ICSF FMID
HCR7780 and later releases), and KDSR record format which is common to all KDS
types (supported by ICSF FMID HCR77A1 and later releases). The variable length
record format is only required if AES or HMAC variable-length key tokens are to
be stored in the CKDS. The variable length record format can be used to store all
existing symmetric keys and the AES and HMAC variable-length key tokens.
KDSR is a variable length record format and supports all the function of the
original variable length record format and also allows ICSF to track key usage if so
configured.

Format of the CKDS header record

Table 33. Cryptographic Key Data Set Header Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 72 Constant The field is set to binary zeros and is not used for the
header record.

72 8 Creation date The date the CKDS was initialized in the format yyyymmdd.

80 8 Creation time The initial time the CKDS was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS was updated, in the format
yyyymmdd. This field is no longer updated when a record is
updated.

96 8 Last update time The most recent time the CKDS was updated, in the format
hhmmssth. This field is no longer updated when a record is
updated.

104 2 Sequence number Initially zero in binary. Incremented each time the data set
is processed. This field is no longer updated.

© Copyright IBM Corp. 2007, 2018 253

Table 33. Cryptographic Key Data Set Header Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

106 2 CKDS header flag
bytes

Flag bytes.

Bit Meaning When Set On

0 The DES master key verification pattern is valid.

1 Reserved.

2 The AES master key verification pattern is valid.

3–7 Reserved.

8 Record level authentication is disabled.

9 The record format is variable. Set on for either
variable length record format or KDSR record
format.

10 CKDS not completely written, missing records.

11–15 Reserved.
Note: After the bits are set on, the given values remain
constant in ICSF.

108 8 DES master key
verification pattern

The system DES master key verification pattern.

116 8 Reserved

124 8 AES master key
verification pattern.

The AES master key verification pattern.

132 4 Record length Length of the record in bytes. X'00000000' for fixed length
record format. X'000000FC' for either variable length record
format or KDSR record format.

136 1 Record version Version number of the CKDS in binary. Set to X'00' for
fixed length record format or variable length record format.
Set to X'02' or greater for KDSR record format.

137 59 Reserved

196 52 Installation data Installation data associated with the CKDS record, as
supplied by an installation exit.

248 4 Authentication code The code generated by the authentication process that
ensures that the CKDS record has not been modified since
the last update. The authentication code is placed in the
CKDS header record when the CKDS is initialized. ICSF
verifies the CKDS header record authentication code
whenever a CKDS is reenciphered, refreshed, or converted
from PCF to ICSF format.This field is not used when the
record level authentication flag is set in the CKDS header
flag bytes field of the CKDS header record.

254 z/OS ICSF System Programmer's Guide

Format of the fixed-length CKDS record

Table 34. Cryptographic Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 Key label The key label specified by the KGUP control statement or
Clear Key Input panel when the record was created. When
using KGUP and the callable services, you can specify the
label to identify the record. The key label is the first field of
the key index.

64 8 Key type The type of key the record contains. The master key variant
for the key type enciphers the key. A KGUP control
statement or Clear Key Input panel specifies the key type
when the record is created. The key type is the second field
of the key index.

72 8 Creation date The initial date the CKDS record was created in the format
yyyymmdd.

80 8 Creation time The initial time the CKDS record was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS record was updated in the
format yyyymmdd.

96 8 Last update time The most recent time the CKDS record was updated in the
format hhmmssth.

104 64 Key token The internal key token. A key token contains the key value.
The value in byte four of the internal key token indicates
whether the key is AES or DES. Refer to “AES internal
fixed-length key token” on page 286 and “DES fixed-length
key token” on page 287 for the format of the internal key
token.

168 2 CKDS flag bytes Flag bytes.

Bit Meaning When Set On

0 The key within the key token field (offset 104) is a
partial key. The key is unusable.

1 Reserved.

2 CKDS label must be unique.

3–7 Reserved.

170 26 Reserved Reserved.

196 52 Installation data Installation data associated with the CKDS record as
supplied by an installation exit.

248 4 Authentication code The code generated by the authentication process that
ensures the CKDS record has not been modified since the
last update. The authentication code is placed in the CKDS
record when the record is created. When you refresh,
reencipher, or convert a CKDS, ICSF verifies each CKDS
record as ICSF performs the action. This field is not used
when the record level authentication flag is set in the
CKDS header flag bytes field of the CKDS header record.

Appendix A. Diagnosis reference information 255

Format of the variable-length CKDS record

The following table presents the format of each variable-length data set record.

Table 35. Variable-Length Cryptographic Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 Key label The label or name of this CKDS record. The key label is the
first field of the key index.

64 8 Key type The type of key the record contains. The key type is the
second field of the key index.

72 8 Creation date The initial date the CKDS record was created in the format
yyyymmdd.

80 8 Creation time The initial time the CKDS record was created in the format
hhmmssth.

88 8 Last update date The most recent date the CKDS record was updated in the
format yyyymmdd.

96 8 Last update time The most recent time the CKDS record was updated in the
format hhmmssth.

104 4 Record length Length of the entire record including the key token.

108 60 Reserved.

168 2 CKDS flag bytes Flag bytes.

Bit Meaning When Set On

0 The key within the key token field is a partial key.
The key is unusable.

1 Reserved.

2 CKDS label must be unique.

3 The record format is variable — always 1

4–7 Reserved.

170 26 Reserved.

196 52 Installation data

248 20 Authentication code The record authentication code.

268 variable Key token The key token.

Format of KDSR CKDS record

See “Common record format (KDSR)” on page 283 for more information on this
CKDS record.

Public Key Data Set (PKDS) format
The PKDS record includes the PKDS header and the PKA key token. These tables
show the format of each of these records.

256 z/OS ICSF System Programmer's Guide

Format of the PKDS header record
Table 36. Public Key Data Set Header Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 PKHVKEY VSAM key of the PKDS header.

64 8 Reserved.

72 8 PKHCRDTE The date the PKDS was created in the format yyyymmdd.

80 8 PKHCRTIM The initial time the PKDS was created in the format
hhmmssth.

88 8 PKHUPDTE The most recent date the PKDS header was updated, in the
format yyyymmdd. This field is no longer updated when a
record is updated.

96 8 PKHUPTIM The most recent time the PKDS header was updated, in the
format hhmmssth. This field is no longer updated when a
record is updated.

104 4 PKHRLEN Length of the PKDS header entry.

108 16 Reserved

124 16 PKHSMKHP The hash pattern of the RSA MK.

140 8 PKHEMKVP The verification pattern of the ECC MK.

148 10 Reserved

158 1 PKHVER Version number of the PKDS in binary.

v Set to X'00' for PKDS record format.

v Set to X'02' or greater for KDSR record format.

159 1 Flag bytes.

Bit Meaning When Set On

0 PKDS not completely written, missing records.

1-7 Reserved.

160 20 PKHAUTH PKDS header authentication code.

Format of the PKDS record
Table 37. Public Key Data Set Record Format

Offset (Dec)
Number of
Bytes Field Name Description

0 64 PKDLABEL
Label or name of this PKDS entry.

64 8
Reserved.

72 8 PKDCRDTE
The date this PKDS record was created in the format
yyyymmdd.

80 8 PKDCRTIM
The initial time this PKDS record was created in the format
hhmmssth.

88 8 PKDUPDTE
The most recent date this PKDS record was updated, in the
format yyyymmdd.

Appendix A. Diagnosis reference information 257

Table 37. Public Key Data Set Record Format (continued)

Offset (Dec)
Number of
Bytes Field Name Description

96 8 PKDUPTIM
The most recent time this PKDS record was updated, in the
format hhmmssth.

104 4 PKDRLEN
Length of the entire PKDS record entry.

108 52 PKDUDATA User data.

160 20 PKDAUTH
The entry authentication code.

180 1868 PKDTOKEN
The public or private key token.

Token data set (TKDS) format
A z/OS PKCS #11 token represents a virtual cryptographic device, and can contain
multiple objects. The token data set (TKDS) contains definitions of z/OS PKCS #11
tokens and token objects.

The token data set includes a header record and records for each of the individual
z/OS PKCS #11 tokens and token objects. Each object associated with a particular
z/OS PKCS #11 token has the token's name in its handle. The records are variable
length records, and contain a length field specifying the total length of the record.

Format of the header record of the token data set
There is one header record for the token data set.

Table 38. Format of the header record of the token data set

Offset (decimal)
Length of field
(bytes) Description

0 72 VSAM key of the TKDS header.
Bytes 0-39:

Binary zeros.
Bytes 40-43:

EBCDIC 'THDR'.
Bytes 44-71:

Binary zeros.

72 8 Reserved for IBM's use.

80 8 The date that the TKDS was created, in the format
yyyymmdd.

88 8 The time that the TKDS was created, in the format
hhmmssth.

96 8 The most recent date that the TKDS header was
updated, in the format yyyymmdd. This field is no
longer updated when a record is updated.

104 8 The most recent time that the TKDS header was
updated, in the format hhmmssth. This field is no
longer updated when a record is updated.

112 4 Length of the TKDS header record.

116 16 P11 MKVP.

258 z/OS ICSF System Programmer's Guide

Table 38. Format of the header record of the token data set (continued)

Offset (decimal)
Length of field
(bytes) Description

132 16 RCS MKVP.

148 6 Reserved.

154 1 Version number of the TKDS in binary.

v Set to X'00' for fixed length record format or
variable length record format.

v Set to X'02' or greater for KDSR record.

155 1 Flag bytes.

Bit Meaning When Set On

0 TKDS not completely written, missing
records.

1-7 Reserved.

Format of the token and object records
Each z/OS PKCS #11 token record and token object record begins with the same
188 bytes of data. The remainder of the record is specific to the token or object.

Common section of the token and object records
Every record in the token data set, with the exception of the header record, begins
with these 188 bytes of data.

Table 39. Format of the common section of the token and object records

Offset
(decimal)

Length of field
(bytes) Description

0 72 Handle of token or object
Bytes 0-31:

Token name
Bytes 32-39:

Sequence number
Byte 40:

Character “T” for clear token object
Character “Y” for secure token object

Bytes 41-43
Blank characters

Bytes 44-71:
Binary zeros

72 8 Reserved for IBM's use

80 8 The date that this record was created, in the format
yyyymmdd

88 8 The time that this record was created, in the format
hhmmssth

96 8 The most recent date that this record was updated, in the
format yyyymmdd

104 8 The most recent time that this record was updated, in the
format hhmmssth

112 4 Length of the entire TKDS record entry

116 20 Reserved for IBM's use

136 52 User data

Appendix A. Diagnosis reference information 259

Table 39. Format of the common section of the token and object records (continued)

Offset
(decimal)

Length of field
(bytes) Description

188 variable The TKDS token or object (see mappings)

Format of the token-specific section of the token record
Each z/OS PKCS #11 token record begins with the 188 bytes. The remainder of the
record contains the contents of the token. The mapping of the record shows the
data beginning at offset 0, which is its offset into the token-specific portion of the
record; however, that portion of the record is at an offset of 188 into the entire
record.

Table 40. Format of the unique section of the token record

Offset (decimal)
188 +

Length of field
(bytes) Description

0 4 Eye catcher for token: “TOKN”

4 2 Version number of structure: EBCDIC '00'

6 2 Length of structure in bytes

8 4 Reserved for IBM's use. Must be zeros.

12 8 Last assigned sequence number

20 32 Manufacturer identification

52 16 Model

68 16 Serial number

84 8 Date of the most recent update to this token,
expressed as Coordinated Universal Time (UTC) in
the format yyyymmdd. This includes any update to
token information or to a token object.

92 8 Time of the most recent update to this token,
expressed as Coordinated Universal Time (UTC) in
the format hhmmssth. This includes any update to
token information or to a token object.

100 44 Reserved for IBM's use

144 End of token

Format of the object-specific sections of the token object
records
The following classes of objects can be associated with a z/OS PKCS #11 token:
v Certificate
v Public key
v Private key
v Secret key
v Data objects
v Domain parameters

The token object record for each begins with the common section described
“Common section of the token and object records” on page 259, followed by a
section specific to the class of object. Each of the object-specific sections begins
with a 12-byte header record, followed by a variable-length section. Each 12-byte
header contains a 4-byte flag field that has the same mapping for all classes of
objects.

260 z/OS ICSF System Programmer's Guide

This 4-byte flag field occurs in the object header section of each token object
record.

Table 41. Format of the token object flags

Flag bytes Field name Description

Flag byte 1

Bit 0 OBJ_IS_TOKOBJ When on, the object is a token object.
When off, the object is a session
object.

Bit 1 OBJ_IS_PRVOBJ When on, the object is a private object.
When off, the object is a public object.

Bit 2 OBJ_IS_MODOBJ When on, the object is modifiable.

Bit 3 KEY_DERIVE When on, the key supports key
derivation.

Bit 4 KEY_LOCAL When on, the key was generated
locally.

Bit 5 KEY_ENCRYPT When on, the key supports
encryption.

Bit 6 KEY_DECRYPT When on, the key supports
decryption.

Bit 7 KEY_VERIFYA When on, the key supports
verification where the signature is an
appendix to the data.

Flag byte 2

Bit 0 KEY_VERIFYR When on, the key supports
verification where the data is
recovered from the signature

Bit 1 KEY_SIGA When on, the key supports signatures
where the signature is an appendix to
the data.

Bit 2 KEY_SIGR When on, the key supports signatures
where the data is recovered from the
signature.

Bit 3 KEY_WRAP When on, the key supports wrapping.

Bit 4 KEY_UNWRAP When on, the key supports
unwrapping.

Bit 5 KEY_EXTRACT When on, the key is extractable.

Bit 6 KEY_IS_SENSITIVE When on, the key is sensitive.

Bit 7 KEY_IS_ALWAYS_SENSITIVE When on, the SENSITIVE attribute
(KEY_IS_SENSITIVE) is always true.

Flag byte 3

Bit 0 KEY_NEVER_EXTRACT When on, the EXTRACTABLE
attribute (KEY_EXTRACT) is never
true. When off, the EXTRACTABLE
attribute (KEY_EXTRACT) can be
true.

Bit 1 OBJ_IS_TRUSTED When on, the certificate can be trusted
for the application for which it was
created.

Bit 2 CERT_IS_DEFAULT When on, this is the default certificate.

Appendix A. Diagnosis reference information 261

Table 41. Format of the token object flags (continued)

Flag bytes Field name Description

Bit 3 FIPS140 When on, key is only to be used in a
FIPS-compliant manner.

Bit 4 KEY_IS_SECURE When on, key is a secure PKCS #11
key.

Bit 5 KEY_ATTRBOUND When on, key is attribute bound.

Bit 6 WRAP_WITH_TRUSTED When on, key may only be wrapped
with another key marked
OBJ_IS_TRUSTED

Bit 7 KEY_IS_ALWAYS_SECURE When on, KEY_IS_SECURE is always
true.

Flag byte 4

Bit 0 KEY_IS_REGIONAL When on, key requires a regional
cryptographic server.

Bits 1-7 Reserved for IBM's use.

Table 42. Format of the token certificate object

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for certificate object: “CERT”

4 2 Version: EBCDIC '00'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4
TYPE attribute:
X'00000000': CKC_X_509

16 4 Certificate category
0 Undefined
1 Token user
2 Certificate authority
3 Other entity

20 8 Reserved for IBM's use

28 32 Reserved for IBM's use

60 2 Length of SUBJECT attribute in bytes (aa)

62 2 Length of ID attribute in bytes (bb)

64 2 Length of ISSUER attribute in bytes (cc)

66 2 Length of SERIAL_NUMBER attribute in bytes
(dd)

68 2 Length of VALUE attribute in bytes (ee)

70 2 Length of LABEL attribute in bytes (ff)

72 2 Length of APPLICATION attribute in bytes (gg)

74 22 Reserved for IBM's use

262 z/OS ICSF System Programmer's Guide

Table 42. Format of the token certificate object (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

96 4 Offset of SUBJECT attribute in bytes

100 4 Offset of ID attribute in bytes

104 4 Offset of ISSUER attribute in bytes

108 4 Offset of SERIAL_NUMBER attribute in bytes

112 4 Offset of VALUE attribute in bytes

116 4 Offset of LABEL attribute in bytes

120 4 Offset of APPLICATION attribute in bytes

124 44 Reserved for IBM's use

168 aa + bb + cc + dd +
ee + ff + gg

Certificate attributes (variable length)

168 + aa + bb
+ cc + dd + ee
+ ff + gg

End of certificate object

Table 43. Format of the token public key object (Version 0)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for public key object: “PUBK”

4 2 Version: EBCDIC '00'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4
TYPE attribute:
CKK_RSA

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4
Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

72 4 Length in bits of modulus n

76 256 Modulus n

332 256 Reserved

588 256 Public exponent e

844 256 Reserved

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

Appendix A. Diagnosis reference information 263

Table 43. Format of the token public key object (Version 0) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184
+aa+bb+cc+dd

End of public key object

Table 44. Format of the token public key object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for public key object: “PUBK”

4 2 Version: EBCDIC '01'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4
TYPE attribute:
CKK_RSA, CKK_DSA, CKK_EC, or CKK_DH

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4
Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus n

588 512 Public exponent e

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 128 Reserved

204 128 Prime p

332 128 Reserved

264 z/OS ICSF System Programmer's Guide

Table 44. Format of the token public key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

460 128 Base g

588 128 Reserved

716 128 Value y

844 20 Reserved

864 20 Subprime q

884 216 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 256 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 128 Reserved

204 136 EC point Q (DER encoded)

340 760 Reserved

Variable length attribute section

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

Appendix A. Diagnosis reference information 265

Table 44. Format of the token public key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184
+aa+bb+cc+dd

End of public key object

Table 45. Format of the token public key object (Version 2)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for public key object: “PUBK”

4 2 Version: EBCDIC '02'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4
TYPE attribute:
CKK_RSA, CKK_DSA, CKK_EC, or CKK_DH

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4
Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus n

588 512 Public exponent e

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 8 Reserved

266 z/OS ICSF System Programmer's Guide

Table 45. Format of the token public key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

852 32 Subprime q

884 216 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 256 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 128 Reserved

204 136 EC point Q (DER encoded)

340 760 Reserved

Variable length attribute section

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

Appendix A. Diagnosis reference information 267

Table 45. Format of the token public key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

1136 4 Offset of LABEL attribute in bytes

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd Public key attributes (variable length)

1184
+aa+bb+cc+dd

End of public key object

Table 46. Format of the token public key object (Version 3)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for public key object: “PUBK”

4 2 Version: EBCDIC '03'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4
TYPE attribute:
CKK_RSA, CKK_DSA, CKK_EC, or CKK_DH

16 8 Start date for the key, in the format yyyymmdd

24 8 End date for the key, in the format yyyymmdd

32 4
Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 2 Reserved

38 2 Length of secure key material in bytes (ee)

40 4 Offset to secure key material in bytes

44 28 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus n

588 512 Public exponent e

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 8 Reserved

852 32 Subprime q

268 z/OS ICSF System Programmer's Guide

Table 46. Format of the token public key object (Version 3) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

884 216 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value y

844 256 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 128 Reserved

204 136 EC point Q (DER encoded)

340 760 Reserved

Variable length attribute section

1100 2 Length of SUBJECT attribute in bytes (aa)

1102 2 Length of ID attribute in bytes (bb)

1104 2 Length of LABEL attribute in bytes (cc)

1106 2 Length of APPLICATION attribute in bytes (dd)

1108 20 Reserved

1128 4 Offset of SUBJECT attribute in bytes

1132 4 Offset of ID attribute in bytes

1136 4 Offset of LABEL attribute in bytes

Appendix A. Diagnosis reference information 269

Table 46. Format of the token public key object (Version 3) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

1140 4 Offset of APPLICATION attribute in bytes

1144 40 Reserved

1184 aa+bb+cc+dd+ee Public key attributes (variable length)

1184
+aa+bb+cc+dd+ee

End of public key object

Table 47. Format of the token private key object (Version 0)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for private key object: “PRIV”

4 2 Version: EBCDIC '00'

6 2 Length of object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4
Type attribute: CKK_RSA

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4
Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

72 4 Length in bits of modulus n

76 256 Modulus: modulus n

332 256 Reserved

588 256 Public exponent e

844 256 Reserved

1100 32 Reserved

1132 256 Private exponent d

1388 256 Reserved

1644 136 Prime p

1780 128 Reserved

1908 128 Prime q

2036 128 Reserved

2172 136 Private exponent d modulo p-1

2300 128 Reserved

2428 128 Private exponent d modulo q-1

270 z/OS ICSF System Programmer's Guide

Table 47. Format of the token private key object (Version 0) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

2556 128 Reserved

2684 136 CRT coefficient q-1 mod p

2820 128 Reserved

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww Private key attributes (variable length)

3032
+xx+yy+zz+ww

End of private key object

Table 48. Format of the token private key object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for private key object: “PRIV”

4 2 Version: EBCDIC '01'

6 2 Length of object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4
Type attribute: CKK_RSA, CKK_DSA,
CKK_EC, or CKK_DH

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4
Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus: modulus n

588 512 Public exponent e

Appendix A. Diagnosis reference information 271

Table 48. Format of the token private key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

1100 32 Reserved

1132 512 Private exponent d

1644 264 Prime p

1908 256 Prime q

2164 264 Private exponent d modulo p-1

2428 256 Private exponent d modulo q-1

2684 264 CRT coefficient q-1 mod p

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 128 Reserved

204 128 Prime p

332 128 Reserved

460 128 Base g

588 236 Reserved

824 20 Value x

844 20 Reserved

864 20 Subprime q

884 2064 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 236 Reserved

824 20 Value x

844 2104 Reserved

Algorithm-specific section (EC)

272 z/OS ICSF System Programmer's Guide

Table 48. Format of the token private key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 64 Reserved

140 66 Value d

206 2742 Reserved

Variable length attribute section

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww Private key attributes (variable length)

3032
+xx+yy+zz+ww

End of private key object

Appendix A. Diagnosis reference information 273

Table 49. Format of the token private key object (Version 2)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for private key object: “PRIV”

4 2 Version: EBCDIC '02'

6 2 Length of object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4
Type attribute: CKK_RSA, CKK_DSA,
CKK_EC, or CKK_DH

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4
Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 36 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus: modulus n

588 512 Public exponent e

1100 32 Reserved

1132 512 Private exponent d

1644 264 Prime p

1908 256 Prime q

2164 264 Private exponent d modulo p-1

2428 256 Private exponent d modulo q-1

2684 264 CRT coefficient q-1 mod p

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 224 Reserved

812 32 Value x

844 8 Reserved

852 32 Subprime q

884 2064 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

274 z/OS ICSF System Programmer's Guide

Table 49. Format of the token private key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

588 256 Value x

844 4 Length in bits of value x

848 2100 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 64 Reserved

140 66 Value d

206 2742 Reserved

Variable length attribute section

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww Private key attributes (variable length)

Appendix A. Diagnosis reference information 275

Table 49. Format of the token private key object (Version 2) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

3032
+xx+yy+zz+ww+ee

End of private key object

Table 50. Format of the token private key object (Version 3)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for private key object: “PRIV”

4 2 Version: EBCDIC '03'

6 2 Length of object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4
Type attribute: CKK_RSA, CKK_DSA,
CKK_EC, or CKK_DH

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4
Key generate mechanism:
CK_UNAVAILABLE_INFORMATION

36 2 Reserved

38 2 Length of secure key material (ee)

40 4 Offset to secure key material in bytes

44 28 Reserved

Algorithm-specific section (RSA)

72 4 Length in bits of modulus n

76 512 Modulus: modulus n

588 512 Public exponent e

1100 32 Reserved

1132 512 Private exponent d

1644 264 Prime p

1908 256 Prime q

2164 264 Private exponent d modulo p-1

2428 256 Private exponent d modulo q-1

2684 264 CRT coefficient q-1 mod p

Algorithm-specific section (DSA)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

276 z/OS ICSF System Programmer's Guide

Table 50. Format of the token private key object (Version 3) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

588 224 Reserved

812 32 Value x

844 8 Reserved

852 32 Subprime q

884 2064 Reserved

Algorithm-specific section (DH)

72 4 Length in bits of prime p

76 256 Prime p

332 256 Base g

588 256 Value x

844 4 Length in bits of value x

848 2100 Reserved

Algorithm-specific section (EC)

72 4 EC params curve constant –

x'00000001' secp192r1
- { 1 2 840 10045 3 1 1 }

x'00000002' secp224r1
- { 1 3 132 0 33 }

x'00000003' secp256r1
- { 1 2 840 10045 3 1 7 }

x'00000004' secp384r1
- { 1 3 132 0 34 }

x'00000005' secp521r1
- { 1 3 132 0 35 }

x'00000006' brainpoolP160r1
- { 1 3 36 3 3 2 8 1 1 1 }

x'00000007' brainpoolP192r1
- { 1 3 36 3 3 2 8 1 1 3 }

x'00000008' brainpoolP224r1
- { 1 3 36 3 3 2 8 1 1 5 }

x'00000009' brainpoolP256r1
- { 1 3 36 3 3 2 8 1 1 7 }

x'0000000A' brainpoolP320r1
- { 1 3 36 3 3 2 8 1 1 9 }

x'0000000B' brainpoolP384r1
- { 1 3 36 3 3 2 8 1 1 11 }

x'0000000C' brainpoolP512r1
- { 1 3 36 3 3 2 8 1 1 13 }

76 64 Reserved

140 66 Value d

206 2742 Reserved

Variable length attribute section

2948 2 Length of SUBJECT attribute in bytes (xx)

2950 2 Length of ID attribute in bytes (yy)

2952 2 Length of LABEL attribute in bytes (zz)

Appendix A. Diagnosis reference information 277

Table 50. Format of the token private key object (Version 3) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

2954 2 Length of APPLICATION attribute in bytes (ww)

2956 20 Reserved

2976 4 Offset of SUBJECT attribute in bytes

2980 4 Offset of ID attribute in bytes

2984 4 Offset of LABEL attribute in bytes

2988 4 Offset of APPLICATION attribute in bytes

2992 40 Reserved

3032 xx+yy+zz+ww+ee Private key attributes (variable length)

3032
+xx+yy+zz+ww+ee

End of private key object

Table 51. Format of the token secret key object (Version 0)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for secret key object: “SECK”

4 2 Version: EBCDIC '00'

6 2 Length of the object in bytes

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4 Type of key: CKK_DES, CKK_DES2, CKK_DES3,
CKK_AES

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4
Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 32 Reserved

70 64 VALUE: value of the key

134 538 Reserved

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

278 z/OS ICSF System Programmer's Guide

Table 51. Format of the token secret key object (Version 0) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

756 xx+yy+zz Secret key attributes (variable length)

756
+xx+yy+zz

End of secret key object

Table 52. Format of the token secret key object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for secret key object: “SECK”

4 2 Version: EBCDIC '01'

6 2 Length of the object in bytes

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4 Type of key:

CKK_DES, CKK_DES2, CKK_DES3,
CKK_BLOWFISH, CKK_RC4,
CKK_GENERIC_SECRET, and CKK_AES.

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4
Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 32 Reserved

70 256 VALUE: value of the key

326 346 Reserved

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

Appendix A. Diagnosis reference information 279

Table 52. Format of the token secret key object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

756 xx+yy+zz Secret key attributes (variable length)

756
+xx+yy+zz

End of secret key object

Table 53. Format of the token secret key object (Version 3)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for secret key object: “SECK”

4 2 Version: EBCDIC '03'

6 2 Length of the object in bytes

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4 Type of key:

CKK_DES, CKK_DES2, CKK_DES3,
CKK_BLOWFISH, CKK_RC4,
CKK_GENERIC_SECRET, and CKK_AES.

16 8 Start date for the key (in the format yyyymmdd)

24 8 End date for the key (in the format yyyymmdd)

32 4 Key generate mechanism
CK_UNAVAILABLE_INFORMATION

36 2 Length of the key in bytes

38 2 Length of secure key material (ee)

40 4 Offset to secure key material in bytes

44 26 Reserved

70 256 VALUE: value of the key

326 342 Reserved

668 1 Key field flags:

Bit 0
Key check value present

Bits 1-7
Reserved for IBM's use

672 4 Usage counter field

676 2 Reserved

678 2 Length of LABEL attribute in bytes (xx)

680 2 Length of APPLICATION attribute in bytes (yy)

682 2 Length of the ID attribute in bytes (zz)

684 20 Reserved

704 4 Offset of LABEL attribute in bytes

280 z/OS ICSF System Programmer's Guide

Table 53. Format of the token secret key object (Version 3) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

708 4 Offset of APPLICATION attribute in bytes

712 4 Offset of the ID attribute in bytes

716 40 Reserved

756 xx+yy+zz+ee Secret key attributes (variable length)

756
+xx+yy+zz+ee

End of secret key object

Table 54. Format of the token domain parameters object (Version 1)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for token domain object: “DOMP”

4 2 Version: EBCDIC '01'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4 TYPE attribute: CKK_DSA or CKK_DH

16 28 Reserved

Algorithm-specific section (DSA)

44 4 Length in bits of prime p

48 128 Reserved

176 128 Prime p

304 128 Reserved

432 128 Base g

560 20 Reserved

580 20 Subprime q

600 636 Reserved

Algorithm-specific section (DH)

44 4 Length in bits of prime p

48 4 Reserved

52 256 Prime p

308 256 Reserved

564 256 Base g

820 416 Reserved

Variable length attribute section

1236 2 Length of LABEL attribute in bytes (aa)

1238 2 Length of APPLICATION attribute in bytes (bb)

1240 20 Reserved

Appendix A. Diagnosis reference information 281

Table 54. Format of the token domain parameters object (Version 1) (continued)

Offset (decimal)
188 +

Length of field
(bytes) Description

1260 4 Offset of LABEL attribute in bytes

1264 4 Offset of APPLICATION attribute in bytes

1268 40 Reserved

1308 aa+bb Domain parameters attributes (variable length)

1308
+aa+bb

End of domain parameters object

Table 55. Format of the token domain parameters object (Version 2)

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for token domain object: “DOMP”

4 2 Version: EBCDIC '02'

6 2 Length of the object (in bytes)

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4 TYPE attribute: CKK_DSA

16 28 Reserved

Algorithm-specific section (DSA)

44 4 Length in bits of prime p

48 256 Prime p

304 256 Base g

560 8 Reserved

568 32 Subprime q

600 636 Reserved

Variable length attribute section

1236 2 Length of LABEL attribute in bytes (aa)

1238 2 Length of APPLICATION attribute in bytes (bb)

1240 20 Reserved

1260 4 Offset of LABEL attribute in bytes

1264 4 Offset of APPLICATION attribute in bytes

1268 40 Reserved

1308 aa+bb Domain parameters attributes (variable length)

1308
+aa+bb

End of domain parameters object

282 z/OS ICSF System Programmer's Guide

Table 56. Format of the token data object

Offset (decimal)
188 +

Length of field
(bytes) Description

Object header

0 4 Eye catcher for data object: “DATA”

4 2 Version: EBCDIC '00'

6 2 Length of object, in bytes

8 4 Flags (see Table 41 on page 261)

Object type-specific section

12 4 Reserved for IBM's use

16 28 Reserved for IBM's use

44 2 Length of VALUE attribute in bytes (aa)

46 2 Length of OBJECT_ID attribute in bytes (bb)

48 2 Length of LABEL attribute in bytes (cc)

50 2 Length of APPLICATION attribute in bytes (dd)

52 2 Length of ID attribute in bytes (ee)

54 22 Reserved for IBM's use

76 4 Offset of VALUE attribute in bytes

80 4 Offset of OBJECT_ID attribute in bytes

84 4 Offset of LABEL attribute in bytes

88 4 Offset of APPLICATION attribute in bytes

92 4 Offset of ID attribute in bytes

96 44 Reserved for IBM's use

140 aa + bb + cc + dd +
ee

Data attributes (variable length)

140 + aa + bb
+ cc + dd + ee

End of data object

Common record format (KDSR)
The common record format (KDSR) is a record format for all KDS types (CKDS,
PKDS, and TKDS) that allows for reference date tracking. KDSR format records
were introduced in ICSF FMID HCR77A1. Version X'02' of the KDSR records have
three distinct sections: a 140-byte fixed area, a variable length area that contains the
cryptographic key material (key token), and a variable length metadata area that is
used to store reference dates and other data.

Format of the KDSR format record (Version X'02')

KDSR record sections:
v Fixed data area – 140 bytes
v Cryptographic key material (key token) – variable length
v Metadata area – variable length

Appendix A. Diagnosis reference information 283

Table 57. Format of the KDSR record fixed data area

Offset
(Decimal)

Number of
bytes Field name Description

0 72 VSAM Key CKDS
Bytes 0-63

Key Label.
Bytes 64-71

Key Type.

PKDS
Bytes 0-63

Key Label.
Bytes 64-71

Reserved.

TKDS
Bytes 0-31

Token name.
Bytes 32-39

Sequence number.
Byte 40

Blank for token.
Character "T" for
clear token object.
Character "Y" for
secure token object.

Bytes 41-43
Blank characters.

Bytes 44-71
Binary zeros.

72 8 Reserved.

80 1 Record Version Version of the KDSR record
format.

81 1 KDS Type 1=CKDS, 2=PKDS, 3=TKDS.

82 2 KDS Flags
Bit Meaning when set On

0 The key within the
key material field is a
partial key. (CKDS
only).

1 Label must be unique.
(CKDS only).

2 Preactive -> Active
state audited.

3 Active -> Deactivated
state audited.

84 4 KDS Length Length of the entire KDS
record including key material
and metadata.

88 8 Creation Date The initial date the KDS record
was created in the format
yyyymmdd.

96 8 Creation Time The initial time the KDS record
was created in the format
hhmmssth.

284 z/OS ICSF System Programmer's Guide

Table 57. Format of the KDSR record fixed data area (continued)

Offset
(Decimal)

Number of
bytes Field name Description

104 8 Update Date The most recent date that this
record was updated, in the
format yyyymmdd or binary
zero if the record has not been
updated since creation.

112 8 Update Time The most recent time that this
record was updated, in the
format hhmmssth or binary zero
if the record has not been
updated since creation.

120 4 Key Material Length Length of the key material
portion of the record.

124 4 Key Material Offset Offset of the key material
portion of the record, which is
calculated from the start of the
record.

128 4 Metadata Length Length of the metadata area.

132 4 Metadata Offset Offset of the metadata area in
the record, which is calculated
from the start of the record.

136 4 Reserved Reserved.

Table 58. Format of KDSR metadata area

Offset
(Decimal)

Number of
bytes Field name Description

0 1 KDSR_MD_VERSION

1 7 Reserved for IBM use.

8 8 KDSR_MD_REFDATE_STCKE Reference date in STCKE
format, high 8 bytes. Low bit in
Byte 5 represents one second.

16 8 KDSR_MD_REFDATE Reference date in the format
yyyymmdd.

24 8 KDSR_MD_STARTDATE Key material validity start date
in the format yyyymmdd.

32 8 KDSR_MD_ENDDATE Key material validity end date
in the format yyyymmdd.

40 Variable Reserved for IBM use.

Table 59. Format of KDSR variable-length metadata block

Offset
(Decimal)

Number of
bytes Field name Description

0 2 KDSR_MD_TLV_TAG Tag for block.

2 2 KDSR_MD_TLV_LEN Length of the block, which
includes the length of the tag
and length fields.

4 Variable KDSR_MD_DATA Data.

Appendix A. Diagnosis reference information 285

AES key token format

AES internal fixed-length key token
Fixed-length AES key tokens are 64 bytes and consist of an internal key token
identifier and a token version number, reserved fields, a flag byte containing
various flag bits, and a token validation value.

Depending on the flag byte, the key token either contains an encrypted key, a clear
key, or the key is absent. An encrypted key is encrypted under an AES master key
that is identified by a master-key verification pattern (MKVP) in the key token. The
key token contains a two-byte integer that specifies the length of the clear-key
value in bits, valued to 0, 128, 192, or 256, and a two-byte integer that specifies the
length of the encrypted-key value in bytes, valued to 0 or 32. An LRC checksum
byte of the clear-key value is also in the key token.

All keys in fixed-length AES key tokens are DATA keys. If the flag byte indicates
that a control vector (CV) is present, it must be all binary zeros. An all-zero CV
represents the CV value of an AES DATA key. If a key is present without a control
vector in a key token, that is accepted and the key is interpreted as an AES DATA
key.

The AES internal key token is the structure that is used to hold AES keys that are
either encrypted with the AES master-key or in clear text format.

Table 60 shows the format for an AES internal key token.

Table 60. AES internal fixed-length key token format

Offset (Dec)
Length of field
(Bytes) Description

00 1 X'01' (flag indicating that this is an internal key token)

01 3 Implementation-dependent bytes (X'000000' for ICSF)

04 1 Key token version number (X'04')

05 1 Reserved - must be set to X'00'

06 1 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present.

Off for a clear key token. On for an encrypted key token.

1 Control vector (CV) value in this token has been applied to the key.

2 No key is present or the AES MKVP is not present if the key is
encrypted.

3- 7 Reserved. Must be set to 0.

07 1 1-byte LRC checksum of clear key value.

08 8 Master key verification pattern (MKVP).

(For a clear AES key token, this value is hex zeros.)

286 z/OS ICSF System Programmer's Guide

Table 60. AES internal fixed-length key token format (continued)

Offset (Dec)
Length of field
(Bytes) Description

16 32 Key value, if present. Contains either:

v A 256-bit encrypted-key value. The clear key value is padded on the right
with binary zeros, and the entire 256-bit value is encrypted under the AES
master-key using AES CBC mode with an initialization vector of binary zeros.

v A 128-bit, 192-bit, or 256-bit clear-key value left-aligned and padded on the
right with binary zeros for the entire 256-bit field.

48 8 8-byte control vector.

(For a clear AES key token, this value is hex zeros.)

56 2 2-byte integer that specifies the length in bits of the clear key value.

58 2 2-byte integer that specifies the length in bytes of the encrypted key value.

(For a clear AES key token, this value is hex zeros.)

60 4 Token validation value (TVV). For more information, see “Token validation
value.”

Token validation value
ICSF uses the token validation value (TVV) to verify that a token is valid. The TVV
prevents a key token that is not valid or that is overlaid from being accepted by
ICSF. It provides a checksum to detect a corruption in the key token.

