
Migrating to 
in-memory 
computing 
for modern, 
cloud-native 
workloads
WebSphere  
eXtreme Scale and 
Hazelcast In-Memory 
Computing Platform  
for IBM Cloud® Paks



Introduction

Historically, single instance, multi-user applications 
were sufficient to meet most commercial workloads. 
With data access latency being a small fraction 
of the overall execution time, it was not a primary 
concern. Over time, new requirements from 
applications like e-commerce, global supply chains 
and automated business processes required a 
much higher level of computation and drove the 
development of distributed processing using 
clustered groups of applications. 

A distributed application architecture scales 
horizontally, taking advantage of ever-faster 
processors and networking technology, but with 
it, data synchronization and coordinated access 
become a separate, complex system. Centralized 
storage area network (SAN) systems became 
common, but as computational speeds continued  
to advance, the latencies of disk-based storage  
and retrieval quickly became a significant 
bottleneck. In-memory data storage systems were 
developed to provide distributed, fault-tolerant, 
all-in-memory data access, which is orders of 
magnitude faster than disk-based systems.

Moving to cloud

Mobile technology, ubiquitous networks, automated 
“smart” devices and myriad other new technologies 
have changed the way users and applications 
interact with each other. These technologies are 
constantly connected and always on, sending infinite 
streams of unique data events and expecting a  
real-time response. These massively parallel,  
high-speed data interaction requirements are 
fueling the migration of applications to  
cloud-native architectures. 

Cloud-based application installations, using 
virtualization technology, offer the ability to scale 
environments dynamically to meet demand 
peaks and valleys, optimizing computation 
costs to workload requirements. These dynamic 
environments further drive the need for  
in-memory data storage with extremely  
fast, distributed, scalable data sharing.  
Cloud instances come and go as load dictates,  
so immediate access to data upon instance 
creation and no data loss upon instance  
removal are paramount. Independently scaled, 
in-memory data storage meets all of these  
needs and enables additional processing 
capabilities as well.

Data replication and synchronization between 
cloud locations enable globally distributed 
cloud environments to function in active/
active configurations for load balancing and 
fault tolerance. These capabilities require the 
fastest transfer speeds possible. With advanced 
networking technology and memory-based 
data storage, previously impossible transfer 
throughput with extremely low latency can  
be achieved.

As organizations begin application modernization 
projects and migrations from on-premises 
installations to cloud architectures, the 
infrastructure must also evolve to support cloud-
native capabilities. IBM Cloud Pak® solutions 
are software stacks that help businesses deploy 
enterprise systems into any cloud environment. 
IBM Cloud Paks are built on Red Hat® OpenShift®, 
Kubernetes, containers and supporting software 
to run enterprise applications.

Migrating to in-memory computing for modern, cloud-native workloads



Migrating to cloud-native  
in-memory computing 

IBM WebSphere® eXtreme Scale is an elastic, 
scalable in-memory data grid designed for on-
premises environments and does not support cloud 
environments using Kubernetes and containers. To 
support the migration of applications to the cloud, 
organizations will need to migrate to a solution 
that supports cloud-native environments to meet 
application performance expectations.

Hazelcast In-Memory Computing Platform

Hazelcast In-Memory Computing Platform for 
IBM Cloud Paks is a fast, flexible and cloud-native 
distributed application platform that is certified for 
deployment with IBM Cloud Paks and is comprised  
of two projects/components:

•	 Hazelcast In-Memory Data Grid (IMDG) for  
in-memory data storage and data-local  
distributed processing 

•	 Hazelcast Jet for high throughput, low latency 
stream processing

The platform supports application modernization 
projects with capabilities designed for cloud 
deployments. Organizations can expand innovation 
for new applications through advanced features and 
capabilities not found in other in-memory storage 
technology. Containerization and orchestration 
management are fully supported on many platforms, 
including Red Hat OpenShift.

At a high level, Hazelcast and eXtreme Scale both  
use clusters of servers with partitions (shards)  
of memory distributed across all the cluster  
members (nodes). With both approaches, each  
node is the primary server for the data contained  
in partitions owned by that node, with backup  

replicas created on other nodes for fault tolerance. 
Failure detection and recovery are automatic. Each 
system scales dynamically by adding or removing 
nodes to the cluster.

