
Monitoring Apache Airflow
with Prometheus, StatsD
and Grafana

Contents 01 →
Introduction

02 →
Building an open source
Airflow monitoring solution

03 →
Prometheus, StatsD Exporter
and metrics mapping

04 →
Airflow configuration

05 →
Configuring Grafana
dashboards

06 →
Conclusion

Introduction

01

3

To debug health problems or find the
root cause of failures, a data engineer
hops between the Apache Airflow UI,
directed acyclic graph (DAG) logs, various
monitoring tools and Python code.

It doesn’t have to be this way.   

You can use operational dashboards to get
a bird’s-eye view of the system, clusters
and overall health.

In this guide, we’ll explore the best
practices for taking the open source route
to building an operational dashboard.
  
The guide’s goal is to easily answer
questions such as:

	– Is our cluster alive?
	– How many DAGs do we have in a bag?
	– Which operators succeeded and which
failed lately?

	– How many tasks are running right now?
	– How long did it take for the DAG
to complete?

Next chapterPrevious chapter

Building an open source
Airflow monitoring solution
We’ll need to configure a data observability
dashboard. There are two routes you can
take when looking for a data observability
solution: an open source solution or a
managed one. Both have advantages
and disadvantages.

02

4

Open source

Pros
	– Lower initial cost: your only cost for
implementation is labor.

	– Community support: get contributions
from the global community.

Cons
	– Higher long-term cost: maintenance and
troubleshooting can become difficult as
your needs become more complex.

	– Usability can be difficult: as your data
team grows, ease of use, scalability and
governance can become hard to manage.

Managed service

Pros
	– Greater usability: better UI and
automation can make your team
more efficient.

	– Better support: dedicated support
is standing by.

Cons
	– Higher initial costs: the pricing
model might not make sense for
some organizations.

	– Less flexibility: unless the managed
service is built on open source code,
functionality can be limited.

Next chapterPrevious chapter

Building an open source
Airflow monitoring solution
For this guide, we will focus on monitoring
and visualizing Airflow Cluster metrics.
These types of metrics are great indicators
of cluster and infrastructure health and
should be constantly monitored.
 
Airflow exposes metrics such as DAG
bag size, number of currently running
tasks and task duration time every
moment the cluster is running. You
can find a list of all the different metrics
exposed, along with descriptions,
in the official Airflow documentation.

02

5

By taking advantage of the trio below,
you can find out whenever the scheduler
is running, how many DAGs are in a bag,
and most other critical problems in the
cluster’s health.
 
1.	StatsD
We’ll start with StatsD, a widely used
service for collecting and aggregating
metrics from various sources. Airflow
has built-in support for sending metrics
into the StatsD server. Once configured,
Airflow will then push metrics to the StatsD
server and we’ll be able to visualize them.

Let’s start!
The basic architecture of our monitoring
solution will look like this:
 
Airflow Cluster → StatsD Exporter →
Prometheus → Grafana

Airflow Cluster reports metrics to StatsD
Exporter, which performs transformations
and aggregations and passes them
to Prometheus. Grafana then queries
Prometheus and displays everything
in a dashboard. But first, we’ll need to
set up all of those pieces.

We’ll configure Airflow, then StatsD
Exporter and then Grafana.

2.	Prometheus
Prometheus is a popular solution for
storing metrics and alerting. Because
it’s typically used to collect metrics from
other sources such as relational database
management systems (RDBMSes) and
web servers, we’ll use Prometheus as the
main storage for our metrics. And because
Airflow doesn’t have an integration with
Prometheus, we’ll use Prometheus StatsD
Exporter to collect metrics and transform
them into a Prometheus-readable format.
StatsD Exporter acts as a regular StatsD
server, and Airflow won’t respond any
differently to it.

3.	Grafana
Grafana is our preferred metrics visualization
tool. It has native Prometheus support and
we’ll use it to set up our Airflow Cluster
monitoring dashboard.

Next chapterPrevious chapter

https://airflow.apache.org/docs/apache-airflow/stable/logging-monitoring/metrics.html

Prometheus, StatsD Exporter
and metrics mapping
This guide assumes you’re already
familiar with Prometheus. If you aren’t
yet, Prometheus has great documentation
and is easy to get started with because it
doesn’t require special configuration.

StatsD Exporter will be used to receive
metrics and provide them to Prometheus.
Usually it doesn’t require much configuration,
but because of the way Airflow sends
metrics, we’ll need to remap them.

By default, Airflow exposes a lot of metrics.
For convenience, these metrics should be
properly mapped. By using mapping, we
can then build Grafana dashboards with
per-Airflow instances and per-DAG views.

