Development Roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016–2019</td>
<td>Run quantum circuits on the IBM Quantum Platform</td>
</tr>
<tr>
<td>2020</td>
<td>Release multi-dimensional roadmap publicly with initial aim focused on scaling</td>
</tr>
<tr>
<td>2021</td>
<td>Enhancing quantum execution speed by 5Xs with Qiskit Runtime</td>
</tr>
<tr>
<td>2022</td>
<td>Brion dynamic circuits to unlock more computations</td>
</tr>
<tr>
<td>2023</td>
<td>Enhancing quantum execution speed by 5X with quantum serverless and execution modes</td>
</tr>
<tr>
<td>2024</td>
<td>Improving quantum circuit quality and speed to allow 5K gates with parametric circuits</td>
</tr>
<tr>
<td>2025</td>
<td>Enhancing quantum execution speed and parallelization with partitioning and quantum modularity</td>
</tr>
<tr>
<td>2026</td>
<td>Improving quantum circuit quality to allow 7.5K gates</td>
</tr>
<tr>
<td>2027</td>
<td>Improving quantum circuit quality to allow 10K gates</td>
</tr>
<tr>
<td>2028</td>
<td>Improving quantum circuit quality to allow 15K gates</td>
</tr>
<tr>
<td>2029</td>
<td>Improving quantum circuit quality to allow 100M gates</td>
</tr>
<tr>
<td>2033+</td>
<td>Beyond 2033, quantum-centric supercomputers will include 1000’s of logical qubits unlocking the full power of quantum computing</td>
</tr>
</tbody>
</table>

Innovation Roadmap

Software Innovation

- **IBM Watson Experience**
 - Qiskit: Circuit and operator API with cooperation to multiple targets
 - Application modules: Modules for diverse specific applications and algorithms workflows
 - Qiskit Hummingbird: Performance and abstract through runtime
 - Qiskit Chimera: System partitioning to enable parallel execution
 - AI enhanced quantum modules: Prototypes demonstrations of AI enhanced circuit transcription
 - Serverless partitioning with classical reconstructions at HPC scale
 - Scalable circuit management:
 - Error correction decoder: Demonstrates path to improved quality with logical error correction decoder
 - Error correction decoder:
 - Demonstrates path to improved quality with logical error correction decoder
 - Resource management:
 - Demonstrates path to improved quality with logical error correction decoder
 - Circuit partitioning:
 - Demonstrates path to improved quality with logical error correction decoder
 - Code assistant:
 - Functions:
 - Mapping Collection:
 - Specific Libraries:
 - General purpose QC libraries

Hardware Innovation

- **IBM Quantum Experience**
 - Early:
 - Canery 5 qubits
 - Albatross 14 qubits
 - Penguin 20 qubits
 - Protoype 12 qubits
 - Dynamic circuits:
 - Benchmarking 27 qubits
 - Falcon:
 - Benchmarking 27 qubits
 - Hummingbird:
 - Demonstrates scaling with multiplexing
 - Eagle:
 - Demonstrates scaling with multiplexing
 -Egypt:
 - Demonstrates scaling with high-fidelity qubit delivery
 - Condor:
 - Single system scaling and fridge operation
 - Kookaburra:
 - Demonstrates scaling with modular connectors
 - Crossbill:
 - rs - coupler
 - Heron:
 - Architecture with variable centers
 - Flamingo:
 - Demonstrates scaling with tunable coupler
 - Condor:
 - Single system scaling and fridge operation
 - Kookaburra:
 - Demonstrates scaling with modular connectors
 - Crossbill:
 - rs - coupler
 - Heron:
 - Architecture with variable centers
 - Flamingo:
 - Demonstrates scaling with tunable coupler

IBM Quantum / © 2023 IBM Corporation