
REPORT

Istio
Explained
Getting Started with Service Mesh

Lin Sun & Daniel Berg

Compliments of

https://ibm.biz/oreilly-istio-tech

Lin Sun and Daniel Berg

Istio Explained
Getting Started with Service Mesh

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07393-2

[LSI]

Istio Explained
by Lin Sun and Daniel Berg

Copyright © 2020 IBM Corporation. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Christopher Faucher
Copyeditor: Octal Publishing, LLC

Proofreader: Kim Wimpsett
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2019: First Edition

Revision History for the First Edition
2019-11-27: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Istio Explained,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and IBM. See our statement of
editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. v

Preface. vii

1. Introduction to Service Mesh. 1
Challenges in Managing Microservices 1
What Is a Service Mesh Anyway? 2
How Does a Service Mesh Work? 3
The Service Mesh Ecosystem 4
Conclusion 10

2. Introducing Istio. 11
Why Do We Love Istio? 11
Istio Features 12
Istio Architecture 14
Installing Istio 17
Conclusion 19

3. Adding Services to the Mesh. 21
Introducing the Guiding Application 21
Sidecar Injection 22
Reviewing Service Requirements 24
Onboarding Portfolio Service 25
Onboarding Remaining Stock Trader Services 29
Accessing the Stock Trader Application 30
What Have You Gained? 31
Conclusion 38

iii

4. Securing Communication Within Istio. 39
Istio Security 39
Enable mTLS Communication Between Services 43
Securing Inbound Traffic 51
Conclusion 56

5. Control Traffic. 59
Dark Launch 59
Canary Testing 66
Resiliency and Chaos Testing 68
Controlling Outbound Traffic 75
Conclusion 78

6. Wrap-Up. 79
Takeaways 79
Next Steps 80

iv | Table of Contents

Foreword

Organizations are adopting cloud infrastructure and microservices
to improve their ability to deliver new capabilities for their respec‐
tive businesses. Building applications on this infrastructure and with
this architecture forces a new perspective for solving problems that
aren’t all that new. For example, we’ve known for a while that the
network causes challenges like latency and security that application
teams need to consider, but in a cloud environment in which an
organization does not own the network and where services can be
autoscaled or fail unexpectedly, previous-generation solutions for
this problem might not be adequate.

A service mesh, like Istio, provides a fresh look at solving
application-networking challenges such as reliably connecting appli‐
cations, securing traffic, and observing/controlling the traffic as it
passes through the system between the services. Istio is an open
source implementation of a service mesh that uses the Envoy proxy,
the architecture for which has its origins in solving application-
networking challenges in large distributed systems like those at
Google and IBM. Istio has a large, flourishing, and vibrant commu‐
nity, with contributors from IBM, Google, Red Hat, VMware, Pivo‐
tal, among others. Istio’s predictable quarterly releases produce
regular feature enhancements, performance gains, and usability
improvements. Istio has gained much hype as any new, interesting
technology does, but has evolved in the last two years to become
more stable and production ready.

If you’re new to service mesh or to Istio, this report is for you. Burr
Sutter and I wrote the first report on Istio for O’Reilly, and this
report by Lin and Dan is a much-needed, in-depth, updated

v

complement to that original work. I had the pleasure of reviewing
this report, and Dan and Lin’s approach is notable in taking the time
to help you understand not just what Istio provides in terms of func‐
tionality, but also how it works and things to watch out for. Istio
provides a wealth of functionality, but in this report Dan and Lin
introduce you to its core capabilities, using consumable examples to
help you get up to speed. I hope you enjoy the report, and on behalf
of the Istio community, welcome to the world of service mesh!

— Christian Posta
Global Field CTO, Solo.io

vi | Foreword

Preface

Microservices can be complicated and difficult to manage. The
increased use of containers and the cloud have expanded the dis‐
tributed nature of applications and further complicated the ability of
development teams to understand and control interactions among
services within these environments. These complexities have given
rise to a new solution called a service mesh, which helps teams man‐
age the interactions between microservices.

Who This Book Is For
We wrote this brief book for developers and operators; however,
anyone responsible for the delivery of microservices will find the
material here valuable. We assume you are just learning about Istio
and service mesh, or you have been recently introduced to Istio and
are looking for a “getting started” guide.

What You Will Learn
In the pages that follow, we provide you with a solid background on
the challenges of microservices, explain what a service mesh is,
describe how a service mesh works, and explore the current service
mesh landscape. Starting with Chapter 2, we’ll use Istio as our main
service mesh implementation to explain how to set one up and use
it. We’ll describe the Istio architecture and explore Istio’s observabil‐
ity, traffic management, and security capabilities.

You don’t need to understand and consume all service mesh features
at once. You can instead adopt features incrementally and still enjoy
some of the benefits a service mesh offers. To that end, we take an

vii

incremental approach to teaching you how to adopt a service mesh
like Istio, our goal being to set you up for gradual adoption so that
you can see benefits as quickly as possible.

Why Istio?
Though there are many service mesh options to choose from (as
you’ll see in Chapter 1), because we are most familiar with it, we
chose Istio to illustrate the benefits a service mesh can offer through
its features. We encourage you to use the information we provide in
this book to evaluate the available options and choose the solution
best suited for your needs.

Prerequisites
The working examples in this book build on Kubernetes for manag‐
ing the sample’s containers, and Kubernetes also serves as the plat‐
form for Istio itself. Thus, to get the most from our examples, it
would be helpful for you to have a basic understanding of Kuber‐
netes. To quickly get up to speed, we recommend that you check out
this Kubernetes overview and its related links: “Kubernetes: A Sim‐
ple Overview.” As with the adoption process for any new technology,
you could likely to run into difficulties with configuration or setup.
In Chapter 2, we provide an introduction to techniques and com‐
mands to help you troubleshoot the issues you may encounter on
your journey to adopting service mesh.

Acknowledgments
We would like to thank the entire Istio community for its passion,
dedication, and tremendous commitment to the Istio project.
Without the project maintainers and contributors to the project
over the years, Istio would not have the rich feature set, diverse code
base, and large ecosystem that it has today.

We also extend our thanks to John Alcorn and Ryan Claussen, the
original authors of the example Kubernetes application we use as an
exemplar in this book. Also, we would like to thank Christian Posta,
Burr Sutter, and Virginia Wilson for their reviews, feedback, and
overall wisdom that was provided during the creation of the book. A
very special thanks to Peter Wassel and Jason McGee for all of their
support and encouragement during this endeavor.

viii | Preface

https://www.oreilly.com/ideas/kubernetes-a-simple-overview
https://www.oreilly.com/ideas/kubernetes-a-simple-overview

CHAPTER 1

Introduction to Service Mesh

In this chapter, we explore the notion of a service mesh and the vast
ecosystem that has emerged in support of service mesh solutions.
Organizations face many challenges when managing services, espe‐
cially in a cloud native environment. We are introducing service
mesh as a key solution on your cloud native journey because we
believe that a service mesh should be a serious consideration for
managing complex interactions between services. An understanding
of service mesh and its ecosystem will help you choose an appropri‐
ate implementation for your cloud solution.

Challenges in Managing Microservices
Microservices are an architecture and development approach that
breaks down business functions into individually deployable and
managed services. We view microservices as loosely coupled compo‐
nents of an application that communicate with each other using
well-defined APIs. A key characteristic of microservices is that you
should be able to update them independent of one another, which
enables smaller and more frequent deployments. Having many
loosely coupled services that are independently and frequently
changing does promote agility, but it also presents a number of
management challenges:

• Observing interactions between services can be complex when
you have many distributed, loosely coupled components.

1

• Traffic management at each service endpoint becomes more
important to enable specialized routing for A/B testing or can‐
ary deployments without impacting clients within the system.

• Securing communication by encrypting the data flows is more
complicated when the services are decoupled with different
binary processes and possibly written in different languages.

• Managing timeouts and communication failures between the
services can lead to cascading failures and is more difficult to do
correctly when the services are distributed.

Many of these challenges can be resolved directly in the services
code. However, adjusting the service code puts a massive burden on
you to properly code solutions to these problems, and it requires
each microservice owner to agree on the same solution approach to
assure consistency. Solutions to these types of problems are com‐
plex, and it is extremely error prone to rely on application code
changes to provide the solutions. Removing the burden of codifying
solutions to these problems and reducing the operational costs of
managing microservices are primary reasons we have seen the intro‐
duction of the service mesh.

What Is a Service Mesh Anyway?
A service mesh is a programmable framework that allows you to
observe, secure, and connect microservices. It doesn’t establish con‐
nectivity between microservices, but instead has policies and con‐
trols that are applied on top of an existing network to govern how
microservices interact. Generally a service mesh is agnostic to the
language of the application and can be applied to existing applica‐
tions usually with little to no code changes.

A service mesh, ultimately, shifts implementation responsibilities
out of the application and moves them into the network. This is
accomplished by injecting behavior and controls within the applica‐
tion that are then applied to the network. This is how you can
accomplish things such as metrics collecting, communication trac‐
ing, and secure communication without changing the applications
themselves. As stated earlier, a service mesh is a programmable
framework. This means that you can declare your intentions, and
the mesh will ensure that your declared intentions are applied to the
services and network. A service mesh simplifies the application

2 | Chapter 1: Introduction to Service Mesh

code, making it easier to write, support, and develop by removing
complex logic that normally must be bundled in the application
itself. Ultimately, a service mesh allows you to innovate faster.

How Did We Get Here?
Netflix pioneered the development of early frameworks for manag‐
ing microservices, as part of Netflix OSS (“OSS” stands for “open
source software”). This framework used components such as
Asgard (control plane), Eureka (service registry), Zuul (load bal‐
ancer gateway), and Ribbon (client-side load balancer). These early
frameworks were implemented as a series of libraries written in
Java. To make use of their features, you had to modify your Java
application by adding the necessary Netflix OSS libraries and
adjusting the application logic to make use of the types and meth‐
ods within these libraries. This approach worked well if you were
developing Java applications and were willing to adjust the code.

Recent years have seen a rise in the use of containers and Kuber‐
netes (container orchestration) as the basis for microservices. Using
containers has made it simpler to develop applications using multi‐
ple languages (e.g., Python, Golang, Java, etc.). Containers also pro‐
vided opportunities for standardizing operational capabilities, as
more features were being abstracted out of the application code and
moved into the container platform. These conditions helped usher
in the modern service management system that we now call a ser‐
vice mesh.

How Does a Service Mesh Work?
Many service mesh implementations have the same general refer‐
ence architecture (see Figure 1-1). A service mesh will have a control
plane to program the mesh, and client-side proxies in the data plane
(shown below the dashed line) that are within the request path and
serve as the control point for securing, observing, and routing deci‐
sions between services. The control plane transfers configurations to
the proxies in their native format. The client-side proxies are
attached to each application within the mesh. Each proxy intercepts
all inbound and outbound traffic to and from its associated applica‐
tion. By intercepting traffic, the proxies have the ability to inject
behavior on the communication flows between services. Following

How Does a Service Mesh Work? | 3

https://netflix.github.io
https://kubernetes.io
https://kubernetes.io

is a list of behaviors commonly found in a service mesh
implementation:

• Traffic shaping with dynamic routing controls between services
• Resiliency support for service communication such as circuit

breakers, timeouts, and retries
• Observability of traffic between services
• Tracing of communication flows
• Secure communication between services

In Figure 1-1, you can see that the communication between two
applications such as App1 and App2 is executed via the proxies ver‐
sus directly between the applications themselves, as indicated by the
red arrows. By having communication routed between the proxies,
the proxies serve as a key control point for performing complicated
tasks such as initiating transport layer security (TLS) handshakes for
encrypted communication (shown on the red line with the lock in
Figure 1-1). Since the communication is performed between the
proxies, there is no need to embed complex networking logic in the
applications themselves. Each service mesh implementation option
has various features, but they all share this general approach.

Figure 1-1. Anatomy of a service mesh

The Service Mesh Ecosystem
You might find navigating the service mesh ecosystem a bit daunting
because there are many different implementation choices. While
most choices share the same reference architecture shown in
Figure 1-1, there are variations in approach and project structure
you should consider when making your service mesh selection.

4 | Chapter 1: Introduction to Service Mesh

Here are some questions to ask yourself when selecting a service
mesh implementation:

• Is it an open source project governed by a diverse contributor
base?

• Does it use a proprietary proxy?
• Is the project part of a foundation?
• Does it contain the feature set that you need and want?

The fact that there are many service mesh options validates the
interest of service mesh, and it shows that the community has not
selected a de facto standard as we have seen with other projects such
as Kubernetes for container orchestration. Your answers to these
questions will have an impact on the type of service mesh that you
prefer, whether it is a single vendor-controlled or a multivendor,
open source project. Let’s take a moment to review the service mesh
ecosystem and describe each implementation so that you have a bet‐
ter understanding of what is available.

Envoy
The Envoy proxy is an open source project originally created by the
folks at Lyft. The Envoy proxy is an edge and service proxy that was
custom built to deal with the complexities and challenges of cloud
native applications. While Envoy itself does not constitute a service
mesh, it is definitely a key component of the service mesh ecosys‐
tem. What you will see from exploring the service mesh implemen‐
tations is that the client-side proxy from the reference architecture
in Figure 1-1 is often implemented using an Envoy proxy.

Envoy is one of the six graduated projects in the Cloud Native Com‐
puting Foundation (CNCF). The CNCF is part of the Linux founda‐
tion, and it hosts a number of open source projects that are used to
manage modern cloud native solutions. The fact that Envoy is a
CNCF graduated project is an indicator that it has a strong commu‐
nity with adopters using an Envoy proxy in production settings.
Although Envoy was originally created by Lyft, the open source
project has grown into a diverse community, as shown by the com‐
pany contributions in the CNCF DevStats graph shown in
Figure 1-2.

The Service Mesh Ecosystem | 5

https://envoyproxy.io
https://eng.lyft.com
https://www.cncf.io
https://www.cncf.io
https://oreil.ly/0oY29

Figure 1-2. Envoy 12-month contribution distribution

Istio
The Istio project is an open source project cofounded by IBM, Goo‐
gle, and Lyft in 2017. Istio makes it possible to connect, secure, and
observe your microservices while being language agnostic. Istio has
grown to include contributions from companies beyond its original
cofounders, companies such as VMware, Cisco, and Huawei, among
others. Figure 1-3 shows company contributions over the past 12
months using the CNCF DevStats tool. As of this writing, the open
source project Knative also builds upon the Istio project, providing
tools and capabilities to build, deploy, and manage serverless work‐
loads. Istio itself builds upon many other open source projects such
as Envoy, Kubernetes, Jaeger, and Prometheus. Istio is listed as part
of the CNCF Cloud Native Landscape, under the Service Mesh
category.