When an ICSF callable service generates a key token, it generates a TVV and stores
the TVV in bytes 60-63 of the key token. When an application program passes a
key token to a callable service, ICSF checks the TVV. To generate the TVV, ICSF
performs a twos complement ADD operation (ignoring carries and overflow) on
the key token, operating on four bytes at a time, starting with bytes 0-3 and ending
with bytes 56-59.

DES key token formats

DES fixed-length key token
Fixed-length DES key tokens are 64 bytes and consist of a DES-enciphered key, a
control vector, various flag bits, a token identifier and version number, reserved
fields, and a token-validation value. An internal key-token also includes a
master-key verification pattern or master-key version number, depending on the
key-token version number.

If an internal fixed-length DES key-token has a key present, it contains a key
multiply-enciphered by a DES master key. If an external fixed-length DES
key-token has a key present, it contains a key multiply-enciphered by a
key-encrypting key.

Version X'00' tokens are single-length, double-length, and triple-length keys for all
key types. DATA key tokens with zero control vectors are version X'00' for
single-length keys and version X'01' for double-length and triple-length keys.

Table 61 on page 288 shows the format for a DES internal key token.

Appendix A. Diagnosis reference information 287

|

Table 61. DES internal fixed-length key token format

Offset (Dec)
Length of field
(Bytes) Description

00 1 X'01' (flag indicating this is an internal key token).

01 3 Implementation-dependent bytes (X'000000' for ICSF).

04 1 Key token version number (X'00' or X'01' for CCA tokens and X'F0' or X'F1' for
RCS tokens).

05 1 Reserved (X'00').

06 1 Flag byte

Bit Meaning When Set On

0 Encrypted key and master key verification pattern (MKVP) are present.

1 Control vector (CV) value in this token has been applied to the key.

2 Key is used for no control vector (NOCV) processing. Valid for
transport keys only.

3-6 Reserved.

7 Export prohibited.

07 1
Bit Meaning When Set On

0-2 Key value encryption method.

v 000 - The key is encrypted by using the original CCA method (ECB).

v 001 - The encrypted key is wrapped using the enhanced method and
SHA-1 (WRAP-ENH).

v 010 - The encrypted key is wrapped using the enhanced method and
SHA-256 (WRAPENH2). Requires CV bit ENH-ONLY to be enabled.
Only valid with version X’00’ tokens.

These bits are ignored if the token contains no key or a clear key.

3-7 Reserved.

08 8 Non-compliant-tagged tokens: Master Key Verification Pattern (MKVP).

Compliant-tagged tokens: A 5-byte MKVP followed by 3-bytes of internal
compliance information.

16 8 A single-length key, the left half of a double-length key, or Part A of a
triple-length key. The value is encrypted under the master key when flag bit 0 is
on. Otherwise, it is in the clear.

24 8 X'0000000000000000' if a single-length key, or the right half of a double-length
key, or Part B of a triple-length key. The right half of the double-length key or
Part B of the triple-length key is encrypted under the master key when flag bit 0
is on. Otherwise, it is in the clear.

32 8 The control vector (CV) for a single-length key or the left half of the control
vector for a double-length key.

40 8 X'0000000000000000' if a single-length key or the right half of the control vector
for a double-length operational key.

48 8 X'0000000000000000' if a single-length key or double-length key, or Part C of a
triple-length key. Part C of a triple-length key is encrypted under the master key
when flag bit 0 is on. Otherwise, it is in the clear.

56 3 Reserved (X'000000').

288 z/OS ICSF System Programmer's Guide

|
|

|
|

|
|
|

Table 61. DES internal fixed-length key token format (continued)

Offset (Dec)
Length of field
(Bytes) Description

59 1 Key length for zero CV DATA keys:

Value Meaning

B'00000000'
Single-length key (version 0 only).

B'00010000'
Double-length key (version 1 only).

B'00100000'
Triple-length key (version 1 only).

All other values are reserved and undefined.

60 4 Token validation value (TVV).

Note: A fixed-length key token that is stored in a non-KDSR CKDS will not have
an MKVP or TVV. Before such a key token is used, the MKVP is copied from the
CKDS header record, and the TVV is calculated and placed in the token. For more
information, see “Token validation value” on page 287.

Table 62 shows the format for a DES external fixed-length key token.

Table 62. Format of DES external fixed-length key tokens

Offset (Dec)
Length of field
(Bytes) Description

00 1 X'02' (flag indicating an external key token).

01 1 Reserved (X'00').

02 2 Implementation-dependent bytes (X'0000' for ICSF).

04 1 Key token version number (X'00' or X'01').

05 1 Reserved (X'00').

06 1 Flag byte.

Bit Meaning When Set On

0 Encrypted key is present.

1 Control vector (CV) value has been applied to the key.

Other bits are reserved and are binary zeros.

07 1 Flag byte.

Bit Meaning When Set On

0-2 Key value encryption method.

v 000 - The key is encrypted by using the original CCA method (ECB).

v 001 - The encrypted key is wrapped using the enhanced method and
SHA-1 (WRAP-ENH).

v 010 - The encrypted key is wrapped using the enhanced method and
SHA-256 (WRAPENH2). Requires CV bit ENH-ONLY to be enabled.
Only valid with version X’00’ tokens.

These bits are ignored if the token contains no key or a clear key.

3-7 Reserved.

08 8 Reserved (X'0000000000000000').

Appendix A. Diagnosis reference information 289

|

||

|
|

|
|

|
|
|

|
|

|
|
|

Table 62. Format of DES external fixed-length key tokens (continued)

Offset (Dec)
Length of field
(Bytes) Description

16 8 Single-length key or left half of a double-length key, or Part A of a triple-length
key. The value is encrypted under a transport key-encrypting key when flag bit
0 is on. Otherwise, it is in the clear.

24 8 X'0000000000000000' if a single-length key or right half of a double-length key, or
Part B of a triple-length key. The right half of a double-length key or Part B of a
triple-length key is encrypted under a transport key-encrypting key when flag
bit 0 is on. Otherwise, it is in the clear.

32 8 Control vector (CV) for single-length key or left half of CV for double-length
key.

40 8 X'0000000000000000' if single-length key or right half of CV for double-length
key.

48 8 X'0000000000000000' if a single-length key, double-length key, or Part C of a
triple-length key. This key part is encrypted under a transport key-encrypting
key when flag bit 0 is on. Otherwise, it is in the clear.

56-58 4 Reserved (X'000000').

59 1 Key length for zero CV DATA keys.

Value Meaning

B'00000000'
Single-length key (version 0 only).

B'00010000'
Double-length key (version 1 only).

B'00100000'
Triple-length key (version 1 only).

All other values are reserved and undefined.

60-63 4 Token validation value. For more information, see “Token validation value” on
page 287.

External RKX DES key token
Table 63 defines an external DES key-token called an RKX key-token. An RKX
key-token is a special token used exclusively by the Remote Key Export
(CSNDRKX) and DES key-storage callable services (for example, Key Record
Write). No other callable services use or reference an RKX key-token or key-token
record.

Note: Callable services other than CSNDRKX and the DES key-storage do not
support RKX key tokens or RKX key token records.

As can be seen in the table, RKX key tokens are 64 bytes in length, have a token
identifier flag (X'02'), a token version number (X'10'), and room for encrypted keys
like normal CCA DES key tokens. Unlike normal CCA DES key-tokens, RKX key
tokens do not have a control vector, flag bits, and a token-validation value. In
addition, they have a confounder value, a MAC value, and room for a third
encrypted key.

Table 63. External RKX DES key-token format, version X'10'

Offset Length Meaning

00 1 X'02' (a token identifier flag that indicates an external key-token)

290 z/OS ICSF System Programmer's Guide

|

||

|
|

|
|

|
|
|

Table 63. External RKX DES key-token format, version X'10' (continued)

Offset Length Meaning

01 3 Reserved, binary zero

04 1 The token version number (X'10')

05 2 Reserved, binary zero

07 1 Key length in bytes, including confounder

08 8 Confounder

16 8 Key left

24 8 Key middle (binary zero if not used)

32 8 Key right (binary zero if not used)

40 8 Rule ID

The trusted block rule identifier used to create this key token. A
subsequent call to Remote Key Export (CSNDRKX) can use this
token with a trusted block rule that references the rule ID that
must have been used to create this token. The trusted block rule
can be compared with this rule ID for verification purposes.

The Rule ID is an 8-byte string of ASCII characters, left justified
and padded on the right with space characters. Acceptable
characters are A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other
characters are reserved for future use.

48 8 Reserved, binary zero

56 8 MAC value

ISO 16609 TDES CBC-mode MAC, computed over the 56 bytes
starting at offset 0 and including the encrypted key value and
the rule ID using the same MAC key that is used to protect the
trusted block itself.

This MAC value guarantees that the key and the rule ID cannot
be modified without detection, providing integrity and binding
the rule ID to the key itself. This MAC value must verify with
the same trusted block used to create the key, thus binding the
key structure to that specific trusted block.

Note:

1. A fixed, randomly derived variant is exclusive-ORed with the MAC key before
it is used to encipher the generated or exported key and confounder.

2. The MAC key is located within a trusted block (internal format) and can be
recovered by decipherment under a variant of the PKA master key.

3. The trusted block is originally created in external form by the CSNDTBC
callable service and then converted to internal form by the CSNDPKI callable
service prior to the CSNDRKX call.

DES null key token
Table 64 shows the format for a fixed length DES null key token.

Table 64. Format of Null Key Tokens

Bytes Description

0 X'00' (flag indicating this is a null key token).

Appendix A. Diagnosis reference information 291

Table 64. Format of Null Key Tokens (continued)

Bytes Description

1–15 Reserved (set to binary zeros).

16–23 Single-length encrypted key, or left half of double-length encrypted key, or Part A of triple-length
encrypted key.

24–31 X'0000000000000000' if a single-length encrypted key, the right half of double-length encrypted
key, or Part B of triple-length encrypted key.

32–39 X'0000000000000000' if a single-length encrypted key or double-length encrypted key.

40–47 Reserved (set to binary zeros).

48–55 Part C of a triple-length encrypted key.

56–63 Reserved (set to binary zeros).

Variable-length symmetric key token formats

Variable-length symmetric key token
The following table presents the format for a variable-length symmetric key token.
The length of the token depends on the key type and algorithm.

Table 65. Variable-length symmetric key token

Offset
(Dec)

Length of
Field (Bytes) Description

Header

0 1 Token flag

X'00' for null tokens

X'01' for internal tokens

X'02' for external tokens

1 1 Reserved (X'00')

2 2 Length of the token in bytes

4 1 Token version number X'05' (May be X'00' for null tokens)

5 3 Reserved (X'000000')

Wrapping information

8 1 Key material state.

X'00' no key present (internal or external)

X'01' key is clear (internal)

X'02' key is encrypted under a key-encrypting key (external)

X'03' key is encrypted under the master key (internal)

9 1 Key verification pattern (KVP) type.

X'00' No KVP

X'01' AES master key verification pattern

X'02' key-encrypting key verification pattern

10 16 Verification pattern of the key used to wrap the payload. Value is left justified.

292 z/OS ICSF System Programmer's Guide

Table 65. Variable-length symmetric key token (continued)

Offset
(Dec)

Length of
Field (Bytes) Description

26 1 Wrapping method - This value indicates the wrapping method used to protect the data
in the encrypted section.

X'00' key is in the clear

X'02' AESKW

X'03' PKOAEP2

27 1 Hash algorithm used in wrapping algorithm.

v For wrapping method X'00'

X'00' None. For clear key tokens.

v For wrapping method X'02'

X'02' SHA-256

v For wrapping method X'03'

X'01' SHA-1

X'02' SHA-256

X'04' SHA-384

X'08' SHA-512

28 1 Payload version

X'00' Variable-length payload

X'01' Fixed-length payload
All other values are reserved and must not be used.

29 1 Reserved (X'00')

Associated data section

30 1 Associated data version (X'01')

31 1 Reserved (X'00')

32 2 Length of the associated data in bytes: adl

34 1 Length of the key name in bytes: kl

35 1 Length of the IBM extended associated data in bytes: iead

36 1 Length of the installation-definable associated data in bytes: uad

37 1 Reserved (X'00')

38 2 Length of the payload in bits: pl

40 1 Reserved (X'00')

41 1 Type of algorithm for which the key can be used

X'01' DES

X'02' AES

X'03' HMAC

Appendix A. Diagnosis reference information 293

Table 65. Variable-length symmetric key token (continued)

Offset
(Dec)

Length of
Field (Bytes) Description

42 2 Key type:

For algorithm AES:

X'0001' CIPHER

X'0002' MAC

X'0003' EXPORTER

X'0004' IMPORTER

X'0005' PINPROT

X'0006' PINCALC

X'0007' PINPRW

X'0009' DKYGENKY

X'000A' SECMSG

X'000B' KDKGENKY

For algorithm HMAC:

X'0002' MAC

For algorithm DES:

X'0008' DESUSECV

44 1 Key-usage field count (kuf) - (1 byte)
Key-usage field information defines restrictions on the use of
the key.

45 kuf * 2 Key-usage fields (kuf * 2 bytes)

v For HMAC algorithm keys, refer to Table 67 on page 295.

v For AES algorithm Key-Encrypting keys (Exporter or Importer), refer to Table 74 on
page 306.

v For AES algorithm CIPHER keys, refer to Table 75 on page 308.

v For AES algorithm MAC keys, refer to Table 68 on page 296.

v For AES algorithm PINCALC keys, refer to Table 69 on page 298.

v For AES algorithm PINPROT keys, refer to Table 70 on page 298.

v For AES algorithm PINPRW keys, refer to Table 71 on page 301.

v For AES algorithm DKYGENKY keys, refer to Table 72 on page 303.

v For AES algorithm SECMSG keys, refer to Table 73 on page 305.

v For AES algorithm KDKGENKY keys, refer to Table 78 on page 313.

v For DESUSECV keys, refer to Table 66 on page 295.

45 + kuf * 2 1 Key-management field count (kmf) - (2 byte):

v For AES and HMAC keys: 2 (no pedigree information) or 3 (has pedigree information)

v For DESUSECV keys: 1

Key-management field information describes how the data is to be managed or helps
with management of the key material.

46 + kuf * 2 kuf * 2 Key-management fields (kmf * 2 bytes):

v For AES and HMAC algorithm keys, refer to Table 76 on page 309.

v For DESUSECV keys, refer to Table 77 on page 312.

294 z/OS ICSF System Programmer's Guide

||

|

Table 65. Variable-length symmetric key token (continued)

Offset
(Dec)

Length of
Field (Bytes) Description

46 + kuf * 2
+ kmf * 2

kl Key name

46 + kuf * 2
+ kmf * 2 +
kl

iead IBM extended associated data

46 + kuf * 2
+ kmf * 2 +
kl + iead

uad Installation-defined associated data

Clear key or encrypted payload

30 + adl (pl+7)/8 Encrypted AESKW payload (internal keys): The encrypted AESKW payload is created
from the unencrypted AESKW payload which is made up of the ICV/pad length/hash
options and hash length/hash options/hash of the associated data/key
material/padding. See unencrypted AESKW payload.

Encrypted PKOAEP2 payload (external keys): The encrypted PKOAEP2 payload is
created using the PKCS #1 v1.2 encoding method for a given hash algorithm. The
message (M) inside the encoding contains: [2 bytes: bit length of key] || [clear HMAC
key]. M is encoded using OAEP and then encrypted with an RSA public key according
to the standard.

Clear key payload: When the key is clear, only the key material will be in the payload
padded to the nearest byte with binary zeros.

Table 66. DESUSECV key-usage fields

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 1

45 2 Key-usage field 1

High-order byte:

B'0000 0000'
Reserved

All unused bits are reserved and must be zero.

Low-order byte:

B'0000 0000'
Reserved

All unused bits are reserved and must be zero.

Table 67. HMAC algorithm key-usage fields

Offset
(Dec)

Length of
Field (Bytes) Description

44 1 Key-usage field count (kuf): 2

Appendix A. Diagnosis reference information 295

Table 67. HMAC algorithm key-usage fields (continued)

Offset
(Dec)

Length of
Field (Bytes) Description

45 2 Key-usage field 1

High-order byte:

1xxx xxxx
Key can be used for generate.

x1xx xxxx
Key can be used for verify.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

1xxx xxxx
SHA-1 hash method is allowed for the key.

x1xx xxxx
SHA-224 hash method is allowed for the key.

xx1x xxxx
SHA-256 hash method is allowed for the key.

xxx1 xxxx
SHA-384 hash method is allowed for the key.

xxxx 1xxx
SHA-512 hash method is allowed for the key.

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

Table 68. AES algorithm MAC key associated data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2 – 3
Count is based on whether the key is DK enabled or not:

kuf DK enabled

2 No

3 Yes

296 z/OS ICSF System Programmer's Guide

Table 68. AES algorithm MAC key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte:

B'00xx xxxx'
Undefined.

B'01xx xxxx'
Key cannot be used for generate; key can be used for verify.

B'10xx xxxx'
Key can be used for generate; key cannot be used for verify.

B'11xx xxx*'
Key can be used for generate and verify. Not valid if offset 50 is X'01'.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

X'01' CMAC mode.

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

49 2 Key-usage field 3

High-order byte when DK enabled:

X'01' PIN_OP (DKPINOP)

X'03' PIN_ADMIN1 (DKPINAD1)

X'04' PIN_ADMIN2 (DKPINAD2)

All unused values are reserved and must not be used.

Low-order byte:

X'01' DK enabled.

All unused values are reserved and must not be used.

Appendix A. Diagnosis reference information 297

Table 69. AES algorithm PINCALC key associated data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 3

45 2 Key-usage field 1

High-order byte:

B'00xx xxxx'
Undefined.

B'10xx xxxx'
Key can be used for generate; key cannot be used for verify.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

X'00' Key can be used for Cipher Block Chaining (CBC).

All unused values are reserved and must not be used.

Low-order byte:

All bits are reserved and must be zero.

49 2 Key-usage field 3

High-order byte when DK enabled:

X'01' PIN_OP (DKPINOP)

All unused values are reserved and must not be used.

Low-order byte:

X'01' DK enabled.

All unused values are reserved and must not be used.

Table 70. AES algorithm PINPROT key associated data

Offset (Dec)
Length of Field
(Bytes) Description

44 1 Key-usage field count (kuf): 3

298 z/OS ICSF System Programmer's Guide

Table 70. AES algorithm PINPROT key associated data (continued)

Offset (Dec)
Length of Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte:

B'00xx xxxx'
Undefined.

B'01xx xxxx'
Key cannot be used for encryption; key can be used for decryption. This is an inbound PIN protection
key.

B'10xx xxxx'
Key can be used for encryption; key cannot be used for decryption. This is an outbound PIN protection
key.

B'11xx xxxx'
Undefined.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

Appendix A. Diagnosis reference information 299

|
|

|
|

Table 70. AES algorithm PINPROT key associated data (continued)

Offset (Dec)
Length of Field
(Bytes) Description

47 2 Key-usage field 2

High-order byte:

X'00' Key can be used for Cipher Block Chaining (CBC).

All unused values are reserved and undefined.

Key-usage field 2

Low-order byte:

Inbound key (value at offset 45 is B'01xx xxxx')

B’xxx1 xxxx’
Key can be used to verify an encrypted PIN (EPINVER).

B’xxx0 xxxx’
Key cannot be used to verify an encrypted PIN.

B’xxxx 1xxx’
Key can be used to generate an alternate clear PIN (CPINGENA).

B’xxxx 0xxx’
Key cannot be used to generate an alternate clear PIN.

B’xxxx x1xx’
Key can be used to translate an encrypted PIN (PINXLATE).

B’xxxx x0xx’
Key cannot be used to translate an encrypted PIN.

B’xxxx xx1x’
Key can be used to reformat an encrypted PIN (REFORMAT).

B’xxxx xx0x’
Key cannot be used to reformat an encrypted PIN.

All unused bits are reserved and must be zero.

Outbound key (value at offset 45 is B'10xx xxxx')

B’xx1x xxxx’
Key can be used to encrypt a clear PIN (CPINENC).

B’xx0x xxxx’
Key cannot be used to encrypt a clear PIN.

B’xxx1 xxxx’
Key can be used to generate an encrypted PIN (EPINGEN).

B’xxx0 xxxx’
Key cannot be used to generate an encrypted PIN.

B’xxxx x1xx’
Key can be used to translate an encrypted PIN (PINXLATE).

B’xxxx x0xx’
Key cannot be used to translate an encrypted PIN.

B’xxxx xx1x’
Key can be used to reformat an encrypted PIN (REFORMAT).

B’xxxx xx0x’
Key cannot be used to reformat an encrypted PIN.

B’xxxx xxx1’
Key can be used to restrictively reformat an ISO-1 encrypted PIN to an ISO-4 encrypted PIN
(RFMT1TO4).

B’xxxx xxx0’
Key cannot be used to restrictively reformat an ISO-1 encrypted PIN to an ISO-4 encrypted PIN.

All unused bits are reserved and must be zero.

300 z/OS ICSF System Programmer's Guide

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|

Table 70. AES algorithm PINPROT key associated data (continued)

Offset (Dec)
Length of Field
(Bytes) Description

49 2 Key-usage field 3, high-order byte

No field format specification (value at offset 50 is X’00’)

Value Meaning

X'00' No field format specification (NOFLDFMT)

All unused values are reserved and undefined.

DK enabled (value at offset 50 is X'01')

X'01' PIN_OP (DKPINOP)

X'02' PIN_OPP (DKPINOPP)

X'03' PIN_ADMIN1 (DKPINAD1)

All unused values are reserved and undefined.

Key-usage field 3, low-order byte

Field format identifier:

X'00' No field format specification (NOFLDFMT)

X'01' DK enabled (DKPINOP, DKPINOPP, DKPINAD1)

All unused values are reserved and undefined.

51 2 Key-usage field 4, high-order byte

PIN block format usage:

B'xxxx xxx1'
Allow ISO-4

All undefined bits are reserved and must be zero.

Key-usage field 4, low-order byte

All bits are reserved and must be zero.

Table 71. AES algorithm PINPRW key associated data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 3

Appendix A. Diagnosis reference information 301

|

|

||

||

|

|

||

||

||

|
|

|

||

||

|
||

|

|
|

|

Table 71. AES algorithm PINPRW key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

45 2 Key-usage field 1

High-order byte:

B'00xx xxxx'
Undefined.

B'01xx xxxx'
Key cannot be used for generate; key can be used for verify.

B'10xx xxxx'
Key can be used for generate; key cannot be used for verify.

B'11xx xxxx'
Undefined.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

X'01' CMAC mode

All unused values are reserved and must not be used.

Low-order byte:

All bits are reserved and must be zero.

49 2 Key-usage field 3

High-order byte when DK enabled:

X'01' PIN_OP (DKPINOP)

All unused values are reserved and must not be used.

Low-order byte:

X'01' DK enabled.

All unused values are reserved and must not be used.

302 z/OS ICSF System Programmer's Guide

Table 72. AES algorithm DKYGENKY key associated data

Offset
(Dec)

Length of
Field
(Bytes) Description

44 1 Key-usage field count (kuf): 2, 4-51

Count is based on the type of key to diversify (value of offset 45):

Value at offset 45
Type of key to diversify / kuf count

X'00' D-ALL / kuf count: 2

X'01' D-CIPHER / kuf count: 4

X'02' D-MAC / kuf count: 4 (not DK enabled) or 5 (DK enabled)

X'03' D-EXP / kuf count: 6

X'04' D-IMP / kuf count: 6

X'05' D-PPROT / kuf count: 5

X'06' D-PCALC / kuf count: 5

X'07' D-PPRW / kuf count: 5

X'08' D-SECMSG / kuf count: 4

X'09' D-KDKGKY / kuf count: 13, 25, 37, 49

Each key-usage field is 2 bytes in length. The value in this field indicates how many
2-byte key usage fields follow.

45 2 Key-usage field 1

High-order byte: Defines the key type to be generated.

X'00' Any type listed below (D-ALL)

X'01' CIPHER (D-CIPHER)

X'02' MAC (D-MAC)

X'03' EXPORTER (D-EXP)

X'04' IMPORTER (D-IMP)

X'05' PINPROT (D-PPROT)

X'06' PINCALC (D-PCALC)

X'07' PINPRW (D-PPRW)

X'08' SECMSG (D-SECMSG)

X'09' KDKGENKY (D-KDKGKY)

All other values are reserved and undefined.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

Appendix A. Diagnosis reference information 303

||

||

Table 72. AES algorithm DKYGENKY key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

47 2 Key-usage field 2: Indicates the key usage.

High-order byte (key-usage field level of control):

B'1xxx xxxx'
The key usage fields of the key to be generated must be equal (KUF-MBE) to the
related generated key usage fields that start with key usage field 3 below.

B'0xxx xxxx'
The key usage fields of the key identifier to be generated must be permitted
(KUF-MBP) based on the related generated-key usage fields that start with key
usage field 3 below. A key to be diversified is not permitted to have a higher
level of usage than the related key usage fields permit. The key to be diversified
is only permitted to have key usage that is less than or equal to the related key
usage fields. The UDX-ONLY bit of the related key usage fields must always be
equal in both the generating key and the generated key.

Undefined when the value at offset 45 = X'00' (D-ALL). All other values are reserved and
undefined.

Low-order byte (key-derivation sequence level):

X'00' DKYL0. Generate a key based on the key usage byte at offset 45.

X'01' DKYL1. Generate a level 0 diversified key with key type DKYGENKY.

X'02' DKYL2. Generate a level 1 diversified key with key type DKYGENKY.

All other values are reserved and undefined.

49 (if
defined)

2 Key-usage field 3 (related generated key usage fields):

These values determine allowable key usage of key to be generated.

Meaning depends on value of offset 45:

X'01' Same as key-usage field 1 of AES CIPHER key.

X'02' Same as key-usage field 1 of AES MAC key.

X'03' Same as key-usage field 1 of AES EXPORTER key.

X'04' Same as key-usage field 1 of AES IMPORTER key.

X'05' Same as key-usage field 1 of AES PINPROT key.

X'06' Same as key-usage field 1 of AES PINCALC key.

X'07' Same as key-usage field 1 of AES PINPRW key.

X'08' Same as key-usage field 1 of AES SECMSG key.

X'09' Same as key-usage field 1 of AES KDKGENKY key.

304 z/OS ICSF System Programmer's Guide

||

Table 72. AES algorithm DKYGENKY key associated data (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

51 (if
defined)

2 Key-usage field 4 (related generated key usage fields):

These values determine allowable key usage of key to be generated.

Meaning depends on value of offset 45:

X'01' Same as key-usage field 2 of AES CIPHER key.

X'02' Same as key-usage field 2 of AES MAC key.

X'03' Same as key-usage field 2 of AES EXPORTER key.

X'04' Same as key-usage field 2 of AES IMPORTER key.

X'05' Same as key-usage field 2 of AES PINPROT key.

X'06' Same as key-usage field 2 of AES PINCALC key.

X'07' Same as key-usage field 2 of AES PINPRW key.

X'08' Same as key-usage field 2 of AES SECMSG key.

X'09' Same as key-usage field 2 of AES KDKGENKY key (1st KUF of required 1st
active/passive related key-usage field blocks).

53 (if
defined)

2 Key-usage field 5 (related generated key usage fields):

These values determine allowable key usage of key to be generated.

Meaning depends on value of offset 45:

X'02' Same as key-usage field 3 of AES MAC key.

X'03' Same as key-usage field 3 of AES EXPORTER key.

X'04' Same as key-usage field 3 of AES IMPORTER key.

X'05' Same as key-usage field 3 of AES PINPROT key.

X'06' Same as key-usage field 3 of AES PINCALC key.

X'07' Same as key-usage field 3 of AES PINPRW key.

X'09' Same as key-usage field 3 of AES KDKGENKY key (1st KUF of required 1st
active/passive related key-usage field blocks).

55 (if
defined)

2 Key-usage field 6 (related generated key usage fields):

These values determine allowable key usage of key to be generated.

Meaning depends on value of offset 45:

X'03' Same as key-usage field 4 of AES EXPORTER key.

X'04' Same as key-usage field 4 of AES IMPORTER key.

X'05' Same as key-usage field 4 of AES PINPROT key.

X'09' Same as key-usage field 4 of AES KDKGENKY key (1st KUF of required 1st
active/passive related key-usage field blocks).

Table 73. AES algorithm SECMSG key associated data

Offset
(Dec)

Length of
Field (Bytes) Description

44 1 Key-usage field count (kuf): 2

Appendix A. Diagnosis reference information 305

||
|

||
|

||
|

Table 73. AES algorithm SECMSG key associated data (continued)

Offset
(Dec)

Length of
Field (Bytes) Description

45 2 Key-usage field 1

High-order byte: Secure message encryption enablement:

Value Meaning

X'00' Enable the encryption of PINs in an EMV secure message (SMPIN).

All other values are reserved and undefined.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2: Indicates the key usage.

High-order byte: Service restriction:

Value Meaning

X'00' Any verb can use this key (ANY-USE).

X'01' Only CSNBDPC can use this key (DPC-ONLY).

All other values are reserved and undefined.

Low-order byte (reserved).

All unused bits are reserved and must be zero

Table 74. AES algorithm KEK key-usage fields

Offset (Dec)
Length of Field
(Bytes) Description

44 1 Key-usage field count (kuf): 4

306 z/OS ICSF System Programmer's Guide

Table 74. AES algorithm KEK key-usage fields (continued)

Offset (Dec)
Length of Field
(Bytes) Description

45 2 Key-usage field 1, high-order byte

EXPORTER:

1xxx xxx0 Key can be used for EXPORT.

x1xx xxx0 Key can be used for TRANSLAT.

xx1x xxx0 Key can be used for GEN-OPEX.

xxx1 xxx0 Key can be used for GEN-IMEX.

xxxx 1xx0 Key can be used for GEN-EXEX.

xxxx x1x0 Key can be used for GEN-PUB.

0000 0001 Key can wrap an AES or DES key using the Key Block Binding key wrapping method as defined in
ISO/DIS 20038 (EXPTT31D).

All unused bits are reserved and must be zero.

IMPORTER:

1xxx xxx0 Key can be used for IMPORT.

x1xx xxx0 Key can be used for TRANSLAT.

xx1x xxx0 Key can be used for GEN-OPIM.

xxx1 xxx0 Key can be used for GEN-IMEX.

xxxx 1xx0 Key can be used for GEN-IMIM.

xxxx x1x0 Key can be used for GEN-PUB.

0000 0001 Key can unwrap an AES or DES key using the Key Block Binding key wrapping method as defined in
ISO/DIS 20038 (IMPTT31D).

All unused bits are reserved and must be zero.

Key-usage field 1, low-order byte

UDX control:

xxxx 1xxx The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

0000 0001 Key can wrap a TR-31 key block version “D” (VARDRV-D). Only valid if value at offset 45 is B’0000
0001’ (EXPTT31D or IMPTT31D).

1xxx xxx0 Key can wrap a TR-31 key block. Not valid if value at offset 45 is B’0000 0001’ (EXPTT31D or
IMPTT31D).

All unused bits are reserved and must be zero.

Low-order byte:

xxxx xxx1 This KEK can export a key in RAW format.

All unused bits are reserved and must be zero

Appendix A. Diagnosis reference information 307

||
|

||
|

|

|

||
|

||
|

|

|

||

|

Table 74. AES algorithm KEK key-usage fields (continued)

Offset (Dec)
Length of Field
(Bytes) Description

49 2 Key-usage field 3

High-order byte:

1xxx xxxx Key can wrap DES keys

x1xx xxxx Key can wrap AES keys

xx1x xxxx Key can wrap HMAC keys

xxx1 xxxx Key can wrap RSA keys

xxxx 1xxx Key can wrap ECC keys

All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

51 2 Key-usage field 4

High-order byte:

1xxx xxxx Key can wrap DATA class keys

x1xx xxxx Key can wrap KEK class keys

xx1x xxxx Key can wrap PIN class keys

xxx1 xxxx Key can wrap DERIVATION class keys

xxxx 1xxx Key can wrap CARD class keys

xxxx x1xx Key can wrap CVAR class keys
All unused bits are reserved and must be zero.

Low-order byte:

All bits are reserved and must be zero.

Table 75. AES algorithm CIPHER key associated data

Offset
(Dec)

Length of
Field (Bytes) Description

44 1 Key-usage field count (kuf): 2

308 z/OS ICSF System Programmer's Guide

Table 75. AES algorithm CIPHER key associated data (continued)

Offset
(Dec)

Length of
Field (Bytes) Description

45 2 Key-usage field 1

High-order byte:

1xxx xxxx
Key can be used for encryption.

x1xx xxxx
Key can be used for decryption.

xx1x xxxx
Key can be used for data translate.

All unused bits are reserved and must be zero.

Low-order byte:

xxxx 1xxx
The key can only be used in UDXs (used in KGN, KIM, KEX).

xxxx 0xxx
The key can be used in both UDXs and CCA.

xxxx xuuu
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

47 2 Key-usage field 2

High-order byte:

X'00' Key can be used for Cipher Block Chaining (CBC).

X'01' Key can be used for Electronic Code Book (ECB).

X'02' Key can be used for Cipher Feedback (CFB).

X'03' Key can be used for Output Feedback (OFB).

X'04' Key can be used for Galois/Counter Mode (GCM)

X'05' Key can be used for XEX-based Tweaked CodeBook Mode with CipherText
Stealing (XTS)

X'FF' Key can be used for any mode of encryption

All unused values are reserved and must not be used.

Low-order byte:

All bits are reserved and must be zero.

Table 76. AES and HMAC algorithm key-management fields

Offset
(Dec)

Length of
Field
(Bytes) Description

49 1 Key-management field count (kmf): 2 or 3.

Appendix A. Diagnosis reference information 309

Table 76. AES and HMAC algorithm key-management fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

50 2 Key-management field 1.

High-order byte:

1xxx xxxx
Allow export using symmetric key.

x1xx xxxx
Allow export using unauthenticated asymmetric key.

xx1x xxxx
Allow export using authenticated asymmetric key.

xxx1 xxxx
Allow export in RAW format.

xxxx 1xxx
Allow export to CPACF protected key format.

All other bits are reserved and must be zero.

Low-order byte:

--symmetric--

1xxx xxxx
Prohibit export using DES key.

x1xx xxxx
Prohibit export using AES key.

--asymmetric--

xxxx 1xxx
Prohibit export using RSA key.

All other bits are reserved and must be zero.

310 z/OS ICSF System Programmer's Guide

Table 76. AES and HMAC algorithm key-management fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

48 + kuf *
2

2 Key-management field 2.

High-order byte:

11xx xxxx
Key, if present, is incomplete. Key requires at least 2 more parts.

10xx xxxx
Key, if present, is incomplete. Key requires at least 1 more part.

01xx xxxx
Key, if present, is incomplete. Key can be completed or have more parts added.

00xx xxxx
Key, if present, is complete. No more parts can be added.

All other bits are reserved and must be zero.

Low-order byte (Security History):

xxx1 xxxx
Key was encrypted with an untrusted KEK.

xxxx 1xxx
Key was in a format without type/usage attributes.

xxxx x1xx
Key was encrypted with key weaker than itself.

xxxx xx1x
Key was in a non-CCA format.

xxxx xxx1
Key was encrypted in ECB mode.

All other bits are reserved and must be zero.

50 + kuf *
2

2 Key-management field 3 - Pedigree (this field may or may not be present).

Indicates how key was originally created and how it got into the current system.

High-order byte: Pedigree Original.

X'00' Unknown (Key Token Build2, Key Translate2).

X'01' Other - method other than those defined here, probably used in UDX.

X'02' Randomly Generated (Key Generate2).

X'03' Established by key agreement (ECC Diffie-Hellman).

X'04' Created from cleartext key components (Key Part Import2).

X'05' Entered as a cleartext key value (Key Part Import2, Secure Key Import2).

X'06' Derived from another key.

X'07' Cleartext keys or key parts that were entered at TKE and secured from there to
the target card (operational key load).

All unused values are reserved and undefined.

Appendix A. Diagnosis reference information 311

Table 76. AES and HMAC algorithm key-management fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

50 + kuf *
2 (cont’d)

2 (cont’d) Low-order byte: Pedigree Current.

X'00' Unknown (Key Token Build2).

X'01' Other - method other than those defined here, probably used in UDX.

X'02' Randomly Generated (Key Generate2).

X'03' Established by key agreement (ECC Diffie-Hellman).

X'04' Created from cleartext key components (Key Part Import2).

X'05' Entered as a cleartext key value (Key Part Import2, Secure Key Import2).

X'06' Derived from another key.

X'07' Imported from a CCA 05 variable length token with pedigree field (Symmetric
Key Import2).

X'08' Imported from a CCA 05 variable length token with no pedigree field (Symmetric
Key Import2).

X'09' Imported from a CCA token that had a CV.

X'0A' Imported from a CCA token that had no CV or a zero CV.

X'0B' Imported from a TR-31 key block that contained a CCA CV (ATTR-CV option)
(TR-31 Import).

X'0C' Imported from a TR-31 key block that did not contain a CCA CV (TR-31 Import).

X'0D' Imported using PKCS 1.2 RSA encryption (Symmetric Key Import2).

X'0E' Imported using PKCS OAEP encryption (Symmetric Key Import2).

X'0F' Imported using PKA92 RSA encryption (Symmetric Key Import2).

X'10' Imported using RSA ZERO-PAD encryption (Symmetric Key Import2).

X'11' Converted from a CCA token that had a CV (Key Translate2).

X'12' Converted from a CCA token that had no CV or a zero CV (Key Translate2).

X'13' Cleartext keys or key parts that were entered at TKE and secured from there to
the target card (operational key load).

50 + kuf *
2 (cont’d)

2 (cont’d) Low-order byte: Pedigree Current.

X'14' Exported from a CCA 05 variable length token with pedigree field (Symmetric
Key Export).

X'15' Exported from a CCA 05 variable length token with no pedigree field (Symmetric
Key Export).

X'16' Exported using PKCS OAEP encryption (Symmetric Key Export).
All unused values are reserved and undefined.

Table 77. DESUSECV key-management fields

Offset
(Dec)

Length of
Field
(Bytes) Description

47 1 Key-management field count (kmf): 1

312 z/OS ICSF System Programmer's Guide

Table 77. DESUSECV key-management fields (continued)

Offset
(Dec)

Length of
Field
(Bytes) Description

48 2 Key-management field 1

High-order byte:

B'0000 0000'
Reserved

All unused bits are reserved and must be zero.

