

https://ibm.biz/OReilly-Enterprise-Blockchain

Michael Bradley, David Gorman,
Matt Lucas, and Matthew Golby-Kirk

Getting Started with
Enterprise Blockchain

A Guide to Design and Development

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05268-5

[LSI]

Getting Started with Enterprise Blockchain
by Michael Bradley, David Gorman, Matt Lucas, and Matthew Golby-Kirk

Copyright © 2019 IBM Corporation. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or cor‐
porate@oreilly.com.

Acquisitions Editor: Michelle Smith
Development Editor: Michele Cronin
Production Editor: Christopher Faucher
Copyeditor: James Fraleigh

Proofreader: Matthew Burgoyne
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2019: First Edition

Revision History for the First Edition
2019-04-19: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Getting Started
with Enterprise Blockchain, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and IBM. See our statement of
editorial independence.

http://oreilly.com
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Foreword. v

Preface. vii

1. Introduction to Blockchain. 1
Business Networks 1
The Ledger 4
Transactions and Contracts 4
The Problems with Ledgers and Contracts 5
Enter the Blockchain 6
Blockchain and Trust 7
Blockchain and Bitcoin 8
The Requirements of Blockchain for Business 11
Blockchain Technology 13
IBM and Blockchain 14
Summary 15

2. Identifying When to Use Blockchain. 17
Identifying Issues in the Business Network 17
What Are the Benefits of a Blockchain-Based Solution? 18
Assets, Participants, and Transactions 20
The Blockchain Fit 21
Choosing a First Scenario 22
Transforming the Business Network 23
Growing the Business Network 24
Ten Questions to Explore the Scenario in More Detail 25
Commercial Paper: An Example Scenario 26

iii

Summary 29

3. Designing a Blockchain Network. 31
Governance Model 31
Network Members and Consumers 32
Architecture and Design Considerations 33
Security Considerations 35
Governance, Administration, and Operation Considerations 36
Data Considerations 37
Onboarding 41
Summary 41

4. Developing a Blockchain Network. 43
Smart Contracts 43
Channel Ledger 44
Client Application 47
Code, Debug 51
Smart Contract Features 52
Tutorials and Patterns 53
Summary 53

5. A Blockchain Example: Commercial Paper. 55
What Is Commercial Paper? 55
Understanding the Commercial Paper Tutorial 56
Running the Commercial Paper Tutorial 56
Extending the Commercial Paper Tutorial 57
Writing the New getPaper Transaction 58
Writing the New getPaper.js Application 59
Upgrading the Smart Contract 61
Invoking the New getPaper.js Application 62
Testing with New Paper 63
Summary 66

6. What’s Next in Blockchain. 67
Blockchain Technology 67
Blockchain Applications 70
Summary 73

iv | Table of Contents

Foreword

The hype around blockchain (thankfully!) peaked in early 2018,
largely driven by financial speculation around Bitcoin and Ethereum
crypto-currencies. Despite inauspicious beginnings, and the “Isn’t
this just a database?” technical naysayers, blockchain technology is a
new and powerful set of tools for solving reliable and automated
intercompany code and data sharing, using cryptography to enforce
access control, privacy, and encryption.

Historically, building a consortium with many member corpora‐
tions, and putting in place automated sharing of data, has been
reserved to a very small number of use cases, and to companies with
very deep pockets—typically in banking, for example, the Visa or
Swift payment networks.

Open source enterprise blockchain technology, notably Hyperledger
Fabric, and managed Blockchain as a Service platforms, from IBM
and others, empower business leaders and technologists to cost-
effectively build consortia for many more use cases and industries,
across a broad set of economic (business) networks.

Enterprises have spent the past 10+ years digitizing their internal IT
processes to the point that the time is now ripe to look at the lack of
digitization and inefficiencies between enterprises within a business
network. Today, most enterprises exchange data with their business
partners via an unholy mix of emails, documents, fax, phone calls,
CSV- and Excel-format flat files, database dumps, EDI, and web ser‐
vice calls. We can do so much better!

At Clause, via the Open Source Accord Project, we focus on ensur‐
ing that the legal contracts that govern business exchanges can also
be digitized, and that logic automated using a blockchain smart con‐

v

tract represents the intent of the parties to a governing legal con‐
tract.

Blockchain forces business and technical leaders to confront funda‐
mental (and difficult!) issues around standardization of data for‐
mats, trust, privacy, governance, and legal/regulatory oversight. The
transformation to blockchain-mediated business networks will not
happen overnight, but will play out slowly, but surely, over the next
decade or more.

— Dan Selman
CTO, Clause Inc.

vi | Foreword

Preface

This book introduces you to the value that blockchain brings to the
enterprise. We focus on private permissioned blockchains, which we
describe in Chapter 1, and why they are suitable for use in an enter‐
prise environment. While we make comparisons to public unper‐
missioned networks in Chapter 1, we don’t discuss public networks
beyond this. This book looks at how to choose the best scenario for
blockchain, and at considerations for designing a blockchain net‐
work, before finally looking at how to develop your blockchain
application.

Throughout this book we focus on a real-world scenario for com‐
mercial papers with Chapter 5 introducing a developer tutorial and
how to run and extend a commercial paper network on blockchain.

Who Is This Book For?
While this book is focused on those people designing and develop‐
ing blockchain networks, the early chapters have a broader scope.
There’s no prerequisite reading required, although if you would like
to extend the commercial paper scenario in Chapter 5, then knowl‐
edger of Node.js would be advantageous.

How Is This Book Organized?
This book contains six chapters, each chapter building on the previ‐
ous.

vii

• Chapter 1: Introduces blockchain for the enterprise, and
describes the main concepts of a private permissioned block‐
chain.

• Chapter 2: Looks at how to identify when to use blockchain, and
includes a set of detailed steps on how best to choose a good
blockchain scenario.

• Chapter 3: Considers many of the options you will face when
designing a blockchain network.

• Chapter 4: Describes the artifacts that need to be developed for
a blockchain network, namely smart contracts and client-side
applications.

• Chapter 5: Explains how to run the commercial paper scenario,
and how to extend the scenario with additional functions.

• Chapter 6: Takes a look at the future of blockchain for the enter‐
prise.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

viii | Preface

This element signifies a general note.

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has pro‐
vided technology and business training,
knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their knowl‐
edge and expertise through books, articles, conferences, and our
online learning platform. O’Reilly’s online learning platform gives
you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more infor‐
mation, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, please send
an email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | ix

http://oreilly.com
http://oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
A special thanks to our colleague Evie Wright, for reviewing our
draft versions of this book, providing valuable feedback and being
part of the many discussions as we worked on this book. Evie joined
our IBM Blockchain Engagement Team for a year out from her
undergraduate studies at university.

We also want to thank our following colleagues for reviewing our
draft versions, without which this book would not have received the
much-needed sponsorship, direction, and support required:

• Anita Chung
• Alejandro Pinto
• R. Colby Murphy

Finally, thanks to our colleague Horea Porutiu for reviewing and
providing feedback on the draft version.

x | Preface

CHAPTER 1

Introduction to Blockchain

Blockchain is a shared, distributed ledger that records transactions
across business networks with the aim of helping businesses remove
inefficiencies from trade. It does this through the use of crypto‐
graphic proofs, which help engender trust by ensuring facts are
reported consistently to all those with a need to see them.

That’s the elevator speech for blockchain. In the rest of this chapter,
we’ll look in more detail into what blockchain is and why it is so
important. To begin with, let’s explore the need for business net‐
works.

Business Networks
Wealth is generated in market economies by the flow of goods and
services over business networks. Business networks are necessary
because of the huge advantages gained from specialization. The
economist Adam Smith first wrote about these efficiency gains by
referring to the example of pin production, in work that is currently
immortalized on the back of an English £20 note. The economist
Leonard Read, in his short paper “I, Pencil,” subsequently used the
example of a pencil, and the fact that no one on earth knows how to
create one completely from scratch, to demonstrate the importance
of business networks to manufacturing.

Business networks are not only required to make manufacturing
supply chains more efficient; they are also used in any type of
business-to-business interaction. Business networks can span manu‐

1

facturers, logistics companies, banks, insurers, consumers—any per‐
son or organization who is willing to trade one asset for another,
whether that asset is tangible (e.g., houses, cars, cash, land) or intan‐
gible (e.g., services, intellectual property, patents, licenses).

Let’s use an example to illustrate the importance of the business net‐
work and how wealth is generated.

Ted the Businessman
Ted is a businessman who turns up in a small town to speak at a con‐
ference the following day. He was booked by the conference at the last
minute, so when he arrives at the town he still needs a hotel to spend
the night. He finds one, goes up to the owner, and reserves a room,
placing $100 on the front desk. “I’ll be back shortly,” he says to the hotel
owner. “I’m going to check out the conference venue first.” Ted wanders
off.

A few moments later, the hotel owner takes the $100 to a local builder
who did some minor repair work at the hotel the week before. “Here’s
the $100 I owe you,” the hotel owner says to the builder. The owner
returns to her hotel.

The builder, money in hand, had been interested in a nice vase that
had been on display in the local antique shop. He takes the $100 to the
antique shop, purchases the vase, and happily takes it back to his
house.

The owners of the antique shop were an elderly couple who happened
to be reaching their 40th wedding anniversary. To celebrate, they take
the $100 they just received from the builder and decide to spend the
night in a local hotel—the same hotel in which Ted had reserved a
room earlier. The couple arrives at the front desk, pays $100 to the
hotel owner, checks into their room, and has a lovely short break.

After checking out the conference venue, Ted returns to the hotel and
delivers some bad news to the hotel owner. “I’m sorry,” says Ted. “It
turns out my conference has been canceled. Please can I have my
money back?”

The hotel owner agrees and hands the $100 back to Ted, who then
returns home, disappointed to not have spoken at the conference but
otherwise not out of pocket.

What happened in that story?

2 | Chapter 1: Introduction to Blockchain

The story starts and ends with precisely the same quantity of assets
in the town, but crucially the different participants of this business
network have each gained utility due to the flow of capital (the $100)
within it: the hotel owner has rented a room, the builder has a vase,
and the antique shop owners have their vacation. Ted the business‐
man simply served as a stimulus to start the flow of transactions,
providing the initial capital input and final capital output.

You can see this flow in Figure 1-1.

Figure 1-1. The flow of transactions in the town’s business network

It’s a simplistic scenario, but the lesson here is that what’s most
important for the generation of utility (and ultimately, wealth) is the
flow of assets (goods, services, and cash) around a network. You can
manufacture a plethora of assets but if no one is willing to exchange
other goods and services (or cash) for them, true economic growth
cannot occur. (There are other ways of artificially generating wealth,
such as gains made from stock market speculation. It’s beyond the
scope of this book, but we refer anyone interested to any good eco‐
nomics guide.)

In reality, business networks can be hugely complex. It can take
many hundreds of suppliers and manufacturers to source and
assemble the components for your car. The value of fund transfers
between US financial institutions comes in at trillions of US dollars
each day, and this requires a business network system that is highly
available, efficient, and resilient.

Business Networks | 3

http://bit.ly/2VC5piu

So what’s this got to do with blockchain? Well, a blockchain is a sys‐
tem for logging the flow of assets around a business network; it allows
the participants associated with transactions to record that they hap‐
pened. Of course, we already have a system for doing this—it’s called
the ledger. How is blockchain any different?

The Ledger
Depending on when you start counting, the concept of ledgering has
been around for over 500 years. In 1494, a Franciscan monk and
mathematician called Luca Pacioli published Summa de arithmetica,
geometria; proportioni et proportionalita (Summary of arithmetic,
geometry, proportions, and proportionality), which gave the first writ‐
ten description of the concept of double-entry bookkeeping, giving
rise to ledgers as we know them today.

Ledgers are essentially transaction logs: ordered lists of the inputs
and outputs of a business. Your bank statement is an example of a
personal ledger; it shows every debit and credit to your account and
details of the organization with whom you transacted.

Ledgers are particularly important for businesses because they
describe what they own, and what the business would be worth if it
was to be sold. A company could take its starting balance and for
every transaction add up the value of the credits, and subtract the
value of the debits, to derive its net worth. The net worth derived
from company ledgers is known as a liquidity position, which among
other things can be used to influence investment decisions, satisfy
auditors, and manage risk.

Ledgers have moved on since the leather-bound books of Luca
Pacioli’s day, and are now usually represented by a database of some
kind. But the concepts—and the shortcomings—remain the same.
But more on those later.

Transactions and Contracts
If a ledger is a log of transactions, what actually is a transaction? A
transaction is usually taken to mean the change in ownership of an
asset in exchange for something else. So if Matt buys Helen’s car
from her, the logged transaction is the exchange of one car to Matt
for the agreed price. Matt would record that transaction on his
ledger and Helen would record the same transaction on hers (the

4 | Chapter 1: Introduction to Blockchain

debit becoming the credit and the credit becoming the debit, of
course).

A transaction could be the exchange of two goods, one of which
may be cash. More generally, a transaction could be taken to mean
any change in state of an asset. If respraying a car from yellow to
green increases its resale value, this might then have an effect on the
net worth of the owner, so it could be useful to log in a ledger.

Transactions are underpinned by a set of terms and conditions,
which are the prerequisites for that transaction to be valid. When
buying Helen’s car, it might come with a warranty that says that if
the car turns out to be faulty, Matt gets his money back. For many
transactions, the terms of the transaction are agreed by the partici‐
pants and represented in a contract.

Transactions and contracts are closely linked; a transaction can be
thought of as being the invocation of the rules of a contract, and this
is precisely how blockchains tend to execute their implementations
of contracts (also known as smart contracts). Again, more on this
later.

The Problems with Ledgers and Contracts
Both traditional ledgers and traditional contracts have problems.
The problem with ledgers is that everyone in the business network
has their own version. What if one participant has recorded a trans‐
action on their ledger, but the other participant has recorded it dif‐
ferently, or even has no record of it? What if Matt records the fact
that he’s bought Helen’s car, but Helen does not: whose ledger is cor‐
rect, and who owns the car? Importantly for businesses, while trans‐
actions are in dispute, assets cannot be claimed as part of a
company’s net worth. It is common for companies to have a number
of transactions in dispute at any given time. For example, IBM’s
Global Financing arm has a great deal of money tied up in disputes,
up to $100 million in capital in dispute at a time, which is a signifi‐
cant liability with a dispute resolution process that can take many
weeks to settle a transaction.