6 | Chapter 1: Introduction to Service Mesh

https://istio.io
https://oreil.ly/5ZMl1
https://knative.dev
https://landscape.cncf.io

Figure 1-3. Istio 12-month contribution distribution

The Istio control plane extends the Kubernetes API server and uti‐
lizes the popular Envoy proxy for its client-side proxies. Istio sup‐
ports mutual TLS authentication (mTLS) communication between
services, traffic shifting, mesh gateways, monitoring and metrics
with Prometheus and Grafana, as well as custom policy injection.
Istio has installation profiles such as demo and production to make
it easier to provision and configure the Istio control plane for spe‐
cific use cases.

Consul Connect
Consul Connect is a service mesh developed by HashiCorp. Consul
Connect extends HashiCorp’s existing Consul offering, which has
service discovery as a primary feature as well as other built-in fea‐
tures such as a key-value store, health checking, and service segmen‐
tation for secure TLS communication between services. Consul
Connect is available as an open source project with HashiCorp itself
being the predominant contributor. HashiCorp has an enterprise
offering for Consul Connect for purchase with support. At the time
of writing, Consul Connect was not contributed to the CNCF or
another foundation. Consul is listed as part of the CNCF Cloud
Native Landscape under the Service Mesh category.

Consul Connect uses Envoy as the sidecar proxy and the Consul
server as the control plane for programming the sidecars. Consul
Connect includes secure mTLS support between microservices and
observability using Prometheus and Grafana projects. The secure

The Service Mesh Ecosystem | 7

https://envoyproxy.io
https://oreil.ly/ae6Eq
https://landscape.cncf.io
https://landscape.cncf.io

connectivity support uses the HashiCorp Vault product for manag‐
ing the security certificates. Recently, HashiCorp has introduced
Layer 7 (L7) traffic management and mesh gateways into Consul
Connect as beta features.

Linkerd
The Linkerd service mesh project is an open source project as well
as a CNCF incubating project focusing on providing an ultralight
weight mesh implementation with a minimalist design. The pre‐
dominant contributors to the Linkerd project are from Buoyant, as
shown in the 12-month CNCF DevStats company contribution
graph in Figure 1-4. Linkerd has the key capabilities of a service
mesh, including observability using Prometheus and Grafana,
secure mTLS communication, and—recently added—support for
service traffic shifting. The client-side proxy used with Linkerd was
developed specifically for and within the Linkerd project itself, and
written in Rust. Linkerd provides an injector to inject proxies during
a Kubernetes pod deployment based on an annotation to the Kuber‐
netes pod specification. Linkerd also includes a user interface (UI)
dashboard for viewing and configuring the mesh settings.

Figure 1-4. Linkerd one-year contribution distribution

8 | Chapter 1: Introduction to Service Mesh

https://www.vaultproject.io
https://linkerd.io
https://oreil.ly/rY6nR
https://oreil.ly/rY6nR
https://www.rust-lang.org

App Mesh
App Mesh is a cloud service hosted by Amazon Web Services (AWS)
to provide a service mesh with application-level networking support
for compute services within AWS such as Amazon ECS, AWS Far‐
gate, Amazon EKS, and Amazon EC2. As the project URL suggests,
AWS App Mesh is a closed sourced managed control plane that is
proprietary to AWS. App Mesh utilizes the Envoy proxy for the side‐
car proxies within the mesh; this has the benefit that it may be com‐
patible with other AWS partners and open source tools. It appears
that App Mesh’s API has similar routing concepts as the Istio control
plane, unsurprising since Istio serves as a control plane for the
Envoy proxy. As of this writing, secure mTLS communication sup‐
port between services is not implemented but is a road map item.
The focus of App Mesh appears to be primarily traffic routing and
observability.

Kong
Kong’s service mesh builds upon the Kong edge capabilities for
managing APIs and has delivered these capabilities throughout the
entire mesh. Though Kong is an open source project, it appears that
its contributions are heavily dominated by Kong members. Kong is
not a member of a foundation, but is listed as part of the CNCF
Cloud Native Landscape under the API Gateway category. Kong
does provide Kong Enterprise, which is a paid product with support.

Much like all the other service mesh implementations, Kong has
both a control plane to program and manage the mesh as well as a
client-side proxy. In Kong’s case the client-side proxy is unique to
the Kong project. Kong includes support for end-to-end mTLS
encryption between services. Kong promotes its extensibility feature
as a key advantage. You can extend the Kong proxy using Lua plug-
ins to inject custom behavior at the proxies.

AspenMesh
AspenMesh is unlike the other service mesh implementations in
being a supported distribution of the Istio project. AspenMesh does
have many open source projects on GitHub, but its primary direc‐
tion is not to build a new service mesh implementation but to
harden and support an open source service mesh implementation
through a paid offering. AspenMesh hosts components of Istio such

The Service Mesh Ecosystem | 9

https://aws.amazon.com/app-mesh
https://oreil.ly/xwokZ
https://landscape.cncf.io
https://landscape.cncf.io
https://www.lua.org
https://aspenmesh.io

as Prometheus and Jaeger, making it easier to get started and use
over time. It has features above and beyond the Istio base project,
such as a UI and dashboard for viewing and managing Istio resour‐
ces. AspenMesh has introduced additional tools such as Istio Vet,
which is used to detect and resolve misconfigurations within an
instance of Istio. AspenMesh is an example where there are new
markets emerging to offer support and build upon a source service
mesh implementation such as Istio.

Service Mesh Interface
Service Mesh Interface (SMI) is a relatively new specification that
was announced at KubeCon EU 2019. SMI is spearheaded by Micro‐
soft with a number of backing partners such as Linkerd, HashiCorp,
Solo.io, and VMware. SMI is not a service mesh implementation;
however, SMI is attempting to be a common interface or abstraction
for other service mesh implementations. If you are familiar with
Kubernetes, SMI is similar in concept to what Kubernetes has with
Container Runtime Interface (CRI), which provides an abstraction
for the container runtime in Kubernetes with implementations such
as Docker and containerd. While SMI may not be immediately
applicable for you, it is an area worth watching to see where the
community may head as far as finding a common ground for service
mesh implementations.

Conclusion
The service mesh ecosystem is vibrant, and you have learned that
there are many open source projects as well as vendor-specific
projects that provide implementations for a service mesh. As we
continue to explore service mesh more deeply, we will turn our
attention to the Istio project. We have selected the Istio project
because it uses the Envoy proxy, it is rich in features, it has a diverse
open source community, and, most important, we both have experi‐
ence with the project.

10 | Chapter 1: Introduction to Service Mesh

https://oreil.ly/VkoiG
https://smi-spec.io

CHAPTER 2

Introducing Istio

Now we turn our attention to our prime running example: the Istio
service mesh. After reading this chapter, you should have a good
understanding of Istio’s architecture, how it operates, and the key
tenants of the project. Because we want to provide you with a hands-
on cloud journey, we will walk you through getting Istio installed so
you can use it for tasks in later chapters.

Why Do We Love Istio?
We choose to focus our attention on Istio because we are founding
members of the project, and we have deep knowledge and experi‐
ence with the project implementation. We have some familiarity
with other service mesh implementations, but with Istio we have a
greater depth of knowledge and working experience. Istio is a
mature service mesh implementation that allows you to break down
the complexity of distributed cloud native deployments by taking
complex functionality out of the application code and moving it into
the network. We find Istio to be the most feature rich, and it’s also
built to serve the enterprise use cases most like those that we see in
our day-to-day jobs.

Istio provides features that enable you to manage a network for
deployed services with secure communication, monitoring, version-
based load balancing, and much more. Istio works with modern
cloud native applications because it requires little to no code
changes with automatic sidecar proxy injection (shown in
Figure 1-1) that intercepts all network traffic between services.

11

Individually managing hundreds if not thousands of sidecar proxies
would be unwieldy. The Istio control plane provides you with a
declarative API for defining your service configurations and poli‐
cies, which are then propagated to the sidecar proxies with the
proper configurations by the Istio control plane. Ultimately, Istio
enables you to focus on solving business problems because error-
prone logic is removed from the application code.

In Chapter 1, we introduced you to challenges that you may experi‐
ence as you move to use the cloud and microservices. The Istio ser‐
vice mesh has capabilities that simplify your ability to solve these
challenges, including the following:

• Automatic metrics and network tracing collected between serv‐
ices within the mesh, as well as inbound and outbound network
communication with external clients and services

• Advanced rule-based traffic routing and control with automatic
load balancing for HTTP, gRPC, WebSocket, and TCP traffic
across service versions

• Automatic mTLS management for secure service-to-service
communication using strong identity-based authentication and
authorization

• Built-in service communication resiliency with retries, circuit
breaking failover, and fault injection

Now, let’s dive deeper into the key features of Istio and provide you
with a base understanding for how it’s architected. Having a base
understanding of the Istio architecture will help you to understand
how your interactions with the Istio control plane affect behavior
within the mesh.

Istio Features
Istio solves the challenges of managing microservices by using a
core set of features that allow you to observe, connect, and secure
your services. These features can be broken down into three main
categories: observability, traffic management, and security.

Observability
Simply by installing Istio and adding services to the mesh, you will
begin to get rich tracing, monitoring, and logging for your services.

12 | Chapter 2: Introducing Istio

This level of information quickly gives you insights into the
communication flows between your services, as well as potential
performance, security, and other issues that could affect that com‐
munication. You can view these insights with customized Grafana
dashboards, as well as the other useful tools Istio provides, such as
Jaeger for trace flows, and Kiali for rich views of traffic flows.

Istio collects this information in an automated and nondisruptive
manner from your service flows. The insights inform you of areas
within the mesh where you may need to apply policies using the
Istio control-plane APIs. The Istio control plane provides abstrac‐
tions over the platform, allowing you to define policies so you can
gain fine-grained control over the interactions of your services and
immediately see the effects within the Grafana and Kiali dashboards.

Traffic Management
By using easy-to-configure rules, you have fine-grained control over
how traffic flows between services at both the application layer
(Layer 7) as well as the network IP address level (Layer 4). For
example, in Kubernetes you have simple round-robin load balancing
across all service endpoints. With Istio you can organize service
endpoints by version and declare policies with the control plane to
control load balancing. You can then also make determinations as to
which service to use, based on a plethora of conditions, including
the source client identity, the client input type, percentage distribu‐
tion, geography, and more. Using such rules to control the traffic
flow, you can easily adjust traffic as conditions within your applica‐
tion change.

Using Istio’s traffic-shaping features allows you to deliver changes
more rapidly because you can reduce delivery risks. Istio enables
controlled rollout of changes using various deployment patterns
such as percentage based, canary, A/B testing, and more. Istio’s
traffic-shaping support also includes features that increase the resil‐
iency of your application without having to change the code. For
example, with distributed microservices, it is more likely that you
could see network failures between service calls, or disjointed time‐
outs between service calls, which result in a poor user experience.
Istio allows you to set conditions that control how services recover
from service call failures such as circuit breakers, timeouts, and
retries. The Istio traffic-shaping features coupled with automatic

Istio Features | 13

https://www.jaegertracing.io
https://github.com/kiali/kiali

insights make it far simpler for you to program higher resiliency and
control flows directly into the network of your service mesh.

Security
One of the most difficult features to enable in a distributed cloud
application is secure communication between services where you
have data encryption and authentication between the services. This
is challenging because coding the logic in each service is compli‐
cated, and it takes only one improper configuration to expose a
security threat. Istio provides a feature that automatically establishes
a secure channel between services by managing service identities,
certificates, and mTLS handshaking. Istio uses first-class service
identity such as a Kubernetes service account to determine the iden‐
tity of the service, which we covered in detail in “Istio Identities” on
page 41 of Chapter 4. This means you can ensure that secure chan‐
nels exist between your services with certificates that are generated
and constantly rotated, dramatically reducing possible security
threats between services.

As with all of the features in Istio, managing security between serv‐
ices is also declarative using the APIs available in the Istio control
plane. Enabling secure communication within the mesh is not an
all-or-nothing setting. Istio has settings that allow permissive secure
channels between services. Selective permissive channels make it
convenient for you to incrementally add services to the mesh
without causing failures. This feature greatly simplifies your journey
to the cloud.

Istio Architecture
At a high level, Istio consists of a data plane and a control plane, as
shown in the service mesh reference architecture in Figure 1-1.
Figure 2-1 depicts the Istio components used to implement the ser‐
vice mesh reference architecture. The Istio data plane is composed
of Envoy sidecar proxies running in the same network space as each
service to control all network communication between services, as
well as Mixer, to provide extensible policy evaluation between serv‐
ices. The Istio control plane is responsible for the APIs used to con‐
figure the proxies and Mixer as part of the data plane. The key
components of the control plane are Pilot, Citadel, Mixer, and
Galley.

14 | Chapter 2: Introducing Istio

Figure 2-1. Istio architecture diagram

Envoy
Istio uses the Envoy proxy for the sidecars as well as gateways. You
will learn more about gateways in Chapters 4 and 5. The Envoy
proxy was developed to be extensible, and Istio uses an extended
version of the Envoy proxy to provide the features and capabilities
needed to work with the Istio control plane. Envoy is deployed as a
sidecar to each service endpoint. Within a Kubernetes environment,
Envoy is injected into each Kubernetes pod as a separate container.
Ingress and egress network traffic in and out of the pod is config‐
ured to flow through the sidecar Envoy proxy. Flowing all traffic
through the Envoy sidecar provides a control point to allow Istio to
gather metrics, control traffic, evaluate policies, and encrypt data
transfer. Istio adds to many of Envoy’s built-in features, such as load
balancing, TLS termination, circuit breakers, health checking,
HTTP/2, gRPC, and much more.

Pilot
Pilot is the essential component that programs the Envoy sidecars: it
converts Istio-defined APIs into Envoy-specific configurations,
which are propagated to Envoy proxy sidecars. Responsible for ser‐
vice discovery within the service mesh, Pilot is also primarily

Istio Architecture | 15

responsible for traffic-management capabilities as well as resiliency
features such as circuit breakers and retry logic. To support service
discovery, Pilot abstracts platform-specific service discovery imple‐
mentations and converts them into a standard format used by side‐
cars that conform to the Envoy data plane APIs. The abstraction
provided by Pilot allows Istio to be used with multiple environ‐
ments, including Kubernetes, Consul, or Nomad, and provides you
with a common interface. We explore more of the details about
Pilot’s traffic management capabilities in Chapter 5.