Low-order byte:

B'0000 0000'
Reserved

All unused bits are reserved and must be zero.

Table 78. AES algorithm KDKGENKY key-usage fields

Offset (Dec)
Length of Field
(Bytes) Description

44 1 Key-usage field count (kuf): 13, 25, 37, or 49. Each key-usage field is two bytes
in length.

45 2 Key-usage field 1, high-order byte

Key diversification type:

X'00' Entity type A (KDKTYPEA)

X'01' Entity type B (KDKTYPEB)

All other values are reserved and undefined.

Key-usage field 1, low-order byte

User-defined extension control:

B'xxxx 1xxx'
Key can only be used in UDXs (used in KGN, KIM, KEX).

B'xxxx 0xxx'
Key can be used in UDXs and CCA.

B'xxxx xuuu'
Reserved for UDXs, where uuu are UDX-defined bits.

All unused bits are reserved and must be zero.

Appendix A. Diagnosis reference information 313

||

|
|
||

|||
|

|||

|

||

||

|

|

|

|
|

|
|

|
|

|

Table 78. AES algorithm KDKGENKY key-usage fields (continued)

Offset (Dec)
Length of Field
(Bytes) Description

47 amb + acb + apb
+ awp

Key-usage field 2 (active/passive key-usage field block)

For the format of an active/passive key-usage field block, see the 'AES
DKYGENKY and AES KDKGENKY active/passive related key-usage field
block' table in z/OS Cryptographic Services ICSF Application Programmer's Guide.

At least one active/passive related KUF block is required and a maximum of
four blocks is allowed. The sequence of the blocks is in ascending numerical
order, based on the numeric value of the key type of the key to be derived or
generated, found at offset 0 of the block header. This is the required order of
the blocks:

1. Active AES MAC/passive AES MAC related KUF block (amb bytes, where
amb = 0 or 24).

2. Active AES CIPHER/passive AES CIPHER related KUF block (acb bytes,
where acb = 0 or 24).

3. Active AES PINPROT/passive AES PINPROT related KUF block (apb bytes,
where apb = 0 or 24).

4. Active AES EXPORTER/passive AES EXPORTER related KUF block (awp
bytes, where awp = 0 or 24).

where amb + acb + apb + awp = 24, 48, 72, or 96.

Variable-length symmetric null key token
The following table shows the format for a variable-length symmetric null key
token.

Table 79. Variable-length symmetric null token

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'.

2-3 X'0008' Length of the key token structure.

4-7 Ignored (zero).

PKA key token formats
As with DES key tokens, the first byte of a PKA key token indicates the type of
token. If the first byte of the key identifier is X'1E' or X'1F', this indicates that it is a
PKA key token.

A first byte of X'1E' indicates an external token with a cleartext public key and
optionally a private key that is either in cleartext or enciphered by a transport
key-encrypting key.

A first byte of X'1F' indicates an internal token with a cleartext public key and a
private key that is enciphered by the master key and ready for internal use.

PKA tokens are of variable length because they contain either RSA or ECC key
values, which are variable in length. Consequently, length parameters precede all

314 z/OS ICSF System Programmer's Guide

|

|
|
||

||
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

PKA token parameters. The maximum allowed size is 3500 bytes. PKA key tokens
consist of a token header, any required sections, and optional sections, which
depend on the token type.

A PKA key token can be a public or private key token, and a private key token can
be internal or external. Therefore, there are three basic types of tokens, each of
which can contain either RSA or ECC information:
v Public key tokens
v Private external key tokens
v Private internal key tokens

Public key tokens contain only the public key. Private key tokens contain the
public and private key pair.

Internal PKA tokens
PKA private internal key tokens contain both private and public key information.
There is no need for an internal token with only the public key information
because the public values are in the clear.

The first byte of X'1F' indicates an internal token with a cleartext public key and a
private key that is enciphered with a PKA master key and ready for local (internal)
use.

The format of a PKA private internal key token is similar to that of a private
external token. The only differences are changes in the private key section and the
addition of some internal information at the end of the token. This last section
starts with the eyecatcher 'PKTN' rather than with a token or section marker.

PKA null key token
Table 80 shows the format for a PKA null key token.

Table 80. Format of PKA Null Key Tokens

Bytes Description

0 X'00' Token identifier (indicates that this is a null key token).

1 Version, X'00'

2–3 X'0008' Length of the key token structure.

4–7 Ignored (should be zero).

RSA key token formats
This topic describes the different RSA key token formats.

RSA public key token
An RSA public key token contains the following sections:
v A required token header, starting with the token identifier X'1E'
v A required RSA public key section, starting with the section identifier X'04'

Table 81 on page 316 presents the format of an RSA public key token. All length
fields are in binary. All binary fields (exponents, lengths, and so on) are stored
with the high-order byte first.

Appendix A. Diagnosis reference information 315

Table 81. RSA Public Key Token

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1E' indicates an external token.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx+yyy.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, “yyy”.

012 xxx Public key exponent (this is generally a 1-, 3-, or 64- to 512-byte quantity), e.
e must be odd and 1<e<n. (Frequently, the value of e is 216+1)

12+xxx yyy Modulus, n.

RSA private external key token
An RSA private external key token contains the following sections:
v A required PKA token header starting with the token identifier X'1E'
v A required RSA private key section starting with one of the following section

identifiers:
– X'02' which indicates a modulus-exponent form RSA private key section (not

optimized) with modulus length of up to 1024 bits.
– X'08' which indicates an optimized Chinese Remainder Theorem form private

key section with modulus bit length of up to 4096.
– X'09' which indicates a modulus-exponent form RSA private key section (not

optimized) with modulus length of up to 4096 bits.
– X'30' which indicates a modulus-exponent form RSA private key section with

modulus length of up to 4096 bits with an AES object protection key.
– X'31' which indicates an Chinese Remainder Theorem form private key

section with modulus bit length of up to 4096 bits with an AES object
protection key.

v A required RSA public key section, starting with the section identifier X'04'
v An optional private key name section, starting with the section identifier X'10'

Table 82 presents the basic record format of an RSA private external key token. All
length fields are in binary. All binary fields (exponents, lengths, and so on) are
stored with the high-order byte first. All binary fields (exponents, modulus, and so
on) in the private sections of tokens are right-justified and padded with zeros to
the left.

Table 82. RSA Private External Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

316 z/OS ICSF System Programmer's Guide

Table 82. RSA Private External Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

000 001 Token identifier. X'1E' indicates an external token. The private key is
either in cleartext or enciphered with a transport key-encrypting key.

001 001 Version, X'00'.

002 002 Length of the key token structure.

004 004 Ignored. Should be zero.

RSA Private Key Section (required)

v For 1024-bit Modulus-Exponent form refer to “RSA private key token,
1024-bit modulus-exponent external format” on page 318.

v For 4096-bit Modulus-Exponent form refer to “RSA private key token,
4096-bit modulus-exponent external format” on page 318.

v For 4096-bit Chinese Remainder Theorem form refer to “RSA private
key token, 4096-bit chinese remainder Theorem external format” on
page 320.

v For 4096-bit Modulus-Exponent form with AES OPK refer to “RSA
private key, 4096-bit modulus-exponent format with AES encrypted
OPK section (X'30') external form” on page 321.

v For 4096-bit Chinese Remainder Theorem form with AES OPK refer to
“RSA private key, 4096-bit chinese remainder Theorem format with
AES encrypted OPK section (X'31') external form” on page 323.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.
Note: In an RSA private key token, this field should be zero. The RSA
private key section contains the modulus.

012 xxx Public key exponent, e (this is generally a 1-, 3-, or 64- to 512-byte
quantity). e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Appendix A. Diagnosis reference information 317

RSA private key token, 1024-bit modulus-exponent external format

Table 83. RSA Private Key Token, 1024-bit Modulus-Exponent external format

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key, modulus-exponent format
(RSA-PRIV)

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'00' Unencrypted RSA private key subsection identifier.

X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable.

All other bits reserved, set to binary zero.

054 006 Reserved; set to binary zero.

060 024 Reserved; set to binary zero.

Start of the optionally-encrypted secure subsection.

084 024 Random number, confounder.

108 128 Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

End of the optionally-encrypted subsection; the confounder field and
the private-key exponent field are enciphered for key confidentiality
when the key format and security flags (offset 28) indicate that the
private key is enciphered. They are enciphered under a double-length
transport key using the ede2 algorithm.

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

RSA private key token, 4096-bit modulus-exponent external format

This RSA private key token and the external X'09' token is supported on a CCA
Crypto Express coprocessor.

Table 84. RSA Private Key Token, 4096-bit Modulus-Exponent external format

Offset (Dec) Number of Bytes Description

000 001 X'09', section identifier, RSA private key, modulus-exponent format
(RSAMEVAR).

001 001 X'00', version.

318 z/OS ICSF System Programmer's Guide

Table 84. RSA Private Key Token, 4096-bit Modulus-Exponent external format (continued)

Offset (Dec) Number of Bytes Description

002 002 Length of the RSA private key section 132+ddd+nnn+xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 002 Length of the encrypted private key section 8+ddd+xxx.

026 002 Reserved; set to binary zero.

028 001 Key format and security:

X'00' Unencrypted RSA private key subsection identifier.

X'82' Encrypted RSA private key subsection identifier.

029 001 Reserved, set to binary zero.

030 020 SHA-1 hash of the optional key-name section. If there is no key-name
section, then 20 bytes of X'00'.

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable

All other bits reserved, set to binary zero.

051 001 Reserved; set to binary zero.

052 048 Reserved; set to binary zero.

100 016 Reserved; set to binary zero.

116 002 Length of private exponent, d, in bytes: ddd.

118 002 Length of modulus, n, in bytes: nnn.

120 002 Length of padding field, in bytes: xxx.

122 002 Reserved; set to binary zero.

Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ddd Private-key exponent, d. d=e-1 mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

132+ddd xxx X'00' padding of length xxx bytes such that the length from the start of
the random number above to the end of the padding field is a multiple
of eight bytes.

End of the optionally-encrypted subsection; the confounder field and
the private-key exponent field are enciphered for key confidentiality
when the key format and security flags (offset 28) indicate that the
private key is enciphered. They are enciphered under a double-length
transport key using the ede2 algorithm.

132+ddd+xxx nnn Modulus, n. n=pq where p and q are prime and 1<n<24096.

Appendix A. Diagnosis reference information 319

RSA private key token, 4096-bit chinese remainder Theorem external
format

This RSA private key token with up to 2048-bit modulus is supported on all
coprocessors. The modulus size is increased to 4096-bit on the z9 EC, z9 BC, z10
EC, z10 BC, or later machines with the Nov. 2007 or later version of the licensed
internal code installed on the CCA Crypto Express coprocessor.

Table 85. RSA Private Key Token, 4096-bit Chinese Remainder Theorem external format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ xxx + nnn.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'40' Unencrypted RSA private-key subsection identifier, Chinese
Remainder form.

X'42' Encrypted RSA private-key subsection identifier, Chinese
Remainder form.

029 001 Reserved; set to binary zero.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

6 The key is translatable.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 004 Reserved; set to binary zero.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 Reserved, set to binary zero.

092 032 Reserved; set to binary zero.

Start of the optionally-encrypted secure subsection.

124 008 Random number, confounder.

132 ppp Prime number, p.

320 z/OS ICSF System Programmer's Guide

Table 85. RSA Private Key Token, 4096-bit Chinese Remainder Theorem external format (continued)

Offset (Dec) Number of Bytes Description

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q –1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

xxx X'00' padding of length xxx bytes such that the length from the start of
the random number above to the end of the padding field is a multiple
of eight bytes.

End of the optionally-encrypted secure subsection; all of the fields
starting with the confounder field and ending with the variable length
pad field are enciphered for key confidentiality when the key
format-and-security flags (offset 28) indicate that the private key is
enciphered. They are enciphered under a double-length transport key
using the TDES (CBC outer chaining) algorithm.

132 + ppp + qqq
+ rrr + sss + uuu
+ xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

RSA private key, 4096-bit modulus-exponent format with AES
encrypted OPK section (X'30') external form

This RSA private key token is supported on the Crypto Express3 Coprocessor and
Crypto Express4 Coprocessor.

Table 86. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external form

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'30' RSA private key, ME format with AES encrypted OPK.

001 001 Section version number (X'00').

002 002 Section length: 122 + nnn + ppp

004 002 Length of “Associated Data” section

006 002 Length of payload data: ppp

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'02' Version 2

011 001 Key format and security flag:

X'00' Unencrypted ME RSA private-key subsection identifier

X'82' Encrypted ME RSA private-key subsection identifier

012 001 Key source flag:

Reserved, binary zero.

013 001 Reserved, binary zeroes.

Appendix A. Diagnosis reference information 321

Table 86. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external
form (continued)

Offset (bytes) Length (bytes) Description

014 001 Hash type:

X'00' Clear key

X'02' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any;
else 32 bytes of X'00'.

047 003 Reserved, binary zero.

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

All other values are undefined.

Translation control bit:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

All other bits are reserved and must be zero.

051 001 Format restriction byte for digital-signature hash formatting method.

Value:

B'0000 0000'
No format restriction.

B'0000 0001'
ISO-9796 only.

B'0000 0010'
PKCS-1.0 only.

B'0000 0011'
PKCS-1.1 only.

B'0000 0100'
PKCS-PSS only.

B'0000 0101'
X9.31 only.

B'0000 0110'
ZERO-PAD only.

All other values are reserved and undefined.

052 002 Length of modulus: nnn bytes

054 002 Length of private exponent: ddd bytes

End of Associated Data

322 z/OS ICSF System Programmer's Guide

Table 86. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section (X'30') external
form (continued)

Offset (bytes) Length (bytes) Description

056 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

encrypted with an AES KEK.

104 016 Key verification pattern

v For an encrypted private key, KEK verification pattern (KVP)

v For a clear private key, binary zeros

v For a skeleton, binary zeros

120 002 Reserved, binary zeros.

122 nnn Modulus

122+nnn ppp Payload starts here and includes:

When this section is unencrypted:

v Clear private exponent d.

v Length ppp bytes : ddd + 0

When this section is encrypted:

v Private exponent d within the AESKW-wrapped payload.

v Length ppp bytes : ddd + AESKW format overhead

RSA private key, 4096-bit chinese remainder Theorem format with AES
encrypted OPK section (X'31') external form

This RSA private key token is supported on the Crypto Express3 Coprocessor and
Crypto Express4 Coprocessor.

Table 87. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
external form

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'31' RSA private key, CRT format with AES encrypted OPK

001 001 Section version number (X'00').

002 002 Section length: 134 + nnn + xxx

004 002 Length of “Associated Data” section

006 002 Length of payload data: xxx

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'03' Version 3

011 001 Key format and security flag:

X'40' Unencrypted RSA private-key subsection identifier

X'42' Encrypted RSA private-key subsection identifier

Appendix A. Diagnosis reference information 323

Table 87. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
external form (continued)

Offset (bytes) Length (bytes) Description

012 001 Key source flag:

Reserved, binary zero.

013 001 Reserved, binary zeroes.

014 001 Hash type:

X'00' Clear key

X'02' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any;
else 32 bytes of X'00'.

047 003 Reserved, binary zero.

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

Translation control:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

051 001 Reserved, binary zero.

052 002 Length of the prime number, p, in bytes: ppp.

054 002 Length of the prime number, q, in bytes: qqq

056 002 Length of dp : rrr.

058 002 Length of dq : sss.

060 002 Length of U: uuu.

062 002 Length of modulus, nnn.

064 002 Reserved, binary zero.

066 002 Reserved, binary zero.

End of Associated Data

068 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

External tokens:

encrypted with an AES KEK.

Internal tokens:

encrypted with the ECC master key.

324 z/OS ICSF System Programmer's Guide

Table 87. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
external form (continued)

Offset (bytes) Length (bytes) Description

116 016 Key verification pattern

v For an encrypted private key, KEK verification pattern (KVP)

v For a clear private key, binary zeros

v For a skeleton, binary zeros

132 002 Reserved, binary zeros

134 nnn Modulus, n, n=pq, where p and q are prime.

134+nnn xxx Payload starts here and includes:

When this section is unencrypted:

v Clear prime number p

v Clear prime number q

v Clear dp

v Clear dq

v Clear U

v Length xxx bytes: ppp + qqq + rrr + sss +uuu + 0

When this section is encrypted:

v prime number p

v prime number q

v dp

v dq

v U

v within the AESKW-wrapped payload.

Length xxx bytes : ppp + qqq + rrr + sss +uuu + AESKW format overhead

RSA private internal key token
An RSA private internal key token contains the following sections:
v A required PKA token header, starting with the token identifier X'1F'
v Basic record format of an RSA private internal key token. All length fields are in

binary. All binary fields (exponents, lengths, and so on) are stored with the
high-order byte first. All binary fields (exponents, modulus, and so on) in the
private sections of tokens are right-justified and padded with zeros to the left.

Table 88. RSA Private Internal Key Token Basic Record Format

Offset (Dec) Number of Bytes Description

Token Header (required)

000 001 Token identifier. X'1F' indicates an internal token. The private key is
enciphered with a PKA master key.

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

Appendix A. Diagnosis reference information 325

Table 88. RSA Private Internal Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

RSA Private Key Section and Secured Subsection (required)

v For 1024-bit X'02' Modulus-Exponent form, refer to “RSA private key token, 1024-bit X’02’ modulus-exponent
internal form” on page 327.

v For 1024-bit X'06' Modulus-Exponent form, refer to “RSA private key token, 1024-bit X’06’ modulus-exponent
internal form” on page 327.

v For 4096-bit X'08' Chinese Remainder Theorem form, refer to “RSA private key token, 4096-bit chinese remainder
Theorem internal form” on page 333.

v For 4096-bit Modulus-Exponent form with AES OPK, refer to “RSA private key, 4096-bit modulus-exponent
format with AES encrypted OPK section internal form” on page 329.

v For 4096-bit Chinese Remainder Theorem form with AES OPK, refer to Table 92 on page 331.

RSA Public Key Section (required)

000 001 X'04', section identifier, RSA public key.

001 001 X'00', version.

002 002 Section length, 12+xxx.

004 002 Reserved field.

006 002 RSA public key exponent field length in bytes, “xxx”.

008 002 Public key modulus length in bits.

010 002 RSA public key modulus field length in bytes, which is zero for a private
token.

012 xxx Public key exponent (this is generally a 1, 3, or 64 to 512 byte quantity),
e. e must be odd and 1<e<n. (Frequently, the value of e is 216+1
(=65,537).

Private Key Name (optional)

000 001 X'10', section identifier, private key name.

001 001 X'00', version.

002 002 Section length, X'0044' (68 decimal).

004 064 Private key name (in ASCII), left-justified, padded with space characters
(X'20'). An access control system can use the private key name to verify
that the calling application is entitled to use the key.

Internal Information Section (required)

000 004 Eye catcher 'PKTN'.

004 004 PKA token type.

Bit Meaning When Set On

0 RSA key.

1 DSS key.

2 Private key.

3 Public key.

4 Private key name section exists.

5 Private key unenciphered.

6 Blinding information present.

7 Retained private key.

008 004 Address of token header.

012 002 Total length of total structure including this information section.

326 z/OS ICSF System Programmer's Guide

Table 88. RSA Private Internal Key Token Basic Record Format (continued)

Offset (Dec) Number of Bytes Description

014 002 Count of number of sections.

016 016 PKA master key hash pattern.

032 001 Domain of retained key.

033 008 Serial number of processor holding retained key.

041 007 Reserved.

RSA private key token, 1024-bit X’02’ modulus-exponent internal form

Table 89. RSA Private Internal Key Token, 1024-bit X’02’ ME Form

Offset (Dec) Number of Bytes Description

000 001 X'02', section identifier, RSA private key.

001 001 X'00', version.

002 002 Length of the RSA private key section X'016C' (364 decimal).

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to the
section end. This hash value is checked after an enciphered private key is
deciphered for use.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'02' RSA private key.

029 001 Format of external key from which this token was derived:

X'21' External private key was specified in the clear.

X'22' External private key was encrypted.

030 020 SHA-1 hash of the key token structure contents that follow the public
key section. If no sections follow, this field is set to binary zeros.

050 001 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

051 009 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under the RSA-MK.

108 128 Secret key exponent d, encrypted under the OPK. d=e-1 mod((p-1)(q-1))

236 128 Modulus, n. n=pq where p and q are prime and 1<n<21024.

RSA private key token, 1024-bit X’06’ modulus-exponent internal form

Table 90. RSA Private Internal Key Token, 1024-bit X’06’ ME Form

Offset (Dec) Number of Bytes Description

000 001 X'06', section identifier, RSA private key modulus-exponent format
(RSA-PRIV).

001 001 X'00', version.

Appendix A. Diagnosis reference information 327

Table 90. RSA Private Internal Key Token, 1024-bit X’06’ ME Form (continued)

Offset (Dec) Number of Bytes Description

002 002 Length of the RSA private key section X'0198' (408 decimal) + rrr + iii +
xxx.

004 020 SHA-1 hash value of the private key subsection cleartext, offset 28 to and
including the modulus at offset 236.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'02' RSA private key.

029 001 Format of external key from which this token was derived:

X'21' External private key was specified in the clear.

X'22' External private key was encrypted.

X'23' Private key was generated using regeneration data.

X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following optional
sections. If there are no optional sections, this field is set to binary zeros.

050 004 Key use flag bits.

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zeros.

054 006 Reserved; set to binary zero.

060 048 Object Protection Key (OPK) encrypted under the RSA-MK using the
ede3 algorithm.

108 128 Private key exponent d, encrypted under the OPK using the ede5
algorithm. d=e-1mod((p-1)(q-1)), and 1<d<n where e is the public
exponent.

236 128 Modulus, n. n=pq where p and q are prime and 2512<n<21024.

364 016 RSA master key verification pattern

380 020 SHA-1 hash value of the blinding information subsection cleartext, offset
400 to the end of the section.

400 002 Length of the random number r, in bytes: rrr.

402 002 Length of the random number r–1, in bytes: iii.

404 002 Length of the padding field, in bytes: xxx.

406 002 Reserved; set to binary zeros.

408 Start of the encrypted blinding subsection

408 rrr Random number r (used in blinding).

408 + rrr iii Random number r–1 (used in blinding).

408 + rrr + iii xxx X'00' padding of length xxx bytes such that the length from the start of
the encrypted blinding subsection to the end of the padding field is a
multiple of eight bytes.

End of the encrypted blinding subsection; all of the fields starting with the random number r and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) algorithm.

328 z/OS ICSF System Programmer's Guide

RSA private key, 4096-bit modulus-exponent format with AES
encrypted OPK section internal form

This RSA private key token is supported on the Crypto Express3 and newer
Coprocessor.

Table 91. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section internal form

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'30' RSA private key, ME format with AES encrypted OPK.

001 001 Section version number (X'00').

002 002 Section length: 122 + nnn + ppp

004 002 Length of “Associated Data” section

006 002 Length of payload data: ppp

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'02' Version 2

011 001 Key format and security flag:

X'02' Encrypted ME RSA private-key subsection identifier

012 001 Key source flag:

Internal tokens:

X'21' Imported from cleartext

X'22' Imported from ciphertext

X'23' Generated using regeneration data

X'24' Randomly generated

013 001 Reserved, binary zeroes.

014 001 Hash type:

X'00' Clear key

X'02' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any;
else 32 bytes of X'00'.

047 003 Reserved, binary zero.

Appendix A. Diagnosis reference information 329

Table 91. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section internal
form (continued)

Offset (bytes) Length (bytes) Description

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

All other values are undefined.

Translation control bit:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

All other bits are reserved and must be zero.

051 001 Format restriction byte for digital-signature hash formatting method.

Value:

B'0000 0000'
No format restriction.

B'0000 0001'
ISO-9796 only.

B'0000 0010'
PKCS-1.0 only.

B'0000 0011'
PKCS-1.1 only.

B'0000 0100'
PKCS-PSS only.

B'0000 0101'
X9.31 only.

B'0000 0110'
ZERO-PAD only.

All other values are reserved and undefined.

052 002 Length of modulus: nnn bytes

054 002 Length of private exponent: ddd bytes

End of Associated Data

056 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

encrypted with the ECC master key.

330 z/OS ICSF System Programmer's Guide

Table 91. RSA private key, 4096-bit Modulus-Exponent format with AES encrypted OPK section internal
form (continued)

Offset (bytes) Length (bytes) Description

104 016 Key verification pattern

v For an encrypted private key, ECC master-key verification pattern (MKVP)

v For a skeleton, binary zeros

120 002 Reserved, binary zeros.

122 nnn Modulus

122+nnn ppp Payload starts here and includes:

When this section is unencrypted:

v Clear private exponent d.

v Length ppp bytes : ddd + 0

When this section is encrypted:

v Private exponent d within the AESKW-wrapped payload.

v Length ppp bytes : ddd + AESKW format overhead

RSA private key, 4096-bit chinese remainder Theorem format with AES
encrypted OPK section internal form

This RSA private key token is supported on the Crypto Express3 and newer
Coprocessor.

RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted
OPK section (X'31') external form

Table 92. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
internal form

Offset (bytes) Length (bytes) Description

000 001 Section identifier:

X'31' RSA private key, CRT format with AES encrypted OPK

001 001 Section version number (X'00').

002 002 Section length: 134 + nnn + xxx

004 002 Length of “Associated Data” section

006 002 Length of payload data: xxx

008 002 Reserved, binary zero.

Start of Associated Data

010 001 Associated Data Version:

X'03' Version 3

011 001 Key format and security flag:

X'08' Unencrypted RSA private-key subsection identifier

Appendix A. Diagnosis reference information 331

Table 92. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
internal form (continued)

Offset (bytes) Length (bytes) Description

012 001 Key source flag:

X'21' Imported from cleartext

X'22' Imported from ciphertext

X'23' Generated using regeneration data

X'24' Randomly generated

013 001 Reserved, binary zeroes.

014 001 Hash type:

X'00' Clear key

X'01' SHA-256

015 032 SHA-256 hash of all optional sections that follow the public key section, if any;
else 32 bytes of X'00'.

047 003 Reserved, binary zero.

050 001 Key-usage flag:

B'11xx xxxx'
Only key unwrapping (KM-ONLY)

B'10xx xxxx'
Both signature generation and key unwrapping (KEY-MGMT)

B'01xx xxxx'
Undefined

B'00xx xxxx'
Only signature generation (SIG-ONLY)

Translation control:

B'xxxx xx1x'
Private key translation is allowed (XLATE-OK)

B'xxxx xx0x'
Private key translation is not allowed (NO-XLATE)

051 001 Reserved, binary zero.

052 002 Length of the prime number, p, in bytes: ppp.

054 002 Length of the prime number, q, in bytes: qqq

056 002 Length of dp : rrr.

058 002 Length of dq : sss.

060 002 Length of U: uuu.

062 002 Length of modulus, nnn.

064 002 Reserved, binary zero.

066 002 Reserved, binary zero.

End of Associated Data

068 048 16 byte confounder + 32-byte Object Protection Key.

OPK used as an AES key.

encrypted with the ECC-MK.

332 z/OS ICSF System Programmer's Guide

Table 92. RSA private key, 4096-bit Chinese Remainder Theorem format with AES encrypted OPK section (X'31')
internal form (continued)

Offset (bytes) Length (bytes) Description

116 016 Key verification pattern

v For an encrypted private key, ECC master-key verification pattern (MKVP)

v For a skeleton, binary zeros

132 002 Reserved, binary zeros

134 nnn Modulus, n, n=pq, where p and q are prime.

134+nnn xxx Payload starts here and includes:

When this section is unencrypted:

v Clear prime number p

v Clear prime number q

v Clear dp

v Clear dq

v Clear U

v Length xxx bytes: ppp + qqq + rrr + sss +uuu + 0

When this section is encrypted:

v prime number p

v prime number q

v dp

v dq

v U

v within the AESKW-wrapped payload.

Length xxx bytes : ppp + qqq + rrr + sss +uuu + AESKW format overhead

RSA private key token, 4096-bit chinese remainder Theorem internal
form

This RSA private key token (up to 2048-bit modulus) is supported on all
cryptographic coprocessors. The 4096-bit modulus private key token is supported
on the z9 EC, z9 BC, z10 EC, z10 BC, or IBM zEnterprise 196 with the Nov. 2007 or
later version of the licensed internal code installed on the CCA Crypto Express
coprocessor.

Table 93. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format

Offset (Dec) Number of Bytes Description

000 001 X'08', section identifier, RSA private key, CRT format (RSA-CRT)

001 001 X'00', version.

002 002 Length of the RSA private-key section, 132 + ppp + qqq + rrr + sss + uuu
+ ttt + iii + xxx + nnn.

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
end of the modulus.

024 004 Reserved; set to binary zero.

028 001 Key format and security:

X'08' Encrypted RSA private-key subsection identifier, Chinese
Remainder form.

Appendix A. Diagnosis reference information 333

Table 93. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format (continued)

Offset (Dec) Number of Bytes Description

029 001 Key derivation method:

X'21' External private key was specified in the clear.

X'22' External private key was encrypted.

X'23' Private key was generated using regeneration data.

X'24' Private key was randomly generated.

030 020 SHA-1 hash of the optional key-name section and any following sections.
If there are no optional sections, then 20 bytes of X'00'.

050 004 Key use flag bits:

Bit Meaning When Set On

0 Key management usage permitted.

1 Signature usage not permitted.

All other bits reserved, set to binary zero.

054 002 Length of prime number, p, in bytes: ppp.

056 002 Length of prime number, q, in bytes: qqq.

058 002 Length of dp, in bytes: rrr.

060 002 Length of dq, in bytes: sss.

062 002 Length of U, in bytes: uuu.

064 002 Length of modulus, n, in bytes: nnn.

066 002 Length of the random number r, in bytes: ttt.

068 002 Length of the random number r–1, in bytes: iii.

070 002 Length of padding field, in bytes: xxx.

072 004 Reserved, set to binary zero.

076 016 RSA master key verification pattern.

092 032 Object Protection Key (OPK) encrypted under the Asymmetric-Keys
Master Key using the TDES (CBC outer chaining) algorithm.

124 Start of the encrypted secure subsection, encrypted under the OPK using TDES (CBC outer
chaining).

124 008 Random number, confounder.

132 ppp Prime number, p.

132 + ppp qqq Prime number, q

132 + ppp + qqq rrr dp = d mod(p - 1)

132 + ppp + qqq
+ rrr

sss dq = d mod(q - 1)

132 + ppp + qqq
+ rrr + sss

uuu U = q–1mod(p).

132 + ppp + qqq
+ rrr + sss + uuu

ttt Random number r (used in blinding).

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt

iii Random number r–1 (used in blinding).

334 z/OS ICSF System Programmer's Guide

Table 93. RSA Private Internal Key Token, 4096-bit Chinese Remainder Theorem Internal Format (continued)

Offset (Dec) Number of Bytes Description

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii

xxx X'00' padding of length xxx bytes such that the length from the start of
the confounder at offset 124 to the end of the padding field is a multiple
of eight bytes.

End of the encrypted secure subsection; all of the fields starting with the confounder field and
ending with the variable length pad field are encrypted under the OPK using TDES (CBC outer
chaining) for key confidentiality.

132 + ppp + qqq
+ rrr + sss + uuu
+ ttt + iii + xxx

nnn Modulus, n. n = pq where p and q are prime and 1<n<24096.

ECC key token format
The following table presents the format of the ECC Key Token.

Table 94. ECC Key Token Format

Offset (Dec) Number of bytes Description

Token header

000 001 Token identifier.

X'00' Null token

X'1E' External token

X'1F' Internal token; the private key is protected by the master key

001 001 Version, X'00'.

002 002 Length of the key token structure excluding the internal information
section.

004 004 Ignored; should be zero.

ECC Token Private section

000 001 X'20', section identifier, ECC private key

001 001 X'00', version.

002 002 Section length.

004 001 Wrapping Method: This value indicates the wrapping method used to
protect the data in the encrypted section. It is not the method used to
protect the Object Protection Key (OPK).

X'00' Clear – section is unencrypted.

X'01' AESKW

X'02' CBC Wrap - Other

005 001 Hash used for Wrapping

X'01' SHA224

X'02' SHA256

X'04' Reserved.

X'08 ' Reserved

006 002 Reserved Binary Zero

Appendix A. Diagnosis reference information 335

Table 94. ECC Key Token Format (continued)

Offset (Dec) Number of bytes Description

008 001 Key Usage:

X'C0' Key Agreement

X'80' Both signature generation and key agreement

X'00' Signature generation only

X'02' Translate allowed
The two high-order bits indicate permitted key usage in the decryption
of symmetric keys and in the generation of digital signatures. The bit in
the second nibble indicates if the key is translatable. A key is translatable
if it can be re-encrypted from one key encrypting key to another.

009 001 Curve type:

X'00' Prime curve

X'01' Brainpool curve

010 001 Key Format and Security Flag.

External Token:

X'40' Unencrypted ECC private key identifier

X'42' Encrypted ECC private key identifier

Internal Token:

X'08' Encrypted ECC private key identifier

011 001 Reserved Binary Zero

012 002 Length of p in bits

X'00C0' Prime P-192

X'00E0' Prime P-224

X'0100' Prime P-256

X'0180' Prime P-384

X'0209' Prime P-521

X'00A0' Brainpool p-160

X'00C0' Brainpool P-192

X'00E0' Brainpool P-224

X'0100' Brainpool P-256

X'0140' Brainpool P-320

X'0180' Brainpool P-384

X'0200' Brainpool P-512)

014 002 IBM Associated Data length. The length of this field must be greater than
or equal to 16

016 008 External Token:

v Unencrypted – Reserved Binary 0x’00’

v Encrypted – KVP of the AESKEK

Internal Token: MKVP of the ECC-MK

336 z/OS ICSF System Programmer's Guide

Table 94. ECC Key Token Format (continued)

Offset (Dec) Number of bytes Description

024 048 External Token: reserved binary zeros.

Internal Token: Object Protection Key (OPK), ICV (Integrity Check
value), 8 byte confounder and a 256-bit AES key used with the AESKW
algorithm to encrypt the ECC private key.

The OPK is encrypted by the AES master key using AESKW as well.
Example format for OPK data passed to AESKW:

v 8 bytes = A6A6A6A6A6A60000

v 40 bytes = Confounder(8)/Key(32)

072 002 Associated data length, aa

074 002 Length of formatted section in bytes, bb

076 aa Associated data

See “Associated data format for ECC token” on page 338.

076 + aa Start of formatted
section

If this section is in the clear it contains private key d.

If it is encrypted it contains the AESKW wrapped payload.

76 + aa bb Formatted section which includes Private key d

See “AESKW wrapped payload format for ECC private key token” on
page 339.

76 + aa + bb End of formatted
section

ECC Token Public Section

000 001 X'21', section identifier

001 001 X'00', version.

002 002 Section length

004 004 Reserved field, binary zero

008 001 Curve type

X'00' Prime curve

X'01' Brainpool curve

009 001 Reserved field, binary zero

Appendix A. Diagnosis reference information 337

Table 94. ECC Key Token Format (continued)

Offset (Dec) Number of bytes Description

010 002 Length of p in bits:

X'00C0' Prime P-192

X'00E0' Prime P-224

X'0100' Prime P-256

X'0180' Prime P-384

X'0209' Prime P-521

X'00A0' Brainpool P-160

X'00C0' Brainpool P-192

X'00E0' Brainpool P-224

X'0100' Brainpool P-256

X'0140' Brainpool P-320

X'0180' Brainpool P-384

X'0200' Brainpool P-512

012 002 This field is the length of the public key q value in bytes, the maximum
value could be up to 133 bytes, cc. The value includes the key material
length and one byte to indicate if the key material is compressed or
uncompressed.

014 cc Public Key , q field

Associated data format for ECC token
Table 95 defines the associated data as it is stored in the ECC token in the clear.
Associated data is data whose integrity but not confidentiality is protected by a
key wrap mechanism.

Table 95. Associated Data Format for ECC Private Key Token

Offset (Dec) Number of Bytes Description

000 001 Associated Data Version. 0 for ECC

001 001 Length of Key Label, kl

002 002 IBM Associated Data length, 16 + kl + xxx

004 002 IBM Extended Associated Data length, xxx

006 001 User Definable Associated Data length, yyy. User
definable lengths are from 0 bytes to 100 bytes.

007 001 Curve Type

008 002 Length of p in bits

010 001 Usage flag

011 001 Format and Security flag

012 004 reserved

016 kl Key Label (optional)

016 + kl xxx IBM Extended Associated Data

016 + kl +
xxx

yyy User-definable Associated Data

338 z/OS ICSF System Programmer's Guide

AESKW wrapped payload format for ECC private key token
This table defines the contents of the AESKW payload: data will be copied into this
format, then encrypted with the OPK according to the AESKW specification, and
the result will be stored in the encrypted data section.

Table 96. AESKW Wrapped Payload Format for ECC Private Key Token

Offset (Dec) Number of Bytes Description

000 006 ICV (‘A6’....)

006 001 Length of padding in bits

007 001 Length of the hash of the associated data in bytes, ii

008 004 Hash options

012 ii Hash of Associated Data

12+ii mm Key data

12+ii+mm 0-7 Padding to a multiple of 8 bytes

Trusted blocks
A trusted block is an extension of CCA PKA key tokens using new section
identifiers. They are an integral part of a remote key-loading process.

Trusted blocks contain various items, some of which are optional, and some of
which can be present in different forms. Tokens are composed of concatenated
sections that, unlike CCA PKA key tokens, occur in no prescribed order.

As with other CCA key-tokens, both internal and external forms are defined:
v An external trusted block contains a randomly generated confounder and a

triple-length MAC key enciphered under a DES IMP-PKA transport key. The
MAC key is used to calculate an ISO 16609 CBC mode TDES MAC of the
trusted block contents. An external trusted block is created by the Trusted Block
Create callable service. This service can:
1. Create an inactive external trusted block.
2. Change an external trusted block from inactive to active.

v An internal trusted block contains a confounder and triple-length MAC key
enciphered under a variant of the PKA master key. The MAC key is used to
calculate a TDES MAC of the trusted block contents. A PKA master key
verification pattern is also included to enable determination that the proper
master key is available to process the key. The Remote Key Export service only
operates on trusted blocks that are internal. An internal trusted block must be
imported from an external trusted block that is active using the PKA Key Import
service.

Note: Trusted blocks do not contain a private key section.

