
IBM Systems Oracle

 Oracle AWR report
in-depth analysis
Determine if your database can benefit from IBM FlashSystem

2 Oracle AWR report in-depth analysis

Contents

2 Highlights

3 What is AWR?

3 What should you know before examining AWR reports?

3 Take a top-down approach

9 Oracle RAC-specific pages

11 Time breakdown statistics

12 Operating system statistics

13 Foreground wait events

14 Background wait events

14 Wait event histograms

15 Service-related statistics

16 The SQL sections

19 Instance activity statistics

27 Tablespace I/O statistics

29 Buffer pool statistics

33 Shared pool statistics

34 Other advisories

38 Latch statistics

41 Segment access areas

42 Library cache activity sections

44 Dynamic memory components sections

45 Process memory sections

46 Streams component sections

48 Initialization Parameter changes

48 Global enqueue and other Oracle RAC sections

51 Summary

Highlights
•	 Speed up databases to unparalleled rates
•	 Interpret AWR results to gain valuable, actionable insight
•	 Utilize flash storage to improve database performance
•	 Determine optimum conditions for database environments

IBM® FlashSystem™ offers customers the ability to speed
up databases to rates that may not be possible even by over
provisioning the fastest spinning disk arrays. This paper is
intended to provide observations and insights on how to use
some native Oracle Database tools to determine the effects
that flash storage can have on Oracle Database environments.
Oracle utilities—Statspack and now Automatic Workload
Repository (AWR) reports —provide database administrators
with detailed information concerning a snapshot of database
execution time. This snapshot provides statistics on wait
events, latches, storage input and output volumes, and timings
as well as various views of memory and SQL activities.

The statistics and insights into the memory, input/outputs
(I/O), and SQL performance characteristics are invaluable
aids in determining if a database is functioning optimally.
Unfortunately, there is such an abundance of data in AWR
reports that most database administrators (DBAs) feel
overwhelmed and may miss important clues to database
performance issues.

This paper provides a guide to interpreting AWR results so
that even a novice DBA can glean valid, actionable insights
from review of an AWR report.

For customers lacking the time to delve into their AWR
reports, IBM offers a free service to analyze your AWR
reports in order to identify if your database can benefit
from IBM FlashSystem.

IBM Systems 3

What is AWR?
The AWR provides a set of tables into which snapshots of
system statistics are stored. Generally these snapshots are
taken on an hourly basis and include wait interface statistics,
top SQL, memory, and I/O information that is cumulative in
nature up to the time of the capture. The AWR report process
takes the cumulative data from two snapshots and subtracts the
earlier snapshot’s cumulative data from the later snapshot and
then generates a delta report showing the statistics and
information relevant for the time period requested. AWR is a
more advanced version of the old Statspack reports that has
been automated and made integral to Oracle’s automated
tuning processes for the Oracle Database.

AWR reports are run internally each hour and the findings
are reported to the OEM interface. The user can use OEM
or manual processes to create a full AWR report, in text or
HTML format. These text or HTML reports are what we
will be examining in this paper.

What should you know before
examining AWR reports?
Before examining AWR reports, DBAs should be familiar
with the basic wait events that an Oracle Database may
encounter and the typical latches that may cause performance
issues, plus be aware of what a typical performance profile
looks like for their particular system. Usually by examining
several AWR reports from periods of normal or good
performance, DBAs can acquaint themselves with the
basic performance profile of their database.

Things to notice in the baseline reports include normal levels
of specific wait events and latches and the normal I/O profile
(normal I/O rates and timings for the database files). Other
items to look at are the number and types of sorts, the memory
layout, and Process Global Area (PGA) activity levels.

In order to be aware of what waits, latches, and statistics are
significant, it is suggested that DBAs become familiar with
the Oracle Database Tuning guide and concepts manual.
Tuning books by outside authors can also provide more
detailed insight into Oracle Database tuning techniques
and concepts.

Take a top-down approach
Unless you are looking for specific problems such as a known
SQL issue, it is usually best to start with the top data in the
AWR report and drill down into the later sections as indicated
by the wait events and latch data. The first section of an AWR
report shows general data about the instance; look at Figure 1
for an example header section.

Figure 1: AWR report header

4 Oracle AWR report in-depth analysis

The report header provides information about the instance
upon which this report was run. The AWR header was
expanded to include data about the platform, CPUs, cores,
and sockets, as well as memory available in the server.
The instance number, whether this is an Oracle RAC (Real
Application Clusters) instance or not, and the release level
of the database is shown here. The header also includes the
startup time as well as the times for the two snapshots used
to generate the report. The delta-T between the snapshots is
also calculated and displayed.

Following the instance and snapshot data, the cache sizes
section gives basic data about the buffer pool, shared pool,
standard block, and log buffer sizes.

All of this information in the first part of the AWR header
forms the foundation that we draw from to gauge whether
a particular statistic is reasonable or not. For example, if we
see that the system is an Oracle RAC-based system, then we
know to expect Oracle RAC-related statistics to be included in
the report. If we see a large number of CPUs, then we might
expect to see parallel query related numbers. The knowledge
of whether a system is Linux®, Unix®, AIX®, Windows®, or
some other supported platform is also valuable in tracking
down platform specific issues.

You should pay attention to the duration of a snapshot
window against which the report was run. If the window
is too long then too much averaging of values could distort
the true problem. On the other hand, if the period is too short
important events may have been missed. All in all you need to
understand why a report was generated: Was it for a specific
SQL statement? If so it might be a short duration report. Was
it for a non-specific problem we are trying to isolate? Then it
could be from 15 minutes to a couple of hours in duration.

Also, pay attention to the number of sessions at the
beginning and end of the report; this can tell you if the
load was constant, increasing, or decreasing during the
report period.

The second section of the report header contains load
information and is shown in Figure 2.

Figure 2: Load related statistics in header

IBM Systems 5

The critical things to watch for in the load section depend
on the type of application issue you are trying to resolve.
For example, in the header section in Figure 2 we see a
large number of physical reads and logical reads with few
block changes; this is a typical profile for a reporting
environment such as a data warehouse or decision support
system (DSS). Seeing this large number of logical and
physical reads should key us to look at I/O-related issues
for any database performance problems. An additional sign
that this is probably a warehouse or DSS environment is the
large amount of Work Area processing (W/A) occurring; this
means sorting. A further indicator is that the user calls and
parses are low, indicating that the transactions contain few
statements and are long-running.

In a predominately online transaction processing system
(OLTP) we would expect to see more logical reads, few
physical reads, and many user calls, parses, and executes,
as well as rollbacks and transactions. Generally speaking,
report environments have fewer, longer transactions that
utilize the Work Area, while OLTP environments tend
to have numerous small transactions with many commits
and rollbacks.

The next section of the header shows us the Instance
Efficiency percentages. Generally you want these as close to
one hundred percent as possible. As you can see, all of our
efficiencies are near to 100 percent, with the exception of
Execute to Parse and Parse CPU to Parse Elapsed. Because
we are dealing with a reporting system, it will probably have
a great deal of ad-hoc reports. Because these by their nature

are not reusable, we will have low values for parse-related
efficiencies in this type of system. In an OLTP-type system
where transactions are usually repeated over and over again we
would expect the parse-related efficiencies to be high as long as
cursor sharing and bind variables were being properly utilized.

If we were to see that the Buffer NOWAIT and Buffer
Hit percentages were low (less than 95 percent) we would
investigate if the data block buffers were being properly
used and if we might need to increase data block buffer sizes.

If the library hit percentage was low we would consider
increasing the shared pool allocation, or at least looking
into why its percentage was low (it could be improper bind
variable usage).

The redo NOWAIT percentage tells us how efficiently our
redo buffers are being utilized; if the percentage is low, we
would need to look at tuning the redo log buffers and redo
logs. If processes are waiting on redo then either the buffers
are too small or something is blocking the redo logs from
being reused in a proper manner. For example, in an archive
log situation if there are insufficient logs then the system may
have to wait on the archive log process while it copies a log to
the archive location, decreasing the NOWAIT percentage.

The memory sort percentage tells us if our PGA_
AGGREGATE_TARGET or, if manual settings are used,
SORT_AREA_SIZE, HASH_AREA_SIZE and bitmap
settings need to be examined. Numbers less than 100 for
the sort percentage indicate that sorts are going to disk.
Sorts going to disk are slow and can cause significant
performance issues.

6 Oracle AWR report in-depth analysis

The soft parse percentage tells us how often the SQL
statement we submit is being found in the cursor caches.
This is directly related to proper bind variable usage and
how much ad-hoc SQL generation is taking place in our
system. Hard parses cause recursive SQL and are quite
costly in processing time. In a system where SQL is being
reused efficiently this should be near one hundred percent.

Latch hit percent tells us how often we are not waiting on
latches. If we are frequently spinning on latches, this value
will decrease. If this percentage is low, look for CPU-bound
processes and issues with latching.

The Non-Parse CPU percentage tells us how much of the
time the CPU is spending on processing our requests verses
how much time it is spending doing things like recursive SQL.
If this percentage is low, look at the parse-related percentages
because they too will be low. When this percentage is low it
indicates the system is spending too much time processing
SQL statements and not enough time doing real work.

The next section of the header shows us the shared pool
statistics. One of the main purposes of the shared pool is
to provide a pre-parsed pool of SQL statements that can
quickly be reused. This header section shows the amount
of memory being utilized for reusable statements. Generally,
if 70 to 80 percent (or higher) of memory is being utilized,
or higher then good reuse is occurring in the database. If the
percentages are less than 70 percent, then the application
should be reviewed for proper SQL reuse techniques such
as PL/SQL encapsulation and bind variable utilization.

The next few sections of the header really help point where
DBAs or tuning users should look for the problems causing
performance issues in the database. This next section is shown
in Figure 3.

Figure 3: Wait, CPU, and memory statistics

IBM Systems 7

Of the statistics in this next section of the header, the top
five wait statistics are probably the most important. The wait
interface in the Oracle Database stores counters for waits
and timings for several hundred wait events that instrument
the internals of the database. By examining the wait statistics
you can quickly find the pinch points for performance in your
database. In our example in Figure 4 we can see that the
following statistics are the dominant waits:

Figure 4: Dominant waits after analysis

Obviously with 54 percent of the wait activity (and probably
more) being I/O related, our I/O subsystem on this Oracle
RAC setup is being stressed.

Note that the CPU is showing 11.9 percent usage during
this period. In a normal system the CPU should show the
dominant time percentage.

Other wait events that might dominate an Oracle RAC
environment could be redo log related, interconnect related,
or undo tablespace related. Note that the fifth largest wait
was the “gc current block 2-way.” This indicates that the same
block was being shared back and forth across the interconnect.