Citadel
Citadel provides critical security capabilities within the Istio service
mesh. Citadel’s primary responsibility is to manage certificates and
provide strong service identities to enable strong service-to-service
as well as end-user authentication. With the use of Citadel, you can
upgrade communication between your microservices from sending
plain text to having data sent fully encrypted using mTLS authenti‐
cation and authorization. We’ll get into how Citadel is used to secure
communication between services in Chapter 4.

Mixer
Mixer has a dual role within Istio. It enforces access control and
usage policies across the service mesh and collects telemetry data
from the sidecar proxies as well as other Istio control-plane services.
Mixer has been designed to be extensible by allowing you to inject
your own specialized policies to be executed by Envoy proxies when
communicating between services. This same extensibility frame‐
work enables Istio to work with multiple host environments and
backends. Request-level telemetry metrics are extracted by the prox‐
ies and forwarded to Mixer for evaluation. We get into more of the
details about collecting and viewing telemetry data in Chapter 3.

Galley
Galley manages Istio’s configuration. It validates, ingests, processes,
and distributes Istio’s configuration to the other control-plane serv‐
ices. Galley ultimately insulates the other Istio components from the
details of obtaining data from the underlying platform, such as
Kubernetes.

16 | Chapter 2: Introducing Istio

https://oreil.ly/l-Jv7

Installing Istio
Now that you have an overview of the Istio architecture, let’s turn
our attention to hands-on examples that will help you better under‐
stand how Istio works. One of our goals for the rest of this book is to
provide you with information and examples that would help you on
your cloud journey with an incremental adoption of service mesh
such as Istio. To kick things off, you will need to install the Istio con‐
trol plane.

There are several different ways to install Istio including a Helm
chart, Kubernetes YAML files, and, soon to be available, an Istio
Operator. For now, let’s stick with the most straightforward
approach and use the Kubernetes YAML files. We follow the three
steps from the Getting Started section on istio.io.

Getting a Kubernetes Cluster

You will need a Kubernetes cluster to be able to follow
along with the examples in the rest of this book. We
have chosen to use the IBM Cloud Kubernetes Service
(IKS) to provision a Kubernetes cluster. You can find
more options for obtaining a Kubernetes cluster on
istio.io in the Platform Setup section. You must use a
Kubernetes cluster that is version 1.13 or greater.

Downloading the Istio Release
You begin by downloading the latest Istio release. You will find the
current Istio release on the Istio releases page. The istio.io site
includes the instructions on downloading the Istio release. For
example, to download the v1.3.0 release (the current release as of the
writing), you would enter the following command in your terminal:
$ curl -L https://git.io/getLatestIstio | ISTIO_VERSION=1.3.0 sh -
$ cd istio-1.3.0

Installing Istio | 17

https://helm.sh/docs
https://oreil.ly/MHZzY
https://oreil.ly/Bbgib
https://istio.io
https://oreil.ly/CZaVI
https://oreil.ly/3aKFi
https://oreil.ly/N4kdf
https://oreil.ly/3FaL9

Setting Up the Istio Command-Line Interface
You need to set up the Istio command-line interface (CLI) before
proceeding. The Istio CLI, istioctl, is an executable that you set up
on your local development environment. You install istioctl from
the release download by adding it to your PATH environment
variable:
$ export PATH=$PWD/bin:$PATH

Confirming Kubernetes Cluster
Istio has requirements against Kubernetes features that are available
only in certain Kubernetes versions. You can use the following util‐
ity from istioctl to verify that your Kubernetes cluster meets the
requirements for Istio:
$ istioctl verify-install

You will get an output similar to the following. The istioctl utility
checks the Kubernetes API Server, Kubernetes version, whether Istio
is already installed, and whether you have permission to create the
required Kubernetes resources:
Checking the cluster to make sure it is ready for Istio installation...

Kubernetes-api

Can initialize the Kubernetes client.
Can query the Kubernetes API Server.

Kubernetes-version

Istio is compatible with Kubernetes: v1.13.10+IKS.

Istio-existence

Istio will be installed in the istio-system namespace.

Kubernetes-setup

Can create necessary Kubernetes configurations: Namespace,ClusterRole,ClusterRole-
Binding,CustomResourceDefinition,Role,ServiceAccount,Service,Deployments,Config-
Map.

SideCar-Injector

This Kubernetes cluster supports automatic sidecar injection. To enable automatic
sidecar injection see https://istio.io/docs/setup/kubernetes/additional-setup/
sidecar-injection/#deploying-an-app

Install Pre-Check passed! The cluster is ready for Istio installation.

18 | Chapter 2: Introducing Istio

Installing Istio Control Plane
Following the quick start evaluation install guide, you can quickly
install Istio to be used for evaluation purposes. The evaluation
installation will install the Istio custom resource definitions (CRDs)
and the Istio demo profile with permissive mTLS. In Chapter 4, we’ll
explore adopting strict mTLS in an incremental fashion to simplify
your onboarding experience.

First, you need to install all required Istio CRDs before installing the
Istio control plane, using the following command:
$ for i in install/kubernetes/helm/istio-init/files/crd*yaml; \
do kubectl apply -f $i; done

When the CRDs are installed, you can then install the Istio demo
profile using the istio-demo.yaml Kubernetes resources:
$ kubectl apply -f install/kubernetes/istio-demo.yaml

Wait a minute or two, and then run the verify-install command
to verify that the installation is successful:
$ istioctl verify-install -f install/kubernetes/istio-demo.yaml

If you get an error message indicating that the deployment is still in
progress, wait a bit longer and rerun the verify-install com‐
mand. You should see an output similar to what is shown here indi‐
cating that you have a successful installation:
...
Checked 28 crds
Checked 9 Istio Deployments
Istio is installed successfully

Conclusion
You should now have a firm understanding of the key features that
the Istio service mesh offers for managing, securing, and observing
microservices, as well as the core components involved in the imple‐
mentation of these features. With this basic understanding, you are
now ready to continue your cloud journey. We’ll get deeper into
each of the key features with hands-on tasks that will provide you
with the information you’ll need to incrementally adopt a service
mesh such as Istio for managing your microservices.

Conclusion | 19

https://oreil.ly/T6WW7
https://oreil.ly/hn7oh

CHAPTER 3

Adding Services to the Mesh

The objective of this chapter is to show you how to incrementally
add services to the mesh where the services are part of a brownfield
application. As part of adding services to the mesh, the mesh is
actually integrated as part of the services themselves to make the
mesh mostly transparent to the service implementation. A brown‐
field application is one that already exists versus creating a greenfield
application, which is new and designed specifically for the environ‐
ment it will run in. With a greenfield application, new code is devel‐
oped allowing platform features to be added into the code. With a
brownfield application, the code already exists and, in an ideal case,
you don’t want to modify the code when moving into a new envi‐
ronment such as cloud. This chapter introduces you to the brown‐
field guiding application that will be used to demonstrate how the
services of the application can be defined and introduced into the
control of an Istio service mesh.

Introducing the Guiding Application
We have selected the IBM Stock Trader application as the guiding
application for your cloud native journey experience because it is
readily available and is representative of a simple brownfield appli‐
cation that would be taken to the cloud. The Stock Trader applica‐
tion works well for illustrative purposes because it has multiple
interacting services as well as a persistent service; this will be impor‐
tant as we take you through the features of Istio.

21

The Stock Trader application shown in Figure 3-1 is a simple stock
trading sample with which you can create various stock portfolios
and add shares of stock with a commission. It keeps track of each
portfolio’s total value and detailed stock holdings. You can find the
source code of the application in repositories found in the istio-
explained GitHub organization.

Figure 3-1. Stock Trader application

One strategy for incrementally adding services into the mesh would
be to separate additional services by namespace. For example, serv‐
ices added to the mesh will be in a separate namespace from services
that will continue to remain outside the mesh.

Deploying the Data Components
In this example, you will use the stock-trader namespace for serv‐
ices that will participate in the mesh, and the data services will
remain outside the mesh in a separate stock-trader-data name‐
space. You will need to follow these instructions to deploy the DB2
service components in the stock-trader-data namespace.

Sidecar Injection
Adding services to the mesh requires that the client-side proxies be
associated with the service components and registered with the con‐
trol plane. With Istio, you have two methods to inject the Envoy
proxy sidecar into the microservice Kubernetes pods:

22 | Chapter 3: Adding Services to the Mesh

https://github.com/istio-explained
https://github.com/istio-explained
https://oreil.ly/T5iO-

• Automatic sidecar injection
• Manual sidecar injection

Automatic sidecar injection is available within a Kubernetes envi‐
ronment. The automatic sidecar injection uses a Kubernetes mutat‐
ing admission controller that is invoked during pod scheduling to
determine whether it should add the Istio proxy to the deployment
specification. The istio-injected label on the namespace of the
pod is used by the Istio mutating admission controller to determine
whether the Istio proxy should be injected into the pod deployment
specification.

Manual sidecar injection, on the other hand, allows you to examine
the injected deployment YAML prior to deployment. Using the
manual sidecar-injection approach gives you fine-grained control
over which services are added to the mesh. A benefit of separating
services by namespace, it is straightforward to use the automatic
sidecar-injection approach configured for all services within a
namespace.

Sidecar-Injection Approaches

You can find more information about the different
approaches for injecting the Istio Envoy sidecar from
the istio.io documentation site.

Using the code snippets that follow, you can create the stock-
trader namespace enabled with automatic sidecar injection by
adding the istio-injection label to the namespace. By executing
these steps, you have identified the namespace that will be used to
add services from the Stock Trader application into the mesh:
create the stock-trader namespace
$ kubectl create namespace stock-trader

enable the stocker-trader namespace for Istio automatic sidecar injection
$ kubectl label namespace stock-trader istio-injection=enabled

validate the namespace is annotated with istio-injection
$ kubectl get namespace -L istio-injection

Now that you have a namespace with automatic sidecar injection
enabled, you are ready to start adding services into the mesh.

Sidecar Injection | 23

https://oreil.ly/vzEyi
https://oreil.ly/vzEyi
https://oreil.ly/N2zjs

Reviewing Service Requirements
Before you add Kubernetes services to the mesh, you need to be
aware of the pod and services requirements to ensure that your
Kubernetes services meet the minimum requirements.

Service descriptors:

• Each service port name must start with the protocol name, for
example, name: http.

Deployment descriptors:

• The pods must be associated with a Kubernetes service.
• The pods must not run as a user with UID 1337.
• It is recommended that app and version labels are added to pro‐

vide contextual information for metrics and telemetry.

You will need to confirm that each of your Kubernetes services
meets these requirements and make adjustments as necessary. For
the Stock Trader application, you will investigate each service to val‐
idate that each has a Kubernetes service association and is not run‐
ning any container as a user with UID 1337. If you don’t have
NET_ADMIN security rights, you would need to use the Istio CNI
plugin to remove the NET_ADMIN requirement.

Let’s explore adjustments to a service configuration based on the
Istio mesh service requirements. Open the portfolio service deploy
YAML file to review both the service and deployment descriptors
for validating the service requirements. The portfolio service has
two ports, one for HTTP traffic on port 9080 and the other for
HTTPS traffic on port 9443. Notice that the names of the ports http
and https, respectively, start with the required protocol name as
highlighted here:
 ports:
 - name: http
 protocol: TCP
 port: 9080
 targetPort: 9080
 - name: https
 protocol: TCP
 port: 9443
 targetPort: 9443

24 | Chapter 3: Adding Services to the Mesh

https://oreil.ly/cO3Ni
https://oreil.ly/INBGJ
https://oreil.ly/INBGJ
https://oreil.ly/x9hCU
https://oreil.ly/x9hCU

Also notice that the deployment descriptor declares the container
Ports for 9080 and 9443:
 ports:
 - containerPort: 9080
 - containerPort: 9443
 imagePullPolicy: Always

Transparent Service Mesh

The recently released Istio 1.3 introduces the ability to
automatically discover the pod container ports, elimi‐
nating the requirement to declare containerPorts, as
needed in previous versions of Istio.

To ensure that more context is provided to metrics and telemetry,
you will see that both the app and version labels are included in the
portfolio deployment descriptor, as shown:
 labels:
 app: portfolio
 version: v1
 solution: stock-trader

Onboarding Portfolio Service
After you follow the instruction to deploy the DB2 data service via
its helm chart and populate the DB2 table for the Stock Trader
application, you are ready to deploy and onboard your first service
to the mesh. You can find the source code of the portfolio service in
the portfolio repository. You will deploy the portfolio service
with the following CLI:
create the required JWT secret
$ kubectl create secret generic jwt -n stock-trader \
 --from-literal=audience=stock-trader \
 --from-literal=issuer=http://stock-trader.ibm.com

$ git clone https://github.com/istio-explained/portfolio.git
$ kubectl apply -f portfolio/manifests/deploy.yaml -n stock-trader

validate pod has reached running status with sidecar injected
$ kubectl get pods -l app=portfolio -n stock-trader
NAME READY STATUS RESTARTS AGE
portfolio-9d4c5576f-8qrlc 2/2 Running 0 30s

view logs to validate no errors
$ kubectl logs -c portfolio --namespace=stock-trader \
 --selector="app=portfolio,solution=stock-trader"

The steps to deploy the portfolio service work exactly the same
with or without Istio. There is nothing in the steps or the configura‐

Onboarding Portfolio Service | 25

https://oreil.ly/_XqXG
https://oreil.ly/8LCzI

tion that have a strong dependency with Istio. Since you added the
istio-injection label to the stock-trader namespace, the Istio
mutating admission controller automatically injects the Envoy proxy
sidecar during the deployment of the pod. You can see this by
inspecting the detail of the portfolio pod. Use the following com‐
mand to describe the details of the portfolio pod that has been
deployed:
$ kubectl describe pod -l app=portfolio -n stock-trader

You should focus your attention on the containers in the output.
You will notice that the first container is an init container called
istio-init, which is started prior to the other containers in the
pod. You can see the containers including the istio-init container
in the output here as a result of running the kubectl describe
command:
Name: portfolio-66555d8c88-z2nt9
Namespace: stock-trader
Labels: app=portfolio
 pod-template-hash=66555d8c88
 solution=stock-trader
 version=v1
Status: Running
IP: 172.30.115.89
Controlled By: ReplicaSet/portfolio-66555d8c88
Init Containers:
 istio-init:
 Container ID: containerd://
a306e75aa92be8c55ff3dae814c39c5a7701548aa965f03757594a7998f09404
 Image: docker.io/istio/proxy_init:1.3.0
 Image ID: docker.io/istio/
proxy_init@sha256:aede2a1e5e810e5c0515261320d007ad192a90a6982cf6be8442cf1671475b8a
 Port: <none>
 Host Port: <none>
 Args:
 -p
 15001
 -z
 15006
 -u
 1337
 -m
 REDIRECT
 -i
 *
 -x

 -b
 *
 -d
 15020
 State: Terminated
 Reason: Completed
 Exit Code: 0
 Started: Tue, 17 Sep 2019 21:52:02 -0400

26 | Chapter 3: Adding Services to the Mesh

https://oreil.ly/hr7Zc

 Finished: Tue, 17 Sep 2019 21:52:03 -0400
 Ready: True
 Restart Count: 0
 Limits:
 cpu: 100m
 memory: 50Mi
 Requests:
 cpu: 10m
 memory: 10Mi
 Environment: <none>
 Mounts: <none>

The Istio mutating admission controller was responsible for inject‐
ing the istio-init container. You can see from the Docker‐
file.proxy_init that the entry point of the container is istio-iptables.sh,
which is responsible for configuring the pod iptable rules. If you
inspect the istio-iptables.sh file, you will notice that all inbound ports
are redirected to the Envoy proxy container within the pod. You can
also see that port 15020 is excluded from redirection (you’ll soon
learn why this is the case).

