" IBM Cloud

Migrating to
IN-Memory
computing
for modern,
cloud-native
workloads

WebSphere

eXtreme Scale ana
Hazelcast In-Memory
Computing Plattorm
for IBM Cloud” Paks

" IBM Cloud

Migrating to in-memory computing for moderr

Introduction

Historically, single instance, multi-user applications
were sufficient to meet most commercial workloads.
With data access latency being a small fraction

of the overall execution time, it was not a primary
concern. Over time, new requirements from
applications like e-commerce, global supply chains
and automated business processes required a

much higher level of computation and drove the
development of distributed processing using
clustered groups of applications.

A distributed application architecture scales
horizontally, taking advantage of ever-faster
processors and networking technology, but with
it, data synchronization and coordinated access
become a separate, complex system. Centralized
storage area network (SAN) systems became
common, but as computational speeds continued
to advance, the latencies of disk-based storage
and retrieval quickly became a significant
bottleneck. In-memory data storage systems were
developed to provide distributed, fault-tolerant,
all-in-memory data access, which is orders of
magnitude faster than disk-based systems.

Moving to cloud

Mobile technology, ubiguitous networks, automated
“smart” devices and myriad other new technologies
have changed the way users and applications
interact with each other. These technologies are
constantly connected and always on, sending infinite
streams of unique data events and expecting a
real-time response. These massively parallel,
high-speed data interaction requirements are
fueling the migration of applications to

cloud-native architectures.

cloud-native wo

rkloads

Cloud-based application installations, using
virtualization technology, offer the ability to scale
environments dynamically to meet demand
peaks and valleys, optimizing computation
costs to workload requirements. These dynamic
environments further drive the need for
in-memory data storage with extremely

fast, distributed, scalable data sharing.

Cloud instances come and go as load dictates,
so immediate access to data upon instance
creation and no data loss upon instance
removal are paramount. Independently scaled,
in-memory data storage meets all of these
needs and enables additional processing
capabilities as well.

Data replication and synchronization between
cloud locations enable globally distributed
cloud environments to function in active/

active configurations for load balancing and
fault tolerance. These capabilities require the
fastest transfer speeds possible. With advanced
networking technology and memory-based
data storage, previously impossible transfer
throughput with extremely low latency can

be achieved.

As organizations begin application modernization
projects and migrations from on-premises
installations to cloud architectures, the
infrastructure must also evolve to support cloud-
native capabilities. IBM Cloud Pak” solutions

are software stacks that help businesses deploy
enterprise systems into any cloud environment.
IBM Cloud Paks are built on Red Hat®” OpenShift®,
Kubernetes, containers and supporting software
to run enterprise applications.

() IBMCloud

Migrating to cloud-native
IN-rMmemory computing

IBM WebSphere® eXtreme Scale is an elastic,
scalable in-memory data grid designed for on-
premises environments and does not support cloud
environments using Kubernetes and containers. To
support the migration of applications to the cloud,
organizations will need to migrate to a solution

that supports cloud-native environments to meet
application performance expectations.

Hazelcast In-Memory Computing Platform

Hazelcast In-Memory Computing Platform for

IBM Cloud Paks is a fast, flexible and cloud-native
distributed application platform that is certified for
deployment with IBM Cloud Paks and is comprised
of two projects/components:

+ Hazelcast In-Memory Data Grid (IMDG) for
in-memory data storage and data-local
distributed processing

« Hazelcast Jet for high throughput, low latency
stream processing

The platform supports application modernization
projects with capabilities designed for cloud
deployments. Organizations can expand innovation
for new applications through advanced features and
capabilities not found in other in-memory storage
technology. Containerization and orchestration
management are fully supported on many platforms,
including Red Hat OpenShift.