Trusted block sections
A trusted block is a concatenation of a header followed by an unordered set of
sections. The data structures of these sections are summarized in the following
table:

Table 97. Trusted block sections

Section Reference Usage

Header Table 98 on page 341 Trusted block token header

X'11' Table 99 on page 342 Trusted block public key

Appendix A. Diagnosis reference information 339

Table 97. Trusted block sections (continued)

Section Reference Usage

X'12' Table 100 on page 343 Trusted block rule

X'13' Table 107 on page 351 Trusted block name (key label)

X'14' Table 108 on page 351 Trusted block information

X'15' Table 112 on page 354 Trusted block application-defined data

Every trusted block starts with a token header. The first byte of the token header
determines the key form:
v An external header (first byte X'1E'), created by the Trusted Block Create verb
v An internal header (first byte X'1F'), imported from an active external trusted

block by the PKA Key Import verb

Following the token header of a trusted block is an unordered set of sections. A
trusted block is formed by concatenating these sections to a trusted block header:
v An optional public-key section (trusted block section identifier X'11')

The trusted block trusted RSA public-key section includes the key itself in
addition to a key-usage flag. No multiple sections are allowed.

v An optional rule section (trusted block section identifier X'12')
A trusted block may have zero or more rule sections.
1. A trusted block with no rule sections can be used by the PKA Key Token

Change and PKA Key Import callable services. A trusted block with no rule
sections can also be used by the Digital Signature Verify verb, provided there
is an RSA public-key section that has its key-usage flag bits set to allow
digital signature operations.

2. At least one rule section is required when the Remote Key Export verb is
used to:
– Generate an RKX key-token
– Export an RKX key-token
– Export a CCA DES key-token
– Encrypt the clear generated or exported key using the provided vendor

certificate
3. If a trusted block has multiple rule sections, each rule section must have a

unique 8-character Rule ID.
v An optional name (key label) section (trusted block section identifier X'13')

The trusted block name section provides a 64-byte variable to identify the
trusted block, just as key labels are used to identify other CCA keys. This name,
or label, enables a host access-control system such as RACF to use the name to
verify that the application has authority to use the trusted block. No multiple
sections are allowed.

v A required information section (trusted block section identifier X'14')
The trusted block information section contains control and security information
related to the trusted block. The information section is required while the others
are optional. This section contains the cryptographic information that guarantees
its integrity and binds it to the local system. No multiple sections are allowed.

v An optional application-defined data section (trusted block section identifier
X'15')
The trusted block application-defined data section can be used to include
application-defined data in the trusted block. The purpose of the data in this

340 z/OS ICSF System Programmer's Guide

section is defined by the application. CCA does not examine or use this data in
any way. No multiple sections are allowed.

Trusted block integrity
An enciphered confounder and triple-length MAC key contained within the
required information section of the trusted block is used to protect the integrity of
the trusted block. The randomly generated MAC key is used to calculate an ISO
16609 CBC mode TDES MAC of the trusted block contents. Together, the MAC key
and MAC value provide a way to verify that the trusted block originated from an
authorized source, and binds it to the local system.

An external trusted block has its MAC key enciphered under an IMP-PKA
key-encrypting key. An internal trusted block has its MAC key enciphered under a
variant of the PKA master key, and the master key verification pattern is stored in
the information section.

Number representation in trusted blocks
v All length fields are in binary.
v All binary fields (exponents, lengths, and so forth) are stored with the

high-order byte first; thus the least significant bits are to the right and preceded
with zero-bits to the width of a field.

v In variable-length binary fields that have an associated field-length value,
leading bytes that would otherwise contain X'00' can be dropped and the field
can be shortened to contain only the significant bits.

Format of trusted block sections
At the beginning of every trusted block is a trusted block header. The header
contains the following information:
v A token identifier, which specifies whether the token contains an external or

internal key-token.
v A token version number to allow for future changes.
v A length in bytes of the trusted block, including the length of the header.

The trusted block header is defined in the following table:

Table 98. Trusted block header

Offset
(bytes)

Length
(bytes) Description

000 001 Token identifier (a flag that indicates token type)

X'1E' External trusted block token.

X'1F' Internal trusted block token.

001 001 Token version number (X'00').

002 002 Length of the key-token structure in bytes.

004 004 Reserved, binary zero.

Note: See “Number representation in trusted blocks.”

Following the header, in no particular order, are trusted block sections. There are
five different sections that are defined, each identified by a one-byte section
identifier (X'11' - X'15'). Two of the five sections have subsections that are defined.
A subsection is a tag-length-value (TLV) object, which is identified by a two-byte
subsection tag.

Appendix A. Diagnosis reference information 341

Only sections X'12' and X'14' have subsections that are defined; the other sections
do not. A section and its subsections, if any, are one contiguous unit of data. The
subsections are concatenated to the related section, but are otherwise in no
particular order. Section X'12' has five subsections that are defined (X'0001' -
X'0005'), and section X'14' has two (X'0001' and X'0002'). Of all the subsections, only
subsection X'0001' of section X'14' is required. Section X'14' is also required.

The trusted block sections and subsections are described in detail in the following
sections.

Trusted block section X'11'

Trusted block section X'11' contains the trusted RSA public key in addition to a
key-usage flag indicating whether the public key is usable in key-management
operations, digital signature operations, or both.

Section X'11' is optional. No multiple sections are allowed. It has no subsections
that are defined.

This section is defined in the following table:

Table 99. Trusted block trusted RSA public-key section (X'11')

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'11' Trusted block trusted RSA public key.

001 001 Section version number (X'00').

002 002 Section length (16+xxx+yyy).

004 002 Reserved, must be binary zero.

006 002 RSA public-key exponent field length in bytes, xxx.

008 002 RSA public-key modulus length in bits.

010 002 RSA public-key modulus field length in bytes, yyy.

012 xxx
Public-key exponent, e (this field length is
typically 1, 3, or 64 - 512 bytes). e must be
odd and 1≤e<n. (e is frequently
valued to 3 or 216+1 (=65537),
otherwise e is of the same order of magnitude
as the modulus).
Note: Although the current product implementation does not generate
such a public key, you can import an RSA public key having an
exponent valued to two (2). Such a public key (a Rabin key) can correctly
validate an ISO 9796-1 digital signature.

012+xxx yyy

RSA public-key modulus, n. n=pq, where p and q
are prime and 2512≤
n<24096.
The field length is 64 - 512 bytes.

342 z/OS ICSF System Programmer's Guide

Table 99. Trusted block trusted RSA public-key section (X'11') (continued)

Offset
(bytes)

Length
(bytes)

Description

012
+xxx+yyy

004 Flags:

X'00000000'
Trusted block public key can be used in digital signature
operations only.

X'80000000'
Trusted block public key can be used in both digital signature
and key management operations.

X'C0000000'
Trusted block public key can be used in key management
operations only.

Note: See “Number representation in trusted blocks” on page 341.

Trusted block section X'12'

Trusted block section X'12' contains information that defines a rule. A trusted block
can have zero or more rule sections.
1. A trusted block with no rule sections can be used by the PKA Key Token

Change and PKA Key Import callable services. A trusted block with no rule
sections can be used by the Digital Signature Verify verb, provided there is an
RSA public-key section that has its key-usage flag set to allow digital signature
operations.

2. At least one rule section is required when the Remote Key Export verb is used
to:
v Generate an RKX key-token.
v Export an RKX key-token.
v Export a CCA DES key-token.
v Generate or export a key encrypted by a public key. The public key is

contained in a vendor certificate (section X'11'), and is the root certification
key for the ATM vendor. It is used to verify the digital signature on
public-key certificates for specific individual ATMs.

3. If a trusted block has multiple rule sections, each rule section must have a
unique 8-character Rule ID.

Section X'12' is the only section that is allowed to have multiple sections. Section
X'12' is optional. Multiple sections are allowed.

Note: The overall length of the trusted block can not exceed its maximum size of
3500 bytes.

Five subsections (TLV objects) are defined.

This section is defined in the following table:

Table 100. Trusted block rule section (X'12')

Offset
(bytes)

Length
(bytes)

Description

Offset
(bytes)

Length (bytes) Description

Appendix A. Diagnosis reference information 343

Table 100. Trusted block rule section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'12' Trusted block rule.

001 001 Section version number (X'00').

002 002 Section length in bytes (20+yyy).

004 008 Rule ID (in ASCII).

An 8-byte character string that uniquely identifies the rule within the
trusted block.

Valid ASCII characters are: A...Z, a...z, 0...9, - (hyphen), and _
(underscore), left-justified and padded on the right with space
characters.

012 004 Flags (undefined flag bits are reserved and must be zero).

X'00000000'
Generate new key.

X'00000001'
Export existing key.

016 001 Generated key length.

Length in bytes of key to be generated when flags value (offset 012) is
set to generate a new key; otherwise, ignore this value. Valid values are
8, 16, or 24; return an error if not valid.

017 001 Key-check algorithm identifier (all others are reserved and must not be
used):
Value Meaning
X'00' Do not compute key-check value. In a call to CSNDRKX or

CSNFRKX, set the key_check_length variable to zero.
X'01' Encrypt an 8-byte block of binary zeros with the key. In a call

to CSNDRKX or CSNFRKX, set the key_check_length variable
to 8.

X'02' Compute the MDC-2 hash of the key. In a call to CSNDRKX or
CSNFRKX, set the key_check_length variable to 16.

018 001 Symmetric encrypted output key format flag (all other values are
reserved and must not be used).

Return the indicated symmetric key-token by using the
sym_encrypted_key_identifier parameter.
Value Meaning
X'00' Return an RKX key-token encrypted under a variant of the

MAC key.
Note: This is the only key format that is permitted when the
flags value (offset 012) is set to generate a new key.

X'01' Return a CCA DES key-token encrypted under a transport key.
Note: This is the only key format that is permitted when the
flags value (offset 012) is set to export an existing key.

019 001 Asymmetric encrypted output key format flag (all other values are
reserved and must not be used).

Return the indicated asymmetric key-token in the asym_encrypted_key
variable.
Value Meaning
X'00' Do not return an asymmetric key. Set the

asym_encrypted_key_length variable to zero.
X'01' Output in PKCS1.2 format.
X'02' Output in RSAOAEP format.

020 yyy Rule section subsections (tag-length-value objects). A series of 0 - 5
objects in TLV format.

344 z/OS ICSF System Programmer's Guide

Note: See “Number representation in trusted blocks” on page 341.

Section X'12' has five rule subsections (tag-length-value objects) defined. These
subsections are summarized in the following table:

Table 101. Summary of trusted block rule subsection

Rule
subsection
tag

TLV object Optional or
required

Comments

X'0001' Transport
key variant

Optional Contains variant to be exclusive-ORed into the
cleartext transport key.

X'0002' Transport
key rule
reference

Optional; required
to use an RKX
key-token as a
transport key

Contains the rule ID for the rule that must have been
used to create the transport key.

X'0003' Common
export key
parameters

Optional for key
generation; required
for key export of an
existing key

Contains the export key and source key minimum
and maximum lengths, an output key variant length
and variant, a CV length, and a CV to be
exclusive-ORed with the cleartext transport key to
control usage of the key.

X'0004' Source key
reference

Optional; required if
the source key is an
RKX key-token

Contains the rule ID for the rule used to create the
source key.
Note: Include all rules that will ever be needed when
a trusted block is created. A rule cannot be added to
a trusted block after it has been created.

X'0005' Export key
CCA token
parameters

Optional; used for
export of CCA DES
key tokens only

Contains mask length, mask, and CV template to
limit the usage of the exported key. Also contains the
template length and template that defines which
source key labels are allowed.

The key type of a source key input parameter can be
"filtered" by using the export key CV limit mask
(offset 005) and limit template (offset 005+yyy) in this
subsection.

Note: See “Number representation in trusted blocks” on page 341.

Trusted block section X'12' subsection X'0001'

Subsection X'0001' of the trusted block rule section (X'12') is the transport
key variant TLV object. This subsection is optional. It contains a variant to
be exclusive-ORed into the cleartext transport key.

This subsection is defined in the following table:

Table 102. Transport key variant subsection (X'0001' of trusted block rule section (X'12')

Offset
(bytes)

Length (bytes) Description

000 002 Subsection tag:

X'0001' Transport key variant TLV object.

002 002 Subsection length in bytes (8+nnn).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Length of variant field in bytes (nnn).

This length must be greater than or equal to the length of the transport
key that is identified by the transport_key_identifier parameter. If the
variant is longer than the key, truncate it on the right to the length of
the key before use.

Appendix A. Diagnosis reference information 345

Table 102. Transport key variant subsection (X'0001' of trusted block rule section
(X'12') (continued)

Offset
(bytes)

Length (bytes) Description

008 nnn Transport key variant.

Exclusive-OR this variant into the cleartext transport key, provided: (1)
the length of the variant field value (offset 007) is not zero, and (2) the
symmetric encrypted output key format flag (offset 018 in section
X'12') is X'01'.
Note: A transport key is not used when the symmetric encrypted
output key is in RKX key-token format.

Note: See “Number representation in trusted blocks” on page 341.

Trusted block section X'12' subsection X'0002'

Subsection X'0002' of the trusted block rule section (X'12') is the transport
key rule reference TLV object. This subsection is optional. It contains the
rule ID for the rule that must have been used to create the transport key.
This subsection must be present to use an RKX key-token as a transport
key.

This subsection is defined in the following table:

Table 103. Transport key rule reference subsection (X'0002') of trusted block rule section
(X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0002' Transport key rule reference TLV object.

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 008 Rule ID.

Contains the rule identifier for the rule that must have been used to
create the RKX key-token used as the transport key.

The Rule ID is an 8-byte string of ASCII characters, left-justified and
padded on the right with space characters. Acceptable characters are
A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other characters are reserved
for future use.

Trusted block section (X'12') subsection X'0003'

Subsection X'0003' of the trusted block rule section (X'12') is the common
export key parameters TLV object. This subsection is optional, but is
required for the key export of an existing source key (identified by the
source_key_identifier parameter) in either RKX key-token format or CCA
DES key-token format. For new key generation, this subsection applies the
output key variant to the cleartext generated key, if such an option is
wanted. It contains the input source key and output export key minimum
and maximum lengths, an output key variant length and variant, a CV
length, and a CV to be exclusive-ORed with the cleartext transport key.

This subsection is defined in the following table:

346 z/OS ICSF System Programmer's Guide

Table 104. Common export key parameters subsection (X'0003') of trusted block rule
section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0003' Common export key parameters TLV object.

002 002 Subsection length in bytes (12+xxx+yyy).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key minimum length in bytes. Length must be 8, 16, or 24.

Also applies to the source key.

009 001 Export key maximum length in bytes (yyy). Length must be 8, 16, or 24.

Also applies to the source key.

010 001 Output key variant length in bytes (xxx).

Valid values are 0 or 8 - 255. If greater than 0, the length must be at least
as long as the longest key ever to be exported that uses this rule. If the
variant is longer than the key, truncate it on the right to the length of the
key before use.
Note: The output key variant (offset 011) is not used if this length is
zero.

011 xxx Output key variant.

The variant can be any value. Exclusive-OR this variant into the cleartext
value of the output.

011+xxx 001 CV length in bytes (yyy).

v If the length is not 0, 8, or 16, return an error.

v If the length is 0, and if the source key is a CCA DES key-token,
preserve the CV in the symmetric encrypted output if the output is to
be in the form of a CCA DES key-token.

v If a non-zero length is less than the length of the key that is identified
by the source_key_identifier parameter, return an error.

v If the length is 16, and if the CV (offset 012+xxx) is valued to 16 bytes
of X'00' (ignoring the key-part bit), then:

1. Ignore all CV bit definitions.

2. If CCA DES key-token format, set the flag byte of the symmetric
encrypted output key to indicate that a CV value is present.

3. If the source key is 8 bytes, do not replicate the key to 16 bytes.

Appendix A. Diagnosis reference information 347

Table 104. Common export key parameters subsection (X'0003') of trusted block rule
section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

012+xxx yyy CV.

Place this CV into the output exported key-token, if the symmetric
encrypted output key format selected (offset 018 in rule section) is CCA
DES key-token.

v If the symmetric encrypted output key format flag (offset 018 in
section X'12') indicates return an RKX key-token (X'00'), then ignore
this CV. Otherwise, exclusive-OR this CV into the cleartext transport
key.

v Exclusive-OR the CV of the source key into the cleartext transport key
if the CV length (offset 011+xxx) is set to 0. If a transport key to
encrypt a source key has equal left and right key halves, return an
error. Replicate the key halves of the key that is identified by the
source_key_identifier parameter whenever all of these conditions are
met:

1. The Replicate Key command (offset X'00DB') is enabled in the
active role.

2. The CV length (offset 011+xxx) is 16, and both CV halves are
non-zero.

3. The source_key_identifier parameter (contained in either a CCA DES
key-token or RKX key-token) identifies an 8-byte key.

4. The key-form bits (40 - 42) of this CV do not indicate a
single-length key (are not set to zero)

5. Key-form bit 40 of this CV does not indicate that the key is to have
guaranteed unique halves (is not set to 1).

Note: A transport key is not used when the symmetric encrypted output
key is in RKX key-token format.

Note: See “Number representation in trusted blocks” on page 341.

Trusted block section X'12' subsection X'0004'

Subsection X'0004' of the trusted block rule section (X'12') is the source key
rule reference TLV object. This subsection is optional, but is required if
using an RKX key-token as a source key (identified by source_key_identifier
parameter). It contains the rule ID for the rule that is used to create the
export key. If this subsection is not present, an RKX key-token format
source key will not be accepted for use.

This subsection is defined in the following table:

Table 105. Source key rule reference subsection (X'0004' of trusted block rule section
(X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0004' Source key rule reference TLV object.

002 002 Subsection length in bytes (14).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

348 z/OS ICSF System Programmer's Guide

Table 105. Source key rule reference subsection (X'0004' of trusted block rule section
(X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

006 008 Rule ID.

Rule identifier for the rule that must have been used to create the source
key.

The Rule ID is an 8-byte string of ASCII characters, left-justified and
padded on the right with space characters. Acceptable characters are
A...Z, a...z, 0...9, - (X'2D'), and _ (X'5F'). All other characters are reserved
for future use.

Note: See “Number representation in trusted blocks” on page 341.

Trusted block section X'12' subsection X'0005'

Subsection X'0005' of the trusted block rule section (X'12') is the export key
CCA token parameters TLV object. This subsection is optional. It contains a
mask length, mask, and template for the export key CV limit. It also
contains the template length and template for the source key label. When
using a CCA DES key-token as a source key input parameter, its key type
can be "filtered" by using the export key CV limit mask (offset 005) and
limit template (offset 005+yyy) in this subsection.

This subsection is defined in the following table:

Table 106. Export key CCA token parameters subsection (X'0005') of trusted block rule
section (X'12')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0005' Export key CCA token parameters TLV object.

002 002 Subsection length in bytes (10+yyy+yyy+zzz).

004 001 Subsection version number (X'00').

005 002 Reserved, must be binary zero.

007 001 Flags (must be set to binary zero).

008 001 Export key CV limit mask length in bytes (yyy).

Do not use CV limits if this CV limit mask length (yyy) is zero. Use CV
limits if yyy is non-zero, in which case yyy:

v Must be 8 or 16.

v Must not be less than the export key minimum length (offset 008 in
subsection X'0003').

v Must be equal in length to the actual source key length of the key.

Example: An export key minimum length of 16 and an export key CV
limit mask length of 8 returns an error.

009 yyy Export key CV limit mask (does not exist if yyy=0).

Indicates which CV bits to check against the source key CV limit
template (offset 009+yyy).

Examples: A mask of X'FF' means check all bits in a byte. A mask of
X'FE' ignores the parity bit in a byte.

Appendix A. Diagnosis reference information 349

Table 106. Export key CCA token parameters subsection (X'0005') of trusted block rule
section (X'12') (continued)

Offset
(bytes)

Length
(bytes)

Description

009+yyy yyy Export key CV limit template (does not exist if yyy=0).

Specifies the required values for those CV bits that are checked based on
the export key CV limit mask (offset 009).

The export key CV limit mask and template have the same length, yyy.
This is because these two variables work together to restrict the
acceptable CVs for CCA DES key tokens to be exported. The checks
work as follows:

1. If the length of the key to be exported is less than yyy, return an
error.

2. Logical AND the CV for the key to be exported with the export key
CV limit mask.

3. Compare the result to the export key CV limit template.

4. Return an error if the comparison is not equal.

Examples: An export key CV limit mask of X'FF' for CV byte 1 (key
type) along with an export key CV limit template of X'3F' (key type
CVARENC) for byte 1 filters out all key types except CVARENC keys.
Note: Using the mask and template to permit multiple key types is
possible, but cannot consistently be achieved with one rule section. For
example, setting bit 10 to 1 in the mask and the template permits PIN
processing keys and cryptographic variable encrypting keys, and only
those keys. However, a mask to permit PIN-processing keys and
key-encrypting keys, and only those keys, is not possible. In this case,
multiple rule sections are required, one to permit PIN-processing keys
and the other to permit key-encrypting keys.

009+

yyy+
yyy

001 Source key label template length in bytes (zzz).

Valid values are 0 and 64. Return an error if the length is 64 and a
source key label is not provided.

010+

yyy+
yyy

zzz Source key label template (does not exist if zzz=0).

If a key label is identified by the source_key_identifier parameter, verify
that the key label name matches this template. If the comparison fails,
return an error. The source key label template must conform to the
following rules:

v The key label template must be 64 bytes.

v The first character cannot be in the range X'00' - X'1F', nor can it be
X'FF'.

v The first character cannot be numeric (X'30' - X'39').

v A key label name is terminated by a space character (X'20') on the
right and must be padded on the right with space characters.

v The only special characters that are permitted are #, $, @, and * (X'23',
X'24', X'40', and X'2A').

v The wildcard X'2A' (*) is only permitted as the first character, the last
character, or the only character in the template.

v Only alphanumeric characters (a...z, A...Z, 0...9), the four special
characters (X'23', X'24', X'40', and X'2A'), and the space character
(X'20') are allowed.

Note: See “Number representation in trusted blocks” on page 341.

350 z/OS ICSF System Programmer's Guide

Trusted block section X'13'

Trusted block section X'13' contains the name (key label). The trusted block name
section provides a 64-byte variable to identify the trusted block, just as key labels
are used to identify other CCA keys. This name, or label, enables a host
access-control system such as RACF to use the name to verify that the application
has authority to use the trusted block.

Section X'13' is optional. No multiple sections are allowed. It has no subsections
that are defined. This section is defined in the following table:

Table 107. Trusted block key label (name) section X'13'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'13' Trusted block name (key label).

001 001 Section version number (X'00').

002 002 Section length in bytes (68).

004 064 Name (key label).

Note: See “Number representation in trusted blocks” on page 341.

Trusted block section X'14'

Trusted block section X'14' contains control and security information that is related
to the trusted block. This information section is separate from the public key and
other sections because this section is required while the others are optional. This
section contains the cryptographic information that guarantees its integrity and
binds it to the local system.

Section X'14' is required. No multiple sections are allowed. Two subsections are
defined. This section is defined in the following table:

Table 108. Trusted block information section X'14'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'14' Trusted block information.

001 001 Section version number (X'00').

002 002 Section length in bytes (10+xxx).

004 002 Reserved, binary zero.

006 004 Flags:

X'00000000'
Trusted block is in the inactive state.

X'00000001'
Trusted block is in the active state.

010 xxx Information section subsections (tag-length-value objects).

One or two objects in TLV format.

Note: See “Number representation in trusted blocks” on page 341.

Appendix A. Diagnosis reference information 351

Section X'14' has two information subsections (tag-length-value objects) defined.
These subsections are summarized in the following table:

Table 109. Summary of trusted block information subsections

Rule
subsection
tag

TLV object Optional or
required

Comments

X'0001' Protection
information

Required Contains the encrypted 8-byte confounder and
triple-length (24-byte) MAC key, the ISO 16609 TDES
CBC MAC value, and the MKVP of the PKA master
key (computed by using MDC4).

X'0002' Activation and
expiration
dates

Optional Contains flags indicating whether the coprocessor is
to validate dates, and contains the activation and
expiration dates that are considered valid for the
trusted block.

Note: See “Number representation in trusted blocks” on page 341.

Trusted block section X'14' subsection X'0001'

Subsection X'0001' of the trusted block information section (X'14') is the
protection information TLV object. This subsection is required. It contains
the encrypted 8-byte confounder and triple-length (24-byte) MAC key, the
ISO-16609 TDES CBC MAC value, and the MKVP of the PKA master key
(computed by using MDC4).

This subsection is defined in the following table:

Table 110. Protection information subsection (X'0001') of trusted block information section
(X'14')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0001' Trusted block information TLV object.

002 002 Subsection length in bytes (62).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 032 Encrypted MAC key.

Contains the encrypted 8-byte confounder and triple-length (24-byte)
MAC key in the following format:

Offset Description

00 - 07 Confounder.

08 - 15 Left key.

16 - 23 Middle key.

24 - 31 Right key.

038 008 MAC.

Contains the ISO-16609 TDES CBC message authentication code value.

046 016 MKVP.

Contains the PKA master key verification pattern, computed by using
MDC4, when the trusted block is in internal form, otherwise contains
binary zero.

Note: See “Number representation in trusted blocks” on page 341.

352 z/OS ICSF System Programmer's Guide

Trusted block section X'14' subsection X'0002'

Subsection X'0002' of the trusted block information section (X'14') is the
activation and expiration dates TLV object. This subsection is optional. It
contains flags indicating whether the coprocessor is to validate dates, and
contains the activation and expiration dates that are considered valid for
the trusted block.

This subsection is defined in the following table:

Table 111. Activation and expiration dates subsection (X'0002') of trusted block information
section (X'14')

Offset
(bytes)

Length
(bytes)

Description

000 002 Subsection tag:

X'0002' Activation and expiration dates TLV object.

002 002 Subsection length in bytes (16).

004 001 Subsection version number (X'00').

005 001 Reserved, must be binary zero.

006 002 Flags:

X'0000' The coprocessor does not check dates.

X'0001' The coprocessor checks dates.

Compare the activation date (offset 008) and the expiration
date (offset 012) to the coprocessor's internal real-time clock.
Return an error if the coprocessor date is before the activation
date or after the expiration date.

008 004 Activation date.

Contains the first date that the trusted block can be used for generating
or exporting keys. Format of the date is YYMD, where:

YY Big-endian year (return an error if greater than 9999).

M Month (return an error if any value other than X'01' - X'0C').

D Day of month (return an error if any value other than X'01' -
X'1F'; day must be valid for given month and year, including
leap years).

Return an error if the activation date is after the expiration date or is not
valid.

012 004 Expiration date.

Contains the last date that the trusted block can be used. Same format as
activation date (offset 008). Return an error if date is not valid.

Note: See “Number representation in trusted blocks” on page 341.

Trusted block section X'15'

Trusted block section X'15' contains application-defined data. The trusted block
application-defined data section can be used to include application-defined data in
the trusted block. The purpose of the data in this section is defined by the
application; it is not examined or used by CCA in any way.

Section X'15' is optional. No multiple sections are allowed. It has no subsections
that are defined. This section is defined in the following table:

Appendix A. Diagnosis reference information 353

Table 112. Trusted block application-defined data section X'15'

Offset
(bytes)

Length
(bytes)

Description

000 001 Section identifier:

X'15' Application-defined data.

001 001 Section version number (X'00').

002 002 Section length (6+xxx).

004 002 Application data length (xxx).

The value of xxx can be from 0 bytes to a length that does not
cause the trusted block to exceed its maximum size of 3500
bytes.

006 xxx Application-defined data.

Can be used to hold a public-key certificate for the trusted
public key.

Note: See “Number representation in trusted blocks” on page 341.

Data areas
These topics present the format of the Cryptographic Communication Vector Table
(CCVT) and the Cryptographic Communication Vector Table Extension (CCVE)
data areas.

The Cryptographic Communication Vector Table (CCVT)
The CCVT is the ICSF base control block and contains addresses of common areas
for use by ICSF components. Indicators in the CCVT also provide ICSF status
information. The CCVT is getmained in subpool 245 under the line. The ICSF
CCVT is anchored off of SCVTCCVT in the SCVT macro.

ONLY these fields are part of the programming interface:
v CCVTDACC
v CCVTRLVL
v CCVTCCVE
v CCVTHFLG
v CCVTSFLG
v CCVTPRPC
v CCVTINST
v CCVTINS2
v CCVTLNTH
v CCVTFMID
v CCVT_USERPARM
v CCVT_PKDSN
v CCVTNAMES
v CCVT_CKDSN
v CCVT_TKDSN
v CCVT_STATF

354 z/OS ICSF System Programmer's Guide

Table 113 describes the contents of the Cryptographic Communication Vector Table.
Any bits that are not described in the table are reserved.

Table 113. Cryptographic communication vector table

Offset
(Dec)

Number
of bytes Field name Description

9 1 CCVT_STATF Statistic option flags.

12 4 CCVTRLVL ICSF level.

16 4 CCVTCCVE Cryptographic Communication Vector Table Extension (CCVE) address.

The address of a private area extension of the CCVT. You should place any
fields not needed by other address spaces in the CCVE.

28 4 CCVTPRPC Entry point for the pre-PC processing module, CSFARPC.

32 4 CCVTINST For installation use.

56 8 CCVTINS2 An 8-byte area for installation use.

68 4 CCVTLNTH Maximum installation data length.

80 1 CCVTHFLG Flag bytes.

Bit Meaning When Set On

0 Crypto assist instructions available.

1 Additional secure Crypto device available.

2 Support for 64-bit callers.

3 ICSF Cross-System Services environment is active for CKDS.

4 ICSF Cross-System Services environment is active for TKDS.

5 RSA 4096-bit function enabled and the RNGL service is available.

6 Secure key AES is available.

7 AES master key is active.

81 1 CCVTSFLG Flag bytes.

Bit Meaning When Set On

0 ICSF during initialization.

1 ICSF was able to complete cleanup, so no EOM cleanup is needed.

2 PKCS #11 operating in FIPS standard mode.

3 PKCS #11 operating in FIPS compatibility mode.

136 8 CCVTFMID ICSF FMID.

144 8 CCVT_USERPARM ICSF user parameter.

276 4 CCVTDACC ICSF DAC instructions control block for RMF.

484 44 CCVT_PKDSN Name of the active PKDS. If no PKDS was specified, the first character will
be an EBCDIC blank (X'40').

528 4 CCVTNAMES Address of CSFNAMES arrays.

704 44 CCVT_CKDSN Name of the active CKDS. If no CKDS was specified, the first character will
be an EBCDIC blank (X'40').

748 44 CCVT_TKDSN Name of the active TKDS.

Appendix A. Diagnosis reference information 355

The Cryptographic Communication Vector Table Extension
(CCVE)

The CCVE is an extension of the CCVT that contains fields that can exist. The
CCVE exists in ICSF extended private. It should contain any ICSF base control
block fields that are not needed by other address spaces.

ONLY these fields are part of the programming interface:
v CCVEINPP
v CCVEINPL
v CCVESECC

Table 114 describes the contents of the Cryptographic Communication Vector Table
Extension. Any bits that are not described in the table are reserved.

Table 114. Cryptographic Communication Vector Table Extension

Offset
(Dec)

Number
of Bytes Field Name Description

328 4 CCVEINPP Pointer to installation optional parameter.

332 4 CCVEINPL Length of the installation optional parameter.

372 8 CCVESECC Reserved for security exit.

Generic Service Table (CSFMGST)
Table 115 describes the format of the generic service table, a control block that is
used to control the call of installation-defined services.

Table 115. Generic Service Table Block Format

Offset (Dec)
Number of
Bytes Description

0 4 EBCDIC ID.

4 2 Version number.

6 2 Length of the MGST.

8 4 Number of entries in the array.

12 4 Subpool this table is in.

16 4 Reserved.

20 4 Reserved.

24 4 Reserved.

28 4 Reserved.

Variable Section of the MGST (Repeat for each entry in the array)

0 8 IBM-assigned name.

8 8 Installation-assigned name.

356 z/OS ICSF System Programmer's Guide

Table 115. Generic Service Table Block Format (continued)

Offset (Dec)
Number of
Bytes Description

16 4 Flags.

Bit Meaning When Set On

0 Service has been requested by the installation.

1 Service has been loaded.

2 Service is active.

3 Service is required.

4 Service is UDX.

20 4 Address of the service.

24 4 Installation-assigned service number.

28 4 Reserved.

RMF measurements table
Table 116 describes the contents of the performance measurements for RMF. The
count fields are double-word length.

Table 116. RMF measurements record format

Offset (Dec)
Number of
bytes Field name Description

0 4 DACC_ID The DACC ID.

4 4 DACC_VER The version.

8 4 DACC_LEN The control block length.

12 2 DACC_ENT_CNT Number of entries.

14 2 DACC_ENT_LEN Length of each entry.

16 8 DACC_ENT_ID Identifier of count array - character 'ENCSDES'. The
Encipher service will collect data as follows:

v Collection for single DES is done separately. The number
of service calls, number of bytes of data enciphered, and
the number of hardware instructions used to encipher
the data will be collected.

24 8 DACC_ENT_SVC_CNT Count of ENCSDES service calls.

32 8 DACC_ENT_BYT_CNT Count of ENCSDES bytes processed.

40 8 DACC_ENT_INT_CNT Count of ENCSDES instructions.

48 8 DACC_ENT_ID Identifier of count array - character 'ENCTDES'. The
Encipher service will collect data as follows:

v Double and triple DES will be counted together. The
number of service calls, number of bytes of data
enciphered, and the number of hardware instructions
used to encipher the data will be collected.

56 8 DACC_ENT_SVC_CNT Count of ENCTDES service calls.

64 8 DACC_ENT_BYT_CNT Count of ENCTDES bytes processed.

72 8 DACC_ENT_INT_CNT Count of ENCTDES instructions.

Appendix A. Diagnosis reference information 357

Table 116. RMF measurements record format (continued)

Offset (Dec)
Number of
bytes Field name Description

80 8 DACC_ENT_ID Identifier of count array - character DECSDES. The
Decipher service will collect data as follows:

v Collection for single DES is done separately. The number
of service calls, number of bytes of data deciphered, and
the number of hardware instructions used to decipher
the data will be collected.

88 8 DACC_ENT_SVC_CNT Count of DECSDES service calls.

96 8 DACC_ENT_BYT_CNT Count of DECSDES bytes processed.

104 8 DACC_ENT_INT_CNT Count of DECSDES instructions.

112 8 DACC_ENT_ID Identifier of count array - character DECTDES. The
Decipher service will collect data as follows:

v Double and triple DES will be counted together. The
number of service calls, number of bytes of data
deciphered, and the number of hardware instructions
used to decipher the data will be collected.

120 8 DACC_ENT_SVC_CNT Count of DECTDES service calls.

128 8 DACC_ENT_BYT_CNT Count of DECTDES bytes processed.

136 8 DACC_ENT_INT_CNT Count of DECTDES instructions.

144 8 DACC_ENT_ID Identifier of count array - character MACGEN. The MAC
Generate service will collect data as follows:

v Single and various double key MAC will be gathered
together. The number of service calls, number of bytes of
data MAC'd, and the number of instructions will be
collected.

152 8 DACC_ENT_SVC_CNT Count of MACGEN service calls.

160 8 DACC_ENT_BYT_CNT Count of MACGEN bytes processed.

168 8 DACC_ENT_INT_CNT Count of MACGEN instructions.

176 8 DACC_ENT_ID Identifier of count array - character MACVER. The MAC
Verify service will collect data as follows:

v Single and various double key MAC will be gathered
together. The number of service calls, number of bytes of
data MAC'd, and the number of instructions will be
collected.

184 8 DACC_ENT_SVC_CNT Count of MACVER service calls.

192 8 DACC_ENT_BYT_CNT Count of MACVER bytes processed.

200 8 DACC_ENT_INT_CNT Count of MACVER instructions.

208 8 DACC_ENT_ID Identifier of count array - character OWH. The One Way
Hash service will collect data as follows:

v For SHA-1, the number of service calls, number of bytes
of bytes of data hashed, and the number of instructions
will be collected.

216 8 DACC_ENT_SVC_CNT Count of OWH service calls.

224 8 DACC_ENT_BYT_CNT Count of OWH bytes processed.

232 8 DACC_ENT_INT_CNT Count of OWH instructions.

358 z/OS ICSF System Programmer's Guide

Table 116. RMF measurements record format (continued)

Offset (Dec)
Number of
bytes Field name Description

240 8 DACC_ENT_ID Identifier of count array - character PTR. The Encrypted
PIN Translate, Encrypted PIN Translate2, and Encrypted
PIN Translate Enhanced services will collect data as
follows:

v Collect the number of service calls only.

248 8 DACC_ENT_SVC_CNT Count of PTR, PTR2, and PTRE service calls.

256 16 Reserved.

272 8 DACC_ENT_ID Identifier of count array - character PVR. The PIN Verify
service will collect data as follows:

v Collect the number of service calls only.

280 8 DACC_ENT_SVC_CNT Count of PVR service calls.

288 16 Reserved.

304 8 DACC_ENT_ID Identifier of count array - character OWH256. The One
Way Hash service will collect data as follows:

v For SHA-224 and SHA-256, the number of service calls,
number of bytes of data hashed, and the number of
instructions will be collected.

312 8 DACC_ENT_SVC_CNT Count of OWH service calls for SHA-224 and SHA-256.

320 8 DACC_ENT_BYT_CNT Count of OWH bytes processed for SHA-224 and SHA-256.

328 8 DACC_ENT_INT_CNT Count of OWH instructions for SHA-224 and SHA-256.

336 8 DACC_ENT_ID Identifier of count array - character OWH512. The One
Way Hash service will collect data as follows:

v For SHA-384 and SHA-512, the number of service calls,
number of bytes of data hashed, and the number of
instructions will be collected.

344 8 DACC_ENT_SVC_CNT Count of OWH service calls for SHA-384 and SHA-512.

352 8 DACC_ENT_BYT_CNT Count of OWH bytes processed for SHA-384 and SHA-512.

360 8 DACC_ENT_INT_CNT Count of OWH instructions for SHA-384 and SHA-512.

368 8 DACC_ENT_ID Identifier of count array - character ′ENCAES′. The
Symmetric algorithm encipher service will collect data as
follows: The number of service calls, number of bytes of
data enciphered, and the number of instructions used to
encipher the data will be collected.