When you continue looking through the list of containers in the
pod, you will see the portfolio container, as expected, as well as the
injected istio-proxy container. The proxyv2 image is used for the
image of the istio-proxy container. Notice that the entry point of
the image is the pilot-agent executable, which is responsible for
bootstrapping the istio-proxy container with the default Envoy
bootstrap configuration file provided by the image, along with these
arguments passed into the istio-proxy container shown in the
code block below. This is what we call the “dummy proxy.” If you
envision the portfolio application container as a room, you can
think of the istio-proxy sidecar as a storage box attached next to the
room. See the description of the istio-proxy container here, which
is shown as part of the kubectl describe output.
Containers:
 portfolio:
 Container ID: containerd://
d4b327c3f42c093803c3503fcc5e466eef231f90cdfb6690b5ba595ca492f601
 Image: docker.io/linsun/portfolio:latest
 ...
 istio-proxy:
 Container ID: containerd://
ba2a9df2d956cb51c1bf2c47aff1369df0370325ae5f88390fe0dd5e7d858fbe
 Image: docker.io/istio/proxyv2:1.3.0
 Image ID: docker.io/istio/
proxyv2@sha256:b41903d0c4e3e218930144f986af18eae4a063a9efdace7b7decd0ec189c7cb9
 Port: 15090/TCP
 Host Port: 0/TCP
 Args:
 proxy
 sidecar

Onboarding Portfolio Service | 27

https://oreil.ly/SNWO3
https://oreil.ly/SNWO3
https://oreil.ly/N4sDM
https://oreil.ly/2sTqn

 --domain
 $(POD_NAMESPACE).svc.cluster.local
 --configPath
 /etc/istio/proxy
 --binaryPath
 /usr/local/bin/envoy
 --serviceCluster
 portfolio.$(POD_NAMESPACE)
 --drainDuration
 45s
 --parentShutdownDuration
 1m0s
 --discoveryAddress
 istio-pilot.istio-system:15010
 --zipkinAddress
 zipkin.istio-system:9411
 --dnsRefreshRate
 300s
 --connectTimeout
 10s
 --proxyAdminPort
 15000
 --concurrency
 2
 --controlPlaneAuthPolicy
 NONE
 --statusPort
 15020
 --applicationPorts
 9080,9443
 State: Running
 Started: Tue, 17 Sep 2019 21:52:04 -0400
 Ready: True
 Restart Count: 0
 Limits:
 cpu: 2
 memory: 1Gi
 Requests:
 cpu: 10m
 memory: 40Mi
 Readiness: http-get http://:15020/healthz/ready delay=1s timeout=1s
period=2s #success=1 #failure=30
 Mounts:
 /etc/certs/ from istio-certs (ro)
 /etc/istio/proxy from istio-envoy (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-b7q9c (ro)

You will notice that the istio-proxy container has requested 0.01
CPU and 40 MB memory to start with as well as 2 CPU and 1 GB
memory for limits. You will need to budget for these settings when
managing the capacity of the cluster. Further, the requested resource
and resource limit may vary per installation profile. Also notice that
the istio-certs are mounted to the pod for the purpose of imple‐
menting mTLS, which we explore in Chapter 4.

28 | Chapter 3: Adding Services to the Mesh

https://oreil.ly/dMJDO

Onboarding Remaining Stock Trader Services
Now that you have a good understanding for how a single service is
onboarded to the mesh, you can deploy the remaining services into
the mesh. You can validate that the trader and stock-quote serv‐
ices meet the Istio mesh requirements. Following the service instal‐
lation steps, you install the trader and stock-quote services into
the stock-trader namespace.

Use the following commands to install and onboard the trader
service:
$ git clone https://github.com/istio-explained/trader.git
$ kubectl apply -f trader/manifests/deploy.yaml -n stock-trader

Then, use these commands to install and onboard the stock-quote
service:
$ git clone https://github.com/istio-explained/stock-quote.git
$ kubectl apply -f stock-quote/manifests/deploy.yaml -n stock-trader

Run commands that follow to validate that the pods are running and
that the Envoy sidecar has been injected by inspecting the number
of containers that are running. You should see 2/2, since the deploy‐
ment descriptors have a container for each service plus the newly
injected istio-proxy container for each service.
validate pod has reached running status with sidecar injected
$ kubectl get pods -l app=trader -n stock-trader
NAME READY STATUS RESTARTS AGE
trader-7fc498f64-wkn58 2/2 Running 0 13d

view logs to validate no errors
$ kubectl logs -c trader --namespace=stock-trader \
 --selector="app=trader,solution=stock-trader"

validate pod has reached running status with sidecar injected
$ kubectl get pods -l app=stock-quote -n stock-trader
NAME READY STATUS RESTARTS AGE
stock-quote-57cc4c4d4f-tntjc 2/2 Running 0 3d16h

view logs to validate no errors
$ kubectl logs -c stock-quote --namespace=stock-trader \
 --selector="app=stock-quote,solution=stock-trader"

At this point, you have deployed all of the services in the Stock
Trader example with some services associated with the mesh and the
data service not included in the mesh.

Onboarding Remaining Stock Trader Services | 29

https://oreil.ly/c5CV_
https://oreil.ly/c5CV_

Accessing the Stock Trader Application
The trader service is deployed as a Kubernetes nodeport service,
which means that the service will be assigned a cluster-unique port.
This means that you can access the port using an IP address from
any of the worker nodes within the cluster. First, you need to deter‐
mine an IP address to access the service. You will need to determine
a public IP address for one of the worker nodes. If you are using the
IBM Cloud Kubernetes Service (IKS), you can find your cluster
using this command:
$ ibmcloud ks clusters

Use the cluster name from the output to view the list of worker
nodes in your cluster using this command:
$ ibmcloud ks workers --cluster $CLUSTER_NAME
$ export STOCK_TRADER_IP=<public IP of one of the worker nodes>

The output of the worker nodes will show the public IP addresses of
the worker nodes. If you are using another Kubernetes environment
other than IKS, you can try this next command to obtain the IP
address from Kubernetes:
$ export STOCK_TRADER_IP=$(kubectl get po -l istio=ingressgateway \
-n istio-system -o jsonpath='{.items[0].status.hostIP}')

If you are using Minikube, you can try this command to obtain the
IP address from Minikube:
$ export STOCK_TRADER_IP=$(minikube ip)

Confirm that you can access the application via its node-port. Open
a web browser and enter the following in the URL field, replacing
$STOCK_TRADER_IP with the environment variable that you have set
previously. Log in using username stock and password trader.
http://$STOCK_TRADER_IP:32388/trader/login

Statically Defined Nodeport

Generally, Kubernetes nodeport services are automati‐
cally assigned a node port within the cluster, but you
may statically define the node port to be used. The key
requirement is that the node port must be unique
across the cluster. In this case, the trader service has a
statically defined node port of 32388 for HTTP.

30 | Chapter 3: Adding Services to the Mesh

https://oreil.ly/3p5Kz

If everything is working properly, the application will load as shown
in Figure 3-2.

Figure 3-2. Trade application up and running

What Have You Gained?
One of the values of using a service mesh is that you can gain imme‐
diate insights into the behaviors and interactions of your services.
Istio in particular delivers a set of dashboards that provide you
access to important telemetry data that is available just by adding
services into the mesh. If you run istioctl dashboard, you will see
various monitoring, tracing, and graphical network topology dash‐
boards such as Grafana, Jaeger, Kiali, and Prometheus, which you
can easily launch directly from the istioctl CLI tool. These dash‐
board utilities avoid the need to figure out the exact syntax for the
Kubernetes port-forward command, because they do all the hard
work for you. For example, you can launch the Kiali UI using
istioctl dashboard kiali and log in using the default username
admin and password admin as shown in Figure 3-3.

Note that the external stock service isn’t shown in the Kiali workload
graph. Due to an Istio issue that the community is actively working
to correct, the istio-proxy sidecar that interacts with the external
service isn’t currently captured in the telemetry data. We expect this
issue to be fixed in a future Istio release, and a workaround is pro‐
vided in Chapter 5 by creating a service entry resource.

What Have You Gained? | 31

https://oreil.ly/RD-NX
https://oreil.ly/ZDZSN/

If You’re Not Using the Demo Profile

The demo installation profile is provided as a conve‐
nient way to view the breadth of Istio’s features. Thus
Kiali is configured with a default user ID and pass‐
word. If you are not using the demo profile, you will
need to install the Kiali secret following these instruc‐
tions, and log into the Kiali UI using the username and
password you specified while creating the secret.

You can view distributed tracing information using the Jaeger dash‐
board, which you can launch using istioctl dashboard jaeger, as
shown in Figure 3-4. Select the trader.stock-trader service to
view all traces related to the service.

Click each trace to view the detailed trace spans among the micro‐
services, as shown in Figure 3-5.

When there are errors for some traces, you can click one of the
traces that contains errors to investigate the problem. In this case,
there is a 500 error return code when the trader service called the
portfolio service, as shown in Figure 3-6. These traces can help
you quickly pin down which service(s) to troubleshoot further.

32 | Chapter 3: Adding Services to the Mesh

https://oreil.ly/jHSdb
https://oreil.ly/jHSdb

Fi
gu

re
 3

-3
. K

ia
li

U
I:

wo
rk

lo
ad

 gr
ap

h

What Have You Gained? | 33

Fi
gu

re
 3

-4
. J

ae
ge

r U
I:

la
te

st
tra

ce
s

34 | Chapter 3: Adding Services to the Mesh

Fi
gu

re
 3

-5
. J

ae
ge

r U
I:

sin
gle

 re
qu

es
t t

ra
ce

 sp
an

s

What Have You Gained? | 35

Fi
gu

re
 3

-6
. J

ae
ge

r U
I:

er
ro

r t
ra

ce

36 | Chapter 3: Adding Services to the Mesh

Once the issue is fixed, you can validate it in either Kiali or Jaeger.
Kiali displays the health status for each service based on the name‐
spaces you choose, which in this case are the stock-trader and
stock-trader-data namespaces (see Figure 3-7).

Figure 3-7. Kiali UI: workloads for namespaces

Getting More Out of Traces
Adding services to a service mesh enables rich features such as tele‐
metry and tracing by default without any code changes. However,
there are limits to what is possible when the services are participat‐
ing in a mesh. For example, traces are useful only if the context of
the trace can be preserved between services. This is possible only if
the context is propagated between the services. Within Istio, you
propagate the context by adjusting the header information.

You will need to propagate header context information within your
code. This is the one area where it is necessary to adjust the code to
ensure that traces are linked together with a common context;
otherwise, each trace would be independent, which provides no
value when you’re trying to debug problems across services. For
example, you can modify the code in the Portfolio.java file to propa‐
gate the context in the headers so that individual trace spans are tied
to each request when viewed in the Jaeger dashboard. You can see
the highlighted changes in the Portfolio.java file in Example 3-1
which show how the headers are copied and forwarded from the
request. The copyFromRequest method was added to copy the
header information from the request over to the response. You can

What Have You Gained? | 37

use the same approach in your own code to forward header infor‐
mation to keep trace spans connected.

Example 3-1. Portfolio.java propagate headers

 private static JsonObject invokeREST(HttpServletRequest request, String verb,
String uri, String payload, String user, String password) throws IOException {
 logger.info("Preparing call to "+verb+" "+uri);
 URL url = new URL(uri);
 HttpURLConnection conn = (HttpURLConnection) url.openConnection();

 //forward headers (including cookies) from inbound request
 if (request!=null) copyFromRequest(conn, request);
 ...
 }

 //forward headers (including cookies) from inbound request
 private static void copyFromRequest(HttpURLConnection conn, HttpServletRe-
quest request) {
 logger.info("Copying headers (and cookies) from request to response");
 Enumeration<String> headers = request.getHeaderNames();
 if (headers != null) {
 int count = 0;
 while (headers.hasMoreElements()) {
 String headerName = headers.nextElement(); //"Authorization" and
"Cookie" are especially important headers
 String headerValue = request.getHeader(headerName);
 logger.fine(headerName+": "+headerValue);
 conn.setRequestProperty(headerName, headerValue); //odd it's
called request property here, rather than header...
 count++;
 }
 if (count == 0) logger.warning("headers is empty");
 } else {
 logger.warning("headers is null");
 }
 }

Conclusion
In this chapter, you learned that adding services to a service mesh
requires little effort and requires no code changes to get valuable
telemetry support out of the box. Istio makes it even easier to add
services to the mesh by enabling automatic sidecar injection per
Kubernetes namespace. More important is that you have the ability
to control which services are added to the mesh to enable incremen‐
tal adoption of services, which is especially important for existing
applications. In the next chapter, we explore enabling secure com‐
munication between your services, taking into account that not all of
the services have been added to the mesh all at once.

38 | Chapter 3: Adding Services to the Mesh

CHAPTER 4

Securing Communication
Within Istio

A key requirement for many cloud native applications is the ability
to provide secure communication paths between services. Tradition‐
ally, applications would deploy a “secure at the edge” architecture.
Although this approach was sufficient in a monolithic architecture,
it has security exposures in a distributed, microservices architecture.