It’s a similar problem for contracts: these are ambiguous by their
very nature. Contracts represent an abstract agreement between
multiple participants; what is written down on paper or imple‐
mented in IT systems may not be the essence of what the partici‐

The Problems with Ledgers and Contracts | 5

https://on.wsj.com/2WYvSqD

pants thought they were signing up to. Contracts can often take
teams of lawyers and judges to interpret.

The lack of a mutually agreed meaning for both ledgers and con‐
tracts leads to the lengthy and costly process of reconciliation, which
ensures that transaction details and contract execution are correctly
synchronized and agreed by all the relevant participants. Disputes
lead to (often manual) dispute resolution processes, which in turn
can lead to even lengthier and costlier legal processes. This may be
great for lawyers, but not so much for the participants involved in
those disputes.

Enter the Blockchain
Blockchain aims to solve the problems of ledgers and contracts by
sharing them in an unambiguous form between the participants of
the business network. Blockchain can be referred to as a shared, dis‐
tributed ledger with smart contracts.

Let’s pick those terms apart. Firstly, blockchain is a ledger: a transac‐
tion log that can be used to describe the inputs and outputs of a
business. Secondly, it’s shared between the participants of the net‐
work such that everyone sees the same set of facts. Finally, it avoids
any single point of failure by ensuring that copies are distributed to
everyone who needs to see it.

Smart contracts refer to computer code that is shared between par‐
ticipants of the business network, and these implement the business
rules associated with each transaction. As the code is shared, it can
be executed by all relevant participants and they can agree on the
output.

Despite the name, smart contracts are not contracts. Smart contracts
can be used to provide the shared execution of contract terms, in the
same way that a single participant’s IT systems can execute contract
terms today. You would not expect a judge to rule over the meaning
of a smart contract, as they are not typically software engineers.
They might, however, rule over the legal contract from which it
derives.

A Car Example
To illustrate how shared ledgers and smart contracts work, imagine
the scenario of a blockchain that tracks car ownership. The block‐

6 | Chapter 1: Introduction to Blockchain

chain itself would be an ordered data structure that contains the
details of every ownership change that has been agreed. For exam‐
ple, one transaction could state that “the ownership of the car with
identification number CXU7592875 has changed from Helen to
Matt.” The smart contract associated with this transaction describes
the computer logic that makes the transaction happen: for example,
“check that the seller is equal to the current owner, and if it is, set the
owner to be the buyer, decrement the cash balance of the buyer, and
increment the cash balance of the seller.”

Each interested participant (e.g., Helen and Matt) would run that
smart contract code and agree on the output, and if everything is
acceptable, then update the ledger accordingly. The updated ledger
might be made visible to Helen and Matt, but also to other interes‐
ted parties, such as the vehicle regulator or insurers, depending on
the agreed rules of the network.

Blockchains are useful because they help engender trust in business
networks, which is something traditional business-to-business sys‐
tems cannot provide. With a shared database for example, there is
no guarantee that an administrator has not tampered with the trans‐
action. Blockchain gives the participants of a transaction nonrepu‐
diation, which is evidence that the transaction was agreed to.

Blockchain and Trust
The blockchain can engender trust by providing proof that the
transactions were agreed to. To do this, the blockchain implements
several related qualities of service including consensus, provenance,
immutability, and finality.

• Consensus is the process by which transactions are agreed upon
by participants on the network. This means agreeing which
transactions occurred, in what order, and what the result of run‐
ning each transaction was. Participants who need to provide
that agreement might just be those affected by it (in our exam‐
ple, just Matt and Helen), but might also include additional
interested participants (such as a payments provider), or in the
case of public blockchains like Bitcoin, a majority of the net‐
work.

• Provenance means that it should be possible to review prior
transactions to determine the history associated with assets. For

Blockchain and Trust | 7

1 Satoshi Nakamoto is the name used by the unknown person or group of people who
developed Bitcoin.

example, as the current owner of the car, Matt should be able to
see its manufacturing, ownership, and servicing history, right
up to the point that he sells it. These rules of visibility are deci‐
ded and governed by the network—more on this later.

• Immutability is the fact that the shared transaction history can‐
not be tampered with. Once a transaction has been agreed to
through consensus by the network and stored on the block‐
chain, it cannot then be edited, deleted, or have new transac‐
tions inserted before it. This makes the blockchain an append-
only data structure, and is the reason why transaction
provenance is possible.

• Finality is the property that the transaction cannot be modified
once it is agreed upon. Unintended transactions can only be
backed out by the addition of a new transaction that reverses
the earlier transaction, again with the agreement of the relevant
participants.

Bear in mind that proof is not the same as trust. Blockchain pro‐
vides cryptographic proof of the set of transactions, and it is up to
participants to decide whether to trust that proof. In most business
scenarios this is not a problem. But imagine, for example, that a
blockchain were used to track voting in a national election. Such a
system could provide secure once-only voting with a full audit trail,
but would crucially need to be trusted by both the losers of the elec‐
tion and the electorate in general. Given many people’s distrust in
computers, this is not a trivial problem to solve; blockchain can pro‐
vide the technical component of a solution to a problem that
requires more than just technology.

Blockchain and Bitcoin
Blockchain is not the same as Bitcoin, although many people’s first
experience of blockchain is through Bitcoin. Bitcoin is a payment
system that was first described in a 2008 whitepaper presented
under the name of Satoshi Nakamoto.1 This whitepaper doesn’t
actually mention blockchain by name, but describes a mechanism
for securely sending payments between anonymous participants.

8 | Chapter 1: Introduction to Blockchain

https://bitcoin.org/bitcoin.pdf

Bitcoin uses what we now refer to as a blockchain to log the set of
confirmed transactions.

Bitcoin introduced a class of asset called a “cryptocurrency,” which is
like a normal currency in that it is a scarce resource that can be used
(in theory) to pay for goods and services. Since the introduction of
Bitcoin, cryptocurrencies have exploded in popularity. At the time
of writing, the market capitalization of cryptocurrencies has fallen
dramatically, but the number of cryptocurrencies still far outnumber
the number of fiat currencies.

The cryptocurrency bitcoin doesn’t really exist outside of the Bitcoin
network, in the same way that the balance you hold in a bank
account probably doesn’t exist outside a number in a record in a
bank database—until you go to an ATM, anyway. The bitcoin cur‐
rency can be converted into fiat currency using exchanges. Given
this ability to cash out and provide real-world capital, bitcoin has
been treated like a commodity such as gold. However, unlike other
commodities, Bitcoin is largely unregulated and widely misunder‐
stood, which has led, among other things, to huge volatility in its
market price.

The Bitcoin Network
The Bitcoin network is pseudonymous and the blockchain is fully
public; you can view the entirety of the Bitcoin ledger. This pseudo‐
nymity means that unless you can perform heavyweight analysis of
the network (for example, ChainAnalysis), such as tracking transac‐
tions at the exchanges, it is almost impossible to determine the iden‐
tity of a Bitcoin user. This is why hackers often request payment in
bitcoin if your computer has been compromised. Ransom payments
cannot be easily traced back to individuals, as the participants asso‐
ciated with individual transactions are meaningless sequences of
hexadecimal numbers.

Given this lack of identity on the Bitcoin network, Bitcoin has an
innovative but costly technique for ensuring consensus. As an
example, imagine you had $100 and you attempt to transfer $50 to
three participants at the same time. How does the network agree
which two transactions succeed and which one fails? This is known
as the double-spending problem, and is an example of the type of
processing that the Bitcoin network does.

Blockchain and Bitcoin | 9

https://coinmarketcap.com
https://www.blockchain.com/explorer
https://www.chainalysis.com

It’s crucial that the network agrees on the order in which transac‐
tions are performed, and on the results of those transactions. Other‐
wise, the system could not reliably function. It uses a complex
process of consensus called “Proof of Work” to do this, which relies
on a network of collaborating computers.

What Is Proof of Work?

Proof of Work works by adding an artificial cost to
transaction verification. If you want to convince the
network that your set and order of transactions is cor‐
rect, you have to prove to the network that you have
incurred this cost. It does this by forcing the nodes of
the network to solve cryptographic puzzles that are dif‐
ficult to solve (i.e., require brute force techniques), but
are trivially easy for other nodes to verify once the cor‐
rect answer has been found. For each set of transac‐
tions (known as a block), the first node on the network
to solve the cryptographic puzzle gets rewarded in Bit‐
coin. This is known as cryptographic mining, and is
one of the ways the Bitcoin network is kept secure.
Proof of Work is like giving a room full of students a
jumbled-up Rubik’s Cube each, and requiring them to
solve it before they can ask a question. We know that
the cube is difficult to solve, yet easy for the lecturer to
verify if it’s been solved. This has the effect of remov‐
ing the incentive to ask bad questions, because we
know that a student must be serious about the question
if they’re willing to go to the effort of solving a Rubik’s
Cube in order to ask it.

The problem with Proof of Work is that it takes an extraordinary
amount of electricity in order to function. Estimates vary, but Bit‐
coin’s implementation of Proof of Work is thought to use the equiva‐
lent of the power consumption of a country like Ireland.

Blockchain is not Bitcoin. Moreover, the typical requirements of
Blockchain for business are totally different from the requirements of
the Bitcoin blockchain. Specifically, the use of unregulated assets,
anonymity, untraceability, and excessive power requirements lead
many businesses to struggle to adopt Bitcoin for business-to-
business transactions. This has led to the introduction of different
blockchain implementations that more closely fit what businesses

10 | Chapter 1: Introduction to Blockchain

http://bit.ly/2D5d01S
http://bit.ly/2D5d01S

require, while still being able to achieve cryptographic proof of a set
of transactions.

The Requirements of Blockchain for Business
The requirements of blockchain for business actually differ from
Bitcoin in five distinct ways: (1) the assets that are tracked, (2)
knowing each transaction’s participants, (3) the rules around privacy
and confidentiality, (4) how transactions are endorsed, and (5) how
the network is governed. We’ll discuss each of these in the next sec‐
tion.

The Assets That Are Tracked
Blockchain can be used for a much broader range of assets than just
cryptocurrency. Tangible assets such as cars, real estate, and food
products, as well as intangible assets such as intellectual property,
licenses, and shared information sets, are all fair game, so long as
they can be represented digitally. Part of the art of setting up a
blockchain in a business environment is deciding what to share.

Knowing Each Transaction’s Participants
As we’ve seen, Bitcoin thrives due to anonymity: anyone can look at
the Bitcoin ledger and see every transaction that ever happened, but
participant information is untraceable. On the other hand, busi‐
nesses have requirements such as KYC (know your customer) and
AML (anti–money laundering). These are examples of compliance
rules that require businesses to know exactly who they are dealing
with.

The Rules Around Privacy and Confidentiality
Privacy and confidentiality are key requirements of a blockchain for
business. Firstly, in the same way that markets can be public or pri‐
vate, it should be possible for a blockchain to be private, meaning
that the network can decide exactly who joins. A public blockchain
increases the risk of a business inadvertently making transaction or
relationship information public knowledge, whether accidentally or
through malicious means (e.g., by exploiting vulnerabilities). Fur‐
thermore, individual transactions require confidentiality to avoid
giving other members an unfair advantage. We probably don’t want

The Requirements of Blockchain for Business | 11

one supplier on the network knowing the discount level we’re giving
another supplier, even if they are on the same blockchain. Of course,
a regulator might require total visibility of all transactions.

Characteristics such as these give rise to the need for permissioning
of the blockchain network, where different participants can do dif‐
ferent things. It’s possible to have public and permissioned networks
such as Stellar, as well as private permissioned networks such as
IBM Food Trust built using Hyperledger Fabric.

Permissioned networks are totally different than Bitcoin, which is
both public and unpermissioned. Bitcoin reveals to everybody all
the transactions that occurred, but not who is involved with them.
Businesses need the complete opposite: knowing who they are deal‐
ing with but not necessarily aware of the details of every transaction.

These privacy requirements also mean that it is probably infeasible
to have a single blockchain instance that covers everything. Just like
there are many ledgers in existence today (and there are many
business-to-business networks), there will probably be many block‐
chains in the foreseeable future, albeit with the ability to transfer
assets between instances: a network of networks, in other words.

How Transactions Are Endorsed
Consensus in a blockchain for business is not usually achieved
through Proof of Work but often through a process of selective
endorsement. This means being able to control exactly who receives
and endorses transactions, much in the same way that business hap‐
pens today. If we transfer money to a third party, then our bank, the
recipient’s bank, and possibly a payments provider would endorse
the transaction. These transactions are then validated by those on
the network permissioned to receive them. This is different from
Bitcoin, where miners compete to endorse transactions in exchange
for a bitcoin reward and a network of users running full nodes
(those that fully verify all of Bitcoin’s rules) collaborate to verify
transactions.

How the Network Is Governed
Blockchain networks can be governed in one of two ways: either
using a pre-agreed policy, or through a set of tokens. Policy-based
approaches require a set of rules agreed upon up front by key stake‐
holders, such as a consortium of members, a regulator, or a market

12 | Chapter 1: Introduction to Blockchain

https://www.stellar.org
https://ibm.co/2Z418q0

maker. The rules can be wide reaching and might, for example,
describe how consensus is achieved, how future changes to mem‐
bership are decided, or who is liable for bugs in smart contracts.
Some blockchains use tokens in order to govern behavior. The pub‐
lic Ethereum blockchain is an example where your wealth (in terms
of your balance of the Ethereum cryptocurrency known as Ether) is
used to determine your smart contract processing capacity.

Token-based policy is considered to be on chain governance as the
ability to govern is locked into the blockchain. Policy-based gover‐
nance can be both on chain and off chain depending on the
approach.

Both policy- and token-based governance approaches are reflective
of established real-world systems. For example, a country’s laws are
a policy-based governance system, yet your wealth can determine
other things you can do within that framework. While early busi‐
ness blockchains have typically been governed through policy, there
is an increasing number of business blockchains that have been aug‐
mented with token systems as a means to encourage behavior within
the network.

Blockchain Technology
For any business blockchain to be successful, participants need to
agree on the approach for sharing transactions and smart contracts.
In the same way that HTTP(S) is an agreed approach for sharing
information over the internet, there needs to be a common standard
for blockchains (at least within each business network) for the net‐
work to grow and thrive.