Of course because this is a parallel query environment with
the parallel query being not only cross-table and cross-index
but cross-node, some amount of interconnect related waits
are expected. However, if “gc” related waits dominated the
top five wait events section, this would indicate there was
definite stress on the interconnect and it was a significant
source of wait issues.

In this case the predominant wait is the “db file sequential
read” which indicates that single block reads (i.e. index reads)
are causing issues. Normally this would be resolved by adding
more db block cache memory (server memory); however,
our system is memory constrained so if we can’t remove the
waits we would look to reduce the wait time per incident.
By increasing the number of disks in the array and increasing
the spread of the files causing the reads we could possibly
reduce this wait to as small as five milliseconds (maybe lower
if we move to a more expensive cached SAN setup), but this
would be the limit in a disk-based system. The only way to
further reduce the value would be to increase the amount
of server memory through a server upgrade or decrease the
read latency by moving to IBM FlashSystem. The other
read-based waits would also benefit from either more memory
or faster I/O subsystems.

8 Oracle AWR report in-depth analysis

The other major wait that is usually seen when an I/O
subsystem is stressed is the “db file scattered read” which
indicates full table scans are occurring. Full table scans can
usually be corrected by proper indexing. However, in DSS
or warehouse situations this may not always be possible.
In the case of DSS or data warehouses, use of partitioning
can reduce the amount of data scanned. However, each disk
read is going to require at least five milliseconds and the only
way to beat that is through large-scale caching or the use of
IBM FlashSystem to reduce latency. Where a disk based
system can have latency greater than 5 milliseconds, IBM
FlashSystem provides latency as low as 100 microseconds
(a 25x improvement).

When the “db file sequential read” or “db file scattered read”
are the significant wait sources, then DBAs need to look in
the SQL sections of the report to review the top SQL that is
generating excessive logical or physical reads. Usually, if a SQL
statement shows up in two or more of the SQL subsections,
it is a top candidate for tuning actions.

A key indicator for log file stress (redo logs) would be
the log file sync, log file parallel write, log file sequential write,
log file single write, or log file switch completion wait events
dominating the top five wait event listing; however, you
must make sure that the wait is truly from I/O-related issues
and not issues such as archive logging before taking proper
action. Usually, log file stress occurs when the log files are
placed on the same physical disks as the data and index files
and can usually be relieved by moving the logs to their own
disk array section. However, if high wait times for log-related
events occur, then moving the logs to an IBM FlashSystem is

indicated. While the AWR report does not show latency
for redo log activities, redo log writes can be very latency
sensitive in environments with heavy write activity and
especially those with single threaded synchronous I/O. In
heavy write environments, IBM FlashSystem reduces the
latency for redo log writes, thus improving a transactional
system’s ability to support higher concurrency.

The next section of the report shows the breakdown of the
CPU timing and run queue status (Load Average) for the
time interval.

The run queue tells you how many processes are waiting
to execute. If the run queue exceeds the number of available
CPUs and the CPUs are not idle, then increasing the number
of CPUs or upgrading the speed of CPUs is indicated,
assuming all other tuning actions, such as reducing recursion,
have been accomplished. As you can see from the report
section above, our CPU was 83 percent idle during the period
while I/O waits were 45 percent, thus CPU stress was not
causing the run queue of 3. It was most likely I/O-related wait
activity. The other statistics in the section show the amount of
time utilized in user and system modes of the CPU, as well as
the percentage of time the CPU was idle and the average I/O
wait. If the I/O wait percentage is high then increasing the
number of disks (after proper tuning has occurred) may help.
If you have already tuned SQL and I/O wait is still a large
percentage of the total waits, then your best choice is moving
to a lower latency I/O subsystem such as IBM FlashSystem.

IBM Systems 9

Following the CPU timing section, the Instance CPU section
shows how efficiently this instance was using the CPU
resources it was given.

This instance utilized the total CPU time available for only
14.8 percent of the time. Of that 14.8 percent, 85 percent of
the CPU time was utilized for processing. Because no resource
groups are in use in the database, zero percent of the CPU
was used for resource management with the resource manager.
This again points out that the system was I/O bound, leaving
the system basically idle while it waited on disks to serve data.

The last section of the header deals with memory usage.

According to Oracle, you should only use about 60 percent
of the memory in your system for Oracle Database; however,
as memory sizes increase this old saw is showing its age.
Nonetheless, in memory-constrained 32-bit systems such
as the one this report came from, 60 percent is probably a
good point to shoot for with Oracle Database memory usage.
As you can see, this instance is using 57.64 percent so it is
pretty close to the 60 percent limit. The rest of the memory
is reserved for process and operating system requirements.
We can see that our System Global Area (SGA) remained
fairly stable at 1,584 megabytes while our PGA usage grew
from 169 to 302 megabytes. This again points to the system
being a report DSS or data warehouse system utilizing a lot
of sort area.

Oracle RAC-specific pages
Once we get out of the header and system profiles area, if
you are using Oracle RAC you get to an Oracle RAC-specific
section that will not be present if Oracle RAC is not being
used. The first part of the Oracle RAC-specific statistics deals
with profiling the global cache load. This section of the report
is shown in Figure 5.

Figure 5: Oracle RAC load profiles

10 Oracle AWR report in-depth analysis

The first part of the listing shows how many instances you
started with in the Oracle RAC environment and how many
you ended up with. This is important because cross-instance
parallel operations would be directly affected with loss of or
addition of any instances to the Oracle RAC environment.

The next part of the Oracle RAC report shows the Global
Cache Load Profile. The Global Cache Load Profile shows
how stressed the global cache may have been during the
period monitored. In the report shown above we only
transferred a total of 481 kilobytes per second across an
interconnect capable of handling 100 megabytes per second,
so we were hardly using the interconnect, in spite of our
cross-instance parallel operations. This is further shown by
the low Buffer Access -Remote cache statistic of 0.65 percent
which is telling us that only 0.65 percent of our blocks came
from the other node’s Oracle RAC instance.

Things to watch out for in this section include severe
instance unbalancing where the Global Cache blocks received
verses the Global Cache blocks served is way out of alignment
(they should be roughly equal). Another possible indication
of problems is excessive amounts of Database Writer (DBWR)
fusion writes. Fusion writes should only be done for cache
replacement, which should be an infrequent operation. If
fusion writes are excessive it could indicate inadequately sized
db block cache areas, excessive checkpointing, commits, or a
combination of all of the above.

The next Oracle RAC-specific section deals with the actual
timing statistics associated with the global cache. You need
to pay close attention to the various block service timings.
If the time it takes to serve a block across the interconnect
exceeds the time it would take to read it from disk then the
interconnect is becoming a bottleneck instead of a benefit.
The section is shown in Figure 6.

Figure 6: Global cache and enqueue workload section

IBM Systems 11

The most important statistics in this entire section are:

These should be compared to an AWR report run on the
other instance:

If the numbers on both or all RAC instances aren’t similar
then this could indicate a problem with the interconnect,
either at the OS buffer level or with the NIC or interface
cards themselves.

Notice the high flush values in Figure 6; these are not the
correct values and probably point to an issue with the way
AWR is collecting the data because they are a direct input
to the product that results in the receive times.

The last part of this Oracle RAC-specific section deals with
the interconnect:

You should verify that the interconnect is the proper private
interconnect and that it is not a public Ethernet. If you see
excessive global cache services (GCS) values in previous
sections, be sure that the proper interconnect is being used.

Time breakdown statistics
Another nice addition to the statistics in AWR over
Statspack involves the time breakdown statistics that show
the components of CPU, OS, and other time fields. The
first shown is the CPU statistics breakdown; this is shown
in Figure 7.

The Global Enqueue timing numbers should be less than
2-3 milliseconds in most cases. If they get anywhere near
20 milliseconds, as stated in current Oracle documentation,
you have a serious issue with the global enqueue services
(GES) part of the global dictionary.

Figure 7: CPU time breakdown

12 Oracle AWR report in-depth analysis

Much of how the CPU seconds are determined is a black
box. For example, it is a real mystery how in one section the
CPU was only utilized 14.8 percent for this instance and yet
shows sql execute elapsed time as 8,145.5 seconds when with
two CPUs there are only 7,200 seconds of CPU time in an
hour. It may be including all calls that completed during
the interval, which of course may then include calls whose
majority of time was actually outside of the measurement
interval. However, that is a topic for another discussion.

In the report excerpt in Figure 6 we see that a majority of
the CPU time allotted to us for this measurement interval
(97.3 percent) was spent in sql execute elapsed time and this
really is precisely where we want the CPU to be spending
its time. If we were to see that parse time elapsed or hard parse
elapsed time were consuming a large portion of time, it would
indicate that we either had an ad-hoc environment with a
majority of unique SQL statements or we have an application
that is not using bind variables properly. Of course if the
CPU was spending its time in any of the other areas for a
majority of the reported time, that segment of processing
should be investigated.

Operating system statistics
The next section of the AWR report shows operating
system-related settings and statistics. Figure 8 shows an
example report section for OS statistics.

Figure 8: OS statistics

IBM Systems 13

The OS section of the report gives us the time breakdown in
CPU ticks to support the percentages claimed in the other
sections of the report. The correlation of reported ticks to
actual ticks is still a bit foggy. However, examination of this
section still shows that the system being examined is not CPU
bound but is suffering from I/O contention because both the
idle time and I/O wait time statistics are larger than the busy
time value. This part of the report also shows us the TCP/
UDP buffer settings which are useful when determining issues
in Oracle RAC. One problem often noted is that the I/O wait
time reported in this section may not be accurate and should
not be used for analysis.

Foreground wait events
The next section of the AWR report shows the foreground
wait events, which are wait events that occur in foreground
processes. Foreground processes are the user or application-
level processes. Figure 9 shows the excerpt from the report
we are analyzing.

The wait events that accounted for less than 0.1 percent
of DB time have been omitted for brevity’s sake (the actual
listing is two pages long). The thing to note about this section
of the report is that we have already looked at the main top
five events, which are where we should focus our tuning
efforts. However, if you are attempting to tune some specific
operation or database section, the other waits in this section
may apply to that effort. One thing to mention in an Oracle
RAC environment, if you see a large number of waits for the
read by other session event, this usually indicates your block
size or latency is too large, resulting in contention. If you
see that read by other session is one of the predominant wait
events, look to the Segments by x sections of the AWR for
guidance on which tables and indexes are being heavily
utilized and consider moving these segments to a tablespace
with a smaller than default block size such as 4K or even 2K
or to lower latency storage such as IBM FlashSystem to
reduce this contention.

Figure 9: Foreground wait events

14 Oracle AWR report in-depth analysis

Background wait events
Background wait events, as their name implies, are waits
generated by the numerous background processes in the
Oracle Database process stack. DBWR, log writer process
(LGWR), system monitor process (SMON) and process
monitor (PMON) all contribute to the background wait
events. The report excerpt, limited to the events with at
least 0.1 percent of DB time, is shown in Figure 10.