In the previous chapter, we explored including services into a mesh;
however, our installation of Istio from Chapter 2 configured a per‐
missive security mode. Recall that the Istio permissive security set‐
ting is useful when you have services that are being moved into the
service mesh incrementally by allowing both plain text and mTLS
traffic. A strict security setting would force all communication to be
secure, which can cause endless headaches if you must incremen‐
tally move services of your application into the mesh. In this chap‐
ter, we explore how Istio manages secure communication between
services, and we investigate enabling strict security communication
between some of the services in our sample application.

Istio Security
It is always imperative to secure communication to your application
by ensuring that only trusted identities can call your services. In tra‐
ditional applications, we often see that communication to services is
secured at the edge of the application, or, to be more explicit, a net‐
work gateway (appliance or software) is configured on the network

39

in which the application is deployed. In these topologies the first
line of defense—and often the only line of defense—is at the edge of
the network prior to getting into the application. Such a deployment
topology exhibits faults when moving to a highly distributed, cloud
native solution.

Istio aims to provide security in depth to ensure that an application
can be secured even on an untrusted network. Security at depth
places security controls at every endpoint of the mesh and not sim‐
ply at the edge. Placing security controls at each endpoint ensures
defense against man-in-the-middle attacks by enabling mTLS,
encrypted traffic flow with secure service identities. Traditionally,
application code would be modified using common libraries and
approaches to establish TLS communication to other services in the
application. The traditional approach is complex, varies between
languages, and relies on the developers to follow development
guidelines to enable TLS communication between services. The tra‐
ditional approach is fraught with errors, and a single error to secure
a connection can compromise the entire application. Istio, on the
other hand, establishes and manages mTLS connections within the
mesh itself and not within the application code. Thus mTLS com‐
munication can be enabled without changing code, and it can be
done with a high degree of consistency and control ensuring far less
opportunity for error. Figure 4-1 shows the key Istio components
involved in providing mTLS communication between services in the
mesh, including the following:

Citadel
Manages keys and certificates including generation and rota‐
tion.

Istio (Envoy) Proxy
Implements secure communication between clients and servers.

Pilot
Distributes secure naming, mapping, and authentication poli‐
cies to the proxies.

40 | Chapter 4: Securing Communication Within Istio

Figure 4-1. Istio secure identity architecture

Istio Identities
A critical aspect of being able to secure communication between
services requires a consistent approach to defining the service iden‐
tities. For mutual authentication between two services, the services
must exchange credentials encoded with their identity. In Kuber‐
netes, service accounts are used to provide service identities. Istio
uses secure naming information on the client side of a service invo‐
cation to determine whether the client is allowed to call the server-
side service. On the server side, the server is able to determine how
the client can access and what information can be accessed on the
service using authorization policies.

Along with service identities being encoded in certificates, secure
naming in Istio will map the service identities to the service names
that have been discovered. In simple Kubernetes terms this means a
mapping of service account (i.e., the service identity) X to a service
named Z indicates that “service account X is authorized to run ser‐
vice Z.” What this means in practice is that when a client attempts to
call service Z, Istio will check whether the identity running the ser‐
vice is actually authorized to run the service before allowing the cli‐
ent to use the service. As you learned earlier, Istio Pilot is
responsible for configuring the Envoy proxies. In a Kubernetes envi‐
ronment, Pilot will watch the Kubernetes api-server for services
being added or removed and generates the secure naming mapping

Istio Security | 41

information, which is then securely distributed to all of the Envoy
proxies in the mesh. Secure naming prevents DNS spoofing attacks
with the mapping of service identities (service accounts) to service
names.

Authorization policies are modeled after Kubernetes Role-Based
Access Control (RBAC), which defines roles with actions used
within a Kubernetes cluster and role bindings to associate roles to
identities, either user or service. Authorization policies are defined
using a ServiceRole and ServiceRoleBinding. A ServiceRole is used to
define permissions for accessing services, and a ServiceRoleBinding
grants a ServiceRole to subjects that can be a user, a group, or a ser‐
vice. This combination defines who is allowed to do what under
which conditions. Here is a simple example of a ServiceRole that
provides read access to all services under the /quotes path in the
trader namespace:
apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRole
metadata:
 name: quotes-viewer
 namespace: trader
spec:
 rules:
 - services: ["*"]
 paths: ["*/quotes"]
 methods: ["GET"]

A ServiceRole uses a combination of namespace, services, paths, and
methods to define how a service or services are accessed.

A ServiceRoleBinding has two parts, a roleRef that refers to a Serv‐
iceRole within the namespace, and a list of subjects to be assigned to
the role. For example, you can define a ServiceRoleBinding shown
here, to allow only authenticated users and services to view quotes:
apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: binding-view-quotes-all-authenticated
 namespace: trader
spec:
 subjects:
 - properties:
 source.principal: "*"
 roleRef:
 kind: ServiceRole
 name: "quotes-viewer"

42 | Chapter 4: Securing Communication Within Istio

Citadel
To provide secure communication between services it is necessary to
have a public key infrastructure (PKI). Istio’s PKI is built on top of a
component named Citadel. A PKI is responsible for securing com‐
munication between a client and a server by using public and private
cryptographic keys. The PKI creates, distributes, and revokes digital
certificates as well as manages public key encryption. Thus, Citadel
is responsible for managing keys and certificates across the mesh. A
PKI will bind public keys with an identity of a given entity. In the
case of Citadel, the entities are the services within the mesh.

Citadel uses the SPIFFE format to construct strong identities for
every service encoded in x.509 certificates. SPIFFE (stands for
“Secure Production Identity Framework for Everyone”) is an open
source project that removes the need for application-level authenti‐
cation and network ACLs by encoding workload identities in spe‐
cially crafted x.509 certificates. Istio uses SPIFFE Verifiable Identity
documents (SVIDs) for the identity documents. The SVID certifi‐
cate URI field in a Kubernetes environment uses the following
format:
spiffe://\<domain\>/ns/\<namespace\>/sa/\<serviceaccount>\>

Figure 4-1 shows an example of an encoded service identity using
SPIFFE in the Subject Alternative Name (SAN) extension field.
Using SVID allows Istio to accept connections with other SPIFFE-
compliant systems.

Enable mTLS Communication Between
Services
Now that you have a basic understanding for how secure communi‐
cation works in Istio, let’s get hands-on to explore enabling mTLS
communication between services in our Stock Trader reference
application. We start by enabling mTLS communication between the
trader service and the portfolio service. Before getting started,
you can validate that the cluster is installed with the global PERMIS
SIVE mesh policy to allow both plain-text and mTLS connections
using the following command:
$ kubectl describe meshpolicy default

Enable mTLS Communication Between Services | 43

https://spiffe.io

Confirm that PERMISSIVE is in the mTLS mode:
Spec:
 Peers:
 Mtls:
 Mode: PERMISSIVE

You can use the istioctl authn command to validate the existing
TLS settings both client side and server side for accessing the portfo
lio service from the point of view of a trader service pod. Use these
commands to check the TLS settings for a trader pod (the client)
using the portfolio service (the server):
$ TRADER_POD=$(kubectl get pod -l app=trader -o jsonpath={.items..metadata.name} -
n stock-trader)
$ istioctl authn tls-check ${TRADER_POD}.stock-trader portfolio-service.stock-
trader.svc.cluster.local

You should see an output that states that the portfolio-service
supports both plain-text and mTLS connections (the SERVER col‐
umn has HTTP/mTLS) defined by the global mesh policy (the
AUTHN POLICY column has default/) since there is no destination
rule defined:
HOST:PORT STATUS
portfolio-service.stock-trader.svc.cluster.local:9080 OK
SERVER CLIENT AUTHN POLICY DESTINATION RULE
HTTP/mTLS HTTP default/ -

You can now begin enabling mTLS communication between the
services for the Stock Trader application.

Using Kiali

For information about using Kiali, refer to Chapter 3.

We use Kiali to show how communication is visualized between
Istio services. Open the Kiali console using the following command,
and log in with admin/admin as the default credentials for the Istio
demo profile:
$ istioctl dashboard kiali

You will change some settings to enable security visualization. Start
by switching to the Graph tab on the left sidebar. Change the name‐
space selection to include stock-trader and stock-trader-data at
a minimum, as shown in Figure 4-2.

44 | Chapter 4: Securing Communication Within Istio

Figure 4-2. Kiali namespace selection

Adjust the Kiali display settings to show Traffic Animation and
Security as illustrated in Figure 4-3. You can adjust the type of graph
shown to see more or less detail.

At this point Kiali will only show information based on the Istio
mesh registration. You will now generate a little load so that you can
see how Kiali captures and visualizes traffic between services. In a
terminal window, enter the following commands:
$ ibmcloud ks workers --cluster $CLUSTER_NAME
$ export STOCK_TRADER_IP=<public IP of one of the worker nodes>

Remember to Set the STOCK_TRADER_IP Variable

Recall from Chapter 3 that the STOCK_TRADER_IP envi‐
ronment variable is set using these commands.

Enable mTLS Communication Between Services | 45

Figure 4-3. Kiali display settings

First, log in to the sample application site, which will be used to gen‐
erate load against the Stock Trader application. You can use the fol‐
lowing cURL command to log in to the Stock Trader application
from a terminal to obtain an authentication cookie:
$ curl -X POST \
 http://$STOCK_TRADER_IP:32388/trader/login \
 -H 'Content-Type: application/x-www-form-urlencoded' \
 -H 'Referer: http://$STOCK_TRADER_IP:32388/trader/login' \
 -H 'cache-control: no-cache' \
 -d 'id=admin&password=admin&submit=Submit' \
 --insecure --cookie-jar stock-trader-cookie

Then, you can generate load against the summary page using the
cached cookie:
$ while sleep 2.0; do curl -L http://$STOCK_TRADER_IP:32388/trader/summary --
insecure --cookie stock-trader-cookie; done

After a couple of minutes, return to the Kiali console, where you
should see traffic flowing between the services as shown in
Figure 4-4. A green line indicates that traffic is successfully flowing
between the services.

46 | Chapter 4: Securing Communication Within Istio

Fi
gu

re
 4

-4
. K

ia
li

tra
ffi

c fl
ow

Enable mTLS Communication Between Services | 47

As you can see in both the TLS settings and the Kiali console, you
do not have secure communication between the services in the
mesh. This means that the clients are sending data in plain text and
the servers are accepting the clear text. Next, you will configure the
services in the stock-trader namespace so that they require client-
side mTLS, but they will still tolerate plain text, which is useful for
incremental onboarding services into the mesh. You can accomplish
this by executing the following command to create a default Destina
tionRule that has a TLS traffic policy set to ISTIO_MUTUAL for the
stock-trader namespace:
$ kubectl apply -f - <<EOF
apiVersion: "networking.istio.io/v1alpha3"
kind: "DestinationRule"
metadata:
 name: "default"
 namespace: "stock-trader"
spec:
 host: "*.stock-trader.svc.cluster.local"
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
EOF

Default DestinationRule

There can be only one default DestinationRule in a
given namespace, and it must be named “default.” The
default DestinationRule will override the global set‐
ting and provide a default setting for all services
defined in the namespace.

Use the following command to execute the tls-check command
again:
$ TRADER_POD=$(kubectl get pod -l app=trader -o jsonpath={.items..metadata.name} -
n stock-trader)
$ istioctl authn tls-check ${TRADER_POD}.stock-trader portfolio-service.stock-
trader.svc.cluster.local

You will see that you now have a default namespace scoped Destina
tionRule (default/stock-trader) that applies to the pod being exam‐
ined. Notice that the results show that the client-side authentication
requires mTLS as defined in the default DestinationRule in the
stock-trader namespace, meaning that mesh clients will send
encrypted messages. The server-side authentication remains PERMIS
SIVE, accepting both plain text and mTLS from the client due to the
mesh-wide default policy:

48 | Chapter 4: Securing Communication Within Istio

HOST:PORT STATUS SERVER
trader-service.stock-trader.svc.cluster.local:9080 OK HTTP/mTLS
CLIENT AUTHN POLICY DESTINATION RULE
mTLS default/ default/stock-trader

You should still be generating load in a terminal window from ear‐
lier. Switching back to the Kiali console, you should notice that a
padlock icon now appears on the traffic being sent between the serv‐
ices, indicating that the messages are encrypted (see Figure 4-5).

You can further lock down the secure access to require both mTLS
from the client and server in the stock-trader namespace using an
authentication Policy to remove the PERMISSIVE support. Execute
this command to define a default policy in the stock-trader name‐
space that updates all of the servers to accept only mTLS traffic:
$ kubectl apply -f - <<EOF
apiVersion: "authentication.istio.io/v1alpha1"
kind: "Policy"
metadata:
 name: "default"
 namespace: "stock-trader"
spec:
 peers:
 - mtls: {}
EOF

Executing the tls-check once again, you see that both client-side
and server-side authentication requires mTLS:
$ TRADER_POD=$(kubectl get pod -l app=trader -o jsonpath={.items..metadata.name} -
n stock-trader)
$ istioctl authn tls-check ${TRADER_POD}.stock-trader portfolio-service.stock-
trader.svc.cluster.local

HOST:PORT STATUS SERVER
trader-service.stock-trader.svc.cluster.local:9080 OK mTLS
CLIENT AUTHN POLICY DESTINATION RULE
mTLS default/stock-trader default/stock-trader

Enable mTLS Communication Between Services | 49

Fi
gu

re
 4

-5
. K

ia
li

w
ith

 m
TL

S
co

m
m

un
ica

tio
n

50 | Chapter 4: Securing Communication Within Istio

Managing HTTP Health Checks

The trader and stock-quote deployments both have
Kubernetes HTTP probes configured for checking the
health of the containers. Since you enabled only mTLS
communication to the servers, this means the Kuber‐
netes probes initiated by the Kubelet on the nodes will
fail since the Kubelet isn’t using mTLS to communicate
with the server. If the Kubernetes probes fail, then the
pods will begin to fail. This problem was avoided
because the sidecar.istio.io/rewriteAppHTTPProb
ers: "true" pod annotation was already defined in
the corresponding deploy.yaml files. This annotation
enables the rewrite of the HTTP probes without
requiring changes to the services. We expect this fea‐
ture will be enabled by default in a future Istio release.