There are lots of decisions that need to be made when setting up a
network, including asset and transaction data formats, network top‐
ology, governance, and validation rules. One of the most important
decisions is the choice of blockchain technology: the software that
provides the implementation of the shared ledger and smart con‐
tract execution framework. Participants of the network need to
adopt the same technology to share information; there is no univer‐
sal interoperability standard for blockchain technologies yet,
although work on standardization continues.

The selected blockchain technology must complement the vendor
biases and diverse IT landscapes that are typically present in busi‐

Blockchain Technology | 13

https://www.loyyal.com
https://www.loyyal.com

ness networks. This means that openness of the blockchain technol‐
ogy is essential, not only in terms of the source but also such that the
entire community has the opportunity to influence the direction of
the project (known as open governance). It does not typically make
sense to adopt a proprietary blockchain technology, as it would
require all present and future participants on the business network
to adopt the same vendor, which raises the risk of lock-in, cost
increases, and a lack of scope for innovation.

The Hyperledger Project
In February 2016, the Linux Foundation® formally announced
Hyperledger®, an open source, open governance effort to advance
cross-industry blockchain. It serves as a greenhouse for multiple
blockchain technologies, including frameworks that implement
shared, replicated ledgers, and tools for developing and operating
instances of them.

Like other Linux Foundation projects, Hyperledger is built around
this spirit of openness, and this has helped contribute to its ongoing
success. At the time of writing, more than 260 organizations have
joined Hyperledger from a broad range of industries and disciplines,
and there is a strong developer community that has been contribu‐
ting to over 10 individual projects under the Hyperledger umbrella.

One of the most advanced Hyperledger projects is called Hyper‐
ledger Fabric™. This provides an implementation of the shared
ledger and smart contract execution framework, and is built around
the principles of security (to reflect the needs of regulated busi‐
nesses) and modularity (to allow for innovation). It is developed by
a worldwide team representing dozens of unique organizations, and
there are numerous instances in production. This book will focus
primarily on Hyperledger Fabric.

IBM and Blockchain
IBM has been contributing code, intellectual property, and develop‐
ment resource to Hyperledger since its inception.

The IBM Blockchain Platform was the first commercially available
platform to leverage technologies from Hyperledger. Platforms such
as this provide a set of tools to assist with the development, gover‐
nance, and operation of Hyperledger Fabric networks, and have

14 | Chapter 1: Introduction to Blockchain

https://ibm.co/2KtA6VU

been used to underpin many of the blockchain solutions in produc‐
tion today, including IBM Food Trust and TradeLens.

These networks along with those from other providers are discover‐
able in a public registry of networks called the Unbounded Network
Registry.

Summary
In this section we’ve looked at what blockchain for business is: a
shared, distributed, permissioned ledger with smart contracts.
Blockchain is important because it helps engender trust in business
networks by providing cryptographic proof over a set of transac‐
tions. This can remove friction from business networks, for exam‐
ple, by removing the need for costly dispute resolution processes.

Blockchain is not Bitcoin; the requirements of blockchain for busi‐
ness are completely different, and focus on characteristics such as
confidentiality and real-world assets.

We have also looked at Hyperledger, hosted by the Linux Founda‐
tion, and how it aims to solve these requirements of blockchain for
business. We concluded by looking at IBM’s contribution to block‐
chain and how it is helping customers on the path of this exciting
technology.

In the next chapter we will look at what makes a good blockchain
solution and evaluate some examples of how blockchain has been
used to great effect.

Summary | 15

https://ibm.co/2G7ceSs
https://www.tradelens.com
https://unbounded.network
https://unbounded.network

CHAPTER 2

Identifying When to Use
Blockchain

In this chapter we look at when to use blockchain as a solution. We
saw in Chapter 1 that blockchain is a shared, distributed, and per‐
missioned ledger that records transactions across a business net‐
work. There are some specific requirements of a scenario that make
it particularly suited to using blockchain, and we will explore those
in this chapter.

First, we’ll identify the types of issues business networks are facing,
before looking at the criteria we use to determine whether block‐
chain makes a good technology fit to solve those issues.

Identifying Issues in the Business Network
It is important to have a clear idea of the scenario’s requirements,
and to know which issues you are trying to solve. This might seem
obvious, but with any new technology—and particularly a well-
hyped one—there is often a temptation to jump to an implementa‐
tion without a lot of thought about the problems it aims to solve.

Businesses act for several reasons. Most commonly, they are going
after a new market (for example, opening trade finance opportuni‐
ties to small/medium enterprises), or trying to remove cost or ineffi‐
ciencies from a business process (for example, removing
intermediaries). Identifying the issues and expressing them in terms

17

of the expected gain (or return on investment) is the first step to a
successful project.

Let’s return to IBM’s Global Financing blockchain solution intro‐
duced in Chapter 1. They identified that within this business net‐
work of about 4,000 participants that $100m of capital was in
dispute at any one time. This was a significant liability, and was a
direct result of the time taken to resolve some 25,000 disputes annu‐
ally from the 2.9 million invoices issued. Examples of disputes
include the wrong number of computer parts being delivered in an
order or deliveries going awry. It was also noted that each of the
25,000 disputes would take on average 44 days to resolve, requiring
someone to retrace steps through six or seven applications, includ‐
ing contacting third parties such as banks.

We can summarize the issues as:

1. Disputes arising due to consignment issues
2. No single source of trusted information to help resolve issues
3. Disputed transactions taking a long time to solve

In “The Blockchain Fit” on page 21, we’ll review these issues and see
if blockchain can help to provide a sensible solution to resolve them.
Before that, we’ll look at the benefits of a blockchain solution.

What Are the Benefits of a Blockchain-Based
Solution?
Blockchain is a solution for business networks. It makes sense to
deploy a blockchain-based solution only where there is a network of
collaborating participants who are issuing transactions around a set
of common assets in the network.

Therefore, our first observation of when blockchain is the right sol‐
ution is that there must be a business network of multiple partici‐
pants. Our second would be that they require a shared view of assets
and their associated transactions.

We then use the following four key blockchain features introduced
in Chapter 1 to further define the benefits of a blockchain-based sol‐
ution. Let’s remind ourselves of these benefits:

18 | Chapter 2: Identifying When to Use Blockchain

https://on.wsj.com/2WYvSqD
https://on.wsj.com/2WYvSqD

Consensus
The process of agreeing on new transactions and distributing
them to participants in the network.

Provenance
A complete history of all transactions related to the assets recor‐
ded on the blockchain.

Immutability
Once a transaction has been stored on the blockchain, it cannot
be edited, deleted, or have transactions inserted before it.

Finality
Once a transaction is committed to the blockchain, it is consid‐
ered “final” and can no longer be “rolledback” or undone.

There are several other blockchain benefits that underpin these four
key benefits, and are worth keeping in mind as you review any
potential scenarios:

Identity
All participants in a permissioned blockchain network have an
identity in the form of a digital certificate—the same technology
that underpins the security and trust when we use a web
browser to access our online bank.

Security
Every transaction in the permissioned network is cryptographi‐
cally signed, which provides authenticity of which participant
sent it, nonrepudiation (meaning they can’t deny sending it), and
integrity (meaning it hasn’t been changed since it was sent).

Contracts
Smart contracts hold the business logic for transactions and are
executed across the network by the participants endorsing a
transaction.

These benefits help engender trust between the participants in busi‐
ness networks, and we can use them as a litmus test when checking
to see if blockchain is a good technology fit. We should note that
while it’s not necessary for a scenario to require every benefit just
listed, the more that are required, the more the case is strengthened
for using blockchain.

What Are the Benefits of a Blockchain-Based Solution? | 19

We should always be wary of thinking that blockchain is a panacea
for all solutions. There are many reasons why blockchain wouldn’t
be a good fit. For example:

• Blockchain is not suitable if there’s only a single participant in
the business network.

• Although we talk about transactions and world state databases
in blockchain, it shouldn’t be thought of as a replacement for
traditional database or transaction servers.

• Blockchain by design is a distributed peer-to-peer network, and
is heavily based on cryptography. With this comes a number of
nonfunctional requirement considerations. For example, per‐
formance and latency won’t match a traditional database or
transaction server, but scalability, redundancy, and high availa‐
bility are built in.

Assets, Participants, and Transactions
When thinking about a potential blockchain solution and the bene‐
fits it brings to the network of participants, it is useful to view it in
relation to the following concepts:

• Assets
• Participants
• Transactions

We have already introduced some examples of these. They are core
concepts in a blockchain network that benefit from the four primary
trust benefits introduced in the previous section.

Assets
Either purely digital, or backed by a physical object, an asset repre‐
sents something that is recorded on the blockchain. The asset may
be shared across the whole network, or can be kept private depend‐
ing on the requirements. A smart contract defines the asset.

Participants
Participants occupy different levels in a blockchain network. There
are those participants who run parts of the network and endorse

20 | Chapter 2: Identifying When to Use Blockchain

transactions. Other members may consume services of the network
but may rely on and trust other participants to run the network and
endorse transactions. Then there are the end users who are interact‐
ing with the blockchain network through a user interface. The end
user may not even be aware that a blockchain underpins the system.

Transactions
The transactions are coded inside the smart contracts alongside the
assets to which the transactions belong. Think of the transactions as
the interaction points between the assets and the participants; a par‐
ticipant can create, delete, and update a given asset, assuming they
are authorized to do so. It is these transactions that are stored
immutably on the blockchain, which also provides the provenance
of any changes to the asset over time.

The Blockchain Fit
In an earlier section, we looked at the issues in the IBM Global
Finance example that led to the implementation of a blockchain sol‐
ution along with the benefits that a blockchain-based system can
provide. We will now consider why blockchain technology was the
sensible choice.

First and foremost is to check there is a business network in place.
The IBM Global Finance system comprises some 4,000 suppliers
and partners, as well as IBM within the network. So we have a good
business network on which to consider the rest of the blockchain
features.

As some of the disputes are related to differences between what was
ordered and subsequently received, this can often be the result of
different participants in a business network (partners, suppliers, and
delivery companies) tracking goods in separate siloed systems.

Therefore, a shared ledger with consensus and finality provided by
blockchain across the business network will help to reduce the over‐
all number of disputes as it will give all participants the same infor‐
mation on the assets being tracked.

Furthermore, if changes to the data being tracked either intention‐
ally or unintentionally are part of the root cause of these disputes,
then the provenance and immutability features of blockchain could
also help.

The Blockchain Fit | 21

Last, we consider the amount of time taken to resolve these issues.
As there were multiple systems (including third-party systems) that
someone needed to check in order to resolve any transactions in dis‐
pute, having a single shared ledger that is maintained through con‐
sensus will help reduce the time taken to resolve them.

Some further observations about how a blockchain-based solution
can benefit this business network:

• Each participant in the business network has an identity and is
permissioned in the network. This could help with your pro‐
cesses related to Know Your Customer (KYC) and Anti-Money
Laundering (AML).

• Smart contracts could be designed to resolve some of the dis‐
putes automatically by maintaining consistency across the busi‐
ness network and therefore further reducing the number of
disputes.

Choosing a First Scenario
You may be considering multiple scenarios where blockchain pro‐
vides a good solution fit. In this case you will need to compare each
to determine which is the best scenario to work on first.

We recommend a simple approach for comparing each scenario
using a quadrant chart, where each is placed on the chart based on
its relative benefit and simplicity.

In Figure 2-1 the x-axis is the simplicity of the scenario (simpler to
the right) and the y-axis represents the benefit (more beneficial to
the top). Place each scenario on the quadrant chart, considering its
expected benefit and simplicity as a blockchain solution. This is best
done as a group exercise with appropriate stakeholders who can
provide the necessary insight to where each scenario falls in the
chart based on level of simplicity and potential benefits.

Once all scenarios have been plotted on the chart, it becomes obvi‐
ous which are the first scenarios to concentrate on—those that will
provide the most benefit and are the simplest.

22 | Chapter 2: Identifying When to Use Blockchain

Figure 2-1. Comparing scenarios based on their benefit and simplicity

Transforming the Business Network
Once your first blockchain scenario has been identified, you will
want to move to the next phase: building the Minimal Viable Prod‐
uct (MVP). An MVP represents the minimum product that can be
built to accomplish a goal of the blockchain scenario.

Starting a MVP with blockchain shouldn’t be dissimilar to any other
technology, and good software engineering practices, such as using
Agile principles, will always be applicable. Following are some
observations that will help as you start to transform your business
with a new blockchain-based solution:

• Blockchain is a team sport. There will be multiple stakeholders
from different organizations in the business network. Some of
these organizations may not have traditionally worked directly
with one another. Therefore, a clear understanding of the
requirements and issues across all participants, and clear lines
of communication and agreement, are critical to the success of
the project.

• Use design thinking techniques that focus on the goals for the
user, to agree on the scope of the MVP.

• Use agile software engineering best practices, such as continu‐
ous integration and stakeholder feedback, to iterate throughout

Transforming the Business Network | 23

https://ibm.co/2Kr31tO
https://ibm.co/2Kr31tO
https://ibm.co/2Vy7kUZ
https://ibm.co/2OZaT4a

the development of the MVP. Keep stakeholders informed and
act on feedback.

• Start with a small network and grow. There will be some chal‐
lenges ahead, as this may be a paradigm shift for the business
network.

• If replacing an existing system, consider running the
blockchain-based solution as a shadow chain to mitigate risk. By
this we mean, during the pilot phase, run the new platform
alongside the legacy system. Ideally, you would pass real pro‐
duction data to the new blockchain-based system to test and
validate it, while continuing to rely on the legacy system for this
phase of the project. Only after thorough testing has been com‐
pleted and the new system has been proven should you switch
from the legacy system to the new.

• Although blockchain is likely to be a core foundational part of
the solution, it probably won’t be its majority. The blockchain
network will still integrate with other external systems, provid‐
ing additional functions such as off-chain data storage, identity
access management, Application Programming Interface (API)
management and presentation layers, and so on.