Let’s take dag.<dag_id>.<task_id>.duration
metric, for example.

The raw metric name sent by Airflow will
look like airflow_dag_sample_dag_dummy_
task_duration. For each Airflow instance
and DAG you have, it will report duration
for each task, producing a combinatorial
explosion of the metrics. For simple DAGs,
it’s not an issue. But when tasks add up,
things start being more complicated, and
you wouldn’t want to bother with a Grafana
configuration.

To solve this, StatsD Exporter provides a
built-in relabeling configuration. You can
find great documentation and examples
of these on the StatsD Exporter page.

Now let’s apply this to our DAG
duration metric.

03

6

Figure 1. Relabel config

The relabel config will look like this: We are extracting three labels from
this metric:

1.	Airflow instance ID, which should
be different across the instances

2.	DAG ID
3.	Task ID 

Prometheus will then take these labels
and we’ll be able to configure dashboards
with instance/DAG/task selectors
and provide observability on different
detalization levels.

We will repeat relabeling config for each
metric exposed by Airflow.

Next chapterPrevious chapter

Airflow configuration

A couple of options should be added to
airflow.cfg. Please note that Airflow will fail
to start if the StatsD server isn’t available
at the start-up time. Make sure you have a
StatsD Exporter instance up and running. 

For more details, refer to Airflow
metrics documentation.

04

7

Figure 2. The very basic config section in airflow.cfg

“A constant challenge is
ensuring my data engineers
have a good contract with data
scientists and know how to
take products from them and
smoothly integrate them into
the system. Even with pods,
it’s not always smooth.”

Data engineering
team lead

Next chapterPrevious chapter

Configuring Grafana
dashboards
When we have all our metrics properly
mapped, we can proceed to creating the
dashboards. We’ll have two dashboards—
one for cluster overview and another for
DAG metrics.

For the first dashboard, we’ll have the
Airflow instance selector:

05

8

Figure 3. Airflow Grafana dashboard

Next chapterPrevious chapter

Configuring Grafana
dashboards
You can see all vital metrics here, such as
scheduler heartbeat, dagbag size, queued/
running tasks count, currently running
DAGs aggregated by tasks, and so on:

05

9

Figure 4. Airflow Grafana DAG view

Next chapterPrevious chapter

Configuring Grafana
dashboards
For the second dashboard, we’ll have
the DAG selector.

You can see DAG-related metrics—
successful DAG run duration, failed
DAG run duration, DAG run dependency
check time and DAG run schedule delay:

05

10

Figure 5. Airflow Grafana DAG status

Next chapterPrevious chapter

Conclusion

Airflow provides a decent out-of-the-box
solution for monitoring DAGs, but it lacks
accessibility and comprehensiveness.
In this tutorial, we configured Airflow,
StatsD Exporter and Grafana to get useful
dashboards. Dashboards like these can
save a lot of time when troubleshooting
cluster health issues such as executors
being down or DAG parsing being stuck
because it has some heavyweight
database query. For more robust and
convenient monitoring, alerts should also
be configured, but this is beyond the scope
of the current guide.

Better data quality starts at ingestion
Data engineers are the backbone of
modern data teams. But for the average
data engineer, it’s a challenge to make
sure jobs are running successfully, data is
meeting quality standards, and business
stakeholders are satisfied. For companies
that depend on accurate, on-time data
flows, that’s a huge problem. Databand,
an IBM Company, was built to help data
engineers scale their infrastructure
alongside their organization while
maintaining data health standards.

Make big data observability manageable.

Why IBM?
IBM® Databand delivers trusted data to
your business. Learn more about how
IBM Databand can help your organization
automatically observe dynamic data
pipelines, promote data quality and
reliability, and continuously monitor
AI and machine learning reliability.

06

11Next chapterPrevious chapter

https://www.ibm.com/products/cloud-pak-for-data/data-observability

© Copyright IBM Corporation 2023

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
January 2023

IBM and the IBM logo are trademarks or registered
trademarks of International Business Machines
Corporation, in the United States and/or other
countries. Other product and service names might be
trademarks of IBM or other companies. A current list
of IBM trademarks is available on ibm.com/trademark.

This document is current as of the initial date of
publication and may be changed by IBM at any time.
Not all offerings are available in every country in which
IBM operates.

THE INFORMATION IN THIS DOCUMENT IS
PROVIDED “AS IS” WITHOUT ANY WARRANTY,
EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND ANY WARRANTY OR
CONDITION OF NON-INFRINGEMENT. IBM products
are warranted according to the terms and conditions
of the agreements under which they are provided.

12