The Hazelcast solution from IBM starts with the 
distributed data grid, Hazelcast IMDG, and adds 
Hazelcast Jet, the component that is a state-of-
the-art, real-time stream processing engine. Jet 
natively leverages all of the capabilities found in the 
Hazelcast in-memory storage layer, adding advanced 
stream processing capabilities to meet today’s 
newest workloads. For example, built-in time window 
management correlates event streams for continuous 
value aggregations and calculations. Streams can be 
merged with other streams and enriched with data 
from other sources. And events can be transformed 
from one form to another, among other capabilities, 
all in real time.

Machine learning (ML) has also brought capabilities 
that were previously impossible for automated 
computer processing systems. Operationalizing this 
technology in production, however, can be extremely 
complex and time consuming. Hazelcast solves this 
problem by enabling ML models to be run directly 
within the stream processing engine with “inference 
runners.” These runners allow Java, Python and C/
C++ ML models to run in real time, taking advantage 
of all the in-memory, distributed capabilities of the 
Hazelcast solution. New versions of ML models can be 
loaded to replace older versions without downtime.

In summary, the Hazelcast In-Memory Computing 
Platform for IBM Cloud Paks combines an innovative 
in-memory data storage layer with its third-
generation stream processing engine to create an 
advanced in-memory processing platform. 

Migrating to in-memory computing for modern, cloud-native workloads



Technology comparison: Hazelcast and eXtreme Scale

Operational features

Table 1 lists supported cluster-wide operational features that contribute to ease of use, fault tolerance, scaling and 
flexibility for both platforms.

Table 1. Operational features comparison for Hazelcast 4.2 and eXtreme Scale 8.6

Migrating to in-memory computing for modern, cloud-native workloads

	
Hazelcast 4.2 eXtreme Scale 8.6

Topology App-embedded client/server WebSphere client/server

Installation platform Bare metal, virtualized  
containers, Kubernetes, cloud Bare metal, virtualized

Cluster replication • •
Elastic • •
100 GB per Instance • •
Elastic • •
Fault tolerance • •
Disk persistence • •
DB persistence • •
Certified for IBM Cloud Paks • •
Docker •
Kubernetes •
Eureka •
Apache jclouds •
Cloud native •
OpenShift •
Split brain protection •
Quorum • •
Serialization Multiple built-in and third party Java and XDF
JSON Support •



Migrating to in-memory computing for modern, cloud-native workloads

	
Hazelcast 4.2 eXtreme Scale 8.6

Map • •
Multi-Map • Bare metal, virtualized
Replicated Map • •
Set • •
List • •
Queue • •
Reliable Topic • •
Topic • •
Ring Buffer • •
Flake ID Generator • •
CRDT PN Counter •

	
Hazelcast 4.2 eXtreme Scale 8.6

Fenced Lock / Sem •
Atomic Long •
Count Down Latch •
Atomic Reference •

Table 2. AP-style distributed data structures supported by Hazelcast 4.2 and eXtreme Scale 8.6

Table 3. CP-style distributed data structures supported by Hazelcast 4.2 and eXtreme Scale 8.6

Distributed structures (CP)

CP-style distributed data structures, as noted earlier, 
are guaranteed to maintain data consistency across 
their copies on a configurable number of grid nodes. 
This approach is necessary for some use cases that 
require certain guarantees, such as uniqueness or 
monotonic progression, among others. See Table 3 for 
supported CP-style data structures.

Distributed structures (CP)

CP-style distributed data structures, as noted earlier, 
are guaranteed to maintain data consistency across 
their copies on a configurable number of grid nodes. 
This approach is necessary for some use cases that 
require certain guarantees, such as uniqueness or 
monotonic progression, among others. See Table 3 for 
supported CP-style data structures.