Growing the Business Network
With a blockchain-based solution it is advisable to start with a small
network and then grow. What does growing the network mean? It
can mean adding any of the following:

• Network participants, i.e. those participants in the network run‐
ning peers

• Applications interacting with the network
• Users of the blockchain-based solution

It may also mean increasing the following:

• Smart contracts
• Channels or subledgers for privacy between network partici‐

pants
• Transaction throughput

24 | Chapter 2: Identifying When to Use Blockchain

• Number of assets

There needs to be a strong democratic governance model to manage
these types of changes as they are made to the blockchain network.
Remember, no single organization is in control.

This is one of the areas that sets a blockchain-based solution apart
from other technologies. For example, there are changes within the
network that require multiple participants (organizations) within
the network to agree before the change can come into effect. The
following are two examples of changes that require this type of
agreement.

1. An existing network consists of three participants: Dave, Matt,
and Luc. John would like to join the network. For John to join
the permissioned network, Dave, Matt, and Luc must each cryp‐
tographically sign the configuration change before John is
allowed to connect to the network. Of course, this is one option
of managing this scenario; alternatively, if only one network
member is needed to approve such a change, then the network
can be configured accordingly.

2. A new smart contract is to be installed on the network, and both
Dave and Matt’s organizations will be required to endorse trans‐
actions for the new smart contract. In this scenario, both Dave
and Matt are required to install the smart contract to their
peers, and ensure the smart contract is instantiated on a shared
channel (or subledger) before a client application.

Ten Questions to Explore the Scenario in More
Detail
So far, we have taken a fairly high-level look at whether blockchain
makes a sensible choice for the scenario. We can of course explore
the scenario in much more detail to help identify the suitability of
blockchain, and to start mapping out the type of network that might
be involved.

The following questions will help in understanding the scenario
from a blockchain perspective:

Ten Questions to Explore the Scenario in More Detail | 25

1. What is the specific business problem or challenge that the sce‐
nario will address?

2. What is the current way of solving this business problem?
3. Assuming the business problem is large, what specific aspects of

this business problem will be addressed?
4. Who are the business network participants (organizations)

involved and what are their roles?
5. Who are the specific people within the organization and what

are their job roles?
6. What assets are involved and what is the key information asso‐

ciated with the assets?
7. What are the transactions involved, between whom, and what

assets are associated with transactions?
8. What are the main steps in the current workflow, and how are

these executed by the business network participants?
9. What is the expected benefit of applying blockchain technology

to the business problem for each of the network participants?
10. What legacy systems are involved? What degree of integration

with the legacy systems is needed?

Again, working through these questions with the appropriate stake‐
holders (business, technical, and users) and capturing the results
will help enormously before moving the project to the next phase,
such as a MVP.

Commercial Paper: An Example Scenario
The Linux Foundation Hyperledger Fabric community has pro‐
duced an excellent set of materials around the scenario of Commer‐
cial Paper. For more information on the scenario, you can go here.

We will come back to the commercial paper scenario in later chap‐
ters, but we introduce the concepts of a commercial paper business
network here, and see why blockchain makes a good technology fit.

Commercial paper is a debt instrument issued by a company that
needs to overcome its short-term financing needs. The commercial
paper is sold to another company that can redeem the paper at a
later date for a higher value than they paid for it. This provides

26 | Chapter 2: Identifying When to Use Blockchain

http://bit.ly/2VAlO79

short-term funding to the company issuing the commercial paper,
and provides a return on investment for the company that buys the
commercial paper. Commercial paper can be resold to other compa‐
nies during its life cycle.

Earlier in this chapter, we introduced the concepts of assets, partici‐
pants, and transactions. Let’s look at commercial paper through this
lens.

Commercial Paper Assets
The main asset in the business network is the commercial paper.
This asset will have several attributes, such as:

• The issuing company
• Which company is the current owner
• The issue date
• The maturity date
• The face value
• The current state

Commercial Paper Participants
The main participant in the business network is a company. There
will of course be multiple companies in the network, and these com‐
panies will play different roles in relation to a commercial paper
asset, such as issuers and buyers.

It’s clear that within this business network, there are multiple partic‐
ipants. Remember, this is critical for a scenario being a good block‐
chain fit.

Commercial Paper Transactions
The main transactions associated with the commercial paper asset
are:

Issue
A company issues commercial paper

Commercial Paper: An Example Scenario | 27

Buy
A company buys commercial paper and is therefore the current
owner

Redeem
A company (the current owner) redeems the commercial paper
against the original issuer

Lastly, let’s look at the four benefits of a blockchain solution and
how they might benefit the commercial paper business network.

Consensus
Multiple commercial paper assets will be traded across the network.
A single commercial paper asset may move between several different
companies, and each company will be trading with multiple other
companies. Therefore, it is easy to see how consensus on the state of
the asset and any transactions stored in the shared ledger makes
sense.

Further benefits could be gained by using a blockchain-based solu‐
tion in this business network, such as visibility across the network.
For example, if a company issues commercial paper for USD
$100,000, it is considered okay, but what if they issue 20 of these
papers to different companies at the same time? A blockchain-based
solution can provide additional information such as how many
commercial papers have been issued across the business network,
and their total value. This trusted information can then be used to
assess the risk of purchasing commercial paper.

Provenance
A company buying existing commercial paper will want to be cer‐
tain of which company issued it. They will also want to be certain
that they are buying the commercial paper from the current owner.
For reasons of privacy and confidentiality, the identity of other pre‐
vious owners of commercial paper may well be hidden from the new
purchaser. However, a total number of previous owners of the paper
could easily be provided.

Immutability
It’s easy to see the importance of this blockchain feature. A company
that is buying existing commercial paper from another company

28 | Chapter 2: Identifying When to Use Blockchain

wants to ensure it hasn’t been modified in any way since it was
issued. A company redeeming commercial paper wants to be sure
there is no doubt about the validity of the paper.

Finality
Last, finality across the commercial paper network is important.
Imagine there’s a marketplace or exchange within the business net‐
work. A company offers commercial paper to the marketplace.
Another company offers to buy the issued commercial paper. All
companies involved will want to be certain that the new commercial
paper is issued only once across the business network. It wouldn’t be
good if it were possible for two companies to buy the same commer‐
cial paper at the same time.

Summary
In this chapter we have seen the importance of identifying a block‐
chain scenario’s requirements and any issues related to the scenario
being considered. We then learned how the four key benefits of
blockchain (consensus, provenance, immutability, and finality) help
to determine if blockchain is a good technology fit, while ensuring
there is always a business network of multiple participants. Using
the blockchain concepts (assets, participants, and transactions) will
help guide the decision and aid users in understanding how block‐
chain might be applied to the business network.

Summary | 29

CHAPTER 3

Designing a Blockchain Network

In Chapter 2, you’ve identified that blockchain makes a good tech‐
nology fit for your scenario. In this chapter, we’ll explore some of
the aspects of designing a blockchain-based solution.

Governance Model
Broadly speaking there are two models used to initiate a new block‐
chain network:

Founder led
A single organization initiates the network. They won’t be doing
this in isolation, however. It’s expected they will have deep
industry knowledge and will be working with stakeholders
within the respective industry. The founder will define the gov‐
ernance model and policies of the network, and will invite other
organizations to join.

Consortium led
A group of companies initiate the network. For example, a
group of banks work together to build a new blockchain-based
trade finance platform that they each benefit from using. It’s
possible this network could remain private to those within the
initial consortium, but it’s much more likely that once it’s built,
they will allow other organizations to join the network. It’s also
possible that ownership and governance will be moved later to a
new company. For example, the trade finance platform we.trade

31

http://bit.ly/2UsJ1eF

was formed by a consortium of banks and later moved under
the ownership of a joint venture.

Regardless of how the network is created, it will require flexible gov‐
ernance policies. The blockchain needs to be adaptable over time,
allowing for new types of governance models to be introduced as the
network grows. As new organizations join networks, they will of
course need to accept the governance models already in place.

Network Members and Consumers
So far, we have been referring to participants or network members
in a very broad sense. However, there are different roles and respon‐
sibilities for participants in a blockchain-based solution. When
designing the network, it’s important to identify the role of a partici‐
pant.

To understand the different types of roles, we need to look at two
concepts of a blockchain network:

Network Services
These are the foundational blockchain network services: the
blockchain peer-to-peer network, smart contract execution con‐
tainers, and security services.

Business Services
This is the blockchain application built on the underlying net‐
work services. They include the smart contract logic, the client-
side application logic that connects to the blockchain, and any
integration logic with external systems.

With these concepts in mind we can now look at the different roles
in the network:

Network Service Provider
Governs the network and defines network policies.

Network Service Consumer
A participant on the network running their peers and certificate
authorities.

Business Service Provider
The participant writing the business logic for the platform,
including smart contracts, client applications, and integration
logic.

32 | Chapter 3: Designing a Blockchain Network

Business Service Consumer
The participant hosting the client-side applications that connect
to the blockchain network and the integration logic.

End User
Connects to the platform through the user interface. They’re
likely to do this using a mobile, tablet, or web browser, and may
be unaware of the blockchain network underpinning it.

It’s important to note that an individual participant may have several
roles. For example, an organization may be both a network service
provider and consumer, as they both define the governance and pol‐
icies of the network and also actively use the network by running
their own peer. Another example is a single technology partner that
may write the smart contract and client application logic, as well as
provide the IT infrastructure on which the client applications run.

An important characteristic of a good blockchain technology is that
it is flexible in its network setup and configuration, and that it can
be configured in such a way as to match the requirements from the
founders of the network.

Architecture and Design Considerations
This is a very broad topic, and too much to cover in detail in this
chapter. However, we will introduce a number of key architectural
and design considerations when looking at a blockchain network.

Participant Types
These identify the types of participants in network. For example, in
the commercial paper scenario, we identified organizations as being
both issuers and buyers.

Network Roles
These are assigned to participants within the network as discussed
in the previous section. Using this knowledge, you can start to map
out a blockchain network topology.

Assets
These are recorded on the blockchain. For example, in the commer‐
cial paper scenario we identified commercial paper as the main

Architecture and Design Considerations | 33

asset. This will help identify the smart contracts that will be needed.
Assets have three important attributes related to participants in a
blockchain network: who issues or creates the asset, who owns the
asset, and who destroys the asset. With this information you can add
the known assets to the network topology, showing the participants
who issue, own, and destroy them.

Transactions
These refer to the assets recorded on the ledger that network partici‐
pants submit. You can add transactions to the network topology,
augmenting the assets added in the previous step.

Endorsements
These are performed by one or more organizations on the network
for each transaction submitted. We always recommend a policy of at
least two endorsers to maintain trust and prevent any malicious
activity. Endorsement policies can be defined both at the smart con‐
tract level and for individual states written to the blockchain ledger.
For example, in the commercial paper scenario, individual commer‐
cial paper assets can define their own endorsement policy (state-
based endorsement), or all transactions and state updates can define
an endorsement policy applying to all commercial paper (smart
contract endorsement). Review the assets and transactions added to
the network topology and consider for each which organization
should endorse it. You might be surprised what this reveals about
the interactions and trust assumptions in the network.

Deployment
There are many ways a blockchain network can be deployed across a
heterogeneous environment. For example, a network could be pro‐
visioned within a single cloud environment, on premises, or a
hybrid of the two. In particular, we’re seeing more networks bridg‐
ing multiple cloud environments. When reviewing deployment, geo‐
graphical location and any data jurisdiction requirements should
also be considered.

34 | Chapter 3: Designing a Blockchain Network

Network Access
Will the environments for each of the network components permit
access to the URL and ports of the other network components
within the network so they can communicate?

Regulations
Regulations such as the European Union’s General Data Protection
Regulation (GDPR) may influence your design and architecture. For
example, the “right to be forgotten” means that you need to avoid
storing any personal data on a blockchain if you are later going to be
able to comply with a request to delete it. Good design patterns exist
for handling personal data on a blockchain; these include, for exam‐
ple, the use of hashes to data stored off the blockchain.

Nonfunctional Requirements
Aspects such as transaction latency, transactions per second, and
volume of data should be confirmed as early as possible. These
requirements should be reviewed realistically to ensure that block‐
chain is the correct technology solution.

Security Considerations
Although a permissioned blockchain network such as Hyperledger
Fabric is built with security from the ground up, we recommend you
start your security planning early. This can easily become the biggest
topic in this list.

When reviewing security, these are some of things you will need to
consider:

Private Keys
Where and how private keys will be stored for each of the com‐
ponents in the network. Are Hardware Security Modules a
requirement?

Certificate Authorities
Are there specific certificate authorities that are required to
issue certificates for organizations in the network?

Security Considerations | 35

Encryption
What level of Transport Layer Security is required by partici‐
pants interacting with the blockchain network?

Privacy and Confidentiality
Is there a requirement for privacy and confidentiality of data,
identity, and transactions stored on the blockchain?

Governance, Administration, and Operation
Considerations
Earlier in this chapter, we introduced the different roles that partici‐
pants might have within a blockchain network. Each role defines
what the participant can do with regard to administration and oper‐
ation activities. For example, a network service consumer who is
running their own peers and certificate authorities within a Hyper‐
ledger Fabric blockchain network will install new smart contracts on
their peers. A business service consumer who is running a client
application will need to manage their blockchain identities and the
application that is connecting to the network.

There are also administrative and operational tasks that need to be
coordinated. For example, a smart contract that is deployed by two
participants to their peers needs to be designed, coded, and
reviewed. After the reviews are complete, each participant installs
the smart contract. The design and code are done by the business
service provider, and the review and agreement are handled by each
of the network service consumers.

To manage these types of changes across the network by different
participants, a set of governance policies needs to be defined. These
policies could enforce, for example, that all participants digitally
sign the smart contract before it can be installed. Thankfully, block‐
chain networks like Hyperledger Fabric have been designed to allow
this. Platforms built on Hyperledger Fabric, such as the IBM Block‐
chain Platform, can then provide user interfaces to make managing
these governance policies simpler.

The advice here is to plan this early. The governance policies will be
decided based on the business requirements and possibly the regula‐
tory requirements. Understanding these requirements up front will
help when designing the type of blockchain network that will under‐
pin the new system.

36 | Chapter 3: Designing a Blockchain Network

Data Considerations
In this section, we look at how data is processed in a blockchain net‐
work, such as the location of where it is stored and how it can be
made private.

Jurisdiction
A blockchain is a peer-to-peer network. Data in the form of transac‐
tions and the actual blockchain structure is shared and replicated
across the network to different peers. Because the network can span
multiple jurisdictions, it is important to consider what data is stored
and where.