Figure 10: Background wait events

As we can see, the events that dominate the background
waits are also I/O related. If the events that are top in the
foreground are similar (such as both being control file related)
then that is the I/O area in which we should concentrate the
tuning efforts. As we can see from the report excerpt, while
the I/O-related waits are similar, the predominant ones in
each section are different, indicating a general I/O issue
rather than an issue with a specific set of files.

Wait event histograms
In the next section of the AWR, Oracle provides a time-based
histogram report for the wait events. If the histogram report
was ordered by the predominant wait events by time, it would
be more useful; instead it is ordered by event name, making
us have to search for the important events. The liberty has
been taken to remove the unimportant events from the listing
example in Figure 11 for brevity’s sake.

Figure 11: Event time histograms

IBM Systems 15

The most important events have been bolded in the above
excerpt. Notice that the read events are more important than
the write events. With an Oracle Database, unless we are
talking direct writes, undo or redo log writes, or control file
writes, Oracle Database uses the concept of delayed block
cleanout, only writing blocks to disk when absolutely needed.
This delayed block cleanout mechanism means that for most
data-related writes we aren’t too concerned with write times
unless our application does frequent commits and the data is
needed nearly immediately after the commit.

Because this application is a read-dominated application,
we aren’t seeing a lot of redo log and undo tablespace
related events. In an OLTP type environment, we would
expect to see log writes and log syncs rise to the top in an
I/O bound system as dominant events. In systems that
generate a lot of transactions, we would also expect to see
undo tablespace related events be more prevalent.

By looking at the histograms we can see that our read events
are taking anywhere from four milliseconds (ms) to one second
to complete. This is a typical disk-based histogram. However,
in our histogram the largest number of reads by percent are
taking more than 8ms to complete. This indicates disk stress
is happening. We could possibly reduce this nearer to 5ms
by increasing the number of disks in our disk array. However,
you cannot expect to get to less than 5ms read or write times
in a disk-based system unless you place a large amount of
cache in front of the disks. Another option, which can be more
cost effective and enable greater inputs/outputs per second
(IOPS), is to use IBM FlashSystem technology which should
provide less than 0.5 ms latency.

Service related statistics
Since Oracle Database version 10g, Oracle is increasingly
using the concept of a database “service.” A service is a
grouping of processes that are used to accomplish a common
function. For example, all of the parallel query slaves
and processes used to provide the results for a series of
SQL statements for the same user could be grouped into
a service. Figure 12 shows the service related section from
our example report.

Figure 12: Service related statistics

16 Oracle AWR report in-depth analysis

The service related statistics allow you to see which users
are consuming the most resources. By knowing this you
can concentrate your tuning activities on the hard hitters.
In the report excerpt in Figure 12, we see the generic
service “aultdb” which holds all the user processes that are
non-background and non-sys owned. Because there was
only one set of processes (we know this because we are good
DBAs that keep tabs on what is happening in our system)
we can track the usage back to a user called tpch. From
looking at the second half of the report we can see that our
user experienced over 517,710 I/O-related waits for a total
effective wait time of 4,446 seconds or 8.59 milliseconds
per wait. Because we know that the best wait time we can
get with a disk-based, non-cached system is 5 milliseconds,
a wait time of 8.59 milliseconds shows the disks are
experiencing some stress. The higher this type of wait is,
the more stress experienced by the I/O subsystem. This
section of the report can show where the timing issues
are occurring.

The SQL sections
The next sections of the report slice and dice the SQL in
the shared pool by several different statistics. By using the
waits and other statistics we have discussed so far you can
usually figure out which SQL area to examine. A general
rule of thumb is that if a SQL statement appears in the top
five statements in two or more areas, it is a prime candidate
for tuning.

The sections are:

•	 Total elapsed time
•	 Total CPU time
•	 Total buffer gets
•	 Total disk reads
•	 Total executions
•	 Total parse calls
•	 Total sharable memory
•	 Total version count
•	 Total cluster wait time

Let’s look at each section and discuss the indicators that
would lead you to consider investigating the SQL in each.

Total elapsed time
If a SQL statement appears in the total elapsed time area of
the report, this means its CPU time plus any other wait times
made it pop to the top of the pile. If for some reason it is at
the top of the total elapsed time but not at the top of total
CPU time, this indicates that there is an issue with recursion
associated with this statement. Generally, you will see the same
SQL in both the total elapsed and total CPU time sections. If
you see high recursion indicators such as parse ratios that are
sub-optimal or in the Instance Activity Statistics (the section
following the SQL areas) the recursive calls or recursive CPU
usage statistics are high.

IBM Systems 17

Total CPU time
When a SQL statement appears in the total CPU time
area this indicates it used excessive CPU cycles during its
processing. Excessive CPU processing time can be caused
by sorting, excessive functions, or long parse times. Indicators
that you should be looking at this section for SQL tuning
candidates include high CPU percentages in the services
section for the service associated with this SQL (hint—if
the SQL is uppercase it probably comes from a user or
application; if it is lowercase it usually comes from internal
or background processes). To reduce total CPU time, reduce
sorting by using multi-column indexes that can act as sort
eliminators and use bind variables to reduce parse times.

Total buffer gets
“Total buffer gets” means a SQL statement is reading a
lot of information from the db block buffers. Generally
speaking, buffer gets (or logical reads in Statspack) are
desirable, except when they become excessive. Like excessive
disk reads, excessive buffer gets can cause performance issues
and they are reduced in the same way. To reduce excessive
total buffer gets use partitioning, use indexes, and look at
optimizing SQL to avoid excessive full table scans. Total
buffer gets are typified by high logical reads, high buffer
cache hit ratio (when they are driven by a poor selectivity
index), and high CPU usage.

Total disk reads
“High total disk reads” mean a SQL statement is reading a
lot of information from disks rather than from the db block
buffers. Generally speaking, disk reads (or physical reads
in Statspack) are undesirable, especially when they become
excessive. Excessive disk reads cause performance issues. To
reduce excessive disk reads, use partitioning, use indexes, and
look at optimizing SQL to avoid excessive full table scans.
You can also increase the db buffer cache if memory is not
an issue. Total disk reads are typified by high physical reads,
low buffer cache hit ratio, and low CPU usage with high I/O
wait times. If disk reads are a part of your database (such as
DSS or data warehouses where full table scans are a natural
result of their structure), then moving to IBM FlashSystem
will improve your performance, sometimes dramatically.

Total executions
High total executions can be an indicator that you are doing
something correct in the SQL in the database. Statements
with high numbers of executions usually are being properly
reused. However, be sure that statements with high numbers
of executions are supposed to be executed multiple times,
an example would be a SQL statement executed over and
over again in PL/SQL or Java, or C routine in a loop when
it should only execute once. Statements with high executions
and high logical and/or physical reads are candidates for review
to be sure they are not being executed multiple times when
a single execution would serve. If the database is seeing
excessive physical and logical reads or excessive I/O wait
times, then look at the SQL statements that show excessive
executions and show high physical and logical reads.

18 Oracle AWR report in-depth analysis

Parse calls
Whenever a statement is issued by a user or process, regardless
of whether it is in the SQL pool, it undergoes a parse. The
parse can be a hard parse or a soft parse. If it cannot find an
identical hash signature in the SQL pool it does a hard parse
with loads of recursive SQL and all the rest of the parse
baggage. If it finds the SQL in the pool then it simply does a
soft parse with minimal recursion to verify user permissions on
the underlying objects. Excessive parse calls usually go with
excessive executions. If the statement is using what are known
as unsafe bind variables then the statement will be reparsed
each time. If the header parse ratios are low, look here and in
the version count areas.

Shareable memory
The shareable memory area provides information on SQL
statements that are reused and the amount of memory in
the shared pool that they consume. Only statements with
1,048,576 bytes of shared memory usage are shown in the
report. Usually, high memory consumption is a result of
poor coding or overly large SQL statements that join many
tables. In a DSS or data warehouse (DWH) environment,
large complex statements may be normal. In an OLTP
database, large or complex statements are usually the result
of over-normalization of the database design, attempts to
use an OLTP system as a DWH or DSS, or poor coding
techniques. Usually large statements will result in excessive
parsing, recursion, and large CPU usage.

Version count
High version counts are usually due to multiple identical-
schema databases, unsafe bind variables, or software bugs.
In Oracle Database 9i there are bugs that result in unsafe
bind variables driving multiple versions. Multiple versions
eat up SQL memory space in the shared pool. High version
counts can also result in excessive parsing. Setting the
undocumented parameter “_sqlexec_progression_cost” to
higher than the default of 1,000 decreases versioning in
susceptible versions. High values for sharable memory in
the SQL pool can indicate issues if you aren’t seeing good
performance along with high sharable memory for statements
with executions greater than 1.

Cluster wait time
As the name implies, the cluster wait time will only be
present if you are using an Oracle RAC system. SQL that
transfers a high number of statements across the interconnect
will be listed in this section. High levels of block transfer
occur if the block size is too large, the db caches on each
server are too small, or the SQL is using too much of the
table data. Large update statements may appear here because
updates require block transfers in many cases for current
blocks. High levels of GC-type wait events indicate you
need to check this section for causative SQL statements.

IBM Systems 19

Instance activity statistics tuning situations that may never occur in a normal database.
The next section deals with instance activity statistics. The The example excerpt from the report we have been examining
biggest problem with the instance activity statistics is that there is in Figure 13. The excerpt has had the statistics that aren’t
are so many of them and many are not useful except in specific normally a concern removed.

Figure 13: Instance activity statistics

20 Oracle AWR report in-depth analysis

It is best to focus on the larger summary type statistics, at least
at first, when dealing with this section of the reports. Even
the pared down list in Figure 12 still has many entries that
may not really help novices find problems with their databases.
One of the biggest hurdles to understanding the statistics in
the Instance Activity section is knowing what the time units are
for the time based statistics. Generally they will be reported in
milliseconds; so, for example, the DB time value of 2,547,336
corresponds to 2,547.336 seconds out of a possible 7200 (there
are two equivalent CPUs) in an hour, yielding a percentage of
total time of 35 percent. Of that 2,547 seconds, 910 (effective
I/O time) were spent doing I/O related items, so only 1,637
seconds of processing time or 22 percent of available time.
Looking at other CPU-related timings, parsing took another
399 milliseconds and recursive SQL took 77,189 for a total
non-processing time of 77,588 rounded up to 78 seconds.
That means only 1559 seconds or 21 percent of total CPU
time was used to do actual work on our queries. Of course
there are other, non-database activities that also eat a bit of
CPU time, dropping the total to the reported 18 or so percent.

So what else is contained in the mine of data? We have
an effective I/O time and the number of I/Os issued. From
this we can see that each I/O cost an effective time of 32
milliseconds. No wonder we spent about 45 percent of the
time waiting on I/O!

