
IBM SDK for z/OS, Java Technology Edition
Version 7

SDK and Runtime Guide

���

IBM SDK for z/OS, Java Technology Edition
Version 7

SDK and Runtime Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 481.

Copyright information

This edition of the user guide applies to the IBM 31-bit SDK for z/OS, Java Technology Edition, Version 7, product
5655-I98, and to the IBM 64-bit SDK for z/OS, Java Technology Edition, Version 7, product 5655-I99, and to all
subsequent releases, modifications, and Service Refreshes, until otherwise indicated in new editions.

Portions © Copyright 1997, 2013, Oracle and/or its affiliates.

© Copyright IBM Corporation 2011, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Preface v

Chapter 1. Product overview 1
Introduction to Java 1

IBM Software Developers Kit (SDK) 1
IBM Java Runtime Environment (JRE) 4
IBM Java Virtual Machine (JVM). 5

What's new 6
IBM J9 Virtual Machine 6
Memory management 11
Class data sharing 12
The JIT compiler. 13
Diagnostic component 13

Conventions and terminology 16
Other sources of information 17
Accessibility 18

Chapter 2. Understanding the IBM
Software Developers Kit (SDK) for Java 19
The building blocks of the IBM Virtual Machine for
Java 19

Java application stack 20
Components of the IBM Virtual Machine for Java 21

Memory management 23
Overview of memory management 23
Allocation 26
Detailed description of global garbage collection 29
Generational Concurrent Garbage Collector. . . 37
Balanced Garbage Collection policy 39
How to do heap sizing 45
Interaction of the Garbage Collector with
applications 46
How to coexist with the Garbage Collector . . . 47
Frequently asked questions about the Garbage
Collector 50

Class loading 53
The parent-delegation model 53
Namespaces and the runtime package 54
Custom class loaders 54

Class data sharing 55
The JIT compiler. 57

JIT compiler overview 57
How the JIT compiler optimizes code. 58
Frequently asked questions about the JIT
compiler 59

The AOT compiler 60
Java Remote Method Invocation 61

The RMI implementation 61
Thread pooling for RMI connection handlers . . 62
Understanding distributed garbage collection . . 63
Debugging applications involving RMI 63

The ORB 64
CORBA. 64
RMI and RMI-IIOP 65
Java IDL or RMI-IIOP? 65

RMI-IIOP limitations 66
Further reading 66
Examples of client–server applications 66
Using the ORB 72
How the ORB works 75
Additional features of the ORB 82

The Java Native Interface (JNI) 88
Overview of JNI 89
The JNI and the Garbage Collector 90
Copying and pinning 94
Handling exceptions 96
Synchronization 96
Debugging the JNI 97
JNI checklist 99

Chapter 3. Planning. 101
Migrating from earlier IBM SDK or JREs 101
Version compatibility 102
Supported environments 102

Chapter 4. Installing and configuring
the SDK. 105
Working with BPXPRM settings 105
Setting the region size 106
Setting MEMLIMIT 106
Setting LE runtime options 106

Setting LE 31-bit runtime options. 107
Setting LE 64-bit runtime options. 108

Marking failures 108
Setting the path 108
Setting the class path 109
Updating your SDK or JRE for daylight saving
time changes 109
Running the JVM under a different code page . . 110
Using non-default system fonts 111

Chapter 5. Developing Java
applications 113
Using XML 113

Migrating to the XL-TXE-J 115
Securing JAXP processing against malformed
input 117
XML reference information 117

Debugging Java applications 122
Java Debugger (JDB) 122

Determining whether your application is running
on a 31-bit or 64-bit JVM 123
How the JVM processes signals 124

Signals used by the JVM 124
Linking a native code driver to the
signal-chaining library 126

Writing JNI applications 127
Supported compilers 128
Native formatting of Java types long, double,
float 128

© Copyright IBM Corp. 2011, 2013 iii

|
||

Support for thread-level recovery of blocked
connectors 129
CORBA support 129

System properties for tracing the ORB 130
System properties for tuning the ORB 131
Java security permissions for the ORB 131
ORB implementation classes 132

RMI over IIOP 132
RMI-IIOP Programmer's Guide 133

Implementing the Connection Handler Pool for
RMI 140
Enhanced BigDecimal 140
Working in a multiple network stack environment 140
Support for XToolkit 141
Support for the Java Attach API 141

Chapter 6. Running Java applications 145
The java and javaw commands 145

Obtaining version information. 145
Specifying Java options and system properties 146
Standard options 147
Globalization of the java command 148

The Just-In-Time (JIT) compiler 149
Disabling the JIT 149
Enabling the JIT 149
Determining whether the JIT is enabled . . . 150

Specifying a garbage collection policy 150
Garbage collection options 151
More effective heap usage using compressed
references 151
Pause time 152
Pause time reduction 152
Environments with very full heaps 153

Euro symbol support 154
Configuring large page memory allocation . . . 154

Chapter 7. Performance 157
Class data sharing between JVMs 157

Overview of class data sharing 157
Class data sharing command-line options . . . 159
Creating, populating, monitoring, and deleting a
cache 165
Performance and memory consumption . . . 166
Considerations and limitations of using class
data sharing 166
Adapting custom class loaders to share classes 168

Performance problems 169

Chapter 8. Security 171

Chapter 9. Troubleshooting and
support 173
Submitting problem reports 173
Problem determination 173

First steps in problem determination 174
z/OS problem determination 175
NLS problem determination 194
ORB problem determination 196
Attach API problem determination 209

Using diagnostic tools 212
Overview of the available diagnostic tools. . . 212
Using the IBM Monitoring and Diagnostic Tools
for Java 219
Using dump agents 221
Using Javadump 240
Using Heapdump 262
Using system dumps and the dump viewer . . 271
Tracing Java applications and the JVM 288
JIT and AOT problem determination 322
The Diagnostics Collector 328
Garbage Collector diagnostic data 333
Class-loader diagnostic data 341
Shared classes diagnostic data 344
Using the Reliability, Availability, and
Serviceability Interface 372
Using the HPROF Profiler 385
Using the JVMTI 389
Using the Diagnostic Tool Framework for Java 405
Using JConsole 412

Chapter 10. Reference 417
Command-line options 417

Specifying command-line options. 417
General command-line options 418
System property command-line options . . . 419
JVM command-line options. 428
JVM -XX command-line options 446
JIT and AOT command-line options 448
Garbage Collector command-line options . . . 453
Balanced Garbage Collection policy options . . 464

JVM messages 465
Finding logged messages 466
Obtaining detailed message descriptions . . . 466

CORBA minor codes 467
Environment variables 469

Displaying the current environment 469
Setting an environment variable 469
Separating values in a list 469
JVM environment settings 470
z/OS environment variables 473

Default settings for the JVM 474
Known issues and limitations 476
Support for virtualization software 479

Notices 481
Privacy Policy Considerations 483
Trademarks 483

iv IBM SDK for Java: SDK and Runtime Guide

||
||

Preface

This user guide provides general information about the IBM® SDK for z/OS®,
Java™ Technology Edition, Version 7. The guide gives specific information about
any differences in the IBM implementation compared with the Oracle
implementation.

This user guide applies to IBM SDK for z/OS, Java Technology Edition, Version 7.

Read this user guide with the more extensive documentation on the Oracle Web
site: http://www.oracle.com/technetwork/java/index.html.

The terms Runtime Environment and Java Virtual Machine are used interchangeably
throughout this user guide.

The Program Code is not designed or intended for use in real-time applications
such as (but not limited to) the online control of aircraft, air traffic, aircraft
navigation, or aircraft communications; or in the design, construction, operation, or
maintenance of any nuclear facility.

© Copyright IBM Corp. 2011, 2013 v

http://www.oracle.com/technetwork/java/index.html

vi IBM SDK for Java: SDK and Runtime Guide

Chapter 1. Product overview

Gain a quick understanding of the product, its new features, and conventions that
are used elsewhere in this documentation.

Any new modifications made to this user guide are indicated by vertical bars to
the left of the changes.

Late breaking information about the IBM SDK for z/OS, V7 that is not available in
the user guide can be found here: http://www.ibm.com/support/
docview.wss?uid=swg21499721

Introduction to Java
The IBM implementation of the Java platform provides a development toolkit and
an application runtime environment.

The Java programming language is a high-level, object-oriented language. When
written, a Java program is compiled into bytecode. The bytecode is interpreted at run
time by a platform-specific Java component. This component acts as a translator
between the language and the underlying operating system and hardware. This
staged approach to compiling and interpreting Java applications, means that
application code can be easily ported across hardware platforms and operating
systems.

The IBM implementation of the Java platform is based upon the Java Technology
developed by Oracle Corporation. IBM supply two installable packages depending
on platform: the Software Developers Kit (SDK) and the Java Runtime
Environment (JRE). The key components in these packages are detailed in the
following sections.

IBM Software Developers Kit (SDK)
The SDK contains development tools and a Java Runtime Environment (JRE).

The SDK is an installable Java package, which contains the Java Application
Programming Interface (API). The Java API is a large collection of ready-made
classes, grouped into libraries, that help you develop and deploy applications. The
SDK also includes:
v The Java Compiler.
v The IBM Java Runtime Environment (JRE) and IBM Java Virtual machine (JVM).
v Tools for monitoring, debugging, and documenting applications.
v Tools for developing user interfaces, or GUIs.
v Integration libraries for applications that must access databases and remote

objects.

The SDK package contains a readme file that provides links to the online
information center documentation, and to downloadable documentation. The
documentation available for download includes this guide, in multiple formats.

When the package is installed, the SDK tools can be found in the
/usr/lpp/java/J7.0[_64]/bin directory.

© Copyright IBM Corp. 2011, 2013 1

http://www.ibm.com/support/docview.wss?uid=swg21499721
http://www.ibm.com/support/docview.wss?uid=swg21499721

Applications written entirely in Java must have no dependencies on the IBM SDK
directory structure (or files in those directories). Any dependency on the SDK
directory structure (or the files in those directories) might result in application
portability problems.

Contents of the SDK

SDK tools:

appletviewer (Java Applet Viewer)
Tests and runs applets outside a web browser.

apt (Annotation Processing Tool)
Finds and runs annotation processors based on the annotations present in
the set of specified source files being examined.This tool is deprecated. See
http://docs.oracle.com/javase/7/docs/technotes/guides/apt/index.html.

extcheck (Extcheck utility)
Detects version conflicts between a target jar file and jar files that are
currently installed.

hwkeytool
Manages a keystore of private keys and their associated X.509 certificate
chains authenticating the corresponding public keys.

idlj (IDL to Java Compiler)
Generates Java bindings from a given IDL file.

jar (Java Archive Tool)
Combines multiple files into a single Java Archive (JAR) file.

jarsigner (JAR Signing and Verification Tool)
Generates signatures for JAR files and verifies the signatures of signed JAR
files.

java (Java Interpreter)
Runs Java classes. The Java Interpreter runs programs that are written in
the Java programming language.

java-rmi.cgi (HTTP-to-CGI request forward tool)
Accepts RMI-over-HTTP requests and forwards them to an RMI server
listening on any port.

javac (Java Compiler)
Compiles programs that are written in the Java programming language
into bytecodes (compiled Java code).

javadoc (Java Documentation Generator)
A utility to generate HTML pages of API documentation from Java source
files.

javah (C Header and Stub File Generator)
Enables you to associate native methods with code written in the Java
programming language.

javap (Class File Disassembler)
Disassembles compiled files and can print a representation of the
bytecodes.

javaw (Java Interpreter)
Runs Java classes in the same way as the java command does, but does
not use a console window.

2 IBM SDK for Java: SDK and Runtime Guide

http://docs.oracle.com/javase/7/docs/technotes/guides/apt/index.html

jconsole (JConsole Monitoring and Management Tool)
Monitors local and remote JVMs using a GUI. JMX-compliant.

jdmpview (Cross-platform dump formatter)
Analyzes dumps. For more information, see the “Problem determination”
on page 173.

keytool (Key and Certificate Management Tool)
Manages a keystore (database) of private keys and their associated X.509
certificate chains that authenticate the corresponding public keys.

native2ascii (Native-To-ASCII Converter)
Converts a native encoding file to an ASCII file that contains characters
encoded in either Latin-1 or Unicode, or both.

policytool (Policy File Creation and Management Tool)
Creates and modifies the external policy configuration files that define the
Java security policy for your installation.

rmic (Java Remote Method Invocation (RMI) Stub Converter)
Generates stubs, skeletons, and ties for remote objects. Includes RMI over
Internet Inter-ORB Protocol (RMI-IIOP) support.

rmid (RMI activation system daemon)
Starts the activation system daemon so that objects can be registered and
activated in a Java Virtual Machine (JVM).

rmiregistry (Java remote object registry)
Creates and starts a remote object registry on the specified port of the
current host.

schemagen
Creates a schema file for each namespace referenced in your Java classes.

serialver (Serial Version Command)
Returns the serialVersionUID for one or more classes in a format that is
suitable for copying into an evolving class.

tnameserv (Common Object Request Broker Architecture (CORBA) transient
naming service)

Starts the CORBA transient naming service.

wsgen
Generates JAX-WS portable artifacts used in JAX-WS Web services.

wsimport
Generates JAX-WS portable artifacts from a Web Services Description
Language (WSDL) file.

xjc
Compiles XML Schema files.

z/OS batch toolkit
A set of tools that enhances Java batch capabilities and use of system
interfaces on z/OS. The toolkit includes:
v A native launcher for running Java applications directly as batch jobs or

started tasks.
v A set of Java classes that make access to traditional z/OS data and key

system services directly available from Java applications.
v Console communication, multiline WTO (write to operator), and return

code passing capability.

Chapter 1. Product overview 3

For more information about the z/OS batch toolkit, see
http://www.ibm.com/systems/z/os/zos/tools/java/products/jzos/
overview.html.

Include Files
C headers for JNI programs.

Demos
The demo directory contains a number of subdirectories containing sample
source code, demos, applications, and applets that you can use.

readme file
A text file containing minimal information about how to get started. This file
provides links to online and downloadable documentation, including Java API
documentation for the IBM SDK.

Copyright notice
The copyright notice for the SDK for z/OS software.

IBM Java Runtime Environment (JRE)
The JRE provides runtime support for Java applications.

The JRE includes the IBM Java Virtual Machine (JVM), which interprets Java
bytecode at run time. There are a number of tools included with the JRE that are
installed into the /usr/lpp/java/J7.0[_64]/jre/bin directory, unless otherwise
specified.

Contents of the JRE

Core Classes
These classes are the compiled class files for the platform and must remain
compressed for the compiler and interpreter to access them. Do not modify
these classes; instead, create subclasses and override where you need to.

Trusted root certificates
From certificate signing authorities. These certificates are used to validate the
identity of signed material.

JRE Tools

ikeycmd (iKeyman command-line utility)
Allows you to manage keys, certificates, and certificate requests from the
command line. For more information see the accompanying Security
documentation.

ikeyman (iKeyman GUI utility)
Allows you to manage keys, certificates, and certificate requests. For more
information see the accompanying Security documentation, which includes
the iKeyman User Guide. There is also a command-line version of this utility.

Note: The GUI version of this utility is not supported on the z/OS
operating system.

java (Java Interpreter)
Runs Java classes. The Java Interpreter runs programs that are written in
the Java programming language.

javaw (Java Interpreter)
Runs Java classes in the same way as the java command does, but does
not use a console window.

4 IBM SDK for Java: SDK and Runtime Guide

http://www.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html
http://www.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html

jextract (Dump extractor)
Converts a system-produced dump into a common format that can be used
by jdmpview. For more information, see “Using jextract” on page 276.

keytool (Key and Certificate Management Tool)
Manages a keystore (database) of private keys and their associated X.509
certificate chains that authenticate the corresponding public keys.

kinit
Obtains and caches Kerberos ticket-granting tickets.

klist
Displays entries in the local credentials cache and key table.

ktab
Manages the principal names and service keys stored in a local key table.

pack200
Transforms a JAR file into a compressed pack200 file using the Java gzip
compressor.

policytool (Policy File Creation and Management Tool)
Creates and modifies the external policy configuration files that define the
Java security policy for your installation.

rmid (RMI activation system daemon)
Starts the activation system daemon so that objects can be registered and
activated in a Java Virtual Machine (JVM).

rmiregistry (Java remote object registry)
Creates and starts a remote object registry on the specified port of the
current host.

tnameserv (Common Object Request Broker Architecture (CORBA) transient
naming service)

Starts the CORBA transient naming service.

unpack200
Transforms a packed file produced by pack200 into a JAR file.

IBM Java Virtual Machine (JVM)
The IBM Java Virtual machine (JVM) is the platform-specific component that runs a
Java program.

At run time, the JVM interprets the Java bytecode that has been compiled by the
Java Compiler. The JVM acts as a translator between the language and the
underlying operating system and hardware. A Java program requires a specific
JVM to run on a particular platform, such as Linux, z/OS, or Windows.

The main components of the IBM JVM are:
v JVM Application Programming Interface (API)
v Diagnostic component
v Memory management
v Class loader
v Interpreter
v Platform port layer

For further information about the JVM, see “Components of the IBM Virtual
Machine for Java” on page 21.

Chapter 1. Product overview 5

Different versions of the IBM SDK contain different implementations of the JVM.
You can identify the implementation in the output from the java -version
command, which gives these strings for the different implementations:

Implementation Output

7 IBM J9 VM (build 2.6, JRE 1.7.0 ...

6 IBM J9 VM (build 2.4, JRE 1.6.0 IBM...

IBM J9 VM (build 2.6, JRE 1.6.0 ...

5.0 IBM J9 VM (build 2.3, J2RE 1.5.0 IBM...

1.4.2 'classic' Classic VM (build 1.4.2, J2RE 1.4.2 IBM...

1.4.2 on z/OS 64-bit and
AMD64/EM64T platforms

IBM J9SE VM (build 2.2, J2RE 1.4.2 IBM...

What's new
Learn about the new features and functions available with IBM SDK for z/OS, V7.

This topic introduces new material for Version 7. On the z/OS platform, some of
these functions were first introduced in the 31-bit and 64-bit releases of IBM SDK
for z/OS, Java Technology Edition V6.0.1.

Any new modifications made to this user guide are indicated by vertical bars to
the left of the changes.

General changes are listed in this topic. For changes that relate to specific
components, see the relevant subtopic.

New path in font configuration properties file

From z/OS V2.1, fonts are provided by the operating system. The paths to the font
files in the lib_dir/fontconfig.properties.src file have changed accordingly. If
you have z/OS V2.1 or later, you do not have to install font packages or edit this
properties file.

If you have z/OS V1.13 or earlier, you must now install font packages in the
/usr/lpp/fonts/worldtype directory, or edit the properties file. For more
information, see “Using non-default system fonts” on page 111.

IBM J9 Virtual Machine
IBM SDK for z/OS, V7 includes the IBM J9 V2.6 virtual machine (JVM). Read
about new features and capabilities that are included with this JVM.

The sun.reflect.Reflection.getCallerClass(int depth) method is no
longer supported

To enhance security, the sun.reflect.Reflection.getCallerClass(int depth) method is
no longer supported. Use the sun.reflect.Reflection.getCallerClass() method instead.
This method always uses a depth of 2.

If you use the sun.reflect.Reflection.getCallerClass(int depth) method in your
application, an UnsupportedOperationException exception is thrown.

6 IBM SDK for Java: SDK and Runtime Guide

|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

You can re-enable support for this method by using the
“-Djdk.reflect.allowGetCallerClass” on page 423 system property, however this
property will be removed in a future release.

Securing Java API for XML (JAXP) processing against malformed
input

If your application takes untrusted XML, XSD or XSL files as input, you can
enforce specific limits during JAXP processing to protect your application from
malformed data. These limits can be set on the command line by using system
properties, or you can specify values in your jaxp.properties file. You must also
override the default XML parser configuration for the changes to take effect. For
more information, see “Securing JAXP processing against malformed input” on
page 117.

Increasing the maximum size of the JIT code cache

You can increase the maximum size of the JIT code cache by using a new system
property. You cannot decrease the maximum size below the default value. For
more information, see “-Xcodecachetotal” on page 449.

File descriptors are now closed immediately

There is a change to the default behaviour of the close() method of the
FileInputStream, FileOutputStream, and RandomAccessFile classes. In previous
releases, the default behavior was to close the file descriptor only when all the
streams that were using it were also closed. The new default behavior is to close
the file descriptor regardless of any other streams that might still be using it. You
can revert to the previous default behavior by using a system property, however
this property will be removed in future releases. For more information, see
“-Dcom.ibm.streams.CloseFDWithStream” on page 420.

LiveConnect support is now disabled in certain circumstances

In previous releases, LiveConnect (a browser feature that enables you to use Java
APIs from within JavaScript code) was always enabled. From this release,
LiveConnect is disabled in the following circumstances:
v The security level on the Security tab of the IBM Control Panel for Java is set to

Very High.
v The security level on the Security tab of the IBM Control Panel for Java is set to

High (default) and the runtime environment has expired. The runtime
environment automatically expires after 6 months. To ensure that your runtime
environment remains secure, install the latest release.

Note: The security level setting is present only in very recent releases.

Behavior change to java.lang.logging.Logger

To enhance security, java.lang.logging.Logger no longer walks the stack to search
for resource bundles. Instead, the resource bundles are located by using the caller
's class loader. If your application depends upon stack-walking to locate resource
bundles, this behavior change might affect your application. To work around this
problem, a system property is available in this release to revert to the earlier
behavior. To set this property on the command line specify:
-Djdk.logging.allowStackWalkSearch=true.

Chapter 1. Product overview 7

|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|

|

|

|
|
|
|
|
|
|

Support for 2GB large pages

On z/OS V1.13 with the RSM Enablement Offering, you can now request the JVM
to allocate the Java object heap with 2GB nonpageable large pages, using the
-Xlp:objectheap option. This option is supported only on the 64-bit SDK for z/OS
and requires certain prerequisites, which are described in “Configuring large page
memory allocation” on page 154. For more information about the RSM Enablement
Offering, see http://www-03.ibm.com/systems/z/os/zos/downloads/#RSME.

Use of large pages by default

On certain platforms and processors, the JVM now starts with large pages enabled
by default for both the JIT codecache and the objectheap, instead of the default
operating system page size.

On z/OS, the JVM uses 1M pageable large pages, when running on the IBM
zEnterprise® EC12 with the Flash Express® feature (#0402), z/OS V1.13 with PTFs ,
APAR OA41307, and the z/OS V1.13 Remote Storage Manager Enablement
Offering web deliverable.

Note: PAGESCM=ALL | NONE in the IEASYSxx parmlib member controls pageable 1M
large pages for the entire LPAR. ALL is the default.

If the operating system is not configured for the large page size, or if the correct
hardware is not available, the JVM uses the default operating system page size
instead.

You can configure the large page size using the -Xlp command. To obtain the large
page sizes available and the current setting, use the -verbose:sizes option. Note
the current settings are the requested sizes and not the sizes obtained. For object
heap size information, check the -verbose:gc output. For more information about
the -Xlp command options, see “JVM command-line options” on page 428.

Support for dynamic machine configuration changes

A new command-line option, -Xtune:elastic, is available to turn on JVM function
at run time that accommodates dynamic machine configuration changes. For more
information, see “JVM command-line options” on page 428.

Enabling caching of LUDCL

A new system property is available to enable caching of the Latest User Defined
Class Loader (LUDCL). By reducing repeated lookups, Java applications that use
deserialization extensively can see a performance improvement. For more
information see -Dcom.ibm.enableClassCaching in “System property command-line
options” on page 419.

Use of java.util.* package and classes

The SDK now uses the Oracle implementation of the java.util.* package, including
all classes within the package. Earlier releases of the SDK used customized
versions of the Apache Harmony class libraries. This change establishes a common
implementation point for the java.util.* package, enabling consistent performance
and behavior characteristics across Java implementations. Existing applications are
expected to function without problems. However, if testing exposes any issues,
contact your IBM service representative.

8 IBM SDK for Java: SDK and Runtime Guide

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|

http://www-03.ibm.com/systems/z/os/zos/downloads/#RSME

IBM GBK converter

By default the IBM GBK converter follows Unicode 3.0 standards. A new system
property value for -Dfile.encoding is available to force the IBM GBK converter to
follow Unicode 2.0 standards. For more information see “System property
command-line options” on page 419.

IBM z/OS Language Environment®

JVM signal handlers for SIGSEGV, SIGILL, SIGBUS, SIGFPE, SIGTRAP, and for
SIGABRT by default terminate the process using exit(). If you are using the IBM
z/OS Language Environment (LE), LE is not aware that the JVM ended
abnormally. Use the -Xsignal:posixSignalHandler=cooperativeShutdown option to
control how the signal handlers end. For more information, see “JVM
command-line options” on page 428.

Java Attach API support is disabled by default

To enhance security on z/OS, support for the Java Attach API is now disabled by
default. For more information, see “Support for the Java Attach API” on page 141.

Support for 1M pageable large pages

The JVM now includes support for 1M pageable large pages. You can use the -Xlp
command-line option to instruct the JVM to allocate the Java object heap or the JIT
code cache with 1M pageable large pages.

The use of 1M pageable large pages for the Java object heap provides similar
runtime performance benefits to the use of 1M nonpageable pages. However, using
1M pageable pages provides options for managing memory that can improve
system availability and responsiveness.

When 1M pageable large pages are used for the JIT code cache, the runtime
performance of some Java applications can be improved.

To take advantage of 1M pageable large pages, the following minimum
prerequisites apply: IBM zEnterprise EC12 with the Flash Express feature (#0402),
z/OS V1.13 with PTFs, and the z/OS V1.13 Remote Storage Manager Enablement
Offering web deliverable.

For more information, see the -Xlp option in “JVM command-line options” on
page 428.

Improved hashing algorithms

An improved hashing algorithm is available for string keys stored in hashed data
structures. You can adjust the threshold that invokes the algorithm with the system
property, jdk.map.althashing.threshold. This algorithm can change the iteration
order of items returned from hashed maps. For more information about the system
property, see “System property command-line options” on page 419.

An enhanced hashing algorithm is used for
javax.xml.namespace.QName.hashCode(). This algorithm can change the iteration
order of items returned from hashed maps. You can control the use of this
algorithm with the system property,
-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm=1.0. For more

Chapter 1. Product overview 9

|

|
|
|
|

|

|
|
|
|
|
|

|

|
|

|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|

information, see “System property command-line options” on page 419.

Compressed references tuning option

A new command-line option is available to override the allocation strategy used by
the 64-bit JVM when running with compressed references enabled. The
-XXnosuballoc32bitmem option prevents the JVM pre-allocating an area of virtual
memory, leaving the operating system to handle the allocation strategy. For more
information, see “JVM -XX command-line options” on page 446.

Changes to locale translation files

Changes are made to the locale translation files to make them consistent with
Oracle JDK 7. The same changes were also applied to the IBM SDK for Java V6 for
consistency with Oracle JDK 6. To understand the differences in detail, see this
support document for Java 6: http://www.ibm.com/support/
docview.wss?uid=swg21568667.

JVM optimizations

The IBM J9 V2.6 virtual machine includes new optimizations for Java monitors that
are expected to improve CPU efficiency. New locking optimizations are also
implemented that are expected to reduce memory usage and improve performance.
If you experience performance problems that you suspect are connected to this
release, see “Testing JVM optimizations” on page 192.

Java Attach API

Connections to virtual machines through the Java Attach API have a new default
state. By default, the Attach API is enabled on ALL platforms. The exception is that
for security reasons, processes on z/OS using the default z/OS OMVS segment
cannot enable the Attach API. For more information, see “Support for the Java
Attach API” on page 141.

Deprecation of JRIO in IBM SDK for Java 7 on z/OS platform

The JRIO component available in earlier versions of the IBM SDK for Java has been
supplanted by the increasing functionality and enhancements of the JZOS
component.

In IBM SDK for Java 7 on z/OS, the JRIO component is deprecated. Existing JRIO
functions continue to be supported, but compiling Java source code that references
JRIO classes causes warnings that identify occurrences of deprecated classes.

As an alternative, use the record I/O facilities provided in the JZOS component.
For more information about JZOS, see http://www.ibm.com/systems/z/os/zos/
tools/java/products/jzos/overview.html. In applications that use JRIO classes,
search the source code for references to the package:
import com.ibm.recordio;

The presence of this package identifies source code containing references to JRIO
classes.

For service refresh 1, a tracking macro is included with the product that can be
used to determine if and where applications are using JRIO functions. For more
information, see the Java z/OS website.

10 IBM SDK for Java: SDK and Runtime Guide

|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

http://www.ibm.com/support/docview.wss?uid=swg21568667
http://www.ibm.com/support/docview.wss?uid=swg21568667
http://www.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html
http://www.ibm.com/systems/z/os/zos/tools/java/products/jzos/overview.html
http://www.ibm.com/systems/z/os/zos/tools/java/

Memory management
Changes to memory management for IBM SDK for z/OS, V7 including garbage
collection policies, new command-line options, and verbose garbage collection
logging.

Configuring the initial maximum Java heap size

The -Xsoftmx option is now available on Linux, Windows, and z/OS, as well as
AIX®. A soft limit for the maximum heap size can be set using the
com.ibm.lang.management API. The Garbage Collector attempts to respect the new
limit, shrinking the heap when possible. For more information about this option,
see “Garbage Collector command-line options” on page 453.

If the -Xsoftmx option is used, additional information is added to the MEMINFO
section of a Javadump to indicate the target memory for the heap. See “Storage
Management (MEMINFO)” on page 248.

Subscribing to verbose garbage collection logging with JVMTI
extensions

New IBM JVMTI extensions are available to turn on, and turn off, verbose garbage
collection logging at run time. For more information, see “Subscribing to verbose
garbage collection logging” on page 403.

Policy changes

There is a new garbage collection policy available that is intended for
environments where heap sizes are greater than 4 GB. This policy is called the
Balanced Garbage Collection policy, and uses a hybrid approach to garbage
collection by targeting areas of the heap with the best return on investment. The
policy tries to avoid global collections by matching allocation and survival rates.
The policy uses mark, sweep, compact and generational style garbage collection.
For more information about this policy, see “Balanced Garbage Collection policy”
on page 39.

Other policy changes include changes to the default garbage collection policy, and
the behavior of specific policies and specific policy options. For more information
about these changes, see “Garbage collection options” on page 151.

Verbose logging

Verbose garbage collection logging has been redesigned. The output from logging
is significantly improved, showing data that is specific to the garbage collection
policy in force. These changes improve problem diagnosis for garbage collection
issues. For more information about verbose logging, see “Verbose garbage
collection logging” on page 334.

Improved Java heap shrinkage

New command-line options are available to control the rate at which the Java heap
is contracted during garbage collection cycles. You can specify the minimum or
maximum percentage of the Java heap that can be contracted at any given time.
For more information, see “-Xgc” on page 455.

Chapter 1. Product overview 11

|

|
|
|
|
|

|
|
|

|
|

|
|
|

Class data sharing
Class data sharing provides a method of reducing memory footprint and
improving JVM startup time. Read about changes to class data sharing that are
introduced in IBM SDK for z/OS, V7.

The following sections describe the changes.

Using the JVMTI ClassFileLoadHook with cached classes

Historically, the JVMTI ClassFileLoadHook or java.lang.instrument agents do not
work optimally with the shared classes cache. Classes cannot be loaded directly
from the shared cache unless using a modification context. Even in this case, the
classes loaded from the shared cache cannot be modified. The
-Xshareclasses:enableBCI suboption improves startup performance without using
a modification context, when using JVMTI class modification. This suboption
allows classes loaded from the shared cache to be modified using a JVMTI
ClassFileLoadHook, or a java.lang.instrument agent. The suboption also prevents
the caching of modified classes in the shared classes cache, while reserving an area
in the cache to store original class byte data for the JVMTI callback. Storing the
original class byte data in a separate region allows the operating system to decide
whether to keep the region in memory or on disk, depending on whether the data
is being used. You can specify the size of this region, known as the Raw Class Data
Area, using the -Xshareclasses:rcdSize suboption.

For more information about this capability, see “Using the JVMTI
ClassFileLoadHook with cached classes” on page 353. For more information about
the -Xshareclasses suboptions enableBCI and rcdSize, see “Class data sharing
command-line options” on page 159.

.zip entry caches

The JVM stores .zip entry caches for bootstrap .jar files into the shared cache. A
.zip entry cache is a map of names to file positions used to quickly find entries in
the .zip file. Storing .zip entry caches is enabled by default, or you can choose to
disable .zip entry caching. For more information, see the -Xzero option in “JVM
command-line options” on page 428.

JIT data

You can now store JIT data in the shared class cache, which enables subsequent
JVMs attaching to the cache to either start faster, run faster, or both. For more
information about improving performance with this option, see “Cache
performance” on page 347.

Class debug area

A portion of the shared class cache is reserved for storing data associated with
JVM debugging. By storing these attributes in a separate region, the operating
system can decide whether to keep the region in memory or on disk, depending
on whether debugging is taking place. For more information about tuning the class
debug area, see “Cache performance” on page 347.

12 IBM SDK for Java: SDK and Runtime Guide

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

Troubleshooting problems with shared class caches

A new dump event is available that triggers a dump when the JVM finds that the
shared class cache is corrupt. This event is added for the system, java, and snap
dump agents. For more information about the corrupt cache event, and the default
dump agents, see “Dump agents” on page 224.

Shared Cache Utility APIs

There are new Java Helper APIs available that can be used to obtain information
about shared class caches. For more information see “Obtaining information about
shared caches” on page 360.

New IBM JVMTI extensions are included, that can search for shared class caches,
and remove a shared class cache. For more information, see “IBM JVMTI
extensions - API reference” on page 392.

printStats utility

The printStats utility shows more information about the line number status of
classes in the shared cache, as well as information about other new items, such as
JIT data and class debug area.

You can use parameters with the printStats utility, to get more detailed information
about specific types of cache content.

For more information, see “printStats utility” on page 362.

Controlling shared cache directory permissions

You can use the -Xshareclasses:cacheDirPerm command-line option to control the
permissions of directories that are created for shared caches. For more information,
see “JVM command-line options” on page 428.

The JIT compiler
A new feature is available that improves the performance of JIT compilation.

The JIT compiler can use more than one thread to convert method bytecodes into
native code, dynamically. To learn more about this feature, see “How the JIT
compiler optimizes code” on page 58.

Diagnostic component
There are continuous improvements for diagnosing problems with the IBM J9
virtual machine, including improved logging and analysis of native memory.

Thread CPU time information added to a Javadump file

For Java threads and attached native threads, the THREADS section contains,
depending on your operating system, a new line: 3XMCPUTIME. This line shows the
number of seconds of CPU time that was consumed by the thread since that thread
was started. For more information, see “Threads and stack trace (THREADS)” on
page 251.

Chapter 1. Product overview 13

|

|
|
|
|
|

Operating system process information added to a Javadump file

The ENVINFO section contains a new line, 1CIPROCESSID, which shows the ID of the
operating system process that produced the core file.

See “TITLE, GPINFO, and ENVINFO sections” on page 243 for an example.

Diagnosing problems when using Direct Byte Buffers

The JVM contains a new memory category for Direct Byte Buffers. You can find
information about the use of this memory category in the NATIVEMEMINFO section of
a Javadump. For more information, see “Native memory (NATIVEMEMINFO)” on
page 246.

Improved diagnostic information about Java threads

The THREADS section of a Javadump contains information about threads and stack
traces. For Java threads, the thread ID and daemon status from the Java thread
object is now recorded to help you diagnose problems. For more information, see
“Threads and stack trace (THREADS)” on page 251.

Working with system dumps containing multiple JVMs

Service refresh 1 includes an enhanced dump viewer to help you analyze system
dumps. For more information, see “Working with dumps containing multiple
JVMs” on page 277.

Using the dump viewer with compressed files, or in batch mode

You can now specify the -notemp option to prevent the jdmpview tool from
extracting compressed files before processing them. When you specify a
compressed file, the tool detects and shows all core, Java core, and PHD files
within the compressed file. Because of this behavior, more than one context might
be displayed when you start jdmpview. For more information, see “Support for
compressed files” on page 274.

For long running or routine jobs, the jdmpview command can now be used in batch
mode. For more information, see “Using the dump viewer in batch mode” on page
278.

Removing dump agents by event type

You can selectively remove dump agents, by event type, with the -Xdump option.
This capability allows you to control the contents of a dump, which can simplify
problem diagnosis. For more information, see “Removing dump agents” on page
235.

Determining the Linux kernel sched_compat_yield setting in force

The ENVINFO section of a javacore contains additional information about the
sched_compat_yield Linux kernel setting in force when the JVM was started. For
more information about the ENVINFO javacore output, see “TITLE, GPINFO, and
ENVINFO sections” on page 243.

14 IBM SDK for Java: SDK and Runtime Guide

|

|
|

|

|

|
|
|
|

|

|
|
|
|

|

|
|
|

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|

|
|
|
|

Diagnosing problems with locks

The LOCKS section of the Java dump output now contains information about locks
that inherit from the java.util.concurrent.locks.AbstractOwnableSynchronizer class.

The THREADS section of the Java dump output now contains information about
locks. For more information, see “Understanding Java and native thread details”
on page 252.

New dump agent trigger

Dump agents are now triggered if an excessive amount of time is being spent in
the garbage collector. The event name for this trigger is excessivegc. For more
information, see “Dump events” on page 228.

Receiving OutofMemoryError exceptions

From service refresh 1, an error message is generated when there is an
OutofMemoryError condition on the Java heap.

Default assertion tracing during JVM startup

Internal JVM assert trace points are now enabled during JVM startup. For more
information, see “Default tracing” on page 290.

Diagnosing problems with native memory

Information about native memory usage is now provided by a Java dump. For
further information, including example output, see “Native memory
(NATIVEMEMINFO)” on page 246.

The Diagnostic Tool Framework for Java (DTFJ) interface has also been modified,
and can be used to obtain native memory information from a system dump or
javadump. See “Using the Diagnostic Tool Framework for Java” on page 405.

In addition, you can query native memory usage by using a new IBM JVMTI
extension. The GetMemoryCategories() API returns the JRE native memory use by
memory category. For further information about the IBM JVMTI extension, see
“Querying JRE native memory categories” on page 397.

Diagnosing problems with blocked threads

The THREADS section of the Java dump output now contains information about the
resources that blocked threads are waiting for. For more information, see “Blocked
thread information” on page 257.

JVM message logging

All vital and error messages are now logged by default. However, you can control
the messages that are recorded by the JVM using a command-line option. For more
information about message logging, see the -Xlog option in “JVM command-line
options” on page 428.

You can also query and modify the message setting by using new IBM JVMTI
extensions. For more information about these JVMTI extensions, see “IBM JVMTI
extensions” on page 390.

Chapter 1. Product overview 15

|

|
|

|
|
|

|

|
|
|

|

|
|

Processing system dumps

The jextract utility performs some important steps in the diagnostic process for
earlier versions of the SDK. These steps have now been automated to simplify the
process and make reporting a problem to IBM support much easier. For more
information about viewing system dumps, see “Using the dump viewer” on page
273.

System dumps in out-of-memory conditions

A system dump is now generated, in addition to a Heapdump and a Javadump,
when an OutOfMemoryError exception occurs in the JVM. The JVM adds a new
default dump agent to enable this functionality, see “Default dump agents” on
page 234. If you want to disable this new functionality, remove the new dump
agent. For more information, see “Removing dump agents” on page 235.

Portable Heap Dump (PHD) file format

Detailed information about Portable Heap Dump (PHD) file formats are provided
to assist with problem diagnosis. For more information, see “Portable Heap Dump
(PHD) file format” on page 266.

Conventions and terminology
Specific conventions are used to describe methods and classes, and command-line
options.

Methods and classes are shown in normal font:
v The serviceCall() method
v The StreamRemoteCall class

Command-line options are shown in bold. For example:
v -Xgcthreads

Options shown with values in braces signify that one of the values must be
chosen. For example:

-Xverify:{remote | all | none}

with the default underscored.

Options shown with values in brackets signify that the values are optional. For
example:

-Xrunhprof[:help][<suboption>=<value>...]

In this information, any reference to Oracle is intended as a reference to Oracle
Corporation.

Directory conventions

In the following directories, <version> is a single-digit version number that
represents the product version, and <release> is a single-digit version number that
represents the product release.

install_dir

16 IBM SDK for Java: SDK and Runtime Guide

The installation directory is referred to as install_dir in this
documentation. The default installation directory is as follows:
v /usr/lpp/java/J<version>.<release>[_64]/

For example:
v /usr/lpp/java/J7.0_64/

lib_dir
The Java library directory is referred to as lib_dir in this documentation.
The library directory is as follows:
v install_dir/jre/lib/<arch>/

Java virtual machine (JVM) version conventions

The JVM version is referred to as <vm_version> in this documentation. To find out
which version of the JVM you are using, enter the following command:
java -version

The following example output shows the JVM version in bold text, in the line
beginning with IBM J9 VM:

java version "1.7.0"
Java(TM) SE Runtime Environment (build pxi3270sr1-20120201_02(SR1))
IBM J9 VM (build 2.6, JRE 1.7.0 Linux x86-32 20120131_101270 (JIT enabled, AOT enabled)
J9VM - R26_JVM_26_20120125_1726_B100726
JIT - r11_20120130_22318
GC - R26_JVM_26_20120125_1044_B100654
J9CL - 20120131_101270)
JCL - 20120127_01 based on Oracle 7u3-b02

The format of <vm_version> is digits only, so in the previous example,
<vm_version> is 26.

Other sources of information
You can obtain additional information about the latest tools, Java documentation,
and the IBM SDKs by following the links.
v For the IBM SDKs, see the downloads at:

http://www.ibm.com/developerworks/java/jdk/index.html
v To download IBM SDK documentation as an Eclipse plug-in, or in PDF format

for printing, see:

http://www.ibm.com/developerworks/java/jdk/docs.html
v For any late breaking information that is not in this guide, see:

http://www.ibm.com/support/docview.wss?uid=swg21499721
v For Javadoc HTML documentation that has been generated from IBM SDK for

Java APIs, see:

API documentation
v For articles, tutorials and other technical resources about Java Technology, see

IBM developerWorks® at:

http://www.ibm.com/developerworks/java/
v For Java documentation produced by Oracle, see:

Chapter 1. Product overview 17

http://www.ibm.com/developerworks/java/jdk/index.html
http://www.ibm.com/developerworks/java/jdk/docs.html
http://www.ibm.com/support/docview.wss?uid=swg21499721
publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.api.70.doc/api_overview.html
http://www.ibm.com/developerworks/java/

http://www.oracle.com/technetwork/java/index.html

Accessibility
Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

For example, you can operate the IBM SDK for z/OS, V7 without a mouse, by
using only the keyboard.

Issues that affect accessibility are included in “Known issues and limitations” on
page 476.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys.

For users who require keyboard navigation, a description of useful keystrokes for
Swing applications can be found here: Swing Key Bindings.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility.

18 IBM SDK for Java: SDK and Runtime Guide

http://www.oracle.com/technetwork/java/index.html
http://www.ibm.com/developerworks/java/jdk/additional/IBM50KeyBindings.html
http://www.ibm.com/able

Chapter 2. Understanding the IBM Software Developers Kit
(SDK) for Java

The information in this section of the Information Center provides a basic
understanding of SDK components.

The content provides:
v Background information to explain why some diagnostic tools work the way

they do
v Useful information for application designers
v An explanation of some parts of the JVM
v A set of topics on Garbage collection techniques, which are typically complex

Other sections provide a summary, especially where guidelines about the use of
the SDK are appropriate. This content is not intended as a description of the
design of the SDK, except that it might influence application design or promote an
understanding of why things are done the way that they are.

A section that describes the IBM Object Request Broker (ORB) component is also
available.

The sections in this part are:
v “The building blocks of the IBM Virtual Machine for Java”
v “Memory management” on page 23
v “Class loading” on page 53
v “Class data sharing” on page 55
v “The JIT compiler” on page 57
v “Java Remote Method Invocation” on page 61
v “The ORB” on page 64
v “The Java Native Interface (JNI)” on page 88

The building blocks of the IBM Virtual Machine for Java
The IBM Virtual Machine for Java (JVM) is a core component of the Java Runtime
Environment (JRE) from IBM. The JVM is a virtualized computing machine that
follows a well-defined specification for the runtime requirements of the Java
programming language.

The JVM is called "virtual" because it provides a machine interface that does not
depend on the underlying operating system and machine hardware architecture.
This independence from hardware and operating system is a cornerstone of the
write-once run-anywhere value of Java programs. Java programs are compiled into
"bytecodes" that target the abstract virtual machine; the JVM is responsible for
executing the bytecodes on the specific operating system and hardware
combinations.

The JVM specification also defines several other runtime characteristics.

All JVMs:

© Copyright IBM Corp. 2011, 2013 19

v Execute code that is defined by a standard known as the class file format
v Provide fundamental runtime security such as bytecode verification
v Provide intrinsic operations such as performing arithmetic and allocating new

objects

JVMs that implement the specification completely and correctly are called
“compliant”. The IBM Virtual Machine for Java is certified as compliant. Not all
compliant JVMs are identical. JVM implementers have a wide degree of freedom to
define characteristics that are beyond the scope of the specification. For example,
implementers might choose to favour performance or memory footprint; they
might design the JVM for rapid deployment on new platforms or for various
degrees of serviceability.

All the JVMs that are currently used commercially come with a supplementary
compiler that takes bytecodes and produces platform-dependent machine code.
This compiler works with the JVM to select parts of the Java program that could
benefit from the compilation of bytecode, and replaces the JVM's virtualized
interpretation of these areas of bytecode with concrete code. This is called
just-in-time (JIT) compilation. IBM's JIT compiler is described in “The JIT compiler”
on page 57.

The diagnostic information in this guide discusses the characteristics of the IBM
JRE that might affect the non-functional behavior of your Java program. This guide
also provides information to assist you with tracking down problems and offers
advice, from the point of view of the JVM implementer, on how you can tune your
applications. There are many other sources for good advice about Java
performance, descriptions of the semantics of the Java runtime libraries, and tools
to profile and analyze in detail the execution of applications.

Java application stack
A Java application uses the Java class libraries that are provided by the JRE to
implement the application-specific logic. The class libraries, in turn, are
implemented in terms of other class libraries and, eventually, in terms of primitive
native operations that are provided directly by the JVM. In addition, some
applications must access native code directly.

The following diagram shows the components of a typical Java Application Stack
and the IBM JRE.

20 IBM SDK for Java: SDK and Runtime Guide

The JVM facilitates the invocation of native functions by Java applications and a
number of well-defined Java Native Interface functions for manipulating Java from
native code (for more information, see “The Java Native Interface (JNI)” on page
88).

Components of the IBM Virtual Machine for Java
The IBM Virtual Machine for Java technology comprises a set of components.

The following diagram shows component structure of the IBM Virtual Machine for
Java:

Java Application

Java Application Stack

Ja
va

 C
od

e
N

at
iv

e
C

od
e

Java Class
Extensions

Class Libraries ORB

Platform

IBM JVM

Native Libraries

Others

NativeOpt.
Packages

User
Native
Exts.

JVM API

Diagnostics
Memory

management Class loader Interpreter

Platform port layer

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 21

JVM Application Programming Interface (API)
The JVM API encapsulates all the interaction between external programs and the
JVM.

Examples of this interaction include:
v Creation and initialization of the JVM through the invocation APIs.
v Interaction with the standard Java launchers, including handling command-line

directives.
v Presentation of public JVM APIs such as JNI and JVMTI.
v Presentation and implementation of private JVM APIs used by core Java classes.

Diagnostic component
The diagnostic component provides Reliability, Availability, and Serviceability
(RAS) facilities to the JVM.

The IBM Virtual Machine for Java is distinguished by its extensive RAS
capabilities. The JVM is designed to be deployed in business-critical operations and
includes several trace and debug utilities to assist with problem determination.

If a problem occurs in the field, it is possible to use the capabilities of the
diagnostic component to trace the runtime function of the JVM and help to identify
the cause of the problem. The diagnostic component can produce output selectively
from various parts of the JVM and the JIT. “Using diagnostic tools” on page 212
describes various uses of the diagnostic component.

Memory management
The memory management component is responsible for the efficient use of system
memory by a Java application.

Java programs run in a managed execution environment. When a Java program
requires storage, the memory management component allocates the application a
discrete region of unused memory. After the application no longer refers to the
storage, the memory management component must recognize that the storage is
unused and reclaim the memory for subsequent reuse by the application or return
it to the operating system.

The memory management component has several policy options that you can
specify when you deploy the application. “Memory management” on page 23
discusses memory management in the IBM Virtual Machine for Java.

Class loader
The class loader component is responsible for supporting Java's dynamic code
loading facilities.

The dynamic code loading facilities include:
v Reading standard Java .class files.
v Resolving class definitions in the context of the current runtime environment.
v Verifying the bytecodes defined by the class file to determine whether the

bytecodes are language-legal.
v Initializing the class definition after it is accepted into the managed runtime

environment.
v Various reflection APIs for introspection on the class and its defined members.

22 IBM SDK for Java: SDK and Runtime Guide

Interpreter
The interpreter is the implementation of the stack-based bytecode machine that is
defined in the JVM specification. Each bytecode affects the state of the machine
and, as a whole, the bytecodes define the logic of the application.

The interpreter executes bytecodes on the operand stack, calls native functions,
contains and defines the interface to the JIT compiler, and provides support for
intrinsic operations such as arithmetic and the creation of new instances of Java
classes.

The interpreter is designed to execute bytecodes very efficiently. It can switch
between running bytecodes and handing control to the platform-specific
machine-code produced by the JIT compiler. The JIT compiler is described in “The
JIT compiler” on page 57.

Platform port layer
The ability to reuse the code for the JVM for numerous operating systems and
processor architectures is made possible by the platform port layer.

The platform port layer is an abstraction of the native platform functions that are
required by the JVM. Other components of the JVM are written in terms of the
platform-neutral platform port layer functions. Further porting of the JVM requires
the provision of implementations of the platform port layer facilities.

Memory management
This description of the Garbage Collector and Allocator provides background
information to help you diagnose problems with memory management.

Memory management is explained under these headings:
v “Overview of memory management”
v “Allocation” on page 26
v “Detailed description of global garbage collection” on page 29
v “Generational Concurrent Garbage Collector” on page 37
v “How to do heap sizing” on page 45
v “Interaction of the Garbage Collector with applications” on page 46
v “How to coexist with the Garbage Collector” on page 47
v “Frequently asked questions about the Garbage Collector” on page 50

For detailed information about diagnosing Garbage Collector problems, see
“Garbage Collector diagnostic data” on page 333.

See also the reference information in “Garbage Collector command-line options” on
page 453.

Overview of memory management
Memory management contains the Garbage Collector and the Allocator. It is
responsible for allocating memory in addition to collecting garbage. Because the
task of memory allocation is small, compared to that of garbage collection, the
term “garbage collection” usually also means “memory management”.

This section includes:

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 23

v A summary of some of the diagnostic techniques related to memory
management.

v An understanding of the way that the Garbage Collector works, so that you can
design applications accordingly.

The Garbage Collector allocates areas of storage in the heap. These areas of storage
define Java objects. When allocated, an object continues to be live while a reference
(pointer) to it exists somewhere in the JVM; therefore the object is reachable. When
an object ceases to be referenced from the active state, it becomes garbage and can
be reclaimed for reuse. When this reclamation occurs, the Garbage Collector must
process a possible finalizer and also ensure that any internal JVM resources that
are associated with the object are returned to the pool of such resources.

Object allocation
Object allocation is driven by requests by applications, class libraries, and the JVM
for storage of Java objects, which can vary in size and require different handling.

Every allocation requires a heap lock to be acquired to prevent concurrent thread
access. To optimize this allocation, particular areas of the heap are dedicated to a
thread, known as the TLH (thread local heap), and that thread can allocate from its
TLH without having to lock out other threads. This technique delivers the best
possible allocation performance for small objects. Objects are allocated directly
from a thread local heap. A new object is allocated from this cache without
needing to grab the heap lock. All objects less than 512 bytes (768 bytes on 64-bit
JVMs) are allocated from the cache. Larger objects are allocated from the cache if
they can be contained in the existing cache. This cache is often referred to as the
thread local heap or TLH.

Reachable objects
Reachable objects are found using frames on the thread stack, roots and references.

The active state of the JVM is made up of the set of stacks that represents the
threads, the static fields that are inside Java classes, and the set of local and global
JNI references. All functions that are called inside the JVM itself cause a frame to
be created on the thread stack. This information is used to find the roots. A root is
an object which has a reference to it from outside the heap. These roots are then
used to find references to other objects. This process is repeated until all reachable
objects are found.

Garbage collection
When the JVM cannot allocate an object from the heap because of lack of
contiguous space, a memory allocation fault occurs, and the Garbage Collector is
called.

The first task of the Garbage Collector is to collect all the garbage that is in the
heap. This process starts when any thread calls the Garbage Collector either
indirectly as a result of allocation failure, or directly by a specific call to
System.gc(). The first step is to acquire exclusive control on the virtual machine to
prevent any further Java operations. Garbage collection can then begin.

Heap sizing problems
If the operation of the heap, using the default settings, does not give the best
results for your application, there are actions that you can take.

For the majority of applications, the default settings work well. The heap expands
until it reaches a steady state, then remains in that state, which should give a heap

24 IBM SDK for Java: SDK and Runtime Guide

occupancy (the amount of live data on the heap at any given time) of 70%. At this
level, the frequency and pause time of garbage collection should be acceptable.

For some applications, the default settings might not give the best results. Listed
here are some problems that might occur, and some suggested actions that you can
take. Use verbose:gc to help you monitor the heap.

The frequency of garbage collections is too high until the heap reaches a
steady state.

Use verbose:gc to determine the size of the heap at a steady state and set
-Xms to this value.

The heap is fully expanded and the occupancy level is greater than 70%.
Increase the -Xmx value so that the heap is not more than 70% occupied. The
maximum heap size should, if possible, be able to be contained in physical
memory to avoid paging. For the best performance, try to ensure that the heap
never pages.

At 70% occupancy the frequency of garbage collections is too great.
Change the setting of -Xminf. The default is 0.3, which tries to maintain 30%
free space by expanding the heap. A setting of 0.4, for example, increases this
free space target to 40%, and reduces the frequency of garbage collections.

Pause times are too long.
If your application uses many short-lived objects, or is transaction-based (that
is, objects in the transaction do not survive beyond the transaction commit), or
if the heap space is fragmented, try using the -Xgcpolicy:gencon garbage
collection policy. This policy treats short-lived objects differently from
long-lived objects, and can reduce pause times and heap fragmentation.

In other situations, if a reduction in throughput is acceptable, try using the
-Xgcpolicy:optavgpause policy. This policy reduces the pause times and makes
them more consistent when the heap occupancy rises. It does, however, reduce
throughput by approximately 5%, although this value varies with different
applications.

If pause times are unacceptable during a global garbage collection, due to a
large heap size, try using -Xgcpolicy:balanced. The balanced garbage
collection policy can also address frequent class unloading issues, where many
class loaders are being created, but require a global collection to unload. This
policy is available for 64-bit platforms and must be used with the
-Xcompressedrefs option. The policy is intended for environments where heap
sizes are greater than 4 GB.

Here are some useful tips:
v Ensure that the heap never pages; that is, the maximum heap size must be able

to be contained in physical memory.
v Avoid finalizers. You cannot guarantee when a finalizer will run, and often they

cause problems. If you do use finalizers, try to avoid allocating objects in the
finalizer method. A verbose:gc trace shows whether finalizers are being called.

v Avoid compaction. A verbose:gc trace shows whether compaction is occurring.
Compaction is usually caused by requests for large memory allocations. Analyze
requests for large memory allocations and avoid them if possible. If they are
large arrays, for example, try to split them into smaller arrays.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 25

Allocation
The Allocator is a component of memory management that is responsible for
allocating areas of memory for the JVM. The task of memory allocation is small,
compared to that of garbage collection.

Heap lock allocation
Heap lock allocation occurs when the allocation request cannot be satisfied in the
existing cache.

As the name implies, heap lock allocation requires a lock and is therefore avoided,
if possible, by using the cache. For a description of cache allocation, see “Cache
allocation”

If the Garbage Collector cannot find a large enough chunk of free storage,
allocation fails and the Garbage Collector must run a garbage collection. After a
garbage collection cycle, if the Garbage Collector created enough free storage, it
searches the freelist again and picks up a free chunk. The heap lock is released
either after the object is allocated, or if not enough free space is found. If the
Garbage Collector does not find enough free storage, it returns OutOfMemoryError.

Cache allocation
Cache allocation is specifically designed to deliver the best possible allocation
performance for small objects.

Objects are allocated directly from a thread local allocation buffer that the thread
has previously allocated from the heap. A new object is allocated from this cache
without the need to grab the heap lock; therefore, cache allocation is very efficient.

All objects less than 512 bytes (768 bytes on 64-bit JVMs) are allocated from the
cache. Larger objects are allocated from the cache if they can be contained in the
existing cache; if not a locked heap allocation is performed.

The cache block is sometimes called a thread local heap (TLH). The size of the
TLH varies from 512 bytes (768 on 64-bit JVMs) to 128 KB, depending on the
allocation rate of the thread. Threads which allocate lots of objects are given larger
TLHs to further reduce contention on the heap lock.

Large Object Area
The Large Object Areas (LOA) is an area of the tenure area of the heap set used
solely to satisfy allocations for large objects. The LOA is used when the allocation
request cannot be satisfied in the main area (also known as the small object area
(SOA)) of the tenure heap.

As objects are allocated and freed, the heap can become fragmented in such a way
that allocation can be met only by time-consuming compactions. This problem is
more pronounced if an application allocates large objects. In an attempt to alleviate
this problem, the large object area (LOA) is allocated. A large object in this context
is considered to be any object 64 KB or greater in size. Allocations for new TLH
objects are not considered to be large objects. The large object area is allocated by
default for all GC polices except -Xgcpolicy:balanced but, if it is not used, it is
shrunk to zero after a few collections. It can be disabled explicitly by specifying the
-Xnoloa command-line option.

The Balanced Garbage Collection policy does not use the LOA. Therefore, when
specifying -Xgcpolicy:balanced, any LOA options passed on the command line are
ignored. The policy addresses the issues of LOA by reorganizing object layout with

26 IBM SDK for Java: SDK and Runtime Guide

the JVM to reduce heap fragmentation and compaction requirements. This change
is contained completely within the JVM, and requires no knowledge or code
changes in Java.

Initialization and the LOA:

The LOA boundary is calculated when the heap is initialized, and recalculated
after every garbage collection. The size of the LOA can be controlled using
command-line options: -Xloainitial and -Xloamaximum.

The options take values between 0 and 0.95 (0% thru 95% of the current tenure
heap size). The defaults are:
v -Xloainitial0.05 (5%)
v -Xloaminimum0 (0%)
v -Xloamaximum0.5 (50%)

Expansion and shrinkage of the LOA:

The Garbage Collector expands or shrinks the LOA, depending on usage.

The Garbage Collector uses the following algorithm:
v If an allocation failure occurs in the SOA:

– If the current size of the LOA is greater than its initial size and if the amount
of free space in the LOA is greater than 70%, reduce by 1% the percentage of
space that is allocated to the LOA.

– If the current size of the LOA is equal to or less than its initial size, and if the
amount of free space in the LOA is greater than 90%:
- If the current size of the LOA is greater than 1% of the heap, reduce by 1%

the percentage of space that is allocated to the LOA.
- If the current size of the LOA is 1% or less of the heap, reduce by 0.1%, the

percentage of space that is allocated to the LOA.
v If an allocation failure occurs on the LOA:

– If the size of the allocation request is greater than 20% of the current size of
the LOA, increase the LOA by 1%.

– If the current size of the LOA is less than its initial size, and if the amount of
free space in the LOA is less than 50%, increase the LOA by 1%.

– If the current size of the LOA is equal to or greater than its initial size, and if
the amount of free space in the LOA is less than 30%, increase the LOA by
1%.

Allocation in the LOA:

The size of the request determines where the object is allocated.

When allocating an object, the allocation is first attempted in the Small Object Area
(SOA). If it is not possible to find a free entry of sufficient size to satisfy the
allocation, and the size of the request is equal to or greater than 64 KB, the
allocation is tried in the LOA again. If the size of the request is less than 64 KB or
insufficient contiguous space exists in the LOA, an allocation failure is triggered.

Compressed references
When using compressed references, the JVM stores all references to objects, classes,
threads, and monitors as 32-bit values. Use the -Xcompressedrefs and

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 27

-Xnocompressedrefs command-line options to enable or disable compressed
references in a 64-bit JVM. Only 64-bit JVMs recognize these options.

Note: If you are using compressed references on z/OS v1.10 or earlier, you must
use APAR OA26294.

The use of compressed references improves the performance of many applications
because objects are smaller, resulting in less frequent garbage collection and
improved memory cache utilization. Certain applications might not benefit from
compressed references. Test the performance of your application with and without
compressed references to determine if they are appropriate. For default option
settings, see “JVM command-line options” on page 428.

Using compressed references runs a different version of the JVM. You need to
enable compressed references when using the dump extractor to analyze dumps
produced by the JVM, see “Using the dump viewer” on page 273.

When you are using compressed references, the following structures are allocated
in the lowest 4 GB of the address space:
v Classes
v Threads
v Monitors

Additionally, the operating system and native libraries use some of this address
space. Small Java heaps are also allocated in the lowest 4 GB of the address space.
Larger Java heaps are allocated higher in the address space.

Native memory OutOfMemoryError exceptions might occur when using
compressed references if the lowest 4 GB of address space becomes full,
particularly when loading classes, starting threads, or using monitors. You can
often resolve these errors with a larger -Xmx option to put the Java heap higher in
the address space.

A command-line option can be used with -Xcompressedrefs to allocate the heap
you specify with the -Xmx option, in a memory range of your choice. This option is
-Xgc:preferredHeapBase=<address>, where <address> is the base memory address
for the heap. In the following example, the heap is located at the 4GB mark,
leaving the lowest 4GB of address space for use by other processes.
-Xgc:preferredHeapBase=0x100000000

If the heap cannot be allocated in a contiguous block at the preferredHeapBase
address you specified, an error occurs detailing a Garbage Collection (GC)
allocation failure startup. When the -Xgc:preferredHeapBase option is used with
the -Xlp option, the preferredHeapBase address must be a multiple of the large
page size. If you specify an inaccurate heap base address, the heap is allocated
with the default page size.

64-bit JVMs recognize the following Oracle JVM options:

-XX:+UseCompressedOops
This enables compressed references in 64-bit JVMs. It is identical to
specifying the -Xcompressedrefs option.

-XX:-UseCompressedOops
This prevents use of compressed references in 64-bit JVMs.

28 IBM SDK for Java: SDK and Runtime Guide

http://www-01.ibm.com/support/docview.wss?rs=112&context=SWG90&context=SWGA0&context=SWGB0&context=SWG80&q1=OA26294&uid=isg1OA26294&loc=en_US&cs=utf-8&lang=en

Note: These options are provided to help when porting applications from the
Oracle JVM to the IBM JVM, for 64-bit platforms. The options might not be
supported in subsequent releases.

Detailed description of global garbage collection
Garbage collection is performed when an allocation failure occurs in heap lock
allocation, or if a specific call to System.gc() occurs. The thread that has the
allocation failure or the System.gc() call takes control and performs the garbage
collection.

The first step in garbage collection is to acquire exclusive control on the Virtual
machine to prevent any further Java operations. Garbage collection then goes
through the three phases: mark, sweep, and, if required, compaction. The IBM
Garbage Collector (GC) is a stop-the-world (STW) operation, because all
application threads are stopped while the garbage is collected.

A global garbage collection occurs only in exceptional circumstances when using
the Balanced Garbage Collection policy. Circumstances that might cause this rare
event include:
v A System.gc() call.
v A request by tooling.
v A combination of heap size, occupied heap memory, and collection rates that

cannot keep up with demand.

Mark phase
In mark phase, all the live objects are marked. Because unreachable objects cannot
be identified singly, all the reachable objects must be identified. Therefore,
everything else must be garbage. The process of marking all reachable objects is
also known as tracing.

The mark phase uses:
v A pool of structures called work packets. Each work packet contains a mark stack.

A mark stack contains references to live objects that have not yet been traced.
Each marking thread refers to two work packets;
1. An input packet from which references are popped.
2. An output packet to which unmarked objects that have just been discovered

are pushed.

References are marked when they are pushed onto the output packet. When the
input packet becomes empty, it is added to a list of empty packets and replaced
by a non-empty packet. When the output packet becomes full it is added to a
list of non-empty packets and replaced by a packet from the empty list.

v A bit vector called the mark bit array identifies the objects that are reachable and
have been visited. This bit array, also known as the mark map, is allocated by the
JVM at startup based on the maximum heap size (-Xmx).The mark bit array
contains one bit for each 8 bytes of heap space. The bit that corresponds to the
start address for each reachable object is set when it is first visited.

The first stage of tracing is the identification of root objects. The active state of the
JVM consists of:
v The saved registers for each thread
v The set of stacks that represent the threads
v The static fields that are in Java classes

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 29

v The set of local and global JNI references.

All functions that are called in the JVM itself cause a frame on the C stack. This
frame might contain references to objects as a result of either an assignment to a
local variable, or a parameter that is sent from the caller. All these references are
treated equally by the tracing routines.

All the mark bits for all root objects are set and references to the roots pushed to
the output work packet. Tracing then proceeds by iteratively popping a reference
off the marking thread's input work packet and then scanning the referenced object
for references to other objects. If the mark bit is off, there are references to
unmarked objects. The object is marked by setting the appropriate bit in the mark
bit array. The reference is then pushed to the output work packet of the marking
thread. This process continues until all the work packets are on the empty list, at
which point all the reachable objects have been identified.

Mark stack overflow:

Because the set of work packets has a finite size, it can overflow and the Garbage
Collector (GC) then performs a series of actions.

If an overflow occurs, the GC empties one of the work packets by popping its
references one at a time, and chaining the referenced objects off their owning class
by using the class pointer field in the object header. All classes with overflow
objects are also chained together. Tracing can then continue as before. If a further
mark stack overflow occurs, more packets are emptied in the same way.

When a marking thread asks for a new non-empty packet and all work packets are
empty, the GC checks the list of overflow classes. If the list is not empty, the GC
traverses this list and repopulates a work packet with the references to the objects
on the overflow lists. These packets are then processed as described previously.
Tracing is complete when all the work packets are empty and the overflow list is
empty.

Parallel mark:

The goal of parallel mark is to increase typical mark performance on a
multiprocessor system, while not degrading mark performance on a uniprocessor
system.

The performance of object marking is increased through the addition of helper
threads that share the use of the pool of work packets. For example, full output
packets that are returned to the pool by one thread can be picked up as new input
packets by another thread.

Parallel mark still requires the participation of one application thread that is used
as the master coordinating agent. The helper threads assist both in the
identification of the root pointers for the collection and in the tracing of these
roots. Mark bits are updated by using host machine atomic primitives that require
no additional lock.

For information about the number of helper threads that are created, and how you
can change that number, see “Frequently asked questions about the Garbage
Collector” on page 50.

30 IBM SDK for Java: SDK and Runtime Guide

Concurrent mark:

Concurrent mark gives reduced and consistent garbage collection pause times
when heap sizes increase.

The GC starts a concurrent marking phase before the heap is full. In the concurrent
phase, the GC scans the heap, inspecting “root” objects such as stacks, JNI
references, and class static fields. The stacks are scanned by asking each thread to
scan its own stack. These roots are then used to trace live objects concurrently.
Tracing is done by a low-priority background thread and by each application
thread when it does a heap lock allocation.

While the GC is marking live objects concurrently with application threads
running, it must record any changes to objects that are already traced. It uses a
write barrier that is run every time a reference in an object is updated. The write
barrier flags when an object reference update has occurred. The flag is used to
force a rescan of part of the heap.

The heap is divided into 512 byte sections. Each section is allocated a single-byte
card in the card table. Whenever a reference to an object is updated, the card that
corresponds to the start address of the object that has been updated with the new
object reference is marked with the hex value 0x01. A byte is used instead of a bit
to eliminate contention, by allowing cards to be marked using non-atomic
operations. A stop-the-world (STW) collection is started when one of the following
events takes place:
v An allocation failure occurs.
v A System.gc call is made.
v Concurrent mark finishes all the possible marking.

The GC tries to start the concurrent mark phase so that it finishes at the same time
as the heap is exhausted. The GC identifies the optimum start time by constant
tuning of the parameters that govern the concurrent mark time. In the STW phase,
the GC rescans all roots, then uses the marked cards to see what else must be
retraced. The GC then sweeps as normal. It is guaranteed that all objects that were
unreachable at the start of the concurrent phase are collected. It is not guaranteed
that objects that become unreachable during the concurrent phase are collected.
Objects which become unreachable during the concurrent phase are known as
“floating garbage”.

Reduced and consistent pause times are the benefits of concurrent mark, but they
come at a cost. Application threads must do some tracing when they are requesting
a heap lock allocation. The processor usage needed varies depending on how
much idle processor time is available for the background thread. Also, the write
barrier requires additional processor usage.

The -Xgcpolicy command-line parameter is used to enable and disable concurrent
mark:

-Xgcpolicy: <gencon | optavgpause | optthruput | subpool | balanced>

The -Xgcpolicy options have these effects:

gencon Enables concurrent mark, and uses it in combination with generational
garbage collection to help minimize the time that is spent in any garbage
collection pause. gencon is the default setting. If you are having problems
with erratic application response times that are caused by normal garbage

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 31

collections, you can reduce those problems, reduce heap fragmentation,
and still maintain good throughput, by using the gencon option. This
option is particularly useful for applications that use many short-lived
objects.

optavgpause
Enables concurrent mark with its default values. If you are having
problems with erratic application response times that are caused by normal
garbage collections, you can reduce those problems at the cost of some
throughput, by using the optavgpause option.

optthruput
Disables concurrent mark. If you do not have pause time problems (as seen
by erratic application response times), you get the best throughput with
this option.

subpool
This option is deprecated and is now an alias for optthruput. Therefore, if
you use this option, the effect is the same as optthruput.

balanced
Disables concurrent mark. This policy does use concurrent garbage
collection technology, but not in the way that concurrent mark is
implemented here. For more information, see “Global Mark Phase” on
page 42.

Sweep phase
On completion of the mark phase the mark bit vector identifies the location of all
the live objects in the heap. The sweep phase uses this to identify those chunks of
heap storage that can be reclaimed for future allocations; these chunks are added
to the pool of free space.

A free chunk is identified by examining the mark bit vector looking for sequences
of zeros, which identify possible free space. GC ignores any sequences of zeros that
correspond to a length less than the minimum free size. When a sequence of
sufficient length is found, the GC checks the length of the object at the start of the
sequence to determine the actual amount of free space that can be reclaimed. If this
amount is greater than or equal to the minimum size for a free chunk, it is
reclaimed and added to the free space pool. The minimum size for a free chunk is
currently defined as 512 bytes on 32-bit platforms, and 768 bytes on 64-bit
platforms.

The small areas of storage that are not on the freelist are known as "dark matter",
and they are recovered when the objects that are next to them become free, or
when the heap is compacted. It is not necessary to free the individual objects in the
free chunk, because it is known that the whole chunk is free storage. When a
chunk is freed, the GC has no knowledge of the objects that were in it.

Parallel bitwise sweep:

Parallel bitwise sweep improves the sweep time by using available processors. In
parallel bitwise sweep, the Garbage Collector uses the same helper threads that are
used in parallel mark, so the default number of helper threads is also the same and
can be changed with the -Xgcthreads option.

32 IBM SDK for Java: SDK and Runtime Guide

The heap is divided into sections of 256 KB and each thread (helper or master)
takes a section at a time and scans it, performing a modified bitwise sweep. The
results of this scan are stored for each section. When all sections have been
scanned, the freelist is built.

With the Balanced Garbage Collection policy, -Xgcpolicy:balanced, the Java heap
is divided into approximately 1000 sections, providing a granular base for the
parallel bitwise sweep.

Concurrent sweep:

Like concurrent mark, concurrent sweep gives reduced garbage collection pause
times when heap sizes increase. Concurrent sweep starts immediately after a
stop-the-world (STW) collection, and must at least finish a certain subset of its
work before concurrent mark is allowed to kick off, because the mark map used
for concurrent mark is also used for sweeping.

The concurrent sweep process is split into two types of operations:
v Sweep analysis: Sections of data in the mark map (mark bit array) are analyzed

for ranges of free or potentially free memory.
v Connection: The analyzed sections of the heap are connected into the free list.

Heap sections are calculated in the same way as for parallel bitwise sweep.

An STW collection initially performs a minimal sweep operation that searches for
and finds a free entry large enough to satisfy the current allocation failure. The
remaining unprocessed portion of the heap and mark map are left to concurrent
sweep to be both analyzed and connected. This work is accomplished by Java
threads through the allocation process. For a successful allocation, an amount of
heap relative to the size of the allocation is analyzed, and is performed outside the
allocation lock. In an allocation, if the current free list cannot satisfy the request,
sections of analyzed heap are found and connected into the free list. If sections
exist but are not analyzed, the allocating thread must also analyze them before
connecting.

Because the sweep is incomplete at the end of the STW collection, the amount of
free memory reported (through verbose garbage collection or the API) is an
estimate based on past heap occupancy and the ratio of unprocessed heap size
against total heap size. In addition, the mechanics of compaction require that a
sweep is completed before a compaction can occur. Consequently, an STW
collection that compacts does not have concurrent sweep active during the next
round of execution.

To enable concurrent sweep, use the -Xgcpolicy: parameter optavgpause. It
becomes active along with concurrent mark. The modes optthruput, balanced, and
gencon do not support concurrent sweep.

Compaction phase
When the garbage has been removed from the heap, the Garbage Collector can
consider compacting the resulting set of objects to remove the spaces that are
between them. The process of compaction is complicated because, if any object is
moved, the GC must change all the references that exist to it. The default is not to
compact.

The following analogy might help you understand the compaction process. Think
of the heap as a warehouse that is partly full of pieces of furniture of different

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 33

sizes. The free space is the gaps between the furniture. The free list contains only
gaps that are larger than a particular size. Compaction pushes everything in one
direction and closes all the gaps. It starts with the object that is closest to the wall,
and puts that object against the wall. Then it takes the second object in line and
puts that against the first. Then it takes the third and puts it against the second,
and so on. At the end, all the furniture is at one end of the warehouse and all the
free space is at the other.

To keep compaction times to a minimum, the helper threads are used again.

Compaction occurs if any one of the following conditions are true and
-Xnocompactgc has not been specified:
v -Xcompactgc has been specified.
v Following the sweep phase, not enough free space is available to satisfy the

allocation request.
v A System.gc() has been requested and the last allocation failure triggering a

global garbage collection did not compact or -Xcompactexplicitgc has been
specified.

v At least half the previously available memory has been consumed by TLH
allocations (ensuring an accurate sample) and the average TLH size falls to less
than 1024 bytes

v The scavenger is enabled, and the largest object that the scavenger failed to
tenure in the most recent scavenge is larger than the largest free entry in tenured
space.

v The heap is fully expanded and less than 4% of old space is free.
v Less than 128 KB of the heap is free.

With the Balanced Garbage Collection policy, the -Xcompactgc and -Xnocompactgc
options are respected only if a global garbage collection is required. A global
garbage collection occurs in rare circumstances, as described in “Detailed
description of global garbage collection” on page 29. All other collection activity
for the Balanced policy is subject to possible compaction or object movement.

Reference objects
When a reference object is created, it is added to a list of reference objects of the
same type. The referent is the object to which the reference object points.

Instances of SoftReference, WeakReference, and PhantomReference are created by
the user and cannot be changed; they cannot be made to refer to objects other than
the object that they referenced on creation.

If an object has a class that defines a finalize method, a pointer to that object is
added to a list of objects that require finalization.

During garbage collection, immediately following the mark phase, these lists are
processed in a specific order:
1. Soft
2. Weak
3. Final
4. Phantom

34 IBM SDK for Java: SDK and Runtime Guide

Soft, weak, and phantom reference processing:

The Garbage Collector (GC) determines if a reference object is a candidate for
collection and, if so, performs a collection process that differs for each reference
type. Soft references are collected if their referent is not marked and if #get() has
not been called on the reference object for a number of garbage collection cycles.
Weak and phantom references are always collected if their referent is not marked.

For each element on a list, GC determines if the reference object is eligible for
processing and then if it is eligible for collection.

An element is eligible for processing if it is marked and has a non-null referent
field. If this is not the case, the reference object is removed from the reference list,
resulting in it being freed during the sweep phase.

If an element is determined to be eligible for processing, GC must determine if it is
eligible for collection. The first criterion here is simple. Is the referent marked? If it
is marked, the reference object is not eligible for collection and GC moves onto the
next element of the list.

If the referent is not marked, GC has a candidate for collection. At this point the
process differs for each reference type. Soft references are collected if their referent
has not been marked for a number of garbage collection cycles. The number of
garbage collection cycles depends on the percentage of free heap space. You adjust
the frequency of collection with the -Xsoftrefthreshold option. For more
information about using -Xsoftrefthreshold, see “Garbage Collector
command-line options” on page 453. If there is a shortage of available storage, all
soft references are cleared. All soft references are guaranteed to have been cleared
before the OutOfMemoryError is thrown.

Weak and phantom references are always collected if their referent is not marked.
When a phantom reference is processed, its referent is marked so it will persist
until the following garbage collection cycle or until the phantom reference is
processed if it is associated with a reference queue. When it is determined that a
reference is eligible for collection, it is either queued to its associated reference
queue or removed from the reference list.

Final reference processing
The processing of objects that require finalization is more straightforward.
1. The list of objects is processed. Any element that is not marked is processed by:

a. Marking and tracing the object
b. Creating an entry on the finalizable object list for the object

2. The GC removes the element from the unfinalized object list.
3. The final method for the object is run at an undetermined point in the future

by the reference handler thread.

JNI weak reference
JNI weak references provide the same capability as that of WeakReference objects,
but the processing is very different. A JNI routine can create a JNI Weak reference
to an object and later delete that reference. The Garbage Collector clears any weak
reference where the referent is unmarked, but no equivalent of the queuing
mechanism exists.

Failure to delete a JNI Weak reference causes a memory leak in the table and
performance problems. This also applies to JNI global references. The processing of

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 35

JNI weak references is handled last in the reference handling process. The result is
that a JNI weak reference can exist for an object that has already been finalized
and had a phantom reference queued and processed.

Heap expansion
Heap expansion occurs after garbage collection while exclusive access of the virtual
machine is still held. The heap is expanded in a set of specific situations.

The active part of the heap is expanded up to the maximum if one of three
conditions is true:
v The Garbage Collector (GC) did not free enough storage to satisfy the allocation

request.
v Free space is less than the minimum free space, which you can set by using the

-Xminf parameter. The default is 30%.
v More than the maximum time threshold is being spent in garbage collection, set

using the -Xmaxt parameter. The default is 13%.

The amount to expand the heap is calculated as follows:
1. The -Xminf option specifies the minimum percentage of heap to remain free

after a garbage collection. If the heap is being expanded to satisfy this value,
the GC calculates how much heap expansion is required.
You can set the maximum expansion amount using the -Xmaxe parameter. The
default value is 0, which means there is no maximum expansion limit. If the
calculated required heap expansion is greater than the non-zero value of
-Xmaxe, the required heap expansion is reduced to the value of -Xmaxe.
You can set the minimum expansion amount using the -Xmine parameter. The
default value is 1 MB. If the calculated required heap expansion is less than the
value of -Xmine, the required heap expansion is increased to the value of
-Xmine.

2. If the heap is expanding and the JVM is spending more than the maximum
time threshold, the GC calculates how much heap expansion is needed to
provide 17% free space. The expansion is adjusted as described in the previous
step, depending on -Xmaxe and -Xmine.

3. If garbage collection did not free enough storage, the GC ensures that the heap
is expanded by at least the value of the allocation request.

All calculated expansion amounts are rounded to the nearest 512-byte boundary on
32-bit JVMs or a 1024-byte boundary on 64-bit JVMs.

Heap shrinkage
Heap shrinkage occurs after garbage collection while exclusive access of the virtual
machine is still held. Shrinkage does not occur in a set of specific situations. Also,
there is a situation where a compaction occurs before the shrink.

Shrinkage does not occur if any of the following conditions are true:
v The Garbage Collector (GC) did not free enough space to satisfy the allocation

request.
v The maximum free space, which can be set by the -Xmaxf parameter (default is

60%), is set to 100%.
v The heap has been expanded in the last three garbage collections.
v This is a System.gc() and the amount of free space at the beginning of the

garbage collection was less than -Xminf (default is 30%) of the live part of the
heap.

36 IBM SDK for Java: SDK and Runtime Guide

v If none of the previous options are true, and more than -Xmaxf free space exists,
the GC must calculate how much to shrink the heap to get it to -Xmaxf free
space, without dropping to less than the initial (-Xms) value. This figure is
rounded down to a 512-byte boundary on 32-bit JVMs or a 1024-byte boundary
on 64-bit JVMs.

A compaction occurs before the shrink if all the following conditions are true:
v A compaction was not done on this garbage collection cycle.
v No free chunk is at the end of the heap, or the size of the free chunk that is at

the end of the heap is less than 10% of the required shrinkage amount.
v The GC did not shrink and compact on the last garbage collection cycle.

On initialization, the JVM allocates the whole heap in a single contiguous area of
virtual storage. The amount that is allocated is determined by the setting of the
-Xmx parameter. No virtual space from the heap is ever freed back to the native
operating system. When the heap shrinks, it shrinks inside the original virtual
space.

Whether any physical memory is released depends on the ability of the native
operating system. If it supports paging; the ability of the native operating system to
commit and decommit physical storage to the virtual storage; the GC uses this
function. In this case, physical memory can be decommitted on a heap shrinkage.

You never see the amount of virtual storage that is used by the JVM decrease. You
might see physical memory free size increase after a heap shrinkage. The native
operating system determines what it does with decommitted pages.

Where paging is supported, the GC allocates physical memory to the initial heap
to the amount that is specified by the -Xms parameter. Additional memory is
committed as the heap grows.

Generational Concurrent Garbage Collector
The Generational Concurrent Garbage Collector has been introduced in Java 5.0
from IBM. A generational garbage collection strategy is well suited to an
application that creates many short-lived objects, as is typical of many transactional
applications.

You activate the Generational Concurrent Garbage Collector with the
-Xgcpolicy:gencon command-line option.

The Java heap is split into two areas, a new (or nursery) area and an old (or
tenured) area. Objects are created in the new area and, if they continue to be
reachable for long enough, they are moved into the old area. Objects are moved
when they have been reachable for enough garbage collections (known as the
tenure age).

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 37

The new area is split into two logical spaces: allocate and survivor. Objects are
allocated into the Allocate Space. When that space is filled, a garbage collection
process called scavenge is triggered. During a scavenge, reachable objects are
copied either into the Survivor Space or into the Tenured Space if they have
reached the tenured age. Objects in the new area that are not reachable remain
untouched. When all the reachable objects have been copied, the spaces in the new
area switch roles. The new Survivor Space is now entirely empty of reachable
objects and is available for the next scavenge.

This diagram illustrates what happens during a scavenge. When the Allocate Space
is full, a garbage collection is triggered. Reachable objects are then traced and
copied into the Survivor Space. Objects that have reached the tenure age (have
already been copied inside the new area a number of times) are promoted into
Tenured Space. As the name Generational Concurrent implies, the policy has a
concurrent aspect to it. The Tenured Space is concurrently traced with a similar
approach to the one used for –Xgcpolicy:optavgpause. With this approach, the
pause time incurred from Tenured Space collections is reduced.

Tenure age
Tenure age is a measure of the object age at which it should be promoted to the
tenure area. This age is dynamically adjusted by the JVM and reaches a maximum
value of 14. An object’s age is incremented on each scavenge. A tenure age of x
means that an object is promoted to the tenure area after it has survived x flips
between survivor and allocate space. The threshold is adaptive and adjusts the
tenure age based on the percentage of space used in the new area.

New Area ()nursery Old Area

Allocate Space Tenured SpaceSurvivor Space

Before Scavenge

After Scavenge

Survivor Space

Allocate Space Tenured Space

Tenured Space

Survivor Space

Allocate Space

Free Space

Occupied Space

38 IBM SDK for Java: SDK and Runtime Guide

Tilt ratio
The size of the allocate space in the new area is maximized by a technique called
tilting. Tilting controls the relative sizes of the allocate and survivor spaces. Based
on the amount of data that survives the scavenge, the ratio is adjusted to maximize
the amount of time between scavenges.

For example, if the initial total new area size is 500 MB, the allocate and survivor
spaces start with 250 MB each (a 50% split). As the application runs and a
scavenge GC event is triggered, only 50 MB survives. In this situation, the survivor
space is decreased, allowing more space for the allocate space. A larger allocate
area means that it takes longer for a garbage collection to occur. This diagram
illustrates how the boundary between allocate and survivor space is affected by the
tilt ratio.

Balanced Garbage Collection policy
The Balanced Garbage Collection policy uses a region-based layout for the Java
heap. These regions are individually managed to reduce the maximum pause time
on large heaps.

The Balanced Garbage Collection policy is intended for environments where heap
sizes are greater than 4 GB. The policy is available only on 64-bit platforms. You
activate this policy by specifying -Xgcpolicy:balanced on the command line.

The Java heap is split into potentially thousands of equal sized areas called
“regions”. Each region can be collected independently, which allows the collector
to focus only on the regions which offer the best return on investment.

Objects are allocated into a set of empty regions that are selected by the collector.
This area is known as an eden space. When the eden space is full, the collector
stops the application to perform a Partial Garbage Collection (PGC). The collection
might also include regions other than the eden space, if the collector determines
that these regions are worth collecting. When the collection is complete, the
application threads can proceed, allocating from a new eden space, until this area
is full. This process continues for the life of the application.

From time to time, the collector starts a Global Mark Phase (GMP) to look for more
opportunities to reclaim memory. Because PGC operations see only subsets of the
heap during each collection, abandoned objects might remain in the heap. This
issue is like the “floating garbage” problem seen by concurrent collectors.
However, the GMP runs on the entire Java heap and can identify object cycles that
are inactive for a long period. These objects are reclaimed.

Region age
Age is tracked for each region in the Java heap, with 24 possible generations.

Like the Generational Concurrent Garbage Collector, the Balanced Garbage
Collector tracks the age of objects in the Java heap. The Generational Concurrent
Garbage Collector tracks object ages for each individual object, assigning two

Allocate Space Allocate SpaceSurvivor Space Survivor Space

50% 90%

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 39

generations, “new” and “tenure”. However, the Balanced Garbage Collector tracks
object ages for each region, with 24 possible generations. An age 0 region, known
as the eden space, contains the newest objects allocated. The highest age region
represents a maximum age where all long-lived objects eventually reside. A Partial
Garbage Collection (PGC) must collect age 0 regions, but can add any other
regions to the collection set, regardless of age.

This diagram shows a region-based Java heap with ages and unused regions:

unused unused 320 1 0

Note: There is no requirement that similarly aged regions are contiguous.

Partial Garbage Collection
A Partial Garbage Collection (PGC) reclaims memory by using either a
Copy-Forward or Mark-Compact operation on the Java heap.

Note: The -Xpartialcompactgc option, which in previous version of IBM Java
enabled partial compaction, is now deprecated and has no effect if used.

When the eden space is full, the application is stopped. A PGC runs before
allocating another set of empty regions as the new eden space. The application can
then proceed. A PGC is a “stop-the-world” operation, meaning that all application
threads are suspended until it is complete. A PGC can be run on any set of regions
in the heap, but always includes the eden space, used for allocation since the
previous PGC. Other regions can be added to the set based on factors that include
age, free memory, and fragmentation.

Because a PGC looks only at a subset of the heap, the operation might miss
opportunities to reclaim dead objects in other regions. This problem is resolved by
a Global Mark Phase (GMP).

In this example, regions A and B each contain an object that is reachable only
through an object in the other region:

A B

If only A or B is collected, one half of the cycle keeps the other alive. However, a
GMP can see that these objects are unreachable.

The Balanced policy can use either a Copy-Forward (scavenge) collector or a
Mark-Compact collector in the PGC operation. Typically, the policy favors
Copy-Forward but can change either partially or fully to Mark-Compact if the
heap is too full. You can check the verbose Garbage Collection logs to see which
collection strategy is used.

40 IBM SDK for Java: SDK and Runtime Guide

Copy-Forward operation

These examples show a PGC operation using Copy-Forward, where the shaded
areas represent live objects, and the white areas are unused:

This diagram shows the Java heap before the Copy-Forward operation:

0 0unused 1

This diagram shows the Java heap during the Copy-Forward operation, where the
arrows show the movement of objects:

0 0unusednew 0 1

This diagram shows the Java heap after the Copy-Forward operation, where region
ages have been incremented:

unused unusedunused1 2

Mark-Compact operation

These examples show a PGC operation using Mark-Compact, where the shaded
areas represent live objects, and the white areas are unused.

This diagram shows the Java heap before the Mark-Compact operation:

02 10

This diagram shows the Java heap during the Mark-Compact operation, where the
arrows show the movement of objects:

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 41

02 10

This diagram shows the Java heap after the Mark-Compact operation, where
region ages have been incremented:

unused unused3 21

Global Mark Phase
A Global Mark Phase (GMP) takes place on the entire Java heap, finding, and
marking abandoned objects for garbage collection.

A GMP runs independently between Partial Garbage Collections (PGCs). Although
the GMP runs incrementally, like the PGC, the GMP runs only a mark operation.
However, this mark operation takes place on the entire Java heap, and does not
make any decisions at the region level. By looking at the entire Java heap, the
GMP can see more abandoned objects than the PGC might be aware of. The GMP
does not start and finish in the same “stop-the-world” operation, which might lead
to some objects being kept alive as “floating garbage”. However, this waste is
bounded by the set of objects that died after a given GMP started.

GMP also performs some work concurrently with the application threads. This
concurrent mark operation is based purely on background threads, which allows
idle processors to complete work, no matter how quickly the application is
allocating memory. This concurrent mark operation is unlike the concurrent mark
operations that are specified with -Xgcpolicy:gencon or -Xgcpolicy:optavgpause.
For more information about the use of concurrent mark with these options, see
“Concurrent mark” on page 31.

When the GMP completes, the data that the PGC process is maintaining is
replaced. The next PGC acts on the latest data in the Java heap.

This diagram shows that the GMP live object set is a subset of the PGC live object
set when the GMP completes:

unused

PGC

GMP

unused 30 01 2

42 IBM SDK for Java: SDK and Runtime Guide

When the GMP replaces the data for use by the PGC operation, the next PGC uses
this smaller live set for more aggressive collection. This process enables the GMP
to clear all live objects in the GMP set, ready for the next global mark:

unused

PGC

GMP

unused 30 01 2 unused

When to use the Balanced garbage collection policy
There are a number of situations when you should consider using the Balanced
garbage collection policy. Generally, if you are currently using the Gencon policy,
and the performance is good but the application still experiences large global
collection (including compaction) pause times frequently enough to be disruptive,
consider using the Balanced policy.

Note: Tools such as the IBM Monitoring and Diagnostic Tools for Java - Garbage
Collection and Memory Visualizer and IBM Monitoring and Diagnostic Tools for
Java - Health Center do not make recommendations that are specific to the
Balanced policy.

Requirements
v This policy is available only on 64-bit platforms. The policy is not available if the

application is deployed on 32-bit or 31-bit hardware or operating systems, or if
the application requires loading 32-bit or 31-bit native libraries.

v The policy is optimized for larger heaps; if you have a heap size of less than 4
GB you are unlikely to see a benefit compared to using the Gencon policy.

Performance implications

The incremental garbage collection work that is performed for each collection, and
the large-array-allocation support, cause a reduction in performance. Typically,
there is a 10% decrease in throughput. This figure can vary, and the overall
performance or throughput can also improve depending on the workload
characteristics, for example if there are many global collections and compactions.

When to use the policy

Consider using the policy in the following situations:

The application occasionally experiences unacceptably long global garbage
collection pause times

The policy attempts to reduce or eliminate the long pauses that can be
experienced by global collections, particularly when a global compaction
occurs. Balanced garbage collection incrementally reduces fragmentation in
the heap by compacting part of the heap in every collection. By proactively
tackling the fragmentation problem in incremental steps, which
immediately return contiguous free memory back to the allocation pool,
Balanced garbage collection eliminates the accumulation of work that is
sometimes incurred by generational garbage collection.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 43

Large array allocations are frequently a source of global collections, global
compactions, or both

If large arrays, transient or otherwise, are allocated so often that garbage
collections are forced even though sufficient total free memory remains, the
Balanced policy can reduce garbage collection frequency and total pause
time. The incremental nature of the heap compaction, and internal JVM
technology for representing arrays, result in minimal disruption when
allocating "large" arrays. "Large" arrays are arrays whose size is greater
than approximately 0.1% of the heap.

Other areas that might benefit

The following situations might also benefit from use of this policy:

The application is unable to use all the processor cores on the machine
Balanced garbage collection includes global tracing operations to break
cycles and refresh whole heap information. This behavior is known as the
Global Mark Phase. During these operations, the JVM attempts to use
under-utilized processor cores to perform some of this work while the
application is running. This behavior reduces any stop-the-world time that
the operation might require.

The application makes heavy use of dynamic class loading (often caused by
heavy use of reflection)

The Gencon garbage collection policy can unload unused classes and class
loaders, but only at global garbage collection cycles. Because global
collection cycles might be infrequent, for example because few objects
survive long enough to be copied to the tenure or old space, there might
be a large accumulation of classes and class loaders in the native memory
space. The Balanced garbage collection policy attempts to dynamically
unload unused classes and class loaders on every partial collect. This
approach reduces the time these classes and class loaders remain in
memory.

When not to use the policy

The Java heap stays full for the entire run and cannot be made larger
The Balanced policy uses an internal representation of the object heap that
allows selective incremental collection of different areas of the heap
depending on where the best return on cost of garbage collection might be.
This behavior, combined with the incremental nature of garbage collection,
which might not fully collect a heap through a series of increments, can
increase the amount of floating garbage that remains to be collected. Floating
garbage refers to objects which might have become garbage, but which the
garbage collector has not been able to immediately detect. As a result, if
heap configurations already put pressure on the garbage collector, for
example by resulting in little space remaining, the Balanced policy might
perform poorly because it increases this pressure.

Real-time-pause guarantees are required
Although the Balanced policy typically results in much better worst-case
pause time than the Gencon policy, it does not guarantee what these times
are, nor does it guarantee a minimum amount of processor time that is
dedicated to the application for any time window. If you require real-time
guarantees, use a real-time product such as the IBM WebSphere® Real Time
product suite.

44 IBM SDK for Java: SDK and Runtime Guide

The application uses many large arrays
An array is "large" if it is larger than 0.1% of the heap. The Balanced policy
uses an internal representation of large arrays in the JVM that is different
from the standard representation. This difference avoids the high cost that
the large arrays otherwise place on heap fragmentation and garbage
collection. Because of this internal representation, there is an additional
performance cost in using large arrays. If the application uses many large
arrays, this performance cost might negate the benefits of using the
Balanced policy.

How to do heap sizing
You can do heap sizing to suit your requirements.

Generally:
v Do not start with a minimum heap size that is the same as the maximum heap

size.
v Use -verbose:gc to tailor the minimum and maximum settings.
v Investigate the use of fine-tuning options.

Initial and maximum heap sizes
Understanding the operations of the Garbage Collector (GC) helps you set initial
and maximum heap sizes for efficient management of the heap.

When you have established the maximum heap size that you need, you might
want to set the minimum heap size to the same value; for example, -Xms512M
-Xmx512M. However, using the same values is typically not a good idea, because it
delays the start of garbage collection until the heap is full. Therefore, the first time
that the GC runs, the process can take longer. Also, the heap is more likely to be
fragmented and require a heap compaction. You are advised to start your
application with the minimum heap size that your application requires. When the
GC starts up, it will run frequently and efficiently, because the heap is small.

If the GC cannot find enough garbage, it runs compaction. If the GC finds enough
garbage, or any of the other conditions for heap expansion are met (see “Heap
expansion” on page 36), the GC expands the heap.

Therefore, an application typically runs until the heap is full. Then, successive
garbage collection cycles recover garbage. When the heap is full of live objects, the
GC compacts the heap. If sufficient garbage is still not recovered, the GC expands
the heap.

From the earlier description, you can see that the GC compacts the heap as the
needs of the application rise, so that as the heap expands, it expands with a set of
compacted objects in the bottom of the original heap. This process is an efficient
way to manage the heap, because compaction runs on the smallest-possible heap
size at the time that compaction is found to be necessary. Compaction is performed
with the minimum heap sizes as the heap grows. Some evidence exists that an
application's initial set of objects tends to be the key or root set, so that compacting
them early frees the remainder of the heap for more short-lived objects.

Eventually, the JVM has the heap at maximum size with all long-lived objects
compacted at the bottom of the heap. The compaction occurred when compaction
was in its least expensive phase. The amount of processing and memory usage
required to expand the heap is almost trivial compared to the cost of collecting and
compacting a very large fragmented heap.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 45

Using verbose:gc
You can use -verbose:gc when running your application with no load, and again
under stress, to help you set the initial and maximum heap sizes.

The -verbose:gc output is fully described in “Garbage Collector diagnostic data”
on page 333. Turn on -verbose:gc and run up the application with no load. Check
the heap size at this stage. This provides a rough guide to the start size of the heap
(-Xms option) that is needed. If this value is much larger than the defaults (see
“Default settings for the JVM” on page 474), think about reducing this value a little
to get efficient and rapid compaction up to this value, as described in “Initial and
maximum heap sizes” on page 45.

By running an application under stress, you can determine a maximum heap size.
Use this to set your max heap (-Xmx) value.

Using fine tuning options
You can change the minimum and maximum vales of the free space after garbage
collection, the expansion amount, and the garbage collection time threshold, to fine
tune the management of the heap.

Consider the description of the following command-line parameters and consider
applying them to fine tune the way the heap is managed:

-Xminf and -Xmaxf
Minimum and maximum free space after garbage collection.

-Xmine and -Xmaxe
Minimum and maximum expansion amount.

-Xmint and -Xmaxt
Minimum and maximum garbage collection time threshold.

These are also described in “Heap expansion” on page 36 and “Heap shrinkage”
on page 36.

Interaction of the Garbage Collector with applications
Understanding the way the Garbage Collector works helps you to understand its
relationship with your applications.

The Garbage Collector behaves in these ways:
1. The Garbage Collector will collect some (but not necessarily all) unreachable

objects.
2. The Garbage Collector will not collect reachable objects
3. The Garbage Collector will stop all threads when it is running.
4. The Garbage Collector will start in these ways:

a. The Garbage Collector is triggered when an allocation failure occurs, but
will otherwise not run itself.

b. The Garbage Collector will accept manual calls unless the
-Xdisableexplicitgc parameter is specified. A manual call to the Garbage
Collector (for example, through the System.gc() call) suggests that a garbage
collection cycle will run. In fact, the call is interpreted as a request for full
garbage collection scan unless a garbage collection cycle is already running
or explicit garbage collection is disabled by specifying -Xdisableexplicitgc.

5. The Garbage Collector will collect garbage at its own sequence and timing,
subject to item 4b.

46 IBM SDK for Java: SDK and Runtime Guide

6. The Garbage Collector accepts all command-line variables and environment
variables.

7. Note these points about finalizers:
a. They are not run in any particular sequence.
b. They are not run at any particular time.
c. They are not guaranteed to run at all.
d. They will run asynchronously to the Garbage Collector.

How to coexist with the Garbage Collector
Use this background information to help you diagnose problems in the coexistence
of your applications with the Garbage Collector (GC).

Do not try to control the GC or to predict what will happen in a given garbage
collection cycle. This unpredictability is handled, and the GC is designed to run
well and efficiently inside these conditions.

Set up the initial conditions that you want and let the GC run. It will behave as
described in “Interaction of the Garbage Collector with applications” on page 46,
which is in the JVM specification.

Root set
The root set is an internally derived set of references to the contents of the stacks
and registers of the JVM threads and other internal data structures at the time that
the Garbage Collector was called.

This composition of the root set means that the graph of reachable objects that the
Garbage Collector constructs in any given cycle is nearly always different from that
traced in another cycle (see list item 5 in “Interaction of the Garbage Collector with
applications” on page 46). This difference has significant consequences for
finalizers (list item 7), which are described more fully in “Finalizers” on page 48.

Thread local heap
The Garbage Collector (GC) maintains areas of the heap for fast object allocation.

The heap is subject to concurrent access by all the threads that are running in the
JVM. Therefore, it must be protected by a resource lock so that one thread can
complete updates to the heap before another thread is allowed in. Access to the
heap is therefore single-threaded. However, the GC also maintains areas of the
heap as thread caches or thread local heap (TLH). These TLHs are areas of the
heap that are allocated as a single large object, marked non-collectable, and
allocated to a thread. The thread can now sub allocate from the TLH objects that
are smaller than a defined size. No heap lock is needed which means that
allocation is very fast and efficient. When a cache becomes full, a thread returns
the TLH to the main heap and grabs another chunk for a new cache.

A TLH is not subject to a garbage collection cycle; it is a reference that is dedicated
to a thread.

Bug reports
Attempts to predict the behavior of the Garbage Collector (GC) are frequent
underlying causes of bug reports.

Here is an example of a regular bug report to Java service of the "Hello World"
variety. A simple program allocates an object or objects, clears references to these

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 47

objects, and then initiates a garbage collection cycle. The objects are not seen as
collected. Typically, the objects are not collected because the application has
attached a finalizer that does not run immediately.

It is clear from the way that the GC works that more than one valid reason exists
for the objects not being seen as collected:
v An object reference exists in the thread stack or registers, and the objects are

retained garbage.
v The GC has not chosen to run a finalizer cycle at this time.

See list item 1 in “Interaction of the Garbage Collector with applications” on page
46. Real garbage is always found eventually, but it is not possible to predict when
as stated in list item 5.

Finalizers
The Java service team recommends that applications avoid the use of finalizers if
possible. The JVM specification states that finalizers are for emergency clear-up of,
for example, hardware resources. The service team recommends that you use
finalizers for this purpose only. Do not use them to clean up Java software
resources or for closedown processing of transactions.

The reasons for this recommendation are partly because of the nature of finalizers
and the permanent linkage to garbage collection, and partly because of the way
garbage collection works as described in “Interaction of the Garbage Collector with
applications” on page 46.

Nature of finalizers:

The JVM specification does not describe finalizers, except to state that they are
final in nature. It does not state when, how, or whether a finalizer is run. Final, in
terms of a finalizer, means that the object is known not to be in use any more.

The object is definitely not in use only when it is not reachable. Only the Garbage
Collector (GC) can determine that an object is not reachable. Therefore, when the
GC runs, it determines which are the unreachable objects that have a finalizer
method attached. Normally, such objects are collected, and the GC can satisfy the
memory allocation fault. Finalized garbage must have its finalizer run before it can
be collected, so no finalized garbage can be collected in the cycle that finds it.
Therefore, finalizers make a garbage collection cycle longer (the cycle has to detect
and process the objects) and less productive. Finalizers use more of the processor
and resources in addition to regular garbage collection. Because garbage collection
is a stop-the-world operation, it is sensible to reduce the processor and resource
usage as much as possible.

The GC cannot run finalizers itself when it finds them, because a finalizer might
run an operation that takes a long time. The GC cannot risk locking out the
application while this operation is running. Therefore, finalizers must be collected
into a separate thread for processing. This task adds more processor usage into the
garbage collection cycle.

Finalizers and garbage collection:

The behavior of the Garbage Collector (GC) affects the interaction between the GC
and finalizers.

48 IBM SDK for Java: SDK and Runtime Guide

The way finalizers work, described in list item 7 in “Interaction of the Garbage
Collector with applications” on page 46, indicates the non-predictable behavior of
the GC. The significant results are:
v The graph of objects that the GC finds cannot be reliably predicted by your

application. Therefore, the sequence in which finalized objects are located has no
relationship to either
– the sequence in which the finalized objects are created
– the sequence in which the finalized objects become garbage.

The sequence in which finalizers are run cannot be predicted by your
application.

v The GC does not know what is in a finalizer, or how many finalizers exist.
Therefore, the GC tries to satisfy an allocation without processing finalizers. If a
garbage collection cycle cannot produce enough normal garbage, it might decide
to process finalized objects. Therefore, it is not possible to predict when a
finalizer is run.

v Because a finalized object might be garbage that is retained, a finalizer might not
run at all.

How finalizers are run:

When the Garbage Collector (GC) decides to process unreachable finalized objects,
those objects are placed onto a queue that is used as input to a separate finalizer
thread.

When the GC has ended and the threads are unblocked, this finalizer thread starts.
It runs as a high-priority thread and runs down the queue, running the finalizer of
each object in turn. When the finalizer has run, the finalizer thread marks the
object as collectable and the object is probably collected in the next garbage
collection cycle. See list item 7d in “Interaction of the Garbage Collector with
applications” on page 46. If you are running with a large heap, the next garbage
collection cycle might not happen for some time.

Summary and alternative approach:

When you understand the characteristics and use of finalizers, consider an
alternative approach to tidying Java resources.

Finalizers are an expensive use of computer resources and they are not
dependable.

The Java service team does not recommend that you use finalizers for process
control or for tidying Java resources. In fact, use finalizers as little as possible.

For tidying Java resources, consider the use of a cleanup routine. When you have
finished with an object, call the routine to null out all references, deregister
listeners, clear out hash tables, and other cleanup operation. Such a routine is far
more efficient than using a finalizer and has the useful side-benefit of speeding up
garbage collection. The Garbage Collector does not have so many object references
to chase in the next garbage collection cycle.

Manually starting the Garbage Collector
Manually starting the Garbage Collector (GC) can degrade JVM performance.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 49

See list item 4b in “Interaction of the Garbage Collector with applications” on page
46. The GC can honor a manual call; for example, through the System.gc() call.
This call nearly always starts a garbage collection cycle, which is a heavy use of
computer resources.

The Java service team recommends that this call is not used, or, if it is, it is
enclosed in conditional statements that block its use in an application runtime
environment. The GC is carefully adjusted to deliver maximum performance to the
JVM. If you force it to run, you severely degrade JVM performance

The previous topics indicate that it is not sensible to try to force the GC to do
something predictable, such as collecting your new garbage or running a finalizer.
You cannot predict when the GC will act. Let the GC run inside the parameters
that an application selects at startup time. This method nearly always produces
best performance.

Several customer applications have been turned from unacceptable to acceptable
performance by blocking out manual invocations of the GC. One enterprise
application had more than four hundred System.gc() calls.

Frequently asked questions about the Garbage Collector
Examples of subjects that have answers in this section include default values,
Garbage Collector (GC) policies, GC helper threads, Mark Stack Overflow, heap
operation, and out of memory conditions.

What are the default heap and native stack sizes?
See “Default settings for the JVM” on page 474.

What is the difference between the GC policies gencon, balanced, optavgpause,
and optthruput?

gencon
The gencon policy (default) uses a concurrent mark phase combined
with generational garbage collection to help minimize the time that is
spent in any garbage collection pause. This policy is particularly useful
for applications with many short-lived objects, such as transactional
applications. Pause times can be significantly shorter than with the
optthruput policy, while still producing good throughput. Heap
fragmentation is also reduced.

balanced
The balanced policy uses mark, sweep, compact and generational style
garbage collection. The concurrent mark phase is disabled; concurrent
garbage collection technology is used, but not in the way that
concurrent mark is implemented for other policies. The balanced policy
uses a region-based layout for the Java heap. These regions are
individually managed to reduce the maximum pause time on large
heaps and increase the efficiency of garbage collection. The policy tries
to avoid global collections by matching object allocation and survival
rates. If you have problems with application pause times that are
caused by global garbage collections, particularly compactions, this
policy might improve application performance. For more information
about this policy, including when to use it, see “Balanced Garbage
Collection policy” on page 39.

optavgpause
The optavgpause policy uses concurrent mark and concurrent sweep
phases. Pause times are shorter than with optthruput, but application

50 IBM SDK for Java: SDK and Runtime Guide

throughput is reduced because some garbage collection work is taking
place while the application is running. Consider using this policy if
you have a large heap size (available on 64-bit platforms), because this
policy limits the effect of increasing heap size on the length of the
garbage collection pause. However, if your application uses many
short-lived objects, the gencon policy might produce better
performance.

subpool
The subpool policy is deprecated and is now an alias for optthruput.
Therefore, if you use this option, the effect is the same as optthruput.

optthruput
The optthruput policy disables the concurrent mark phase. The
application stops during global garbage collection, so long pauses can
occur. This configuration is typically used for large-heap applications
when high application throughput, rather than short garbage collection
pauses, is the main performance goal. If your application cannot
tolerate long garbage collection pauses, consider using another policy,
such as gencon.

What is the default GC mode (gencon, optavgpause, or optthruput)?
gencon - that is, combined use of the generational collector and concurrent
marking.

How many GC helper threads are created or “spawned”? What is their work?
The garbage collector creates n-1 helper threads, where n is the number of
GC threads specified by the -Xgcthreads<number> option. See “Garbage
Collector command-line options” on page 453 for more information. If you
specify -Xgcthreads1, the garbage collector does not create any helper
threads. Setting the -Xgcthreads option to a value that is greater than the
number of processors on the system does not improve performance, but
might alleviate mark-stack overflows, if your application suffers from
them.

These helper threads work with the main GC thread during the following
phases:
v Parallel mark phase
v Parallel bitwise sweep phase
v Parallel compaction phase
v Parallel scavenger phase
v Parallel copy-forward phase

What is Mark Stack Overflow (MSO)? Why is MSO bad for performance?
Work packets are used for tracing all object reference chains from the roots.
Each such reference that is found is pushed onto the mark stack so that it
can be traced later. The number of work packets allocated is based on the
heap size and therefore is finite and can overflow. This situation is called
Mark Stack Overflow (MSO). The algorithms to handle this situation are
expensive in processing terms, and therefore MSO has a large impact on
GC performance.

How can I prevent Mark Stack Overflow?
The following suggestions are not guaranteed to avoid MSO:
v Increase the number of GC helper threads using -Xgcthreads

command-line option
v Decrease the size of the Java heap using the -Xmx setting.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 51

v Use a small initial value for the heap or use the default.
v Reduce the number of objects the application allocates.
v If MSO occurs, you see entries in the verbose gc as follows:

<warning details="work stack overflow" count="<mso_count>"
packetcount="<allocated_packets>" />

Where <mso_count> is the number of times MSO has occurred and
<allocated_packets> is the number of work packets that were allocated.
By specifying a larger number, say 50% more, with
-Xgcworkpackets<number>, the likelihood of MSO can be reduced.