Distributed structures

The CAP theorem states simply that a distributed 
system must be able to tolerate a network partition (P) 
and can be either available (A) or consistent (C), but 
not both (i.e., AP or CP). eXtreme Scale and traditional 
Hazelcast structures are all of type AP. Hazelcast 

recently implemented a CP subsystem using the 
RAFT protocol to offer optional CP distributed 
data structures. These are noted in the Distributed 
Structures (CP) table.  



Migrating to in-memory computing for modern, cloud-native workloads

	
Hazelcast 4.2 eXtreme Scale 8.6

Continuous Query • •
HyperLogLog •
SQL Query • •
Predicate Query •
Entry Processor •
Executor Service •
Aggregation •

	
Hazelcast 4.2 eXtreme Scale 8.6

Java • •
Scala •
C++ •
C#/.Net • •
Python •
Node.js •
Go •
REST • • (Deprecated)
Memcached •
Clojure •
Smart Client Routing •

Table 4. Types of distributed computation supported by Hazelcast 4.2 and eXtreme Scale 8.6

Table 5. Client language platforms supported by Hazelcast 4.2 and eXtreme Scale 8.6

Clients 

Hazelcast and eXtreme Scale are both built on Java. 
They can both run embedded within another Java 
application or in client/server mode, where the data 
layer runs independently and applications access 
the data via clients. Clients are built in various 

programming languages to provide access to a wide 
variety of applications. This allows applications 
built on different language platforms to easily share 
data. Table 5 presents the programming languages 
supported by Hazelcast and eXtreme Scale.

Distributed computation

Distributed, in-memory data storage allows various 
calculations to be performed across data sets 
held in the storage layer. For example, aggregating 
values held in particular stored entities produces 
a total of the values. This takes advantage of the 

parallel, distributed nature of the storage layer for 
performance. Additionally, event-driven computations, 
such as continuous query and entry processors, can 
be executed automatically when data is modified.  
See Table 4 for supported calculations.



Migrating to in-memory computing for modern, cloud-native workloads

API providers 

Standard APIs have been defined for generic use 
in common applications such as web servers and 

application servers. Platforms that support those 
APIs, shown in Table 6, can seamlessly implement 
underlying storage for applications using those APIs.

Security 

Authentication and authorization must be enforced 
by any data storage layer to protect against 
unauthorized access. Ease-of-use, the flexibility of 
infrastructure integration, and adhering to current 
standards significantly improve security manageability 

and overall strength. This is especially important 
when using multiple cloud vendors’ security 
implementations. Table 7 defines security standards 
supported by Hazelcast 4.2 and eXtreme Scale 8.6. 

	
Hazelcast 4.2 eXtreme Scale 8.6

Web sessions • •
Hibernate •
JCache • •

	
Hazelcast 4.2 eXtreme Scale 8.6

JAAS • •
LDAP • • (Using WebSphere)
Kerberos • • (Using WebSphere)
Grid security Sym, Cert, Kerb Shared password
Structure-level security • Static group access (restart required)
Field-level security •
FIPS-140-2 •

Table 6. APIs supported by Hazelcast 4.2 and eXtreme Scale 8.6

Table 7. Security standards supported by Hazelcast 4.2 and eXtreme Scale 8.6



Migrating to in-memory computing for modern, cloud-native workloads

Hazelcast in-memory  
stream processing

The Hazelcast solution from IBM also provides an 
advanced stream processing engine running directly 
on the in-memory data grid technology. Event-stream 
in-memory processing provides real-time event 
processing with extremely high throughput and low 
latency. In a recent benchmark, Hazelcast processed 
1 billion events per second with a 99th percentile 
of 26 milliseconds on only 45 AWS cloud instances 
(720 cores). This benchmark demonstrates a level of 
efficiency that reduces operational costs due to fewer 
hardware resources.

Stream processing requires capabilities beyond 
storage and distributed processing. Multiple event 
sources must be received and correlated, enrichment 
data must be added “in flight,” aggregation, 
correlation and computation must be carried out 
within defined time windows, and processing 

guarantees must be enforced. eXtreme Scale does  
not offer stream processing capabilities. Hazelcast 
stream processing features follow.