By looking at SQLNet roundtrips we can tell if our application
is making effective use of array processing. If it is taking
hundreds or thousands of roundtrips per transaction then
we really need to examine how our application is handling
arrays. By default, languages like C and Java only process
10-20 records at a time, SQL*Plus defaults to 10. By
increasing array processing via precompiler flags or by
the “SET ARRAYSIZE” command in SQL*Plus we can
greatly reduce round-trips and improve performance.

Bytes sent and received to and from the clients via SQLNet
can be used with roundtrips to see how large a chunk is being
shipped between the client and the server, allowing insight
into possible network tuning. In addition, this information
can be used to see if the network is being strained (generally
speaking 1 gigabit Ethernet can handle about 100 megabytes
per second of transfers).

Consistent get statistics
Consistent gets deal with logical reads and can be heavy
weight (using two latches as in a normal consistent get) or light
weight (using one latch as in consistent get—examination).
Large numbers of consistent gets can be good or, if they
are excessive because of poor index or database design, bad
because they can consume CPU resources best used for other
things. These statistics are used in conjunction with others,
such as those involving your heavy hitter SQLs, to diagnose
database issues.

IBM Systems 21

DB block get statistics
DB block gets are current mode gets. A current mode get
is for the data block in its current incarnation, with incarnation
defined as all permanent changes applied (for example, if
the database shut down now and restarted, this is the block
you would get). Now, this can either be from cache, from
another instance cache, from the file system cache, or from
disk. Sometimes it will result in a disk read or a block transfer
from another instance cache because there can only be one
version of the current block in the cache of an instance at
a time.

Dirty block statistics
The dirty buffers inspected statistic tells you how many times a
dirty buffer (one that has changes) was looked at when the
processes were trying to find a clean buffer. If this statistic is
large then you probably don’t have enough buffers assigned,
because the processes are continually looking at dirty buffers
to find clean ones.

Enqueue statistics
The enqueue statistics dealing with deadlocks, timeouts,
and waits tell you how often processes were waiting on
enqueues and if they were successful. High numbers of
enqueue deadlocks indicate there may be application locking
issues; high numbers of waits and failures indicate high
levels of contention. You need to look in the enqueue section
of the report to see the specific enqueues that are causing
the problems.

Execution count
The execute count statistics are used with other statistics
to develop ratios to show how much of a specific resource
or statistic applies to a single execution on the average. This
can be misleading, however, if there are several long-running
transactions and many short supporting transactions. For
example, a large DSS query that requires a number of recursive
SQL operations to parse it will drive the executions up, but
you are really only interested in the large DSS query and not
the underlying recursive transactions, except as they contribute
to the DSS transaction itself.

Free buffer statistics
The free buffers requested verses the free buffers inspected statistics
show how many buffers, while not actually dirty, were being
used by other processes and had to be skipped when searching
for a free buffer. If the free buffers inspected is overly large
and the statistic dirty buffers inspected is also large, then look
at commit frequency as well as possibly increasing the total
db block buffers because the cache is probably congested.

22 Oracle AWR report in-depth analysis

GC statistics (global cache)
The GC statistics show the components that make up the
send times for the consistent read (CR) and current blocks.
The statistics for build, flush, and send for the respective
type of block (CR or current) are added together and divided
by the blocks of that type sent to determine the latency
for that operation. The receive times can be divided by the
number of blocks received to determine that latency (and
should be compared with the send latency as calculated from
the other instance’s AWR report). By seeing the components
of the latency for send operations you can determine if the
issue is internal (build or flush times are large) or external
(the send time is large). The GC and GES statistics will
only be present if Oracle RAC is being utilized. Remember
that if send or receive times are greater than the average
disk latency, then the interconnect has become a source of
performance bottlenecks and needs to be tuned or replaced
with a higher-speed and larger-bandwidth interconnect
such as Infiniband. If only one node is showing issues
(send times excessive point to this node, receive times
excessive point to the other nodes) then look to excessive
load, TCP buffer settings, or NIC card issues on that node.

The global enqueue statistics haven’t been shown because
they haven’t been a large source of performance issues. If the
messaging shows large latencies, it will also be shown in the
global cache services because global cache activity depends
on the global enqueue service.

Index scan statistics
There are two main index scan statistics:

Index fetch by key —This statistic is incremented for each
“INDEX (UNIQUE SCAN)” operation that is part of a
SELECT or DML statement execution plan.

Index scans kdiixs1 —This statistic is incremented for each
index range scan operation that is not one of the types:
index fast full scans, index full scan, and index unique scan.

By comparing the two values you get an idea of the ratio of
single index lookups verses range scan. In most systems, single
index lookups should predominate because they are usually
more efficient. However, in DSS or DWH, systems scans or
fast scans may become the dominant type of index activity.

Leaf node statistics
The leaf node statistics refer to index leaf nodes and tell
you how much insert activity is happening in your database.
The 10-90 splits show activity for monotonically increasing
indexes (those that use sequences or dates, generally speaking)
and the 50-50 splits show other types of index activity such
as text or random value indexes. If you see heavy 10-90 split
operations then you might want to look at index management
operations to be sure your indexes aren’t getting too broad
due to excessive unused space in your sequence or date based
indexes. Usually index rebuilds are only required in databases
that have monotonically increasing indexes that also undergo
large amounts of random deletions resulting in numerous
partially filled blocks.

IBM Systems 23

Open cursors
The open cursors cumulative statistic is used with other statistics
to calculate ratios for resources used per cursor or cursors
open per login, for example.

Parse statistics
The parse statistics are used to show how efficiently you
are using parses. If you have large numbers of parse count
(failures) or large numbers of parse count (hard) it could indicate
a large number of ad-hoc queries. A large number of hard
parses (greater than 10 percent of parses) indicates that the
system probably isn’t using bind variables efficiently. If there
is a large discrepancy between parse CPU and parse Elapsed
times it indicates that the system is overloaded and may be
CPU bound.

Physical read and write statistics
For the physical reads and writes statistics we will look at their
definitions from the Oracle Database 10g Reference manual:

Physical reads —Total number of data blocks read from disk.
This value can be greater than the value of “physical reads
direct” plus “physical reads cache” because reads into process
private buffers are also included in this statistic.

Physical read bytes —Total size in bytes of all disk reads
by application activity (and not other instance activity) only.

Physical read I/O requests —Number of read requests
for application activity (mainly buffer cache and direct
load operation) which read one or more database blocks
per request. This is a subset of the “physical read total I/O
requests” statistic.

Physical read total bytes —Total size in bytes of disk reads
by all database instance activity, including application reads,
backup and recovery, and other utilities. The difference
between this value and “physical read bytes” gives the total
read size in bytes by non-application workload.

Physical read total I/O requests —Number of read requests
which read one or more database blocks for all instance
activity, including application, backup and recovery, and
other utilities. The difference between this value and
“physical read total multi block requests” gives the total
number of single block read requests.

Physical read total multi block requests —Total number of Oracle
Database instance read requests which read in two or more
database blocks per request for all instance activity, including
application, backup and recovery, and other utilities.

Physical reads cache —Total number of data blocks read from
disk into the buffer cache. This is a subset of the “physical
reads” statistic.

Physical reads direct —Number of reads directly from disk,
bypassing the buffer cache. For example, in high bandwidth,
data-intensive operations such as parallel query, reads of disk
blocks bypass the buffer cache to maximize transfer rates and
to prevent the premature aging of shared data blocks resident
in the buffer cache.

Physical reads prefetch warmup —Number of data blocks that
were read from the disk during the automatic prewarming of
the buffer cache.

24 Oracle AWR report in-depth analysis

Physical write bytes —Total size in bytes of all disk writes
from the database application activity (and not other kinds
of instance activity).

Physical write I/O requests —Number of write requests
for application activity (mainly buffer cache and direct
load operation) which wrote one or more database blocks
per request.

Physical write total bytes —Total size in bytes of all disk writes
for the database instance, including application activity, backup
and recovery, and other utilities. The difference between this
value and “physical write bytes” gives the total write size in
bytes by non-application workload.

Physical write total I/O requests —Number of write requests
which wrote one or more database blocks from all instance
activity, including application activity, backup and recovery,
and other utilities. The difference between this stat and
“physical write total multi block requests” gives the number
of single block write requests.

Physical write total multi block requests —Total number of Oracle
Database instance write requests which wrote two or more
blocks per request to the disk for all instance activity, including
application activity, recovery and backup, and other utilities.

Physical writes —Total number of data blocks written to disk.
This statistic’s value equals the sum of the “physical writes
direct” and “physical writes from cache” values.

Physical writes direct —Number of writes directly to disk,
bypassing the buffer cache (as in a direct load operation).

Physical writes from cache —Total number of data blocks written
to disk from the buffer cache. This is a subset of the “physical
writes” statistic.

Physical writes non checkpoint —Number of times a buffer is
written for reasons other than advancement of the checkpoint.
Used as a metric for determining the I/O overhead imposed
by setting the FAST_START_IO_TARGET parameter to
limit recovery I/Os (Note that FAST_START_IO_TARGET
is a depreciated parameter). Essentially this statistic measures
the number of writes that would have occurred had there been
no checkpointing. Subtracting this value from “physical writes”
gives the extra I/O for checkpointing.

Recursive statistics
The recursive calls statistics can be used in ratio with the
user calls statistic to get the number of recursive calls per
user call. If the number of recursive calls is high for each
user call then this indicates you are not reusing SQL very
efficiently. In our example printout the ratio is about 10 to 1,
which is fine. If the ratio was 50 to 1 or greater it would
bear investigation. Essentially, you need to determine what
is a good ratio of recursive calls to user calls for your system;
it will depend on the number of tables on average in your
queries, the number of indexes on those tables, and whether
or not the Oracle Database has to reparse the entire statement
or if it can instead use a soft parse. This ratio is actually
reported in the header information. We have already shown
how the recursive CPU statistic is used with the CPU usage
and other CPU related timings.

IBM Systems 25

Redo related statistics
The redo-related statistics can be used to determine the
health of the redo log activity and the LGWR processes.
By using redo log space wait time divided by redo log space
requests you can determine the wait time per space request.
If this time is excessive it shows that the redo logs are under
I/O stress and should be moved to IBM FlashSystem. In a
similar calculation the redo synch time can be divided by the
redo synch writes to determine the time taken during each redo
sync operation. This too is an indicator of I/O stress if it is
excessive. A final indicator of I/O stress is a ratio of redo
write time to redo writes, giving the time for each redo write.
The redo wastage statistic shows the amount of unused space
in the redo logs when they were written; excessive values of
redo wastage per redo write indicates that the LQWR process
is being stressed. The rollback changes —undo records statistics
are actually rollback changes—undo records applied. According
to Jonathan Lewis, if a session’s “user rollbacks” is large, but
its “rollback changes—undo records applied” is small (and those
numbers are relative to your system) then most of the rollbacks
are doing nothing. So by comparing these two metrics you
can determine, relative to your system, if you have an undo
issue. Undo issues deal with rollback commands either explicit
or implicit. Explicit are generated by issuing the rollback
command, while implicit can be from DDL, DCL or improper
session terminations.