When and why does the Java heap expand?
The JVM starts with a small default Java heap, and it expands the heap
based on the allocation requests made by an application until it reaches the
value specified by -Xmx. Expansion occurs after GC if GC is unable to free
enough heap storage for an allocation request. Expansion also occurs if the
JVM determines that expanding the heap is required for better
performance.

When does the Java heap shrink?
Heap shrinkage occurs when GC determines that there is heap storage
space available, and releasing some heap memory is beneficial for system
performance. Heap shrinkage occurs after GC, but when all the threads are
still suspended.

Does GC guarantee that it clears all the unreachable objects?
GC guarantees only that all the objects that were not reachable at the
beginning of the mark phase are collected. While running concurrently, our
GC guarantees only that all the objects that were unreachable when
concurrent mark began are collected. Some objects might become
unreachable during concurrent mark, but they are not guaranteed to be
collected.

I am getting an OutOfMemoryError. Does this mean that the Java heap is
exhausted?

Not necessarily. Sometimes the Java heap has free space but an
OutOfMemoryError can occur. The error might occur for several reasons:
v Shortage of memory for other operations of the JVM.
v Some other memory allocation failing. The JVM throws an

OutOfMemoryError in such situations.
v Excessive memory allocation in other parts of the application, unrelated

to the JVM, if the JVM is just a part of the process, rather than the entire
process (JVM through JNI, for instance).

v The heap has been fully expanded, and an excessive amount of time
(95%) is being spent in the GC. This check can be disabled using the
option -Xdisableexcessivegc.

When I see an OutOfMemoryError, does that mean that the Java program exits?
Not always. Java programs can catch the exception thrown when
OutOfMemory occurs, and (possibly after freeing up some of the allocated
objects) continue to run.

In verbose:gc output, sometimes I see more than one GC for one allocation
failure. Why?

You see this message when GC decides to clear all soft references. The GC

52 IBM SDK for Java: SDK and Runtime Guide

is called once to do the regular garbage collection, and might run again to
clear soft references. Therefore, you might see more than one GC cycle for
one allocation failure.

Class loading
The Java 2 JVM introduced a new class loading mechanism with a
parent-delegation model. The parent-delegation architecture to class loading was
implemented to aid security and to help programmers to write custom class
loaders.

Class loading loads, verifies, prepares and resolves, and initializes a class from a
Java class file.
v Loading involves obtaining the byte array representing the Java class file.
v Verification of a Java class file is the process of checking that the class file is

structurally well-formed and then inspecting the class file contents to ensure that
the code does not attempt to perform operations that are not permitted.

v Preparation involves the allocation and default initialization of storage space for
static class fields. Preparation also creates method tables, which speed up virtual
method calls, and object templates, which speed up object creation.

v Initialization involves the processing of the class's class initialization method, if
defined, at which time static class fields are initialized to their user-defined
initial values (if specified).

Symbolic references in a Java class file, such as to classes or object fields that
reference a field's value, are resolved at run time to direct references only. This
resolution might occur either:
v After preparation but before initialization
v Or, more typically, at some point following initialization, but before the first

reference to that symbol.

The delay is generally to increase processing speed. Not all symbols in a class file
are referenced during processing; by delaying resolution, fewer symbols might
have to be resolved. The cost of resolution is gradually reduced over the total
processing time.

The parent-delegation model
The delegation model requires that any request for a class loader to load a given
class is first delegated to its parent class loader before the requested class loader
tries to load the class itself. The parent class loader, in turn, goes through the same
process of asking its parent. This chain of delegation continues through to the
bootstrap class loader (also known as the primordial or system class loader). If a
class loader's parent can load a given class, it returns that class. Otherwise, the
class loader attempts to load the class itself.

The JVM has three class loaders, each possessing a different scope from which it
can load classes. As you descend the hierarchy, the scope of available class
repositories widens, and typically the repositories are less trusted:
Bootstrap
|
Extensions
|
Application

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 53

At the top of the hierarchy is the bootstrap class loader. This class loader is
responsible for loading only the classes that are from the core Java API. These
classes are the most trusted and are used to bootstrap the JVM.

The extensions class loader can load classes that are standard extensions packages
in the extensions directory.

The application class loader can load classes from the local file system, and will
load files from the CLASSPATH. The application class loader is the parent of any
custom class loader or hierarchy of custom class loaders.

Because class loading is always delegated first to the parent of the class loading
hierarchy, the most trusted repository (the core API) is checked first, followed by
the standard extensions, then the local files that are on the class path. Finally,
classes that are located in any repository that your own class loader can access, are
accessible. This system prevents code from less-trusted sources from replacing
trusted core API classes by assuming the same name as part of the core API.

Namespaces and the runtime package
Loaded classes are identified by both the class name and the class loader that
loaded it. This separates loaded classes into namespaces that the class loader
identifies.

A namespace is a set of class names that are loaded by a specific class loader.
When an entry for a class has been added into a namespace, it is impossible to
load another class of the same name into that namespace. Multiple copies of any
given class can be loaded because a namespace is created for each class loader.

Namespaces cause classes to be segregated by class loader, thereby preventing
less-trusted code loaded from the application or custom class loaders from
interacting directly with more trusted classes. For example, the core API is loaded
by the bootstrap class loader, unless a mechanism is specifically provided to allow
them to interact. This prevents possibly malicious code from having guaranteed
access to all the other classes.

You can grant special access privileges between classes that are in the same
package by the use of package or protected access. This gives access rights
between classes of the same package, but only if they were loaded by the same
class loader. This stops code from an untrusted source trying to insert a class into a
trusted package. As discussed earlier, the delegation model prevents the possibility
of replacing a trusted class with a class of the same name from an untrusted
source. The use of namespaces prevents the possibility of using the special access
privileges that are given to classes of the same package to insert code into a
trusted package.

Custom class loaders
You might want to write your own class loader so that you can load classes from
an alternate repository, partition user code, or unload classes.

There are three main reasons why you might want to write your own class loader.
1. To allow class loading from alternative repositories.

This is the most common case, in which an application developer might want
to load classes from other locations, for example, over a network connection.

2. To partition user code.

54 IBM SDK for Java: SDK and Runtime Guide

This case is less frequently used by application developers, but widely used in
servlet engines.

3. To allow the unloading of classes.
This case is useful if the application creates large numbers of classes that are
used for only a finite period. Because a class loader maintains a cache of the
classes that it has loaded, these classes cannot be unloaded until the class
loader itself has been dereferenced. For this reason, system and extension
classes are never unloaded, but application classes can be unloaded when their
class loader is.

For much more detailed information about the class loader, see
http://www.ibm.com/developerworks/java/library/j-dclp1/. This article is the
first in a series that helps you to write your own class loader.

Class data sharing
The class sharing feature in the IBM Version 7 SDK offers the transparent and
dynamic sharing of data between multiple Java Virtual Machines (JVMs). When
enabled, JVMs use shared memory to obtain and store data, including information
about: loaded classes, Ahead-Of-Time (AOT) compiled code, commonly used
UTF-8 strings, and Java Archive (JAR) file indexes.

This form of class sharing is an advancement on earlier JVMs that have offered
some form of class sharing between multiple JVMs; for example, the IBM
Persistent Reusable JVM on z/OS, Oracle Corporation "CDS" feature in their Java
5.0 release, and the bytecode verification cache in the i5/OS™ Classic VM.

You can enable shared classes with the -Xshareclasses command-line option. For
reference information about -Xshareclasses, see “JVM command-line options” on
page 428.

For diagnosing problems with shared classes, see “Shared classes diagnostic data”
on page 344.

When loading a class, the JVM internally stores the class in two key parts:
v The immutable (read only) portion of the class.
v The mutable (writeable) portion of the class.

When enabled, shared classes shares the immutable parts of a class between JVMs,
which has the following benefits:
v The amount of physical memory used can be significantly less when using more

than one JVM instance.
v Loading classes from a populated cache is faster than loading classes from disk,

because classes are already partially verified and are possibly already loaded in
memory. Therefore, class sharing also benefits applications that regularly start
new JVM instances doing similar tasks.

Caching AOT methods reduces the affect of JIT compilation when the same classes
are loaded by multiple JVMs. In addition, because a shared classes cache might
persist beyond the life of a JVM, subsequent JVMs that run can benefit from AOT
methods already stored in the cache.

Key points to note about the IBM class sharing feature are:
v Class data sharing is available on all the platforms that IBM supports in Java V7,

apart from the Oracle Solaris and HP hybrids.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 55

http://www.ibm.com/developerworks/java/library/j-dclp1/

v Classes are stored in a named “class cache”, which is either a memory-mapped
file or an area of shared memory, allocated by the first JVM that needs to use it.

v A JVM can connect to a cache with either read-write or read-only access. Using
read-only access allows greater isolation when many users are sharing the same
cache.

v The class cache memory can be protected from accidental corruption using
memory page protection.

v The JVM determines how many AOT methods get added to the cache and
when. The amount of AOT method data is typically no more than 10% of the
amount of class data cached.

v The JVM automatically removes and rebuilds a class cache if it decides that the
cache is corrupted, or if the cache was created by a different level of service
release.

v A separate, independent cache is created for each JVM version. For example, if
you are running both 31-bit and 64-bit JVMs, two caches are created. If you are
running Java 6 and Java 7, two caches are created.

v The file system location of the cache files can now be specified on the command
line. Persistent cache files can be moved and copied around the file system.
Persistent cache files can also be moved and copied between computers that use
the same operating system and hardware.

v Filters can be applied to Java class loaders to allow users to limit the classes
being shared.

v Any JVM can read from or update the cache, although a JVM can connect to
only one cache at a time.

v The cache persists beyond the lifetime of any JVM connected to it until it is
explicitly removed. Persistent caches (not available on z/OS) remain even after
the operating system is shut down. Non-persistent caches are lost when the
operating system is shut down.

v When a JVM loads a class, it looks first for the class in the cache to which it is
connected and, if it finds the class it needs, it loads the class from the cache.
Otherwise, it loads the class from disk and adds it to the cache where possible.

v When a cache becomes full, classes in the cache can still be shared, but no new
data can be added.

v Because the class cache persists beyond the lifetime of any JVM connected to it,
if changes are made to classes on the file system, some classes in the cache
might become out-of-date (or “stale”). This situation is managed transparently;
the updated version of the class is detected by the next JVM that loads it and
the class cache is updated where possible.

v Sharing of retransformed and redefined bytecode is supported, but must be used
with care.

v Access to the class data cache is protected by Java permissions if a security
manager is installed.

v Classes generated using reflection cannot be shared.
v The classes cache stores class LineNumberTable and LocalVariableTable

information in a reserved region of the cache during debugging. By storing these
attributes in a separate region, the operating system can decide whether to keep
the region in memory or on disk, depending on whether debugging is taking
place.

56 IBM SDK for Java: SDK and Runtime Guide

The JIT compiler
The Just-In-Time (JIT) compiler is a component of the Java Runtime Environment.
It improves the performance of Java applications by compiling bytecodes to native
machine code at run time. This section summarizes the relationship between the
JVM and the JIT compiler and gives a short description of how the compiler
works.

JIT compiler overview
The Just-In-Time (JIT) compiler is a component of the Java Runtime Environment
that improves the performance of Java applications at run time.

Java programs consists of classes, which contain platform-neutral bytecodes that
can be interpreted by a JVM on many different computer architectures. At run
time, the JVM loads the class files, determines the semantics of each individual
bytecode, and performs the appropriate computation. The additional processor and
memory usage during interpretation means that a Java application performs more
slowly than a native application. The JIT compiler helps improve the performance
of Java programs by compiling bytecodes into native machine code at run time.

The JIT compiler is enabled by default, and is activated when a Java method is
called. The JIT compiler compiles the bytecodes of that method into native machine
code, compiling it “just in time” to run. When a method has been compiled, the
JVM calls the compiled code of that method directly instead of interpreting it.
Theoretically, if compilation did not require processor time and memory usage,
compiling every method could allow the speed of the Java program to approach
that of a native application.

JIT compilation does require processor time and memory usage. When the JVM
first starts up, thousands of methods are called. Compiling all of these methods
can significantly affect startup time, even if the program eventually achieves very
good peak performance.

In practice, methods are not compiled the first time they are called. For each
method, the JVM maintains a call count, which is incremented every time the
method is called. The JVM interprets a method until its call count exceeds a JIT
compilation threshold. Therefore, often-used methods are compiled soon after the
JVM has started, and less-used methods are compiled much later, or not at all. The
JIT compilation threshold helps the JVM start quickly and still have improved
performance. The threshold has been carefully selected to obtain an optimal
balance between startup times and long term performance.

After a method is compiled, its call count is reset to zero and subsequent calls to
the method continue to increment its count. When the call count of a method
reaches a JIT recompilation threshold, the JIT compiler compiles it a second time,
applying a larger selection of optimizations than on the previous compilation. This
process is repeated until the maximum optimization level is reached. The busiest
methods of a Java program are always optimized most aggressively, maximizing
the performance benefits of using the JIT compiler. The JIT compiler can also
measure operational data at run time, and use that data to improve the quality of
further recompilations.

The JIT compiler can be disabled, in which case the entire Java program will be
interpreted. Disabling the JIT compiler is not recommended except to diagnose or
work around JIT compilation problems.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 57

How the JIT compiler optimizes code
When a method is chosen for compilation, the JVM feeds its bytecodes to the
Just-In-Time compiler (JIT). The JIT needs to understand the semantics and syntax
of the bytecodes before it can compile the method correctly.

To help the JIT compiler analyze the method, its bytecodes are first reformulated in
an internal representation called trees, which resembles machine code more closely
than bytecodes. Analysis and optimizations are then performed on the trees of the
method. At the end, the trees are translated into native code. The remainder of this
section provides a brief overview of the phases of JIT compilation. For more
information, see “JIT and AOT problem determination” on page 322.

The JIT compiler can use more than one compilation thread to perform JIT
compilation tasks. Using multiple threads can potentially help Java applications to
start faster. In practice, multiple JIT compilation threads show performance
improvements only where there are unused processing cores in the system.

The default number of compilation threads is identified by the JVM, and is
dependent on the system configuration. If the resulting number of threads is not
optimum, you can override the JVM decision by using the -XcompilationThreads
option. For information on using this option, see “JIT and AOT command-line
options” on page 448.

Note: If your system does not have unused processing cores, increasing the
number of compilation threads is unlikely to produce a performance improvement.

The compilation consists of the following phases:
1. Inlining
2. Local optimizations
3. Control flow optimizations
4. Global optimizations
5. Native code generation

All phases except native code generation are cross-platform code.

Phase 1 - inlining
Inlining is the process by which the trees of smaller methods are merged, or
"inlined", into the trees of their callers. This speeds up frequently executed method
calls.

Two inlining algorithms with different levels of aggressiveness are used, depending
on the current optimization level. Optimizations performed in this phase include:
v Trivial inlining
v Call graph inlining
v Tail recursion elimination
v Virtual call guard optimizations

Phase 2 - local optimizations
Local optimizations analyze and improve a small section of the code at a time.
Many local optimizations implement tried and tested techniques used in classic
static compilers.

The optimizations include:
v Local data flow analyses and optimizations

58 IBM SDK for Java: SDK and Runtime Guide

v Register usage optimization
v Simplifications of Java idioms

These techniques are applied repeatedly, especially after global optimizations,
which might have pointed out more opportunities for improvement.

Phase 3 - control flow optimizations
Control flow optimizations analyze the flow of control inside a method (or specific
sections of it) and rearrange code paths to improve their efficiency.

The optimizations are:
v Code reordering, splitting, and removal
v Loop reduction and inversion
v Loop striding and loop-invariant code motion
v Loop unrolling and peeling
v Loop versioning and specialization
v Exception-directed optimization
v Switch analysis

Phase 4 - global optimizations
Global optimizations work on the entire method at once. They are more
"expensive", requiring larger amounts of compilation time, but can provide a great
increase in performance.

The optimizations are:
v Global data flow analyses and optimizations
v Partial redundancy elimination
v Escape analysis
v GC and memory allocation optimizations
v Synchronization optimizations

Phase 5 - native code generation
Native code generation processes vary, depending on the platform architecture.
Generally, during this phase of the compilation, the trees of a method are
translated into machine code instructions; some small optimizations are performed
according to architecture characteristics.

The compiled code is placed into a part of the JVM process space called the code
cache; the location of the method in the code cache is recorded, so that future calls
to it will call the compiled code. At any given time, the JVM process consists of the
JVM executable files and a set of JIT-compiled code that is linked dynamically to
the bytecode interpreter in the JVM.

Frequently asked questions about the JIT compiler
Examples of subjects that have answers in this section include disabling the JIT
compiler, use of alternative JIT compilers, control of JIT compilation and dynamic
control of the JIT compiler.

Can I disable the JIT compiler?
Yes. The JIT compiler is turned on by default, but you can turn it off with the
appropriate command-line parameter. For more information, see “Disabling the
JIT or AOT compiler” on page 323.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 59

Can I use another vendor's JIT compiler?
No.

Can I use any version of the JIT compiler with the JVM?
No. The two are tightly coupled. You must use the version of the JIT compiler
that comes with the JVM package that you use.

Can the JIT compiler “decompile” methods?
No. After a method is compiled by the JIT compiler, the native code is used
instead for the remainder of the execution of the program. An exception to this
rule is a method in a class that was loaded with a custom (user-written) class
loader, which has since been unloaded (garbage-collected). In fact, when a class
loader is garbage-collected, the compiled methods of all classes that are loaded
by that class loader are discarded.

Can I control the JIT compilation?
Yes. For more information, see “JIT and AOT problem determination” on page
322. In addition, advanced diagnostic settings are available to IBM engineers.

Can I dynamically control the JIT compiler?
No. You can pass options to the JIT compiler to modify the behavior, but only
at JVM startup time, because the JIT compiler is started up at the same time as
the JVM. However, a Java program can use the java.lang.Compiler API to
enable and disable the JIT compiler at run time.

How much memory does the code cache consume?
The JIT compiler uses memory intelligently. When the code cache is initialized,
it consumes relatively little memory. As more methods are compiled into native
code, the code cache grows dynamically to accommodate the needs of the
program. Space that is previously occupied by discarded or recompiled
methods is reclaimed and reused. When the size of the code cache reaches a
predefined maximum limit, it stops growing. At this point, the JIT compiler
stops compiling methods to avoid exhausting the system memory and affecting
the stability of the application or the operating system.

The AOT compiler
Ahead-Of-Time (AOT) compilation allows the compilation of Java classes into
native code for subsequent executions of the same program. The AOT compiler
works with the class data sharing framework.

The AOT compiler generates native code dynamically while an application runs
and caches any generated AOT code in the shared data cache. Subsequent JVMs
that execute the method can load and use the AOT code from the shared data
cache without incurring the performance decrease experienced with JIT-compiled
native code.

The AOT compiler is enabled by default, but is only active when shared classes are
enabled. By default, shared classes are disabled so that no AOT activity occurs.
When the AOT compiler is active, the compiler selects the methods to be AOT
compiled with the primary goal of improving startup time.

Note: Because AOT code must persist over different program executions,
AOT-generated code does not perform as well as JIT-generated code. AOT code
usually performs better than interpreted code.

In a JVM without an AOT compiler or with the AOT compiler disabled, the JIT
compiler selectively compiles frequently used methods into optimized native code.

60 IBM SDK for Java: SDK and Runtime Guide

There is a time cost associated with compiling methods because the JIT compiler
operates while the application is running. Because methods begin by being
interpreted and most JIT compilations occur during startup, startup times can be
increased.

Startup performance can be improved by using the shared AOT code to provide
native code without compiling. There is a small time cost to load the AOT code for
a method from the shared data cache and bind it into a running program. The time
cost is low compared to the time it takes the JIT compiler to compile that method.

The -Xshareclasses option can be used to enable shared classes, which might also
activate the AOT compiler if AOT is enabled.

Java Remote Method Invocation
Java Remote Method Invocation (Java RMI) enables you to create distributed Java
technology-based applications that can communicate with other such applications.
Methods of remote Java objects can be run from other Java virtual machines
(JVMs), possibly on different hosts.

RMI uses object serialization to marshal and unmarshal parameters and does not
truncate types, supporting object-oriented polymorphism. The RMI registry is a
lookup service for ports.

The RMI implementation
The RMI implementation consists of three abstraction layers.

These abstraction layers are:
1. The Stub and Skeleton layer, which intercepts method calls made by the client

to the interface reference variable and redirects these calls to a remote RMI
service.

2. The Remote Reference layer understands how to interpret and manage
references made from clients to the remote service objects.

3. The bottom layer is the Transport layer, which is based on TCP/IP connections
between machines in a network. It provides basic connectivity, as well as some
firewall penetration strategies.

On top of the TCP/IP layer, RMI uses a wire-level protocol called Java Remote
Method Protocol (JRMP), which works like this:

Client Program

Stubs and Skeletons

Remote Reference
Layer

Transport Layer

Remote Reference
Layer

Stubs and Skeletons

Server Program

RMI
System

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 61

1. Objects that require remote behavior should extend the RemoteObject class,
typically through the UnicastRemoteObject subclass.
a. The UnicastRemoteObject subclass exports the remote object to make it

available for servicing incoming RMI calls.
b. Exporting the remote object creates a new server socket, which is bound to

a port number.
c. A thread is also created that listens for connections on that socket. The

server is registered with a registry.
d. A client obtains details of connecting to the server from the registry.
e. Using the information from the registry, which includes the hostname and

the port details of the server's listening socket, the client connects to the
server.

2. When the client issues a remote method invocation to the server, it creates a
TCPConnection object, which opens a socket to the server on the port specified
and sends the RMI header information and the marshalled arguments through
this connection using the StreamRemoteCall class.

3. On the server side:
a. When a client connects to the server socket, a new thread is assigned to

deal with the incoming call. The original thread can continue listening to
the original socket so that additional calls from other clients can be made.

b. The server reads the header information and creates a RemoteCall object of
its own to deal with unmarshalling the RMI arguments from the socket.

c. The serviceCall() method of the Transport class services the incoming call by
dispatching it

d. The dispatch() method calls the appropriate method on the object and
pushes the result back down the wire.

e. If the server object throws an exception, the server catches it and marshals it
down the wire instead of the return value.

4. Back on the client side:
a. The return value of the RMI is unmarshalled and returned from the stub

back to the client code itself.
b. If an exception is thrown from the server, that is unmarshalled and thrown

from the stub.

Thread pooling for RMI connection handlers
When a client connects to the server socket, a new thread is forked to deal with
the incoming call. The IBM SDK implements thread pooling in the
sun.rmi.transport.tcp.TCPTransport class.

Thread pooling is not enabled by default. Enable it with this command-line setting:
-Dsun.rmi.transport.tcp.connectionPool=true

Alternatively, you could use a non-null value instead of true.

With the connectionPool enabled, threads are created only if there is no thread in
the pool that can be reused. In the current implementation of the connection Pool,
the RMI connectionHandler threads are added to a pool and are never removed.
Enabling thread pooling is not recommended for applications that have only
limited RMI usage. Such applications have to live with these threads during the
RMI off-peak times as well. Applications that are mostly RMI intensive can benefit

62 IBM SDK for Java: SDK and Runtime Guide

by enabling the thread pooling because the connection handlers will be reused,
avoiding the additional memory usage when creating these threads for every RMI
call.

Understanding distributed garbage collection
The RMI subsystem implements reference counting based Distributed Garbage
Collection (DGC) to provide automatic memory management facilities for remote
server objects.

When the client creates (unmarshalls) a remote reference, it calls dirty() on the
server-side DGC. After the client has finished with the remote reference, it calls the
corresponding clean() method.

A reference to a remote object is leased for a time by the client holding the
reference. The lease period starts when the dirty() call is received. The client must
renew the leases by making additional dirty() calls on the remote references it
holds before such leases expire. If the client does not renew the lease before it
expires, the distributed garbage collector assumes that the remote object is no
longer referenced by that client.

DGCClient implements the client side of the RMI distributed garbage collection
system. The external interface to DGCClient is the registerRefs() method. When a
LiveRef to a remote object enters the JVM, it must be registered with the
DGCClient to participate in distributed garbage collection. When the first LiveRef
to a particular remote object is registered, a dirty() call is made to the server-side
DGC for the remote object. The call returns a lease guaranteeing that the
server-side DGC will not collect the remote object for a certain time. While LiveRef
instances to remote objects on a particular server exist, the DGCClient periodically
sends more dirty calls to renew its lease. The DGCClient tracks the local
availability of registered LiveRef instances using phantom references. When the
LiveRef instance for a particular remote object is garbage collected locally, a clean()
call is made to the server-side DGC. The call indicates that the server does not
need to keep the remote object alive for this client. The RenewCleanThread handles
the asynchronous client-side DGC activity by renewing the leases and making
clean calls. So this thread waits until the next lease renewal or until any phantom
reference is queued for generating clean requests as necessary.

Debugging applications involving RMI
When debugging applications involving RMI you need information on exceptions
and properties settings, solutions to common problems, answers to frequently
asked questions, and useful tools.

The list of exceptions that can occur when using RMI and their context is included
in the RMI Specification document at: http://download.oracle.com/javase/7/docs/
platform/rmi/spec/rmi-exceptions.html#3601

Properties settings that are useful for tuning, logging, or tracing RMI servers and
clients can be found at: http://download.oracle.com/javase/7/docs/technotes/
guides/rmi/javarmiproperties.html

Solutions to some common problems and answers to frequently asked questions
related to RMI and object serialization can be found at: http://
download.oracle.com/javase/7/docs/technotes/guides/rmi/faq.html

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 63

http://download.oracle.com/javase/7/docs/platform/rmi/spec/rmi-exceptions.html#3601
http://download.oracle.com/javase/7/docs/platform/rmi/spec/rmi-exceptions.html#3601
http://download.oracle.com/javase/7/docs/technotes/guides/rmi/javarmiproperties.html
http://download.oracle.com/javase/7/docs/technotes/guides/rmi/javarmiproperties.html
http://download.oracle.com/javase/7/docs/technotes/guides/rmi/faq.html
http://download.oracle.com/javase/7/docs/technotes/guides/rmi/faq.html

Network monitoring tools like netstat and tcpdump are useful for debugging RMI
problems because they enable you to see the traffic at the network level.

The ORB
This description of the Object Request Broker (ORB) provides background
information to help you diagnose problems with the ORB.

The topics in this chapter are:
v “CORBA”
v “RMI and RMI-IIOP” on page 65
v “Java IDL or RMI-IIOP?” on page 65
v “RMI-IIOP limitations” on page 66
v “Further reading” on page 66
v “Examples of client–server applications” on page 66
v “Using the ORB” on page 72
v “How the ORB works” on page 75
v “Additional features of the ORB” on page 82
v “CORBA”
v “RMI and RMI-IIOP” on page 65
v “Java IDL or RMI-IIOP?” on page 65
v “RMI-IIOP limitations” on page 66
v “Further reading” on page 66
v “Examples of client–server applications” on page 66

The IBM ORB ships with the JVM and is used by the IBM WebSphere Application
Server. It is one of the enterprise features of the Java 2 Standard Edition. The ORB
is both a tool and a runtime component. It provides distributed computing through
the CORBA Internet Inter-Orb Protocol (IIOP) communication protocol. The
protocol is defined by the Object Management Group (OMG). The ORB runtime
environment consists of a Java implementation of a CORBA ORB. The ORB toolkit
provides APIs and tools for both the Remote Method Invocation (RMI)
programming model and the Interface Definition Language (IDL) programming
model.

Note: The use of the Channel Framework ORB transport mode is deprecated in
this release of the IBM SDK.

CORBA
The Common Object Request Broker Architecture (CORBA) is an open,
vendor-independent specification for distributed computing. It is published by the
Object Management Group (OMG).

Most applications need different objects on various platforms and operating
systems to communicate with each other across networks. CORBA enables objects
to interoperate in this way, using the Internet Inter-ORB Protocol (IIOP). To help
objects understand the operations available, and the syntax required to invoke
them, an Interface Definition Language (IDL) is used. The IDL is
programming-language independent, to increase the interoperability between
objects.

64 IBM SDK for Java: SDK and Runtime Guide

When an application developer defines an object, they also define other aspects.
The aspects include the position of the object in an overall hierarchy, object
attributes, and possible operations. Next, the aspects are all described in the IDL.
The description is then converted into an implementation by using an IDL
compiler. For example, IDLJ is an IDL compiler for the Java language, and converts
an IDL description into a Java source code. The benefit of this is that the object
implementation is “encapsulated” by the IDL definition. Any other objects wanting
to interoperate can do so using mechanisms defined using the shared IDL.

Developers enable this interoperability by defining the hierarchy, attributes, and
operations of objects using IDL. They then use an IDL compiler (such as IDLJ for
Java) to map the definition onto an implementation in a programming language.
The implementation of an object is encapsulated. Clients of the object can see only
its external IDL interface. The OMG has produced specifications for mappings
from IDL to many common programming languages, including C, C++, and Java

An essential part of the CORBA specification is the Object Request Broker (ORB).
The ORB routes requests from a client object to a remote object. The ORB then
returns any responses to the required destinations. Java contains an
implementation of the ORB that communicates by using IIOP.

RMI and RMI-IIOP
This description compares the two types of remote communication in Java; Remote
Method Invocation (RMI) and RMI-IIOP.

RMI is Java's traditional form of remote communication. It is an object-oriented
version of Remote Procedure Call (RPC). It uses the nonstandardized Java Remote
Method Protocol (JRMP) to communicate between Java objects. This provides an
easy way to distribute objects, but does not allow for interoperability between
programming languages.

RMI-IIOP is an extension of traditional Java RMI that uses the IIOP protocol. This
protocol allows RMI objects to communicate with CORBA objects. Java programs
can therefore interoperate transparently with objects that are written in other
programming languages, provided that those objects are CORBA-compliant.
Objects can still be exported to traditional RMI (JRMP) and the two protocols can
communicate.

A terminology difference exists between the two protocols. In RMI (JRMP), the
server objects are called skeletons; in RMI-IIOP, they are called ties. Client objects
are called stubs in both protocols.

Java IDL or RMI-IIOP?
There are circumstances in which you might choose to use RMI-IIOP and others in
which you might choose to use Java IDL.

RMI-IIOP is the method that is chosen by Java programmers who want to use the
RMI interfaces, but use IIOP as the transport. RMI-IIOP requires that all remote
interfaces are defined as Java RMI interfaces. Java IDL is an alternative solution,
intended for CORBA programmers who want to program in Java to implement
objects that are defined in IDL. The general rule that is suggested by Oracle is to
use Java IDL when you are using Java to access existing CORBA resources, and
RMI-IIOP to export RMI resources to CORBA.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 65

RMI-IIOP limitations
You must understand the limitations of RMI-IIOP when you develop an RMI-IIOP
application, and when you deploy an existing CORBA application in a Java-IIOP
environment.

In a Java-only application, RMI (JRMP) is more lightweight and efficient than
RMI-IIOP, but less scalable. Because it has to conform to the CORBA specification
for interoperability, RMI-IIOP is a more complex protocol. Developing an RMI-IIOP
application is much more similar to CORBA than it is to RMI (JRMP).

You must take care if you try to deploy an existing CORBA application in a Java
RMI-IIOP environment. An RMI-IIOP client cannot necessarily access every
existing CORBA object. The semantics of CORBA objects that are defined in IDL
are a superset of those of RMI-IIOP objects. That is why the IDL of an existing
CORBA object cannot always be mapped into an RMI-IIOP Java interface. It is only
when the semantics of a specific CORBA object are designed to relate to those of
RMI-IIOP that an RMI-IIOP client can call a CORBA object.

Further reading
There are links to CORBA specifications, CORBA basics, and the RMI-IIOP
Programmer's Guide.

Object Management Group Web site: http://www.omg.org contains CORBA
specifications that are available to download.

OMG - CORBA Basics: http://www.omg.org/gettingstarted/corbafaq.htm.
Remember that some features discussed here are not implemented by all ORBs.

Examples of client–server applications
CORBA, RMI (JRMP), and RMI-IIOP approaches are used to present three
client-server example applications. All the applications use the RMI-IIOP IBM ORB.

Interfaces
The interfaces to be implemented are CORBA IDL and Java RMI.

The two interfaces are:
v CORBA IDL Interface (Sample.idl):

interface Sample { string message(); };

v Java RMI Interface (Sample.java):
public interface Sample extends java.rmi.Remote
{ public String message() throws java.rmi.RemoteException; }

These two interfaces define the characteristics of the remote object. The remote
object implements a method, named message. The method does not need any
parameter, and it returns a string. For further information about IDL and its
mapping to Java, see the OMG specifications (http://www.omg.org).

Remote object implementation (or servant)
This description shows possible implementations of the object.

The possible RMI(JRMP) and RMI-IIOP implementations (SampleImpl.java) of this
object could be:

66 IBM SDK for Java: SDK and Runtime Guide

http://www.omg.org
http://www.omg.org/gettingstarted/corbafaq.htm
http://www.omg.org

public class SampleImpl extends javax.rmi.PortableRemoteObject implements Sample {
public SampleImpl() throws java.rmi.RemoteException { super(); }
public String message() { return "Hello World!"; }

}

You can use the class PortableRemoteObject for both RMI over JRMP and IIOP. The
effect is to make development of the remote object effectively independent of the
protocol that is used. The object implementation does not need to extend
PortableRemoteObject, especially if it already extends another class (single-class
inheritance). Instead, the remote object instance must be exported in the server
implementation. Exporting a remote object makes the object available to accept
incoming remote method requests. When you extend
javax.rmi.PortableRemoteObject, your class is exported automatically on creation.

The CORBA or Java IDL implementation of the remote object (servant) is:
public class SampleImpl extends _SamplePOA {

public String message() { return "Hello World"; }
}

The POA is the Portable Object Adapter, described in “Portable object adapter” on
page 82.

The implementation conforms to the Inheritance model, in which the servant
extends directly the IDL-generated skeleton SamplePOA. You might want to use
the Tie or Delegate model instead of the typical Inheritance model if your
implementation must inherit from some other implementation. In the Tie model,
the servant implements the IDL-generated operations interface (such as
SampleOperations). The Tie model introduces a level of indirection, so that one
extra method call occurs when you invoke a method. The server code describes the
extra work that is required in the Tie model, so that you can decide whether to use
the Tie or the Delegate model. In RMI-IIOP, you can use only the Tie or Delegate
model.

Stubs and ties generation
The RMI-IIOP code provides the tools to generate stubs and ties for whatever
implementation exists of the client and server.

The following table shows what command to run to get the stubs and ties (or
skeletons) for each of the three techniques:

CORBA RMI(JRMP) RMI-IIOP

idlj Sample.idl rmic SampleImpl rmic -iiop Sample

Compilation generates the files that are shown in the following table. To keep the
intermediate .java files, run the rmic command with the -keep option.

CORBA RMI(JRMP) RMI-IIOP

Sample.java SampleImpl_Skel.class _SampleImpl_Tie.class

SampleHolder.java SampleImpl_Stub.class _Sample_Stub.class

SampleHelper.java Sample.class (Sample.java
present)

Sample.class (Sample.java
present)

SampleOperations.java SampleImpl.class (only
compiled)

SampleImpl.class (only
compiled)

_SampleStub.java

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 67

CORBA RMI(JRMP) RMI-IIOP

SamplePOA.java (-fserver,
-fall, -fserverTie,
-fallTie)

SamplePOATie.java
(-fserverTie, -fallTie)

_SampleImplBase.java
(-oldImplBase)

Since the Java v1.4 ORB, the default object adapter (see the OMG CORBA
specification v.2.3) is the Portable Object Adapter (POA). Therefore, the default
skeletons and ties that the IDL compiler generates can be used by a server that is
using the POA model and interfaces. By using the idlj -oldImplBase option, you
can generate older versions of the server-side skeletons that are compatible with
servers that are written in Java v1.3 and earlier.

Server code
The server application has to create an instance of the remote object and publish it
in a naming service. The Java Naming and Directory Interface (JNDI) defines a set
of standard interfaces. The interfaces are used to query a naming service, or to
bind an object to that service.

The implementation of the naming service can be a CosNaming service in the
Common Object Request Broker Architecture (CORBA) environment. A CosNaming
service is a collection of naming services, and implemented as a set of interfaces
defined by CORBA. Alternatively, the naming service can be implemented using a
Remote Method Invocation (RMI) registry for an RMI(JRMP) application. You can
use JNDI in CORBA and in RMI cases. The effect is to make the server
implementation independent of the naming service that is used. For example, you
could use the following code to obtain a naming service and bind an object
reference in it:
Context ctx = new InitialContext(...); // get hold of the initial context
ctx.bind("sample", sampleReference); // bind the reference to the name "sample"
Object obj = ctx.lookup("sample"); // obtain the reference

To tell the application which naming implementation is in use, you must set one of
the following Java properties:

java.naming.factory.initial
Defined also as javax.naming.Context.INITIAL_CONTEXT_FACTORY, this
property specifies the class name of the initial context factory for the
naming service provider. For RMI registry, the class name is
com.sun.jndi.rmi.registry.RegistryContextFactory. For the CosNaming
Service, the class name is com.sun.jndi.cosnaming.CNCtxFactory.

java.naming.provider.url
This property configures the root naming context, the Object Request
Broker (ORB), or both. It is used when the naming service is stored in a
different host, and it can take several URI schemes:
v rmi
v corbaname
v corbaloc
v IOR
v iiop
v iiopname

68 IBM SDK for Java: SDK and Runtime Guide

For example:
rmi://[<host>[:<port>]][/<initial_context>] for RMI registry
iiop://[<host>[:<port>]][/<cosnaming_name>] for COSNaming

To get the previous properties in the environment, you could code:
Hashtable env = new Hashtable();
Env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.cosnaming.CNCtxFactory");

and pass the hash table as an argument to the constructor of InitialContext.

For example, with RMI(JRMP), you create an instance of the servant then follow
the previous steps to bind this reference in the naming service.

With CORBA (Java IDL), however, you must do some extra work because you
have to create an ORB. The ORB has to make the servant reference available for
remote calls. This mechanism is typically controlled by the object adapter of the
ORB.
public class Server {
public static void main (String args []) {
try {
ORB orb = ORB.init(args, null);

// Get reference to the root poa & activate the POAManager
POA poa = (POA)orb.resolve_initial_references("RootPOA");
poa.the_POAManager().activate();

// Create a servant and register with the ORB
SampleImpl sample = new SampleImpl();
sample.setORB(orb);

// TIE model ONLY
// create a tie, with servant being the delegate and
// obtain the reference ref for the tie
SamplePOATie tie = new SamplePOATie(sample, poa);
Sample ref = tie._this(orb);

// Inheritance model ONLY
// get object reference from the servant
org.omg.CORBA.Object ref = poa.servant_to_reference(sample);

Sample ref = SampleHelper.narrow(ref);

// bind the object reference ref to the naming service using JNDI
..........(see previous code)

orb.run();
}
catch(Exception e) {}
}
}

For RMI-IIOP:
public class Server {
public static void main (String args []) {
try {
ORB orb = ORB.init(args, null);

// Get reference to the root poa & activate the POAManager
POA poa = (POA)orb.resolve_initial_references("RootPOA");
poa.the_POAManager().activate();

// Create servant and its tie
SampleImpl sample = new SampleImpl();
_SampleImpl_Tie tie = (_SampleImpl_Tie)Util.getTie(sample);

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 69

// get an usable object reference
org.omg.CORBA.Object ref = poa.servant_to_reference((Servant)tie);

// bind the object reference ref to the naming service using JNDI
..........(see previous code)

}
catch(Exception e) {}
}
}

To use the previous Portable Object Adapter (POA) server code, you must use the
-iiop -poa options together to enable rmic to generate the tie. If you do not use
the POA, the RMI(IIOP) server code can be reduced to instantiating the servant
(SampleImpl sample = new SampleImpl()). You then bind the servant to a naming
service as is typically done in the RMI(JRMP) environment. In this case, you need
use only the -iiop option to enable rmic to generate the RMI-IIOP tie. If you omit
-iiop, the RMI(JRMP) skeleton is generated.

When you export an RMI-IIOP object on your server, you do not necessarily have
to choose between JRMP and IIOP. If you need a single server object to support
JRMP and IIOP clients, you can export your RMI-IIOP object to JRMP and to IIOP
simultaneously. In RMI-IIOP terminology, this action is called dual export.

RMI Client example:
public class SampleClient {

public static void main(String [] args) {
try{

Sample sampleref
//Look-up the naming service using JNDI and get the reference

.........
// Invoke method
System.out.println(sampleRef.message());

}
catch(Exception e) {}

}
}

CORBA Client example:
public class SampleClient {
public static void main (String [] args) {
try {
ORB orb = ORB.init(args, null);
// Look up the naming service using JNDI
......
// Narrowing the reference to the correct class
Sample sampleRef = SampleHelper.narrow(o);
// Method Invocation
System.out.println(sampleRef.message());
}
catch(Exception e) {}
}
}

RMI-IIOP Client example:
public class SampleClient {
public static void main (String [] args) {
try{
ORB orb = ORB.init(args, null);
// Retrieving reference from naming service
........
// Narrowing the reference to the correct class

70 IBM SDK for Java: SDK and Runtime Guide

Sample sampleRef = (Sample)PortableRemoteObject.narrow(o, Sample.class);
// Method Invocation
System.out.println(sampleRef.message());
}
catch(Exception e) {}
}
}

Summary of major differences between RMI (JRMP) and RMI-IIOP
There are major differences in development procedures between RMI (JRMP) and
RMI-IIOP. The points discussed here also represent work items that are necessary
when you convert RMI (JRMP) code to RMI-IIOP code.

Because the usual base class of RMI-IIOP servers is PortableRemoteObject, you
must change this import statement accordingly, in addition to the derivation of the
implementation class of the remote object. After completing the Java coding, you
must generate a tie for IIOP by using the rmic compiler with the -iiop option.
Next, run the CORBA CosNaming tnameserv as a name server instead of
rmiregistry.

For CORBA clients, you must also generate IDL from the RMI Java interface by
using the rmic compiler with the -idl option.

All the changes in the import statements for server development apply to client
development. In addition, you must also create a local object reference from the
registered object name. The lookup() method returns a java.lang.Object, and you
must then use the narrow() method of PortableRemoteObject to cast its type. You
generate stubs for IIOP using the rmic compiler with the -iiop option.

Summary of differences in server development:

There are a number of differences in server development.
v Import statement:

import javax.rmi.PortableRemoteObject;

v Implementation class of a remote object:
public class SampleImpl extends PortableRemoteObject implements Sample

v Name registration of a remote object:
NamingContext.rebind("Sample",ObjRef);

v Generate a tie for IIOP using the command:
rmic -iiop

v Run tnameserv as a name server.
v Generate IDL for CORBA clients using the command:

rmic -idl

Summary of differences in client development:

There are a number of differences in client development.
v Import statement:

import javax.rmi.PortableRemoteObject;

v Identify a remote object by name:
Object obj = ctx.lookup("Sample")

MyObject myobj = (MyObject)PortableRemoteObject.narrow(obj,MyObject.class);

v Generate a stub for IIOP using the command:

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 71

rmic -iiop

Using the ORB
To use the Object Request Broker (ORB) effectively, you must understand the
properties that the ORB contains. These properties change the behavior of the ORB.

The property values are listed as follows. All property values are specified as
strings.
v com.ibm.CORBA.AcceptTimeout: (range: 0 through 5000) (default: 0=infinite

timeout)
The maximum number of milliseconds for which the ServerSocket waits in a call
to accept(). If this property is not set, the default 0 is used. If it is not valid,
5000 is used.

v com.ibm.CORBA.AllowUserInterrupt:
Set this property to true so that you can call Thread.interrupt() on a thread
that is currently involved in a remote method call. The result is to stop that
thread waiting for the call to return. Interrupting a call in this way causes a
RemoteException to be thrown, containing a CORBA.NO_RESPONSE runtime
exception with the RESPONSE_INTERRUPTED minor code.
If this property is not set, the default behavior is to ignore any Thread.interrupt()
received while waiting for a call to finish.

v com.ibm.CORBA.ConnectTimeout: (range: 0 through 300) (default: 0=infinite
timeout)
The maximum number of seconds that the ORB waits when opening a
connection to another ORB. By default, no timeout is specified.

v com.ibm.CORBA.BootstrapHost:
The value of this property is a string. This string can be the host name or the IP
address of the host, such as 9.5.88.112. If this property is not set, the local host is
retrieved by calling one of the following methods:
– For applications: InetAddress.getLocalHost().getHostAddress()
– For applets: <applet>.getCodeBase().getHost()
The host name is the name of the system on which the initial server contact for
this client is installed.

Note: This property is deprecated. It is replaced by -ORBInitRef and
-ORBDefaultInitRef.

v com.ibm.CORBA.BootstrapPort: (range: 0 through 2147483647=Java max int)
(default: 2809)
The port of the system on which the initial server contact for this client is
listening.

Note: This property is deprecated. It is replaced by -ORBInitRef and
-ORBDefaultInitRef.

v com.ibm.CORBA.BufferSize: (range: 0 through 2147483647=Java max int)
(default: 2048)
The number of bytes of a General Inter-ORB Protocol (GIOP) message that is
read from a socket on the first attempt. A larger buffer size increases the
probability of reading the whole message in one attempt. Such an action might
improve performance. The minimum size used is 24 bytes.

v com.ibm.CORBA.ConnectionMultiplicity: (range: 0 through 2147483647)
(default: 1)

72 IBM SDK for Java: SDK and Runtime Guide

Setting this value to a number n greater than one causes a client ORB to
multiplex communications to each server ORB. There can be no more than n
concurrent sockets to each server ORB at any one time. This value might
increase throughput under certain circumstances, particularly when a
long-running, multithreaded process is acting as a client. The number of parallel
connections can never exceed the number of requesting threads. The number of
concurrent threads is therefore a sensible maximum limit for this property.

v com.ibm.CORBA.enableLocateRequest: (default: false)
If this property is set, the ORB sends a LocateRequest before the actual Request.

v com.ibm.CORBA.FragmentSize: (range: 0 through 2147483647=Java max int)
(default:1024)
Controls GIOP 1.2 fragmentation. The size specified is rounded down to the
nearest multiple of 8, with a minimum size of 64 bytes. You can disable message
fragmentation by setting the value to 0.

v com.ibm.CORBA.FragmentTimeout: (range: 0 through 600000 ms) (default:
300000)
The maximum length of time for which the ORB waits for second and
subsequent message fragments before timing out. Set this property to 0 if
timeout is not required.

v com.ibm.CORBA.GIOPAddressingDisposition: (range: 0 through 2) (default: 0)
When a GIOP 1.2 Request, LocateRequest, Reply, or LocateReply is created, the
addressing disposition is set depending on the value of this property:
– 0 = Object Key
– 1 = GIOP Profile
– 2 = full IOR
If this property is not set or is passed an invalid value, the default 0 is used.

v com.ibm.CORBA.InitialReferencesURL:
The format of the value of this property is a correctly formed URL; for example,
http://w3.mycorp.com/InitRefs.file. The actual file contains a name and value
pair like: NameService=<stringified_IOR>. If you specify this property, the ORB
does not attempt the bootstrap approach. Use this property if you do not have a
bootstrap server and want to have a file on the webserver that serves the
purpose.

Note: This property is deprecated.
v com.ibm.CORBA.ListenerPort: (range: 0 through 2147483647=Java max int)

(default: next available system assigned port number)
The port on which this server listens for incoming requests. If this property is
specified, the ORB starts to listen during ORB.init().

v com.ibm.CORBA.LocalHost:
The value of this property is a string. This string can be a host name or the IP
address (ex. 9.5.88.112). If this property is not set, retrieve the local host by
calling: InetAddress.getLocalHost().getHostAddress(). This property represents
the host name (or IP address) of the system on which the ORB is running. The
local host name is used by the server-side ORB to place the host name of the
server into the IOR of a remote-able object.

v com.ibm.CORBA.LocateRequestTimeout: (range: 0 through 2147483647)
(default: 0=infinity)
Defines the number of seconds to wait before timing out on a LocateRequest
message.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 73

v com.ibm.CORBA.MaxOpenConnections: (range: 0 through 2147483647) (default:
240)
Determines the maximum number of in-use connections that are to be kept in
the connection cache table at any one time.

v com.ibm.CORBA.MinOpenConnections: (range: 0 through 2147483647) (default:
100)
The ORB cleans up only connections that are not busy from the connection cache
table, if the size is of the table is higher than the MinOpenConnections.

v com.ibm.CORBA.NoLocalInterceptors: (default: false)
If this property is set to true, no local portable interceptors are used. The
expected result is improved performance if interceptors are not required when
connecting to a co-located object.

v com.ibm.CORBA.ORBCharEncoding: (default: ISO8859_1)
Specifies the native encoding set used by the ORB for character data.

v com.ibm.CORBA.ORBWCharDefault: (default: UCS2)
Indicates that wchar code set UCS2 is to be used with other ORBs that do not
publish a wchar code set.

v com.ibm.CORBA.RequestTimeout: (range: 0 through 2147483647) (default:
0=infinity)
Defines the number of seconds to wait before timing out on a Request message.

v com.ibm.CORBA.SendingContextRunTimeSupported: (default: true)
Set this property to false to disable the CodeBase SendingContext RunTime
service. This means that the ORB does not attach a SendingContextRunTime
service context to outgoing messages.

v com.ibm.CORBA.SendVersionIdentifier: (default: false)
Tells the ORB to send an initial dummy request before it starts to send any real
requests to a remote server. This action determines the partner version of the
remote server ORB, based on the response from that ORB.

v com.ibm.CORBA.ServerSocketQueueDepth: (range: 50 through 2147483647)
(default: 0)
The maximum queue length for incoming connection indications. A connect
indication is a request to connect. If a connection indication arrives when the
queue is full, the connection is refused. If the property is not set, the default 0 is
used. If the property is not valid, 50 is used.

v com.ibm.CORBA.ShortExceptionDetails: (default: false)
When a CORBA SystemException reply is created, the ORB, by default, includes
the Java stack trace of the exception in an associated ExceptionDetailMessage
service context. If you set this property to any value, the ORB includes a
toString of the Exception instead.

v com.ibm.tools.rmic.iiop.Debug: (default: false)
The rmic tool automatically creates import statements in the classes that it
generates. If set to true, this property causes rmic to report the mappings of fully
qualified class names to short names.

v com.ibm.tools.rmic.iiop.SkipImports: (default: false)
If this property is set to true, classes are generated with rmic using fully
qualified names only.

v org.omg.CORBA.ORBId

Uniquely identifies an ORB in its address space. For example, the address space
might be the server containing the ORB. The ID can be any String. The default
value is a randomly generated number that is unique in the JVM of the ORB.

74 IBM SDK for Java: SDK and Runtime Guide

v org.omg.CORBA.ORBListenEndpoints

Identifies the set of endpoints on which the ORB listens for requests. Each
endpoint consists of a host name or IP address, and optionally a port. The value
you specify is a string of the form hostname:portnumber, where the :portnumber
component is optional. IPv6 addresses must be surrounded by brackets (for
example, [::1]:1020). Specify multiple endpoints in a comma-separated list.

Note: Some versions of the ORB support only the first endpoint in a multiple
endpoint list.
If this property is not set, the port number is set to 0 and the host address is
retrieved by calling InetAddress.getLocalHost().getHostAddress(). If you
specify only the host address, the port number is set to 0. If you want to set only
the port number, you must also specify the host. You can specify the host name
as the default host name of the ORB. The default host name is localhost.

v org.omg.CORBA.ORBServerId

Assign the same value for this property to all ORBs contained in the same
server. It is included in all IORs exported by the server. The integer value is in
the range 0 - 2147483647).

This table shows the Java properties defined by Oracle Corporation that are now
deprecated, and the IBM properties that have replaced them. These properties are
not OMG standard properties, despite their names:

Oracle Corporation property IBM property

com.sun.CORBA.ORBServerHost com.ibm.CORBA.LocalHost

com.sun.CORBA.ORBServerPort com.ibm.CORBA.ListenerPort

org.omg.CORBA.ORBInitialHost com.ibm.CORBA.BootstrapHost

org.omg.CORBA.ORBInitialPort com.ibm.CORBA.BootstrapPort

org.omg.CORBA.ORBInitialServices com.ibm.CORBA.InitialReferencesURL

How the ORB works
This description tells you how the ORB works, by explaining what the ORB does
transparently for the client. An important part of the work is performed by the
server side of the ORB.

This section describes a basic, typical RMI-IIOP session in which a client accesses a
remote object on a server. The access is made possible through an interface named
Sample. The client calls a simple method provided through the interface. The
method is called message(). The method returns a “Hello World” string. For
further examples, see “Examples of client–server applications” on page 66.

The client side
There are several steps to perform in order to enable an application client to use
the ORB.

The subjects discussed here are:
v “Stub creation” on page 76
v “ORB initialization” on page 76
v “Obtaining the remote object” on page 77
v “Remote method invocation” on page 78

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 75

Stub creation:

For any distributed application, the client must know what object it is going to
contact, and which method of this object it must call. Because the ORB is a general
framework, you must give it general information about the method that you want
to call.

You provide the connection information by implementing a Java interface, for
example Sample. The interface contains basic information about the methods that
can be called in the remote object.

The client relies on the existence of a server containing an object that implements
the Sample interface. You create a proxy object that is available on the client side
for the client application to use. The proxy object is called a stub. The stub that acts
as an interface between the client application and the ORB.

To create the stub, run the RMIC compiler on the Java interface:
rmic -iiop Sample

This command generates a file and object named _Sample_Stub.class.

The presence of a stub is not always mandatory for a client application to operate.
When you use particular CORBA features such as the Dynamic Invocation
Interface (DII), you do not require a stub. The reason is that the proxy code is
implemented directly by the client application. You can also upload a stub from
the server to which you are trying to connect. See the CORBA specification for
further details.

ORB initialization:

In a stand-alone Java application, the client must create an instance of the ORB.

The ORB instance is created by calling the static method init(...). For example:
ORB orb = ORB.init(args,props);

The parameters that are passed to the method are:
v A string array containing property-value pairs.
v A Java Properties object.

IIOP
ORB ORB

RMI Java interface
(Sample.java)

Stub_Sample_Stub.java TIE_Sample_Tie.javarmic-iiop

RMI
Java
client

RMI
Java

server

76 IBM SDK for Java: SDK and Runtime Guide

A similar method is used for an applet. The difference is that a Java Applet is
passed instead of the string array.

The first step of ORB initialization is to process the ORB properties. The properties
are found by searching in the following sequence:
1. First, check in the applet parameter, or application string array.
2. Check in the properties parameter, if the parameter exists.
3. Check in the system properties.
4. Check in any orb.properties file that is found in the <user-home> directory.
5. Check in any orb.properties file that is found in the <java-home>/lib

directory.
6. Finally, use hardcoded default behavior.

Two important properties are ORBClass and ORBSingletonClass. These properties
determine which ORB class is created and initialized, or “instantiated”.

After the ORB is instantiated, it starts and initializes the TCP transport layer. If the
ListenerPort property was set, the ORB also opens a server socket to listen for
incoming requests. The ListenerPort property is used by a server-side ORB. At the
end of the initialization performed by the init() method, the ORB is fully functional
and ready to support the client application.

Obtaining the remote object:

Several methods exist by which the client can get a reference for the remote object.

Typically, this reference is a string, called an Interoperable Object Reference (IOR).
For example:
IOR:000000000000001d524d493a5......

This reference contains all the information required to find the remote object. It
also contains some details of the server settings to which the object belongs.

The client ORB does not have to understand the details of the IOR. The IOR is
used as a reference to the remote object, like a key. However, when client and
server are both using an IBM ORB, extra features are coded in the IOR. For
example, the IBM ORB adds a proprietary field into the IOR, called
IBM_PARTNER_VERSION. This field holds a value like the following example:
49424d0a 00000008 00000000 1400 0005

In the example:
v The first three bytes are the ASCII code for IBM
v The next byte is 0x0A, which specifies that the following bytes provide

information about the partner version.
v The next 4 bytes encode the length of the remaining data. In this example, the

remaining data is 8 bytes long.
v The next 4 null bytes are reserved for future use.
v The next 2 bytes are for the Partner Version Major field. In this example, the

value is 0x1400, which means that release 1.4.0 of the ORB is being used.
v The final 2 bytes in this example have the value 0x0005 and represent the Minor

field. This field is used to distinguish service refreshes within the same release.
The service refreshes contain changes that affect compatibility with earlier
versions.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 77

The final step is called the “bootstrap process”. This step is where the client
application tells the ORB where the remote object reference is located. The step is
necessary for two reasons:
v The IOR is not visible to application-level ORB programmers.
v The client ORB does not know where to look for the IOR.

A typical example of the bootstrap process takes place when you use a naming
service. First, the client calls the ORB method
resolve_initial_references("NameService"). The method which returns a reference to
the name server. The reference is in the form of a NamingContext object. The ORB
then looks for a corresponding name server in the local system at the default port
2809. If no name server exists, or the name server cannot be found because it is
listening on another port, the ORB returns an exception. The client application can
specify a different host, a different port, or both, by using the -ORBInitRef and
-ORBInitPort options.

Using the NamingContext and the name with which the Remote Object has been
bound in the name service, the client can retrieve a reference to the remote object.
The reference to the remote object that the client holds is always an instance of a
Stub object; for example _Sample_Stub.

Using ORB.resolve_initial_references() causes much system activity. The ORB
starts by creating a remote communication with the name server. This
communication might include several requests and replies. Typically, the client
ORB first checks whether a name server is listening. Next, the client ORB asks for
the specified remote reference. In an application where performance is important,
caching the remote reference is preferable to repetitive use of the naming service.
However, because the naming service implementation is a transient type, the
validity of the cached reference is limited to the time in which the naming service
is running.

The IBM ORB implements an Interoperable Naming Service as described in the
CORBA 2.3 specification. This service includes a new string format that can be
passed as a parameter to the ORB methods string_to_object() and
resolve_initial_references(). The methods are called with a string parameter that
has a corbaloc (or corbaname) format. For example:
corbaloc:iiop:1.0@aserver.aworld.aorg:1050/AService

In this example, the client ORB uses GIOP 1.0 to send a request with a simple
object key of AService to port 1050 at host aserver.aworld.aorg. There, the client
ORB expects to find a server for the requested Aservice. The server replies by
returning a reference to itself. You can then use this reference to look for the
remote object.

This naming service is transient. It means that the validity of the contained
references expires when the name service or the server for the remote object is
stopped.

Remote method invocation:

The client holds a reference to the remote object that is an instance of the stub
class. The next step is to call the method on that reference. The stub implements
the Sample interface and therefore contains the message() method that the client
has called.

78 IBM SDK for Java: SDK and Runtime Guide

First, the stub code determines whether the implementation of the remote object is
located on the same ORB instance. If so, the object can be accessed without using
the Internet.

If the implementation of the remote object is located on the same ORB instance, the
performance improvement can be significant because a direct call to the object
implementation is done. If no local servant can be found, the stub first asks the
ORB to create a request by calling the _request() method, specifying the name of
the method to call and whether a reply is expected or not.

The CORBA specification imposes an extra layer of indirection between the ORB
code and the stub. This layer is commonly known as delegation. CORBA imposes
the layer using an interface named Delegate. This interface specifies a portable API
for ORB-vendor-specific implementation of the org.omg.CORBA.Object methods.
Each stub contains a delegate object, to which all org.omg.CORBA.Object method
invocations are forwarded. Using the delegate object means that a stub generated
by the ORB from one vendor is able to work with the delegate from the ORB of
another vendor.

When creating a request, the ORB first checks whether the enableLocateRequest
property is set to true, in which case, a LocateRequest is created. The steps of
creating this request are like the full Request case.

The ORB obtains the IOR of the remote object (the one that was retrieved by a
naming service, for example) and passes the information that is contained in the
IOR (Profile object) to the transport layer.

The transport layer uses the information that is in the IOR (IP address, port
number, and object key) to create a connection if it does not exist. The ORB
TCP/IP transport has an implementation of a table of cached connections for
improving performances, because the creation of a new connection is a
time-consuming process. The connection is not an open communication channel to
the server host. It is only an object that has the potential to create and deliver a
TCP/IP message to a location on the Internet. Typically, that involves the creation
of a Java socket and a reader thread that is ready to intercept the server reply. The
ORB.connect() method is called as part of this process.

When the ORB has the connection, it proceeds to create the Request message. The
message contains the header and the body of the request. The CORBA 2.3
specification specifies the exact format. The header contains these items:
v Local IP address
v Local port
v Remote IP address
v Remote port
v Message size
v Version of the CORBA stream format
v Byte sequence convention
v Request types
v IDs

See “ORB problem determination” on page 196 for a detailed description and
example.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 79

The body of the request contains several service contexts and the name and
parameters of the method invocation. Parameters are typically serialized.

A service context is some extra information that the ORB includes in the request or
reply, to add several other functions. CORBA defines a few service contexts, such
as the codebase and the codeset service contexts. The first is used for the callback
feature which is described in the CORBA specification. The second context is used
to specify the encoding of strings.

In the next step, the stub calls _invoke(). The effect is to run the delegate invoke()
method. The ORB in this chain of events calls the send() method on the connection
that writes the request to the socket buffer and then flushes it away. The delegate
invoke() method waits for a reply to arrive. The reader thread that was spun
during the connection creation gets the reply message, processes it, and returns the
correct object.

The server side
In ORB terminology, a server is an application that makes one of its implemented
objects available through an ORB instance.

The subjects discussed here are:
v “Servant implementation”
v “Tie generation”
v “Servant binding”
v “Processing a request” on page 81

Servant implementation:

The implementations of the remote object can either inherit from
javax.rmi.PortableRemoteObject, or implement a remote interface and use the
exportObject() method to register themselves as a servant object. In both cases, the
servant has to implement the Sample interface. Here, the first case is described.
From now, the servant is called SampleImpl.

Tie generation:

You must put an interfacing layer between the servant and the ORB code. In the
old RMI (JRMP) naming convention, skeleton was the name given to the proxy that
was used on the server side between ORB and the object implementation. In the
RMI-IIOP convention, the proxy is called a Tie.

You generate the RMI-IIOP tie class at the same time as the stub, by calling the
rmic compiler. These classes are generated from the compiled Java programming
language classes that contain remote object implementations. For example, the
command:
rmic -iiop SampleImpl

generates the stub _Sample_Stub.class and the tie _Sample_Tie.class.

Servant binding:

The steps required to bind the servant are described.

The server implementation is required to do the following tasks:
1. Create an ORB instance; that is, ORB.init(...)

80 IBM SDK for Java: SDK and Runtime Guide

2. Create a servant instance; that is, new SampleImpl(...)

3. Create a Tie instance from the servant instance; that is, Util.getTie(...)
4. Export the servant by binding it to a naming service

As described for the client side, you must create the ORB instance by calling the
ORB static method init(...). The typical steps performed by the init(...) method are:
1. Retrieve properties
2. Get the system class loader
3. Load and instantiate the ORB class as specified in the ORBClass property
4. Initialize the ORB as determined by the properties

Next, the server must create an instance of the servant class SampleImpl.class.
Something more than the creation of an instance of a class happens under the
cover. Remember that the servant SampleImpl extends the PortableRemoteObject
class, so the constructor of PortableRemoteObject is called. This constructor calls
the static method exportObject(...) with the parameter that is the same servant
instance that you try to instantiate. If the servant does not inherit from
PortableRemoteObject, the application must call exportObject() directly.

The exportObject() method first tries to load an RMI-IIOP tie. The ORB implements
a cache of classes of ties for improving performance. If a tie class is not already
cached, the ORB loads a tie class for the servant. If it cannot find one, it goes up
the inheritance tree, trying to load the parent class ties. The ORB stops if it finds a
PortableRemoteObject class or the java.lang.Object, and returns a null value.
Otherwise, it returns an instance of that tie from a hashtable that pairs a tie with
its servant. If the ORB cannot find the tie, it assumes that an RMI (JRMP) skeleton
might be present and calls the exportObject() method of the UnicastRemoteObject
class. A null tie is registered in the cache and an exception is thrown. The servant
is now ready to receive remote methods invocations. However, it is not yet
reachable.

In the next step, the server code must find the tie itself (assuming the ORB has
already got hold of the tie) to be able to export it to a naming service. To do that,
the server passes the newly created instance of the servant into the static method
javax.rmi.CORBA.Util.getTie(). This method, in turn, gets the tie that is in the
hashtable that the ORB created. The tie contains the pair of tie-servant classes.

When in possession of the tie, the server must get hold of a reference for the
naming service and bind the tie to it. As in the client side, the server calls the ORB
method resolve_initial_references("NameService"). The server then creates a
NameComponent, which is a directory tree object identifying the path and the
name of the remote object reference in the naming service. The server binds the
NameComponent together with the tie. The naming service then makes the IOR for
the servant available to anyone requesting. During this process, the server code
sends a LocateRequest to get hold of the naming server address. It also sends a
Request that requires a rebind operation to the naming server.

Processing a request:

The server ORB uses a single listener thread, and a reader thread for each
connection or client, to process an incoming message.

During the ORB initialization, a listener thread was created. The listener thread is
listening on a default port (the next available port at the time the thread was
created). You can specify the listener port by using the

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 81

com.ibm.CORBA.ListenerPort property. When a request comes in through that
port, the listener thread first creates a connection with the client side. In this case,
it is the TCP transport layer that takes care of the details of the connection. The
ORB caches all the connections that it creates.

By using the connection, the listener thread creates a reader thread to process the
incoming message. When dealing with multiple clients, the server ORB has a
single listener thread and one reader thread for each connection or client.

The reader thread does not fully read the request message, but instead creates an
input stream for the message to be piped into. Then, the reader thread picks up
one of the worker threads in the implemented pool, or creates one if none is
present. The work thread is given the task of reading the message. The worker
thread reads all the fields in the message and dispatches them to the tie. The tie
identifies any parameters, then calls the remote method.

The service contexts are then created and written to the response output stream
with the return value. The reply is sent back with a similar mechanism, as
described in the client side. Finally, the connection is removed from the reader
thread which stops.

Additional features of the ORB
Portable object adapter, fragmentation, portable interceptors, and Interoperable
Naming Service are described.

This section describes:
v “Portable object adapter”
v “Fragmentation” on page 84
v “Portable interceptors” on page 84
v “Interoperable Naming Service (INS)” on page 87

Portable object adapter
An object adapter is the primary way for an object to access ORB services such as
object reference generation. A portable object adapter exports standard interfaces to
the object.

The main responsibilities of an object adapter are:
v Generation and interpretation of object references.
v Enabling method calling.
v Object and implementation activation and deactivation.
v Mapping object references to the corresponding object implementations.

82 IBM SDK for Java: SDK and Runtime Guide

For CORBA 2.1 and earlier, all ORB vendors implemented an object adapter, which
was known as the basic object adapter. A basic object adapter could not be
specified with a standard CORBA IDL. Therefore, vendors implemented the
adapters in many different ways. The result was that programmers were not able
to write server implementations that were truly portable between different ORB
products. A first attempt to define a standard object adapter interface was done in
CORBA 2.1. With CORBA v.2.3, the OMG group released the final corrected
version of a standard interface for the object adapter. This adapter is known as the
Portable Object Adapter (POA).

Some of the main features of the POA specification are to:
v Allow programmers to construct object and server implementations that are

portable between different ORB products.
v Provide support for persistent objects. The support enables objects to persist

across several server lifetimes.
v Support transparent activation of objects.
v Associate policy information with objects.
v Allow multiple distinct instances of the POA to exist in one ORB.

For more details of the POA, see the CORBA v.2.3 (formal/99-10-07) specification.

From IBM SDK for Java v1.4, the ORB supports both the POA specification and the
proprietary basic object adapter that is already present in previous IBM ORB
versions. By default, the RMI compiler, when used with the -iiop option,
generates RMI-IIOP ties for servers. These ties are based on the basic object
adapter. When a server implementation uses the POA interface, you must add the
-poa option to the rmic compiler to generate the relevant ties.

To implement an object using the POA, the server application must obtain a POA
object. When the server application calls the ORB method
resolve_initial_reference("RootPOA"), the ORB returns the reference to the main
POA object that contains default policies. For a list of all the POA policies, see the
CORBA specification. You can create new POAs as child objects of the RootPOA.
These child objects can contain different policies. This structure allows you to
manage different sets of objects separately, and to partition the namespace of
objects IDs.

Ultimately, a POA handles Object IDs and active servants. An active servant is a
programming object that exists in memory. The servant is registered with the POA
because one or more associated object identities was used. The ORB and POA
cooperate to determine which servant starts the operation requested by the client.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 83

By using the POA APIs, you can create a reference for the object, associate an
object ID, and activate the servant for that object. A map of object IDs and active
servants is stored inside the POA. A POA also provides a default servant that is
used when no active servant has been registered. You can register a particular
implementation of this default servant. You can also register a servant manager,
which is an object for managing the association of an object ID with a particular
servant.

The POA manager is an object that encapsulates the processing state of one or
more POAs. You can control and change the state of all POAs by using operations
on the POA manager.

The adapter activator is an object that an application developer uses to activate
child POAs.

Fragmentation
The CORBA specification introduced the concept of fragmentation to handle the
growing complexity and size of marshalled objects in GIOP messages. Graphs of
objects are linearized and serialized inside a GIOP message under the IDL
specification of valuetypes. Fragmentation specifies the way a message can be split
into several smaller messages (fragments) and sent over the net.

The system administrator can set the ORB properties FragmentSize and
FragmentTimeout to obtain best performance in the existing net traffic. As a
general rule, the default value of 1024 bytes for the fragment size is a good
trade-off in almost all conditions. The fragment timeout must not be set to too low
a value, or time-outs might occur unnecessarily.

Portable interceptors
You can include “interceptor” code in the ORB processing flow. The CORBA 2.4.2
specification standardizes this code mechanism under the name “portable
interceptor”.

CORBA implementations have mechanisms for users to insert their own code into
the ORB processing flow. The code is inserted into the flow at “interception
points”. The result is that the code, known as an interceptor, is called at particular
stages during the processing of requests. It can directly inspect and even

RootPOA POA Child1

Default servant

User-supplied
servant

User-supplied servant

User-supplied servant

User-supplied servant

Object ID

Object ID

Object ID

POA
manager

Adapter activator

Object ID

84 IBM SDK for Java: SDK and Runtime Guide

manipulate requests. Because this message filtering mechanism is flexible and
powerful, the OMG standardized interceptors in the CORBA 2.4.2 specification
under the name “portable interceptors”.

The idea of a portable interceptor is to define a standard interface. The interface
enables you to register and run application-independent code that, among other
things, takes care of passing service contexts. These interfaces are stored in the
package org.omg.PortableInterceptor.*. The implementation classes are in the
com.ibm.rmi.pi.* package of the IBM ORB. All the interceptors implement the
Interceptor interface.

Two classes of interceptors are defined:

Request interceptors
The ORB calls request interceptors on the client and the server side, during
request mediation. Request interceptors manipulate service context
information.

Interoperable Object Reference (IOR) interceptors
IOR interceptors are called when new object references are created. The
reason is that service-specific data, in the form of tagged components, can
be added to the newly created IOR.

Interceptors must register with the ORB for the interception points where they are
to run.

Five interception points are available on the client side:
v send_request (sending request)
v send_poll (sending request)
v receive_reply (receiving reply)
v receive_exception (receiving reply)
v receive_other (receiving reply)

Five interception points are available on the server side:
v receive_request_service_contexts (receiving request)
v receive_request (receiving request)
v send_reply (sending reply)
v send_exception (sending reply)
v send_other (sending reply)

The only interception point for IOR interceptors is establish_component(). The ORB
calls this interception point on all its registered IOR interceptors when it is
assembling the set of components that is to be included in the IOP profiles for a
new object reference.

A simple interceptor is shown in the following example:
public class MyInterceptor extends org.omg.CORBA.LocalObject
implements ClientRequestInterceptor, ServerRequestInterceptor
{
public String name() {
return "MyInterceptor";
}

public void destroy() {}

// ClientRequestInterceptor operations

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 85

public void send_request(ClientRequestInfo ri) {
logger(ri, "send_request");
}

public void send_poll(ClientRequestInfo ri) {
logger(ri, "send_poll");
}

public void receive_reply(ClientRequestInfo ri) {
logger(ri, "receive_reply");
}

public void receive_exception(ClientRequestInfo ri) {
logger(ri, "receive_exception");
}

public void receive_other(ClientRequestInfo ri) {
logger(ri, "receive_other");
}

// Server interceptor methods
public void receive_request_service_contexts(ServerRequestInfo ri) {
logger(ri, "receive_request_service_contexts");
}

public void receive_request(ServerRequestInfo ri) {
logger(ri, "receive_request");
}

public void send_reply(ServerRequestInfo ri) {
logger(ri, "send_reply");
}

public void send_exception(ServerRequestInfo ri) {
logger(ri, "send_exception");
}

public void send_other(ServerRequestInfo ri) {
logger(ri, "send_other");
}

// Trivial Logger
public void logger(RequestInfo ri, String point) {
System.out.println("Request ID:" + ri.request_id()
+ " at " + name() + "." + point);

}
}

The interceptor class extends org.omg.CORBA.LocalObject. The extension ensures
that an instance of this class does not get marshaled, because an interceptor
instance is tied to the ORB with which it is registered. This example interceptor
prints out a message at every interception point.

You cannot register an interceptor with an ORB instance after it has been created.
The reason is that interceptors are a means for ORB services to interact with ORB
processing. Therefore, by the time the init() method call on the ORB class returns
an ORB instance, the interceptors must already be registered. Otherwise, the
interceptors are not part of the ORB processing flow.

You register an interceptor by using an ORB initializer. First, you create a class that
implements the ORBInitializer interface. This class is called by the ORB during its
initialization.

86 IBM SDK for Java: SDK and Runtime Guide

public class MyInterceptorORBInitializer extends LocalObject
implements ORBInitializer
{
public static MyInterceptor interceptor;

public String name() {
return "";
}

public void pre_init(ORBInitInfo info) {
try {
interceptor = new MyInterceptor();
info.add_client_request_interceptor(interceptor);
info.add_server_request_interceptor(interceptor);
} catch (Exception ex) {}
}

public void post_init(ORBInitInfo info) {}

}

Then, in the server implementation, add the following code:
Properties p = new Properties();
p.put("org.omg.PortableInterceptor.ORBInitializerClass.pi.

MyInterceptorORBInitializer", "");
...
orb = ORB.init((String[])null, p);

During the ORB initialization, the ORB run time code obtains the ORB properties
with names that begin with org.omg.PortableInterceptor.ORBInitializerClass. The
remaining portion of the name is extracted, and the corresponding class is
instantiated. Then, the pre_init() and post_init() methods are called on the
initializer object.

Interoperable Naming Service (INS)
The CORBA “CosNaming” Service follows the Object Management Group (OMG)
Interoperable Naming Service specification (INS, CORBA 2.3 specification).
CosNaming stands for Common Object Services Naming.

The name service maps names to CORBA object references. Object references are
stored in the namespace by name and each object reference-name pair is called a
name binding. Name bindings can be organized under naming contexts. Naming
contexts are themselves name bindings, and serve the same organizational function
as a file system subdirectory does. All bindings are stored under the initial naming
context. The initial naming context is the only persistent binding in the namespace.

This implementation includes string formats that can be passed as a parameter to
the ORB methods string_to_object() and resolve_initial_references(). The formats
are corbaname and corbaloc.

Corbaloc URIs allow you to specify object references that can be contacted by IIOP
or found through ORB::resolve_initial_references(). This format is easier to
manipulate than IOR. To specify an IIOP object reference, use a URI of the form:
corbaloc:iiop:<host>:<port>/<object key>

Note: See the CORBA 2.4.2 specification for the full syntax of this format.

For example, the following corbaloc URI specifies an object with key MyObjectKey
that is in a process that is running on myHost.myOrg.com, listening on port 2809:

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 87

corbaloc:iiop:myHost.myOrg.com:2809/MyObjectKey

Corbaname URIs cause the string_to_object() method to look up a name in a
CORBA naming service. The URIs are an extension of the corbaloc syntax:
corbaname:<corbaloc location>/<object key>#<stringified name>

Note: See the CORBA 2.4.2 specification for the full syntax of this format.

An example corbaname URI is:
corbaname::myOrg.com:2050#Personal/schedule

In this example, the portion of the reference up to the number sign character “#” is
the URL that returns the root naming context. The second part of the example,
after the number sign character “#”, is the argument that is used to resolve the
object on the NamingContext.

The INS specified two standard command-line arguments that provide a portable
way of configuring ORB::resolve_initial_references():
v -ORBInitRef takes an argument of the form <ObjectId>=<ObjectURI>. For

example, you can use the following command-line arguments:
-ORBInitRef NameService=corbaname::myhost.example.com

In this example, resolve_initial_references("NameService") returns a reference to
the object with key NameService available on myhost.example.com, port 2809.

v -ORBDefaultInitRef provides a prefix string that is used to resolve otherwise
unknown names. When resolve_initial_references() cannot resolve a name that
has been configured with -ORBInitRef, it constructs a string that consists of the
default prefix, a “/” character, and the name requested. The string is then
supplied to string_to_object(). For example, with a command line of:
-ORBDefaultInitRef corbaloc::myhost.example.com

a call to resolve_initial_references("MyService") returns the object reference that
is denoted by corbaloc::myhost.example.com/MyService.

The Java Native Interface (JNI)
This description of the Java Native Interface (JNI) provides background
information to help you diagnose problems with JNI operation.

The specification for the Java Native Interface (JNI) is maintained by Oracle
Corporation. IBM recommends that you read the JNI specification. Go to
http://www.oracle.com/technetwork/java/index.html and search the site for JNI.
Oracle Corporation maintain a combined programming guide and specification at
http://java.sun.com/docs/books/jni/.

This section gives additional information to help you with JNI operation and
design.

The topics that are discussed in this section are:
v “Overview of JNI” on page 89
v “The JNI and the Garbage Collector” on page 90
v “Copying and pinning” on page 94
v “Handling exceptions” on page 96
v “Synchronization” on page 96

88 IBM SDK for Java: SDK and Runtime Guide

http://www.oracle.com/technetwork/java/index.html
http://java.sun.com/docs/books/jni/

v “Debugging the JNI” on page 97
v “JNI checklist” on page 99

Overview of JNI
From the viewpoint of a JVM, there are two types of code: "Java" and "native". The
Java Native Interface (JNI) establishes a well-defined and platform-independent
interface between the two.

Native code can be used together with Java in two distinct ways: as "native
methods" in a running JVM and as the code that creates a JVM using the
"Invocation API". This section describes the difference.

Native methods

Java native methods are declared in Java, implemented in another language (such
as C or C++), and loaded by the JVM as necessary. To use native methods, you
must:
1. Declare the native method in your Java code.

When the javac compiler encounters a native method declaration in Java source
code, it records the name and parameters for the method. Because the Java
source code contains no implementation, the compiler marks the method as
"native". The JVM can then resolve the method correctly when it is called.

2. Implement the native method.
Native methods are implemented as external entry points in a loadable binary
library. The contents of a native library are platform-specific. The JNI provides
a way for the JVM to use any native methods in a platform-independent way.
The JVM performs calls to native methods. When the JVM is in a native
method, JNI provides a way to "call back" to the JVM.

3. Load the native method code for the VM to use.
As well as declaring the native method, you must find and load the native
library that contains the method at run time.
Two Java interfaces load native libraries:
v java.lang.System.load()
v java.lang.System.loadLibrary()
Typically, a class that declares native methods loads the native library in its
static initializer.

Invocation API

Creating a JVM involves native code. The aspect of the JNI used for this purpose is
called the JNI Invocation API. To use the Invocation API, you bind to an
implementation-specific shared library, either statically or dynamically, and call the
JNI_* functions it exports.

The JNI specification and implementation

The JNI specification is vague on selected implementation details. It provides a
reusable framework for simple and extensible C and C++ native interfaces. The JNI
model is also the basis for the JVMTI specification.

The Oracle Corporation trademark specification and the Java Compatibility Kit
(JCK) ensure compliance to the specification but not to the implementation. Native

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 89

code must conform to the specification and not to the implementation. Code
written against unspecified behavior is prone to portability and forward
compatibility problems.

The JNI and the Garbage Collector
This description explains how the JNI implementation ensures that objects can be
reached by the Garbage Collector (GC).

For general information about the IBM GC, see “Memory management” on page
23.

To collect unreachable objects, the GC must know when Java objects are referenced
by native code. The JNI implementation uses "root sets" to ensure that objects can
be reached. A root set is a set of direct, typically relocatable, object references that
are traceable by the GC.

There are several types of root set. The union of all root sets provides the starting
set of objects for a GC mark phase. Beginning with this starting set, the GC
traverses the entire object reference graph. Anything that remains unmarked is
unreachable garbage. (This description is an over-simplification when reachability
and weak references are considered. See “Detailed description of global garbage
collection” on page 29 and the JVM specification.)

Overview of JNI object references
The implementation details of how the GC finds a JNI object reference are not
detailed in the JNI specification. Instead, the JNI specifies a required behavior that
is both reliable and predictable.

Local and global references

Local references are scoped to their creating stack frame and thread, and
automatically deleted when their creating stack frame returns. Global references
allow native code to promote a local reference into a form usable by native code in
any thread attached to the JVM.

Global references and memory leaks

Global references are not automatically deleted, so the programmer must handle
the memory management. Every global reference establishes a root for the referent
and makes its entire subtree reachable. Therefore, every global reference created
must be freed to prevent memory leaks.

Leaks in global references eventually lead to an out-of-memory exception. These
errors can be difficult to solve, especially if you do not perform JNI exception
handling. See “Handling exceptions” on page 96.

To provide JNI global reference capabilities and also provide some automatic
garbage collection of the referents, the JNI provides two functions:
v NewWeakGlobalRef
v DeleteWeakGlobalRef

These functions provide JNI access to weak references.

90 IBM SDK for Java: SDK and Runtime Guide

Local references and memory leaks

The automatic garbage collection of local references that are no longer in scope
prevents memory leaks in most situations. This automatic garbage collection occurs
when a native thread returns to Java (native methods) or detaches from the JVM
(Invocation API). Local reference memory leaks are possible if automatic garbage
collection does not occur. A memory leak might occur if a native method does not
return to the JVM, or if a program that uses the Invocation API does not detach
from the JVM.

Consider the code in the following example, where native code creates new local
references in a loop:
while (<condition>)
{

jobject myObj = (*env)->NewObject(env, clz, mid, NULL);

if (NULL != myObj)
{

/* we know myObj is a valid local ref, so use it */
jclass myClazz = (*env)->GetObjectClass(env, myObj);

/* uses of myObj and myClazz, etc. but no new local refs */

/* Without the following calls, we would leak */
(*env)->DeleteLocalRef(env, myObj);
(*env)->DeleteLocalRef(env, myClazz);

}

} /* end while */

Although new local references overwrite the myObj and myClazz variables inside the
loop, every local reference is kept in the root set. These references must be
explicitly removed by the DeleteLocalRef call. Without the DeleteLocalRef calls, the
local references are leaked until the thread returned to Java or detached from the
JVM.

JNI weak global references

Weak global references are a special type of global reference. They can be used in
any thread and can be used between native function calls, but do not act as GC
roots. The GC disposes of an object that is referred to by a weak global reference at
any time if the object does not have a strong reference elsewhere.

You must use weak global references with caution. If the object referred to by a
weak global reference is garbage collected, the reference becomes a null reference.
A null reference can only safely be used with a subset of JNI functions. To test if a
weak global reference has been collected, use the IsSameObject JNI function to
compare the weak global reference to the null value.

It is not safe to call most JNI functions with a weak global reference, even if you
have tested that the reference is not null, because the weak global reference could
become a null reference after it has been tested or even during the JNI function.
Instead, a weak global reference should always be promoted to a strong reference
before it is used. You can promote a weak global reference using the NewLocalRef
or NewGlobalRef JNI functions.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 91

Weak global references use memory and must be freed with the
DeleteWeakGlobalRef JNI function when it is no longer needed. Failure to free
weak global references causes a slow memory leak, eventually leading to
out-of-memory exceptions.

For information and warnings about the use of JNI global weak references, see the
JNI specification.

JNI reference management

There are a set of platform-independent rules for JNI reference management

These rules are:
1. JNI references are valid only in threads attached to a JVM.
2. A valid JNI local reference in native code must be obtained:

a. As a parameter to the native code
b. As the return value from calling a JNI function

3. A valid JNI global reference must be obtained from another valid JNI reference
(global or local) by calling NewGlobalRef or NewWeakGlobalRef.

4. The null value reference is always valid, and can be used in place of any JNI
reference (global or local).

5. JNI local references are valid only in the thread that creates them and remain
valid only while their creating frame remains on the stack.

Note:

1. Overwriting a local or global reference in native storage with a null value does
not remove the reference from the root set. Use the appropriate Delete*Ref JNI
function to remove references from root sets.

2. Many JNI functions (such as FindClass and NewObject) return a null value if
there is an exception pending. Comparing the returned value to the null value
for these calls is semantically equivalent to calling the JNI ExceptionCheck
function. See the JNI specification for more details.

3. A JNI local reference must never be used after its creating frame returns,
regardless of the circumstances. It is dangerous to store a JNI local reference in
any process static storage.

JNI transitions
To understand JNI local reference management and the GC, you must understand
the context of a running thread attached to the JVM. Every thread has a runtime
stack that includes a frame for each method call. From a GC perspective, every
stack establishes a thread-specific "root set" including the union of all JNI local
references in the stack.

92 IBM SDK for Java: SDK and Runtime Guide

Each method call in a running VM adds (pushes) a frame onto the stack, just as
every return removes (pops) a frame. Each call point in a running stack can be
characterized as one of the following types:
v Java to Java (J2J)
v Native to Native (N2N)
v Java to Native (J2N)
v Native to Java (N2J)

You can only perform an N2J transition in a thread that meets the following
conditions:
v The process containing the thread must contain a JVM started using the JNI

Invocation API.
v The thread must be "attached" to the JVM.
v The thread must pass at least one valid local or global object reference to JNI.

J2J and N2N transitions:

Because object references do not change form as part of J2J or N2N transitions, J2J
and N2N transitions do not affect JNI local reference management.

Any section of N2N code that obtains many local references without promptly
returning to Java can needlessly stress the local reference capacity of a thread. This
problem can be avoided if local references are managed explicitly by the native
method programmer.

N2J transitions:

For native code to call Java code (N2J) in the current thread, the thread must first
be attached to the JVM in the current process.

Every N2J call that passes object references must have obtained them using JNI,
therefore they are either valid local or global JNI refs. Any object references
returned from the call are JNI local references.

Native frame Native frame(s)

Native frame
Native frame(s)

Native frame

Native frame Native frame

Call Stack
Direction

Java frame J2N

J2N

N2J

N2J

Java frame
Java frame(s)

Java frame(s)

Java frame

Java frame

Java frame

Call stack Transitions

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 93

J2N calls:

The JVM must ensure that objects passed as parameters from Java to the native
method and any new objects created by the native code remain reachable by the
GC. To handle the GC requirements, the JVM allocates a small region of
specialized storage called a local reference root set.

A local reference root set is created when:
v A thread is first attached to the JVM (the outermost root set of the thread).
v Each J2N transition occurs.

The JVM initializes the root set created for a J2N transition with:
v A local reference to the caller's object or class.
v A local reference to each object passed as a parameter to the native method.

New local references created in native code are added to this J2N root set, unless
you create a new local frame using the PushLocalFrame JNI function.

The default root set is large enough to contain 16 local references per J2N
transition. The -Xcheck:jni command-line option causes the JVM to monitor JNI
usage. When -Xcheck:jni is used, the JVM writes a warning message when more
than 16 local references are required at run time. If you receive this warning
message, use one of the following JNI functions to manage local references more
explicitly:
v NewLocalRef
v DeleteLocalRef
v PushLocalFrame
v PopLocalFrame
v EnsureLocalCapacity

J2N returns:

When native code returns to Java, the associated JNI local reference "root set",
created by the J2N call, is released.

If the JNI local reference was the only reference to an object, the object is no longer
reachable and can be considered for garbage collection. Garbage collection is
triggered automatically by this condition, which simplifies memory management
for the JNI programmer.

Copying and pinning
The GC might, at any time, decide it needs to compact the garbage-collected heap.
Compaction involves physically moving objects from one address to another. These
objects might be referred to by a JNI local or global reference. To allow compaction
to occur safely, JNI references are not direct pointers to the heap. At least one level
of indirection isolates the native code from object movement.

If a native method needs to obtain direct addressability to the inside of an object,
the situation is more complicated. The requirement to directly address, or pin, the
heap is typical where there is a need for fast, shared access to large primitive
arrays. An example might include a screen buffer. In these cases a JNI critical
section can be used, which imposes additional requirements on the programmer, as
specified in the JNI description for these functions. See the JNI specification for
details.

94 IBM SDK for Java: SDK and Runtime Guide

v GetPrimitiveArrayCritical returns the direct heap address of a Java array,
disabling garbage collection until the corresponding
ReleasePrimitiveArrayCritical is called.

v GetStringCritical returns the direct heap address of a java.lang.String instance,
disabling garbage collection until ReleaseStringCritical is called.

All other Get<PrimitiveType>ArrayElements interfaces return a copy that is
unaffected by compaction.

When using the Balanced Garbage Collection Policy, the *Critical forms of the calls
might not return a direct pointer into the heap, which is reflected in the isCopy
flag. This behavior is due to an internal representation of larger arrays, where data
might not be sequential. Typically, an array with storage that is less than 1/1000th
of the heap, is returned as a direct pointer.

Using the isCopy flag
The JNI Get<Type> functions specify a pass-by-reference output parameter
(jboolean *isCopy) that allows the caller to determine whether a given JNI call is
returning the address of a copy or the address of the pinned object in the heap.

The Get<Type> and Release<Type> functions come in pairs:
v GetStringChars and ReleaseStringChars
v GetStringCritical and ReleaseStringCritical
v GetStringUTFChars and ReleaseStringUTFChars
v Get<PrimitiveType>ArrayElements and Release<PrimitiveType>ArrayElements
v GetPrimitiveArrayCritical and ReleasePrimitiveArrayCritical

If you pass a non-null address as the isCopy parameter, the JNI function sets the
jboolean value at that address to JNI_TRUE if the address returned is the address
of a copy of the array elements and JNI_FALSE if the address points directly into
the pinned object in the heap.

Except for the critical functions, the IBM JVM always returns a copy. Copying
eases the burden on the GC, because pinned objects cannot be compacted and
complicate defragmentation.

To avoid leaks, you must:
v Manage the copy memory yourself using the Get<Type>Region and

Set<Type>Region functions.
v Ensure that you free copies made by a Get<Type> function by calling the

corresponding Release<Type> function when the copy is no longer needed.

Using the mode flag
When you call Release<Type>ArrayElements, the last parameter is a mode flag. The
mode flag is used to avoid unnecessary copying to the Java heap when working
with a copied array. The mode flag is ignored if you are working with an array
that has been pinned.

You must call Release<Type> once for every Get<Type> call, regardless of the value
of the isCopy parameter. This step is necessary because calling Release<Type>
deletes JNI local references that might otherwise prevent garbage collection.

The possible settings of the mode flag are:

0 Update the data on the Java heap. Free the space used by the copy.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 95

JNI_COMMIT
Update the data on the Java heap. Do not free the space used by the copy.

JNI_ABORT
Do not update the data on the Java heap. Free the space used by the copy.

The ‘0' mode flag is the safest choice for the Release<Type> call. Whether the copy
of the data was changed or not, the heap is updated with the copy, and there are
no leaks.

To avoid having to copy back an unchanged copy, use the JNI_ABORT mode
value. If you alter the returned array, check the isCopy flag before using the
JNI_ABORT mode value to "roll back" changes. This step is necessary because a
pinning JVM leaves the heap in a different state than a copying JVM.

A generic way to use the isCopy and mode flags
Here is a generic way to use the isCopy and mode flags. It works with all JVMs
and ensures that changes are committed and leaks do not occur.

To use the flags in a generic way, ensure that you:
v Do not use the isCopy flag. Pass in null or 0.
v Always set the mode flag to zero.

A complicated use of these flags is necessary only for optimization. If you use the
generic way, you must still consider synchronization. See “Synchronization.”

Handling exceptions
Exceptions give you a way to handle errors in your application. Java has a clear
and consistent strategy for the handling of exceptions, but C/C++ code does not.
Therefore, the Java JNI does not throw an exception when it detects a fault. The
JNI does not know how, or even if, the native code of an application can handle it.

The JNI specification requires exceptions to be deferred; it is the responsibility of
the native code to check whether an exception has occurred. A set of JNI APIs are
provided for this purpose. A JNI function with a return code always sets an error if
an exception is pending. You do not need to check for exceptions if a JNI function
returns “success”, but you must check for an exception in an error case. If you do
not check, the next time you go through the JNI, the JNI code detects a pending
exception and throws it. An exception can be difficult to debug if it is thrown later
and, possibly, at a different point in the code from the point at which it was
created.

Note: The JNI ExceptionCheck function is a more optimal way of doing exception
checks than the ExceptionOccurred call, because the ExceptionOccurred call has to
create a local reference.

Synchronization
When you get array elements through a Get<Type>ArrayElements call, you must
think about synchronization.

Whether the data is pinned or not, two entities are involved in accessing the data:
v The Java code in which the data entity is declared and used
v The native code that accesses the data through the JNI

These two entities are probably separate threads, in which case contention occurs.

96 IBM SDK for Java: SDK and Runtime Guide

Consider the following scenario in a copying JNI implementation:
1. A Java program creates a large array and partially fills it with data.
2. The Java program calls native write function to write the data to a socket.
3. The JNI native that implements write() calls GetByteArrayElements.
4. GetByteArrayElements copies the contents of the array into a buffer, and

returns it to the native.
5. The JNI native starts writing a region from the buffer to the socket.
6. While the thread is busy writing, another thread (Java or native) runs and

copies more data into the array (outside the region that is being written).
7. The JNI native completes writing the region to the socket.
8. The JNI native calls ReleaseByteArrayElements with mode 0, to indicate that it

has completed its operation with the array.
9. The VM, seeing mode 0, copies back the whole contents of the buffer to the

array, and overwrites the data that was written by the second thread.

In this particular scenario, the code works with a pinning JVM. Because each
thread writes only its own bit of the data and the mode flag is ignored, no
contention occurs. This scenario is another example of how code that is not written
strictly to specification works with one JVM implementation and not with another.
Although this scenario involves an array elements copy, pinned data can also be
corrupted when two threads access it at the same time.

Be careful about how you synchronize access to array elements. You can use the
JNI interfaces to access regions of Java arrays and strings to reduce problems in
this type of interaction. In the scenario, the thread that is writing the data writes
into its own region. The thread that is reading the data reads only its own region.
This method works with every JNI implementation.

Debugging the JNI
If you think you have a JNI problem, there are checks you can run to help you
diagnose the JNI transitions.

Errors in JNI code can occur in several ways:
v The program crashes during execution of a native method (most common).
v The program crashes some time after returning from the native method, often

during GC (not so common).
v Bad JNI code causes deadlocks shortly after returning from a native method

(occasional).

If you think that you have a problem with the interaction between user-written
native code and the JVM (that is, a JNI problem), you can run checks that help you
diagnose the JNI transitions. To run these checks, specify the -Xcheck:jni option
when you start the JVM.

The -Xcheck:jni option activates a set of wrapper functions around the JNI
functions. The wrapper functions perform checks on the incoming parameters.
These checks include:
v Whether the call and the call that initialized JNI are on the same thread.
v Whether the object parameters are valid objects.
v Whether local or global references refer to valid objects.
v Whether the type of a field matches the Get<Type>Field or Set<Type>Field call.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 97

v Whether static and nonstatic field IDs are valid.
v Whether strings are valid and non-null.
v Whether array elements are non-null.
v The types on array elements.

Output from -Xcheck:jni is displayed on the standard error stream, and looks like:
JVMJNCK059W: JNI warning in FindClass: argument #2 is a malformed identifier ("invalid.name")
JVMJNCK090W: Warning detected in com/ibm/examples/JNIExample.nativeMethod() [Ljava/lang/String];

The first line indicates:
v The error level (error, warning, or advice).
v The JNI API in which the error was detected.
v An explanation of the problem.

The last line indicates the native method that was being executed when the error
was detected.

You can specify additional suboptions by using -Xcheck:jni:<suboption>[,<...>].
Useful suboptions are:

all
Check application and system classes.

verbose
Trace certain JNI functions and activities.

trace
Trace all JNI functions.

nobounds
Do not perform bounds checking on strings and arrays.

nonfatal
Do not exit when errors are detected.

nowarn
Do not display warnings.

noadvice
Do not display advice.

novalist
Do not check for va_list reuse (see the note at the end of this section).

pedantic
Perform more thorough, but slower checks.

valist
Check for va_list reuse (see the note at the end of the section).

help
Print help information.

The -Xcheck:jni option might reduce performance because it is thorough when it
validates the supplied parameters.

Note:

On some platforms, reusing a va_list in a second JNI call (for example, when
calling CallStaticVoidMethod() twice with the same arguments) causes the va_list

98 IBM SDK for Java: SDK and Runtime Guide

to be corrupted and the second call to fail. To ensure that the va_list is not
corrupted, use the standard C macro va_copy() in the first call. By default,
-Xcheck:jni ensures that va_lists are not being reused. Use the novalist suboption
to disable this check only if your platform allows reusing va_list without va_copy.
z/OS platforms allow va_list reuse, and by default -Xcheck:jni:novalist is used.
To enable va_list reuse checking, use the -Xcheck:jni:valist option.

JNI checklist
There are a number of items that you must remember when using the JNI.

The following table shows the JNI checklist:

Remember Outcome of nonadherence

Local references cannot be saved in global
variables.

Random crashes (depending on what you
pick up in the overwritten object space)
happen at random intervals.

Ensure that every global reference created
has a path that deletes that global reference.

Memory leak. It might throw a native
exception if the global reference storage
overflows. It can be difficult to isolate.

Always check for exceptions (or return
codes) on return from a JNI function.
Always handle a deferred exception
immediately you detect it.

Unexplained exceptions or undefined
behavior. Might crash the JVM.

Ensure that array and string elements are
always freed.

A small memory leak. It might fragment the
heap and cause other problems to occur
first.

Ensure that you use the isCopy and mode
flags correctly. See “A generic way to use the
isCopy and mode flags” on page 96.

Memory leaks, heap fragmentation, or both.

When you update a Java object in native
code, ensure synchronization of access.

Memory corruption.

Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java 99

100 IBM SDK for Java: SDK and Runtime Guide

Chapter 3. Planning

Information that you should know when planning to use or migrate the product,
such as supported environments and version compatibility.

Migrating from earlier IBM SDK or JREs
Important information to consider before upgrading from earlier versions of the
IBM SDK and JRE.

The IBM SDK for z/OS, V7 contains many new features and functions, which
might present planning considerations. For an overview, read the “What's new” on
page 6 section.

If you are migrating from IBM SDK Java Technology Edition V6, read the
following points:
v The default garbage collection policy in force is now the Generational

Concurrent garbage collector. For an overview, see “Generational Concurrent
Garbage Collector” on page 37.

v The JIT compiler can use more than one thread to convert method bytecodes
into native code, dynamically. If the default number of threads that are chosen
by the JVM is not optimum for your environment, you can configure the
number of threads by setting a system property. For more information, see
“How the JIT compiler optimizes code” on page 58.

v Shared class caches are now persistent by default on the AIX operating system.
For more information, see “-Xshareclasses” on page 439.

v Compressed references are now the default on all platforms except z/OS when
the value of the -Xmx option is less than or equal to 25 GB. For more information
about the use of compressed references, see “Compressed references” on page
27.

v Verbose garbage collection logging is redesigned. See “Verbose garbage
collection logging” on page 334.

v The JRIO component available in earlier versions of the IBM SDK for Java is
deprecated and will be removed in future releases. As an alternative, use the
record I/O facilities that are provided in the JZOS component.

v From service refresh 4: On certain platforms and processors, the JVM now starts
with large pages enabled by default for both the JIT codecache and the
objectheap, instead of the default operating system page size. For more
information, see “-Xlp” on page 435.

v From service refresh 4: The SDK uses the Oracle implementation of the java.util.*
package, including all classes within the package. Earlier releases of the SDK
used customized versions of the Apache Harmony class libraries. This change
establishes a common implementation point for the java.util.* package, enabling
consistent performance and behavior characteristics across Java implementations.

v For additional industry compatibility information, see “Version compatibility” on
page 102.

v For additional deprecated API information, see Oracle's Java 7 Deprecated API
List: http://download.oracle.com/javase/7/docs/api/deprecated-list.html

© Copyright IBM Corp. 2011, 2013 101

|
|
|
|

|
|
|
|
|

http://download.oracle.com/javase/7/docs/api/deprecated-list.html

Note: If you are migrating from IBM SDK Java Technology Edition V6 (J9 VM2.6),
only a subset of this list applies because VM version 2.6 is also provided with the
IBM SDK for z/OS, V7.

If you are migrating from a release before IBM SDK Java Technology Edition V6,
read the topic entitled “Migrating from earlier IBM SDK or JREs” in the
appropriate platform user guide for Java V6. These user guides can be found at the
following URL: http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp.

Version compatibility
In general, any application that ran with a previous version of the SDK should run
correctly with the IBM SDK for z/OS, V7. Classes that are compiled with this
release are not guaranteed to work on previous releases.

For information about compatibility issues between releases, see the Oracle Web
site at:

http://www.oracle.com/technetwork/java/javase/compatibility-417013.html

Supported environments
The IBM SDK for z/OS, V7 is supported on certain hardware platforms and
operating systems, and is tested on specific virtualization environments.

IBM SDK for z/OS

The z/OS 31-bit and 64-bit SDKs run on the following System z® hardware:
v zEnterprise EC12
v z196
v z10™

v z9-109
v z990
v z900
v z800
v z114

The following table shows the operating systems supported for each platform
architecture. The table also indicates whether support for an operating system
release was included at the "general availability" (GA) date for the SDK, or at a
specific service refresh (SR) level:

Table 1. z/OS environments tested

Operating system 31-bit SDK 64-bit SDK

z/OS 1.10 GA GA

z/OS 1.11 GA GA

z/OS 1.12 GA GA

z/OS 1.13 SR1 SR1

102 IBM SDK for Java: SDK and Runtime Guide

|

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp
http://www.oracle.com/technetwork/java/javase/compatibility-417013.html

Virtualization software

For information about the virtualization software tested, see “Support for
virtualization software” on page 479.

Chapter 3. Planning 103

104 IBM SDK for Java: SDK and Runtime Guide

Chapter 4. Installing and configuring the SDK

See the z/OS Web site for instructions about ordering, downloading, installing, and
verifying the SDK.

http://www.ibm.com/systems/z/os/zos/tools/java/

Working with BPXPRM settings
Some of the parameters in PARMLIB member BPXPRMxx might affect successful Java
operation by imposing limits on resources that are required.

The parameters described here do not cover the ones required for Class data
sharing. See “Considerations and limitations of using class data sharing” on page
166 for the parameters required for Class data sharing.

To see the current BPXPRMxx settings, enter the z/OS operator command D OMVS,O.
To show the highwater usage for some of the limits, enter the command D OMVS,L.
If you configure the BPXPRMxx LIMMSG parameter to activate the support, BPXInnnI
messages are reported when the usage approaches and reaches the limits. You can
use the SETOMVS command to change the settings without requiring an IPL.

Other products might impose their own requirements, but for Java the important
parameters and their suggested minimum values are:

Table 2. BPXPRM settings

Parameter Value

MAXPROCSYS 900

MAXPROCUSER 512

MAXUIDS 500

MAXTHREADS 10 000

MAXTHREADTASKS 5 000

MAXASSIZE 2 147 483 647

MAXCPUTIME 2 147 483 647

MAXMMAPAREA 40 960

IPCSEMNIDS 500

IPCSEMNSEMS 1 000

SHRLIBRGNSIZE 67 108 864

SHRLIBMAXPAGES 4 096

The lower of MAXTHREADS and MAXTHREADTASKS limits the number of threads that can
be created by a Java process.

MAXMMAPAREA limits the number of 4K pages that are available for memory-mapped
jar files through the environment variable JAVA_MMAP_MAXSIZE.

SHRLIBRGNSIZE controls how much storage is reserved in each address space for
mapping shared DLLs that have the +l extended attribute set. If this storage space

© Copyright IBM Corp. 2011, 2013 105

http://www.ibm.com/systems/z/os/zos/tools/java/

is exceeded, DLLs are loaded into the address space instead of using a single copy
of z/OS UNIX System Services storage that is shared between the address spaces.
Some of the Java SDK DLLs have the +l extended attribute set. The z/OS
command D OMVS,L shows the SHRLIBRGNSIZE size and peak usage. If this size is set
to a much higher value than is needed, Java might have problems acquiring native
(z/OS 31-bit) storage. These problems can cause a z/OS abend, such as 878-10, or
a Java OutOfMemoryError.

SHRLIBMAXPAGES is only available in z/OS 1.7 and earlier releases. This parameter is
like the SHRLIBRGNSIZE parameter, except that it is a number of 4K pages. The
parameter only applies to DLLs that have the .so suffix, but without the +l
extended attribute. This feature requires Extended System Queue Area (ESQA),
therefore must be used carefully.

For further information about the use of these parameters, see:
v z/OS MVS™ Initialization and Tuning Reference (SA22-7592)
v z/OS Unix System Services Planning Guide (GA22-7800)

Setting the region size
Java requires a suitable z/OS region size to operate successfully. It is suggested
that you do not restrict the region size, but allow Java to use what is necessary.
Restricting the region size might cause failures with storage-related error messages
or abends such as 878-10.

The region size might be affected by the following factors:
v JCL REGION parameter
v BPXPRMxx MAXASSIZE parameter
v RACF OMVS segment ASSIZEMAX parameter
v IEFUSI

You might want to exclude OMVS from using the IEFUSI exit by setting
SUBSYS(OMVS,NOEXITS) in PARMLIB member SMFPRMxx.

For further information, see the documentation about the host product under
which Java runs.

Setting MEMLIMIT
z/OS uses region sizes to determine the amount of storage available to running
programs. For the 64-bit product, set the MEMLIMIT parameter to include at least
1024 MB plus the largest expected JVM heap size value -Xmx.

See Limiting Storage use above the bar in z/Architecture for information about setting
the MEMLIMIT parameter: http://www.ibm.com/support/techdocs/atsmastr.nsf/
WebIndex/FLASH10165.

Setting LE runtime options
LE runtime options can affect both performance and storage usage. The optimum
settings will vary according to the host product and the Java application itself, but
it is important to have good general settings.

106 IBM SDK for Java: SDK and Runtime Guide

http://publibz.boulder.ibm.com/epubs/pdf/iea2e280.pdf
http://publibz.boulder.ibm.com/epubs/pdf/bpxzb280.pdf
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10165
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10165

The LE runtime options are documented in Language Environment Programming
Reference (SA22-7562) at http://publibz.boulder.ibm.com/epubs/pdf/ceea3180.pdf.

Java and other products that are written in C or C++ might have LE runtime
options embedded in the main programs by using #pragma runopts. These options
are chosen to provide suitable default values that assist the performance in a
typical environment. Any runtime overrides that you set might alter these values
in a way that degrades the performance of Java or the host product. The host
product's documentation might provide details of the product's default settings.
Changes to the product's #pragma runopts might occur as a result of version or
release changes. For details of how LE chooses the order of precedence of its
runtime options, refer to the Language Environment Programming Guide (SA22-7561)
at http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf.

Use the LE runtime option RPTOPTS(ON) as an override to write the options that are
in effect, to stderr on termination. See the host product documentation and the
Language Environment Programming Guide (SA22-7561) at http://
publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf for details of how to supply LE
runtime overrides. Before creating runtime overrides, run the application without
overrides, to determine the existing options based on LE defaults and #pragma
settings.

To tune the options, use the LE runtime option RPTSTG(ON) as an override, but be
aware that performance could be reduced when you use this option. The output
for RPTSTG(ON) also goes to stderr on termination. The Language Environment
Debugging Guide (GA22-7560) at http://publibz.boulder.ibm.com/epubs/pdf/
ceea1180.pdf explains RPTSTG(ON) output.

Setting LE 31-bit runtime options
There are a number of LE 31-bit options that are important for successful Java
operation.

These options are as follows:
v ANYHEAP

v HEAP

v HEAPPOOLS

v STACK

v STORAGE

v THREADSTACK

You can change any, or all, of these options, however if you set the wrong values
this might affect performance. The following values are a suggested starting point
for these options:
ANYHEAP(2M,1M,ANY,FREE)
HEAP(80M,4M,ANY,KEEP)
HEAPPOOLS(ON,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0, 10,0,10,0,10,0,10,0,10)
STACK(64K,16K,ANY,KEEP,128K,128K)
STORAGE(NONE,NONE,NONE,0K)
THREADSTACK(OFF,64K,16K,ANY,KEEP,128K,128K)

ANYHEAP and HEAP initial allocations (parameter 1) might be too large for
transaction-based systems such as CICS®. Java applications that use many
hundreds of threads might need to adjust the STACK initial and increment
allocations (parameters 1, 2, 5 and 6) based on the RPTSTG(ON) output, which shows
the maximum stack sizes that are used by a thread inside the application.

Chapter 4. Installing and configuring the SDK 107

http://publibz.boulder.ibm.com/epubs/pdf/ceea3180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea1180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea1180.pdf

HEAPPOOLS(ON) should improve performance, but the LE-supplied default settings
for the cell size and percentage pairs are not optimized for the best performance or
storage usage.

For additional information, including how to set the LE runtime options, see:
v the z/OS Language Environment Programming Reference (SA22-7562) at

http://publibz.boulder.ibm.com/epubs/pdf/ceea3180.pdf
v the z/OS Language Environment Programming Guide (SA22-7561) at

http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf
v the host product documentation

Setting LE 64-bit runtime options
There are 64-bit versions of some of the runtime options.

These 64-bit options are as follows:
v HEAP64

v HEAPPOOLS64

v STACK64

v THREADSTACK64

A suggested start point for HEAP64 as an override is
HEAP64(512M,4M,KEEP,16M,4M,KEEP,0K,0K,FREE).

