Data modeling is the process of creating a visual representation of either a whole information system or parts of it to communicate connections between data points and structures. The goal is to illustrate the types of data used and stored within the system, the relationships among these data types, the ways the data can be grouped and organized and its formats and attributes.
Data models are built around business needs. Rules and requirements are defined upfront through feedback from business stakeholders so they can be incorporated into the design of a new system or adapted in the iteration of an existing one.
Data can be modeled at various levels of abstraction. The process begins by collecting information about business requirements from stakeholders and end users. These business rules are then translated into data structures to formulate a concrete database design. A data model can be compared to a roadmap, an architect’s blueprint or any formal diagram that facilitates a deeper understanding of what is being designed.
Data modeling employs standardized schemas and formal techniques. This provides a common, consistent, and predictable way of defining and managing data resources across an organization, or even beyond.
Ideally, data models are living documents that evolve along with changing business needs. They play an important role in supporting business processes and planning IT architecture and strategy. Data models can be shared with vendors, partners, and/or industry peers.
Like any design process, database and information system design begins at a high level of abstraction and becomes increasingly more concrete and specific. Data models can generally be divided into three categories, which vary according to their degree of abstraction. The process will start with a conceptual model, progress to a logical model and conclude with a physical model. Each type of data model is discussed in more detail below:
As a discipline, data modeling invites stakeholders to evaluate data processing and storage in painstaking detail. Data modeling techniques have different conventions that dictate which symbols are used to represent the data, how models are laid out, and how business requirements are conveyed. All approaches provide formalized workflows that include a sequence of tasks to be performed in an iterative manner. Those workflows generally look like this:
Data modeling has evolved alongside database management systems, with model types increasing in complexity as businesses' data storage needs have grown. Here are several model types:
Relational databases frequently employ structured query language (SQL) for data management. These databases work well for maintaining data integrity and minimizing redundancy. They’re often used in point-of-sale systems, as well as for other types of transaction processing.
Two popular dimensional data models are the star schema, in which data is organized into facts (measurable items) and dimensions (reference information), where each fact is surrounded by its associated dimensions in a star-like pattern. The other is the snowflake schema, which resembles the star schema but includes additional layers of associated dimensions, making the branching pattern more complex.
Data modeling makes it easier for developers, data architects, business analysts, and other stakeholders to view and understand relationships among the data in a database or data warehouse. In addition, it can:
Numerous commercial and open source computer-aided software engineering (CASE) solutions are widely used today, including multiple data modeling, diagramming and visualization tools. Here are several examples:
Researchers at IBM were among the pioneers who created the first hierarchical and relational data models and also designed the databases where these models were initially implemented.
Today, IBM Cloud provides a full stack platform that supports a rich portfolio of SQL and NoSQL databases, along with developer tools needed to manage data resources within them efficiently. IBM Cloud also supports open source tools that help developers manage object, file and block data storage to optimize performance and reliability.
Want to learn more about modeling data on IBM Cloud? Sign up for an IBMid and create your free IBM Cloud account today.