Session cursor statistic
The session cursor cache hits statistic shows how often a
statement issued by a session was actually found in the
session cursor cache. The session cursor cache is controlled
by the session_cached_cursors setting and defaults (usually)
to 50. If you see that the ratio of session cursor cache hits/user
calls+recursive calls is low then increase the setting of session_
cached_cursors. A majority of the time, settings from 100 to
150 or higher are recommended.

Sort statistics
The sorts statistics: sorts(rows), sorts(memory), and
sorts(disk) show how the system is doing sorts. In later
versions you may see sorts(disk) replaced by the workarea
executions—one pass and workarea executions multipass statistics.
Ideally you want no sorts(disk) or workarea executions —one pass
or workarea executions —mulitpass; however, in reality this may
be impossible to achieve, so seek to set sort_area_size, hash_
area_size, merge_bitmap_area_size, create_bitmap_area_size,
or pga_aggregate_target to large enough values to reduce
sorts to disk as much as possible. Note that no statistic really
tracks bitmap, hash, or global temporary table operations that
overflow to disk, so it is possible to get temporary tablespace
IOPS while having zero values for all disk-related sort and
workarea statistics. The sort segment histogram section of the
report will help you determine settings for the sort individual
or the PGA aggregate parameter settings.

26 Oracle AWR report in-depth analysis

Summed dirty queue length
The summed dirty queue length statistic can be used in concert
with the physical writes from cache statistic to determine if the
DBWR process is being stressed. If the ratio of summed dirty
queue length to physical writes from cache is greater than 100 then
more DBWR processes are needed.

Table fetch statistics
The table fetch statistics:

…provide details on how table data has been accessed.
The three most important statistics are:

Table fetch by rowid —This is the cumulative number of
rows fetched by index lookup of rowid.

Table scan rows gotten —This shows the number of rows
retrieved via table scan operations (full table scans).

Table fetch continued row —This shows the number of row
fetches that resulted in a continued row read, essentially
doubling (or more) the I/Os. This could be an indication
of chained rows, chained blocks, or BLOB activity.

Depending on your database type, you could have more
index-based reads (usually OLTP) or more table scan-based
reads (DWH, DSS). It is important to have a feeling for the
ratio of these two statistics (index verses scan rows) so any
change in the profile will alert you to possible index issues.
Also monitoring the ratio of continued row reads to the sum
of scan and index row reads will inform you if you are getting
excessive chained row activity.

Table scans (direct reads) are usually indicative of parallel query
activity. Table scans (rowed ranges) are usually also caused by
parallel query operations.

The two table type scans, long and short, are based on whether
a table is less than a certain percentage of the size of your
db cache size. For example, some releases set the boundary
between short and long table scans at 2 percent of the db
cache size. Generally, short table scans should be much greater
than long table scans in a properly indexed environment.

Transaction rollback
The transaction rollbacks statistic is for rollbacks that actually
do work. This statistic will also track the rollbacks done
automatically, for example, when an update occurs for multiple
rows but has to be backed out and restarted by the Oracle
Database because of blocking locks. Because this attempt
to update-block-rollback may occur several times for a
single transaction, you will see several transaction rollback
increments even though a single transaction actually occurred.
If this statistic is high, then check for conflicting transactions
that lock many rows.

IBM Systems 27

Undo change vector statistic
The undo change vector size statistic is a cumulative count
in bytes of the size of undo records. By calculating a ratio
of undo change vector size to user calls you can get an idea
of the amount of undo being generated per user call. If
the undo being generated is large then look for excessive
write activity to the undo tablespace because this could be
slowing down your transactions and causing stress on the
I/O subsystem. If your application generates large amounts
of undo by nature, consider moving the undo tablespace to
IBM FlashSystem.

User statistics
The user I/O wait time statistic is the cumulative I/O wait
time. Use this statistic with user calls to determine the average
I/O wait time per user call. This can also be used with the
physical reads plus the physical writes to determine the average
I/O wait time per I/O. If the I/O wait time becomes an issue,
your best solution is to move hot tables and indexes onto
IBM FlashSystem.

The user commits and user rollbacks are used with
other statistics to determine weighting. If the number of
user rollbacks is high compared to user commits, look to ad-hoc
SQL or improper session termination as the possible cause.

Work area statistics
The work area statistics have already been discussed in the
section on sort statistics. Essentially the most desired workarea
statistic is workarea executions —optimal because these were
done within the PGA_AGGREGATE_TARGET settings in
memory. Any of the other workarea statistics indicate a sort to
disk. If there seem to be excessive workarea executions-optimal
then look to eliminate unneeded sorts such as distincts from
improper joins, sorts that could be eliminated using a multi­
column index, or unneeded order by and group by operations.

Instance activity stats — absolute values
The absolute values show the high water marks for various
memory, login, and other cumulative statistics that cannot
be diffed. Using ratios of logins to the various PGA and
UGA memory allocations can show possible settings for
PGA_AGGREGATE_TARGET values or sort area values.
Remember that these values are incremented each time a
process is created and adds to its PGA or UGA areas, and
that contribution is not removed once the session logs out,
so the actual totals may bear little resemblance to the real
values. Use these statistics as information only.

Instance activity stats — thread activity
The thread activity statistic shows the number of (projected)
redo logs switched per hour. The old saw was to have redo
logs switch every 15 minutes. This rule of thumb to switch
every 15 minutes may or may not apply to your database.
Tune redo log size according to the needs of your system.
However, excessive redo log switching (like once a minute
with a 5 meg log) should be avoided because this generates
lots of I/O overhead.

Tablespace I/O statistics
The next section of the AWR report deals with the tablespace
I/O statistics. There are two parts to the tablespace I/O
statistics: part one rolls up the I/O statistics by tablespace
and part two lists the statistics by data file because each
tablespace may have multiple data files associated with it.

28 Oracle AWR report in-depth analysis

Figure 14 shows an example of this section of the report.

Figure 14: Tablespace I/O statistics

The tablespace I/O section of the AWR report can run
to several pages if you have many tablespaces each with
multiple data files. In situations where partitions are being
used and each is given their own tablespace or datafile, this
is often the case. Notice that the timing for writes is not a
part of the report. This is because Oracle doesn’t stress write
tuning because for most writes it uses delayed block cleanout
and only writes the blocks back to the tablespaces when
needed. However, redo writes, undo writes, and temporary
tablespace writes fall outside the normal writes in that they
are done immediately.

When reviewing this section of the AWR report watch for
the tablespaces that are showing high numbers of reads and
writes, high average read milliseconds, and high numbers of
buffer waits. High values for read millisecond and buffer waits
indicates I/O stress and possible memory starvation for the
instance. If buffer waits are not indicated but there is still a
high value for read milliseconds, then the I/O subsystem is
being stressed.

For tablepaces or data files that are exhibiting I/O stress,
make sure there is adequate memory. After that, consider
the use of IBM FlashSystem technology.

IBM Systems 29

Review the I/O reports when the top five events are I/O
related. Correlate the objects accessed with the top SQL
statements for physical reads to the tablespace and data
file level statistics. By examining the average blocks per
read you can determine if the access to the tablespace is
predominately index based (the value is closer to one block
per read), if the activity is predominately full table or index
scans (the value is close to the db file multi block read count),
or if the access is direct (the value is higher than the db file
multiblock read count).

If the temporary tablespace shows high levels of I/O in
spite of sorts (disk) or work area executions single pass and
multipass being zero, then look at the use of hash joins in
the v$sql_plan table and also look for global temporary
table and bitmap usage because these may be causing the
temporary tablespace activity.

Buffer pool statistics
The next section of the report deals with how the buffer
pools are being used. In our example (in Figure 15) there is
only one buffer pool, the default one, being shown; however,
in your database there could be a keep, recycle, 2K, 4K,
8K, 16K, or 32K (or 64 bit) in addition to your default block
size pool (note that you cannot use the special blocksize
designation parameter for the blocksize that is the same
as your default pool).

Figure 15: Buffer pool statistics

30 Oracle AWR report in-depth analysis

This report section has three parts: buffer pool statistics,
instance recovery stats, and the buffer pool advisory.
We will start with the buffer pool statistics.

Buffer pool statistics
The buffer pool statistics give the gross performance indicators
for the buffer pool. The number of buffers, cache hit ratio,
buffer gets, physical reads, physical writes, free buffer waits,
write completion waits, and buffer busy waits are shown here.

Of the statistics shown, the most important are those dealing
with waits. The free buffer waits statistics are a good indicator
if you need more buffers in the pool where it shows a greater
than zero value. The write complete waits occur if DBWR
cannot keep up with the writing of dirty blocks. A block
that has been put on the write list cannot be reused until
it has been written. When the buffer activity is such that
DBWR can’t write the blocks fast enough after they are
on the write list, then write complete waits are generated.
If you see write complete waits try boosting the priority of
DBWR and LGWR processes and adding DBWR processes.

Buffer busy waits are indicative of an overloaded buffer
cache where processes aren’t releasing buffers fast enough.
This can happen because of interested transaction-list (ITL)
waits, locks, and other issues that prevent a session from taking
ownership of a block in use by another session. Sometimes
increasing the number of buffers can help with buffer busy
waits, but it can also be a signal of application locking issues

or too large a block size. With too large a block size in later
versions of the Oracle Database you may also see the wait for
other processes, which is actually more descriptive of what is
going on. Placing tables and indexes that are experiencing
these types of waits into a tablespace with a smaller blocksize
can help. Look in the sections on ITL waits later in the report
to help pin down which objects are causing the problems.

Instance recovery statistics
The instance recovery statistics show how many blocks
would need to be recovered if an instance crash were to
occur. Essentially, any block that is not current at the time
of the crash would need to be evaluated for roll forward
then roll back operations. Use this section to tune the
various fast start and recovery initialization parameters.

Buffer pool advisory section
The buffer pool advisory attempts to show you with
numbers what would happen if you increase or decrease
the number of buffers in your buffer pool. It is a good
practice to graph the size factor or the buffers for evaluating
against the estimated physical reads saved. An example
graph from the data in Figure 16 is shown. Start with the
0.7 read factor value or higher or you may see odd results.

IBM Systems 31

Figure 16: Example advisory plot

As you can see, we started our plot at 0.9. At the 1.2 size factor
we see a drop in expected physical reads and then the physical
reads are expected to plateau out to past twice our current
setting. Therefore, based on the advisory, increasing our db
cache size to 1.2 times the current setting should provide a
benefit. There is another small decrease at 1.4 but the gain
probably wouldn’t be noticeable between 1.2 and 1.4.