At a high level, Hazelcast and eXtreme Scale both
use clusters of servers with partitions (shards)

of memory distributed across all the cluster
members (nodes). With both approaches, each
node is the primary server for the data contained
in partitions owned by that node, with backup

Migrating to in-memory computing for modern, cloud-native wol

rkloads

replicas created on other nodes for fault tolerance.
Failure detection and recovery are automatic. Each
system scales dynamically by adding or removing
nodes to the cluster.

The Hazelcast solution from IBM starts with the
distributed data grid, Hazelcast IMDG, and adds
Hazelcast Jet, the component that is a state-of-
the-art, real-time stream processing engine. Jet
natively leverages all of the capabilities found in the
Hazelcast in-memory storage layer, adding advanced
stream processing capabilities to meet today’s
newest workloads. For example, built-in time window
management correlates event streams for continuous
value aggregations and calculations. Streams can be
merged with other streams and enriched with data
from other sources. And events can be transformed
from one form to another, among other capabilities,
all in real time.

Machine learning (ML) has also brought capabilities
that were previously impossible for automated
computer processing systems. Operationalizing this
technology in production, however, can be extremely
complex and time consuming. Hazelcast solves this
problem by enabling ML models to be run directly
within the stream processing engine with “inference
runners.” These runners allow Java, Python and C/
C++ ML models to runin real time, taking advantage
of all the in-memory, distributed capabilities of the
Hazelcast solution. New versions of ML models can be
loaded to replace older versions without downtime.

In summary, the Hazelcast In-Memory Computing
Platform for IBM Cloud Paks combines an innovative
in-memory data storage layer with its third-
generation stream processing engine to create an
advanced in-memory processing platform.

N4
«) IBM Cloud Migrating to in-memory computing for modern, cloud-native workloads

Technology comparison: Hazelcast and eXtreme Scale

Operational features

Table 1 lists supported cluster-wide operational features that contribute to ease of use, fault tolerance, scaling and
flexibility for both platforms.

Hazelcast 4.2 eXtreme Scale 8.6

Topology App-embedded client/server WebSphere client/server

Bare metal, virtualized

containers, Kubernetes, cloud e i, e lzee

Installation platform

Cluster replication . .
Elastic . c
100 GB per Instance . .
Elastic . c
Fault tolerance . .
Disk persistence . .
DB persistence . .
Certified for IBM Cloud Paks . .
Docker .

Kubernetes .

Eureka .

Apache jclouds .

Cloud native .

OpenShift .

Split brain protection .

Quorum 5 .
Serialization Multiple built-in and third party Java and XDF
JSON Support .

Table 1. Operational features comparison for Hazelcast 4.2 and eXtreme Scale 8.6

. IBMCloud

Distributed structures

The CAP theorem states simply that a distributed
system must be able to tolerate a network partition (P)
and can be either available (A) or consistent (C), but
not both (i.e., AP or CP). eXtreme Scale and traditional
Hazelcast structures are all of type AP. Hazelcast

Migrating to in-memory computing for modern, cloud-native workloads

recently implemented a CP subsystem using the
RAFT protocol to offer optional CP distributed
data structures. These are noted in the Distributed
Structures (CP) table.

Hazelcast 4.2 eXtreme Scale 8.6

Map

Multi-Map
Replicated Map
Set

List

Queue

Reliable Topic
Topic

Ring Buffer

Flake ID Generator
CRDT PN Counter

Table 2. AP-style distributed data structures supported by Hazelcast 4.2 and eXtreme Scale 8.6

Distributed structures (CP)

CP-style distributed data structures, as noted earlier,
are guaranteed to maintain data consistency across
their copies on a configurable number of grid nodes.
This approach is necessary for some use cases that
require certain guarantees, such as uniqueness or
monotonic progression, among others. See Table 3 for
supported CP-style data structures.

Bare metal, virtualized

Distributed structures (CP)

CP-style distributed data structures, as noted earlier,
are guaranteed to maintain data consistency across
their copies on a configurable number of grid nodes.
This approach is necessary for some use cases that
require certain guarantees, such as uniqueness or
monotonic progression, among others. See Table 3 for
supported CP-style data structures.