You will see failures now in your cURL calls from earlier since the
server side is requiring clients to send mTLS traffic, which also
includes clients from the internet. It will be necessary to secure
inbound traffic to the service mesh as well to remove these errors:
curl: (56) Recv failure: Connection reset by peer

Securing Inbound Traffic
Now that you have walked through the configuration of secure
mTLS communication within the mesh, we want to turn your atten‐
tion to securing communication into the mesh from a client outside
the mesh. For example, clients using a web browser want to access a
service from the public internet. As you saw in the last section, set‐
ting the default stock-trader namespace Policy to enforce mTLS
from clients caused client requests from the internet (i.e., from a
web browser) to fail TLS handshake. This is because PERMISSIVE
support was removed on the microservices within the Istio mesh. To
solve this problem, use an Istio Gateway configured with TLS.

Inbound and outbound traffic for the mesh is controlled with Istio
gateways. These gateways are implemented as Envoy proxies, which
allow or block traffic from entering or leaving the mesh. A mesh can
have multiple gateway configurations; for example, you may want
one set of gateways for public internet inbound and outbound traf‐
fic, while having a separate set of gateways for private network traf‐
fic. Istio Gateways are primarily used to provide secure inbound

Securing Inbound Traffic | 51

https://oreil.ly/YIcxW

access to the mesh, but the Istio egress (outbound) gateway also pro‐
vides critical control over outbound traffic. For example, you can
configure an Istio egress gateway with policies to restrict which des‐
tinations can be reached by specific services within the mesh. This
level of traffic control is quite difficult with Kubernetes itself. Let’s
start by ensuring there is secure inbound communication by config‐
uring an Istio ingress (inbound) gateway for secure TLS communi‐
cation to the trade service within the mesh.

You can see that a default Istio ingress gateway has already been
deployed into our Kubernetes cluster during installation. Using the
following command, you can see that the ingress gateway is
deployed as a LoadBalancer service with an external public IP
address:
$ kubectl get svc -n istio-system -l app=istio-ingressgateway

NAME TYPE CLUSTER-IP EXTERNAL-IP
istio-ingressgateway LoadBalancer 172.21.39.61 169.63.159.157
PORT(S)
15020:31382/TCP,80:31380/TCP,443:31390/TCP,31400:31400/TCP,15029:31133/
TCP,15030:30832/TCP,15031:31732/TCP,15032:32263/TCP,15443:31348/TCP
AGE
15d

To configure secure communication via the gateway, you will need a
signed certificate. For this example, we’ll use a DNS entry with a
signed wildcard certificate from IBM Cloud Kubernetes Service
(IKS). Refer to your cloud provider’s documentation to determine
how to configure a DNS entry for your Istio ingress gateway service.

You can use IKS to generate a DNS entry and certificate for the Istio
ingress gateway used in the example Stock Trader application. Using
the ibmcloud CLI, you will register a new DNS entry for the Istio
ingress gateway using the external IP of the istio-ingressgateway
service. You need to set the name of your cluster in an environment
variable to be used in later commands. In the following command,
make sure that you replace <YOUR_CLUSTER_NAME> with the name of
the cluster that you created in IKS:
$ export CLUSTER_NAME=<YOUR_CLUSTER_NAME>

If you do not recall the name of your cluster, you can use the follow‐
ing command to list all the clusters that belong to you:
$ ibmcloud ks clusters

Now you can register a DNS entry using the IP address of the Istio
ingress gateway using these commands:

52 | Chapter 4: Securing Communication Within Istio

$ export INGRESS_IP=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].ip}')
$ ibmcloud ks nlb-dns-create --cluster $CLUSTER_NAME --ip $INGRESS_IP

You should see a result similar to the following:
OK
Hostname subdomain is created as <YOUR_CLUSTER_NAME>-
f0a5715bb2873122b708ede2bf765701-0001.us-east.containers.appdomain.cloud

Check the status of the DNS entry using the IKS nlb-dns command,
which will have a result similar to this:
$ ibmcloud ks nlb-dns ls --cluster $CLUSTER_NAME
Retrieving hostnames, certificates, IPs, and health check monitors for network
load balancer (NLB) pods in cluster <YOUR_CLUSTER_NAME>...
OK
Hostname
istio-book-f0a5715bb2873122b708ede2bf765701-0001.us-
east.containers.appdomain.cloud
IP(s) Health Monitor SSL Cert Status
169.63.159.157 None created
SSL Cert Secret Name
istio-book-f0a5715bb2873122b708ede2bf765701-0001

The SSL certificate is encoded in the SSL Cert Secret Name Kuber‐
netes secret stored in the default namespace. You will need to copy
the secret into the istio-system namespace where the gateway ser‐
vice is deployed, and you will need to name the secret istio-
ingressgateway-certs. The name is a reserved name and will
automatically get loaded by the ingress gateway when a secret with
the istio-ingressgateway-certs is found.

Copy the SSL secret generated by your cloud provider into the
istio-ingressgateway-certs secret. To do this you’ll need to
export the secret name using this command where you change
<YOUR_SSL_SECRET_NAME> to the name generated by your cloud
provider:
$ export SSL_SECRET_NAME=<YOUR_SSL_SECRET_NAME>

Now you can create the istio-ingressgateway-certs secret with
this command:
$ kubectl get secret -n default $SSL_SECRET_NAME --export -o json | jq '.meta-
data.name |= "istio-ingressgateway-certs"' | kubectl -n istio-system create -f -

Validate that the secret was created using the following command:
$ kubectl get secret istio-ingressgateway-certs -n istio-system
NAME TYPE DATA AGE
istio-ingressgateway-certs Opaque 2 3h5m

Securing Inbound Traffic | 53

You will need to force the gateway pod(s) to be restarted to pick up
the certificates. This is done by deleting the istio-ingressgateway
pods with this kubectl command.
$ kubectl delete pod -n istio-system -l istio=ingressgateway

You’re now ready to configure the gateway using the generated
domain name and the signed certificate stored in the secret. You will
need to use the generated hostname from the nlb-dns when config‐
uring the ingress gateway. The following command provides you
with the generated domain name within IKS:
$ ibmcloud ks nlb-dns ls --cluster $CLUSTER_NAME

The certificate that IKS has generated is a signed wildcard certificate.
This means you can add segments to the front of the generated host‐
name if you want. You will use the following YAML file to configure
the gateway with TLS. The tls section configures the gateway to use
simple TLS authentication, and the certificate and private key need
to have the exact paths specified. These paths will be automatically
mounted using the istio-ingressgateway-certs secret that you
created earlier. Apply your gateway configuration with this
command:
$ kubectl apply -f - <<EOF
apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: trader-gateway
 namespace: stock-trader
spec:
 selector:
 istio: ingressgateway # use istio default ingress gateway
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 tls:
 mode: SIMPLE
 serverCertificate: /etc/istio/ingressgateway-certs/tls.crt
 privateKey: /etc/istio/ingressgateway-certs/tls.key
 hosts:
 - "*"
EOF

At this point you have secured the ingress gateway, but you haven’t
defined any services to be accessed via the gateway. Exposing a ser‐
vice outside the mesh requires that a service is bound to the gateway
using an Istio VirtualService resource. The VirtualService is
bound to the gateway using the gateways section. In this case the
VirtualService is bound to the newly configured trader-gateway.

54 | Chapter 4: Securing Communication Within Istio

Using this command, you will apply your virtual service
configuration:
$ kubectl apply -f - <<EOF
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-service-trader
spec:
 hosts:
 - '*'
 gateways:
 - trader-gateway
 http:
 - match:
 - uri:
 prefix: /trader
 route:
 - destination:
 host: trader-service
 port:
 number: 9080
EOF

Specifying a Hostname

You can specify a hostname instead of using “*” for a
given gateway resource and virtual service resource.
For example, you can use <YOUR_DNS_NLB_HOSTNAME>
as the hostname.

You should now be able to access the Stock Trader application in
your web browser with a secure connection and no handshake fail‐
ures. Enter https://<YOUR_DNS_NLB_HOSTNAME>/trader in your
web browser (see Figure 4-6).

Figure 4-6. Secure access via web browser

Securing Inbound Traffic | 55

When you go back to the Kiali dashboard, you can see that the gate‐
way is now shown and there is a secure connection between the
gateway and the trader, as shown in Figure 4-7. The gateway itself
is configured with TLS ensuring that traffic is encrypted from the
client outside the mesh all the way to the target service.

Using RBAC with Secure Communication
Istio also supports authorization policies that leverage ServiceRoles
and ServiceRoleBindings to describe who is allowed to do what
under which conditions. A ServiceRole describes a set of permis‐
sions or methods including paths for accessing a service. A Service‐
RoleBinding grants a ServiceRole to a set of subjects, which can be a
user or a service. The combination of ServiceRoles and ServiceRole‐
Bindings provide you with fine-grained access controls to services.

Conclusion
In this chapter, you learned that Istio provides a simple yet powerful
mechanism to manage mTLS communication between services
using strong identities defined with the SPIFFE format. Citadel is
the key Istio component responsible for the generation and rotation
of keys and certificates used for secure communication between
services within the mesh. You learned that Istio uses a declarative
model to set security policies enabling the ability to incrementally
onboard secure services into the mesh. By using a permissive model,
it is possible to have services that support both plain text and mTLS
communication, which makes it easier to incrementally move serv‐
ices into the mesh. Using Istio gateways ensures that there are
secure, encrypted communication from clients outside of the mesh
accessing services that are exposed from the mesh. Now that you
have discovered how to secure services in the mesh, we turn your
attention toward controlling traffic within the mesh.

56 | Chapter 4: Securing Communication Within Istio

https://oreil.ly/2ZFIn
https://oreil.ly/2ZFIn

Fi
gu

re
 4

-7
. S

ec
ur

e g
at

ew
ay

 co
m

m
un

ica
tio

n

Conclusion | 57

CHAPTER 5

Control Traffic

You are now ready to take control of how traffic flows between serv‐
ices. In a Kubernetes environment, there is simple round-robin load
balancing between service endpoints. While Kubernetes does sup‐
port deployment strategies such as a rolling deployment, it is quite
coarse grained and is limited to moving to a new version of the ser‐
vice. You may find it necessary to have more than one version of the
service running and perform a dark launch or a canary test. A ser‐
vice mesh enables these types of traffic management patterns by
controlling requests and resiliency between services and controlling
the traffic entering and leaving the cluster. This chapter explores
many of these types of features to control the traffic between serv‐
ices including increasing the resiliency between the services.

Dark Launch
Dark launch allows you to deploy a service or a new version of a ser‐
vice while minimizing the impact to users; in other words, you can
keep the service in the dark. It is imperative that you can develop
and deliver new versions of your application with agility and low
risk. Using a dark-launch approach enables you to deliver new func‐
tions rapidly with reduced risk. Since Istio allows you to precisely
control how new versions of services are rolled out and accessed by
clients, you can use a dark-launch approach for delivering changes.

59

Introducing Changes as a New Version
For example, you may want to create a new version of the Stock
Trader service with the loyalty information for each portfolio owner,
starting with basic loyalty level with the possibility to generate the
loyalty level based on the portfolio’s total value. In the Trader Git‐
Hub repository, we have already created a v1 branch with the origi‐
nal version of the application and left the master branch for new
development.

After you have updated the trader service in the master branch,
you can update the version value in the deployment labels, selector
match labels, and template labels in the deploy.yaml file to reflect the
v2 version, as shown in the example that follows. Recall from Chap‐
ter 3 that version labels were added to the deployment descriptors to
provide more context for metrics and telemetry:
$ cat trader/manifests/deploy.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: traderv2
 labels:
 app: trader
 solution: stock-trader
 version: v2
spec:
 replicas: 1
 selector:
 matchLabels:
 app: trader
 version: v2
 template:
 metadata:
 labels:
 app: trader
 version: v2
...

You can execute the next set of commands if you want to make the
changes in your own fork of the GitHub repositories for the Stock
Trader example. With these commands you can build a new image
with the updated changes:
$ git checkout master
$ mvn package

$ docker build -t linsun/trader:v2 .
$ docker push linsun/trader:v2

60 | Chapter 5: Control Traffic

https://oreil.ly/HucpZ
https://oreil.ly/HucpZ

Docker Repository

In the preceding example, we used a Docker hub
repository that we have made available for use with the
example in this book. If you are following along, you’ll
need to use your own image repository replacing
linsun in the previous commands and update the
manifests/deploy.yml descriptor file to use your image
repository.

Execute the following command to deploy the v2 changes for the
trader service into the cluster without deleting the existing v1
deployment where the deployment descriptor changes for v2 were
shown in the previous example:
update manifests/deploy.yaml to use the new docker image if needed.
$ kubectl apply -f manifests/deploy.yaml -n stock-trader
deployment.extensions/traderv2 created

If you visit the trader service’s endpoint via https://
<YOUR_DNS_NLB_HOSTNAME>/trader/, you can see that
roughly 50% of the traffic is routed to trader v1 deployment end‐
points and 50% is routed to trader v2 deployment endpoints. Why
is this happening? Both deployments have the same number of rep‐
licas, and they have the same labels used by the Kubernetes service
selector. You can validate the endpoints of the trader service using
the following Kubernetes endpoints command:
$ kubectl get endpoints trader-service -n stock-trader
NAME ENDPOINTS AGE
trader-service 172.30.244.107:9080,172.30.244.107:9443 7h5m

You should see endpoints from both the v1 deployment as well as
the v2 deployment. Since Kubernetes deals with connections, not
requests, and supports only round-robin load balancing, you will see
traffic routed between both endpoints for the service. We could have
defined a separate service for the v2 changes, but then clients would
need to be aware of the version to use, which breaks the transpar‐
ency required of the service provider to control how they introduce
changes. This is not the behavior you would like to see since you
haven’t tested trader v2. You want to precisely control how changes
are exposed to clients by managing how traffic is routed to the
trader v2 deployment replicas.