PGA statistics
The next section of the report deals with the PGA and
its settings (PGA_AGGREGATE_TARGET). You would
look at tuning the PGA if you were seeing sorts to disk,
workarea executions in the single or multipass statistics, or
excessive I/O to the temporary tablespace. Figure 17 shows
this report section.

Figure 17: PGA statistics

32 Oracle AWR report in-depth analysis

There are four parts to the PGA statistics section of the AWR
reports: PGA Aggregate Summary, PGA Aggregate Target
Status, PGA Aggregate Target Histogram, and PGA Memory
Advisor. We will begin with the PGA Aggregate Summary.

PGA Aggregate Summary
The PGA Aggregate Summary section of the AWR report
shows the rolled up usage data for the PGA area. It shows what
it calls the PGA Cache Hit percent and then the components
that make up that percent: the work area megabytes processed
and the Extra Work Area Megabyte Read/Written. The PGA
Cache Hit Percent is the total number of bytes processed in
the PGA versus the total number of bytes processed plus extra
bytes read/written in extra passes. In our example report we
see that we only get 54 percent because we processed 2
gigabytes to disk in six single passes. If this was a typical
transaction profile captured in the AWR report, it would
indicate the need to add memory to our PGA_AGGREGATE_
TARGET to eliminate disk-based sort. The next section
we will look at is the PGA Aggregate Target statistics.

PGA Aggregate Target statistics
The example report didn’t include a section on this so a
section from another report has been used.

In this section of the PGA reports the differences between
the start and end AWR statistics collections are shown. This
section is used to determine if the PGA aggregate settings are
adequate or if they should be increased. If the ending statistics
show increases, then the system had to adjust the parameters
on the fly (or they were manually adjusted). You need to review
this section to be sure that someone didn’t reduce or otherwise
change the PGA profile during the test.

PGA Aggregate Target histogram
This is probably the most useful part of the PGA section
of the AWR report. In this section the histogram shows
you the various memory sizes that were used during the
time period measured. By examining where single or
multipass executions occurred you can decide what your
PGA_AGGREGATE_TARGET setpoint needs to be.
By remembering that a single process gets a maximum of
5percent of the PGA_AGGREGATE_TARGET setting up
to the value of the undocumented parameter “_pga_max_size”
and knowing that the largest assigned sort segment would
be a hash segment and that by default this is two times the
normal sort segment, you can simply multiply the high
boundary for the sorts you want to eliminate by 40 to get
the needed set point. In our case, the upper range is 512MB
so 40*512MB would be 20GB. Unfortunately, in Oracle
Database 11g the setting for “_pga_max_size” is 500MB
so we can’t totally guarantee we could eliminate all the sorts.

IBM Systems 33

In Oracle Database 11g the maximum setting is 32GB for
PGA_AGGREGATE_TARGET. However, that being said,
you can set this parameter to more than the physical memory
that is on the machine; just be sure you don’t have enough
processes wanting to do sorts at the same time that would
cause swapping!

The final section, and the least useful, is the PGA Advisor.

PGA Memory Advisor
In theory, a tool that estimates the effect of increasing or
decreasing the PGA_AGGREGATE_TARGET sounds
like a good idea, but in practice this part of the PGA section
of the AWR report has never worked properly. For example,
looking at what it recommends: it says that we could reduce
the size of the PGA_AGGREGATE_TARGET to 80 percent
of what it is right now with no ill effects. Supposedly if the
Estimated PGA Over Allocation count column shows values,
then that setting is too low. If it doesn’t and the estimated
time column shows no decrease, then that is the good setting.
Yet when we do the calculations to eliminate sorts to disk,
we get a number much larger than what we currently have
set. However, it is showing that even at the largest setting
it thinks is available we would only see a 74 percent PGA
cache hit percent. Trust your own calculations based on
the histogram.

Shared pool statistics
The shared pool section of the AWR report is another
section that is often useless. There seems to be numerous
problems with the algorithms that populate the advisories.
Figure 18 shows the example excerpt from our AWR report.

Figure 18: Shared pool statistics

Other than recommending that we increase the shared
pool size by 30 percent, not much else of value is being
shown. However, if the header data about shared SQL shows
problems, this section might help you reset some sizes. Using
SGA_MAX_SIZE and SGA_TARGET in Oracle Database
10g and higher can help the Oracle Database adjust shared
pool size. In Oracle Database 11g use either the previously
mentioned parameters or MEMORY_MAX_SIZE and
MEMORY_TARGET parameters to allow automatic shared
pool size adjustment.

34 Oracle AWR report in-depth analysis

Other advisories
There are three other advisories contained in the AWR report.
An example excerpt from the AWR report for the advisories is
shown in Figure 19.

Figure 19: AWR advisories

SGA target advisory
If you have the SGA_TARGET parameter set, the AWR
report shows the SGA_TARGET advisory. The advisory
shows the affects of changing the size of the SGA_TARGET
parameter on your system. In the case of the example report,
it is indicating that if we increased our SGA_TARGET by 50
percent we would see a marginal increase in the efficiency of
the memory management; however, the increase is so small
it probably isn’t worth the effort unless other factors confirm
the recommendation. In the case of the other sections we
have looked at, there is no real reason to increase the setting.

Streams Pool Advisory
When the STREAMS_POOL_SIZE parameter is set,
the Streams Pool Advisory is populated in the AWR report.
Streams uses the Streams Pool to buffer the messages it
sends and receives to and from other systems. If the Streams
Pool size is insufficient, these messages are queued to disk
(“spilled”). Excessive disk spills by the streams processes
result in poor performance of the streams processes. The
advisory shows the effects of increasing or decreasing the
current stream pool by showing the increase or decrease
in spillage and the effect on performance with projected
time in seconds for either performance losses (Est Spill
Time) or gains (Est Unspill Time).

Java pool advisory
There was a time when the Java pool was rarely if ever used.
It was set to 16MB and ignored. Now Oracle does more
and more of its work, especially with export and import and
other utilities, using Java in the kernel, making the Java pool
setting an important one to periodically review. The Java pool
advisory shows the effects of increasing the pool size. In the
example report, even if we doubled our pool size there would
be no net gain (other than in objects able to be stored). If we
were seeing Java pool related errors or our Java was running
slow, then this report might help us determine if it was a Java
pool issue.

IBM Systems 35

Buffer Waits statistics
If we see that the Buffer Busy Waits event is causing issues
with performance, the next section of the AWR report would
be where we’d look to see the class of objects causing the
problem. Figure 20 shows the Buffer Waits section of our
example report.

Figure 20: Buffer Waits statistics

In our example we only see data block and undo header waits;
however, there are several other types of buffer waits possible:

•	 File header block
•	 1st level bitmap block (bmb)
•	 Segment header
•	 2nd level bmb

Each of these buffer waits points us to a different type of issue.

The data block type of wait usually indicates an issue with
block sharing between processes. Essentially the block may
be too big for its own britches, meaning that it has too many
rows and too many users want it at the same time. Usually
this means someone was reading in the block when someone
else requested it. Try reducing rows per block.

The undo header Buffer Waits may indicate we have
an insufficient number of undo segments. If you are
using automatic undo management, try reducing the
transactions_per_rollback_segment parameter to bring
more undo segments online.

File header block waits usually mean freelist or freelist group
problems. You can find the segments causing the issues in the
Segments with ITL waits section of the AWR report, which is
after the latch sections. Try using automatic segment space
management (ASSM) to relieve this type of contention.

The first and second level bmb type waits indicate issues
with the bitmap blocks used in ASSM to manage freespace
in tables (the bmbs take the place of traditional freelists
and freelist groups). This could be caused by too large a
blocksize or extreme internal “whitespace” inside tables
caused by deletions.

The segment header buffer wait is usually caused by an
insufficient number of freelists or freelist groups, which
causes serialization of access and buffer waits as a result.
If you are using ASSM and get these, switching back to
manual management may help.

36 Oracle AWR report in-depth analysis

Enqueue statistics
Enqueues are serialization mechanisms within the Oracle
Database. Enqueues are how the database prevents multiple
updates from happening against the same record at the same
time; they work with locking and latching to achieve this.
When the enqueue deadlocks, enqueue waits, or enqueue timeouts
point to an enqueue issue, you need to check the enqueue
statistics section of the AWR report. The enqueue statistics
section of our example report is in Figure 21.

The enqueue statistics tell you more about what is happening
under the covers in the user processes and SQL processing. In
the excerpt in Figure 20, we see that the BF-BLOOM FILTER
enqueue is our predominant enqueue for this time period. This
BF enqueue is only present when parallel query is used and
signifies that the database used a bloom filter mechanism to
filter the results from one or more of the parallel query slaves
during the parallel query operations. The BF type enqueue
has only been available since Oracle Database 10g when the
bloom filter was added to the Oracle Database’s repertoire.

The biggest issue with determining what enqueues are telling
us is that they aren’t always well documented and may involve
a web search or search of www.oracle.com or metalink.oracle.
com to resolve. The V$SESSION_WAIT and V$LOCK
dynamic performance views will provide more details about
enqueue issues by looking at the P1 and P2 values listed and
knowing the type of enqueue. To see what the various P1 and
P2 values mean for a specific enqueue, the following query
should be run in your instance:

Figure 21: Enqueue statistics

http://www.oracle.com

IBM Systems 37

The list for Oracle Database 11g has 247 entries. For the
BF enqueue, the additional information we could get would be
the node#, parallelizer#, and bloom#. You should concentrate
on the enqueues that show a wait time, because if there is
no time penalty (at least one that can be measured in whole
milliseconds) associated with an enqueue, you don’t really care
how many times a process or group of processes waited on it.

Undo segment statistics
In the beginning there was redo and rollback; then in late
Oracle Database 8i the terminology was switched to redo and
undo. If you hear someone talking about rollback segments,
they mean undo segments and visa versa. Most DBAs use
automated undo management. Automated undo management
essentially uses the process count and the TRANSACTIONS_
PER_ROLLBACK_SEGMENT parameter to determine when
segments should be brought online. Initially, Oracle brings
10 segments online then waits for the ratio of processes/
transactions_per_rollback_segment to exceed 10 to bring on
a new one, and each time the ratio increments after that a
new segment is brought online. Unfortunately, most of these
segments just sit there taking up space; for as we all know,
a process doesn’t translate directly into a new transaction.

Systems have been tracked that have a hundred undo segments,
of which only five are actually being used and the rest are
sitting there idle and offline just taking up space. An example
of the undo statistics section from our AWR report is shown
in Figure 22.

