Integrating Mobile Internet of Things and Cloud Computing towards Scalability: Lessons Learned from Existing Fog Computing Architectures

Paolo Bellavista
Antonio Corradi
Alessandro Zanni

DISI, University of Bologna, ITALY
{paolo.bellavista, antonio.corradi, alessandro.zanni3}@unibo.it

May 22st, ICACON’15
Mobile Internet of Things (MLoT)

MLoT – Cloud integration
 - Advantages/Issues
 - Similar work in literature

Fog computing background
 - Architecture analysis
 - Components description

Taxonomy and discussion

Research directions
Development of **Smart Objects** towards *Cyber Physical System (CPS)*:
- Sensors
- Actuators

Trends (by 2025):
- Enormous amount of data
- Mobile wireless connections
- Devices connected: 1 trillion
- M2M communications: 100 millions

Challenges in MIoT applications:
- Mobile connectivity
- Openness
- Scalability
MloT/Cloud Integration - Advantages

- **Cloud advantages:**
 - Resource availability
 - Costs (pay as you go model)
 - Efficiency
 - Scalability (no more worst-case planning)
 - Industrially mature technology

- **Cloud-MIoT perfectly complementary:**
 - Extending Cloud to real-world scenario
 - Industrially-feasible MIoT applications (critical contexts)
Cloud inefficiencies:
- Sensors high sample rate → number of connections
- Great amount of raw data
- Wrong Cloud usage
Other Literature Research

- **Cloudlet:**
 - Cluster of multi-core computers
 - Cloud data centers towards end devices
 - Real-time, location-awareness

- **Edge Computing:**
 - Applications, data and services moved towards end points
 - Traffic, cost, latency, security/privacy, scalability

- **Follow-Me Cloud (NEC Lab.):**
 - Support technology for mobile Cloud applications
 - Ability to migrate network services
 - Network services follow users’ movements
- Computation moved **near the end devices**
- Common platform to deliver applications (**multi-tenancy**)
- All different levels of the IT development involved
- Easier **integration cloud-side**
Fog Computing Architecture
Local Sensing and Data Handling

Motivations:
- Data quality
- Relief further computation
- Constraint IoT devices
- Automatic data acquisition

Components:
- Data sink
- Data *aggregation*
- Basic data *filtering*
- Data *normalization*
Big/Small Data Processing

- **Big Data** analytics:
 - Cloud-side
 - Long-processing (Batch)
 - Long-term analytics
 - Heavy resources usage
 - Scalability, performance, cost

- **Small Data** analytics:
 - Fog-side
 - Low-latency processing
 - Near devices
 - Few/Significant data
 - Real-time, location-aware
Actuation & Storage

Actuation:
- Real-time
- Location-awareness
- New applications (critical context)

Storage:
- Cloud-like resources
- Limited Cloud services
- Periodically upload
- Scalability, real-time
Fog Taxonomy

CLOUD

Security/Privacy Scalability - Big Data Data Quality

FOG

Data Quality Interoperability Real-time

Security/Privacy Scalability - Geo-distribution Mobility Location-awareness

IOT

Security/Privacy Mobility Interoperability
Fog Taxonomy - Scalability

- **Big Data** scalability
 - Cloud-side
 - Long-term analysis

- **Geo-distribution**
 - Large area
 - Distributed nodes
 - Fog-side

- **Vehicular applications**
 - e.g. traffic policies
 - e.g. vehicles dense across regions
Fog Taxonomy – Data Quality

- Detect anomalies
- Real-time data actions
- Fault detection techniques

- Vehicular applications
 - Standard deviation on average values
 - Data thresholds to discard data
Fog Taxonomy – Location Awareness

- Fog-side
- Efficiency (resource consumption, network congestion)

Vehicular applications
- Areas of interest (roads, intersections, etc.)
- RSU infer system state
- RSU reaction (e.g. traffic light cycle, alarms, etc.)
Fog Taxonomy – Interoperability

- Heterogeneity in real-world scenario
- Computational power, resources lifespan, communications
- Performance issues
- Vehicular applications
 - On-board sensors, RSU, traffic lights
 - Multiple implementations
 - Policies from different authorities
Fog Taxonomy – Real-Time

- Low-latency reaction
- No Cloud interactions
- Data processing, Actuation

- Vehicular applications
 - Few ms for safety
- Wind Farm
 - Prevent turbine damage
 - Wind forecasting
Fog Taxonomy – Mobility

- MIoT intrinsic feature
- Device disappearance
- Device discoverability
- Hand-off

- Vehicular applications
 - Fast mobility support
 - Vehicles macro-points
 - Switch sub-network
Fog Taxonomy – Security/Privacy

- Pervasive requirement
- All layers involved
- Detect anomalies
- Protect data exposition

Vehicular applications
- Collisions avoidance
- Pervasive surveillance
- Image acquisition
- Vehicle movements patterns
Future Research Directions

- **Multi-level organization and interworking**
 - Group of nodes densely connected
 - Hierarchical or Cluster/Mesh organization
 - Load-balancing and scalability

- **Actuation capacity**
 - Cloud analysis vs. Fog actuation border
 - Different priority actions ➔ Level of interplay Cloud/Fog
 - e.g. Vehicular system:
 - Real-time actions inside vehicle - Long analysis outside vehicle

- **Efficient fog-cloud communications**
 - Algorithms/M2M-protocols for Fog/Cloud communications
 - Latency-tolerant applications ➔ Strong Cloud interplay
 - Latency-sensitive applications ➔ Exploit Small Data
Thanks for your attention!
Questions time…

Contact Info:
Alessandro Zanni
alessandro.zanni3@unibo.it