Dark Launch | 61

Basic Traffic Routing
Istio provides fine-grained traffic routing controls for both the client
and destination service using the Istio virtual services and destina‐
tion rules. A virtual service provides you with the ability to config‐
ure a list of routing rules that control how the Envoy sidecar proxies
route requests to a service within the service mesh. In this example,
you can define a virtual service to define the routing rules that
would be used when invoking the trader service. Since the trader
service is an edge service (i.e., a service accessible from outside the
mesh), you’ll need to bind the virtual service to the trader-gateway
to describe the route rules from the gateway to the trader service.
Using this approach, you are able to dark launch the trader-v2
deployment changes. Inspect the virtual-service-trader Virtual‐
Service using the next command to see the configured route, which
sends 100% of the requests to the destination trader-service within
the mesh. With this virtual service definition, none of the requests
to the trader-service would be routed to the v2 deployment end‐
points because all the requests are routed to the pods with the “v1”
subset label:
$ cat manifests/trader-vs-100-v1.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-service-trader
spec:
 hosts:
 - '*'
 gateways:
 - trader-gateway
 http:
 - match:
 - uri:
 prefix: /trader
 route:
 - destination:
 host: trader-service
 subset: "v1"
 port:
 number: 9080
 weight: 100

A destination rule allows you to define configurations of policies
that are applied to a request after the routing rules are enforced as
defined in the destination virtual service. The destination rule is also
used to define the set of Kubernetes pods or VMs that belong to a
subset grouping. In this example, the Istio ingress gateway is the cli‐
ent, and the trader service is the destination service. A destination

62 | Chapter 5: Control Traffic

https://oreil.ly/OPPV3
https://oreil.ly/Dq53s

rule is used to identify multiple versions of a service, which are
called “subsets” in Istio.

TLS Settings

In Chapter 4, you enabled a default destination rule
within the namespace for the mTLS settings. When
you define a destination rule for a destination virtual
service, you need to specify the TLS settings because
the declaration of the destination rule for the virtual
service will override the default mTLS settings, either
global or namespace scoped.

If you look at the trader-dr.yaml file from the example Stock Trader
application that follows, you’ll see that the destination-rule-trader
resource exposes two subsets, “v1” and “v2,” based on labels found
in the destination trader-service. The destination-rule-trader
shown in the example is an extremely simple case that uses the
default round-robin load-balancing strategy. It is common to have
other rules such as load balancing, connection pool size, and outlier
detection settings to detect and evict unhealthy hosts from the load-
balancing pool:
$ cat manifests/trader-dr.yaml
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: destination-rule-trader
spec:
 host: trader-service
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
 subsets:
 - name: v1
 labels:
 version: "v1"
 - name: v2
 labels:
 version: "v2"

You can apply the virtual service and destination rule resources,
which will program the Istio mesh and change the routing behavior.
Execute the commands that follow to essentially instruct Pilot to
program the Istio ingress gateway to route requests on port 443 via
https and a URI path with /trader to the v1 subset of the trader-
service. Note, you do not need to redeploy either the trader v1 or v2
deployments or the trader service for the changes to take effect:

Dark Launch | 63

$ kubectl apply -f manifests/trader-vs-100-v1.yaml -n stock-trader
virtualservice.networking.istio.io/virtual-service-trader configured

$ kubectl apply -f manifests/trader-dr.yaml -n stock-trader
destinationrule.networking.istio.io/destination-rule-trader configured

At this point, you have successfully dark launched the v2 of the
trader deployment without any impact to the trader service. If you
visit the trader service’s endpoint via https://
<YOUR_DNS_NLB_HOSTNAME>/trader/, you will always see v1 of
the trader deployment. The v2 trader deployment does not have
any requests routed to it based on the programming rules and poli‐
cies that you have just defined with an Istio virtual service and desti‐
nation rule.

Accessing from a Nodeport or Load Balancer

If you send a request to the Stock Trader application
from a Kubernetes node port address like you did in
Chapter 3, you will find that the routing rules are not
applied. The same is true if a service is exposed via a
load-balancer service. This is expected because the
route rule is from the istio-gateway to the trade ser‐
vice, so the entry point has to go through the istio-
gateway for the route rule to be effective.

Selectively Route Requests
Alternatively, you may want to launch the v2 of the trader deploy‐
ment only for a specific client or user and route the other client
requests to the v1 deployment. In this example, you use specific sup‐
port in a virtual service to create HTTP routing rules, which gives
you the ability to introspect and use features from the HTTP request
such as header information. When you inspect the virtual-
service-trader virtual service in the trader-vs-test.yaml file shown
in the following example, you will see that an HTTP route rule has
been defined to route requests from clients using a Firefox browser
to the v2 subset of the trader-service. All other client requests will
continue to use the v1 subset of the trader-service:
$ cat manifests/trader-vs-test.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-service-trader
spec:
 hosts:

64 | Chapter 5: Control Traffic

https://oreil.ly/p7DGj

 - '*'
 gateways:
 - trader-gateway
 http:
 - match:
 - headers:
 user-agent:
 regex: '.*Firefox.*'
 uri:
 prefix: /trader
 route:
 - destination:
 host: trader-service
 subset: "v2"
 port:
 number: 9080
 - match:
 - uri:
 prefix: /trader
 route:
 - destination:
 host: trader-service
 subset: "v1"
 port:
 number: 9080

After reviewing the changes to the virtual-service-trade

resource, you can apply the changes to your mesh using this
command:
$ kubectl apply -f manifests/trader-vs-test.yaml -n stock-trader
virtualservice.networking.istio.io/virtual-service-trader configured

Namespace Scoped

Notice that you have deployed the trader-gateway,
the virtual-service-trader, and the destination-
rule-trader resources in the same stock-trader
namespace. It isn’t necessary to have the gateway
resource in the same namespace as the virtual service
resource. However, it is necessary in this case, because
the virtual-service-trader resource is referring to
the trader-gateway without a namespace. Therefore
the references are all scoped to the local namespace.

With the new mesh configurations applied, you can test the effects
with the sample application. Open a Firefox browser and visit the
https://<YOUR_DNS_NLB_HOSTNAME>/trader URL. When using
Firefox as the client browser to visit the application, you will see
your requests are routed to the v2 deployment of the trader service,
as demonstrated in Figure 5-1. Open another web browser client
such as Chrome or Safari. Now visit the same https://

Dark Launch | 65

1 The term comes from coal mining; miners took canary birds into the mine since the
birds would be affected by carbon monoxide before the miners, thus giving crucial
advance warning about the problem.

<YOUR_DNS_NLB_HOSTNAME>/trader URL. You should now
see requests being routed to the v1 deployment of the trader
service.

Figure 5-1. Trader v2 after login using Firefox

Canary Testing
A canary test1 is when you deploy a new version (the canary) along
with the previous version and route a percentage of requests to the
new version to determine whether there are problems before rout‐
ing all traffic to the new version. After satisfactorily testing a new
feature with a selective set of requests, a canary test is often per‐
formed to ensure that the new version of the service not only func‐
tions properly, but also doesn’t cause a degradation in performance
or reliability. You may even place higher load on the canary deploy‐
ment monitoring the effects over time. If there are no observed ill
effects on the environment, you would adjust the routing rules to
direct all of the traffic to the canary deployment.

66 | Chapter 5: Control Traffic

You can use Istio’s virtual service with its weighted routing feature to
configure the percentage of requests that are sent to the stable subset
versus the new canary subset of the trader service. You can accom‐
plish this weighted distribution by using the desired weight for the
v1 subset, such as 80% of the requests and a weight for v2 canary
subset to be the remaining 20% of requests. You can see the weigh‐
ted distributions for the trader service VirtualService definition
here:
$ cat manifests/trader-vs-80-20.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-service-trader
spec:
 hosts:
 - '*'
 gateways:
 - trader-gateway
 http:
 - route:
 - destination:
 host: trader-service
 subset: "v1"
 port:
 number: 9080
 weight: 80
 - destination:
 host: trader-service
 subset: "v2"
 port:
 number: 9080
 weight: 20

You can now deploy the updated virtual service definition for the
trader service using the following command. There is no need to
redeploy either versions of the trader deployments to change to the
desired traffic distribution because Istio is dynamically reconfigur‐
ing the Envoy sidecars within the mesh:
$ kubectl apply -f manifests/trader-vs-80-20.yaml -n stock-trader
virtualservice.networking.istio.io/virtual-service-trader configured

Visit the trader service in your favorite web browser using https://
<YOUR_DNS_NLB_HOSTNAME>/trader/login. Validate that 20%
of the requests go to Trade v2 while 80% of the requests continue to
show the Trade v1 UI. You will not immediately see the 80/20 distri‐
bution mix until the Envoy sidecars have processed the configura‐
tion change and adjusted the routing distribution. You may need to
refresh /trader/login multiple times, perhaps 15 or more to see the
proper distribution.

Canary Testing | 67

Canary Without Istio

Container orchestration platforms such as Kubernetes
use instance scaling to manage traffic routing between
deployments as well as the number of replicas to con‐
trol the weight between the deployment endpoints.
With Istio, you can have multiple versions of the
trader service deployed at the same time and allow
them to scale up and down independently, without
affecting the traffic distribution between them. As a
result, you can scale up or down either version of the
trader service without worrying about causing an
impact to the traffic distribution among the versions of
the service. Istio allows you to decouple deployments
from traffic routing.

Resiliency and Chaos Testing
When you build a distributed application designed for the cloud, it
is critical to ensure that the services within your application are
resilient to failures in the underlying platform as well as failures due
to dependent services. Kubernetes provides capabilities that allow
you to increase the resiliency of your container-based components
against failures in the underlying infrastructure; however, it’s up to
you to ensure that your service implementations are resilient to fail‐
ures from other services. To increase the resiliency of your services,
it is common to set up retries, timeouts, and circuit breakers when
calling dependent services. Luckily, you do not need to modify your
existing code to have logic for retries and timeouts. Service meshes
generally have constructs that allow you to program resiliency
between your services. Istio has support for retries, timeouts, and
circuit breakers, and even has capabilities that you can use to inject
faults into your service calls to help test and tune your timeouts.

Retries
Istio has support to program retries for your services in the mesh
without you specifying changes to your code. By default, client
requests to each of your services in the mesh will be retried twice.
When using Istio, you can configure the number of retries and the
timeout for each retry from the point of view of a client that is call‐
ing the service. You can configure retries per service within the Istio

68 | Chapter 5: Control Traffic

virtual service resource, and you can have a different set of retries
per route for each virtual service.

Istio will execute two retries per request by default. You can adjust
the number of retires or disable them altogether when automatic
retries don’t make sense for your microservices. If you look at the
trader-vs-retries.yaml file from the example Stock Trader application
shown in the following example, you’ll see that you can adjust the
route rule within the virtual-service-trader resource to control
retries. Notice that a retries configuration section has been added
to disable clients retry requests when accessing the trader service:
$ cat manifests/trader-vs-retries.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-service-trader
spec:
 hosts:
 - '*'
 gateways:
 - trader-gateway
 http:
 - match:
 - uri:
 prefix: /trader
 route:
 - destination:
 host: trader-service
 port:
 number: 9080
 retries:
 attempts: 0

To set the new retries configuration, you can apply the trader-vs-
retries.yaml file using this command:
$ kubectl apply -f manifests/trader-vs-retries.yaml -n stock-trader
virtualservice.networking.istio.io/virtual-service-trader configured

Timeouts
Istio has built-in support for timeouts with client requests to serv‐
ices within the mesh. The default timeout for HTTP requests is 15
seconds. You can override the default timeout setting of a service
route within the route rule for a virtual service resource. For exam‐
ple, in the route rule within the virtual-service-trader resource,
you can add the following timeout configuration to set the timeout
of the /trader route to be 10 seconds, along with 3 retries with each
retry timeout after 2 seconds:

Resiliency and Chaos Testing | 69

$ cat manifests/trader-vs-retries-timeout.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-service-trader
spec:
 hosts:
 - '*'
 gateways:
 - trader-gateway
 http:
 - match:
 - uri:
 prefix: /trader
 route:
 - destination:
 host: trader-service
 port:
 number: 9080
 retries:
 attempts: 3
 perTryTimeout: 2s
 timeout: 10s

To see the new timeouts and retries in action, you can use this com‐
mand to apply the trader-vs-retries-timeout.yaml:
$ kubectl apply -f manifests/trader-vs-retries-timeout.yaml -n stock-trader
virtualservice.networking.istio.io/virtual-service-trader configured

Visit the trader service in a web browser using https://
<YOUR_DNS_NLB_HOSTNAME>/trader/login. You might begin to
notice upstream request timeout errors when you view an owner’s
portfolio if it takes more than 10 seconds to obtain the portfolio
information. You can undo the custom timeout: 10s configuration
and return to the default 15-second timeout by executing this com‐
mand to apply the trader-vs-retries.yaml:
$ kubectl apply -f manifests/trader-vs-retries.yaml -n stock-trader
virtualservice.networking.istio.io/virtual-service-trader configured

Circuit Breakers
Circuit breaking is an important pattern for creating resilient micro‐
service applications. Circuit breaking allows you to limit the impact
of failures and network delays, which are often beyond your control
when making requests to dependent services. Generally, it would be
necessary to add logic directly within your code to handle situations
when the calling service fails to provide the desirable result. You
would code logic to capture the failure and make decisions on the
proper course of action, which would provide a more desirable
result to the client rather than an error message.

70 | Chapter 5: Control Traffic

https://oreil.ly/1wGx8

Istio allows you to apply circuit breaking configurations within a
destination rule resource, without any need to modify your micro‐
services code. You will use a connectionPool to define circuit-
breaking conditions on each individual upstream host for either
HTTP or TCP requests. For example, you can define the maximum
number of pending requests and maximum requests per connec‐
tion. The Istio outlier detection is a circuit breaking concept to con‐
figure failure settings for each upstream host, which is used to
remove a failing upstream host from the load-balancing pool for the
defined period of time before trying again.

Take a look at the trader-dr-cb.yaml file from the Stock Trader appli‐
cation shown in the example that follows. The file defines the desti‐
nation rule for the trader-service. Within the traffic policy of the
destination-rule-trader, you can specify the connection pool
configuration to indicate the maximum number of TCP connec‐
tions, specify the maximum number of HTTP requests per connec‐
tion, and set the outlier ejection to be three minutes after a single
error. These settings are used to configure the circuit-breaker behav‐
ior when a client accesses the trader-service:
$ cat manifests/trader-dr-cb.yaml
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: destination-rule-trader
spec:
 host: trader-service
 subsets:
 - name: v1
 labels:
 version: "v1"
 - name: v2
 labels:
 version: "v2"
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL
 connectionPool:
 tcp:
 maxConnections: 1
 http:
 http1MaxPendingRequests: 1
 maxRequestsPerConnection: 1
 outlierDetection:
 consecutiveErrors: 1
 interval: 1s
 baseEjectionTime: 3m
 maxEjectionPercent: 100

Resiliency and Chaos Testing | 71

Fault Injection
It is difficult to get service timeouts and circuit-breaker configura‐
tions properly set in a distributed microservice application, as seen
when you move to a cloud native application. Istio makes it easier to
get these settings correct by enabling you to inject faults into your
service requests without the need to modify your code. The fault
injection support makes it possible to perform chaos testing of your
application. You can see how fault injection affects your application
by adding an HTTP delay fault into the stock-quote service for
only a specific user’s portfolio so that the injected fault doesn’t affect
all user flows.