376 8 DACC_ENT_SVC_CNT Count of SAE service calls

384 8 DACC_ENT_BYT_CNT Count of ENCAES bytes processed

392 8 DACC_ENT_INT_CNT Count of ENCAES instruction

400 8 DACC_ENT_ID Identifier of count array - character ′DECAES′. The
Symmetric algorithm decipher service will collect data as
follows: the number of service calls, number of bytes of
data deciphered, and the number of instructions used to
decipher the data will be collected.

408 8 DACC_ENT_SVC_CNT Count of SAD service calls

416 8 DACC_ENT_BYT_CNT Count of DECAES bytes processed

424 8 DACC_ENT_INT_CNT Count of DECAES instruction

Appendix A. Diagnosis reference information 359

|
|
|

|

Table 116. RMF measurements record format (continued)

Offset (Dec)
Number of
bytes Field name Description

432 8 DACC_ENT_ID Identifier of count array - character 'DSGRSA'. The Digital
Signature Generate service will collect the number of
service calls processed to generate a digital signature using
an RSA private key.

440 8 DACC_ENT_SVC_CNT Count of DSG service calls using an RSA private key

448 16 Reserved

464 8 DACC_ENT_ID Identifier of count array - character 'DSGECC'. The Digital
Signature Generate service will collect the number of
service calls processed to generate a digital signature using
an ECC private key.

472 8 DACC_ENT_SVC_CNT Count of DSG service calls using an ECC private key

480 16 Reserved

496 8 DACC_ENT_ID Identifier of count array - character 'DSVRSA'. The Digital
Signature Verify service will collect the number of service
calls processed to verify a digital signature using an RSA
private key.

504 8 DACC_ENT_SVC_CNT Count of DSV service calls using an RSA private key

512 16 Reserved

528 8 DACC_ENT_ID Identifier of count array - character 'DSVECC'. The Digital
Signature Verify service collects the number of service calls
processed to verify a digital signature using an ECC
private key.

536 8 DACC_ENT_SVC_CNT Count of DSV service calls using an ECC private key

544 16 Reserved

560 8 DACC_ENT_ID Identifier of count array - character 'MACGEN2'. The MAC
Generate2 service collects data as follows:

v The number of service calls.

v The number of bytes of data MACed.

v The number of instructions used to MAC the data.

568 8 DACC_ENT_SVC_CNT Count of MACGEN2 service calls.

576 8 DACC_ENT_BYT_CNT Count of MACGEN2 bytes processed.

584 8 DACC_ENT_INT_CNT Count of MACGEN2 instructions.

592 8 DACC_ENT_ID Identifier of count array - character 'MACVER2'. The MAC
Verify2 service collects data as follows:

v The number of service calls.

v The number of bytes of data MACed.

v The number of instructions used to MAC the data.

600 8 DACC_ENT_SVC_CNT Count of MACVER2 service calls.

608 8 DACC_ENT_BYT_CNT Count of MACVER2 bytes processed.

616 8 DACC_ENT_INT_CNT Count of MACVER2 instructions.

624 8 DACC_ENT_ID Identifier of count array - character 'FPEE'. The FPE
encipher service collects data as follows: The number of
service calls, number of bytes of data encrypted, and the
number of instructions used to encipher the data.

632 8 DACC_ENT_SVC_CNT Count of FPEE service calls.

360 z/OS ICSF System Programmer's Guide

Table 116. RMF measurements record format (continued)

Offset (Dec)
Number of
bytes Field name Description

640 8 DACC_ENT_BYT_CNT Count of FPEE bytes processed.

648 8 DACC_ENT_INT_CNT Count of FPEE instructions.

656 8 DACC_ENT_ID Identifier of count array - character 'FPED'. The FPE
decipher service collects data as follows: The number of
service calls, number of bytes of data decrypted, and the
number of instructions used to decrypt the data.

664 8 DACC_ENT_SVC_CNT Count of FPED service calls.

672 8 DACC_ENT_BYT_CNT Count of FPED bytes processed.

680 8 DACC_ENT_INT_CNT Count of FPED instructions.

688 8 DACC_ENT_ID Identifier of count array - character 'FPET'. The FPE
translate service collects data as follows: The number of
service calls, number of bytes of data translated, and the
number of instructions used to translate the data.

696 8 DACC_ENT_SVC_CNT Count of FPET service calls.

704 8 DACC_ENT_BYT_CNT Count of FPET bytes processed.

712 8 DACC_ENT_INT_CNT Count of FPET instructions.

Appendix A. Diagnosis reference information 361

362 z/OS ICSF System Programmer's Guide

Appendix B. ICSF SMF records

This topic contains the ICSF SMF records.

Record type 82 (52) — ICSF record
Record type 82 is used to record information about the events and operations of
the Integrated Cryptographic Service Facility (ICSF) program product. Record type
82 is written to the SMF data set at the completion of certain cryptographic
functions:
v Subtype 1 — is written whenever ICSF is started or the options refresh is

performed.
v Subtype 3 — no longer written.
v Subtype 4 — no longer written.
v Subtype 5 — no longer written.
v Subtype 6 — no longer written.
v Subtype 7 — is written when an operational key is imported from a coprocessor.
v Subtype 8 — is written whenever the in-storage copy of the CKDS is refreshed.
v Subtype 9 — is written whenever the CKDS is updated by a dynamic CKDS

update service or the KDS Metadata write service.
v Subtype 10 — no longer written.
v Subtype 11 — no longer written.
v Subtype 12 — no longer written.
v Subtype 13 — is written whenever the PKDS is updated by a dynamic PKDS

update service or the KDS Metadata write service.
v Subtype 14 — is written when a clear master key part is entered on a

cryptographic coprocessor.
v Subtype 15 — is written whenever a retained key is created or deleted.
v Subtype 16 — is written for each request and reply from calls to the CSFPCI

service by TKE.
v Subtype 17 — no longer written.
v Subtype 18 — is written when the configuration of a coprocessor or accelerator

changes.
v Subtype 19 — is written periodically to record processing times for PCIXCC

coprocessors.
v Subtype 20 — is written periodically to record processing times for coprocessors

or accelerators.
v Subtype 21 — is written when ICSF issues IXCJOIN to join the ICSF sysplex

group or issues IXCLEAVE to leave the sysplex group.
v Subtype 22 — is written when the Trusted Block Create Callable services are

invoked.
v Subtype 23 — is written when the token data set (TKDS) is updated
v Subtype 24 — is written when duplicate tokens are found.
v Subtype 25 — is written when key store policy checking detects the

unauthorized use of a key token.
v Subtype 26 — is written whenever the in-storage copy of the PKDS is refreshed.

© Copyright IBM Corp. 2007, 2018 363

v Subtype 27 — is written when key store policy PKA key extensions checking
detects the unauthorized use of a key.

v Subtype 28 — is written for information about High Performance Encrypted
Key.

v Subtype 29 — is written for each TKE workstation audit record received from a
TKE workstation.

v Subtype 30 — is written for each time an archived or inactive key data set
record is referenced.

v Subtype 31 — is written for cryptographic statistics data.
v Subtype 40 — is written for lifecycle events related to symmetric CCA tokens.

This replaces subtype 9.
v Subtype 41 — is written for lifecycle events related to asymmetric CCA tokens.

This replaces subtype 13.
v Subtype 42 — is written for lifecycle events related to PKCS#11 objects. This

replaces subtype 23.
v Subtype 43 — is written when there is a configuration change for a regional

cryptographic server.
v Subtype 44 — is written for usage events related to symmetric CCA tokens.
v Subtype 45 — is written for usage events related to asymmetric CCA tokens.
v Subtype 46 — is written for usage events related to PKCS#11 objects.
v Subtype 47 — is written for supported PKCS #11 usage events which do not

involve an object.
v Subtype 48 — is written for compliance warning events.

Macro to Symbolically Address Record Type 82: The SMF record mapping macro
for ICSF type 82 record is CSFSMF82.

The mapping macro, CSFSMF82, resides in SYS1.MODGEN.

Record environment
The following conditions exist for the generation of each of the subtypes of this
record:

Macro

Subtype
Macro

1 SMFWTM (record exit: IEFU83)

3,4,5,6,7,8
SMFEWTM,BRANCH=YES,MODE=XMEM (record exit: IEFU85)

Record mapping
Two different record formats are produced by ICSF; one format that applies to
subtypes smaller than 40 and another format that applies to subtypes 40 and
higher.

For subtypes smaller than 40, the SMF record header is followed by the
subtype-specific information and optionally, the audit header and audit section.

Record Type 82

364 z/OS ICSF System Programmer's Guide

Table 117. Format of an SMF Type 82 record for subtypes smaller than 40

SMF format

SMF record header

Subtype information

Audit section header (optional)

Audit section (optional)

For subtypes 40 and higher, the SMF record header is followed by an ICSF header,
a main section that contains the subtype-specific information, and optionally, the
audit header and audit section.

Table 118. Format of an SMF Type 82 record for subtypes 40 and higher

SMF format

SMF record header

ICSF header

Main section with subtype information

Audit section header (optional)

Audit section (optional)

SMF header
Table 119. SMF record header

Offsets Name Length Format Description

0 0 SMF82LEN 2 binary Record length. This field and the next field (total of four
bytes) form the RDW (record descriptor word).

2 2 SMF82SEG 2 binary Segment descriptor (see record length field).

4 4 SMF82FLG 1 binary System indicator:

Bit Meaning When Set

0-2 Reserved

3-6 Version indicators

7 Reserved.

5 5 SMF82RTY 1 binary Record type 82 (X'52').

6 6 SMF82TME 4 binary Time since midnight, in hundredths of a second, that the
record was moved into the SMF buffer.

10 A SMF82DTE 4 packed Date when the record was moved into the SMF buffer, in
the form 0cyydddF.

14 E SMF82SID 4 EBCDIC System identification (from the SID parameter).

18 12 SMF82SSI 4 EBCDIC Subsystem identification.

22 16 SMF82STY 2 binary Record subtype.

Record Type 82

Appendix B. ICSF SMF records 365

ICSF header (for all subtypes 40 or greater)
Table 120. ICSF header (for all subtypes 40 or greater)

Offsets Name Length Format Description

Dec Hex

0 0 SMF82IHDR_VER 1 binary Version number of this record (X'01').

Incremented if a change is made to the record that is
incompatible with the prior version.

1 1 1 Reserved.

2 2 SMF82IHDR_LEN 2 binary Length of this header.

4 4 4 Reserved.

8 8 SMF82IHDR_MAIN_OFF 2 binary Offset from SMF82IHDR to main section.

10 A SMF82IHDR_MAIN_LEN 2 binary Length of main section.

12 C SMF82IHDR_AUD_OFF 2 binary Offset from SMF82IHDR to audit section. If there is no audit
section, this field is zero.

14 E SMF82IHDR_AUD_LEN 2 binary Length of audit section.

16 10 SMF82IHDR_END 0 End of ICSF header.

Main section (subtype information)
The data contained in the main section is specific to each subtype. The content of
each subtype is described in later sections of this document.

Audit header and audit section
Provides server user or end user audit information when the subtype is one that
logs state changes. When auditing information is supplied, there will be a server
user section and optionally, an end user section. The
SMF82AUD_HDR_NUM_SECTIONS field of the Auditing Header section indicates
whether only a server user section is provided or if an end user section is also
provided. If both a server user section and an end user section are present, they
can appear in either order.

Table 121. SMF type 82 server user or end user audit section

Offsets Name Length Format Description

0 0 SMF82AUD_SECTION_TYPE 4 EBCDIC Type of the section that follows.
Either:

v ′SERV′ (for server user)

v ′USER′ (for end user)

4 4 SMF82AUD_SECTION_NUM_FLDS 2 Binary Number of triples in this section

6 6 SMF82AUD_SECTION_TOTAL_LEN 2 Binary Overall length of this section,
including this header

8 8 Tag-Length-Value (TLV) triplets start here and are defined in Table 122. These repeat as many times as the
SMF82AUD_SECTION_NUM_FLDS field indicates.

Each Tag-Length-Value (TLV) triplet is a structure that is called
SMF82AUD_TRIPLET and is defined as follows. The values for the tags and the
format and maximum length of the data are defined in Table 123 on page 367.

Table 122. Tag-Length-Value (TLV) triplet structure (SMF82AUD_TRIPLET)

Offsets Name Length Format Description

0 0 SMF82AUD_TRIPL_TAG 2 Binary Tag of the information in this TLV

2 2 SMF82AUD_TRIPL_LENGTH 2 Binary Length of this TLV including these first two fixed fields

4 4 SMF82AUD_TRIPL_DATA * Varies Data for this TLV

Record Type 82

366 z/OS ICSF System Programmer's Guide

The tag values and their corresponding information are described in the following
table. The tag value is defined in the constant SMF82AUD_TAG_xxx and the
maximum length in SMF82AUD_MAXLEN_xxx. For example, the tag for
X500_IDN is SMF82AUD_TAG_X500_IDN and maximum length of the associated
data is SMF82AUD_MAXLEN_X500_IDN.

Table 123. TLV triplet tag values

Tag Value Name Length Format Description

1 1 X500_IDN 0-255 EBCDIC X.500 Certificate Issuer’s Distinguished Name
(ACEEX5PR->IDN)

2 2 X500_SDN 0-255 EBCDIC X.500 Certificate Subject’s Distinguished Name
(ACEEX5PR->SDN)

10 A IDID_USRI 1-246 UTF-8 X.500 Distinguished Name of distributed client end user
(ACEEIDID-> IDID1UDN)

11 B IDID_USRF 1 Binary Format of IDID_USRI (ACEEIDID->IDID1NMF)

0 Undetermined

1 Straight string

2 X.500 format

12 C IDID_REG 1-255 UTF-8 Name of the registry that authenticated the user
(ACEEIDID->IDID1RN)

14 E USRI 8 EBCDIC RACF user ID (ACEEUSRI)

15 F GRPN 8 EBCDIC Connect group (ACEEGRPN)

16 10 TRM_USER 8 EBCDIC Terminal ID (ACEETRM)

17 11 JOB_JBN 8 EBCDIC Job name (JMRJOB)

18 12 JOB_RST 4 Binary Job entry time (JMRENTRY) in hundredths of a second that
the reader recognized the JOB statement for this job. This
field can be zero.

26 1A JOB_RSD 4 Binary Job entry date (JMREDATE) that the reader recognized the
JOB statement for this job in the form 0CYYDDDF. This
field can be zero.

34 22 JOB_UID 8 Binary User-defined identification field (JMRUSEID)

42 2A SEC 8 EBCDIC Security label (TOKSCL)

Tag-Length-Value (TLV) triplets
Where used within a subtype, Tag-Length-Value triplets are in the following
format:

Table 124. Tag-Length-Value triplets

Offsets Name Length Format Description

Dec Hex

0 0 SMF82_TRIPL_TAG 2 binary The tag identifying the type of data that this triplet contains.

2 2 SMF82_TRIPL_LEN 2 binary Length of this triplet including the tag and the length fields.

4 4 SMF82_TRIPL_VAL The value for this triplet.

Service names used in SMF records
Table 125 contains a list of service names used in SMF records.

Table 125. Service names used in SMF records

Service name Description

CSF1DMK PKCS #11 Derive Multiple Keys.

Record Type 82

Appendix B. ICSF SMF records 367

Table 125. Service names used in SMF records (continued)

Service name Description

CSF1DVK PKCS #11 Derive Key.

CSF1GAV PKCS #11 Get Attribute Value.

CSF1GKP PKCS #11 Generate Key Pair.

CSF1GSK PKCS #11 Generate Secret Key.

CSF1HMG PKCS #11 Generate Keyed MAC.

CSF1HMV PKCS #11 Verify Keyed MAC.

CSF1OWH PKCS #11 One-Way Hash, Sign, or Verify.

CSF1PD2 PKCS #11 Private Key Structure Decrypt.

CSF1PE2 PKCS #11 Private Key Structure Encrypt.

CSF1PKS PKCS #11 Private Key Sign.

CSF1PKV PKCS #11 Public Key Verify.

CSF1PRF PKCS #11 Pseudo-Random Function.

CSF1PS2 PKCS #11 Private Key Structure Sign.

CSF1PV2 PKCS #11 Private Key Structure Verify.

CSF1SAV PKCS #11 Set Attribute Value.

CSF1SKD PKCS #11 Secret Key Decrypt.

CSF1SKE PKCS #11 Secret Key Encrypt.

CSF1TRC PKCS #11 Token Record Create.

CSF1TRD PKCS #11 Token Record Delete.

CSF1TRL PKCS #11 Token Record List.

CSF1UWK PKCS #11 Unwrap Key.

CSF1WPK PKCS #11 Wrap Key.

CSFACEE SAF ACEE Selection.

CSFAPG Authentication Parameter Generate.

CSFCKC CVV Key Combine.

CSFCKI Clear Key Import.

CSFCKM Multiple Clear Key Import.

CSFCPA Clear PIN Generate Alternate.

CSFCPE Clear PIN Encrypt.

CSFCRC Coordinated KDS Administration.

CSFCSG VISA CVV Service Generate.

CSFCSV VISA CVV Service Verify.

CSFCTT2 Ciphertext Translate2.

CSFCTT3 Ciphertext Translate3.

CSFCVE Cryptographic Variable Encipher.

CSFCVG Control Vector Generate.

CSFCVT Control Vector Translate.

CSFDCM Derive ICC MK.

CSFDCO Decode.

CSFDDK Diversify Directed Key.

Record Type 82

368 z/OS ICSF System Programmer's Guide

|

Table 125. Service names used in SMF records (continued)

Service name Description

CSFDDPG DK Deterministic PIN Generate.

CSFDEC Decipher.

CSFDEC1 Decipher (with ALET).

CSFDKG Diversified Key Generate.

CSFDKG2 Diversified Key Generate2.

CSFDKM Data Key Import.

CSFDKX Data Key Export.

CSFDMP DK Migrate PIN.

CSFDPC DK PIN Change.

CSFDPCG DK PRW CMAC Generate.

CSFDPMT DK PAN Modify in Transaction.

CSFDPNU DK PRW Card Number Update.

CSFDPT DK PAN Translate.

CSFDPV DK PIN Verify.

CSFDRP DK Regenerate PRW.

CSFDRPG DK Random PIN Generate.

CSFDSG Digital Signature Generate.

CSFDSK Derive Session Key.

CSFDSV Digital Signature Verify.

CSFEAC EMV Transaction Service.

CSFECO Encode.

CSFEDH ECC Diffie-Hellman.

CSFENC Encipher.

CSFENC1 Encipher (with ALET).

CSFEPG Encrypted PIN Generate.

CSFESC EMV Scripting Service.

CSFEVF EMV Verification Functions.

CSFFLD Field Level Decipher.

CSFFLE Field Level Encipher.

CSFFPED FPE Decipher.

CSFFPEE FPE Encipher.

CSFFPET FPE Translate.

CSFGIM Generate Issuer MK.

CSFHMG HMAC Generate.

CSFHMG1 HMAC Generate (with ALET).

CSFHMV HMAC Verify.

CSFHMV1 HMAC Verify (with ALET).

CSFIQA ICSF Query Algorithm.

CSFIQF ICSF Query Facility.

CSFIQF2 ICSF Query Facility2.

Record Type 82

Appendix B. ICSF SMF records 369

Table 125. Service names used in SMF records (continued)

Service name Description

CSFKDMR Key Data Set Metadata Read.

CSFKDMW Key Data Set Metadata Write.

CSFKDSL Key Data Set List.

CSFKDU Key Dataset Update.

CSFKET Key Encryption Translate.

CSFKEX Key Export.

CSFKGN Key Generate.

CSFKGN2 Key Generate2.

CSFKIM Key Import.

CSFKPI Key Part Import.

CSFKPI2 Key Part Import2.

CSFKRC Key Record Create.

CSFKRC2 Key Record Create2.

CSFKRD Key Record Delete.

CSFKRR Key Record Read.

CSFKRR2 Key Record Read2.

CSFKRW Key Record Write.

CSFKRW2 Key Record Write2.

CSFKTB Key Token Build.

CSFKTB2 Key Token Build2.

CSFKTR Key Translate.

CSFKTR2 Key Translate2.

CSFKYT Key Test.

CSFKYT2 Key Test2.

CSFKYTX Key Test Extended.

CSFMDG MDC Generate.

CSFMDG1 MDC Generate (with ALET).

CSFMGN MAC Generate.

CSFMGN1 MAC Generate (with ALET).

CSFMGN2 MAC Generate2.

CSFMGN3 MAC Generate2 (with ALET).

CSFMPS ICSF Multi-Purpose Service.

CSFMVR MAC Verify.

CSFMVR1 MAC Verify (with ALET).

CSFMVR2 MAC Verify2.

CSFMVR3 MAC Verify2 (with ALET).

CSFOWH One-Way Hash Generate.

CSFOWH1 One-Way Hash Generate (with ALET).

CSFPCI PCI Interface Callable Service.

CSFPCU PIN Change / Unblock.

Record Type 82

370 z/OS ICSF System Programmer's Guide

Table 125. Service names used in SMF records (continued)

Service name Description

CSFPEX Prohibit Export.

CSFPEXX Prohibit Export Extended.

CSFPFO Recover PIN From Offset.

CSFPGN Clear PIN Generate.

CSFPIC Public Infrastructure Certificate.

CSFPKB PKA Key Token Build.

CSFPKD PKA Decrypt.

CSFPKE PKA Encrypt.

CSFPKG PKA Key Generate.

CSFPKI PKA Key Import.

CSFPKRC PKDS Record Create.

CSFPKRD PKDS Record Delete.

CSFPKRR PKDS Record Read.

CSFPKRW PKDS Record Write.

CSFPKT PKA Key Translate.

CSFPKTC PKA Key Token Change.

CSFPKX PKA Public Key Extract.

CSFPRR2 PKDS Key Record Read2.

CSFPTR Encrypted PIN Translate.

CSFPTR2 Encrypted PIN Translate2.

CSFPTRE Encrypted PIN Translate Enhanced.

CSFPVR Encrypted PIN Verify.

CSFRKA Restrict Key Attribute.

CSFRKD Retained Key Delete.

CSFRKL Retained Key List.

CSFRKX Remote Key Export.

CSFRNG Random Number Generate (returning an 8-byte random number).

CSFRNGL Random Number Generate (returning a random number of a length that
is specified by the caller).

CSFRRT Key Dataset Record Retrieve.

CSFSAD Symmetric Algorithm Decipher.

CSFSAD1 Symmetric Algorithm Decipher (with ALET).

CSFSAE Symmetric Algorithm Encipher.

CSFSAE1 Symmetric Algorithm Encipher (with ALET).

CSFSBC SET Block Compose.

CSFSBD SET Block Decompose.

CSFSKI Secure Key Import.

CSFSKI2 Secure Key Import2.

CSFSKM Multiple Secure Key Import.

CSFSKY Secure Messaging for Keys.

Record Type 82

Appendix B. ICSF SMF records 371

|

Table 125. Service names used in SMF records (continued)

Service name Description

CSFSMG Symmetric MAC Generate.

CSFSMG1 Symmetric MAC Generate (with ALET).

CSFSMV Symmetric MAC Verify.

CSFSMV1 Symmetric MAC Verify (with ALET).

CSFSPN Secure Messaging for PINs.

CSFSTAT Crypto Usage Statistics.

CSFSXD Symmetric Key Export with Data.

CSFSYD Symmetric Key Decipher.

CSFSYD1 Symmetric Key Decipher (with ALET).

CSFSYE Symmetric Key Encipher.

CSFSYE1 Symmetric Key Encipher (with ALET).

CSFSYG Symmetric Key Generate.

CSFSYI Symmetric Key Import.

CSFSYI2 Symmetric Key Import2.

CSFSYX Symmetric Key Export.

CSFT31I TR-31 Import.

CSFT31O TR-31 Optional Data Build.

CSFT31P TR-31 Parse.

CSFT31R TR-31 Optional Data Read.

CSFT31X TR-31 Export.

CSFTBC Trusted Block Create.

CSFTRV Transaction Validation

CSFUKD Unique Key Derive

CSFWRP Key Token Wrap

Record Type 82

372 z/OS ICSF System Programmer's Guide

Subtype 1

Initialization/Options Refresh section
Table 126. Subtype 1 Initialization/Options Refresh

Offsets Name Length Format Description

0 0 SMF82VES 4 binary Cryptographic communication vector table extension
(CCVE) status bits

Bit Meaning When Set

0 Special security mode allowed

1 Reserved

2 RNG Cache enabled

3-5 Reserved

6 RACF checking for authorized callers

7-14 Reserved

15 Reserved

16 Default wrapping for internal tokens is the
enhanced method

17 Default wrapping for external tokens is the
enhanced method

18 Key archive reference message

19-31 Reserved

4 4 SMF82VTS 1 binary Cryptographic communication vector table (CCVT) status
bits

Bit Meaning When Set

0-3 Reserved

4 Compatible with CUSP and PCF

5-7 Reserved.

5 5 SMF82IDO 1 binary Current crypto domain index.

6 6 6 Reserved.

12 C SMF82CKD 44 EBCDIC Name of the cryptographic key data set (CKDS) that was
read into storage.

56 38 SMF82IML 4 binary Maximum length for data.

60 3C SMF82USR 8 EBCDIC USERPARM specifies installation use in the installation
options data set.

68 44 SMF82PKD 44 EBCDIC PKDS name.

112 70 SMF82TKS 44 EBCDIC TKDS name.

Record Type 82

Appendix B. ICSF SMF records 373

Subtype 7

Operational key load section
Table 127. Subtype 7 operational key entry

Offsets Name Length Format Description

0 0 SMF82KPB 4 binary Key part (KPART) bits

Bit Meaning When Set

0 Key part verification pattern valid.

1 Coprocessor is a PCIXCC. (This has been
deprecated; see SMF82KAP.)

2 Coprocessor is a CEX2C. (This has been
deprecated; see SMF82KAP.)

3 Coprocessor is a CEX3C. (This has been
deprecated; see SMF82KAP.)

4 Coprocessor is a CEX4C or higher. (This has been
deprecated; see SMF82KAP.)

5-31 Reserved.

4 4 SMF82KV 8 binary Key part verification pattern.

12 C SMF82KKS 1 binary Coprocessor number.

13 D SMF82KDX 1 binary Current crypto domain index.

14 E SMF82KAP 1 binary Coprocessor type:

X'05' Coprocessor is a PCIXCC.

X'07' Coprocessor is a CEX2C.

X'09' Coprocessor is a CEX3C.

X'0A' Coprocessor is a CEX4C.

X'0B' Coprocessor is a CEX5C.

X'0C' Coprocessor is a CEX6C or higher.

15 F 1 Reserved.

16 10 SMF82KCK 44 EBCDIC Name of the CKDS containing the key part.

60 3C SMF82KCL 72 EBCDIC CKDS entry being modified.

Subtype 8

Cryptographic key data set refresh section
Table 128. Subtype 8 Cryptographic key data set refresh

Offsets Name Length Format Description

0 0 SMF82ROC 44 EBCDIC Name of the CKDS being replaced.

44 2C SMF82RNC 44 EBCDIC Name of the CKDS to replace the current CKDS.

Record Type 82

374 z/OS ICSF System Programmer's Guide

Subtype 9

Dynamic CKDS update
Table 129. Subtype 9 Dynamic CKDS update

Offsets Name Length Format Description

0 0 SMF82UCB 4 binary Update CKDS bits

Bit Meaning When Set

0 CKDS record added

1 CKDS record changed

2 CKDS record deleted

3 CKDS record archived

4 CKDS record recalled

5 CKDS record metadata changed

6-31 Reserved.

4 4 SMF82UCN 44 EBCDIC CKDS name.

48 30 SMF82UCL 72 EBCDIC CKDS entry being modified.

Subtype 13

Dynamic PKDS update
Table 130. Subtype 13 Dynamic PKDS update

Offsets Name Length Format Description

0 0 SMF_PKDS_BITS 4 binary Update PKDS bits

Bit Meaning When Set

0 PKDS record added

1 PKDS record changed

2 PKDS record deleted

3 PKDS record archived

4 PKDS record recalled

5 PKDS record metadata changed

6-31 Reserved.

4 4 SMF_PKDS_NAME 44 EBCDIC PKDS name.

48 30 SMF_PKDS_KEY_LABEL 72 EBCDIC PKDS entry being modified.

Record Type 82

Appendix B. ICSF SMF records 375

Subtype 14

Cryptographic coprocessor master key entry
Table 131. Subtype 14 Cryptographic coprocessor master key entry

Offsets Name Length Format Description

0 0 SMF82AAB 4 binary Flag bytes

Bit Meaning When Set

0 DES NMK verification pattern is valid.

1 RSA NMK verification pattern is valid.

2 DES Key key part verification pattern is valid.

3 RSA Key Key part verification pattern is valid.

4 AES NMK verification pattern is valid.

5 AES key part verification pattern is valid.

6 ECC NMK verification pattern is valid.

7 ECC key part verification pattern is valid.

8 Always on.

9 Coprocessor is a PCIXCC. (This has been
deprecated; see SMF82AAP.)

10 Coprocessor is a CEX2C. (This has been
deprecated; see SMF82AAP.)

11 Coprocessor is a CEX3C. (This has been
deprecated; see SMF82AAP.)

12 Coprocessor is a CEX4C or higher. (This has been
deprecated; see SMF82AAP.)

13-24 Reserved.

25 DES NMK entered was 24-bytes long.

26-31 Reserved.

4 4 SMF82ANV 16 binary New master key register verification pattern.

20 14 SMF82AKV 16 binary Key part verification pattern.

36 24 SMF82APN 1 binary Cryptographic Processor number.

37 25 SMF82ASN 8 EBCDIC Cryptographic Processor serial number.

45 2D SMF82ADM 1 binary Cryptographic Coprocessor domain.

46 2E SMF82AAP 1 binary Coprocessor type:

X'05' Coprocessor is a PCIXCC.

X'07' Coprocessor is a CEX2C.

X'09' Coprocessor is a CEX3C.

X'0A' Coprocessor is a CEX4C.

X'0B' Coprocessor is a CEX5C.

X'0C' Coprocessor is a CEX6C or higher.

47 2F 1 Reserved.

Record Type 82

376 z/OS ICSF System Programmer's Guide

Subtype 15

PCI Cryptographic coprocessor retained key create/delete
Table 132. Subtype 15 PCI Cryptographic coprocessor retained key create/delete

Offsets Name Length Format Description

0 0 SMF82RKF 4 binary First flag byte

Bit Meaning When Set

0 Retained key created.

1 Retained key deleted on coprocessor.

2 Retained key deleted from PKDS.

3-7 Reserved.

8 Always on.

9 Coprocessor is a PCIXCC. (This has been
deprecated; see SMF82RAP.)

10 Coprocessor is a CEX2C. (This has been
deprecated; see SMF82RAP.)

11 Coprocessor is a CEX3C. (This has been
deprecated; see SMF82RAP.)

12 Coprocessor is a CEX4C or higher. (This has been
deprecated; see SMF82RAP.)

13-31 Reserved.

4 4 SMF82RKN 64 EBCDIC Label of Retained private key.

68 44 SMF82RKP 1 binary Cryptographic Coprocessor number.

69 45 SMF82RKS 8 EBCDIC Cryptographic Coprocessor serial number.

77 4D SMF82RDM 1 binary Cryptographic Coprocessor domain.

78 4E SMF82RAP 1 binary Coprocessor type:

X'05' Coprocessor is a PCIXCC.

X'07' Coprocessor is a CEX2C.

X'09' Coprocessor is a CEX3C.

X'0A' Coprocessor is a CEX4C.

X'0B' Coprocessor is a CEX5C.

X'0C' Coprocessor is a CEX6C or higher.

79 4F 1 Reserved.

Record Type 82

Appendix B. ICSF SMF records 377

Subtype 16

PCI Cryptographic coprocessor TKE
Table 133. Subtype 16 PCI Cryptographic Coprocessor TKE

Offsets Name Length Format Description

0 0 SMF82PFL 4 binary Flag bytes

Bit Meaning When Set

0 Request command.

1 Reply response.

2-7 Reserved.

8 Always on.

9 Coprocessor is a PCIXCC. (This has been
deprecated; see SMF82PAP.)

10 Coprocessor is a CEX2C. (This has been
deprecated; see SMF82PAP.)

11 Coprocessor is a CEX3C. (This has been
deprecated; see SMF82PAP.)

12 Coprocessor is a CEX4 or higher. (This has been
deprecated; see SMF82PAP.)

13-29 Reserved

30 Coprocessor is configured for CCA.

31 Coprocessor is configured for PKCS #11.

4 4 SMF82PPN 1 binary Cryptographic Coprocessor number.

5 5 SMF82PSN 8 EBCDIC Cryptographic Coprocessor serial number.

13 D SMF82PDM 1 binary Cryptographic Coprocessor domain.

14 E SMF82PAP 1 binary Coprocessor type:

X'05' Coprocessor is a PCIXCC.

X'07' Coprocessor is a CEX2C.

X'09' Coprocessor is a CEX3C.

X'0A' Coprocessor is a CEX4C.

X'0B' Coprocessor is a CEX5C.

X'0C' Coprocessor is a CEX6C or higher.
Note: For CEX4 and higher, bits 30 and 31 at offset 0
indicate whether the coprocessor is configured as a CCA or
PKCS #11 coprocessor.

15 F 1 Reserved.

16 10 SMF82PBL 4 binary Parameter block length, "xxx".

20 14 SMF82PDL 4 binary Parameter data block length, "yyy".

24 18 SMF82PBK Parameter block of length "xxx" followed by parameter data
block of length "yyy".

Fixed length audit data – begins at offset 24 + xxx + yyy.

Table 134. Subtype 16 PCI Cryptographic Coprocessor TKE audit data

Offsets Name Length Format Description

0 0 SMF82P16 structure Fixed length audit data

0 0 SMF82PAL 4 binary Length of fixed audit data

Record Type 82

378 z/OS ICSF System Programmer's Guide

Table 134. Subtype 16 PCI Cryptographic Coprocessor TKE audit data (continued)

Offsets Name Length Format Description

4 4 SMF82PAD 4 binary PKCS #11 Admin request ID. All zeros if not applicable

8 8 SMF82PFI 2 binary Function ID

10 A SMF82PFR 4 binary
Function Return code

0 Success

4 Not authorized

8 Error

14 E SMF82PDE 256 EBCDIC Function description

270 10E SMF82PUS 20 binary Transaction Sequence Number (TSN) for commands or, for
CCA coprocessor requests only, User ID Nonce (random
number) for queries. All blanks if not applicable

290 122 SMP82PTA 8 EBCDIC TKE Authority for CCA coprocessor requests. Blanks for
PKCS #11 coprocessor requests

Subtype 18

Cryptographic processor configuration
Table 135. Subtype 18 Cryptographic Processor Configuration

Offsets Name Length Format Description

0 0 SMF82CGB 4 binary Flag bytes

Bit Meaning When Set

0 A Cryptographic processor has been brought
online.

1 A Cryptographic processor has been taken offline.

2 A Cryptographic processor has changed
compliance mode.

3-7 Reserved.

8 Always on.

9 Coprocessor is a PCIXCC. (This has been
deprecated; see SMF82CAP.)

10 Coprocessor is a CEX2C. (This has been
deprecated; see SMF82CAP.)

11 Coprocessor is a CEX2A. (This has been
deprecated; see SMF82CAP.)

12 Coprocessor is a CEX3C. (This has been
deprecated; see SMF82CAP.)

13 Coprocessor is a CEX3A. (This has been
deprecated; see SMF82CAP.)

14 Coprocessor is a CEX4 or higher. (This has been
deprecated; see SMF82CAP.)

15-28 Reserved.

29 Configured as an accelerator

30 Configured as a CCA coprocessor

31 Configured as a PKCS #11 coprocessor

4 4 SMF82CGX 1 binary Cryptographic Coprocessor number.

Record Type 82

Appendix B. ICSF SMF records 379

Table 135. Subtype 18 Cryptographic Processor Configuration (continued)

Offsets Name Length Format Description

5 5 SMF82CGS 8 EBCDIC Cryptographic Coprocessor serial number.

13 D SMF82CAP 1 binary Coprocessor type:

X'04' Coprocessor is a PCICA.

X'05' Coprocessor is a PCIXCC.

X'06' Coprocessor is a CEX2A.

X'07' Coprocessor is a CEX2C.

X'08' Coprocessor is a CEX3A.

X'09' Coprocessor is a CEX3C.

X'0A' Coprocessor is a CEX4.

X'0B' Coprocessor is a CEX5.

X'0C' Coprocessor is a CEX6 or higher.
Note: For CEX4 and higher, bits 29, 30, and 31 at offset 0
indicate whether the coprocessor is configured as an
accelerator, a CCA, or a PKCS #11 coprocessor.

14 E 8 binary System Compliance Information.

Byte 0:

Bit Meaning

0 Compliance mode is active.

1 Compliance migration mode is active.

2-7 Reserved.

Bytes 1-6: Reserved.

Byte 7:

Bit Meaning

0-6 Reserved.

7 PCI-HSM 2016 compliance mode is active.
Note: These byte references only relate to this 8-byte
structure.

Subtype 19

PCI X Cryptographic coprocessor timing
Table 136. Subtype 19 PCI X Cryptographic Coprocessor Timing

Offsets Name Length Format Description

0 0 SMF82XTN 8 EBCDIC Time just before the PCI X Cryptographic Coprocessor
operation begins.

8 8 SMF82XTD 8 EBCDIC Time just after PCI X Cryptographic Coprocessor operation
ends.

16 10 SMF82XTW 8 EBCDIC Time just after results have been communicated to caller
address space.

24 18 SMF82XTQ 4 binary Number of processes waiting to submit work to the same
PCI X Cryptographic Coprocessor and domain, using the
same reference number.

28 1C SMF82XTF 2 EBCDIC Function code of service.

30 1E SMF82XTX 1 binary PCI X Cryptographic Coprocessor number.

Record Type 82

380 z/OS ICSF System Programmer's Guide

Table 136. Subtype 19 PCI X Cryptographic Coprocessor Timing (continued)

Offsets Name Length Format Description

31 1F SMF82XTS 8 EBCDIC PCI X Cryptographic Coprocessor serial number.

39 27 SMF82XTM 1 binary PCI X Cryptographic Coprocessor domain.

40 28 SMF82XTR 1 binary PCI X Cryptographic Coprocessor reference number.