The following LE defaults should be appropriate:
STACK64(1M,1M,128M) THREADSTACK64(OFF,1M,1M,128M)
HEAPPOOLS64(OFF,8,4000,32,2000,128,700,256,350.1024,100,2048,50,

3072,50,4096,50,8192,25,16384,10,32768,5,65536,5)

Before you set an override for HEAPPOOLS64, use RPTOPTS(ON) or RPTSTG(ON) and
check the result of #pragma runopts. Check this because the host product might
have already set cell sizes and numbers that are known to produce good
performance.

Also, these settings are dependant on a suitable MEMLIMIT setting. Based on these
suggested LE 64-bit runtime options, the JVM requirement is a minimum of 512
MB as set for HEAP64 (which should include HEAPPOOLS64), plus an initial value for
STACK64 of 1 MB times the expected maximum number of concurrent threads, plus
the largest expected JVM heap –Xmx value.

Marking failures
The Java launcher can mark the z/OS Task Control Block (TCB) with an abend
code when the launcher fails to load the VM or is terminated by an uncaught
exception. To start TCB marking, set the environment variable
IBM_JAVA_ABEND_ON_FAILURE=Y.

By default, the Java launcher will not mark the TCB.

Setting the path
If you alter the PATH environment variable, you will override any existing Java
launchers in your path.

108 IBM SDK for Java: SDK and Runtime Guide

http://publibz.boulder.ibm.com/epubs/pdf/ceea3180.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea2180.pdf

About this task

The PATH environment variable enables z/OS to find programs and utilities, such
as javac, java, and javadoc tool, from any current directory. To display the current
value of your PATH, type the following command at a command prompt:
echo $PATH

To add the Java launchers to your path:
1. Edit the shell startup file in your home directory (typically .bashrc, depending

on your shell) and add the absolute paths to the PATH environment variable; for
example:
export PATH=/usr/lpp/java/J7.0[_64]/bin:/usr/lpp/java/J7.0[_64]/jre/bin:$PATH

2. Log on again or run the updated shell script to activate the new PATH
environment variable.

Results

After setting the path, you can run a tool by typing its name at a command
prompt from any directory. For example, to compile the file Myfile.Java, at a
command prompt, type:
javac Myfile.Java

Setting the class path
The class path tells the SDK tools, such as java, javac, and the javadoc tool, where
to find the Java class libraries.

About this task

You should set the class path explicitly only if:
v You require a different library or class file, such as one that you develop, and it

is not in the current directory.
v You change the location of the bin and lib directories and they no longer have

the same parent directory.
v You plan to develop or run applications using different runtime environments

on the same system.

To display the current value of your CLASSPATH environment variable, type the
following command at a shell prompt:

echo $CLASSPATH

If you develop and run applications that use different runtime environments,
including other versions that you have installed separately, you must set the
CLASSPATH and PATH explicitly for each application. If you run multiple applications
simultaneously and use different runtime environments, each application must run
in its own shell prompt.

Updating your SDK or JRE for daylight saving time changes
You can apply recent changes to daylight saving time using the IBM Time Zone
Update Utility for Java (JTZU).

Chapter 4. Installing and configuring the SDK 109

About this task

Many countries around the world use a daylight saving time (DST) convention.
Typically, clocks move forward by one hour during the summer months to create
more daylight hours during the afternoon and less during the morning. This
practice has many implications, including the need to adjust system clocks in
computer systems. Occasionally, countries change their DST start and end dates.
These changes can affect the date and time functions in applications, because the
original start and end dates are programmed into the operating system and in Java
software. To avoid this problem you must update operating systems and Java
installations with the new DST information.

The Olson time zone database is an external resource that compiles information
about the time zones around the world. This database establishes standard names
for time zones, such as "America/New_York", and provides regular updates to
time zone information that can be used as reference data. To ensure that Java JREs
and SDKs contain up to date DST information, IBM incorporates the latest Olson
update into each Java service refresh. To find out which Olson time zone update is
included for a particular service refresh, see https://www.ibm.com/
developerworks/java/jdk/dst/olson_table.html.

If a DST change has been introduced since the last service refresh, you can use
JTZU to directly update your Java installation. You can also use this tool to update
your installation if you are unable to move straight to the latest service refresh.
JTZU is available from IBM developerWorks using the following link:
https://www.ibm.com/developerworks/java/jdk/dst/jtzu.html.

Results

After updating your Java installation with any recent DST changes, your
application can handle time and date calculations correctly.

Running the JVM under a different code page
Java for z/OS is shipped in only one version, for EN_US. To run Java under a
different locale, convert all the text files in your Java installation from the default
(IBM-1047) to your code page.

The jdkconv utility converts text files to a local encoding. The utility might be
helpful if you get error messages about an invalid format for text files. To check if
your code page setting might be the cause of the problem, find which locale you
are using by checking the environment variables LANG or LC_ALL. If the locale value
is not C or EN_US then you might see the invalid format message.

To convert your Java installation to a different code page, use the jdkconv utility.
The utility requires a tool called cpmod, which is also provided in your Java
installation.
1. Make a copy of your Java installation directory. The reason is that the script

overwrites files in the Java installation directory. If you want to undo the
changes, you must either reinstall Java, or restore your copy of the directory.

2. The jdkconv utility itself is shipped in code page IBM-1047. Before you run the
utility, convert it to your code page as follows:
cp -p jdkconv jdkconv.backup
iconv -f IBM-1047 -t CODEPAGE jdkconv.backup >jdkconv
chmod 755 jdkconv

110 IBM SDK for Java: SDK and Runtime Guide

https://www.ibm.com/developerworks/java/jdk/dst/olson_table.html
https://www.ibm.com/developerworks/java/jdk/dst/olson_table.html
https://www.ibm.com/developerworks/java/jdk/dst/jtzu.html

In this command sequence, replace CODEPAGE with your code page.
3. Ensure that the directory containing both jdkconv and cpmod is in your PATH

setting.
4. Run jdkconv as follows:

jdkconv CODEPAGE JAVATREE

In this command, CODEPAGE is your code page, and JAVATREE is your Java
installation directory.

After running the jdkconv utility, test the changes by running a Java application
that is sensitive to the system locale.

Using non-default system fonts
If your operating system is z/OS V1.13 or earlier, you must install fonts separately,
and optionally edit the Java fonts configuration properties file. For z/OS V2.1 and
later, fonts are provided with the operating system by default, and no
configuration is required.

About this task

Earlier releases of the z/OS operating system did not include font packages. From
V2.1, fonts from the following packages are included by default, in the
/usr/lpp/fonts/worldtype directory:
v AFP Font Collection for S/390™ (5648-B33)
v IBM Infoprint Fonts for z/OS V1.1 (5648-E76)
v World Type fonts that were not previously available in the z/OS operating

system but form part of the InfoPrint Font Collection V3.1

Procedure

Complete these steps if you have z/OS V 1.13 or earlier. Later versions do not
require configuration.
1. Purchase the font packages that you require. For example, you could purchase

Infoprint WorldType Fonts for AFP Clients as part of program 5648-E77.
2. Install the font packages. Further configuration depends on where you install

the packages:
v If you install into the following directory, you do not have to do any further

configuration, but the fonts are removed when you apply a service refresh,
and must be replaced afterwards:
– For IBM SDK Java Technology Edition, V7 service refresh 5 and earlier:

lib_dir/fonts

– For IBM SDK Java Technology Edition, V7 service refresh 6 and later:
/usr/lpp/fonts/worldtype

v If you install to a location outside install_dir, the fonts are unaffected when
you apply a service refresh. However, you must edit the Java font
configuration properties file, which is affected by service refreshes, so
changes that you make must be reapplied.

Note: These instructions assume that the font files are called mtsansdj.ttf and
tnrwt_j.ttf. Depending on the font package that you purchased, your font file
names might be different, in which case you must rename the files. For an
example, see PM05140: Missing fonts on z/OS.

Chapter 4. Installing and configuring the SDK 111

|
|

http://www-01.ibm.com/support/docview.wss?uid=swg1PM05140

3. If you installed in a directory other than lib_dir/fonts or
/usr/lpp/fonts/worldtype, modify the lib_dir/fontconfig.properties.src file
by changing the paths in the following section:
Font File Names
filename.-Monotype-TimesNewRomanWT-medium-r-normal--*-%d-75-75-*
-*-jisx0208.1983-0=font_path/tnrwt_j.ttf
filename.-Monotype-SansMonoWT-medium-r-normal--*-%d-75-75-*-*-ji
sx0208.1983-0=font_path/mtsansdj.ttf

Where font_path depends on your level of IBM SDK Java Technology Edition,
V7:
v For IBM SDK Java Technology Edition, V7 service refresh 5 and earlier:

$JRE_LIB_FONTS

v For IBM SDK Java Technology Edition, V7 service refresh 6 and later:
/usr/lpp/fonts/worldtype

Change the paths to match your font install location, then save a copy of the
properties file so you can reapply the changes after you upgrade to a new
service refresh.

Related information:

Information for Acquiring and Installing Fonts for z/OS Java

112 IBM SDK for Java: SDK and Runtime Guide

|
|

http://www-03.ibm.com/systems/z/os/zos/tools/java/faq/fontinfo.html

Chapter 5. Developing Java applications

The SDK contains many tools and libraries required for Java software
development.

See “IBM Software Developers Kit (SDK)” on page 1 for details of the tools
available.

Using XML
The IBM SDK contains the XML4J and XL XP-J parsers, the XL TXE-J 1.0 XSLT
compiler, and the XSLT4J XSLT interpreter. These tools allow you to parse,
validate, transform, and serialize XML documents independently from any given
XML processing implementation.

Use factory finders to locate implementations of the abstract factory classes, as
described in “Selecting an XML processor” on page 114. By using factory finders,
you can select a different XML library without changing your Java code.

Available XML libraries

The IBM SDK for Java contains the following XML libraries:

XML4J 4.5

XML4J is a validating parser providing support for the following
standards:
v XML 1.0 (4th edition)
v Namespaces in XML 1.0 (2nd edition)
v XML 1.1 (2nd edition)
v Namespaces in XML 1.1 (2nd edition)
v W3C XML Schema 1.0 (2nd Edition)
v XInclude 1.0 (2nd Edition)
v OASIS XML Catalogs 1.0
v SAX 2.0.2
v DOM Level 3 Core, Load and Save
v DOM Level 2 Core, Events, Traversal and Range
v JAXP 1.4

XML4J 4.5 is based on Apache Xerces-J 2.9.0. See http://xerces.apache.org/
xerces2-j/ for more information.

XL XP-J 1.1

XL XP-J 1.1 is a high-performance non-validating parser that provides
support for StAX 1.0 (JSR 173). StAX is a bidirectional API for pull-parsing
and streaming serialization of XML 1.0 and XML 1.1 documents. See the
“XL XP-J reference information” on page 118 section for more details about
what is supported by XL XP-J 1.1.

XL TXE-J 1.0

© Copyright IBM Corp. 2011, 2013 113

http://xerces.apache.org/xerces2-j/
http://xerces.apache.org/xerces2-j/

For Version 5.0, the IBM SDK for Java included the XSLT4J compiler and
interpreter. The XSLT4J interpreter was used by default.

For Version 6 and later, the IBM SDK for Java includes XL TXE-J. XL TXE-J
includes the XSLT4J 2.7.8 interpreter and a new XSLT compiler. The new
compiler is used by default. The XSLT4J compiler is no longer included
with the IBM SDK for Java. See “Migrating to the XL-TXE-J” on page 115
for information about migrating to XL TXE-J.

XL TXE-J provides support for the following standards:
v XSLT 1.0
v XPath 1.0
v JAXP 1.4

Selecting an XML processor

XML processor selection is performed using service providers. When using a
factory finder, Java looks in the following places, in this order, to see which service
provider to use:
1. The system property with the same name as the service provider.
2. The service provider specified in a properties file.

v For XMLEventFactory, XMLInputFactory, and XMLOutputFactory only. The
value of the service provider in the file /usr/lpp/java/J7.0[_64]/jre/lib/
stax.properties.

v For other factories. The value of the service provider in the file
/usr/lpp/java/J7.0[_64]/jre/lib/jaxp.properties.

3. The contents of the META-INF/services/<service.provider> file.
4. The default service provider.

The following service providers control the XML processing libraries used by Java:

javax.xml.parsers.SAXParserFactory
Selects the SAX parser. By default,
org.apache.xerces.jaxp.SAXParserFactoryImpl from the XML4J library is used.

javax.xml.parsers.DocumentBuilderFactory
Selects the document builder. By default,
org.apache.xerces.jaxp.DocumentBuilderFactoryImpl from the XML4J library is
used.

javax.xml.datatype.DatatypeFactory
Selects the datatype factory. By default,
org.apache.xerces.jaxp.datatype.DatatypeFactoryImpl from the XML4J library is
used.

javax.xml.stream.XMLEventFactory
Selects the StAX event factory. By default,
com.ibm.xml.xlxp.api.stax.XMLEventFactoryImpl from the XL XP-J library is
used.

javax.xml.stream.XMLInputFactory
Selects the StAX parser. By default,
com.ibm.xml.xlxp.api.stax.XMLInputFactoryImpl from the XL XP-J library is
used.

114 IBM SDK for Java: SDK and Runtime Guide

javax.xml.stream.XMLOutputFactory
Selects the StAX serializer. By default,
com.ibm.xml.xlxp.api.stax.XMLOutputFactoryImpl from the XL XP-J library is
used.

javax.xml.transform.TransformerFactory
Selects the XSLT processor. Possible values are:

com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl
Use the XL TXE-J compiler. This value is the default.

org.apache.xalan.processor.TransformerFactoryImpl
Use the XSLT4J interpreter.

javax.xml.validation.SchemaFactory:http://www.w3.org/2001/XMLSchema
Selects the schema factory for the W3C XML Schema language. By default,
org.apache.xerces.jaxp.validation.XMLSchemaFactory from the XML4J library is
used.

javax.xml.xpath.XPathFactory
Selects the XPath processor. By default,
org.apache.xpath.jaxp.XPathFactoryImpl from the XSLT4J library is used.

Migrating to the XL-TXE-J
From Version 6, the XL TXE-J compiler replaces the XSLT4J interpreter as the
default XSLT processor. If you are migrating applications from older versions of
Java, follow these steps to prepare your application for the new library.

About this task

The XL TXE-J compiler is faster than the XSLT4J interpreter when you are applying
the same transformation more than once. If you perform each individual
transformation only once, the XL TXE-J compiler is slower than the XSLT4J
interpreter because compilation and optimization reduce performance.

To continue using the XSLT4J interpreter as your XSLT processor, set the
javax.xml.transform.TransformerFactory service provider to
org.apache.xalan.processor.TransformerFactoryImpl.

To migrate to the XL-TXE-J compiler, follow the instructions in this task.

Procedure
1. Use com.ibm.xtq.xslt.jaxp.compiler.TransformerFactoryImpl when setting the

javax.xml.transform.TransformerFactory service provider.
2. Regenerate class files generated by the XSLT4J compiler. XL TXE-J cannot

execute class files generated by the XSLT4J compiler.
3. Some methods generated by the compiler might exceed the JVM method size

limit, in which case the compiler attempts to split these methods into smaller
methods.
v If the compiler splits the method successfully, you receive the following

warning:
Some generated functions exceeded the JVM method size limit and were
automatically split into smaller functions. You might get better
performance by manually splitting very large templates into smaller
templates, by using the 'splitlimit' option to the Process or Compile
command, or by setting the 'http://www.ibm.com/xmlns/prod/xltxe-j/

Chapter 5. Developing Java applications 115

split-limit' transformer factory attribute.You can use the compiled
classes, but you might get better performance by controlling the split limit
manually.

v If the compiler does not split the method successfully, you receive one of the
following exceptions:
com.ibm.xtq.bcel.generic.ClassGenException: Branch target offset too
large for short or
bytecode array size > 65535 at offset=#####Try setting the split limit
manually, or decreasing the split limit.

To set the split limit, use the -SPLITLIMIT option when using the Process or
Compile commands, or the http://www.ibm.com/xmlns/prod/xltxe-j/split-
limit transformer factory attribute when using the transformer factory. The
split limit can be between 100 and 2000. When setting the split limit manually,
use the highest split limit possible for best performance.

4. XL TXE-J might need more memory than the XSLT4J compiler. If you are
running out of memory or performance seems slow, increase the size of the
heap using the -Xmx option.

5. Migrate your application to use the new attribute keys. The old transformer
factory attribute keys are deprecated. The old names are accepted with a
warning.

Table 3. Changes to attribute keys from the XSL4J compiler to the XL TXE-J compiler

XSL4J compiler attribute XL TXE-J compiler attribute

translet-name http://www.ibm.com/xmlns/prod/xltxe-j/translet-name

destination-directory http://www.ibm.com/xmlns/prod/xltxe-j/destination-
directory

package-name http://www.ibm.com/xmlns/prod/xltxe-j/package-name

jar-name http://www.ibm.com/xmlns/prod/xltxe-j/jar-name

generate-translet http://www.ibm.com/xmlns/prod/xltxe-j/generate-translet

auto-translet http://www.ibm.com/xmlns/prod/xltxe-j/auto-translet

use-classpath http://www.ibm.com/xmlns/prod/xltxe-j/use-classpath

debug http://www.ibm.com/xmlns/prod/xltxe-j/debug

indent-number http://www.ibm.com/xmlns/prod/xltxe-j/indent-number

enable-inlining Obsolete in new compiler

6. Optional: For best performance, ensure that you are not recompiling XSLT
transformations that can be reused. Use one of the following methods to reuse
compiled transformations:
v If your stylesheet does not change at run time, compile the stylesheet as part

of your build process and put the compiled classes on your classpath. Use
the org.apache.xalan.xsltc.cmdline.Compile command to compile the
stylesheet and set the http://www.ibm.com/xmlns/prod/xltxe-j/use-
classpath transformer factory attribute to true to load the classes from the
classpath.

v If your application will use the same stylesheet during multiple runs, set the
http://www.ibm.com/xmlns/prod/xltxe-j/auto-translet transformer factory
attribute to true to automatically save the compiled stylesheet to disk for
reuse. The compiler will use a compiled stylesheet if it is available, and
compile the stylesheet if it is not available or is out-of-date. Use the
http://www.ibm.com/xmlns/prod/xltxe-j/destination-directory transformer

116 IBM SDK for Java: SDK and Runtime Guide

factory attribute to set the directory used to store compiled stylesheets. By
default, compiled stylesheets are stored in the same directory as the
stylesheet.

v If your application is a long-running application that reuses the same
stylesheet, use the transformer factory to compile the stylesheet and create a
Templates object. You can use the Templates object to create Transformer
objects without recompiling the stylesheet. The Transformer objects can also
be reused but are not thread-safe.

v If your application uses each stylesheet just once or a very small number of
times, or you are unable to make any of the other changes listed in this step,
you might want to continue to use the XSLT4J interpreter by setting the
javax.xml.transform.TransformerFactory service provider to
org.apache.xalan.processor.TransformerFactoryImpl.

Securing JAXP processing against malformed input
If your application takes untrusted XML, XSD or XSL files as input, you can
enforce specific limits during JAXP processing to protect your application from
malformed data. If you specify limits, you must override the default XML parser
configuration with a custom configuration.

About this task

To protect your application from malformed data, you can enforce specific limits
during JAXP processing. These limits can be set in your jaxp.properties file, or by
specifying various system properties on the command line. However, for these
limits to take effect you must also override the default XML parser configuration
with a custom configuration that allows these secure processing limits.

Procedure
1. Select the limits that you want to set for your application.

a. To limit the number of entity expansions in an XML document, see
“-Djdk.xml.entityExpansionLimit” on page 424.

b. To limit the maximum size of a general entity, see
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 424.

c. To limit the maximum size of a parameter entity, see
“-Djdk.xml.maxParameterEntitySizeLimit” on page 425

d. To limit the total size of all entities that include general and parameter
entities, see “-Djdk.xml.totalEntitySizeLimit” on page 426

e. To define the maximum number of content model nodes that can be created
in a grammar, see “-Djdk.xml.maxOccur” on page 425

2. To override the default XML parser configuration, set the custom configuration
by specifying the following system property on the command line:
-Dorg.apache.xerces.xni.parser.XMLParserConfiguration=config_file, where
config_file is org.apache.xerces.parsers.SecureProcessingConfiguration. For
more information about the full override mechanism, see http://
xerces.apache.org/xerces2-j/faq-xni.html#faq-2.

XML reference information
The XL XP-J and XL TXE-J XML libraries are new for Version 6 of the SDK. This
reference information describes the features supported by these libraries.

Chapter 5. Developing Java applications 117

|

|
|
|
|

|

|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|

http://xerces.apache.org/xerces2-j/faq-xni.html#faq-2
http://xerces.apache.org/xerces2-j/faq-xni.html#faq-2

XL XP-J reference information
XL XP-J 1.1 is a high-performance non-validating parser that provides support for
StAX 1.0 (JSR 173). StAX is a bidirectional API for pull-parsing and streaming
serialization of XML 1.0 and XML 1.1 documents.

Unsupported features

The following optional StAX features are not supported by XL XP-J:
v DTD validation when using an XMLStreamReader or XMLEventReader. The XL

XP-J parser is non-validating.
v When using an XMLStreamReader to read from a character stream

(java.io.Reader), the Location.getCharaterOffset() method always returns -1. The
Location.getCharaterOffset() returns the byte offset of a Location when using an
XMLStreamReader to read from a byte stream (java.io.InputStream).

XMLInputFactory reference

The javax.xml.stream.XMLInputFactory implementation supports the following
properties, as described in the XMLInputFactory Javadoc information:
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/
XMLInputFactory.html.

Property name Supported?

javax.xml.stream.isValidating No. The XL XP-J scanner does not support validation.

javax.xml.stream.isNamespaceAware Yes, supports true and false. For XMLStreamReaders
created from DOMSources, namespace processing
depends on the methods that were used to create the
DOM tree, and this value has no effect.

javax.xml.stream.isCoalescing Yes

javax.xml.stream.isReplacingEntityReferences Yes. For XMLStreamReaders created from DOMSources,
if entities have already been replaced in the DOM tree,
setting this parameter has no effect.

javax.xml.stream.isSupportingExternalEntities Yes

javax.xml.stream.supportDTD True is always supported. Setting the value to false
works only if the
com.ibm.xml.xlxp.support.dtd.compat.mode system
property is also set to false.

When both properties are set to false, parsers created by
the factory throw an XMLStreamException when they
encounter an entity reference that requires expansion.
This setting is useful for protecting against Denial of
Service (DoS) attacks involving entities declared in the
DTD.

Setting the value to false does not work before Service
Refresh 2.

javax.xml.stream.reporter Yes

javax.xml.stream.resolver Yes

XL XP-J also supports the optional method
createXMLStreamReader(javax.xml.transform.Source), which allows StAX readers to
be created from DOM and SAX sources.

118 IBM SDK for Java: SDK and Runtime Guide

http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLInputFactory.html
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLInputFactory.html

XL XP-J also supports the javax.xml.stream.isSupportingLocationCoordinates
property. If you set this property to true, XMLStreamReaders created by the factory
return accurate line, column, and character information using Location objects. If
you set this property to false, line, column, and character information is not
available. By default, this property is set to false for performance reasons.

XMLStreamReader reference

The javax.xml.stream.XMLStreamReader implementation supports the following
properties, as described in the XMLStreamReader Javadoc: http://
download.oracle.com/javase/7/docs/api/javax/xml/stream/
XMLStreamReader.html.

Property name Supported?

javax.xml.stream.entities Yes

javax.xml.stream.notations Yes

XL XP-J also supports the javax.xml.stream.isInterning property. This property
returns a boolean value indicating whether or not XML names and namespace
URIs returned by the API calls have been interned by the parser. This property is
read-only.

XMLOutputFactory reference

The javax.xml.stream.XMLOutputFactory implementation supports the following
properties, as described in the XMLOutputFactory Javadoc: http://
download.oracle.com/javase/7/docs/api/javax/xml/stream/
XMLOutputFactory.html.

Property name Supported?

javax.xml.stream.isRepairingNamespaces Yes

XL XP-J also supports the
javax.xml.stream.XMLOutputFactory.recycleWritersOnEndDocument property. If
you set this property to true, XMLStreamWriters created by this factory are
recycled when writeEndDocument() is called. After recycling, some
XMLStreamWriter methods, such as getNamespaceContext(), must not be called.
By default, XMLStreamWriters are recycled when close() is called. You must call
the XMLStreamWriter.close() method when you have finished with an
XMLStreamWriter, even if this property is set to true.

XMLStreamWriter reference

The javax.xml.stream.XMLStreamWriter implementation supports the following
properties, as described in the XMLStreamWriter Javadoc: http://
download.oracle.com/javase/7/docs/api/javax/xml/stream/
XMLStreamWriter.html.

Property name Supported?

javax.xml.stream.isRepairingNamespaces Yes

Properties on XMLStreamWriter objects are read-only.

Chapter 5. Developing Java applications 119

http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLStreamReader.html
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLStreamReader.html
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLStreamReader.html
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLOutputFactory.html
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLOutputFactory.html
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLOutputFactory.html
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLStreamWriter.html
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLStreamWriter.html
http://download.oracle.com/javase/7/docs/api/javax/xml/stream/XMLStreamWriter.html

XL XP-J also supports the
javax.xml.stream.XMLStreamWriter.isSetPrefixBeforeStartElement property. This
property returns a Boolean indicating whether calls to setPrefix() and
setDefaultNamespace() should occur before calls to writeStartElement() or
writeEmptyElement() to put a namespace prefix in scope for that element. XL XP-J
always returns false; calls to setPrefix() and setDefaultNamespace() should occur
after writeStartElement() or writeEmptyElement().

XL TXE-J reference information
XL TXE-J is an XSLT library containing the XSLT4J 2.7.8 interpreter and a XSLT
compiler.

Feature comparison table

Table 4. Comparison of the features in the XSLT4J interpreter, the XSLT4J compiler, and the XL TXE-J compiler.

Feature
XSLT4J interpreter
(included)

XSLT4J compiler
(not included)

XL TXE-J compiler
(included)

http://javax.xml.transform.stream.StreamSource/
feature feature

Yes Yes Yes

http://javax.xml.transform.stream.StreamResult/
feature feature

Yes Yes Yes

http://javax.xml.transform.dom.DOMSource/
feature feature

Yes Yes Yes

http://javax.xml.transform.dom.DOMResult/
feature feature

Yes Yes Yes

http://javax.xml.transform.sax.SAXSource/feature
feature

Yes Yes Yes

http://javax.xml.transform.sax.SAXResult/feature
feature

Yes Yes Yes

http://javax.xml.transform.stax.StAXSource/feature
feature

Yes No Yes

http://javax.xml.transform.stax.StAXResult/feature
feature

Yes No Yes

http://
javax.xml.transform.sax.SAXTransformerFactory/
feature feature

Yes Yes Yes

http://
javax.xml.transform.sax.SAXTransformerFactory/
feature/xmlfilter feature

Yes Yes Yes

http://javax.xml.XMLConstants/feature/secure-
processing feature

Yes Yes Yes

http://xml.apache.org/xalan/features/incremental
attribute

Yes No No

http://xml.apache.org/xalan/features/optimize
attribute

Yes No No

http://xml.apache.org/xalan/properties/source-
location attribute

Yes No No

translet-name attribute N/A Yes Yes (with new
name)

destination-directory attribute N/A Yes Yes (with new
name)

120 IBM SDK for Java: SDK and Runtime Guide

Table 4. Comparison of the features in the XSLT4J interpreter, the XSLT4J compiler, and the XL TXE-J
compiler. (continued)

Feature
XSLT4J interpreter
(included)

XSLT4J compiler
(not included)

XL TXE-J compiler
(included)

package-name attribute N/A Yes Yes (with new
name)

jar-name attribute N/A Yes Yes (with new
name)

generate-translet attribute N/A Yes Yes (with new
name)

auto-translet attribute N/A Yes Yes (with new
name)

use-classpath attribute N/A Yes Yes (with new
name)

enable-inlining attribute No Yes No (obsolete in TL
TXE-J)

indent-number attribute No Yes Yes (with new
name)

debug attribute No Yes Yes (with new
name)

Java extensions Yes Yes (abbreviated
syntax only,
xalan:component/
xalan:script
constructs not
supported)

Yes (abbreviated
syntax only,
xalan:component/
xalan:script
constructs not
supported)

JavaScript extensions Yes No No

Extension elements Yes No No

EXSLT extension functions Yes Yes (excluding
dynamic)

Yes (excluding
dynamic)

redirect extension Yes Yes (excluding
redirect:open and
redirect:close)

Yes

output extension No Yes Yes

nodeset extension Yes Yes Yes

NodeInfo extension functions Yes No No

SQL library extension Yes No No

pipeDocument extension Yes No No

evaluate extension Yes No No

tokenize extension Yes No No

XML 1.1 Yes Yes Yes

Notes
1. With the Process command, use -FLAVOR sr2sw to transform using StAX stream

processing, and -FLAVOR er2ew for StAX event processing.
2. The new compiler does not look for the

org.apache.xalan.xsltc.dom.XSLTCDTMManager service provider. Instead, if
StreamSource is used, the compiler switches to a high-performance XML parser.

Chapter 5. Developing Java applications 121

3. Inlining is obsolete in XL TXE-J.
v The -XN option to the Process command is silently ignored.
v The -n option to the Compile command is silently ignored.
v The enable-inlining transformer factory attribute is silently ignored.

4. The org.apache.xalan.xsltc.trax.SmartTransformerFactoryImpl class is no longer
supported.

Using an older version of Xerces or Xalan
If you are using an older version of Xerces (before 2.0) or Xalan (before 2.3) in the
endorsed override, you might get a NullPointerException when you start your
application. This exception occurs because these older versions do not handle the
jaxp.properties file correctly.

About this task

To avoid this situation, use one of the following workarounds:
v Upgrade to a newer version of the application that implements the latest Java

API for XML Programming (JAXP) specification (https://jaxp.dev.java.net/).
v Remove the jaxp.properties file from /usr/lpp/java/J7.0[_64]/jre/lib.
v Uncomment the entries in the jaxp.properties file in /usr/lpp/java/J7.0[_64]/

jre/lib.
v Set the system property for javax.xml.parsers.SAXParserFactory,

javax.xml.parsers.DocumentBuilderFactory, or
javax.xml.transform.TransformerFactory using the -D command-line option.

v Set the system property for javax.xml.parsers.SAXParserFactory,
javax.xml.parsers.DocumentBuilderFactory, or
javax.xml.transform.TransformerFactory in your application. For an example,
see the JAXP 1.4 specification.

v Explicitly set the SAX parser, Document builder, or Transformer factory using
the IBM_JAVA_OPTIONS environment variable.
export IBM_JAVA_OPTIONS=-Djavax.xml.parsers.SAXParserFactory=

org.apache.xerces.jaxp.SAXParserFactoryImpl

or
export IBM_JAVA_OPTIONS=-Djavax.xml.parsers.DocumentBuilderFactory=

org.apache.xerces.jaxp.DocumentBuilderFactoryImpl

or
export IBM_JAVA_OPTIONS=-Djavax.xml.transform.TransformerFactory=

org.apache.xalan.processor.TransformerFactoryImpl

Debugging Java applications
To debug Java programs, you can use the Java Debugger (JDB) application or other
debuggers that communicate by using the Java Platform Debugger Architecture
(JPDA) that is provided by the SDK for the operating system.

More information about problem diagnosis using Java can be found in the
Diagnostic GuideChapter 9, “Troubleshooting and support,” on page 173.

Java Debugger (JDB)
The Java Debugger (JDB) is included in the SDK. The debugger is started with the
jdb command; it attaches to the JVM using JPDA.

122 IBM SDK for Java: SDK and Runtime Guide

To debug a Java application:
1. Start the JVM with the following options:

java -agentlib:jdwp=transport=dt_socket,server=y,address=<port> <class>

The JVM starts up, but suspends execution before it starts the Java application.
2. In a separate session, you can attach the debugger to the JVM:

jdb -attach <port>

The debugger will attach to the JVM, and you can now issue a range of
commands to examine and control the Java application; for example, type run
to allow the Java application to start.

For more information about JDB options, type:
jdb -help

For more information about JDB commands:
1. Type jdb

2. At the jdb prompt, type help

You can also use JDB to debug Java applications running on remote workstations.
JPDA uses a TCP/IP socket to connect to the remote JVM.
1. Start the JVM with the following options:

java -agentlib:jdwp=transport=dt_socket,server=y,address=<port> <class>

The JVM starts up, but suspends execution before it starts the Java application.
2. Attach the debugger to the remote JVM:

jdb -attach <host>:<port>

The Java Virtual Machine Debugging Interface (JVMDI) is not supported in this
release. It has been replaced by the Java Virtual Machine Tool Interface (JVMTI).

For more information about JDB and JPDA and their usage, see these Web sites:
v http://www.oracle.com/technetwork/java/javase/tech/jpda-141715.html
v http://download.oracle.com/javase/7/docs/technotes/guides/jpda/
v http://download.oracle.com/javase/7/docs/technotes/guides/jpda/jdb.html

Determining whether your application is running on a 31-bit or 64-bit
JVM

Some Java applications must be able to determine whether they are running on a
31-bit JVM or on a 64-bit JVM. For example, if your application has a native code
library, the library must be compiled separately in 31- and 64-bit forms for
platforms that support both 31- and 64-bit modes of operation. In this case, your
application must load the correct library at run environmenttime, because it is not
possible to mix 31- and 64-bit code.

About this task

The system property com.ibm.vm.bitmode allows applications to determine the
mode in which your JVM is running. It returns the following values:
v 32 - the JVM is running in 31-bit mode
v 64 - the JVM is running in 64-bit mode

Chapter 5. Developing Java applications 123

http://www.oracle.com/technetwork/java/javase/tech/jpda-141715.html
http://download.oracle.com/javase/7/docs/technotes/guides/jpda/
http://download.oracle.com/javase/7/docs/technotes/guides/jpda/jdb.html

You can inspect the com.ibm.vm.bitmode property from inside your application
code using the call:
System.getProperty("com.ibm.vm.bitmode");

How the JVM processes signals
When a signal is raised that is of interest to the JVM, a signal handler is called.
This signal handler determines whether it has been called for a Java or non-Java
thread.

If the signal is for a Java thread, the JVM takes control of the signal handling. If an
application handler for this signal is installed and you did not specify the
-Xnosigchain command-line option, the application handler for this signal is called
after the JVM has finished processing.

If the signal is for a non-Java thread, and the application that installed the JVM
had previously installed its own handler for the signal, control is given to that
handler. Otherwise, if the signal is requested by the JVM or Java application, the
signal is ignored or the default action is taken.

For exception and error signals, the JVM either:
v Handles the condition and recovers, or
v Enters a controlled shut down sequence where it:

1. Produces dumps, to describe the JVM state at the point of failure
2. Calls your application's signal handler for that signal
3. Calls any application-installed unexpected shut down hook
4. Performs the necessary JVM cleanup

For information about writing a launcher that specifies the previous hooks, see:
http://www.ibm.com/developerworks/java/library/i-signalhandling/. This item
was written for Java V1.3.1, but still applies to later versions.

For interrupt signals, the JVM also enters a controlled shut down sequence, but
this time it is treated as a normal termination that:
1. Calls your application's signal handler for that signal
2. Calls all application shut down hooks
3. Calls any application-installed exit hook
4. Performs the necessary JVM cleanup

The shut down is identical to the shut down initiated by a call to the Java method
System.exit().

Other signals that are used by the JVM are for internal control purposes and do
not cause it to stop. The only control signal of interest is SIGQUIT, which causes a
Javadump to be generated.

Signals used by the JVM
The types of signals are Exceptions, Errors, Interrupts, and Controls.

Table 5 on page 125 shows the signals that are used by the JVM. The signals are
grouped in the table by type or use, as follows:

124 IBM SDK for Java: SDK and Runtime Guide

http://www.ibm.com/developerworks/java/library/i-signalhandling/

Exceptions
The operating system synchronously raises an appropriate exception signal
whenever an unrecoverable condition occurs.

Errors The JVM raises a SIGABRT if it detects a condition from which it cannot
recover.

Interrupts
Interrupt signals are raised asynchronously, from outside a JVM process, to
request shut down.

Controls
Other signals that are used by the JVM for control purposes.

Table 5. Signals used by the JVM

Signal Name Signal type Description
Disabled by
-Xrs

Disabled by
-Xrs:sync

SIGBUS (7) Exception Incorrect access
to memory (data
misalignment)

Yes Yes

SIGSEGV (11) Exception Incorrect access
to memory
(write to
inaccessible
memory)

Yes Yes

SIGILL (4) Exception Illegal
instruction
(attempt to call
an unknown
machine
instruction)

Yes Yes

SIGFPE (8) Exception Floating point
exception
(divide by zero)

Yes Yes

SIGABRT (6) Error Abnormal
termination. The
JVM raises this
signal whenever
it detects a JVM
fault.

Yes Yes

SIGINT (2) Interrupt Interactive
attention
(CTRL-C). JVM
exits normally.

Yes No

SIGTERM (15) Interrupt Termination
request. JVM
will exit
normally.

Yes No

SIGHUP (1) Interrupt Hang up. JVM
exits normally.

Yes No

SIGQUIT (3) Control By default, this
triggers a
Javadump.

Yes No

Chapter 5. Developing Java applications 125

Table 5. Signals used by the JVM (continued)

Signal Name Signal type Description
Disabled by
-Xrs

Disabled by
-Xrs:sync

SIGRECONFIG
(58)

Control Reserved to
detect any
change in the
number of
CPUs,
processing
capacity, or
physical
memory.

Yes No

SIGTRAP (5) Control Used by the JIT. Yes Yes

SIGCHLD (17) Control Used by the
SDK for internal
control.

No No

SIGUSR1 Control Used by the
SDK.

No No

Note: A number supplied after the signal name is the standard numeric value for
that signal.

Use the -Xrs (reduce signal usage) option to prevent the JVM from handling most
signals. For more information, see Oracle's Java application launcher page.

Signals 1 (SIGHUP), 2 (SIGINT), 4 (SIGILL), 7 (SIGBUS), 8 (SIGFPE), 11 (SIGSEGV),
and 15 (SIGTERM) on JVM threads cause the JVM to shut down; therefore, an
application signal handler should not attempt to recover from these unless it no
longer requires the JVM.

Linking a native code driver to the signal-chaining library
The Runtime Environment contains signal-chaining. Signal-chaining enables the
JVM to interoperate more efficiently with native code that installs its own signal
handlers.

About this task

Signal-chaining enables an application to link and load the shared library
libjsig.so before the system libraries. The libjsig.so library ensures that calls such
as signal(), sigset(), and sigaction() are intercepted so that their handlers do not
replace the JVM's signal handlers. Instead, these calls save the new signal handlers,
or "chain" them behind the handlers that are installed by the JVM. Later, when any
of these signals are raised and found not to be targeted at the JVM, the preinstalled
handlers are invoked.

If you install signal handlers that use sigaction() , some sa_flags are not observed
when the JVM uses the signal. These are:
v SA_NOCLDSTOP - This is always unset.
v SA_NOCLDWAIT - This is always unset.
v SA_RESTART - This is always set.

The libjsig.so library also hides JVM signal handlers from the application.
Therefore, calls such as signal(), sigset(), and sigaction() that are made after the

126 IBM SDK for Java: SDK and Runtime Guide

http://download.oracle.com/javase/7/docs/technotes/tools/windows/java.html

JVM has started no longer return a reference to the JVM's signal handler, but
instead return any handler that was installed before JVM startup.

The environment variable JAVA_HOME should be set to the location of the SDK, for
example,install_dir.

To use libjsig.a:
v Link it with the application that creates or embeds a JVM:

cc_r -q64 <other compile/link parameter> -Linstall_dir
-ljsig -Linstall_dir/jre/bin/j9vm -ljvm java_application.c

Note: Use xlc_r or xlC_r in place of cc_r if that is how you usually call the
compiler or linker.

Writing JNI applications
Valid Java Native Interface (JNI) version numbers that programs can specify on the
JNI_CreateJavaVM() API call are: JNI_VERSION_1_2(0x00010002) and
JNI_VERSION_1_4(0x00010004).

Restriction: Version 1.1 of the JNI is not supported.

This version number determines only the level of the JNI to use. The actual level
of the JVM that is created is specified by the JSE libraries (use the java -version
command to show the JVM level). The JNI level does not affect the language
specification that is implemented by the JVM, the class library APIs, or any other
area of JVM behavior. For more information, see http://download.oracle.com/
javase/7/docs/technotes/guides/jni/.

If your application needs two JNI libraries, one built for 31- and the other for
64-bit, use the com.ibm.vm.bitmode system property to determine if you are
running with a 31- or 64-bit JVM and choose the appropriate library.

For more information about writing 64-bit applications, see the IBM Redpaper z/OS
64-bit C/C++ and Java Programming Environment at http://www.redbooks.ibm.com/
abstracts/redp9110.html.

ASCII and EBCDIC issues

On z/OS, the Java Virtual Machine is essentially an EBCDIC application. Enhanced
ASCII methods are C or C++ code that has been compiled with ASCII compiler
options. If you create JNI routines as enhanced ASCII C or C++ methods you will
be operating in a bimodal environment; your application will be crossing over
between ASCII and EBCDIC environments.

The inherent problem with bimodal programs is that, in the z/OS runtime
environment, threads are designated as either EBCDIC or enhanced ASCII and are
not intended to be switched between these modes in typical use. Enhanced ASCII
is not designed to handle bimodal issues. You might get unexpected results or
experience failures when the active mode does not match that of the compiled
code. There are z/OS runtime calls that applications might use to switch the active
mode between EBCDIC and enhanced ASCII (the __ae_thread_swapmode() and
__ae_thread_setmode() functions are documented in Language Environment
Vendor Interfaces, see the SA22-7568-06 Red Book: http://publibz.boulder.ibm.com/
epubs/pdf/ceev1160.pdf). However, even if an application is carefully coded to
switch modes correctly, other bimodal issues might exist.

Chapter 5. Developing Java applications 127

http://download.oracle.com/javase/7/docs/technotes/guides/jni/
http://download.oracle.com/javase/7/docs/technotes/guides/jni/
http://www.redbooks.ibm.com/abstracts/redp9110.html
http://www.redbooks.ibm.com/abstracts/redp9110.html
http://publibz.boulder.ibm.com/epubs/pdf/ceev1160.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceev1160.pdf

Supported compilers
These compilers have been tested with the IBM SDK.

The c89 compiler packaged with z/OS v1.11, C/OS/390 C++ Optional Feature is
supported for:
v 31-bit z/OS on S/390®

v 64-bit z/OS on S/390

Native formatting of Java types long, double, float
The latest C/C++ compilers and runtime environments can convert jlong, jdouble,
and jfloat data types to strings by using printf()-type functions.

Previous versions of the SDK for z/OS 31-bit had a set of native conversion
functions and macros for formatting large Java data types. These functions and
macros were:

ll2str() function
Converts a jlong to an ASCII string representation of the 64-bit value.

flt2dbl() function
Converts a jfloat to a jdouble.

dbl2nat() macro
Converts a jdouble to an ESA/390 native double.

dbl_sqrt() macro
Calculates the square root of a jdouble and returns it as a jdouble.

dbl2str() function
Converts a jdouble to an ASCII string representation.

flt2str() function
Converts a jfloat to an ASCII string representation.

These functions and macros are no longer supported by Version 6 of the SDK for
z/OS. To provide a migration path, the functions have been moved to the demos
area of the SDK. The demo code for these functions has been updated to reflect the
changes.

The functions ll2str(), dbl2str(), and flt2str() are provided in the following object
files:
v install_dir/demo/jni/JNINativeTypes/c/convert.o (For 31-bit)
v install_dir/demo/jni/JNINativeTypes/c/convert64.o (For 64-bit)

The function flt2dbl() and the macros dbl2nat() and dbl_sqrt() are not defined.
However, the following macros give their definitions:
#include <math.h>
#define flt2dbl(f) ((double)f)
#define dbl2nat(a) ((a))
#define dbl_sqrt(a) (sqrt(a))

A C/C++ application that returns a jfloat data type to a Java application must be
compiled with the FLOAT (IEEE) C/C++ compiler option. Applications compiled
without this option return incorrect data types. Further information about
compiling C/C++ source code, which applies to this Java release, can be found in
the article http://www.ibm.com/developerworks/java/library/j-jni/

128 IBM SDK for Java: SDK and Runtime Guide

http://www.ibm.com/servers/eserver/zseries/software/java/usingjni.html#nativedoublefloat
http://www.ibm.com/developerworks/java/library/j-jni/

Support for thread-level recovery of blocked connectors
Four new IBM-specific SDK classes have been added to the com.ibm.jvm package
to support the thread-level recovery of Blocked connectors. The new classes are
packaged in core.jar.

These classes allow you to unblock threads that have become blocked on
networking or synchronization calls. If an application does not use these classes, it
must end the whole process, rather than interrupting an individual blocked thread.

The classes are:

public interface InterruptibleContext
Defines two methods, isBlocked() and unblock(). The other three classes
implement InterruptibleContext.

public class InterruptibleLockContext
A utility class for interrupting synchronization calls.

public class InterruptibleIOContext
A utility class for interrupting network calls.

public class InterruptibleThread
A utility class that extends java.lang.Thread, to allow wrapping of interruptible
methods. It uses instances of InterruptibleLockContext and
InterruptibleIOContext to perform the required isBlocked() and unblock()
methods depending on whether a synchronization or networking operation is
blocking the thread.

Both InterruptibleLockContext and InterruptibleIOContext work by referencing the
current thread. Therefore if you do not use InterruptibleThread, you must provide
your own class that extends java.lang.Thread, to use these new classes.

API documentation to support the package containing these classes is available
here: API documentation

CORBA support
The Java Platform, Standard Edition (JSE) supports, at a minimum, the
specifications that are defined in the compliance document from Oracle. In some
cases, the IBM JSE ORB supports more recent versions of the specifications.

The minimum specifications supported are defined in the Official Specifications for
CORBA support in Java SE 7: http://download.oracle.com/javase/7/docs/api/
org/omg/CORBA/doc-files/compliance.html.

Support for GIOP 1.2

This SDK supports all versions of GIOP, as defined by chapters 13 and 15 of the
CORBA 2.3.1 specification, OMG document formal/99-10-07.

http://www.omg.org/cgi-bin/doc?formal/99-10-07

Bidirectional GIOP is not supported.

Chapter 5. Developing Java applications 129

publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.api.70.doc/api_overview.html
http://download.oracle.com/javase/7/docs/api/org/omg/CORBA/doc-files/compliance.html
http://download.oracle.com/javase/7/docs/api/org/omg/CORBA/doc-files/compliance.html
http://www.omg.org/cgi-bin/doc?formal/99-10-07

Support for Portable Interceptors

This SDK supports Portable Interceptors, as defined by the OMG in the document
ptc/01–03–04, which you can obtain from:

http://www.omg.org/cgi-bin/doc?ptc/01–03-04

Portable Interceptors are hooks into the ORB that ORB services can use to intercept
the normal flow of execution of the ORB.

Support for Interoperable Naming Service

This SDK supports the Interoperable Naming Service, as defined by the OMG in
the document ptc/00-08-07, which you can obtain from:

http://www.omg.org/cgi-bin/doc?ptc/00-08-07

The default port that is used by the Transient Name Server (the tnameserv
command), when no ORBInitialPort parameter is given, has changed from 900 to
2809, which is the port number that is registered with the IANA (Internet Assigned
Number Authority) for a CORBA Naming Service. Programs that depend on this
default might have to be updated to work with this version.

The initial context that is returned from the Transient Name Server is now an
org.omg.CosNaming.NamingContextExt. Existing programs that narrow the
reference to a context org.omg.CosNaming.NamingContext still work, and do not
need to be recompiled.

The ORB supports the -ORBInitRef and -ORBDefaultInitRef parameters that are
defined by the Interoperable Naming Service specification, and the
ORB::string_to_object operation now supports the ObjectURL string formats
(corbaloc: and corbaname:) that are defined by the Interoperable Naming Service
specification.

The OMG specifies a method ORB::register_initial_reference to register a service
with the Interoperable Naming Service. However, this method is not available in
the Oracle Java Core API at this release. Programs that have to register a service in
the current version must invoke this method on the IBM internal ORB
implementation class. For example, to register a service “MyService”:
((com.ibm.CORBA.iiop.ORB)orb).register_initial_reference("MyService",
serviceRef);

Where orb is an instance of org.omg.CORBA.ORB, which is returned from
ORB.init(), and serviceRef is a CORBA Object, which is connected to the ORB.
This mechanism is an interim one, and is not compatible with future versions or
portable to non-IBM ORBs.

System properties for tracing the ORB
A runtime debug feature provides improved serviceability. You might find it useful
for problem diagnosis or it might be requested by IBM service personnel.

Tracing Properties

com.ibm.CORBA.Debug=true
Turns on ORB tracing.

130 IBM SDK for Java: SDK and Runtime Guide

http://www.omg.org/cgi-bin/doc?ptc/01-03-04
http://www.omg.org/cgi-bin/doc?ptc/00-08-07

com.ibm.CORBA.CommTrace=true
Adds GIOP messages (sent and received) to the trace.

com.ibm.CORBA.Debug.Output=<file>
Specify the trace output file. By default, this is of the form
orbtrc.DDMMYYYY.HHmm.SS.txt.

Example of ORB tracing

For example, to trace events and formatted GIOP messages from the command
line, type:
java -Dcom.ibm.CORBA.Debug=true

-Dcom.ibm.CORBA.CommTrace=true <myapp>

Limitations

Do not enable tracing for normal operation, because it might cause performance
degradation. Even if you have switched off tracing, FFDC (First Failure Data
Capture) is still working, so serious errors are reported. If a debug output file is
generated, examine it to check on the problem. For example, the server might have
stopped without performing an ORB.shutdown().

The content and format of the trace output might vary from version to version.

System properties for tuning the ORB
The ORB can be tuned to work well with your specific network. The properties
required to tune the ORB are described here.

com.ibm.CORBA.FragmentSize=<size in bytes>
Used to control GIOP 1.2 fragmentation. The default size is 1024 bytes.

To disable fragmentation, set the fragment size to 0 bytes:
java -Dcom.ibm.CORBA.FragmentSize=0 <myapp>

com.ibm.CORBA.RequestTimeout=<time in seconds>
Sets the maximum time to wait for a CORBA Request. By default the ORB
waits indefinitely. Do not set the timeout too low to avoid connections ending
unnecessarily.

com.ibm.CORBA.LocateRequestTimeout=<time in seconds>
Set the maximum time to wait for a CORBA LocateRequest. By default the
ORB waits indefinitely.

com.ibm.CORBA.ListenerPort=<port number>
Set the port for the ORB to read incoming requests on. If this property is set,
the ORB starts listening as soon as it is initialized. Otherwise, it starts listening
only when required.

Java security permissions for the ORB
When running with a Java SecurityManager, invocation of some methods in the
CORBA API classes might cause permission checks to be made, which might result
in a SecurityException. If your program uses any of these methods, ensure that it is
granted the necessary permissions.

Chapter 5. Developing Java applications 131

Table 6. Methods affected when running with Java SecurityManager

Class/Interface Method Required permission

org.omg.CORBA.ORB init java.net.SocketPermission
resolve

org.omg.CORBA.ORB connect java.net.SocketPermission
listen

org.omg.CORBA.ORB resolve_initial_references java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_is_a java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_non_existent java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

OutputStream _request
(String, boolean)

java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_get_interface_def java.net.SocketPermission
connect

org.omg.CORBA. Request invoke java.net.SocketPermission
connect

org.omg.CORBA. Request send_deferred java.net.SocketPermission
connect

org.omg.CORBA. Request send_oneway java.net.SocketPermission
connect

javax.rmi.
PortableRemoteObject

narrow java.net.SocketPermission
connect

ORB implementation classes
A list of the ORB implementation classes.

The ORB implementation classes in this release are:
v org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB
v org.omg.CORBA.ORBSingletonClass=com.ibm.rmi.corba.ORBSingleton
v javax.rmi.CORBA.UtilClass=com.ibm.CORBA.iiop.UtilDelegateImpl
v javax.rmi.CORBA.StubClass=com.ibm.rmi.javax.rmi.CORBA.StubDelegateImpl
v javax.rmi.CORBA.PortableRemoteObjectClass

=com.ibm.rmi.javax.rmi.PortableRemoteObject

These are the default values, and you are advised not to set these properties or
refer to the implementation classes directly. For portability, make references only to
the CORBA API classes, and not to the implementation. These values might be
changed in future releases.

RMI over IIOP
Java Remote Method Invocation (RMI) provides a simple mechanism for
distributed Java programming. RMI over IIOP (RMI-IIOP) uses the Common
Object Request Broker Architecture (CORBA) standard Internet Inter-ORB Protocol
(IIOP) to extend the base Java RMI to perform communication. This allows direct
interaction with any other CORBA Object Request Brokers (ORBs), whether they
were implemented in Java or another programming language.

The following documentation is available:

132 IBM SDK for Java: SDK and Runtime Guide

v The Java Language to IDL Mapping document is a detailed technical specification
of RMI-IIOP: http://www.omg.org/cgi-bin/doc?ptc/00-01-06.pdf.

RMI-IIOP Programmer's Guide
Discusses how to write Java Remote Method Invocation (RMI) programs that can
access remote objects by using the Internet Inter-ORB Protocol (IIOP).

Background reading
Links to Web sites related to RMI and related technologies.

Here are some sites to help you with this technology:
v The Java RMI home page contains links to RMI documentation, examples,

specification, and more: http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-136424.html

v The RMI trail in the Java Tutorial: http://download.oracle.com/javase/tutorial/
rmi/

v The RMI API Javadoc HTML contains the most up-to-date RMI API
documentation: http://download.oracle.com/javase/7/docs/api/java/rmi/
package-summary.html

v The Java IDL Web page will familiarize you with Oracle's CORBA/IIOP
implementation: http://download.oracle.com/javase/7/docs/technotes/guides/
idl/index.html

v The Java IDL Trail in the Java Tutorial: http://download.oracle.com/javase/7/
docs/technotes/guides/idl/GShome.html

What are RMI, IIOP, and RMI-IIOP?
The basic concepts behind RMI-IIOP and other similar technologies.

RMI

With RMI, you can write distributed programs in the Java programming language.
RMI is easy to use, you do not need to learn a separate interface definition
language (IDL), and you get Java's inherent "write once, run anywhere" benefit.
Clients, remote interfaces, and servers are written entirely in Java. RMI uses the
Java Remote Method Protocol (JRMP) for remote Java object communication. For a
quick introduction to writing RMI programs, see the RMI tutorial Web page:
http://download.oracle.com/javase/tutorial/rmi/, which describes writing a
simple "Hello World" RMI program.

RMI lacks interoperability with other languages, and, because it uses a
non-standard communication protocol, cannot communicate with CORBA objects.

IIOP, CORBA, and Java IDL

IIOP is CORBA's communication protocol. It defines the way bits are sent over a
wire between CORBA clients and servers. CORBA is a standard distributed object
architecture developed by the Object Management Group (OMG). Interfaces to
remote objects are described in a platform-neutral interface definition language
(IDL). Mappings from IDL to specific programming languages are implemented,
binding the language to CORBA/IIOP.

The Java Standard Edition CORBA/IIOP implementation is known as Java IDL.
Along with the IDL to Java (idlj) compiler, Java IDL can be used to define,
implement, and access CORBA objects from the Java programming language.

Chapter 5. Developing Java applications 133

http://www.omg.org/cgi-bin/doc?ptc/00-01-06.pdf
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://download.oracle.com/javase/tutorial/rmi/
http://download.oracle.com/javase/tutorial/rmi/
http://download.oracle.com/javase/7/docs/api/java/rmi/package-summary.html
http://download.oracle.com/javase/7/docs/api/java/rmi/package-summary.html
http://download.oracle.com/javase/7/docs/technotes/guides/idl/index.html
http://download.oracle.com/javase/7/docs/technotes/guides/idl/index.html
http://download.oracle.com/javase/7/docs/technotes/guides/idl/GShome.html
http://download.oracle.com/javase/7/docs/technotes/guides/idl/GShome.html
http://download.oracle.com/javase/tutorial/rmi/

The Java IDL Web page: http://download.oracle.com/javase/1.5.0/docs/guide/
idl/index.html, gives you a good, Java-centric view of CORBA/IIOP programming.
To get a quick introduction to writing Java IDL programs, see the Getting Started:
Hello World Web page: http://download.oracle.com/javase/1.5.0/docs/guide/idl/
GShome.html.

RMI-IIOP

Previously, Java programmers had to choose between RMI and CORBA/IIOP (Java
IDL) for distributed programming solutions. Now, by adhering to a few restrictions
(see “Restrictions when running RMI programs over IIOP” on page 138), RMI
server objects can use the IIOP protocol, and communicate with CORBA client
objects written in any language. This solution is known as RMI-IIOP. RMI-IIOP
combines RMI ease of use with CORBA cross-language interoperability.

Using RMI-IIOP
This section describes how to use the IBM RMI-IIOP implementation.

The rmic compiler:

Reference information about the rmic compiler.

Purpose

The rmic compiler generates IIOP stubs and ties, and emits IDL, in accordance
with the Java Language to OMG IDL Language Mapping Specification:
http://www.omg.org/cgi-bin/doc?formal/01-06-07.

Parameters

-iiop

Generates stub and tie classes. A stub class is a local proxy for a remote object.
Clients use stub classes to send calls to a server. Each remote interface requires
a stub class, which implements that remote interface. The remote object
reference used by a client is a reference to a stub. Tie classes are used on the
server side to process incoming calls, and dispatch the calls to the correct
implementation class. Each implementation class requires a tie class.

Stub classes are also generated for abstract interfaces. An abstract interface is
an interface that does not extend java.rmi.Remote, but has methods that throw
either java.rmi.RemoteException or a superclass of java.rmi.RemoteException.
Interfaces that do not extend java.rmi.Remote and have no methods are also
abstract interfaces.

-poa

Changes the inheritance from org.omg.CORBA_2_3.portable.ObjectImpl to
org.omg.PortableServer.Servant. This type of mapping is nonstandard and is
not specified by the Java Language to OMG IDL Mapping Specification:
http://www.omg.org/cgi-bin/doc?formal/01-06-07.

The PortableServer module for the Portable Object Adapter (POA) defines the
native Servant type. In the Java programming language, the Servant type is
mapped to the Java org.omg.PortableServer.Servant class. The class serves as
the base class for all POA servant implementations. It provides a number of
methods that can be called by the application programmer, as well as methods
that are called by the POA itself and might be overridden by the user to
control aspects of servant behavior.

134 IBM SDK for Java: SDK and Runtime Guide

http://download.oracle.com/javase/1.5.0/docs/guide/idl/index.html
http://download.oracle.com/javase/1.5.0/docs/guide/idl/index.html
http://download.oracle.com/javase/1.5.0/docs/guide/idl/GShome.html
http://download.oracle.com/javase/1.5.0/docs/guide/idl/GShome.html
http://www.omg.org/cgi-bin/doc?formal/01-06-07
http://www.omg.org/cgi-bin/doc?formal/01-06-07

Valid only when the -iiop option is present.

-idl

Generates OMG IDL for the classes specified and any classes referenced. This
option is required only if you have a CORBA client written in another
language that needs to talk to a Java RMI-IIOP server.

Tip: After the OMG IDL is generated using rmic -idl, use the generated IDL
with an IDL-to-C++ or other language compiler, but not with the IDL-to-Java
language compiler. “Round tripping” is not recommended and should not be
necessary. The IDL generation facility is intended to be used with other
languages. Java clients or servers can use the original RMI-IIOP types.

IDL provides a purely declarative means of specifying the API for an object.
IDL is independent of the programming language used. The IDL is used as a
specification for methods and data that can be written in and called from any
language that provides CORBA bindings. Java and C++ are such languages.
For a complete description, see the Java Language to OMG IDL Mapping
Specification: http://www.omg.org/cgi-bin/doc?formal/01-06-07.

Restriction: The generated IDL can be compiled using only an IDL compiler
that supports the CORBA 2.3 extensions to IDL.

-always
Forces regeneration even when existing stubs, ties, or IDL are newer than the
input class. Valid only when -iiop or -idl options are present.

-noValueMethods

Ensures that methods and initializers are not included in valuetypes emitted
during IDL Generation. Methods and initializers are optional for valuetypes
and are otherwise omitted.

Only valid when used with -idl option.

-idlModule <fromJavaPackage[.class]> <toIDLModule>

Specifies IDLEntity package mapping. For example: -idlModule sample.bar
my::real::idlmod.

Only valid when used with -idl option.

-idlFile <fromJavaPackage[.class]> <toIDLModule>

Specifies IDLEntity file mapping. For example: -idlFile test.pkg.X
TEST16.idl.

Only valid when used with -idl option.

More Information

For more detailed information about the rmic compiler, see the RMIC tool page:
v Solaris, Linux, AIX, and z/OS version: http://download.oracle.com/javase/7/

docs/technotes/tools/solaris/rmic.html
v Windows version: http://download.oracle.com/javase/7/docs/technotes/tools/

windows/rmic.html

The idlj compiler:

Reference information for the idlj compiler.

Chapter 5. Developing Java applications 135

http://www.omg.org/cgi-bin/doc?formal/01-06-07
http://download.oracle.com/javase/7/docs/technotes/tools/solaris/rmic.html
http://download.oracle.com/javase/7/docs/technotes/tools/solaris/rmic.html
http://download.oracle.com/javase/7/docs/technotes/tools/windows/rmic.html
http://download.oracle.com/javase/7/docs/technotes/tools/windows/rmic.html

Purpose

The idlj compiler generates Java bindings from an IDL file. This compiler
supports the CORBA Objects By Value feature, which is required for
inter-operation with RMI-IIOP. It is written in Java, and so can run on any
platform.

More Information

To learn more about using the idlj compiler, see IDL-to-Java Compiler User's
Guide.

Making RMI programs use IIOP:

A general guide to converting an RMI application to use RMI-IIOP.

Before you begin

To use these instructions, your application must already use RMI.

Procedure

1. If you are using the RMI registry for naming services, you must switch to
CosNaming:
a. In both your client and server code, create an InitialContext for JNDI. For a

Java application use the following code:
import javax.naming.*;
...
Context ic = new InitialContext();

For an applet, use this alternative code:
import java.util.*;
import javax.naming.*;
...
Hashtable env = new Hashtable();
env.put("java.naming.applet", this);
Context ic = new InitialContext(env);

b. Modify all uses of RMI registry lookup(), bind(), and rebind() to use JNDI
lookup(), bind(), and rebind() instead. Instead of:
import java.rmi.*;
...
Naming.rebind("MyObject", myObj);

use:
import javax.naming.*;
...
ic.rebind("MyObject", myObj);

2. If you are not using the RMI registry for naming services, you must have some
other way of bootstrapping your initial remote object reference. For example,
your server code might be using Java serialization to write an RMI object
reference to an ObjectOutputStream and passing this to your client code for
deserializing into an RMI stub. When doing this in RMI-IIOP, you must also
ensure that object references are connected to an ORB before serialization and
after deserialization.

136 IBM SDK for Java: SDK and Runtime Guide

http://download.oracle.com/javase/1.5.0/docs/guide/rmi-iiop/toJavaPortableUG.html
http://download.oracle.com/javase/1.5.0/docs/guide/rmi-iiop/toJavaPortableUG.html

a. On the server side, use the PortableRemoteObject.toStub() call to obtain a
stub, then use writeObject() to serialize this stub to an ObjectOutputStream.
If necessary, use Stub.connect() to connect the stub to an ORB before
serializing it. For example:
org.omg.CORBA.ORB myORB = org.omg.CORBA.ORB.init(new String[0], null);
Wombat myWombat = new WombatImpl();
javax.rmi.CORBA.Stub myStub = (javax.rmi.CORBA.Stub)PortableRemoteObject.toStub(myWombat);
myStub.connect(myORB);
// myWombat is now connected to myORB. To connect other objects to the
// same ORB, use PortableRemoteObject.connect(nextWombat, myWombat);
FileOutputStream myFile = new FileOutputStream("t.tmp");
ObjectOutputStream myStream = new ObjectOutputStream(myFile);
myStream.writeObject(myStub);

b. On the client side, use readObject() to deserialize a remote reference to the
object from an ObjectInputStream. Before using the deserialized stub to call
remote methods, it must be connected to an ORB. For example:
FileInputStream myFile = new FileInputStream("t.tmp");
ObjectInputStream myStream = new ObjectInputStream(myFile);
Wombat myWombat = (Wombat)myStream.readObject();
org.omg.CORBA.ORB myORB = org.omg.CORBA.ORB.init(new String[0], null);
((javax.rmi.CORBA.Stub)myWombat).connect(myORB);
// myWombat is now connected to myORB. To connect other objects to the
// same ORB, use PortableRemoteObject.connect(nextWombat, myWombat);

The JNDI approach is much simpler, so it is preferable to use it whenever
possible.

3. Either change your remote implementation classes to inherit from
javax.rmi.PortableRemoteObject, or explicitly to export implementation objects
after creation by calling PortableRemoteObject.exportObject(). For more
discussion on this topic, read “Connecting IIOP stubs to the ORB” on page 138.

4. Change all the places in your code where there is a Java cast of a remote
interface to use javax.rmi.PortableRemoteObject.narrow().

5. Do not depend on distributed garbage collection (DGC) or use any of the RMI
DGC facilities. Use PortableRemoteObject.unexportObject() to make the ORB
release its references to an exported object that is no longer in use.

6. Regenerate the RMI stubs and ties using the rmic command with the -iiop
option. This will produce stub and tie files with the following names:

_<implementationName>_Tie.class
_<interfaceName>_Stub.class

7. Before starting the server, start the CosNaming server (in its own process)
using the tnameserv command The CosNaming server uses the default port
number of 2809. If you want to use a different port number, use the
-ORBInitialPort parameter.

8. When starting client and server applications, you must specify some system
properties. When running an application, you can specify properties on the
command line:
java -Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

-Djava.naming.provider.url=iiop://<hostname>:2809
<appl_class>

9. If the client is an applet, you must specify some properties in the applet tag.
For example:
java.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory
java.naming.provider.url=iiop://<hostname>:2809

This example uses the default name service port number of 2809. If you specify
a different port in the previous step, you need to use the same port number in

Chapter 5. Developing Java applications 137

the provider URL here. The <hostname> in the provider URL is the host name
that was used to start the CosNaming server.

Results

Your application can now communicate with CORBA objects using RMI-IIOP.

Connecting IIOP stubs to the ORB:

When your application uses IIOP stubs, as opposed to JRMP stubs, you must
properly connect the IIOP stubs with the ORB before starting operations on the
IIOP stubs (this is not necessary with JRMP stubs). This section discusses the extra
'connect' step required for the IIOP stub case.

The PortableRemoteObject.exportObject() call only creates a Tie object and caches it
for future usage. The created tie does not have a delegate or an ORB associated.
This is known as explicit invocation.

The PortableRemoteObject.exportObject() happens automatically when the servant
instance is created. The servant instance is created when a PortableRemoteObject
constructor is called as a base class. This is known as implicit invocation.

Later, when the application calls PortableRemoteObject.toStub(), the ORB creates
the corresponding Stub object and associates it with the cached Tie object. But
because the Tie is not connected and does not have a delegate, the newly created
Stub also does not have a delegate or ORB.

The delegate is set for the stub only when the application calls Stub.connect(orb).
Thus, any operations on the stub made before the ORB connection is made will
fail.

The Java Language to OMG IDL Mapping Specification (http://www.omg.org/cgi-
bin/doc?formal/01-06-07) says this about the Stub.connect() method:

"The connect method makes the stub ready for remote communication using
the specified ORB object orb. Connection normally happens implicitly when
the stub is received or sent as an argument on a remote method call, but it is
sometimes useful to do this by making an explicit call (e.g., following
deserialization). If the stub is already connected to orb (has a delegate set for
orb), then connect takes no action. If the stub is connected to some other
ORB, then a RemoteException is thrown. Otherwise, a delegate is created for
this stub and the ORB object orb."

For servants that are not POA-activated, Stub.connect(orb) is necessary as a
required setup.

Restrictions when running RMI programs over IIOP:

A list of limitations when running RMI programs over IIOP.

To make existing RMI programs run over IIOP, observe the following restrictions.
v Make sure all constant definitions in remote interfaces are of primitive types or

String and evaluated at compile time.

138 IBM SDK for Java: SDK and Runtime Guide

http://www.omg.org/cgi-bin/doc?formal/01-06-07
http://www.omg.org/cgi-bin/doc?formal/01-06-07

v Do not use Java names that conflict with IDL mangled names generated by the
Java-to-IDL mapping rules. See section 28.3.2 of the Java Language to OMG IDL
Mapping Specification for more information: http://www.omg.org/cgi-bin/
doc?formal/01-06-07

v Do not inherit the same method name into a remote interface more than once
from different base remote interfaces.

v Be careful when using names that are identical other than their case. The use of
a type name and a variable of that type with a name that differs from the type
name in case only is supported. Most other combinations of names that are
identical other than their case are not supported.

v Do not depend on run time sharing of object references to be preserved exactly
when transmitting object references to IIOP. Runtime sharing of other objects is
preserved correctly.

v Do not use the following features of RMI, which do not work in RMI-IIOP:
– RMISocketFactory
– UnicastRemoteObject
– Unreferenced
– The Distributed Garbage Collector (DGC) interfaces

Additional information
Information about thread safety, working with other ORBs, the difference between
UnicastRemoteObject and PortableRemoteObject, and known limitations.

Servers must be thread safe

Because remote method invocations on the same remote object might execute
concurrently, a remote object implementation must be thread-safe.

Interoperating with other ORBs

RMI-IIOP should interoperate with other ORBs that support the CORBA 2.3
specification. It will not interoperate with older ORBs, because older ORBs cannot
handle the IIOP encodings for Objects By Value. This support is needed to send
RMI value classes (including strings) over IIOP.

Note: Although ORBs written in different languages should be able to
interoperate, the Java ORB has not been fully tested with other vendors' ORBs.

When do I use UnicastRemoteObject vs PortableRemoteObject?

Use UnicastRemoteObject as the superclass for the object implementation in RMI
programming. Use PortableRemoteObject in RMI-IIOP programming. If
PortableRemoteObject is used, you can switch the transport protocol to either
JRMP or IIOP during run time.

Known limitations
v JNDI 1.1 does not support

java.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory as an Applet
parameter. Instead, it must be explicitly passed as a property to the
InitialContext constructor. This capability is supported in JNDI 1.2.

v When running the Naming Service on Unix based platforms, you must use a
port number greater than 1024. The default port is 2809, so this should not be a
problem.

Chapter 5. Developing Java applications 139

http://www.omg.org/cgi-bin/doc?formal/01-06-07
http://www.omg.org/cgi-bin/doc?formal/01-06-07

Implementing the Connection Handler Pool for RMI
Thread pooling for RMI Connection Handlers is not enabled by default.

About this task

To enable the connection pooling implemented at the RMI TCPTransport level, set
the option
-Dsun.rmi.transport.tcp.connectionPool=true

This version of the Runtime Environment does not have a setting that you can use
to limit the number of threads in the connection pool.

Enhanced BigDecimal
From Java 5.0, the IBM BigDecimal class has been adopted by Oracle as
java.math.BigDecimal. The com.ibm.math.BigDecimal class is reserved for possible
future use by IBM and is currently deprecated. Migrate existing Java code to use
java.math.BigDecimal.

The new java.math.BigDecimal uses the same methods as both the previous
java.math.BigDecimal and com.ibm.math.BigDecimal. Existing code using
java.math.BigDecimal continues to work correctly. The two classes do not serialize.

To migrate existing Java code to use the java.math.BigDecimal class, change the
import statement at the start of your .java file from: import com.ibm.math.*; to
import java.math.*;.

Working in a multiple network stack environment
In a multiple network stack environment (CINET), when one of the stacks fails, no
notification or Java exception occurs for a Java program that is listening on an
INADDR_ANY socket. Also, when new stacks become available, the Java
application does not become aware of them until it rebinds the INADDR socket.

To avoid this situation, when a TCP/IP stack comes online:
v If the ibm.socketserver.recover property is set to false (which is the default),

an exception (NetworkRecycledException) is thrown to the application to allow
it either to fail or to attempt to rebind.

v If the ibm.socketserver.recover property is set to true, Java attempts to redrive
the socket connection on the new stack if listening on all addresses (addrs). If
the socket bind cannot be replayed at that time, an exception
(NetworkRecycledException) is thrown to the application to allow it either to fail
or to attempt to rebind.

Both ServerSocket.accept() and ServerSocketChannel.accept() can throw
NetworkRecycledException.

While a socket is listening for new connections, it maintains a queue of incoming
connections. When NetworkRecycledException is thrown and the system attempts
to rebind the socket, the connection queue is reset and connection requests in this
queue are dropped.

140 IBM SDK for Java: SDK and Runtime Guide

Support for XToolkit
XToolkit is included by default. You need XToolkit when using the SWT_AWT
bridge in Eclipse to build an application that uses both SWT and Swing.

Restriction: Motif is no longer supported and will be removed in a later release.

Related links:
v An example of integrating Swing into Eclipse RCPs: http://eclipsezone.com/

eclipse/forums/t45697.html
v Reference Information in the Eclipse information center: http://help.eclipse.org/

help32/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/
swt/awt/SWT_AWT.html

v Set up information is available on the Oracle Corporation Web site:
http://download.oracle.com/javase/7/docs/technotes/guides/awt/1.5/
xawt.html

Support for the Java Attach API
Your application can connect to another “target” virtual machine using the Java
Attach API. Your application can then load an agent application into the target
virtual machine, for example to perform tasks such as monitoring status.

Code for agent applications, such as JMX agents or JVMTI agents, is normally
loaded during virtual machine startup by specifying special startup parameters.
Requiring startup parameters might not be convenient for using agents on
applications that are already running, such as WebSphere Application Servers. You
can use the Java Attach API to load an agent at any time, by specifying the process
ID of the target virtual machine. The Attach API capability is sometimes called the
“late attach” capability.

Support for the Attach API is disabled by default.Support for the Attach API is
enabled by default for Java 7 SR 2 and earlier. To enhance security, support for the
Attach API is disabled by default for Java 7 SR 3 and later. On z/OS systems,
processes that use the default z/OS OMVS segment cannot enable the attach API
for security reasons.

Security considerations

Security for the Java Attach API is handled by POSIX file permissions. On z/OS,
you must use UNIX user permissions to protect your applications. It is not
sufficient to rely on RACF® or system level security to protect your applications.
The reason is that these mechanisms do not have the necessary UNIX permissions
set up and configured for the Java Attach API to remain secure.

The Java Attach API creates files and directories in a common directory.

The key security features of the Java Attach API are:
v A process using the Java Attach API must be owned by the same UNIX user ID

as the target process. This constraint ensures that only the target process owner
or root can attach other applications to the target process.

v The common directory uses the sticky bit to prevent a user from deleting or
replacing a subdirectory belonging to another user. To preserve the security of
this mechanism, set the ownership of the common directory to ROOT. This
directory will contain files such as _attachlock, _master, and _notifier, which

Chapter 5. Developing Java applications 141

|
|
|

http://eclipsezone.com/eclipse/forums/t45697.html
http://eclipsezone.com/eclipse/forums/t45697.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/awt/SWT_AWT.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/awt/SWT_AWT.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/awt/SWT_AWT.html
http://download.oracle.com/javase/7/docs/technotes/guides/awt/1.5/xawt.html
http://download.oracle.com/javase/7/docs/technotes/guides/awt/1.5/xawt.html

are used only for synchronization. These files can be owned by any user, and
must have read and write permission. However, you can remove execute
permission on these files, if present. The files are empty and will be recreated
automatically if deleted.

v The files in the subdirectory for a process, with the exception of a lock file, are
accessible only by the owner of a process. The subdirectory has owner read,
write, and execute permissions plus group and world execute permissions. In
this directory, read and write access are restricted to the owner only, except for
the attachNotificationSync file, which must have world and group write
permissions. This exception does not affect security because the file is used
exclusively for synchronization and is never written to or read.

v Information about the target process can be written and read only by the owner.
v Java 5 SR10 allowed users in the same group to access to each others' processes.

This capability was removed in later versions.

You must secure access to the Java Attach API capability to ensure that only
authorized users or processes can connect to another virtual machine. If you do not
intend to use the Java Attach API capability, disable this feature using a Java
system property. Set the com.ibm.tools.attach.enable system property to the
value no; for example:
-Dcom.ibm.tools.attach.enable=no

The Attach API can be enabled by setting the com.ibm.tools.attach.enable system
property to the value yes; for example:
-Dcom.ibm.tools.attach.enable=yes

Using the Java Attach API

By default, the target virtual machine is identified by its process ID. To use a
different target, change the system property com.ibm.tools.attach.id; for example:
-Dcom.ibm.tools.attach.id=<process_ID>

The target process also has a human-readable “display name”. By default, the
display name is the command line used to start Java. To change the default display
name, use the com.ibm.tools.attach.displayName system property. The ID and
display name cannot be changed after the application has started.

The Attach API creates working files in a common directory, which by default is
called .com_ibm_tools_attach and is created in the system temporary directory.
The system property java.io.tmpdir holds the value of the system temporary
directory. On non-Windows systems, the system temporary directory is typically
/tmp.

You can specify a different common directory from the default, by using the
following Java system property:
-Dcom.ibm.tools.attach.directory=directory_name

This system property causes the specified directory, directory_name, to be used as
the common directory. If the directory does not already exist, it is created, however
the parent directory must already exist. For example, the following system
property creates a common directory called myattachapidir in the usr directory.
The usr directory must already exist.
-Dcom.ibm.tools.attach.directory=/usr/myattachapidir

142 IBM SDK for Java: SDK and Runtime Guide

The common directory must be located on a local drive; specifying a network
mounted file system might result in incorrect behavior.

If your Java application ends abnormally, for example, following a crash or a
SIGKILL signal, the process subdirectory is not deleted. The Java VM detects and
removes obsolete subdirectories where possible. The subdirectory can also be
deleted by the owning user ID.

On heavily loaded system, applications might experience timeouts when
attempting to connect to target applications. The default timeout is 120 seconds.
Use the com.ibm.tools.attach.timeout system property to specify a different
timeout value in milliseconds. For example, to timeout after 60 seconds:
-Dcom.ibm.tools.attach.timeout=60000

A timeout value of zero indicates an indefinite wait.

For JMX applications, you can disable authentication by editing the
<JAVA_HOME>/jre/lib/management/management.properties file. Set the following
properties to disable authentication in JMX:
com.sun.management.jmxremote.authenticate=false
com.sun.management.jmxremote.ssl=false

Problems with the Attach API result in one of the following exceptions:
v com.ibm.tools.attach.AgentLoadException

v com.ibm.tools.attach.AgentInitializationException

v com.ibm.tools.attach.AgentNotSupportedException

v java.io.IOException

A useful reference for information about the Attach API can be found at
http://download.oracle.com/javase/7/docs/technotes/guides/attach/index.html.
The IBM implementation of the Attach API is equivalent to the Oracle Corporation
implementation. However, the IBM implementation cannot be used to attach to, or
accept attach requests from, non-IBM virtual machines. To use the attach API to
attach to target processes from your application, you must add the "tools.jar"
library to the application classpath. This library is not required for the target
processes to accept attach requests.

Chapter 5. Developing Java applications 143

http://download.oracle.com/javase/7/docs/technotes/guides/attach/index.html

144 IBM SDK for Java: SDK and Runtime Guide

Chapter 6. Running Java applications

Java applications can be started using the java launcher or through JNI. Settings
are passed to a Java application using command-line arguments, environment
variables, and properties files.

The java and javaw commands
An overview of the java and javaw commands.

Purpose

The java and javaw tools start a Java application by starting a Java Runtime
Environment and loading a specified class.

The javaw command is identical to java, and is supported on z/OS for
compatibility with other platforms.

Usage

The JVM searches for the initial class (and other classes that are used) in three sets
of locations: the bootstrap class path, the installed extensions, and the user class
path. The arguments that you specify after the class name or .jar file name are
passed to the main function.

The java and javaw commands have the following syntax:
java [options] <class> [arguments ...]
java [options] -jar <file.jar> [arguments ...]
javaw [options] <class> [arguments ...]
javaw [options] -jar <file.jar> [arguments ...]

Parameters

[options]
Command-line options to be passed to the runtime environment.

<class>
Startup class. The class must contain a main() method.

<file.jar>
Name of the .jar file to start. It is used only with the -jar option. The named
.jar file must contain class and resource files for the application, with the
startup class indicated by the Main-Class manifest header.

[arguments ...]
Command-line arguments to be passed to the main() function of the startup
class.

Obtaining version information
You obtain the IBM build and version number for your Java installation using the
-version or -fullversion options. You can also obtain version information for all
jar files on the class path by using the -Xjarversion option.

© Copyright IBM Corp. 2011, 2013 145

Procedure
1. Open a shell prompt.
2. Type the following command:

java -version

You will see information similar to:
java version "1.7.0"
Java(TM) SE Runtime Environment (build pxi3270sr1-20120201_02(SR1))
IBM J9 VM (build 2.6, JRE 1.7.0 Linux x86-32 20120131_101270 (JIT enabled, AOT enabled)
J9VM - R26_JVM_26_20120125_1726_B100726
JIT - r11_20120130_22318
GC - R26_JVM_26_20120125_1044_B100654
J9CL - 20120131_101270)
JCL - 20120127_01 based on Oracle 7u3-b02

Exact build dates and versions will change.
3. To obtain only the build information for the JVM, type the following command:

java -fullversion

You will see information similar to:
java full version "JRE 1.7.0 IBM Windows 32 build pwi3270sr1-20120412_01 (SR1)"

What to do next

You can also list the version information for all available jar files on the class path,
the boot class path, and in the extensions directory. Type the following command:
java -Xjarversion -version

You will see information similar to:
java version "1.7.0"
Java(TM) SE Runtime Environment (build pxi3270sr1-20120201_02(SR1))
IBM J9 VM (build 2.6, JRE 1.7.0 Linux x86-32 20120131_101270 (JIT enabled, AOT enabled)
J9VM - R26_JVM_26_20120125_1726_B100726
JIT - r11_20120130_22318
GC - R26_JVM_26_20120125_1044_B100654
J9CL - 20120131_101270)
JCL - 20120127_01 based on Oracle 7u3-b02
/opt/ibm/java-i386-70/jre/lib/i386/default/jclSC170/vm.jar VERSION: 2.6 (01-31-2012)
/opt/ibm/java-i386-70/jre/lib/se-service.jar
/opt/ibm/java-i386-70/jre/lib/math.jar
/opt/ibm/java-i386-70/jre/lib/jlm.jar
/opt/ibm/java-i386-70/jre/lib/ibmorb.jar
/opt/ibm/java-i386-70/jre/lib/ibmorbapi.jar
/opt/ibm/java-i386-70/jre/lib/ibmcfw.jar VERSION: CCX.CF [o1103.02]
...

The information available varies for each jar file and is taken from the
Implementation-Version and Build-Level properties in the manifest of the jar file.

Specifying Java options and system properties
You can specify Java options and system properties directly on the command line.
You can also use an options file or an environment variable.

146 IBM SDK for Java: SDK and Runtime Guide

About this task

The sequence of the Java options on the command line defines which options take
precedence during startup. Rightmost options have precedence over leftmost
options. In the following example, the -Xjit option takes precedence:
java -Xint -Xjit myClass

Use one of more of the options that are shown in the procedure to customize your
runtime environment.

Procedure
1. Specify options or system properties on the command line. For example:

java -Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump MyJavaClass

2. Create an environment variable that is called IBM_JAVA_OPTIONS containing the
options. For example:
export IBM_JAVA_OPTIONS="-Dmysysprop1=tcpip -Dmysysprop2=wait
-Xdisablejavadump"

3. Create a file that contains the options, and specify that file on the command
line or in the IBM_JAVA_OPTIONS environment variable by using the
-Xoptionsfile parameter. For more information about constructing this file, see
“-Xoptionsfile” on page 438.

Standard options
The definitions for the standard options.

See “JVM command-line options” on page 428 for information about nonstandard
(-X) options.

-agentlib:<libname>[=<options>]
Loads a native agent library <libname>; for example -agentlib:hprof. For more
information, specify -agentlib:jdwp=help and -agentlib:hprof=help on the
command line.

-agentpath:libname[=<options>]
Loads a native agent library by full path name.

-cp <directories and .zip or .jar files separated by :>
Sets the search path for application classes and resources. If -classpath and
-cp are not used and the CLASSPATH environment variable is not set, the user
class path is, by default, the current directory (.).

-classpath <directories and .zip or .jar files separated by :>
Sets the search path for application classes and resources. If -classpath and
-cp are not used and the CLASSPATH environment variable is not set, the user
class path is, by default, the current directory (.).

-D<property name>=<value>
Sets a system property.

-help or -?
Prints a usage message.

-javaagent:<jarpath>[=<options>]
Load a Java programming language agent. For more information, see the
java.lang.instrument API documentation.

-jre-restrict-search
Include user private JREs in the version search.

Chapter 6. Running Java applications 147

-no-jre-restrict-search
Exclude user private JREs in the version search.

-showversion
Prints product version and continues.

-verbose:<option>[,<option>...]
Enables verbose output. Separate multiple options using commas. The
available options are:

class
Writes an entry to stderr for each class that is loaded.

gc Writes verbose garbage collection information to stderr. Use
-Xverbosegclog (see “Garbage Collector command-line options” on page
453 for more information) to control the output. See Verbose garbage
collection logging“Verbose garbage collection logging” on page 334 for
more information.

jni
Writes information to stderr describing the JNI services called by the
application and JVM.

sizes
Writes information to stderr describing the active memory usage settings.

stack
Writes information to stderr describing the Java and C stack usage for each
thread.

-version
Prints product version.

-version:<value>
Requires the specified version to run, for example “1.5”.

-X Prints help on nonstandard options.

Globalization of the java command
The java and javaw launchers accept arguments and class names containing any
character that is in the character set of the current locale. You can also specify any
Unicode character in the class name and arguments by using Java escape
sequences.

To do this, use the -Xargencoding command-line option.

-Xargencoding
Use argument encoding. To specify a Unicode character, use escape sequences
in the form \u####, where # is a hexadecimal digit (0 to 9, A to F).

-Xargencoding:utf8
Use UTF8 encoding.

-Xargencoding:latin
Use ISO8859_1 encoding.

For example, to specify a class called HelloWorld using Unicode encoding for both
capital letters, use this command:
java -Xargencoding ’\u0048ello\u0057orld’

148 IBM SDK for Java: SDK and Runtime Guide

The java and javaw commands provide translated messages. These messages differ
based on the locale in which Java is running. The detailed error descriptions and
other debug information that is returned by java is in English.

The Just-In-Time (JIT) compiler
The IBM Just-In-Time (JIT) compiler dynamically generates machine code for
frequently used bytecode sequences in Java applications and applets during their
execution. The JIT compiler delivers new optimizations as a result of compiler
research, improves optimizations implemented in previous versions of the JIT, and
provides better hardware exploitation.

The JIT is included in both the IBM SDK and Runtime Environment, which is
enabled by default in user applications and SDK tools. Typically, you do not start
the JIT explicitly; the compilation of Java bytecode to machine code occurs
transparently. You can disable the JIT to help isolate a problem. If a problem occurs
when executing a Java application or an applet, you can disable the JIT to help
isolate the problem. Disabling the JIT is a temporary measure only; the JIT is
required to optimize performance.

For more information about the JIT, see JIT and AOT problem determination“JIT
and AOT problem determination” on page 322.

Disabling the JIT
The JIT can be disabled in a number of different ways. Both command-line options
override the JAVA_COMPILER environment variable.

About this task

Turning off the JIT is a temporary measure that can help isolate problems when
debugging Java applications.

Procedure
v Set the JAVA_COMPILER environment variable to NONE or the empty string before

running the java application. Type the following command at a shell prompt:
export JAVA_COMPILER=NONE

v Use the -D option on the JVM command line to set the java.compiler property
to NONE or the empty string. Type the following command at a shell prompt:
java -Djava.compiler=NONE <class>

v Use the -Xint option on the JVM command line. Type the following command
at a shell prompt:
java -Xint <class>

Enabling the JIT
The JIT is enabled by default. You can explicitly enable the JIT in a number of
different ways. Both command-line options override the JAVA_COMPILER
environment variable.

Procedure
v Set the JAVA_COMPILER environment variable to jitc before running the Java

application. At a shell prompt, enter:
export JAVA_COMPILER=jitc

Chapter 6. Running Java applications 149

If the JAVA_COMPILER environment variable is an empty string, the JIT remains
disabled. To disable the environment variable, at the prompt, enter:
unset JAVA_COMPILER

v Use the -D option on the JVM command line to set the java.compiler property
to jitc. At a prompt, enter:
java -Djava.compiler=jitc <class>

v Use the -Xjit option on the JVM command line. Do not specify the -Xint option
at the same time. At a prompt, enter:
java -Xjit <class>

Determining whether the JIT is enabled
You can determine the status of the JIT using the -version option.

Procedure

Run the java launcher with the -version option. Enter the following command at
a shell prompt:
java -version

If the JIT is not in use, a message is displayed that includes the following text:
(JIT disabled)

If the JIT is in use, a message is displayed that includes the following text:
(JIT enabled)

What to do next

For more information about the JIT, see The JIT compiler“The JIT compiler” on
page 57.

Specifying a garbage collection policy
The Garbage Collector manages the memory used by Java and by applications
running in the JVM.

When the Garbage Collector receives a request for storage, unused memory in the
heap is set aside in a process called "allocation". The Garbage Collector also checks
for areas of memory that are no longer referenced, and releases them for reuse.
This is known as "collection".

The collection phase can be triggered by a memory allocation fault, which occurs
when no space remains for a storage request, or by an explicit System.gc() call.

Garbage collection can significantly affect application performance, so the IBM
virtual machine provides various methods of optimizing the way garbage
collection is carried out, potentially reducing the effect on your application.

For more detailed information about garbage collection, see Detailed description of
garbage collection“Detailed description of global garbage collection” on page 29.

150 IBM SDK for Java: SDK and Runtime Guide

Garbage collection options
The -Xgcpolicy options control the behavior of the Garbage Collector. They make
trade-offs between throughput of the application and overall system, and the pause
times that are caused by garbage collection.

The format of the option is as follows:
-Xgcpolicy:<value>

The following values are available:

gencon
The gencon policy (default) uses a concurrent mark phase combined with
generational garbage collection to help minimize the time that is spent in any
garbage collection pause. This policy is particularly useful for applications with
many short-lived objects, such as transactional applications. Pause times can be
significantly shorter than with the optthruput policy, while still producing
good throughput. Heap fragmentation is also reduced.

balanced
The balanced policy uses mark, sweep, compact and generational style garbage
collection. The concurrent mark phase is disabled; concurrent garbage
collection technology is used, but not in the way that concurrent mark is
implemented for other policies. The balanced policy uses a region-based layout
for the Java heap. These regions are individually managed to reduce the
maximum pause time on large heaps and increase the efficiency of garbage
collection. The policy tries to avoid global collections by matching object
allocation and survival rates. If you have problems with application pause
times that are caused by global garbage collections, particularly compactions,
this policy might improve application performance. For more information
about this policy, including when to use it, see “Balanced Garbage Collection
policy” on page 39.

optavgpause
The optavgpause policy uses concurrent mark and concurrent sweep phases.
Pause times are shorter than with optthruput, but application throughput is
reduced because some garbage collection work is taking place while the
application is running. Consider using this policy if you have a large heap size
(available on 64-bit platforms), because this policy limits the effect of increasing
heap size on the length of the garbage collection pause. However, if your
application uses many short-lived objects, the gencon policy might produce
better performance.

subpool
The subpool policy is deprecated and is now an alias for optthruput.
Therefore, if you use this option, the effect is the same as optthruput.

optthruput
The optthruput policy disables the concurrent mark phase. The application
stops during global garbage collection, so long pauses can occur. This
configuration is typically used for large-heap applications when high
application throughput, rather than short garbage collection pauses, is the
main performance goal. If your application cannot tolerate long garbage
collection pauses, consider using another policy, such as gencon.

More effective heap usage using compressed references
Many Java application workloads depend on the Java heap size. The IBM SDK for
Java can use compressed references on 64-bit platforms to decrease the size of Java

Chapter 6. Running Java applications 151

objects and make more effective use of the available space. The result is less
frequent garbage collection and improved memory cache utilization.

If you specify the -Xnocompressedrefs command-line option, the IBM SDK for Java
64-bit stores object references as 64-bit values. If you specify the -Xcompressedrefs
command-line option, object references are stored as 32-bit representation, which
reduces the 64-bit object size to be the same as a 32-bit object.

As the 64-bit objects with compressed references are smaller than default 64-bit
objects, they occupy a smaller memory footprint in the Java heap and improves
data locality. This results in better memory utilization and improved performance.

If you are using a 64-bit IBM SDK for Java, use -Xcompressedrefs whenever you
require a maximum heap size of less than 25 GB. For example, your application
might use a lot of native memory and require the JVM to run in a small footprint.

Note: If you are using compressed references on z/OS v1.10 or earlier, you must
use APAR OA26294.

See “Compressed references” on page 27 for more detailed information and
hardware/operating system specific guidance on compressed references. More
information is also available in the Websphere white paper on compressed
references.

Pause time
If an object cannot be created from the available space in the heap, the Garbage
Collector attempts to tidy the heap. The intention is that subsequent allocation
requests can be satisfied quickly.

The Garbage Collector tries to returning the heap to a state in which the immediate
and subsequent space requests are successful. The Garbage Collector identifies
unreferenced “garbage” objects, and deletes them. This work takes place in a
garbage collection cycle. These cycles might introduce occasional, unexpected
pauses in the execution of application code. As applications grow in size and
complexity, and heaps become correspondingly larger, the garbage collection pause
time tends to grow in size and significance. Pause time can vary from a few
milliseconds to many seconds. The actual time depends on the size of the heap,
and the quantity of garbage.

The -Xgcpolicy:balanced command-line option uses a garbage collection policy
with reduced pause times, even as the Java heap size grows.

Pause time reduction
The JVM uses multiple techniques to reduce pause times, including concurrent
garbage collection, partial garbage collection, and generational garbage collection.

The -Xgcpolicy:optavgpause command-line option requests the use of concurrent
garbage collection (GC) to reduce significantly the time that is spent in garbage
collection pauses. Concurrent GC reduces the pause time by performing some
garbage collection activities concurrently with normal program execution to
minimize the disruption caused by the collection of the heap. The
-Xgcpolicy:optavgpause option also limits the effect of increasing the heap size on
the length of the garbage collection pause. The -Xgcpolicy:optavgpause option is
most useful for configurations that have large heaps. With the reduced pause time,
you might experience some reduction of throughput to your applications.

152 IBM SDK for Java: SDK and Runtime Guide

http://www-01.ibm.com/support/docview.wss?rs=112&context=SWG90&context=SWGA0&context=SWGB0&context=SWG80&q1=OA26294&uid=isg1OA26294&loc=en_US&cs=utf-8&lang=en
ftp://public.dhe.ibm.com/software/webserver/appserv/was/WAS_V7_64-bit_performance.pdf

During concurrent GC, a significant amount of time is wasted identifying relatively
long-lasting objects that cannot then be collected. If garbage collection concentrates
on only the objects that are most likely to be recyclable, you can further reduce
pause times for some applications. Generational GC reduces pause times by
dividing the heap into two generations: the “new” and the “tenure” areas. Objects
are placed in one of these areas depending on their age. The new area is the
smaller of the two and contains new objects; the tenure is larger and contains older
objects. Objects are first allocated to the new area; if they have active references for
long enough, they are promoted to the tenure area.

Generational GC depends on most objects not lasting long. Generational GC
reduces pause times by concentrating the effort to reclaim storage on the new area
because it has the most recyclable space. Rather than occasional but lengthy pause
times to collect the entire heap, the new area is collected more frequently and, if
the new area is small enough, pause times are comparatively short. However,
generational GC has the drawback that, over time, the tenure area might become
full. To minimize the pause time when this situation occurs, use a combination of
concurrent GC and generational GC. The -Xgcpolicy:gencon option requests the
combined use of concurrent and generational GC to help minimize the time that is
spent in any garbage collection pause.

Partial GC is like generational GC because different areas of the Java heap are
collected independently. In both cases, using more than one area in the Java heap
allows garbage collection to occur more frequently, with shorter pause times.
However, there are two important differences that make partial GC better than
generational GC at avoiding long application pauses:
v There are many areas, called regions, defined in the Java heap instead of just the

tenure and new area.
v Any number of these regions can be collected at the same time.

With generational GC, short pauses are possible while collecting only the new area.
However, there is an inevitably long pause required to occasionally collect the
tenure and new area together. The -Xgcpolicy:balanced option requests a
combined use of concurrent and partial garbage collection.

Environments with very full heaps
If the Java heap becomes nearly full, and very little garbage can be reclaimed,
requests for new objects might not be satisfied quickly because no space is
immediately available.

If the heap is operated at near-full capacity, application performance might suffer
regardless of which garbage collection options are used; and, if requests for more
heap space continue to be made, the application might receive an
OutOfMemoryError, which results in JVM termination if the exception is not
caught and handled. At this point, the JVM produces a Javadump file for use
during diagnostic procedures. In these conditions, you are recommended either to
increase the heap size by using the -Xmx option or to reduce the number of objects
in use.

For more information, see Garbage Collector diagnostic data“Garbage Collector
diagnostic data” on page 333.

Chapter 6. Running Java applications 153

Euro symbol support
The IBM SDK and Runtime Environment set the Euro as the default currency for
those countries in the European Monetary Union (EMU) for dates on or after 1
January, 2002. From 1 January 2008, Cyprus and Malta also have the Euro as the
default currency.

To use the old national currency, specify –Duser.variant=PREEURO on the Java
command line.

If you are running the UK, Danish, or Swedish locales and want to use the Euro,
specify –Duser.variant=EURO on the Java command line.

Configuring large page memory allocation
You can enable large page support, on systems that support it, by starting Java
with the -Xlp option. 1M pageable pages, when available, are the default size for
the object heap and code cache.

About this task

Large page usage is primarily intended to provide performance improvements to
applications that allocate a great deal of memory and frequently access that
memory. The large page performance improvements are a result of the reduced
number of misses in the Translation Lookaside Buffer (TLB). The TLB maps a
larger virtual storage area range and thus causes this improvement.

Sub-options are available to request the JVM to allocate the Java object heap or the
JIT code cache using large pages. These options are shown in the table, together
with the large page sizes supported.

Table 7. Large page size support. Large page sizes supported for -Xlp options

Large page size
“-Xlp:codecache” on
page 436

“-Xlp:objectheap” on
page 436 “-Xlp” on page 435

2G nonpageable Not supported Supported (64-bit
JVM only)

Supported (64-bit
JVM only)

1M nonpageable Not supported Supported (64-bit
JVM only)

Supported (64-bit
JVM only)

1M pageable Supported (31-bit
and 64-bit JVM)

Supported (31-bit
and 64-bit JVM)

Not supported

For more information about the -Xlp options, see “JVM command-line options” on
page 428.

The following restrictions apply to large page sizes on z/OS:

2G nonpageable

v This page size applies to object heap large pages. The JIT code cache
cannot be allocated in 2GB nonpageable large pages.

v This page size is supported only on the 64-bit SDK for z/OS, not the
31-bit SDK.

v This page size requires z/OS V1.13 with PTFs and the z/OS V1.13
Remote Storage Manager Enablement Offering web deliverable, and an
IBM zEnterprise EC12 processor or later.

154 IBM SDK for Java: SDK and Runtime Guide

|

|
|
|
|

|
|

|
|

|

|
|
|

|

|
|
|
|
|

|
|
|

||

|
|
|
|
||

|||
|
|
|

|||
|
|
|

||
|
|
|
|

|

|
|

|

|

|
|

|
|

|
|
|

v A system programmer must configure z/OS for 2G nonpageable large
pages.

v Users who require large pages must be authorized to the
IARRSM.LRGPAGES resource in the RACF (or an equivalent security
product) FACILITY class with read authority.

1M nonpageable

v This page size applies to object heap large pages. The JIT code cache
cannot be allocated in 1M nonpageable large pages.

v This page size is supported only on the 64-bit SDK for z/OS, not the
31-bit SDK.

v This page size requires z/OS V1.10 or later with APAR OA25485, and a
System z10® processor or later.

v A system programmer must configure z/OS for 1M nonpageable large
pages.

v Users who require large pages must be authorized to the
IARRSM.LRGPAGES resource in the RACF (or an equivalent security
product) FACILITY class with read authority.

1M pageable

v This page size is supported on the 31-bit and 64-bit SDK for z/OS.
v Both the object heap and the JIT code cache can be allocated in 1M

pageable large pages.
v The use of 1M pageable pages for the object heap provides similar

runtime performance benefits to the use of 1M nonpageable pages. In
addition, using 1M pageable pages provides options for managing
memory that can improve system availability and responsiveness.

v The following minimum prerequisites apply: IBM zEnterprise EC12 with
the Flash Express feature (#0402), z/OS V1.13 with APAR OA41307, and
the z/OS V1.13 Remote Storage Manager Enablement Offering web
deliverable.

v From service refresh 4, 1M pageable, when available, is the default page
size for the object heap and the code cache.

When the JVM is allocating large pages, if a particular large page size cannot be
allocated, the following sizes are attempted, in order, where applicable:
v 2G nonpageable
v 1M nonpageable
v 1M pageable
v 4K pageable

For example, if 1M nonpageable large pages are requested but cannot be allocated,
pageable 1M large pages are attempted, and then pageable 4K pages.

The option PAGESCM=ALL | NONE in the IEASYSxx parmlib member controls 1M
pageable large pages for the entire LPAR. ALL is the default. Therefore, when
running on a system that has Flash cards installed, and using a z/OS system that
supports Flash, the Flash card is available for paging by default. As a result, RSM
also allows the use of 1M pageable large pages.

The option LFAREA in the IEASYxx parmlib member controls both 2G nonpageable
and 1M nonpageable large pages for the entire LPAR. You can use the z/OS
system command DISPLAY VS,LFAREA to show LFAREA usage information for the

Chapter 6. Running Java applications 155

|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|
|

|

|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

|

|
|

|
|
|
|
|

|
|
|

entire LPAR. For more information, see http://publib.boulder.ibm.com/infocenter/
zos/v1r13/index.jsp?topic=%2Fcom.ibm.zos.r13.ieae100%2Flfarea.htm.

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and not
the sizes obtained. For object heap size information, check the -verbose:gc output.

Specifying a heap size that is a multiple of the page size uses another page of
memory. For large sizes like 2G, you should set the heap size smaller than the next
page size boundary. For example, when using the 2G pagesize, specify a maximum
heap size of -Xmx2047m instead of -Xmx2048m, or -Xmx4095m instead of -Xmx4096m,
and so on. When using nonpageable large pages, the real memory size that you
specify is allocated when the JVM starts. For example, using options -Xmx1023m
-Xms512m -Xlp:objectheap:pagesize=1M,nonpageable allocates 1G of real memory
for the 1M nonpageable pages when the JVM starts.

When specifying -Xmx or -Xms, the physical storage allocated is based on the page
size. For example, if using 2G large pages with Java options -Xmx1024M and -Xms
512K, the Java heap is allocated on a 2G large page. The real memory for the 2G
large page is allocated immediately. Even though the Java heap is consuming a 2G
large page, in this example, the maximum Java heap is 1024M with an initial Java
heap of 512K as specified. If the 2G pagesize is not pageable, the 2G large page is
never paged out as long as the JVM is running. For more information about the
-Xmx option, see “Garbage Collector command-line options” on page 453.

156 IBM SDK for Java: SDK and Runtime Guide

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=%2Fcom.ibm.zos.r13.ieae100%2Flfarea.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/index.jsp?topic=%2Fcom.ibm.zos.r13.ieae100%2Flfarea.htm

Chapter 7. Performance

You can improve the performance of applications by tuning the product, enabling
hardware features, or using specific APIs in your application code.

Here are some methods for improving performance:
v Share class data between JVMs. For more information, see “Class data sharing

between JVMs.”
v Choose the best garbage collection policy for your application. For more

information, see “Specifying a garbage collection policy” on page 150.
v Enable large page support on your operating system. For more information, see

“Configuring large page memory allocation” on page 154.

Class data sharing between JVMs
Class data sharing enables multiple JVMs to share a single space in memory.

You can share class data between Java Virtual Machines (JVMs) by storing it in a
cache in shared memory. Sharing reduces the overall virtual storage consumption
when more than one JVM shares a cache. Sharing also reduces the startup time for
a JVM after the cache has been created. The shared class cache is independent of
any running JVM and persists until it is deleted or until a system IPL.

A shared cache can contain:
v Bootstrap classes
v Application classes
v Metadata that describes the classes
v Ahead-of-time (AOT) compiled code

Overview of class data sharing
Class data sharing provides a method of reducing memory footprint and
improving JVM start time.

Enabling class data sharing

Enable class data sharing by using the -Xshareclasses option when starting a
JVM. The JVM connects to an existing cache or creates a new cache if one does not
exist.

All bootstrap and application classes loaded by the JVM are shared by default.
Custom class loaders share classes automatically if they extend the application
class loader. Otherwise, they must use the Java Helper API provided with the JVM
to access the cache. See “Adapting custom class loaders to share classes” on page
168.

The JVM can also store ahead-of-time (AOT) compiled code in the cache for certain
methods to improve the startup time of subsequent JVMs. The AOT compiled code
is not shared between JVMs, but is cached to reduce compilation time when the
JVM starts. The amount of AOT code stored in the cache is determined
heuristically. You cannot control which methods get stored in the cache. You can

© Copyright IBM Corp. 2011, 2013 157

set maximum and minimum limits on the amount of cache space used for AOT
code, or you can disable AOT caching completely. See “Class data sharing
command-line options” on page 159 for more information.

The JVM stores zip entry caches for bootstrap jar files into the shared cache. A zip
entry cache is a map of names to file positions used to quickly find entries in the
zip file. Storing zip entry caches is enabled by default, or you can choose to disable
zip entry caching. See “Class data sharing command-line options” on page 159 for
more information.

Cache access

A JVM can access a cache with either read/write or read-only access. Any JVM
connected to a cache with read/write access can update the cache. Any number of
JVMs can concurrently read from the cache, even while another JVM is writing to
it.

You must take care if runtime bytecode modification is being used. See “Runtime
bytecode modification” on page 167 for more information.

Dynamic updating of the cache

The shared class cache persists beyond the lifetime of any JVM. Therefore, the
cache is updated dynamically to reflect any modifications that might have been
made to JARs or classes on the file system. The dynamic updating makes the cache
independent of the application using it.

Cache security

Access to the shared class cache is limited by operating system permissions and
Java security permissions. The shared class cache is created with user access by
default unless the groupAccess command-line suboption is used. Only a class
loader that has registered to share class data can update the shared class cache.

A cache can be accessed only by a JVM running in the same storage key as the
JVM that created the cache. If the keys do not match, permission to access the
cache is denied. Known environments where storage keys can cause an issue
include:

WebSphere control region (key 2)
Attempting to access the shared cache for the WebSphere control region
generates the following error message:
JVMSHRC337W Platform error message: shmat : EDC5111I Permission denied.

CICS, when switching between STGPROT=NO (key 8) and STGPROT=YES (key 9)
If CICS is started with STGPROT=YES, CICS allocates the shared cache in key
9. This enables cache sharing between programs running in CICS key (8)
and User key (9). If CICS is started with STGPROT=NO, the cache is allocated
in key 8. Using a shared cache in key 8 might lead to errors if the CICS
region is subsequently restarted with STGPROT=YES. Unless the cache is
rebuilt, a program running in User key (9) will be unable to access the
shared class cache. In this situation the JVM issues a message, similar to:
JVMSHRC337W Platform error message: shmat : EDC5111I Permission denied.

The default storage key for the JVM is key 8.

158 IBM SDK for Java: SDK and Runtime Guide

(31-bit only) The cache memory is protected against accidental or deliberate
corruption using memory page protection. This protection is not an absolute
guarantee against corruption because the JVM must unprotect pages to write to
them. The only way to guarantee that a cache cannot be modified is to open it
read-only.

(64-bit only) Memory page protection using PGSER PROTECT is unavailable on z/OS
64-bit mode.

If a Java SecurityManager is installed, classloaders, excluding the default bootstrap,
application, and extension class loaders, must be granted permission to share
classes. Grant permission by adding SharedClassPermission lines to the
java.policy file. See “Using SharedClassPermission” on page 168 for more
information. The RuntimePermission createClassLoader restricts the creation of
new class loaders and therefore also restricts access to the cache.

Cache lifespan

Multiple caches can exist on a system and you specify them by name as a
suboption to the -Xshareclasses command. A JVM can connect to only one cache
at any one time.

You can override the default cache size on startup using -Xscmx<n><size>. This size
is then fixed for the lifetime of the cache. Caches exist until they are explicitly
deleted using a suboption to the -Xshareclasses command or until the next
system IPL.

Cache utilities

All cache utilities are suboptions to the -Xshareclasses command. See “Class data
sharing command-line options” or use -Xshareclasses:help to see a list of
available suboptions.

Class data sharing command-line options
Class data sharing and the cache management utilities are controlled using
command-line options to the Java launcher.

For options that take a <size> parameter, suffix the number with "k" or "K" to
indicate kilobytes, "m" or "M" to indicate megabytes, or "g" or "G" to indicate
gigabytes.

-Xscmaxaot<size>
Sets the maximum number of bytes in the cache that can be used for AOT
data. Use this option to ensure that a certain amount of cache space is
available for non-AOT data. By default, the maximum limit for AOT data is
the amount of free space in the cache. The value of this option should not be
smaller than the value of -Xscminaot and must not be larger than the value of
-Xscmx.

-Xscmaxjitdata<x>
Optionally applies a maximum number of bytes in the class cache that can be
used for JIT data. This option is useful if you want a certain amount of cache
space that is guaranteed for non-JIT data. If this option is not specified, the
maximum limit for JIT data is the amount of free space in the cache. The value
of this option must not be smaller than the value of -Xscminjitdata, and must
not be larger than the value of -Xscmx.

Chapter 7. Performance 159

-Xscminaot<size>
Sets the minimum number of bytes in the cache to reserve for AOT data. By
default, no space is reserved for AOT data, although AOT data is written to
the cache until the cache is full or the -Xscmaxaot limit is reached. The value of
this option must not exceed the value of -Xscmx or -Xscmaxaot. The value of
-Xscminaot must always be considerably less than the total cache size because
AOT data can be created only for cached classes. If the value of -Xscminaot is
equal to the value of -Xscmx, no class data or AOT data is stored because AOT
data must be associated with a class in the cache.