First, you need to ensure that there is match condition we can lever‐
age when the portfolio service calls the stock-quote service. One
common match condition is header based. The Portfolio.java file in
Example 5-1 has been modified to create a header called portfo
lio_user that is passed along with the HTTP header when calling
the stock-quote service.

Example 5-1. Modify Portfolio.java to add the portfolio_user
header

...
 if (request!=null) {
 //forward headers (including cookies)
 // from inbound request
 copyFromRequest(conn, request);

 // add a portfolio_user header
 addPortfolioUserHeader(conn, owner);
 }
...

 //add portfolio_user here to specify rules for the user
 private static void addPortfolioUserHeader(HttpURLConnection conn, String
user) {
 logger.info("Adding portfolio_user header for user " + user);
 conn.setRequestProperty("portfolio_user", user);
 }

Second, you will inject a 90-second fault delay for 100% of the client
requests when the portfolio_user HTTP header value exactly
matches the value Jason. Using a fault injection such as this allows
you to minimize the impact to most client requests since you are
injecting the failure only on a specific client request, like so:

72 | Chapter 5: Control Traffic

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-service-stock-quote
spec:
 hosts:
 - stock-quote-service
 http:
 - fault:
 delay:
 fixedDelay: 90s
 percent: 100
 match:
 - headers:
 portfolio_user:
 exact: Jason
 route:
 - destination:
 host: stock-quote-service
 port:
 number: 9080
 - route:
 - destination:
 host: stock-quote-service
 port:
 number: 9080

Apply the virtual service and destination rule changes using the fol‐
lowing commands to view the effects of the fault injection:
$ cd ..
$ kubectl apply -f stock-quote/manifests/stock-quote-vs-fault-match.yaml \
-n stock-trader
virtualservice.networking.istio.io/virtual-service-stock-quote created

To test the new fault-injection settings that you created using the
preceding steps, you’ll need to use the sample Stock Trader applica‐
tion and a user portfolio with an owner named “Jason.” You can visit
the Stock Trader application in a web browser using https://
<YOUR_DNS_NLB_HOSTNAME>/trader and log in as user stock
with password trader. Once you have logged in to the application
in your web browser, complete the following steps to see the fault
injection in action:

1. Create a new portfolio called Jason if one does not exist.
2. Select the portfolio with the owner named Jason and select the

“Retrieve selected portfolio” radio box, as shown in Figure 5-2.
3. Click the Submit button.

Resiliency and Chaos Testing | 73

Figure 5-2. Retrieving the selected portfolio for Jason

Since the HTTP delay was injected earlier, it will take 90 seconds to
get a response. In this case, an error occurs that needs to be fixed in
the trader or portfolio service to ensure that it can handle the net‐
work degradation failure properly and serve a useful message to the
client.

Create another user portfolio with a name other than “Jason.” Fol‐
lowing the same steps as above, retrieve the new user’s portfolio. You
will find that the request succeeds because the fault injection is not
applied to portfolios without the user name “Jason.”

No Destination Rule for stock-quote Service

In this example, you did not specify a corresponding
destination rule for the virtual-service-stock-

quote resource because there is only one version of the
stock-quote deployment; thus, subsets do not need to
be defined in a destination rule.

74 | Chapter 5: Control Traffic

Controlling Outbound Traffic
When you use Kubernetes, any application pod can make calls to
services that are outside the Kubernetes cluster unless there is a Net‐
work Policy that prevents calling the target service. However, Net‐
work Policies are restricted to Layer 4 rules, which means that they
can allow or prevent access only to specific IP addresses. Often, you
might want more control over how applications within the mesh can
reach external services using Layer 7 (URL-based) policies and more
fine-grained attribute policy evaluation.

By default, Istio allows all outbound traffic to ensure users have a
smooth starting experience. If you choose to restrict all outbound
traffic across the mesh, you can update the global.outboundTraf
ficPolicy.mode installation option setting to enable restricted out‐
bound traffic access:

1. Validate that your Istio installation is configured with the
global.outboundTrafficPolicy.mode option set to ALLOW_ANY
using this command:
$ kubectl get configmap istio -n istio-system -o yaml \
| grep -o "mode: ALLOW_ANY"
mode: ALLOW_ANY

The string mode: ALLOW_ANY should appear in the output if it is
enabled.

2. You can change Istio’s setting to block all outbound traffic by
default. Run the following command to change the global.out
boundTrafficPolicy.mode option to REGISTRY_ONLY:
$ kubectl get configmap istio -n istio-system -o yaml \
| sed 's/mode: ALLOW_ANY/mode: REGISTRY_ONLY/g' | \
kubectl replace -n istio-system -f -
configmap "istio" replaced

The stock-quote service needs to reach out to the IEX Cloud exter‐
nal service to get the current quote of the stock. Go back to the
Stock Trader application and add a new stock to one of the portfo‐
lios, using a different stock symbol to ensure that the stock-quote
service must call the IEX Cloud external service to get the most
recent stock price. Figure 5-3 shows an example view of using the
Stock Trader application to purchase shares into a portfolio.

Controlling Outbound Traffic | 75

https://oreil.ly/xRNGS
https://iexcloud.io

Figure 5-3. Add stock to portfolio

Because all outbound traffic is blocked by default, you will see the
following exception thrown by application class:
org.apache.cxf.microprofile.client.DefaultResponseExceptionMapper.toThrowable:33

javax.ws.rs.WebApplicationException: HTTP 500 Internal Server Error
 at org.apache.cxf.microprofile.client.DefaultResponseExceptionMapper
 .toThrowable(DefaultResponseExceptionMapper.java:33)
 at [internal classes]
 at com.sun.proxy.$Proxy90.updatePortfolio(Unknown Source)
 at com.ibm.hybrid.cloud.sample.stocktrader.trader.AddStock.doPost
 .(AddStock.java:138)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:706)
 at [internal classes]

You can examine the stock-quote pod log to get more detailed
information for the connection failure by entering the following in
your terminal:
$ kubectl logs -c stock-quote --namespace=stock-trader \
 --selector="app=stock-quote,solution=stock-trader"

You should see in the log an entry similar to the example that fol‐
lows, which indicates a connection problem with the IEX Cloud
external service. This is expected because we have restricted any ser‐
vice in the mesh from accessing any other service that is external to
the mesh:
{"type":"liberty_message","host":"stock-quote-78848589c6-cgqvh",
"ibm_userDir":"\/opt\/ol\/wlp\/usr\/","ibm_serverName":"defaultServer",
"message":"javax.ws.rs.ProcessingException:
javax.net.ssl.SSLHandshakeException: SSLHandshakeException

76 | Chapter 5: Control Traffic

invoking https:\/\/cloud.iexapis.com\/stable\/stock\/VT\/quote:
Remote host closed connection during handshake

Istio has the ability to selectively access external services using a Ser‐
vice Entry. A Service Entry allows you to define a service that is
external to the mesh and allows access by services within the mesh.
Through service entries, you can bring external services as partici‐
pants in the mesh. Create a service entry to ensure services can
access the IEX Cloud external service while still preventing access to
all other external services, like so:
$ cat stock-quote/manifests/se-iex.yaml
apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: iex-service-entry
spec:
 hosts:
 - "cloud.iexapis.com"
 ports:
 - number: 443
 name: https
 protocol: https
 resolution: DNS

Apply the service entry resource into the stock-trader namespace:
$ kubectl apply -f stock-quote/manifests/se-iex.yaml -n stock-trader
serviceentry.networking.istio.io/iex-service-entry created

Repeat the same step as earlier to revisit the Stock Trader application
to add a new stock to a portfolio. This time, you should see that the
stock is successfully added given that the call to the IEX Cloud
external service is no longer being blocked.

Similar to intercluster requests, Istio routing rules can be used with
external services to define retries, timeouts, and fault injection poli‐
cies. For example, you can set a timeout rule on calls to the
api.us.apiconnect.ibmcloud.com service used in the Stock Trader
application as shown here:
$ cat stock-quote/manifests/iex-vs.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: iex-virtual-service
spec:
 hosts:
 - "cloud.iexapis.com"
 https:
 - timeout: 3s
 route:
 - destination:
 host: "cloud.iexapis.com"
 weight: 100

Controlling Outbound Traffic | 77

https://oreil.ly/td2OB

Run the following command to apply the virtual service:
$ kubectl apply -f stock-quote/manifests/iex-vs.yaml -n stock-trader
virtualservice.networking.istio.io/iex-virtual-service created

Egress Gateway

Although service entries provide controlled access to
external services, when combined with an Istio egress
gateway, you can ensure that all external services are
accessed through a single exit point. Having a single
exit point allows you to provide specific security con‐
straints on the nodes as well as the pods that all traffic
leaving the mesh will pass. Refer to the official egress
tasks for more details on using egress gateway.

Conclusion
When you move to developing a cloud native solution, the dis‐
tributed nature of the services requires greater control over the flow
of traffic between the services. Basic routing and load-balancing
support in Kubernetes often falls short of what is needed to manage
traffic in these highly distributed applications. A service mesh like
Istio has the capabilities that provides you with the ability to manage
traffic flows within the mesh as well as entering and leaving the
mesh. These capabilities allow you to efficiently control rollout and
access to new features, and they make it possible to build more resil‐
ient services within the mesh, all without having to make compli‐
cated changes to your application code.

78 | Chapter 5: Control Traffic

https://oreil.ly/TBAe0
https://oreil.ly/TBAe0
https://oreil.ly/tXu0W
https://oreil.ly/tXu0W

CHAPTER 6

Wrap-Up

A key point that we have echoed throughout this book is that
deploying and managing microservices is difficult, especially within
a cloud environment. There is an increased use of containers when
using microservices with the cloud, and the increased use of con‐
tainers further complicates your ability to understand and manage
the interactions between these containers. This is where a service
mesh is critical to managing the interactions between microservices.

Takeaways
Above and beyond everything else, it is important to have a service
mesh strategy when using microservices in the cloud in order to get
control over the complexities introduced by the highly distributed
nature of microservices and the cloud. Beyond this key point, you
should have a better understanding of the following points:

• A service mesh allows you to observe, secure, and connect
microservices.

• Istio is a mature, multivendor open source service mesh imple‐
mentation that has an architecture that provides you with the
most complete and feature-rich service mesh implementation
available.

• You have seen firsthand how Istio provides rich metrics for
observability and secure mTLS communication between your
services with few configurations required.

79

• You can add services to the mesh using Istio’s automatic sidecar
injection support per Kubernetes namespace, making it easier to
incrementally adopt a service mesh, which is important for
brownfield applications.

Next Steps
If you read through this book but you did not run the steps outlined
in each chapter, we recommend that you take another pass through
and actually work through the steps with the Stock Trader applica‐
tion. You will retain more of the lessons if you try them out yourself.

If after reading this book we have piqued your interest in either ser‐
vice meshes or Istio itself and you would like to get more informa‐
tion, we recommend that you check out the following:

• The “What’s a service mesh?” blog provides another view of
what a service mesh is and why it is valuable for managing
microservices.

• Visit Istio.io concepts to learn more about the features that Istio
provides and to better understand the details of the Istio archi‐
tecture.

• Istio.io tasks provides you with examples of the Istio features
that you can easily try out on our own.

• Istio blog posts provides you with additional information about
changes to the Istio architecture as well as helpful information
for using Istio features.

• Istio Up and Running is a book by our friends Zack Butcher and
Lee Calcote, which will provide you with a more in-depth look
into using Istio.

When you are ready, the next logical step is to apply what you have
learned on your own projects to truly see the value that you can ach‐
ieve with a service mesh.

80 | Chapter 6: Wrap-Up

https://oreil.ly/tJbON
https://istio.io/docs/concepts
https://istio.io/docs/tasks
https://istio.io/blog/2019
https://www.oreilly.com/library/view/istio-up-and/9781492043775

About the Authors
Lin Sun is a senior technical staff member and Master Inventor at
IBM. She is a maintainer on the Istio project and also serves on the
Istio Steering Committee and Technical Oversight Committee. She
is passionate about new technologies and loves to play with them.
She holds more than 150 patents issued with USPTO.

Daniel Berg is an IBM Distinguished Engineer responsible for the
technical architecture and delivery of the IBM Cloud Kubernetes
Service and Istio. Daniel has deep knowledge of container technolo‐
gies including Docker and Kubernetes and has extensive experience
building and operating highly available cloud native services. Daniel
is a member of the Technical Oversight Committee for the Istio.io
open source service mesh project, and he is responsible for driving
the technical integration of Istio into IBM Cloud.

	Cover
	IBM
	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	What You Will Learn
	Why Istio?
	Prerequisites
	Acknowledgments

	Chapter 1. Introduction to Service Mesh
	Challenges in Managing Microservices
	What Is a Service Mesh Anyway?
	How Does a Service Mesh Work?
	The Service Mesh Ecosystem
	Envoy
	Istio
	Consul Connect
	Linkerd
	App Mesh
	Kong
	AspenMesh
	Service Mesh Interface

	Conclusion

	Chapter 2. Introducing Istio
	Why Do We Love Istio?
	Istio Features
	Observability
	Traffic Management
	Security

	Istio Architecture
	Envoy
	Pilot
	Citadel
	Mixer
	Galley

	Installing Istio
	Downloading the Istio Release
	Setting Up the Istio Command-Line Interface
	Confirming Kubernetes Cluster
	Installing Istio Control Plane

	Conclusion

	Chapter 3. Adding Services to the Mesh
	Introducing the Guiding Application
	Deploying the Data Components

	Sidecar Injection
	Reviewing Service Requirements
	Onboarding Portfolio Service
	Onboarding Remaining Stock Trader Services
	Accessing the Stock Trader Application
	What Have You Gained?
	Getting More Out of Traces

	Conclusion

	Chapter 4. Securing Communication Within Istio
	Istio Security
	Istio Identities
	Citadel

	Enable mTLS Communication Between Services
	Securing Inbound Traffic
	Using RBAC with Secure Communication

	Conclusion

	Chapter 5. Control Traffic
	Dark Launch
	Introducing Changes as a New Version
	Basic Traffic Routing
	Selectively Route Requests

	Canary Testing
	Resiliency and Chaos Testing
	Retries
	Timeouts
	Circuit Breakers
	Fault Injection

	Controlling Outbound Traffic
	Conclusion

	Chapter 6. Wrap-Up
	Takeaways
	Next Steps

	About the Authors