Figure 22: Undo statistics

38 Oracle AWR report in-depth analysis

Undo statistics tell us how efficiently the undo segments
are being handled. Unfortunately there is not much that
can be done to tune them if we are using automatic undo
management. You control three aspects of the undo segments
when you use automatic management: size of the undo
tablespace, placement of the undo tablespace datafiles,
and the value of the parameter transactions_per_rollback_
segment. You can use the undo advisor in Oracle Enterprise
Manager, Oracle Grid Control, or Oracle Database Control
to determine the suggested size of the undo tablespace
to be based on historical AWR data (it defaults to seven
days worth, the maximum retained by default). By tweaking
the transactions_per_rollback_segment you can also reduce the
STO numbers (if you get them). STO stands for snapshot too
old, or ORA-01555. The OOS column means out of space,
which is rare and usually means the database ran out of space
in your tablespace or filesystem. By using the undo advisor
and playing with the undo retention numbers you can derive
a tablespace size to prevent both STO and OOS errors. The
dba_rollback_segments view provides detailed information
on the undo segments, if you want to see more information.

Latch statistics
The next area of the AWR report is the latch statistics
area. Like the Instance Activity statistics, there is a lot of
information contained in this section; unfortunately, most
of it is not useful for you in your tuning efforts and should be
filtered out of the result set. However, the Oracle Database
must use some of it for internal tuning efforts, so we are stuck
with using our own filters to remove the non-essential data.

A reduced version of the full latch section (filtered to show the
latches of concern in this environment) is shown in Figure 23.

Figure 23: Latch section of AWR report

IBM Systems 39

The proper use of latches within the Oracle Database
environment can determine whether or not your application
can scale. That being said, if the latch related events such
as latch free is not a top five wait event then latching is not
an issue for your database at this time and your efforts should
be spent elsewhere. Analysis of the latch section of the report
is critical if scalability has become a concern in your database.
The latch section of the AWR report has six sections:

•	 Latch Activity —Overall latch statistics
•	 Latch Sleep Breakdown —List of latches with sleeps
•	 Latch Miss Sources —List of latches that were the source

of most misses
•	 Mutex Sleep Summary—In Oracle Database 10.2.0.1

some latches were switched to lighter weight mutexes;
this section shows the waits related to these objects.

•	 Parent Latch Statistics —This section shows parent latches
•	 Child Latch Statistics —This section shows the latches that

are children latches to parent latches in the previous section

Some of these sections are useful; it should be noted however
that they contain lots of extraneous information. As was
stated above, this example figure was paired down to just
those that showed statistics of concern; the actual section
was two to three pages long!

Latch activity
In the latch activity section there are two percentage
statistics: Pct Get Misses and Pct NoWait Misses. The two
percent statistics show the latches you should be concerned
with right now. If either or both show a value other than
N/A or 0.0 then that latch is showing some stress. Now,
should you be concerned with fractional percentages?
Probably not. As you can see in the section of the report
shown above, the highest percentage in the example report
is 0.3 percent for Pct Get Misses for the KJC message pool free li
latch (actually the full name is KJC message pool free list) which
is an Oracle RAC related latch dealing with the Kernel Job
Control message pool (Global Enqueue Services). Because
the percentage is less than 1 percent it is of no real concern.
Probably the best source of information about these latches
is Oracle Metalink, but it may take some digging.

It should be noted that many experts believe that the use
of miss percentages in tuning latches may lead you to tune
latches that are really not important. Instead, you should be
looking at the next section of the report on latch sleeps.

Latch sleep breakdown
When a process tries to get a latch, if there is no latch available
the process spins on the CPU, waiting for the latch to become
available. This is called a sleep and latches with high sleeps
may be having contention issues. Generally speaking, look at
the latch with the highest percentage of sleeps as related to
total sleeps (sleeps/sum(sleeps)*100 from v$latch) if you have
a high latch free situation because this will be the latch most
affecting performance.

40 Oracle AWR report in-depth analysis

The best way to tune latching issues is to ensure the database
has a proper level of resources (generally memory in the
cache and shared pool areas); be sure to use bind variables,
and eliminate hot block issues.

Many experts point to the value of the undocumented
parameter “_spin_count” as a possible source for latch spin
issues. The spin count tells the Oracle Database how many
CPU cycles to wait for a latch before incrementing spin count.
This may be set as low as 2000 for many systems. With higher
speed CPUs this value is too low and can result in high latch
sleeps when there really isn’t a problem. The argument for
adjusting this undocumented parameter is that the value is
really dependent upon the CPU speed, and the value of 2000
for the default was based on CPU speeds available when Oracle
Database version 7.0 was released! Obviously we have seen a
huge increase in CPU speeds since then with no increase in
the setting of “_spin_count”. However, spin should only be
adjusted if the value of your runqueue is: a.) due to CPU and
not I/O, b.) less than the number of CPUs (assuming you
are on Linux, Unix, AIX, or HP-UX). Runqueue tells how
many processes are waiting to execute and can be incremented
by processes waiting on either I/O or CPU. A clue to if the
runqueue is I/O or CPU based is if runqueue>#CPUs and
CPUs show idle time while I/O wait is high, then the
runqueue is due to I/O wait. If runqueue>#CPUs and CPU
utilization is near 100 percent with low or no I/O wait, then
it is due to CPU.

In situations where there is a high runqueue, you can
sometimes correct this if it is CPU or I/O related with an
Oracle Database system by renicing the LGWR, DBWR,
and if using Oracle RAC, the LMON processes. Renicing
means to increase those processes’ priority.

So, by increasing the “_spin_count” parameter, sometimes to
as high as 10,000 or more, improvements in throughput and
reductions in overall wait times have been seen; however, this
will need to be tested for a proper setting in your environment.

Latch miss sources
The latch miss sources section shows which latches are
missed during an attempted get operation. In this section
the important consideration is once again the latch with
the highest level of sleeps. See the above section on Latch
Sleeps for tuning suggestions.

Mutex sleep summary
As with latches, mutexes, which replace some latches in
Oracle Database 10.2.0.1 and above releases, will sleep and
spin. The mutex with the highest level of sleeps should be
investigated for tuning.

IBM Systems 41

Parent and child latches
The sections on parent and child latches are used to help
isolate which latches and their children are causing issues.
By determining which latch or child latch is sleeping or
waiting the most, you can determine whether the problem
is related to memory, bind variables, or hot blocks.

Segment access areas
The next several sections are similar to the SQL sections,
except they deal with segments. They are similar to the SQL
sections because they slice and dice the various segment access
issues and show which segments are exhibiting specific forms
of contention. Figure 24 shows these sections of the report.

Figure 24: Segments sections

42 Oracle AWR report in-depth analysis

The segments sections of the AWR reports allow you to
pinpoint which segments and tablespaces are responsible
for the various types or reads, waits, and other database
related statistics that are related to segments. The segment
sections are:

•	 Segments by logical reads —If you have issues with high
logical reads, review these objects for possible partitioning,
SQL issues, or index issues.

•	 Segments by physical reads —If you have physical read issues,
review these objects for index issues or possible partitioning.

•	 Segments by row lock waits —If you have high transaction-type
enqueues, look here for locking issues with objects. These
will also show up in the Oracle RAC sections if the problem
is present in a cluster database.

•	 Segments by ITL waits —If you have large numbers of block
waits, look here for the causes.

•	 Segments by buffer busy waits —These segments probably
have too large a block size if in Oracle RAC. Otherwise
look at insufficient memory allocations. These segments
are experiencing hot blocks.

•	 Segments by global cache buffer busy —Usually due to too
large a block size in Oracle RAC. May be helped if the
segments are indexes by using reverse key (however this
inhibits index scans). Look to these segments for hot block
issues in Oracle RAC.

•	 Segments by CR blocks received —For consistent read issues,
look at hot blocking and block size, reduce rows per block.

•	 Segments by current blocks received —Current blocks being
transferred means high levels of transactions. Small
blocksizes can help, as can reverse key indexers.

Library cache activity sections
In Oracle Database version 7 the tuning of the various
dictionary caches was automated. However, the statistics
in the next sections dealing with library cache activity
show you, for example, if you need to use more caching
for sequences or if you should look at using automated
segment management and other internal issues that are
indicated through the library cache statistics. Figure 25
shows an excerpt from our AWR report.

Figure 25: Library cache statistics

IBM Systems 43

One thing to remember when dealing with any statistics,
you need to have a statistically relevant number of
measurements before the statistics are valid. If you only
have two occurrences then it is rather hard to draw valid
conclusions. On the other hand, if you have 1,000 or
10,000 occurrences then the statistics are more valid.
If we eliminate the “invalid” statistics from the above
sections, we are left with Figure 26.

Figure 26: Valid library cache statistics

So, what should we be looking for in the valid library cache
statistics? Generally speaking, miss percentages should be low;
however, that being said, if the database is just starting up
then the miss percentages will be high until the cache fills. In
cases where many temporary segments, undo segments, and
other objects are accessed and released, we may see high miss
percentages but they really aren’t of major concern. If we see
the miss percentages for a majority of areas, then we probably
have a shared pool sizing issue and we may need to (if we are
using automated memory management) manually establish a
“floor” value by setting the shared_pool_size parameter. If we
can’t set the shared pool parameter, we would need to increase
sga_target to closer to sga_max_size in Oracle Database 10g or
memory_target closer to memory_max_target. If you find that
these pairs of parameters are set to the same value, you will
need to raise the max size parameters first. In most cases you
should have a several percentage point difference in the values
for the target and max size parameters, usually anywhere from
200MB to 1GB depending on the amount of memory your
system can give to the Oracle Database.

Based on the value of the target parameters, Oracle Database
will automatically allocate space to the various automatically
controlled areas such as the shared pool, default db block
cache, large pool, java pool, and others. Within the shared
pool the library and dictionary caches will be set. If the
dictionary cache areas are too small, then misses will result.
If the SQL or PL/SQL areas are too small then you will see
reloads and invalidations. This can also drive latch free events.

44 Oracle AWR report in-depth analysis

Dynamic memory components sections
If you are using the automatic memory management in
Oracle Database 10g or 11g then the AWR report will
contain sections showing what components were resized
or modified during the AWR report period. An excerpt
of this section is shown in Figure 27.

Figure 27: Dynamic memory sections

The dynamic memory sections are used as a guide to setting
the dynamic memory parameters sga_target and sga_max_size
in Oracle Database 10g and memory_target and memory_max_
targetI in Oracle Database 11g.

If you see large numbers of resize operations in your statistics
in this section, pay attention to which component is doing
which action. You can use this information to determine if
the manual parameters (shared_pool_size, db_cache_size,
java_pool_size, large_pool_size, streams_pool_size) should
be set to a floor value. For example, if we were to see in the
Memory Resize Operations Summary section that the shared
pool was seeing a number of grow operations while the default
cache was shrinking, we might want to set the parameters for
their sizes to the values indicated in the Memory Resize Ops
section. If, when we look at these sections we see that all
of the actions are deferred and not completed, that usually
indicates that the target and max size parameters are set to
the same value. Many defers or shrinks followed by grows
can also indicate that we need to increase the max size
parameters because it shows that we are robbing Peter to
pay Paul within our memory structures.