Hazelcast 4.2 eXtreme Scale 8.6

Fenced Lock / Sem
Atomic Long
Count Down Latch
Atomic Reference

Table 3. CP-style distributed data structures supported by Hazelcast 4.2 and eXtreme Scale 8.6

(/7) IBM Cloud Migrating to in-memory computing for modern, cloud-native workloads

Distributed computation

Distributed, in-memory data storage allows various parallel, distributed nature of the storage layer for
calculations to be performed across data sets performance. Additionally, event-driven computations,
held in the storage layer. For example, aggregating such as continuous query and entry processors, can
values held in particular stored entities produces be executed automatically when data is modified.

a total of the values. This takes advantage of the See Table 4 for supported calculations.

Hazelcast 4.2 eXtreme Scale 8.6

Continuous Query . .
HyperLoglog .
SOL Query . .
Predicate Query .
Entry Processor .
Executor Service o
Aggregation .

Table 4. Types of distributed computation supported by Hazelcast 4.2 and eXtreme Scale 8.6

Clients

Hazelcast and eXtreme Scale are both built on Java. programming languages to provide access to a wide
They can both run embedded within another Java variety of applications. This allows applications
application or in client/server mode, where the data built on different language platforms to easily share
layer runs independently and applications access data. Table 5 presents the programming languages
the data via clients. Clients are built in various supported by Hazelcast and eXtreme Scale.

Hazelcast 4.2 eXtreme Scale 8.6

Java . .
Scala .

C++ .

C#/.Net . .
Python .

Node.js .

Go .

REST . » (Deprecated)
Memcached .

Clojure .

Smart Client Routing .

Table 5. Client language platforms supported by Hazelcast 4.2 and eXtreme Scale 8.6

(\/7) IBM Cloud Migrating to in-memory computing for modern, cloud-native workloads
API providers

application servers. Platforms that support those
Standard APIs have been defined for generic use APIs, shown in Table 6, can seamlessly implement
in common applications such as web servers and underlying storage for applications using those APIs.

Hazelcast 4.2 eXtreme Scale 8.6

Web sessions . .
Hibernate .
JCache . .

Table 6. APIs supported by Hazelcast 4.2 and eXtreme Scale 8.6

Security

Authentication and authorization must be enforced and overall strength. This is especially important

by any data storage layer to protect against when using multiple cloud vendors’ security
unauthorized access. Ease-of-use, the flexibility of implementations. Table 7 defines security standards
infrastructure integration, and adhering to current supported by Hazelcast 4.2 and eXtreme Scale 8.6.

standards significantly improve security manageability

Hazelcast 4.2 eXtreme Scale 8.6

JAAS . .

LDAP . + (Using WebSphere)
Kerberos . + (Using WebSphere)

Grid security Sym, Cert, Kerb Shared password
Structure-level security . Static group access (restart required)
Field-level security .

FIPS-140-2 .

Table 7. Security standards supported by Hazelcast 4.2 and eXtreme Scale 8.6

() IBMCloud

Hazelcast in-memory
stream processing

The Hazelcast solution from IBM also provides an
advanced stream processing engine running directly
on the in-memory data grid technology. Event-stream
in-memory processing provides real-time event
processing with extremely high throughput and low
latency. In a recent benchmark, Hazelcast processed
1 billion events per second with a 99th percentile

of 26 milliseconds on only 45 AWS cloud instances
(720 cores). This benchmark demonstrates a level of
efficiency that reduces operational costs due to fewer
hardware resources.

Stream processing requires capabilities beyond
storage and distributed processing. Multiple event
sources must be received and correlated, enrichment
data must be added “in flight,” aggregation,
correlation and computation must be carried out
within defined time windows, and processing

Installation platform
OpenShift

Kubernetes

Streaming SQL
Time-window management
Event-time processing
Back pressure flow control
Event-ID correlation
Elastic, scalable

API support

Migrating to in-memory computing for modern, cloud-native wol

rkloads

guarantees must be enforced. eXtreme Scale does
not offer stream processing capabilities. Hazelcast
stream processing features follow.