-Xscminjitdata<x>
Optionally applies a minimum number of bytes in the class cache to reserve
for JIT data. If this option is not specified, no space is reserved for JIT data,
although JIT data is still written to the cache until the cache is full or the
-Xscmaxjit limit is reached. The value of this option must not exceed the value
of -Xscmx or -Xscmaxjitdata. The value of -Xscminjitdata must always be
considerably less than the total cache size, because JIT data can be created only
for cached classes. If the value of -Xscminjitdata equals the value of -Xscmx,
no class data or JIT data can be stored.

-Xscdmx<size>
You can use the -Xscdmx option to control the size of the class debug area
when creating a shared class cache. The -Xscdmx option works in a similar way
to the -Xscmx option used to control the overall size of the shared class cache.
The size of -Xscdmx must not exceed the size of -Xscmx. By default, the size of
the class debug area is a percentage of the free bytes in a newly created or
empty cache.

size can be a percentage, expressed as a number, or an absolute value.

A class debug area is still created if you use the -Xnolinenumbers option with
the -Xscdmx option on the command line.

-Xscmx<size>
Specifies cache size. This option applies only if a cache is being created and no
cache of the same name exists. The default cache size is platform-dependent.
You can find out the size value being used by adding -verbose:sizes as a
command-line argument. The minimum cache size is 4 KB. The maximum
cache size is also platform-dependent. (See “Cache size limits” on page 166.)

-Xshareclasses:<suboption>[,<suboption>...]
Enables class data sharing. Can take a number of suboptions, some of which
are cache utilities. Cache utilities perform the required operation on the
specified cache, without starting the VM. You can combine multiple
suboptions, separated by commas, but the cache utilities are mutually
exclusive. When running cache utilities, the message Could not create the
Java virtual machine is expected. Cache utilities do not create the virtual
machine.

Some cache utilities can work with caches from previous Java versions or
caches that are created by JVMs with different bit-widths. These caches are
referred to as “incompatible” caches.

You can use the following suboptions with the -Xshareclasses option:

help
Lists all the command-line suboptions.

name=<name>
Connects to a cache of a given name, creating the cache if it does not
already exist. Also used to indicate the cache that is to be modified by

160 IBM SDK for Java: SDK and Runtime Guide

cache utilities; for example, destroy. Use the listAllCaches utility to show
which named caches are currently available. If you do not specify a name,
the default name “sharedcc_%u” is used. %u in the cache name inserts the
current user name. You can specify “%g” in the cache name to insert the
current group name.

Note: Some features, when enabled, result in the creation of caches that
cannot be shared with caches that were created when the feature was
disabled. The multitenancy support is one such example. In this situation,
you can have more than one cache with the same name.

cacheDir=<directory>
Sets the directory in which cache data is read and written. By default,
<directory> is /tmp/javasharedresources. The user must have sufficient
permissions in <directory>. Caches are stored in shared memory and have
control files that describe the location of the memory. Control files are
stored in a javasharedresources subdirectory of the cacheDir specified. Do
not move or delete control files in this directory. The listAllCaches utility,
the destroyAll utility, and the expire suboption work only in the scope of
a given cacheDir.

cacheDirPerm=<permission>
Sets UNIX-style permissions when creating a cache directory. <permission>
must be a number in the ranges 0700 - 0777 or 1700 - 1777. If <permission>
is not valid, the JVM terminates with an appropriate error message.

The permissions that are specified by this suboption are used only when
creating a new cache directory. If the cache directory already exists, this
suboption is ignored and the cache directory permissions are not changed.

If you set this suboption to 0000, the default directory permissions are
used. If you set this suboption to 1000, the machine default directory
permissions are used, but the sticky bit is enabled.

If the cache directory is the platform default directory,
/tmp/javasharedresources, the cacheDirPerm suboption is ignored and the
cache directory permissions are set to 777.If you do not set the
cacheDirPerm suboption, and the cache directory does not already exist, a
new directory is created with permissions set to 777, for compatibility with
earlier Java versions. Permissions for existing cache directories are
unchanged, to avoid generating RACF errors, which generate log
messages.

disableBCI
Turns off BCI support. This option can be used to override
-XX:ShareClassesEnableBCI. For more information, see
“-XX:ShareClassesEnableBCI” on page 447.

enableBCI

Allows a JVMTI ClassFileLoadHook event to be triggered every time, for
classes loaded from the cache. This mode also prevents caching of classes
modified by JVMTI agents. For more information about this option, see
“Using the JVMTI ClassFileLoadHook with cached classes” on page 353.
This option is incompatible with the cacheRetransformed option. Using the
two options together causes the JVM to end with an error message, unless
-Xshareclasses:nonfatal is specified. In this case, the JVM continues
without using shared classes.

Chapter 7. Performance 161

|
|
|
|

|

|
|
|
|
|
|
|
|

This mode stores more data into the cache, and creates a Raw Class Data
area by default. See the rcdSize= suboption. When using this suboption,
the cache size might need to be increased with -Xscmx<size>.

A cache created without the enableBCI suboption cannot be reused with
the enableBCI suboption. Attempting to do so causes the JVM to end with
an error message, unless -Xshareclasses:nonfatal is specified. In this case,
the JVM continues without using shared classes. A cache created with the
enableBCI suboption can be reused without specifying this suboption. In
this case, the JVM detects that the cache was created with the enableBCI
suboption and uses the cache in this mode.

rcdSize=nnn

Controls the size of the Raw Class Data Area. The number of bytes passed
to rcdSize must always be less than the total cache size. This value is
always rounded down to the nearest multiple of the system page size. For
example, these variations specify a Raw Class Data Area with a size of 1
MB:
-Xshareclasses:enableBCI,rcdSize=1048576
-Xshareclasses:enableBCI,rcdSize=1024k
-Xshareclasses:enableBCI,rcdSize=1m

If rcdSize is not used, and enableBCI is used, the JVM chooses a default
Raw Class Data Area size.

If rcdSize is used, memory is reserved in the cache regardless of whether
enableBCI is used.

If neither rcdSize or enableBCI is used, nothing is reserved in the cache for
the Raw Class Data Area.

readonly
Opens an existing cache with read-only permissions. The JVM does not
create a new cache with this suboption. Opening a cache read-only
prevents the JVM from making any updates to the cache. It also allows the
JVM to connect to caches created by other users or groups without
requiring write access. By default, this suboption is not specified.

groupAccess
Sets operating system permissions on a new cache to allow group access to
the cache. Group access can be set only when permitted by the operating
system umask setting. The default is user access only.

verbose
Enables verbose output, which provides overall status on the shared class
cache and more detailed error messages.

verboseAOT
Enables verbose output when compiled AOT code is being found or stored
in the cache. AOT code is generated heuristically. You might not see any
AOT code generated at all for a small application. You can disable AOT
caching by using the noaot suboption.

verboseIO
Gives detailed output on the cache I/O activity, listing information on
classes that are stored and found. Each class loader is given a unique ID
(the bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is usual to see many failed requests;
this behavior is expected for the class loader hierarchy.

162 IBM SDK for Java: SDK and Runtime Guide

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

verboseHelper
Enables verbose output for the Java Helper API. This output shows you
how the Helper API is used by your class loader.

silent
Turns off all shared classes messages, including error messages.
Unrecoverable error messages, which prevent the JVM from initializing, are
displayed.

nonfatal
Allows the JVM to start even if class data sharing fails. Normal behavior
for the JVM is to refuse to start if class data sharing fails. If you select
nonfatal and the shared classes cache fails to initialize, the JVM attempts
to connect to the cache in read-only mode. If this attempt fails, the JVM
starts without class data sharing.

none
Can be added to the end of a command line to disable class data sharing.
This suboption overrides class sharing arguments found earlier on the
command line. This suboption disables the shared class utility APIs. To
disable class data sharing without disabling utility APIs, use the utilities
suboption. For more information about the shared class utility APIs, see
“Obtaining information about shared caches” on page 360.

utilities
Can be added to the end of a command line to disable class data sharing.
This suboption overrides class sharing arguments found earlier on the
command line. This suboption is like none, but does not disable the shared
class utility APIs. For more information about the shared class utility APIs,
see “Obtaining information about shared caches” on page 360.

modified=<modified context>
Used when a JVMTI agent is installed that might modify bytecode at run
time. If you do not specify this suboption and a bytecode modification
agent is installed, classes are safely shared with an extra performance cost.
The <modified context> is a descriptor that is chosen by the user; for
example, “myModification1”. This option partitions the cache, so that only
JVMs that use context myModification1 can share the same classes. For
instance, if you run HelloWorld with a modification context and then run
it again with a different modification context, all classes are stored twice in
the cache. For more information, see “Runtime bytecode modification” on
page 167.

reset
Causes a cache to be destroyed and then recreated when the JVM starts up.
Can be added to the end of a command line as -Xshareclasses:reset.

destroy (Utility option)
Destroys a cache specified by the name, cacheDir, and nonpersistent
suboptions. A cache can be destroyed only if all JVMs using it have shut
down, and the user has sufficient permissions.

destroyAll (Utility option)
Tries to destroy all caches available using the specified cacheDir and
nonpersistent suboptions. A cache can be destroyed only if all JVMs using
it have shut down, and the user has sufficient permissions.

Chapter 7. Performance 163

expire=<time in minutes>
Destroys all caches that have been unused for the time that is specified
before loading shared classes. This option is not a utility option because it
does not cause the JVM to exit.

listAllCaches (Utility option)
Lists all the compatible and incompatible caches that exist in the specified
cache directory. If you do not specify cacheDir, the default directory is
used. Summary information, such as Java version and current usage is
displayed for each cache.

Note: Some features, when enabled, result in the creation of caches that
cannot be shared with caches that are created when the feature is disabled.
The multitenancy support is one such example. In this situation, you can
have more than one cache with the same name. The output from the
listAllCaches option has a feature column which lists the feature that
created the cache, usually default. For multitenancy support, the feature is
mt, and the cache is listed in the Incompatible shared caches section of the
output.

printStats[=<data_types>] (Utility option)
Displays summary information for the cache that is specified by the name,
cacheDir, and nonpersistent suboptions. The most useful information that
is displayed is how full the cache is and how many classes it contains.
Stale classes are classes that are updated on the file system and which the
cache has therefore marked as "stale". Stale classes are not purged from the
cache and can be reused.

Specify one or more data types, which are separated by a plus symbol (+),
to additionally see more detailed information about that type of cache
content. Data types include AOT data, class paths, and ROMMethods.For
more information, see “printStats utility” on page 362.

printAllStats (Utility option)
Displays detailed information for the cache that is specified by the name,
cacheDir, and nonpersistent suboptions. Every class is listed in
chronological order, with a reference to the location from which it was
loaded. AOT code for class methods is also listed.

For more information, see “printAllStats utility” on page 366.

(31-bit only) mprotect=[all | default | none]
By default, the memory pages that contain the cache are always protected,
unless a specific page is being updated. This protection helps prevent
accidental or deliberate corruption to the cache. The cache header is not
protected by default because this protection has a small performance cost.
Specifying all ensures that all the cache pages are protected, including the
header. Specifying none disables the page protection.

noBootclasspath
Prevents storage of classes that are loaded by the bootstrap class loader in
the shared classes cache. Can be used with the SharedClassURLFilter API
to control exactly which classes get cached. For more information about
shared class filtering, see “Using the SharedClassHelper API” on page 359.

cacheRetransformed
Enables caching of classes that are transformed by using the JVMTI
RetransformClasses function.

164 IBM SDK for Java: SDK and Runtime Guide

noaot
Disables caching of AOT code. AOT code already in the shared data cache
can be loaded.

nojitdata
Disables caching of JIT data. JIT data already in the shared data cache can
be loaded.

-Xzero<options>
Enables reduction of the memory footprint of Java when concurrently running
multiple Java invocations. -Xzero might not be appropriate for all types of
applications because it changes the implementation of java.util.ZipFile,
which might cause extra memory usage.

The <options> sharezip and sharebootzip apply to class data sharing. The option
sharebootzip is enabled by default and can be turned off by using
-Xzero:nosharebootzip. For more information about -Xzero and the options
available, see “JVM command-line options” on page 428.

Creating, populating, monitoring, and deleting a cache
An overview of the life-cycle of a shared class data cache including examples of
the cache management utilities.

To enable class data sharing, add -Xshareclasses[:name=<name>] to your
application command line.

The JVM either connects to an existing cache of the given name or creates a new
cache of that name. If a new cache is created, it is populated with all bootstrap and
application classes being loaded until the cache becomes full. If two or more JVMs
are started concurrently, they populate the cache concurrently.

To check that the cache has been created, run java -Xshareclasses:listAllCaches.
To see how many classes and how much class data is being shared, run java
-Xshareclasses:[name=<name>],printStats. You can run these utilities after the
application JVM has terminated or in another command window.

Note: Some features, when enabled, result in the creation of caches that cannot be
shared with caches that are created when the feature is disabled. The multitenancy
support is one such example. In this situation, you can have more than one cache
with the same name. The output from the listAllCaches option has a feature
column which lists the feature that created the cache, usually default. For
multitenancy support, the feature is mt, and the cache is listed in the Incompatible
shared caches section of the output.

For more feedback on cache usage while the JVM is running, use the verbose
suboption. For example, java -Xshareclasses:[name=<name>],verbose.

To see classes being loaded from the cache or stored in the cache, add
-Xshareclasses:[name=<name>],verboseIO to your application command line.

To delete the cache, run java -Xshareclasses:[name=<name>],destroy. You usually
delete caches only if they contain many stale classes or if the cache is full and you
want to create a bigger cache.

You should tune the cache size for your specific application, because the default is
unlikely to be the optimum size. To determine the optimum cache size, specify a
large cache, using -Xscmx, run the application, and then use printStats to

Chapter 7. Performance 165

determine how much class data has been stored. Add a small amount to the value
shown in printStats for contingency. Because classes can be loaded at any time
during the lifetime of the JVM, it is best to do this analysis after the application
has terminated. However, a full cache does not have a negative affect on the
performance or capability of any JVMs connected to it, so it is acceptable to decide
on a cache size that is smaller than required.

If a cache becomes full, a message is displayed on the command line of any JVMs
using the verbose suboption. All JVMs sharing the full cache then loads any
further classes into their own process memory. Classes in a full cache can still be
shared, but a full cache is read-only and cannot be updated with new classes.

Performance and memory consumption
Class data sharing is particularly useful on systems that use more than one JVM
running similar code; the system benefits from reduced real storage consumption.
It is also useful on systems that frequently start and shut down JVMs, which
benefit from the improvement in startup time.

The processor and memory usage required to create and populate a new cache is
minimal. The JVM startup cost in time for a single JVM is typically between 0 and
5% slower compared with a system not using class data sharing, depending on
how many classes are loaded. JVM startup time improvement with a populated
cache is typically between 10% and 40% faster compared with a system not using
class data sharing, depending on the operating system and the number of classes
loaded. Multiple JVMs running concurrently show greater overall startup time
benefits.

Duplicate classes are consolidated in the shared class cache. For example, class A
loaded from myClasses.jar and class A loaded from myOtherClasses.jar (with
identical content) is stored only once in the cache. The printAllStats utility shows
multiple entries for duplicated classes, with each entry pointing to the same class.

When you run your application with class data sharing, you can use the operating
system tools to see the reduction in virtual storage consumption.

Considerations and limitations of using class data sharing
Consider these factors when deploying class data sharing in a product and using
class data sharing in a development environment.

Cache size limits
The maximum theoretical cache size is 2 GB. The size of cache you can specify is
limited by the amount of physical memory and swap space available to the
system.

Because the virtual address space of a process is shared between the shared classes
cache and the Java heap, if you increase the maximum size of the Java heap you
might reduce the size of the shared classes cache you can create.

JVMTI RetransformClasses() is unsupported
You cannot run RetransformClasses() on classes loaded from the shared class
cache.

The JVM might throw the exception UnmodifiableClassException if you attempt to
run RetransformClasses(). It does not work because class file bytes are not
available for classes loaded from the shared class cache. If you must use

166 IBM SDK for Java: SDK and Runtime Guide

RetransformClasses(), ensure that the classes to be transformed are not loaded from
the shared class cache, or disable the shared class cache feature.

Required APAR for Shared Classes
You must apply z/OS APAR OA11519, available for z/OS R1.6 and onwards, to
any z/OS system where shared classes are used. This APAR ensures that multiple
shmat requests for the same shared segment will map to the same virtual address
for multiple JVMs.

Without this APAR, there is a problem with using shared memory when multiple
JVMs are stored in a single address space. Each shmat call consumes a separate
virtual address range. This is not acceptable because shared classes will run out of
shared memory pages prematurely.

Working with BPXPRMxx settings
Some of the BPXPRMxx parmlib settings affect shared classes performance. Using the
wrong settings can stop shared classes from working. These settings might also
have performance implications.

For further information about performance implications, and use of these
parameters, see the z/OS MVS Initialization and Tuning Reference (SA22-7592) at
http://publibz.boulder.ibm.com/epubs/pdf/iea2e280.pdf and the z/OS Unix
System Services Planning Guide (GA22-7800) at http://publibz.boulder.ibm.com/
epubs/pdf/bpxzb280.pdf. The most significant BPXPRMxx parameters that affect the
operation of shared classes are:
v MAXSHAREPAGES, IPCSHMSPAGES, IPCSHMMPAGES, and IPCSHMNSEGS. These settings

affect the amount of shared memory pages available to the JVM. The JVM uses
these memory pages for the shared classes cache. If you request large cache
sizes, you might have to increase the amount of shared memory pages available.
The shared page size for a z/OS UNIX System Service is fixed at 4 KB for 31-bit
and 1 MB for 64-bit. Shared classes try to create a 16 MB cache by default on
both 31- and 64-bit platforms. Therefore set IPCSHMMPAGES greater than 4096 on a
31-bit system.
If you set a cache size with -Xscmx, the VM rounds up the value to the nearest
megabyte. You must take this factoring into account when setting IPCSHMMPAGES
on your system.

v IPCSEMNIDS, and IPCSEMNSEMS. These settings affect the amount of SystemV IPC
semaphore available to UNIX processes. IBM shared classes use System V IPC
semaphores to communicate between the JVMs.

Runtime bytecode modification
Any JVM using a JVM Tool Interface (JVMTI) agent that can modify bytecode data
must use the modified=<modified_context> suboption if it wants to share the
modified classes with another JVM.

The modified context is a user-specified descriptor that describes the type of
modification being performed. The modified context partitions the cache so that all
JVMs running under the same context share a partition.

This partitioning allows JVMs that are not using modified bytecode to safely share
a cache with those that are using modified bytecode. All JVMs using a given
modified context must modify bytecode in a predictable, repeatable manner for
each class, so that the modified classes stored in the cache have the expected

Chapter 7. Performance 167

http://publibz.boulder.ibm.com/epubs/pdf/iea2e280.pdf
http://publibz.boulder.ibm.com/epubs/pdf/bpxzb280.pdf
http://publibz.boulder.ibm.com/epubs/pdf/bpxzb280.pdf

modifications when they are loaded by another JVM. Any modification must be
predictable because classes loaded from the shared class cache cannot be modified
again by the agent.

If a JVMTI agent is used without a modification context, classes are still safely
shared by the JVM, but with a small affect on performance. Using a modification
context with a JVMTI agent avoids the need for extra checks and therefore has no
affect on performance. A custom ClassLoader that extends
java.net.URLClassLoader and modifies bytecode at load time without using JVMTI
automatically stores that modified bytecode in the cache, but the cache does not
treat the bytecode as modified. Any other VM sharing that cache loads the
modified classes. You can use the modified=<modification_context> suboption in the
same way as with JVMTI agents to partition modified bytecode in the cache. If a
custom ClassLoader needs to make unpredictable load-time modifications to
classes, that ClassLoader must not attempt to use class data sharing.

See “Dealing with runtime bytecode modification” on page 351 for more detail on
this topic.

Operating system limitations
Temporary disk space must be available to hold cache information. The operating
system enforces cache permissions.

The shared class cache requires disk space to store identification information about
the caches that exist on the system. This information is stored in
/tmp/javasharedresources. If the identification information directory is deleted, the
JVM cannot identify the shared classes on the system and must re-create the cache.
Use the ipcs command to view the memory segments used by a JVM or
application.

Users running a JVM must be in the same group to use a shared class cache. The
operating system enforces the permissions for accessing a shared class cache. If you
do not specify a cache name, the user name is appended to the default name so
that multiple users on the same system create their own caches by default.

Using SharedClassPermission
If a SecurityManager is being used with class data sharing and the running
application uses its own class loaders, you must grant these class loaders shared
class permissions before they can share classes.

You add shared class permissions to the java.policy file using the ClassLoader
class name (wildcards are permitted) and either “read”, “write”, or “read,write” to
determine the access granted. For example:
permission com.ibm.oti.shared.SharedClassPermission

"com.abc.customclassloaders.*", "read,write";

If a ClassLoader does not have the correct permissions, it is prevented from
sharing classes. You cannot change the permissions of the default bootstrap,
application, or extension class loaders.

Adapting custom class loaders to share classes
Any class loader that extends java.net.URLClassLoader can share classes without
modification. You must adopt class loaders that do not extend
java.net.URLClassLoader to share class data.

168 IBM SDK for Java: SDK and Runtime Guide

You must grant all custom class loaders shared class permissions if a
SecurityManager is being used; see “Using SharedClassPermission” on page 168.
IBM provides several Java interfaces for various types of custom class loaders,
which allow the class loaders to find and store classes in the shared class cache.
These classes are in the com.ibm.oti.shared package.

The API documentation for this package is available here: API documentation

See “Using the Java Helper API” on page 358 for more information about how to
use these interfaces.

Performance problems
Finding the root cause of a performance problem can be difficult, because many
factors must be considered.

To learn more about debugging performance problems, see “Debugging
performance problems” on page 191

Chapter 7. Performance 169

publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.api.70.doc/api_overview.html

170 IBM SDK for Java: SDK and Runtime Guide

Chapter 8. Security

The security components and utilities listed here are shipped with the IBM SDK
for Java. The security components contain the IBM implementation of various
security algorithms and mechanisms.

The following list summarizes the IBM security components and utilities that are
available with the SDK. Further information about IBM security, including samples
and API documentation, can be found here: IBM Security Information for Java.
v Java Certification path
v Java Authentication and Authorization Service (JAAS)
v Java Cryptographic Extension (JCE)
v Java Cryptographic Extension (JCE) FIPS
v IBM SecureRandom provider
v Java Generic Security Services (JGSS)
v Java Secure Socket Extension 2 (JSSE2)
v Public Key Cryptographic Standard (PKCS #11) Implementation Provider
v Simple Authentication and Security Layer (SASL)
v IBM Key Certificate Management
v Java XML Digital Signature
v Java XML Encryption
v IBM Common Access Card (CAC) provider
v iKeyman
v Keytool

© Copyright IBM Corp. 2011, 2013 171

172 IBM SDK for Java: SDK and Runtime Guide

Chapter 9. Troubleshooting and support

Use the information in this section to help you diagnose problems, run diagnostic
tools, or submit a problem report.

Submitting problem reports
If you find a problem with Java, make a report through the product that supplied
the Java SDK, or through the Operating System if there is no bundling product.

On z/OS, the 31-bit and 64-bit Java SDKs are bundled with WebSphere Application
Server. These SDKs are also delivered as stand-alone z/OS program products:
v IBM 31-bit SDK for z/OS, Java Technology Edition, V7 (5655-W43)
v IBM 64-bit SDK for z/OS, Java Technology Edition, V7 (5655-W44.)

If you are using these standalone products, support is available through the
normal z/OS operating system support structure. For more information about
z/OS Java SDKs, see http://www-03.ibm.com/systems/z/os/zos/tools/java/.

There are several things you can try before submitting a Java problem to IBM. A
useful starting point is the How Do I ...? page. In particular, the information about
Troubleshooting problems might help you find and resolve the specific problem. If
that does not work, try Looking for known problems.

If these steps have not helped you fix the problem, and you have an IBM support
contract, consider Reporting the problem to IBM support. More information about
support contracts for IBM products can be found in the Software Support
Handbook.

If you do not have an IBM support contract, you might get informal support
through other methods, described on the How Do I ...? page.

Problem determination
Problem determination helps you understand the kind of fault you have, and the
appropriate course of action.

When you know what kind of problem you have, you might do one or more of the
following tasks:
v Fix the problem
v Find a good workaround
v Collect the necessary data with which to generate a bug report to IBM

If your application runs on more than one platform and is exhibiting the same
problem on them all, read the section about the platform to which you have the
easiest access.

The chapters in this part are:
v “First steps in problem determination” on page 174
v “z/OS problem determination” on page 175
v “ORB problem determination” on page 196

© Copyright IBM Corp. 2011, 2013 173

http://www-03.ibm.com/systems/z/os/zos/tools/java/
http://www.ibm.com/developerworks/java/jdk/howdoi/
http://www.ibm.com/developerworks/java/jdk/howdoi/#troubleshooting
http://www.ibm.com/developerworks/java/jdk/howdoi/#looking
http://www.ibm.com/developerworks/java/jdk/howdoi/#reporting
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/developerworks/java/jdk/howdoi/

v “NLS problem determination” on page 194

First steps in problem determination
Before proceeding in problem determination, there are some initial questions to be
answered.

Have you changed anything recently?
If you have changed, added, or removed software or hardware just before the
problem occurred, back out the change and see if the problem persists.

What else is running on the workstation?
If you have other software, including a firewall, try switching it off to see if the
problem persists.

Is the problem reproducible on the same workstation?
Knowing that this defect occurs every time the described steps are taken is
helpful because it indicates a straightforward programming error. If the
problem occurs at alternate times, or occasionally, thread interaction and
timing problems in general are much more likely.

Is the problem reproducible on another workstation?
A problem that is not evident on another workstation might help you find the
cause. A difference in hardware might make the problem disappear; for
example, the number of processors. Also, differences in the operating system
and application software installed might make a difference to the JVM. For
example, the visibility of a race condition in the JVM or a user Java application
might be influenced by the speed at which certain operations are performed by
the system.

Does the problem occur on multiple platforms?
If the problem occurs only on one platform, it might be related to a
platform-specific part of the JVM. Alternatively, it might be related to local
code used inside a user application. If the problem occurs on multiple
platforms, the problem might be related to the user Java application.
Alternatively, it might be related to a cross-platform part of the JVM such as
the Java Swing API. Some problems might be evident only on particular
hardware; for example, Intel 32 bit architecture. A problem on particular
hardware might indicate a JIT problem.

Can you reproduce the problem with the latest Service Refresh?
The problem might also have been fixed in a recent service refresh. Make sure
that you are using the latest service refresh for your environment. Check the
latest details on http://www.ibm.com/developerWorks/java/jdk.

Are you using a supported Operating System (OS) with the latest patches
installed?

It is important to use an OS or distribution that supports the JVM and to have
the latest patches for operating system components. For example, upgrading
system libraries can solve problems. Moreover, later versions of system
software can provide a richer set of diagnostic information. See Setting up and
checking environment topics in the “Problem determination” on page 173 section,
and check for latest details on the Developer Works Web site
http://www.ibm.com/developerWorks.

Does turning off the JIT or AOT help?
If turning off the JIT or AOT prevents the problem, there might be a problem
with the JIT or AOT. The problem can also indicate a race condition in your
Java application that surfaces only in certain conditions. If the problem is

174 IBM SDK for Java: SDK and Runtime Guide

http://www.ibm.com/developerWorks/java/jdk
http://www.ibm.com/developerWorks

intermittent, reducing the JIT compilation threshold to 0 might help reproduce
the problem more consistently. (See “JIT and AOT problem determination” on
page 322.)

Have you tried reinstalling the JVM or other software and rebuilding
relevant application files?

Some problems occur from a damaged or incorrect installation of the JVM or
other software. It is also possible that an application might have inconsistent
versions of binary files or packages. Inconsistency is likely in a development or
testing environment and could potentially be solved by getting a fresh build or
installation.

Is the problem particular to a multiprocessor (or SMP) platform? If you are
working on a multiprocessor platform, does the problem still exist on a
uniprocessor platform?

This information is valuable to IBM Service.

Have you installed the latest patches for other software that interacts
with the JVM? For example, the IBM WebSphere Application Server and DB2®.

The problem might be related to configuration of the JVM in a larger
environment, and might have been solved already in a fix pack. Is the problem
reproducible when the latest patches have been installed?

Have you enabled core dumps?
Core dumps are essential to enable IBM Service to debug a problem. Core
dumps are enabled by default for the Java process. See “Using dump agents”
on page 221 for details. The operating system settings might also need to be in
place to enable the dump to be generated and to ensure that it is complete.
Details of the required operating system settings are contained in the relevant
problem determination section for the platform.

What logging information is available?
The JVM logs information about problems as they occur. You can enable more
detailed logging, and control where the logging information goes. For more
details, see “JVM messages” on page 465.

z/OS problem determination
This section describes problem determination on z/OS.

The topics are:
v “Setting up and checking your z/OS environment”
v “General debugging techniques” on page 178
v “Diagnosing crashes” on page 179
v “Debugging hangs” on page 186
v “Understanding Memory Usage” on page 187
v “Debugging performance problems” on page 191
v “MustGather information for z/OS” on page 193

Setting up and checking your z/OS environment
Set up the correct environment for the z/OS JVM to run correctly.

Maintenance:

The Java for z/OS Web site has up-to-date information about any changing
operating system prerequisites for correct JVM operation. In addition, any new
prerequisites are described in PTF HOLDDATA.

Chapter 9. Troubleshooting and support 175

The Web site is at:

http://www.ibm.com/systems/z/os/zos/tools/java/

LE settings:

Language Environment (LE) Runtime Options (RTOs) affect operation of C and
C++ programs such as the JVM. In general, the options provided by IBM using C
#pragma statements in the code must not be overridden because they are
generated as a result of testing to provide the best operation of the JVM.

Environment variables:

Environment variables that change the operation of the JVM in one release can be
deprecated or change meaning in a following release. Therefore, you should review
environment variables that are set for one release, to ensure that they still apply
after any upgrade.

For information on compatibility between releases, see the Java on z/OS Web site
at http://www.ibm.com/systems/z/os/zos/tools/java/.

Private storage usage:

The single most common class of failures after a successful installation of the SDK
are those related to insufficient private storage.

As discussed in detail in “Understanding Memory Usage” on page 187, LE
provides storage from Subpool 2, key 8 for C/C++ programs like the JVM that use
C runtime library calls like malloc() to obtain memory. The LE HEAP refers to the
areas obtained for all C/C++ programs that run in a process address space and
request storage.

This area is used for the allocation of the Java heap where instances of Java objects
are allocated and managed by Garbage Collection. The area is used also for any
underlying allocations that the JVM makes during operations. For example, the JIT
compiler obtains work areas for compilation of methods and to store compiled
code.

Because the JVM must preallocate the maximum Java heap size so that it is
contiguous, the total private area requirement is that of the maximum Java heap
size that is set by the -Xmx option (or the 64 MB default if this is not set), plus an
allowance for underlying allocations. A total private area of 140 MB is therefore a
reasonable requirement for an instance of a JVM that has the default maximum
heap size.

If the private area is restricted by either a system parameter or user exit, failures to
obtain private storage occur. These failures show as OutOfMemoryErrors or
Exceptions, failures to load libraries, or failures to complete subcomponent
initialization during startup.

Setting up dumps:

The JVM generates a Javadump and System Transaction Dump (SYSTDUMP) when
particular events occur.

176 IBM SDK for Java: SDK and Runtime Guide

http://www.ibm.com/systems/z/os/zos/tools/java/
http://www.ibm.com/systems/z/os/zos/tools/java/

The JVM, by default, generates the dumps when any of the following conditions
occur:
v A SIGQUIT signal is received
v The JVM exits because of an error
v An unexpected native exception occurs (for example, a SIGSEGV, SIGILL, or

SIGFPE signal is received)

You can use the -Xdump option to change the dumps that are produced on the
various types of signal and the naming conventions for the dumps. For further
details, see “Using dump agents” on page 221.

Failing transaction dumps (IEATDUMPs)

If a requested IEATDUMP cannot be produced, the JVM sends a message to the
operator console. For example:
JVMDMP025I IEATDUMP failed RC=0x00000008 RSN=0x00000022 DSN=ABC.JVM.TDUMP.FUNGE2.
D070301.T171813

These return codes are fully documented in z/OS V1R7.0 MVS Authorized Assembler
Services Reference, 36.1.10 Return and Reason Codes. Some common return codes are:

RC=0x00000008 RSN=0x00000022
Dump file name too long.

RC=0x00000008 RSN=0x00000026
Insufficient space for IEATDUMP.

RC=0x00000004
Partial dump taken. Typically, 2 GB size limit reached.

If the IEATDUMP produced is partial because of the 2 GB IEATDUMP size limit,
use this message to trigger an SVC dump. To trigger the SVC dump, use a SLIP
trap. For example:
SLIP SET,A=SVCD,J=FUNGE*,MSGID=JVMDMP025I,ID=JAVA,SDATA=(ALLPSA,NUC,SQA,RGN,LPA,
TRT,SUMDUMP),END

Multiple transaction dump (IEATDUMP) files on z/OS version 1.10 or newer

For z/OS version 1.10 or newer, on a 64-bit platform, IEATDUMP files are split
into several smaller files if the IEATDUMP exceeds the 2 GB file size limit. Each
file is given a sequence number.

If you specify a template for the IEATDUMP file name, append the &DS token to
enable multiple dumps. The &DS token is replaced by an ordered sequence number,
and must be at the end of the file name. For example, X&DS generates file names in
the form X001, X002, and X003.

If you specify a template without the &DS token, .X&DS is appended automatically
to the end of your template. If your template is too long to append .X&DS, a
message is issued. The message advises that the template pattern is too long and
that a default pattern will be used.

If you do not specify a template, the default template is used. The default template
is:
%uid.JVM.%job.D%y%m%d.T%H%M%S.X&DS

Chapter 9. Troubleshooting and support 177

You must merge the sequence of IEATDUMP files before IPCS can process the
data. To merge the sequence of IEATDUMP files, use the TSO panel IPCS > Utility
> Copy MVS dump dataset, or the IPCS COPYDUMP command. If you have copied
or moved the IEATDUMP files from MVS to the z/OS UNIX System Services file
system, you can use the “cat” command to merge the files, for example:
cat JVM.TDUMP.X001 JVM.TDUMP.X002 > JVM.TDUMP.FULL

For more information, see APAR: OA24232.

Note: For versions of z/OS before version 1.10, IEATDUMP file handling is
unchanged.

General debugging techniques
A short guide to the diagnostic tools provided by the JVM and the z/OS
commands that can be useful when diagnosing problems with the z/OS JVM.

In addition to the information given in this section, you can obtain z/OS
publications from the IBM Web site. Go to http://www.ibm.com/support/
publications/us/library/, and then choose the documentation link for your
platform.

There are several diagnostic tools available with the JVM to help diagnose
problems:
v Starting Javadumps, see “Using Javadump” on page 240.
v Starting Heapdumps, see “Using Heapdump” on page 262.
v Starting system dumps, see “Using system dumps and the dump viewer” on

page 271.

z/OS provides various commands and tools that can be useful in diagnosing
problems.

Using IPCS commands:

The Interactive Problem Control System (IPCS) is a tool provided in z/OS to help
you diagnose software failures. IPCS provides formatting and analysis support for
dumps and traces produced by z/OS.

Here are some sample IPCS commands that you might find useful during your
debugging sessions. In this case, the address space of interest is ASID(x’7D’).

ip verbx ledata ’nthreads(*)’
This command provides the stack traces for the TCBs in the dump.

ip setd asid(x’007d’)
This command is to set the default ASID; for example, to set the default
asid to x'007d'.

ip verbx ledata ’all,asid(007d),tcb(tttttt)’
In this command, the all report formats out key LE control blocks such as
CAA, PCB, ZMCH, CIB. In particular, the CIB/ZMCH captures the PSW
and GPRs at the time the program check occurred.

ip verbx ledata ’cee,asid(007d),tcb(tttttt)’
This command formats out the traceback for one specific thread.

ip summ regs asid(x’007d’)
This command formats out the TCB/RB structure for the address space. It
is rarely useful for JVM debugging.

178 IBM SDK for Java: SDK and Runtime Guide

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/zidocms2/65.0?DT=20090529073358
http://www.ibm.com/support/publications/us/library/
http://www.ibm.com/support/publications/us/library/

ip verbx sumdump
Then issue find ’slip regs sa’ to locate the GPRs and PSW at the time a
SLIP TRAP is matched. This command is useful for the case where you set
a SA (Storage Alter) trap to catch an overlay of storage.

ip omvsdata process detail asid(x’007d’)
This command generates a report for the process showing the thread status
from a USS kernel perspective.

ip select all
This command generates a list of the address spaces in the system at the
time of the dump, so that you can tie up the ASID with the JOBNAME.

ip systrace asid(x’007d’) time(gmt)
This command formats out the system trace entries for all threads in this
address space. It is useful for diagnosing loops. time(gmt) converts the
TOD Clock entries in the system trace to a human readable form.

For further information about IPCS, see the z/OS documentation (z/OS V1R7.0
MVS IPCS Commands).

Using dbx:

The dbx utility has been improved for z/OS V1R6. You can use dbx to analyze
transaction (or system) dumps and to debug a running application.

For information about dbx, see the z/OS documentation; z/OS V1R6.0 UNIX
System Services Programming Tools at http://publibz.boulder.ibm.com/epubs/pdf/
bpxza630.pdf.

Interpreting error message IDs:

While working in the OMVS, if you get an error message and want to understand
exactly what the error message means there is a Web site you can go to.

Go to: http://www-03.ibm.com/systems/z/os/zos/bkserv/lookat/index.html and
enter the message ID. Then select your OS level and then press enter. The output
will give a better understanding of the error message. To decode the errno2 values,
use the following command:
bpxmtext <reason_code>

Reason_code is specified as 8 hexadecimal characters. Leading zeros can be omitted.

Diagnosing crashes
A crash should occur only because of a fault in the JVM, or because of a fault in
native (JNI) code that is being run inside the Java process. A crash is more strictly
defined on z/OS as a program check that is handled by z/OS UNIX as an
unrecoverable signal (for example, SIGSEGV for PIC4; 10, 11, or SIGILL for PIC1).

Documents to gather:

When a crash takes place, diagnostic data is required to help diagnose the
problem.

When one of these unrecoverable signals occurs, the JVM Signal Handler takes
control. The default action of the signal handler is to produce a transaction dump
(through the BCP IEATDUMP service), a JVM snap trace dump, and a formatted
Javadump. Output should be written to the message stream that is written to

Chapter 9. Troubleshooting and support 179

http://publibz.boulder.ibm.com/epubs/pdf/bpxza630.pdf
http://publibz.boulder.ibm.com/epubs/pdf/bpxza630.pdf
http://www-03.ibm.com/systems/z/os/zos/bkserv/lookat/index.html

stderr in the form of:

The output shows the location in HFS into which the Javadump file was written
and the name of the MVS data set to which the transaction dump is written. These
locations are configurable and are described in “Overview of the available
diagnostic tools” on page 212 and “Using dump agents” on page 221.

These documents provide the ability to determine the failing function, and
therefore decide which product owns the failing code, be it the JVM, application
JNI code, or native libraries acquired from another vendor (for example native
JDBC drivers).

The JVM will display error messages if it is unable to produce the dumps. The
IEATDUMP error return codes, RC=... and RSN=..., are included in the messages.
These return codes are fully documented in z/OS V1R7.0 MVS Authorized Assembler
Services Reference, 36.1.10 Return and Reason Codes.

This example shows the error messages displayed when there is insufficient disk
space to write the IEATDUMP:

JVMDUMP007I JVM Requesting System dump using ’J9BUILD.JVM.TDUMP.SSHD1.D080326.T081447’
IEATDUMP in progress with options SDATA=(LPA,GRSQ,LSQA,NUC,PSA,RGN,SQA,SUM,SWA,TRT)
IEATDUMP failure for DSN=’J9BUILD.JVM.TDUMP.SSHD1.D080326.T081447’ RC=0x00000008 RSN=0x00000026
JVMDUMP012E Error in System dump: J9BUILD.JVM.TDUMP.SSHD1.D080326.T081447

When an IEATDUMP fails, an error message is also written to the operator
console. If the IEATDUMP fails because of the 2 GB IEATDUMP size limit, you can
use a SLIP trap to trigger an SVC DUMP to ensure all the required diagnostics
information is available. See “Setting up dumps” on page 176 for more
information.

z/OS V1R7.0 MVS Authorized Assembler Services Reference is available at
http://www-03.ibm.com/systems/z/os/zos/bkserv/r12pdf/#mvs.

Unhandled exception
Type=Segmentation error vmState=0x00000000
Target=2_30_20060227_05498_bHdSMr (z/OS 01.06.00)
CPU=s390 (2 logical CPUs) (0x180000000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=00000000 Signal_Code=00000035
Handler1=115F8590 Handler2=116AFC60
gpr0=00000064 gpr1=00000000 gpr2=117A3D70 gpr3=00000000
gpr4=114F5280 gpr5=117C0E28 gpr6=117A2A18 gpr7=9167B460
gpr8=0000007E gpr9=116AF5E8 gpr10=1146E21C gpr11=0000007E
gpr12=1102C7D0 gpr13=11520838 gpr14=115F8590 gpr15=00000000
psw0=078D0400 psw1=917A2A2A
fpr0=48441040 fpr1=3FFF1999 fpr2=4E800001 fpr3=99999999
fpr4=45F42400 fpr5=3FF00000 fpr6=00000000 fpr7=00000000
fpr8=00000000 fpr9=00000000 fpr10=00000000 fpr11=00000000
fpr12=00000000 fpr13=00000000 fpr14=00000000 fpr15=00000000
Program_Unit_Name=
Program_Unit_Address=1167B198 Entry_Name=j9sig_protect
Entry_Address=1167B198
JVMDUMP006I Processing Dump Event "gpf", detail "" - Please Wait.
JVMDUMP007I JVM Requesting System Dump using ’CHAMBER.JVM.TDUMP.CHAMBER1.D060309.T144842’
IEATDUMP in progress with options SDATA=(LPA,GRSQ,LSQA,NUC,PSA,RGN,SQA,SUM,SWA,TRT)
IEATDUMP success for DSN=’CHAMBER.JVM.TDUMP.CHAMBER1.D060309.T144842’
JVMDUMP010I System Dump written to CHAMBER.JVM.TDUMP.CHAMBER1.D060309.T144842
JVMDUMP007I JVM Requesting Snap Dump using ’/u/chamber/test/ras/Snap0001.20060309.144842.196780.trc’
JVMDUMP010I Snap Dump written to /u/chamber/test/ras/Snap0002.20060309.144842.196780.trc
JVMDUMP007I JVM Requesting Java Dump using ’/u/chamber/test/ras/javacore.20060309.144842.196780.txt’
JVMDUMP010I Java Dump written to /u/chamber/test/ras/javacore.20060309.144842.196780.txt
JVMDUMP013I Processed Dump Event "gpf", detail "".

180 IBM SDK for Java: SDK and Runtime Guide

http://www-03.ibm.com/systems/z/os/zos/bkserv/r12pdf/#mvs

Determining the failing function:

The most practical way to find where the exception occurred is to review either the
CEEDUMP or the Javadump. Both of these reports show where the exception
occurred and the native stack trace for the failing thread.

The same information can be obtained from the transaction dump by using either
the dump viewer (see “Using system dumps and the dump viewer” on page 271),
the dbx debugger, or the IPCS LEDATA VERB Exit.

The CEEDUMP shows the C-Stack (or native stack, which is separate from the Java
stack that is built by the JVM). The C-stack frames are also known on z/OS as
Dynamic Storage Areas (DSAs), because a DSA is the name of the control block
that LE provides as a native stack frame for a C/C++ program. The following
traceback from a CEEDUMP shows where a failure occurred:

Note:

1. The stack frame that has a status value of Exception indicates where the crash
occurred. In this example, the crash occurs in the function
Java_dumpTest_runTest.

Traceback:
DSA Entry E Offset Load Mod Program Unit Service Status
00000001 __cdump +00000000 CELQLIB HLE7709 Call
00000002 @@WRAP@MULTHD

+00000266 CELQLIB Call
00000003 j9dump_create

+0000035C *PATHNAM j040813 Call
00000004 doSystemDump+0000008C *PATHNAM j040813 Call
00000005 triggerDumpAgents

+00000270 *PATHNAM j040813 Call
00000006 vmGPHandler +00000C4C *PATHNAM j040813 Call
00000007 gpHandler +000000D4 *PATHNAM j040813 Call
00000008 __zerro +00000BC4 CELQLIB HLE7709 Call
00000009 __zerros +0000016E CELQLIB HLE7709 Call
0000000A CEEHDSP +00003A2C CELQLIB CEEHDSP HLE7709 Call
0000000B CEEOSIGJ +00000956 CELQLIB CEEOSIGJ HLE7709 Call
0000000C CELQHROD +00000256 CELQLIB CELQHROD HLE7709 Call
0000000D CEEOSIGG -08B3FBBC CELQLIB CEEOSIGG HLE7709 Call
0000000E CELQHROD +00000256 CELQLIB CELQHROD HLE7709 Call
0000000F Java_dumpTest_runTest

+00000044 *PATHNAM Exception
00000010 RUNCALLINMETHOD

-0000F004 *PATHNAM Call
00000011 gpProtectedRunCallInMethod

+00000044 *PATHNAM j040813 Call
00000012 j9gp_protect+00000028 *PATHNAM j040813 Call
00000013 gpCheckCallin

+00000076 *PATHNAM j040813 Call
00000014 callStaticVoidMethod

+00000098 *PATHNAM j040813 Call
00000015 main +000029B2 *PATHNAM j904081 Call
00000016 CELQINIT +00001146 CELQLIB CELQINIT HLE7709 Call

DSA DSA Addr E Addr PU Addr PU Offset Comp Date Attributes
00000001 00000001082F78E0 000000001110EB38 0000000000000000 ******** 20040312 XPLINK EBCDIC POSIX IEEE
00000002 00000001082F7A20 00000000110AF458 0000000000000000 ******** 20040312 XPLINK EBCDIC POSIX Floating Point
00000003 00000001082F7C00 0000000011202988 0000000000000000 ******** 20040817 XPLINK EBCDIC POSIX IEEE
00000004 00000001082F8100 0000000011213770 0000000000000000 ******** 20040817 XPLINK EBCDIC POSIX IEEE
00000005 00000001082F8200 0000000011219760 0000000000000000 ******** 20040817 XPLINK EBCDIC POSIX IEEE
00000006 00000001082F8540 000000007CD4BDA8 0000000000000000 ******** 20040817 XPLINK EBCDIC POSIX IEEE
00000007 00000001082F9380 00000000111FF190 0000000000000000 ******** 20040817 XPLINK EBCDIC POSIX IEEE
00000008 00000001082F9480 00000000111121E0 0000000000000000 ******** 20040312 XPLINK EBCDIC POSIX IEEE
00000009 00000001082FA0C0 0000000011112048 0000000000000000 ******** 20040312 XPLINK EBCDIC POSIX IEEE
0000000A 00000001082FA1C0 0000000010DB8EA0 0000000010DB8EA0 00003A2C 20040312 XPLINK EBCDIC POSIX Floating Point
0000000B 00000001082FCAE0 0000000010E3D530 0000000010E3D530 00000956 20040312 XPLINK EBCDIC POSIX Floating Point
0000000C 00000001082FD4E0 0000000010D76778 0000000010D76778 00000256 20040312 XPLINK EBCDIC POSIX Floating Point
0000000D 00000001082FD720 0000000010E36C08 0000000010E36C08 08B3FBB0 20040312 XPLINK EBCDIC POSIX Floating Point
0000000E 00000001082FE540 0000000010D76778 0000000010D76778 00000256 20040312 XPLINK EBCDIC POSIX Floating Point
0000000F 00000001082FE780 00000000122C66B0 0000000000000000 ******** 20040802 XPLINK EBCDIC POSIX IEEE
00000010 00000001082FE880 000000007CD28030 0000000000000000 ******** ^C"^22^04^FF^FDu^58 XPLINK EBCDIC POSIX IEEE
00000011 00000001082FEC80 000000007CD515B8 0000000000000000 ******** 20040817 XPLINK EBCDIC POSIX IEEE
00000012 00000001082FED80 00000000111FF948 0000000000000000 ******** 20040817 XPLINK EBCDIC POSIX IEEE
00000013 00000001082FEE80 000000007CD531A8 0000000000000000 ******** 20040817 XPLINK EBCDIC POSIX IEEE
00000014 00000001082FEF80 000000007CD4F148 0000000000000000 ******** 20040817 XPLINK EBCDIC POSIX IEEE

Chapter 9. Troubleshooting and support 181

2. The value under Service for each DSA is the service string. The string is built in
the format of jyymmdd, where j is the identifier for the code owner and yymmdd
is the build date. A service string with this format indicates that the function is
part of the JVM. All functions have the same build date, unless you have been
supplied with a dll by IBM Service for diagnostic or temporary fix purposes.

Working with TDUMPs using IPCS:

A TDUMP or Transaction Dump is generated from the MVS service IEATDUMP by
default in the event of a program check or exception in the JVM. You can disable
the generation of a TDUMP, but it is not recommended by IBM Service.

A TDUMP can contain multiple Address Spaces. It is important to work with the
correct address space associated with the failing java process.

To work with a TDUMP in IPCS, here is a sample set of steps to add the dump file
to the IPCS inventory:
1. Browse the dump data set to check the format and to ensure that the dump is

correct.
2. In IPCS option 3 (Utility Menu), suboption 4 (Process list of data set names)

type in the TSO HLQ (for example, DUMPHLQ) and press Enter to list data sets.
You must ADD (A in the command-line alongside the relevant data set) the
uncompressed (untersed) data set to the IPCS inventory.

3. You can select this dump as the default one to analyze in two ways:
v In IPCS option 4 (Inventory Menu) type SD to add the selected data set name

to the default globals.
v In IPCS option 0 (DEFAULTS Menu), change Scope and Source

Scope ==> BOTH (LOCAL, GLOBAL, or BOTH)

Source ==> DSNAME(’DUMPHLQ.UNTERSED.SIGSEGV.DUMP’)
Address Space ==>
Message Routing ==> NOPRINT TERMINAL
Message Control ==> CONFIRM VERIFY FLAG(WARNING)
Display Content ==> NOMACHINE REMARK REQUEST NOSTORAGE SYMBOL

If you change the Source default, IPCS displays the current default address
space for the new source and ignores any data entered in the address space
field.

4. To initialize the dump, select one of the analysis functions, such as IPCS option
2.4 SUMMARY - Address spaces and tasks, which will display something like
the following output and give the TCB address. (Note that non-zero CMP
entries reflect the termination code.)
TCB: 009EC1B0

CMP...... 940C4000 PKF...... 80 LMP...... FF DSP...... 8C
TSFLG.... 20 STAB..... 009FD420 NDSP..... 00002000
JSCB..... 009ECCB4 BITS..... 00000000 DAR...... 00
RTWA..... 7F8BEDF0 FBYT1.... 08
Task non-dispatchability flags from TCBFLGS5:
Secondary non-dispatchability indicator
Task non-dispatchability flags from TCBNDSP2:
SVC Dump is executing for another task

SVRB: 009FD9A8
WLIC..... 00000000 OPSW..... 070C0000 81035E40
LINK..... 009D1138

PRB: 009D1138
WLIC..... 00040011 OPSW..... 078D1400 B258B108

182 IBM SDK for Java: SDK and Runtime Guide

LINK..... 009ECBF8
EP....... DFSPCJB0 ENTPT.... 80008EF0

PRB: 009ECBF8
WLIC..... 00020006 OPSW..... 078D1000 800091D6
LINK..... 009ECC80

Useful IPCS commands and some sample output:

Some IPCS commands that you can use when diagnosing crashes.

In IPCS option 6 (COMMAND Menu) type in a command and press the Enter
key:

ip st
Provides a status report.

ip select all
Shows the Jobname to ASID mapping:
ASID JOBNAME ASCBADDR SELECTION CRITERIA

---- -------- -------- ------------------
0090 H121790 00EFAB80 ALL
0092 BPXAS 00F2E280 ALL
0093 BWASP01 00F2E400 ALL
0094 BWASP03 00F00900 ALL
0095 BWEBP18 00F2EB80 ALL
0096 BPXAS 00F8A880 ALL

ip systrace all time(local)
Shows the system trace:
PR ASID,WU-ADDR- IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3

UNIQUE-4 UNIQUE-5 UNIQUE-6

09-0094 009DFE88 SVCR 6 078D3400 8DBF7A4E 8AA6C648 0000007A 24AC2408
09-0094 05C04E50 SRB 070C0000 8AA709B8 00000094 02CC90C0 02CC90EC

009DFE88 A0
09-0094 05C04E50 PC ... 0 0AA70A06 0030B
09-0094 00000000 SSRV 132 00000000 0000E602 00002000 7EF16000

00940000

For suspected loops you might need to concentrate on ASID and exclude any
branch tracing:
ip systrace asid(x’3c’) exclude(br)

ip summ format asid(x'94')
To find the list of TCBs, issue a find command for "T C B".

ip verbx ledata 'ceedump asid(94) tcb(009DFE88)'
Obtains a traceback for the specified TCB.

ip omvsdata process detail asid(x'94')
Shows a USS perspective for each thread.

ip verbx vsmdata 'summary noglobal'
Provides a memory usage report:
LOCAL STORAGE MAP

| |80000000 <- Top of Ext. Private
| Extended |
| LSQA/SWA/229/230 |80000000 <- Max Ext. User Region Address
|___________________________|7F4AE000 <- ELSQA Bottom
| |
| (Free Extended Storage) |
|___________________________|127FE000 <- Ext. User Region Top

Chapter 9. Troubleshooting and support 183

| |
| Extended User Region |
|___________________________|10D00000 <- Ext. User Region Start
: :
: Extended Global Storage :
=======================================<- 16M Line
: Global Storage :
:___________________________: A00000 <- Top of Private
| |
| LSQA/SWA/229/230 | A00000 <- Max User Region Address
|___________________________| 9B8000 <- LSQA Bottom
| |
| (Free Storage) |
|___________________________| 7000 <- User Region Top
| |
| User Region |
|___________________________| 6000 <- User Region Start
: System Storage :
:___________________________: 0

ip verbx ledata 'nthreads(*)'
Obtains the tracebacks for all threads.

ip status regs
Shows the PSW and registers:
CPU STATUS:
BLS18058I Warnings regarding STRUCTURE(Psa) at ASID(X’0001’) 00:
BLS18300I Storage not in dump
PSW=00000000 00000000

(Running in PRIMARY key 0 AMODE 24 DAT OFF)
DISABLED FOR PER I/O EXT MCH

ASCB99 at FA3200 JOB(JAVADV1) for the home ASID
ASXB99 at 8FDD00 and TCB99G at 8C90F8 for the home ASID
HOME ASID: 0063 PRIMARY ASID: 0063 SECONDARY ASID: 0063

General purpose register values
Left halves of all registers contain zeros
0-3 00000000 00000000 00000000 00000000
4-7 00000000 00000000 00000000 00000000
8-11 00000000 00000000 00000000 00000000
12-15 00000000 00000000 00000000 00000000

Access register values
0-3 00000000 00000000 00000000 00000000
4-7 00000000 00000000 00000000 00000000
8-11 00000000 00000000 00000000 00000000
12-15 00000000 00000000 00000000 00000000

Control register values
0-1 00000000_5F04EE50 00000001_FFC3C007
2-3 00000000_5A057800 00000001_00C00063
4-5 00000000_00000063 00000000_048158C0
6-7 00000000_00000000 00000001_FFC3C007
8-9 00000000_00000000 00000000_00000000
10-11 00000000_00000000 00000000_00000000
12-13 00000000_0381829F 00000001_FFC3C007
14-15 00000000_DF884811 00000000_7F5DC138

ip cbf rtct
Helps you to find the ASID by looking at the ASTB mapping to see which
ASIDs are captured in the dump.

ip verbx vsmdata 'nog summ'
Provides a summary of the virtual storage management data areas:

184 IBM SDK for Java: SDK and Runtime Guide

DATA FOR SUBPOOL 2 KEY 8 FOLLOWS:

-- DQE LISTING (VIRTUAL BELOW, REAL ANY64)

DQE: ADDR 12C1D000 SIZE 32000
DQE: ADDR 1305D000 SIZE 800000
DQE: ADDR 14270000 SIZE 200000
DQE: ADDR 14470000 SIZE 10002000
DQE: ADDR 24472000 SIZE 403000
DQE: ADDR 24875000 SIZE 403000
DQE: ADDR 24C78000 SIZE 83000
DQE: ADDR 24CFB000 SIZE 200000
DQE: ADDR 250FD000 SIZE 39B000

FQE: ADDR 25497028 SIZE FD8
DQE: ADDR 25498000 SIZE 735000

FQE: ADDR 25BCC028 SIZE FD8
DQE: ADDR 25D36000 SIZE 200000
DQE: ADDR 29897000 SIZE 200000
DQE: ADDR 2A7F4000 SIZE 200000
DQE: ADDR 2A9F4000 SIZE 200000
DQE: ADDR 2AC2F000 SIZE 735000

FQE: ADDR 2B363028 SIZE FD8
DQE: ADDR 2B383000 SIZE 200000
DQE: ADDR 2B5C7000 SIZE 200000
DQE: ADDR 2B857000 SIZE 1000

***** SUBPOOL 2 KEY 8 TOTAL ALLOC: 132C3000 (00000000 BELOW, 132C3000

ip verbx ledata 'all asid(54) tcb(009FD098)'
Finds the PSW and registers at time of the exception:
+000348 MCH_EYE:ZMCH
+000350 MCH_GPR00:00000000 000003E7 MCH_GPR01:00000000 00000000
+000360 MCH_GPR02:00000001 00006160 MCH_GPR03:00000000 00000010
+000370 MCH_GPR04:00000001 082FE780 MCH_GPR05:00000000 000000C0
+000380 MCH_GPR06:00000000 00000000 MCH_GPR07:00000000 127FC6E8
+000390 MCH_GPR08:00000000 00000007 MCH_GPR09:00000000 127FC708
+0003A0 MCH_GPR10:00000001 08377D70 MCH_GPR11:00000001 0C83FB78
+0003B0 MCH_GPR12:00000001 08300C60 MCH_GPR13:00000001 08377D00
+0003C0 MCH_GPR14:00000000 112100D0 MCH_GPR15:00000000 00000000
+0003D0 MCH_PSW:07852401 80000000 00000000 127FC6F8 MCH_ILC:0004
+0003E2 MCH_IC1:00 MCH_IC2:04 MCH_PFT:00000000 00000000
+0003F0 MCH_FLT_0:48410E4F 6C000000 4E800001 31F20A8D
+000400 MCH_FLT_2:406F0000 00000000 00000000 00000000
+000410 MCH_FLT_4:45800000 00000000 3FF00000 00000000
+000420 MCH_FLT_6:00000000 00000000 00000000 00000000
+0004B8 MCH_EXT:00000000 00000000

blscddir dsname('DUMPHLQ.ddir')
Creates an IPCS DDIR.

runc addr(2657c9b8) link(20:23) chain(9999) le(x'1c') or runc
addr(25429108) structure(tcb)

Runs a chain of control blocks using the RUNCHAIN command.
addr: the start address of the first block
link: the link pointer start and end bytes in the block (decimal)
chain: the maximum number of blocks to be searched (default=999)
le: the length of data from the start of each block to be displayed (hex)
structure: control block type

Chapter 9. Troubleshooting and support 185

Debugging hangs
A hang refers to a process that is still present, but has become unresponsive.

This lack of response can be caused by any one of these reasons:
v The process has become deadlocked, so no work is being done. Usually, the

process is taking up no CPU time.
v The process has become caught in an infinite loop. Usually, the process is taking

up high CPU time.
v The process is running, but is suffering from very bad performance. This is not

an actual hang, but is often initially mistaken for one.

The process is deadlocked:

A deadlocked process does not use any CPU time.

You can monitor this condition by using the USS ps command against the Java
process:

UID PID PPID C STIME TTY TIME CMD
CBAILEY 253 743 - 10:24:19 ttyp0003 2:34 java -classpath .Test2Frame

If the value of TIME increases in a few minutes, the process is still using CPU, and
is not deadlocked.

For an explanation of deadlocks and how the Javadump tool is used to diagnose
them, see “Locks, monitors, and deadlocks (LOCKS)” on page 250.

The process is looping:

If no deadlock exists between threads and the process appears to be hanging but is
consuming CPU time, look at the work the threads are doing. To do this, take a
console-initiated dump (SVC dump).

Follow these steps to take a console-initiated dump:
1. Use the operating system commands (D OMVS,A=ALL) or SDSF (DA = Display

Active) to locate the ASID of interest.
2. Use the DUMP command to take a console-initiated dump both for hangs and for

loops:

DUMP COMM=(Dump for problem 12345)
R xx,ASID=(53,d),DSPNAME=(’OMVS ’.*),CONT
R yy,SDATA=(GRSQ,LSQA,RGN,SUM,SWA,TRT,LPA,NUC,SQA)

Prefix all commands on the SDSF panels with a forward slash (/). The console
responds to the DUMP command with a message requesting additional operands,
and provides you with a 2-digit reply ID. You supply the additional operands
using the R (reply) command, specifying the reply ID (shown as xx or yy in the
previous example). You can use multiple replies for the operands by specifying
the CONT operand, as in the previous example.

You can select the process to dump using the z/OS job name instead of the ASID:
R xx,JOBNAME=SSHD9,CONT

When the console dump has been generated, you can view the Systrace in IPCS to
identify threads that are looping. You can do this in IPCS as follows:

186 IBM SDK for Java: SDK and Runtime Guide

ip systrace asid(x’007d’) time(gmt)

This command formats out the system trace entries for all threads that are in
address space 0x7d. The time(gmt) option converts the TOD clock entries, which
are in the system trace, to a human readable form.

From the output produced, you can determine which are the looping threads by
identifying patterns of repeated CLCK and EXT1005 interrupt trace entries, and
subsequent redispatch DSP entries. You can identify the instruction address range
of the loop from the PSWs (Program Status Words) that are traced in these entries.

You can also analyze z/OS console (SVC) dumps using the system dump viewer
provided in the SDK, see “Using system dumps and the dump viewer” on page
271.

The process is performing badly:

If you have no evidence of a deadlock or an infinite loop, the process is probably
suffering from very bad performance. Bad performance can be caused because
threads have been placed into explicit sleep calls, or by excessive lock contention,
long garbage collection cycles, or for several other reasons. This condition is not a
hang and should be handled as a performance problem.

See “Debugging performance problems” on page 191 for more information.

Understanding Memory Usage
To debug memory leaks you need to understand the mechanisms that can cause
memory problems, how the JVM uses the LE HEAP, how the JVM uses z/OS
virtual storage, and the possible causes of a java.lang.OutOfMemoryError
exception.

Memory problems can occur in the Java process through two mechanisms:
v A native (C/C++) memory leak that causes increased usage of the LE HEAP,

which can be seen as excessive usage of Subpool2, Key 8, or storage, and an
excessive Working Set Size of the process address space

v A Java object leak in the Java-managed heap. The leak is caused by
programming errors in the application or the middleware. These object leaks
cause an increase in the amount of live data that remains after a garbage
collection cycle has been completed.

Allocations to LE HEAP:

The Java process makes two distinct allocation types to the LE HEAP.

The first type is the allocation of the Java heap that garbage collection manages.
The Java heap is allocated during JVM startup as a contiguous area of memory. Its
size is that of the maximum Java heap size parameter. Even if the minimum,
initial, heap size is much smaller, you must allocate for the maximum heap size to
ensure that one contiguous area will be available should heap expansion occur.

The second type of allocation to the LE HEAP is that of calls to malloc() by the
JVM, or by any native JNI code that is running under that Java process. This
includes application JNI code, and vendor-supplied native libraries; for example,
JDBC drivers.

Chapter 9. Troubleshooting and support 187

z/OS virtual storage:

To debug these problems, you must understand how C/C++ programs, such as the
JVM, use virtual storage on z/OS. To do this, you need some background
understanding of the z/OS Virtual Storage Management component and LE.

The process address space on 31-bit z/OS has 31-bit addressing that allows the
addressing of 2 GB of virtual storage. The process address space on 64-bit z/OS
has 64-bit addressing that allows the addressing of over 2 GB of virtual storage.
This storage includes areas that are defined as common (addressable by code
running in all address spaces) and other areas that are private (addressable by
code running in that address space only).

The size of common areas is defined by several system parameters and the number
of load modules that are loaded into these common areas. On many typical
systems, the total private area available is about 1.4 GB. From this area, memory
resources required by the JVM and its subcomponents such as the JIT are allocated
by calls to malloc(). These resources include the Java heap and memory required
by application JNI code and third-party native libraries.

A Java OutOfMemoryError exception typically occurs when the Java heap is
exhausted. For further information on z/OS storage allocation, see:
http://www.redbooks.ibm.com/redbooks/SG247035/. It is possible for a 31-bit
JVM to deplete the private storage area, resulting in and OutOfMemoryError
exception. For more information, see: “OutOfMemoryError exceptions.”

Receiving OutOfMemoryError exceptions:

An OutOfMemoryError exception results from running out of space on the Java
heap or the native heap.

If the Java heap is exhausted, an error message is received indicating an
OutOfMemoryError condition with the Java heap.

If the process address space (that is, the native heap) is exhausted, an error
message is received that explains that a native allocation has failed. In either case,
the problem might not be a memory leak, just that the steady state of memory use
that is required is higher than that available. Therefore, the first step is to
determine which heap is being exhausted and increase the size of that heap.

If the problem is occurring because of a real memory leak, increasing the heap size
does not solve the problem, but does delay the onset of the OutOfMemoryError
exception or error conditions. That delay can be helpful on production systems.

The maximum size of an object that can be allocated is limited only by available
memory. The maximum number of array elements supported is 2^31 - 1, the
maximum permitted by the Java Virtual Machine specification. In practice, you
might not be able to allocate large arrays due to available memory. Configure the
total amount of memory available for objects using the -Xmx command-line option.

These limits apply to both 32-bit and 64-bit JVMs.

OutOfMemoryError exceptions:

The JVM throws a java.lang.OutOfMemoryError exception when the heap is full
and the JVM cannot find space for object creation. Heap usage is a result of the

188 IBM SDK for Java: SDK and Runtime Guide

|
|

http://www.redbooks.ibm.com/redbooks/SG247035/

application design, its use and creation of object populations, and the interaction
between the heap and the garbage collector.

The operation of the JVM's Garbage Collector is such that objects are continuously
allocated on the heap by mutator (application) threads until an object allocation
fails. At this point, a garbage collection cycle begins. At the end of the cycle, the
allocation is tried again. If successful, the mutator threads resume where they
stopped. If the allocation request cannot be fulfilled, an out-of-memory exception
occurs. See “Memory management” on page 23 for more detailed information.

An out-of-memory exception occurs when the live object population requires more
space than is available in the Java managed heap. This situation can occur because
of an object leak or because the Java heap is not large enough for the application
that is running. If the heap is too small, you can use the -Xmx option to increase the
heap size and remove the problem, as follows:
java -Xmx320m MyApplication

If the failure occurs under javac, remember that the compiler is a Java program
itself. To pass parameters to the JVM that is created for compilation, use the -J
option to pass the parameters that you normally pass directly. For example, the
following option passes a 128 MB maximum heap to javac:
javac -J-Xmx128m MyApplication.java

In the case of a genuine object leak, the increased heap size does not solve the
problem and also increases the time taken for a failure to occur.

Out-of-memory exceptions also occur when a JVM call to malloc() fails. This
should normally have an associated error code.

If an out-of-memory exception occurs and no error message is produced, the Java
heap is probably exhausted. To solve the problem:
v Increase the maximum Java heap size to allow for the possibility that the heap is

not big enough for the application that is running.
v Enable the z/OS Heapdump.
v Turn on -verbose:gc output.

The -verbose:gc (-verbose:gc) switch causes the JVM to print out messages when
a garbage collection cycle begins and ends. These messages indicate how much live
data remains on the heap at the end of a collection cycle. In the case of a Java
object leak, the amount of free space on the heap after a garbage collection cycle
decreases over time. See “Verbose garbage collection logging” on page 334.

A Java object leak is caused when an application retains references to objects that
are no longer in use. In a C application you must free memory when it is no
longer required. In a Java application you must remove references to objects that
are no longer required, usually by setting references to null. When references are
not removed, the object and anything the object references stays in the Java heap
and cannot be removed. This problem typically occurs when data collections are
not managed correctly; that is, the mechanism to remove objects from the collection
is either not used or is used incorrectly.

The JVM produces a heap dump and a system dump when an OutOfMemoryError
exception is thrown. Use a tool to analyze the dumps to find out why the Java
heap is full. The recommended tool for analyzing the heap dump or system dump

Chapter 9. Troubleshooting and support 189

is the IBM Monitoring and Diagnostic Tools for Java - Memory Analyzer, see
“Available tools for processing Heapdumps” on page 263.

If an OutOfMemoryError exception is thrown due to private storage area
exhaustion under the 31-bit JVM, verify if the environment variable
_BPX_SHAREAS is set to NO. If _BPX_SHAREAS is set to YES multiple processes
are allowed to share the same virtual storage (address space). The result is a much
quicker depletion of private storage area. For more information on
_BPX_SHAREAS, see http://publib.boulder.ibm.com/infocenter/zos/v1r10/topic/
com.ibm.zos.r10.bpxb200/shbene.htm.

Tracing leaks:

Some useful techniques for tracing leaks are built into the JVM.

The techniques are:
v The -verbose:gc option.
v HPROF tools. See “Using the HPROF Profiler” on page 385.

–Xrunjnichk option:

You can use the -Xrunjnichk option to trace JNI calls that are made by your JNI
code or by any JVM components that use JNI. This helps you to identify incorrect
uses of JNI libraries from native code and can help you to diagnose JNI memory
leaks.

JNI memory leaks occur when a JNI thread allocates objects and fails to free them.
The Garbage Collector does not have enough information about the JNI thread to
know when the object is no longer needed. For more information, see “The JNI
and the Garbage Collector” on page 90.

Note that -Xrunjnichk is equivalent to -Xcheck:jni. See “Debugging the JNI” on
page 97 for information on the -Xrunjnichk suboptions.

–Xcheck:memory option:

The -Xcheck:memory option can help you identify memory leaks inside the JVM.
The -Xcheck:memory option traces the JVM calls to the operating system's malloc()
and free() functions, and identifies any JVM mistakes in memory allocation.

The system property -Dcom.ibm.dbgmalloc=true provides memory allocation
information about class library native code. Use this system property with the
-Xcheck:memory:callsite=1000 option to obtain detailed information about class
library callsites and their allocation sizes. Here is some sample output:

total alloc | total freed | delta alloc | delta freed | high water | largest
blocks| bytes | blocks| bytes | blocks| bytes | blocks| bytes | blocks| bytes | bytes | num | callsite
-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+------------

125 16000 0 0 0 0 0 0 125 16000 128 1 dbgwrapper/dbgmalloc.c:434
1 3661 1 3661 0 0 0 0 1 3661 3661 1 java/TimeZone_md.c:294

4144 18121712 4144 18121712 420 1836660 420 1836660 2 8746 4373 1 java/UnixFileSystem_md.c:373
10 124 10 124 0 0 0 0 2 55 51 1 java/jni_util.c:874
2 80797 2 80797 0 0 0 0 1 64413 64413 2 java/io_util.c:102
1 52 1 52 0 0 0 0 1 52 52 1 jli/java.c:2472
2 1872 1 264 0 0 0 0 2 1872 1608 2 net/linux_close.c:135
9 288 9 288 0 0 0 0 2 64 32 1 net/Inet6AddressImpl.c:280

99524 3260992980 99524 3260992980 10514 344503782 10515 344536549 1 32767 32767 1 net/SocketInputStream.c:93
3 24 3 24 0 0 1 8 2 16 8 1 net/linux_close.c:276

201 4824 0 0 0 0 0 0 201 4824 24 1 net/linux_close.c:149
311 1003152 261 496080 0 0 68 142128 119 651040 261360 45 zip/zip_util.c:655
311 31100 261 26100 0 0 68 6800 119 11900 100 1 zip/zip_util.c:230

190 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/zos/v1r10/topic/com.ibm.zos.r10.bpxb200/shbene.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r10/topic/com.ibm.zos.r10.bpxb200/shbene.htm

243 15552 222 14208 0 0 85 5440 160 10240 64 1 zip/Inflater.c:61
1 64 1 64 0 0 0 0 1 64 64 1 zip/Deflater.c:76

146 7592 123 6396 3 156 74 3848 97 5044 52 1 zip/zip_util_md.c:75
3242 1443289 3241 1439991 25 4000 92 252856 71 262264 8192 679 zip/zip_util.c:917
311 125140 261 61724 0 0 68 17856 119 81500 32668 45 zip/zip_util.c:657
146 37376 123 31488 3 768 74 18944 97 24832 256 1 zip/zip_util_md.c:132

For more information about setting -Dcom.ibm.dbgmalloc=true, see “System
property command-line options” on page 419.

For more information about the -Xcheck:memory option, see “JVM command-line
options” on page 428.

Using Heapdump to debug memory leaks:

You can use Heapdump to analyze the Java Heap.

For details about analyzing the Heap, see “Using Heapdump” on page 262.

Debugging performance problems
Locating the causes of poor performance is often difficult. Although many factors
can affect performance, the overall effect is generally perceived as poor response or
slow execution of your program.

Correcting one performance problem might cause more problems in another area.
By finding and correcting a bottleneck in one place you might only shift the cause
of poor performance to other areas. To improve performance, experiment with
tuning different parameters, monitoring the effect, and retuning until you are
satisfied that your system is performing acceptably

Finding the bottleneck:

The aspects of the system that you are most interested in measuring are CPU
usage and memory usage. It is possible that even after extensive tuning efforts the
CPU is not powerful enough to handle the workload, in which case a CPU
upgrade is required. Similarly, if the program is running in an environment in
which it does not have enough memory after tuning, you must increase memory
size.

Given that any performance problem could be caused by any one of several
factors, you must look at several areas to eliminate each one. First, determine
which resource is constraining the system:
v CPU
v Memory
v Input/Output (I/O)

z/OS systems resource usage:

The z/OS Resource Measurement Facility (RMF™) gives a detailed view of z/OS
processor, memory, and I/O device performance metrics.

JVM heap sizing:

The Java heap size is one of the most important tuning parameters of your JVM. A
poorly chosen size can result in significant performance problems as the Garbage
Collector has to work harder to stay ahead of utilization.

Chapter 9. Troubleshooting and support 191

|
|
|
|
|
|

|
|

The Java heap size is one of the most important tuning parameters of your JVM.
See “How to do heap sizing” on page 45 for information on how to correctly set
the size of your heap.

JIT compilation and performance:

The JIT is another area that can affect the performance of your program. When
deciding whether or not to use JIT compilation, you must make a balance between
faster execution and increased processor usage during compilation .

The performance of short-running applications can be improved by using the
-Xquickstart command-line parameter. The JIT is switched on by default, but you
can use -Xint to turn it off. You also have considerable flexibility in controlling JIT
processing. For more details about the JIT, see “The JIT compiler” on page 57 and
“JIT and AOT problem determination” on page 322.

IBM Monitoring and Diagnostic Tools for Java:

The IBM Monitoring and Diagnostic Tools for Java are a set of GUI-based tools for
monitoring Java applications and analyzing diagnostic data. These tools are
designed to make Java diagnostic tasks as quick and as easy as possible.

Some tools can be attached to a running JVM, to monitor application behavior and
resource usage. For other tools, you generate dump files from your system or JVM,
then analyze the file in the tool. By using the tools, you can diagnose problems
such as memory leaks, thread contention issues, and I/O bottlenecks, as well as
getting information and recommendations to help you tune the JVM and improve
the performance of your application.

For more information about the tools, see “Using the IBM Monitoring and
Diagnostic Tools for Java” on page 219.

Testing JVM optimizations:

Performance problems might be associated with new optimizations that have been
introduced for this release.

Java monitor optimizations

This release introduces new optimizations that are expected to improve CPU
efficiency. However, there might be some situations where reduced CPU utilization
is achieved, but overall application performance decreases. You can test whether
the new optimizations are negatively affecting your application by reverting to the
behavior of earlier versions.
v If performance is affected as soon as you start using this release, use the

following command-line option to revert to the old behavior.
-Xthr:secondarySpinForObjectMonitors

Use the following command-line option to reestablish the new behavior.
-Xthr:noSecondarySpinForObjectMonitors

v If performance is affected after the application has run for some time, or after a
period of heavy load, use the following command-line option to revert to the old
behavior.
-Xthr:noAdaptSpin

192 IBM SDK for Java: SDK and Runtime Guide

Use the following command-line option to reestablish the new behavior.
-Xthr:AdaptSpin

Lock optimizations

This release introduces new locking optimizations that are expected to reduce
memory usage and improve performance. However, there might be some
situations where a smaller heap size is achieved for an application, but overall
application performance decreases.

For example, if your application synchronizes on objects that are not typically
synchronized on, such as Java.lang.String, run the following test:
1. Use the following command-line option to revert to behavior that is closer to

earlier versions and monitor application performance:
-Xlockword:mode=all

2. If performance does not improve, remove the previous command-line options
or use the following command-line option to reestablish the new behavior:
-Xlockword:mode=default

MustGather information for z/OS
The more information that you can collect about a problem, the easier it is to
diagnose that problem. A large set of data can be collected, although some is
relevant to particular problems.

The Diagnostics Collector is the recommended utility for collecting Java diagnostics
files for a problem event. You can configure the JVM to run the Diagnostics
Collector automatically, or you can manually run the utility after an event occurs.
The Diagnostics Collector searches for dumps and log files, and produces a single
compressed file containing all the diagnostic output for the problem event. For
more information, see “The Diagnostics Collector” on page 328.

The data that is collected from a fault situation in z/OS depends on the problem
symptoms, but could include some or all of the following information:
v Transaction dump - an unformatted dump that is requested by the MVS BCP

IEATDUMP service. For more information, see “Setting up dumps” on page 176.
This dump can be post-processed with the dump viewer (see “Using system
dumps and the dump viewer” on page 271), the dbx debugger, or IPCS
(Interactive Problem Control System).

v CEEDUMP - formatted application level dump, requested by the cdump system
call.

v Javadump - formatted internal state data that is produced by the IBM JVM.
v Binary or formatted trace data from the JVM internal high performance trace.

See “Using method trace” on page 316 and “Tracing Java applications and the
JVM” on page 288.

v Debugging messages that are written to stderr. For example, the output from the
JVM when switches like -verbose:gc, -verbose, or -Xtgc are used.

v Java stack traces when exceptions are thrown.
v Other unformatted system dumps obtained from middleware products or

components (for example, SVC dumps requested by WebSphere for z/OS).
v SVC dumps obtained by the MVS Console DUMP command (typically for loops

or hangs, or when the IEATDUMP fails).
v Trace data from other products or components (for example LE traces or the

Component trace for z/OS UNIX).

Chapter 9. Troubleshooting and support 193

v Heapdumps, if generated automatically, are required for problem determination.
You should also take a Heapdump if you have a memory or performance
problem.

NLS problem determination
The JVM contains built-in support for different locales. This section provides an
overview of locales, with the main focus on fonts and font management.

The topics are:
v “Overview of fonts”
v “Font utilities” on page 195
v “Common NLS problem and possible causes” on page 195

Overview of fonts
When you want to show text, either in SDK components (AWT or Swing), on the
console or in any application, characters must be mapped to glyphs.

A glyph is an artistic representation of the character, in some typographical style,
and is stored in the form of outlines or bitmaps. Glyphs might not correspond
one-for-one with characters. For instance, an entire character sequence can be
represented as a single glyph. Also, a single character can be represented by more
than one glyph (for example, in Indic scripts).

A font is a set of glyphs. Each glyph is encoded in a particular encoding format, so
that the character to glyph mapping can be done using the encoded value. Almost
all of the available Java fonts are encoded in Unicode and provide universal
mappings for all applications.

The most commonly available font types are TrueType and OpenType fonts.

Font specification properties

Specify fonts according to the following characteristics:

Font family
Font family is a group of several individual fonts that are related in
appearance. For example: Times, Arial, and Helvetica.

Font style
Font style specifies that the font is displayed in various faces. For example:
Normal, Italic, and Oblique

Font variant
Font variant determines whether the font is displayed in normal caps or in
small caps. A particular font might contain only normal caps, only small caps,
or both types of glyph.

Font weight
Font weight describes the boldness or the lightness of the glyph to be used.

Font size
Font size is used to modify the size of the displayed text.

Fonts installed in the system

On Linux or UNIX platforms
To see the fonts that are either installed in the system or available for an
application to use, type the command:

194 IBM SDK for Java: SDK and Runtime Guide

xset -q ""

If your PATH also points to the SDK (as expected), a result of running the
command:
xset -q

is a list of the fonts that are bundled with the Developer Kit.

To add a font path, use the command:
xset +fp

To remove a font path, use the command:
xset -fp

Default font

If an application attempts to create a font that cannot be found, the font Dialog
Lucida Sans Regular is used as the default font.

Font utilities
A list of font utilities that are supported.

Font utilities on AIX, Linux, and z/OS

xlsfonts
Use xlsfonts to check whether a particular font is installed on the system. For
example: xlsfonts | grep ksc will list all the Korean fonts in the system.

iconv
Use to convert the character encoding from one encoding to other. Converted
text is written to standard output. For example: iconv -f oldset -t newset
[file ...]

Options are:

-f oldset
Specifies the source codeset (encoding).

-t newset
Specifies the destination codeset (encoding).

file
The file that contain the characters to be converted; if no file is specified,
standard input is used.

Common NLS problem and possible causes
A common NLS problem with potential solutions.

Why do I see a square box or ??? (question marks) in the SDK components?
This effect is caused mainly because Java is not able to find the correct font file
to display the character. If a Korean character should be displayed, the system
should be using the Korean locale, so that Java can take the correct font file. If
you are seeing boxes or queries, check the following items:

For Swing components:
1. Check your locale with locale

2. To change the locale, export LANG=zh_TW (for example)
3. If you know which font you have used in your application, such as serif,

try to get the corresponding physical font by looking in the fontpath. If the
font file is missing, try adding it there.

Chapter 9. Troubleshooting and support 195

ORB problem determination
One of your first tasks when debugging an ORB problem is to determine whether
the problem is in the client-side or in the server-side of the distributed application.
Think of a typical RMI-IIOP session as a simple, synchronous communication
between a client that is requesting access to an object, and a server that is
providing it.

During this communication, a problem might occur in the execution of one of the
following steps:
1. The client writes and sends a request to the server.
2. The server receives and reads the request.
3. The server executes the task in the request.
4. The server writes and sends a reply back.
5. The client receives and reads the reply.

It is not always easy to identify where the problem occurred. Often, the
information that the application returns, in the form of stack traces or error
messages, is not enough for you to make a decision. Also, because the client and
server communicate through their ORBs, if a problem occurs, both sides will
probably record an exception or unusual behavior.

This section describes all the clues that you can use to find the source of the ORB
problem. It also describes a few common problems that occur more frequently. The
topics are:
v “Identifying an ORB problem”
v “Debug properties” on page 197
v “ORB exceptions” on page 198
v “Completion status and minor codes” on page 200
v “Java security permissions for the ORB” on page 200
v “Interpreting the stack trace” on page 201
v “Interpreting ORB traces” on page 202
v “Common problems” on page 206
v “IBM ORB service: collecting data” on page 208

Identifying an ORB problem
A background of the constituents of the IBM ORB component.

What the ORB component contains

The ORB component contains the following items:
v Java ORB from IBM and rmi-iiop runtime environment (com.ibm.rmi.*,

com.ibm.CORBA.*)
v RMI-IIOP API (javax.rmi.CORBA.*,org.omg.CORBA.*)
v IDL to Java implementation (org.omg.* and IBM versions com.ibm.org.omg.*)
v Transient name server (com.ibm.CosNaming.*, org.omg.CosNaming.*) -

tnameserv
v -iiop and -idl generators (com.ibm.tools.rmi.rmic.*) for the rmic compiler - rmic
v idlj compiler (com.ibm.idl.*)

196 IBM SDK for Java: SDK and Runtime Guide

What the ORB component does not contain

The ORB component does not contain:
v RMI-JRMP (also known as Standard RMI)
v JNDI and its plug-ins

Therefore, if the problem is in java.rmi.* or sun.rmi.*, it is not an ORB problem.
Similarly, if the problem is in com.sun.jndi.*, it is not an ORB problem.

Platform dependent problems

If possible, run the test case on more than one platform. All the ORB code is
shared. You can nearly always reproduce genuine ORB problems on any platform.
If you have a platform-specific problem, it is likely to be in some other component.

JIT problem

JIT bugs are very difficult to find. They might show themselves as ORB problems.
When you are debugging or testing an ORB application, it is always safer to switch
off the JIT by setting the option -Xint.

Fragmentation

Disable fragmentation when you are debugging the ORB. Although fragmentation
does not add complications to the ORB's functioning, a fragmentation bug can be
difficult to detect because it will most likely show as a general marshalling
problem. The way to disable fragmentation is to set the ORB property
com.ibm.CORBA.FragmentSize=0. You must do this on the client side and on the
server side.

ORB versions

The ORB component carries a few version properties that you can display by
calling the main method of the following classes:
1. com.ibm.CORBA.iiop.Version (ORB runtime version)
2. com.ibm.tools.rmic.iiop.Version (for tools; for example, idlj and rmic)
3. rmic -iiop -version (run the command line for rmic)

Limitation with bidirectional GIOP

Bidirectional GIOP is not supported.

Debug properties
Properties to use to enable ORB traces.

Attention: Do not enable tracing for normal operation, because it might cause
performance degradation. Even if you have switched off tracing, FFDC (First
Failure Data Capture) is still working, so that only serious errors are reported. If a
debug file is produced, examine it to check on the problem. For example, the
server might have stopped without performing an ORB.shutdown().

You can use the following properties to enable the ORB traces:
v com.ibm.CORBA.Debug:

Chapter 9. Troubleshooting and support 197

Table 8. Debug property values

Property value Trace output information

false [default] No output

fine Entry and exit points to the ORB code. Use this information
to help identify the area of the ORB component that is
causing the problem.

finer As for fine, plus information about the working of ORB
subcomponents. Use this information to help identify
problems within a specific ORB subcomponent.

finest or all Information about the entire ORB code flow

Note: If you use this property without specifying a value, full tracing is enabled.
v com.ibm.CORBA.Debug.Output: This property redirects traces to a file, which

is known as a trace log. When this property is not specified, or it is set to an
empty string, the file name defaults to the format
orbtrc.DDMMYYYY.HHmm.SS.txt, where D=Day; M=Month; Y=Year; H=Hour
(24 hour format); m=Minutes; S=Seconds. If the application (or Applet) does not
have the privilege that it requires to write to a file, the trace entries go to stderr.

v com.ibm.CORBA.CommTrace: This property turns on wire tracing, also known
as Comm tracing. Every incoming and outgoing GIOP message is sent to the
trace log. You can set this property independently from Debug. This property is
useful if you want to look only at the flow of information, and you are not
interested in debugging the internals. The only two values that this property can
have are true and false. The default is false.

Here is an example of common usage:

For rmic -iiop or rmic -idl, the following diagnostic tools are available:
v -J-Djavac.dump.stack=1: This tool ensures that all exceptions are caught.
v -Xtrace: This tool traces the progress of the parse step.

If you are working with an IBM SDK, you can obtain CommTrace for the transient
name server (tnameserv) by using the standard environment variable
IBM_JAVA_OPTIONS. In a separate command session to the server or client
SDKs, you can use:
export IBM_JAVA_OPTIONS=-Dcom.ibm.CORBA.CommTrace=true -Dcom.ibm.CORBA.Debug=true

or the equivalent platform-specific command.

The setting of this environment variable affects each Java process that is started, so
use this variable carefully. Alternatively, you can use the -J option to pass the
properties through the tnameserv wrapper, as follows:
tnameserv -J-Dcom.ibm.CORBA.Debug=true

ORB exceptions
The exceptions that can be thrown are split into user and system categories.

If your problem is related to the ORB, unless your application is doing nothing or
giving you the wrong result, your log file or terminal is probably full of exceptions
that include the words “CORBA” and “rmi” many times. All unusual behavior that

java -Dcom.ibm.CORBA.Debug=true -Dcom.ibm.CORBA.Debug.Output=trace.log
-Dcom.ibm.CORBA.CommTrace=true <classname>

198 IBM SDK for Java: SDK and Runtime Guide

occurs in a good application is highlighted by an exception. This principle also
applies for the ORB with its CORBA exceptions. Similarly to Java, CORBA divides
its exceptions into user exceptions and system exceptions.

User exceptions

User exceptions are IDL defined and inherit from org.omg.CORBA.UserException.
These exceptions are mapped to checked exceptions in Java; that is, if a remote
method raises one of them, the application that called that method must catch the
exception. User exceptions are usually not unrecoverable exceptions and should
always be handled by the application. Therefore, if you get one of these user
exceptions, you know where the problem is, because the application developer had
to make allowance for such an exception to occur. In most of these cases, the ORB
is not the source of the problem.

System exceptions

System exceptions are thrown transparently to the application and represent an
unusual condition in which the ORB cannot recover gracefully, such as when a
connection is dropped. The CORBA 2.6 specification defines 31 system exceptions
and their mapping to Java. They all belong to the org.omg.CORBA package. The
CORBA specification defines the meaning of these exceptions and describes the
conditions in which they are thrown.

The most common system exceptions are:
v BAD_OPERATION: This exception is thrown when an object reference denotes

an existing object, but the object does not support the operation that was called.
v BAD_PARAM: This exception is thrown when a parameter that is passed to a

call is out of range or otherwise considered not valid. An ORB might raise this
exception if null values or null pointers are passed to an operation.

v COMM_FAILURE: This exception is raised if communication is lost while an
operation is in progress, after the request was sent by the client, but before the
reply from the server has been returned to the client.

v DATA_CONVERSION: This exception is raised if an ORB cannot convert the
marshaled representation of data into its native representation, or cannot convert
the native representation of data into its marshaled representation. For example,
this exception can be raised if wide character codeset conversion fails, or if an
ORB cannot convert floating point values between different representations.

v MARSHAL: This exception indicates that the request or reply from the network
is structurally not valid. This error typically indicates a bug in either the
client-side or server-side runtime. For example, if a reply from the server
indicates that the message contains 1000 bytes, but the actual message is shorter
or longer than 1000 bytes, the ORB raises this exception.

v NO_IMPLEMENT: This exception indicates that although the operation that was
called exists (it has an IDL definition), no implementation exists for that
operation.

v UNKNOWN: This exception is raised if an implementation throws a
non-CORBA exception, such as an exception that is specific to the
implementation's programming language. It is also raised if the server returns a
system exception that is unknown to the client. If the server uses a later version
of CORBA than the version that the client is using, and new system exceptions
have been added to the later version this exception can happen.

Chapter 9. Troubleshooting and support 199

Completion status and minor codes
Two pieces of data are associated with each system exception, these are described
in this section.
v A completion status, which is an enumerated type that has three values:

COMPLETED_YES, COMPLETED_NO and COMPLETED_MAYBE. These values
indicate either that the operation was executed in full, that the operation was
not executed, or that the execution state cannot be determined.

v A long integer, called minor code, that can be set to some ORB vendor-specific
value. CORBA also specifies the value of many minor codes.

Usually the completion status is not very useful. However, the minor code can be
essential when the stack trace is missing. In many cases, the minor code identifies
the exact location of the ORB code where the exception is thrown and can be used
by the vendor's service team to localize the problem quickly. However, for
standard CORBA minor codes, this is not always possible. For example:

org.omg.CORBA.OBJECT_NOT_EXIST: SERVANT_NOT_FOUND minor code: 4942FC11 completed: No

Minor codes are usually expressed in hexadecimal notation (except for Oracle's
minor codes, which are in decimal notation) that represents four bytes. The OMG
organization has assigned to each vendor a range of 4096 minor codes. The IBM
vendor-specific minor code range is 0x4942F000 through 0x4942FFFF. “CORBA
minor codes” on page 467 gives diagnostic information for common minor codes.

System exceptions might also contain a string that describes the exception and
other useful information. You will see this string when you interpret the stack
trace.

The ORB tends to map all Java exceptions to CORBA exceptions. A runtime
exception is mapped to a CORBA system exception, while a checked exception is
mapped to a CORBA user exception.

More exceptions other than the CORBA exceptions could be generated by the ORB
component in a code bug. All the Java unchecked exceptions and errors and others
that are related to the ORB tools rmic and idlj must be considered. In this case, the
only way to determine whether the problem is in the ORB, is to look at the
generated stack trace and see whether the objects involved belong to ORB
packages.

Java security permissions for the ORB
When running with a Java SecurityManager, invocation of some methods in the
CORBA API classes might cause permission checks to be made that could result in
a SecurityException.

The following table shows methods affected when running with Java 2
SecurityManager:

Class/Interface Method Required permission

org.omg.CORBA.ORB init java.net.SocketPermission
resolve

org.omg.CORBA.ORB connect java.net.SocketPermission
listen

200 IBM SDK for Java: SDK and Runtime Guide

Class/Interface Method Required permission

org.omg.CORBA.ORB resolve_initial_references java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_is_a java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_non_existent java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

OutputStream _request
(String, boolean)

java.net.SocketPermission
connect

org.omg.CORBA.
portable.ObjectImpl

_get_interface_def java.net.SocketPermission
connect

org.omg.CORBA.
Request

invoke java.net.SocketPermission
connect

org.omg.CORBA.
Request

send_deferred java.net.SocketPermission
connect

org.omg.CORBA.
Request

send_oneway java.net.SocketPermission
connect

javax.rmi.
PortableRemoteObject

narrow java.net.SocketPermission
connect

If your program uses any of these methods, ensure that it is granted the necessary
permissions.

Interpreting the stack trace
Whether the ORB is part of a middleware application or you are using a Java
stand-alone application (or even an applet), you must retrieve the stack trace that
is generated at the moment of failure. It could be in a log file, or in your terminal
or browser window, and it could consist of several chunks of stack traces.

The following example describes a stack trace that was generated by a server ORB
running in the WebSphere Application Server:

Chapter 9. Troubleshooting and support 201

In the example, the ORB mapped a Java exception to a CORBA exception. This
exception is sent back to the client later as part of a reply message. The client ORB
reads this exception from the reply. It maps it to a Java exception
(java.rmi.RemoteException according to the CORBA specification) and throws this
new exception back to the client application.

Along this chain of events, often the original exception becomes hidden or lost, as
does its stack trace. On early versions of the ORB (for example, 1.2.x, 1.3.0) the
only way to get the original exception stack trace was to set some ORB debugging
properties. Newer versions have built-in mechanisms by which all the nested stack
traces are either recorded or copied around in a message string. When dealing with
an old ORB release (1.3.0 and earlier), it is a good idea to test the problem on
newer versions. Either the problem is not reproducible (known bug already solved)
or the debugging information that you obtain is much more useful.

Description string:

The example stack trace shows that the application has caught a CORBA
org.omg.CORBA.MARSHAL system exception. After the MARSHAL exception,
some extra information is provided in the form of a string. This string should
specify minor code, completion status, and other information that is related to the
problem. Because CORBA system exceptions are alarm bells for an unusual
condition, they also hide inside what the real exception was.

Usually, the type of the exception is written in the message string of the CORBA
exception. The trace shows that the application was reading a value (read_value())
when an IllegalAccessException occurred that was associated to class
com.ibm.ws.pmi.server.DataDescriptor. This information is an indication of the real
problem and should be investigated first.

Interpreting ORB traces
The ORB trace file contains messages, trace points, and wire tracing. This section
describes the various types of trace.

ORB trace message:

An example of an ORB trace message.

Here is a simple example of a message:
19:12:36.306 com.ibm.rmi.util.Version logVersions:110 P=754534:O=0:CT
ORBRas[default] IBM Java ORB build orbdev-20050927

org.omg.CORBA.MARSHAL: com.ibm.ws.pmi.server.DataDescriptor; IllegalAccessException minor code: 4942F23E
completed: No

at com.ibm.rmi.io.ValueHandlerImpl.readValue(ValueHandlerImpl.java:199)
at com.ibm.rmi.iiop.CDRInputStream.read_value(CDRInputStream.java:1429)
at com.ibm.rmi.io.ValueHandlerImpl.read_Array(ValueHandlerImpl.java:625)
at com.ibm.rmi.io.ValueHandlerImpl.readValueInternal(ValueHandlerImpl.java:273)
at com.ibm.rmi.io.ValueHandlerImpl.readValue(ValueHandlerImpl.java:189)
at com.ibm.rmi.iiop.CDRInputStream.read_value(CDRInputStream.java:1429)
at com.ibm.ejs.sm.beans._EJSRemoteStatelessPmiService_Tie._invoke(_EJSRemoteStatelessPmiService_

Tie.java:613)
at com.ibm.CORBA.iiop.ExtendedServerDelegate.dispatch(ExtendedServerDelegate.java:515)
at com.ibm.CORBA.iiop.ORB.process(ORB.java:2377)
at com.ibm.CORBA.iiop.OrbWorker.run(OrbWorker.java:186)
at com.ibm.ejs.oa.pool.ThreadPool$PooledWorker.run(ThreadPool.java:104)
at com.ibm.ws.util.CachedThread.run(ThreadPool.java:137)

202 IBM SDK for Java: SDK and Runtime Guide

This message records the time, the package, and the method name that was called.
In this case, logVersions() prints out, to the log file, the version of the running
ORB.

After the first colon in the example message, the line number in the source code
where that method invocation is done is written (110 in this case). Next follows the
letter P that is associated with the process number that was running at that
moment. This number is related (by a hash) to the time at which the ORB class
was loaded in that process. It is unlikely that two different processes load their
ORBs at the same time.

The following O=0 (alphabetic O = numeric 0) indicates that the current instance of
the ORB is the first one (number 0). CT specifies that this is the main (control)
thread. Other values are: LT for listener thread, RT for reader thread, and WT for
worker thread.

The ORBRas field shows which RAS implementation the ORB is running. It is
possible that when the ORB runs inside another application (such as a WebSphere
application), the ORB RAS default code is replaced by an external implementation.

The remaining information is specific to the method that has been logged while
executing. In this case, the method is a utility method that logs the version of the
ORB.

This example of a possible message shows the logging of entry or exit point of
methods, such as:

14:54:14.848 com.ibm.rmi.iiop.Connection <init>:504 LT=0:P=650241:O=0:port=1360 ORBRas[default] Entry
.....
14:54:14.857 com.ibm.rmi.iiop.Connection <init>:539 LT=0:P=650241:O=0:port=1360 ORBRas[default] Exit

In this case, the constructor (that is, <init>) of the class Connection is called. The
tracing records when it started and when it finished. For operations that include
the java.net package, the ORBRas logger prints also the number of the local port
that was involved.

Comm traces:

An example of comm (wire) tracing.

Here is an example of comm tracing:
// Summary of the message containing name-value pairs for the principal fields
OUT GOING:
Request Message // It is an out going request, therefore we are dealing with a client
Date: 31 January 2003 16:17:34 GMT
Thread Info: P=852270:O=0:CT
Local Port: 4899 (0x1323)
Local IP: 9.20.178.136
Remote Port: 4893 (0x131D)
Remote IP: 9.20.178.136
GIOP Version: 1.2
Byte order: big endian

Fragment to follow: No // This is the last fragment of the request
Message size: 276 (0x114)
--

Request ID: 5 // Request Ids are in ascending sequence
Response Flag: WITH_TARGET // it means we are expecting a reply to this request
Target Address: 0

Chapter 9. Troubleshooting and support 203

Object Key: length = 26 (0x1A) // the object key is created by the server when exporting
// the servant and retrieved in the IOR using a naming service

4C4D4249 00000010 14F94CA4 00100000
00080000 00000000 0000

Operation: message // That is the name of the method that the client invokes on the servant
Service Context: length = 3 (0x3) // There are three service contexts
Context ID: 1229081874 (0x49424D12) // Partner version service context. IBM only
Context data: length = 8 (0x8)

00000000 14000005

Context ID: 1 (0x1) // Codeset CORBA service context
Context data: length = 12 (0xC)

00000000 00010001 00010100

Context ID: 6 (0x6) // Codebase CORBA service context
Context data: length = 168 (0xA8)

00000000 00000028 49444C3A 6F6D672E
6F72672F 53656E64 696E6743 6F6E7465
78742F43 6F646542 6173653A 312E3000
00000001 00000000 0000006C 00010200
0000000D 392E3230 2E313738 2E313336
00001324 0000001A 4C4D4249 00000010
15074A96 00100000 00080000 00000000
00000000 00000002 00000001 00000018
00000000 00010001 00000001 00010020
00010100 00000000 49424D0A 00000008
00000000 14000005

Data Offset: 11c
// raw data that goes in the wire in numbered rows of 16 bytes and the corresponding ASCII
decoding
0000: 47494F50 01020000 00000114 00000005 GIOP............
0010: 03000000 00000000 0000001A 4C4D4249LMBI
0020: 00000010 14F94CA4 00100000 00080000L.........
0030: 00000000 00000000 00000008 6D657373mess
0040: 61676500 00000003 49424D12 00000008 age.....IBM.....
0050: 00000000 14000005 00000001 0000000C
0060: 00000000 00010001 00010100 00000006
0070: 000000A8 00000000 00000028 49444C3A(IDL:
0080: 6F6D672E 6F72672F 53656E64 696E6743 omg.org/SendingC
0090: 6F6E7465 78742F43 6F646542 6173653A ontext/CodeBase:
00A0: 312E3000 00000001 00000000 0000006C 1.0............l
00B0: 00010200 0000000D 392E3230 2E3137389.20.178
00C0: 2E313336 00001324 0000001A 4C4D4249 .136...$....LMBI
00D0: 00000010 15074A96 00100000 00080000J.........
00E0: 00000000 00000000 00000002 00000001
00F0: 00000018 00000000 00010001 00000001
0100: 00010020 00010100 00000000 49424D0AIBM.
0110: 00000008 00000000 14000005 00000000

Note: The italic comments that start with a double slash have been added for
clarity; they are not part of the traces.

In this example trace, you can see a summary of the principal fields that are
contained in the message, followed by the message itself as it goes in the wire. In
the summary are several field name-value pairs. Each number is in hexadecimal
notation.

For details of the structure of a GIOP message, see the CORBA specification,
chapters 13 and 15: http://www.omg.org/cgi-bin/doc?formal/99-10-07.

204 IBM SDK for Java: SDK and Runtime Guide

http://www.omg.org/cgi-bin/doc?formal/99-10-07

Client or server:

From the first line of the summary of the message, you can identify whether the
host to which this trace belongs is acting as a server or as a client. OUT GOING
means that the message has been generated on the workstation where the trace
was taken and is sent to the wire.

In a distributed-object application, a server is defined as the provider of the
implementation of the remote object to which the client connects. In this work,
however, the convention is that a client sends a request while the server sends
back a reply. In this way, the same ORB can be client and server in different
moments of the rmi-iiop session.

The trace shows that the message is an outgoing request. Therefore, this trace is a
client trace, or at least part of the trace where the application acts as a client.

Time information and host names are reported in the header of the message.

The Request ID and the Operation (“message” in this case) fields can be very
helpful when multiple threads and clients destroy the logical sequence of the
traces.

The GIOP version field can be checked if different ORBs are deployed. If two
different ORBs support different versions of GIOP, the ORB that is using the more
recent version of GIOP should fall back to a common level. By checking that field,
however, you can easily check whether the two ORBs speak the same language.

Service contexts:

The header also records three service contexts, each consisting of a context ID and
context data.

A service context is extra information that is attached to the message for purposes
that can be vendor-specific such as the IBM Partner version that is described in the
IOR in “The ORB” on page 64.

Usually, a security implementation makes extensive use of these service contexts.
Information about an access list, an authorization, encrypted IDs, and passwords
could travel with the request inside a service context.

Some CORBA-defined service contexts are available. One of these is the Codeset.

In the example, the codeset context has ID 1 and data 00000000 00010001
00010100. Bytes 5 through 8 specify that characters that are used in the message are
encoded in ASCII (00010001 is the code for ASCII). Bytes 9 through 12 instead are
related to wide characters.

The default codeset is UTF8 as defined in the CORBA specification, although
almost all Windows and UNIX platforms typically communicate through ASCII.
i5/OS and Mainframes such as zSeries systems are based on the IBM EBCDIC
encoding.

The other CORBA service context, which is present in the example, is the Codebase
service context. It stores information about how to call back to the client to access
resources in the client such as stubs, and class implementations of parameter
objects that are serialized with the request.

Chapter 9. Troubleshooting and support 205

Common problems
This section describes some of the problems that you might find.

ORB application hangs:

One of the worst conditions is when the client, or server, or both, hang. If a hang
occurs, the most likely condition (and most difficult to solve) is a deadlock of
threads. In this condition, it is important to know whether the workstation on
which you are running has more than one CPU, and whether your CPU is using
Simultaneous Multithreading (SMT).

A simple test that you can do is to keep only one CPU running, disable SMT, and
see whether the problem disappears. If it does, you know that you must have a
synchronization problem in the application.

Also, you must understand what the application is doing while it hangs. Is it
waiting (low CPU usage), or it is looping forever (almost 100% CPU usage)? Most
of the cases are a waiting problem.

You can, however, still identify two cases:
v Typical deadlock
v Standby condition while the application waits for a resource to arrive

An example of a standby condition is where the client sends a request to the server
and stops while waiting for the reply. The default behavior of the ORB is to wait
indefinitely.

You can set a couple of properties to avoid this condition:
v com.ibm.CORBA.LocateRequestTimeout
v com.ibm.CORBA.RequestTimeout

When the property com.ibm.CORBA.enableLocateRequest is set to true (the default
is false), the ORB first sends a short message to the server to find the object that it
needs to access. This first contact is the Locate Request. You must now set the
LocateRequestTimeout to a value other than 0 (which is equivalent to infinity). A
good value could be something around 5000 ms.

Also, set the RequestTimeout to a value other than 0. Because a reply to a request is
often large, allow more time for the reply, such as 10,000 ms. These values are
suggestions and might be too low for slow connections. When a request runs out
of time, the client receives an explanatory CORBA exception.

When an application hangs, consider also another property that is called
com.ibm.CORBA.FragmentTimeout. This property was introduced in IBM ORB
1.3.1, when the concept of fragmentation was implemented to increase
performance. You can now split long messages into small chunks or fragments and
send one after the other over the net. The ORB waits for 30 seconds (default value)
for the next fragment before it throws an exception. If you set this property, you
disable this timeout, and problems of waiting threads might occur.

If the problem seems to be a deadlock or hang, capture the Javadump information.
After capturing the information, wait for a minute or so, and do it again. A
comparison of the two snapshots shows whether any threads have changed state.
For information about how to do this operation, see “Triggering a Javadump” on
page 241.

206 IBM SDK for Java: SDK and Runtime Guide

In general, stop the application, enable the orb traces and restart the application.
When the hang is reproduced, the partial traces that can be retrieved can be used
by the IBM ORB service team to help understand where the problem is.

Starting the client before the server is running:

If the client is started before the server is running, an error occurs when you run
the client.

An example of the error messages that are generated from this process.

This operation outputs:
(org.omg.CORBA.COMM_FAILURE)
Hello Client exception:

org.omg.CORBA.COMM_FAILURE:minor code:1 completed:No
at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:145)
at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:77)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:98)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:75)
at com.ibm.rmi.corba.ClientDelegate.createRequest(ClientDelegate.java:440)
at com.ibm.rmi.corba.ClientDelegate.is_a(ClientDelegate.java:571)
at org.omg.CORBA.portable.ObjectImpl._is_a(ObjectImpl.java:74)
at org.omg.CosNaming.NamingContextHelper.narrow(NamingContextHelper.java:58)
com.sun.jndi.cosnaming.CNCtx.callResolve(CNCtx.java:327)

Client and server are running, but not naming service:

An example of the error messages that are generated from this process.

The output is:
Hello Client exception:Cannot connect to ORB
Javax.naming.CommunicationException:

Cannot connect to ORB.Root exception is org.omg.CORBA.COMM_FAILURE minor code:1 completed:No
at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:145)
at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:77)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:98)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:75)
at com.ibm.rmi.corba.ClientDelegate.createRequest(ClientDelegate.java:440)
at com.ibm.rmi.corba.InitialNamingClient.resolve(InitialNamingClient.java:197)
at com.ibm.rmi.corba.InitialNamingClient.cachedInitialReferences(InitialNamingClient.j
at com.ibm.rmi.corba.InitialNamingClient.resolve_initial_references(InitialNamingClien
at com.ibm.rmi.corba.ORB.resolve_initial_references(ORB.java:1269)
.........

You must start the Java IDL name server before an application or applet starts that
uses its naming service. Installation of the Java IDL product creates a script
(Solaris: tnameserv) or executable file that starts the Java IDL name server.

Start the name server so that it runs in the background. If you do not specify
otherwise, the name server listens on port 2809 for the bootstrap protocol that is
used to implement the ORB resolve_initial_references() and list_initial_references()
methods.

Specify a different port, for example, 1050, as follows:
tnameserv -ORBInitialPort 1050

Clients of the name server must be made aware of the new port number. Do this
by setting the org.omg.CORBA.ORBInitialPort property to the new port number
when you create the ORB object.

Chapter 9. Troubleshooting and support 207

Running the client with MACHINE2 (client) unplugged from the network:

An example of the error messages that are generated when the client has been
unplugged form the network.

Your output is:
(org.omg.CORBA.TRANSIENT CONNECT_FAILURE)

Hello Client exception:Problem contacting address:corbaloc:iiop:machine2:2809/NameService
javax.naming.CommunicationException:Problem contacting address:corbaloc:iiop:machine2:2809/N

is org.omg.CORBA.TRANSIENT:CONNECT_FAILURE (1)minor code:4942F301 completed:No
at com.ibm.CORBA.transport.TransportConnectionBase.connect(TransportConnectionBase.jav
at com.ibm.rmi.transport.TCPTransport.getConnection(TCPTransport.java:178)
at com.ibm.rmi.iiop.TransportManager.get(TransportManager.java:79)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:131)
at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:98)
at com.ibm.CORBA.iiop.ClientDelegate._createRequest(ClientDelegate.java:2096)
at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1264)
at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1177)
at com.ibm.rmi.corba.InitialNamingClient.resolve(InitialNamingClient.java:252)
at com.ibm.rmi.corba.InitialNamingClient.cachedInitialReferences(InitialNamingClient.j
at com.ibm.rmi.corba.InitialNamingClient.resolve_initial_references(InitialNamingClien
at com.ibm.rmi.corba.InitialReferenceClient.resolve_initial_references(InitialReferenc
at com.ibm.rmi.corba.ORB.resolve_initial_references(ORB.java:3211)
at com.ibm.rmi.iiop.ORB.resolve_initial_references(ORB.java:523)
at com.ibm.CORBA.iiop.ORB.resolve_initial_references(ORB.java:2898)
..........