41 29 3 Reserved.

Subtype 20

Cryptographic processor processing times
Table 137. Subtype 20 Cryptographic Processor Processing Times

Offsets Name Length Format Description

0 0 SMF82TFL 4 binary Flag bytes

Bit Meaning When Set

0 Processor is a PCIXCC or PCICA. (This has been
deprecated; see SMF82TPT.)
Note: The record is for a PCIXCC when bits 0
and 30 are on and for a PCICA with bits 0 and 29
are on.

1 Coprocessor is a CEX2C. (This has been
deprecated; see SMF82TPT.)

2 Coprocessor is a CEX2A. (This has been
deprecated; see SMF82TPT.)

3 Coprocessor is a CEX3C. (This has been
deprecated; see SMF82TPT.)

4 Coprocessor is a CEX3A. (This has been
deprecated; see SMF82TPT.)

5 Coprocessor is a CEX4 or higher. (This has been
deprecated; see SMF82TPT.)

6 Regional cryptographic server.

7–28 Reserved.

29 Configured as an accelerator.

30 Configured as a CCA coprocessor.

31 Configured as a PKCS #11 coprocessor.

4 4 SMF82TNQ 8 binary Coprocessor time before NQAP.

12 C SMF82TDQ 8 binary Coprocessor time after DQAP.

20 14 SMF82TWT 8 binary Coprocessor time after WAIT.

28 1C SMF82TQU 4 binary Coprocessor queue length.

32 20 SMF82TSF 2 EBCDIC Coprocessor sub function code.

34 22 SMF82TIX 1 binary Coprocessor index.

35 23 SMF82TSN 8 EBCDIC Coprocessor serial number.

43 2B SMF82TDM 1 binary Domain.

44 2C SMF82TRN 1 binary Reference number.

Record Type 82

Appendix B. ICSF SMF records 381

Table 137. Subtype 20 Cryptographic Processor Processing Times (continued)

Offsets Name Length Format Description

45 2D SMF82TPT 1 binary Coprocessor type:

X'04' Coprocessor is a PCICA.

X'05' Coprocessor is a PCIXCC.

X'06' Coprocessor is a CEX2A.

X'07' Coprocessor is a CEX2C.

X'08' Coprocessor is a CEX3A.

X'09' Coprocessor is a CEX3C.

X'0A' Coprocessor is a CEX4.

X'0B' Coprocessor is a CEX5.

X'0C' Coprocessor is a CEX6 or higher.
Note: For CEX4 and higher, bits 29, 30, and 31 at offset 0
indicate whether the coprocessor is configured as an
accelerator, a CCA, or a PKCS #11 coprocessor.

46 2E 2 Reserved.

48 30 SMF_AP_TME_NQAPE 16 binary AP extended time before NQAP.

64 40 SMF_AP_TME_DQAPE 16 binary AP extended time after DQAP.

80 50 SMF_AP_TME_WAITE 16 binary AP extended time after WAIT.

Subtype 21

ICSF sysplex group change section
Table 138. Subtype 21 ICSF Sysplex Group Change

Offsets Name Length Format Description

0 0 SMF82SXG 8 EBCDIC Name of ICSF Sysplex group.

8 8 SMF82SXM 8 EBCDIC Name of sysplex member.

16 F SMF82SXA 1 binary ICSF Sysplex member status flags

Bit Meaning When Set

0 Member joined the ICSF sysplex group.

1 Member left the ICSF sysplex group.

2–7 Reserved.

17 11 SMF82SXR 1 binary ICSF Sysplex member conditions of status flags

Bit Meaning When Set

0 Member joined or left the ICSF sysplex due to
normal initialization/termination processing

1 Member left the ICSF sysplex due to error

2–7 Reserved.

18 12 2 Reserved.

20 14 SMF82SXT 8 EBCDIC Time of ICSF sysplex join/leave index.

28 1C SMF82SXC 44 EBCDIC Name of active CKDS.

72 48 SMF_SYSPLEX_TIMEE 16 binary Extended time of ICSF sysplex join/leave index.

Record Type 82

382 z/OS ICSF System Programmer's Guide

Subtype 22

Trusted block create callable services section
Table 139. Subtype 22 Trusted Block Create Callable Services

Offsets Name Length Format Description

0 0 SMF82TBF 4 binary Process Flag bytes

Bit Meaning When Set

0 Created Inactive Trusted Block.

1 Activate an Inactive Block.

2 Trusted Block has Public Key.

3–31 Reserved.

4 4 SMF82TBS 2 binary ASID of caller.

6 6 SMF82TBN 64 EBCDIC Label of Input Trusted Block.

70 46 SMF82TBO 64 EBCDIC Label of Output Trusted Block.

134 86 SMF82TBX 64 EBCDIC Label of Transport Key.

Subtype 23

Token data set update
Table 140. Subtype 23 Token Data Set Update

Offsets Name Length Format Description

0 0 SMF82TKF 4 binary TKDS bits

Bit Meaning When Set

0 TKDS record added

1 TKDS record changed

2 TKDS record deleted

3 TKDS record archived

4 TKDS record recalled

5 TKDS record metadata changed

6–31 Reserved.

4 4 SMF82TKN 44 EBCDIC TKDS name

48 30 SMF82TKH 44 EBCDIC TKDS handle being processed

Subtype 24

Duplicate tokens found
Table 141. Subtype 24 Duplicate Tokens Found

Offsets Name Length Format Description

0 0 SMF82DCNTSTRT 4 binary Start of duplicate labels.

4 4 SMF82DCNTEND 4 binary End of duplicate labels.

8 8 SMF82DCNT 4 binary Number of duplicate labels.

12 C SMF82DRSVD 4 binary Reserved.

16 10 SMF82DNAM 44 binary Name of key data set.

The following field is repeated count (SMF82DCNT) number of times.

Record Type 82

Appendix B. ICSF SMF records 383

Table 141. Subtype 24 Duplicate Tokens Found (continued)

Offsets Name Length Format Description

60 3C SMF82_Label 72 * SMF82DCNT EBCDIC Key labels.

Subtype 25

Key store policy for key token authorization checking
The key store policy must be activated before this SMF record subtype is logged.
The subtype is logged when the callable service request fails the Key Token
Authorization Checking key store policy check.

Table 142. Subtype 25 Key Store Policy Key Token Authorization Checking

Offsets Name Length Format Description

0 0 SMF82KDS 44 EBCDIC Data set name.

44 2C SMF82KLF 4 binary Key store policy flags:

Bit Meaning When Set

0 Warning.

1 List is incomplete.

2 List is from CKDS.

3 List is from PKDS.

4 Authorization failures.

5 Archived failures.

6 Preactive failures.

7 Deactivated failures.

8-31 Reserved.

48 30 SMF82KLC 4 binary Number of key labels following.

The following field is repeated count (SMF82KLC) number of times.

52 34 SMF82DKL 72 EBCDIC Unauthorized duplicate key label and key type.

Subtype 26

Public key data set refresh
Table 143. Subtype 26 Public Key Data Set Refresh

Offsets Name Length Format Description

0 0 SMF82PREF_FLAG 4 binary Flags:

Bit Meaning When Set

0 Data space was refreshed.

1-31 Reserved.

4 4 SMF82_PREF_OLDDS 44 EBCDIC Old PKDS Name.

48 30 SMF82_PREF_NEWDS 44 EBCDIC New PKDS Name.

Record Type 82

384 z/OS ICSF System Programmer's Guide

Subtype 27

PKA key management extensions
Table 144. Subtype 27 PKA Key Management Extensions

Offsets Name Length Format Description

24 18 SMF82PKE_FLAGS 4 binary PKA Key Management Extension flags:

Bit Meaning When Set

0 PKA token may not be used for
requested function.

1 SYM token may not be exported by
the provided PKA token.

2 PKA label list is imcomplete.

3 SYM label list is incomplete.

24 Trusted certificate repository has
changed.

25 PKA Key Management Extensions
in WARNONLY mode.

26 An error was detected during
processing.

27 Trusted cert repository was empty.

28 An error was detected while
extracting APPLDATA.

29 The repository was not found.

30 One or more certs could not be
parsed.

Bits 0-3 are set during callable services.

Bits 24-30 are set during repository parsing.

Bits 4-23 and 31 are reserved.

28 1C SMF82PKE_FUNCTION 8 EBCDIC Name of the service that issued this SMF
record. The name is in the form CSFzzz.

36 24 SMF82PKE_APPLDATALEN 1 binary Length of the enablement profile APPLDATA
or current repository name.

37 25 SMF82PKE_APPLDATA 247 EBCDIC Enablement profile APPLDATA or current
repository name.

284 11C SMF82PKE_FUNCSPEC 0 binary Function-specific section of the record.

284 11C SMF82PKE_APPLDATA_PARSING 0 binary APPLDATA parsing results section.

284 11C SMF82PKE_SAF_RC 2 binary SAF_RC or 'FFFF'X.

286 11E SMF82PKE_SERV_RC 2 binary RACF RC or ICSF RC.

288 120 SMF82PKE_SERV_RS 4 binary RACF RS or ICSF RS.

284 11C SMF82PKE_SERVICE_SECTION 0 binary Callable services section.

284 11C SMF82PKE_PKA_REC_CNT 4 binary Number of PKA labels present in this record.

288 120 SMF82PKE_SYM_REC_CNT 4 binary Number of SYM labels present in this record.

The following is repeated SMF82PKE_PKA_REC_CNT number of times.

292 124 SMF82PKE_PKA_LABELS 64 EBCDIC PKA key label.

The following is repeated SMF82PKE_SYM_REC_CNT number of times.

292+
zzz

124+
zzz

SMF82PKE_SYM_LABELS 72 EBCDIC SYM key label.

Record Type 82

Appendix B. ICSF SMF records 385

Subtype 28

High performance encrypted key
Table 145. Subtype 28 High Performance Encrypted Key

Offsets Name Length Format Description

24 18 SMF82HPSK_FLAGS 4 binary High Performance Encrypted Key flags:

Bit Meaning When Set

0 Rewrapping operation is not permitted for
this symmetric key.

1 Rewrapping operation was permitted for
this symmetric key.

2 The list of labels is incomplete.

3 The key identifier was supplied as a key
token, not as a label in the CKDS.

Bits 4–31 are reserved.

28 1C SMF82HPSK_FUNCTION 8 EBCDIC Name of the service that issues this SMF record. The
name is in the form of CSFzzzz.

36 24 SMF82HPSK_SYM_LABEL_CNT 4 binary Number of SYM labels present in this record.

The following is repeated SMF82HPSK_SYM_LABEL_CNT number of times.

40 28 SMF82HPSK_SYM_LABELS 72 EBCDIC SYM key label and type.

Subtype 29

TKE workstation audit record
Table 146. Subtype 29 TKE Workstation Audit Record

Offsets Name Length Format Description

24 18 SMF82TKEAR_FLAGS 4 binary Flags -- reserved

28 1C SMF82TKEAR_NAMELEN 2 binary TKE workstation name length

30 24 SMF82TKEAR_RCDLEN 2 binary TKE audit record data length

32 20 SMF82TKEAR_NAME VAR EBCDIC TKE workstation name

VAR VAR VAR EBCDIC TKE audit record data

Record Type 82

386 z/OS ICSF System Programmer's Guide

Subtype 30

Key store policy archived and inactive KDS records
Table 147. Subtype 30 Archived and inactive KDS records

Offsets Name Length Format Description

0 0 SMF_ARCH_FLAGS 4 binary Flag bytes

Bit Meaning When Set

0 CKDS

1 PKDS

2 TKDS

3-7 Reserved.

8 Record that is archived was referenced by service.
By policy, service call failed.

9 Record that is archived was referenced by service.
By policy, service call succeeded

10 Record that is pre-active was referenced by
service. Service call failed.

11 Record that is inactive was referenced by service.
Service call failed.

12-31 Reserved

4 4 SMF_ARCH_DSNAME 44 EBCDIC Key data set name.

48 30 SMF_ARCH_KEY_LABEL 72 EBCDIC Key data set entry.

Subtype 31

Cryptographic usage statistics
ICSF supports a cryptographic usage statistics section containing a header and a
variable number of triplets.

Note: A single SMF record cannot exceed 32K bytes.

Table 148. Subtype 31 Cryptographic usage statistics

Offsets
(Dec) Name Length Format Description

0 SMF82STAT_VER 1 binary Version number.

1 SMF82STAT_DOMAIN 1 binary ICSF domain index.

2 SMF82STAT_LEN 2 binary Length of this header.

4 SMF82STAT_TRIPL_OFF 2 binary Offset from SMF82STAT into
triplet section.

6 SMF82STAT_TRIPL_LEN 2 binary Length of triplet section.

8 SMF82STAT_D_INTVAL_STARTE 16 binary Start time (TOD clock) of the
SMF interval in STCKE format.

24 SMF82STAT_D_INTVAL_ENDE 16 binary End time (TOD clock) of the
SMF interval in STCKE format.

40 SMF82STAT_D_USERID_AS 8 EBCDIC The HOME address space user
ID.

48 SMF82STAT_D_USERID_TK 8 EBCDIC The task level user ID (if
present).

Record Type 82

Appendix B. ICSF SMF records 387

Table 148. Subtype 31 Cryptographic usage statistics (continued)

Offsets
(Dec) Name Length Format Description

56 SMF82STAT_D_JOBID 8 EBCDIC The job ID for the HOME
address space.

64 SMF82STAT_D_JOBNAME 8 EBCDIC The job name for the HOME
address space.

72 SMF82STAT_D_JOBNAME2 8 EBCDIC The job name of the
SECONDARY address space
(ICSF caller).

80 SMF82STAT_D_PLEXNAME 8 EBCDIC The sysplex member name.

Each Tag-Length-Value (TLV) triplet is a structure called SMF82_TRIPL. The values
for the tags, the format, and the maximum length of the data are defined in
Table 149.

Table 149. Subtype 31 SMF82_TRIPL

Offsets
(Dec) Name Length Format Description

0 SMF82_TRIPL_TAG 2 binary Tag of the data.

2 SMF82_TRIPL_LENGTH 2 binary Length of the tag, length, and data
fields.

4 SMF82_TRIPL_DATA * varies Value of the data.

The tag values and their corresponding information are described in Table 150.

Table 150. Subtype 31 tag values

Tag ID (2
bytes) Tag name

Length (2
bytes) Format Description

Cryptographic engine (ENG) usage statistics

X'0201' SMF82STAT_ENG_CARD 20 structure Crypto card usage count.

v 4-byte EBCDIC identifier (for
example, 5C01).

v 8-byte EBCDIC serial number.

v 4-byte binary card usage count.

X'0202' SMF82STAT_ENG_RCS 20 structure Regional cryptographic server (RCS)
usage count.

v 4-byte EBCDIC identifier (for
example, 2R01).

v 8-byte EBCDIC serial number.

v 4-byte binary RCS usage count.

X'0203' SMF82STAT_ENG_CPACF 8 binary CPACF usage count.

X'0204' SMF82STAT_ENG_SOFTW 8 binary Crypto software usage count.

Cryptographic service (SRV) usage statistics

Record Type 82

388 z/OS ICSF System Programmer's Guide

Table 150. Subtype 31 tag values (continued)

Tag ID (2
bytes) Tag name

Length (2
bytes) Format Description

X'0205' SMF82STAT_SRV 16 structure ICSF callable service usage count.

v 8-byte EBCDIC service name.

v 4-byte binary service usage count.

See Table 125 on page 367 for service
names.

X'0206' SMF82STAT_SRVUDX 16 structure UDX service usage count.

v 8-byte EBCDIC UDX service name.

v 4-byte binary UDX service usage
count.

Cryptographic algorithm (ALG) usage statistics

X'0207' SMF82STAT_ALG 16 structure Crypto algorithm usage count.

v 8-byte EBCDIC algorithm name.

v 4-byte binary algorithm usage count.

See Table 151 for algorithm names.

Table 151. SMF82STAT_ALG algorithm names

Algorithm name Description

DES56 56-bit DES algorithm.

DES112 112-bit DES algorithm.

DES168 168-bit DES algorithm.

AES128 128-bit AES algorithm.

AES192 192-bit AES algorithm.

AES256 256-bit AES algorithm.

RSA512 RSA algorithm with a key bit length from 512 to 1023 bits.

RSA1024 RSA algorithm with a key bit length from 1024 to 2047 bits.

RSA2048 RSA algorithm with a key bit length from 2048 to 4095 bits.

RSA4096 RSA algorithm with a key bit length of 4096 bits or greater.

ECCBP160 160-bit ECC algorithm.

ECCBP192 192-bit ECC algorithm.

ECCBP224 224-bit ECC algorithm.

ECCBP256 256-bit ECC algorithm.

ECCBP320 320-bit ECC algorithm.

ECCBP384 384-bit ECC algorithm.

ECCBP512 512-bit ECC algorithm.

ECCP192 192-bit ECC algorithm.

ECCP224 224-bit ECC algorithm.

ECCP256 256-bit ECC algorithm.

ECCP384 384-bit ECC algorithm.

ECCP521 521-bit ECC algorithm.

HMAC HMAC algorithm (CCA only).

Record Type 82

Appendix B. ICSF SMF records 389

Table 151. SMF82STAT_ALG algorithm names (continued)

Algorithm name Description

GenSec Generic Secret algorithm (PKCS #11 only).

RC4 RC4 algorithm (PKCS #11 only).

Blowfish Blowfish algorithm (PKCS #11 only).

DH DH algorithm (PKCS #11 only).

DSA DSA algorithm (PKCS #11 only).

SM2 SM2 algorithm (RCS only).

SM3 SM3 algorithm (RCS only).

SM4 SM4 algorithm (RCS only).

MD2 MD2 hashing algorithm (PKCS #11 only).

MD5 MD5 hashing algorithm.

RPMD160 RPMD-160 hashing algorithm.

SHA1 SHA-1 hashing algorithm.

SHA224 SHA-224 hashing algorithm.

SHA256 SHA-256 hashing algorithm.

SHA384 SHA-384 hashing algorithm.

SHA512 SHA-512 hashing algorithm.

SHA3-224 SHA3-224 hashing algorithm

SHA3-256 SHA3-256 hashing algorithm

SHA3-384 SHA3-384 hashing algorithm

SHA3-512 SHA3-512 hashing algorithm

SHAKE128 SHAKE128 hashing algorithm

SHAKE256 SHAKE256 hashing algorithm

PRNG Pseudo-random number generator

PRNGFIPS Pseudo-random number generator consistent with NIST SP800-90A
PRNGFIPS (PKCS #11 Only).

TLS-PRF TLS Pseudo-Random Function derivation protocol (PKCS #11 Only).

SM4-ZERO SM4 hashing algorithm (PKCS #11 only).

SM4-I2PD SM4 hashing algorithm (PKCS #11 only).

See Table 125 on page 367 for a list of possible values for the SMF82STAT_SRV tag.

Subtype 40

CCA symmetric key lifecycle event
This subtype consists of a number of tag-length-value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on
the type of event and the information that is available. This replaces subtype 9.

Record Type 82

390 z/OS ICSF System Programmer's Guide

Table 152. Subtype 40 CCA symmetric key lifecycle event

Tag value Name Length Format Description

Dec Hex

256 100 KEY_EVENT 1 binary Key event. This field always occurs first in the record.

X'10' Key token added to KDS.

X'11' Key token updated in KDS.

X'12' Key token deleted from KDS.

X'13' Key token archived.

X'14' Key token restored.

X'15' Key token metadata changed.

X'17' Key token pre-activated.

X'18' Key token activated.

X'19' Key token deactivated.

X'1B' Key token exported.

X'20' Key token generated.

X'21' Key token imported.
Note:

1. When a key is exported, the key token that gets audited
is the input or source token.

2. When a key is imported, the key token that gets audited
is the output or target token.

257 101 KDS_LABEL 72 EBCDIC The label in the KDS.

258 102 KDS_DSNAME 44 EBCDIC The dataset name of the KDS associated with the event. If
there is no associated KDS (for example, the event only
involves a token), this field is not present.

259 103 KEY_NAME 64 EBCDIC The key name from the token. Applies to variable-length
CCA tokens only.

261 105 KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for
the key. Following that are n type-length-value triplets.
Within each of these triplets is a 1-byte fingerprint type,
followed by a 1-byte length for the triplet, followed by the
fingerprint.

Fingerprint types:

X'01' Ciphertext obtained from encrypting a data block
filled with binary zeros in ECB mode.

X'03' SHA-256 algorithm. See Appendix E in z/OS
Cryptographic Services ICSF Application
Programmer's Guide for more information.

X'04' SHAVP1 algorithm. See Appendix E in z/OS
Cryptographic Services ICSF Application
Programmer's Guide for more information.

For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext obtained from
using the key to encrypt a data block of binary zeros in
ECB mode (01). The fingerprint is 3 bytes in length (05 – 2)
and the value is X'010203'.
Note: If the event pertains to a record in the CKDS, the key
fingerprint is only present when using a KDSR-format
dataset.

262 106 SERVICE 8 EBCDIC The service associated with the event.

Record Type 82

Appendix B. ICSF SMF records 391

Table 152. Subtype 40 CCA symmetric key lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

264 108 TOK_FMT 1 binary The format of the token.

X'01' Fixed length CCA token.

X'02' Variable length CCA token.

X'03' TR-31 key block.

X'04' RKX token.
Note:

1. When format is RKX token, no other key or token
related fields are present.

2. When format is TR-31 key block, the only other key or
token related field that may be present is the key
fingerprint.

265 109 KEY_SEC 1 binary Key security.

X'01' No key present.

X'02' Clear key.

X'03' Key encrypted under master key.

X'04' Key encrypted under key encrypting key.

266 10A KEY_ALG 1 binary Key algorithm.

X'02' DES.

X'03' AES.

X'04' HMAC.

267 10B KEY_TYPE 2 binary Key type.

The key type from the token. Applies to variable-length
CCA tokens only. See “Variable-length symmetric key
token” in z/OS Cryptographic Services ICSF Application
Programmer's Guide for the list of key types.

268 10C KEY_CV 8 binary Key control vector.

The first eight bytes of the control vector from the token.
Applies to fixed-length DES CCA tokens only.

See Appendix C in z/OS Cryptographic Services ICSF
Application Programmer's Guide for information on how to
interpret the control vector.

269 10D KEY_USAGE_CKDS 3 - 33 binary Key usage fields.

Consists of a 1 byte count followed by one or more 2-byte
key usage fields. Applies to variable-length CCA tokens
only.

See Appendix B in z/OS Cryptographic Services ICSF
Application Programmer's Guide for the list of key usage
values for variable length tokens.

270 10E KEY_LEN 2 binary The length of the key (in bits). Applies to fixed-length CCA
tokens only.

271 10F KEY_CP 16 EBCDIC Key crypto period. The start date followed by the end date
for the record in YYYYMMDD format (therefore,
YYYYMMDDYYYYMMDD). If a date is not set, that portion
of the key crypto period will be blanks. Applies to records
in the KDS which have at least one date set.

Record Type 82

392 z/OS ICSF System Programmer's Guide

Table 152. Subtype 40 CCA symmetric key lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

280 118 KEY_TIV variable binary A key token identification value. A string of bytes present in
the key token. Can be used to help uniquely identify a key
token.
Notes:

1. Only present when TOK_FMT is a fixed-length CCA
token.

2. This is the 4-byte token validation value. For more
information, see Appendix B. Key Token Formats
(Sections “AES Key Token Formats” and “DES Key
Token Formats”) in z/OS Cryptographic Services ICSF
Application Programmer's Guide.

281 119 KEY_COMP_TAG 0 N/A The key is compliant-tagged.
Note: Only present when TOK_FMT is a fixed-length CCA
token.

Subtype 41

CCA asymmetric key lifecycle event
This subtype consists of a number of tag-length-value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on
the type of event and the information that is available. This replaces subtype 13.

Table 153. Subtype 41 CCA asymmetric key lifecycle event

Tag value Name Length Format Description

Dec Hex

256 100 KEY_EVENT 1 binary Key event. This field always occurs first in the record.

X'10' Key token added to KDS.

X'11' Key token updated in KDS.

X'12' Key token deleted from KDS.

X'13' Key token archived.

X'14' Key token restored.

X'15' Key token metadata changed.

X'17' Key token pre-activated.

X'18' Key token activated.

X'19' Key token deactivated.

X'1B' Key token exported.

X'20' Key token generated.

X'21' Key token imported.
Note:

1. When a key is exported, the key token that gets audited
is the input or source token.

2. When a key is imported, the key token that gets audited
is the output or target token.

257 101 KDS_LABEL 72 EBCDIC The 64-byte KDS label left-justified and padded on the right
with blanks.

258 102 KDS_DSNAME 44 EBCDIC The dataset name of the KDS associated with the event. If
there is no associated KDS (for example, the event only
involves a token), this field is not present.

Record Type 82

Appendix B. ICSF SMF records 393

Table 153. Subtype 41 CCA asymmetric key lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

259 103 KEY_NAME 64 EBCDIC The key name from the token.

260 104 OBJ_TYPE 1 binary Object type.

X'02' Public key.

X'0B' Public/Private key pair.

X'0D' Trusted block.
Note: When the object type is trusted block, no other key or
token related information is present.

261 105 KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for
the key. Following that are n type-length-value triplets.
Within each of these triplets is a 1-byte fingerprint type,
followed by a 1-byte length for the triplet, followed by the
fingerprint.

Fingerprint types:

X'02' SHA-1 hash of the public key.
For example, X'010205010203' indicates that there is one
fingerprint value (01) which is the SHA-1 hash of the public
key (02). The fingerprint is 3 bytes in length (05 – 2) and the
value is X'010203'.
Note: If the event pertains to a record in the PKDS, the key
fingerprint is only present when using a KDSR-format
dataset.

262 106 SERVICE 8 EBCDIC The service associated with the event.

265 109 KEY_SEC 1 binary Key security.

X'01' No key present.

X'02' Clear key.

X'03' Key encrypted under master key.

X'04' Key encrypted under key encrypting key.

266 10A KEY_ALG 1 binary Key algorithm.

X'07' RSA.

X'08' DSA.

X'09' ECC.
Note: When the algorithm is DSA, the only other key or
token information that is present is the object type.

270 10E KEY_LEN 2 binary The length of the key (in bits). For RSA, this is the length of
the modulus. For ECC, this is the length of the private
value.

271 10F KEY_CP 16 EBCDIC Key crypto period. The start date followed by the end date
for the record in YYYYMMDD format (therefore,
YYYYMMDDYYYYMMDD). If a date is not set, that portion
of the key crypto period will be blanks. Applies to records
in the KDS which have at least one date set.

Record Type 82

394 z/OS ICSF System Programmer's Guide

Table 153. Subtype 41 CCA asymmetric key lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

272 110 KEY_USAGE_PKDS 4 binary Key usage for private keys.

Bit Meaning when set

0 Undefined.

1 Key management usage permitted.

2 Signature usage permitted.

3 Key translation permitted.

4 Key agreement usage permitted.

5-31 Reserved.

274 112 KEY_EC_CURVE 1 binary ECC curve type.

X'01' Prime curve.

X'02' Brainpool curve.

Subtype 42

PKCS#11 object lifecycle event
This subtype consists of a number of tag-length-value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on
the type of event and the information that is available. This replaces subtype 23.

Table 154. Subtype 42 PKCS#11 object lifecycle event

Tag value Name Length Format Description

Dec Hex

256 100 KEY_EVENT 1 binary Object event. This field always occurs first in the record.

X'10' Object added to KDS.

X'11' Object updated in KDS.

X'12' Object deleted from KDS.

X'13' Object archived.

X'14' Object restored.

X'15' Object metadata changed.

X'17' Object pre-activated.

X'18' Object activated.

X'19' Object deactivated.

X'1B' Object wrapped by another key.

257 101 KDS_LABEL 72 EBCDIC The 44-byte key handle left-justified and padded on the
right with blanks. If the sequence number of the handle is
'FFFFFFFF', this was a raw object.

258 102 KDS_DSNAME 44 EBCDIC The dataset name of the KDS.

259 103 KEY_NAME 1 - 513 EBCDIC The CKA_LABEL attribute from the object. If the
CKA_Label is greater than 512 characters, the plus (+)
symbol is placed at the 513th character to indicate
truncation.

Record Type 82

Appendix B. ICSF SMF records 395

|
|

|
|
|
|

Table 154. Subtype 42 PKCS#11 object lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

260 104 OBJ_TYPE 1 binary Object type.

X'01' Symmetric key.

X'02' Public key.

X'03' Private key.

X'05' Certificate.

X'06' Domain parameters.

X'07' Data object.

X'0C' PKCS #11 token.

261 105 KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for
the key. Following that are n type-length-value triplets.
Within each of these triplets is a 1-byte fingerprint type,
followed by a 1-byte length for the triplet, followed by the
fingerprint.

Fingerprint types:

X'01' Ciphertext obtained from encrypting a data block
filled with binary zeros in ECB mode.

X'02' SHA-1 hash of the public key.
For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext obtained from
using the key to encrypt 8 bytes of binary zeros in ECB
mode (01). The fingerprint is 3 bytes in length (05 – 2) and
the value is X'010203'.
Note: If the event pertains to a record in the TKDS, the key
fingerprint is only present when using a KDSR-format
dataset.

262 106 SERVICE 8 EBCDIC The service associated with the event.

265 109 KEY_SEC 1 binary Key security.

X'02' Clear key.

X'03' Key encrypted under master key.

266 10A KEY_ALG 1 binary Key algorithm.

X'01' Generic symmetric.

X'02' DES.

X'03' AES.

X'05' RC4.

X'06' Blowfish.

X'07' RSA.

X'08' DSA.

X'09' ECC.

X'0A' Diffie-Hellman.

270 10E KEY_LEN 2 binary The length of the key (in bits).

271 10F KEY_CP 16 EBCDIC Key crypto period. The start date followed by the end date
for the record in YYYYMMDD format (therefore,
YYYYMMDDYYYYMMDD). If a date is not set, that portion
of the key crypto period will be blanks. Applies to records
in the KDS which have at least one date set.

Record Type 82

396 z/OS ICSF System Programmer's Guide

Table 154. Subtype 42 PKCS#11 object lifecycle event (continued)

Tag value Name Length Format Description

Dec Hex

273 111 KEY_USAGE_TKDS 4 binary Key usage for private keys.

Bit Meaning when set

0 Data encryption allowed.

1 Data decryption allowed.

2 Key derivation allowed.

3 Sign allowed where signature is appendix.

4 Verify allowed where signature is appendix.

5 Sign allowed where data is recovered from
signature.

6 Verify allowed where data is recovered from
signature.

7 Key wrapping allowed.

8 Key unwrapping allowed.

9 Key usage must be FIPS-compliant.

10-31 Reserved.

274 112 KEY_EC_CURVE 1 binary ECC curve type.

X'01' Prime curve.

X'02' Brainpool curve.

279 117 FIPS_INFO 4 binary FIPS information related to the event.

Bit Meaning when set

0 FIPSMODE(YES) in effect.

1 FIPSMODE(COMPAT) in effect.

2 Request was evaluated for FIPS-compliance due
to system settings. (Either FIPSMODE(YES) is in
effect or FIPSMODE(COMPAT) is in effect, but the
request was not exempt from FIPS-compliance.)

3 Request was evaluated for FIPS-compliance at
user request. (Either the object involved had the
FIPS compliance flag on or FIPS-compliance was
requested via a parameter on the service call.)

4 Request passed FIPS evaluation.

5-31 Reserved.

Subtype 43

Regional cryptographic server configuration
Table 155. Subtype 43 Regional cryptographic server configuration

Offsets Name Length Format Description

0 0 SMF_RCS_CONFIG_FLAGS 4 binary Regional cryptographic server configuration bits.

Bit Meaning When Set

0 Regional cryptographic server brought online.

1 Regional cryptographic server taken offline.

2-31 Reserved.

Record Type 82

Appendix B. ICSF SMF records 397

Table 155. Subtype 43 Regional cryptographic server configuration (continued)

Offsets Name Length Format Description

4 4 SMF_RCS_CONFIG_INDEX 1 binary Regional cryptographic server index.

5 5 SMF_RCS_CONFIG_SN 8 EBCDIC Regional cryptographic server serial number.

13 D SMF_RCS_CONFIG_Port 5 EBCDIC Regional cryptographic server port number.

18 12 SMF_RCS_CONFIG_HostLen 2 binary Length of the regional cryptographic server host name.

20 14 SMF_RCS_CONFIG_Host 256 EBCDIC Regional cryptographic server host name.

276 114 SMF_RCS_CONFIG_API 4 binary Regional cryptographic server API level - VVRRxxxx.

280 118 SMF_RCS_CONFIG_Geo 2 binary Regional cryptographic server geography.

282 11A SMF_RCS_CONFIG_GenMin 1 binary Regional cryptographic server minimum compatible
generation.

283 11B SMF_RCS_CONFIG_GenCur 1 binary Regional cryptographic server current generation.

284 11C 4 Reserved.

Subtype 44

CCA symmetric key usage event
This subtype consists of a number of tag-length-value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on
the type of event and the information that is available.

Table 156. Subtype 44 CCA symmetric key usage event

Tag value Name Length Format Description

Dec Hex

257 101 KDS_LABEL 72 EBCDIC The label in the KDS.

259 103 KEY_NAME 64 EBCDIC The key name from the token. Applies to variable-length
CCA tokens only.

261 105 KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for
the key. Following that are n type-length-value triplets.
Within each of these triplets is a 1-byte fingerprint type,
followed by a 1-byte length for the triplet, followed by the
fingerprint.

Fingerprint types:

X'01' Ciphertext obtained from encrypting a data block
filled with binary zeros in ECB mode.

X'03' SHA-256 algorithm. See Appendix E in z/OS
Cryptographic Services ICSF Application
Programmer's Guide for more information.

X'04' SHAVP1 algorithm. See Appendix E in z/OS
Cryptographic Services ICSF Application
Programmer's Guide for more information.

For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext obtained from
using the key to encrypt a data block of binary zeros in
ECB mode (01). The fingerprint is 3 bytes in length (05 – 2)
and the value is X'010203'.

262 106 SERVICE 8 EBCDIC The service associated with the event.

Record Type 82

398 z/OS ICSF System Programmer's Guide

Table 156. Subtype 44 CCA symmetric key usage event (continued)

Tag value Name Length Format Description

Dec Hex

264 108 TOK_FMT 1 binary The format of the token.

X'01' Fixed length CCA token.

X'02' Variable length CCA token.

X'03' TR-31 key block.

X'04' RKX token.
Note:

1. When format is RKX token, no other key or token
related fields are present.

2. When format is TR-31 key block, the only other key or
token related field that may be present is the key
fingerprint.

265 109 KEY_SEC 1 binary Key security.

X'01' No key present.

X'02' Clear key.

X'03' Key encrypted under master key.

X'04' Key encrypted under key encrypting key.

266 10A KEY_ALG 1 binary Key algorithm.

X'02' DES.

X'03' AES.

X'04' HMAC.

267 10B KEY_TYPE 2 binary Key type.

The key type from the token. Applies to variable-length
CCA tokens only. See “Variable-length symmetric key
token” in z/OS Cryptographic Services ICSF Application
Programmer's Guide for the list of key types.

268 10C KEY_CV 8 binary Key control vector.

The first eight bytes of the control vector from the token.
Applies to fixed-length DES CCA tokens only.

See Appendix C in z/OS Cryptographic Services ICSF
Application Programmer's Guide for information on how to
interpret the control vector.

269 10D KEY_USAGE_CKDS 3 - 33 binary Key usage fields.

Consists of a 1 byte count followed by one or more 2-byte
key usage fields. Applies to variable-length CCA tokens
only.

See Appendix B in z/OS Cryptographic Services ICSF
Application Programmer's Guide for the list of key usage
values for variable length tokens.

270 10E KEY_LEN 2 binary The length of the key (in bits). Applies to fixed-length CCA
tokens only.

275 113 START_TOD 16 binary Start time of the interval in STCKE format.

276 114 END_TOD 16 binary End time of the interval in STCKE format.

277 115 USG_COUNT 4 binary Number of usages accounted for in this record.

278 116 KEY_OLD 0 binary The key is internal, but not wrapped under the current
master key. Additionally, if key store policy is enabled for
CKDS, the key is wrapped under the old master key.
Applies to token usage only.

Record Type 82

Appendix B. ICSF SMF records 399

Table 156. Subtype 44 CCA symmetric key usage event (continued)

Tag value Name Length Format Description

Dec Hex

280 118 KEY_TIV variable binary A key token identification value. A string of bytes present in
the key token. Can be used to help uniquely identify a key
token.
Notes:

1. Only present when TOK_FMT is a fixed-length CCA
token.

2. This is the 4-byte token validation value. For more
information, see Appendix B. Key Token Formats
(Sections “AES Key Token Formats” and “DES Key
Token Formats”) in z/OS Cryptographic Services ICSF
Application Programmer's Guide.

281 119 KEY_COMP_TAG 0 N/A The key is compliant-tagged.
Note: Only present when TOK_FMT is a fixed-length CCA
token.

The following tags may be present in the end user audit section:
v X500_IDN
v X500_SDN
v IDID_USRI
v IDID_USRF
v IDID_REG
v USRI

See “Audit header and audit section” on page 366 for more details.

Subtype 45

CCA asymmetric key usage event
This subtype consists of a number of tag-length-value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on
the type of event and the information that is available.

Table 157. Subtype 45 CCA asymmetric key usage event

Tag value Name Length Format Description

Dec Hex

257 101 KDS_LABEL 72 EBCDIC The 64-byte KDS label left-justified and padded on the right
with blanks.

259 103 KEY_NAME 64 EBCDIC The key name from the token.

260 104 OBJ_TYPE 1 binary Object type.

X'02' Public key.

X'0B' Public/Private key pair.

X'0D' Trusted block.
Note: When the object type is trusted block, no other key or
token related information is present.

Record Type 82

400 z/OS ICSF System Programmer's Guide

Table 157. Subtype 45 CCA asymmetric key usage event (continued)

Tag value Name Length Format Description

Dec Hex

261 105 KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for
the key. Following that are n type-length-value triplets.
Within each of these triplets is a 1-byte fingerprint type,
followed by a 1-byte length for the triplet, followed by the
fingerprint.

Fingerprint types:

X'02' SHA-1 hash of the public key.
For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext obtained from
using the key to encrypt 8 bytes of binary zeros in ECB
mode (01). The fingerprint is 3 bytes in length (05 – 2) and
the value is X'010203'.