Stream processing

Real-time stream processing requires important 
additional capabilities beyond simply receiving 
events. The platform must automatically implement 
various time-window frameworks to correctly perform 
calculations such as aggregation, value deviation and 
threshold violations. Processing guarantees, such as 
exactly-once processing, must be upheld, along with 
enterprise operational features like job snapshots 
for error correction and zero-downtime upgrades. 
As Table 8 demonstrates, the Hazelcast Platform 
implements all necessary functionality for  
enterprise-grade, real-time stream processing.

	

Installation platform Bare metal, virtualized containers, Kubernetes, cloud

OpenShift Full support for OpenShift, operators

Kubernetes Full support for Kubernetes

Streaming SQL Real-time SQL queries on streaming data including the ability to join  
with reference data stored in IMDG

Time-window management Sliding, tumbling, session

Event-time processing Native, inserted or calculated

Back pressure flow control Automatic back pressure propagation

Event-ID correlation Hash-join multiple streams or events on ID

Elastic, scalable Fully elastic scaling

API support Java Pipeline, DAG, Apache Beam

Table 8. Functionality requirements for enterprise-grade, real-time stream processing



Migrating to in-memory computing for modern, cloud-native workloads

Event processing guarantees

Hazelcast is an enterprise-grade platform with 
support features for DevOps teams managing the 
platform. Examples (see Table 9) include fault 
tolerance with automatic error detection and 

correction, running job snapshots for resilience, 
intelligent load balancing of workloads across the 
cluster, and live in-place job upgrades.

	

Exactly once or  
at least once

Jet supports distributed state snapshots. Snapshots are periodically created to 
back up the running state. Periodic snapshots are used as a consistent point of 
recovery for failures. Snapshots are also taken and used for upscaling.

Exactly once Jet ensures exactly-once semantics when a replayable source (e.g., Kafka) is 
used with an idempotent sink (e.g., any store with upsert functionality).

Two-phase commit  
for exactly once

Jet supports distributed transactions to enable exactly once guarantees on 
sources and sinks to participate in transaction-based streaming. If the source/
sink supports the two-phase commit protocol, Jet will leverage it. Otherwise, 
Jet tracks the transaction state to guarantee exactly-once semantics even if the 
source is not replayable or the sink is not idempotent.

Fault tolerance If there is a fault, Jet uses the latest state snapshot and automatically restarts 
all jobs that contain the failed member as a job participant from this snapshot.

Resilient snapshot storage Jet uses the distributed in-memory storage to store snapshots. 

Replay capable When a replayable source is used, Jet can rewind and reprocess events from 
the source.

Table 9. Built-in capabilities that make Jet easily manageable by DevOps teams.



Migrating to in-memory computing for modern, cloud-native workloads

Connectors

The Hazelcast solution has a library of connectors 
through which the system can send and receive 
events. This catalog is continuously updated with 
new connectors to meet user community needs. 

Events can be received through one connector and 
sent through another. Event streams from various 
connectors can also be combined. Table 10 lists the 
connectors supported at the time of writing.

	

Hazelcast IMDG Jet is integrated with IMDG elastic in-memory storage, providing a highly  
optimized read and write memory channel.

Kafka Jet comes with a Kafka connector for reading from and writing to the  
Kafka topics.

Java Message Service (JMS)
The Jet JMS connector allows you to stream messages from/to a JMS  
queue or a JMS topic using a JMS client on a classpath (such as ActiveMQ  
or RabbitMQ).

Java Database  
Connectivity (JDBC)

Jet JDBC Connector can be used to read or write the data from/to relational 
databases or another source that supports the standard JDBC API.

Hadoop Distributed  
File Systems (HDFS)

Hazelcast Jet can use HDFS as either a data source or data sink. If Jet and 
HDFS clusters are co-located, then Jet benefits from the data locality and 
processes the data from the same node without incurring a network transit 
latency penalty.

Avro
Jet can read and write Avro-serialized data from the self-contained files  
(Avro Object Container format), HDFS and Kafka. A Kafka connector can be 
configured to use the schema registry.

Local files

Jet comes with batch and streaming file readers to process local data  
(e.g., CSVs or logs). The batch reader processes lines from a file or directory. 
The streamer watches the file or directory for changes, streaming the  
new lines to Jet.