IBM ORB service: collecting data
This section describes how to collect data about ORB problems.

If after all these verifications, the problem is still present, collect at all nodes of the
problem the following information:
v Operating system name and version.
v Output of java -version.
v Output of java com.ibm.CORBA.iiop.Version.
v Output of rmic -iiop -version, if rmic is involved.
v ASV build number (WebSphere Application Server only).
v If you think that the problem is a regression, include the version information for

the most recent known working build and for the failing build.
v If this is a runtime problem, collect debug and communication traces of the

failure from each node in the system (as explained earlier in this section).
v If the problem is in rmic -iiop or rmic -idl, set the options:

-J-Djavac.dump.stack=1 -Xtrace, and capture the output.
v Typically this step is not necessary. If it looks like the problem is in the buffer

fragmentation code, IBM service will return the defect asking for an additional
set of traces, which you can produce by executing with
-Dcom.ibm.CORBA.FragmentSize=0.

A testcase is not essential, initially. However, a working testcase that demonstrates
the problem by using only the Java SDK classes will speed up the resolution time
for the problem.

Preliminary tests:

The ORB is affected by problems with the underlying network, hardware, and
JVM.

208 IBM SDK for Java: SDK and Runtime Guide

When a problem occurs, the ORB can throw an org.omg.CORBA.* exception, some
text that describes the reason, a minor code, and a completion status. Before you
assume that the ORB is the cause of problem, do the following checks:
v Check that the scenario can be reproduced in a similar configuration.
v Check that the JIT is disabled (see “JIT and AOT problem determination” on

page 322).

Also:
v Disable additional CPUs.
v Disable Simultaneous Multithreading (SMT) where possible.
v Eliminate memory dependencies with the client or server. The lack of physical

memory can be the cause of slow performance, apparent hangs, or crashes. To
remove these problems, ensure that you have a reasonable headroom of memory.

v Check physical network problems (firewalls, comm links, routers, DNS name
servers, and so on). These are the major causes of CORBA COMM_FAILURE
exceptions. As a test, ping your own workstation name.

v If the application is using a database such as DB2, switch to the most reliable
driver. For example, to isolate DB2 AppDriver, switch to Net Driver, which is
slower and uses sockets, but is more reliable.

Attach API problem determination
This section helps you solve problems involving the Attach API.

The IBM Java Attach API uses shared semaphores, sockets, and file system artifacts
to implement the attach protocol. Problems with these artifacts might adversely
affect the operation of applications when they use the attach API.

Note: Error messages from agents on the target VM go to stderr or stdout for the
target VM. They are not reported in the messages output by the attaching VM.

Deleting or changing permissions on directories and files in /tmp

The attach API depends on the contents of a common directory. By default the
common directory is /tmp/.com_ibm_tools_attach, but you can specify a different
directory by using the -Dcom.ibm.tools.attach.directory system property. The
common directory must have owner, group, and world read, write, and execute
permissions, and the sticky bit must be set. The common files _attachlock,
_master, and _notifier must have owner, group, and world read and write
permissions. Execute permissions are not required.

Problems are caused if you modify the common directory in one of the following
ways:
v Deleting the common directory.
v Deleting the contents of the common directory.
v Changing the permissions of the common directory or any of its content.

If you do modify the common directory, possible effects include:
v Semaphore “leaks” might occur, where excessive numbers of unused shared

semaphores are opened. You can remove the semaphores using the command:
ipcrm -s <semid>

Use the command to delete semaphores that have keys starting with “0xa1”.
v The Java VMs might not be able to list existing target VMs.

Chapter 9. Troubleshooting and support 209

v The Java VMs might not be able to attach to existing target VMs.
v The Java VM might not be able to enable its attach API.
v Java processes might not terminate, or might take an excessive length of time to

terminate.

If the common directory cannot be used, a Java VM attempts to re-create the
common directory. However, the JVM cannot re-create the files that are related to
VMs that are currently running.

If the /tmp directory, or the directory specified by the
-Dcom.ibm.tools.attach.directory system property, is full or inaccessible (for
example, because of permissions), the Attach API fails to initialize and no error
message is produced.

z/OS console messages reporting security violations in /tmp

The Attach API stores control files in the directory /tmp/.com_ibm_tools_attach. To
prevent the display of security violation messages, use one of the following
options:
v Add a security exception.
v Specify a different control directory, by setting the

com.ibm.tools.attach.directory system property.

The VirtualMachine.attach(String id) method reports
AttachNotSupportedException: No provider for virtual machine id

There are several possible reasons for this message:
v The target VM might be owned by another userid. The attach API can only

connect a VM to a target VM with the same userid.
v The attach API for the target VM might not have launched yet. There is a short

delay from when the Java VM launches to when the attach API is functional.
v The attach API for the target VM might have failed. Verify that the directory

/tmp/.com_ibm_tools_attach/<id> exists, and that the directory is readable and
writable by the userid.

v The target directory /tmp/.com_ibm_tools_attach/<id> might have been deleted.
v The attach API might not have been able to open the shared semaphore. To

verify that there is at least one shared semaphore, use the command:
ipcs -s

If there is a shared semaphore, at least one key starting with “0xa1” appears in
the output from the ipcs command.

Note: The number of available semaphores is limited on systems which use
System V IPC, including Linux, z/OS, and AIX.

The VirtualMachine.attach() method reports
AttachNotSupportedException

There are several possible reasons for this message:
v The target process is dead or suspended.
v The target process, or the hosting system is heavily loaded. The result is a delay

in responding to the attach request.

210 IBM SDK for Java: SDK and Runtime Guide

v The network protocol has imposed a wait time on the port used to attach to the
target. The wait time might occur after heavy use of the attach API, or other
protocols which use sockets. To check if any ports are in the TIME_WAIT state, use
the command:
netstat -a

The VirtualMachine.loadAgent(),
VirtualMachine.loadAgentLibrary(),, or
VirtualMachine.loadAgentPath() methods report
com.sun.tools.attach.AgentLoadException or
com.sun.tools.attach.AgentInitializationException

There are several possible reasons for this message:
v The JVMTI agent or the agent JAR file might be corrupted. Try loading the agent

at startup time using the -javaagent, -agentlib, or -agentpath option,
depending on which method reported the problem.

v The agent might be attempting an operation which is not available after VM
startup.

A process running as root can see a target using
AttachProvider.listVirtualMachines(), but attempting to attach
results in an AttachNotSupportedException

A process can attach only to processes owned by the same user. To attach to a
non-root process from a root process, first use the su command to change the
effective UID of the attaching process to the UID of the target UID, before
attempting to attach.

The /tmp/.com_ibm_tools_attach directory contains many
directories with numeric file names

Each Java process creates a private directory in the /tmp/.com_ibm_tools_attach
directory, using its process ID as the directory name. When the process exits, it
deletes this private directory. If the process, or the operating system, crashes, or
you end the process by using the SIGKILL command, these obsolete directories are
not removed.

Subsequent Java processes delete obsolete directories automatically over time. Each
process examines a sample of the directories in /tmp/.com_ibm_tools_attach. If a
directory is obsolete and is owned by the user that is running the process, the
process deletes that directory.

To force deletion of all obsolete directories that are owned by the current user, run
the jconsole command, found in the SDK bin directory. When the New
Connection dialog is displayed, click Cancel, then exit the application.

To clean up all obsolete directories for all users, run the jconsole command as the
root user.

Chapter 9. Troubleshooting and support 211

Related concepts:
“Support for the Java Attach API” on page 141
Your application can connect to another “target” virtual machine using the Java
Attach API. Your application can then load an agent application into the target
virtual machine, for example to perform tasks such as monitoring status.

Using diagnostic tools
Diagnostic tools are available to help you solve your problems.

This section describes how to use the tools. The chapters are:
v “Overview of the available diagnostic tools”
v “Using dump agents” on page 221
v “Using Javadump” on page 240
v “Using Heapdump” on page 262
v “Using system dumps and the dump viewer” on page 271
v “Tracing Java applications and the JVM” on page 288
v “JIT and AOT problem determination” on page 322
v “Garbage Collector diagnostic data” on page 333
v “Class-loader diagnostic data” on page 341
v “Shared classes diagnostic data” on page 344
v “Using the Reliability, Availability, and Serviceability Interface” on page 372
v “Using the HPROF Profiler” on page 385
v “Using the JVMTI” on page 389
v “Using the Diagnostic Tool Framework for Java” on page 405
v “Using JConsole” on page 412

Note: JVMPI is now a deprecated interface, replaced by JVMTI.

Overview of the available diagnostic tools
The diagnostic information that can be produced by the JVM is described in the
following topics. A range of supplied tools can be used to post-process this
information and help with problem determination.

Subsequent topics in this part of the Information Center give more details on the use
of the information and tools in solving specific problem areas.

Some diagnostic information (such as that produced by Heapdump) is targeted
towards specific areas of Java (classes and object instances in the case of
Heapdumps), whereas other information (such as tracing) is targeted towards more
general JVM problems.

Categorizing the problem
During problem determination, one of the first objectives is to identify the most
probable area where the problem originates.

Many problems that seem to be a Java problem originate elsewhere. Areas where
problems can arise include:
v The JVM itself
v Native code
v Java applications

212 IBM SDK for Java: SDK and Runtime Guide

v An operating system or system resource
v A subsystem (such as database code)
v Hardware

You might need different tools and different diagnostic information to solve
problems in each area. The tools described here are (in the main) those built in to
the JVM or supplied by IBM for use with the JVM. The majority of these tools are
cross-platform tools, although there might be the occasional reference to other tools
that apply only to a specific platform or varieties of that platform. Many other
tools are supplied by hardware or system software vendors (such as system
debuggers). Some of these tools are introduced in the platform-specific sections.

Summary of diagnostic information
A running IBM JVM includes mechanisms for producing different types of
diagnostic data when different events occur.

In general, the production of this data happens under default conditions, but can
be controlled by starting the JVM with specific options (such as -Xdump; see “Using
dump agents” on page 221). Older versions of the IBM JVM controlled the
production of diagnostic information through the use of environment variables.
You can still use these environment variables, but they are not the preferred
mechanism and are not discussed in detail here. “Environment variables” on page
469 lists the supported environment variables).

The format of the various types of diagnostic information produced is specific to
the IBM JVM and might change between releases of the JVM.

The types of diagnostic information that can be produced are:

Javadump
The Javadump is sometimes referred to as a Javacore or thread dump in
some JVMs. This dump is in a human-readable format produced by default
when the JVM terminates unexpectedly because of an operating system
signal, an OutOfMemoryError exception, or when the user enters a
reserved key combination (for example, Ctrl-Break on Windows). You can
also generate a Javadump by calling a method from the Dump API, for
example com.ibm.jvm.Dump.JavaDump(), from inside the application. A
Javadump summarizes the state of the JVM at the instant the signal
occurred. Much of the content of the Javadump is specific to the IBM JVM.
See “Using Javadump” on page 240 for details.

Heapdump
The JVM can generate a Heapdump at the request of the user (for example
by calling com.ibm.jvm.Dump.HeapDump() from inside the application) or
(by default) when the JVM terminates because of an OutOfMemoryError
exception. You can specify finer control of the timing of a Heapdump with
the -Xdump:heap option. For example, you could request a Heapdump after
a certain number of full garbage collections have occurred. The default
Heapdump format (phd files) is not human-readable and you process it
using available tools such as Heaproots. See “Using Heapdump” on page
262 for more details.

System dumps
System dumps (also known as core dumps on Linux platforms) are
platform-specific files that contain information about the active processes,
threads, and system memory. System dumps are usually large. By default,
system dumps are produced by the JVM only when the JVM fails

Chapter 9. Troubleshooting and support 213

unexpectedly because of a GPF (general protection fault) or a major JVM or
system error. You can also request a system dump by using the Dump API.
For example, you can call the com.ibm.jvm.Dump.SystemDump() method
from your application. You can use the -Xdump:system option to produce
system dumps when other events occur.

Garbage collection data
A JVM started with the -verbose:gc option produces output in XML
format that can be used to analyze problems in the Garbage Collector itself
or problems in the design of user applications. Numerous other options
affect the nature and amount of Garbage Collector diagnostic information
produced. See “Garbage Collector diagnostic data” on page 333 for more
information.

Trace data
The IBM JVM tracing allows execution points in the Java code and the
internal JVM code to be logged. The -Xtrace option allows the number
and areas of trace points to be controlled, as well as the size and nature of
the trace buffers maintained. The internal trace buffers at a time of failure
are also available in a system dump and tools are available to extract them
from a system dump. Generally, trace data is written to a file in an
encoded format and then a trace formatter converts the data into a
readable format. However, if small amounts of trace are to be produced
and performance is not an issue, trace can be routed to STDERR and will
be pre-formatted. For more information, see “Tracing Java applications and
the JVM” on page 288.

Other data
Special options are available for producing diagnostic information relating
to
v The JIT (see “JIT and AOT problem determination” on page 322)
v Class loading (see “Class-loader diagnostic data” on page 341)
v Shared classes (see “Shared classes diagnostic data” on page 344)

You can also download the IBM Monitoring and Diagnostic Tools for Java,
a set of freely-available GUI-based tools for monitoring Java applications
and analyzing diagnostic data. For more information, see “IBM Monitoring
and Diagnostic Tools for Java” on page 192.

Summary of cross-platform tooling
IBM has several cross-platform diagnostic tools. The following sections provide
brief descriptions of the tools and indicate the different areas of problem
determination to which they are suited.

IBM Monitoring and Diagnostic Tools for Java:

The IBM Monitoring and Diagnostic Tools for Java are a set of GUI-based tools for
monitoring Java applications and analyzing diagnostic data. These tools are
designed to make Java diagnostic tasks as quick and as easy as possible.

Some tools can be attached to a running JVM, to monitor application behavior and
resource usage. For other tools, you generate dump files from your system or JVM,
then analyze the file in the tool. By using the tools, you can diagnose problems
such as memory leaks, thread contention issues, and I/O bottlenecks, as well as
getting information and recommendations to help you tune the JVM and improve
the performance of your application.

214 IBM SDK for Java: SDK and Runtime Guide

For more information about the tools, see “Using the IBM Monitoring and
Diagnostic Tools for Java” on page 219.

Cross-platform dump viewer:

The cross-system dump viewer uses the dump files that the operating system
generates to resolve data relevant to the JVM.

This tool is provided in two parts:
1. jextract - platform-specific utility to extract and package (compress) data from

the dump generated by the native operating system. This part of the process is
required only for system dumps that have been generated from earlier versions
of the JVM.

2. jdmpview - a cross-platform Java tool to view that data

The dump viewer “understands” the JVM and can be used to analyze its internals.
It is a useful tool to debug unexpected terminations of the JVM. The tool is
provided only in the IBM SDK for Java. Because the dump viewer is
cross-platform, you can analyze a dump from any system, and without knowledge
of the system debugger.

For more information, see “Using system dumps and the dump viewer” on page
271.

JVMTI tools:

The JVMTI (JVM Tool Interface) is a programming interface for use by tools. It
replaces the Java Virtual Machine Profiler Interface (JVMPI) and the Java Virtual
Machine Debug Interface (JVMDI).

For information on the JVMTI, see “Using the JVMTI” on page 389. The HPROF
tool provided with the SDK has been updated to use the JVMTI; see “Using the
HPROF Profiler” on page 385.

JVMPI tools:

JVMPI is no longer available; you must upgrade existing tools to use the JVMTI
(Java Virtual Machine Tool Interface), described in “Using the JVMTI” on page 389.
An article to help you with the upgrade is at:

http://www.oracle.com/technetwork/articles/javase/jvmpitransition-138768.html

The IBM SDK provided tool HPROF has been updated to use the JVMTI; see
“Using the HPROF Profiler” on page 385.

JPDA tools:

The Java Platform Debugging Architecture (JPDA) is a common standard for
debugging JVMs. The IBM Virtual Machine for Java is fully JPDA compatible.

Any JPDA debugger can be attached to the IBM Virtual Machine for Java. Because
they are debuggers, JPDA tools are best suited to tracing application problems that
have repeatable conditions, such as:
v Memory leaks in applications.
v Unexpected termination or “hanging”.

Chapter 9. Troubleshooting and support 215

http://www.oracle.com/technetwork/articles/javase/jvmpitransition-138768.html

An example of a JPDA tool is the debugger that is bundled with Eclipse for Java.

DTFJ:

The Diagnostic Tool Framework for Java (DTFJ) is a Java application programming
interface (API) from IBM used to support the building of Java diagnostics tools.

DTFJ can examine a system dump to analyze the internal structure of the JVM.

DTFJ is implemented in pure Java and tools written using DTFJ can be
cross-platform. Therefore, it is possible to analyze a dump taken from one machine
on another (remote and more convenient) machine. For example, a dump produced
on an AIX PPC machine can be analyzed on a Windows Thinkpad.

For more information, see “Using the Diagnostic Tool Framework for Java” on
page 405.

Trace formatting:

JVM trace is a key diagnostic tool for the JVM. The IBM JVM incorporates a large
degree of flexibility in determining what is traced and when it is traced. This
flexibility enables you to tailor trace so that it has a relatively small effect on
performance.

The IBM Virtual Machine for Java contains many embedded trace points. In this
release, maximal tracing is enabled by default for a few level 1 tracepoints and
exception trace points. Command-line options allow you to set exactly what is to
be traced, and specify where the trace output is to go. Trace output is generally in
an encoded format and requires a trace formatter to be viewed successfully.

In addition to the embedded trace points provided in the JVM code, you can place
your own application trace points in your Java code. You can activate tracing for
entry and exit against all methods in all classes. Alternatively, you can activate
tracing for a selection of methods in a selection of classes. Application and method
traces are interleaved in the trace buffers with the JVM embedded trace points. The
tracing allows detailed analysis of the routes taken through the code.

Tracing is used mainly for performance and leak problem determination. Trace
data might also provide clues to the state of a JVM before an unexpected
termination or “hang”.

Trace and trace formatting are IBM-specific; that is, they are present only in the
IBM Virtual Machine for Java. See “Using method trace” on page 316 and “Tracing
Java applications and the JVM” on page 288 for more details. Although trace is not
easy to understand, it is an effective tool.

JVMRI:

The JVMRI interface will be deprecated in the future and replaced by JVMTI
extensions.

The JVMRI (JVM RAS Interface, where RAS stands for Reliability, Availability,
Serviceability) allows you to control several JVM operations programmatically.

For example, the IBM Virtual Machine for Java contains a large number of
embedded trace points. Most of these trace points are switched off by default. A

216 IBM SDK for Java: SDK and Runtime Guide

JVMRI agent can act as a Plug-in to allow real-time control of trace information.
You use the -Xrun command-line option so that the JVM itself loads the agent at
startup. When loaded, a JVMRI agent can dynamically switch individual JVM trace
points on and off, control the trace level, and capture the trace output.

The JVMRI is particularly useful when applied to performance and leak problem
determination, although the trace file might provide clues to the state of a JVM
before an unexpected termination or hang.

The RAS Plug-in interface is an IBM-specific interface; that is, it is present only in
the IBM Virtual Machine for Java. See “Using the Reliability, Availability, and
Serviceability Interface” on page 372 for details. You need some programming
skills and tools to be able to use this interface.

Scenarios in which dumps might not be produced
In certain scenarios, a dump is not produced when a crash occurs. This section
gives reasons why a dump is not produced and suggests how you can obtain a
system dump.

A crash can occur with no dump produced. An example scenario is one in which
the crash occurs during the shut down of the Java runtime environment. The Java
runtime environment might not have time to produce all the debug information. In
this case, the console output shows the start of the dump information, but the Java
runtime environment cannot write the information in a dump file. For example, the
console might show the following output:
Unhandled exception
Type=Segmentation error vmState=0x00000000
J9Generic_Signal_Number=00000004 ExceptionCode=c0000005 ExceptionAddress=430514B
E ContextFlags=0001003f
Handler1=7FEE9C40 Handler2=7FEC98C0 InaccessibleAddress=00000000
EDI=000A7060 ESI=43159598 EAX=00000000 EBX=001925EC
ECX=00000001 EDX=4368FECC
EIP=430514BE ESP=4368FED4 EBP=4368FED8 EFLAGS=00010246
Module=failing_module.dll
Module_base_address=43050000 Offset_in_DLL=000014be
Target=2_40_20081203_026494_lHdSMr (Windows XP 5.1 build 2600 Service Pack 2)
CPU=x86 (2 logical CPUs) (0x7fe6b000 RAM)

A diagnostic dump is not produced for several possible reasons. A common reason
is that the Java runtime process was stopped by a user, a script, or by the
operating system. Another possible reason is that the crash occurred on a JVM
process that was very close to shut down, resulting in a race condition between the
JVM dump handler and the main thread exiting the process.

Identifying if the race condition exists:

Enable trace points to check for situations in which no dump is produced after a
crash.

About this task

Check for the situations in which no dump is produced after a crash by enabling
trace points near the shut down of the Java runtime environment. If the trace
points overlap with the crash condition, you have confirmation that the race
condition occurred. The tracepoints in the protectedDestroyJavaVM are the last to
be triggered before the main thread returns.

Chapter 9. Troubleshooting and support 217

Procedure

1. Find the protectedDestroyJavaVM function tracepoints in the
J9TraceFormat.dat file by using the instructions in “Determining the tracepoint
ID of a tracepoint” on page 312.

2. When you have the tracepoint IDs, rerun the failing scenario with those
tracepoints sent to the console. The results are similar to the following output:

java -Xtrace:print=tpnid{j9vm.381-394} MyApp

11:10:09.421*0x42cc1a00 j9vm.385 > protectedDestroyJavaVM
11:10:09.421 0x42cc1a00 j9vm.386 - protectedDestroyJavaVM waiting for Java threads to
stop
11:10:09.421 0x42cc1a00 j9vm.387 - protectedDestoryJavaVM all Java threads have stopped
11:10:09.421 0x42cc1a00 j9vm.388 - protectedDestroyJavaVM protectedDestroyJavaVM
vmCleanup complete
11:10:09.421 0x42cc1a00 j9vm.389 - protectedDestroyJavaVM VM Shutting Down Hook Fired
Unhandled exception
Type=Segmentation error vmState=0x00000000

J9Generic_Signal_Number=00000004 ExceptionCode=c0000005 ExceptionAddress=430514BE ContextFlags=0001003f
Handler1=7FEE9C40 Handler2=7FEC98C0 InaccessibleAddress=00000000
EDI=000A70A0 ESI=432235D8 EAX=00000000 EBX=00192684
ECX=00000001 EDX=4368FECC
EIP=430514BE ESP=4368FED4 EBP=4368FED8 EFLAGS=00010246
Module=failing_module.dll
Module_base_address=43050000 Offset_in_DLL=000014be
11:10:09.421 0x42cc1a00 j9vm.390 - Target=2_40_20081203_026494_lHdSMr (Windows XP 5.1
build 2600 Service Pack 2)
protectedDestroyJavaVM GC HeapManagement ShutdownCPU=x86 (2 logical CPUs) (0x7fe6b000 RAM)

11:10:09.421 0x42cc1a00 j9vm.391 - protectedDestroyJavaVM vmShutdown returned
11:10:09.421 0x42cc1a00 j9vm.393 - protectedDestroyJavaVM terminateRemainingThreads failed

The Unhandled exception message is printed after the first tracepoints for the
protectedDestroyJavaVM function. This output shows that the crash occurred
very late in the life of the Java runtime environment, and that enough time
remained to produce the dumps before the process ended.

What to do next

When you confirm that a race condition has occurred, you might still be able to
obtain a system dump. For more information, see “Obtaining system dumps in a
race condition.”

Obtaining system dumps in a race condition:

You might be able to obtain system dumps even when a race condition exists.

About this task

When you confirm that you have a race condition in which shut down timing
prevents a system dump, you can try to obtain a dump in two ways:
v Try to prevent the system from shutting down before the dump is taken.
v Add a delay near the end of the JVM run time to give the dump handler

enough time to write the dumps.

Procedure

On AIX, z/OS, or Linux, create a system dump by using the -Xrs Java
command-line option to disable the Java signal handler. The default signal handler

218 IBM SDK for Java: SDK and Runtime Guide

in the operating system triggers a dump and prevents the system from shutting
down before the dump is taken. For more information, see “Disabling dump
agents with -Xrs and -Xrs:sync” on page 239.

Using the IBM Monitoring and Diagnostic Tools for Java
The IBM Monitoring and Diagnostic Tools for Java are a set of GUI-based tools
which you can use to monitor your Java applications, analyze resource usage, and
diagnose problems. The tools can help you to optimize application performance,
improve application stability, reduce resource usage, and resolve problems more
quickly.

The tools provide output in various formats, such as tables, charts, graphs, and
recommendations. Use this output to complete the following diagnostic tasks:
v Detect deadlock conditions
v Monitor thread activity
v See which methods are taking the most time to run
v See which objects are using the most memory
v Find memory leaks and I/O bottlenecks
v Analyze the efficiency of Java collections, such as arrays
v Understand the relationships between application objects
v Visualize garbage collection performance
v Get recommendations for tuning the JVM and improving application

performance

The following tools are available:

Health Center
Monitor a running JVM, with minimal performance overhead. Tuning
recommendations are also provided.

Garbage Collection and Memory Visualizer
Analyze the memory usage, garbage collection behavior, and performance
of Java applications, by plotting verbose garbage collection data from
dump files. Tuning recommendations are also provided.

Interactive Diagnostic Data Explorer
Use commands to extract information from dump files. This tool is a
GUI-based version of the jdmpview command, with extra features.

Memory Analyzer
Analyze the memory usage and performance of Java applications, using
data from dump files.

The tools are available to download, free of charge, into the IBM Support Assistant.
The IBM Support Assistant is a free workbench that is designed to help you with
problem determination. The IBM Monitoring and Diagnostic Tools for Java is just
one set of tools that you can install into the IBM Support Assistant.

For more information about the IBM Monitoring and Diagnostic Tools for Java, see
IBM Monitoring and Diagnostic Tools for Java information center and IBM
Monitoring and Diagnostic Tools for Java developerWorks page.

Garbage Collection and Memory Visualizer
Garbage Collection and Memory Visualizer (GCMV) helps you understand
memory use, garbage collection behavior, and performance of Java applications.

Chapter 9. Troubleshooting and support 219

http://www-01.ibm.com/software/support/isa/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://www.ibm.com/developerworks/java/jdk/tools/index.html
http://www.ibm.com/developerworks/java/jdk/tools/index.html

GCMV parses and plots data from various types of log, including the following
types:
v Verbose garbage collection logs.
v Trace garbage collection logs, generated by using the -Xtgc parameter.
v Native memory logs, generated by using the ps, svmon, or perfmon system

commands.

The tool helps to diagnose problems such as memory leaks, analyze data in
various visual formats, and provides tuning recommendations.

GCMV is provided as an IBM Support Assistant (ISA) add-on. For information
about installing and getting started with the add-on, see: http://www.ibm.com/
developerworks/java/jdk/tools/gcmv/.

Further information about GCMV is available in an IBM Information Center.

Health Center
Health Center is a diagnostic tool for monitoring the status of a running Java
Virtual Machine (JVM).

The tool is provided in two parts:
v The Health Center agent that collects data from a running application.
v An Eclipse-based client that connects to the agent. The client interprets the data

and provides recommendations to improve the performance of the monitored
application.

Health Center is provided as an IBM Support Assistant (ISA) add-on. For
information about installing and getting started with the add-on, see:
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/.

Further information about Health Center is available in an IBM Information Center.

Interactive Diagnostic Data Explorer
Interactive Diagnostic Data Explorer (IDDE) is a GUI-based alternative to the
dump viewer (jdmpview command). IDDE provides the same functionality as the
dump viewer, but with extra support such as the ability to save command output.

Use IDDE to more easily explore and examine dump files that are produced by the
JVM. Within IDDE, you enter commands in an investigation log, to explore the
dump file. The support that is provided by the investigation log includes the
following items:
v Command assistance
v Auto-completion of text, and some parameters such as class names
v The ability to save commands and output, which you can then send to other

people
v Highlighted text and flagging of issues
v The ability to add your own comments
v Support for using the Memory Analyzer from within IDDE

IDDE is provided as an IBM Support Assistant (ISA) add-on. For information
about installing and getting started with the add-on, see IDDE overview on
developerWorks.

Further information about IDDE is available in an IBM Information Center.

220 IBM SDK for Java: SDK and Runtime Guide

http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=5efb4378-ebba-47da-8c0f-8841d669d0cc
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp

Memory Analyzer
Memory Analyzer helps you analyze Java heaps using operating system level
dumps and Portable Heap Dumps (PHD).

This tool can analyze dumps that contain millions of objects, providing the
following information:
v The retained sizes of objects.
v Processes that are preventing the Garbage Collector from collecting objects.
v A report to automatically extract leak suspects.

This tool is based on the Eclipse Memory Analyzer (MAT) project, and uses the
IBM Diagnostic Tool Framework for Java (DTFJ) feature to enable the processing of
dumps from IBM JVMs.

Memory Analyzer is provided as an IBM Support Assistant (ISA) add-on. For
information about installing and getting started with the add-on, see:
http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/.

Further information about Memory Analyzer is available in an IBM Information
Center.

Using dump agents
Dump agents are set up during JVM initialization. They enable you to use events
occurring in the JVM, such as Garbage Collection, thread start, or JVM termination,
to initiate dumps or to start an external tool.

The default dump agents are sufficient for most cases. Use the -Xdump option to
add and remove dump agents for various JVM events, update default dump
settings (such as the dump name), and limit the number of dumps that are
produced.

This section describes:
v “Using the -Xdump option”
v “Dump agents” on page 224
v “Dump events” on page 228
v “Advanced control of dump agents” on page 229
v “Dump agent tokens” on page 234
v “Default dump agents” on page 234
v “Removing dump agents” on page 235
v “Dump agent environment variables” on page 237
v “Signal mappings” on page 238
v “Using dump agents on z/OS” on page 238
v “Disabling dump agents with -Xrs and -Xrs:sync” on page 239

Using the -Xdump option
The -Xdump option controls the way you use dump agents and dumps.

You can use the -Xdump option to:
v Add and remove dump agents for various JVM events.
v Update default dump agent settings.
v Limit the number of dumps produced.

Chapter 9. Troubleshooting and support 221

http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp

v Show dump agent help.

The syntax of the -Xdump option is as follows:

-Xdump command-line option syntax

�� -Xdump: help
none :<options>
events
request
tokens
dynamic
nofailover
what
<agent>:<options>

��

You can have multiple -Xdump options on the command line. You can also have
multiple dump types triggered by multiple events. For example, the following
command line turns off all Heapdumps, and creates a dump agent that produces a
Heapdump and a Javadump when either a vmstart or vmstop event occurs:
java -Xdump:heap:none -Xdump:heap+java:events=vmstart+vmstop <class> [args...]

You can use the -Xdump:what option to list the registered dump agents. The
registered dump agents listed might be different to the agents you specified. The
difference is because the JVM ensures that multiple -Xdump options are merged into
a minimum set of dump agents.

The events keyword is used as the prime trigger mechanism. However, you can
use additional keywords for further control of the dump produced.

The options that you can use with dump agents provide granular control. The
following syntax applies:

-Xdump command-line agent option syntax

�� �

� �

+

-Xdump: <agent>
: help

none :<options>
defaults

,
+

events= <event>
exec=<command>
file=<filename>
filter=<filter>
opts=<options>
priority=<0-999>
range=<ranges>
request=<requests>

��

222 IBM SDK for Java: SDK and Runtime Guide

|

|

|||||||||||||||||||||||||||||||||||||||

|

|

|
|

|

|||

|

Help options

These options provide usage and configuration information for dumps, as shown
in the following table:

Command Result

-Xdump:help Display general dump help

-Xdump:events List available trigger events

-Xdump:request List additional VM requests

-Xdump:tokens List recognized label tokens

-Xdump:what Show registered agents on startup

-Xdump:<agent>:help Provides detailed dump agent help

-Xdump:<agent>:defaults Provides default settings for this agent

Merging -Xdump agents:

-Xdump agents are always merged internally by the JVM, as long as none of the
agent settings conflict with each other.

If you configure more than one dump agent, each responds to events according to
its configuration. However, the internal structures representing the dump agent
configuration might not match the command line, because dump agents are
merged for efficiency. Two sets of options can be merged as long as none of the
agent settings conflict. This means that the list of installed dump agents and their
parameters produced by -Xdump:what might not be grouped in the same way as
the original -Xdump options that configured them.

For example, you can use the following command to specify that a dump agent
collects a javadump on class unload:
java -Xdump:java:events=unload -Xdump:what

This command does not create a new agent, as can be seen in the results from the
-Xdump:what option.
...

-Xdump:java:

events=gpf+user+abort+unload,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=10,
request=exclusive

The configuration is merged with the existing javadump agent for events gpf, user,
and abort, because none of the specified options for the new unload agent conflict
with those for the existing agent.

In the previous example, if one of the parameters for the unload agent is changed
so that it conflicts with the existing agent, then it cannot be merged. For example,
the following command specifies a different priority, forcing a separate agent to be
created:
java -Xdump:java:events=unload,priority=100 -Xdump:what

The results of the -Xdump:what option in the command are as follows.

Chapter 9. Troubleshooting and support 223

|

...

-Xdump:java:

events=unload,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=100,
request=exclusive

-Xdump:java:

events=gpf+user+abort,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=10,
request=exclusive

To merge dump agents, the request, filter, opts, label, and range parameters
must match exactly. If you specify multiple agents that filter on the same string,
but keep all other parameters the same, the agents are merged. For example:
java -Xdump:none -Xdump:java:events=uncaught,filter=java/lang/NullPointerException \\
-Xdump:java:events=unload,filter=java/lang/NullPointerException -Xdump:what

The results of this command are as follows.
Registered dump agents

-Xdump:java:

events=unload+uncaught,
filter=java/lang/NullPointerException,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=10,
request=exclusive

Dump agents
A dump agent performs diagnostic tasks when triggered. Most dump agents save
information on the state of the JVM for later analysis. The “tool” agent can be used
to trigger interactive diagnostic data.

The following table shows the dump agents:

Dump agent Description

stack Stack dumps are very basic dumps in which the
status and Java stack of the thread is written to
stderr. See “Stack dumps” on page 225.

console Basic thread dump to stderr.

system Capture raw process image. See “Using system
dumps and the dump viewer” on page 271.

tool Run command-line program.

java Write application summary. See “Using Javadump”
on page 240.

heap Capture heap graph. See “Using Heapdump” on
page 262.

snap Take a snap of the trace buffers.

ceedump (z/OS only) Produce an LE CEEDUMP.

224 IBM SDK for Java: SDK and Runtime Guide

Console dumps:

Console dumps are very basic dumps, in which the status of every Java thread is
written to stderr.

In this example, the range=1..1 suboption is used to control the amount of output
to just one thread start (in this case, the start of the Signal Dispatcher thread).
java -Xdump:console:events=thrstart+thrstop,range=1..1

JVMDUMP006I Processing Dump Event "thrstart", detail "" - Please Wait.
-------- Console dump --------

Stack Traces of Threads:

ThreadName=main(08055B18)
Status=Running

ThreadName=JIT Compilation Thread(08056038)
Status=Waiting
Monitor=08055914 (JIT-CompilationQueueMonitor)
Count=0
Owner=(00000000)

^^^^^^^^ Console dump ^^^^^^^^
JVMDUMP013I Processed Dump Event "thrstart", detail "".

Two threads are displayed in the dump because the main thread does not generate
a thrstart event.

System dumps:

System dumps involve dumping the address space and as such are generally very
large.

The bigger the footprint of an application the bigger its dump. A dump of a major
server-based application might take up many gigabytes of file space and take
several minutes to complete. In this example, the file name is overridden from the
default.
java -Xdump:system:events=vmstop,file=my.dmp

::::::::: removed usage info :::::::::

JVMDUMP006I Processing Dump Event "vmstop", detail "#00000000" - Please Wait.
JVMDUMP007I JVM Requesting System Dump using ’/home/user/my.dmp’
JVMDUMP010I System Dump written to /home/user/my.dmp
JVMDUMP013I Processed Dump Event "vmstop", detail "#00000000".

On z/OS, system dumps are written to data sets in the MVS file system. The
following syntax is used:
java -Xdump:system:dsn=%uid.MVS.DATASET.NAME

See “Using system dumps and the dump viewer” on page 271 for more
information about analyzing a system dump.

Stack dumps:

Stack dumps are very basic dumps in which the status and Java stack of the thread
is written to stderr. Stack dumps are very useful when used together with the
"allocation" dump event to identify Java code that is allocating large objects.

Chapter 9. Troubleshooting and support 225

In the following example, the main thread has allocated a byte array of size
1549128 bytes:

JVMDUMP006I Processing dump event "allocation", detail "1549128 bytes, type byte[]" - please wait.
Thread=main (0188701C) Status=Running

at sun/misc/Resource.getBytes()[B (Resource.java:109)
at java/net/URLClassLoader.defineClass(Ljava/lang/String;Lsun/misc/Resource;)Ljava/lang/Class;

(URLClassLoader.java:489)
at java/net/URLClassLoader.access$300(Ljava/net/URLClassLoader;Ljava/lang/String;Lsun/misc/

Resource;)Ljava/lang/Class; (URLClassLoader.java:64)
at java/net/URLClassLoader$ClassFinder.run()Ljava/lang/Object; (URLClassLoader.java:901)
at java/security/AccessController.doPrivileged(Ljava/security/PrivilegedExceptionAction;Ljava/

security/AccessControlContext;)Ljava/lang/Object; (AccessController.java:284)
at java/net/URLClassLoader.findClass(Ljava/lang/String;)Ljava/lang/Class; (URLClassLoader.

java:414)
at java/lang/ClassLoader.loadClass(Ljava/lang/String;Z)Ljava/lang/Class; (ClassLoader.java:643)
at sun/misc/Launcher$AppClassLoader.loadClass(Ljava/lang/String;Z)Ljava/lang/Class; (Launcher.

java:345)
at java/lang/ClassLoader.loadClass(Ljava/lang/String;)Ljava/lang/Class; (ClassLoader.java:609)
at TestLargeAllocations.main([Ljava/lang/String;)V (TestLargeAllocations.java:49)

LE CEEDUMPs:

LE CEEDUMPs are a z/OS only formatted summary system dump that show stack
traces for each thread that is in the JVM process, together with register information
and a short dump of storage for each register.

This example of a traceback is taken from a CEEDUMP produced by a crash. The
traceback shows that the crash occurred in the rasTriggerMethod method:

CEE3DMP V1 R8.0: CHAMBER.JVM.TDUMP.CHAMBER.D080910.T171047 09/10/08 5:10:52 PM Page: 4

Traceback:
DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
.........
124222A8 CEEHDSP 07310AF0 +00000CEC CEEHDSP 07310AF0 +00000CEC CEEPLPKA UK34253 Call
12421728 CEEHRNUH 0731F728 +00000092 CEEHRNUH 0731F728 +00000092 CEEPLPKA HLE7730 Call
128461E0 12AB6A00 +0000024C rasTriggerMethod

12AB6A00 +0000024C 2120 *PATHNAM j080625 Exception
12846280 12AACBE8 +00000208 hookMethodEnter

12AACBE8 +00000208 1473 *PATHNAM j080625 Call
12846300 12A547C0 +000000B8 J9HookDispatch

12A547C0 +000000B8 157 *PATHNAM j080625 Call
12846380 12943840 +00000038 triggerMethodEnterEvent

12943840 +00000038 110 *PATHNAM j080625 Call
.........

When a CEEDUMP is produced by the JVM, the following message is issued:
JVMDUMP010I CEE dump written to /u/test/CEEDUMP.20090622.133914.65649

On 32-bit z/OS, if more than one CEEDUMP is produced during the lifetime of a
JVM instance, the second and subsequent CEEDUMPs will be appended to the
same file. The JVMDUMP010I messages will identify the same file each time.

On 64-bit z/OS, if more than one CEEDUMP is produced a separate CEEDUMP
file is written each time, and the JVMDUMP010I messages will identify the separate
files.

The CEEDUMP is not produced by default. Use the ceedump dump agent to enable
CEEDUMP production, for example:
java -Xdump:ceedump:events=gpf

See Understanding the Language Environment dump in the z/OS: Language
Environment Debugging Guide for more information.

226 IBM SDK for Java: SDK and Runtime Guide

http://publib.boulder.ibm.com/infocenter/zvm/v5r4/index.jsp?topic=/com.ibm.zos.r9.ceea100/dump1.htm

Tool option:

The tool option allows external processes to be started when an event occurs.

The following example displays a simple message when the JVM stops. The %pid
token is used to pass the pid of the process to the command. The list of available
tokens can be printed by specifying -Xdump:tokens. Alternatively, see the topic
“Dump agent tokens” on page 234. If you do not specify a tool to use, a
platform-specific debugger is started.

java -Xdump:tool:events=vmstop,exec="echo process %pid has finished" -version
...
JVMDUMP006I Processing dump event "vmstop", detail "#00000000" - please wait.
JVMDUMP007I JVM Requesting Tool dump using ’echo process 6620 has finished’
JVMDUMP011I Tool dump created process 6641
process 6620 has finished
JVMDUMP013I Processed dump event "vmstop", detail "#00000000".

By default, the range option is set to 1..1. If you do not specify a range option for
the dump agent, the tool is started only once. To start the tool every time the event
occurs, set the range option to 1..0. For more information, see “range option” on
page 232.

By default, the thread that launches the external process waits for that process to
end before continuing. The opts option can be used to modify this behavior.

Javadumps:

Javadumps are an internally generated and formatted analysis of the JVM, giving
information that includes the Java threads present, the classes loaded, and heap
statistics.

An example of producing a Javadump when a class is loaded:
java -Xdump:java:events=load,filter=java/lang/String -version

JVMDUMP006I Processing dump event "load", detail "java/lang/String" - please wait.
JVMDUMP007I JVM Requesting Java dump using ’/home/user/javacore.20090602.094449.274632.0001.txt’
JVMDUMP010I Java dump written to /home/user/javacore.20090602.094449.274632.0001.txt
JVMDUMP013I Processed dump event "load", detail "java/lang/String".

See “Using Javadump” on page 240 for more information about analyzing a
Javadump.

Heapdumps:

Heapdumps produce phd format files by default.

“Using Heapdump” on page 262 provides more information about Heapdumps.
The following example shows the production of a Heapdump. In this case, both a
phd and a classic (.txt) Heapdump have been requested by the use of the opts=
option.

java -Xdump:heap:events=vmstop,opts=PHD+CLASSIC -version

JVMDUMP006I Processing dump event "vmstop", detail "#00000000" - please wait.
JVMDUMP007I JVM Requesting Heap dump using ’/home/user/heapdump.20090602.095239.164050.0001.phd’
JVMDUMP010I Heap dump written to /home/user/heapdump.20090602.095239.164050.0001.phd
JVMDUMP007I JVM Requesting Heap dump using ’/home/user/heapdump.20090602.095239.164050.0001.txt’
JVMDUMP010I Heap dump written to /home/user/heapdump.20090602.095239.164050.0001.txt
JVMDUMP013I Processed dump event "vmstop", detail "#00000000".

Chapter 9. Troubleshooting and support 227

See “Using Heapdump” on page 262 for more information about analyzing a
Heapdump.

Snap traces:

Snap traces are controlled by -Xdump. They contain the tracepoint data held in the
trace buffers.

The following example shows the production of a snap trace.
java -Xdump:snap:events=vmstop -version

JVMDUMP006I Processing dump event "vmstop", detail "#00000000" - please wait.
JVMDUMP007I JVM Requesting Snap dump using ’/home/user/Snap.20090603.063646.315586.0001.trc’
JVMDUMP010I Snap dump written to /home/user/Snap.20090603.063646.315586.0001.trc
JVMDUMP013I Processed dump event "vmstop", detail "#00000000".

Snap traces require the use of the trace formatter for further analysis.

See “Using the trace formatter” on page 311 for more information about analyzing
a snap trace.

Dump events
Dump agents are triggered by events occurring during JVM operation.

Some events can be filtered to improve the relevance of the output. See “filter
option” on page 230 for more information.

Note: The gpf and abort events cannot trigger a heap dump, prepare the heap
(request=prepwalk), or compact the heap (request=compact).

The following table shows events available as dump agent triggers:

Event Triggered when... Filter operation

gpf A General Protection Fault (GPF) occurs.

user The JVM receives the SIGQUIT (Linux, AIX, z/OS,
and i5/OS) or SIGBREAK (Windows) signal from
the operating system.

abort The JVM receives the SIGABRT signal from the
operating system.

vmstart The virtual machine is started.

vmstop The virtual machine stops. Filters on exit code; for example,
filter=#129..#192#-42#255

load A class is loaded. Filters on class name; for example,
filter=java/lang/String

unload A class is unloaded.

throw An exception is thrown. Filters on exception class name; for example,
filter=java/lang/OutOfMem*

catch An exception is caught. Filters on exception class name; for example,
filter=*Memory*

uncaught A Java exception is not caught by the application. Filters on exception class name; for example,
filter=*MemoryError

228 IBM SDK for Java: SDK and Runtime Guide

Event Triggered when... Filter operation

systhrow A Java exception is about to be thrown by the JVM.
This is different from the 'throw' event because it is
only triggered for error conditions detected
internally in the JVM.

Filters on exception class name; for example,
filter=java/lang/OutOfMem*

thrstart A new thread is started.

blocked A thread becomes blocked.

thrstop A thread stops.

fullgc A garbage collection cycle is started.

slow A thread takes longer than 50ms to respond to an
internal JVM request.

Changes the time taken for an event to be
considered slow; for example, filter=#300ms
will trigger when a thread takes longer than
300ms to respond to an internal JVM request.

allocation A Java object is allocated with a size matching the
given filter specification

Filters on object size; a filter must be supplied.
For example, filter=#5m will trigger on
objects larger than 5 Mb. Ranges are also
supported; for example, filter=#256k..512k
will trigger on objects between 256 Kb and 512
Kb in size.

traceassert An internal error occurs in the JVM Not applicable.

corruptcache The JVM finds that the shared class cache is corrupt. Not applicable.

excessivegc An excessive amount of time is being spent in the
garbage collector

Not applicable.

Advanced control of dump agents
Options are available to give you more control over dump agent behavior.

exec option:

The exec option is used by the tool dump agent to specify an external application
to start.

See “Tool option” on page 227 for an example and usage information.

file option:

The file option is used by dump agents that write to a file.

The file option specifies where the diagnostics information is written. For
example:
java -Xdump:heap:events=vmstop,file=my.dmp

When producing system dumps or CEEDUMPs on z/OS platforms, use the dsn
option instead of the file option. For example:
java -Xdump:system:events=vmstop,dsn=%uid.MYDUMP

You can use tokens to add context to dump file names. See “Dump agent tokens”
on page 234 for more information.

The location for the dump is selected from these options, in this order:
1. The location specified on the command line.
2. The location specified by the relevant environment variable.

Chapter 9. Troubleshooting and support 229

||
|
|

v _CEE_DMPTARG for Javadump.
v _CEE_DMPTARG for Heapdump.
v JAVA_DUMP_TDUMP_PATTERN for system dumps.
v _CEE_DMPTARG for snap traces.

3. The current working directory of the JVM process.

If the directory does not exist, it is created.

If the dump cannot be written to the selected location, the JVM reverts to using the
following locations, in this order:
1. The location specified by the TMPDIR environment variable.
2. The /tmp directory.

This JVM action does not apply to CEEDUMPs on z/OS platforms that use the dsn
option.

You can prevent the JVM reverting to different dump locations by using the
-Xdump:nofailover option.

filter option:

Some JVM events occur thousands of times during the lifetime of an application.
Dump agents can use filters and ranges to avoid excessive dumps being produced.

Wildcards

You can use a wildcard in your exception event filter by placing an asterisk only at
the beginning or end of the filter. The following command does not work because
the second asterisk is not at the end:
-Xdump:java:events=throw,filter=*InvalidArgumentException#*.myVirtualMethod

In order to make this filter work, it must be changed to:
-Xdump:java:events=throw,filter=*InvalidArgumentException#MyApplication.*

Class loading and exception events

You can filter class loading (load) and exception (throw, catch, uncaught, systhrow)
events by Java class name:
-Xdump:java:events=throw,filter=java/lang/OutOfMem*
-Xdump:java:events=throw,filter=*MemoryError
-Xdump:java:events=throw,filter=*Memory*

You can filter throw, uncaught, and systhrow exception events by Java method
name:
-Xdump:java:events=throw,filter=ExceptionClassName[#ThrowingClassName.
throwingMethodName[#stackFrameOffset]]

Optional portions are shown in brackets.

You can filter the catch exception events by Java method name:
-Xdump:java:events=catch,filter=ExceptionClassName[#CatchingClassName.
catchingMethodName]

Optional portions are shown in brackets.

230 IBM SDK for Java: SDK and Runtime Guide

vmstop event

You can filter the JVM shut down event by using one or more exit codes:
-Xdump:java:events=vmstop,filter=#129..192#-42#255

slow event

You can filter the slow event to change the time threshold from the default of 50
ms:
-Xdump:java:events=slow,filter=#300ms

You cannot set the filter to a time that is less than the default time.

Other events

If you apply a filter to an event that does not support filtering, the filter is ignored.

opts option:

The Heapdump agent uses this option to specify the type of file to produce. On
z/OS, the system dump agent uses this option to specify the type of dump to
produce.

Heapdumps and the opts option

You can specify a PHD Heapdump, a classic text Heapdump, or both. For example:

–Xdump:heap:opts=PHD (default)
–Xdump:heap:opts=CLASSIC
–Xdump:heap:opts=PHD+CLASSIC

For more information, see “Enabling text formatted ("classic") Heapdumps” on
page 263.

z/OS System dumps and the opts option

You can specify a system transaction dump (IEATDUMP), an LE dump
(CEEDUMP), or both. For example:

–Xdump:system:opts=IEATDUMP (default)
–Xdump:system:opts=CEEDUMP
–Xdump:system:opts=IEATDUMP+CEEDUMP

The ceedump agent is the preferred way to specify LE dumps, for example:
-Xdump:ceedump:events=gpf

Tool dumps and the opts option

The tool dump agent supports two options that can be specified using the opts
option. You can run the external process asynchronously with opts=ASYNC. You can
also specify a delay in milliseconds that produces a pause after starting the
command. These two options can be used independently or together. The
following examples show different options for starting a new process that runs
myProgram:
-Xdump:tool:events=vmstop,exec=myProgram

Chapter 9. Troubleshooting and support 231

Without the opts option, the tool dump agent starts the process, and waits for the
process to end before continuing.
-Xdump:tool:events=vmstop,exec=myProgram,opts=ASYNC

When opts=ASYNC is specified, the tool dump agent starts the process, and
continues without waiting for the new process to end.
-Xdump:tool:events=vmstop,exec=myProgram,opts=WAIT1000

This option starts the process, waits for the process to end, and then waits a
further 1 second (1000 milliseconds) before continuing.
-Xdump:tool:events=vmstop,exec=myProgram,opts=ASYNC+WAIT10000

Finally the last example starts the process and waits for 10 seconds before
continuing, whether the process is still running or not. This last form is useful if
you are starting a process that does not end, but requires time to initialize
properly.

For more information about using the dump agent tool option, see “Tool option”
on page 227.

priority option:

One event can generate multiple dumps. The agents that produce each dump run
sequentially and their order is determined by the priority keyword set for each
agent.

Examination of the output from -Xdump:what shows that a gpf event produces a
snap trace, a Javadump, and a system dump. In this example, the system dump
runs first, with priority 999. The snap dump runs second, with priority 500. The
Javadump runs last, with priority 10:
–Xdump:heap:events=vmstop,priority=123

The maximum value allowed for priority is 999. Higher priority dump agents are
started first.

If you do not specifically set a priority, default values are taken based on the dump
type. The default priority and the other default values for a particular type of
dump, can be displayed by using -Xdump:<type>:defaults. For example:
java -Xdump:heap:defaults -version

Default -Xdump:heap settings:

events=gpf+user
filter=
file=/home/user/heapdump.%Y%m%d.%H%M%S.%pid.phd
range=1..0
priority=40
request=exclusive+prepwalk
opts=PHD

range option:

You can start and stop dump agents on a particular occurrence of a JVM event by
using the range suboption.

For example:
-Xdump:java:events=fullgc,range=100..200

232 IBM SDK for Java: SDK and Runtime Guide

Note: range=1..0 against an event means "on every occurrence".

The JVM default dump agents have the range option set to 1..0 for all events
except systhrow. All systhrow events with filter=java/lang/OutOfMemoryError
have the range set to 1..4, which limits the number of dumps produced on
OutOfMemory conditions to a maximum of 4. For more information, see “Default
dump agents” on page 234

If you add a new dump agent and do not specify the range, a default of 1..0 is
used.

request option:

Use the request option to ask the JVM to prepare the state before starting the
dump agent.

The available options are listed in the following table:

Option value Description

exclusive Request exclusive access to the JVM.

compact Run garbage collection. This option removes all unreachable objects from
the heap before the dump is generated.

prepwalk Prepare the heap for walking. You must also specify exclusive when using
this option.

serial Suspend other dumps until this one has finished.

preempt Applies to the Java dump agent and controls whether native threads in the
process are forcibly pre-empted in order to collect stack traces. If this
option is not specified, only Java stack traces are collected in the Javadump.

For example, the default setting of the request option for javadumps is
request=exclusive+preempt. To change the settings so that javadumps are
produced without pre-empting threads to collect native stack traces, use the
following option:
-Xdump:java:request=exclusive

In general, the default request options are sufficient.

You can specify more than one request option using +. For example:
-Xdump:heap:request=exclusive+compact+prepwalk

defaults option:

Each dump type has default options. To view the default options for a particular
dump type, use -Xdump:<type>:defaults.

You can change the default options at run time. For example, you can direct Java
dump files into a separate directory for each process, and guarantee unique files by
adding a sequence number to the file name using:

-Xdump:java:defaults:file=dumps/%pid/javacore-%seq.txt

Or, for example, on z/OS, you can add the jobname to the Java dump file name
using:

Chapter 9. Troubleshooting and support 233

-Xdump:java:defaults:file=javacore.%job.%H%M%S.txt

This option does not add a Javadump agent; it updates the default settings for
Javadump agents. Further Javadump agents will then create dump files using this
specification for filenames, unless overridden.

Note: Changing the defaults for a dump type will also affect the default agents for
that dump type added by the JVM during initialization. For example if you change
the default file name for Javadumps, that will change the file name used by the
default Javadump agents. However, changing the default range option will not
change the range used by the default Javadump agents, because those agents
override the range option with specific values.

Dump agent tokens
Use tokens to add context to dump file names and to pass command-line
arguments to the tool agent.

The tokens available are listed in the following table:

Token Description

%Y Year (4 digits)

%y Year (2 digits)

%m Month (2 digits)

%d Day of the month (2 digits)

%H Hour (2 digits)

%M Minute (2 digits)

%S Second (2 digits)

%pid Process id

%uid User name

%seq Dump counter

%tick msec counter

%home Java home directory

%last Last dump

%job Job name (z/OS only)

&DS Dump Section. An incrementing sequence number used for splitting
TDUMP files to be less than 2 GB in size. (z/OS 64-bit version 1.10 or
newer only)

Default dump agents
The JVM adds a set of dump agents by default during its initialization. You can
override this set of dump agents using -Xdump on the command line.

See “Removing dump agents” on page 235 for more information.

Use the -Xdump:what option on the command line to show the registered dump
agents. The sample output shows the default dump agents that are in place:
java -Xdump:what

Registered dump agents

-Xdump:system:

234 IBM SDK for Java: SDK and Runtime Guide

events=gpf+user+abort+traceassert+corruptcache,
label=%uid.JVM.TDUMP.%job.D%y%m%d.T%H%M%S,
range=1..0,
priority=999,
request=serial

-Xdump:system:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=%uid.JVM.TDUMP.%job.D%y%m%d.T%H%M%S,
range=1..1,
priority=999,
request=exclusive+compact+prepwalk

-Xdump:heap:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/heapdump.%Y%m%d.%H%M%S.%pid.%seq.phd,
range=1..4,
priority=500,
request=exclusive+compact+prepwalk,
opts=PHD

-Xdump:java:

events=gpf+user+abort+traceassert+corruptcache,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..0,
priority=400,
request=exclusive+preempt

-Xdump:java:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/javacore.%Y%m%d.%H%M%S.%pid.%seq.txt,
range=1..4,
priority=400,
request=exclusive+preempt

-Xdump:snap:

events=gpf+abort+traceassert+corruptcache,
label=/home/user/Snap.%Y%m%d.%H%M%S.%pid.%seq.trc,
range=1..0,
priority=300,
request=serial

-Xdump:snap:

events=systhrow,
filter=java/lang/OutOfMemoryError,
label=/home/user/Snap.%Y%m%d.%H%M%S.%pid.%seq.trc,
range=1..4,
priority=300,
request=serial

Removing dump agents
You can remove all default dump agents and any preceding dump options by
using -Xdump:none.

The following syntax diagram shows you how you can use the none option:

-Xdump command-line syntax: the none option

Chapter 9. Troubleshooting and support 235

|

|

|
|

�� -Xdump: � �

�� �

,
+

none : events= <event>
exec=<command>
file=<filename>
filter=<filter>
opts=<options>
priority=<0-999>
range=<ranges>
request=<requests>

,
+ +

<agent> :none : events= <event>
exec=<command>
file=<filename>
filter=<filter>
opts=<options>
priority=<0-999>
range=<ranges>
request=<requests>

��

Use this option so that you can subsequently specify a completely new dump
configuration.

You can also remove dump agents of a particular type. Here are some examples:

To turn off all Heapdumps (including default agents) but leave Javadump enabled,
use the following option:

-Xdump:java+heap:events=vmstop -Xdump:heap:none

To turn off all dump agents for corruptcache events:

-Xdump:none:events=corruptcache

To turn off just system dumps for corruptcache events:

-Xdump:system:none:events=corruptcache

To turn off all dumps when java/lang/OutOfMemory error is thrown:

-Xdump:none:events=systhrow,filter=java/lang/OutOfMemoryError

To turn off just system dumps when java/lang/OutOfMemory error is thrown:

-Xdump:system:none:events=systhrow,filter=java/lang/OutOfMemoryError

If you remove all dump agents using -Xdump:none with no further -Xdump options,
the JVM still provides these basic diagnostic outputs:
v If a user signal (kill -QUIT) is sent to the JVM, a brief listing of the Java threads

including their stacks, status, and monitor information is written to stderr.
v If a crash occurs, information about the location of the crash, JVM options, and

native and Java stack traces are written to stderr. A system dump is also written
to the user's home directory.

236 IBM SDK for Java: SDK and Runtime Guide

||

|

|

|

|

|

|

|

|

|

Tip: Removing dump agents and specifying a new dump configuration can require
a long set of command-line options. To reuse command-line options, save the new
dump configuration in a file and use the -Xoptionsfile option. See “Specifying
command-line options” on page 417 for more information on using a
command-line options file.

Dump agent environment variables
The -Xdump option on the command line is the preferred method for producing
dumps for cases where the default settings are not enough. You can also produce
dumps using the JAVA_DUMP_OPTS environment variable.

If you set agents for a condition using the JAVA_DUMP_OPTS environment variable,
default dump agents for that condition are disabled; however, any -Xdump options
specified on the command line will be used.

The JAVA_DUMP_OPTS environment variable is used as follows:
JAVA_DUMP_OPTS="ON<condition>(<agent>[<count>],<agent>[<count>]),
ON<condition>(<agent>[<count>],...),...)"

where:
v <condition> can be:

– ANYSIGNAL
– DUMP
– ERROR
– INTERRUPT
– EXCEPTION
– OUTOFMEMORY

v <agent> can be:
– ALL
– NONE
– JAVADUMP
– SYSDUMP
– HEAPDUMP
– CEEDUMP (z/OS specific)

v <count> is the number of times to run the specified agent for the specified
condition. This value is optional. By default, the agent will run every time the
condition occurs.

JAVA_DUMP_OPTS is parsed by taking the leftmost occurrence of each condition, so
duplicates are ignored. The following setting will produce a system dump for the
first error condition only:
ONERROR(SYSDUMP[1]),ONERROR(JAVADUMP)

Also, the ONANYSIGNAL condition is parsed before all others, so
ONINTERRUPT(NONE),ONANYSIGNAL(SYSDUMP)

has the same effect as
ONANYSIGNAL(SYSDUMP),ONINTERRUPT(NONE)

If the JAVA_DUMP_TOOL environment variable is set, that variable is assumed to
specify a valid executable name and is parsed for replaceable fields, such as %pid.
If %pid is detected in the string, the string is replaced with the JVM's own process

Chapter 9. Troubleshooting and support 237

ID. The tool specified by JAVA_DUMP_TOOL is run after any system dump or
Heapdump has been taken, before anything else.

Other environments variables available for controlling dumps are listed in
“Javadump and Heapdump options” on page 471.

The dump settings are applied in the following order, with the settings later in the
list taking precedence:
1. Default JVM dump behavior.
2. -Xdump command-line options that specify -Xdump:<type>:defaults, see

“defaults option” on page 233.
3. DISABLE_JAVADUMP, IBM_HEAPDUMP, and IBM_HEAP_DUMP environment variables.
4. IBM_JAVADUMP_OUTOFMEMORY and IBM_HEAPDUMP_OUTOFMEMORY environment

variables.
5. JAVA_DUMP_OPTS environment variable.
6. Remaining -Xdump command-line options.

Setting JAVA_DUMP_OPTS only affects those conditions that you specify. Actions on
other conditions are unchanged.

Signal mappings
The signals used in the JAVA_DUMP_OPTS environment variable map to multiple
operating system signals.

When setting the JAVA_DUMP_OPTS environment variable, the mapping of operating
system signals to the “condition” is as follows:

z/OS Windows Linux, AIX, and i5/OS

EXCEPTION SIGTRAP SIGTRAP

SIGILL SIGILL SIGILL

SIGSEGV SIGSEGV SISEGV

SIGFPE SIGFPE SIGFPE

SIGBUS SIGBUS

SIGSYS

SIGXFSZ SIGXFSZ

INTERRUPT SIGINT SIGINT SIGINT

SIGTERM SIGTERM SIGTERM

SIGHUP SIGHUP

ERROR SIGABRT SIGABRT SIGABRT

DUMP SIGQUIT SIGQUIT

SIGBREAK

Using dump agents on z/OS
Dump output is written to different files, depending on the type of the dump. File
names include a time stamp. The z/OS platform has an additional dump type
called CEEDUMP.

The CEEDUMP is not produced by default. Use the ceedump dump agent to enable
CEEDUMP production.

238 IBM SDK for Java: SDK and Runtime Guide

If CEEDUMP is specified, an LE CEEDUMP is produced for the relevant conditions,
after any system dump processing, but before a Javadump is produced. A
CEEDUMP is a formatted summary system dump that shows stack traces for each
thread that is in the JVM process, together with register information and a short
dump of storage for each register.

On z/OS, you can change the behavior of LE by setting the _CEE_RUNOPTS
environment variable. See the LE Programming Reference for more information. In
particular, the TRAP option determines whether LE condition handling is enabled,
which, in turn, drives JVM signal handling, and the TERMTHDACT option indicates
the level of diagnostic information that LE should produce.

For more information about CEEDUMP see “LE CEEDUMPs” on page 226

On 64-bit z/OS, TDUMP files are split into several smaller files if the TDUMP
exceeds the 2 GB file size limit. Each file is given a sequence number. If you
specify a template for the TDUMP file name, each instance of the &DS parameter is
replaced in the actual file name by an ordered sequence number. For example, X&DS
generates file names in the form X01, X02, X03 and so on. If you specify a template
but omit the &DS parameter, it is appended automatically to the end of the
template. If you do not specify a template, the default template is used, and .X&DS
is appended to the end of the template. If the resulting template exceeds the
maximum length allowed for a TDUMP data set name, a message is issued and
catalogued in NLS, advising that the template pattern is too long to append
.X&DS, and that a default pattern will be used: %uid.JVM.%job.D%y%m%d.T%H%M%S.X
&DS

To merge the sequence of TDUMP files, use the TSO panel IPCS->utility->copy
MVS dump data set. If you have copied or moved the IEATDUMP files from MVS
to the USS file system, you can use the cat command to merge the files. For
example:
cat JVM.TDUMP.X001 JVM.TDUMP.X002 > JVM.TDUMP.FULL

Dump filenames and locations

Dump files produced on z/OS include:
v Sytem dump: On TSO as a standard MVS data set, using the default name of the

form: %uid.JVM.TDUMP.%job.D%Y%m%d.T%H%M%S (31-bit), %uid.JVM.%job.D%y%m%d.T
%H%M%S.X&DS (64-bit), or as determined by the setting of the
JAVA_DUMP_TDUMP_PATTERN environment variable.

v LE CEEDUMP: In the directory specified by _CEE_DMPTARG, or the current directory
if _CEE_DMPTARG is not specified, using the file name: CEEDUMP.%Y%m%d.%H%M%S.
%pid.

v Heapdump: In the current directory as a file named heapdump.%Y%m%d.T%H%M%S.phd.
See “Using Heapdump” on page 262 for more information.

v Javadump: In the same directory as CEEDUMP, or standard Javadump directory
as: javacore.%Y%m%d.%H%M%S.%pid.%seq.txt.

Disabling dump agents with -Xrs and -Xrs:sync
When using a debugger such as GDB or WinDbg to diagnose problems in JNI code,
you might want to disable the signal handler of the Java runtime environment so
that any signals received are handled by the operating system.

Using the -Xrs command-line option prevents the Java runtime environment
handling exception signals such SIGSEGV and SIGABRT. When the Java runtime

Chapter 9. Troubleshooting and support 239

signal handler is disabled, a SIGSEGV or GPF crash does not call the JVM dump
agents. Instead, dumps are produced depending on the operating system.

For more information about the -Xrs and -Xrs:sync options, see “JVM
command-line options” on page 428.

Disabling dump agents in z/OS

The behavior on z/OS depends on system configuration. By default, a message is
printed on the syslog:
N 0000000 MVW0 08323 13:19:27.59 STC05748 00000010 IEF450I ANDHALL2 *OMVSEX -
ABEND=S0C4 U0000 REASON=00000004

A message is also displayed on the Java process stderr:
CEE3204S The system detected a protection exception (System Completion Code=0C4)
.

From entry point rasTriggerMethod at compile unit offset +000000001265A
344 at entry offset +00000000000002CC at address 000000001265A344.
[1] + Done(139) J6.0_64/bin/java -Xrs -Xtrace:trigger=Method{*.main,segv} TestApp

83951806 Segmentation violation J6.0_64/bin/java

When you include TERMTHDATA(UADUMP) in the CEE runtime options, a CEEDUMP
is written to the working directory. To collect a dump suitable for processing by
jextract and DTFJ, set an appropriate SLIP trap to trigger a dump on the failure
condition. For information about setting SLIP traps, see the MVS commands
reference: http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/
iea2g181/CONTENTS?SHELF=EZ2CMZ81.bks&DT=20080118081647#COVER

Using Javadump
Javadump produces files that contain diagnostic information that is related to the
JVM and a Java application that is captured at a point during execution. For
example, the information can be about the operating system, the application
environment, threads, stacks, locks, and memory.

Javadumps are human readable and do not contain any Java object content or data,
except for the following items:
v Thread names, with thread IDs and flags
v Classloader names, with counts and flags
v Class and method names
v Some heap addresses

The preferred way to control the production of Javadumps is by enabling dump
agents using –Xdump:java: on application startup. See “Using dump agents” on
page 221. You can also control Javadumps by the use of environment variables. See
“Environment variables and Javadump” on page 262. Default agents are in place
that create Javadumps when the JVM ends unexpectedly or when an
out-of-memory exception occurs, unless the defaults are overridden. Javadumps
are also triggered by default when specific signals are received by the JVM.

Note: Javadump is also known as Javacore. The default file name for a Javadump
is javacore.<date>.<time>.<pid>.<sequence number>.txt. Javacore is NOT the
same as a core file, which is generated by a system dump.

This chapter describes:
v “Enabling a Javadump” on page 241

240 IBM SDK for Java: SDK and Runtime Guide

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/iea2g181/CONTENTS?SHELF=EZ2CMZ81.bks&DT=20080118081647#COVER
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/iea2g181/CONTENTS?SHELF=EZ2CMZ81.bks&DT=20080118081647#COVER

v “Triggering a Javadump”
v “Interpreting a Javadump” on page 242
v “Environment variables and Javadump” on page 262

Enabling a Javadump
Javadumps are enabled by default. You can turn off the production of Javadumps
with -Xdump:java:none.

You are not recommended to turn off Javadumps because they are an essential
diagnostic tool.

Use the -Xdump:java option to give more fine-grained control over the production
of Javadumps. See “Using dump agents” on page 221 for more information.

Triggering a Javadump
Javadumps can be triggered by error conditions, or can be initiated in a number of
ways to obtain diagnostic information.

Javadumps triggered by error conditions

By default, a Javadump is triggered when one of the following error conditions
occurs:

An unrecoverable native exception
Not a Java Exception. An “unrecoverable” exception is one that causes the
JVM to stop. The JVM handles the event by producing a system dump
followed by a snap trace file, a Javadump, and then terminating the
process.

The JVM has insufficient memory to continue operation
There are many reasons for running out of memory. See “Problem
determination” on page 173 for more information.

Javadumps triggered by request

You can initiate a Javadump to obtain diagnostic information in one of the
following ways:

You can send a signal to the JVM from the command line

The signal for z/OS is SIGQUIT. Use the command kill -QUIT n to send
the signal to a process with process ID (PID) n. Alternatively, press
CTRL+V in the shell window that started Java.

The JVM continues after the signal has been handled.

You can use the JavaDump() method in your application

The com.ibm.jvm.Dump class contains a static JavaDump() method that
causes Java code to initiate a Javadump. In your application code, add a
call to com.ibm.jvm.Dump.JavaDump(). This call is subject to the same
Javadump environment variables that are described in “Enabling a
Javadump.”

The JVM continues after the Javadump is produced.

You can initiate a Javadump using the wasadmin utility

In a WebSphere Application Server environment, use the wasadmin utility to
initiate a dump.

Chapter 9. Troubleshooting and support 241

The JVM continues after the Javadump is produced.

You can configure a dump agent to trigger a Javadump
Use the -Xdump:java: option to configure a dump agent on the command
line. See “Using the -Xdump option” on page 221 for more information.

You can use the trigger trace option to generate a Javadump
Use the -Xtrace:trigger option to produce a Javadump by calling the
substring method shown in the following example:
-Xtrace:trigger=method{java/lang/String.substring,javadump}

For a detailed description of this trace option, see
“trigger=<clause>[,<clause>][,<clause>]...” on page 308

Interpreting a Javadump
This section gives examples of the information contained in a Javadump and how
it can be useful in problem solving.

The content and range of information in a Javadump might change between JVM
versions or service refreshes. Some information might be missing, depending on
the operating system platform and the nature of the event that produced the
Javadump.

Javadump tags:

The Javadump file contains sections separated by eyecatcher title areas to aid
readability of the Javadump.

The first such eyecatcher is shown as follows:
NULL ---
0SECTION ENVINFO subcomponent dump routine
NULL =================================

Different sections contain different tags, which make the file easier to parse for
performing simple analysis.

You can also use DTFJ to parse a Javadump, see “Using the Diagnostic Tool
Framework for Java” on page 405 for more information.

An example tag (1CIJAVAVERSION) is shown as follows:
1CIJAVAVERSION JRE 1.7.0 z/OS s390-31 build 20110511_082084
(pmz3170-20110513_04)

Normal tags have these characteristics:
v Tags are up to 15 characters long (padded with spaces).
v The first digit is a nesting level (0,1,2,3). Nesting levels might be omitted, for

example a level 2 tag might be followed by a level 4 tag.
v The second and third characters identify the section of the dump. The major

sections are:
CI Command-line interpreter
CL Class loader
LK Locking
ST Storage (Memory management)
TI Title
XE Execution engine

v The remainder is a unique string, JAVAVERSION in the previous example.

242 IBM SDK for Java: SDK and Runtime Guide

Special tags have these characteristics:
v A tag of NULL means the line is just to aid readability.
v Every section is headed by a tag of 0SECTION with the section title.

Here is an example of some tags taken from the start of a dump.
NULL --
0SECTION TITLE subcomponent dump routine
NULL ===============================
1TICHARSET IBM-1047
1TISIGINFO Dump Event "user" (00004000) received
1TIDATETIME Date: 2011/05/13 at 17:37:23
1TIFILENAME Javacore filename: /u/user1/javacore.20110513.173723.66276.0001.txt
1TIREQFLAGS Request Flags: 0x1 (exclusive)
1TIPREPSTATE Prep State: 0x104 (exclusive_vm_access+)
NULL --
0SECTION GPINFO subcomponent dump routine
NULL ================================
2XHOSLEVEL OS Level : z/OS 01.08.00
2XHCPUS Processors -
3XHCPUARCH Architecture : s390
3XHNUMCPUS How Many : 3
3XHNUMASUP NUMA is either not supported or has been disabled by user

TITLE, GPINFO, and ENVINFO sections:

At the start of a Javadump, the first three sections are the TITLE, GPINFO, and
ENVINFO sections. They provide useful information about the cause of the dump.

The following example shows some output taken from a simple Java test program
calling (using JNI) an external function that causes a “general protection fault”
(GPF).

TITLE
Shows basic information about the event that caused the generation of the
Javadump, the time it was taken, and its name.

0SECTION TITLE subcomponent dump routine
NULL ===============================
1TICHARSET IBM-1047
1TISIGINFO Dump Event "gpf" (00002000) received
1TIDATETIME Date: 2011/11/30 at 12:51:51
1TIFILENAME Javacore filename: /team/test/mz64/javacore.20111130.125148.33558225.0002.txt
1TIREQFLAGS Request Flags: 0x1 (exclusive)
1TIPREPSTATE Prep State: 0x100 (trace_disabled)
1TIPREPINFO Exclusive VM access not taken: data may not be consistent across javacore sections

GPINFO
Varies in content depending on whether the Javadump was produced because
of a GPF or not. It shows some general information about the operating
system. The registers specific to the processor and architecture are also
displayed.

0SECTION GPINFO subcomponent dump routine
NULL ================================
2XHOSLEVEL OS Level : z/OS 01.11.00
2XHCPUS Processors -
3XHCPUARCH Architecture : s390x
3XHNUMCPUS How Many : 6
3XHNUMASUP NUMA is either not supported or has been disabled by user
NULL
1XHEXCPCODE J9Generic_Signal_Number: 00000004
1XHEXCPCODE Signal_Number: 0000000B
1XHEXCPCODE Error_Value: 00000000
1XHEXCPCODE Signal_Code: 00000035

Chapter 9. Troubleshooting and support 243

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

1XHEXCPCODE Handler1: 000000080871E300
1XHEXCPCODE Handler2: 0000000808622D00
NULL
1XHREGISTERS Registers:
2XHREGISTER gpr0: 0000000000000000
2XHREGISTER gpr1: 0000000839D10400
2XHREGISTER gpr2: 0000000000000020
2XHREGISTER gpr3: 000000086B9C0498
2XHREGISTER gpr4: 00000008109FDDC0
2XHREGISTER gpr5: 0000000808614A30
2XHREGISTER gpr6: 00000000259A3710
2XHREGISTER gpr7: 000000002500BEBA
2XHREGISTER gpr8: 0000000000000007
....
1XHFLAGS VM flags:0000000000000000

The GPINFO section also refers to the vmState, recorded in the console output as
VM flags. The vmState is the thread-specific state of what was happening in
the JVM at the time of the crash. The value for vmState is a hexadecimal
number ending in MSSSS, where M is the SDK component and SSSS is
component specific code.

SDK component Code number

NONE 0x00000

INTERPRETER 0x10000

GC 0x20000

GROW_STACK 0x30000

JNI 0x40000

JIT_CODEGEN 0x50000

BCVERIFY 0x60000

RTVERIFY 0x70000

SHAREDCLASSES 0x80000

In the example, the value for vmState is VM flags:0000000000000000, which
indicates a crash in code outside the SDK.

The crash was in the application native function Java_Crash_segv, as shown in
the backtrace, which is in the THREADS section of the javacore:

0SECTION THREADS subcomponent dump routine
NULL =================================
....
1XMCURTHDINFO Current thread
NULL --------------
3XMTHREADINFO "main" J9VMThread:0x0000000839D10400, j9thread_t:0x0000000808629CA0, java/lang/Thread:0x0000000819275148,
state:R, prio=5
3XMTHREADINFO1 (native thread ID:0x25562800, native priority:0x5, native policy:UNKNOWN)
3XMTHREADINFO3 Java callstack:
4XESTACKTRACE at Crash.segv(Native Method)
4XESTACKTRACE at Crash.main(Crash.java:27)
3XMTHREADINFO3 Native callstack:
....
4XENATIVESTACK masterSynchSignalHandler+0xda52e6a8 (, 0x0000000000000000)
4XENATIVESTACK __zerros+0xda9d5398 (, 0x0000000000000000)
4XENATIVESTACK CEEHDSP+0xdae0c040 (, 0x0000000000000000)
4XENATIVESTACK CEEOSIGJ+0xdabc4660 (, 0x0000000000000000)
4XENATIVESTACK CELQHROD+0xdadf92f8 (, 0x0000000000000000)
4XENATIVESTACK CEEOSIGG+0xdabcafb0 (, 0x0000000000000000)
4XENATIVESTACK CELQHROD+0xdadf92f8 (, 0x0000000000000000)
4XENATIVESTACK Java_Crash_segv+0xdaff4198 (, 0x0000000000000000)
4XENATIVESTACK RUNCALLINMETHOD+0xda699f58 (, 0x0000000000000000)
4XENATIVESTACK gpProtectedRunCallInMethod+0xda65db20 (, 0x0000000000000000)
4XENATIVESTACK signalProtectAndRunGlue+0xda65dd40 (, 0x0000000000000000)
4XENATIVESTACK j9sig_protect+0xda52cda0 (, 0x0000000000000000)

244 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

4XENATIVESTACK gpCheckCallin+0xda65b360 (, 0x0000000000000000)
4XENATIVESTACK callStaticVoidMethod+0xda664178 (, 0x0000000000000000)
4XENATIVESTACK JavaMain+0xda78ee90 (, 0x0000000000000000)

When the vmState major component is JIT_CODEGEN, see the information at
“JIT and AOT problem determination” on page 322.

ENVINFO
Shows information about the JRE level that failed and details about the
command line that launched the JVM process and the JVM environment in
place.

The line, 1CIJITMODES, provides information about JIT settings. In earlier
releases, some of the information about JIT and AOT settings is shown in the
1CIJITVERSION line.

The line 1CIPROCESSID shows the ID of the operating system process that
produced the javacore.

0SECTION ENVINFO subcomponent dump routine
NULL =================================
1CIJAVAVERSION JRE 1.7.0 z/OS s390x-64 build 20111126_95926 (pmz6470sr1-20111128_01 (SR1))
1CIVMVERSION VM build R26_JVM_26_20111125_1442_B95877
1CIJITVERSION r11_20111122_21502
1CIGCVERSION GC - R26_JVM_26_20111123_1546_B95682
1CIJITMODES JIT enabled, AOT enabled, FSD disabled, HCR disabled
1CIRUNNINGAS Running as a standalone JVM
1CIPROCESSID Process ID: 14632 (0x3928)
1CICMDLINE sdk/jre/bin/java Crash
1CIJAVAHOMEDIR Java Home Dir: /team/test/mz64/sdk/jre
1CIJAVADLLDIR Java DLL Dir: /team/test/mz64/sdk/jre/bin
1CISYSCP Sys Classpath: /team/test/mz64/sdk/jre/lib/s390x/default/jclSC170/vm.jar...
1CIUSERARGS UserArgs:
2CIUSERARG -Xoptionsfile=/team/test/mz64/sdk/jre/lib/s390x/default/options.default
2CIUSERARG -Xlockword:mode=default,noLockword=java/lang/String,noLockword=...
2CIUSERARG -Xjcl:jclse7b_26
2CIUSERARG -Dcom.ibm.oti.vm.bootstrap.library.path=/team/test/mz64/sdk/jre/lib/...
2CIUSERARG -Dsun.boot.library.path=/team/test/mz64/sdk/jre/lib/s390x/default:...
2CIUSERARG -Djava.library.path=/team/test/mz64/sdk/jre/lib/s390x/default:/team/...
2CIUSERARG -Djava.home=/team/test/mz64/sdk/jre
2CIUSERARG -Djava.ext.dirs=/team/test/mz64/sdk/jre/lib/ext
2CIUSERARG -Duser.dir=/team/test/mz64....

The ENVINFO section of the javacore contains additional information about the
operating system environment in which the JVM is running. This information
includes:
v The system ulimits, or user limits, in place. These values are shown only on

UNIX platforms.
v The system environment variables that are in force.

The output is similar to the following lines:
1CIUSERLIMITS User Limits (in bytes except for NOFILE and NPROC)
NULL --
NULL type soft limit hard limit
2CIUSERLIMIT RLIMIT_AS unlimited unlimited
2CIUSERLIMIT RLIMIT_CORE 4194304 4194304
2CIUSERLIMIT RLIMIT_CPU unlimited unlimited
2CIUSERLIMIT RLIMIT_DATA unlimited unlimited
2CIUSERLIMIT RLIMIT_FSIZE 8796093018112 8796093018112
2CIUSERLIMIT RLIMIT_NOFILE 10012 10012
2CIUSERLIMIT RLIMIT_STACK unlimited unlimited
2CIUSERLIMIT RLIMIT_MEMLIMIT 21474836480 21474836480
NULL
1CIENVVARS Environment Variables
NULL --
2CIENVVAR HOSTTYPE=i370
2CIENVVAR EPHBookReadConfig=/etc/booksrv/bookread.conf
2CIENVVAR LIBPATH=/team/test/mz64/sdk/jre/lib/s390x/default:/team/test/....
2CIENVVAR _CC_CVERSION=0x41090000

Chapter 9. Troubleshooting and support 245

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

2CIENVVAR UNZIP=-:
2CIENVVAR SHLVL=1
2CIENVVAR HOSTNAME=TOROLABV
2CIENVVAR SSH_TTY=/dev/ttyp0001
2CIENVVAR JAVA_DUMP_TDUMP_PATTERN=J9BUILD.JVM.TDUMP.D%y%m%d.T%H%M%S
2CIENVVAR _CC_PNAME=EDCPRLK
2CIENVVAR _CC_CLIB_PREFIX=CBC

Native memory (NATIVEMEMINFO):

The NATIVEMEMINFO section of a Javadump provides information about the native
memory allocated by the Java Runtime Environment (JRE).

Native memory is memory requested from the operating system using library
functions such as malloc() and mmap().

When the JRE allocates native memory, the memory is associated with a high-level
memory category. Each memory category has two running counters:
v The total number of bytes allocated but not yet freed.
v The number of native memory allocations that have not been freed.

Each memory category can have subcategories.

The NATIVEMEMINFO section provides a breakdown of memory categories by JRE
component. Each memory category contains the total value for each counter in that
category and all related subcategories.

The JRE tracks native memory allocated only by the Java runtime environment and
class libraries. The JRE does not record memory allocated by application or
third-party JNI code. The total native memory reported in the NATIVEMEMINFO
section is always slightly less than the total native address space usage reported
through operating system tools for the following reasons:
v The memory counter data might not be in a consistent state when the Javadump

is taken.
v The data does not include any overhead introduced by the operating system.

A memory category for Direct Byte Buffers can be found in the VM Class
libraries section of the NATIVEMEMINFO output.

0SECTION NATIVEMEMINFO subcomponent dump routine
NULL =================================
0MEMUSER
1MEMUSER JRE: 591,281,600 bytes / 2763 allocations
1MEMUSER |
2MEMUSER +--VM: 575,829,048 bytes / 2143 allocations
2MEMUSER | |
3MEMUSER | +--Classes: 14,357,408 bytes / 476 allocations
2MEMUSER | |
3MEMUSER | +--Memory Manager (GC): 548,712,024 bytes / 435 allocations
3MEMUSER | | |
4MEMUSER | | +--Java Heap: 536,870,912 bytes / 1 allocation
3MEMUSER | | |
4MEMUSER | | +--Other: 11,841,112 bytes / 434 allocations
2MEMUSER | |
3MEMUSER | +--Threads: 11,347,376 bytes / 307 allocations
3MEMUSER | | |
4MEMUSER | | +--Java Stack: 378,832 bytes / 28 allocations
3MEMUSER | | |
4MEMUSER | | +--Native Stack: 10,649,600 bytes / 30 allocations
3MEMUSER | | |
4MEMUSER | | +--Other: 318,944 bytes / 249 allocations

246 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

2MEMUSER | |
3MEMUSER | +--Trace: 324,464 bytes / 294 allocations
2MEMUSER | |
3MEMUSER | +--JVMTI: 17,784 bytes / 13 allocations
2MEMUSER | |
3MEMUSER | +--JNI: 129,760 bytes / 250 allocations
2MEMUSER | |
3MEMUSER | +--Port Library: 10,240 bytes / 62 allocations
2MEMUSER | |
3MEMUSER | +--Other: 929,992 bytes / 306 allocations
1MEMUSER |
2MEMUSER +--JIT: 14,278,744 bytes / 287 allocations
2MEMUSER | |
3MEMUSER | +--JIT Code Cache: 8,388,608 bytes / 4 allocations
2MEMUSER | |
3MEMUSER | +--JIT Data Cache: 2,097,216 bytes / 1 allocation
2MEMUSER | |
3MEMUSER | +--Other: 3,792,920 bytes / 282 allocations
1MEMUSER |
2MEMUSER +--Class Libraries: 1,173,808 bytes / 333 allocations
2MEMUSER | |
3MEMUSER | +--Harmony Class Libraries: 2,000 bytes / 1 allocation
2MEMUSER | |
3MEMUSER | +--VM Class Libraries: 1,171,808 bytes / 332 allocations
3MEMUSER | | |
4MEMUSER | | +--sun.misc.Unsafe: 6,768 bytes / 5 allocations
4MEMUSER | | | |
5MEMUSER | | | +--Direct Byte Buffers: 6,120 bytes / 1 allocation
4MEMUSER | | | |
5MEMUSER | | | +--Other: 648 bytes / 4 allocations
3MEMUSER | | |
4MEMUSER | | +--Other: 1,165,040 bytes / 327 allocations
NULL
NULL --

You can obtain additional diagnostic information about memory allocation for class
library native code. The following output shows the extra information recorded in
the Class Libraries section when the system property -Dcom.ibm.dbgmalloc=true
is set:
3MEMUSER | +--Standard Class Libraries: 17,816 bytes / 17 allocations
3MEMUSER | | |
4MEMUSER | | +--IO, Math and Language: 1,048 bytes / 1 allocation
3MEMUSER | | |
4MEMUSER | | +--Zip: 1,048 bytes / 1 allocation
3MEMUSER | | |
4MEMUSER | | +--Wrappers: 3,144 bytes / 3 allocations
4MEMUSER | | | |
5MEMUSER | | | +--Malloc: 1,048 bytes / 1 allocation
4MEMUSER | | | |
5MEMUSER | | | +--z/OS EBCDIC Conversion: 1,048 bytes / 1 allocation
4MEMUSER | | | |
5MEMUSER | | | +--Other: 1,048 bytes / 1 allocation
3MEMUSER | | |
4MEMUSER | | +--Networking: 4,192 bytes / 4 allocations
4MEMUSER | | | |
5MEMUSER | | | +--NET: 1,048 bytes / 1 allocation
4MEMUSER | | | |
5MEMUSER | | | +--NIO and NIO.2: 1,048 bytes / 1 allocation
4MEMUSER | | | |
5MEMUSER | | | +--RMI: 1,048 bytes / 1 allocation
4MEMUSER | | | |
5MEMUSER | | | +--Other: 1,048 bytes / 1 allocation
3MEMUSER | | |
4MEMUSER | | +--GUI: 5,240 bytes / 5 allocations
4MEMUSER | | | |
5MEMUSER | | | +--AWT: 1,048 bytes / 1 allocation

Chapter 9. Troubleshooting and support 247

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

4MEMUSER | | | |
5MEMUSER | | | +--MAWT: 1,048 bytes / 1 allocation
4MEMUSER | | | |
5MEMUSER | | | +--JAWT: 1,048 bytes / 1 allocation
4MEMUSER | | | |
5MEMUSER | | | +--Medialib Image: 1,048 bytes / 1 allocation
4MEMUSER | | | |
5MEMUSER | | | +--Other: 1,048 bytes / 1 allocation
3MEMUSER | | |
4MEMUSER | | +--Font: 1,048 bytes / 1 allocation
3MEMUSER | | |
4MEMUSER | | +--Sound: 1,048 bytes / 1 allocation
3MEMUSER | | |
4MEMUSER | | +--Other: 1,048 bytes / 1 allocation

For more information about using -Dcom.ibm.dbgmalloc=true, see “System
property command-line options” on page 419.

Storage Management (MEMINFO):

The MEMINFO section provides information about the Memory Manager.

The MEMINFO section, giving information about the Memory Manager, follows the
first three sections. See “Memory management” on page 23 for details about how
the Memory Manager works.

This part of the Javadump provides various storage management values in
hexadecimal. The information also shows the free memory, used memory and total
memory for the heap, in decimal and hexadecimal. If an initial maximum heap
size, or soft limit, is specified using the –Xsoftmx option, this is also shown as the
target memory for the heap. For more information about –Xsoftmx, see “Garbage
Collector command-line options” on page 453.

This section also contains garbage collection history data, described in “Default
memory management tracing” on page 290. Garbage collection history data is
shown as a sequence of tracepoints, each with a timestamp, ordered with the most
recent tracepoint first.

In the Javadump, segments are blocks of memory allocated by the Java runtime
environment for tasks that use large amounts of memory. Example tasks are
maintaining JIT caches, and storing Java classes. The Java runtime environment
also allocates other native memory, that is not listed in the MEMINFO section. The
total memory used by Java runtime segments does not necessarily represent the
complete memory footprint of the Java runtime environment. A Java runtime
segment consist of the segment data structure, and an associated block of native
memory.

The following example shows some typical output. All the values are output as
hexadecimal values. The column headings in the MEMINFO section have the
following meanings:
v Object memory section (HEAPTYPE):

id The id of the space or region.

start The start address of this region of the heap.

end The end address of this region of the heap.

size The size of this region of the heap.

248 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

space/region
For a line that contains only an id and a name, this column shows the
name of the memory space. Otherwise the column shows the name of
the memory space, followed by the name of a particular region that is
contained within that memory space.

v Internal memory section (SEGTYPE), including class memory, JIT code cache, and
JIT data cache:

segment
The address of the segment control data structure.

start The start address of the native memory segment.

alloc The current allocation address within the native memory segment.

end The end address of the native memory segment.

type An internal bit field describing the characteristics of the native memory
segment.

size The size of the native memory segment.
0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STHEAPTYPE Object Memory
NULL id start end size space/region
1STHEAPSPACE 0x000000000042D4B0 -- -- -- Generational
1STHEAPREGION 0x0000000000383C70 0x000007FFDFFB0000 0x000007FFE02B0000 0x0000000000300000 Generational/Tenured Region
1STHEAPREGION 0x0000000000383B80 0x000007FFFFEB0000 0x000007FFFFF30000 0x0000000000080000 Generational/Nursery Region
1STHEAPREGION 0x0000000000383A90 0x000007FFFFF30000 0x000007FFFFFB0000 0x0000000000080000 Generational/Nursery Region
NULL
1STHEAPTOTAL Total memory: 4194304 (0x0000000000400000)
1STHEAPTARGET Target memory: 20971520 (0x0000000001400000)
1STHEAPINUSE Total memory in use: 1184528 (0x0000000000121310)
1STHEAPFREE Total memory free: 3009776 (0x00000000002DECF0)
NULL
1STSEGTYPE Internal Memory
NULL segment start alloc end type size
1STSEGMENT 0x0000000002CE3DF8 0x0000000003BD00F0 0x0000000003BD00F0 0x0000000003BE00F0 0x01000040 0x0000000000010000
1STSEGMENT 0x0000000002CE3D38 0x0000000003A509F0 0x0000000003A509F0 0x0000000003A609F0 0x01000040 0x0000000000010000
(lines removed for clarity)
1STSEGMENT 0x00000000004481D8 0x0000000002CE9B10 0x0000000002CE9B10 0x0000000002CF9B10 0x00800040 0x0000000000010000
NULL
1STSEGTOTAL Total memory: 1091504 (0x000000000010A7B0)
1STSEGINUSE Total memory in use: 0 (0x0000000000000000)
1STSEGFREE Total memory free: 1091504 (0x000000000010A7B0)
NULL
1STSEGTYPE Class Memory
NULL segment start alloc end type size
1STSEGMENT 0x0000000003B117B8 0x0000000003C4E210 0x0000000003C501C0 0x0000000003C6E210 0x00020040 0x0000000000020000
1STSEGMENT 0x0000000003B116F8 0x0000000003C451D0 0x0000000003C4D1D0 0x0000000003C4D1D0 0x00010040 0x0000000000008000
(lines removed for clarity)
1STSEGMENT 0x00000000004489E8 0x0000000003804A90 0x0000000003824120 0x0000000003824A90 0x00020040 0x0000000000020000
NULL
1STSEGTOTAL Total memory: 2099868 (0x0000000000200A9C)
1STSEGINUSE Total memory in use: 1959236 (0x00000000001DE544)
1STSEGFREE Total memory free: 140632 (0x0000000000022558)
NULL
1STSEGTYPE JIT Code Cache
NULL segment start alloc end type size
1STSEGMENT 0x0000000002D5B508 0x000007FFDEE80000 0x000007FFDEEA2D78 0x000007FFDF080000 0x00000068 0x0000000000200000
1STSEGMENT 0x0000000002CE9688 0x000007FFDF080000 0x000007FFDF09FD58 0x000007FFDF280000 0x00000068 0x0000000000200000
1STSEGMENT 0x0000000002CE95C8 0x000007FFDF280000 0x000007FFDF29FD58 0x000007FFDF480000 0x00000068 0x0000000000200000
1STSEGMENT 0x0000000002CE9508 0x000007FFDF480000 0x000007FFDF49FD58 0x000007FFDF680000 0x00000068 0x0000000000200000
NULL
1STSEGTOTAL Total memory: 8388608 (0x0000000000800000)
1STSEGINUSE Total memory in use: 533888 (0x0000000000082580)
1STSEGFREE Total memory free: 7854720 (0x000000000077DA80)
1STSEGLIMIT Allocation limit: 268435456 (0x0000000010000000)
NULL
1STSEGTYPE JIT Data Cache
NULL segment start alloc end type size
1STSEGMENT 0x0000000002CE9888 0x0000000003120060 0x0000000003121F58 0x0000000003320060 0x00000048 0x0000000000200000
NULL

Chapter 9. Troubleshooting and support 249

|
|

||

||

||

||
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1STSEGTOTAL Total memory: 2097152 (0x0000000000200000)
1STSEGINUSE Total memory in use: 7928 (0x0000000000001EF8)
1STSEGFREE Total memory free: 2089224 (0x00000000001FE108)
1STSEGLIMIT Allocation limit: 402653184 (0x0000000018000000)
NULL
1STGCHTYPE GC History
3STHSTTYPE 14:54:17:123462116 GMT j9mm.134 - Allocation failure end: newspace=111424/524288 oldspace=3010952/3145728
loa=156672/156672
3STHSTTYPE 14:54:17:123459726 GMT j9mm.470 - Allocation failure cycle end: newspace=111448/524288 oldspace=
3010952/3145728 loa=156672/156672
3STHSTTYPE 14:54:17:123454948 GMT j9mm.65 - LocalGC end: rememberedsetoverflow=0 causedrememberedsetoverflow=0
scancacheoverflow=0 failedflipcount=0 failedflipbytes=0 failedtenurecount=0 failedtenurebytes=0 flipcount=2561
flipbytes=366352 newspace=111448/524288 oldspace=3010952/3145728 loa=156672/156672 tenureage=10
3STHSTTYPE 14:54:17:123441638 GMT j9mm.140 - Tilt ratio: 50
3STHSTTYPE 14:54:17:122664846 GMT j9mm.64 - LocalGC start: globalcount=0 scavengecount=1 weakrefs=0 soft=0
phantom=0 finalizers=0
3STHSTTYPE 14:54:17:122655972 GMT j9mm.63 - Set scavenger backout flag=false
3STHSTTYPE 14:54:17:122647781 GMT j9mm.135 - Exclusive access: exclusiveaccessms=0.002 meanexclusiveaccessms=0.002
threads=0 lastthreadtid=0x0000000002DCCE00 beatenbyotherthread=0
3STHSTTYPE 14:54:17:122647440 GMT j9mm.469 - Allocation failure cycle start: newspace=0/524288 oldspace=
3010952/3145728 loa=156672/156672 requestedbytes=24
3STHSTTYPE 14:54:17:122644709 GMT j9mm.133 - Allocation failure start: newspace=0/524288 oldspace=3010952/3145728
loa=156672/156672 requestedbytes=24
NULL

Locks, monitors, and deadlocks (LOCKS):

An example of the LOCKS component part of a Javadump taken during a
deadlock.

A lock typically prevents more than one entity from accessing a shared resource.
Each object in the Java language has an associated lock, also referred to as a
monitor, which a thread obtains by using a synchronized method or block of code.
In the case of the JVM, threads compete for various resources in the JVM and locks
on Java objects.

When you take a Java dump, the JVM attempts to detect deadlock cycles. The JVM
can detect cycles that consist of locks that are obtained through synchronization,
locks that extend the java.util.concurrent.locks.AbstractOwnableSynchronizer
class, or a mix of both lock types.

The following example is from a deadlock test program where two threads,
“DeadLockThread 0” and “DeadLockThread 1”, unsuccessfully attempt to
synchronize on a java/lang/String object, and lock an instance of the
java.util.concurrent.locks.ReentrantLock class.

The Locks section in the example (highlighted) shows that thread
“DeadLockThread 1” locked the object instance java/lang/
String@0x00007F5E5E18E3D8. The monitor was created as a result of a Java code
fragment such as synchronize(aString), and this monitor has “DeadLockThread
0” waiting to get a lock on this same object instance (aString). The deadlock
section also shows an instance of the
java.util.concurrentlocks.ReentrantLock$NonfairSync class, that is locked by
“DeadLockThread 0”, and has “Deadlock Thread 1” waiting.

This classic deadlock situation is caused by an error in application design; the
Javadump tool is a major tool in the detection of such events.

Blocked thread information is also available in the Threads section of the Java
dump, in lines that begin with 3XMTHREADBLOCK, for threads that are blocked,
waiting or parked. For more information, see “Blocked thread information” on
page 257.

250 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

NULL --
0SECTION LOCKS subcomponent dump routine
NULL ===============================
NULL
1LKPOOLINFO Monitor pool info:
2LKPOOLTOTAL Current total number of monitors: 2
NULL
1LKMONPOOLDUMP Monitor Pool Dump (flat & inflated object-monitors):
2LKMONINUSE sys_mon_t:0x00007F5E24013F10 infl_mon_t: 0x00007F5E24013F88:
3LKMONOBJECT java/lang/String@0x00007F5E5E18E3D8: Flat locked by "Deadlock Thread 1" (0x00007F5E84362100), entry count 1
3LKWAITERQ Waiting to enter:
3LKWAITER "Deadlock Thread 0" (0x00007F5E8435BD00)
NULL
1LKREGMONDUMP JVM System Monitor Dump (registered monitors):
2LKREGMON Thread global lock (0x00007F5E84004F58): <unowned>
2LKREGMON &(PPG_mem_mem32_subAllocHeapMem32.monitor) lock (0x00007F5E84005000): <unowned>
2LKREGMON NLS hash table lock (0x00007F5E840050A8): <unowned>

< lines removed for brevity >

1LKDEADLOCK Deadlock detected !!!
NULL ---------------------
NULL
2LKDEADLOCKTHR Thread "Deadlock Thread 0" (0x00007F5E8435BD00)
3LKDEADLOCKWTR is waiting for:
4LKDEADLOCKMON sys_mon_t:0x00007F5E24013F10 infl_mon_t: 0x00007F5E24013F88:
4LKDEADLOCKOBJ java/lang/String@0x00007F5E5E18E3D8
3LKDEADLOCKOWN which is owned by:
2LKDEADLOCKTHR Thread "Deadlock Thread 1" (0x00007F5E84362100)
3LKDEADLOCKWTR which is waiting for:
4LKDEADLOCKOBJ java/util/concurrent/locks/ReentrantLock$NonfairSync@0x00007F5E7E1464F0
3LKDEADLOCKOWN which is owned by:
2LKDEADLOCKTHR Thread "Deadlock Thread 0" (0x00007F5E8435BD00)

Threads and stack trace (THREADS):

For the application programmer, one of the most useful pieces of a Java dump is
the THREADS section. This section shows a list of Java threads, native threads, and
stack traces.

A Java thread is implemented by a native thread of the operating system. Each
thread is represented by a set of lines such as:

3XMTHREADINFO "main" J9VMThread:0x002DA900, j9thread_t:0x00D84630, java/lang/Thread:0x227E0078, state:CW,
prio=5
3XMJAVALTHREAD (java/lang/Thread getId:0x1, isDaemon:false)
3XMTHREADINFO1 (native thread ID:0xE28, native priority:0x5, native policy:UNKNOWN)
3XMCPUTIME CPU usage total: 0.562500000 secs, user: 0.218750000 secs, system: 0.343750000 secs
3XMHEAPALLOC Heap bytes allocated since last GC cycle=36512 (0x8EA0)
3XMTHREADINFO3 Java callstack:
4XESTACKTRACE at java/lang/Thread.sleep(Native Method)
4XESTACKTRACE at java/lang/Thread.sleep(Thread.java:961)
4XESTACKTRACE at Sleep.main(Sleep.java:11)

The properties on the first line are the thread name, addresses of the JVM thread
structures and of the Java thread object, thread state, and Java thread priority. For
Java threads, the second line contains the thread ID and daemon status from the
Java thread object. The properties on the next line are the native operating system
thread ID, native operating system thread priority and native operating system
scheduling policy.

The Java thread priority is mapped to an operating system priority value in a
platform-dependent manner. A large value for the Java thread priority means that
the thread has a high priority. In other words, the thread runs more frequently
than lower priority threads.

The values of state can be:
v R - Runnable - the thread is able to run when given the chance.
v CW - Condition Wait - the thread is waiting. For example, because:

Chapter 9. Troubleshooting and support 251

|
|
|
|
|
|
|
|
|
|

|
|
|

– A sleep() call is made
– The thread has been blocked for I/O
– A wait() method is called to wait on a monitor being notified
– The thread is synchronizing with another thread with a join() call

v S – Suspended – the thread has been suspended by another thread.
v Z – Zombie – the thread has been killed.
v P – Parked – the thread has been parked by the new concurrency API

(java.util.concurrent).
v B – Blocked – the thread is waiting to obtain a lock that something else currently

owns.

If a thread is parked or blocked, the output contains a line for that thread,
beginning with 3XMTHREADBLOCK, listing the resource that the thread is waiting for
and, if possible, the thread that currently owns that resource. For more information
see “Blocked thread information” on page 257.

For Java threads and attached native threads, the output might contain a line
beginning with 3XMCPUTIME, which displays the number of seconds of CPU time
that was consumed by the thread since that thread was started. The presence and
contents of this line depends on your operating system. If your operating system
does not support the reporting of CPU times for each thread, this line is absent.
Some operating systems report only the total CPU time that is consumed by a
thread, and others also report the time that is consumed in user code and in
system code.

For Java threads, the line beginning with 3XMHEAPALLOC displays the number of
bytes of Java objects and arrays allocated by that thread since the last garbage
collection cycle. In the example, this line is just before the Java callstack.

When you initiate a javadump to obtain diagnostic information, the JVM quiesces
Java threads before producing the javacore. A preparation state of
exclusive_vm_access is shown in the 1TIPREPSTATE line of the TITLE section.
1TIPREPSTATE Prep State: 0x4 (exclusive_vm_access)

Threads that were running Java code when the javacore was triggered are in CW
(Condition Wait) state.

3XMTHREADINFO "main" J9VMThread:0x002DA900, j9thread_t:0x00D84630, java/lang/Thread:0x227E0078, state:CW,
prio=5
3XMJAVALTHREAD (java/lang/Thread getId:0x1, isDaemon:false)
3XMTHREADINFO1 (native thread ID:0xE28, native priority:0x5, native policy:UNKNOWN)
3XMCPUTIME CPU usage total: 0.562500000 secs, user: 0.218750000 secs, system: 0.343750000 secs
3XMHEAPALLOC Heap bytes allocated since last GC cycle=36512 (0x8EA0)
3XMTHREADINFO3 Java callstack:
4XESTACKTRACE at java/lang/Thread.sleep(Native Method)
4XESTACKTRACE at java/lang/Thread.sleep(Thread.java:961)
4XESTACKTRACE at Sleep.main(Sleep.java:11)

The javacore LOCKS section shows that these threads are waiting on an internal JVM
lock.
2LKREGMON Thread public flags mutex lock (0x002A5234): <unowned>
3LKNOTIFYQ Waiting to be notified:
3LKWAITNOTIFY "main" (0x41481900)

Understanding Java and native thread details:

Below each thread heading are the stack traces, which can be separated into three
types; Java threads, attached native threads and unattached native threads.

252 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

By default, Javadumps contain native stack traces for all threads on AIX, Linux,
and 32-bit Windows. Each native thread is paired with the corresponding Java
thread, if one exists. On AIX and Linux platforms, the JVM delivers a SIGRTMIN
control signal to each native thread in response to a request for a Javadump. You
can disable this feature by controlling the dump agent. See the preempt option,
detailed in the “request option” on page 233 topic. Native stack traces are not
available on 64-bit Windows, 31-bit z/OS and 64-bit z/OS.

The following examples are taken from 32-bit Windows. Other platforms provide
different levels of detail for the native stack.

Java thread

A Java thread runs on a native thread, which means that there are two stack traces
for each Java thread. The first stack trace shows the Java methods and the second
stack trace shows the native functions. This example is an internal Java thread:

3XMTHREADINFO "Attach API wait loop" J9VMThread:0x23783D00, j9thread_t:0x026958F8,
java/lang/Thread:0x027F0640, state:R, prio=10
3XMJAVALTHREAD (java/lang/Thread getId:0xB, isDaemon:true)
3XMTHREADINFO1 (native thread ID:0x15C, native priority:0xA, native policy:UNKNOWN)
3XMCPUTIME CPU usage total: 0.562500000 secs, user: 0.218750000 secs, system: 0.343750000 secs
3XMHEAPALLOC Heap bytes allocated since last GC cycle=0 (0x0)
3XMTHREADINFO3 Java callstack:
4XESTACKTRACE at com/ibm/tools/attach/javaSE/IPC.waitSemaphore(Native Method)
4XESTACKTRACE at com/ibm/tools/attach/javaSE/CommonDirectory.waitSemaphore(CommonDirectory.java:193)
4XESTACKTRACE at com/ibm/tools/attach/javaSE/AttachHandler$WaitLoop.waitForNotification(AttachHandler.java:337)
4XESTACKTRACE at com/ibm/tools/attach/javaSE/AttachHandler$WaitLoop.run(AttachHandler.java:415)
3XMTHREADINFO3 Native callstack:
4XENATIVESTACK ZwWaitForSingleObject+0x15 (0x7787F8B1 [ntdll+0x1f8b1])
4XENATIVESTACK WaitForSingleObjectEx+0x43 (0x75E11194 [kernel32+0x11194])
4XENATIVESTACK WaitForSingleObject+0x12 (0x75E11148 [kernel32+0x11148])
4XENATIVESTACK j9shsem_wait+0x94 (j9shsem.c:233, 0x7460C394 [J9PRT26+0xc394])
4XENATIVESTACK Java_com_ibm_tools_attach_javaSE_IPC_waitSemaphore+0x48 (attach.c:480, 0x6FA61E58 [jclse7b_26+0x1e58])
4XENATIVESTACK VMprJavaSendNative+0x504 (jnisend.asm:521, 0x709746D4 [j9vm26+0x246d4])
4XENATIVESTACK javaProtectedThreadProc+0x9d (vmthread.c:1868, 0x709A05BD [j9vm26+0x505bd])
4XENATIVESTACK j9sig_protect+0x44 (j9signal.c:150, 0x7460F0A4 [J9PRT26+0xf0a4])
4XENATIVESTACK javaThreadProc+0x39 (vmthread.c:298, 0x709A0F39 [j9vm26+0x50f39])
4XENATIVESTACK thread_wrapper+0xda (j9thread.c:1234, 0x7497464A [J9THR26+0x464a])
4XENATIVESTACK _endthread+0x48 (0x7454C55C [msvcr100+0x5c55c])
4XENATIVESTACK _endthread+0xe8 (0x7454C5FC [msvcr100+0x5c5fc])
4XENATIVESTACK BaseThreadInitThunk+0x12 (0x75E1339A [kernel32+0x1339a])
4XENATIVESTACK RtlInitializeExceptionChain+0x63 (0x77899EF2 [ntdll+0x39ef2])
4XENATIVESTACK RtlInitializeExceptionChain+0x36 (0x77899EC5 [ntdll+0x39ec5])

The Java stack trace includes information about locks that were taken within that
stack by calls to synchronized methods or the use of the synchronized keyword.

After each stack frame in which one or more locks were taken, the Java stack trace
might include extra lines starting with 5XESTACKTRACE. These lines show the
locks that were taken in the method on the previous line in the trace, and a
cumulative total of how many times the locks were taken within that stack at that
point. This information is useful for determining the locks that are held by a
thread, and when those locks will be released.

Java locks are re-entrant; they can be entered more than once. Multiple occurrences
of the synchronized keyword in a method might result in the same lock being
entered more than once in that method. Because of this behavior, the entry counts
might increase by more than one, between two method calls in the Java stack, and
a lock might be entered at multiple positions in the stack. The lock is not released
until the first entry, the one furthest down the stack, is released.