262 106 SERVICE 8 EBCDIC The service associated with the event.

265 109 KEY_SEC 1 binary Key security.

X'01' No key present.

X'02' Clear key.

X'03' Key encrypted under master key.

X'04' Key encrypted under key encrypting key.

266 10A KEY_ALG 1 binary Key algorithm.

X'07' RSA.

X'08' DSA.

X'09' ECC.
Note: When the algorithm is DSA, the only other key or
token information present is the object type.

270 10E KEY_LEN 2 binary The length of the public key (in bits).

272 110 KEY_USAGE_PKDS 4 binary Key usage for private keys.

Bit Meaning when set

0 Undefined.

1 Key management usage permitted.

2 Signature usage permitted.

3 Key translation permitted.

4 Key agreement usage permitted.

5-31 Reserved.

274 112 KEY_EC_CURVE 1 binary ECC curve type.

X'01' Prime curve.

X'02' Brainpool curve.

275 113 START_TOD 16 binary Start time of the interval in STCKE format.

276 114 END_TOD 16 binary End time of the interval in STCKE format.

277 115 USG_COUNT 4 binary Number of usages accounted for in this record.

278 116 KEY_OLD 0 N/A The key is internal, but not wrapped under the current
master key. Applies to token usage only.

The following tags may be present in the end user audit section:
v X500_IDN

Record Type 82

Appendix B. ICSF SMF records 401

v X500_SDN
v IDID_USRI
v IDID_USRF
v IDID_REG
v USRI

See “Audit header and audit section” on page 366 for more details.

Subtype 46

PKCS#11 key usage event
This subtype consists of a number of tag-length-value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on
the type of event and the information that is available.

Table 158. Subtype 46 PKCS#11 key usage event

Tag value Name Length Format Description

Dec Hex

257 101 KDS_LABEL 72 EBCDIC The 44-byte key handle left-justified and padded on the
right with blanks. If the sequence number of the handle is
'FFFFFFFF', this was a raw object.

259 103 KEY_NAME 1 - 513 EBCDIC The CKA_LABEL attribute from the object. If the
CKA_Label is greater than 512 characters, the plus (+)
symbol is placed at the 513th character to indicate
truncation.

260 104 OBJ_TYPE 1 binary Object type.

X'01' Symmetric key.

X'02' Public key.

X'03' Private key.

X'05' Certificate.

X'06' Domain parameters.

X'07' Data object.

X'0C' PKCS #11 token.

261 105 KEY_FPRINT 1 - 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for
the key. Following that are n type-length-value triplets.
Within each of these triplets is a 1-byte fingerprint type,
followed by a 1-byte length for the triplet, followed by the
fingerprint.

Fingerprint types:

X'01' Ciphertext obtained from encrypting a data block
filled with binary zeros in ECB mode.

X'02' SHA-1 hash of the public key.
For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext obtained from
using the key to encrypt 8 bytes of binary zeros in ECB
mode (01). The fingerprint is 3 bytes in length (05 – 2) and
the value is X'010203'.

262 106 SERVICE 8 EBCDIC The service associated with the event.

265 109 KEY_SEC 1 binary Key security.

X'02' Clear key.

X'03' Key encrypted under master key.

Record Type 82

402 z/OS ICSF System Programmer's Guide

|
|

|
|
|
|

Table 158. Subtype 46 PKCS#11 key usage event (continued)

Tag value Name Length Format Description

Dec Hex

266 10A KEY_ALG 1 binary Key algorithm.

X'01' Generic symmetric.

X'02' DES.

X'03' AES.

X'05' RC4.

X'06' Blowfish.

X'07' RSA.

X'08' DSA.

X'09' ECC.

X'0A' Diffie-Hellman.

270 10E KEY_LEN 2 binary The length of the key (in bits). For RSA, this is the modulus
length. For other asymmetric keys, this is the length of the
public key.

273 111 KEY_USAGE_TKDS 4 binary Key usage.

Bit Meaning when set

0 Data encryption allowed.

1 Data decryption allowed.

2 Key derivation allowed.

3 Sign allowed where signature is appendix.

4 Verify allowed where signature is appendix.

5 Sign allowed where data is recovered from
signature.

6 Verify allowed where data is recovered from
signature.

7 Key wrapping allowed.

8 Key unwrapping allowed.

9 Key usage must be FIPS-compliant.

10-31 Reserved.

274 112 KEY_EC_CURVE 1 binary ECC curve type.

X'01' Prime curve.

X'02' Brainpool curve.

275 113 START_TOD 16 binary Start time of the interval in STCKE format.

276 114 END_TOD 16 binary End time of the interval in STCKE format.

277 115 USG_COUNT 4 binary Number of usages accounted for in this record.

Record Type 82

Appendix B. ICSF SMF records 403

Table 158. Subtype 46 PKCS#11 key usage event (continued)

Tag value Name Length Format Description

Dec Hex

279 117 FIPS_INFO 4 binary FIPS information related to the event.

Bit Meaning when set

0 FIPSMODE(YES) in effect.

1 FIPSMODE(COMPAT) in effect.

2 Request was evaluated for FIPS-compliance due
to system settings. (Either FIPSMODE(YES) is in
effect or FIPSMODE(COMPAT) is in effect, but the
request was not exempt from FIPS-compliance.)

3 Request was evaluated for FIPS-compliance at
user request. (Either the object involved had the
FIPS compliance flag on or FIPS-compliance was
requested via a parameter on the service call.)

4 Request passed FIPS evaluation.

5-31 Reserved.

The following tags may be present in the end user audit section:
v X500_IDN
v X500_SDN
v IDID_USRI
v IDID_USRF
v IDID_REG
v USRI

See “Audit header and audit section” on page 366 for more details.

Subtype 47

PKCS#11 no key usage event
This subtype consists of a number of tag-length-value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets is dependent on
the type of event and the information that is available.

Table 159. Subtype 47 PKCS#11 no key usage event

Tag value Name Length Format Description

Dec Hex

262 106 SERVICE 8 EBCDIC The service associated with the event. Service is either
CSF1PPRF or CSF1POWH.

275 113 START_TOD 16 binary Start time of the interval in STCKE format.

276 114 END_TOD 16 binary End time of the interval in STCKE format.

277 115 USG_COUNT 4 binary Number of usages accounted for in this record.

Record Type 82

404 z/OS ICSF System Programmer's Guide

Table 159. Subtype 47 PKCS#11 no key usage event (continued)

Tag value Name Length Format Description

Dec Hex

279 117 FIPS_INFO 4 binary FIPS information related to the event.

Bit Meaning when set

0 FIPSMODE(YES) in effect.

1 FIPSMODE(COMPAT) in effect.

2 Usage was evaluated for FIPS-compliance due to
system settings. (Either FIPSMODE(YES) is in
effect or FIPSMODE(COMPAT) is in effect, but
usage was not exempt from FIPS-compliance.)

3 Usage was evaluated for FIPS-compliance at user
request. (Either the object used had the FIPS
compliance flag on or FIPS-compliance was
requested via a parameter on the service call.)

4 Usage passed FIPS evaluation.

5-31 Reserved.

The following tags may be present in the end user audit section:
v X500_IDN
v X500_SDN
v IDID_USRI
v IDID_USRF
v IDID_REG
v USRI

See “Audit header and audit section” on page 366 for more details.

Subtype 48

Compliance warning event
This subtype consists of a number of tag-length-value (TLV) triplets. The following
triplets may be contained in the record. The specific set of triplets depends on the
type of event and the information that is available.

Record Type 82

Appendix B. ICSF SMF records 405

Table 160. Subtype 48 Compliance warning event

Dec Hex Name Length Format Description

520 208 COMP_RESULT 2 binary The compliance result of the operation. This tag is always
present and always occurs first.

When the value is hexadecimal zeros (X'0000'), the service is
allowed by the compliance level, but ICSF does not support
using compliant-tagged tokens with the service. This is
referred to as compliance not supported elsewhere in the
documentation. The service may support compliant-tagged
tokens in the future.

Bit Meaning when set

0 Compliant operation.

1 Non-compliant service.

2 Operation that is requested within a service is
non-compliant.

3 Non-compliant key or keys used.

4-7 Reserved.

8 The request was targeted to a coprocessor that is
not capable of producing compliance warnings.

9-15 Reserved.

522 20A COMP_LVL 1 binary The compliance level that the operation was checked
against.

X'01' PCI-HSM 2016.

262 106 SERVICE 8 EBCDIC The service that was invoked.

523 20B COMP_TOK variable binary A collection of triplets that contains information about one
key that is used in the request. There is one COMP_TOK
triplet for each key token that is used in the request.

The follow triplets make up the value portion of the COMP_TOK TLV triplet.

521 209 COMP_CHK 1 binary The results of the compliance check performed against the
key token.

Bit Meaning when set

0 Compliant key.

1 Key was not evaluated for compliance. The key
does not affect the compliance of the operation.

2 Weak key.

3 Key type or usage attributes is not compliant.

4 Evaluation error.

5 NOCV KEK.

6-7 Reserved.

524 20C KDS_TYPE 1 binary The KDS type corresponding to the key token (for example,
the KDS where this key might be stored). This has no
bearing on whether the key token is in the KDS.

X'01' CKDS.

X'02' PKDS.

Record Type 82

406 z/OS ICSF System Programmer's Guide

Table 160. Subtype 48 Compliance warning event (continued)

Dec Hex Name Length Format Description

257 101 KDS_LABEL 64 or 72 EBCDIC The KDS label left justified and padded on the right with
blanks.

When KDS_TYPE is CKDS, the length is 72.

When KDS_TYPE is PKDS, the length is 64.
Note: Present only when a key label is passed to the
service.

259 103 KEY_NAME 64 EBCDIC The key name from the token.
Note: Applies to CCA variable-length tokens and PKA
tokens only.

260 104 OBJ_TYPE 1 binary Object type.

X'02' Public key.

X'0B' Public/Private key pair.

X'0D' Trusted block.
Notes:

1. Present only when KDS_TYPE is PKDS.

2. When object type is trusted block, no other key or
token-related information is present.

261 105 KEY_FPRINT 1 – 64 binary One or more key fingerprints.

The first byte is the number (n) of fingerprints present for
the key. Following that are n type-length-value triplets.
Within each of these triplets is a 1-byte fingerprint type,
followed by a 1-byte length for the triplet, followed by the
fingerprint.

Fingerprint types:

X'01' Ciphertext that is obtained from encrypting a data
block filled with binary zeros in ECB mode.

X'02' SHA-1 hash of the public key1.

X'03' SHA-256 algorithm. For more information, see
Appendix E, Cryptographic algorithms and
processes, in z/OS Cryptographic Services ICSF
Application Programmer's Guide.

X'04' SHAVP1 algorithm. For more information, see
Appendix E, Cryptographic algorithms and
processes, in z/OS Cryptographic Services ICSF
Application Programmer's Guide.

For example, X'010105010203' indicates that there is one
fingerprint value (01) which is the ciphertext that is
obtained from using the key to encrypt a data block of
binary zeros in ECB mode (01). The fingerprint is 3 bytes in
length (05 – 2) and the value is X'010203'.

1 The public key is converted to an ASN.1 DER-encoded
subjectPublicKey BIT STRING as specified in RFC 3279. The
key fingerprint is the hash of the subjectPublicKey
(excluding the tag, length, and number of unused bits).

Record Type 82

Appendix B. ICSF SMF records 407

Table 160. Subtype 48 Compliance warning event (continued)

Dec Hex Name Length Format Description

264 108 TOK_FMT 1 binary The format of the token.

X'01' Fixed length CCA token.

X'02' Variable length CCA token.

X'03' TR-31 key block.

X'04' RKX token.
Notes:

1. Present only when KDS_TYPE is CKDS.

2. When format is RKX token, no other key or
token-related fields are present.

3. When format is TR-31 key block, the only other key or
token-related field that can be present is the key
fingerprint.

265 109 KEY_SEC 1 binary Key security.

X'01' No key present.

X'02' Clear key.

X'03' Key encrypted under master key.

X'04' Key encrypted under key encrypting key.

266 10A KEY_ALG 1 binary Key algorithm.

X'02' DES.

X'03' AES.

X'04' HMAC.

X'07' RSA.

X'08' DSA.

X'09' ECC.
Note:

When the algorithm is DSA, the only other key or token
information present is the object type.

267 10B KEY_TYPE 2 binary Key type.

The key type from the token. See “Variable-length
symmetric key token” in z/OS Cryptographic Services ICSF
Application Programmer's Guide for the list of key types.
Notes:

1. Present only when KDS_TYPE is CKDS.

2. Applies to variable-length CCA tokens only.

268 10C KEY_CV 8 binary Key control vector.

The first 8 bytes of the control vector from the token.

See Appendix C, Control vectors and changing control
vectors with the CVT callable service, in z/OS Cryptographic
Services ICSF Application Programmer's Guide for information
on how to interpret the control vector.
Notes:

1. Present only when KDS_TYPE is CKDS.

2. Applies to fixed-length DES CCA tokens only.

Record Type 82

408 z/OS ICSF System Programmer's Guide

Table 160. Subtype 48 Compliance warning event (continued)

Dec Hex Name Length Format Description

269 10D KEY_USAGE_CKDS 3 - 33 binary Key usage fields.

Consists of a 1 byte count followed by one or more 2-byte
key usage fields. Applies to variable-length CCA tokens
only.

See Appendix B, Key token formats, in z/OS Cryptographic
Services ICSF Application Programmer's Guide for the list of
key usage values for variable length tokens.
Note: Present only when KDS_TYPE is CKDS.

270 10E KEY_LEN 2 binary The length of the key (in bits).
Notes:

1. When KDS_TYPE is CKDS, applies to fixed-length CCA
tokens only.

2. When KDS_TYPE is PKDS, this is the length of the
public key.

272 110 KEY_USAGE_PKDS 4 binary Key usage for private keys.

Bit Meaning when set

0 Undefined.

1 Key management usage permitted.

2 Signature usage permitted.

3 Key translation permitted.

4 Key agreement usage permitted.

5-31 Reserved.
Note: Present only when KDS_TYPE is PKDS.

274 112 KEY_EC_CURVE 1 binary ECC curve type.

X'01' Prime curve.

X'02' Brainpool curve.
Note: Present only when KDS_TYPE is PKDS and
KEY_ALG is ECC.

280 118 KEY_TIV variable binary A key token identification value. A string of bytes present in
the key token. Can be used to help uniquely identify a key
token.
Notes:

1. Present only when KDS_TYPE is CKDS and TOK_FMT
is a fixed-length CCA token.

2. This is the 4-byte token validation value. For more
information, see Appendix B. Key Token Formats
(Sections “AES Key Token Formats” and “DES Key
Token Formats”) in z/OS Cryptographic Services ICSF
Application Programmer's Guide.

525 20D KEY_DIR 1 binary Key parameter direction.

X'01' Input key.

X'02' Output key.

526 20E KEY_AGE 1 binary Key age.

X'01' Pre-existing key.

X'02' Newly generated key.

527 20F RC 4 binary The return code from the attempt to compliance check the
token. Present only when COMP_CHK indicates an
evaluation error.

Record Type 82

Appendix B. ICSF SMF records 409

Table 160. Subtype 48 Compliance warning event (continued)

Dec Hex Name Length Format Description

528 210 RS 4 binary The reason code to go along with the return code from the
attempt to compliance check the token. Present only when
COMP_CHK indicates an evaluation error.

The following tags may be present in the end user audit section:
v X500_IDN
v X500_SDN
v IDID_USRI
v IDID_USRF
v IDID_REG
v USRI

See “Audit header and audit section” on page 366 for more details.

Record Type 82

410 z/OS ICSF System Programmer's Guide

Appendix C. CICS-ICSF Attachment Facility

The purpose of the CICS-ICSF Attachment Facility is to enhance the performance
of CICS transactions in the same region as a transaction using long-running ICSF
services such as the PKA services and CKDS or PKDS update services.

Without the CICS-ICSF Attachment Facility, the application that requests a
long-running ICSF service is placed into an OS WAIT. With the CICS-ICSF
Attachment Facility, a long running service is transferred to an L8, and the CICS
application is placed into a CICS WAIT, rather than an OS WAIT, for the duration
of the operation.

Note: The CICS-ICSF Attachment Facility can only be used by 31-bit assembler
stub functions. The CICS-ICSF Attachment Facility cannot be used when invoking
ICSF APIs with C linkage or 64-bit assembler stub functions. See Combining C or
C++ and Assembler in z/OS XL C/C++ Programming Guide for information on
invoking the 31-bit assembler stubs from a C/C++ program.

Installing the CICS-ICSF Attachment Facility
Before you can use the CICS-ICSF Attachment Facility, the ICSF system
programmer, or the CICS administrator needs to install it. This involves:
v Relinking the ICSF enabling routine, CSFATREN, and the ICSF TRUE,

CSFATRUE, if ICSF was previously installed in an environment without the
CICS-ICSF Attachment Facility

v Installing the proper load libraries in the PROC used to start CICS
v Updating the CICS System Definitions (CSD) data set to define the programs to

CICS
v Enabling these programs

For information about CICS TRUE programs, refer to CICS Transaction Server for
z/OS, Version 5 Release 1 (www.ibm.com/support/knowledgecenter/
SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm).

Steps for installing the CICS-ICSF attachment facility
1. If ICSF was previously installed in an environment without the CICS-ICSF

Attachment Facility (i.e., without being linked with the CICS SDFHLOAD data
set), the ICSF system programmer will need to relink the ICSF TRUE,
CSFATRUE, and the ICSF enabling routine, CSFATREN. This would be the case
if, for example, (a) the DDDEF entries for ICSF do not have the SDFHLOAD
DDDEF pointing to the CICS SDFHLOAD data set but instead have it pointing
to an empty data set, or (b) z/OS (and hence ICSF) was installed using a
ServerPac.
To relink the ICSF modules, first manually update the ICSF DDDEF for
SDFHLOAD to point to the CICS SDFHLOAD data set. (Refer to ICSF sample
CSFDDDEF shipped in SAMPLIB.) Then submit a job to relink the ICSF
modules. This is an example of job control language for the relink.
//STEP01 EXEC PGM=IEWL,
// PARM=’LIST,XREF,LET,DCBS,AMODE(31),RMODE(24)’
//SYSLMOD DD DISP=SHR,DSN=yyy.SCSFSTUB (the ICSF load library)
//SYSLIB DD DISP=SHR,DSN=xxxxxx.SDFHLOAD

© Copyright IBM Corp. 2007, 2018 411

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm

//SDFHLOAD DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
//SCSFMOD0 DD DISP=SHR,DSN=yyy.SCSFMOD0 (the ICSF load library)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(10,10))
//SYSPRINT DD SYSOUT=*
//SYSLIN DD *

INCLUDE SDFHLOAD(DFHEAI)
REPLACE CSFDHEAI(DFHEAI),CSF0EAI
INCLUDE SCSFMOD0(CSFATREN)
ENTRY DFHEAI

NAME CSFATREN(R)
INCLUDE SDFHLOAD(DFHEAI)
REPLACE CSFDHEAI(DFHEAI),CSF0EAI
INCLUDE SCSFMOD0(CSFATRUE)
ENTRY DFHEAI

NAME CSFATRUE(R)
/*

2. Include the ICSF load module data set in the CICS startup job control language
as shown in this example.
//DFHRPL DD DISP=SHR,DSN=xxxxx.SDFHLOAD
// DD DISP=SHR,DSN=yyy.SCSFSTUB (ICSF callable service stubs)
// DD DISP=SHR,DSN=yyy.SIEALNKE (ICSF shared libraries)
// DD ...
...
//SYSIN DD DISP=SHR,DSN=xxxxx.SYSIN(DFH$SIPx)
...

In the previous sample code, DFH$SIPx includes the entry:
PLTPI=yy,

3. Customize the Program Load Table (PLT), to include the ICSF enabling routine
CSFATREN in second stage initialization.
This is an example input deck for compiling a PLT for automatic enablement of
the CICS-ICSF link. This is ASM code. Assemble it with the CICS macro library,
but without the CICS translator.
//SYSIN DD *
*
* List of programs to be executed sequentially during system
* initialization. Required system initialization parm: PLTPI=yy
* DFHPLTCS should be defined in the CSD by CEDA or DFHCSDUP job
*
DFHPLT TYPE=INITIAL,SUFFIX=yy
*
* -------- Second stage of initialization -----------------
*
DFHPLT TYPE=ENTRY,PROGRAM=CSFATREN (Run enable of CSFATRUE)
*
* ---------- Delimiter between Stages 2 and 3 ------------
*
DFHPLT TYPE=ENTRY,PROGRAM=DFHDELIM
*
* --------- Third stage of initialization -----------------
* (none)
*
DFHPLT TYPE=FINAL
END
/*

The previous code is an example only. Your CICS administrator can use it as a
guide in customizing the PLT. For more information about coding the PLT, refer
to CICS Transaction Server for z/OS, Version 5 Release 1 (www.ibm.com/
support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/
devtrial.htm).

4. Link edit the PLT with these controls:

412 z/OS ICSF System Programmer's Guide

http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm
http://www.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.devtrial.doc/topics/devtrial.htm

INCLUDE OBJLIB(DFHPLTyy)
NAME DFHPLTyy(R)

5. The CICS administrator should customize the system CSD to include:
v CSFATRUE
v CSFATREN
v A PLT to indicate that initialization is to call CSFATREN to enable the ICSF

TRUE, CSFATRUE
This is an example of the job control language and input. In this example,
xxxxx represents the local CICS prefix, and zzzzzzzz represents the PLT entry
that was compiled previously.
//UPDATE JOB ...
//*- -
//DEFINES EXEC PGM=DFHCSDUP,REGION=2M
//STEPLIB DD DISP=SHR,DSN=xxxxxx.SDFHLOAD
// DD DISP=SHR,DSN=zzzzzzzz
//DFHCSD DD DISP=SHR,DSN=xxxxxx.DFHCSD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
*
DEFINE PROGRAM(CSFATREN) GROUP(ICSF)

DESCRIPTION(TRUE enablement routine)
LANGUAGE(ASSEMBLER)

*
DEFINE PROGRAM(CSFATRUE) GROUP(ICSF)

DESCRIPTION(ICSF interface TRUE)
LANGUAGE(ASSEMBLER)
CONCURRENCY(THREADSAFE)
API(OPENAPI)

*
DEFINE PROGRAM(DFHPLTyy) GROUP(ICSF)

DESCRIPTION(PLT Program Init for CSFATRUE)
LANGUAGE(ASSEMBLER)

The PLT in the example runs the program CSFATREN during CICS
initialization. CSFATREN automatically enables the ICSF TRUE, CSFATRUE. If
CICS is already started, use a CICS Command Level Interpreter Transaction
(CECI) to enable CSFATRUE. To do this, go into CECI and issue this statement:
ENABLE PROGRAM(’CSFATRUE’) TALENGTH(250) LINKEDITMODE START

You can also do this in a single step with this statement:
CECI ENABLE PROGRAM(’CSFATRUE’) TALENGTH(250) LINKEDITMODE START

6. If you have any existing CICS applications which invoke any of the ICSF
services in the Wait List, then these applications must be re-linked with the
current ICSF stubs.

Implementing the CICS wait list
The CICS Wait List can be implemented by means of a customer modifiable data
set, pointed to by the Installation Options Data Set (WAITLIST parameter). The
default WAITLIST includes all services which can complete asynchronously (for
example, those services which perform I/O to a key data set and those services
which are routed to a cryptographic processor). If the option is not specified, the
default CICS Wait List will be utilized by ICSF when a CICS application invokes
an ICSF callable service. If WAITLIST is specified, the data set specified by this
parameter will be used to determine the names of the services to be placed on the
CICS Wait List. A sample data set is provided by ICSF via member CSFWTL01 of
SYS1.SAMPLIB. The sample data set contains the same entries as the default ICSF
CICS Wait List -- for example, the data set contains the names of all ICSF callable
services which, by default, will be driven through the CICS TRUE.

Appendix C. CICS-ICSF Attachment Facility 413

The WAITLIST option should be added to the Installation Options data set under
these conditions.
v CICS customers who want to use the default CICS Wait List shipped with ICSF

do not need to specify a WAITLIST keyword. If you have any existing CICS
applications which invoke any of the ICSF services in the Wait List, then these
applications must be re-linked with the current ICSF stubs.

v CICS customers who do not want to make use of CICS TRUE must either not
enable the TRUE or specify a WAITLIST keyword and point to an empty wait
list data set or you can specify WAITLIST(DUMMY) in the Installation Options
data set.

v CICS customers who wish to modify the ICSF default CICS Wait List should
modify the sample Wait List data set supplied in member CSFWTL01 of
SYS1.SAMPLIB. The WAITLIST keyword in the Installation Options Data Set
should be set to point to this data set. If you have any existing CICS applications
which invoke any of the ICSF services in the Wait List, then these applications
must be re-linked with the current ICSF stubs.

To ensure maximum performance, any existing CICS applications which invoke
any of the ICSF services in the Wait List that were linked with ICSF stubs prior to
HCR7770 should be re-linked with the current ICSF stubs.

If you already have the CICS-ICSF Attachment facility installed, there are a number
of callable services which may potentially be routed to a coprocessor or may
perform other asynchronous processing. If you have a modified CICS Wait List,
you should ensure that the wait list data set includes all such services, and any
CICS applications which invoke any of these services are re-linked with the current
ICSF stubs. As a model, you can use the default CICS Wait List that is shipped
with ICSF which includes all services which have an asynchronous interface to
ICSF or you can use a sample Wait List data set that is also shipped with ICSF. The
sample CICS Wait List data set is contained in member CSFWTL01 of
SYS1.SAMPLIB. The sample data set contains the same entries as the default ICSF
CICS Wait List. If you have an application which invokes a UDX while running
under CICS, then the name of the UDX generic service should be added to the
CICS Wait List.

If you use a CICS Wait List data set, you need to identify the data set to ICSF
through the WAITLIST(data_set_name) option in the ICSF Installation Options data
set. The data set can be a member of a PARMLIB, a member of a partitioned data
set, or a sequential data set. The data set should be allocated on a permanently
resident volume and should adhere to:
v The format of each record in the data set must be fixed length or fixed block

length.
v A physical line in the data set must be a LRECL of 80 characters long. The

system ignores any characters in positions 73 to 80 of the line.
v You can delimit comments by "/*" and "*/" and include them anywhere in the

text. A comment cannot span physical records.
v Only one service may be specified on a logical line.

Note: You can use the WAITLIST(DUMMY) parameter to specify a null CICS Wait
List data set, or you can disable the CICS TRUE if you do not want to utilize the
CICS TRUE. See “Parameters in the installation options data set” on page 36 for
additional information.

414 z/OS ICSF System Programmer's Guide

|
|
|
|

|
|
|

Appendix D. Helpful hints for ICSF first time startup

The purpose of this topic is to provide some helpful hints and resolutions for the
problems that you may encounter when starting ICSF for the first time.

See Appendix F, “Systems without Cryptographic features,” on page 425 if you're
running in this environment.

Checklist for first-time startup of ICSF
This is a checklist for the first-time startup of ICSF.

Note: ALL crypto coprocessors cards must be loaded with the same level of code.
Otherwise, unpredictable results can occur.

Step 1. Hardware setup

Note: The CP Assist for Cryptographic Functions feature is required for selection
of the coprocessor in the activation profiles.

Process
LIC installed for CP Assist for Cryptographic Functions

Note: If using TKE, you must Permit each coprocessor for TKE
Commands.

Responsible
CE or Client Operator Representative

Where Support Element

Verify Via CPC details
v CP Assist for Cryptographic Functions is 'Installed'
v CP Assist for Cryptographic Functions DES/TDES enablement (feature

3863) is 'Installed'

Via PCI Cryptographic Configuration Task
v Status for each coprocessor or accelerator is 'Configured'

Note: If using TKE, the status for each Coprocessor is "Permitted’.

References
Support Element Operations Guide

Completed

Step 2. LPAR activation profiles
Process

PCI Crypto Page Setup

Responsible
CE or Client Operator Representative

Where Support Element

Verify Control Domain Index

© Copyright IBM Corp. 2007, 2018 415

Usage Domain Index

PCI Cryptographic Candidate List includes all CCA Crypto Express
coprocessors and accelerators that CAN be online

PCI Cryptographic Online List includes all CCA Crypto Express
coprocessors and accelerators that WILL be online when activation is
complete (Selections in the Online List MUST be selected in the Candidate
List)

References
Support Element Operations Guide

z/OS Cryptographic Services ICSF TKE Workstation User's Guide (LPAR
Considerations)

zSeries PR/SM Planning Guide

Completed

Note: If TKE is to be used, ALL cryptographic coprocessors that you want TKE to
be able to control MUST be defined in the Online and Candidate Lists. Also, the
Usage Domain for the TKE Host LPAR MUST be unique. While the same domain
may be used by other LPARs as long as these LPARs do not share any of the same
cards, the TKE Host domain must have access to all the cards so that prohibits any
other LPAR from using the same domain.

Step 3. ICSF setup
Process

Install and Customize ICSF

Responsible
System Programmer and ICSF Administrator

Where TSO and ISPF Panels

Verify Customize SYS1.PARMLIB
v Add CSF.SCSFMOD0 and CSF.SCSFSTUB to the LNKLST concatenation
v Update PROGxx to APF authorize CSF.SCSFMOD0
v Update IKJTSOxx for ICSF by adding CSFDAUTH and CSFDPKDS to

the AUTHPGM and AUTHTSF parameter lists. To change the active
IKJTSOxx member of SYS1.PARMLIB, use the PARMLIB UPDATE
command.

CKDS and PKDS created

ICSF Startup Procedure created

Installation Options Dataset created
v The DOMAIN parameter in the installation options data set is optional.

It is required if more than one domain is specified as the usage domain
on the PR/SM panels or if running in native mode.

v CKDS and PKDS names specified
v COMPAT(NO)

Access provided to the ICSF panels

References
Chapter 2, “Installation, initialization, and customization,” on page 11

Completed

416 z/OS ICSF System Programmer's Guide

Step 4. TKE setup
If you are not using TKE, proceed to the next step.

Process
Initialize the TKE Workstation.

Configure TCP/IP on the Host and the TKE Workstation.

Perform passphrase or smart card setup.

Setup the TKE Host Transaction Program:
v Create JCL to start the TKE Host Transaction Program.
v RACF Security Setup.
v Start the TKE Host Transaction Program.

Responsible
Network Programmer, System Programmer and TKE Administrator.

Where ISPF Panels, TKE Workstation.

Verify CSFTTKE is authorized in the AUTHCMD list of IKJTSOxx in
SYS1.PARMLIB.

TKE Host Transaction Program (CSFTTCP) is defined in the RACF
STARTED class (Note: If your installation has a Generic Userid associated
to all started procedures, this is not necessary).

CSFTTKE profile is defined in the RACF FACILITY and RACF APPL
classes.

The userid associated with the TKE Host Transaction Program (CSFTTCP)
must be authorized to the CSFCRC, CSFKIM, CSFKRC, CSFKRD, CSFKRR,
CSFKRW, CSFKYT, CSFKYT2, CSFPCI, CSNDKRC, CSNDKRW, and
CSNDPKI profiles in the CSFSERV class.

References
z/OS Cryptographic Services ICSF TKE Workstation User's Guide (See Topics:
TKE Workstation Setup and Customization and TKE TCP/IP and Host
Considerations.)

Completed

Step 5. ICSF startup
Process

Start ICSF

Responsible
Client Operator Representative or System Programmer

Where Operator Console

References
Chapter 2, “Installation, initialization, and customization,” on page 11

Completed

Step 6. Loading master keys and initializing the CKDS through
ICSF panels

Note: When defining a master key by specifying master key parts, make sure that
the key parts are recorded and saved in a secure location. When you are entering

Appendix D. Helpful hints for ICSF first time startup 417

the key parts for the first time, be aware that you might need to reenter these same
key values at a later date to restore master key values that have been cleared. If
defining a master key by using a pass phrase, realize that the same pass phrase
always produces the same master key values and is therefore as critical and
sensitive as the master key values themselves. Make sure that you save the pass
phrase so that you can later reenter it if needed. Because of the sensitive nature of
the pass phrase, make sure that you secure it in a safe place.

If you are using TKE, proceed to the next step.

Process
Passphrase Initialization to load and SET master keys and initialize CKDS
and PKDS

- OR -

Clear Master Key Entry

Note: Using the Coprocessor Management panel, the master keys can be
loaded into all the coprocessors at the same time.
v Load DES New Master Key (optional)
v Load RSA New Master Key (optional)
v Load New AES master key if running on z10 or newer servers with a

CCA Crypto Express coprocessor and the Nov. 2008 or newer licensed
internal code. (optional)

v Load New ECC master key if running on z10 or newer servers with a
CCA Crypto Express coprocessor and the Sept. 2011 or newer licensed
internal code. (optional)

v Initialize CKDS
v Initialize the PKDS
v Enable PKA Callable Services control

Note: The PKA Callable Services control is disabled if the system has a
CEX3C or newer with the Sept. 2011 or newer licensed internal code.

Responsible
ICSF Administrator and Key Officers

Where ICSF Panels

Verify In System Log (Systems with CCA Crypto Express coprocessors and
accelerators):
CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS5 ACCELERATOR 5Axx, SERIAL NUMBER N/A.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS5 COPROCESSOR 5Czz, SERIAL NUMBER ssssssss.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CSFCKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.CSFPKDS IS NOT INITIALIZED.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

Message CSFM111I is issued for each active Crypto Express coprocessor
and accelerator.

Message CSFM122I is not issued when your system has any CEX3C
coprocessors (with the Sept. 2011 or later LIC) online. The PKA callable

418 z/OS ICSF System Programmer's Guide

services control will not be active. The availability of RSA callable services
depend on the status of the RSA master key. CSFM130I is issued when the
RSA master key is active and RSA callable services are available.

In System Log (without coprocessors and accelerators):
CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM505I CRYPTOGRAPHY - THERE ARE NO ACTIVE CRYPTOGRAPHIC COPROCESSORS.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CSFCKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.CSFPKDS IS NOT INITIALIZED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

References
For information on using the Pass Phrase Initialization Utility and
managing master keys, refer to z/OS Cryptographic Services ICSF
Administrator's Guide.

Completed

Step 7. Customizing TKE and loading master keys
If you are not using TKE, proceed to the next step.

Process
TKE Administrator's and Key Officers
v Define host IDs
v Define roles
v Define coprocessor authorities
v Load new DES master key (optional)
v Load new RSA master key (optional)
v Load new AES master key (optional)
v Load new ECC master key if running on z10 or newer servers with a

CCA Crypto Express coprocessor and the Sept. 2011 or later licensed
internal code. (optional)

Note: If you have more than one coprocessor, repeat the process for each,
unless groups have been defined.

Responsible
ICSF Administrator
v Initialize CKDS and SET the DES and AES (if applicable) master keys
v Initialize PKDS and SET the RSA and ECC (if applicable) master keys
v Enable PKA Callable Services control

Note: The PKA Callable Services control is disabled if the system has a
CEX3C or newer with the Sept. 2011 or newer licensed internal code.

Where TKE Workstation and ICSF Panels

Verify In System Log (Systems with Crypto Express coprocessors and
accelerators):
CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.

Appendix D. Helpful hints for ICSF first time startup 419

CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS5 ACCELERATOR 5Axx, SERIAL NUMBER N/A.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS5 COPROCESSOR 5Czz, SERIAL NUMBER ssssssss.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CSFCKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.CSFPKDS IS NOT INITIALIZED.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

Message CSFM111I is issued for each active Crypto Express coprocessors
and accelerators.

Message CSFM122I will not be issued when your system has any CEX3C
or newer coprocessors (with the Sept. 2011 or later LIC) online. The PKA
callable services control will not be active. The availability of RSA callable
services will depend on the status of the RSA master key. CSFM130I is
issued when the RSA master key is active and RSA callable services are
available.

In System Log (Systems without coprocessors or accelerators):
CSFM608I A CKDS KEY STORE POLICY IS NOT DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS NOT DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM505I CRYPTOGRAPHY - THERE ARE NO ACTIVE CRYPTOGRAPHIC COPROCESSORS.
CSFM131E CRYPTOGRAPHY - DES SERVICES ARE NOT AVAILABLE.
CSFM131E CRYPTOGRAPHY - RSA SERVICES ARE NOT AVAILABLE.
CSFM131E CRYPTOGRAPHY - ECC SERVICES ARE NOT AVAILABLE.
CSFM131E CRYPTOGRAPHY - AES SERVICES ARE NOT AVAILABLE.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM131E CRYPTOGRAPHY - SECURE KEY PKCS11 SERVICES ARE NOT AVAILABLE.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CSFCKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.CSFPKDS IS NOT INITIALIZED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

References

For information on managing master keys, refer to z/OS Cryptographic
Services ICSF Administrator's Guide.

Completed

Step 8. CICS-ICSF Attachment Facility setup
If you are not using CICS, proceed to the next topic.

Process
Follow the instructions in Appendix C, “CICS-ICSF Attachment Facility,”
on page 411 if desired.

Responsible
System Programmer

Where Sample Jobs

References
Appendix C, “CICS-ICSF Attachment Facility,” on page 411

Completed

420 z/OS ICSF System Programmer's Guide

Step 9. Complete ICSF initialization
See “Steps for initializing ICSF” on page 34

Responsible
System Programmer

Where Operator Console

Completed

Commonly encountered ICSF first time setup/initialization messages
These ICSF messages are commonly encountered during initialization and first
time startup of ICSF.
v CSFM124I MASTER KEY mk ON coprocessor-name cii, SERIAL NUMBER

nnnnnnn, NOT INITIALIZED - The cryptographic coprocessor does not have
the master key. When a master key is not set, then the cryptographic coprocessor
may not be used for operations with the master key until the system
administrator has provided the master key. This may be a normal situation for
your installation. Have the system administrator enter the correct master key if
appropriate.

v CSFM410E ERROR IN OPTIONS DATA SET - ICSF could not interpret the
options data set. Check the CSF job output for diagnostic messages.

A PKDS is required. The PKDS data set name must be specified in the options data
set with the PKDSN option. If a PKDS is not specified, you will receive these
messages:
CSFM408A NO PKDS NAME WAS SPECIFIED IN THE OPTIONS DATA SET.
CSFM401I CRYPTOGRAPHY - SERVICES NO LONGER AVAILABLE.