Different blockchain technologies allow you to architect different
network topologies. For example, the bitcoin network has large
number of peers that each ultimately store the same blockchain
structure (there are forks in the network that mean at times there
might be alternative versions; the consensus algorithm will ulti‐
mately resolve this). Other blockchain technologies such as Hyper‐
ledger Fabric allow you to architect networks that can manage
multiple blockchain structures (known as channels) and also specify
which peers can store which channel (meaning not all peers have to
store everything).

Using Hyperledger Fabric as an example blockchain technology, let’s
now review the importance of data jurisdiction and the types of
choices that might be available.

Hyperledger Fabric has two types of peers based on their role within
the network:

Orderer nodes
These receive transaction proposals, package these transactions
into blocks, and deliver them to peers. A group of orderer nodes
within the network is referred to as the ordering service. There is
a single ordering service per network that orders transactions
for all channels across the network.

Peers
These maintain a local copy of a ledger per channel. In Hyper‐
ledger Fabric, the ledger comprises both the blockchain struc‐
ture, which is a list of blocks containing transactions, and also a
world state database, which is written to and read from the

Data Considerations | 37

smart contract. A peer can join (if permissioned) many chan‐
nels and thus it could be managing multiple ledgers. Remember
that not all peers need to join all channels. An advanced option
is for a peer to join channels in different ordering services, cre‐
ating a network of networks.

We shouldn’t forget the client application that submits transactions
to the blockchain network, as it will clearly have access to the data as
well, either as input to a transaction or from querying content stored
on the blockchain.

The physical infrastructure that underpins the collection of orderer
nodes and peers can be multisite and span different geographical
regions. Organizations that are running orderer nodes and peers can
choose cloud providers, each of which will offer a range of locations
for deployment. Organizations may also choose to deploy on prem‐
ises within their own datacenter. As blockchain networks are made
up of multiple organizations, each organization can choose the
infrastructure on which to run the servers they are responsible for.
We call these multicloud hybrid blockchain networks.

When considering jurisdictional location of data, we must therefore
understand:

• The business requirements of what data is to be submitted to
and stored by the network.

• The network topology, consisting of orderer nodes, peers, and
channels.

• The physical location of orderer nodes and peers that are
accessing the data.

Data Privacy
Let’s now see how to make data private and confidential across a
blockchain network. Remember that all participants in a permis‐
sioned blockchain network such as Hyperledger Fabric have a cryp‐
tographic identity in the form of a digital certificate. This includes
any orderer nodes and peers. Remember also that transactions are
submitted to the network and data is ultimately stored in the chan‐
nels that contains both the blockchain structure and the world state
database.

38 | Chapter 3: Designing a Blockchain Network

When considering data privacy, we must first understand which
data to make private and to which organizations and participants it
should be private.

The types of data that can be shared across the network, and there‐
fore should be considered when looking at privacy, are:

• The digital certificate (identity) of the transaction submitter
• The digital certificate (identity) of the peers that endorse trans‐

actions
• The transaction called by the submitting application and any

parameters passed to the transaction
• Any data read and written by the smart contract to the world

state
• The response to the client application from calling the smart

contract

In addition to the preceding, there are a couple of other small pieces
of metadata associated with a transaction invocation: for example,
the key names of the data stored in the world state, and the names of
any private data collections from which the smart contract has read
or to which it has written.

Hyperledger Fabric provides several features to manage data, and to
make it private from certain participants on the network. We’ll sum‐
marize each of these next:

Channels
Channels are a way of making a ledger (blockchain and world state)
private to only those organizations allowed to join the channel. In
addition to the ordering service, only peers and client applications
within the permissioned organizations can join and have access to
the channel. Any not permissioned to join a channel will never
receive blocks from the ordering service and therefore will never
have a copy of the ledger for the channel. Channels provide a really
nice way of creating subnetworks across the blockchain network.
One thing to be aware of is that the ordering service will still see the
transactions for all channels, and any organizations permissioned to
join the channel will have access to all data held in the channel. This
may be ideal for some scenarios but less so for others.

Data Considerations | 39

Private Data Collections
Private Data Collections first appeared in Hyperledger Fabric ver‐
sion 1.2. These work within a channel, and allow policies to define
that only a subgroup of organizations within the channel can access
certain data. Unlike normal transactions, where all the information
is sent to the ordering service, for Private Data Collections the data
is stored only by the peers specified in the policy (and shared via the
gossip protocol), and hashes rather than actual data are sent in the
transaction to the ordering service. This means that data can be kept
private to a subset of organizations within the channel and never
shared with the ordering service.

Encryption
Encryption is the process of converting readable source text into
unreadable cipher text. Commonly this is done with a pair of asym‐
metric keys, where a holder of a public key can encrypt a piece of
data knowing that only the holder of the private key can decrypt it.
It is a common misconception that data is automatically encrypted
in Hyperledger Fabric and some other blockchain technologies.
However, Hyperledger Fabric does provide a set of encryption and
decryption services to the smart contract, enabling it to decrypt data
it receives from either the calling client application or by querying
the world state, and also to encrypt any data it writes to the world
state or passes back to the calling client application. Encryption can
be used along with channels and private data collections as just
described. Of course, it’s possible for the submitting client applica‐
tion to encrypt data before sending it to the smart contract. One
thing to keep in mind is that you will need to manage the keys (both
public and private) when using this feature.

Identity
While it’s imperative that everyone in a permissioned network have
an identity (for the purposes of authentication, integrity, and non‐
repudiation), it doesn’t mean that there are times when a partici‐
pant’s identity should not be hidden from a larger audience. For
example, say there is a channel of 10 organizations who are competi‐
tors to each other. Each organization submits transactions to the
blockchain network for this channel, but doesn’t want to reveal their
identity in the transaction stored on the blockchain. Using the Iden‐

40 | Chapter 3: Designing a Blockchain Network

http://bit.ly/2G291DQ
http://bit.ly/2G291DQ

tity Mixer feature added in Hyperledger Fabric version 1.3, it is pos‐
sible to keep the identity of the submitting client application
anonymous, but without losing the ability to authenticate them.
Additional roles will be added in the future whose identity can also
be made anonymous.

Onboarding
When it comes to onboarding new organizations in a blockchain
network such as Hyperledger Fabric, you will need to consider much
of what has been discussed in this chapter:

• Know and understand the governance model for the network.
Are the policies defined by the founder or the existing consor‐
tium suitable?

• Understand the type of role the new organization will have in
the network. Does the role meet their requirements, and are
there any trust assumptions that need to be reviewed and
approved?

• Know whether the new organization will run their own peers,
and if they will endorse transactions submitted to the network.
Is there a choice of running in a cloud or on premises?

• What policies are in place with regard to changes to the network
and new smart contracts?

• What do the policies say for additional organizations being
onboarded, and will newly onboarded organizations have a say
in any future organizations being onboarded?

• Are there any security requirements that must be adhered to,
such as storing private keys in Hardware Security Modules?

• Are there any regulatory requirements such as GDPR or data
privacy requirements?

Summary
In this chapter, we have reviewed many of the design considerations
when building a new blockchain network. We looked at the types of
roles organizations can take in a network and the need for gover‐
nance. We looked at areas such as security and regulation, as well as
reviewing data jurisdiction and privacy requirements.

Onboarding | 41

http://bit.ly/2Z2WWXv

CHAPTER 4

Developing a Blockchain Network

The previous chapters introduced blockchain concepts and helped
you to identify when a scenario would be ideally solved by a block‐
chain solution. We also reviewed aspects of designing a blockchain
network.

In this chapter, we look at the different aspects of developing the
blockchain application using Hyperledger Fabric.

Smart Contracts
The first thing we will look at are smart contracts, which are a core
part of developing a blockchain application.

Hyperledger Fabric has taken a generic approach to the languages
used to write smart contracts. The first supported language was Go,
which is also the language that Fabric itself is written in. Node.js and
Java have been added in later versions. Hyperledger Burrow™ has
also been added to Hyperledger Fabric, which adds languages such
as Ethereum’s Solidity.

Although the industry uses and understands the generic term smart
contract, Hyperledger Fabric actually refers to the installable unit as
chaincode. We can think of smart contracts as being equivalent to
chaincode.

In Hyperledger Fabric v1.4 a number of significant API changes
were made. These improvements make it simpler to write smart
contracts, allowing multiple associated contracts to be written in a

43

https://golang.org/
http://bit.ly/2FSNRG1
http://bit.ly/2Uuvdk4

single chaincode. This provides a one-to-many relationship between
a chaincode and the smart contract(s) inside it, and gives the devel‐
oper more flexibility to colocate smart contracts that are related.
Other API changes were made to the Fabric Software Development
Kit (SDK), making it simpler to write the client application that con‐
nects to the blockchain network. For the remainder of this chapter
we’ll just use the term smart contract and not refer to chaincode.

Each smart contract written in Hyperledger Fabric defines what
state is written to the world state database (we’ll see more on this in
“World State” on page 46), the transactions associated with the
smart contract, and the business logic defined within each transac‐
tion.

At the top of each smart contract, an important interface called
fabric-contract-api must be included that defines the overall
structure a smart contract must adhere to.

Once a smart contract has been written, reviewed, and tested, it is
then packaged into a chaincode deployment spec file that includes:

• The smart contract (which could consist of multiple files)
• An instantiation policy that describes which organization

admins can instantiate the smart contract
• A set of digital signatures from the organizations that own the

smart contract

Each organization that needs to run the smart contract to endorse
transactions will then install it to each of their peers. After this, the
smart contract is instantiated on a specific channel by one of the
organizations identified in the instantiation policy. Once the smart
contract has been instantiated on the channel, each peer that has
joined the channel and has previously installed the smart contract
will be able to endorse transactions for the smart contract.

In the next section, after introducing the channel ledger, we will see
exactly what smart contract code looks like.

Channel Ledger
As we mentioned in previous chapters, each channel in Hyperledger
Fabric has a ledger. The ledger consists of both a blockchain struc‐
ture and the world state.

44 | Chapter 4: Developing a Blockchain Network

http://bit.ly/2UKS7mx

Let’s review what is recorded in both of these structures, and how
this might affect what a developer writes.

Blockchain Structure
The blockchain structure is the cryptographically linked blocks,
with each block containing one or more transactions. Hashes are
used to link the blocks together. Once a block has been added to the
blockchain, it can’t be modified or removed.

Every time a transaction is submitted to a Hyperledger Fabric order‐
ing service, it will be written to the blockchain structure for the
channel on which it was submitted. As we saw in the previous chap‐
ter when looking at data privacy, the transaction includes several
pieces of information, which we include again here for information:

• The digital certificate (identity) of the transaction submitter
• The digital certificate (identity) of the peers that endorse trans‐

actions
• The transaction called by the submitting application and any

parameters passed to the transaction
• Any data read and written by the smart contract to the world

state
• The response to the client application from calling the smart

contract

Transaction validation actually happens at the last phase of consen‐
sus within Hyperledger Fabric. All transactions submitted are added
to the blockchain, but only those transactions that are deemed to be
valid will also modify the world state. If a transaction is considered
to be invalid (for example, it doesn’t have sufficient endorsements,
or there is a mismatch of the world state between endorsement and
validation—also known as an MVCC conflict), then it is still written
to the blockchain but is flagged as invalid. This is very important,
because it means that Hyperledger Fabric is not only recording
transactions that affect the world state and the assets recorded there,
but is also recording invalid transactions for audit.

Channel Ledger | 45

World State
The world state is a database in which peers maintain state written
by the instantiated smart contracts. The world state can currently be
either of the following:

LevelDB
The default option, in which an instance of LevelDB is embed‐
ded inside the peer process. This database allows the smart con‐
tract to write simple key-value pairs. Queries can be done on the
keys, but there is no support for complex queries on the value.

CouchDB
An alternative option, in which case each peer will connect to
its own external CouchDB server. Data is still recorded as key-
value pairs, but CouchDB allows for additional query support of
the value when it is modeled as JSON.

Smart contracts decide which data to read and write from the world
state using getState() and putState() functions provided by the
Fabric smart contract API.

It’s possible for a smart contract to not use the world state at all,
although this is very unlikely. It’s worth also noting that the world
state is derived entirely from the transactions recorded in the block‐
chain on the ledger. Remember that each transaction contains the
read and write set for the world state. This means that if a peer’s
world state is ever corrupted or lost, then it can be entirely recreated
by running through the transactions in the blockchain. In fact, this
is exactly what happens when a new peer joins a channel for the first
time. It will receive all the blocks in the blockchain from the order‐
ing service (and possibly other peers) and construct its world state
based on this.

Here is a very simple HelloWorld smart contract that illustrates the
Hyperledger Fabric smart contract interface and world state opera‐
tions.

'use strict';
const { Contract } = require('fabric-contract-api');

class HelloWorld extends Contract {

 async instantiate(ctx) {
 console.info('Writing to world state');
 await ctx.stub.putState('hw', 'Hello World');

46 | Chapter 4: Developing a Blockchain Network

 }

 async query(ctx) {
 console.info('Reading from world state');
 const value = await ctx.stub.getState('hw');
 console.info(value.toString());
 }
}

module.exports = HelloWorld;

The smart contract is called HelloWorld. It implements two transac‐
tions:

instantiate(ctx)

This transaction is called once when the smart contract is
instantiated on the channel.

query(ctx)

This transaction can be called after being instantiated.

The transaction instantiation writes a simple key-value pair (hw,
HelloWorld) to the world state using putState(). The query trans‐
action retrieves the value for key hw from the world state using get
State() and writes the value to the console.

In the next chapter, we will explore more complex smart contracts
that implement commercial paper.

Client Application
For every smart contract there will be one or many client applica‐
tions that call transactions implemented by the smart contract. The
client application communicates with the Fabric blockchain network
using the Fabric SDK. Both Node.js and Java are supported, and
additional languages are being developed.

The Fabric SDK allows the application to connect to peers and
orderers. Once connected the application can query the blockchain
and can also call transactions implemented by smart contracts.

If using the Node.js SDK, the client application should use the
Hyperledger Fabric fabric-network module to gain access to the
API for submitting and querying transactions.

The client application needs two key pieces of information in order
to connect to a peer using the API:

Client Application | 47

Connection profile
Provides the basic connection details of the peer and ordering
service, such as host and port numbers.