Java locks are released when the Object.wait() method is called. Therefore a
record of a thread entering a lock in its stack does not guarantee that the thread

Chapter 9. Troubleshooting and support 253

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

still holds the lock. The thread might be waiting to be notified about the lock, or it
might be blocked while attempting to re-enter the lock after being notified. In
particular, if another thread calls the Object.notifyAll() method, all threads that
are waiting for that monitor must compete to re-enter it, and some threads will
become blocked. You can determine whether a thread is blocked or waiting on a
lock by looking at the 3XMTHREADBLOCK line for that thread. For more
information see “Blocked thread information” on page 257. A thread that calls the
Object.wait() method releases the lock only for the object that it called the
Object.wait() method on. All other locks that the thread entered are still held by
that thread.

The following lines show an example Java stack trace for a thread that calls
java.io.PrintStream methods:

4XESTACKTRACE at java/io/PrintStream.write(PrintStream.java:504(Compiled Code))
5XESTACKTRACE (entered lock: java/io/PrintStream@0xA1960698, entry count: 3)
4XESTACKTRACE at sun/nio/cs/StreamEncoder.writeBytes(StreamEncoder.java:233(Compiled Code))
4XESTACKTRACE at sun/nio/cs/StreamEncoder.implFlushBuffer(StreamEncoder.java:303(Compiled Code))
4XESTACKTRACE at sun/nio/cs/StreamEncoder.flushBuffer(StreamEncoder.java:116(Compiled Code))
5XESTACKTRACE (entered lock: java/io/OutputStreamWriter@0xA19612D8, entry count: 1)
4XESTACKTRACE at java/io/OutputStreamWriter.flushBuffer(OutputStreamWriter.java:203(Compiled Code))
4XESTACKTRACE at java/io/PrintStream.write(PrintStream.java:551(Compiled Code))
5XESTACKTRACE (entered lock: java/io/PrintStream@0xA1960698, entry count: 2)
4XESTACKTRACE at java/io/PrintStream.print(PrintStream.java:693(Compiled Code))
4XESTACKTRACE at java/io/PrintStream.println(PrintStream.java:830(Compiled Code))
5XESTACKTRACE (entered lock: java/io/PrintStream@0xA1960698, entry count: 1)

Attached native thread

The attached native threads provide the same set of information as a Java and
native thread pair, but do not have a Java stack trace. For example:

"JIT Compilation Thread" TID:0x01E92300, j9thread_t:0x00295780, state:CW, prio=10
(native thread ID:0x3030, native priority:0xB, native policy:UNKNOWN)
No Java callstack associated with this thread
Native callstack:

KiFastSystemCallRet+0x0 (0x7C82860C [ntdll+0x2860c])
WaitForSingleObject+0x12 (0x77E61C8D [kernel32+0x21c8d])
monitor_wait_original+0x5a0 (j9thread.c:3593, 0x7FFA49F0 [J9THR26+0x49f0])
monitor_wait+0x5f (j9thread.c:3439, 0x7FFA443F [J9THR26+0x443f])
j9thread_monitor_wait+0x14 (j9thread.c:3309, 0x7FFA4354 [J9THR26+0x4354])
TR_J9Monitor::wait+0x13 (monitor.cpp:61, 0x009B5403 [j9jit26+0x585403])
protectedCompilationThreadProc+0x2a4 (compilationthread.cpp:2063, 0x0043A284

[j9jit26+0xa284])
j9sig_protect+0x42 (j9signal.c:144, 0x7FE117B2 [J9PRT26+0x117b2])
compilationThreadProc+0x123 (compilationthread.cpp:1996, 0x00439F93 [j9jit26+0x9f93])
thread_wrapper+0x133 (j9thread.c:975, 0x7FFA1FE3 [J9THR26+0x1fe3])
_threadstart+0x6c (thread.c:196, 0x7C34940F [msvcr71+0x940f])
GetModuleHandleA+0xdf (0x77E6482F [kernel32+0x2482f])

Unattached native thread

The unattached native threads do not have meaningful names and provide only
minimal information in addition to the stack trace, for example:

Anonymous native thread
(native thread ID:0x229C, native priority: 0x0, native policy:UNKNOWN)
Native callstack:

KiFastSystemCallRet+0x0 (0x7C82860C [ntdll+0x2860c])
WaitForSingleObject+0x12 (0x77E61C8D [kernel32+0x21c8d])
j9thread_sleep_interruptable+0x1a7 (j9thread.c:1475, 0x7FFA24C7 [J9THR26+0x24c7])
samplerThreadProc+0x261 (hookedbythejit.cpp:3227, 0x00449C21 [j9jit26+0x19c21])

254 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

thread_wrapper+0x133 (j9thread.c:975, 0x7FFA1FE3 [J9THR26+0x1fe3])
_threadstart+0x6c (thread.c:196, 0x7C34940F [msvcr71+0x940f])
GetModuleHandleA+0xdf (0x77E6482F [kernel32+0x2482f])

Java dumps are triggered in two distinct ways that influence the structure of the
THREADS section:

A general protection fault (GPF) occurs:
The Current thread subsection contains only the thread that generated the
GPF. The other threads are shown in the Thread Details subsection.

A user requests a Java dump for an event using, for example, the kill -QUIT
command or the com.ibm.jvm.Dump.JavaDump API:

There is no Current thread subsection and all threads are shown in the
Thread Details subsection.

The following example is an extract from the THREADS section that was generated
when the main thread caused a GPF.

NULL --
0SECTION THREADS subcomponent dump routine
NULL =================================
NULL
1XMCURTHDINFO Current thread
NULL ----------------------
3XMTHREADINFO "main" TID:0x01E91E00, j9thread_t:0x00295518, state:R, prio=5
3XMTHREADINFO1 (native thread ID:0x3C34, native priority:0x5, native policy:UNKNOWN)
3XMTHREADINFO3 No Java callstack associated with this thread
3XMTHREADINFO3 Native callstack:
4XENATIVESTACK doTriggerActionSegv+0xe (trigger.c:1880, 0x7FC7930E [j9trc26+0x930e])
4XENATIVESTACK triggerHit+0x7d (trigger.c:2427, 0x7FC79CAD [j9trc26+0x9cad])
4XENATIVESTACK twTriggerHit+0x24 (tracewrappers.c:123, 0x7FC71394 [j9trc26+0x1394])
4XENATIVESTACK utsTraceV+0x14c (ut_trace.c:2105, 0x7FB64F1C [j9ute26+0x14f1c])
4XENATIVESTACK j9Trace+0x5a (tracewrappers.c:732, 0x7FC724DA [j9trc26+0x24da])
4XENATIVESTACK jvmtiHookVMShutdownLast+0x33 (jvmtihook.c:1172, 0x7FBA5C63
[j9jvmti26+0x15c63])
4XENATIVESTACK J9HookDispatch+0xcf (hookable.c:175, 0x7FD211CF [J9HOOKABLE26+0x11cf])
4XENATIVESTACK protectedDestroyJavaVM+0x224 (jniinv.c:323, 0x7FE50D84 [j9vm26+0x20d84])
4XENATIVESTACK j9sig_protect+0x42 (j9signal.c:144, 0x7FE117B2 [J9PRT26+0x117b2])
4XENATIVESTACK DestroyJavaVM+0x206 (jniinv.c:482, 0x7FE50B06 [j9vm26+0x20b06])
4XENATIVESTACK DestroyJavaVM+0xe (jvm.c:332, 0x7FA1248E [jvm+0x248e])
4XENATIVESTACK newStringCp1252+0x22 (jni_util.c:511, 0x00403769 [java+0x3769])
4XENATIVESTACK wcp+0x48 (canonicalize_md.c:78, 0x00409615 [java+0x9615])
4XENATIVESTACK GetModuleHandleA+0xdf (0x77E6482F [kernel32+0x2482f])
NULL
NULL
1XMTHDINFO Thread Details
NULL ------------------
NULL
3XMTHREADINFO Anonymous native thread
3XMTHREADINFO1 (native thread ID:0x175C, native priority: 0x0, native policy:UNKNOWN)
3XMTHREADINFO3 Native callstack:
4XENATIVESTACK KiFastSystemCallRet+0x0 (0x7C82860C [ntdll+0x2860c])
4XENATIVESTACK WaitForSingleObject+0x12 (0x77E61C8D [kernel32+0x21c8d])
4XENATIVESTACK JNU_GetStringPlatformChars+0x2 (jni_util.c:795, 0x00404683 [java+0x4683])
4XENATIVESTACK JNU_ClassObject+0x10 (jni_util.c:897, 0x00403B06 [java+0x3b06])
NULL
3XMTHREADINFO "JIT Compilation Thread" TID:0x01E92300, j9thread_t:0x00295780, state:CW, prio=10
3XMTHREADINFO1 (native thread ID:0x3030, native priority:0xB, native policy:UNKNOWN)
3XMTHREADINFO3 No Java callstack associated with this thread
3XMTHREADINFO3 Native callstack:
4XENATIVESTACK KiFastSystemCallRet+0x0 (0x7C82860C [ntdll+0x2860c])
4XENATIVESTACK WaitForSingleObject+0x12 (0x77E61C8D [kernel32+0x21c8d])
4XENATIVESTACK monitor_wait_original+0x5a0 (j9thread.c:3593, 0x7FFA49F0 [J9THR26+0x49f0])
4XENATIVESTACK monitor_wait+0x5f (j9thread.c:3439, 0x7FFA443F [J9THR26+0x443f])
4XENATIVESTACK j9thread_monitor_wait+0x14 (j9thread.c:3309, 0x7FFA4354 [J9THR26+0x4354])

Chapter 9. Troubleshooting and support 255

4XENATIVESTACK TR_J9Monitor::wait+0x13 (monitor.cpp:61, 0x009B5403 [j9jit26+0x585403])
4XENATIVESTACK protectedCompilationThreadProc+0x2a4 (compilationthread.cpp:2063,
0x0043A284 [j9jit26+0xa284])
4XENATIVESTACK j9sig_protect+0x42 (j9signal.c:144, 0x7FE117B2 [J9PRT26+0x117b2])
NULL
3XMTHREADINFO Anonymous native thread
3XMTHREADINFO1 (native thread ID:0x229C, native priority: 0x0, native policy:UNKNOWN)
3XMTHREADINFO3 Native callstack:
4XENATIVESTACK KiFastSystemCallRet+0x0 (0x7C82860C [ntdll+0x2860c])
4XENATIVESTACK WaitForSingleObject+0x12 (0x77E61C8D [kernel32+0x21c8d])
4XENATIVESTACK j9thread_sleep_interruptable+0x1a7 (j9thread.c:1475, 0x7FFA24C7
[J9THR26+0x24c7])
4XENATIVESTACK samplerThreadProc+0x261 (hookedbythejit.cpp:3227, 0x00449C21
[j9jit26+0x19c21])
4XENATIVESTACK thread_wrapper+0x133 (j9thread.c:975, 0x7FFA1FE3 [J9THR26+0x1fe3])
4XENATIVESTACK _threadstart+0x6c (thread.c:196, 0x7C34940F [msvcr71+0x940f])
4XENATIVESTACK GetModuleHandleA+0xdf (0x77E6482F [kernel32+0x2482f])
NULL

On Linux, there are a number of frames reported for threads that are part of the
backtrace mechanism. To find the point in the backtrace at which the GPF
occurred, look for the frame that has no associated file and offset information. In
the following example, this frame is (0xFFFFE600).

1XMCURTHDINFO Current thread
NULL ----------------------
3XMTHREADINFO "(unnamed thread)" J9VMThread:0x0806C500, j9thread_t:0x0804F420, java/lang/
Thread:0x00000000, state:R, prio=0
3XMTHREADINFO1 (native thread ID:0x7710, native priority:0x5, native policy:UNKNOWN)
3XMTHREADINFO2 (native stack address range from:0xF75B7000, to:0xF7FB8000, size:0xA01000)
3XMTHREADINFO3 No Java callstack associated with this thread
3XMTHREADINFO3 Native callstack:
4XENATIVESTACK (0xF74FA32F [libj9prt26.so+0x0])
4XENATIVESTACK (0xF7508B6B [libj9prt26.so+0x0])
4XENATIVESTACK (0xF74FA02E [libj9prt26.so+0x0])
4XENATIVESTACK (0xF74FA123 [libj9prt26.so+0x0])
[....]
4XENATIVESTACK (0xF7533507 [libj9vm26.so+0x0])
4XENATIVESTACK (0xF7508B6B [libj9prt26.so+0x0])
4XENATIVESTACK (0xF753317C [libj9vm26.so+0x0])
4XENATIVESTACK (0xF75086E7 [libj9prt26.so+0x0])
4XENATIVESTACK (0xFFFFE600)
4XENATIVESTACK (0xF7216F2D [libj9trc26.so+0x0])
4XENATIVESTACK (0xF7216278 [libj9trc26.so+0x0])
4XENATIVESTACK (0xF7FD8C7E [libj9hookable26.so+0x0])
4XENATIVESTACK (0xF75391C1 [libj9vm26.so+0x0])
[....]

The frame descriptions in the call stacks have the following format. Items that are
unavailable can be omitted, except for the instruction pointer.
SYMBOL+SYMBOL_OFFSET (ID, INSTRUCTION_POINTER [MODULE+MODULE_OFFSET])

The regular expression pattern is:
(?:([\S^+]+?)(?:\+(0x(?:[0-9A-Fa-f])+))?)?\((?:([^,]+),)?(0x(?:[0-9A-Fa-f])+)
(?: \[([\S^+]+?)(?:\+(0x(?:[0-9A-Fa-f])+))\])?\)

The group IDs are:
SYMBOL = 1
SYMBOL_OFFSET = 2
ID = 3
IP = 4
MODULE = 5
MODULE_OFFSET = 6

256 IBM SDK for Java: SDK and Runtime Guide

Blocked thread information:

For threads that are in parked, waiting, or blocked states, the Javadump THREADS
section contains information about the resource that the thread is waiting for. The
information might also include the thread that currently owns that resource. Use
this information to solve problems with blocked threads.

Information about the state of a thread can be found in the THREADS section of the
Javadump output. Look for the line that begins with 3XMTHREADINFO. The following
states apply:

state:P
Parked threads

state:B
Blocked threads

state:CW
Waiting threads

To find out which resource is holding the thread in parked, waiting, or blocked
state, look for the line that begins 3XMTHREADBLOCK. This line might also indicate
which thread owns that resource.

The 3XMTHREADBLOCK section is not produced for threads that are blocked or waiting
on a JVM System Monitor, or threads that are in Thread.sleep().

Threads enter the parked state through the java.util.concurrent API. Threads enter
the blocked state through the Java synchronization operations.

The locks that are used by blocked and waiting threads are shown in the LOCKS
section of the Javadump output, along with the thread that is owning the resource
and causing the block. Locks that are being waited on might not have an owner.
The waiting thread remains in waiting state until it is notified, or until the timeout
expires. Where a thread is waiting on an unowned lock the lock is shown as Owned
by: <unowned>.

Parked threads are listed as parked on the blocker object that was passed to the
underlying java.util.concurrent.locks.LockSupport.park() method, if such an object
was supplied. If a blocker object was not supplied, threads are listed as Parked on:
<unknown>.

If the object that was passed to the park() method extends the
java.util.concurrent.locks.AbstractOwnableSynchronizer class, and uses the
methods of that class to keep track of the owning thread, then information about
the owning thread is shown. If the object does not use the
AbstractOwnableSynchronizer class, the owning thread is listed as <unknown>. The
AbstractOwnableSynchronizer class is used to provide diagnostic data, and is
extended by other classes in the java.util.concurrent.locks package. If you develop
custom locking code with the java.util.concurrent package then you can extend and
use the AbstractOwnableSynchronizer class to provide information in Java dumps
to help you diagnose problems with your locking code.

Chapter 9. Troubleshooting and support 257

Example: a blocked thread

The following sample output from the THREADS section of a Javadump shows a
thread, Thread-5, that is in the blocked state, state:B. The thread is waiting for the
resource java/lang/String@0x4D8C90F8, which is currently owned by thread main.

3XMTHREADINFO "Thread-5" J9VMThread:0x4F6E4100, j9thread_t:0x501C0A28, java/lang/Thread:0x4D8C9520,
state:B, prio=5
3XMTHREADINFO1 (native thread ID:0x664, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Blocked on: java/lang/String@0x4D8C90F8 Owned by: "main" (J9VMThread:0x00129100, java/
lang/Thread:0x00DD4798)

The LOCKS section of the Javadump shows the following, corresponding output
about the block:

1LKMONPOOLDUMP Monitor Pool Dump (flat & inflated object-monitors):
2LKMONINUSE sys_mon_t:0x501C18A8 infl_mon_t: 0x501C18E4:
3LKMONOBJECT java/lang/String@0x4D8C90F8: Flat locked by "main" (0x00129100), entry count 1
3LKWAITERQ Waiting to enter:
3LKWAITER "Thread-5" (0x4F6E4100)

Look for information about the blocking thread, main, elsewhere in the THREADS
section of the Javadump, to understand what that thread was doing when the
Javadump was taken.

Example: a waiting thread

The following sample output from the THREADS section of a Javadump shows a
thread, Thread-5, that is in the waiting state, state:CW. The thread is waiting to be
notified on java/lang/String@0x68E63E60, which is currently owned by thread
main:

3XMTHREADINFO "Thread-5" J9VMThread:0x00503D00, j9thread_t:0x00AE45C8, java/lang/Thread:0x68E04F90,
state:CW, prio=5
3XMTHREADINFO1 (native thread ID:0xC0C, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Waiting on: java/
lang/String@0x68E63E60 Owned by: "main" (J9VMThread:0x6B3F9A00, java/lang/Thread:0x68E64178)

The LOCKS section of the Javadump shows the corresponding output about the
monitor being waited on:

1LKMONPOOLDUMP Monitor Pool Dump (flat & inflated object-monitors):
2LKMONINUSE sys_mon_t:0x00A0ADB8 infl_mon_t: 0x00A0ADF4:
3LKMONOBJECT java/lang/String@0x68E63E60: owner "main" (0x6B3F9A00), entry count 1
3LKNOTIFYQ Waiting to be notified:
3LKWAITNOTIFY "Thread-5" (0x00503D00)

Example: a parked thread that uses the AbstractOwnableSynchronizer class

The following sample output shows a thread, Thread-5, in the parked state,
state:P. The thread is waiting to enter a java.util.concurrent.locks.ReentrantLock
lock that uses the AbstractOwnableSynchronizer class:

3XMTHREADINFO "Thread-5" J9VMThread:0x4F970200, j9thread_t:0x501C0A28, java/lang/Thread:0x4D9AD640,
state:P, prio=5
3XMTHREADINFO1 (native thread ID:0x157C, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Parked on: java/util/concurrent/locks/ReentrantLock$NonfairSync@0x4D9ACCF0 Owned by:
"main" (J9VMThread:0x00129100, java/lang/Thread:0x4D943CA8)

This example shows both the reference to the J9VMThread thread and the
java/lang/Thread thread that currently own the lock. However in some cases the
J9VMThread thread is null:

258 IBM SDK for Java: SDK and Runtime Guide

3XMTHREADINFO "Thread-6" J9VMThread:0x4F608D00, j9thread_t:0x501C0A28, java/lang/Thread:0x4D92AE78,
state:P, prio=5
3XMTHREADINFO1 (native thread ID:0x8E4, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Parked on: java/util/concurrent/locks/ReentrantLock$FairSync@0x4D92A960 Owned by:
"Thread-5" (J9VMThread: <null>, java/lang/Thread:0x4D92AA58)

In this example, the thread that is holding the lock, Thread-5, ended without using
the unlock() method to release the lock. Thread Thread-6 is now deadlocked. The
THREADS section of the Javadump will not contain another thread with a
java/lang/Thread reference of 0x4D92AA58. (The name Thread-5 could be reused
by another thread, because there is no requirement for threads to have unique
names.)

Example: a parked thread that is waiting to enter a user-written lock that does
not use the AbstractOwnableSynchronizer class

Because the lock does not use the AbstractOwnableSynchronizer class, no
information is known about the thread that owns the resource:

3XMTHREADINFO "Thread-5" J9VMThread:0x4FBA5400, j9thread_t:0x501C0A28, java/lang/Thread:0x4D918570,
state:P, prio=5
3XMTHREADINFO1 (native thread ID:0x1A8, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Parked on: SimpleLock@0x4D917798 Owned by: <unknown>

Example: a parked thread that called the LockSupport.park method without
supplying a blocker object

Because a blocker object was not passed to the park() method, no information is
known about the locked resource:

3XMTHREADINFO "Thread-5" J9VMThread:0x4F993300, j9thread_t:0x501C0A28, java/lang/Thread:0x4D849028,
state:P, prio=5
3XMTHREADINFO1 (native thread ID:0x1534, native priority:0x5, native policy:UNKNOWN)
3XMTHREADBLOCK Parked on: <unknown> Owned by: <unknown>

The last two examples provide little or no information about the cause of the
block. If you want more information, you can write your own locking code by
following the guidelines in the API documentation for the
java.util.concurrent.locks.LockSupport and
java.util.concurrent.locks.AbstractOwnableSynchronizer classes. By using these
classes, your locks can provide details to monitoring and diagnostic tools, which
helps you to determine which threads are waiting and which threads are holding
locks.

Shared Classes (SHARED CLASSES):

An example of the shared classes section that includes summary information about
the shared data cache.

See “printStats utility” on page 362 for a description of the summary information.
--
SHARED CLASSES subcomponent dump routine
==

Cache Created With

-Xnolinenumbers = false

Cache Summary

Chapter 9. Troubleshooting and support 259

No line number content = false
Line number content = true

ROMClass start address = 0x629EC000
ROMClass end address = 0x62AD1468
Metadata start address = 0x636F9800
Cache end address = 0x639D0000
Runtime flags = 0x00000001ECA6029F
Cache generation = 13

Cache size = 16776768
Free bytes = 12747672
ROMClass bytes = 939112
AOT code bytes = 0
AOT data bytes = 0
AOT class hierarchy bytes = 0
AOT thunk bytes = 0
Reserved space for AOT bytes = -1
Maximum space for AOT bytes = -1
JIT hint bytes = 0
JIT profile bytes = 2280
Reserved space for JIT data bytes = -1
Maximum space for JIT data bytes = -1
Java Object bytes = 0
Zip cache bytes = 791856
ReadWrite bytes = 114240
JCL data bytes = 0
Byte data bytes = 0
Metadata bytes = 18920
Class debug area size = 2162688
Class debug area % used = 7%
Class LineNumberTable bytes = 97372
Class LocalVariableTable bytes = 57956

Number ROMClasses = 370
Number AOT Methods = 0
Number AOT Data Entries = 0
Number AOT Class Hierarchy = 0
Number AOT Thunks = 0
Number JIT Hints = 0
Number JIT Profiles = 24
Number Classpaths = 1
Number URLs = 0
Number Tokens = 0
Number Java Objects = 0
Number Zip Caches = 28
Number JCL Entries = 0
Number Stale classes = 0
Percent Stale classes = 0%

Cache is 12% full

Cache Memory Status

Cache Name Memory type Cache path

sharedcc_tempcache Memory mapped file C:\Documents and Settings\Administrator\Local
Settings\Application Data\javasharedresources\C260M2A32P_sharedcc_tempcache_G13

Cache Lock Status

Lock Name Lock type TID owning lock

Cache write lock File lock Unowned
Cache read/write lock File lock Unowned

260 IBM SDK for Java: SDK and Runtime Guide

Class loaders and Classes (CLASSES):

An example of the classloader (CLASSES) section that includes Classloader
summaries and Classloader loaded classes. Classloader summaries are the defined
class loaders and the relationship between them. Classloader loaded classes are the
classes that are loaded by each class loader.

See “Class loading” on page 53 for information about the parent-delegation model.

In this example, there are the standard three class loaders:
v Application class loader (sun/misc/Launcher$AppClassLoader), which is a child

of the extension class loader.
v The Extension class loader (sun/misc/Launcher$ExtClassLoader), which is a

child of the bootstrap class loader.
v The Bootstrap class loader. Also known as the System class loader.

The example that follows shows this relationship. Take the application class loader
with the full name sun/misc/Launcher$AppClassLoader. Under Classloader
summaries, it has flags -----ta-, which show that the class loader is t=trusted and
a=application (See the example for information on class loader flags). It gives the
number of loaded classes (1) and the parent class loader as sun/misc/
Launcher$ExtClassLoader.

Under the ClassLoader loaded classes heading, you can see that the application
class loader has loaded three classes, one called Test at address 0x41E6CFE0.

In this example, the System class loader has loaded a large number of classes,
which provide the basic set from which all applications derive.
--
CLASSES subcomponent dump routine
=================================
Classloader summaries

12345678: 1=primordial,2=extension,3=shareable,4=middleware,
5=system,6=trusted,7=application,8=delegating

p---st-- Loader *System*(0x00439130)
Number of loaded libraries 5
Number of loaded classes 306
Number of shared classes 306

-x--st-- Loader sun/misc/Launcher$ExtClassLoader(0x004799E8),
Parent *none*(0x00000000)
Number of loaded classes 0

-----ta- Loader sun/misc/Launcher$AppClassLoader(0x00484AD8),
Parent sun/misc/Launcher$ExtClassLoader(0x004799E8)
Number of loaded classes 1

ClassLoader loaded classes
Loader *System*(0x00439130)

java/security/CodeSource(0x41DA00A8)
java/security/PermissionCollection(0x41DA0690)

<< 301 classes removed for clarity >>
java/util/AbstractMap(0x4155A8C0)
java/io/OutputStream(0x4155ACB8)
java/io/FilterOutputStream(0x4155AE70)

Loader sun/misc/Launcher$ExtClassLoader(0x004799E8)
Loader sun/misc/Launcher$AppClassLoader(0x00484AD8)

Test(0x41E6CFE0)
Test$DeadlockThread0(0x41E6D410)
Test$DeadlockThread1(0x41E6D6E0)

Chapter 9. Troubleshooting and support 261

Environment variables and Javadump
Although the preferred mechanism of controlling the production of Javadumps is
now by the use of dump agents using -Xdump:java, you can also use the previous
mechanism, environment variables.

The following table details environment variables specifically concerned with
Javadump production:

Environment Variable Usage Information

DISABLE_JAVADUMP Setting DISABLE_JAVADUMP to true is the
equivalent of using –Xdump:java:none and
stops the default production of javadumps.

IBM_JAVACOREDIR The default location into which the Javacore
will be written.

JAVA_DUMP_OPTS Use this environment variable to control the
conditions under which Javadumps (and
other dumps) are produced. See “Dump
agent environment variables” on page 237
for more information.

IBM_JAVADUMP_OUTOFMEMORY By setting this environment variable to false,
you disable Javadumps for an
out-of-memory exception.

Using Heapdump
The term Heapdump describes the IBM JVM mechanism that generates a dump of
all the live objects that are on the Java heap, which are being used by the running
Java application.

There are two Heapdump formats, the text or classic Heapdump format and the
Portable Heap Dump (PHD) format. Although the text or classic format is
human-readable, the PHD format is compressed and is not human-readable. Both
Heapdump formats contain a list of all object instances in the heap, including each
object address, type or class name, size, and references to other objects. The
Heapdumps also contain information about the version of the JVM that produced
the Heapdump. They do not contain any object content or data other than the class
names and the values (addresses) of the references.

You can use various tools on the Heapdump output to analyze the composition of
the objects on the heap. This analysis might help to find the objects that are
controlling large amounts of memory on the Java heap and determine why the
Garbage Collector cannot collect them.

This chapter describes:
v “Getting Heapdumps”
v “Available tools for processing Heapdumps” on page 263
v “Using -Xverbose:gc to obtain heap information” on page 263
v “Environment variables and Heapdump” on page 264
v “Text (classic) Heapdump file format” on page 264
v “Portable Heap Dump (PHD) file format” on page 266

Getting Heapdumps
By default, a Heapdump is produced when the Java heap is exhausted.
Heapdumps can be generated in other situations by use of -Xdump:heap.

262 IBM SDK for Java: SDK and Runtime Guide

To see which events will trigger a dump, use -Xdump:what. See “Using dump
agents” on page 221 for more information about the -Xdump parameter.

You can also use the com.ibm.jvm.Dump.HeapDump() method in your application
code, to generate a Heapdump programmatically.

By default, Heapdumps are produced in PHD format. To produce Heapdumps in
text format, see “Enabling text formatted ("classic") Heapdumps.”

Environment variables can also affect the generation of Heapdumps (although this
is a deprecated mechanism). See “Environment variables and Heapdump” on page
264 for more details.

Enabling text formatted ("classic") Heapdumps:

The generated Heapdump is by default in the binary, platform-independent, PHD
format, which can be examined using the available tooling.

For more information, see “Available tools for processing Heapdumps.” However,
an immediately readable view of the heap is sometimes useful. You can obtain this
view by using the opts= suboption with -Xdump:heap (see “Using dump agents” on
page 221). For example:
v -Xdump:heap:opts=CLASSIC will start the default Heapdump agents using classic

rather than PHD output.
v -Xdump:heap:defaults:opts=CLASSIC+PHD will enable both classic and PHD

output by default for all Heapdump agents.

You can also define one of the following environment variables:
v IBM_JAVA_HEAPDUMP_TEST, which allows you to perform the equivalent of

opts=PHD+CLASSIC

v IBM_JAVA_HEAPDUMP_TEXT, which allows the equivalent of opts=CLASSIC

Available tools for processing Heapdumps
There are several tools available for Heapdump analysis through IBM support Web
sites.

The preferred Heapdump analysis tool is the IBM Monitoring and Diagnostic Tools
for Java - Memory Analyzer. The tool is available in IBM Support Assistant:
http://www.ibm.com/software/support/isa/. Information about the tool can be
found at http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/

Further details of the range of available tools can be found at http://
www.ibm.com/support/docview.wss?uid=swg24009436

Using -Xverbose:gc to obtain heap information
Use the -Xverbose:gc utility to obtain information about the Java Object heap in
real time while running your Java applications.

To activate this utility, run Java with the -verbose:gc option:

java -verbose:gc

For more information, see “Memory management” on page 23.

Chapter 9. Troubleshooting and support 263

http://www.ibm.com/software/support/isa/
http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/
http://www.ibm.com/support/docview.wss?uid=swg24009436
http://www.ibm.com/support/docview.wss?uid=swg24009436

Environment variables and Heapdump
Although the preferred mechanism for controlling the production of Heapdumps is
now the use of dump agents with -Xdump:heap, you can also use the previous
mechanism, environment variables.

The following table details environment variables specifically concerned with
Heapdump production:

Environment Variable Usage Information

IBM_HEAPDUMP
IBM_HEAP_DUMP

Setting either of these to any value (such as
true) enables heap dump production by
means of signals.

IBM_HEAPDUMPDIR The default location into which the
Heapdump will be written.

JAVA_DUMP_OPTS Use this environment variable to control the
conditions under which Heapdumps (and
other dumps) are produced. See “Dump
agent environment variables” on page 237
for more information .

IBM_HEAPDUMP_OUTOFMEMORY By setting this environment variable to false,
you disable Heapdumps for an
OutOfMemory condition.

IBM_JAVA_HEAPDUMP_TEST Use this environment variable to cause the
JVM to generate both phd and text versions
of Heapdumps. Equivalent to
opts=PHD+CLASSIC on the -Xdump:heap
option.

IBM_JAVA_HEAPDUMP_TEXT Use this environment variable to cause the
JVM to generate a text (human readable)
Heapdump. Equivalent to opts=CLASSIC on
the -Xdump:heap option.

Text (classic) Heapdump file format
The text or classic Heapdump is a list of all object instances in the heap, including
object type, size, and references between objects. On z/OS, the Heapdump is in
EBCDIC.

Header record

The header record is a single record containing a string of version information.
// Version: <version string containing SDK level, platform and JVM build level>

For example:
// Version: JRE 1.7.0 z/OS s390x-64 build 20120817_119700 (pmz6470sr3-20120821_01(SR3))

Object records

Object records are multiple records, one for each object instance on the heap,
providing object address, size, type, and references from the object.

<object address, in hexadecimal> [<length in bytes of object instance, in decimal>] OBJ <object type>
<heap reference, in hexadecimal> <heap reference, in hexadecimal> ...

The object type is either a class name, or a class array type, or a primitive array
type, shown by the standard JVM type signature, see “Java VM type signatures”
on page 266

264 IBM SDK for Java: SDK and Runtime Guide

on page 266. Package names are included in the class names. References found in
the object instance are listed, excluding references to an object's class and excluding
null references.

Examples:

An object instance, length 32 bytes, of type java/lang/String, with its single
reference to a char array:
0x000007FFFFF84278 [32] OBJ java/lang/String

0x000007FFFFF842F0

An object instance, length 72 bytes, of type char array, as referenced from the
java/lang/String:
0x000007FFFFF842F0 [32] OBJ [C

An object instance, length 48 bytes, of type array of java/lang/String
0x000007FFFFF84CB8 [48] OBJ [Ljava/lang/String;

0x000007FFFFF84D70 0x000007FFFFF84D90 0x000007FFFFF84DB0 0x000007FFFFF84DD0

Class records

Class records are multiple records, one for each loaded class, providing class block
address, size, type, and references from the class.

<class object address, in hexadecimal> [<length in bytes of class object, in decimal>] CLS <class type>
<heap reference, in hexadecimal> <heap reference, in hexadecimal>...

The class type is either a class name, or a class array type, or a primitive array
type, shown by its standard JVM type signature, see “Java VM type signatures” on
page 266. Package names are included in the class names. References found in the
class block are listed, excluding null references.

Examples:

A class object, length 80 bytes, for class java/util/Vector, with heap references:
0x000007FFDFFC2F80 [80] CLS java/util/Vector

0x000007FFFFF30A90 0x000007FFDFFC3030

Trailer record 1

Trailer record 1 is a single record containing record counts.
// Breakdown - Classes: <class record count, in decimal>,
Objects: <object record count, in decimal>,
ObjectArrays: <object array record count, in decimal>,
PrimitiveArrays: <primitive array record count, in decimal>

For example:
// Breakdown - Classes: 321, Objects: 3718, ObjectArrays: 169,
PrimitiveArrays: 2141

Trailer record 2

Trailer record 2 is a single record containing totals.
// EOF: Total ’Objects’,Refs(null) :
<total object count, in decimal>,
<total reference count, in decimal>
(,total null reference count, in decimal>)

Chapter 9. Troubleshooting and support 265

For example:
// EOF: Total ’Objects’,Refs(null) : 6349,23240(7282)

Java VM type signatures

The Java VM type signatures are abbreviations of the Java types are shown in the
following table:

Java VM type signatures Java type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

L <fully qualified-class> ; <fully qualified-class>

[<type> <type>[] (array of <type>)

(<arg-types>) <ret-type> method

Portable Heap Dump (PHD) file format
A PHD Heapdump file contains a header, plus a number of records that describe
objects, arrays, and classes.

This description of the PHD Heapdump file format includes references to primitive
numbers, which are listed here with lengths:
v “byte”: 1 byte in length.
v “short”: 2 byte in length.
v “int”: 4 byte in length.
v “long”: 8 byte in length.
v “word”: 4 bytes in length on 32-bit platforms, or 8 bytes on 64-bit platforms.

The general structure of a PHD file consists of these elements:
v The UTF string portable heap dump.
v An “int” containing the PHD version number.
v An “int” containing flags:

– A value of 1 indicates that the “word” length is 64-bit.
– A value of 2 indicates that all the objects in the dump are hashed. This flag is

set for Heapdumps that use 16-bit hashcodes, that is, IBM SDK for Java 5.0 or
6 with an IBM J9 2.3, 2.4, or 2.5 virtual machine (VM). This flag is not set for
IBM SDK for Java 6 when the product includes the IBM J9 2.6 virtual
machine. These Heapdumps use 32-bit hashcodes that are only created when
used. For example, these hashcodes are created when the APIs
Object.hashCode() or Object.toString() are called in a Java application. If this
flag is not set, the presence of a hashcode is indicated by the hashcode flag on
the individual PHD records.

– A value of 4 indicates that the dump is from an IBM J9 VM.

266 IBM SDK for Java: SDK and Runtime Guide

v A “byte” containing a tag that indicates the start of the header. The tag value is
1.

v A number of header records. These records are preceded by a one-byte header
tag. The header record tags have a different range of values from the body, or
object record tags. The end of the header is indicated by the end of header tag.
Header records are optional.
– header tag 1. Not used in Heapdumps generated by the IBM J9 VM.
– header tag 2. Indicates the end of the header.
– header tag 3. Not used in Heapdumps generated by the IBM J9 VM.
– header tag 4. This tag is a UTF string that indicates the JVM version. The

string has a variable length.
v A “byte” containing the “start of dump” body tag, with a tag value of 2.
v A number of dump records. These records are preceded by a 1 byte tag. The

possible record types are:
– Short object record. Indicated by having the 0x80 bit of the tag set.
– Medium object record. Indicated by having the 0x40 bit of the tag set, and the

top bit with a value of 0.
– Primitive array record. Indicated by having the 0x20 bit of the tag set. All

other tag values have the top 3 bits with a value of 0.
– Long object record. Indicated by having a tag value of 4.
– Object array record. Indicated by having a tag value of 5.
– Class record. Indicated by having a tag value of 6.
– Long primitive array record. Indicated by having a tag value of 7.
– Object array record (revised). Indicated by having a tag value of 8.

See later sections for more information about these record types.
v A “byte” containing a tag that indicates the end of the Heapdump. This tag has

a value of 3.

Different versions of PHD are produced, depending on the version of the J9 virtual
machine (VM):
v J9 VM versions 2.4, 2.5, and 2.6 produce PHD version 5.
v J9 VM version 2.3 produces PHD version 4, until IBM SDK for Java 5.0 service

refresh 9. From service refresh 10, the J9 VM version 2.3 produces PHD version
5. See APAR IZ34218.

To find out which IBM J9 VM you are using with the IBM SDK or JRE, type java
-version on the command line and inspect the output.

PHD object records:

PHD files can contain short, medium, and long object records, depending on the
number of object references in the Heapdump.

Short object record

The short object record includes detailed information within the tag “byte”. This
information includes:
v The 1 byte tag. The top bit (0x80) is set and the following 7 bits in descending

order contain:
– 2 bits for the class cache index. The value represents an index into a cache of

the last four classes used.

Chapter 9. Troubleshooting and support 267

– 2 bits containing the number of references. Most objects contain 0 - 3
references. If there are 4 - 7 references, the medium object record is used. If
there are more than seven references, the long object record is used.

– 1 bit to indicate whether the gap is a “byte” or a “short”. The gap is the
difference between the address of this object and the previous object. If set,
the gap is a “short”. If the gap does not fit into a “short”, the “long” object
record form is used.

– 2 bits indicating the size of each reference. The following values apply:
- 0 indicates “byte” format.
- 1 indicates “short” format.
- 2 indicates “integer” format.
- 3 indicates “long” format.

v A “byte” or a “short” containing the gap between the address of this object and
the address of the preceding object. The value is signed and represents the
number of 32-bit “words” between the two addresses. Most gaps fit into 1 byte.

v If all objects are hashed, a “short” containing the hashcode.
v The array of references, if references exist. The tag shows the number of

elements, and the size of each element. The value in each element is the gap
between the address of the references and the address of the current object. The
value is a signed number of 32-bit “words”. Null references are not included.

Medium object record

These records provide the actual address of the class rather than a cache index.
The format is:
v The 1 byte tag. The second bit (0x40) is set and the following 6 bits in

descending order contain:
– 3 bits containing the number of references.
– 1 bit to indicate whether the gap is a 1 byte value or a “short” For more

information, see the description in the short record format.
– 2 bits indicating the size of each reference. For more information, see the

description in the short record format.
v A “byte” or a “short” containing the gap between the address of this object and

the address of the preceding object. For more information, see the description in
the short record format.

v A “word” containing the address of the class of this object.
v If all objects are hashed, a “short” containing the hashcode.
v The array of references. For more information, see the description in the short

record format.

Long object record

This record format is used when there are more than seven references, or if there
are extra flags or a hashcode. The record format is:
v The 1 byte tag, containing the value 4.
v A “byte” containing flags, with these bits in descending order:

– 2 bits to indicate whether the gap is a “byte”, “short”, “int” or “long” format.
– 2 bits indicating the size of each reference. For more information, see the

description in the short record format.
– 2 unused bits.

268 IBM SDK for Java: SDK and Runtime Guide

– 1 bit indicating if the object was hashed and moved. If this bit is set then the
record includes the hashcode.

– 1 bit indicating if the object was hashed.
v A “byte”, “short”, “int” or “long” containing the gap between the address of this

object and the address of the preceding object. For more information, see the
description in the short record format.

v A “word” containing the address of the class of this object.
v If all objects are hashed, a “short” containing the hashcode. Otherwise, an

optional “int” containing the hashcode if the hashed and moved bit is set in the
record flag byte.

v An “int” containing the length of the array of references.
v The array of references. For more information, see the description in the short

record format.

PHD array records:

PHD array records can cover primitive arrays and object arrays.

Primitive array record

The primitive array record contains:
v The 1 byte tag. The third bit (0x20) is set and the following 5 bits in descending

order contain:
– 3 bits containing the array type. The array type values are:

- 0 = bool
- 1 = char
- 2 = float
- 3 = double
- 4 = byte
- 5 = short
- 6 = int
- 7 = long

– 2 bits indicating the length of the array size and also the length of the gap.
These values apply:
- 0 indicates a “byte”.
- 1 indicates a “short”.
- 2 indicates an “int”.
- 3 indicates a “long”.

v “byte”, “short”, “int” or “long” containing the gap between the address of this
object and the address of the preceding object. For more information, see the
description in the short object record format.

v “byte”, “short”, “int” or “long” containing the array length.
v If all objects are hashed, a “short” containing the hashcode.

Long primitive array record

The long primitive array record is used when a primitive array has been hashed.
The format is:
v The 1 byte tag containing the value 7.
v A “byte” containing flags, with these bits in descending order:

Chapter 9. Troubleshooting and support 269

– 3 bits containing the array type. For more information, see the description of
the primitive array record.

– 1 bit indicating the length of the array size and also the length of the gap.
The range for this value includes:
- 0 indicating a “byte”.
- 1 indicating a “word”.

– 2 unused bits.
– 1 bit indicating if the object was hashed and moved. If this bit is set, the

record includes the hashcode.
– 1 bit indicating if the object was hashed.

v a “byte” or “word” containing the gap between the address of this object and
the address of the preceding object. For more information, see the description in
the short object record format.

v a “byte” or “word” containing the array length.
v If all objects are hashed, a “short” containing the hashcode. Otherwise, an

optional “int” containing the hashcode if the hashed and moved bit is set in the
record flag byte.

Object array record

The object array record format is:
v The 1 byte tag containing the value 5.
v A “byte” containing flags with these bits in descending order:

– 2 bits to indicate whether the gap is “byte”, “short”, “int” or “long”.
– 2 bits indicating the size of each reference. For more information, see the

description in the short record format.
– 2 unused bits.
– 1 bit indicating if the object was hashed and moved. If this bit is set, the

record includes the hashcode.
– 1 bit indicating if the object was hashed.

v A “byte”, “short”, “int” or “long” containing the gap between the address of this
object and the address of the preceding object. For more information, see the
description in the short record format.

v A “word” containing the address of the class of the objects in the array. Object
array records do not update the class cache.

v If all objects are hashed, a “short” containing the hashcode. If the hashed and
moved bit is set in the records flag, this field contains an “int”.

v An “int” containing the length of the array of references.
v The array of references. For more information, see the description in the short

record format.

Object array record (revised) - from PHD version 5

This array record is similar to the previous array record with two key differences:
1. The tag value is 8.
2. An extra “int” value is shown at the end. This int contains the true array

length, shown as a number of array elements. The true array length might
differ from the length of the array of references because null references are
excluded.

270 IBM SDK for Java: SDK and Runtime Guide

This record type was added in PHD version 5.

PHD class records:

The PHD class record encodes a class object.

Class record

The format of a class record is:
v The 1 byte tag, containing the value 6.
v A “byte” containing flags, with these bits in descending order:

– 2 bits to indicate whether the gap is a “byte”, “short”, “int” or “long”.
– 2 bits indicating the size of each static reference. For more information, see

the description in the short record format.
– 1 bit indicating if the object was hashed and moved. If this bit is set, the

record includes the hashcode.
v A “byte”, “short”, “int” or “long” containing the gap between the address of this

class and the address of the preceding object. For more information, see the
description in the short record format.

v An “int” containing the instance size.
v If all objects are hashed, a “short” containing the hashcode. Otherwise, an

optional “int” containing the hashcode if the hashed and moved bit is set in the
record flag byte.

v A “word” containing the address of the superclass.
v A UTF string containing the name of this class.
v An “int” containing the number of static references.
v The array of static references. For more information, see the description in the

short record format.

Using system dumps and the dump viewer
The JVM can generate native system dumps, also known as core dumps, under
configurable conditions.

System dumps contain a binary copy of process memory and are not
human-readable. The dumps contain a complete copy of the Java heap, including
the contents of all Java objects in the application. If you require a dump that does
not contain this application data, see these topics: “Using Javadump” on page 240
or “Using Heapdump” on page 262.

Dump agents are the preferred method for controlling the generation of system
dumps. For more information, see “Using dump agents” on page 221. To maintain
compatibility with earlier versions, the JVM supports the use of environment
variables for triggering system dumps. For more information, see “Dump agent
environment variables” on page 237.

The dump viewer that is provided in the SDK is a cross-platform line-mode tool
for viewing and analyzing system dumps. The following operating system tools
can also be used:
v AIX: dbx
v Linux: gdb
v Windows: windbg
v z/OS: ISPF

Chapter 9. Troubleshooting and support 271

This chapter tells you about system dumps and how to use the dump viewer. It
contains these topics:
v “Overview of system dumps”
v “System dump defaults”
v “Using the dump viewer” on page 273

Overview of system dumps
The JVM can produce system dumps in response to specific events. A system
dump is a raw binary dump of the process memory when the dump agent is
triggered by a failure or by an event for which a dump is requested.

Generally, you use a tool to examine the contents of a system dump. A dump
viewer tool is provided in the SDK, as described in this section, or you could use a
platform-specific debugger to examine the dump.

For dumps triggered by a General Protection Fault (GPF), dumps produced by the
JVM contain some context information that you can read. You can find this failure
context information by searching in the dump for the eye-catcher
J9Generic_Signal_Number

For example:
J9Generic_Signal_Number=00000004 ExceptionCode=c0000005 ExceptionAddress=7FAB506D ContextFlags=0001003f
Handler1=7FEF79C0 Handler2=7FED8CF0 InaccessibleAddress=0000001C
EDI=41FEC3F0 ESI=00000000 EAX=41FB0E60 EBX=41EE6C01
ECX=41C5F9C0 EDX=41FB0E60
EIP=7FAB506D ESP=41C5F948 EBP=41EE6CA4
Module=E:\testjava\java7-32\sdk\jre\bin\j9jit24.dll
Module_base_address=7F8D0000 Offset_in_DLL=001e506d

Method_being_compiled=org/junit/runner/JUnitCore.runMain([Ljava/lang/String;)Lorg/junit/runner/Result;

Dump agents are the primary method for controlling the generation of system
dumps. See “Using dump agents” on page 221 for more information on dump
agents.

System dump defaults
There are default agents for producing system dumps when using the JVM.

Using the -Xdump:what option shows the following system dump agent:
-Xdump:system:

events=gpf+abort+traceassert+corruptcache,
label=/home/user/core.%Y%m%d.%H%M%S.%pid.dmp,
range=1..0,
priority=999,
request=serial

This output shows that by default a system dump is produced in these cases:
v A general protection fault occurs. (For example, branching to memory location 0,

or a protection exception.)
v An abort is encountered. (For example, native code has called abort() or when

using kill -ABRT on Linux)

Attention: The JVM used to produce this output when a SIGSEGV signal was
encountered. This behavior is no longer supported. Use the ABRT signal to
produce dumps.

272 IBM SDK for Java: SDK and Runtime Guide

Using the dump viewer
System dumps are produced in a platform-specific binary format, typically as a
raw memory image of the process that was running at the time the dump was
initiated. The SDK dump viewer allows you to navigate around the dump, and
obtain information in a readable form, with symbolic (source code) data where
possible.

You can view Java information (for example, threads and objects on the heap) and
native information (for example, native stacks, libraries, and raw memory
locations). You can run the dump viewer on one platform to work with dumps
from another platform. For example, you can look at Linux dumps on a Windows
platform.

You can also explore the dump file by using IBM Monitoring and Diagnostic Tools
for Java - Interactive Diagnostic Data Explorer. This tool is a GUI-based version of
the dump viewer, which provides extra functionality such as command assistance
and the ability to save the tool output.

Dump viewer: jdmpview

The dump viewer is a command-line tool that allows you to examine the contents
of system dumps produced from the JVM. The dump viewer requires metadata
created by the jextract utility, if the system dump was generated by a version of
the IBM J9 virtual machine before V2.6. To check the version of a JVM, use the
java -version command and examine the output. The dump viewer allows you to
view both Java and native information from the time the dump was produced.

jdmpview is in the directory sdk/bin.

To start jdmpview, from a shell prompt, enter:
jdmpview -zip <zip file>

or
jdmpview -core <core file> [-xml <xml file>]

The jdmpview tool accepts these parameters:

-core <core file>
Specify a dump file.

-notemp
By default, when you specify a file by using the -zip option, the contents are
extracted to a temporary directory before processing. Use the -notemp option to
prevent this extraction step, and run all subsequent commands in memory.

-xml <xml file>
Specify a metadata file. jdmpview guesses the name of the XML file if the -xml
option is not present. This option is not required for core files generated from
an IBM J9 2.6 virtual machine.

-zip <zip file>
Specify a compressed file containing the core file and associated XML file
(produced by jextract).

Note: The -core and -xml options can be used with the -zip option to specify the
core and XML files in the compressed file. Without the -core or -xml options,

Chapter 9. Troubleshooting and support 273

|
|
|
|

|

jdmpview shows multiple contexts, one for each source file that it identified in the
compressed file. For more information, see “Support for compressed files.”

On z/OS, you can copy the dump to an HFS file and supply that as input to
jdmpview, or you can supply a fully qualified MVS data set name. For example:
> jdmpview -core USER1.JVM.TDUMP.SSHD6.D070430.T092211
Loading image from DTFJ...
DTFJView version 1.0.24
Using DTFJ API version 1.3

After jdmpview processes the arguments with which it was started, it shows this
message:
For a list of commands, type "help"; for how to use "help", type "help help"
>

When you see this message, you can start using commands.

When jdmpview is used with the -zip option, temporary disk space is required to
uncompress the dump files from the compressed file. jdmpview uses the system
temporary directory, /tmp on AIX, Linux, or zOS. An alternative temporary
directory can be specified using the Java system property java.io.tmpdir.
jdmpview shows an error message if insufficient disk space is available in the
temporary directory. Use the -notemp option to prevent jdmpview from creating
these temporary files. The temporary files are deleted when jdmpview exits or when
you enter the close command on the command line.

You can significantly improve the performance of jdmpview against large dumps by
ensuring that your system has enough memory available to avoid paging. On large
dumps (that is, ones with large numbers of objects on the heap), you might have
to run jdmpview using the -Xmx option to increase the maximum heap available.
You might also have to increase the maximum heap size if you use the -notemp
option, especially if you are analyzing a large heap, because this option specifies
that all analysis is done in memory.
jdmpview -J-Xmx<n> -zip <zip file>

To pass command-line arguments to the JVM, you must prefix them with -J.

Support for compressed files:

When you run the jdmpview tool on a compressed file, the tool detects and shows
all system dump, Java dump, and heap dump files within the compressed file.
Because of this behavior, more than one context might be displayed when you start
jdmpview.

The context allows you to select which dump file you want to view. On z/OS, a
system dump can contain multiple address spaces and multiple JVM instances. In
this case, the context allows you to select the address space and JVM instance
within the dump file.

Example 1

This example shows the output for a .zip file that contains a single system dump
from a Windows system. The example command to produce this output is
jdmpview -zip core.zip:

274 IBM SDK for Java: SDK and Runtime Guide

|
|

|
|

|
|
|

|

|

|
|
|
|

|
|
|
|

|

|
|
|

Available contexts (* = currently selected context) :

Source : file:/C:/test/core.zip#core.20120329.165054.4176.0001.dmp
*0 : PID: 4176 : JRE 1.7.0 Windows 7 amd64-64 build 20120228_104045 (pwa6470sr1-20120302_01(SR1))

Example 2

This example shows the output for a compressed file that contains a system dump
from a z/OS system. The system dump contains multiple address spaces and two
JVM instances:

Available contexts (* = currently selected context) :

Source : file:///D:/examples/MV2C.SVCDUMP.D120228.T153207.S00053
0 : ASID: 0x1 : No JRE : No JRE
1 : ASID: 0x3 : No JRE : No JRE
2 : ASID: 0x4 : No JRE : No JRE
3 : ASID: 0x6 : No JRE : No JRE
4 : ASID: 0x7 : No JRE : No JRE
*5 : ASID: 0x73 EDB: 0x8004053a0 : JRE 1.7.0 z/OS s390x-64 build 20120228_104045 (pmz6470sr1-20120302_01(SR1))
6 : ASID: 0x73 EDB: 0x83d2053a0 : JRE 1.7.0 z/OS s390x-64 build 20120228_104045 (pmz6470sr1-20120302_01(SR1))
7 : ASID: 0x73 EDB: 0x4a7bd9e8 : No JRE
8 : ASID: 0xffff : No JRE : No JRE

Example 3

This example shows the output for a compressed file that contains several system
dump, Java dump, and heap dump files:

Available contexts (* = currently selected context) :

Source : file:///D:/Samples/multi-image.zip#core1.dmp
*0 : PID: 10463 : JRE 1.7.0 Linux amd64-64 build 20120228_104045 pxa6470sr1-20120302_01(SR1))

Source : file:///D:/Samples/multi-image.zip#core2.dmp
1 : PID: 12268 : JRE 1.7.0 Linux amd64-64 build 20120228_104045 pxa6470sr1-20120302_01(SR1))

Source : file:///D:/Samples/multi-image.zip#javacore.20120228.100128.10441.0002.txt
2 : JRE 1.7.0 Linux amd64-64 build 20120228_94967 (pxa6470sr1-20120228_01(SR1))

Source : file:///D:/Samples/multi-image.zip#javacore.20120228.090916.14653.0002.txt
3 : JRE 1.7.0 Linux amd64-64 build 20120228_94967 (pxa6470sr1-20120228_01(SR1))

Source : file:///D:/Samples/multi-image.zip#heapdump.20130711.093819.4336.0001.phd
4 : JRE 1.7.0 Windows 7 amd64-64 build 20130711_156087 (pwa6470sr1-20111107_01(SR1))

Working with Java dump and heap dump files

When working with Java dump and heap dump files, some jdmpview commands
do not produce any output. This result is because Java dump files contain only a
summary of JVM and native information (excluding the contents of the Java heap),
and heap dump files contain only summary information about the Java heap. See
Example 3 listed previously; context 4 is derived from a heap dump file:

Source : file:///D:/Samples/multi-image.zip#heapdump.20130711.093819.4336.0001.phd
4 : JRE 1.7.0 Windows 7 amd64-64 build 20130711_156087 (pwa6470sr1-20130715_01 SR1))

If you select this context, and run the info system command, some data is shown
as unavailable:
CTX:0> context 4
CTX:4> info system
Machine OS: Windows 7
Machine name: data unavailable
Machine IP address(es):

data unavailable
System memory: data unavailable

Chapter 9. Troubleshooting and support 275

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

However, because this context is for a heap dump file, the info class command
can provide a summary of the Java heap:
CTX:4> info class
instances total size class name
0 0 sun/io/Converters
1 16 com/ibm/tools/attach/javaSE/FileLock$syncObject
2 32 com/ibm/tools/attach/javaSE/AttachHandler$syncObject
1 40 sun/nio/cs/UTF_16LE
....
Total number of objects: 6178
Total size of objects: 2505382

Using jextract:

Use the jextract utility to process system dumps.

For an analysis of core dumps from Linux and AIX platforms, copies of executable
files and libraries are required along with the system dump. You must run the
jextract utility provided in the SDK to collect these files. You must run jextract
using the same SDK level, on the same system that produced the system dump.
The jextract utility compresses the dump, executable files, and libraries into a
single .zip file for use in subsequent problem diagnosis.

For Java 7 SDKs on Windows and z/OS platforms, you do not need to run the
jextract utility.

For Java 6 and Java 5.0 SDKs, containing versions of the IBM J9 virtual machine
before V2.6, you must still run the jextract utility for all platforms.

When a core file is generated, run the jextract utility against the core file with the
following syntax:
jextract <core file name> [<zip_file>]

to generate a compressed file in the current directory, containing the dump and the
required executable file and libraries. The jextract utility is in the directory
sdk/jre/bin. If you run jextract on a JVM level that is different from the one on
which the dump was produced you see the following messages:
J9RAS.buildID is incorrect (found e8801ed67d21c6be, expecting eb4173107d21c673).
This version of jextract is incompatible with this dump.
Failure detected during jextract, see previous message(s).

Remember: If you are analyzing a dump from a JVM that used -Xcompressedrefs,
use -J-Xcompressedrefs to run jextract using compressed references. See
“Compressed references” on page 27 for more information about compressed
references.

The contents of the .zip file produced and the contents of the XML are subject to
change. You are advised not to design tools based on the contents of these files.

On z/OS, you can copy the dump to an HFS file and pass that as input to
jextract. Alternatively you can pass a fully qualified MVS data set name as input
to jextract. jextract is unable to read data sets larger than 2 GB directly using a
31 bit JVM and so you must use COPYDUMP first or move the dump to HFS. An
example of the jextract command is:
> jextract USER1.JVM.TDUMP.SSHD6.D070430.T092211
Loading dump file...
Read memory image from USER1.JVM.TDUMP.SSHD6.D070430.T092211
VM set to 10BA5028

276 IBM SDK for Java: SDK and Runtime Guide

|
|

|
|
|
|
|
|
|
|
|

|

Dumping JExtract file to USER1.JVM.TDUMP.SSHD6.D070430.T092211.xml
<!-- extracting gpf state -->
...
Finished writing JExtract file in 5308ms
Creating archive file: USER1.JVM.TDUMP.SSHD6.D070430.T092211.zip
Adding "USER1.JVM.TDUMP.SSHD6.D070430.T092211" to archive
Adding "USER1.JVM.TDUMP.SSHD6.D070430.T092211.xml" to archive
Adding "/u/build/sdk/jre/lib/J9TraceFormat.dat" to archive
jextract complete.

This produces a compressed (.zip) file in the current HFS directory.

Problems to tackle with the dump viewer:

Dumps of JVM processes can arise either when you use the -Xdump option on the
command line or when the JVM is not in control (such as user-initiated dumps).

jdmpview is most useful in diagnosing customer-type problems and problems with
the class libraries. A typical scenario is OutOfMemoryError exceptions in customer
applications.

For problems involving gpfs, ABENDS, SIGSEVs, and similar problems, you will
obtain more information by using a system debugger (gdb) with the dump file.
The syntax for the gdb command is
gdb <full_java_path> <system_dump_file>

For example:
gdb /sdk/jre/bin/java core.20060808.173312.9702.dmp

jdmpview can still provide useful information when used alone. Because jdmpview
allows you to observe stacks and objects, the tool enables introspection into a Java
program in the same way as a Java debugger. It allows you to examine objects,
follow reference chains and observe Java stack contents. The main difference (other
than the user interface) is that the program state is frozen; thus no stepping can
occur. However, this allows you to take periodic program snapshots and perform
analysis to see what is happening at different times.

Working with dumps containing multiple JVMs:

On z/OS, a system dump can contain multiple address spaces, and an address
space can contain multiple JVMs. You can work with these dumps by using the
jdmpview command, which separates the dump into contexts.

When you start the jdmpview tool, or run the context command, the tool shows a
list of available contexts:

CTX:5> context
Available contexts (* = currently selected context) :

0 : ASID: 0x1 : No JRE : No JRE
1 : ASID: 0x3 : No JRE : No JRE
2 : ASID: 0x4 : No JRE : No JRE
3 : ASID: 0x6 : No JRE : No JRE
4 : ASID: 0x7 : No JRE : No JRE
*5 : ASID: 0x73 EDB: 0x83d2053a0 : JRE 1.7.0 z/OS s390x-64 build 20111017_75924 (pmz6460_26-20111028_01)
6 : ASID: 0x73 EDB: 0x8004053a0 : JRE 1.7.0 z/OS s390x-64 build 20111017_75924 (pmz6460_26-20111028_01)
7 : ASID: 0x73 EDB: 0x4a7bd9e8 : No JRE
8 : ASID: 0xffff : No JRE : No JRE

Chapter 9. Troubleshooting and support 277

|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

Each address space (ASID) is listed as a separate context. Each JVM is also listed as
a separate context. In the example, contexts 5 and 6, in the address space 0x73, are
separate JVMs.

The current context is indicated by an asterisk (*), and by the prompt (CTX:5> in
this example). If you enter a command at the prompt, the action is applied to the
current context. You can switch between contexts by entering context n, where n is
the context that you want to switch to. For example:
CTX:5> context 6
CTX:6>

Using the dump viewer in batch mode:

For long running or routine jobs, jdmpview can be used in batch mode.

You can run a single command without specifying a command file by appending
the command to the end of the jdmpview command line. For example:
jdmpview -core mycore.dmp info class

When specifying jdmpview commands that accept a wildcard parameter, you must
replace the wildcard symbol with ALL to prevent the shell interpreting the wildcard
symbol. For example, in interactive mode, the command info thread * must be
specified as:
jdmpview -core mycore.dmp info thread ALL

Batch mode is controlled with the following command-line options:

-cmdfile <path to command file>
A file containing a series of jdmpview commands. These commands are read
and run sequentially.

-charset <character set name>
The character set for the commands specified in -cmdfile.

The character set name must be a supported charset as defined in
java.nio.charset.Charset. For example, US-ASCII.

-outfile <path to output file>
The file to record any output generated by commands.

-overwrite
If the file specified in -outfile exists, this option overwrites the file.

Consider a command file, commands.txt with the following entries:
info system
info proc

The jdmpview command can be run in the following way:
jdmpview -outfile out.txt [-overwrite] -cmdfile commands.txt -core <path to core file>

An error message is shown if the output file exists and you do not specify the
-overwrite option.

The following output is shown in the console and in the output file, out.txt:
DTFJView version 3.26.45, using DTFJ version 1.10.26062
Loading image from DTFJ...

For a list of commands, type "help"; for how to use "help", type "help help"
Available contexts (* = currently selected context) :

278 IBM SDK for Java: SDK and Runtime Guide

|
|
|

|
|
|
|

|
|

|

|

|
|

|

|
|
|
|

|

|

|
|
|

|
|

|
|

|
|

|
|

|

|
|

|

|

|
|

|
|
|
|
|
|

Source : file:/home/test/core.20120228.113859.14043.0001.dmp
*0 : PID: 14073 : JRE 1.7.0 Linux ppc64-64 build 20120216_102976 (pxp6470sr1-20120221_01(SR1))

> info system

Machine OS: Linux
Machine name: madras
Machine IP address(es):

9.20.88.155
System memory: 8269398016

Java version :

JRE 1.7.0 Linux ppc64-64 build 20120216_102976 (pxp6470sr1-20120221_01(SR1))

> info proc

Native thread IDs:
14044 14073

Command line arguments
sdk/jre/bin/java -Xdump:system:events=vmstop -version

JIT was enabled for this runtime
AOT enabled, FSD enabled, HCR disabled, JIT enabled

Environment variables:
LESSKEY=/etc/lesskey.bin
LESS_ADVANCED_PREPROCESSOR=no
HOSTTYPE=ppc64
CSHEDIT=emacs
G_BROKEN_FILENAMES=1
LESSOPEN=lessopen.sh %s
MINICOM=-c on
PATH=/home/test/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/lib/mit/bin:/usr/lib/mit/sbin
INFODIR=/usr/local/info:/usr/share/info:/usr/info

Commands available in jdmpview:

jdmpview is an interactive, command-line tool to explore the information from a
JVM system dump and perform various analysis functions.

cd <directory_name>
Changes the working directory to <directory_name>. The working directory is
used for log files. Logging is controlled by the set logging command. Use the
pwd command to query the current working directory.

deadlock
This command detects deadlock situations in the Java application that was
running when the system dump was produced. Example output:
deadlock loop:
thread: Thread-2 (monitor object: 0x9e32c8) waiting for =>
thread: Thread-3 (monitor object: 0x9e3300) waiting for =>
thread: Thread-2 (monitor object: 0x9e32c8)

Threads are identified by their Java thread name, whereas object monitors are
identified by the address of the object in the Java heap. You can obtain further
information about the threads using the info thread * command. You can
obtain further information about the monitors using the x/J <0xaddr>
command.

In this example, the deadlock analysis shows that Thread-2 is waiting for a
lock held by Thread-3, which is in turn waiting for a lock held earlier by
Thread-2.

find <pattern>,<start_address>,<end_address>,<memory_boundary>,
<bytes_to_print>,<matches_to_display>

Chapter 9. Troubleshooting and support 279

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

This command searches for <pattern> in the memory segment from
<start_address> to <end_address> (both inclusive), and shows the number of
matching addresses you specify with <matches_to_display>. You can also display
the next <bytes_to_print> bytes for the last match.

By default, the find command searches for the pattern at every byte in the
range. If you know the pattern is aligned to a particular byte boundary, you
can specify <memory_boundary> to search every <memory_boundary> bytes. For
example, if you specify a <memory_boundary> of "4", the command searches for
the pattern every 4 bytes.

findnext
Finds the next instance of the last string passed to find or findptr. It repeats
the previous find or findptr command, depending on which one was issued
last, starting from the last match.

findptr <pattern>,<start_address>,<end_address>,<memory_boundary>,
<bytes_to_print>,<matches_to_display>

Searches memory for the given pointer. findptr searches for <pattern> as a
pointer in the memory segment from <start_address> to <end_address> (both
inclusive), and shows the number of matching addresses you specify with
<matches_to_display>. You can also display the next <bytes_to_print> bytes for
the last match.

By default, the findptr command searches for the pattern at every byte in the
range. If you know the pattern is aligned to a particular byte boundary, you
can specify <memory_boundary> to search every <memory_boundary> bytes. For
example, if you specify a <memory_boundary> of "4", the command searches for
the pattern every 4 bytes.

help [<command_name>]
Shows information for a specific command. If you supply no parameters, help
shows the complete list of supported commands.

info thread [*|<thread_name>]
Displays information about Java and native threads. The following information
is displayed for all threads (“*”), or the specified thread:
v Thread id
v Registers
v Stack sections
v Thread frames: procedure name and base pointer
v Associated Java thread, if applicable:

– Name of Java thread
– Address of associated java.lang.Thread object
– State (shown in JVMTI and java.lang.Thread.State formats)
– The monitor the thread is waiting for
– Thread frames: base pointer, method, and filename:line

If you supply no parameters, the command shows information about the
current thread.

info system
Displays the following information about the system that produced the core
dump:
v amount of memory
v operating system
v virtual machine or virtual machines present

280 IBM SDK for Java: SDK and Runtime Guide

info class [<class_name>]
Displays the inheritance chain and other data for a given class. If a class name
is passed to info class, the following information is shown about that class:
v name
v ID
v superclass ID
v class loader ID
v modifiers
v number of instances and total size of instances
v inheritance chain
v fields with modifiers (and values for static fields)
v methods with modifiers

If no parameters are passed to info class, the following information is shown:
v the number of instances of each class.
v the total size of all instances of each class.
v the class name
v the total number of instances of all classes.
v the total size of all objects.

info proc
Displays threads, command-line arguments, environment variables, and shared
modules of the current process.

Note: To view the shared modules used by a process, use the info sym
command.

info jitm
Displays JIT compiled methods and their addresses:
v Method name and signature
v Method start address
v Method end address

info lock
Displays a list of available monitors and locked objects

info sym
Displays a list of available modules. For each process in the address spaces,
this command shows a list of module sections for each module, their start and
end addresses, names, and sizes.

info mmap
Displays a list of all memory segments in the address space: Start address and
size.

info heap [*|<heap_name>]
If no parameters are passed to this command, the heap names and heap
sections are shown.

Using either “*” or a heap name shows the following information about all
heaps or the specified heap:
v heap name
v (heap size and occupancy)
v heap sections

– section name
– section size
– whether the section is shared
– whether the section is executable
– whether the section is read only

Chapter 9. Troubleshooting and support 281

heapdump [<heaps>]
Generates a Heapdump to a file. You can select which Java heaps to dump by
listing the heap names, separated by spaces. To see which heaps are available,
use the info heap command. By default, all Java heaps are dumped.

hexdump <hex_address> <bytes_to_print>
Displays a section of memory in a hexdump-like format. Displays
<bytes_to_print> bytes of memory contents starting from <hex_address>.

+ Displays the next section of memory in hexdump-like format. This command is
used with the hexdump command to enable easy scrolling forwards through
memory. The previous hexdump command is repeated, starting from the end
of the previous one.

- Displays the previous section of memory in hexdump-like format. This
command is used with the hexdump command to enable easy scrolling
backwards through memory. The previous hexdump command is repeated,
starting from a position before the previous one.

pwd
Displays the current working directory, which is the directory where log files
are stored.

quit
Exits the core file viewing tool; any log files that are currently open are closed
before exit.

set heapdump <options>
Configures Heapdump generation settings.

The options are:

phd
Set the Heapdump format to Portable Heapdump, which is the default.

txt
Set the Heapdump format to classic.

file <file>
Set the destination of the Heapdump.

multiplefiles [on|off]
If multiplefiles is set to on, each Java heap in the system dump is written
to a separate file. If multiplefiles is set to off, all Java heaps are written
to the same file. The default is off.

set logging <options>
Configures logging settings, starts logging, or stops logging. This parameter
enables the results of commands to be logged to a file.

The options are:

[on|off]
Turns logging on or off. (Default: off)

file <filename>
sets the file to log to. The path is relative to the directory returned by the
pwd command, unless an absolute path is specified. If the file is set while
logging is on, the change takes effect the next time logging is started. Not
set by default.

overwrite [on|off]
Turns overwriting of the specified log file on or off. When overwrite is off,

282 IBM SDK for Java: SDK and Runtime Guide

log messages are appended to the log file. When overwrite is on, the log
file is overwritten after the set logging command. (Default: off)

redirect [on|off]
Turns redirecting to file on or off, with off being the default. When logging
is set to on:
v a value of on for redirect sends non-error output only to the log file.
v a value of off for redirect sends non-error output to the console and log

file.

Redirect must be turned off before logging can be turned off. (Default: off)

show heapdump <options>
Displays the current Heapdump generation settings.

show logging
Displays the current logging settings:
v set_logging = [on|off]
v set_logging_file =
v set_logging_overwrite = [on|off]
v set_logging_redirect = [on|off]
v current_logging_file =
v The file that is currently being logged to might be different from

set_logging_file, if that value was changed after logging was started.

whatis <hex_address>
Displays information about what is stored at the given memory address,
<hex_address>. This command examines the memory location at <hex_address>
and tries to find out more information about this address. For example:
--
> whatis 0x8e76a8

heap #1 - name: Default@19fce8
0x8e76a8 is within heap segment: 8b0000 -- cb0000
0x8e76a8 is start of an object of type java/lang/Thread
--

x/ (examine)
Passes the number of items to display and the unit size, as listed in the
following table, to the sub-command. For example, x/12bd. This command is
similar to the use of the x/ command in gdb, including the use of defaults.

Table 9. Unit sizes

Abbreviation Unit Size

b Byte 8-bit

h Half word 16-bit

w Word 32-bit

g Giant word 64-bit

x/J [<class_name>|<0xaddr>]
Displays information about a particular object, or all objects of a class. If
<class_name> is supplied, all static fields with their values are shown, followed
by all objects of that class with their fields and values. If an object address (in
hex) is supplied, static fields for that object's class are not shown; the other
fields and values of that object are printed along with its address.

Note: This command ignores the number of items and unit size passed to it by
the x/ command.

Chapter 9. Troubleshooting and support 283

x/D <0xaddr>
Displays the integer at the specified address, adjusted for the hardware
architecture this dump file is from. For example, the file might be from a big
endian architecture.

Note: This command uses the number of items and unit size passed to it by
the x/ command.

x/X <0xaddr>
Displays the hex value of the bytes at the specified address, adjusted for the
hardware architecture this dump file is from. For example, the file might be
from a big endian architecture.

Note: This command uses the number of items and unit size passed to it by
the x/ command.

x/K <0xaddr>
Where the size is defined by the pointer size of the architecture, this parameter
shows the value of each section of memory. The output is adjusted for the
hardware architecture this dump file is from, starting at the specified address.
It also displays a module with a module section and an offset from the start of
that module section in memory if the pointer points to that module section. If
no symbol is found, it displays a “*” and an offset from the current address if
the pointer points to an address in 4KB (4096 bytes) of the current address.
Although this command can work on an arbitrary section of memory, it is
probably more useful on a section of memory that refers to a stack frame. To
find the memory section of a thread stack frame, use the info thread
command.

Note: This command uses the number of items and unit size passed to it by
the x/ command.

Example session:

This example session illustrates a selection of the commands available and their
use.

In the example session, some lines have been removed for clarity (and terseness).

User input is prefaced by a greater than symbol (>).
TLBA82ME:/team/test/mz64$ sdk/bin/jdmpview -core J9BUILD.TEST.DMP.X001
DTFJView version 4.26.58, using DTFJ version 1.10.26068
Loading image from DTFJ...

For a list of commands, type "help"; for how to use "help", type "help help"
Available contexts (* = currently selected context) :

Source : file:///team/test/J9BUILD.TEST.DMP.X001
0 : ASID: 0x1 : No JRE : No JRE
1 : ASID: 0x4 : No JRE : No JRE
2 : ASID: 0x7 : No JRE : No JRE
*3 : ASID: 0x6b EDB: 0x4800105570 : JRE 1.7.0 z/OS s390x-64 build 20121116_128663 (pmz6470sr4-20121119_01(SR4))
4 : ASID: 0x40404040 : No JRE : No JRE

> help
+ displays the next section of memory in hexdump-like format
- displays the previous section of memory in hexdump-like format
cd changes the current working directory, used for log files
close [context id] closes the connection to a core file
context [ID|asid ID] switch to the selected context
deadlock displays information about deadlocks if there are any
exit Exit the application
find searches memory for a given string
findnext finds the next instance of the last string passed to "find"
findptr searches memory for the given pointer
heapdump generates a PHD or classic format heapdump
help [command name] displays list of commands or help for a specific command

284 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

hexdump outputs a section of memory in a hexdump-like format
info <component> Information about the specified component
info class <Java class name> Provides information about the specified Java class
info heap [*|heap name] Displays information about Java heaps
info jitm Displays JIT’ed methods and their addresses
info lock outputs a list of system monitors and locked objects
info mmap Outputs a list of all memory segments in the address space
info mod outputs module information
info proc shortened form of info process
info process displays threads, command line arguments, environment
info sym an alias for ’mod’
info sys shortened form of info system
info system displays information about the system the core dump is from
info thread displays information about Java and native threads
log [name level] display and control instances of java.util.logging.Logger
open [path to core or zip] opens the specified core or zip file
plugins Plugin management commands

list Show the list of loaded plugins for the current context
reload Reload plugins for the current context

showpath Show the DTFJ View plugin search path for the current context
setpath Set the DTFJ View plugin search path for the current context

pwd displays the current working directory
quit Exit the application
set [logging|heapdump] Sets options for the specified command
set heapdump configures heapdump format, filename and multiple heap support
set logging configures several logging-related parameters, starts/stops logging

on turn on logging
off turn off logging
file turn on logging

overwrite controls the overwriting of log files
show [logging|heapdump] Displays the current set options for a command
show heapdump displays heapdump settings
show logging shows the current logging options
whatis [hex address] gives information about what is stored at the given memory address
x/d <hex address> displays the integer at the specified address
x/j <object address> [class name] displays information about a particular object or all objects of a class
x/k <hex address> displays the specified memory section as if it were a stack frame parameters
x/x <hex address> displays the hex value of the bytes at the specified address

> set logging file log.txt
logging turned on; outputting to "/team/test/log.txt"

> info system

Machine OS: z/OS
Machine name: TLBA82ME
Machine IP address(es):

9.26.177.7
System memory: 2147483648

Java version:
JRE 1.7.0 z/OS s390x-64 build 20121116_128663 (pmz6470sr4-20121119_01(SR4))

> info thread *
native threads for address space
process id: 16778998

thread id: 0x25dc8700
registers:
PSW = 0x078d1400a62831a2 R0 = 0x0000000000000000 R1 = 0x00000000263b1048 R2 = 0x00000000263b1860
R3 = 0x00000000263b1048 R4 = 0x00000048109fbe80 R5 = 0x0000000000000000 R6 = 0x00000000262830e0
R7 = 0x000000002629b25a R8 = 0x00000000262830f2 R9 = 0x00000048109fe380 R10 = 0x00000048086240e0
R11 = 0x000000002629bb10 R12 = 0x000000485312c790 R13 = 0x00000000263b1048 R14 = 0x0000000026283244
R15 = 0x000000007f656f00
native stack sections:
0x48109f4000 to 0x4810a00000 (length 0xc000)
native stack frames:
bp: 0x00000048109fbe80 pc: 0x00000000262831a2 ExtraSymbolsModule::_TDUMP+0xc2
bp: 0x00000048109fbf20 pc: 0x000000002629b258 /team/sdk/jre/lib/s390x/default/libj9prt26.so::tdump_wrapper+0x530
bp: 0x00000048109fc960 pc: 0x000000002629a79a /team/sdk/jre/lib/s390x/default/libj9prt26.so::j9dump_create+0x4a
bp: 0x00000048109fd060 pc: 0x0000000026321afa /team/sdk/jre/lib/s390x/default/libj9dmp26.so::doSystemDump+0x392
bp: 0x00000048109fd160 pc: 0x0000000026322564 /team/sdk/jre/lib/s390x/default/libj9dmp26.so::protectedDumpFunction+0x2c
bp: 0x00000048109fd260 pc: 0x00000000262b2fce /team/sdk/jre/lib/s390x/default/libj9prt26.so::j9sig_protect+0x76e
bp: 0x00000048109fda60 pc: 0x0000000026325cea /team/sdk/jre/lib/s390x/default/libj9dmp26.so::runDumpAgent+0x442
bp: 0x00000048109fdfa0 pc: 0x0000000026354e8e /team/sdk/jre/lib/s390x/default/libj9dmp26.so::triggerDumpAgents+0x616
bp: 0x00000048109fe360 pc: 0x0000000026354086 /team/sdk/jre/lib/s390x/default/libj9dmp26.so::rasDumpHookVmShutdown+0xa6
bp: 0x00000048109fe560 pc: 0x000000002617cdf0 /team/sdk/jre/lib/s390x/default/libj9vm26.so::protectedDestroyJavaVM+0x358
bp: 0x00000048109fe6e0 pc: 0x00000000262b2fce /team/sdk/jre/lib/s390x/default/libj9prt26.so::j9sig_protect+0x76e
bp: 0x00000048109feee0 pc: 0x000000002617e3e4 /team/sdk/jre/lib/s390x/default/libj9vm26.so::DestroyJavaVM+0x3b4
bp: 0x00000048109ff020 pc: 0x00000000260b3ba4 /team/sdk/jre/lib/s390x/default/libjvm.so::DestroyJavaVM+0x3c
bp: 0x00000048109ff120 pc: 0x000000002603751c libjli.so::JavaMain+0x754
properties:
PSW:31: 0x70c1000809afb42
EDB: 0x4800105570
Task Completion Code: 0x0
CAA CEL level: 0x19
CAA: 0x4810bfec60
PTHREADID: 0x25dc870000000003
TCB: 0x6bfcf0
Stack direction: up

Chapter 9. Troubleshooting and support 285

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

associated Java thread:
name: DestroyJavaVM helper thread
Thread object: java/lang/Thread @ 0x4839258a18
Priority: 5
Thread.State: RUNNABLE
JVMTI state: ALIVE RUNNABLE
Java stack frames: <no frames to print>

===Lines Removed===

thread id: 0x25dd3100
registers:
PSW = 0x078d0401a5ada6d4 R0 = 0x0000000000000001 R1 = 0x000000007f2e2f30 R2 = 0x0000004808710a50
R3 = 0x0000000027f669a0 R4 = 0x000000487c3fdf40 R5 = 0x0000000025add868 R6 = 0x000000480870a770
R7 = 0x0000004808710478 R8 = 0x000000007f2e2f30 R9 = 0x0000000000000000 R10 = 0x00000048531bc188
R11 = 0x0000004800105570 R12 = 0x000000487c5fec60 R13 = 0x0000000000000000 R14 = 0x00000048087601f0
R15 = 0x00000048806bde00
native stack sections:
0x487c3fc000 to 0x487c400000 (length 0x4000)
native stack frames:
bp: 0x000000487c3fdf40 pc: 0x0000000025ada6d4 ExtraSymbolsModule::CEEOPCW+0x2014
bp: 0x000000487c3fe320 pc: 0x0000000025d7caf2 ExtraSymbolsModule::pthread_cond_wait+0x152
bp: 0x000000487c3fe4a0 pc: 0x0000000026224082 libj9thr26.so::monitor_wait_original+0xb42
bp: 0x000000487c3fe660 pc: 0x0000000026228430 libj9thr26.so::j9thread_monitor_wait+0x70
bp: 0x000000487c3fe760 pc: 0x00000000278e7202 ExtraSymbolsModule::MM_ParallelDispatcher::slaveEntryPoint(MM_EnvironmentModron*)+0x82
bp: 0x000000487c3fe860 pc: 0x00000000278e6f0a ExtraSymbolsModule::dispatcher_thread_proc2(J9PortLibrary*,void*)+0x13a
bp: 0x000000487c3fe960 pc: 0x00000000262b2fce /team/sdk/jre/lib/s390x/default/libj9prt26.so::j9sig_protect+0x76e
bp: 0x000000487c3ff160 pc: 0x00000000278e7158 ExtraSymbolsModule::dispatcher_thread_proc+0x58
bp: 0x000000487c3ff260 pc: 0x0000000026226aa2 libj9thr26.so::thread_wrapper+0x562
properties:
EDB: 0x4800105570
Task Completion Code: 0x0
CAA CEL level: 0x19
PSW:64: 0x78d0401a5ada6d4
CAA: 0x487c5fec60
PTHREADID: 0x25dd31000000000c
TCB: 0x6bde88
Stack direction: up
associated Java thread:
name: GC Slave
Thread object: java/lang/Thread @ 0x48392539f0
Priority: 5
Thread.State: WAITING
JVMTI state: ALIVE WAITING WAITING_INDEFINITELY IN_OBJECT_WAIT
waiting to be notified on: "MM_ParallelDispatcher::slaveThread" with ID 0x480862c120 owner name: <unowned>

Java stack frames: <no frames to print>
===Lines Removed===

> info class java/lang/String
name = java/lang/String

ID = 0x481908f300 superID = 0x483a1f6700
classLoader = 0x48392807f0 modifiers: public final

number of instances: 2668
total size of instances: 85376 bytes

Inheritance chain....

java/lang/Object
java/lang/String

Fields......

static fields for "java/lang/String"
private static final long serialVersionUID = -6849794470754667710 (0xa0f0a4387a3bb342)
public static final java.util.Comparator CASE_INSENSITIVE_ORDER = <object> @ 0x4839280318
private static final char[] ascii = <object> @ 0x4839280328
private static String[] stringArray = <object> @ 0x4839280438
private static final int stringArraySize = 10 (0xa)
static boolean enableCopy = false
private static int seed = -1341042903 (0xffffffffb0114f29)
private static char[] startCombiningAbove = <object> @ 0x4819311288
private static char[] endCombiningAbove = <object> @ 0x4819311318
private static final char[] upperValues = <object> @ 0x48193113a8
private static final java.io.ObjectStreamField[] serialPersistentFields = <object> @ 0x4839280498

non-static fields for "java/lang/String"
private final char[] value
private final int offset
private final int count
private int hashCode
private int hashCode32

Methods......

Bytecode range(s): : private static native int getSeed()
Bytecode range(s): 4839ce5e10 -- 4839ce5e26: public void <init>()
Bytecode range(s): 4839ce5e50 -- 4839ce5e95: private void <init>(String, char)

286 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Bytecode range(s): 4839ce5ed8 -- 4839ce5ee1: public void <init>(byte[])
Bytecode range(s): 4839ce5f08 -- 4839ce5f12: public void <init>(byte[], int)
Bytecode range(s): 4839ce5f44 -- 4839ce5f7d: public void <init>(byte[], int, int)
===Lines Removed===

> whatis 0x4839280438
heap #1 - name: Generational@4839e11ef0

0x4839280438 is within heap segment: 4839240000 -- 4839300000
0x4839280438 is the start of an object of type [Ljava/lang/String;

jdmpview commands quick reference:

A short list of the commands you use with jdmpview.

The following table shows the jdmpview - quick reference:

Command Sub-command Description

help Displays a list of commands or help for a specific
command.

info

thread Displays information about Java and native threads.

system Displays information about the system the core dump is
from.

class Displays the inheritance chain and other data for a given
class.

proc Displays threads, command line arguments, environment
variables, and shared modules of current process.

jitm Displays JIT compiled methods and their addresses.

lock Displays a list of available monitors and locked objects.

sym Displays a list of available modules.

mmap Displays a list of all memory segments in the address
space.

heap Displays information about all heaps or the specified heap.

heapdump Generates a Heapdump to a file. You can select which Java
heaps should be dumped by listing the heap names,
separated by spaces.

hexdump Displays a section of memory in a hexdump-like format.

+ Displays the next section of memory in hexdump-like
format.

- Displays the previous section of memory in hexdump-like
format.

whatis Displays information about what is stored at the given
memory address.

find Searches memory for a given string.

findnext Finds the next instance of the last string passed to “find”.

findptr Searches memory for the given pointer.

x/
(examine)

Examine works like x/ in gdb, including the use of defaults:
passes the number of items to display and the unit size (b
for byte (8-bit), h for half word (16-bit), w for word (32-bit),
g for giant word (64-bit)) to the sub-command. For example
x/12bd.

J Displays information about a particular object or all objects
of a class.

Chapter 9. Troubleshooting and support 287

|
|
|
|
|
|
|
|
|

|

Command Sub-command Description

D Displays the integer at the specified address.

X Displays the hex value of the bytes at the specified address.

K Displays the specified memory section as if it were a stack
frame.

deadlock Displays information about deadlocks if there are any set.

set
heapdump

Configures Heapdump generation settings.

set logging Configures logging settings, starts logging, or stops
logging. This allows the results of commands to be logged
to a file.

show
heapdump

Displays the current values of heapdump settings.

show
logging

Displays the current values of logging settings.

cd Changes the current working directory, used for log files.

pwd Displays the current working directory.

quit Exits the core file viewing tool; any log files that are
currently open are closed before the tool exits.

Tracing Java applications and the JVM
JVM trace is a trace facility that is provided in all IBM-supplied JVMs with
minimal affect on performance. Trace data can be output in human-readable or in
compressed binary formats. The JVM provides a tool to process and convert the
compressed binary data and into a readable format.

JVM trace data might contain application data, including the contents of Java
objects. If you require a dump that does not contain this application data, see
“Using Javadump” on page 240 or “Using Heapdump” on page 262.

Tracing is enabled by default, together with a small set of trace points going to
memory buffers. You can enable tracepoints at run time by using levels,
components, group names, or individual tracepoint identifiers.

This chapter describes JVM trace in:
v “What can be traced?” on page 289
v “Types of tracepoint” on page 289
v “Default tracing” on page 290
v “Where does the data go?” on page 291
v “Controlling the trace” on page 293
v “Using the trace formatter” on page 311
v “Determining the tracepoint ID of a tracepoint” on page 312
v “Application trace” on page 313
v “Using method trace” on page 316

Trace is a powerful tool to help you diagnose the JVM.

288 IBM SDK for Java: SDK and Runtime Guide

What can be traced?
You can trace JVM internals, applications, and Java method or any combination of
those.

JVM internals
The IBM Virtual Machine for Java is extensively instrumented with tracepoints
for trace. Interpretation of this trace data requires knowledge of the internal
operation of the JVM, and is provided to diagnose JVM problems.

No guarantee is given that tracepoints will not vary from release to release and
from platform to platform.

Applications
JVM trace contains an application trace facility that allows tracepoints to be
placed in Java code to provide trace data that will be combined with the other
forms of trace. There is an API in the com.ibm.jvm.Trace class to support this.
Note that an instrumented Java application runs only on an IBM-supplied
JVM.

Java methods
You can trace entry to and exit from Java methods run by the JVM. You can
select method trace by classname, method name, or both. You can use
wildcards to create complex method selections.

JVM trace can produce large amounts of data in a very short time. Before running
trace, think carefully about what information you need to solve the problem. In
many cases, where you need only the trace information that is produced shortly
before the problem occurs, consider using the wrap option. In many cases, just use
internal trace with an increased buffer size and snap the trace when the problem
occurs. If the problem results in a thread stack dump or operating system signal or
exception, trace buffers are snapped automatically to a file that is in the current
directory. The file is called: Snapnnnn.yyyymmdd.hhmmssth.process.trc.

You must also think carefully about which components need to be traced and what
level of tracing is required. For example, if you are tracing a suspected shared
classes problem, it might be enough to trace all components at level 1, and j9shr at
level 9, while maximal can be used to show parameters and other information for
the failing component.

Types of tracepoint
There are two types of tracepoints inside the JVM: regular and auxiliary.

Regular tracepoints

Regular tracepoints include:
v method tracepoints
v application tracepoints
v data tracepoints inside the JVM
v data tracepoints inside class libraries

You can display regular tracepoint data on the screen or save the data to a file. You
can also use command line options to trigger specific actions when regular
tracepoints fire. See the section “Detailed descriptions of trace options” on page
294 for more information about command line options.

Chapter 9. Troubleshooting and support 289

Auxiliary tracepoints

Auxiliary tracepoints are a special type of tracepoint that can be fired only when
another tracepoint is being processed. An example of auxiliary tracepoints are the
tracepoints containing the stack frame information produced by the jstacktrace
-Xtrace:trigger command. You cannot control where auxiliary tracepoint data is
sent and you cannot set triggers on auxiliary tracepoints. Auxiliary tracepoint data
is sent to the same destination as the tracepoint that caused them to be generated.

Default tracing
By default, the equivalent of the following trace command line is always available
in the JVM:
-Xtrace:maximal=all{level1},exception=j9mm{gclogger}

The data generated by the tracepoints is continuously captured in wrapping
memory buffers for each thread. (For information about specific options, see
“Detailed descriptions of trace options” on page 294.)

You can find tracepoint information in the following diagnostics data:
v System memory dumps, extracted by using jdmpview.
v Snap traces, generated when the JVM encounters a problem or an output file is

specified. “Using dump agents” on page 221 describes more ways to create a
snap trace.

v For exception trace only, in Javadumps.

Default memory management tracing

The default trace options are designed to ensure that Javadumps always contain a
record of the most recent memory management history, regardless of how much
work the JVM has performed since the garbage collection cycle was last called.

The exception=j9mm{gclogger} clause of the default trace set specifies that a
history of garbage collection cycles that have occurred in the JVM is continuously
recorded. The gclogger group of tracepoints in the j9mm component constitutes a
set of tracepoints that record a snapshot of each garbage collection cycle. These
tracepoints are recorded in their own separate buffer, called the exception buffer.
The effect is that the tracepoints are not overwritten by the higher frequency
tracepoints of the JVM.

The GC History section of the Javadump is based on the information in the
exception buffer. If a garbage collection cycle has occurred in a traced JVM, the
Javadump probably contains a GC History section.

Default assertion tracing

The JVM includes assertions, implemented as special trace points. By default,
internal assertions are detected and diagnostics logs are produced to help assess
the error.

Assertion failures often indicate a serious problem, and the JVM usually stops
immediately. Send a service request to IBM, including the standard error output
and any diagnostic files that are produced.

When an assertion trace point is reached, a message like the following output is
produced on the standard error stream:

290 IBM SDK for Java: SDK and Runtime Guide

16:43:48.671 0x10a4800 j9vm.209 * ** ASSERTION FAILED ** at jniinv.c:251:
((javaVM == ((void *)0)))

This error stream is followed with information about the diagnostic logs produced:
JVMDUMP007I JVM Requesting System Dump using ’core.20060426.124348.976.dmp’
JVMDUMP010I System Dump written to core.20060426.124348.976.dmp
JVMDUMP007I JVM Requesting Snap Dump using ’Snap0001.20060426.124648.976.trc’
JVMDUMP010I Snap Dump written to Snap0001.20060426.124648.976.trc

Assertions are special trace points. They can be enabled or disabled by using the
standard trace command-line options. See “Controlling the trace” on page 293 for
more details.

Assertion failures might occur early during JVM startup, before trace is enabled. In
this case, the assert message has a different format, and is not prefixed by a
timestamp or thread ID. For example:
** ASSERTION FAILED ** j9vmutil.15 at thrinfo.c:371 Assert_VMUtil_true((
publicFlags & 0x200))

Assertion failures that occur early during startup cannot be disabled. These failures
do not produce diagnostic dumps, and do not cause the JVM to stop.

Where does the data go?
Trace data can be written to a number of locations.

Trace data can go into:
v Memory buffers that can be dumped or snapped when a problem occurs
v One or more files that are using buffered I/O
v An external agent in real time
v stderr in real time
v Any combination of the other items in this list

Writing trace data to memory buffers:

Using memory buffers for holding trace data is an efficient method of running
trace. The reason is that no file I/O is performed until a problem is detected or
until the buffer content is intentionally stored in a file.

Buffers are allocated on a per-thread principle. This principle removes contention
between threads, and prevents trace data for an individual thread from being
mixed in with trace data from other threads. For example, if one particular thread
is not being dispatched, its trace information is still available when the buffers are
dumped or snapped. Use the -Xtrace:buffers=<size> option to control the size of
the buffer allocated to each thread. Buffers allocated to a thread are discarded
when that thread terminates.

Note: On some systems, power management affects the timers that trace uses, and
might result in misleading information. For reliable timing information, disable
power management.

To examine the trace data captured in these memory buffers, you must snap or
dump the data, then format the buffers.

Chapter 9. Troubleshooting and support 291

Snapping buffers
Under default conditions, a running JVM collects a small amount of trace
data in special wraparound buffers. This data is sent to a snap trace file
under certain conditions:
v An uncaught OutOfMemoryError occurs.
v An operating system signal or exception occurs.
v The com.ibm.jvm.Trace.snap() Java API is called.
v The JVMRI TraceSnap function is called.

The resulting snap trace file is placed into the current working directory,
with a name in the format Snapnnnn.yyyymmdd.hhmmssth.process.trc,
where nnnn is a sequence number reset to 0001 at JVM startup, yyyymmdd
is the current date, hhmmssth is the current time, and process is the process
identifier. This file is in a binary format, and requires the use of the
supplied trace formatter so that you can read it.

You can use the -Xdump:snap option to vary the events that cause a snap
trace file to be produced.

Extracting buffers from system dump
You can extract the buffers from a system dump core file by using the
Dump Viewer.

Writing trace data to a file:

You can write trace data to a file continuously as an extension to the in-storage
trace, but, instead of one buffer per thread, at least two buffers per thread are
allocated, and the data is written to the file before wrapping can occur.

This allocation allows the thread to continue to run while a full trace buffer is
written to disk. Depending on trace volume, buffer size, and the bandwidth of the
output device, multiple buffers might be allocated to a given thread to keep pace
with trace data that is being generated.

A thread is never stopped to allow trace buffers to be written. If the rate of trace
data generation greatly exceeds the speed of the output device, excessive memory
usage might occur and cause out-of-memory conditions. To prevent this, use the
nodynamic option of the buffers trace option. For long-running trace runs, a wrap
option is available to limit the file to a given size. It is also possible to create a
sequence of files when the trace output will move back to the first file once the
sequence of files are full. See the output option for details. You must use the trace
formatter to format trace data from the file.

Because trace data is buffered, if the JVM does not exit normally, residual trace
buffers might not be flushed to the file. If the JVM encounters an unrecoverable
error, the buffers can be extracted from a system dump if that is available. When a
snap file is created, all available buffers are always written to it.

External tracing:

You can route trace to an agent by using JVMRI TraceRegister.

This mechanism allows a callback routine to be called immediately when any of
the selected tracepoints is found without buffering the trace results. The trace data
is in raw binary form. Further details can be found in the JVMRI section.

292 IBM SDK for Java: SDK and Runtime Guide

Tracing to stderr:

For reduced volume or non-performance-critical tracing, the trace data can be
formatted and routed to stderr immediately without buffering.

For more information, see “Using method trace” on page 316.

Trace combinations:

Most forms of trace can be combined, with the same or different trace data going
to different destinations.

The exceptions to this are in-memory tracing and tracing to a file. These traces are
mutually exclusive. When an output file is specified, any trace data that wraps, in
the in-memory case, is written to the file, and a new buffer is given to the thread
that filled its buffer. If no output file is specified, then when the buffer for a thread
is full, the thread wraps the trace data back to the beginning of the buffer.

Controlling the trace
You have several ways by which you can control the trace.

You can control the trace in several ways by using:
v The -Xtrace options when launching the JVM, including trace trigger events
v A trace properties file
v com.ibm.jvm.Trace API
v JVMTI and JVMRI from an external agent

Note:

1. The specification of trace options is cumulative. Multiple -Xtrace options are
accepted on the command line and they are processed in order starting with
the option that is closest to the -Xtrace string. Each option adds to the
previous options (and to the default options), as if they had all been specified
in one long comma-separated list in a single option. This cumulative
specification is consistent with the related -Xdump option processing.

2. Some trace options are enabled by default. For more information, see “Default
tracing” on page 290. To disable the defaults, use the -Xtrace:none option.

3. Many diagnostic tools start a JVM. When using the IBM_JAVA_OPTIONS
environment variable trace to a file, starting a diagnostic tool might overwrite
the trace data generated from your application. Use the command-line tracing
options or add %d, %p or %t to the trace file name to prevent this from
happening. See “Detailed descriptions of trace options” on page 294 for the
appropriate trace option description.

Specifying trace options:

The preferred way to control trace is through trace options that you specify by
using the -Xtrace option on the launcher command line, or by using the
IBM_JAVA_OPTIONS environment variable.

Some trace options have the form <name> and others are of the form
<name>=<value>, where <name> is case-sensitive. Except where stated, <value> is not
case-sensitive; the exceptions to this rule are file names on some platforms, class
names, and method names.

Chapter 9. Troubleshooting and support 293

If an option value contains commas, it must be enclosed in braces. For example:
methods={java/lang/*,com/ibm/*}

Note: The requirement to use braces applies only to options specified on the
command line. You do not need to use braces for options specified in a properties
file.

The syntax for specifying trace options depends on the launcher. Usually, it is:
java -Xtrace:<name>,<another_name>=<value> HelloWorld

To switch off all tracepoints, use this option:
java -Xtrace:none=all

If you specify other tracepoints without specifying -Xtrace:none, the tracepoints
are added to the default set.

When you use the IBM_JAVA_OPTIONS environment variable, use this syntax:
set IBM_JAVA_OPTIONS=-Xtrace:<name>,<another_name>=<value>

or
export IBM_JAVA_OPTIONS=-Xtrace:<name>,<another_name>=<value>

Detailed descriptions of trace options:

The options are processed in the sequence in which they are described here.

294 IBM SDK for Java: SDK and Runtime Guide

-Xtrace command-line option syntax

�� -Xtrace: �

�

�

�

,

properties[=<filename>]
buffers=<size>[, dynamic]

nodynamic
,

minimal = <tracepoint_specification>
maximal
count
print
iprint
exception
external
none

,

methods= <method_specification>
output=<filename>[,<size>[,<generations>]]
exception.output=<filename>[,<size>]
resume
resumecount=<count>
sleeptime=nnn|aaams|bbbs
stackdepth=<n>
suspend
suspendcount=<count>

,

trigger= <clause>
what

��

properties[=<filename>]:

You can use properties files to control trace. A properties file saves typing and,
over time, causes a library of these files to be created. Each file is tailored to
solving problems in a particular area.

This trace option allows you to specify in a file any of the other trace options,
thereby reducing the length of the invocation command-line. The format of the file
is a flat ASCII file that contains trace options. If <filename> is not specified, a
default name of IBMTRACE.properties is searched for in the current directory.
Nesting is not supported; that is, the file cannot contain a properties option. If
any error is found when the file is accessed, JVM initialization fails with an
explanatory error message and return code. All the options that are in the file are
processed in the sequence in which they are stored in the file, before the next
option that is obtained through the normal mechanism is processed. Therefore, a
command-line property always overrides a property that is in the file.

An existing restriction means that you cannot leave properties that have the form
<name>=<value> to default if they are specified in the property file; that is, you
must specify a value, for example maximal=all.

Another restriction means that properties files are sensitive to white space. Do not
add white space before, after, or within the trace options.

Chapter 9. Troubleshooting and support 295

You can make comments as follows:
// This is a comment. Note that it starts in column 1

Examples

v Use IBMTRACE.properties in the current directory:
-Xtrace:properties

– Use trace.prop in the current directory:
-Xtrace:properties=trace.prop

– Use c:\trc\gc\trace.props:
-Xtrace:properties=c:\trc\gc\trace.props

Here is an example property file:
minimal=all
// maximal=j9mm
maximal=j9shr
buffers=20k
output=c:\traces\classloader.trc
print=tpnid(j9vm.23-25)

buffers=nnnk|nnnm[,dynamic|nodynamic]:

You can modify the size of the buffers to change how much diagnostic output is
provided in a snap dump. This buffer is allocated for each thread that makes trace
entries.

The trace option can be specified in two ways:
v buffers=dynamic|nodynamic

v buffers=nnnk|nnnm[,dynamic|nodynamic]

If external trace is enabled, the number of buffers is doubled; that is, each thread
allocates two or more buffers. The same buffer size is used for state and exception
tracing, but, in this case, buffers are allocated globally. The default is 8 KB per
thread.

The dynamic and nodynamic options have meaning only when tracing to an output
file. If dynamic is specified, buffers are allocated as needed to match the rate of
trace data generation to the output media. Conversely, if nodynamic is specified, a
maximum of two buffers per thread is allocated. The default is dynamic. The
dynamic option is effective only when you are tracing to an output file.

Note: If nodynamic is specified, you might lose trace data if the volume of trace
data that is produced exceeds the bandwidth of the trace output file. Message
UTE115 is issued when the first trace entry is lost, and message UTE018 is issued at
JVM termination.

Examples

v Dynamic buffering with increased buffer size of 2 MB per thread:
-Xtrace:buffers=2m

or in a properties file:
buffers=2m

v Trace buffers limited to two buffers per thread, each of 128 KB:
-Xtrace:buffers={128k,nodynamic}

296 IBM SDK for Java: SDK and Runtime Guide

or in a properties file:
buffers=128k,nodynamic

v Trace using default buffer size of 8 KB, limited to two buffers per thread:
-Xtrace:buffers=nodynamic

or in a properties file:
buffers=nodynamic

Options that control tracepoint activation:

These options control which individual tracepoints are activated at run time and
the implicit destination of the trace data.

In some cases, you must use them with other options. For example, if you specify
maximal or minimal tracepoints, the trace data is put into memory buffers. If you
are going to send the data to a file, you must use an output option to specify the
destination filename.

minimal=[!]<tracepoint_specification>[,...]
maximal=[!]<tracepoint_specification>[,...]
count=[!]<tracepoint_specification>[,...]
print=[!]<tracepoint_specification>[,...]
iprint=[!]<tracepoint_specification>[,...]
exception=[!]<tracepoint_specification>[,...]
external=[!]<tracepoint_specification>[,...]
none[=<tracepoint_specification>[,...]]

Note that all these properties are independent of each other and can be mixed and
matched in any way that you choose.

You must provide at least one tracepoint specification when using the minimal,
maximal, count, print, iprint, exception and external options. In some older
versions of the SDK the tracepoint specification defaults to 'all'.

Multiple statements of each type of trace are allowed and their effect is cumulative.
To do this, you must use a trace properties file for multiple trace options of the
same name.

minimal and maximal
minimal and maximal trace data is placed into internal trace buffers that can
then be written to a snap file or written to the files that are specified in an
output trace option. The minimal option records only the timestamp and
tracepoint identifier. When the trace is formatted, missing trace data is replaced
with the characters “???” in the output file. The maximal option specifies that
all associated data is traced. If a tracepoint is activated by both trace options,
maximal trace data is produced. Note that these types of trace are completely
independent from any types that follow them. For example, if the minimal
option is specified, it does not affect a later option such as print.

count
The count option requests that only a count of the selected tracepoints is kept.
At JVM termination, all non-zero totals of tracepoints (sorted by tracepoint id)
are written to a file, called utTrcCounters, in the current directory. This
information is useful if you want to determine the overhead of particular
tracepoints, but do not want to produce a large amount (GB) of trace data.

Chapter 9. Troubleshooting and support 297

For example, to count the tracepoints used in the default trace configuration,
use the following command:
-Xtrace:count=all{level1},count=j9mm{gclogger}

print
The print option causes the specified tracepoints to be routed to stderr in real
time. The JVM tracepoints are formatted using J9TraceFormat.dat. The class
library tracepoints are formatted by TraceFormat.dat. J9TraceFormat.dat and
TraceFormat.dat are shipped in sdk/jre/lib and are automatically found by the
run time environment.

iprint
The iprint option is the same as the print option, but uses indenting to
format the trace.

exception
When exception trace is enabled, the trace data is collected in internal buffers
that are separate from the normal buffers. These internal buffers can then be
written to a snap file or written to the file that is specified in an
exception.output option.

The exception option allows low-volume tracing in buffers and files that are
distinct from the higher-volume information that minimal and maximal tracing
have provided. In most cases, this information is exception-type data, but you
can use this option to capture any trace data that you want.

This form of tracing is channeled through a single set of buffers, as opposed to
the buffer-per-thread approach for normal trace, and buffer contention might
occur if high volumes of trace data are collected. A difference exists in the
<tracepoint_specification> defaults for exception tracing; see “Tracepoint
specification” on page 299.

Note: The exception trace buffers are intended for low-volume tracing. By
default, the exception trace buffers log garbage collection event tracepoints, see
“Default tracing” on page 290. You can send additional tracepoints to the
exception buffers or switch off the garbage collection tracepoints. Changing the
exception trace buffers will alter the contents of the GC History section in any
Javadumps.

Note: When exception trace is entered for an active tracepoint, the current
thread id is checked against the previous caller's thread ID. If it is a different
thread, or this is the first call to exception trace, a context tracepoint is put
into the trace buffer first. This context tracepoint consists only of the current
thread ID. This is necessary because of the single set of buffers for exception
trace. (The formatter identifies all trace entries as coming from the Exception
trace pseudo thread when it formats exception trace files.)

external
The external option channels trace data to registered trace listeners in real
time. JVMRI is used to register or deregister as a trace listener. If no listeners
are registered, this form of trace does nothing except waste machine cycles on
each activated tracepoint.

none

-Xtrace:none prevents the trace engine from loading if it is the only trace
option specified. However, if other -Xtrace options are on the command line, it
is treated as the equivalent of -Xtrace:none=all and the trace engine will still
be loaded.

298 IBM SDK for Java: SDK and Runtime Guide

If you specify other tracepoints without specifying -Xtrace:none, the
tracepoints are added to the default set.

Examples

v Default options applied:
java

v No effect apart from ensuring that the trace engine is loaded (which is the
default behavior):
java -Xtrace

v Trace engine is not loaded:
java -Xtrace:none

v Trace engine is loaded, but no tracepoints are captured:
java -Xtrace:none=all

v Default options applied, with the addition of printing for j9vm.209
java -Xtrace:iprint=j9vm.209

v Default options applied, with the addition of printing for j9vm.209 and j9vm.210.
Note the use of brackets when specifying multiple tracepoints.
java -Xtrace:iprint={j9vm.209,j9vm.210}

v Printing for j9vm.209 only:
java -Xtrace:none -Xtrace:iprint=j9vm.209

v Printing for j9vm.209 only:
java -Xtrace:none,iprint=j9vm.209

v Default tracing for all components except j9vm, with printing for j9vm.209:
java -Xtrace:none=j9vm,iprint=j9vm.209

v Default tracing for all components except j9vm, with printing for j9vm.209
java -Xtrace:none=j9vm -Xtrace:iprint=j9vm.209

v No tracing for j9vm (none overrides iprint):
java -Xtrace:iprint=j9vm.209,none=j9vm

Tracepoint specification:

You enable tracepoints by specifying component and tracepoint.

If no qualifier parameters are entered, all tracepoints are enabled, except for
exception.output trace, where the default is all {exception}.

The <tracepoint_specification> is as follows:
[!]<component>[{<group>}] or [!]<component>[{<type>}] or [!]<tracepoint_id>[,<tracepoint_id>]

where:
! is a logical not. That is, the tracepoints that are in a specification starting

with ! are turned off.
<component>

is a Java component, as detailed in Table 10. To include all Java
components, specify all.

Table 10. Java components

Component name Description

avl VM AVL tree support

io Class library java.io native code

Chapter 9. Troubleshooting and support 299

Table 10. Java components (continued)

Component name Description

j9bcu VM byte code utilities

j9bcverify VM byte code verification

j9codertvm VM byte code run time

j9dmp VM dump

j9jcl VM class libraries

j9jit VM JIT interface

j9jvmti VM JVMTI support

j9mm VM memory management

j9prt VM port library

j9scar VM class library interface

j9shr VM shared classes

j9trc VM trace

j9util VM utilities

j9vm VM general

j9vmutil VM utilities

j9vrb VM verbose stack walker

map VM mapped memory support

mt Java methods (see note)

pool VM storage pool support

rpc VM RPC support

simplepool VM storage pool support

sunvmi VM class library interface

Note: When specifying the mt component you must also specify the
methods option.

<group>
is a tracepoint group. A group is a set of tracepoints that are defined
within a component, therefore each group is associated with one or more
components as follows:

Table 11. Tracepoint groups and associated components

Component name or names Group name Description

mt compiledMethods A set of tracepoints that
record compiled Java
methods

mt nativeMethods A set of tracepoints that
record Java native methods

mt staticMethods A set of tracepoints that
record Java static methods

<type> is the tracepoint type. The following types are supported:
v Entry
v Exit
v Event
v Exception

300 IBM SDK for Java: SDK and Runtime Guide

v Mem
<tracepoint_id>

is the tracepoint identifier. The tracepoint identifier constitutes the
component name of the tracepoint, followed by its integer number inside
that component. For example, j9mm.49, j9shr.20-29, j9vm.15, To
understand these numbers, see “Determining the tracepoint ID of a
tracepoint” on page 312.