Stream processing

Real-time stream processing requires important
additional capabilities beyond simply receiving
events. The platform must automatically implement
various time-window frameworks to correctly perform
calculations such as aggregation, value deviation and
threshold violations. Processing guarantees, such as
exactly-once processing, must be upheld, along with
enterprise operational features like job snapshots
for error correction and zero-downtime upgrades.

As Table 8 demonstrates, the Hazelcast Platform
implements all necessary functionality for
enterprise-grade, real-time stream processing.

Bare metal, virtualized containers, Kubernetes, cloud

Full support for OpenShift, operators

Full support for Kubernetes

Real-time SQL queries on streaming data including the ability to join
with reference data stored in IMDG

Sliding, tumbling, session

Native, inserted or calculated

Automatic back pressure propagation

Hash-join multiple streams or events on 1D

Fully elastic scaling

Java Pipeline, DAG, Apache Beam

(S IBM CI.OUd Migrating to in-memory computing for modern, cloud-native workloads

Event processing guarantees

Hazelcast is an enterprise-grade platform with correction, running job snapshots for resilience,
support features for DevOps teams managing the intelligent load balancing of workloads across the
platform. Examples (see Table 9) include fault cluster, and live in-place job upgrades.

tolerance with automatic error detection and

Exactly once or
at least once

Exactly once

Two-phase commit
for exactly once

Fault tolerance

Resilient snapshot storage

Replay capable

Jet supports distributed state snapshots. Snapshots are periodically created to
back up the running state. Periodic snapshots are used as a consistent point of
recovery for failures. Snapshots are also taken and used for upscaling.

Jet ensures exactly-once semantics when a replayable source (e.g., Kafka) is
used with an idempotent sink (e.g., any store with upsert functionality).

Jet supports distributed transactions to enable exactly once guarantees on
sources and sinks to participate in transaction-based streaming. If the source/
sink supports the two-phase commit protocol, Jet will leverage it. Otherwise,
Jet tracks the transaction state to guarantee exactly-once semantics even if the
source is not replayable or the sink is not idempotent.

If there is a fault, Jet uses the latest state snapshot and automatically restarts
all jobs that contain the failed member as a job participant from this snapshot.

Jet uses the distributed in-memory storage to store snapshots.

When a replayable source is used, Jet can rewind and reprocess events from
the source.

(S IBM CI.OUd Migrating to in-memory co

puting for modern, cloud-native workloads

Connectors
The Hazelcast solution has a library of connectors Events can be received through one connector and
through which the system can send and receive sent through another. Event streams from various
events. This catalog is continuously updated with connectors can also be combined. Table 10 lists the
new connectors to meet user community needs. connectors supported at the time of writing.
Hazelcast IMDG Jet is integrated with IMDG elastic in-memory storage, providing a highly
optimized read and write memory channel.
Kafka Jet comes with a Kafka connector for reading from and writing to the

Java Message Service (JMS)

Java Database
Connectivity (JDBC)

Hadoop Distributed

File Systems (HDFS)

Avro

Local files

Sockets

Custom source/sink

Kafka Connect modules

Kafka topics.

The Jet JMS connector allows you to stream messages from/to a IMS
gueue or a JMS topic using a JMS client on a classpath (such as ActiveMQ
or RabbitMQ).

Jet JDBC Connector can be used to read or write the data from/to relational
databases or another source that supports the standard JDBC API.

Hazelcast Jet can use HDFS as either a data source or data sink. If Jet and
HDEFS clusters are co-located, then Jet benefits from the data locality and
processes the data from the same node without incurring a network transit
latency penalty.

Jet can read and write Avro-serialized data from the self-contained files
(Avro Object Container format), HDFS and Kafka. A Kafka connector can be
configured to use the schema registry.