Sockets The socket connector allows Jet jobs to read text data streams from the  
socket. Every line is processed as one record.

Custom source/sink Jet provides a flexible API that makes it easy to  
implement your own custom sources and sinks.

Kafka Connect modules
Jet supports the use of any Kafka Connect module without the presence of 
a Kafka cluster. This adds more sources and sinks to the Jet ecosystem. This 
feature includes full support for fault tolerance and replaying.

Table 10. Hazelcast Jet supports a wide range of connectors for in-stream processing



Migrating to in-memory computing for modern, cloud-native workloads

Security

The Hazelcast solution offered by IBM is deployed 
in banking, government, healthcare and many 
other high-security environments and meets 
stringent certification requirements across these 

systems. Leveraging the strength of the data storage 
layer security, Jet adds additional security to the 
communication layer for end-to-end encryption and 
access control (see Table 11).

	

SSL/TLS 1.2 asymmetric  
encryption

Hazelcast provides encryption based on TLS certificates between members, 
between clients and members, and between members and the  
management center.

SSL/TLS 1.2 asymmetric  
encryption with OpenSSL

Hazelcast adds some performance enhancements to the SSLEngine built into 
the Java Development Kit (JDK). 

Secure connectors
Connectors are used to connect the Jet job with data sources and sinks. Secure 
connections to external systems combined with security within the Jet  
cluster make the data pipeline secure end to end.

Allowed connection IP ranges Whitelist specific IP ranges to limit connections  
to known hosts.

Authentication

The authentication mechanism for Hazelcast  
client security works the same as cluster member authentication. Hazelcast 
includes out-of-the-box integration with Lightweight Directory Access  
Protocol (LDAP) and Kerberos.

Authorization Role-based access control (RBAC) is supported internally by default or can use 
external mechanisms such as LDAP.

Symmetric encryption Symmetric encryption uses a single pre-shared key for simple installations.

Java Authentication and  
Authorization Service (JAAS)  
module

Hazelcast has an extensible, JAAS-based security feature used to authenticate 
both cluster members and clients and to perform access control checks on 
client operations.

Pluggable socket interceptor

Hazelcast allows you to intercept socket connections before a nodejoins to a 
cluster or a client connects to a node. This provides the ability to add custom 
hooks to join and perform connection procedures such as identity checking 
using Kerberos.

Security interceptor IMDG allows you to intercept every remote operation executed by the client. 
This lets you add a flexible custom security logic.

Table 11.



Summary
Hazelcast In-Memory Computing Platform for IBM 
Cloud Paks runs in virtually any environment: bare 
metal, containers, VM, mainframe and cloud. The 
data storage layer, IMDG, enables high-performance 
data access and scalability for e-commerce, elastic 
workload management and distributed calculations. 
For data in motion, Jet enables real-time event stream 
analysis for mobile, IoT, edge and machine learning 
applications. Certified for IBM Cloud Pak deployment, 
the Hazelcast solution from IBM supports the 
performance needs for application modernization 
projects moving to the cloud. 

To learn more about the Hazelcast In-Memory 
Platform for IBM Cloud Paks, visit ibm.com/cloud/
hazelcast.

Migrating to in-memory computing for modern, cloud-native workloads



© Copyright IBM Corporation 2021

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
May 2021

IBM, the IBM logo, ibm.com, and IBM Cloud Pak are trademarks
of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might
be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.

Linux is a registered trademark of Linus Torvalds in the United
States, other countries, or both. Kubernetes is a registered
trademark of The Linux Foundation. Red Hat and Red Hat
OpenShift are registered trademarks of Red Hat, Inc. Open
Container Initiative™ is a trademark of The Linux Foundation.

This document is current as of the initial date of publication and
may be changed by IBM at any time. Not all offerings are
available in every country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”
WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
WITHOUT ANY WARRANTIES OF MERCHANT-ABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION
OF NON-INFRINGEMENT. IBM products are warranted
according to the terms and conditions of the agreements under
which they are provided.

           Please Recycle