Credentials
A wallet represents the user submitting the transaction. This
includes the user’s private key and digital certificate.

Let’s look at these in more detail.

Connection Profile
A connection profile does not need to include the whole network,
only the basic connection details required for the specific client
application. The SDK can use Fabric’s service discovery feature (if
enabled) to discover further information about the network, chan‐
nels, and smart contracts once a basic connection is made.

This is an excerpt from a connection profile showing the connection
details for the orderer, peer, and certificate authority in our network:

"orderers": {
 "orderer.example.com": {
 "url": "grpc://localhost:17050"
 }
},
"peers": {
 "peer0.org1.example.com": {
 "url": "grpc://localhost:17051",
 "eventUrl": "grpc://localhost:17053"
 }
},
"certificateAuthorities": {
 "ca.org1.example.com": {
 "url": "http://localhost:17054",
 "caName": "ca.org1.example.com"
 }
}

For each component the hostname, as well as the main URL, is pro‐
vided. Peers have two ports, one for receiving transaction proposals
and one to which the client application can connect for registering
and receiving event messages. Each certificate authority has a caN
ame property.

48 | Chapter 4: Developing a Blockchain Network

Credentials
Each component on the network, administrator, and user has a digi‐
tal identity that is their credential. The digital identity comprises a
private key (used to digitally sign transactions) and a digital certifi‐
cate (public identity).

A blockchain network for business is made up of multiple organiza‐
tions, and each organization will manage its digital identities for any
network components it has (peers and orderers) and any adminis‐
trators or users. These digital identities are issued from a Certificate
Authority associated with the organization. Hyperledger Fabric
includes a component called a Membership Services Provider (MSP)
that provides an abstraction layer for the organization to issue, vali‐
date, authenticate, and revoke digital identities.

Hyperledger Fabric has a two-step process for the issuance of new
identities: registration and enrollment, summarized as follows:

Registration
An administrator registers a new user with a certificate author‐
ity within the organization. The result of registering a new user
is an enrollment ID, and a secret (password). No digital identity
is issued during registration. The administrator sends the certif‐
icate authority connection details along with the enrollment ID
and secret to the user.

Enrollment
The user enrolls with the certificate authority using the connec‐
tion details, enrollment ID, and secret provided by the adminis‐
trator. Enrollment creates public/private keys locally before
calling the certificate authority to issue a digital certificate based
on the generated keys. This process uses what is known as a
Certificate Signing Request when calling the certificate author‐
ity. The result is an X.509 public key certificate. These certifi‐
cates can then be validated at any point, by checking them
against the certificate authority’s public certificate, which is also
known to the whole network.

This two-step process (register and enrollment) is essential for
ensuring the private key is only ever known to the user.

Once the digital identity (private key and digital certificate) are cre‐
ated, these can then be stored in a wallet (directory structure defined
by MSP) that is known to Fabric’s SDK.

Client Application | 49

https://en.wikipedia.org/wiki/X.509

A separate Fabric SDK class called FabricCAClient exists for manag‐
ing digital identities and connecting to the certificate authority. Fol‐
lowing is an example of an application that uses this class to enroll a
new administrator’s digital identity.

// Create a new CA client for interacting with the CA.
const caURL = ccp.certificateAuthorities[caName].url;
const ca = new FabricCAServices(caURL);

// Create a new file system based wallet for managing identities.
const walletPath = path.join(process.cwd(), 'wallet');
const wallet = new FileSystemWallet(walletPath);
console.log(`Wallet path: ${walletPath}`);

// Check to see if we've already enrolled the admin.
const adminExists = await wallet.exists(appAdmin);
if (adminExists) {
 return;
}

// Enroll the admin, and import new identity into wallet.
const enrollment = await ca.enroll({ enrollmentID: appAdmin,
 enrollmentSecret: appAdminSecret });
const identity = X509WalletMixin.createIdentity(orgMSPID,
 enrollment.certificate,
 enrollment.key.toBytes());
wallet.import(appAdmin, identity);

In the preceding code, we can see how the certificate authority
details and the location of the wallet are defined, before enrolling
the new administrator by calling ca.enroll().

Full details of this application can be found here. Hyperledger Fabric
also includes a command for managing digital identities called
fabric-ca-client.

SDK
The SDK provides the following three important classes the client
application uses to communicate with the blockchain network:

gateway

Provides the connection point for an application to access the
Fabric network

network

Represents a channel that is accessible via the gateway

50 | Chapter 4: Developing a Blockchain Network

http://bit.ly/2G1H5jq
http://bit.ly/2GfTVvW
http://bit.ly/2Icfwrf

contract

Represents a smart contract instantiated on the network

Following is some sample code showing these three classes in use by
the client application. This code connects to our local network and
calls the query transaction in my HelloWorld smart contract seen
earlier:

// Create a new gateway for connecting to our peer node.
const gateway = new Gateway();
await gateway.connect(ccp, { wallet,
 identity: 'Admin@org1.example.com',
 discovery: { enabled: false } });

// Get the network (channel) our contract is deployed to.
const network = await gateway.getNetwork('mychannel');

// Get the contract from the network.
const contract = network.getContract('HelloWorld');

// Evaluate the specified transaction.
const result = await contract.evaluateTransaction('query');

In the preceding code, it is the gateway.connect statement that does
all the work in establishing the connection to the Fabric network
using the user’s digital identity. Once connected, the application
decides which channel and smart contract it needs to reference for
sending a transaction.

Code, Debug
As we have seen, Hyperledger Fabric allows you to develop both
your smart contracts and client applications using one of several
popular languages. It is likely that your IDE (Integrated Develop‐
ment Environment) of choice will support one of these. Both Atom
and Visual Studio Code are popular open source IDEs that support
plug-ins for these languages.

Plug-ins also exist that specifically help simplify the development
and testing of smart contracts for different blockchain networks. For
example, there are plug-ins for developing Solidity smart contracts
on the Ethereum network and for developing Fabric smart contracts
deployed to the IBM Blockchain Platform. This latter plug-in ena‐
bles the developer to build, test, and debug their Fabric smart con‐
tract within the Visual Studio Code environment before then
connecting to a remote network to continue testing. The plug-in

Code, Debug | 51

https://ide.atom.io/
https://code.visualstudio.com/

creates a Fabric test network locally, which makes it very quick to
install and test changes to smart contracts.

Smart Contract Features
Hyperledger Fabric is continuing to evolve and mature at a rapid
pace. Many additional features have been added to allow the devel‐
oper to write ever more elaborate smart contracts. In this section, we
will cover some of these features at a high level:

• Private Data, which we have described already, allows data to be
shared to only those organizations defined within the collection.
The smart contract developer will use different APIs to access
the world state for any private data (getPrivateData() and put
PrivateData()).

• State-based endorsement, which means that smart contracts can
change the endorsement policy for specific entries in the world
state, overriding the higher-level smart contract endorsement
policy. The developer will use the following APIs to check and
set state-based endorsement: GetStateValidationParameter()
and SetStateValidationParameter().

• An encryption library is available to the smart contract devel‐
oper that enables them to encrypt and decrypt any data.

• Data is stored in the world state within a namespace associated
with the smart contract. This means that one smart contract
cannot directly access the world state of another (unless they are
written in the same chaincode). Therefore, Fabric includes APIs
that enable the first smart contract to invoke another.

• It is possible for a smart contract to emit custom events using
setEvent(), which is then consumed by the client application if
the transaction is validated.

• The clients’ digital certificate can be queried for roles and orga‐
nization affiliations so that rules within the smart contract can
be applied.

This list summarizes some of the many options available to the
smart contract.

52 | Chapter 4: Developing a Blockchain Network

Tutorials and Patterns
There are a number of excellent tutorials and patterns available for
both Hyperledger Fabric and the IBM Blockchain Platform. Two
very good resources are the Hyperledger Fabric documentation, and
the IBM Developer code patterns for blockchain.

The tutorials show how to develop smart contracts and client-side
applications, with the patterns showing more complex scenarios and
how blockchain can work with other systems within a system archi‐
tecture.

Summary
In this chapter, we introduced both the smart contract and client
application, which together form the basis of a blockchain applica‐
tion. We also looked at the structure of the ledger within Hyper‐
ledger Fabric, and the importance of knowing what is recorded in
which part of the ledger, the blockchain or the world state. Finally,
we reviewed IDEs such as Visual Studio Code, which help the devel‐
oper to build and test their applications and smart contracts.

Tutorials and Patterns | 53

http://bit.ly/2uZ3okw
https://ibm.co/2v6cpIV

CHAPTER 5

A Blockchain Example:
Commercial Paper

In Chapter 2, we referenced the Commercial Paper scenario pro‐
vided as part of the Hyperledger Fabric samples repository. In this
chapter, we will examine this scenario in depth as a tutorial to better
understand what it is doing. We will then extend the tutorial to cre‐
ate a new transaction in the smart contract and develop a new com‐
mand line application to invoke it.

What Is Commercial Paper?
The Commercial Paper tutorial simulates a simple commercial
paper trading network called PaperNet. Commercial paper is a type
of unsecured lending called a promissory note. Paper is normally
issued by large corporations to raise funds to meet short-term finan‐
cial obligations at a fixed rate of interest. Once issued at a fixed price
for a fixed term, another company or bank will purchase commer‐
cial paper at a cost lower than its face value, and when the term is
up, it will be redeemed for its face value.

As an example, if paper was issued at a face value of $10 million for
a six-month term at 2% interest, then it could be bought for $9.8
million ($10 million – 2%) by another company or bank happy to
bear the risk that the issuer will not default. Once the term is up,
then the paper could be redeemed or sold back to the issuer for its
full face value of $10 million. Between buying and redemption, the

55

paper can be bought or sold multiple times between different parties
on a commercial paper market.

Understanding the Commercial Paper Tutorial
Previously, we looked at how we can use the idea of assets, partici‐
pants, and transactions to analyze blockchain use cases.

From this description, we can see that the main asset here is the
commercial paper itself, which will have multiple attributes such as
the issuing company, the face value of the paper, the redemption
date, and the current state (such as issued, trading, and redeemed) of
the paper.

We can also see that there are multiple participants in this scenario:
an issuer who will be responsible for creating or issuing commercial
paper, and one or more buyers of commercial paper who will own
the paper until it is either redeemed or sold on to another party.

Finally, we have the transactions: they are issue, buy and redeem, to
issue new commercial paper, trade it, and redeem the face value of
the paper with the issuer, respectively.

In the tutorial there are two key participants: MagnetoCorp and
DigiBank. The tutorial shows MagnetoCorp initially acting as an
issuer, with DigiBank taking on the role of the buyer and redeemer
of the commercial paper in the PaperNet network.

Figure 5-1 shows an overview of the network, with Isabella working
for MagnetoCorp, the issuer, Balaji working for an example trader
(DigiBank), and the two organizations communicating over the
PaperNet blockchain:

Figure 5-1. Sample network for the Commercial Paper tutorial

Running the Commercial Paper Tutorial
Hyperledger Fabric contains a tutorial for Commercial Paper. In this
section, we introduce the purpose of this tutorial and the main tasks
involved.

56 | Chapter 5: A Blockchain Example: Commercial Paper

A more detailed description of the Commercial Paper tutorial is
available online; if you are a developer looking for hands-on experi‐
ence of Hyperledger Fabric, then we recommend that you follow
this. At the time of writing, the tutorial is available here.

Initially, the tutorial takes you through installing some prerequisite
software and downloading the samples. Once this is done you take
on the role of Isabella from MagnetoCorp, who will create the net‐
work that DigiBank will join. After installing and instantiating the
smart contract, she will run a command-line application that will
invoke the smart contract’s issue transaction.

Next, you switch to the role of Balaji from DigiBank, who will use
different command-line applications to buy the paper that Isabella
issued and then redeem it with another application.

The tutorial uses a command-line application for each smart con‐
tract transaction. Although this makes it very easy to see what is
going on from the tutorial’s point of view, in a more realistic sce‐
nario, one application might be expected to call several smart con‐
tract transactions.

At the end of the tutorial, one commercial paper asset has been
issued, bought, and redeemed in the network.

Extending the Commercial Paper Tutorial
Although the tutorial shows many aspects of smart contract devel‐
opment and transaction invocation, it currently does not provide a
way to query for particular paper. Therefore, in this section we will
look at extending the commercial paper smart contract to add a new
getPaper transaction that will return a string representation of the
requested paper to the caller. We will then create a new command-
line application based on one of the existing ones in order to invoke
it.

This will provide us with a way of looking at the different states
commercial paper will go through during its lifecycle. We will then
issue new paper and follow it through its lifecycle, querying it at
each step along the way.

Extending the Commercial Paper Tutorial | 57

http://bit.ly/2D5f1es

Writing the New getPaper Transaction
The new getPaper transaction follows the same model as the buy
and redeem transactions, but it is much simpler as we do not need to
update any properties of the paper in the world state:

/**
* Get commercial paper
* @param {Context} ctx the transaction context
* @param {String} issuer commercial paper issuer
* @param {Integer} num paper number for this issuer
*/
async getPaper(ctx, issuer, num) {
 try {
 console.log("getPaper for: " + issuer + " " + num);
 let paperKey = CommercialPaper.makeKey([issuer, num]);
 let paper = await ctx.paperList.getPaper(paperKey);
 return paper.toBuffer();
 } catch (e) {
 throw new Error('Paper does not exist' + issuer + num);
 }
}

Add this code to the commercial-paper/organization/magnetocorp/
contract/lib/papercontract.js file and save it. It needs to sit as a top-
level transaction like the other transactions, so place it after the
redeem transaction almost at the bottom of the file.

We’ll now walk through the changes we made.

After the comments, there is the definition of the getPaper transac‐
tion, which takes three parameters. The first one (ctx) is of type Con
text and is the first parameter passed to all transactions. This allows
the framework to pass extra information into the transaction func‐
tion when it is called. For example, it can pass information about the
identity of the caller of the contract as well as methods to query the
worldstate when the transaction is called. The second and third
parameters (issuer and num) are passed in from the calling applica‐
tion and contain the issuer and number of the paper we wish to
retrieve.