Jet comes with batch and streaming file readers to process local data

(e.g., CSVs or logs). The batch reader processes lines from a file or directory.
The streamer watches the file or directory for changes, streaming the

new lines to Jet.

The socket connector allows Jet jobs to read text data streams from the
socket. Every line is processed as one record.

Jet provides a flexible API that makes it easy to
implement your own custom sources and sinks.

Jet supports the use of any Kafka Connect module without the presence of
a Kafka cluster. This adds more sources and sinks to the Jet ecosystem. This
feature includes full support for fault tolerance and replaying.

(S IBM Cloud Migrating to in-memory co

Security

The Hazelcast solution offered by IBM is deployed
in banking, government, healthcare and many
other high-security environments and meets
stringent certification requirements across these

SSL/TLS 1.2 asymmetric
encryption

SSL/TLS 1.2 asymmetric
encryption with OpenSSL

Secure connectors

Allowed connection IP ranges

Authentication

Authorization

Symmetric encryption

Java Authentication and
Authorization Service (JAAS)
module

Pluggable socket interceptor

Security interceptor

puting for modern, cloud-native workloads

systems. Leveraging the strength of the data storage
layer security, Jet adds additional security to the
communication layer for end-to-end encryption and
access control (see Table 11).

Hazelcast provides encryption based on TLS certificates between members,
between clients and members, and between members and the
management center.

Hazelcast adds some performance enhancements to the SSLEngine built into
the Java Development Kit (JDK).

Connectors are used to connect the Jet job with data sources and sinks. Secure
connections to external systems combined with security within the Jet
cluster make the data pipeline secure end to end.

Whitelist specific IP ranges to limit connections
to known hosts.

The authentication mechanism for Hazelcast

client security works the same as cluster member authentication. Hazelcast
includes out-of-the-box integration with Lightweight Directory Access
Protocol (LDAP) and Kerberos.

Role-based access control (RBAC) is supported internally by default or can use
external mechanisms such as LDAP.

Symmetric encryption uses a single pre-shared key for simple installations.

Hazelcast has an extensible, JAAS-based security feature used to authenticate
both cluster members and clients and to perform access control checks on
client operations.

Hazelcast allows you to intercept socket connections before a nodejoins to a
cluster or a client connects to a node. This provides the ability to add custom
hooks to join and perform connection procedures such as identity checking
using Kerberos.

IMDG allows you to intercept every remote operation executed by the client.
This lets you add a flexible custom security logic.

Ay
() IBM Cloud Migrating to in-memory computing for modern, cloud-native wol

summary

Hazelcast In-Memory Computing Platform for IBM
Cloud Paks runs in virtually any environment: bare
metal, containers, VM, mainframe and cloud. The
data storage layer, IMDG, enables high-performance
data access and scalability for e-commerce, elastic
workload management and distributed calculations.
For data in motion, Jet enables real-time event stream
analysis for mobile, IoT, edge and machine learning
applications. Certified for IBM Cloud Pak deployment,
the Hazelcast solution from IBM supports the
performance needs for application modernization
projects moving to the cloud.

To learn more about the Hazelcast In-Memory
Platform for IBM Cloud Paks, visit

rkloads

<||IE

© Copyright IBM Corporation 2021

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
May 2021

IBM, the IBM logo, ibm.com, and IBM Cloud Pak are trademarks
of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might
be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.

Linux is a registered trademark of Linus Torvalds in the United
States, other countries, or both. Kubernetes is a registered
trademark of The Linux Foundation. Red Hat and Red Hat
OpenShift are registered trademarks of Red Hat, Inc. Open
Container Initiative™ is a trademark of The Linux Foundation.

This document is current as of the initial date of publication and
may be changed by IBM at any time. Not all offerings are
available in every country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”
WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
WITHOUT ANY WARRANTIES OF MERCHANT-ABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION
OF NON-INFRINGEMENT. IBM products are warranted

according to the terms and conditions of the agreements under
which they are provided.

‘¢ Please Recycle