Some tracepoints can be both an exit and an exception; that is, the function ended
with an error. If you specify either exit or exception, these tracepoints are included.

The following tracepoint specification used in Java 5.0 and earlier IBM SDKs is still
supported:
[!]tpnid{<tracepoint_id>[,...]}

Examples

v All tracepoints:
-Xtrace:maximal=all

v All tracepoints except j9vrb and j9trc:
-Xtrace:minimal={all},minimal={!j9vrb,j9trc}

v All entry and exit tracepoints in j9bcu:
-Xtrace:maximal={j9bcu{entry},j9bcu{exit}}

v All tracepoints in j9mm except tracepoints 20-30:
-Xtrace:maximal=j9mm,maximal=!j9mm.20-30

v Tracepoints j9prt.5 through j9prt.15:
-Xtrace:print=j9prt.5-15

v All j9trc tracepoints:
-Xtrace:count=j9trc

v All entry and exit tracepoints:
-Xtrace:external={all{entry},all{exit}}

Trace levels:

Tracepoints have been assigned levels 0 through 9 that are based on the
importance of the tracepoint.

A level 0 tracepoint is the most important. It is reserved for extraordinary events
and errors. A level 9 tracepoint is in-depth component detail. To specify a given
level of tracing, the level0 through level9 keywords are used. You can abbreviate
these keywords to l0 through l9. For example, if level5 is selected, all tracepoints
that have levels 0 through 5 are included. Level specifications do not apply to
explicit tracepoint specifications that use the TPNID keyword.

The level is provided as a modifier to a component specification, for example:
-Xtrace:maximal={all{level5}}

or
-Xtrace:maximal={j9mm{L2},j9trc,j9bcu{level9},all{level1}}

In the first example, tracepoints that have a level of 5 or less are enabled for all
components. In the second example, all level 1 tracepoints are enabled. All level2
tracepoints in j9mm are enabled. All tracepoints up to level 9 are enabled in j9bcu.

Chapter 9. Troubleshooting and support 301

Note: The level applies only to the current component. If multiple trace selection
components are found in a trace properties file, the level is reset to the default for
each new component.

Level specifications do not apply to explicit tracepoint specifications that use the
TPNID keyword.

When the not operator is specified, the level is inverted; that is, !j9mm{level5}
disables all tracepoints of level 6 or greater for the j9mm component. For example:
-Xtrace:print={all},print={!j9trc{l5},j9mm{l6}}

enables trace for all components at level 9 (the default), but disables level 6 and
higher for the locking component, and level 7 and higher for the storage
component.

Examples

v Count the level zero and level one tracepoints matched:
-Xtrace:count=all{L1}

v Produce maximal trace of all components at level 5 and j9mm at level 9:
-Xtrace:maximal={all{level5},j9mm{L9}}

v Trace all components at level 6, but do not trace j9vrb at all, and do not trace the
entry and exit tracepoints in the j9trc component:
-Xtrace:minimal={all{l6}},minimal={!j9vrb,j9trc{entry},j9trc{exit}}

methods=<method_specification>[,<method_specification>]:

Using method trace provides a complete (and potentially large) diagnosis of code
paths inside your application and the system classes. Use wild cards and filtering
to control method trace so that you can focus on the sections of code that interest
you.

Method trace can trace:
v Method entry
v Method exit

The methods parameter is defined as:

�� �

,

methods= { [!] * . * }
[*][<package>/]<class>[*] [*]<method>[*]

[()]

��

Where:
v The delimiter between parts of the package name is a forward slash, “/”.
v The ! in the methods parameter is a NOT operator that allows you to tell the

JVM not to trace the specified method or methods.
v The parentheses, (), define whether or not to include method parameters in the

trace.
v If a method specification includes any commas, the whole specification must be

enclosed in braces, for example:
-Xtrace:methods={java/lang/*,java/util/*},print=mt

302 IBM SDK for Java: SDK and Runtime Guide

v It might be necessary to enclose your command line in quotation marks to
prevent the shell intercepting and fragmenting comma-separated command lines,
for example:
"-Xtrace:methods={java/lang/*,java/util/*},print=mt"

To output all method trace information to stderr, use:

-Xtrace:print=mt,methods=*.*
Print method trace information for all methods to stderr.

-Xtrace:iprint=mt,methods=*.*
Print method trace information for all methods to stderr using indentation.

To output method trace information in binary format, see
“output=<filename>[,sizem[,<generations>]]” on page 305.

Examples

v Tracing entry and exit of all methods in a given class:
-Xtrace:methods={ReaderMain.*,java/lang/String.*},print=mt

This traces all method entry and exit of the ReaderMain class in the default
package and the java.lang.String class.

v Tracing entry, exit and input parameters of all methods in a class:
-Xtrace:methods=ReaderMain.*(),print=mt

This traces all method entry, exit, and input of the ReaderMain class in the
default package.

v Tracing all methods in a given package:
-Xtrace:methods=com/ibm/socket/*.*(),print=mt

This traces all method entry, exit, and input of all classes in the package
com.ibm.socket.

v Multiple method trace:
-Xtrace:methods={Widget.*(),common/*},print=mt

This traces all method entry, exit, and input in the Widget class in the default
package and all method entry and exit in the common package.

v Using the ! operator
-Xtrace:methods={ArticleUI.*,!ArticleUI.get*},print=mt

This traces all methods in the ArticleUI class in the default package except those
beginning with “get”.

v Tracing a specific method in a class
-Xtrace:print=mt,methods={java/lang/String.substring}

This example traces entry and exit of the substring method of the
java.lang.String class. If there is more than one method with the same name,
they are all traced. You cannot filter method trace by the signature of the
method.

v Tracing the constructor of a class
-Xtrace:print=mt,methods={java/lang/String.<init>}

This example traces entry and exit of the constructors of the java.lang.String
class.

Chapter 9. Troubleshooting and support 303

Example output
java "-Xtrace:methods={java/lang*.*},iprint=mt" HW
10:02:42.281*0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/String.<clinit>()V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method

The output lines comprise of:
v 0x9e900, the current execenv (execution environment). Because every JVM thread

has its own execenv, you can regard execenv as a thread-id. All trace with the
same execenv relates to a single thread.

v The individual tracepoint id in the mt component that collects and emits the
data.

v The remaining fields show whether a method is being entered (>) or exited (<),
followed by details of the method.

304 IBM SDK for Java: SDK and Runtime Guide

output=<filename>[,sizem[,<generations>]]:

Use the output option to send trace data to <filename>. If the file does not already
exist, it is created automatically. If it does already exist, it is overwritten.

Optionally:
v You can limit the file to size MB, at which point it wraps to the beginning. If you

do not limit the file, it grows indefinitely, until limited by disk space.
v If you want the final trace filename to contain today's date, the PID number that

produced the trace, or the time, do one of the following steps as appropriate (see
also the examples at the end of this section).
– To include today's date (in "yyyymmdd" format) in the trace filename, specify

“%d” as part of the <filename>.
– To include the pidnumber of the process that is generating the tracefile,

specify “%p” as part of the <filename>.
– To include the time (in 24-hour hhmmss format) in the trace filename, specify

“%t” as part of the <filename>.
v You can specify generations as a value 2 through 36. These values cause up to 36

files to be used in a round-robin way when each file reaches its size threshold.
When a file needs to be reused, it is overwritten. If generations is specified, the
filename must contain a "#" (hash, pound symbol), which will be substituted
with its generation identifier, the sequence of which is 0 through 9 followed by
A through Z.

Note: When tracing to a file, buffers for each thread are written when the buffer is
full or when the JVM terminates. If a thread has been inactive for a period of time
before JVM termination, what seems to be 'old' trace data is written to the file.
When formatted, it then seems that trace data is missing from the other threads,
but this is an unavoidable side-effect of the buffer-per-thread design. This effect
becomes especially noticeable when you use the generation facility, and format
individual earlier generations.

Examples

v Trace output goes to /u/traces/gc.problem; no size limit:
-Xtrace:output=/u/traces/gc.problem,maximal=j9gc

v Output goes to trace and will wrap at 2 MB:
-Xtrace:output={trace,2m},maximal=j9gc

v Output goes to gc0.trc, gc1.trc, gc2.trc, each 10 MB in size:
-Xtrace:output={gc#.trc,10m,3},maximal=j9gc

v Output filename contains today's date in yyyymmdd format (for example,
traceout.20041025.trc):
-Xtrace:output=traceout.%d.trc,maximal=j9gc

v Output file contains the number of the process (the PID number) that generated
it (for example, tracefrompid2112.trc):
-Xtrace:output=tracefrompid%p.trc,maximal=j9gc

v Output filename contains the time in hhmmss format (for example,
traceout.080312.trc):
-Xtrace:output=traceout.%t.trc,maximal=j9gc

exception.output=<filename>[,nnnm]:

Use the exception option to redirect exception trace data to <filename>.

Chapter 9. Troubleshooting and support 305

If the file does not already exist, it is created automatically. If it does already exist,
it is overwritten. Optionally, you can limit the file to nnn MB, at which point it
wraps nondestructively to the beginning. If you do not limit the file, it grows
indefinitely, until limited by disk space.

Optionally, if you want the final trace filename to contain today's date, the PID
number that produced the trace, or the time, do one of the following steps as
appropriate (see also the examples at the end of this section).
v To include today's date (in “yyyymmdd” format) in the trace filename, specify

“%d” as part of the <filename>.
v To include the pidnumber of the process that is generating the tracefile, specify

“%p”" as part of the <filename>.
v To include the time (in 24-hour hhmmss format) in the trace filename, specify

“%t” as part of the <filename>.

Examples

v Trace output goes to /u/traces/exception.trc. No size limit:
-Xtrace:exception.output=/u/traces/exception.trc,maximal

v Output goes to except and wraps at 2 MB:
-Xtrace:exception.output={except,2m},maximal

v Output filename contains today's date in yyyymmdd format (for example,
traceout.20041025.trc):
-Xtrace:exception.output=traceout.%d.trc,maximal

v Output file contains the number of the process (the PID number) that generated
it (for example, tracefrompid2112.trc):
-Xtrace:exception.output=tracefrompid%p.trc,maximal

v Output filename contains the time in hhmmss format (for example,
traceout.080312.trc):
-Xtrace:exception.output=traceout.%t.trc,maximal

resume:

Resumes tracing globally.

Note that suspend and resume are not recursive. That is, two suspends that are
followed by a single resume cause trace to be resumed.

Example

v Trace resumed (not much use as a startup option):
-Xtrace:resume

resumecount=<count>:

This trace option determines whether tracing is enabled for each thread.

If <count> is greater than zero, each thread initially has its tracing disabled and
must receive <count> resumethis actions before it starts tracing.

Note: You cannot use resumecount and suspendcount together because they use the
same internal counter.

This system property is for use with the trigger property. For more information,
see “trigger=<clause>[,<clause>][,<clause>]...” on page 308.

306 IBM SDK for Java: SDK and Runtime Guide

Example

v Start with all tracing turned off. Each thread starts tracing when it has had three
resumethis actions performed on it:
-Xtrace:resumecount=3

sleeptime=nnn|aaams|bbbs:

Specify how long the sleep lasts when using the sleep trigger action.

Purpose

Use this option to determine how long a sleep trigger action lasts. The default
length of time is 30 seconds. If no units are specified, the default time unit is
milliseconds.

Parameters

nnn
Sleep for nnn milliseconds.

aaams
Sleep for aaa milliseconds.

bbbs
Sleep for bbb seconds.

stackdepth=<n>:

Used to limit the amount of stack frame information collected.

Purpose

Use this option to limit the maximum number of stack frames reported by the
jstacktrace trace trigger action. All stack frames are recorded by default.

Parameters

n Record n stack frames

suspend:

Suspends tracing globally (for all threads and all forms of tracing) but leaves
tracepoints activated.

Example

v Tracing suspended:
-Xtrace:suspend

suspendcount=<count>:

This trace option determines whether tracing is enabled for each thread.

If <count> is greater than zero, each thread initially has its tracing enabled and
must receive <count> suspend this action before it stops tracing.

Note: You cannot use resumecount and suspendcount together because they both
set the same internal counter.

Chapter 9. Troubleshooting and support 307

This trace option is for use with the trigger option. For more information, see
“trigger=<clause>[,<clause>][,<clause>]....”

Example

v Start with all tracing turned on. Each thread stops tracing when it has had three
suspendthis actions performed on it:
-Xtrace:suspendcount=3

trigger=<clause>[,<clause>][,<clause>]...:

This trace option determines when various triggered trace actions occur. Supported
actions include turning tracing on and off for all threads, turning tracing on or off
for the current thread, or producing various dumps.

This trace option does not control what is traced. It controls only whether the
information that has been selected by the other trace options is produced as
normal or is blocked.

Each clause of the trigger option can be tpnid{...}, method{...}, or group{...}.
You can specify multiple clauses of the same type if required, but you do not need
to specify all types. The clause types are as follows:

method{<methodspec>[,<entryAction>[,<exitAction>[,<delayCount>
[,<matchcount>]]]]}

On entering a method that matches <methodspec>, the specified <entryAction> is
run. On leaving a method that matches <methodspec>, the specified <exitAction>
is run. If you specify a <delayCount>, the actions are performed only after a
matching <methodspec> has been entered that many times. If you specify a
<matchCount>, <entryAction> and <exitAction> are performed at most that
many times.

group{<groupname>,<action>[,<delayCount>[,<matchcount>]]}
On finding any active tracepoint that is defined as being in trace group
<groupname>, for example Entry or Exit, the specified action is run. If you
specify a <delayCount>, the action is performed only after that many active
tracepoints from group <groupname> have been found. If you specify a
<matchCount>, <action> is performed at most that many times.

tpnid{<tpnid>|<tpnidRange>,<action>[,<delayCount>[,<matchcount>]]}
On finding the specified active <tpnid> (tracepoint ID) or a <tpnid> that falls
inside the specified <tpnidRange>, the specified action is run. If you specify a
<delayCount>, the action is performed only after the JVM finds such an active
<tpnid> that many times. If you specify a <matchCount>, <action> is performed
at most that many times.

Actions

Wherever an action must be specified, you must select from these choices:

abort
Halt the JVM.

ceedump
This action is applicable to z/OS only. For more information, see “LE
CEEDUMPs” on page 226.

coredump
See sysdump.

308 IBM SDK for Java: SDK and Runtime Guide

heapdump
Produce a Heapdump. See “Using Heapdump” on page 262.

javadump
Produce a Javadump. See “Using Javadump” on page 240.

jstacktrace
Examine the Java stack of the current thread and generate auxiliary tracepoints
for each stack frame. The auxiliary tracepoints are written to the same
destination as the tracepoint or method trace that triggered the action. You can
control the number of stack frames examined with the stackdepth=n option.
See “stackdepth=<n>” on page 307.

resume
Resume all tracing (except for threads that are suspended by the action of the
resumecount property and Trace.suspendThis() calls).

resumethis
Decrement the suspend count for this thread. If the suspend count is zero or
less, resume tracing for this thread.

segv
Cause a segmentation violation. (Intended for use in debugging.)

sleep
Delay the current thread for a length of time controlled by the sleeptime
option. The default is 30 seconds. See “sleeptime=nnn|aaams|bbbs” on page
307.

snap
Snap all active trace buffers to a file in the current working directory. The file
name has the format: Snapnnnn.yyyymmdd.hhmmssth.ppppp.trc, where nnnn is
the sequence number of the snap file since JVM startup, yyyymmdd is the date,
hhmmssth is the time, and ppppp is the process ID in decimal with leading zeros
removed.

suspend
Suspend all tracing (except for special trace points).

suspendthis
Increment the suspend count for this thread. If the suspend-count is greater
than zero, prevent all tracing for this thread.

sysdump (or coredump)
Produce a system dump. See “Using system dumps and the dump viewer” on
page 271.

Examples

v To start tracing this thread when it enters any method in java/lang/String, and
to stop tracing the thread after exiting the method:
-Xtrace:resumecount=1
-Xtrace:trigger=method{java/lang/String.*,resumethis,suspendthis}

v To resume all tracing when any thread enters a method in any class that starts
with “error”:
-Xtrace:trigger=method{*.error*,resume}

v To produce a core dump when you reach the 1000th and 1001st tracepoint from
the “jvmri” trace group.

Note: Without <matchcount>, you risk filling your disk with coredump files.
-Xtrace:trigger=group{staticmethods,coredump,1000,2}

Chapter 9. Troubleshooting and support 309

If using the trigger option generates multiple dumps in rapid succession (more
than one per second), specify a dump option to guarantee unique dump names.
See “Using dump agents” on page 221 for more information.

v To trace (all threads) while the application is active; that is, not starting or shut
down. (The application name is “HelloWorld”):
-Xtrace:suspend,trigger=method{HelloWorld.main,resume,suspend}

v To print a Java stack trace to the console when the mycomponent.1 tracepoint is
reached:
-Xtrace:print=mycomponent.1,trigger=tpnid{mycomponent.1,jstacktrace}

v To write a Java stack trace to the trace output file when the Sample.code()
method is called:
-Xtrace:maximal=mt,output=trc.out,methods={mycompany/mypackage/Sample.code},
trigger=method{mycompany/mypackage/Sample.code,jstacktrace}

what:

This trace option shows the current trace settings.

Example
-Xtrace:what

Example output:
Trace engine configuration

-Xtrace:FORMAT=C:\Java\jre\bin;C:\Java\jre\lib;.
-Xtrace:LIBPATH=C:\Java\jre\bin
-Xtrace:MAXIMAL=all{level1}
-Xtrace:EXCEPTION=j9mm{gclogger}
-Xtrace:what

Using the Java API:

You can dynamically control trace in a number of ways from a Java application by
using the com.ibm.jvm.Trace class.

Activating and deactivating tracepoints

int set(String cmd);

The Trace.set() method allows a Java application to select tracepoints
dynamically. For example:
Trace.set(“iprint=all”);

The syntax is the same as that used in a trace properties file for the print,
iprint, count, maximal, minimal and external trace options.

A single trace command is parsed per invocation of Trace.set, so to achieve the
equivalent of -Xtrace:maximal=j9mm,iprint=j9shr two calls to Trace.set are
needed with the parameters maximal=j9mm and iprint=j9shr

Obtaining snapshots of trace buffers

void snap();

You must have activated trace previously with the maximal or minimal
options and without the out option.

Suspending or resuming trace

310 IBM SDK for Java: SDK and Runtime Guide

void suspend();

The Trace.suspend() method suspends tracing for all the threads in the JVM.

void resume();

The Trace.resume() method resumes tracing for all threads in the JVM. It is
not recursive.

void suspendThis();

The Trace.suspendThis() method decrements the suspend and resume count for
the current thread and suspends tracing the thread if the result is negative.

void resumeThis();

The Trace.resumeThis() method increments the suspend and resume count for
the current thread and resumes tracing the thread if the result is not negative.

Using the trace formatter
The trace formatter is a Java program that converts binary trace point data in a
trace file to a readable form. The formatter requires the J9TraceFormat.dat file,
which contains the formatting templates. The formatter produces a file containing
header information about the JVM that produced the binary trace file, a list of
threads for which trace points were produced, and the formatted trace points with
their timestamp, thread ID, trace point ID and trace point data.

To use the trace formatter on a binary trace file type:
java com.ibm.jvm.TraceFormat <input_file> [<output_file>] [options]

where <input_file> is the name of the binary trace file to be formatted, and
<output_file> is the name of the output file.

If you do not specify an output file, the output file is called <input_file>.fmt.

The size of the heap needed to format the trace is directly proportional to the
number of threads present in the trace file. For large numbers of threads the
formatter might run out of memory, generating the error OutOfMemoryError. In this
case, increase the heap size using the -Xmx option.

Available options

The following options are available with the trace formatter:

-datfile=<file1.dat>[,<file2.dat>]
A comma-separated list of trace formatting data files. By default, the files used
are:$JAVA_HOME/lib/J9TraceFormat.dat and $JAVA_HOME/lib/TraceFormat.dat

-format_time=yes|no
Specifies whether to format the time stamps into human readable form. The
default is yes.

-help
Displays usage information.

-indent
Indents trace messages at each Entry trace point and outdents trace messages
at each Exit trace point. The default is not to indent the messages.

-summary
Prints summary information to the screen without generating an output file.

Chapter 9. Troubleshooting and support 311

-threads=<thread id>[,<thread id>]...
Filters the output for the given thread IDs only. thread id is the ID of the
thread, which can be specified in decimal or hex (0x) format. Any number of
thread IDs can be specified, separated by commas.

-timezone=+|-HH:MM
Specifies the offset from UTC, as positive or negative hours and minutes, to
apply when formatting timestamps.

-verbose
Output detailed warning and error messages, and performance statistics.

Determining the tracepoint ID of a tracepoint
Throughout the code that makes up the JVM, there are numerous tracepoints. Each
tracepoint maps to a unique id consisting of the name of the component containing
the tracepoint, followed by a period (“.”) and then the numeric identifier of the
tracepoint.

These tracepoints are also recorded in two .dat files (TraceFormat.dat and
J9TraceFormat.dat) that are shipped with the JRE, and the trace formatter uses
these files to convert compressed trace points into readable form.

JVM developers and Service can use the two .dat files to enable formulation of
trace point ids and ranges for use under -Xtrace when tracking down problems.
The next sample is taken from the beginning of J9TraceFormat.dat, which
illustrates how this mechanism works:

5.1
j9bcu.0 0 1 1 N Trc_BCU_VMInitStages_Event1 " Trace engine initialized for module j9dyn"
j9bcu.1 2 1 1 N Trc_BCU_internalDefineClass_Entry " >internalDefineClass %p"
j9bcu.2 4 1 1 N Trc_BCU_internalDefineClass_Exit " <internalDefineClass %p ->"
j9bcu.3 2 1 1 N Trc_BCU_createRomClassEndian_Entry " >createRomClassEndian searchFilename=%s"

The first line of the .dat file is an internal version number. Following the version
number is a line for each tracepoint. Trace point j9bcu.0 maps to
Trc_BCU_VMInitStages_Event1 for example and j9bcu.2 maps to
Trc_BCU_internalDefineClass_Exit.

The format of each tracepoint entry is:
<component.id> <t> <o> <l> <e> <symbol> <template>

where:
<component.id>

is the SDK component name.
<t> is the tracepoint type (0 through 12), where these types are used:

v 0 = event
v 1 = exception
v 2 = function entry
v 4 = function exit
v 5 = function exit with exception
v 8 = internal
v 12 = assert

<o> is the overhead (0 through 10), which determines whether the tracepoint is
compiled into the runtime JVM code.

<l> is the level of the tracepoint (0 through 9). High frequency tracepoints,
known as hot tracepoints, are assigned higher level numbers.

<e> is an internal flag (Y/N) and no longer used.

312 IBM SDK for Java: SDK and Runtime Guide

|
|
|

<symbol>
is the internal symbolic name of the tracepoint.

<template>
is a template in double quotation marks that is used to format the entry.

For example, if you discover that a problem occurred somewhere close to the issue
of Trc_BCU_VMInitStages_Event, you can rerun the application with
-Xtrace:print=tpnid{j9bcu.0}. That command will result in an output such as:
14:10:42.717*0x41508a00 j9bcu.0 - Trace engine initialized for module j9dyn

The example given is fairly trivial. However, the use of tpnid ranges and the
formatted parameters contained in most trace entries provides a very powerful
problem debugging mechanism.

The .dat files contain a list of all the tracepoints ordered by component, then
sequentially numbered from 0. The full tracepoint id is included in all formatted
output of a tracepoint; For example, tracing to the console or formatted binary
trace.

The format of trace entries and the contents of the .dat files are subject to change
without notice. However, the version number should guarantee a particular format.

Application trace
Application trace allows you to trace Java applications using the JVM trace facility.

You must register your Java application with application trace and add trace calls
where appropriate. After you have started an application trace module, you can
enable or disable individual tracepoints at any time.

Implementing application trace:

Application trace is in the package com.ibm.jvm.Trace. The application trace API is
described in this section.

Registering for trace:

Use the registerApplication() method to specify the application to register with
application trace.

The method is of the form:
int registerApplication(String application_name, String[] format_template)

The application_name argument is the name of the application you want to trace.
The name must be the same as the application name you specify at JVM startup.
The format_template argument is an array of format strings like the strings used
by the printf method. You can specify templates of up to 16 KB. The position in the
array determines the tracepoint identifier (starting at 0). You can use these
identifiers to enable specific tracepoints at run time. The first character of each
template is a digit that identifies the type of tracepoint. The tracepoint type can be
one of entry, exit, event, exception, or exception exit. After the tracepoint type
character, the template has a blank character, followed by the format string.

The trace types are defined as static values within the Trace class:

Chapter 9. Troubleshooting and support 313

public static final String EVENT= "0 ";
public static final String EXCEPTION= "1 ";
public static final String ENTRY= "2 ";
public static final String EXIT= "4 ";
public static final String EXCEPTION_EXIT= "5 ";

The registerApplication() method returns an integer value. Use this value in
subsequent trace() calls. If the registerApplication() method call fails for any
reason, the value returned is -1.

Tracepoints:

These trace methods are implemented.

void trace(int handle, int traceId);
void trace(int handle, int traceId, String s1);
void trace(int handle, int traceId, String s1, String s2);
void trace(int handle, int traceId, String s1, String s2, String s3);
void trace(int handle, int traceId, String s1, Object o1);
void trace(int handle, int traceId, Object o1, String s1);
void trace(int handle, int traceId, String s1, int i1);
void trace(int handle, int traceId, int i1, String s1);
void trace(int handle, int traceId, String s1, long l1);
void trace(int handle, int traceId, long l1, String s1);
void trace(int handle, int traceId, String s1, byte b1);
void trace(int handle, int traceId, byte b1, String s1);
void trace(int handle, int traceId, String s1, char c1);
void trace(int handle, int traceId, char c1, String s1);
void trace(int handle, int traceId, String s1, float f1);
void trace(int handle, int traceId, float f1, String s1);
void trace(int handle, int traceId, String s1, double d1);
void trace(int handle, int traceId, double d1, String s1);
void trace(int handle, int traceId, Object o1);
void trace(int handle, int traceId, Object o1, Object o2);
void trace(int handle, int traceId, int i1);
void trace(int handle, int traceId, int i1, int i2);
void trace(int handle, int traceId, int i1, int i2, int i3);
void trace(int handle, int traceId, long l1);
void trace(int handle, int traceId, long l1, long l2);
void trace(int handle, int traceId, long l1, long l2, long i3);
void trace(int handle, int traceId, byte b1);
void trace(int handle, int traceId, byte b1, byte b2);
void trace(int handle, int traceId, byte b1, byte b2, byte b3);
void trace(int handle, int traceId, char c1);
void trace(int handle, int traceId, char c1, char c2);
void trace(int handle, int traceId, char c1, char c2, char c3);
void trace(int handle, int traceId, float f1);
void trace(int handle, int traceId, float f1, float f2);
void trace(int handle, int traceId, float f1, float f2, float f3);
void trace(int handle, int traceId, double d1);
void trace(int handle, int traceId, double d1, double d2);
void trace(int handle, int traceId, double d1, double d2, double d3);
void trace(int handle, int traceId, String s1, Object o1, String s2);
void trace(int handle, int traceId, Object o1, String s1, Object o2);
void trace(int handle, int traceId, String s1, int i1, String s2);
void trace(int handle, int traceId, int i1, String s1, int i2);
void trace(int handle, int traceId, String s1, long l1, String s2);

314 IBM SDK for Java: SDK and Runtime Guide

void trace(int handle, int traceId, long l1, String s1, long l2);
void trace(int handle, int traceId, String s1, byte b1, String s2);
void trace(int handle, int traceId, byte b1, String s1, byte b2);
void trace(int handle, int traceId, String s1, char c1, String s2);
void trace(int handle, int traceId, char c1, String s1, char c2);
void trace(int handle, int traceId, String s1, float f1, String s2);
void trace(int handle, int traceId, float f1, String s1, float f2);
void trace(int handle, int traceId, String s1, double d1, String s2);
void trace(int handle, int traceId, double d1, String s1, double d2);

The handle argument is the value returned by the registerApplication() method.
The traceId argument is the number of the template entry starting at 0.

Printf specifiers:

Application trace supports the ANSI C printf specifiers. You must be careful when
you select the specifier; otherwise you might get unpredictable results, including
abnormal termination of the JVM.

For 64-bit integers, you must use the ll (lowercase LL, meaning long long)
modifier. For example: %lld or %lli.

For pointer-sized integers use the z modifier. For example: %zx or %zd.

Example HelloWorld with application trace:

This code illustrates a “HelloWorld” application with application trace.

For more information about this example, see “Using application trace at run time”
on page 316.
import com.ibm.jvm.Trace;
public class HelloWorld
{

static int handle;
static String[] templates;
public static void main (String[] args)
{

templates = new String[5];
templates[0] = Trace.ENTRY + "Entering %s";
templates[1] = Trace.EXIT + "Exiting %s";
templates[2] = Trace.EVENT + "Event id %d, text = %s";
templates[3] = Trace.EXCEPTION + "Exception: %s";
templates[4] = Trace.EXCEPTION_EXIT + "Exception exit from %s";

// Register a trace application called HelloWorld
handle = Trace.registerApplication("HelloWorld", templates);

// Set any tracepoints that are requested on the command line
for (int i = 0; i < args.length; i++)
{

System.err.println("Trace setting: " + args[i]);
Trace.set(args[i]);

}

// Trace something....
Trace.trace(handle, 2, 1, "Trace initialized");

// Call a few methods...
sayHello();
sayGoodbye();

}

Chapter 9. Troubleshooting and support 315

private static void sayHello()
{

Trace.trace(handle, 0, "sayHello");
System.out.println("Hello");
Trace.trace(handle, 1, "sayHello");

}

private static void sayGoodbye()
{

Trace.trace(handle, 0, "sayGoodbye");
System.out.println("Bye");
Trace.trace(handle, 4, "sayGoodbye");

}
}

Using application trace at run time:

At run time, you can enable one or more applications for application trace.

The “Example HelloWorld with application trace” on page 315 uses the Trace.set()
API to pass arguments to the trace function. For example, to pass the iprint
argument to the trace function, use the following command:
java HelloWorld iprint=HelloWorld

Starting the example HelloWorld application in this way produces the following
results:
Trace setting: iprint=HelloWorld
09:50:29.417*0x2a08a00 084002 - Event id 1, text = Trace initialized
09:50:29.417 0x2a08a00 084000 > Entering sayHello
Hello
09:50:29.427 0x2a08a00 084001 < Exiting sayHello
09:50:29.427 0x2a08a00 084000 > Entering sayGoodbye
Bye
09:50:29.437 0x2a08a00 084004 * < Exception exit from sayGoodbye

You can also specify trace options directly by using the -Xtrace option. See
“Options that control tracepoint activation” on page 297 for more details. For
example, you can obtain a similar result to the previous command by using the
-Xtrace option to specify iprint on the command line:
java -Xtrace:iprint=HelloWorld HelloWorld

Note: You can enable tracepoints by application name and by tracepoint number.
Using tracepoint “levels” or “types” is not supported for application trace.

Using method trace
Method trace is a powerful tool for tracing methods in any Java code.

Method trace provides a comprehensive and detailed diagnosis of code paths
inside your application, and also inside the system classes. You do not have to add
any hooks or calls to existing code. You can focus on interesting code by using
wild cards and filtering to control method trace.

Method trace can trace:
v Method entry
v Method exit

Use method trace to debug and trace application code and the system classes
provided with the JVM.

316 IBM SDK for Java: SDK and Runtime Guide

While method trace is powerful, it also has a cost. Application throughput is
affected by method trace. Additionally, trace output is reasonably large and might
require a large amount of drive space. For instance, a full method trace of a “Hello
World” application is over 10 MB.

Running with method trace:

Control method trace by using the command-line option -Xtrace:<option>.

To produce method trace you need to set trace options for the Java classes and
methods you want to trace. You also need to route the method trace to the
destination you require.

You must set the following two options:
1. Use -Xtrace:methods to select which Java classes and methods you want to

trace. You can use IBM Monitoring and Diagnostic Tools for Java - Health
Center to monitor your application to see which methods should be traced. You
can also use the tool to generate the required -Xtrace parameters, and view the
resulting data.

2. Use either
v -Xtrace:print to route the trace to stderr.
v -Xtrace:maximal and -Xtrace:output to route the trace to a binary

compressed file using memory buffers.

Use the methods parameter to control what is traced. For example, to trace all
methods on the String class, set -Xtrace:methods=java/lang/String.*,print=mt.

The methods parameter is formally defined as follows:
-Xtrace:methods=[[!]<method_spec>[,...]]

Where <method_spec> is formally defined as:
{*|[*]<classname>[*]}.{*|[*]<methodname>[*]}[()]

Notes:

v The exclamation point (!) in the methods parameter is a NOT operator. You can
use this symbol and multiple methods in combination. For example, the
following option traces all methods in the java.util.HashMap class except those
beginning with put:
-Xtrace:methods={java/util/HashMap.*,!java/util/HashMap.put*},print=mt

v The parentheses, (), that are in the <method_spec> variable define whether to
trace method parameters. Method call parameters are traced only for interpreted
methods. If the method was compiled by the JIT compiler, the parameters are
not traced.

v If a method specification includes commas, the whole specification must be
enclosed in braces:
-Xtrace:methods={java/lang/*,java/util/*},print=mt

v You might have to enclose your command line in quotation marks. This action
prevents the shell intercepting and fragmenting comma-separated command
lines:
"-Xtrace:methods={java/lang/*,java/util/*},print=mt"

Use the print, maximal and output options to route the trace to the required
destination, where:

Chapter 9. Troubleshooting and support 317

v print formats the trace point data while the Java application is running and
writes the tracepoints to stderr.

v maximal saves the trace points into memory buffers.
v output writes the memory buffers to a file, in a binary compressed format.

To produce method trace that is routed to stderr, use the print option, specifying
mt (method trace). For example: -Xtrace:methods=java/lang/String.*,print=mt.

To produce method trace that is written to a binary file from the memory buffers,
use the maximal and output options. For example: -Xtrace:methods=java/lang/
String.*,maximal=mt,output=mytrace.trc.

If you want your trace output to contain only the tracepoints you specify, use the
option -Xtrace:none to switch off the default tracepoints. For example: java
-Xtrace:none -Xtrace:methods=java/lang/
String.*,maximal=mt,output=mytrace.trc <class>.

Untraceable methods:

Internal Native Library (INL) native methods inside the JVM cannot be traced
because they are not implemented using JNI. The list of methods that are not
traceable is subject to change without notice between releases.

The INL native methods in the JVM include:
java.lang.Class.allocateAndFillArray
java.lang.Class.forNameImpl
java.lang.Class.getClassDepth
java.lang.Class.getClassLoaderImpl
java.lang.Class.getComponentType
java.lang.Class.getConstructorImpl
java.lang.Class.getConstructorsImpl
java.lang.Class.getDeclaredClassesImpl
java.lang.Class.getDeclaredConstructorImpl
java.lang.Class.getDeclaredConstructorsImpl
java.lang.Class.getDeclaredFieldImpl
java.lang.Class.getDeclaredFieldsImpl
java.lang.Class.getDeclaredMethodImpl
java.lang.Class.getDeclaredMethodsImpl
java.lang.Class.getDeclaringClassImpl
java.lang.Class.getEnclosingObject
java.lang.Class.getEnclosingObjectClass
java.lang.Class.getFieldImpl
java.lang.Class.getFieldsImpl
java.lang.Class.getGenericSignature
java.lang.Class.getInterfaceMethodCountImpl
java.lang.Class.getInterfaceMethodsImpl
java.lang.Class.getInterfaces
java.lang.Class.getMethodImpl
java.lang.Class.getModifiersImpl
java.lang.Class.getNameImpl
java.lang.Class.getSimpleNameImpl
java.lang.Class.getStackClass
java.lang.Class.getStackClasses
java.lang.Class.getStaticMethodCountImpl
java.lang.Class.getStaticMethodsImpl
java.lang.Class.getSuperclass
java.lang.Class.getVirtualMethodCountImpl
java.lang.Class.getVirtualMethodsImpl
java.lang.Class.isArray
java.lang.Class.isAssignableFrom
java.lang.Class.isInstance
java.lang.Class.isPrimitive

318 IBM SDK for Java: SDK and Runtime Guide

java.lang.Class.newInstanceImpl
java.lang.ClassLoader.findLoadedClassImpl
java.lang.ClassLoader.getStackClassLoader
java.lang.ClassLoader.loadLibraryWithPath
java.lang.J9VMInternals.getInitStatus
java.lang.J9VMInternals.getInitThread
java.lang.J9VMInternals.initializeImpl
java.lang.J9VMInternals.sendClassPrepareEvent
java.lang.J9VMInternals.setInitStatusImpl
java.lang.J9VMInternals.setInitThread
java.lang.J9VMInternals.verifyImpl
java.lang.J9VMInternals.getStackTrace
java.lang.Object.clone
java.lang.Object.getClass
java.lang.Object.hashCode
java.lang.Object.notify
java.lang.Object.notifyAll
java.lang.Object.wait
java.lang.ref.Finalizer.runAllFinalizersImpl
java.lang.ref.Finalizer.runFinalizationImpl
java.lang.ref.Reference.getImpl
java.lang.ref.Reference.initReferenceImpl
java.lang.reflect.AccessibleObject.checkAccessibility
java.lang.reflect.AccessibleObject.getAccessibleImpl
java.lang.reflect.AccessibleObject.getExceptionTypesImpl
java.lang.reflect.AccessibleObject.getModifiersImpl
java.lang.reflect.AccessibleObject.getParameterTypesImpl
java.lang.reflect.AccessibleObject.getSignature
java.lang.reflect.AccessibleObject.getStackClass
java.lang.reflect.AccessibleObject.initializeClass
java.lang.reflect.AccessibleObject.invokeImpl
java.lang.reflect.AccessibleObject.setAccessibleImpl
java.lang.reflect.Array.get
java.lang.reflect.Array.getBoolean
java.lang.reflect.Array.getByte
java.lang.reflect.Array.getChar
java.lang.reflect.Array.getDouble
java.lang.reflect.Array.getFloat
java.lang.reflect.Array.getInt
java.lang.reflect.Array.getLength
java.lang.reflect.Array.getLong
java.lang.reflect.Array.getShort
java.lang.reflect.Array.multiNewArrayImpl
java.lang.reflect.Array.newArrayImpl
java.lang.reflect.Array.set
java.lang.reflect.Array.setBoolean
java.lang.reflect.Array.setByte
java.lang.reflect.Array.setChar
java.lang.reflect.Array.setDouble
java.lang.reflect.Array.setFloat
java.lang.reflect.Array.setImpl
java.lang.reflect.Array.setInt
java.lang.reflect.Array.setLong
java.lang.reflect.Array.setShort
java.lang.reflect.Constructor.newInstanceImpl
java.lang.reflect.Field.getBooleanImpl
java.lang.reflect.Field.getByteImpl
java.lang.reflect.Field.getCharImpl
java.lang.reflect.Field.getDoubleImpl
java.lang.reflect.Field.getFloatImpl
java.lang.reflect.Field.getImpl
java.lang.reflect.Field.getIntImpl
java.lang.reflect.Field.getLongImpl
java.lang.reflect.Field.getModifiersImpl
java.lang.reflect.Field.getNameImpl
java.lang.reflect.Field.getShortImpl
java.lang.reflect.Field.getSignature

Chapter 9. Troubleshooting and support 319

java.lang.reflect.Field.getTypeImpl
java.lang.reflect.Field.setBooleanImpl
java.lang.reflect.Field.setByteImpl
java.lang.reflect.Field.setCharImpl
java.lang.reflect.Field.setDoubleImpl
java.lang.reflect.Field.setFloatImpl
java.lang.reflect.Field.setImpl
java.lang.reflect.Field.setIntImpl
java.lang.reflect.Field.setLongImpl
java.lang.reflect.Field.setShortImpl
java.lang.reflect.Method.getNameImpl
java.lang.reflect.Method.getReturnTypeImpl
java.lang.String.intern
java.lang.String.isResettableJVM0
java.lang.System.arraycopy
java.lang.System.currentTimeMillis
java.lang.System.hiresClockImpl
java.lang.System.hiresFrequencyImpl
java.lang.System.identityHashCode
java.lang.System.nanoTime
java.lang.Thread.currentThread
java.lang.Thread.getStackTraceImpl
java.lang.Thread.holdsLock
java.lang.Thread.interrupted
java.lang.Thread.interruptImpl
java.lang.Thread.isInterruptedImpl
java.lang.Thread.resumeImpl
java.lang.Thread.sleep
java.lang.Thread.startImpl
java.lang.Thread.stopImpl
java.lang.Thread.suspendImpl
java.lang.Thread.yield
java.lang.Throwable.fillInStackTrace
java.security.AccessController.getAccessControlContext
java.security.AccessController.getProtectionDomains
java.security.AccessController.getProtectionDomainsImpl
org.apache.harmony.kernel.vm.VM.getStackClassLoader
org.apache.harmony.kernel.vm.VM.internImpl

Examples of use:

Here are some examples of method trace commands and their results.
v Tracing entry and exit of all methods in a given class:

-Xtrace:methods=java/lang/String.*,print=mt

This example traces entry and exit of all methods in the java.lang.String class.
The name of the class must include the full package name, using '/' as a
separator. The method name is separated from the class name by a dot '.' In this
example, '*' is used to include all methods. Sample output:
09:39:05.569 0x1a1100 mt.0 > java/lang/String.length()I Bytecode method,
This = 8b27d8
09:39:05.579 0x1a1100 mt.6 < java/lang/String.length()I Bytecode method

v Tracing method input parameters:
-Xtrace:methods=java/lang/Thread.*(),print=mt

This example traces all methods in the java.lang.Thread class, with the
parentheses '()' indicating that the trace should also include the method call
parameters. The output includes an extra line, giving the class and location of
the object on which the method was called, and the values of the parameters. In
this example the method call is Thread.join(long millis,int nanos), which has two
parameters:

320 IBM SDK for Java: SDK and Runtime Guide

09:58:12.949 0x4236ce00 mt.0 > java/lang/Thread.join(JI)V Bytecode method, This = 8ffd20
09:58:12.959 0x4236ce00 mt.18 - Instance method receiver: com/ibm/tools/attach/javaSE/AttachHandler@008FFD20
arguments: ((long)1000,(int)0)

Method call parameters are traced only for interpreted methods. If the method
was compiled by the JIT compiler, the parameters are not provided. For
example:

16:56:45.636 0x3e70000 mt.0 > java/lang/Thread.join(JI)V Bytecode method, This = 7ff7e7ca450
16:56:45.648 0x3e70000 mt.18 - Instance method receiver: com/ibm/tools/attach/javaSE/AttachHandler@000007FF7E7CA450
arguments: ((long)10000,(int)0)
16:56:55.726*0x3e70000 mt.6 < java/lang/Thread.join(JI)V Bytecode method
16:56:56.462 0x3e70000 mt.1 > java/lang/Thread.join(JI)V Compiled method, This = 7ff7e7ca450
16:56:56.617 0x3e70000 mt.7 < java/lang/Thread.join(JI)V Compiled method

v Tracing multiple methods:
-Xtrace:methods={java/util/HashMap.size,java/lang/String.length},print=mt

This example traces the size method on the java.util.HashMap class and the
length method on the java.lang.String class. The method specification includes
the two methods separated by a comma, with the entire method specification
enclosed in braces '{' and '}'. Sample output:
10:28:19.296 0x1a1100 mt.0 > java/lang/String.length()I Bytecode method,
This = 8c2548
10:28:19.306 0x1a1100 mt.6 < java/lang/String.length()I Bytecode method
10:28:19.316 0x1a1100 mt.0 > java/util/HashMap.size()I Bytecode method,
This = 8dd7e8
10:28:19.326 0x1a1100 mt.6 < java/util/HashMap.size()I Bytecode method

v Using the ! (not) operator to select tracepoints:
-Xtrace:methods={java/util/HashMap.*,!java/util/HashMap.put*},print

This example traces all methods in the java.util.HashMap class except those
beginning with put. Sample output:

10:37:42.225 0x1a1100 mt.0 > java/util/HashMap.createHashedEntry(Ljava/lang/Object;II)Ljava/util/
HashMap$Entry; Bytecode method, This = 8e09e0
10:37:42.246 0x1a1100 mt.6 < java/util/HashMap.createHashedEntry(Ljava/lang/Object;II)Ljava/util/
HashMap$Entry; Bytecode method
10:37:42.256 0x1a1100 mt.1 > java/util/HashMap.findNonNullKeyEntry(Ljava/lang/Object;II)Ljava/util/
HashMap$Entry; Compiled method, This = 8dd7e0
10:37:42.266 0x1a1100 mt.7 < java/util/HashMap.findNonNullKeyEntry(Ljava/lang/Object;II)Ljava/util/
HashMap$Entry; Compiled method

Example of method trace output:

An example of method trace output.

Sample output using the command java -Xtrace:iprint=mt,methods=java/lang/
. -version:

10:02:42.281*0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)
V Compiled static method

10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)
V Compiled static method

10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)
V Compiled static method

10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)
V Compiled static method

10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)
V Compiled static method

10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)
V Compiled static method

10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)
V Compiled static method

10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

Chapter 9. Troubleshooting and support 321

V Compiled static method
10:02:42.281 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.281 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/String.<clinit>()V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.296 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.verify(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.4 > java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method
10:02:42.328 0x9e900 mt.4 > java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.setInitStatus(Ljava/lang/Class;I)

V Compiled static method
10:02:42.328 0x9e900 mt.10 < java/lang/J9VMInternals.initialize(Ljava/lang/Class;)

V Compiled static method

The output lines comprise:
v 0x9e900, the current execenv (execution environment). Because every JVM thread

has its own execenv, you can regard execenv as a thread-id. All trace with the
same execenv relates to a single thread.

v The individual tracepoint id in the mt component that collects and emits the
data.

v The remaining fields show whether a method is being entered (>) or exited (<),
followed by details of the method.

JIT and AOT problem determination
You can use command-line options to help diagnose JIT and AOT compiler
problems and to tune performance.
v “Diagnosing a JIT or AOT problem”
v “Performance of short-running applications” on page 328
v “JVM behavior during idle periods” on page 328

Diagnosing a JIT or AOT problem
Occasionally, valid bytecodes might compile into invalid native code, causing the
Java program to fail. By determining whether the JIT or AOT compiler is faulty
and, if so, where it is faulty, you can provide valuable help to the Java service team.

322 IBM SDK for Java: SDK and Runtime Guide

About this task

This section describes how you can determine if your problem is compiler-related.
This section also suggests some possible workarounds and debugging techniques
for solving compiler-related problems.
v “Disabling the JIT or AOT compiler”
v “Selectively disabling the JIT or AOT compiler” on page 324
v “Locating the failing method” on page 325
v “Identifying JIT compilation failures” on page 327
v “Identifying AOT compilation failures” on page 328

Disabling the JIT or AOT compiler:

If you suspect that a problem is occurring in the JIT or AOT compiler, disable
compilation to see if the problem remains. If the problem still occurs, you know
that the compiler is not the cause of it.

About this task

The JIT compiler is enabled by default. The AOT compiler is also enabled, but, is
not active unless shared classes have been enabled. For efficiency reasons, not all
methods in a Java application are compiled. The JVM maintains a call count for
each method in the application; every time a method is called and interpreted, the
call count for that method is incremented. When the count reaches the compilation
threshold, the method is compiled and executed natively.

The call count mechanism spreads compilation of methods throughout the life of
an application, giving higher priority to methods that are used most frequently.
Some infrequently used methods might never be compiled at all. As a result, when
a Java program fails, the problem might be in the JIT or AOT compiler or it might
be elsewhere in the JVM.

The first step in diagnosing the failure is to determine where the problem is. To do
this, you must first run your Java program in purely interpreted mode (that is,
with the JIT and AOT compilers disabled).

Procedure

1. Remove any -Xjit and -Xaot options (and accompanying parameters) from
your command line.

2. Use the -Xint command-line option to disable the JIT and AOT compilers. For
performance reasons, do not use the -Xint option in a production environment.

What to do next

Running the Java program with the compilation disabled leads to one of the
following situations:
v The failure remains. The problem is not in the JIT or AOT compiler. In some

cases, the program might start failing in a different manner; nevertheless, the
problem is not related to the compiler.

v The failure disappears. The problem is most likely in the JIT or AOT compiler.
If you are not using shared classes, the JIT compiler is at fault. If you are using
shared classes, you must determine which compiler is at fault by running your

Chapter 9. Troubleshooting and support 323

application with only JIT compilation enabled. Run your application with the
-Xnoaot option instead of the -Xint option. This leads to one of the following
situations:
– The failure remains. The problem is in the JIT compiler. You can also use the

-Xnojit instead of the -Xnoaot option to ensure that only the JIT compiler is
at fault.

– The failure disappears. The problem is in the AOT compiler.

Selectively disabling the JIT or AOT compiler:

If your Java program failure points to a problem with the JIT or AOT compiler,
you can try to narrow down the problem further.

About this task

By default, the JIT compiler optimizes methods at various optimization levels.
Different selections of optimizations are applied to different methods, which are
based on their call counts. Methods that are called more frequently are optimized
at higher levels. By changing JIT compiler parameters, you can control the
optimization level at which methods are optimized. You can determine whether
the optimizer is at fault and, if it is, which optimization is problematic.

In contrast, the AOT compiler compiles methods only at the “cold” optimization
level. Forcing the AOT compiler to compile a method at a higher level is not
supported.

You specify JIT parameters as a comma-separated list, which is appended to the
-Xjit option. The syntax is -Xjit:<param1>,<param2>=<value>. For example:
java -Xjit:verbose,optLevel=noOpt HelloWorld

runs the HelloWorld program, enables verbose output from the JIT, and makes the
JIT generate native code without performing any optimizations. Optimization
options are listed in “How the JIT compiler optimizes code” on page 58. The AOT
compiler is controlled in a similar manner, by using the -Xaot option. Use the
-Xjit option when you are diagnosing JIT compiler problems, and the -Xaot
option when you are diagnosing AOT compiler problems.

Follow these steps to determine which part of the compiler is causing the failure:

Procedure

1. Set the JIT or AOT parameter count=0 to change the compilation threshold to
zero. This parameter causes each Java method to be compiled before it is run.
Use count=0 only when you are diagnosing problems, because a lot more
methods are compiled, including methods that are used infrequently. The extra
compilation uses more computing resources and slows down your application.
With count=0, your application fails immediately when the problem area is
reached. In some cases, by using count=1 can reproduce the failure more
reliably.

2. Add disableInlining to the JIT or AOT compiler parameters. disableInlining
disables the generation of larger and more complex code. If the problem no
longer occurs, use disableInlining as a workaround while the Java service
team analyzes and fixes the compiler problem.

3. Decrease the optimization levels by adding the optLevel parameter, and run
the program again until the failure no longer occurs, or you reach the “noOpt”
level. For a JIT compiler problem, start with “scorching” and work down the

324 IBM SDK for Java: SDK and Runtime Guide

list. For an AOT compiler problem, start with “cold” and work down the list.
The optimization levels are, in decreasing order:
a. scorching
b. veryHot
c. hot
d. warm
e. cold
f. noOpt

What to do next

If one of these settings causes your failure to disappear, you have a workaround
that you can use. This workaround is temporary while the Java service team
analyze and fix the compiler problem. If removing disableInlining from the JIT or
AOT parameter list does not cause the failure to reappear, do so to improve
performance. Follow the instructions in “Locating the failing method” to improve
the performance of the workaround.

If the failure still occurs at the “noOpt” optimization level, you must disable the
JIT or AOT compiler as a workaround.

Locating the failing method:

When you have determined the lowest optimization level at which the JIT or AOT
compiler must compile methods to trigger the failure, you can find out which part
of the Java program, when compiled, causes the failure. You can then instruct the
compiler to limit the workaround to a specific method, class, or package, allowing
the compiler to compile the rest of the program as usual. For JIT compiler failures,
if the failure occurs with -Xjit:optLevel=noOpt, you can also instruct the compiler
to not compile the method or methods that are causing the failure at all.

Before you begin

If you see error output like this example, you can use it to identify the failing
method:

Unhandled exception
Type=Segmentation error vmState=0x00000000
Target=2_30_20050520_01866_BHdSMr (Linux 2.4.21-27.0.2.EL)
CPU=s390x (2 logical CPUs) (0x7b6a8000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=4148bf20 Signal_Code=00000001
Handler1=00000100002ADB14 Handler2=00000100002F480C InaccessibleAddress=0000000000000000
gpr0=0000000000000006 gpr1=0000000000000006 gpr2=0000000000000000 gpr3=0000000000000006
gpr4=0000000000000001 gpr5=0000000080056808 gpr6=0000010002BCCA20 gpr7=0000000000000000
......
Compiled_method=java/security/AccessController.toArrayOfProtectionDomains([Ljava/lang/Object;
Ljava/security/AccessControlContext;)[Ljava/security/ProtectionDomain;

The important lines are:

vmState=0x00000000
Indicates that the code that failed was not JVM runtime code.

Module= or Module_base_address=
Not in the output (might be blank or zero) because the code was compiled by
the JIT, and outside any DLL or library.

Compiled_method=
Indicates the Java method for which the compiled code was produced.

Chapter 9. Troubleshooting and support 325

About this task

If your output does not indicate the failing method, follow these steps to identify
the failing method:

Procedure

1. Run the Java program with the JIT parameters verbose and vlog=<filename>
added to the -Xjit or -Xaot option. With these parameters, the compiler lists
compiled methods in a log file named <filename>.<date>.<time>.<pid>, also
called a limit file. A typical limit file contains lines that correspond to compiled
methods, like:
+ (hot) java/lang/Math.max(II)I @ 0x10C11DA4-0x10C11DDD

Lines that do not start with the plus sign are ignored by the compiler in the
following steps and you can remove them from the file. Methods compiled by
the AOT compiler start with + (AOT cold). Methods for which AOT code is
loaded from the shared class cache start with + (AOT load).

2. Run the program again with the JIT or AOT parameter
limitFile=(<filename>,<m>,<n>), where <filename> is the path to the limit file,
and <m> and <n> are line numbers indicating the first and the last methods in
the limit file that should be compiled. The compiler compiles only the methods
listed on lines <m> to <n> in the limit file. Methods not listed in the limit file
and methods listed on lines outside the range are not compiled and no AOT
code in the shared data cache for those methods will be loaded. If the program
no longer fails, one or more of the methods that you have removed in the last
iteration must have been the cause of the failure.

3. Optional: If you are diagnosing an AOT problem, run the program a second
time with the same options to allow compiled methods to be loaded from the
shared data cache. You can also add the –Xaot:scount=0 option to ensure that
AOT-compiled methods stored in the shared data cache will be used when the
method is first called. Some AOT compilation failures happen only when
AOT-compiled code is loaded from the shared data cache. To help diagnose
these problems, use the –Xaot:scount=0 option to ensure that AOT-compiled
methods stored in the shared data cache are used when the method is first
called, which might make the problem easier to reproduce. Please note that if
you set the scount option to 0 it will force AOT code loading and will pause
any application thread waiting to execute that method. Thus, this should only
be used for diagnostic purposes. More significant pause times can occur with
the –Xaot:scount=0 option.

4. Repeat this process using different values for <m> and <n>, as many times as
necessary, to find the minimum set of methods that must be compiled to trigger
the failure. By halving the number of selected lines each time, you can perform
a binary search for the failing method. Often, you can reduce the file to a single
line.

What to do next

When you have located the failing method, you can disable the JIT or AOT
compiler for the failing method only. For example, if the method
java/lang/Math.max(II)I causes the program to fail when JIT-compiled with
optLevel=hot, you can run the program with:
-Xjit:{java/lang/Math.max(II)I}(optLevel=warm,count=0)

to compile only the failing method at an optimization level of “warm”, but
compile all other methods as usual.

326 IBM SDK for Java: SDK and Runtime Guide

If a method fails when it is JIT-compiled at “noOpt”, you can exclude it from
compilation altogether, using the exclude={<method>} parameter:
-Xjit:exclude={java/lang/Math.max(II)I}

If a method causes the program to fail when AOT code is compiled or loaded from
the shared data cache, exclude the method from AOT compilation and AOT
loading using the exclude={<method>} parameter:
-Xaot:exclude={java/lang/Math.max(II)I}

AOT methods are compiled at the “cold” optimization level only. Preventing AOT
compilation or AOT loading is the best approach for these methods.

Identifying JIT compilation failures:

For JIT compiler failures, analyze the error output to determine if a failure occurs
when the JIT compiler attempts to compile a method.

If the JVM crashes, and you can see that the failure has occurred in the JIT library
(libj9jit<vm_version>.so or libj9jit25.so), the JIT compiler might have failed
during an attempt to compile a method.

If you see error output like this example, you can use it to identify the failing
method:

Unhandled exception
Type=Segmentation error vmState=0x00050000
Target=2_30_20051215_04381_BHdSMr (Linux 2.4.21-32.0.1.EL)
CPU=ppc64 (4 logical CPUs) (0xebf4e000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=00000000 Signal_Code=00000001
Handler1=0000007FE05645B8 Handler2=0000007FE0615C20
R0=E8D4001870C00001 R1=0000007FF49181E0 R2=0000007FE2FBCEE0 R3=0000007FF4E60D70
R4=E8D4001870C00000 R5=0000007FE2E02D30 R6=0000007FF4C0F188 R7=0000007FE2F8C290
......
Module=/home/test/sdk/jre/bin/libj9jit<vm_version>.so
Module_base_address=0000007FE29A6000
......
Method_being_compiled=com/sun/tools/javac/comp/Attr.visitMethodDef(Lcom/sun/tools/javac/tree/
JCTree$JCMethodDecl;)

The important lines are:

vmState=0x00050000
Indicates that the JIT compiler is compiling code. For a list of vmState code
numbers, see the table in Javadump “TITLE, GPINFO, and ENVINFO sections”
on page 243

Module=/home/test/sdk/jre/bin/libj9jit<vm_version>.so
Indicates that the error occurred in libj9jit<vm_version>.so, the JIT compiler
module.

Method_being_compiled=
Indicates the Java method being compiled.

If your output does not indicate the failing method, use the verbose option with
the following additional settings:
-Xjit:verbose={compileStart|compileEnd}

These verbose settings report when the JIT starts to compile a method, and when it
ends. If the JIT fails on a particular method (that is, it starts compiling, but crashes
before it can end), use the exclude parameter to exclude it from compilation (refer

Chapter 9. Troubleshooting and support 327

to “Locating the failing method” on page 325). If excluding the method prevents
the crash, you have a workaround that you can use while the service team corrects
your problem.

Identifying AOT compilation failures:

AOT problem determination is very similar to JIT problem determination.

About this task

As with the JIT, first run your application with -Xnoaot, which ensures that the
AOT'ed code is not used when running the application. If this fixes the problem,
use the same technique described in “Locating the failing method” on page 325,
providing the -Xaot option in place of the -Xjit option where appropriate.

Performance of short-running applications
The IBM JIT compiler is tuned for long-running applications typically used on a
server. You can use the -Xquickstart command-line option to improve the
performance of short-running applications, especially for applications in which
processing is not concentrated into a few methods.

-Xquickstart causes the JIT compiler to use a lower optimization level by default
and to compile fewer methods. Performing fewer compilations more quickly can
improve application startup time. When the AOT compiler is active (both shared
classes and AOT compilation enabled), -Xquickstart causes all methods selected
for compilation to be AOT compiled, which improves the startup time of
subsequent runs. -Xquickstart might degrade performance if it is used with
long-running applications that contain methods using a large amount of processing
resource. The implementation of -Xquickstart is subject to change in future
releases.

You can also try improving startup times by adjusting the JIT threshold (using trial
and error). See “Selectively disabling the JIT or AOT compiler” on page 324 for
more information.

JVM behavior during idle periods
You can reduce the CPU cycles consumed by an idle JVM by using the
-XsamplingExpirationTime option to turn off the JIT sampling thread.

The JIT sampling thread profiles the running Java application to discover
commonly used methods. The memory and processor usage of the sampling thread
is negligible, and the frequency of profiling is automatically reduced when the
JVM is idle.

In some circumstances, you might want no CPU cycles consumed by an idle JVM.
To do so, specify the -XsamplingExpirationTime<time> option. Set <time> to the
number of seconds for which you want the sampling thread to run. Use this option
with care; after it is turned off, you cannot reactivate the sampling thread. Allow
the sampling thread to run for long enough to identify important optimizations.

The Diagnostics Collector
The Diagnostics Collector gathers the Java diagnostic files for a problem event.

Introduction to the Diagnostics Collector
The Diagnostics Collector gathers the Java diagnostic files for a problem event.

328 IBM SDK for Java: SDK and Runtime Guide

The Java runtime environment produces multiple diagnostic files in response to
events such as General Protection Faults, out of memory conditions or receiving
unexpected operating system signals. The Diagnostics Collector runs just after the
Java runtime environment produces diagnostic files. It searches for system dumps,
Java dumps, heap dumps, Java trace dumps and the verbose GC log that match
the time stamp for the problem event. If a system dump is found, then optionally
the Diagnostics Collector can run the jextract command to post-process the dump
and capture extra information required to analyze system dumps. The Diagnostics
Collector then produces a single .zip file containing all the diagnostic information
for the problem event. Steps in the collection of diagnostic data are logged in a text
file. At the end of the collection process, the log file is copied into the output .zip
file.

Note: The Diagnostic Collector creates a separate process for collecting the data
and producing the .zip file. This process produces console output, including
messages, that is written to the same console as the original Java application. Some
of these messages might therefore appear in the console after the original Java
process finishes and the command prompt is displayed.

The Diagnostics Collector also has a feature to give warnings if there are JVM
settings in place that could prevent the JVM from producing diagnostic data. These
warnings are produced at JVM start, so that the JVM can be restarted with fixed
settings if necessary. The warnings are printed on stderr and in the Diagnostics
Collector log file. Fix the settings identified by any warning messages before
restarting your Java application. Fixing warnings makes it more likely that the
correct data is available for IBM Support to diagnose a Java problem.

Using the Diagnostics Collector
You can start the Diagnostics Collector after a dump has occurred to collect the
relevant files.

The Diagnostics Collector is off by default and is enabled by a JVM command-line
option:
-Xdiagnosticscollector[:settings=<filename>]

Specifying a Diagnostics Collector settings file is optional. By default, the settings
file jre/lib/dc.properties is used. See “Diagnostics Collector settings” on page
332 for details of the settings available.

If you run a Java program from the command line with the Diagnostics Collector
enabled, it produces some console output. The Diagnostics Collector runs
asynchronously, in a separate process to the one that runs your Java program. The
effect is that output appears after the command-line prompt returns from running
your program. If this happens, it does not mean that the Diagnostics Collector has
hung. Press enter to get the command-line prompt back.

If the Diagnostics Collector was not enabled when your dump occurred, you can
manually run the Diagnostics Collector afterward. Use the following command:
java com.ibm.java.diagnostics.collector.DiagnosticsCollector [OPTIONS]

where[OPTIONS] are:

-stamp <YYYYMMDD.hhmmss.pid>
The Diagnostics Collector collects the relevant files for the dumps with the
specified stamp. The following directories are searched:
v The path provided by the last dump parameter, if set.

Chapter 9. Troubleshooting and support 329

v The parent directory provided by the last dump parameter, if set.
v The current working directory.
v The location set in the environment variables IBM_JAVACOREDIR,

IBM_HEAPDUMPDIR, IBM_COREDIR, _CEE_DMPTARG,
JAVA_DUMP_TDUMP_PATTERN, and TMPDIR.

v The temporary directory, which is /tmp (see J9_TMP_DUMP_NAME)..

-date <YYYYMMDD>
This option finds the newest dump with the specified date in the current
directory. If an appropriate dump is found, the Diagnostics Collector looks
for the files to collect in the directories listed for the -stamp option.

-lastdump <path>
Where <path> is the full path for the last dump. This location is the first
directory that the Diagnostics Collector searches for relevant dump files.

If no options are set, the Diagnostics Collector attempts to find the newest dump
in the current directory. If a dump is found, the Diagnostics Collector searches for
the files to collect in the directories listed for the -stamp option.

Collecting diagnostic data from Java runtime problems
The Diagnostics Collector produces an output file for each problem event that
occurs in your Java application.

When you add the command-line option -Xdiagnosticscollector, the Diagnostics
Collector runs and produces several output .zip files. One file is produced at
startup. Another file is produced for each dump event that occurs during the
lifetime of the JVM. For each problem event that occurs in your Java application,
one .zip file is created to hold all the diagnostic data for that event. For example,
an application might have multiple OutOfMemoryErrors but keep on running.
Diagnostics Collector produces multiple .zip files, each holding the diagnostic data
from one OutOfMemoryError.

The output .zip file is written to the current working directory by default. You can
specify a different location by setting the output.dir property in the settings file,
as described in “Diagnostics Collector settings” on page 332. An output .zip file
name takes the form:
java.<event>.<YYYYMMDD.hhmmss.pid>.zip

In this file name, <event> is one of the following names:
v abortsignal
v check
v dumpevent
v gpf
v outofmemoryerror
v usersignal
v vmstart
v vmstop

These event names refer to the event that triggered Diagnostics Collector. The
name provides a hint about the type of problem that occurred. The default name is
dumpevent, and is used when a more specific name cannot be given for any reason.

330 IBM SDK for Java: SDK and Runtime Guide

<YYYYMMDD.hhmmss.pid> is a combination of the time stamp of the dump event,
and the process ID for the original Java application. pid is not the process ID for
the Diagnostics Collector.

The Diagnostics Collector copies files that it writes to the output .zip file. It does
not delete the original diagnostic information.

When the Diagnostics Collector finds a system dump for the problem event, then
by default it runs jextract to post-process the dump and gather context
information This information enables later debugging. Diagnostics Collector
automates a manual step that is requested by IBM support on most platforms. You
can prevent Diagnostics Collector from running jextract by setting the property
run.jextract to false in the settings file. For more information, see “Diagnostics
Collector settings” on page 332.

The Diagnostics Collector logs its actions and messages in a file named
JavaDiagnosticsCollector.<number>.log. The log file is written to the current
working directory. The log file is also stored in the output .zip file. The <number>
component in the log file name is not significant; it is added to keep the log file
names unique.

The Diagnostics Collector is a Java VM dump agent. It is run by the Java VM in
response to the dump events that produce diagnostic files by default. It runs in a
new Java process, using the same version of Java as the VM producing dumps.
This ensures that the tool runs the correct version of jextract for any system
dumps produced by the original Java process.

Verifying your Java diagnostics configuration
When you enable the command-line option -Xdiagnosticscollector, a diagnostic
configuration check runs at Java VM start. If any settings disable the collection of
key Java diagnostic data, a warning is reported.

The aim of the diagnostic configuration check is to avoid the situation where a
problem occurs after a long time, but diagnostic data is missing because the
collection of diagnostic data was inadvertently switched off. Diagnostic
configuration check warnings are reported on stderr and in the Diagnostics
Collector log file. A copy of the log file is stored in the
java.check.<timestamp>.<pid>.zip output file.

If you do not see any warning messages, it means that the Diagnostics Collector
has not found any settings that disable diagnostic data collection. The Diagnostics
Collector log file stored in java.check.<timestamp>.<pid>.zip gives the full record
of settings that have been checked.

For extra thorough checking, the Diagnostics Collector can trigger a Java dump.
The dump provides information about the command-line options and current Java
system properties. It is worth running this check occasionally, as there are
command-line options and Java system properties that can disable significant parts
of the Java diagnostic data set. To enable the use of a Java dump for diagnostic
configuration checking, set the config.check.javacore option to true in the
settings file. For more information, see “Diagnostics Collector settings” on page
332.

Chapter 9. Troubleshooting and support 331

For all platforms, the diagnostic configuration check examines environment
variables that can disable Java diagnostic data collection. For reference purposes,
the full list of current environment variables and their values is stored in the
Diagnostics Collector log file.

Configuring the Diagnostics Collector
The Diagnostics Collector supports various options that can be set in a properties
file.

Diagnostics Collector can be configured by using options that are set in a
properties file. By default, the properties file is jre/lib/dc.properties. If you do
not have access to edit this file, or if you are working on a shared system, you can
specify an alternative filename using:
-Xdiagnosticscollector:settings=<filename>

Using a settings file is optional. By default, Diagnostics Collector gathers all the
main types of Java diagnostic files.

Diagnostics Collector settings:

The Diagnostics Collector has several settings that affect the way the collector
works.

The settings file uses the standard Java properties format. It is a text file with one
property=value pair on each line. Each supported property controls the
Diagnostics Collector in some way. Lines that start with '#' are comments.

Parameters

file.<any_string>=<pathname>

Any property with a name starting file. specifies the path to a diagnostic file
to collect. You can add any string as a suffix to the property name, as a
reminder of which file the property refers to. You can use any number of file.
properties, so you can tell the Diagnostics Collector to collect a list of custom
diagnostic files for your environment. Using file. properties does not alter or
prevent the collection of all the standard diagnostic files. Collection of standard
diagnostic files always takes place.

Custom debugging scripts or software can be used to produce extra output
files to help diagnose a problem. In this situation, the settings file is used to
identify the extra debug output files for the Diagnostics Collector. The
Diagnostics Collector collects the extra debug files at the point when a problem
occurs. Using the Diagnostics Collector in this way means that debug files are
collected immediately after the problem event, increasing the chance of
capturing relevant context information.

output.dir=<output_directory_path>

The Diagnostics Collector tries to write its output .zip file to the output
directory path that you specify. The path can be absolute or relative to the
working directory of the Java process. If the directory does not exist, the
Diagnostics Collector tries to create it. If the directory cannot be created, or the
directory is not writeable, the Diagnostics Collector defaults to writing its
output .zip file to the current working directory.

332 IBM SDK for Java: SDK and Runtime Guide

loglevel.file=<level>
This setting controls the amount of information written to the Diagnostics
Collector log file. The default setting for this property is config. Valid levels
are:

off No information reported.

severe Errors are reported.

warning
Report warnings in addition to information reported by severe.

info More detailed information in addition to that reported by warning.

config Configuration information reported in addition to that reported by
info. This is the default reporting level.

fine Tracing information reported in addition to that reported by config.

finer Detailed tracing information reported in addition to that reported by
fine.

finest Report even more tracing information in addition to that reported by
finer.

all Report everything.

loglevel.console=<level>
Controls the amount of information written by the Diagnostics Collector to
stderr. Valid values for this property are as described for loglevel.file. The
default setting for this property is warning.

settings.id=<identifier>
Allows you to set an identifier for the settings file. If you set loglevel.file to
fine or lower, the settings.id is recorded in the Diagnostics Collector log file
as a way to check that your settings file is loaded as expected.

config.check.javacore={true|false}
Set config.check.javacore=true to enable a Java dump for the diagnostic
configuration check at virtual machine start-up. The check means that the
virtual machine start-up takes more time, but it enables the most thorough
level of diagnostic configuration checking.

run.jextract=false
Set this option to prevent the Diagnostics Collector running jextract on
detected System dumps.

Known limitations
There are some known limitations for the Diagnostics Collector.

If Java programs do not start at all on your system, for example because of a Java
runtime installation problem or similar issue, the Diagnostics Collector cannot run.

The Diagnostics Collector does not respond to additional -Xdump settings that
specify extra dump events requiring diagnostic information. For example, if you
use -Xdump to produce dumps in response to a particular exception being thrown,
the Diagnostics Collector does not collect the dumps from this event.

Garbage Collector diagnostic data
This section describes how to diagnose garbage collection.

The topics that are discussed in this chapter are:

Chapter 9. Troubleshooting and support 333

v

v

v “Verbose garbage collection logging”
v “-Xtgc tracing” on page 337

Verbose garbage collection logging
Verbose logging is intended as the first tool to be used when attempting to
diagnose garbage collector problems; you can perform more detailed analysis by
calling one or more -Xtgc (trace garbage collector) traces.

Note: The output provided by -verbose:gc can and does change between releases.
Ensure that you are familiar with details of the different collection strategies by
reading “Memory management” on page 23 if necessary.

By default, -verbose:gc output is written to stderr. You can redirect the output to a
file using the -Xverbosegclog command-line option (see “Garbage Collector
command-line options” on page 453 for more information). If you redirect the
output to a file, you can later analyze the file contents by using IBM Monitoring
and Diagnostic Tools for Java - Garbage Collection and Memory Visualizer. For
more information about this tool, see “Using the IBM Monitoring and Diagnostic
Tools for Java” on page 219.

In this release, the verbose logging function is event-based, generating data for
each garbage collection operation, as it happens.

A garbage collection cycle is made up of one or more garbage collection
operations, spread across one or more garbage collection increments. A garbage
collection cycle can be caused by a number of events, including:
v Calls to System.gc().
v Allocation failures.
v Completing concurrent collections.
v Decisions based on the cost of making resource allocations.

The verbose garbage collection output for each event contains an incrementing ID
tag. The ID increments for each event, regardless of event type, so you can use this
tag to search within the output for specific events.

The following sections show sample results for different garbage collection events.

Garbage collection initialization:

When garbage collection is initialized, verbose logging generates output showing
the garbage collection options in force.

The first tag shown in the output is the <initialized> tag, which is followed by
values that include an id and timestamp. The information shown in the
<initialized> section includes the garbage collection policy, the policy options,
and any JVM command-line options that are in effect at the time.
<initialized id="1" timestamp="2010-11-23T00:41:32.328">

<attribute name="gcPolicy" value="-Xgcpolicy:gencon" />
<attribute name="maxHeapSize" value="0x5fcf0000" />
<attribute name="initialHeapSize" value="0x400000" />
<attribute name="compressedRefs" value="false" />
<attribute name="pageSize" value="0x1000" />
<attribute name="requestedPageSize" value="0x1000" />

334 IBM SDK for Java: SDK and Runtime Guide

<attribute name="gcthreads" value="2" />
<system>

<attribute name="physicalMemory" value="3214884864" />
<attribute name="numCPUs" value="2" />
<attribute name="architecture" value="x86" />
<attribute name="os" value="Windows XP" />
<attribute name="osVersion" value="5.1" />

</system>
<vmargs>

<vmarg name="-Xoptionsfile=C:\jvmwi3270\jre\bin\default\options.default" />
<vmarg name="-Xlockword:mode=default,noLockword=java/lang/String,noLockword=
java/util/MapEntry,noLockword=java/util/HashMap$Entry,noLockword..." />
<vmarg name="-XXgc:numaCommonThreadClass=java/lang/UNIXProcess$*" />
<vmarg name="-Xjcl:jclscar_26" />
<vmarg name="-Dcom.ibm.oti.vm.bootstrap.library.path=C:\jvmwi3270\jre\bin\
default;C:\jvmwi3270\jre\bin" />
<vmarg name="-Dsun.boot.library.path=C:\jvmwi3270\jre\bin\default;C:\
jvmwi3270\jre\bin" />
<vmarg name="-Djava.library.path=C:\jvmwi3270\jre\bin\default;C:\
jvmwi3270\jre\bin;.;c:\pwi3260\jre\bin;c:\pwi3260\bin;C:\WINDOWS\syst..." />
<vmarg name="-Djava.home=C:\jvmwi3270\jre" />
<vmarg name="-Djava.ext.dirs=C:\jvmwi3270\jre\lib\ext" />
<vmarg name="-Duser.dir=C:\jvmwi3270\jre\bin" />
<vmarg name="_j2se_j9=1119744" value="7FA9CEF8" />
<vmarg name="-Dconsole.encoding=Cp437" />
<vmarg name="-Djava.class.path=." />
<vmarg name="-verbose:gc" />
<vmarg name="-Dsun.java.command=Foo" />
<vmarg name="-Dsun.java.launcher=SUN_STANDARD" />
<vmarg name="_port_library" value="7FA9C5D0" />
<vmarg name="_bfu_java" value="7FA9D9BC" />
<vmarg name="_org.apache.harmony.vmi.portlib" value="000AB078" />

</vmargs>
</initialized>

Stop-the-world operations:

When an application is stopped so that the garbage collector has exclusive access
to the JVM, verbose logging records the event.

Stop-the-world operations are shown within the <exclusive-start> and
<exclusive-end> tags. The <exclusive-start> tag includes the response-info
section, which provides details about the process of acquiring exclusive access to
the JVM.
<exclusive-start id="2" timestamp="2010-11-23T00:41:32.515">

<response-info timems="0.011" idlems="0.011" threads="0"
lastid="00124F00" lastname="main" />
</exclusive-start>
<exclusive-end id="13" timestamp="2010-11-23T00:41:32.517" />

Garbage collection cycle:

Verbose garbage collection output shows each garbage collection cycle enclosed
within <cycle-start> and <cycle-end> tags.

The <cycle-end> tag contains a context-id attribute that indicates the id of the
corresponding <cycle-start> tag.
<cycle-start id="4" type="scavenge" contextid="0" timestamp="2010-11-23T00:41:32.
515" intervalms="225.424" />
<cycle-end id="10" type="scavenge" contextid="4" timestamp="2010-11-23T00:41:32.
515" />

Chapter 9. Troubleshooting and support 335

In the example shown, the <cycle-end> tag has a context-id of 4, which reflects
the id value shown for <cycle-start>.

Garbage collection increment:

A complete garbage collection increment is shown within <gc-start> and <gc-end>
tags in the verbose output.

The <gc-start> and <gc-end> tags represent the start and end of a garbage
collection increment. Both of these tags include a mem-info section. This section
includes information about the current state of the Java heap, and any memory
used by a specific garbage collection policy.

The <mem type="nursery"> tag shows the amount of free space and total space that
is used in the nursery area before and after a scavenge event. The used space is
where nursery objects reside and future allocations occur. This space does not
account for reserved space in the nursery that is used for flipping survived objects
on the next scavenge. The real total nursery size can be calculated as:
reported-total-nursery-size/tilt-ratio

.

The <mem type="tenure"> tag shows the amount of free space and total space that
is used in the tenure area before and after a GC event.

The <mem-info> tag shows the cumulative amount of free and total used space in
the heap. Similarly, as with total nursery size, this value does not account for
survivor space in the nursery. The real total heap size can be calculated as:
reported-total-tenure-heap-size + reported-total-nursery-size/tilt-ratio

The <gc-start> and <gc-end> tags contain a context-id attribute that indicates the
id of the corresponding garbage collection cycle.
<gc-start id="5" type="scavenge" contextid="4" timestamp="2010-11-23T00:41:32.515">

<mem-info id="6" free="3042472" total="3670016" percent="82">
<mem type="nursery" free="0" total="524288" percent="0" />
<mem type="tenure" free="3042472" total="3145728" percent="96">

<mem type="soa" free="2885288" total="2988544" percent="96" />
<mem type="loa" free="157184" total="157184" percent="100" />

</mem>
<remembered-set count="1852" />

</mem-info>
</gc-start>

<gc-end id="8" type="scavenge" contextid="4" durationms="2.204" timestamp="2010-11-
23T00:41:32.517">
<mem-info id="9" free="3115152" total="3670016" percent="84">

<mem type="nursery" free="72680" total="524288" percent="13" />
<mem type="tenure" free="3042472" total="3145728" percent="96">

<mem type="soa" free="2885288" total="2988544" percent="96" />
<mem type="loa" free="157184" total="157184" percent="100" />

</mem>
<pending-finalizers system="1" default="0" reference="0" classloader="0" />
<remembered-set count="1852" />

</mem-info>
</gc-end>

In the example, the contextid of 4 tells you that this garbage collection increment
is part of the garbage collection cycle that has the tag <cycle-start id="4">.

336 IBM SDK for Java: SDK and Runtime Guide

Garbage collection operation:

Every garbage collection increment contains at least one garbage collection
operation, shown in the verbose output with a <gc-op> tag.

The timems attribute of the <gc-op> tag indicates the time taken to complete the
garbage collection operation, in milliseconds. The contextid attribute indicates the
ID of the corresponding garbage collection cycle. In the following example,
contextid="4" indicates that this garbage collection operation is part of the
garbage collection cycle that has the tag <cycle-start id="4">.

The <gc-op> output contains subsections that describe operations that are specific
to different garbage collection policies. These subsections might change from
release to release, when improvements are made to the technology or when new
data becomes available.
<gc-op id="7" type="scavenge" timems="1.127" contextid="4" timestamp="2010-11-23T00
:41:32.515">
<scavenger-info tenureage="10" tiltratio="50" />
<memory-copied type="nursery" objects="2304" bytes="289896" bytesdiscarded="0" />
<finalization candidates="28" enqueued="1" />
<references type="soft" candidates="5" cleared="0" enqueued="0" dynamicThreshold=
"32" maxThreshold="32" />
<references type="weak" candidates="6" cleared="4" enqueued="0" />
<references type="phantom" candidates="1" cleared="0" enqueued="0" />

</gc-op>

Allocation failure:

Garbage collection cycles caused by an allocation failure are shown by <af-start>
and <af-end> tags in the verbose output.

The <af-start> and <af-end> tags enclose the <cycle-start> and <cycle-end>
tags. The <af-start> tag contains a totalBytesRequested attribute. This attribute
specifies the number of bytes that were required by the allocations that caused this
allocation failure. The intervalms attribute on the af-start tag is the time, in
milliseconds, since the previous <af-start> tag. When the garbage collection cycle
caused by the allocation failure is complete, an allocation-satisfied tag is
generated. This tag indicates that the allocation that caused the failure is now
complete.
<af-start id="3" totalBytesRequested="12936" timestamp="2010-11-23T00:41:32.515"
intervalms="225.036" />

<allocation-satisfied id="11" thread="00124F00" bytesRequested="12936" />
<af-end id="12" timestamp="2010-11-23T00:41:32.515"/>

-Xtgc tracing
By enabling one or more TGC (trace garbage collector) traces, more detailed
garbage collection information than that displayed by -verbose:gc will be shown.

This section summarizes the different -Xtgc traces available. The output is written
to stdout. More than one trace can be enabled simultaneously by separating the
parameters with commas, for example -Xtgc:backtrace,compaction.

-Xtgc:backtrace:

This trace shows information tracking which thread triggered the garbage
collection.

Chapter 9. Troubleshooting and support 337

For a System.gc() this might be similar to:
"main" (0x0003691C)

This shows that the GC was triggered by the thread with the name "main" and
osThread 0x0003691C.

One line is printed for each global or scavenger collection, showing the thread that
triggered the GC.

-Xtgc:compaction:

This trace shows information relating to compaction.

The trace is similar to:
Compact(3): reason = 7 (forced compaction)
Compact(3): Thread 0, setup stage: 8 ms.
Compact(3): Thread 0, move stage: handled 42842 objects in 13 ms, bytes moved 2258028.
Compact(3): Thread 0, fixup stage: handled 0 objects in 0 ms, root fixup time 1 ms.
Compact(3): Thread 1, setup stage: 0 ms.
Compact(3): Thread 1, move stage: handled 35011 objects in 8 ms, bytes moved 2178352.
Compact(3): Thread 1, fixup stage: handled 74246 objects in 13 ms, root fixup time 0 ms.
Compact(3): Thread 2, setup stage: 0 ms.
Compact(3): Thread 2, move stage: handled 44795 objects in 32 ms, bytes moved 2324172.
Compact(3): Thread 2, fixup stage: handled 6099 objects in 1 ms, root fixup time 0 ms.
Compact(3): Thread 3, setup stage: 8 ms.
Compact(3): Thread 3, move stage: handled 0 objects in 0 ms, bytes moved 0.
Compact(3): Thread 3, fixup stage: handled 44797 objects in 7 ms, root fixup time 0 ms.

This trace shows that compaction occurred during the third global GC, for reason
"7". In this case, four threads are performing compaction. The trace shows the
work performed by each thread during setup, move, and fixup. The time for each
stage is shown together with the number of objects handled by each thread.

-Xtgc:concurrent:

This trace displays basic extra information about the concurrent mark helper
thread.

Note: You cannot use this option with the -Xgcpolicy:balanced option. If you
attempt to use these two options together, the JVM does not start.
<CONCURRENT GC BK thread 0x0002645F activated after GC(5)>

<CONCURRENT GC BK thread 0x0002645F (started after GC(5)) traced 25435>

This trace shows when the background thread was activated, and the amount of
tracing it performed (in bytes).

-Xtgc:dump:

This trace shows extra information following the sweep phase of a global garbage
collection.

This is an extremely large trace – a sample of one GC's output is:
<GC(4) 13F9FE44 freelen=x000002C4 -- x00000038 spec/jbb/Stock>
<GC(4) 13FA0140 freelen=x00000010>
<GC(4) 13FA0150 freelen=x00000050 -- x0000001C java/lang/String>
<GC(4) 13FA0410 freelen=x000002C4 -- x00000024 spec/jbb/infra/Collections/

longBTreeNode>
<GC(4) 13FA0788 freelen=x00000004 -- x00000050 java/lang/Object[]>

338 IBM SDK for Java: SDK and Runtime Guide

<GC(4) 13FA0864 freelen=x00000010>
<GC(4) 13FA0874 freelen=x0000005C -- x0000001C java/lang/String>
<GC(4) 13FA0B4C freelen=x000002C4 -- x00000038 spec/jbb/Stock>
<GC(4) 13FA0E48 freelen=x00000010>
<GC(4) 13FA0E58 freelen=x00000068 -- x0000001C java/lang/String>
<GC(4) 13FA1148 freelen=x000002C4 -- x00000038 spec/jbb/Stock>
<GC(4) 13FA1444 freelen=x00000010>
<GC(4) 13FA1454 freelen=x0000006C -- x0000001C java/lang/String>
<GC(4) 13FA174C freelen=x000002C4 -- x00000038 spec/jbb/Stock>
<GC(4) 13FA1A48 freelen=x00000010>
<GC(4) 13FA1A58 freelen=x00000054 -- x0000001C java/lang/String>
<GC(4) 13FA1D20 freelen=x000002C4 -- x00000038 spec/jbb/Stock>
<GC(4) 13FA201C freelen=x00000010>
<GC(4) 13FA202C freelen=x00000044 -- x0000001C java/lang/String>
<GC(4) 13FA22D4 freelen=x000002C4 -- x00000038 spec/jbb/Stock>
<GC(4) 13FA25D0 freelen=x00000010>
<GC(4) 13FA25E0 freelen=x00000048 -- x0000001C java/lang/String>
<GC(4) 13FA2890 freelen=x000002C4 -- x00000038 spec/jbb/Stock>
<GC(4) 13FA2B8C freelen=x00000010>
<GC(4) 13FA2B9C freelen=x00000068 -- x0000001C java/lang/String>
<GC(4) 13FA2E8C freelen=x000002C4 -- x00000038 spec/jbb/Stock>
<GC(4) 13FA3188 freelen=x00000010>

A line of output is printed for every free chunk in the system, including dark
matter (free chunks that are not on the free list for some reason, usually because
they are too small). Each line contains the base address and the size in bytes of the
chunk. If the chunk is followed in the heap by an object, the size and class name of
the object is also printed.

-Xtgc:excessiveGC:

This trace shows statistics for garbage collection cycles.

After a garbage collection cycle has completed, a trace entry is produced:
excessiveGC: gcid="10" intimems="122.269" outtimems="1.721" \

percent="98.61" averagepercent="37.89"

This trace shows how much time was spent performing garbage collection and
how much time was spent out of garbage collection. In this example, garbage
collection cycle 10 took 122.269 ms to complete and 1.721 ms passed between
collections 9 and 10. These statistics show that garbage collection accounted for
98.61% of the time from the end of collection 9 to the end of collection 10. The
average time spent in garbage collection is 37.89%.

When the average time in garbage collection reaches 95%, extra trace entries are
produced:
excessiveGC: gcid="65" percentreclaimed="1.70" freedelta="285728" \

activesize="16777216" currentsize="16777216" maxiumumsize="16777216"

This trace shows how much garbage was collected. In this example, 285728 bytes
were reclaimed by garbage collection 65, which accounts for 1.7% of the total heap
size. The example also shows that the heap has expanded to its maximum size (see
-Xmx in “Garbage Collector command-line options” on page 453).

When the average time in garbage collection reaches 95% and the percentage of
free space reclaimed by a collection drops below 3%, another trace entry is
produced:
excessiveGC: gcid="65" percentreclaimed="1.70" minimum="3.00" excessive gc raised

Chapter 9. Troubleshooting and support 339

The JVM will then throw an OutOfMemoryError.

-Xtgc:freelist:

Before a garbage collection, this trace prints information about the free list and
allocation statistics since the last GC.

The trace prints the number of items on the free list, including "deferred" entries
(with the scavenger, the unused semispace is a deferred free list entry). For TLH
and non-TLH allocations, this prints the total number of allocations, the average
allocation size, and the total number of bytes discarded during allocation. For
non-TLH allocations, also included is the average number of entries that were
searched before a sufficiently large entry was found.
8 free 0
8 deferred 0

total 0
<Alloc TLH: count 3588, size 3107, discard 31>
< non-TLH: count 6219, search 0, size 183, discard 0>

-Xtgc:parallel:

This trace shows statistics about the activity of the parallel threads during the
mark and sweep phases of a global garbage collection.
Mark: busy stall tail acquire release

0: 30 30 0 0 3
1: 53 7 0 91 94
2: 29 31 0 37 37
3: 37 24 0 243 237

Sweep: busy idle sections 127 merge 0
0: 10 0 96
1: 8 1 0
2: 8 1 31
3: 8 1 0

This trace shows four threads (0-3), together with the work done by each thread
during the mark and sweep phases of garbage collection.

For the mark phase of garbage collection, the time spent in the "busy", "stalled",
and "tail" states is shown (in milliseconds). The number of work packets each
thread acquired and released during the mark phase is also shown.

For the sweep phase of garbage collection, the time spent in the "busy" and "idle"
states is shown (in milliseconds). The number of sweep chunks processed by each
thread is also shown, including the total (127). The total merge time is also shown
(0ms).

-Xtgc:scavenger:

This trace prints a histogram following each scavenger collection.

Note: You cannot use this option with the -Xgcpolicy:balanced option. If you
attempt to use these two options together, the JVM does not start.

A graph is shown of the different classes of objects remaining in the survivor
space, together with the number of occurrences of each class and the age of each
object (the number of times it has been flipped). A sample of the output from a
single scavenge is shown as follows:

340 IBM SDK for Java: SDK and Runtime Guide

{SCAV: tgcScavenger OBJECT HISTOGRAM}

{SCAV: | class | instances of age 0-14 in semi-space |
{SCAV: java/lang/ref/SoftReference 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: java/io/FileOutputStream 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: sun/nio/cs/StreamEncoder$ConverterSE 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: java/io/FileInputStream 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: char[][] 0 102 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: java/lang/ref/SoftReference[] 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: java/io/BufferedOutputStream 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: java/io/BufferedWriter 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: java/io/OutputStreamWriter 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: java/io/PrintStream 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: java/io/BufferedInputStream 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: java/lang/Thread[] 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: java/lang/ThreadGroup[] 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: sun/io/ByteToCharCp1252 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
{SCAV: sun/io/CharToByteCp1252 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

-Xtgc:terse:

This trace dumps the contents of the entire heap before and after a garbage
collection.

This is an extremely large trace. For each object or free chunk in the heap, a line of
trace output is produced. Each line contains the base address, "a" if it is an
allocated object and "f" if it is a free chunk, the size of the chunk in bytes, and if it
is an object, its class name. A sample is shown as follows:
DH(1) 230AD778 a x0000001C java/lang/String
DH(1) 230AD794 a x00000048 char[]
DH(1) 230AD7DC a x00000018 java/lang/StringBuffer
DH(1) 230AD7F4 a x00000030 char[]
DH(1) 230AD824 a x00000054 char[]
DH(1) 230AD878 a x0000001C java/lang/String
DH(1) 230AD894 a x00000018 java/util/HashMapEntry
DH(1) 230AD8AC a x0000004C char[]
DH(1) 230AD8F8 a x0000001C java/lang/String
DH(1) 230AD914 a x0000004C char[]
DH(1) 230AD960 a x00000018 char[]
DH(1) 230AD978 a x0000001C java/lang/String
DH(1) 230AD994 a x00000018 char[]
DH(1) 230AD9AC a x00000018 java/lang/StringBuffer
DH(1) 230AD9C4 a x00000030 char[]
DH(1) 230AD9F4 a x00000054 char[]
DH(1) 230ADA48 a x0000001C java/lang/String
DH(1) 230ADA64 a x00000018 java/util/HashMapEntry
DH(1) 230ADA7C a x00000050 char[]
DH(1) 230ADACC a x0000001C java/lang/String
DH(1) 230ADAE8 a x00000050 char[]
DH(1) 230ADB38 a x00000018 char[]
DH(1) 230ADB50 a x0000001C java/lang/String
DH(1) 230ADB6C a x00000018 char[]
DH(1) 230ADB84 a x00000018 java/lang/StringBuffer
DH(1) 230ADB9C a x00000030 char[]
DH(1) 230ADBCC a x00000054 char[]
DH(1) 230ADC20 a x0000001C java/lang/String
DH(1) 230ADC3C a x00000018 java/util/HashMapEntry
DH(1) 230ADC54 a x0000004C char[]

Class-loader diagnostic data
There is some diagnostic data that is available for class-loading.

The topics that are discussed in this chapter are:

Chapter 9. Troubleshooting and support 341

v “Class-loader command-line options”
v “Class-loader runtime diagnostic data”
v “Loading from native code” on page 343

Class-loader command-line options
There are some extended command-line options that are available

These options are:

-verbose:dynload
Provides detailed information as each class is loaded by the JVM,
including:
v The class name and package.
v For class files that were in a .jar file, the name and directory path of the

.jar (for bootstrap classes only).
v Details of the size of the class and the time taken to load the class.

The data is written out to stderr. An example of the output follows:
<Loaded java/lang/String from C:\sdk\jre\lib\vm.jar>
<Class size 17258; ROM size 21080; debug size 0>
<Read time 27368 usec; Load time 782 usec; Translate time 927 usec>

-Xfuture
Turns on strict class-file format checks. Use this flag when you are
developing new code because stricter checks will become the default in
future releases. By default, strict format checks are disabled.

-Xverify[:<option>]
With no parameters, enables the Java bytecode verifier, which is the
default. Therefore, if used on its own with no parameters, the option has
no effect. Optional parameters are:
v all - enable maximum verification
v none - disable the verifier
v remote - enables strict class-loading checks on remotely loaded classes

The verifier is on by default and must be enabled for all production
servers. Running with the verifier off, is not a supported configuration. If
you encounter problems and the verifier was turned off using
-Xverify:none, remove this option and try to reproduce the problem.

Class-loader runtime diagnostic data
Use the command-line parameter -Dibm.cl.verbose=<class_expression> to enable
you to trace the way the class loaders find and load application classes.

Alternatively, you can use IBM Monitoring and Diagnostic Tools for Java - Health
Center to monitor the application and view class loading information such as
when the class was loaded, whether the class was loaded from the shared cache,
the number of instances of the class, and the amount of heap space that those
instances are occupying.

Here is an example of the -Dibm.cl.verbose parameter:
C:\j9test>java -Dibm.cl.verbose=*HelloWorld hw.HelloWorld

This example produces output that is similar to this:
ExtClassLoader attempting to find hw.HelloWorld
ExtClassLoader using classpath C:\sdk\jre\lib\ext\CmpCrmf.jar;C:\sdk\jre\lib\ext\dtfj-interface.jar;
C:\sdk\jre\lib\ext\dtfj.jar;C:\sdk\jre\lib\ext\gskikm.jar;C:\sdk\jre\lib\ext\ibmcmsprovider.jar;C:\s

342 IBM SDK for Java: SDK and Runtime Guide

dk\jre\lib\ext\ibmjcefips.jar;C:\sdk\jre\lib\ext\ibmjceprovider.jar;C:\sdk\jre\lib\ext\ibmkeycert.ja
r;C:\sdk\jre\lib\ext\IBMKeyManagementServer.jar;C:\sdk\jre\lib\ext\ibmpkcs11.jar;C:\sdk\jre\lib\ext\
ibmpkcs11impl.jar;C:\sdk\jre\lib\ext\ibmsaslprovider.jar;C:\sdk\jre\lib\ext\indicim.jar;C:\sdk\jre\l
ib\ext\jaccess.jar;C:\sdk\jre\lib\ext\JawBridge.jar;C:\sdk\jre\lib\ext\jdmpview.jar
ExtClassLoader path element C:\sdk\jre\lib\ext\CmpCrmf.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\dtfj-interface.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\dtfj.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\gskikm.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\ibmcmsprovider.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\ibmjcefips.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\ibmjceprovider.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\ibmkeycert.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\IBMKeyManagementServer.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\ibmpkcs11.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\ibmpkcs11impl.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\ibmsaslprovider.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\indicim.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\jaccess.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\JawBridge.jar does not exist
ExtClassLoader path element C:\sdk\jre\lib\ext\jdmpview.jar does not exist
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\CmpCrmf.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\dtfj-interface.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\dtfj.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\gskikm.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\ibmcmsprovider.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\ibmjcefips.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\ibmjceprovider.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\ibmkeycert.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\IBMKeyManagementServer.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\ibmpkcs11.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\ibmpkcs11impl.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\ibmsaslprovider.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\indicim.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\jaccess.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\JawBridge.jar
ExtClassLoader could not find hw/HelloWorld.class in C:\sdk\jre\lib\ext\jdmpview.jar
ExtClassLoader could not find hw.HelloWorld

AppClassLoader attempting to find hw.HelloWorld
AppClassLoader using classpath C:\j9test
AppClassLoader path element C:\j9test does not exist
AppClassLoader found hw/HelloWorld.class in C:\j9test
AppClassLoader found hw.HelloWorld

The sequence of the loaders' output is a result of the “delegate first” convention of
class loaders. In this convention, each loader checks its cache and then delegates to
its parent loader. Then, if the parent returns null, the loader checks the file system
or equivalent. This part of the process is reported in the previous example.

The <class_expression> can be given as any Java regular expression. “Dic*” matches
all classes with names begins with “Dic”, and so on.

Loading from native code
A class loader loads native libraries for a class.

Class loaders look for native libraries in different places:
v If the class that makes the native call is loaded by the Bootstrap class loader, this

loader looks in the path that is specified by the sun.boot.library.path property,
to load the libraries.

v If the class that makes the native call is loaded by the Extensions class loader,
this loader looks in the paths that are specified by the following properties, in
this order:

Chapter 9. Troubleshooting and support 343

1. java.ext.dirs

2. sun.boot.library.path

3. java.library.path

v If the class that makes the native call is loaded by the Application class loader,
this loader looks in the paths that are specified by the following properties, in
this order:
1. sun.boot.library.path

2. java.library.path

v If the class that makes the native call is loaded by a Custom class loader, this
loader defines the search path to load libraries.

Shared classes diagnostic data
Understanding how to diagnose problems that might occur will help you to use
shared classes mode.

For an introduction to shared classes, see “Class data sharing” on page 55.

The topics that are discussed in this chapter are:
v “Deploying shared classes”
v “Dealing with runtime bytecode modification” on page 351
v “Understanding dynamic updates” on page 355
v “Using the Java Helper API” on page 358
v “Understanding shared classes diagnostic output” on page 361
v “Debugging problems with shared classes” on page 368
v “Class sharing with OSGi ClassLoading framework” on page 372

Deploying shared classes
You cannot enable class sharing without considering how to deploy it sensibly for
your application. This section looks at some of the important issues to consider.

Cache naming:

If multiple users will be using an application that is sharing classes or multiple
applications are sharing the same cache, knowing how to name caches
appropriately is important. The ultimate goal is to have the smallest number of
caches possible, while maintaining secure access to the class data and allowing as
many applications and users as possible to share the same classes.

To use a cache for a specific application, write the cache into the application
installation directory, or a directory within that directory, using the
-Xshareclasses:cachedir=<dir> suboption. This helps prevent users of other
applications from accidentally using the same cache, and automatically removes
the cache if the application is uninstalled. If the directory does not exist it is
created.

If you specify a directory that does not already exist, you can use the
-Xshareclasses:cacheDirPerm=<permission> suboption to specify permissions for
the directory when it is created. You can use this suboption to restrict access to the
cache directory, however this suboption can conflict with the groupAccess
suboption, which is used to set permissions on a cache. For more information
about the cacheDirPerm suboption, see “JVM command-line options” on page 428.

344 IBM SDK for Java: SDK and Runtime Guide

If the same user will always be using the same application, either use the default
cache name (which includes the user name) or specify a cache name specific to the
application. The user name can be incorporated into a cache name using the %u
modifier, which causes each user running the application to get a separate cache.

If multiple users in the same operating system group are running the same
application, use the groupAccess suboption, which creates the cache allowing all
users in the same primary group to share the same cache. If multiple operating
system groups are running the same application, the %g modifier can be added to
the cache name, causing each group running the application to get a separate
cache.

Multiple applications or different JVM installations can share the same cache
provided that the JVM installations are of the same service release level. It is
possible for different JVM service releases to share the same cache, but it is not
advised. The JVM will attempt to destroy and re-create a cache created by a
different service release. See “Compatibility between service releases” on page 351
for more information.

Small applications that load small numbers of application classes should all try to
share the same cache, because they will still be able to share bootstrap classes. For
large applications that contain completely different classes, it might be more
sensible for them to have a class cache each, because there will be few common
classes and it is then easier to selectively clean up caches that aren't being used.

The default directory is /tmp, which is shared by all users.

Cache access:

A JVM can access a shared class cache with either read-write or read-only access.
Read-write access is the default and gives all users equal rights to update the
cache. Use the -Xshareclasses:readonly option for read-only access.

Opening a cache as read-only makes it easier to administer operating system
permissions. A cache created by one user cannot be opened read-write by other
users, but other users can reduce startup time by opening the cache as read-only.
Opening a cache as read-only also prevents corruption of the cache. This option
can be useful on production systems where one instance of an application
corrupting the cache might affect the performance of all other instances.

When a cache is opened read-only, class files of the application that are modified
or moved cannot be updated in the cache. Sharing is disabled for the modified or
moved containers for that JVM.

Cache housekeeping:

Unused caches on a system waste resources that might be used by another
application. Ensuring that caches are sensibly managed is important.

The JVM offers a number of features to assist in cache housekeeping. To
understand these features, it is important to explain the differences in behavior
between persistent and non-persistent caches.

Persistent caches are written to disk and remain there until explicitly removed.
Persistent caches are not removed when the operating system is restarted. Because

Chapter 9. Troubleshooting and support 345

persistent caches do not exist in shared memory, the only penalty of not removing
stale caches is that they take up disk space.

Non-persistent caches exist in shared memory and retain system resources that
might be used by other applications. However, non-persistent caches are
automatically purged when the operating system is restarted, so housekeeping is
only an issue between operating system restarts.

To perform housekeeping functions successfully, whether automatically or
explicitly, you must have the correct operating system permissions. In general, if a
user has the permissions to open a cache with read-write access, they also have the
permissions to remove it. The only exception is for non-persistent caches. These
caches can be removed only by the user that created the cache. Caches can only be
removed if they are not in use.

The JVM provides a number of housekeeping utilities, which are all suboptions to
the -Xshareclasses command-line option. Each suboption performs the explicit
action requested. The suboption might also perform other automated housekeeping
activities. Each suboption works in the context of a specific cacheDir.

destroy
This suboption removes all the generations of a named cache. The term
“generation” means all caches created by earlier or later service releases or
versions of the JVM.

destroyAll
This suboption removes all caches in the specified cacheDir.

expire=<time in minutes>
This suboption looks for caches which have not been connected to for the
<time in minutes> specified. If any caches are found which have not been
connected to in that specified time, they are removed.

expire=0
This suboption is the same as destroyAll.

expire=10000
This suboption removes all caches which have not been used for
approximately one week.

There is also a certain amount of automatic housekeeping which is done by the
JVM. Most of this automatic housekeeping is driven by the cache utilities.
destroyAll and expire attempt to remove all persistent and non-persistent caches
of all JVM levels and service releases in a given cacheDir. destroy only works on a
specific cache of a specific name and type.

Cases where the JVM attempts automatic housekeeping when not requested by the
user include:
v When a JVM connects to a cache, and determines that the cache is corrupt or

was created by a different service release. The JVM attempts to remove and
re-create the cache.

v If /tmp/javasharedresources is deleted. The JVM attempts to identify any leaked
shared memory areas that originate from non-persistent caches. If any areas are
found, they are purged.

With persistent caches, it is safe to delete the cache files manually from the file
system. Each persistent cache has only one system object: the cache file.

346 IBM SDK for Java: SDK and Runtime Guide

It is not safe to delete cache files manually for non-persistent caches. The reason is
that each non-persistent cache has four system objects: A shared memory area, a
shared semaphore, and two control files to identify the memory and semaphores to
the JVM. Deleting the control files causes the memory and semaphores to be
leaked. They can then only be identified and removed using the ipcs and ipcrm
commands.

The reset suboption can also be used to cause a JVM to refresh an existing class
cache when it starts. All generations of the named cache are removed and the
current generation is re-created if it is not already in use. The option
-Xshareclasses:reset can be added anywhere to the command line. The option
does not override any other Xshareclasses command-line options. This constraint
means that -Xshareclasses:reset can be added to the IBM_JAVA_OPTIONS
environment variable, or any of the other means of passing command-line options
to the JVM.

Cache performance:

Shared classes use optimizations to maintain performance under most
circumstances. However, there are configurable factors that can affect shared
classes performance.

Use of Java archive and compressed files

The cache keeps itself up-to-date with file system updates by constantly checking
file system timestamps against the values in the cache.

When a class loader opens and reads a .jar file, a lock can be obtained on the file.
Shared classes assume that the .jar file remains locked and so need not be
checked continuously.

.class files can be created or deleted from a directory at any time. If you include a
directory name in a classpath, shared classes performance can be affected because
the directory is constantly checked for classes. The impact on performance might
be greater if the directory name is near the beginning of the classpath string. For
example, consider a classpath of /dir1:jar1.jar:jar2.jar:jar3.jar;. When
loading any class from the cache using this classpath, the directory /dir1 must be
checked for the existence of the class for every class load. This checking also
requires fabricating the expected directory from the package name of the class.
This operation can be expensive.

Advantages of not filling the cache

A full shared classes cache is not a problem for any JVMs connected to it.
However, a full cache can place restrictions on how much sharing can be
performed by other JVMs or applications.

ROMClasses are added to the cache and are all unique. Metadata is added
describing the ROMClasses and there can be multiple metadata entries
corresponding to a single ROMClass. For example, if class A is loaded from
myApp1.jar and another JVM loads the same class A from myOtherApp2.jar, only
one ROMClass exists in the cache. However there are two pieces of metadata that
describe the source locations.

Chapter 9. Troubleshooting and support 347

If many classes are loaded by an application and the cache is 90% full, another
installation of the same application can use the same cache. The extra information
that must be added about the classes from the second application is minimal.

After the extra metadata has been added, both installations can share the same
classes from the same cache. However, if the first installation fills the cache
completely, there is no room for the extra metadata. The second installation cannot
share classes because it cannot update the cache. The same limitation applies for
classes that become stale and are redeemed. See “Redeeming stale classes” on page
357. Redeeming the stale class requires a small quantity of metadata to be added to
the cache. If you cannot add to the cache, because it is full, the class cannot be
redeemed.

Read-only cache access

If the JVM opens a cache with read-only access, it does not obtain any operating
system locks to read the data. This behavior can make cache access slightly faster.
However, if any containers of cached classes are changed or moved on a classpath,
then sharing is disabled for all classes on that classpath. There are two reasons
why sharing is disabled:
1. The JVM is unable to update the cache with the changes, which might affect

other JVMs.
2. The cache code does not continually recheck for updates to containers every

time a class is loaded because this activity is too expensive.

Page protection

By default, the JVM protects all cache memory pages using page protection to
prevent accidental corruption by other native code running in the process. If any
native code attempts to write to the protected page, the process ends, but all other
JVMs are unaffected.

The only page not protected by default is the cache header page, because the cache
header must be updated much more frequently than the other pages. The cache
header can be protected by using the -Xshareclasses:mprotect=all option. This
option has a small affect on performance and is not enabled by default.

Switching off memory protection completely using -Xshareclasses:mprotect=none
does not provide significant performance gains.

Caching Ahead Of Time (AOT) code

The JVM might automatically store a small amount of Ahead Of Time (AOT)
compiled native code in the cache when it is populated with classes. The AOT
code enables any subsequent JVMs attaching to the cache to start faster. AOT data
is generated for methods that are likely to be most effective.

You can use the -Xshareclasses:noaot, -Xscminaot, and -Xscmaxaot options to
control the use of AOT code in the cache. See “JVM command-line options” on
page 428 for more information.

In general, the default settings provide significant startup performance benefits and
use only a small amount of cache space. In some cases, for example, running the
JVM without the JIT, there is no benefit gained from the cached AOT code. In these
cases, turn off caching of AOT code.

348 IBM SDK for Java: SDK and Runtime Guide

To diagnose AOT issues, use the -Xshareclasses:verboseAOT command-line option.
This option generates messages when AOT code is found or stored in the cache.

Caching JIT data

The JVM can automatically store a small amount of JIT data in the cache when it is
populated with classes. The JIT data enables any subsequent JVMs attaching to the
cache to either start faster, run faster, or both.

You can use the -Xshareclasses:nojitdata, -Xscminjitdata<size>, and
-Xscmaxjitdata<size> options to control the use of JIT data in the cache.

In general, the default settings provide significant performance benefits and use
only a small amount of cache space.

Making the most efficient use of cache space

A shared class cache is a finite size and cannot grow. The JVM makes more
efficient use of cache space by sharing strings between classes, and ensuring that
classes are not duplicated. However, there are also command-line options that
optimize the cache space available.

-Xscminaot and -Xscmaxaot place maximum and minimum limits on the amount of
AOT data the JVM can store in the cache. -Xshareclasses:noaot prevents the JVM
from storing any AOT data.

-Xscminjitdata<size> and -Xscmaxjitdata<size> place maximum and minimum
limits on the amount of JIT data the JVM can store in the cache.
-Xshareclasses:nojitdata prevents the JVM from storing any JIT data.

-Xshareclasses:nobootclasspath disables the sharing of classes on the boot
classpath, so that only classes from application class loaders are shared. There are
also optional filters that can be applied to Java classloaders to place custom limits
on the classes that are added to the cache.