Appendix D. Helpful hints for ICSF first time startup 421

422 z/OS ICSF System Programmer's Guide

Appendix E. Using AMS REPRO encryption

This appendix provides information on using IDCAMS REPRO ENCIPHER and
DECIPHER options with ICSF.

Steps for setting up ICSF
Perform these tasks to use the ENCIPHER and DECIPHER parameters with ICSF:
1. Define the key value that is used to encrypt and decrypt the data key. To define

the key value, use one of these ICSF key administrative options:
v Trusted Key Entry (TKE) workstation. For information about how to define

the key value by using the TKE workstation, see z/OS Cryptographic Services
ICSF TKE Workstation User's Guide.

v Key generator utility program (KGUP). Use the KGUP panel ICSF - Create
ADD, UPDATE, or DELETE Key Statement to define the key value. For more
information about how to use KGUP panels, see z/OS Cryptographic Services
ICSF Administrator's Guide.
Be aware of the following restrictions:
– The length of the data encryption key is limited to 8 bytes, or 56-bit DES.

Triple DES support is not available.
– Key labels are limited to 8 characters because of the fixed size of REPRO

storage areas.
– The REPRO command's encryption algorithm variables are not

documented, so you cannot use them to write decryption applications on
another system. Therefore, cross-platform exchange is not possible.

2. Refresh ICSF's cryptographic key data set (CKDS) so that the key value can be
used by REPRO.

3. Ensure that ICSF can support PCF macro calls by specifying COMPAT(YES) in
the ICSF installation options. For more information about how to specify ICSF
installation options, see Chapter 2, “Installation, initialization, and
customization,” on page 11.
If you had to change the ICSF installation options, you must restart ICSF.

4. Run the REPRO ENCIPHER or DECIPHER job.

Restrictions: The REPRO command's encryption algorithm variables are not
documented, so you cannot use them to write decryption applications on another
system. Therefore, cross-platform exchange is not possible.

Recommendation: Do not specify the REPRO parameter PRIVATEKEY because it
exposes the clear data key value. Instead, specify either EXTERNALKEY or
INTERNALKEY, and STOREDATAKEY.

© Copyright IBM Corp. 2007, 2018 423

424 z/OS ICSF System Programmer's Guide

Appendix F. Systems without Cryptographic features

This topic describes the processing of ICSF without a cryptographic coprocessor or
accelerator.

Applications and programs
Applications requiring secure cryptography using encrypted keys will not be able
to execute without a cryptographic coprocessor or accelerator. All cryptographic
keys must be clear keys.

These applications and programs are not supported:
v Access Method Services Cryptographic option.
v CICS attachment facility.
v CKDS Conversion program.
v CSFEUTIL program for CKDS reencipher, refresh, and change master key

functions.
v CSFPUTIL program for PKDS reencipher and refresh functions.
v Distributed Key Management System (DKMS).
v Key Generation Utility Program (KGUP) – Clear key can be generated.
v PCF applications.
v UDX (User Defined Extension) support.
v VTAM Session Level Encryption.
v If only the CPACF feature is installed, you will not be able to:

1. Set master keys.
2. Initialize the PKDS.
3. Store keys in the PKDS.

Callable services
These services are available when there are no cryptographic coprocessors or
accelerators:
v Character/Nibble Conversion (CSNBXBC and CSNBXCB)
v Code Conversion (CSNBXEA and CSNBXAE)
v Control Vector Generate (CSNBCVG)
v Decode (CSNBDCO)
v Encode (CSNBECO)
v Field level decipher (CSNBFLD)
v Field level encipher (CSNBFLE)
v ICSF Query Facility (CSFIQF and CSFIQF6) - The only rule available without a

coprocessor is ICSFSTAT.
v ICSF Query Facility2 (CSFIQF2 and CSFIQF26)
v ICSF Query Algorithm (CSFIQA)
v MDC Generate (CSNBMDG and CSNBMDG1)
v One-Way Hash Generate (CSNBOWH and CSNBOWH1)
v PKA Key Token Build (CSNDPKB)

© Copyright IBM Corp. 2007, 2018 425

v PKA Public Key Extract (CSNDPKX)
v PKCS #11 Derive multiple keys (CSFPDMK)
v PKCS #11 Derive key (CSFPDVK)
v PKCS #11 Get attribute value (CSFPGAV)
v PKCS #11 Generate key pair (CSFPGKP)
v PKCS #11 Generate secret key (CSFPGSK)
v PKCS #11 Generate MAC (CSFPHMG)
v PKCS #11 Verify MAC (CSFPHMV)
v PKCS #11 One-way hash generate (CSFPOWH)
v PKCS #11 Private key sign (CSFPPKS)
v PKCS #11 Public key verify (CSFPPKV)
v PKCS #11 Pseudo-random function (CSFPPRF)
v PKCS #11 Set attribute value (CSFPSAV)
v PKCS #11 Secret key decrypt (CSFPSKD)
v PKCS #11 Secret key encrypt (CSFPSKE)
v PKCS #11 Token record create (CSFPTRC)
v PKCS #11 Token record delete (CSFPTRD)
v PKCS #11 Token record list (CSFPTRL)
v PKCS #11 Unwrap key (CSFPUWK)
v PKCS #11 Wrap key (CSFPWPK)
v Random Number Generate (CSNBRNG) and Random Number Generate Long

(CSNBRNGL)
v Symmetric Key Decipher (CSNBSYD and CSNBSYD1) - Only clear keys are

supported.
v Symmetric Key Encipher (CSNBSYE and CSNBSYE1) - Only clear keys are

supported.
v Symmetric MAC Generate (CSNBSMG, CSNBSMG1, CSNESMG, and

CSNESMG1)
v Symmetric MAC Verify (CSNBSMV, CSNBSMV1, CSNESMV, and CSNESMV1)
v X9.9 Data Editing (CSNB9ED)

These services are available when there are no cryptographic coprocessors and
there are accelerators:
v Digital Signature Verify (CSNDDSV)
v PKA Decrypt (CSNDPKD)
v PKA Encrypt (CSNDPKE) ZERO-PAD formatting only

Note:

1. Installation defined callable services are supported only if you're using clear
keys and using one of the supported callable services.

2. If running without an active PKCS #11 Cryptographic coprocessor, the PKCS
#11 callable services are limited to clear keys only.

ICSF setup and initialization
If starting ICSF without any cryptographic features:
CSFM608I A CKDS KEY STORE POLICY IS DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.

426 z/OS ICSF System Programmer's Guide

CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM505I CRYPTOGRAPHY - THERE ARE NO ACTIVE CRYPTOGRAPHIC COPROCESSORS.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM508I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC ACCELERATORS ONLINE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

If starting ICSF with a cryptographic accelerator:
CSFM608I A CKDS KEY STORE POLICY IS DEFINED.
CSFM608I A PKDS KEY STORE POLICY IS DEFINED.
CSFM610I GRANULAR KEYLABEL ACCESS CONTROL IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR AES IS DISABLED.
CSFM611I XCSFKEY EXPORT CONTROL FOR DES IS DISABLED.
CSFM612I PKA KEY EXTENSIONS CONTROL IS DISABLED.
CSFM654I KEY ARCHIVING USE CONTROL IS DISABLED.
CSFM015I FIPS 140 SELF CHECKS FOR PKCS11 SERVICES SUCCESSFUL.
CSFM111I CRYPTOGRAPHIC FEATURE IS ACTIVE. CRYPTO EXPRESS4 ACCELERATOR 4A00,

SERIAL NUMBER N/A.
CSFM505I CRYPTOGRAPHY - THERE ARE NO ACTIVE CRYPTOGRAPHIC COPROCESSORS.
CSFM133I THERE ARE NO ACTIVE PKCS11 COPROCESSORS.
CSFM100E CRYPTOGRAPHIC KEY DATA SET, CSF.CKDS IS NOT INITIALIZED.
CSFM101E PKA KEY DATA SET, CSF.PKDS IS NOT INITIALIZED.
CSFM507I CRYPTOGRAPHY - THERE ARE NO CRYPTOGRAPHIC COPROCESSORS ONLINE.
CSFM126I CRYPTOGRAPHY - FULL CPU-BASED SERVICES ARE AVAILABLE.
CSFM001I ICSF INITIALIZATION COMPLETE

Secure Sockets Layer (SSL)
System SSL applications are supported. SSL defines methods for data encryption,
server authentication, message integrity, and client authentication for a TCP/IP
connection. Security is provided on the link and callable services have been
enhanced for DES, TDES and SHA-1 services.

TKE workstation
The Trusted Key Entry (TKE) workstation is not available with this hardware
configuration.

Appendix F. Systems without Cryptographic features 427

428 z/OS ICSF System Programmer's Guide

Appendix G. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed email message to mhvrcfs@us.ibm.com.

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax

© Copyright IBM Corp. 2007, 2018 429

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
mailto:mhvrcfs@us.ibm.com

elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted

430 z/OS ICSF System Programmer's Guide

decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix G. Accessibility 431

432 z/OS ICSF System Programmer's Guide

Notices

This information was developed for products and services that are offered in the
USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

© Copyright IBM Corp. 2007, 2018 433

This information could include missing, incorrect, or broken hyperlinks.
Hyperlinks are maintained in only the HTML plug-in output for the Knowledge
Centers. Use of hyperlinks in other output formats of this information is at your
own risk.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

434 z/OS ICSF System Programmer's Guide

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

Notices 435

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session cookies that collect each user’s name, email address, phone number, or
other personally identifiable information for purposes of enhanced user usability
and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online
Privacy Statement at ibm.com/privacy/details in the section entitled “Cookies,
Web Beacons and Other Technologies,” and the “IBM Software Products and
Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-
privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, JES2, JES3, and MVS™, contain code that
supports specific hardware servers or devices. In some cases, this device-related
element support remains in the product even after the hardware devices pass their
announced End of Service date. z/OS may continue to service element code;
however, it will not provide service related to unsupported hardware devices.
Software problems related to these devices will not be accepted for service, and
current service activity will cease if a problem is determined to be associated with
out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (www.ibm.com/software/support/systemsz/lifecycle)

436 z/OS ICSF System Programmer's Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle

v For information about currently-supported IBM hardware, contact your IBM
representative.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
Trademark information (www.ibm.com/legal/copytrade.shtml).

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 437

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

438 z/OS ICSF System Programmer's Guide

Index

A
abends 160
access control checking

udx 223
Access Method Services Cryptographic

Option
and ICSF 145

accessibility 429
contact IBM 429
features 429

activity report
defining on a DD statement 248
description 249

adding a regional cryptographic server
SETICSF command 143

addressing mode
no restrictions on ICSF's caller 144

AMS DEFINE CLUSTER command 16,
19, 22

AMS IMPORT/EXPORT commands 16,
19, 22

AMS REPRO command 16, 19, 22
AMS REPRO encryption 236
assistive technologies 429

B
BEGIN installation option 41

C
callable services exit

CSF_SERVICE_EXIT 192
changing coprocessor or accelerator status

SETICSF command 144
changing parameters in installation

options data set
specifying option parameters and

values 41
changing the master key in compatibility

or coexistence mode 237
CHECKAUTH installation option 42
choosing compatibility modes during

migration 238
CICS

WAITLIST installation option 60
CICS wait list 107
CICS-ICSF Attachment Facility 411

installing 411
CICSAUDIT installation option 42
CIPHER macro

SVC description 9
CKDS

create 15
primary space required 15
secondary space required 15

CKDS (cryptographic key data set) 6
conversion from PCF CKDS to ICSF

CKDS 239
creating 16

CKDS (cryptographic key data set)
(continued)

description 6
header record format 253
record format 255, 256, 314

CKDS entry retrieval installation exit
environment 195
input 196
installing 195
purpose and use 194
return codes 196

CKDS refresh
SMF record type 82 149

CKDSN installation option 43
CKTAUTH 43
coexistence mode

changing the master key 236, 237
description 235, 236

coexistence, definition 64
command

syntax diagrams 116
command syntax notation 116
COMPAT installation option 43, 235
compatibility mode

and the Access Method Services
Cryptographic Option 145

changing the master key 236, 237
description 235, 236

COMPENC installation option 43
compliance warning event

SMF record type 82 156
compliance warnings 108
COMPLIANCEWARN installation

option 44
component trace 159
configure on/off cryptographic

coprocessors 137
contact

z/OS 429
controlling access to CSFDUTIL 157
controlling access to secure tokens 158
controlling access to the callable

services 157
controlling access to the cryptographic

keys 157
controlling access to the key generator

utility program 157
controlling the program

environment 156
conversion program

activity report 249
bypassing entries 243
converting key types 245
data sets 248
including information in a key

entry 244
installation exit 240
JCL for submitting 248
override file 241
running 247

conversion program installation exit
PCF 197

purpose and use 197
return codes 199

converting a PCF CKDS 239
Converting to KDSR format 91
CP Assist for Cryptographic Functions

description 2
Creating an

creating an ICSF CTRACE
Configuration Data Set 28

Creating an ICSF CTRACE
Configuration Data Set 28

creating the CKDS
allocating space for the CKDS 15
reading the CKDS into storage 34
using the AMS DEFINE CLUSTER

command 16
creating the installation options data set

guidelines 25
creating the PKDS

allocating space for the PKDS 19
creating the startup procedure 30

specifying the installation options data
set 30

creating the TKDS
allocating space for the TKDS 22

crypto education xv
Crypto Express2 Coprocessor

description 2
cryptographic communication vector

table 354
cryptographic communication vector

table extension 356
Cryptographic Coprocessor clear master

key entry
SMF record type 82 149

cryptographic coprocessor retained key
create or delete

SMF record type 82 150
cryptographic coprocessor timing

SMF record type 82 151
cryptographic coprocessor TKE command

request or reply
SMF record type 82 150

cryptographic coprocessors
bringing offline 137
bringing online 137
disabling 138

csf 30
CSF_SERVICE_EXIT 192
CSFAPRPC processing routine 225
CSFCKDS exit 194
CSFCONVX exit 197
CSFESECI exit 204
CSFESECK exit 204
CSFESECS exit 204
CSFESECT exit 204
CSFEXIT1 exit 173
CSFEXIT2 exit 173
CSFEXIT3 exit 173

© Copyright IBM Corp. 2007, 2018 439

CSFEXIT4 exit 173
CSFEXIT5 exit 173
CSFKGUP exit 208
CSFPARM data set 31
CSFPRM00 26
CSFSRRW exit 200
CSFVINP data set 248
CSFVNEW data set 248
CSFVOVR data set 248
CSFVRPT data set 248
CSFVSRC data set 248
CTRACE installation option 44

D
DEFAULTWRAP installation option 44
DEFINE CLUSTER command 16, 19, 22
defining conversion program data

sets 248
disabling cryptographic

coprocessors 138
DISPLAY command

displaying cryptographic coprocessor
status 143

Display ICSF command 118
displaying cryptographic coprocessor

status
DISPLAY command 143

DOMAIN installation option 45
duplicate key tokens

SMF record type 82 152
dynamic CKDS update

SMF record type 82 149
dynamic PKDS update

SMF record type 82 149

E
ECC token

associated data format for 338
EMK macro

SVC description 9
END installation option 46
ENF signals 165
event recording 146
exit

CKDS entry retrieval installation
exit 169, 194

description 167
entry and return specifications 169
identifier on ICSF 46
invocation on ICSF 46
key generator utility program

installation exit 169, 208
mainline installation exits 168, 172
PCF conversion program installation

exit 168, 197
security installation exits 203
service installation exits 168, 180
single-record, read-write installation

exit 168, 200
EXIT installation option 46
exit name table 178
external key token

PKA
RSA private 316

F
feedback xvii
FIPSMODE installation option 50
FMID

applicable z/OS releases 5
hardware 5
servers 5

formatting control blocks
using IPCS 160

functions not supported 107

G
GENKEY macro

SVC description 9

H
hash services 69

I
ICSF

dispatching priority 61, 144
ICSF (Integrated Cryptographic Service

Facility)
CSFSMF82 mapping macro 363
record type 82 363

ICSF CTRACE Configuration Data
Set 28

ICSF initialization
SMF record type 82 148

ICSF installation options data set
deprecated parameters 68

ICSF migration actions 64
ICSF operator commands 118

Display ICSF 118
SETICSF 125

icsf sysplex group
SMF record type 82 151

ICSFMIG77A1_COPROCESSOR
_ACTIVE 64

ICSFMIG77A1_TKDS_OBJECT 66
initializing ICSF

creating the CKDS 16
creating the PKDS 20
creating the TKDS 22
creation of 16, 20, 22
selecting ICSF startup options

creating the installation options
data set 25

creating the startup procedure 30
starting ICSF 34

installation option keyword
CHECKAUTH 42
CICSAUDIT 42
CKDSN 43
CKTAUTH 43
COMPAT 43, 235
COMPENC 43
COMPLIANCEWARN 44
CTRACE 44
DEFAULTWRAP 44
DOMAIN 45
EXIT 46

installation option keyword (continued)
FIPSMODE 50
KEYAUTH 54
MASTERKCVLEN 54
MAXLEN 54
MAXSESSOBJECTS 55
PKDSCACHE 55
PKDSN 55
REASONCODES 55
SERVICE 57
SSM 57
SYSPLEXCKDS 58
SYSPLEXTKDS 59
TKDSN 59
UDX 60
USERPARM 60
WAITLIST 60

installation option parameter 41
BEGIN 41
END 46

installation options
performance considerations 144

installation options data set 11, 25
changing option parameters and

values 41
creating 25
example 26
specifying the installation options data

set 30
installation steps 11
installation-defined service

access control checking 223
defining 224
description 221
entry and exit code example 223
executing 225
link editing 224
parameter checking 223
writing 221

Integrity 341
internal key token

aes; 286
DES 287
PKA

RSA private 325, 327, 335, 338,
339

IPCS support
contention issues 165

K
KDSR

format 283
KDSR record

format 283
key generator utility program exit

parameter block 210
key generator utility program installation

exit
calling points 208
environment 209
installing 209
processing 209
purpose and use 208
return codes 219
SET statement 218

440 z/OS ICSF System Programmer's Guide

key part entry
SMF record type 82 148

key store policy 158
SMF record type 82 152

key token
aes; internal 286
DES

null 291
DES internal 287
PKA 314

null 315
RSA 1024-bit private internal 327
RSA 2048-bit Chinese remainder

theorem private internal 333
RSA private external 316
RSA private internal 325, 335,

338, 339
RSA public 315

KEYAUTH installation option 54
keyboard

navigation 429
PF keys 429
shortcut keys 429

L
link editing

callable services 224

M
mainline installation exit

environment 173
exit parameter block 175
input 174
installing 173
parameters 176, 180
purpose and use 172

mapping macro
CSFSMF82 (ICSF) 364

MASTERKCVLEN installation option 54
MAXLEN installation option 54
MAXSESSOBJECTS installation

option 55
message recording 156
migrating from PCF 235
Migrating to the common record format

(KDSR) key data set 91
migration

terminology 64
migration actions

Cryptographic Services 64
migration process 109
MODIFY command 116
modifying ICSF 116

N
navigation

keyboard 429
noncompatibility mode

description 235, 238
null key token

format 291, 315

O
object ion key (OPK) 351
operator commands

ICSF 118
OPK, object protection key 351
override file

defining on a DD statement 248

P
panels

accessing 31
ICSF Coprocessor Management 137

parameter checking
callable services 223

PCF
application 236, 238
macro 235
migration to ICSF 235

PCF conversion program installation exit
environment 197
input 198
installing 198
purpose and use 197

PCI Cryptographic Coprocessor
configuration

SMF record type 82 150
PCI X Cryptographic Coprocessor timing

SMF record type 82 150
PCI-HSM 2016 compliance mode 108
performance

problems 61, 144
PKA key token 314

record format
RSA 1024-bit private internal 327
RSA 2048-bit Chinese remainder

theorem private internal 333
RSA private external 316
RSA private internal 325, 335,

338, 339
RSA public 315

PKDS (public key data set) 7
creating 20
description 7
header record format 257
record format 257

PKDSCACHE installation option 55
PKDSN installation option 55
private external key token

RSA 316
private internal key token

RSA 325, 327, 335, 338, 339
public key data set 7

improving security and reliability for
the PKDS 20

public key data set refresh
SMF record type 82 152

public key token
RSA 315

R
read-write exit parameter block 202
REASONCODES installation option 55
record metadata 89
recording events 146

regional cryptographic server
configuration

SMF record type 82 155
regional cryptographic servers 2

adding 139, 143
adding and removing 139
configuring ICSF to use TCP/IP 140,

141
give access to the ICSF address

space 141
removing 140
setup AT-TLS 141
setup the ICSF address space 141

RETKEY macro
SVC description 9

return codes
from PCF macros

migration consideration 236
RKX key-token 290
RMF

header record format 357
RSA 1024-bit private internal key

token 327
RSA key token formats 315
RSA private external key token 316
RSA private internal Chinese remainder

theorem key token 333
RSA private internal key token 325, 335,

338, 339
RSA public token 315
running ICSF

in coexistence mode 236
in compatibility mode 236
in noncompatibility mode 238

running the conversion program
creating a job to run the conversion

program 247
defining conversion program data

sets 248

S
scheduling changes for cryptographic

keys 158
secondary parameter block 189
section sequence, trusted block 340
security considerations 156
security installation exit

environment 204
input 206
installing 205
purpose and use 203
return codes 207

selecting ICSF startup options
creating the installation options data

set 25
creating the startup procedure 30

sending to IBM
reader comments xvii

service installation exit
environment 181
exit parameter block 187
input 186
installing 182
parameters 191
purpose and use 181
return codes 191

Index 441

SERVICE installation option 57
syntax 224

service names used in SMF records 367
service stub

description 221
example 226
linking 225
writing 224

SETICSF command 125
adding a regional cryptographic

server 143
changing coprocessor or accelerator

status 144
shortcut keys 429
single-record, read-write installation exit

conversion program invocation 240
input 202
installing 201
purpose and use 200
return codes 203

SMF record type 82 146
subtype 1 148
subtype 13 149
subtype 14 149
subtype 15 150
subtype 16 150
subtype 18 150
subtype 19 150
subtype 20 151
subtype 21 151
subtype 22 151
subtype 23 152
subtype 24 152
subtype 25 152
subtype 26 152
subtype 43 155
subtype 48 156
subtype 7 148
subtype 8 149
subtype 9 149

SMF recording 146, 218
specifying the installation options data

set 30
SSM installation option 57
START command 34
starting ICSF

creating the startup procedure 30
entering the ICSF START

command 34, 113
IPL-time 114

startup procedure 11, 30
steps in installation 11
stopping ICSF 113
SVC 143 9
syntax diagrams

how to read 116
SYS1.PARMLIB

customizing 12
description 11

SYS1.PROCLIB
description 11
storing startup procedure 31

SYS1.SAMPLIB
CSFPRM00 26
description 11

SYSPLEXCKDS installation option 58
SYSPLEXPKDS installation option 59

SYSPLEXTKDS installation option 59

T
testing ICSF 238
TKDS

SMF record type 82 152
TKDS (public key data set)

creating 22
TKDS (token data set)

description 91
format 258

TKDS (token key data set) 8
description 8

TKDSN installation option 59
token data set (TKDS)

description 91
format 258

token key data set 8
improving security and reliability for

the TKDS 22
token validation value (TVV) 287
TRACEENTRY option and ICSF 70
trusted block create

SMF record type 82 151
trusted blocks 339

U
udx

access control checking 223
UDX installation option 60
user interface

ISPF 429
TSO/E 429

USERPARM installation option 60
using different configurations 135
using the conversion program override

file 241

V
V2R1 changed information FMID

HCR77B0 xxiii
V2R1 deleted information FMID

HCR77B0 xxiii
V2R1 new information FMID

HCR77B0 xxii
V2R2 changed information FMID

HCR77B1 xxii
V2R2 changed information FMID

HCR77C0 xxi
V2R2 deleted information FMID

HCR77B1 xxii
V2R2 deleted information FMID

HCR77C0 xxi
V2R2 new information FMID

HCR77B1 xxi
V2R2 new information FMID

HCR77C0 xx
V2R3 changed information FMID

HCR77C1 xix
V2R3 deleted information FMID

HCR77C1 xx
V2R3 new information FMID

HCR77C1 xix

VERBX 162
virtual storage constraint relief

for the caller of ICSF 144
VSAM data set

creating 16
VTAM session-level encryption

and ICSF 144

W
WAITLIST installation option 60

442 z/OS ICSF System Programmer's Guide

IBM®

Printed in USA

SC14-7507-07

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	Where to find more information
	IBM Crypto Education

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R3 (FMID HCR77C1)
	Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R2 (FMID HCR77C0)
	Changes made in Cryptographic Support for z/OS V1R13 - z/OS V2R2 (FMID HCR77B1)
	Changes made in Enhanced Cryptographic Support for z/OS V1R13 - z/OS V2R1 (FMID HCR77B0)

	Chapter 1. Introduction to z/OS ICSF
	Features
	Cryptographic hardware features
	Server hardware
	z/OS ICSF FMIDs

	ICSF features
	The Cryptographic Key Data Set (CKDS)
	The Public Key Data Set (PKDS)
	The Token Data Set (TKDS)
	Additional background information
	Running PCF applications on z/OS ICSF
	Using RMF and SMF to monitor z/OS ICSF events
	Controlling access to ICSF

	Steps prior to starting installation

	Chapter 2. Installation, initialization, and customization
	Steps for installation and initialization
	Steps to customize SYS1.PARMLIB
	Creating the CKDS
	ICSF system resource planning for the CKDS
	Steps to create the CKDS

	Creating the PKDS
	ICSF system resource planning for the PKDS
	Steps to create the PKDS

	Creating the TKDS
	ICSF system resource planning for the TKDS and session object memory areas
	Steps to create the TKDS

	ICSF system resource planning for random number generation
	Steps to create the installation options data set
	Creating an ICSF CTRACE configuration data set
	Steps to create the ICSF startup procedure
	Steps to provide access to the ICSF panels
	Requiring signature verification for ICSF module CSFINPV2
	Steps to start ICSF for the first time
	Steps for initializing ICSF

	Customizing ICSF after the first start
	Parameters in the installation options data set
	Improving CKDS performance
	Dispatching priority of ICSF
	Creating ICSF exits and generic services

	Chapter 3. Migration
	Terminology
	Migrating from earlier software releases
	Actions to perform before installing ICSF FMID HCR77C0
	ICSF: Detect any coprocessor that will not become active when ICSF FMID HCR77A1 or later is started
	ICSF: Detect TKDS objects that are too large for the new KDSR record format in ICSF FMID HCR77A1 or later

	Actions to perform before the first start of ICSF FMID HCR77C0
	ICSF: Deprecated parameters in installation options data set
	ICSF: Determine if applications using hash services have archived hashes of long data

	Actions to perform after the first start of ICSF FMID HCR77C0
	ICSF: Accommodate the TRACEENTRY option deprecation

	Callable services
	CCA access control
	Identification of cryptographic features
	Ensure the expected P11 master key support is available
	Key store policy
	DES keys
	ICSF key data sets
	Record metadata
	CKDS
	PKDS
	TKDS
	Migrating to the common record format (KDSR) key data set

	Changing the RSA master key
	Migrating to 24-byte DES master key
	Installation options data set
	Function restrictions
	CICS attachment facility
	Dynamic LPA load
	Special secure mode
	Resource Manager Interface (RMF)
	System abend codes
	SMF records
	TKE workstation
	Access to callable services
	TKE enablement from the support element
	Enabling access control points for PKCS #11 coprocessor firmware

	Migrating from the IBM eServer zSeries 900
	Migrating a CKDS and PKDS between a CCF system and a non-CCF system
	CCF only system
	CCF with PCICCs

	Callable services
	Functions not supported
	Setup considerations
	Programming considerations

	Migrating to PCI-HSM 2016 compliance mode
	Compliance warnings
	Migration process
	Identifying key tokens to be converted using compliance warning events
	Identifying key tokens outside of compliance warning events
	Ensure the key tokens identified can become compliant-tagged
	Converting key tokens to become compliant-tagged

	Chapter 4. Operating ICSF
	Starting and stopping ICSF
	Starting ICSF during IPL-time
	Modifying ICSF
	Command syntax notation
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	ICSF operator commands
	Display ICSF
	SETICSF

	Using different configurations
	Adding and removing cryptographic coprocessors
	Adding cryptographic coprocessors
	Steps for activating/deactivating cryptographic coprocessors
	Steps to configure on/off cryptographic coprocessors
	Steps for enabling/disabling cryptographic coprocessors
	Intrusion latch on the cryptographic coprocessors

	Adding and removing regional cryptographic servers
	Steps to add a regional cryptographic server
	Steps to remove a regional cryptographic server
	Configuring ICSF to use TCP/IP for communications with regional cryptographic servers
	Steps to configure ICSF to use TCP/IP

	Displaying cryptographic coprocessor status using the DISPLAY ICSF operator command
	Adding a regional cryptographic server using the SETICSF operator command
	Changing regional cryptographic server status using the SETICSF operator command
	Performance considerations for using installation options
	Dispatching priority of ICSF
	VTAM session-level encryption
	System SSL encryption
	Access method services cryptographic option
	Remote key loading
	Event recording
	System Management Facilities (SMF) recording
	ICSF Initialization (Subtype 1)
	Operational Key Part Entry (Subtype 7)
	CKDS Refresh (Subtype 8)
	Dynamic CKDS Update (Subtype 9)
	Dynamic PKDS Update (Subtype 13)
	Cryptographic Coprocessor Clear Master Key Entry (Subtype 14)
	Cryptographic Coprocessor Retained Key Create or Delete (Subtype 15)
	Cryptographic Coprocessor TKE Command Request or Reply (Subtype 16)
	Cryptographic Coprocessor Configuration (Subtype 18)
	PCI X Cryptographic Coprocessor Timing (Subtype 19)
	Cryptographic Coprocessor Timing (Subtype 20)
	ICSF Sysplex Group (Subtype 21)
	Trusted Block Create (Subtype 22)
	Token Data Set (TKDS) (Subtype 23)
	Duplicate Key Tokens (Subtype 24)
	Key Store Policy Key Token Authorization Checking (Subtype 25)
	PKDS Refresh (Subtype 26)
	Key Store Policy PKA Key Management Extensions (Subtype 27)
	High Performance Encrypted Key (Subtype 28)
	TKE Workstation Audit Record (Subtype 29)
	Key Store Policy Archived and Inactive Checking (Subtype 30)
	Cryptographic usage statistics (Subtype 31)
	CCA symmetric key lifecycle event (Subtype 40)
	CCA asymmetric key lifecycle event (Subtype 41)
	PKCS #11 key lifecycle event (Subtype 42)
	Regional cryptographic server configuration (Subtype 43)
	CCA symmetric key usage event (Subtype 44)
	CCA asymmetric key usage event (Subtype 45)
	PKCS #11 key usage event (Subtype 46)
	PKCS #11 no key usage event (Subtype 47)
	Compliance warning event (Subtype 48)

	Message recording

	Security considerations
	Controlling the program environment
	Controlling access to KGUP
	Controlling access to CSFDUTIL
	Controlling access to the callable services
	Controlling access to cryptographic keys
	Controlling access to secure key tokens
	Scheduling changes for cryptographic keys
	Controlling access to administrative panel functions
	Obtaining RACF SMF log records

	Debugging aids
	Component trace
	Abnormal endings
	IPCS formatting routine
	VERBX
	Detecting ICSF serialization contention conditions
	IPCS support for diagnosing contention issues in a dump

	ENF signals

	Chapter 5. Installation exits
	Types of exits
	Mainline exits
	Exits for the services
	The PCF CKDS conversion program exit
	The single-record, read-write exit
	The cryptographic key data set entry retrieval exit
	Security exits
	The KGUP exit

	Entry and return specifications
	Registers at entry
	Registers at return

	Exits environment
	Mainline exits
	Service exits
	CKDS entry retrieval exit
	KGUP, Conversion Programs, and Single-record, Read-write exits
	Security exits

	Exit recovery
	Mainline installation exits
	Purpose and use of the exits
	CSFEXIT1
	CSFEXIT2
	CSFEXIT3
	CSFEXIT4
	CSFEXIT5

	Environment of the exits
	Installing the exits
	Input
	The Exit Parameter Block
	Parameters

	Return Codes

	Services installation exits
	Purpose and use of the exits
	Environment of the exits
	Installing the exits
	Input
	Exit parameter block
	Secondary parameter block
	Parameters

	Return Codes
	CSF_SERVICE_EXIT - ICSF callable services exit

	Cryptographic key data set entry retrieval installation exit
	Purpose and use of the exit
	Environment of the exit
	Installing the exit
	Input
	Return codes

	PCF conversion program installation exit
	Purpose and use of the exit
	Environment of the exit
	Installing the exit
	Input
	Return codes

	Single-record, Read-write installation exit
	Purpose and use of the exit
	Environment of the exit
	Installing the exit
	Input
	Return codes

	Exit points for security installation exits
	Security installation exits
	Purpose and use of the exits
	Security initialization exit
	Security termination exit
	Security service exit
	Security key exit

	Environment of the exits
	Installing the exits
	Input
	Return codes

	Key generator utility program installation exit
	Purpose and use of the exit
	KGUP calling points
	Processing in the exit

	Environment of the exit
	Installing the exit
	Input
	The SET statement
	Return codes

	Chapter 6. Installation-defined Callable Services
	Writing a callable service
	Contents of registers
	Security access control checking
	Checking the parameters
	Link-editing the callable service

	Defining a callable service
	Writing a service stub
	Example of a service stub

	Chapter 7. Converting a CKDS from fixed length to variable length record format
	Chapter 8. Migration from PCF to z/OS ICSF
	Running PCF and z/OS ICSF on the same system
	Running in compatibility mode
	Running in coexistence mode
	Changing the DES master key in compatibility or coexistence mode
	Running in noncompatibility mode
	Specifying compatibility modes during migration

	Converting a PCF CKDS to ICSF format
	How the PCF conversion program runs
	Calling installation exits during conversion

	Using the conversion program override file
	Bypassing conversion of entries
	Including information in a key entry
	Converting key types

	Running the conversion program
	Example of a Conversion Initial Activity Report
	Example of a Conversion Update Activity Report

	Appendix A. Diagnosis reference information
	Cryptographic Key Data Set (CKDS) formats
	Public Key Data Set (PKDS) format
	Format of the PKDS header record
	Format of the PKDS record

	Token data set (TKDS) format
	Format of the header record of the token data set
	Format of the token and object records
	Common section of the token and object records
	Format of the token-specific section of the token record
	Format of the object-specific sections of the token object records

	Common record format (KDSR)
	AES key token format
	AES internal fixed-length key token
	Token validation value

	DES key token formats
	DES fixed-length key token
	External RKX DES key token
	DES null key token

	Variable-length symmetric key token formats
	Variable-length symmetric key token
	Variable-length symmetric null key token

	PKA key token formats
	Internal PKA tokens
	PKA null key token
	RSA key token formats
	RSA public key token
	RSA private external key token
	RSA private internal key token

	ECC key token format
	Associated data format for ECC token
	AESKW wrapped payload format for ECC private key token

	Trusted blocks
	Trusted block sections
	Trusted block integrity
	Number representation in trusted blocks
	Format of trusted block sections

	Data areas
	The Cryptographic Communication Vector Table (CCVT)
	The Cryptographic Communication Vector Table Extension (CCVE)
	Generic Service Table (CSFMGST)

	RMF measurements table

	Appendix B. ICSF SMF records
	Record type 82 (52) — ICSF record
	Record environment
	Record mapping
	SMF header
	ICSF header (for all subtypes 40 or greater)
	Main section (subtype information)
	Audit header and audit section
	Tag-Length-Value (TLV) triplets
	Service names used in SMF records

	Subtype 1
	Initialization/Options Refresh section

	Subtype 7
	Operational key load section

	Subtype 8
	Cryptographic key data set refresh section

	Subtype 9
	Dynamic CKDS update

	Subtype 13
	Dynamic PKDS update

	Subtype 14
	Cryptographic coprocessor master key entry

	Subtype 15
	PCI Cryptographic coprocessor retained key create/delete

	Subtype 16
	PCI Cryptographic coprocessor TKE

	Subtype 18
	Cryptographic processor configuration

	Subtype 19
	PCI X Cryptographic coprocessor timing

	Subtype 20
	Cryptographic processor processing times

	Subtype 21
	ICSF sysplex group change section

	Subtype 22
	Trusted block create callable services section

	Subtype 23
	Token data set update

	Subtype 24
	Duplicate tokens found

	Subtype 25
	Key store policy for key token authorization checking

	Subtype 26
	Public key data set refresh

	Subtype 27
	PKA key management extensions

	Subtype 28
	High performance encrypted key

	Subtype 29
	TKE workstation audit record

	Subtype 30
	Key store policy archived and inactive KDS records

	Subtype 31
	Cryptographic usage statistics

	Subtype 40
	CCA symmetric key lifecycle event

	Subtype 41
	CCA asymmetric key lifecycle event

	Subtype 42
	PKCS#11 object lifecycle event

	Subtype 43
	Regional cryptographic server configuration

	Subtype 44
	CCA symmetric key usage event

	Subtype 45
	CCA asymmetric key usage event

	Subtype 46
	PKCS#11 key usage event

	Subtype 47
	PKCS#11 no key usage event

	Subtype 48
	Compliance warning event

	Appendix C. CICS-ICSF Attachment Facility
	Installing the CICS-ICSF Attachment Facility
	Steps for installing the CICS-ICSF attachment facility
	Implementing the CICS wait list

	Appendix D. Helpful hints for ICSF first time startup
	Checklist for first-time startup of ICSF
	Step 1. Hardware setup
	Step 2. LPAR activation profiles
	Step 3. ICSF setup
	Step 4. TKE setup
	Step 5. ICSF startup
	Step 6. Loading master keys and initializing the CKDS through ICSF panels
	Step 7. Customizing TKE and loading master keys
	Step 8. CICS-ICSF Attachment Facility setup
	Step 9. Complete ICSF initialization

	Commonly encountered ICSF first time setup/initialization messages

	Appendix E. Using AMS REPRO encryption
	Steps for setting up ICSF

	Appendix F. Systems without Cryptographic features
	Applications and programs
	Callable services
	ICSF setup and initialization
	Secure Sockets Layer (SSL)
	TKE workstation

	Appendix G. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