After logging the parameters passed in to the console log, the trans‐
action calls the static CommercialPaper.makeKey method. This
method is defined in the ledger-api/state.js file and is a helper
method to create a world state key for the paper. Remember from
the last chapter that data in the world state is stored as key/value
pairs, and for the commercial paper tutorial the key is defined using

58 | Chapter 5: A Blockchain Example: Commercial Paper

this method. In this example, the key is simply a concatenation of
the issuer and the paper number, separated by a colon; for example,
MagnetoCorp:00001.

Next, the transaction uses the paperKey return value to request a
specific paper by calling ctx.paperList.getPaper and passing in
the key (paperKey). As you can see, this is using the ctx parameter
to access the paperList and call its getPaper method. The defini‐
tion of this method is provided in the lib/paperlist.js file.

In turn, paperList.getPaper simply calls the getState method
defined in ledger-api/stateList.js. It is this method that actually
accesses the world state to retrieve the requested commercial paper
asset.

Once we have the requested paper, we simply return it to our caller
as a buffer object.

If the requested commercial paper does not exist in the world state,
an exception will be thrown, informing our caller that the requested
paper does not exist.

Writing the New getPaper.js Application
The getPaper.js application is based on the existing buy.js appli‐
cation that comes with the Commercial Paper tutorial. We can’t
show you all the code here as there are over 100 lines of code. How‐
ever, most of these lines remain the same—we are only going to
change about 12 of them.

To get started, make a copy of the commercial-paper/organization/
digibank/application/buy.js file and call the copy getPaper.js. Make
sure the copy is in the same folder as buy.js.

Open the file in a code editor such as VSCode and look through the
file for the console.log lines that contain the string “Buy program;”
for example:

console.log('Buy program complete.');
...
console.log('Buy program exception.');

To avoid confusion, change Buy to GetPaper throughout, so that
when we subsequently review these console logs we see the correct
application’s output.

Writing the New getPaper.js Application | 59

Next, delete the buy commercial paper and process response sec‐
tions in the main method, as these are not relevant to the getPaper
application:

 // buy commercial paper
 console.log('Submit commercial paper buy transaction.');

 const buyResponse = await contract.submitTransaction('buy',
 'MagnetoCorp', '00001', 'MagnetoCorp', 'DigiBank',
 '4900000', '2020-05-31');

 // process response
 console.log('Process buy transaction response.');

 let paper = CommercialPaper.fromBuffer(buyResponse);
 console.log(`${paper.issuer} commercial paper :
 ${paper.paperNumber} successfully purchased by
 ${paper.owner}`);

In place of this deleted block, just before the Transaction Complete
log message, add the following code. (Note that you will be adding
in a few more lines than you deleted, but that’s okay—we are doing a
little more work to nicely format the returned paper object. Make
sure you save the file when you are done.)

// get commercial paper
console.log('Evaluate getPaper transaction.');
const getPaperResponse = await contract.evaluateTransaction(
 'getPaper', 'MagnetoCorp', '00001');
console.log('Process getPaper transaction response.');

let paper = CommercialPaper.fromBuffer(getPaperResponse);
let paperState = "Unknown";
if (paper.isIssued()) {
 paperState = "ISSUED";
} else if (paper.isTrading()) {
 paperState = "TRADING";
} else if (paper.isRedeemed()) {
 paperState = "REDEEMED";
}

console.log(` +--------- Paper Retrieved ---------+ `);
console.log(` | Paper number: "${paper.paperNumber}"`);
console.log(` | Paper is owned by: "${paper.owner}"`);
console.log(` | Paper is currently: "${paperState}"`);
console.log(` | Paper face value: "${paper.faceValue}"`);
console.log(` | Paper is issued by: "${paper.issuer}"`);
console.log(` | Paper issue on: "${paper.issueDateTime}"`);
console.log(` | Paper matures: "${paper.maturityDateTime}"`);
console.log(` +-----------------------------------+ `);

60 | Chapter 5: A Blockchain Example: Commercial Paper

Looking at this new code that we inserted, we can see that it starts by
logging the call it is about to make on the contract to the console. It
then calls the evaluateTransaction method of the contract to sub‐
mit the call to the peer to run the getPaper transaction.

Note that in getPaper we are using evaluateTransaction rather
than the submitTransaction method that the other transactions
use; the difference is that evaluateTransaction does not record the
transaction on the ledger, and as we are not changing any state when
returning the paper—this is okay.

The parameters passed to evaluateTransaction indicate that we
want to get MagnetoCorp’s paper 00001, which was the one issued
when you ran the tutorial. Once the paper has been returned, we
find out which state the paper is in (ISSUED, TRADING, or REDEEMED)
and then print this out along with the other information contained
within the paper such as its paper number, issuer, owner, and face
value.

Upgrading the Smart Contract
Now that we have edited the smart contract to add the new transac‐
tion and created the new getPaper command line application, it is
time to test them both out. To do this, we first have to install the
modified smart contract on to the peer. From the magnetocorp con‐
sole window, which you should have open from running the tuto‐
rial, issue this command to install the new version 2 of the contract:

(magnetocorp admin)$ docker exec cliMagnetoCorp peer chaincode
install -n papercontract -v 2 -p /opt/gopath/src/github.com/co
ntract -l node

When it completes, you should see output like this:

2019-02-21 13:32:23.824 UTC [chaincodeCmd] checkChaincodeCmdPa
rams -> INFO 001 Using default escc
2019-02-21 13:32:23.824 UTC [chaincodeCmd] checkChaincodeCmdPa
rams -> INFO 002 Using default vscc
2019-02-21 13:32:23.832 UTC [chaincodeCmd] install -> INFO 003
Installed remotely response:<status:200 payload:"OK" >

Next, we have to upgrade the version 2 smart contract on the peer to
make it live:

(magnetocorp admin)$ docker exec cliMagnetoCorp peer chaincode
upgrade -n papercontract -v 2 -l node -c '{"Args":["org.papern

Upgrading the Smart Contract | 61

et.commercialpaper:instantiate"]}' -C mychannel -P "AND ('Org1
MSP.member')"

When it completes (which can take a few minutes), you should see
output like this:

2019-02-21 13:32:35.508 UTC [chaincodeCmd] InitCmdFactory ->
INFO 001 Retrieved channel (mychannel) orderer endpoint:
orderer.example.com:7050
2019-02-21 13:32:35.511 UTC [chaincodeCmd] checkChaincodeCmdPar
ams -> INFO 002 Using default escc
2019-02-21 13:32:35.511 UTC [chaincodeCmd] checkChaincodeCmdPar
ams -> INFO 003 Using default vscc

Invoking the New getPaper.js Application
Now we are ready to invoke the getPaper.js application and test
out the new smart contract transaction. First, check that the console
window for Balaji from DigiBank, which you should have open
from running the tutorial, is currently in the commercial-paper/orga‐
nization/digibank/application directory. If it is not, just use cd to
change to this directory. This is where the new getPaper.js appli‐
cation is located.

Issue this command to run the application:

(balaji)$ node getPaper.js

You should expect to see output like this:

Connect to Fabric gateway.
Use network channel: mychannel.
Use org.papernet.commercialpaper smart contract.
Submit commercial paper getPaper transaction.
Process getPaper transaction response.

 +--------- Paper Retrieved ---------+
 | Paper number: "00001"
 | Paper is owned by: "MagnetoCorp"
 | Paper is currently: "REDEEMED"
 | Paper face value: "5000000"
 | Paper is issued by: "MagnetoCorp"
 | Paper issue on: "2020-05-31"
 | Paper matures on: "2020-11-20"
 +-----------------------------------+

Transaction complete.
Disconnect from Fabric gateway.
GetPaper program complete.

62 | Chapter 5: A Blockchain Example: Commercial Paper

Assuming that you have completed the tutorial successfully earlier,
you should now see the final REDEEMED state of paper number 00001
that MagnetoCorp issued after it was bought and then redeemed by
DigiBank.

Testing with New Paper
Now let’s go through this one more time, issuing, buying, and
redeeming a second paper (number 00002). But this time, we will
look at the output from getPaper each step along the way.

To do this we will need to edit all four programs to use the new
paper. We’ll start with one of the easiest: getPaper.js. Open up get
Paper.js in your editor and find this line of code:

const getPaperResponse = await contract.evaluateTransaction(
 'getPaper', 'MargetoCorp', '00001');

Change the paper number from 00001 to 00002 and save the change
to the file. Although you could run getPaper.js at this point, it
would return an error as there is currently no paper with the num‐
ber 00002. So, let’s create one.

Open up issue.js from the organization/magnetocorp/application
directory and find this line:

const issueResponse = await contract.submitTransaction(
 'issue', 'MagnetoCorp','00001','2020-05-31',
 '2020-11-20','5000000');

Change the paper number from 00001 to 00002, and so we can see
more differences, change the amount from 5000000 to 6000000. You
can change the dates as well as if you wish. Your changed line should
look something like this:

const issueResponse = await contract.submitTransaction('issue',
 'MagnetoCorp','00002','2019-06-30','2019-12-30','6000000');

From the MagnetoCorp console window, issue this command to
issue paper 00002:

(magnetocorp admin)$ node issue.js

You should see output indicating that the paper was issued success‐
fully, with output of the form:

MagnetoCorp commercial paper : 00002 successfully issued for
value 6000000

Testing with New Paper | 63

Next, from Balaji’s console window run the getPaper application:

(balaji)$ node getPaper.js

The output should contain:

+--------- Paper Retrieved ---------+
 | Paper number: "00002"
 | Paper is owned by: "MagnetoCorp"
 | Paper is currently: "ISSUED"
 | Paper face value: "6000000"
 | Paper is issued by: "MagnetoCorp"
 | Paper issue on: "2019-06-30"
 | Paper matures on: "2019-12-30"
 +-----------------------------------+

Now we can see the paper has now been issued, but it is still owned
by MagnetoCorp as it has not yet been sold. Let’s now buy this new
paper as DigiBank. Open up buy.js from the organization/digibank/
application folder and find this line:

const buyResponse = await contract.submitTransaction(
'buy', 'MagnetoCorp', '00001', 'MagnetoCorp', 'DigiBank',
'4900000', '2020-05-31');

If we look at the buy transaction in the papercontract.js smart con‐
tract, we can see the parameters representing the transaction to call
(buy), the issuer, the paper number, the current owner, the new
owner, the price, and the purchase date and time. Edit the line to
update the parameters for the new paper to look like this:

const buyResponse = await contract.submitTransaction(
'buy', 'MagnetoCorp', '00002', 'MagnetoCorp', 'DigiBank',
'5880000', '2019-10-30');

When you are done, save the file and from Balaji’s console window
run the buy command:

(balaji)$ node buy.js

You should see output stating that the transaction was successful:

MagnetoCorp commercial paper : 00002 successfully purchased
by DigiBank

Next, let’s run getPaper again:

(balaji)$ node getPaper.js

64 | Chapter 5: A Blockchain Example: Commercial Paper

The output should include this:

+--------- Paper Retrieved ---------+
 | Paper number: "00002"
 | Paper is owned by: "DigiBank"
 | Paper is currently: "TRADING"
 | Paper face value: "6000000"
 | Paper is issued by: "MagnetoCorp"
 | Paper issue on: "2019-06-31"
 | Paper matures on: "2019-12-30"
 +-----------------------------------+

As we can see, the paper is now owned by DigiBank and is now in
the TRADING state.

Finally, let’s change redeem.js, which is alongside buy.js in the
DigiBank application folder. Open the file in your editor and find
this line:

const redeemResponse = await contract.submitTransaction(
 'redeem', 'MagnetoCorp', '00001', 'DigiBank', '2020-11-30');

Here we need to change the paper number and the redeeming date
for completeness, so edit the line to look like this:

const redeemResponse = await contract.submitTransaction(
 'redeem', 'MagnetoCorp', '00002', 'DigiBank', '2019-11-30');

When you are done, save the file and from Balaji’s console window
run the redeem command:

(balaji)$ node redeem.js

You should see output stating that the transaction was successful:

MagnetoCorp commercial paper : 00002 successfully redeemed with
MagnetoCorp

Next, let’s run getPaper one last time:

(balaji)$ node getPaper.js

The output should look like this:

+--------- Paper Retrieved ---------+
 | Paper number: "00002"
 | Paper is owned by: "MagnetoCorp"
 | Paper is currently: "REDEEMED"
 | Paper face value: "6000000"
 | Paper is issued by: "MagnetoCorp"
 | Paper issue on: "2019-06-30"
 | Paper matures on: "2019-12-30"
 +-----------------------------------+

Testing with New Paper | 65

Here we can see the paper is now redeemed and the cycle is com‐
plete. At this point, feel free to experiment on your own, maybe by
extending the smart contract further to improve error checking or
by writing a new command-line application to find all TRADING or
REDEEMED papers. Or, you could try and make the applications easier
to use by taking arguments from the command line for the parame‐
ters such as paperNumber to save having to edit the files manually to
work with a new asset.

Summary
We have taken a whirlwind tour of the Commercial Paper tutorial,
and have updated its smart contract to include a new getPaper
transaction. We have installed and upgraded the PaperNet network
to the new version of the contract, and we have even written a new
command-line application to execute the new getPaper transaction.
Finally, we issued a new commercial paper asset and followed it on
its lifecycle, looking at the state changes made to it on its journey.

If you are a developer of smart contracts, there is a free-to-use tool
available to make your smart contract development much easier.
The IBM Blockchain Platform Extension for VSCode helps Hyper‐
ledger Fabric developers to develop and test smart contracts and cli‐
ent applications on their local machines, as well as package their
projects for deployment into IBM Blockchain Platform runtimes.

In the final chapter, we will take a look at the shape of things to
come and where the future lies for blockchain technology.

66 | Chapter 5: A Blockchain Example: Commercial Paper

CHAPTER 6

What’s Next in Blockchain

In this book, we have looked in detail at blockchain for business. We
started by defining relevant business concepts such as ledgers and
contracts, and how the key principle behind blockchain is to share
these artifacts between participants of a business network, making
the data irrefutable and thereby helping to engender trust.

We looked at common applications for blockchain and how to iden‐
tify good ideas. We then dived into the technology and looked at
how to design and develop for it, using commercial paper as an
example.

In this last chapter, we will look at where we currently are in terms
of the development and uses of blockchain, and what the future
might hold for this exciting innovation. We will do this by looking at
blockchain through the lenses of the technology and the applica‐
tions that use it.