IBM Systems 45

If we have the proper resources, and the target and max
size parameters are set correctly, we should see marginal
grows in the various pools and few shrinks. However, this
assumes that we have all the memory we need to satisfy all
memory needs; in systems that are memory poor there may
be no way to prevent this give and take of memory and in
fact that is by design.

If you have issues with cache buffer or library related
latches and mutexes, this section of the report will show
you possible reasons.

Process memory sections
The process global area is usually controlled by the
pga_aggregate_target parameter since Oracle Database 9i.
The individual process is usually constrained to 5 percent
of the setting of pga_aggregate_target up to the value of
the undocumented parameter -“_pga_max_size.”

In Oracle Database 9i the size of “_pga_max_size” was
constrained to 200MB; in Oracle Database 10g depending
on release this was upped to 500MB, and in Oracle Database
11g it seems to be (at least on Windows Vista and Redhat
32 bit Linux in 11.0.1.0.6) back to 200MB. On 64 bit
implementations this may be different.

Let’s look at the AWR report sections dealing with Process
Memory statistics. Figure 28 shows the example report sections
for the Process statistics.

Figure 28: Process memory sections

46 Oracle AWR report in-depth analysis

Process memory summary
The process memory summary section of the AWR report
expands on the previous PGA sections that showed the use
of the PGA for sort type operations. In these sections we
see the before and after snapshots of how the PGA areas
changed from the beginning to the end AWR snapshot.
By comparing the begin to the end snapshot for the different
PGA sections we can determine what might need to be tuned
in our PGA environment. One thing to remember here is
that these numbers are totals and not averaged over the total
number of processes except where explicitly stated that it is
an average, sum, or maximum value.

The B (begin) and E (end) sections allow us to compare how
the usage changed over the course of the snapshot period.
For example, in our example the freeable memory jumped
from 13.3 to 101.5MB, or an average of 1.8MB per process.
Generally speaking, freeable memory is memory that was
used for sort or hash activities. We also saw increases in other
and SQL memory usages.

SGA Memory summary
The SGA Memory section just shows any gross changes
to the main areas of the SGA. The results would be the
same if you did a “show SGA” command in SQL, plus
before and after and noted changes to the numbers shown.
Generally, it is not of much use in tuning.

SGA Breakdown Difference
The SGA Breakdown Difference section shows us for
the memory components whose allocations may have
changed, how much they changed by percentage, and
in what direction. This section allows us to analyze the
component by component changes and also helps pinpoint
possible memory leaks. One set of the statistics shown in
this section that bear watching are the “free” statistics.
If the “free” statistics don’t change then memory may
be over-allocated to those components.

Streams component sections
If you are utilizing Oracle Database streams then the
AWR will populate the various streams sections of the AWR
report. Essentially, if you are seeing spills to disks from the
streams pool or excessive time delays in the queues (usually
you will see both if you see one or the other) then you need
to look at increasing the streams pool size (it should be
handled automatically) or increasing the number of queue
processes for either the capture queues or apply queues.
If you use resource limits, the resource limit section will
show how the resource limits have been applied during
this period. Figure 29 shows the streams component areas.
Unfortunately, because our example database is not using
streams, they are not populated with actual data from the
example database but instead with data derived from other
actual reports.

IBM Systems 47

Figure 29: Streams AWR report sections

48 Oracle AWR report in-depth analysis

The statistics dealing with timing and spillage to disk are
probably the most important in the sections above. If any
single queue is showing excessive times then adding additional
queues may help with that problem; however, the addition of
queues may also require changes in the receiving or sending
instances of advanced queuing setup as well. In addition,
there may be spillage numbers shown. If you are experiencing
spillage this means you have insufficient memory allocated
to the streams pool and you should increase the size of that
memory component. A section we skipped over before, the
Streams Pool Advisory section, would help you in deciding
the needed changes to the streams pool memory allocation.

Initialization parameter changes
Unless either some automated process or the DBA has made
changes during the test period for which the AWR report
has been run, there should be no changes to initialization
parameter settings. Therefore, if you see changes and you
did not initiate them, you need to investigate the causes
of the changes. Figure 30 shows the initialization parameter
section. Only parameters that have values different from the
default or that have changed will be shown in the initialization
parameter section.

It is always a good idea to verify that the initialization
parameter settings are what they should be when analyzing
AWR reports. A misplaced power of ten or a botched
K to M to G calculation can make a world of difference
in the efficiency of an SGA.

You should also look for odd, undocumented parameter
settings and track down the source of the suggested
values shown if you are not familiar with the settings
yourself. Many times a DBA will carry settings from
one version of Oracle Database to another during
upgrades without considering whether or not special
settings are still appropriate.

If we weren’t using Oracle RAC this would be the last
section of the report; however, the use of Oracle RAC
adds some additional global enqueue statistics sections
to the AWR report.

Global enqueue and other
Oracle RAC sections
With Oracle RAC comes many new statistics and areas to
monitor. The AWR report has been expanded to provide
detailed Oracle RAC sections to help you troubleshoot and
diagnose Oracle RAC issues. Figure 31 shows the additional
Oracle RAC sections pruned of statistics that generally won’t
be of use.

Figure 30: Initialization parameter section

IBM Systems 49

Figure 31: Global enqueue and oracle RAC statistics

50 Oracle AWR report in-depth analysis

Figure 31: Global enqueue and Oracle RAC statistics

Global enqueue statistics
Most of the global enqueue statistics really aren’t useful unless
you are trying to track down a particular type of event such
as null to s conversion rates or other statistics that deal with
how locks are converted throughout the system. It is a bit
beyond this paper to delve deeply into all the ins and outs
of the various GES statistics at this time.

Global CR served statistics
Global consistent read statistics show you how often
blocks are being requested and sent due to consistent
read activity. Too much of this shows hot blocks and the
possibility that your block size is too large or you need
to adjust rows-per-block.

Global current served statistics
Current blocks being transferred shows that multiple
transactions are requiring the same blocks to make changes.
This usually indicates a very busy system and may show
a need to reduce block size or rows per block.

Usually you want to be sure that the transfer times histograms
show a majority of transfers occurred at less time than your
average read/write latency to the disks. If your transfer times
are consistently greater than your disk latency times then
your interconnect is becoming a bottleneck and you need
to look at tuning it or replacing it with a higher bandwidth,
lower latency technology such as Infiniband.

Global cache transfer statistics
Watching the number of blocks transferred is rather like
watching waits; without the time component the number is
useless. If 10,000 blocks are transferred and it takes 1 second
you are happy; if 100 blocks are transferred and it takes 10
seconds you are worried (or should be). So, while knowing
the number of blocks and types of blocks is good, later sections
that actually give you the time breakdowns for transfers are
more important.

IBM Systems 51

Global cache transfer times
The global cache transfer times are the more critical of
the statistics. Notice in this section how all of the statistics,
save one, are less than 2 milliseconds. For data blocks (busy)
however, we see that it is taking 26.7 milliseconds to transfer
a data block. In this case it is probably a transaction-related
locking issue because none of the other timings are bad.

Global cache transfer (immediate)
Immediate mode transfers are detailed in this section for
both consistent read and current blocks. Again, this shows
a breakdown of numbers of blocks by data type, which can
help isolate which segments to examine for issues. However,
always pair this with the next section before panicking over
the number of blocks of a particular type shown to be whisking
their way across the interconnect. Always look at timing data
along with block counts.

Global cache times (immediate)
From looking at the times for the various types of CR and
current clocks, we see that in no case were the transfer times
excessive, so even if we did transfer 95,204 current blocks via
two hops we did it at 1.7 millisecond per block, almost three
times faster than the best disk latency (5ms). When transfer
times become excessive, look at tuning the interconnect,
reducing the number of blocks transferred by tuning SQL,
or replacing the interconnect with a better technology.

Interconnect ping latency stats
By doing periodic pings, the system can get a rough idea
of what transfer speeds should be. By looking at these ping
statistics you can see for different message sizes how well the
interconnect is transferring data. If the times are excessive for
various ping sizes, then look at tuning the underlying TPC/
UDP buffers. If that doesn’t help, replace the interconnect.

Interconnect throughput by client
You should examine the throughput by client when you are
seeing excessive latency in the interconnect statistics. By
examining the amount of data being transferred across the
interconnect you can determine if the interconnect is being
overloaded and what is causing the long latencies. Usually
an overloaded interconnect will start dropping blocks, and
if you see the dropped blocks parameters for the various
instances above zero then it may indicate the interconnect
is seeing a lot of stress.

Interconnect device statistics
In this section, each of the NICs or interconnect devices is
shown, along with statistics on throughput and error counts.
If you see non-zero dropped statistics (one or two isn’t a
worry but dozens are an alarm) then either you have a buffer
issue or the interconnect is overloaded.

Summary
Well, we have finally reached the end of the AWR report.
The AWR report is the front line tool for tuning your Oracle
Database. You should remember that the AWR is a licensed
tool; however, Statspack, which contains almost all of the same
information, is still available even for Oracle Database 11g.

© Copyright IBM Corporation 2015

IBM Corporation
New Orchard Road
Armonk, NY 10504

Produced in the United States of America
March 2015

IBM, the IBM logo and ibm.com are trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM
or other companies. A current list of IBM trademarks is available
on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Java is a registered trademarks of Oracle and/or its affiliates in the
United States, other countries, or both.

Microsoft, Windows, Windows Server, and the Windows logo are
trademarks of Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United
States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other
countries, or both.

This document is current as of the initial date of publication and may
be changed by IBM at any time. Not all offerings are available in every
country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT ANY WARRANTIES OF MERCHANT­
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY
WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM
products are warranted according to the terms and conditions of the
agreements under which they are provided.

The client is responsible for ensuring compliance with laws and regulations
applicable to it. IBM does not provide legal advice or represent or warrant
that its services or products will ensure that the client is in compliance with
any law or regulation.

The information in this document may include technical inaccuracies or
typographical errors.

All customer examples described are presented as illustrations of how
those customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics
may vary by customer.

Information concerning non-IBM products was obtained from a supplier
of these products, published announcement material, or other publicly
available sources and does not constitute an endorsement of such products
by IBM. Sources for non-IBM list prices and performance numbers are
taken from publicly available information, including vendor announcements
and vendor worldwide homepages. IBM has not tested these products
and cannot confirm the accuracy of performance, capability, or any other
claims related to non-IBM products. Questions on the capability of
non-IBM products should be addressed to the supplier of those products.

Any references in this information to non-IBM Web sites are provided
for convenience only and do not in any manner serve as an endorsement
of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your
own risk.

Please Recycle

ORW03038-USEN-01

http://www.ibm.com/legal/copytrade.shtml