Blockchain Technology
When a technology reaches a certain point of maturity, the core set
of requirements has been largely implemented and an important
period of optimization begins. We’re now seeing this throughout the
blockchain for business community, as there are significant efforts
toward features that deliver quality-of-life improvements such as
standardization, stability, and simplification. In addition, we’re see‐
ing (of course) the next generation of innovation. We’ll now look at
these different areas.

67

Standardization
Every successful technology goes through three distinct phases:
innovation, standardization, and commoditization. Innovation is the
trigger that sparks the initial interest in the technology. Standardiza‐
tion is the process of market forces that forces an industry into
accepting a common vocabulary—whether that’s a technical proto‐
col, specification, or some other layer. Commoditization is the pro‐
cess by which technology becomes cheaper and easier to adopt.

For blockchain, the innovation trigger was arguably Bitcoin’s cre‐
ation in 2008, although you can point to other technologies such as
peer-to-peer networks, hashchains, or even Luca Pacioli’s documen‐
tation of double-entry bookkeeping as stepping stones that have led
us to blockchain. Since 2008, however, after several years of block‐
chain education and experimentation, effort is now being invested
on standardization. This phase is important because standards will
allow for assets to flow more easily across diverse business networks,
and for networks to grow regardless of ledgering technology. As we
discussed in Chapter 1, the future lies in the network of networks.

Standardization can occur at many different layers; the best stand‐
ards are descriptive rather than prescriptive, as they allow for fur‐
ther innovation and for new business models to form. Bodies such
as ISO, IEEE, and W3C are all looking at different aspects of block‐
chain standards. Additionally, the Enterprise Ethereum Alliance has
documented a specification for blockchain clients that is starting to
gain traction, and the Inter-Ledgering Protocol is an effort at the
protocol layer for blockchains to communicate, although this is cur‐
rently very payments specific.

Over time, standards will emerge and aspects of blockchain technol‐
ogy will become commoditized, which is a good thing as it provides
the motivation for further innovation. Vendors will look for addi‐
tional value on top of the blockchain, whether that’s through plat‐
forms, analytics, Internet of Things, or some other innovation
trigger, and the cycle can begin anew.

Stability
While new features are being added to blockchain technologies such
as Hyperledger Fabric, we can expect to see a stabilization period as
business networks move their pilots into production. A good exam‐

68 | Chapter 6: What’s Next in Blockchain

ple of this is Hyperledger Fabric’s v1.4 Long Term Service release,
which aims to be a known baseline that businesses can comfortably
move into production and upon which fixes can be applied.

Simplification
There is a strong demand for simplification, which is again a sign of
the growing maturity of the technology as blockchain moves from
being a research community effort into the mainstream. The
increase in programming language coverage, simplified smart con‐
tracts, and client APIs in Hyperledger Fabric will make it even easier
to develop blockchain solutions.

In the future, we can expect to see a further reduction in the barriers
to entry for blockchain, including catering for nontechnical constit‐
uencies such as business leaders and lawyers, who might not need
technical interfaces to the ledger but do have vested interests in the
nature of active smart contracts.

The Next Generation of Blockchain Features
A huge amount of innovation continues to be applied to blockchain,
typically through the application of related research. Together these
help to address concerns and challenges of blockchain adoption
within business networks. For example:

Cryptoanchors
These provide a way of encoding digital fingerprints in real-
world objects. For blockchain this will provide an interesting
way of identifying and verifying assets on a blockchain that can‐
not be easily encoded (aspirin or oil, for example), which will
help to solve the problem of counterfeit goods.

Token management services
These allow permissioned blockchains to create fungible tokens
that map to assets, which allows multiples of them to be easily
traded. While the UTXO model that describes an efficient
mechanism for the issuance, storage, and transfer of tokens has
long been present in cryptocurrency implementations such as
Bitcoin, we’re now seeing it appear in policy-based blockchains
such as Hyperledger Fabric. Tokens will help bring together pre‐
viously separate conceptual models of assets and thereby allow
these blockchains to work with a much wider set of asset types.

Blockchain Technology | 69

Zero-knowledge proofs
These allow you to prove to a third-party that you know a fact
without revealing the fact itself. This will allow blockchains to
be used as a store of proof rather than a store of data, allowing
businesses to avoid the risk of sharing confidential information
with unauthorized people. This is particularly important in
asset-trading scenarios, in which the details of the participants
of a trade might remain confidential, yet still providing trans‐
parency to regulatory bodies.

Artificial intelligence
This is a broad area that covers machine learning, analytics, and
other technologies. Most commonly in blockchain, AI can be
used to provide insight into the data stored in the shared system
of record, giving insights into the lifecycle of assets and provid‐
ing the data needed for further process optimization.

Blockchain Applications
Of course, all this technology is useless if it struggles to find a com‐
pelling application that solves a real-world need.

With hundreds of companies investing in blockchain, there is no
shortage of press releases and other articles describing potential and
actual uses of the technology. If the precedent of other innovative
technologies over the years—from the printing press and steam
engine to the internet—is anything to go by, it will be many years
until we discover the full range of applications for which blockchain
is suited.

Blockchain applications can be categorized into two main types:
those that have a predominant benefit for business and those that
have a stronger benefit for society as a whole. We’ll now look at sev‐
eral examples.

Blockchains for Business
The early adopters of blockchain for business were predominantly
in the finance industry. There are several possible reasons for this,
including a strong fintech community, the association of blockchain
(at least initially) with cryptocurrencies, and the fact that trust lies at
the heart of the banking business (i.e., we trust banks to take care of
our money rather than keeping it under our mattresses). There are

70 | Chapter 6: What’s Next in Blockchain

several well-advanced finance blockchains, for scenarios including
international payments, trade finance, and letters of credit.

One of the most popular areas for today’s business blockchains is for
the tracking of assets in supply chains. This is because of the lack of
trust and transparency that many supply chains exhibit, the problem
of counterfeiting that results from this, and the ability for block‐
chains to irrefutably track asset provenance. Some examples of sup‐
ply chain blockchains include food, freight, diamonds, wine, and
drugs, but the same template could be applied to any high-value
asset. We’re now seeing the emergence of templates to make the
development of supply chain blockchains easier (e.g., Hyperledger
Grid™).

Looking ahead, what businesses will start to find is that the indus‐
tries in which blockchains are deployed are no longer relevant. The
interrelated nature of business networks means that as blockchains
expand their membership and complexity, defining a blockchain as
belonging to a single industry or geography no longer makes sense.
Supply chains are typically global and can span manufacturing, dis‐
tribution, retail, finance, and other sectors, too. At what point does a
drug blockchain cease to be a drug blockchain when a dispensing
transaction triggers a stock-replenishment business process that
then triggers a financing operation, manufacturing, and parts
replacement?

In a network of networks, the cascade effect will be significant and
businesses will become truly interconnected. These efficiency gains
will reduce cost, allow new markets to be reached, and bring about a
new era of transactional applications. Different governments have
different priorities when it comes to protectionism versus free mar‐
ket access, but over time we know that competitive markets will
remove barriers to trade and gravitate toward the lowest-cost, most
efficient solutions. Blockchain can help make that happen.

Blockchains for the Good of Society
There is also a compelling set of blockchain applications that will (or
already) exist predominantly for the good of society, yet also provide
complementary benefit to businesses. Here are some of the more
interesting ones:

Blockchain Applications | 71

http://bit.ly/2FXBScc
http://bit.ly/2FXBScc

• A 2009 study by the United Nations Office on Drugs and Crime
showed that Afghan citizens paid $2.5 billion in bribes (about
23% of Afghanistan’s GDP). Smart contracts enforce the terms
for any given transaction and the blockchain itself engenders
transparency. These characteristics, when applied to charitable
donations and aid, will help reduce bribery and the effects of
corruption, particularly in developing countries.

• The world is seeing an increase in extreme weather, and the
ability to insure homes in affected areas is often impossible
because a single insurer cannot adequately cover the risk. In
California, for example, just 12% of homeowners are covered by
earthquake insurance. Pooling the risk using catastrophe bonds
and blockchain to automate the claims process across the
insurer network will help families rebuild their lives more
quickly after extreme weather events.

• Dynamic blockchain-based marketplaces will lead to more effi‐
cient use of natural resources in an increasingly complex energy
network that includes diverse producers and consumers, such
as electric cars and solar panels. For example, TenneT and Van‐
debron have a pilot project that offers car owners access to the
electricity market. These marketplaces will also help clean up
the plastic in our oceans by creating incentives for collection
and recycling of the plastic waste (for example, PlasticBank).

• Decentralized identity systems (such as the Sovrin network and
platforms built using Hyperledger Indy) put users in control of
their own personal data and also provides a mechanism for ver‐
ifiable claims (facts) against those users. This will allow organi‐
zations such as educational institutions and employers to attest
qualifications and work history, which will help to prevent
fraud. The same idea could also help content producers
attribute media to their sources, thus helping to combat plagia‐
rism and “fake news.”

72 | Chapter 6: What’s Next in Blockchain

http://bit.ly/2GgKVXn
http://bit.ly/2uWSA6q
http://bit.ly/2uWSA6q
https://www.plasticbank.com
https://sovrin.org
http://bit.ly/2URAaCG

Summary
We really are just scratching the surface when it comes to block‐
chain applications. The technology comes with a very simple set of
aims: to engender trust and remove friction from transactions.
Imagine being able to reliably exchange assets with anyone, any‐
where in the world without borders, as easily as you can use the
internet to exchange data today. With blockchain, we are living in an
age of innovation, and it’s exciting to see where it will lead us.

Summary | 73

About the Authors
Michael Bradley is the global Program Director for Blockchain
Enablement and Education for IBM. He is responsible for the ena‐
bling of IBMers and clients to advocate, sell, and deliver IBM’s
blockchain offerings. He has had a variety of roles with IBM and
over 20 years of industry experience. Michael’s leadership roles in
IBM have spanned the Development Labs (Messaging, IoT, Emerg‐
ing Technologies) and IBM Services (Consultancy & Strategic Out‐
sourcing), giving him a deep and broad business understanding.

David Gorman is part of IBM’s global blockchain team, and is based
at IBM’s development lab in Hursley, England. The team is the cen‐
ter of blockchain client engagement worldwide for IBM. In this role,
Dave works with customers across a broad spectrum of industries
and use cases, including the financial services sector, enabling them
in their understanding of blockchain and how they can best make
use of the technology. Dave has worked in the IT industry for over
28 years, including several years in enterprise middleware integra‐
tion technologies and performance analysis.

Matt Lucas is part of IBM’s global blockchain team. His role is to
help clients understand and apply blockchain technologies, and he
works closely with emerging blockchain fabrics such as Hyperledger
Fabric and Ethereum. Through collaboration with various universi‐
ties worldwide, he also helps the next generation of computing pro‐
fessionals understand technology and its application in business. He
is based in IBM’s development laboratory in Hursley, England, and
has worked with IBM for over 20 years on a variety of integration
middleware technologies. Most recently he spent several years work‐
ing on IBM Integration Bus in the product architecture and offering
management disciplines. You can contact Matt on Twitter using
@mqmatt, or via email at lucas@uk.ibm.com.

Matthew Golby-Kirk is part of IBM’s global blockchain engagement
team and has delivered over 100 client events, briefings, and hands-
on labs on IBM’s Blockchain Platform and Hyperledger Fabric
around the world. He is based at IBM’s development laboratory in
Hursley, England, and has worked with IBM for almost 20 years on
a variety of integration and middleware technologies. Prior to his
time with the blockchain team, he spent several years working on
IBM Integration Bus in the product development team, responsible
for many areas of product functionality.

	Cover
	IBM
	Copyright
	Table of Contents
	Foreword
	Preface
	Who Is This Book For?
	How Is This Book Organized?
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Blockchain
	Business Networks
	Ted the Businessman

	The Ledger
	Transactions and Contracts
	The Problems with Ledgers and Contracts
	Enter the Blockchain
	A Car Example

	Blockchain and Trust
	Blockchain and Bitcoin
	The Bitcoin Network

	The Requirements of Blockchain for Business
	The Assets That Are Tracked
	Knowing Each Transaction’s Participants
	The Rules Around Privacy and Confidentiality
	How Transactions Are Endorsed
	How the Network Is Governed

	Blockchain Technology
	The Hyperledger Project

	IBM and Blockchain
	Summary

	Chapter 2. Identifying When to Use Blockchain
	Identifying Issues in the Business Network
	What Are the Benefits of a Blockchain-Based Solution?
	Assets, Participants, and Transactions
	Assets
	Participants
	Transactions

	The Blockchain Fit
	Choosing a First Scenario
	Transforming the Business Network
	Growing the Business Network
	Ten Questions to Explore the Scenario in More Detail
	Commercial Paper: An Example Scenario
	Commercial Paper Assets
	Commercial Paper Participants
	Commercial Paper Transactions
	Consensus
	Provenance
	Immutability
	Finality

	Summary

	Chapter 3. Designing a Blockchain Network
	Governance Model
	Network Members and Consumers
	Architecture and Design Considerations
	Participant Types
	Network Roles
	Assets
	Transactions
	Endorsements
	Deployment
	Network Access
	Regulations
	Nonfunctional Requirements

	Security Considerations
	Governance, Administration, and Operation Considerations
	Data Considerations
	Jurisdiction
	Data Privacy
	Channels
	Private Data Collections
	Encryption
	Identity

	Onboarding
	Summary

	Chapter 4. Developing a Blockchain Network
	Smart Contracts
	Channel Ledger
	Blockchain Structure
	World State

	Client Application
	Connection Profile
	Credentials
	SDK

	Code, Debug
	Smart Contract Features
	Tutorials and Patterns
	Summary

	Chapter 5. A Blockchain Example: Commercial Paper
	What Is Commercial Paper?
	Understanding the Commercial Paper Tutorial
	Running the Commercial Paper Tutorial
	Extending the Commercial Paper Tutorial
	Writing the New getPaper Transaction
	Writing the New getPaper.js Application
	Upgrading the Smart Contract
	Invoking the New getPaper.js Application
	Testing with New Paper
	Summary

	Chapter 6. What’s Next in Blockchain
	Blockchain Technology
	Standardization
	Stability
	Simplification
	The Next Generation of Blockchain Features

	Blockchain Applications
	Blockchains for Business
	Blockchains for the Good of Society

	Summary

	About the Authors