Very long classpaths

When a class is loaded from the shared class cache, the stored classpath and the
class loader classpath are compared. The class is returned by the cache only if the
classpaths “match”. The match need not be exact, but the result should be the
same as if the class were loaded from disk.

Matching very long classpaths is initially expensive, but successful and failed
matches are remembered. Therefore, loading classes from the cache using very long
classpaths is much faster than loading from disk.

Growing classpaths

Where possible, avoid gradually growing a classpath in a URLClassLoader using
addURL(). Each time an entry is added, an entire new classpath must be added to
the cache.

For example, if a classpath with 50 entries is grown using addURL(), you might
create 50 unique classpaths in the cache. This gradual growth uses more cache
space and has the potential to slow down classpath matching when loading
classes.

Chapter 9. Troubleshooting and support 349

Concurrent access

A shared class cache can be updated and read concurrently by any number of
JVMs. Any number of JVMs can read from the cache while a single JVM is writing
to it.

When multiple JVMs start at the same time and no cache exists, only one JVM
succeeds in creating the cache. When created, the other JVMs start to populate the
cache with the classes they require. These JVMs might try to populate the cache
with the same classes.

Multiple JVMs concurrently loading the same classes are coordinated to a certain
extent by the cache itself. This behavior reduces the effect of many JVMs trying to
load and store the same class from disk at the same time.

Class GC with shared classes

Running with shared classes has no affect on class garbage collection. Class loaders
loading classes from the shared class cache can be garbage collected in the same
way as class loaders that load classes from disk. If a class loader is garbage
collected, the ROMClasses it has added to the cache persist.

Class Debug Area

A portion of the shared classes cache is reserved for storing the class attribute
information LineNumberTable and LocalVariableTable during JVM debugging. By
storing these attributes in a separate region, the operating system can decide
whether to keep the region in memory or on disk, depending on whether
debugging is taking place.

You can control the size of the Class Debug Area using the -Xscdmx command-line
option. Use any of the following variations to specify a Class Debug Area with a
size of 1 MB:
v -Xscdmx1048576

v -Xscdmx1024k

v -Xscdmx1m

The number of bytes passed to –Xscdmx must always be less than the total cache
size. This value is always rounded down to the nearest multiple of the system
page size.

The amount of LineNumberTable and LocalVariableTable attribute information
stored for different applications varies. When the Class Debug Area is full, use
-Xscdmx to increase the size. When the Class Debug Area is not full, create a
smaller region, which increases the available space for other artifacts elsewhere in
the cache.

The size of the Class Debug Area affects available space for other artifacts, like
AOT code, in the shared classes cache. Performance might be adversely affected if
the cache is not sized appropriately. You can improve performance by using the
-Xscdmx option to resize the Class Debug Area, or by using the -Xscmx option to
create a larger cache.

If you start the JVM with -Xnolinenumbers when creating a new shared classes
cache, the Class Debug Area is not created. The option -Xnolinenumbers advises
the JVM not to load any class debug information, so there is no need for this

350 IBM SDK for Java: SDK and Runtime Guide

region. If -Xscdmx is also used on the command line to specify a non zero debug
area size, then a debug area is created despite the use of -Xnolinenumbers.

Raw Class Data Area

When a cache is created with -Xshareclasses:enableBCI, a portion of the shared
classes cache is reserved for storing the original class data bytes. Storing this data
in a separate region allows the operating system to decide whether to keep the
region in memory or on disk, depending on whether the data is being used.
Because the amount of raw class data stored in this area can vary for an
application, the size of the Raw Class Data Area can be modified using the rcdSize
suboption. For example, these variations specify a Raw Class Data Area with a size
of 1 MB:
-Xshareclasses:enableBCI,rcdSize=1048576
-Xshareclasses:enableBCI,rcdSize=1024k
-Xshareclasses:enableBCI,rcdSize=1m

The number of bytes passed to rcdSize must always be less than the total cache
size. This value is always rounded down to the nearest multiple of the system
page size. As with the Class Debug Area, the size of this area affects available
space for other artifacts, such as AOT code, in the shared classes cache.
Performance might be adversely affected if the cache is not sized appropriately.
When the cache is created without enableBCI, the default size of the Raw Class
Data Area is 0 bytes. However, when the enableBCI is used, a portion of the cache
is automatically reserved.

Compatibility between service releases:

Use the most recent service release of a JVM for any application.

It is not recommended for different service releases to share the same class cache
concurrently. A class cache is compatible with earlier and later service releases.
However, there might be small changes in the class files or the internal class file
format between service releases. These changes might result in duplication of
classes in the cache. For example, a cache created by a given service release can
continue to be used by an updated service release, but the updated service release
might add extra classes to the cache if space allows.

To reduce class duplication, if the JVM connects to a cache which was created by a
different service release, it attempts to destroy the cache then re-create it. This
automated housekeeping feature is designed so that when a new JVM level is used
with an existing application, the cache is automatically refreshed. However, the
refresh only succeeds if the cache is not in use by any other JVM. If the cache is in
use, the JVM cannot refresh the cache, but uses it where possible.

If different service releases do use the same cache, the JVM disables AOT. The
effect is that AOT code in the cache is ignored.

Dealing with runtime bytecode modification
Modifying bytecode at run time is an increasingly popular way to engineer
required function into classes. Sharing modified bytecode improves startup time,
especially when the modification being used is expensive. You can safely cache
modified bytecode and share it between JVMs, but there are many potential
problems because of the added complexity. It is important to understand the
features described in this section to avoid any potential problems.

Chapter 9. Troubleshooting and support 351

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

This section contains a brief summary of the tools that can help you to share
modified bytecode.

Potential problems with runtime bytecode modification:

The sharing of modified bytecode can cause potential problems.

When a class is stored in the cache, the location from which it was loaded and a
time stamp indicating version information are also stored. When retrieving a class
from the cache, the location from which it was loaded and the time stamp of that
location are used to determine whether the class should be returned. The cache
does not note whether the bytes being stored were modified before they were
defined unless it is specifically told so. Do not underestimate the potential
problems that this modification could introduce:
v In theory, unless all JVMs sharing the same classes are using exactly the same

bytecode modification, JVMs could load incorrect bytecode from the cache. For
example, if JVM1 populates a cache with modified classes and JVM2 is not using
a bytecode modification agent, but is sharing classes with the same cache, it
could incorrectly load the modified classes. Likewise, if two JVMs start at the
same time using different modification agents, a mix of classes could be stored
and both JVMs will either throw an error or demonstrate undefined behavior.

v An important prerequisite for caching modified classes is that the modifications
performed must be deterministic and final. In other words, an agent which
performs a particular modification under one set of circumstances and a
different modification under another set of circumstances, cannot use class
caching. This is because only one version of the modified class can be cached for
any given agent and once it is cached, it cannot be modified further or returned
to its unmodified state.

In practice, modified bytecode can be shared safely if the following criteria are
met:
v Modifications made are deterministic and final (described previously).
v The cache knows that the classes being stored are modified in a particular way

and can partition them accordingly.

The VM provides features that allow you to share modified bytecode safely, for
example using "modification contexts". However, if a JVMTI agent is
unintentionally being used with shared classes without a modification context, this
usage does not cause unexpected problems. In this situation, if the VM detects the
presence of a JVMTI agent that has registered to modify class bytes, it forces all
bytecode to be loaded from disk and this bytecode is then modified by the agent.
The potentially modified bytecode is passed to the cache and the bytes are
compared with known classes of the same name. If a matching class is found, it is
reused; otherwise, the potentially modified class is stored in such a way that other
JVMs cannot load it accidentally. This method of storing provides a "safety net"
that ensures that the correct bytecode is always loaded by the JVM running the
agent, but any other JVMs sharing the cache will be unaffected. Performance
during class loading could be affected because of the amount of checking involved,
and because bytecode must always be loaded from disk. Therefore, if modified
bytecode is being intentionally shared, the use of modification contexts is
recommended.

352 IBM SDK for Java: SDK and Runtime Guide

Modification contexts:

A modification context creates a private area in the cache for a given context, so
that multiple copies or versions of the same class from the same location can be
stored using different modification contexts. You choose the name for a context,
but it must be consistent with other JVMs using the same modifications.

For example, one JVM uses a JVMTI agent "agent1", a second JVM uses no
bytecode modification, a third JVM also uses "agent1", and a fourth JVM uses a
different agent, "agent2". If the JVMs are started using the following command
lines (assuming that the modifications are predictable as described previously),
they should all be able to share the same cache:
java -agentlib:agent1 -Xshareclasses:name=cache1,modified=myAgent1 myApp.ClassName
java -Xshareclasses:name=cache1 myApp.ClassName
java -agentlib:agent1 -Xshareclasses:name=cache1,modified=myAgent1 myApp.ClassName
java -agentlib:agent2 -Xshareclasses:name=cache1,modified=myAgent2 myApp.ClassName

SharedClassHelper partitions:

Modification contexts cause all classes loaded by a particular JVM to be stored in a
separate cache area. If you need a more granular approach, the SharedClassHelper
API can store individual classes under "partitions".

This ability to use partitions allows an application class loader to have complete
control over the versioning of different classes and is particularly useful for storing
bytecode woven by Aspects. A partition is a string key used to identify a set of
classes. For example, a system might weave a number of classes using a particular
Aspect path and another system might weave those classes using a different
Aspect path. If a unique partition name is computed for the different Aspect paths,
the classes can be stored and retrieved under those partition names.

The default application class loader or bootstrap class loader does not support the
use of partitions; instead, a SharedClassHelper must be used with a custom class
loader.

Using the JVMTI ClassFileLoadHook with cached classes:

The -Xshareclasses:enableBCI suboption improves startup performance without
using a modification context, when using JVMTI class modification. This suboption
allows classes loaded from the shared cache to be modified using a JVMTI
ClassFileLoadHook, or a java.lang.instrument agent, and prevents modified classes
being stored in the shared classes cache.

Modification contexts allow classes modified at run time by JVMTI agents to be
stored, logically separated, in the cache. This separation prevents conflicts with
versions of the same class that are being used by other JVMs connected to the
cache. However, there are a number of issues:
v Loading classes from the cache does not generate a callback to the JVMTI

ClassFileLoadHook event, which prevents a JVMTI agent making any
subsequent modifications. The ClassFileLoadHook event expects original class
data to be passed back. This data is typically not available in the shared cache
unless the cache was created with a JVMTI agent that is retransformation
capable. This constraint might be undesirable for JVMTI or java.lang.instrument
agents that want the ClassFileLoadHook event to be triggered every time,
whether the class is loaded from the cache, or from the disk.

Chapter 9. Troubleshooting and support 353

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

v If the JVMTI agent applies different runtime modifications every time the
application is run, there will be multiple versions of the same class in the cache
that cannot be reused or shared across JVMs.

To address these issues, use the suboption -Xshareclasses:enableBCI When using
this suboption, any class modified by a JVMTI or java.lang.instrument agent is not
stored in the cache. Classes which are not modified are stored as before. The
-Xshareclasses:enableBCI suboption causes the JVM to store original class byte
data in the cache, which allows the ClassFileLoadHook event to be triggered for all
classes loaded from the cache. When using this suboption, the cache size might
need to be increased with -Xscmx<size>.

Using this option can improve the startup performance when JVMTI agents,
java.lang.instrument agents, or both, are being used to modify classes. If you do
not use this option, the JVM is forced to load classes from disk and find the
equivalent class in the shared cache by doing a comparison. Because loading from
disk and class comparison is done for every class loaded, the startup performance
can be affected, as described in “Potential problems with runtime bytecode
modification” on page 352. Using -Xshareclasses:enableBCI loads unmodified
classes directly from the shared cache, improving startup performance, while still
allowing these classes to be modified by the JVMTI agents, java.lang.instrument
agents, or both.

Using -Xshareclasses:enableBCI with a modification context is still valid.
However, -Xshareclasses:enableBCI prevents modified classes from being stored
in the cache. Although unmodified classes are stored in the cache and logically
separated by the specified modification context, using a modification context with
-Xshareclasses:enableBCI does not provide any benefits and should be avoided.

When a new shared cache is created with -Xshareclasses:enableBCI, a portion of
the shared cache is reserved for storing the original class data in the shared classes
cache. Storing this data in a separate region allows the operating system to decide
whether to keep the region in memory or on disk, depending on whether the data
is being used. When this area is full, the original class data is stored with the rest
of the shared class data. For more information about this area, known as the Raw
Class Data Area, see “Cache performance” on page 347.

JVMTI redefinition and retransformation of classes:

Redefined classes are never stored in the cache. Retransformed classes are not
stored in the cache by default, but caching can be enabled using the
-Xshareclasses:cacheRetransformed option.

Redefined classes are classes containing replacement bytecode provided by a
JVMTI agent at run time, typically where classes are modified during a debugging
session. Redefined classes are never stored in the cache.

Retransformed classes are classes with registered retransformation capable agents
that have been called by a JVMTI agent at run time. Unlike RedefineClasses, the
RetransformClasses function allows the class definition to be changed without
reference to the original bytecode. An example of retransformation is a profiling
agent that adds or removes profiling calls with each retransformation.
Retransformed classes are not stored in the cache by default, but caching can be
enabled using the -Xshareclasses:cacheRetransformed option. This option will
also work with modification contexts or partitions.

354 IBM SDK for Java: SDK and Runtime Guide

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

Further considerations for runtime bytecode modification:

There are a number of additional items that you need to be aware of when using
the cache with runtime bytecode modification.

If bytecode is modified by a non-JVMTI agent and defined using the JVM's
application class loader when shared classes are enabled, these modified classes are
stored in the cache and nothing is stored to indicate that these are modified
classes. Another JVM using the same cache will therefore load the classes with
these modifications. If you are aware that your JVM is storing modified classes in
the cache using a non-JVMTI agent, you are advised to use a modification context
with that JVM to protect other JVMs from the modifications.

Combining partitions and modification contexts is possible but not recommended,
because you will have partitions inside partitions. In other words, a partition A
stored under modification context X will be different from partition A stored under
modification context B.

Because the shared class cache is a fixed size, storing many different versions of
the same class might require a much larger cache than the size that is typically
required. However, note that the identical classes are never duplicated in the cache,
even across modification contexts or partitions. Any number of metadata entries
might describe the class and where it came from, but they all point to the same
class bytes.

If an update is made to the file system and the cache marks a number of classes as
stale as a result, note that it will mark all versions of each class as stale (when
versions are stored under different modification contexts or partitions) regardless
of the modification context being used by the JVM that caused the classes to be
marked stale.

Understanding dynamic updates
The shared class cache must respond to file system updates; otherwise, a JVM
might load classes from the cache that are out of date or “stale”. After a class has
been marked stale, it is not returned by the cache if it is requested by a class
loader. Instead, the class loader must reload the class from disk and store the
updated version in the cache.

The cache is managed in a way that helps ensure that the following challenges are
addressed:
v Java archive and compressed files are usually locked by class loaders when they

are in use. The files can be updated when the JVM shuts down. Because the
cache persists beyond the lifetime of any JVM using it, subsequent JVMs
connecting to the cache check for Java archive and compressed file updates.

v .class files that are not in a .jar file can be updated at any time during the
lifetime of a JVM. The cache checks for individual class file updates.

v .class files can be created or removed from directories found in classpaths at
any time during the lifetime of a JVM. The cache checks the classpath for classes
that have been created or removed.

v .class files must be in a directory structure that reflects their package structure.
This structure helps ensure that when checking for updates, the correct
directories are searched.

Class files contained in .jar files and compressed files, and class files stored as
.class files on the file system, are accessed and used in different ways. The result

Chapter 9. Troubleshooting and support 355

is that the cache treats them as two different types. Updates are managed by
writing file system time stamps into the cache.

Classes found or stored using a SharedClassTokenHelper cannot be maintained in
this way, because Tokens are meaningless to the cache. As a direct consequence of
updating the class data, AOT data is automatically updated.

Storing classes

When a classpath is stored in the cache, the Java archive and compressed files are
time stamped. These time stamps are stored as part of the classpath. Directories are
not time stamped. When a ROMClass is stored, if it came from a .class file on the
file system, the .class file it came from is time stamped and this time stamp is
stored. Directories are not time stamped because there is no guarantee that
subsequent updates to a file cause an update to the directory holding the file.

If a compressed or Java archive file does not exist, the classpath containing it can
still be added to the cache, but ROMClasses from this entry are not stored. If an
attempt is made to add a ROMClass to the cache from a directory, but the
ROMClass does not exist as a .class file, it is not stored in the cache.

Time stamps can also be used to determine whether a ROMClass being added is a
duplicate of one that exists in the cache.

If a classpath entry is updated on the file system, the entry becomes out of sync
with the corresponding classpath time stamp in the cache. The classpath is added
to the cache again, and all entries time stamped again. When a ROMClass is added
to the cache, the cache is searched for entries from the classpath that applies to the
caller. Any potential classpath matches are also time stamp-checked. This check
ensures that the matches are up-to-date before the classpath is returned.

Finding classes

When the JVM finds a class in the cache, it must make more checks than when it
stores a class.

When a potential match has been found, if it is a .class file on the file system, the
time stamps of the .class file and the ROMClass stored in the cache are
compared. Regardless of the source of the ROMClass (.jar or .class file), every
Java archive and compressed file entry in the calling classpath, up to and including
the index at which the ROMClass was “found”, must be checked for updates by
obtaining the time stamps. Any update might mean that another version of the
class being returned had already been added earlier in the classpath.

Additionally, any classpath entries that are directories might contain .class files
that “shadow” the potential match that has been found. Class files might be
created or deleted in these directories at any point. Therefore, when the classpath
is walked and .jar files and compressed files are checked, directory entries are also
checked to see whether any .class files have been created unexpectedly. This
check involves building a string by using the classpath entry, the package names,
and the class name, and then looking for the class file. This procedure is expensive
if many directories are being used in class paths. Therefore, using .jar files gives
better shared classes performance.

356 IBM SDK for Java: SDK and Runtime Guide

Marking classes as stale

When an individual .class file is updated, only the class or classes stored from
that .class file are marked “stale”.

When a Java archive or compressed file classpath entry is updated, all of the
classes in the cache that could have been affected by that update are marked stale.
This action is taken because the cache does not know the contents of individual .jar
files and compressed files.

For example, in the following class paths where c has become stale:

a;b;c;d c might now contain new versions of classes in d. Therefore, classes in both
c and d are all stale.

c;d;a c might now contain new versions of classes in d or a, or both. Therefore,
classes in c, d, and a are all stale.

Classes in the cache that have been loaded from c, d, and a are marked stale.
Making a single update to one .jar file might cause many classes in the cache to be
marked stale. To avoid massive duplication as classes are updated, stale classes can
be marked as not stale, or “redeemed”, if it is proved that they are not in fact stale.

Redeeming stale classes

Because classes are marked stale when a class path update occurs, many of the
classes marked stale might not have updated. When a class loader stores a class,
and in doing so effectively “updates” a stale class, you can “redeem” the stale class
if you can prove that it has not in fact changed.

For example, assume that class X is stored in a cache after obtaining it from
location c, where c is part of the classpath a;b;c;d. Suppose a is updated. The
update means that a might now contain a new version of class X. For this example,
assume a does not contain a new version of class X. The update marks all classes
loaded from b, c, and d as stale. Next, another JVM must load class X. The JVM
asks the cache for class X, but it is stale, so the cache does not return the class.
Instead, the class loader fetches class X from disk and stores it in the cache, again
using classpath a;b;c;d. The cache checks the loaded version of X against the stale
version of X and, if it matches, the stale version is “redeemed”.

AOT code

A single piece of AOT code is associated with a specific method in a specific
version of a class in the cache. If new classes are added to the cache as a result of a
file system update, new AOT code can be generated for those classes. If a
particular class becomes stale, the AOT code associated with that class also
becomes stale. If a class is redeemed, the AOT code associated with that class is
also redeemed. AOT code is not shared between multiple versions of the same
class.

The total amount of AOT code can be limited using -Xscmaxaot, and cache space
can be reserved for AOT code using -Xscminaot.

JIT data

JIT data is associated with a specific version of a class in the cache. If new classes
are added to the cache as a result of a file system update, new JIT data can be

Chapter 9. Troubleshooting and support 357

generated for those classes. If a particular class becomes stale, the JIT data
associated with that class also becomes stale. If a class is redeemed, the JIT data
associated with that class is also redeemed. JIT data is not shared between multiple
versions of the same class.

The total amount of JIT data can be limited using -Xscmaxjitdata, and cache space
can be reserved for JIT data using -Xscminjitdata.

Using the Java Helper API
Classes are shared by the bootstrap class loader internally in the JVM. Any other
Java class loader must use the Java Helper API to find and store classes in the
shared class cache.

The Helper API provides a set of flexible Java interfaces so that Java class loaders
to use the shared classes features in the JVM. The java.net.URLClassLoader
shipped with the SDK has been modified to use a SharedClassURLClasspathHelper
and any class loaders that extend java.net.URLClassLoader inherit this behavior.
Custom class loaders that do not extend URLClassLoader but want to share classes
must use the Java Helper API. This topic contains a summary on the different
types of Helper API available and how to use them.

The Helper API classes are contained in the com.ibm.oti.shared package. For a
detailed description of each helper and how to use it, see the Javadoc information.

com.ibm.oti.shared.Shared
The Shared class contains static utility methods:
getSharedClassHelperFactory() and isSharingEnabled(). If -Xshareclasses
is specified on the command line and sharing has been successfully
initialized, isSharingEnabled() returns true. If sharing is enabled,
getSharedClassHelperFactory() returns a
com.ibm.oti.shared.SharedClassHelperFactory. The helper factories are
singleton factories that manage the Helper APIs. To use the Helper APIs,
you must get a Factory.

com.ibm.oti.shared.SharedClassHelperFactory
SharedClassHelperFactory provides an interface used to create various
types of SharedClassHelper for class loaders. Class loaders and
SharedClassHelpers have a one-to-one relationship. Any attempts to get a
helper for a class loader that already has a different type of helper causes a
HelperAlreadyDefinedException.

Because class loaders and SharedClassHelpers have a one-to-one
relationship, calling findHelperForClassLoader() returns a Helper for a
given class loader if one exists.

com.ibm.oti.shared.SharedClassHelper
There are three different types of SharedClassHelper:
v SharedClassTokenHelper. Use this Helper to store and find classes using

a String token generated by the class loader. This Helper is normally
used by class loaders that require total control over cache contents.

v SharedClassURLHelper. Store and find classes using a file system
location represented as a URL. For use by class loaders that do not have
the concept of a class path and load classes from multiple locations.

v SharedClassURLClasspathHelper. Store and find classes using a class
path of URLs. For use by class loaders that load classes using a URL
class path

358 IBM SDK for Java: SDK and Runtime Guide

Compatibility between Helpers is as follows: Classes stored by
SharedClassURLHelper can be found using a
SharedClassURLClasspathHelper and the opposite also applies. However,
classes stored using a SharedClassTokenHelper can be found only by using
a SharedClassTokenHelper.

Note: Classes stored using the URL Helpers are updated dynamically by
the cache (see “Understanding dynamic updates” on page 355). Classes
stored by the SharedClassTokenHelper are not updated by the cache
because the Tokens are meaningless Strings, so the Helper has no way of
obtaining version information.

You can control the classes a URL Helper finds and stores in the cache
using a SharedClassURLFilter. An object implementing this interface can be
passed to the SharedClassURLHelper when it is constructed or after it has
been created. The filter is then used to decide which classes to find and
store in the cache. See “Using the SharedClassHelper API” for more
information. For a detailed description of each helper and how to use it,
see the Javadoc information.

Using the SharedClassHelper API:

The SharedClassHelper API provides functions to find and store shared classes.

These functions are:

findSharedClass
Called after the class loader has asked its parent for a class, but before it
has looked on disk for the class. If findSharedClass returns a class (as a
byte[]), pass this class to defineClass(), which defines the class for that JVM
and return it as a java.lang.Class object. The byte[] returned by
findSharedClass is not the actual class bytes. The effect is that you cannot
monitor or manipulate the bytes in the same way as class bytes loaded
from a disk. If a class is not returned by findSharedClass, the class is
loaded from disk (as in the nonshared case) and then the java.lang.Class
defined is passed to storeSharedClass.

storeSharedClass
Called if the class loader has loaded class bytes from disk and has defined
them using defineClass. Do not use storeSharedClass to try to store classes
that were defined from bytes returned by findSharedClass.

setSharingFilter
Register a filter with the SharedClassHelper. The filter is used to decide
which classes are found and stored in the cache. Only one filter can be
registered with each SharedClassHelper.

You must resolve how to deal with metadata that cannot be stored. An example is
when java.security.CodeSource or java.util.jar.Manifest objects are derived from .jar
files. For each .jar file, the best way to deal with metadata that cannot be stored is
always to load the first class from the .jar file. Load the class regardless of whether
it exists in the cache or not. This load activity initializes the required metadata in
the class loader, which can then be cached internally. When a class is then returned
by findSharedClass, the function indicates where the class has been loaded from.
The result is that the correct cached metadata for that class can be used.

It is not incorrect usage to use storeSharedClass to store classes that were loaded
from disk, but which are already in the cache. The cache sees that the class is a

Chapter 9. Troubleshooting and support 359

duplicate of an existing class, it is not duplicated, and so the class continues to be
shared. However, although it is handled correctly, a class loader that uses only
storeSharedClass is less efficient than one that also makes appropriate use of
findSharedClass.

Filtering

You can filter which classes are found and stored in the cache by registering an
object implementing the SharedClassFilter interface with the SharedClassHelper.
Before accessing the cache, the SharedClassHelper functions performs filtering
using the registered SharedClassFilter object. For example, you can cache classes
inside a particular package only by creating a suitable filter. To define a filter,
implement the SharedClassFilter interface, which defines the following methods:
boolean acceptStore(String className)
boolean acceptFind(String className)

You must return true when you implement these functions so that a class can be
found or stored in the cache. Use the supplied parameters as required. Make sure
that you implement functions that do not take long to run because they are called
for every find and store. Register a filter on a SharedClassHelper using the
setSharingFilter(SharedClassFilter filter) function. See the Javadoc for the
SharedClassFilter interface for more information.

Applying a global filter

You can apply a SharedClassFilter to all non-bootstrap class loaders that share
classes. Specify the com.ibm.oti.shared.SharedClassGlobalFilterClass system
property on the command line. For example:
-Dcom.ibm.oti.shared.SharedClassGlobalFilterClass=<filter class name>

Obtaining information about shared caches:

Use these APIs to obtain information about shared caches.

com.ibm.oti.shared.SharedClassStatistics
The SharedClassStatistics class provides static utilities that return the total
cache size and the amount of free bytes in the active cache.

com.ibm.oti.shared.SharedClassUtilities
You can use these APIs to get information about shared class caches in a
directory, and to remove specified shared class caches. The type of
information available for each cache includes:
v The cache name.
v The cache size.
v The amount of free space in the cache.
v An indication of compatibility with the current JVM.
v Information about the type of cache; persistent or non-persistent.
v The last detach time.
v The Java version that created the cache.
v Whether the cache is for a 32-bit or 64-bit JVM.
v Whether the cache is corrupted.

360 IBM SDK for Java: SDK and Runtime Guide

com.ibm.oti.shared.SharedClassCacheInfo
This class is used by com.ibm.oti.shared.SharedClassUtilities to store
information about a shared class cache and provides API methods to
retrieve that information.

For information about the IBM JVMTI extensions for shared class caches, see
“Finding shared class caches” on page 399, and “Removing a shared class cache”
on page 401.

Understanding shared classes diagnostic output
When running in shared classes mode, a number of diagnostic tools can help you.
The verbose options are used at run time to show cache activity and you can use
the printStats and printAllStats utilities to analyze the contents of a shared class
cache.

This section tells you how to interpret the output.

Verbose output:

The verbose suboption of -Xshareclasses gives the most concise and simple
diagnostic output on cache usage.

See “JVM command-line options” on page 428. Verbose output will typically look
like this:

>java -Xshareclasses:name=myCache,verbose -Xscmx10k HelloWorld
[-Xshareclasses verbose output enabled]
JVMSHRC158I Successfully created shared class cache "myCache"
JVMSHRC166I Attached to cache "myCache", size=10200 bytes
JVMSHRC096I WARNING: Shared Cache "myCache" is full. Use -Xscmx to set cache size.
Hello
JVMSHRC168I Total shared class bytes read=0. Total bytes stored=9284

This output shows that a new cache called myCache was created, which was only
10 kilobytes in size and the cache filled up almost immediately. The message
displayed on shut down shows how many bytes were read or stored in the cache.

VerboseIO output:

The verboseIO output is far more detailed, and is used at run time to show classes
being stored and found in the cache.

VerboseIO output provides information about the I/O activity occurring with the
cache, with basic information about find and store calls. You enable verboseIO
output by using the verboseIO suboption of -Xshareclasses. With a cold cache,
you see trace like this example

Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 0... Failed.
Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 3... Failed.
Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 17... Failed.
Storing class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 17... Succeeded.

Each class loader is given a unique ID. The bootstrap loader has an ID of 0. In the
example trace, class loader 17 follows the class loader hierarchy by asking its
parents for the class. Each parent asks the shared cache for the class. Because the
class does not exist in the cache, all the find calls fail, so the class is stored by class
loader 17.

After the class is stored, you see the following output for subsequent calls:

Chapter 9. Troubleshooting and support 361

Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 0... Failed.
Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 3... Failed.
Finding class org/eclipse/ui/internal/UIWorkspaceLock in shared cache for cldr id 17... Succeeded.

Again, the class loader obeys the hierarchy, because parents ask the cache for the
class first. This time, the find call succeeds. With other class loading frameworks,
such as OSGi, the parent delegation rules are different. In such cases, the output
might be different.

VerboseHelper output:

You can also obtain diagnostic data from the Java SharedClassHelper API using the
verboseHelper suboption.

The output is divided into information messages and error messages:
v Information messages are prefixed with:

Info for SharedClassHelper id <n>: <message>

v Error messages are prefixed with:
Error for SharedClassHelper id <n>: <message>

Use the Java Helper API to obtain this output; see “Using the Java Helper API” on
page 358.

verboseAOT output:

VerboseAOT provides output when compiled AOT code is being found or stored
in the cache.

When a cache is being populated, you might see the following message:
Storing AOT code for ROMMethod 0x523B95C0 in shared cache... Succeeded.

When a populated cache is being accessed, you might see the following message:
Finding AOT code for ROMMethod 0x524EAEB8 in shared cache... Succeeded.

AOT code is generated heuristically. You might not see any AOT code generated at
all for a small application.

printStats utility:

The printStats utility prints summary information about the specified cache to the
standard error output. You can optionally specify one or more types of cache
content, such as AOT data or tokens, to see more detailed information about that
type of content. To see detailed information about all the types of content in the
cache, use the printAllStats utility instead.

The printStats utility is a suboption of -Xshareclasses. You can specify a cache
name using the name=<name> parameter. printStats is a cache utility, so the JVM
reports the information about the specified cache and then exits.

The following output shows example results after running the printStats utility
without a parameter, to generate summary data only:
Cache created with:
-Xnolinenumbers = false
BCI Enabled = true

Cache contains only classes with line numbers

362 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|

base address = 0x00002AAACE282000
end address = 0x00002AAACF266000
allocation pointer = 0x00002AAACE3A61B0

cache size = 16776608
free bytes = 6060232
ROMClass bytes = 1196464
AOT bytes = 0
Reserved space for AOT bytes = -1
Maximum space for AOT bytes = -1
JIT data bytes = 0
Reserved space for JIT data bytes = -1
Maximum space for JIT data bytes = -1
Zip cache bytes = 1054352
Data bytes = 114080
Metadata bytes = 24312
Metadata % used = 1%
Class debug area size = 1331200
Class debug area used bytes = 150848
Class debug area % used = 11%
Raw class data area size = 6995968
Raw class data used bytes = 1655520
Raw class data area % used = 23%

ROMClasses = 488
AOT Methods = 0
Classpaths = 1
URLs = 0
Tokens = 0
Zip caches = 22
Stale classes = 0
% Stale classes = 0%

Cache is 28% full

In the example output, -Xnolinenumbers = false means the cache was created
without the -Xnolinenumbers option being specified.

BCI Enabled = true indicates that the cache was created with the
-Xshareclasses:enableBCI suboption.

One of the following messages is displayed to indicate the line number status of
classes in the shared cache:

Cache contains only classes with line numbers
JVM line number processing was enabled (the -Xnolinenumbers option was
not specified) for all the classes that were put in this shared cache. All
classes in the cache contain line numbers if the original classes contained
line number data.

Cache contains only classes without line numbers
JVM line number processing was disabled (the -Xnolinenumbers option
was specified) for all the classes that were put in this shared cache, so none
of the classes contain line numbers.

Cache contains classes with line numbers and classes without line numbers
JVM line number processing was enabled for some classes and disabled for
others (the -Xnolinenumbers option was specified when some of the classes
were added to the cache).

The following summary data is displayed:

Chapter 9. Troubleshooting and support 363

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

baseAddress and endAddress
The boundary addresses of the shared memory area containing the classes.

allocPtr
The address where ROMClass data is currently being allocated in the
cache.

cache size and free bytes
cache size shows the total size of the shared memory area in bytes, and
free bytes shows the free bytes remaining.

ROMClass bytes
The number of bytes of class data in the cache.

AOT bytes
The number of bytes of Ahead Of Time (AOT) compiled code in the cache.

Reserved space for AOT bytes
The number of bytes reserved for AOT compiled code in the cache.

Maximum space for AOT bytes
The maximum number of bytes of AOT compiled code that can be stored
in the cache.

JIT data bytes
The number of bytes of JIT-related data stored in the cache.

Reserved space for JIT data bytes
The number of bytes reserved for JIT-related data in the cache.

Maximum space for JIT data bytes
The maximum number of bytes of JIT-related data that can be stored in the
cache.

Zip cache bytes
The number of zip entry cache bytes stored in the cache.

Data bytes
The number of bytes of non-class data stored by the JVM.

Metadata bytes
The number of bytes of data stored to describe the cached classes.

Metadata % used
The proportion of metadata bytes to class bytes; this proportion indicates
how efficiently cache space is being used. The value shown does consider
the Class debug area size.

Class debug area size
The size in bytes of the Class Debug Area. This area is reserved to store
LineNumberTable and LocalVariableTable class attribute information.

Class debug area bytes used
The size in bytes of the Class Debug Area that contains data.

Class debug area % used
The percentage of the Class Debug Area that contains data.

Raw class data area size
The size in bytes of the Raw Class Data Area. This area is reserved when
the cache is created with -Xshareclasses:enableBCI, or
-Xshareclasses:rcdSize=nnn. The original class file bytes for a ROMClass
are stored here when enableBCI is used to create the cache.

364 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|

Raw class data used bytes
The size in bytes of the Raw Class Data Area that contains data.

Raw class data area % used
The percentage of the Raw Class Data Area that contains data.

ROMClasses
The number of classes in the cache. The cache stores ROMClasses (the class
data itself, which is read-only) and it also stores information about the
location from which the classes were loaded. This information is stored in
different ways, depending on the Java SharedClassHelper API used to
store the classes. For more information, see “Using the Java Helper API”
on page 358.

AOT methods
Optionally, ROMClass methods can be compiled and the AOT code stored
in the cache. The # AOT methods information shows the total number of
methods in the cache that have AOT code compiled for them. This number
includes AOT code for stale classes.

Classpaths, URLs, and Tokens
The number of classpaths, URLs, and tokens in the cache. Classes stored
from a SharedClassURLClasspathHelper are stored with a Classpath.
Classes stored using a SharedClassURLHelper are stored with a URL.
Classes stored using a SharedClassTokenHelper are stored with a Token.
Most class loaders, including the bootstrap and application class loaders,
use a SharedClassURLClasspathHelper. The result is that it is most
common to see Classpaths in the cache.

The number of Classpaths, URLs, and Tokens stored is determined by a
number of factors. For example, every time an element of a Classpath is
updated, such as when a .jar file is rebuilt, a new Classpath is added to
the cache. Additionally, if “partitions” or “modification contexts” are used,
they are associated with the Classpath, URL, or Token. A Classpath, URL,
or Token is stored for each unique combination of partition and
modification context. For more information about partitions, see
“SharedClassHelper partitions” on page 353. For more information about
modification contexts, see “Modification contexts” on page 353.

Zip caches
The number of zips that have entry caches stored in the shared cache.

Stale classes
The number of classes that have been marked as "potentially stale" by the
cache code, because of an operating system update. See “Understanding
dynamic updates” on page 355.

% Stale classes
The percentage of classes in the cache that have become stale.

Cache is XXX% full
The percentage of the cache that is currently used. The value displayed
does not consider the Class debug area size. The calculation for this
value is:
% Full = ((’Cache Size’ - ’Debug Area Size’ - ’Free Bytes’) * 100) /
(’Cache Size’ - ’Debug Area Size’)

Chapter 9. Troubleshooting and support 365

|
|

|
|

Generating more detailed information

You can use a parameter to specify one or more types of cache content. The
printStats utility then provides more detailed information about that type of
content, in addition to the summary data described previously. The detailed output
is similar to the output from the printAllStats utility. For more information about
the different types of cache content and the printAllStats utility, see “printAllStats
utility.”

If you want to specify more than one type of cache content, use the plus symbol
(+) to separate the values:
printStats[=type_1[+type_2][...]]

For example, use printStats=classpath to see a list of class paths that are stored
in the shared cache, or printStats=romclass+url to see information about
ROMClasses and URLs.

The following data types are valid. The values are not case sensitive:

Help Prints a list of valid data types.

All Prints information about all the following data types in the shared cache.
This output is equivalent to the output produced by the printAllStats
utility.

Classpath
Lists the class paths that are stored in the shared cache.

URL Lists the URLs that are stored in the shared cache.

Token Lists the tokens that are stored in the shared cache.

ROMClass
Prints information about the ROMClasses that are stored in the shared
cache. This parameter does not print information about ROMMethods in
ROMClasses.

ROMMethod
Prints ROMClasses and the ROMMethods in them.

AOT Prints information about AOT compiled code in the shared cache.

JITprofile
Prints information about JIT data in the shared cache.

JIThint
Prints information about JIT data in the shared cache.

ZipCache
Prints information about zip entry caches that are stored in the shared
cache.

printAllStats utility:

The printAllStats utility is a suboption of -Xshareclasses, optionally taking a cache
name using name=<name>. This utility lists the cache contents in order, providing as
much diagnostic information as possible. Because the output is listed in
chronological order, you can interpret it as an "audit trail" of cache updates.
Because it is a cache utility, the JVM displays the information about the cache
specified or the default cache and then exits.

366 IBM SDK for Java: SDK and Runtime Guide

|
|

Each JVM that connects to the cache receives a unique ID. Each entry in the output
is preceded by a number indicating the JVM that wrote the data.

Classpaths

1: 0x2234FA6C CLASSPATH
C:\myJVM\sdk\jre\lib\vm.jar
C:\myJVM\sdk\jre\lib\core.jar
C:\myJVM\sdk\jre\lib\charsets.jar
C:\myJVM\sdk\jre\lib\graphics.jar
C:\myJVM\sdk\jre\lib\security.jar
C:\myJVM\sdk\jre\lib\ibmpkcs.jar
C:\myJVM\sdk\jre\lib\ibmorb.jar
C:\myJVM\sdk\jre\lib\ibmcfw.jar
C:\myJVM\sdk\jre\lib\ibmorbapi.jar
C:\myJVM\sdk\jre\lib\ibmjcefw.jar
C:\myJVM\sdk\jre\lib\ibmjgssprovider.jar
C:\myJVM\sdk\jre\lib\ibmjsseprovider2.jar
C:\myJVM\sdk\jre\lib\ibmjaaslm.jar
C:\myJVM\sdk\jre\lib\ibmjaasactivelm.jar
C:\myJVM\sdk\jre\lib\ibmcertpathprovider.jar
C:\myJVM\sdk\jre\lib\server.jar
C:\myJVM\sdk\jre\lib\xml.jar

This output indicates that JVM 1 caused a class path to be stored at
address 0x2234FA6C in the cache. The class path contains 17 entries, which
are listed. If the class path is stored using a given partition or modification
context, this information is also shown.

ROMClasses

1: 0x2234F7DC ROMCLASS: java/lang/Runnable at 0x213684A8
Index 1 in class path 0x2234FA6C

This output indicates that JVM 1 stored a class called java/lang/Runnable
in the cache. The metadata about the class is stored at address 0x2234F7DC,
and the class itself is written to address 0x213684A8. The output also
indicates the class path against which the class is stored, and from which
index in that class path the class was loaded. In the example, the class path
is the same address as the one listed in the Classpath example. If a class is
stale, it has !STALE! appended to the entry. If the ROMClass is stored using
a given partition or modification context, this information is also shown.

AOT methods
1: 0x540FBA6A AOT: loadConvert

for ROMClass java/util/Properties at 0x52345174

This output indicates that JVM 1 stored AOT compiled code for the
method loadConvert() in java/util/Properties. The ROMClass address is
the address of the ROMClass that contains the method that was compiled.
If an AOT method is stale, it has !STALE! appended to the entry.

URLs and Tokens
URLs and Tokens are displayed in the same format as class paths. A URL is
effectively the same as a class path, but with only one entry. A Token is in a
similar format, but it is a meaningless string passed to the Java Helper
API.

ZipCache

1: 0x042FE07C ZIPCACHE: luni-kernel.jar_347075_1272300300_1 Address: 0x042FE094 Size: 7898
1: 0x042FA878 ZIPCACHE: luni.jar_598904_1272300546_1 Address: 0x042FA890 Size: 14195
1: 0x042F71F8 ZIPCACHE: nio.jar_405359_1272300546_1 Address: 0x042F7210 Size: 13808
1: 0x042F6D58 ZIPCACHE: annotation.jar_13417_1272300554_1 Address: 0x042F6D70 Size: 1023

Chapter 9. Troubleshooting and support 367

The first line in the output indicates that JVM 1 stored a zip entry cache
called luni-kernel.jar_347075_1272300300_1 in the shared cache. The
metadata for the zip entry cache is stored at address 0x042FE07C. The data
is written to the address 0x042FE094, and is 7898 bytes in size. Storing zip
entry caches for bootstrap jar files is controlled by the -Xzero:sharebootzip
sub option, which is enabled by default. The full -Xzero option is not
enabled by default.

JIT data

1: 0xD6290368 JITPROFILE: getKeyHash Signature: ()I Address: 0xD55118C0
for ROMClass java/util/Hashtable$Entry at 0xD5511640.
2: 0xD6283848 JITHINT: loadClass Signature: (Ljava/lang/String;)Ljava/lang/Class; Address: 0xD5558F98
for ROMClass com/ibm/oti/vm/BootstrapClassLoader at 0xD5558AE0.

The JIT stores data in the shared classes cache in the form of JITPROFILE
and JITHINT entries to improve runtime performance. These outputs
expose the content of the shared cache and can be useful for diagnostic
purposes.

Debugging problems with shared classes
The following sections describe some of the situations you might encounter with
shared classes and also the tools that are available to assist in diagnosing problems.

Using shared classes trace:

Use shared classes trace output only for debugging internal problems or for a
detailed trace of activity in the shared classes code.

You enable shared classes trace using the j9shr trace component as a suboption of
-Xtrace. See “Tracing Java applications and the JVM” on page 288 for details. Five
levels of trace are provided, level 1 giving essential initialization and runtime
information, up to level 5, which is detailed.

Shared classes trace output does not include trace from the port layer functions
that deal with memory-mapped files, shared memory, and shared semaphores. It
also does not include trace from the Helper API methods. Port layer trace is
enabled using the j9prt trace component and trace for the Helper API methods is
enabled using the j9jcl trace component.

Why classes in the cache might not be found or stored:

This quick guide helps you to diagnose why classes might not be being found or
stored in the cache as expected.

Why classes might not be found

The class is stale
As explained in “Understanding dynamic updates” on page 355, if a class
has been marked as “stale”, it is not returned by the cache.

A JVMTI agent is being used without a modification context
If a JVMTI agent is being used without a modification context, classes
cannot be found in the cache. The effect is to give the JVMTI agent an
opportunity to modify the bytecode when the classes are loaded from disk.
For more information, see “Dealing with runtime bytecode modification”
on page 351.

368 IBM SDK for Java: SDK and Runtime Guide

|

|
|
|
|

|
|
|
|

The Classpath entry being used is not yet confirmed by the
SharedClassURLClasspathHelper

Class path entries in the SharedClassURLClasspathHelper must be
“confirmed” before classes can be found for these entries. A class path
entry is confirmed by having a class stored for that entry. For more
information about confirmed entries, see the SharedClassHelper Javadoc
information.

Why classes might not be stored

The cache is full
The cache is a finite size, determined when it is created. When it is full, it
cannot be expanded. When the verbose suboption is enabled a message is
printed when the cache reaches full capacity, to warn the user. The
printStats utility also displays the occupancy level of the cache, and can
be used to query the status of the cache.

The cache is opened read-only
When the readonly suboption is specified, no data is added to the cache.

The class does not exist on the file system
The class might be sourced from a URL location that is not a file.

The class has been retransformed by JVMTI and cacheRetransformed has not
been specified

As described in “Dealing with runtime bytecode modification” on page
351, the option cacheRetransformed must be selected for retransformed
classes to be cached.

The class was generated by reflection or Hot Code Replace
These types of classes are never stored in the cache.

Why classes might not be found or stored

The cache is corrupted
In the unlikely event that the cache is corrupted, no classes can be found
or stored.

A SecurityManager is being used and the permissions have not been granted to
the class loader

SharedClassPermissions must be granted to application class loaders so
that they can share classes when a SecurityManager is used. For more
information, see “Using SharedClassPermission” on page 168.

Dealing with initialization problems:

Shared classes initialization requires a number of operations to succeed. A failure
might have many potential causes, and it is difficult to provide detailed message
information following an initialization failure. Some common reasons for failure
are listed here.

If you cannot see why initialization has failed from the command-line output, look
at level 1 trace for more information regarding the cause of the failure. Review
“Operating system limitations” on page 168. A brief summary of potential reasons
for failure is provided here.

Writing data into the javasharedresources directory

To initialize any cache, data must be written into a javasharedresources directory,
which is created by the first JVM that needs it.

Chapter 9. Troubleshooting and support 369

This directory is /tmp/javasharedresources, and is used only to store small
amounts of metadata that identify the semaphore and shared memory areas. .

Problems writing to this directory are the most likely cause of initialization failure.
A default cache name is created that includes the username to prevent clashes if
different users try to share the same default cache. All shared classes users must
also have permissions to write to javasharedresources. The user running the first
JVM to share classes on a system must have permission to create the
javasharedresources directory.

Caches are created with user-only access by default. Two users cannot share the
same cache unless the -Xshareclasses:groupAccess command-line option is used
when the cache is created. If user A creates a cache using
-Xshareclasses:name=myCache and user B also tries to run the same command line,
a failure occurs. The failure is because user B does not have permissions to access
“myCache”. Caches can be removed only by the user who created them, even if
-Xshareclasses:groupAccess is used.

Initializing a persistent cache

The following operations must succeed to initialize a persistent cache:

1) Creating the cache file
Persistent caches are a regular file created on disk. The main reasons for
failing to create the file are insufficient disk space and incorrect file
permissions.

2) Acquiring file locks
Concurrent access to persistent caches is controlled using operating system
file-locking. File locks cannot be obtained if you try to use a cache that is
located on a remote networked file system. For example, an NFS or SMB
mount. This option is not supported.

3) Memory-mapping the file
The cache file is memory-mapped so that reading and writing to and from
it is a fast operation. You cannot memory-map the cache file to a remote
networked file system, such as an NFS or SMB mount. This option is not
supported. Alternatively, memory-mapping might fail if there is insufficient
system memory.

Initializing a non-persistent cache

Non-persistent caches are the default.

The following operations must succeed to initialize a non-persistent cache:

1) Create a shared memory area
The SHMMAX operating system environment variable by default is set low.
SHMMAX limits the size of shared memory segment that can be allocated. If a
cache size greater than SHMMAX is requested, the JVM attempts to allocate
SHMMAX and outputs a message indicating that SHMMAX should be increased.
For this reason, the default cache size is 16 MB.

Before using shared classes on z/OS, check for APARs that must be
installed. See “Required APAR for Shared Classes” on page 167. Also,
check the operating system environment variables, as detailed in the
Chapter 4, “Installing and configuring the SDK,” on page 105 section. The
requested cache sizes are deliberately rounded to the nearest megabyte.

370 IBM SDK for Java: SDK and Runtime Guide

2) Create a shared semaphore
Shared semaphores are created in the javasharedresources directory. You
must have write access to this directory.

3) Write metadata
Metadata is written to the javasharedresources directory. You must have
write access to this directory.

If you are experiencing considerable initialization problems, try a hard reset:
1. Run java -Xshareclasses:destroyAll to remove all known memory areas and

semaphores. Run this command as root.
2. Delete the javasharedresources directory and all of its contents.
3. The memory areas and semaphores created by the JVM might not have been

removed using -Xshareclasses:destroyAll. This problem is addressed the next
time you start the JVM. If the JVM starts and the javasharedresources
directory does not exist, an automated cleanup is triggered. Any remaining
shared memory areas that are shared class caches are removed. Start the JVM
with -Xshareclasses, using root authority. This action resets the system and
forces the JVM to re-create the javasharedresources directory.

Dealing with verification problems:

Verification problems (typically seen as java.lang.VerifyErrors) are potentially
caused by the cache returning incorrect class bytes.

This problem should not occur under typical usage, but there are two situations in
which it could happen:
v The class loader is using a SharedClassTokenHelper and the classes in the cache

are out-of-date (dynamic updates are not supported with a
SharedClassTokenHelper).

v Runtime bytecode modification is being used that is either not fully predictable
in the modifications it does, or it is sharing a cache with another JVM that is
doing different (or no) modifications. When you have determined the cause of
the problem, destroy the cache, correct the cause of the problem, and try again.

Dealing with cache problems: The following list describes possible cache
problems.

Cache is full
A full cache is not a problem; it just means that you have reached the limit
of data that you can share. Nothing can be added or removed from that
cache and so, if it contains a lot of out-of-date classes or classes that are
not being used, you must destroy the cache and create a new one.

Cache is corrupt
In the unlikely event that a cache is corrupt, no classes can be added or
read from the cache and a message is output to stderr. If the JVM detects
that it is attaching to a corrupted cache, it will attempt to destroy the cache
automatically. If the JVM cannot re-create the cache, it will continue to start
only if -Xshareclasses:nonfatal is specified, otherwise it will exit. If a
cache is corrupted during normal operation, all JVMs output the message
and are forced to load all subsequent classes locally (not into the cache).
The cache is designed to be resistant to crashes, so, if a JVM crash occurs
during a cache update, the crash should not cause data to be corrupted.

Could not create the Java virtual machine message from utilities
This message does not mean that a failure has occurred. Because the cache

Chapter 9. Troubleshooting and support 371

utilities currently use the JVM launcher and they do not start a JVM, this
message is always produced by the launcher after a utility has run.
Because the JNI return code from the JVM indicates that a JVM did not
start, it is an unavoidable message.

-Xscmx is not setting the cache size
You can set the cache size only when the cache is created because the size
is fixed. Therefore, -Xscmx is ignored unless a new cache is being created.
It does not imply that the size of an existing cache can be changed using
the parameter.

Class sharing with OSGi ClassLoading framework
Eclipse releases after 3.0 use the OSGi ClassLoading framework, which cannot
automatically share classes. A Class Sharing adapter has been written specifically
for use with OSGi, which allows OSGi class loaders to access the class cache.

Using the Reliability, Availability, and Serviceability Interface
The JVM Reliability, Availability, and Serviceability Interface (JVMRI) allows an
agent to access reliability, availability, and serviceability (RAS) functions by using a
structure of pointers to functions.

The JVMRI interface will be deprecated in the near future and replaced by
JVMTI extensions.

You can use the JVMRI interface to:
v Determine the trace capability that is present
v Set and intercept trace data
v Produce various dumps
v Inject errors

To use the JVMRI you must be able to build a native library, add the code for
JVMRI callbacks (see the subtopics), and interface the code to the JVM through the
JNI. This section provides the callback code but does not provide the other
programming information.

This chapter describes the JVMRI in:
v “Preparing to use JVMRI”
v “JVMRI functions” on page 375
v “API calls provided by JVMRI” on page 376
v “RasInfo structure” on page 382
v “RasInfo request types” on page 383
v “Intercepting trace data” on page 383
v “Formatting” on page 384

Preparing to use JVMRI
Trace and dump functions in the JVMRI require the JVM trace and dump libraries
to be loaded. These libraries will be loaded by default, but JVMRI will fail with a
warning message if you specify -Xtrace:none or -Xdump:none.

See “Command-line options” on page 417 for more information.

372 IBM SDK for Java: SDK and Runtime Guide

Writing an agent:

This piece of code demonstrates how to write a very simple JVMRI agent.

When an agent is loaded by the JVM, the first thing that gets called is the entry
point routine JVM_OnLoad(). Therefore, your agent must have a routine called
JVM_OnLoad(). This routine then must obtain a pointer to the JVMRI function table.
This is done by making a call to the GetEnv() function.

/* jvmri - jvmri agent source file. */

#include "jni.h"
#include "jvmri.h"

DgRasInterface *jvmri_intf = NULL;

JNIEXPORT jint JNICALL
JVM_OnLoad(JavaVM *vm, char *options, void *reserved)
{

int rc;
JNIEnv *env;

/*
* Get a pointer to the JNIEnv
*/

rc = (*vm)->GetEnv(vm, (void **)&env, JNI_VERSION_1_4);
if (rc != JNI_OK) {

fprintf(stderr, "RASplugin001 Return code %d obtaining JNIEnv\n", rc);
fflush(stderr);
return JNI_ERR;

}

/*
* Get a pointer to the JVMRI function table
*/

rc = (*vm)->GetEnv(vm, (void **)&jvmri_intf, JVMRAS_VERSION_1_5);
if (rc != JNI_OK) {

fprintf(stderr, "RASplugin002 Return code %d obtaining DgRasInterface\n", rc);
fflush(stderr);
return JNI_ERR;

}

/*
* Now a pointer to the function table has been obtained we can make calls to any
* of the functions in that table.
*/

...

return rc;
}

Registering a trace listener:

Before you start using the trace listener, you must set the -Xtrace option with the
relevant external=tp_spec information. This action tells the object which
tracepoints to listen for.

See “Command-line options” on page 417 for more information.

Chapter 9. Troubleshooting and support 373

An agent can register a function that is called back when the JVM makes a trace
point. The following example shows a trace listener that only increments a counter
each time a trace point is taken.
void JNICALL
listener (

void *env,
void ** tl,
const char *moduleName,
unsigned int traceId,
const char * format,
va_list var)

{
int *counter;

if (*tl == NULL) {
fprintf(stderr, "RASplugin100 first tracepoint for thread %p\n", env);
*tl = (void *)malloc(4);
counter = (int *)*tl;
*counter = 0;

}

counter = (int *)*tl;

(*counter)++;

fprintf(stderr, "Trace point total = %d\n", *counter);
}

Add this code to the JVM_Onload() function or a function that JVM_Onload() calls.

The following example is used to register the trace listener.
/*
* Register the trace listener
*/

rc = jvmri_intf->TraceRegister50(env, listener);
if (rc != JNI_OK)
{

fprintf(stderr, "RASplugin003 Return code %d registering listener\n", rc);
fflush(stderr);
return JNI_ERR;

}

You can also do more difficult tasks with a trace listener, including formatting,
displaying, and recording trace point information.

Changing trace options:

This example uses the TraceSet() function to change the JVM trace setting. It
makes the assumption that the options string that is specified with the -Xrun
option and passed to JVM_Onload() is a trace setting.

/*
* If an option was supplied, assume it is a trace setting
*/

if (options != NULL && strlen(options) > 0) {
rc = jvmri_intf->TraceSet(env, options);
if (rc != JNI_OK) {

fprintf(stderr, "RASplugin004 Return code %d setting trace options\n", rc);
fflush(stderr);
return JNI_ERR;

}
}

374 IBM SDK for Java: SDK and Runtime Guide

To set Maximal tracing for 'j9mm', use the following command when launching the
JVM and your agent:
java -Xrunjvmri:maximal=j9mm -Xtrace:external=j9mm App.class

Note: Trace must be enabled before the agent can be used. To do this, specify the
trace option on the command-line: -Xtrace:external=j9mm.

Starting the agent:

To start the agent when the JVM starts up, use the -Xrun option. For example if
your agent is called jvmri, specify -Xrunjvmri: <options> on the command-line.

Building the agent:

You must set some configuration options before you can build a JVMRI agent.

Building the agent on z/OS

To build a JVMRI agent, write a shell script that contains the following entries:
SDK_BASE= <sdk directory>
USER_DIR= <user agent’s source directory>
c++ -c -g -I$SDK_BASE/include -I$USER_DIR -W "c,float(ieee)"

-W "c,langlvl(extended)" -W "c,expo,dll" myagent.c
c++ -W "l,dll" -o libmyagent.so myagent.o
chmod 755 libmyagent.so

This builds a non-xplink library.

Agent design:

The agent must reference the header files jni.h and jvmri.h, which are shipped with
the SDK and are in the sdk\include subdirectory.

To start the agent, use the -Xrun command-line option. The JVM parses the
-Xrunlibrary_name[:options] switch and loads library_name if it exists. A check
for an entry point that is called JVM_OnLoad is then made. If the entry point exists,
it is called to allow the library to initialize. This processing occurs after the
initialization of all JVM subcomponents. The agent can then call the functions that
have been initialized, by using the JVMRI table.

JVMRI functions
At startup, the JVM initializes JVMRI. You access the JVMRI functions with the JNI
GetEnv() routine to obtain an interface pointer.

For example:
JNIEXPORT jint JNICALL
JVM_OnLoad(JavaVM *vm, char *options, void *reserved)
{
DgRasInterface *ri;

......
(*vm)->GetEnv(vm, (void **)&ri, JVMRAS_VERSION_1_5)

rc = jvmras_intf->TraceRegister50(env, listener);
......

}

Chapter 9. Troubleshooting and support 375

API calls provided by JVMRI
The JVMRI functions are defined in a header file jvmri.h, which is supplied in the
sdk/include directory. Note that all calls must be made using a valid JNIEnv
pointer as the first parameter.

The TraceRegister and TraceDeregister functions are deprecated. Use
TraceRegister50 and TraceDeregister50.

CreateThread:
int CreateThread(JNIEnv *env, void JNICALL (*startFunc)(void*),

void *args, int GCSuspend)

Description
Creates a thread. A thread can be created only after the JVM has been
initialized. However, calls to CreateThread can be made also before
initialization; the threads are created by a callback function after initialization.

Parameters

v A valid pointer to a JNIEnv.
v Pointer to start function for the new thread.
v Pointer to argument that is to be passed to start function.
v GCSuspend parameter is ignored.

Returns
JNI Return code JNI_OK if thread creation is successful; otherwise, JNI_ERR.

DumpDeregister:
int DumpDeregister(JNIEnv *env, int (JNICALL *func)(JNIEnv *env2,

void **threadLocal, int reason))

Description
De-registers a dump call back function that was previously registered by a call
to DumpRegister.

Parameters

v A valid pointer to a JNIEnv.
v Function pointer to a previously registered dump function.

Returns
JNI return codes JNI_OK and JNI_EINVAL.

DumpRegister:
int DumpRegister(JNIEnv *env, int (JNICALL *func)(JNIEnv *env2,

void **threadLocal, int reason))

Description
Registers a function that is called back when the JVM is about to generate a
JavaCore file.

Parameters

v A valid pointer to a JNIEnv.
v Function pointer to dump function to register.

Returns
JNI return codes JNI_OK and JNI_ENOMEM.

376 IBM SDK for Java: SDK and Runtime Guide

DynamicVerbosegc:
void JNICALL *DynamicVerbosegc (JNIEnv *env, int vgc_switch,

int vgccon, char* file_path, int number_of_files,
int number_of_cycles);

Description
Not supported. Displays the message "not supported".

Parameters
v A valid pointer to a JNIEnv.
v Integer that indicates the direction of switch (JNI_TRUE = on, JNI_FALSE =

off)
v Integer that indicates the level of verbosegc (0 = -verbose:gc, 1 =

-verbose:Xgccon)
v Pointer to string that indicates file name for file redirection
v Integer that indicates the number of files for redirection
v Integer that indicates the number of cycles of verbose:gc per file

Returns
None.

GenerateHeapdump:
int GenerateHeapdump(JNIEnv *env)

Description
Generates a Heapdump file.

Parameters

v A valid pointer to a JNIEnv.

Returns
JNI Return code JNI_OK if running dump is successful; otherwise, JNI_ERR.

GenerateJavacore:
int GenerateJavacore(JNIEnv *env)

Description
Generates a Javacore file.

Parameters

v A valid pointer to a JNIEnv.

Returns
JNI Return code JNI_OK if running dump is successful; otherwise, JNI_ERR.

GetComponentDataArea:
int GetComponentDataArea(JNIEnv *env, char *componentName,

void **dataArea, int *dataSize)

Description
Not supported. Displays the message no data area for <requested
component>.

Parameters

v A valid pointer to a JNIEnv.
v Component name.
v Pointer to the component data area.
v Size of the data area.

Returns
JNI_ERR

Chapter 9. Troubleshooting and support 377

GetRasInfo:
int GetRasInfo(JNIEnv * env,

RasInfo * info_ptr)

Description
This function fills in the supplied RasInfo structure, based on the request type
that is initialized in the RasInfo structure. (See details of the RasInfo structure
in “RasInfo structure” on page 382.

Parameters

v A valid pointer to a JNIEnv. This parameter is reserved for future use.
v Pointer to a RasInfo structure. This should have the type field initialized to a

supported request.

Returns
JNI Return codes JNI_OK, JNI_EINVAL and JNI_ENOMEM.

InitiateSystemDump:
int JNICALL InitiateSystemDump(JNIEnv *env)

Description
Initiates a system dump. The dumps and the output that are produced depend
on the settings for JAVA_DUMP_OPTS and JAVA_DUMP_TOOL and on the
support that is offered by each platform.

Parameters

v A valid pointer to a JNIEnv.

Returns
JNI Return code JNI_OK if dump initiation is successful; otherwise, JNI_ERR. If a
specific platform does not support a system-initiated dump, JNI_EINVAL is
returned.

InjectOutOfMemory:
int InjectOutOfMemory(JNIEnv *env)

Description
Causes native memory allocations made after this call to fail. This function is
intended to simulate exhaustion of memory allocated by the operating system.

Parameters

v A valid pointer to a JNIEnv.

Returns
JNI_OK if the native allocation function is successfully swapped for the JVMRI
function that always returns NULL, JNI_ERR if the swap is unsuccessful.

InjectSigSegv:
int InjectSigsegv(JNIEnv *env)

Description
Raises a SIGSEGV exception, or the equivalent for your platform.

Parameters

v A valid pointer to a JNIEnv.

Returns
JNI_ERR

378 IBM SDK for Java: SDK and Runtime Guide

NotifySignal:
void NotifySignal(JNIEnv *env, int signal)

Description
Raises a signal in the JVM.

Parameters

v A valid pointer to a JNIEnv. This parameter is reserved for future use.
v Signal number to raise.

Returns
Nothing.

ReleaseRasInfo:
int ReleaseRasInfo(JNIEnv * env,

RasInfo * info_ptr)

Description
This function frees any areas to which the RasInfo structure might point after a
successful GetRasInfo call. The request interface never returns pointers to 'live'
JVM control blocks or variables.

Parameters

v A valid pointer to a JNIEnv. This parameter is reserved for future use.
v Pointer to a RasInfo structure. This should have previously been set up by a

call to GetRasInfo. An error occurs if the type field has not been initialized
to a supported request. (See details of the RasInfo structure in “RasInfo
structure” on page 382.)

Returns
JNI Return codes JNI_OK or JNI_EINVAL.

RunDumpRoutine:
int RunDumpRoutine(JNIEnv *env, int componentID, int level, void (*printrtn)
(void *env, const char *tagName, const char *fmt, ...))

Description
Not supported. Displays the message ?not supported?.

Parameters

v A valid pointer to a JNIEnv.
v Id of component to dump.
v Detail level of dump.
v Print routine to which dump output is directed.

Returns
JNI_ERR

SetOutOfMemoryHook:
int SetOutOfMemoryHook(JNIEnv *env, void (*rasOutOfMemoryHook)

(void))

Description
Registers a callback function for an out-of-memory condition.

Parameters

v A valid pointer to a JNIEnv.
v Pointer to callback function.

Chapter 9. Troubleshooting and support 379

Returns
JNI Return code JNI_OK if table is successfully updated; otherwise, JNI_ERR.

TraceDeregister:
int TraceDeregister(JNIEnv *env, void (JNICALL *func)(JNIEnv *env2,

void **threadLocal, int traceId, const char *
format, va_list varargs))

Description
Deregisters an external trace listener.

Important: This function is now deprecated. Use “TraceDeregister50.”

Parameters

v A valid pointer to a JNIEnv.
v Function pointer to a previously-registered trace function.

Returns
JNI Return code JNI_OK or JNI_EINVAL.

TraceDeregister50:
int TraceDeregister50 (

JNIEnv *env,
void (JNICALL *func) (

JNIEnv *env2,
void **threadLocal,
const char *moduleName,
int traceId,
const char *format,
va_list varargs
)

)

Description
Deregisters an external trace listener.

Parameters

v A valid pointer to a JNIEnv.
v Function pointer to a previously-registered trace function.

Returns
JNI Return code JNI_OK or JNI_EINVAL.

TraceRegister:
int TraceRegister(JNIEnv *env, void (JNICALL *func)(JNIEnv *env2,

void **threadLocal, int traceId, const char * format,
va_list var))

Description
Registers a trace listener.

Important: This function is now deprecated. Use “TraceRegister50” on page
381.

Parameters

v A valid pointer to a JNIEnv.
v Function pointer to trace function to register.

Returns
JNI Return code JNI_OK or JNI_ENOMEM.

380 IBM SDK for Java: SDK and Runtime Guide

TraceRegister50:
int TraceRegister50 (

JNIEnv *env,
void (JNICALL *func) (

JNIEnv *env2,
void **threadLocal,
const char *moduleName,
int traceId,
const char *format,
va_list varargs
)

)

Description
Registers a trace listener.

Parameters

v A valid pointer to a JNIEnv.
v Function pointer to trace function to register.

Returns
JNI Return code JNI_OK or JNI_ENOMEM.

TraceResume:
void TraceResume(JNIEnv *env)

Description
Resumes tracing.

Parameters

v A valid pointer to a JNIEnv. If MULTI_JVM; otherwise, it can be NULL.

Returns
Nothing.

TraceResumeThis:
void TraceResumeThis(JNIEnv *env);

Description
Resume tracing from the current thread. This action decrements the
resumecount for this thread. When it reaches zero (or less) the thread starts
tracing (see “Tracing Java applications and the JVM” on page 288).

Parameters

v A valid pointer to a JNIEnv.

Returns
None.

TraceSet:
int TraceSet(JNIEnv *env, const char *cmd)

Description
Sets the trace configuration options. This call parses only the first valid trace
command passed to it, but can be called multiple times. Hence, to achieve the
equivalent of setting -Xtrace:maximal=j9mm,iprint=j9shr, you call TraceSet
twice, once with the cmd parameter maximal=j9mm and once with iprint=j9shr.

Parameters

v A valid pointer to a JNIEnv.
v Trace configuration command.

Chapter 9. Troubleshooting and support 381

Returns
JNI Return code JNI_OK, JNI_ERR, JNI_ENOMEM, JNI_EXIST and JNI_EINVAL.

TraceSnap:
void TraceSnap(JNIEnv *env, char *buffer)

Description
Takes a snapshot of the current trace buffers.

Parameters

v A valid pointer to a JNIEnv; if set to NULL, current Execenv is used.
v The second parameter is no longer used, but still exists to prevent changing

the function interface. It can safely be set to NULL.

Returns
Nothing

TraceSuspend:
void TraceSuspend(JNIEnv *env)

Description
Suspends tracing.

Parameters

v A valid pointer to a JNIEnv; if MULTI_JVM; otherwise, it can be NULL.

Returns
Nothing.

TraceSuspendThis:
void TraceSuspendThis(JNIEnv *env);

Description
Suspend tracing from the current thread. This action decrements the
suspendcount for this thread. When it reaches zero (or less) the thread stops
tracing (see “Tracing Java applications and the JVM” on page 288).

Parameters

v A valid pointer to a JNIEnv.

Returns
None.

RasInfo structure
The RasInfo structure that is used by GetRasInfo() takes the following form.
(Fields that are initialized by GetRasInfo are underscored):
typedef struct RasInfo {

int type;
union {

struct {
int number;
char **names;

} query;
struct {

int number;
char **names;

} trace_components;
struct {

char *name
int first;
int last;

382 IBM SDK for Java: SDK and Runtime Guide

unsigned char *bitMap;
} trace_component;

} info;
} RasInfo;

RasInfo request types
The following request types are supported:

RASINFO_TYPES
Returns the number of request types that are supported and an array of
pointers to their names in the enumerated sequence. The names are in code
page ISO8859-1.

RASINFO_TRACE_COMPONENTS
Returns the number of components that can be enabled for trace and an array
of pointers to their names in the enumerated sequence. The names are in code
page ISO8859-1.

RASINFO_TRACE_COMPONENT
Returns the first and last tracepoint ids for the component name (code page
ISO8859-1) and a bitmap of those tracepoints, where a 1 signifies that the
tracepoint is in the build. The bitmap is big endian (tracepoint ID first is the
most significant bit in the first byte) and is of length ((last-first)+7)/8 bytes.

Intercepting trace data
To receive trace information from the JVM, you can register a trace listener using
JVMRI. In addition, you must specify the option -Xtrace:external=<option> to
route trace information to an external trace listener.

The -Xtrace:external=<option>: The format of this property is:
-Xtrace:external=[[!]tracepoint_specification[,...]]

This system property controls what is traced. Multiple statements are allowed and
their effect is cumulative.

The tracepoint_specification is as follows:

Component[(Class[,...])]
Where component is the JVM subcomponent or all. If no component is
specified, all is assumed.

class is the tracepoint type or all. If class is not specified, all is assumed.

TPID(tracepoint_id[,...])
Where tracepoint_id is the hexadecimal global tracepoint identifier.

If no qualifier parameters are entered, all tracepoints are enabled; that is, the
equivalent of specifying all.

The ! (exclamation mark) is a logical not. It allows complex tracepoint selection.

Calling external trace: If an external trace routine has been registered and a
tracepoint has been enabled for external trace, it is called with the following
parameters:

env
Pointer to the JNIEnv for the current thread.

traceid
Trace identifier

Chapter 9. Troubleshooting and support 383

format
A zero-terminated string that describes the format of the variable argument list
that follows. The possible values for each character position are:

0x01 One character
0x02 Short
0x04 Int
0x08 Double or long long
0xfe Pointer to java/lang/String object
0xff ASCII string pointer (can be NULL)
0x00 End of format string

If the format pointer is NULL, no trace data follows.

varargs
A va_list of zero or more arguments as defined in format argument.

Formatting
You can use J9TraceFormat.dat to format JVM-generated tracepoints that are
captured by the agent. J9TraceFormat.dat is shipped with the SDK.

J9TraceFormat.dat consists of a flat ASCII or EBCDIC file of the following format:
5.0
j9vm 0 1 1 N Trc_VM_VMInitStages_Event1 " Trace engine initialized for module j9vm"
j9vm 2 1 1 N Trc_VM_CreateRAMClassFromROMClass_Entry " >Create RAM class from ROM class %p in class loader %p"
j9vm 4 1 1 N Trc_VM_CreateRAMClassFromROMClass_Exit " j9vm 4 1 1 N Trc_VM_CreateRAMClassFromROMClass_Exit "

The first line contains the version number of the format file. A new version
number reflects changes to the layout of this file.

The format of each tracepoint entry is as follows:
<component> <t> <o> <l> <e> <symbol> <template>

where:
v <component> is the internal JVM component name.
v <t> is the tracepoint type (0 through 11).
v <o> is the overhead (0 through 10).
v <l> is the level of the tracepoint (0 through 9, or - if the tracepoint is obsolete).
v <e> is the explicit setting flag (Y/N).
v <symbol> is the name of the tracepoint.
v <template> is a template that is used to format the entry. The template consists of

the text that appears in double quotation marks (").

Tracepoint types are as follows:

Type 0
Event

Type 1
Exception

Type 2
Entry

Type 4
Exit

384 IBM SDK for Java: SDK and Runtime Guide

Type 5
Exit-with-Exception

Type 6
Mem

Any other type is reserved for development use; you should not find any other
type on a release version of IBM Java.

Note: This condition is subject to change without notice.

The version number is different for each version.

Using the HPROF Profiler
HPROF is a demonstration profiler shipped with the IBM SDK that uses the JVMTI
to collect and record information about Java execution. You can use HPROF to work
out which parts of a program are using the most memory or processor time.

Note: For analyzing memory usage, you should use IBM Monitoring and
Diagnostic Tools for Java - Memory Analyzer, which is a newer tool. For more
information about this tool, see “Using the IBM Monitoring and Diagnostic Tools
for Java” on page 219.

To improve the efficiency of your applications, you must know which parts of the
code are using large amounts of memory and processor resources. HPROF is an
example JVMTI agent and is started using the following syntax:
java -Xrunhprof[:<option>=<value>,...] <classname>

When you run Java with HPROF, a file is created when the program ends. This file
is placed in the current working directory and is called java.hprof.txt
(java.hprof if binary format is used) unless a different file name has been given.
This file contains a number of different sections, but the exact format and content
depend on the selected options.

If you need more information about HPROF than is contained in this section, see
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html.

The command java -Xrunhprof:help shows the options available:

heap=dump|sites|all
This option helps in the analysis of memory usage. It tells HPROF to generate
stack traces, from which you can see where memory was allocated. If you use
the heap=dump option, you get a dump of all live objects in the heap. With
heap=sites, you get a sorted list of sites with the most heavily allocated objects
at the start. The default value all gives both types of output.

cpu=samples|times|old
The cpu option provides information that is useful in determining where the
processor spends most of its time. If cpu is set to samples, the JVM pauses
execution and identifies which method call is active. If the sampling rate is
high enough, you get a good picture of where your program spends most of
its time. If cpu is set to time, you receive precise measurements of how many
times each method was called and how long each execution took. Although
this option is more accurate, it slows down the program. If cpu is set to old,
the profiling data is produced in the old HPROF format.

Chapter 9. Troubleshooting and support 385

http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

interval=y|n
The interval option applies only to cpu=samples and controls the time that the
sampling thread sleeps between samples of the thread stacks.

monitor=y|n
The monitor option can help you understand how synchronization affects the
performance of your application. Monitors implement thread synchronization.
Getting information about monitors can tell you how much time different
threads are spending when trying to access resources that are already locked.
HPROF also gives you a snapshot of the monitors in use. This information is
useful for detecting deadlocks.

format=a|b
The default for the output file is ASCII format. Set format to 'b' if you want to
specify a binary format, which is required for some utilities like the Heap
Analysis Tool.

file=<filename>
Use the file option to change the name of the output file. The default name for
an ASCII file is java.hprof.txt. The default name for a binary file is
java.hprof.

force=y|n
Typically, the default (force=y) overwrites any existing information in the
output file. So, if you have multiple JVMs running with HPROF enabled, use
force=n, which appends additional characters to the output file name as
needed.

net=<host>:<port>
To send the output over the network rather than to a local file, use the net
option.

depth=<size>
The depth option indicates the number of method frames to display in a stack
trace. The default is 4.

thread=y|n
If you set the thread option to y, the thread id is printed next to each trace.
This option is useful if you cannot see which thread is associated with which
trace. This type of problem might occur in a multi-threaded application.

doe=y|n
The default behavior is to collect profile information when an application exits.
To collect the profiling data during execution, set doe (dump on exit) to n.

msa=y|n
This feature is unsupported on IBM SDK platforms.

cutoff=<value>
Many sample entries are produced for a small percentage of the total execution
time. By default, HPROF includes all execution paths that represent at least
0.0001 percent of the time spent by the processor. You can increase or decrease
that cutoff point using this option. For example, to eliminate all entries that
represent less than one-fourth of one percent of the total execution time, you
specify cutoff=0.0025.

verbose=y|n
This option generates a message when dumps are taken. The default is y.

lineno=y|n
Each frame typically includes the line number that was processed, but you can

386 IBM SDK for Java: SDK and Runtime Guide

use this option to suppress the line numbers from the output listing. If
enabled, each frame contains the text Unknown line instead of the line number.
TRACE 1056:
java/util/Locale.toUpperCase(Locale.java:Unknown line)
java/util/Locale.<init>(Locale.java:Unknown line)
java/util/Locale.<clinit>(Locale.java:Unknown line)
sun/io/CharacterEncoding.aliasName(CharacterEncoding.java:Unknown line)

Explanation of the HPROF output file
The first section of the file contains general header information such as an
explanation of the options, copyright, and disclaimers. A summary of each thread
follows.

You can see the output after using HPROF with a simple program, shown as
follows. This test program creates and runs two threads for a short time. From the
output, you can see that the two threads called apples and then oranges were
created after the system-generated main thread. Both threads end before the main
thread. For each thread its address, identifier, name, and thread group name are
displayed. You can see the order in which threads start and finish.
THREAD START (obj=11199050, id = 1, name="Signal dispatcher", group="system")
THREAD START (obj=111a2120, id = 2, name="Reference Handler", group="system")
THREAD START (obj=111ad910, id = 3, name="Finalizer", group="system")
THREAD START (obj=8b87a0, id = 4, name="main", group="main")
THREAD END (id = 4)
THREAD START (obj=11262d18, id = 5, name="Thread-0", group="main")
THREAD START (obj=112e9250, id = 6, name="apples", group="main")
THREAD START (obj=112e9998, id = 7, name="oranges", group="main")
THREAD END (id = 6)
THREAD END (id = 7)
THREAD END (id = 5)

The trace output section contains regular stack trace information. The depth of
each trace can be set and each trace has a unique ID:
TRACE 5:
java/util/Locale.toLowerCase(Locale.java:1188)
java/util/Locale.convertOldISOCodes(Locale.java:1226)
java/util/Locale.<init>(Locale.java:273)
java/util/Locale.<clinit>(Locale.java:200)

A trace contains a number of frames, and each frame contains the class name,
method name, file name, and line number. In the previous example, you can see
that line number 1188 of Locale.java (which is in the toLowerCase method) has
been called from the convertOldISOCodes() function in the same class. These traces
are useful in following the execution path of your program. If you set the monitor
option, a monitor dump is produced that looks like this example:
MONITOR DUMP BEGIN

THREAD 8, trace 1, status: R
THREAD 4, trace 5, status: CW
THREAD 2, trace 6, status: CW
THREAD 1, trace 1, status: R
MONITOR java/lang/ref/Reference$Lock(811bd50) unowned

waiting to be notified: thread 2
MONITOR java/lang/ref/ReferenceQueue$Lock(8134710) unowned

waiting to be notified: thread 4
RAW MONITOR "_hprof_dump_lock"(0x806d7d0)

owner: thread 8, entry count: 1
RAW MONITOR "Monitor Cache lock"(0x8058c50)

owner: thread 8, entry count: 1
RAW MONITOR "Monitor Registry lock"(0x8058d10)

owner: thread 8, entry count: 1
RAW MONITOR "Thread queue lock"(0x8058bc8)

Chapter 9. Troubleshooting and support 387

owner: thread 8, entry count: 1
MONITOR DUMP END
MONITOR TIME BEGIN (total = 0 ms) Thu Aug 29 16:41:59 2002
MONITOR TIME END

The first part of the monitor dump contains a list of threads, including the trace
entry that identifies the code the thread executed. There is also a thread status for
each thread where:
v R — Runnable (The thread is able to run when given the chance)
v S — Suspended (The thread has been suspended by another thread)
v CW — Condition Wait (The thread is waiting)
v MW — Monitor Wait (The monitor is waiting)

Next is a list of monitors along with their owners and an indication of whether
there are any threads waiting on them.

The Heapdump is the next section. This information contains a list of the different
areas of memory, and shows how they are allocated:
CLS 1123edb0 (name=java/lang/StringBuffer, trace=1318)
super 111504e8
constant[25] 8abd48
constant[32] 1123edb0
constant[33] 111504e8
constant[34] 8aad38
constant[115] 1118cdc8
CLS 111ecff8 (name=java/util/Locale, trace=1130)
super 111504e8
constant[2] 1117a5b0
constant[17] 1124d600
constant[24] 111fc338
constant[26] 8abd48
constant[30] 111fc2d0
constant[34] 111fc3a0
constant[59] 111ecff8
constant[74] 111504e8
constant[102] 1124d668
...
CLS 111504e8 (name=java/lang/Object, trace=1)
constant[18] 111504e8

CLS tells you that memory is being allocated for a class. The hexadecimal number
following it is the address where that memory is allocated.

Next is the class name followed by a trace reference. Use this information to
cross-reference the trace output and see when the class is called. If you refer to that
particular trace, you can get the line number of the instruction that led to the
creation of this object. The addresses of the constants in this class are also
displayed and, in the previous example, the address of the class definition for the
superclass. Both classes are a child of the same superclass (with address 11504e8).
Looking further through the output, you can see this class definition and name. It
is the Object class (a class that every class inherits from). The JVM loads the entire
superclass hierarchy before it can use a subclass. Thus, class definitions for all
superclasses are always present. There are also entries for Objects (OBJ) and Arrays
(ARR):
OBJ 111a9e78 (sz=60, trace=1, class=java/lang/Thread@8b0c38)
name 111afbf8
group 111af978
contextClassLoader 1128fa50
inheritedAccessControlContext 111aa2f0

388 IBM SDK for Java: SDK and Runtime Guide

threadLocals 111bea08
inheritableThreadLocals 111bea08
ARR 8bb978 (sz=4, trace=2, nelems=0, elem type=java/io/ObjectStreamField@8bac80)

If you set the heap option to sites or all , you get a list of each area of storage
allocated by your code. The parameter all combines dump and sites. This list is
ordered starting with the sites that allocate the most memory:
SITES BEGIN (ordered by live bytes) Tue Feb 06 10:54:46 2007

percent live alloc’ed stack class
rank self accum bytes objs bytes objs trace name

1 20.36% 20.36% 190060 16 190060 16 300000 byte[]
2 14.92% 35.28% 139260 1059 139260 1059 300000 char[]
3 5.27% 40.56% 49192 15 49192 15 300055 byte[]
4 5.26% 45.82% 49112 14 49112 14 300066 byte[]
5 4.32% 50.14% 40308 1226 40308 1226 300000 java.lang.String
6 1.62% 51.75% 15092 438 15092 438 300000 java.util.HashMap$Entry
7 0.79% 52.55% 7392 14 7392 14 300065 byte[]
8 0.47% 53.01% 4360 16 4360 16 300016 char[]
9 0.47% 53.48% 4352 34 4352 34 300032 char[]
10 0.43% 53.90% 3968 32 3968 32 300028 char[]
11 0.40% 54.30% 3716 8 3716 8 300000 java.util.HashMap$Entry[]
12 0.40% 54.70% 3708 11 3708 11 300000 int[]
13 0.31% 55.01% 2860 16 2860 16 300000 java.lang.Object[]
14 0.28% 55.29% 2644 65 2644 65 300000 java.util.Hashtable$Entry
15 0.28% 55.57% 2640 15 2640 15 300069 char[]
16 0.27% 55.84% 2476 17 2476 17 300000 java.util.Hashtable$Entry[]
17 0.25% 56.08% 2312 16 2312 16 300013 char[]
18 0.25% 56.33% 2312 16 2312 16 300015 char[]
19 0.24% 56.57% 2224 10 2224 10 300000 java.lang.Class

In this example, Trace 300055 allocated 5.27% of the total allocated memory. This
percentage works out to be 49192 bytes.

The cpu option gives profiling information about the processor. If cpu is set to
samples, the output contains the results of periodic samples taken during execution
of the code. At each sample, the code path being processed is recorded, and a
report is produced similar to:
CPU SAMPLES BEGIN (total = 714) Fri Aug 30 15:37:16 2002
rank self accum count trace method
1 76.28% 76.28% 501 77 MyThread2.bigMethod
2 6.92% 83.20% 47 75 MyThread2.smallMethod
...
CPU SAMPLES END

You can see that the bigMethod() was responsible for 76.28% of the processor
execution time and was being run 501 times out of the 714 samples. If you use the
trace IDs, you can see the exact route that led to this method being called.

Using the JVMTI
JVMTI is a two-way interface that allows communication between the JVM and a
native agent. It replaces the JVMDI and JVMPI interfaces.

JVMTI allows third parties to develop debugging, profiling, and monitoring tools
for the JVM. The interface contains mechanisms for the agent to notify the JVM
about the kinds of information it requires. The interface also provides a means of
receiving the relevant notifications. Several agents can be attached to a JVM at any
one time. A number of tools are based on this interface, including IBM Monitoring
and Diagnostic Tools for Java - Health Center. For more information about IBM
Monitoring and Diagnostic Tools for Java, see “Using the IBM Monitoring and
Diagnostic Tools for Java” on page 219.

Chapter 9. Troubleshooting and support 389

JVMTI agents can be loaded at startup using short or long forms of the
command-line option:
-agentlib:<agent-lib-name>=<options>

or
-agentpath:<path-to-agent>=<options>

For example:
-agentlib:hprof=<options>

assumes that a folder containing hprof.dll is on the library path, or
-agentpath:C:\sdk\jre\bin\hprof.dll=<options>

For more information about JVMTI, see http://download.oracle.com/javase/7/
docs/technotes/guides/jvmti/.

For advice on porting JVMPI-based profilers to JVMTI, see http://
www.oracle.com/technetwork/articles/javase/jvmpitransition-138768.html.

For a guide about writing a JVMTI agent, see http://www.oracle.com/
technetwork/articles/javase/jvmti-136367.html.

IBM JVMTI extensions
The IBM SDK provides extensions to the JVMTI. The sample shows you how to
write a simple JVMTI agent that uses these extensions.

The IBM SDK extensions to JVMTI allow a JVMTI agent to do the following tasks:
v Modify a dump.
v Modify a trace.
v Modify the logging configuration of the JVM.
v Start a JVM dump.
v Query the JRE native memory use.
v Find and remove shared class caches.
v Subscribe to and unsubscribe from verbose garbage collection logging.

The definitions that you need when you write a JVMTI agent are provided in the
header files jvmti.h and ibmjvmti.h. These files are in sdk/include.

The sample JVMTI agent consists of two functions:
1. Agent_OnLoad()
2. DumpStartCallback()

Agent_OnLoad()

This function is called by the JVM when the agent is loaded at JVM startup, which
allows the JVMTI agent to modify JVM behavior before initialization is complete.
The sample agent obtains access to the JVMTI interface by using the JNI Invocation
API function GetEnv(). The agent calls the APIs GetExtensionEvents() and
GetExtensionFunctions() to find the JVMTI extensions that are supported by the
JVM. These APIs provide access to the list of extensions available in the
jvmtiExtensionEventInfo and jvmtiExtensionFunctionInfo structures. The sample
uses an extension event and an extension function in the following way:

390 IBM SDK for Java: SDK and Runtime Guide

http://download.oracle.com/javase/7/docs/technotes/guides/jvmti/
http://download.oracle.com/javase/7/docs/technotes/guides/jvmti/
http://www.oracle.com/technetwork/articles/javase/jvmpitransition-138768.html
http://www.oracle.com/technetwork/articles/javase/jvmpitransition-138768.html
http://www.oracle.com/technetwork/articles/javase/jvmti-136367.html
http://www.oracle.com/technetwork/articles/javase/jvmti-136367.html

The sample JVMTI agent searches for the extension event VmDumpStart in the list
of jvmtiExtensionEventInfo structures, by using the identifier
COM_IBM_VM_DUMP_START provided in ibmjvmti.h. When the event is found, the
JVMTI agent calls the JVMTI interface SetExtensionEventCallback() to enable the
event, providing a function DumpStartCallback() that is called when the event is
triggered.

Next, the sample JVMTI agent searches for the extension function SetVMDump in
the list of jvmtiExtensionFunctionInfo structures, by using the identifier
COM_IBM_SET_VM_DUMP provided in ibmjvmti.h. The JVMTI agent calls the function
by using the jvmtiExtensionFunction pointer to set a JVM dump option
java:events=thrstart. This option requests the JVM to trigger a Javadump every
time a VM thread is started.

DumpStartCallback()

This callback function issues a message when the associated extension event is
called. In the sample code, DumpStartCallback() is used when the VmDumpStart
event is triggered.

Compiling and running the sample JVMTI agent

Use this command to build the sample JVMTI agent on Linux:
gcc -I<SDK_path>/include -o libtiSample.so -shared tiSample.c

where <SDK_path> is the path to your SDK installation.

To run the sample JVMTI agent, use the command:
java -agentlib:tiSample -version

When the sample JVMTI agent loads, messages are generated. When the JVMTI
agent initiates a Javadump, the message JVMDUMP010 is issued.

Sample JVMTI agent:

A sample JVMTI agent, written in C/C++, using the IBM JVMTI extensions.
/*
* tiSample.c
*
* Sample JVMTI agent to demonstrate the IBM JVMTI dump extensions
*/

#include "jvmti.h"
#include "ibmjvmti.h"

/* Forward declarations for JVMTI callback functions */
void JNICALL VMInitCallback(jvmtiEnv *jvmti_env, JNIEnv* jni_env, jthread thread);
void JNICALL DumpStartCallback(jvmtiEnv *jvmti_env, char* label, char* event, char* detail, ...);

/*
* Agent_Onload()
*
* JVMTI agent initialisation function, invoked as agent is loaded by the JVM
*/
JNIEXPORT jint JNICALL Agent_OnLoad(JavaVM *jvm, char *options, void *reserved) {

jvmtiEnv *jvmti = NULL;
jvmtiError rc;

Chapter 9. Troubleshooting and support 391

jint extensionEventCount = 0;
jvmtiExtensionEventInfo *extensionEvents = NULL;
jint extensionFunctionCount = 0;
jvmtiExtensionFunctionInfo *extensionFunctions = NULL;
int i = 0, j = 0;

printf("tiSample: Loading JVMTI sample agent\n");

/* Get access to JVMTI */
(*jvm)->GetEnv(jvm, (void **)&jvmti, JVMTI_VERSION_1_0);

/* Look up all the JVMTI extension events and functions */
(*jvmti)->GetExtensionEvents(jvmti, &extensionEventCount, &extensionEvents);
(*jvmti)->GetExtensionFunctions(jvmti, &extensionFunctionCount, &extensionFunctions);

printf("tiSample: Found %i JVMTI extension events, %i extension functions\n", extensionEventCount,
extensionFunctionCount);

/* Find the JVMTI extension event we want */
while (i++ < extensionEvenCount) {

if (strcmp(extensionEvents->id, COM_IBM_VM_DUMP_START) == 0) {
/* Found the dump start extension event, now set up a callback for it */
rc = (*jvmti)->SetExtensionEventCallback(jvmti, extensionEvents->extension_event_index,

&DumpStartCallback);
printf("tiSample: Setting JVMTI event callback %s, rc=%i\n", COM_IBM_VM_DUMP_START, rc);
break;

}
extensionEvents++; /* move on to the next extension event */

}

/* Find the JVMTI extension function we want */
while (j++ < extensionFunctionCount) {

jvmtiExtensionFunction function = extensionFunctions->func;

if (strcmp(extensionFunctions->id, COM_IBM_SET_VM_DUMP) == 0) {
/* Found the set dump extension function, now set a dump option to generate javadumps on

thread starts */
rc = function(jvmti, "java:events=thrstart");
printf("tiSample: Calling JVMTI extension %s, rc=%i\n", COM_IBM_SET_VM_DUMP, rc);
break;

}
extensionFunctions++; /* move on to the next extension function */

}

return JNI_OK;

}

/*
* DumpStartCallback()
* JVMTI callback for dump start event (IBM JVMTI extension) */

void JNICALL
DumpStartCallback(jvmtiEnv *jvmti_env, char* label, char* event, char* detail, ...) {

printf("tiSample: Received JVMTI event callback, for event %s\n", event);
}

IBM JVMTI extensions - API reference
Reference information for the IBM SDK extensions to the JVMTI.

Use the information in this section to control JVM functions using the IBM JVMTI
interface.

392 IBM SDK for Java: SDK and Runtime Guide

Querying JVM dump options:

You can query the JVM dump options that are set for a JVM using the
QueryVmDump() API.

The QueryVmDump() API has the JVMTI Extension Function identifier
com.ibm.QueryVmDump. The identifier is declared as macro
COM_IBM_QUERY_VM_DUMP in ibmjvmti.h.

To query the current JVM dump options, use:
jvmtiError QueryVmDump(jvmtiEnv* jvmti_env, jint buffer_size, void* options_buffer,
jint* data_size_ptr)

This extension returns a set of dump option specifications as ASCII strings. The
syntax of the option string is the same as the -Xdump command-line option, with
the initial -Xdump: omitted. See “Using the -Xdump option” on page 221. The
option strings are separated by newline characters. If the memory buffer is too
small to contain the current JVM dump option strings, you can expect the
following results:
v The error message JVMTI_ERROR_ILLEGAL_ARGUMENT is returned.
v The variable for data_size_ptr is set to the required buffer size.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

buffer_size: The size of the supplied memory buffer in bytes.

options_buffer: A pointer to the supplied memory buffer.

data_size_ptr: A pointer to a variable, used to return the total size of the
option strings.

Returns:
JVMTI_ERROR_NONE: Success

JVMTI_ERROR_NULL_POINTER: The options_buffer or data_size_ptr
parameters are null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: The dump configuration is locked because a
dump is in progress.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The supplied memory buffer in
options_buffer is too small.

Setting JVM dump options:

You can set dump options using the same syntax as the -Xdump command-line
option.

The SetVmDump() API has the JVMTI Extension Function identifier
com.ibm.SetVmDump. The identifier is declared as macro
COM_IBM_SET_VM_DUMP in ibmjvmti.h.

Chapter 9. Troubleshooting and support 393

To set a JVM dump option use:
jvmtiError SetVmDump(jvmtiEnv* jvmti_env, char* option)

The dump option is passed in as an ASCII character string. Use the same syntax as
the -Xdump command-line option, with the initial -Xdump: omitted. See “Using the
-Xdump option” on page 221.

When dumps are in progress, the dump configuration is locked, and calls to
SetVmDump() fail with a return value of JVMTI_ERROR_NOT_AVAILABLE.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

option: The JVM dump option string.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: The parameter option is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: The dump configuration is locked because a
dump is in progress.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The parameter option contains an invalid
-Xdump string.

Note: On z/OS, you might need to convert the option string from EBCDIC to
ASCII before using this JVMTI extension function.

Triggering a JVM dump:

You can specify the type of dump you want using the TriggerVmDump() API.

The TriggerVmDump() API has the JVMTI Extension Function identifier
com.ibm.TriggerVmDump. The identifier is declared as macro
COM_IBM_TRIGGER_VM_DUMP in ibmjvmti.h.

To trigger a JVM dump, use:
jvmtiError TriggerVmDump(jvmtiEnv* jvmti_env, char* option)

Choose the type of dump required by specifying an ASCII string that contains one
of the supported dump agent types. See “Dump agents” on page 224. JVMTI
events are provided at the start and end of the dump.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

option: A pointer to the dump type string, which can be one of the
following types:
v stack

v java

v system

394 IBM SDK for Java: SDK and Runtime Guide

v console

v tool

v heap

v snap

v ceedump (z/OS only)

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: The option parameter is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: The dump configuration is locked because a
dump is in progress.

Note: On z/OS, you might need to convert the option string from EBCDIC to
ASCII before using this JVMTI extension function.

Resetting JVM dump options:

Dump options can be reset using the ResetVmDump() API.

The ResetVmDump() API has the JVMTI Extension Function identifier
com.ibm.ResetVmDump. The identifier is declared as macro
COM_IBM_RESET_VM_DUMP in ibmjvmti.h.

To reset the JVM dump options to the values at JVM initialization, use:
jvmtiError ResetVmDump(jvmtiEnv* jvmti_env)

Parameters:
jvmti_env: The JVMTI environment pointer.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: The dump configuration is locked because a
dump is in progress.

Event function for dump start:

When a dump starts, a JVMTI event function is called.

The following JVMTI event function is called when a JVM dump starts.
void JNICALL VMDumpStart(jvmtiEnv *jvmti_env, JNIEnv* jni_env, char* label, char*
event, char* detail)

Chapter 9. Troubleshooting and support 395

The event function provides the dump file name and the name of the JVM event
that triggered the dump. For more information about dump events, see “Dump
events” on page 228.

Parameters:
jvmti_env: JVMTI environment pointer.

jni_env: JNI environment pointer for the thread on which the event
occurred.

label: The dump file name, including directory path.

event: The extension event name, such as com.ibm.VmDumpStart.

detail: The dump event name.

Returns:
None

Event function for dump end:

When a dump ends, a JVMTI event function is called.

The following JVMTI event function is called when a JVM dump ends:
void JNICALL VMDumpEnd(jvmtiEnv *jvmti_env, JNIEnv* jni_env, char* label,
char* event, char* detail)

This event function provides the dump file name and the name of the JVM event
that triggered the dump. For more information about dump events, see “Dump
events” on page 228.

Parameters:
jvmti_env: JVMTI environment pointer.

jni_env: JNI environment pointer for the thread on which the event
occurred.

label: The dump file name, including directory path.

event: The extension event name, such as com.ibm.VmDumpStart.

detail: The dump event name.

Returns:
None

Setting JVM trace options:

You can set trace options for the JVM using the same syntax as the -Xtrace
command-line option.

The SetVmTrace() API has the JVMTI Extension Function identifier
com.ibm.SetVmTrace. The identifier is declared as macro
COM_IBM_SET_VM_TRACE in ibmjvmti.h.

To set a JVM trace option, use:
jvmtiError SetVmTrace(jvmtiEnv* jvmti_env, char* option)

The trace option is passed in as an ASCII character string. Use the same syntax as
the -Xtrace command-line option, with the initial -Xtrace: omitted. See “Detailed
descriptions of trace options” on page 294.

396 IBM SDK for Java: SDK and Runtime Guide

Parameters:
jvmti_env: JVMTI environment pointer.

option: Enter the JVM trace option string.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: The option parameter is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The option parameter contains an invalid
-Xtrace string.

Note: On z/OS, you might need to convert the option string from EBCDIC to
ASCII before using this JVMTI extension function.

Querying JRE native memory categories:

You can query the total native memory consumption of the JRE for each memory
category using the GetMemoryCategories() API.

The GetMemoryCategories() API has the JVMTI Extension Function identifier
com.ibm.GetMemoryCategories. The identifier is declared as macro
COM_IBM_GET_MEMORY_CATEGORIES in ibmjvmti.h.

Native memory is memory requested from the operating system using library
functions such as malloc() and mmap(). JRE native memory use is grouped under
high-level memory categories, as described in the Javadump section “Native
memory (NATIVEMEMINFO)” on page 246. The data returned by the
GetMemoryCategories() API is consistent with this format.
jvmtiError GetMemoryCategories(jvmtiEnv* env, jint version, jint max_categories,
jvmtiMemoryCategory * categories_buffer, jint * written_count_ptr, jint *
total_categories_ptr);

The extension writes native memory information to a memory buffer specified by
the user. Each memory category is recorded as a jvmtiMemoryCategory structure,
whose format is defined in ibmjvmti.h.

You can use the GetMemoryCategories() API to work out the buffer size you must
allocate to hold all memory categories defined inside the JVM. To calculate the
size, call the API with a null categories_buffer argument and a non-null
total_categories_ptr argument.

Parameters:
env: A pointer to the JVMTI environment.

version: The version of the jvmtiMemoryCategory structure that you are
using. Use COM_IBM_GET_MEMORY_CATEGORIES_VERSION_1 for this
argument, unless you must work with an obsolete version of the
jvmtiMemoryCategory structure.

max_categories: The number of jvmtiMemoryCategory structures that can
fit in categories_buffer.

Chapter 9. Troubleshooting and support 397

categories_buffer: A pointer to the memory buffer for holding the result
of the GetMemoryCategories() call. The number of jvmtiMemoryCategory
slots available in categories_buffer must be accurately specified with
max_categories, otherwise GetMemoryCategories() can overflow the
memory buffer. The value can be null.

written_count_ptr: A pointer to jint to store the number of
jvmtiMemoryCategory structures to be written to categories_buffer. The
value can be null.

total_categories_ptr: A pointer to jint to store the total number of
memory categories declared in the JVM. The value can be null.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_UNSUPPORTED_VERSION: Unrecognized value passed for version.

JVMTI_ERROR_ILLEGAL_ARGUMENT: Illegal argument; categories_buffer,
count_ptr and total_categories_ptr all have null values.

JVMTI_ERROR_INVALID_ENVIRONMENT: The env parameter is invalid.

JVMTI_ERROR_OUT_OF_MEMORY: Memory category data is truncated because
max_categories is not large enough.

Querying JVM log options:

You can query the JVM log options that are set for a JVM using the
QueryVmLogOptions() API.

The QueryVmLogOptions() API has the JVMTI Extension Function identifier
com.ibm.QueryVmLogOptions. The identifier is declared as macro
COM_IBM_QUERY_VM_LOG_OPTIONS in ibmjvmti.h.

To query the current JVM log options, use:
jvmtiError QueryVmLogOptions(jvmtiEnv* jvmti_env, jint buffer_size, void* options,
jint* data_size_ptr)

This extension returns the current log options as an ASCII string. The syntax of the
string is the same as the -Xlog command-line option, with the initial -Xlog:
omitted. For example, the string "error,warn" indicates that the JVM is set to log
error and warning messages only. For more information about using the -Xlog
option, see “JVM command-line options” on page 428. If the memory buffer is too
small to contain the current JVM log option string, you can expect the following
results:
v The error message JVMTI_ERROR_ILLEGAL_ARGUMENT is returned.
v The variable for data_size_ptr is set to the required buffer size.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

buffer_size: The size of the supplied memory buffer in bytes.

options_buffer: A pointer to the supplied memory buffer.

data_size_ptr: A pointer to a variable, used to return the total size of the
option string.

Returns:
JVMTI_ERROR_NONE: Success

398 IBM SDK for Java: SDK and Runtime Guide

JVMTI_ERROR_NULL_POINTER: The options or data_size_ptr parameters are
null.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The supplied memory buffer is too small.

Setting JVM log options:

You can set the log options for a JVM using the same syntax as the -Xlog
command-line option.

The SetVmLogOptions() API has the JVMTI Extension Function identifier
com.ibm.SetVmLogOptions. The identifier is declared as macro
COM_IBM_SET_VM_LOG_OPTIONS in ibmjvmti.h.

To set the JVM log options use:
jvmtiError SetVmLogOptions(jvmtiEnv* jvmti_env, char* options_buffer)

The log option is passed in as an ASCII character string. Use the same syntax as
the -Xlog command-line option, with the initial -Xlog: omitted. For example, to set
the JVM to log error and warning messages, pass in a string containing
"error,warn". For more information about using the -Xlog option, see “JVM
command-line options” on page 428.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

options_buffer: A pointer to memory containing the log option.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: The parameter option is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is invalid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The parameter option contains an invalid
-Xlog string.

Finding shared class caches:

You can search for caches using the IterateSharedCaches() API.

IterateSharedCaches()

The IterateSharedCaches() API has the JVMTI Extension Function identifier
com.ibm.IterateSharedCaches. The identifier is declared as macro
COM_IBM_ITERATE_SHARED_CACHES in ibmjvmti.h.

To search for shared class caches that exist in a specified cache directory use:

Chapter 9. Troubleshooting and support 399

jvmtiError IterateSharedCaches(jvmtiEnv* env, jint version, const char *cacheDir,
jint flags, jboolean useCommandLineValues, jvmtiIterateSharedCachesCallback
callback, void *user_data);

This extension searches for shared class caches in a specified directory. Information
about the caches is returned in a structure that is populated by a user specified
callback function. You can specify the search directory by either:
v Setting the value of useCommandLineValues to true and specifying the directory

on the command line. If the directory is not specified on the command line, the
default location for the platform is used.

v Setting the value of useCommandLineValues to false and using the cacheDir
parameter. To accept the default location for the platform, specify cacheDir with
a null value.

Parameters:
env: A pointer to the JVMTI environment.

version: Version information for IterateSharedCaches, which describes the
jvmtiSharedCacheInfo structure passed to the
jvmtiIterateSharedCachesCallback function. The only value allowed is
COM_IBM_ITERATE_SHARED_CACHES_VERSION_1.

cacheDir: When the value of useCommandLineValues is false, specify the
absolute path of the directory for the shared class cache. If the value is
null, the platform-dependent default is used.

flags: Reserved for future use. The only value allowed is
COM_IBM_ITERATE_SHARED_CACHES_NO_FLAGS.

useCommandLineValues: Set this value to true when you want to specify the
cache directory on the command line. Set this value to false when you
want to use the cacheDir parameter.

callback: A function pointer to a user provided callback routine
jvmtiIterateSharedCachesCallback.

user_data: User supplied data, passed as an argument to the callback
function.

jint (JNICALL *jvmtiIterateSharedCachesCallback)(jvmtiEnv *env,jvmtiSharedCacheInfo
*cache_info, void *user_data);

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The env parameter is not valid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_UNSUPPORTED_VERSION: The version parameter is not valid.

JVMTI_ERROR_NULL_POINTER: The callback parameter is null.

JVMTI_ERROR_NOT_AVAILABLE: The shared classes feature is not enabled in
the JVM.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The flags parameter is not valid.

JVMTI_ERROR_INTERNAL: This error is returned when the
jvmtiIterateSharedCachesCallback returns JNI_ERR.

400 IBM SDK for Java: SDK and Runtime Guide

jvmtiIterateSharedCachesCallback function

The jvmtiIterateSharedCachesCallback function is called with the following
parameters:

Parameters:
env: A pointer to the JVMTI environment when calling
COM_IBM_ITERATE_SHARED_CACHES.

cache_info: A jvmtiSharedCacheInfo structure containing information
about a shared cache.

user_data: User supplied data, passed as an argument to
IterateSharedCaches.

The following values are returned by the jvmtiIterateSharedCachesCallback
function.

Returns:
JNI_OK: Continue iterating.

JNI_ERR: Stop iterating, which causes IterateSharedCaches to return
JVMTI_ERROR_INTERNAL

jvmtiSharedCacheInfo structure

The structure of jvmtiSharedCacheInfo:
typedef struct jvmtiSharedCacheInfo {
const char *name; - the name of the shared cache
jboolean isCompatible; - if the shared cache is compatible with this JVM
jboolean isPersistent; - true if the shared cache is persistent, false if its non-persistent
jint os_shmid; - the OS shared memory ID associated with a non-persistent cache, -1 otherwise
jint os_semid; - the OS shared semaphore ID associated with a non-persistent cache, -1 otherwise
jint modLevel; - one of COM_IBM_SHARED_CACHE_MODLEVEL_JAVA5, COM_IBM_SHARED_CACHE_MODLEVEL_JAVA6,
COM_IBM_SHARED_CACHE_MODLEVEL_JAVA7
jint addrMode; - one of COM_IBM_SHARED_CACHE_ADDRMODE_32, COM_IBM_SHARED_CACHE_ADDRMODE_64
jboolean isCorrupt; - if the cache is corrupted
jlong cacheSize; - the total usable shared class cache size, or -1 when isCompatible is false
jlong freeBytes; - the amount of free bytes in the shared class cache, or -1 when isCompatible is false
jlong lastDetach; - the last detach tiime specified in milliseconds since 00:00:00 on January 1, 1970 UTC.
} jvmtiSharedCacheInfo;

Removing a shared class cache:

You can remove a shared class cache using the DestroySharedCache() API.

The DestroySharedCache() API has the JVMTI Extension Function identifier
com.ibm.DestroySharedCache. The identifier is declared as macro
COM_IBM_DESTROY_SHARED_CACHE in ibmjvmti.h.

To remove a shared cache, use:
jvmtiError DestroySharedCache(jvmtiEnv *env, const char *cacheDir, const char
*name, jint persistence, jboolean useCommandLineValues, jint *internalErrorCode);

This extension removes a named shared class cache of a given persistence type, in
a given directory. You can specify the cache name, persistence type, and directory
by either:
v Setting useCommandLineValues to true and specifying the values on the

command line. If a value is not available, the default values for the platform are
used.

Chapter 9. Troubleshooting and support 401

v Setting useCommandLineValues to false and using the cacheDir, persistence and
cacheName parameters to identify the cache to be removed. To accept the default
value for cacheDir or cacheName, specify the parameter with a null value.

Parameters:
env: A pointer to the JVMTI environment.

cacheDir: When the value of useCommandLineValues is false, specify the
absolute path of the directory for the shared class cache. If the value is
null, the platform-dependent default is used.

cacheName: When the value of useCommandLineValues is false, specify the
name of the cache to be removed. If the value is null, the
platform-dependent default is used.

persistence: When the value of useCommandLineValues is false, specify the
type of cache to remove. This parameter must have one of the following
values:
v PERSISTENCE_DEFAULT: The default value for the platform.
v PERSISTENT.
v NONPERSISTENT.

useCommandLineValues: Set this value to true when you want to specify the
shared class cache name, persistence type, and directory on the command
line. Set this value to false when you want to use the cacheDir,
persistence and cacheName parameters instead.

internalErrorCode: If not null, this value is set to one of the following
constants when JVMTI_ERROR_INTERNAL is returned.
v COM_IBM_DESTROYED_NONE: Set when the function fails to remove

any caches.
v COM_IBM_DESTROY_FAILED_CURRENT_GEN_CACHE: Set when the

function fails to remove the existing current generation cache,
irrespective of the state of older generation caches.

v COM_IBM_DESTROY_FAILED_OLDER_GEN_CACHE: Set when the
function fails to remove any older generation caches. The current
generation cache does not exist or is successfully removed

This value is set to COM_IBM_DESTROYED_ALL_CACHE when
JVMTI_ERROR_NONE is returned.

Returns:
JVMTI_ERROR_NONE: Success. No cache exists or all existing caches of all
generations are removed.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The env parameter is not valid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: The shared classes feature is not enabled in
the JVM.

JVMTI_ERROR_ILLEGAL_ARGUMENT: The persistence parameter is not valid.

JVMTI_ERROR_INTERNAL: Failed to remove any existing cache with the given
name. See the value of internalErrorCode for more information about the
failure.

402 IBM SDK for Java: SDK and Runtime Guide

Subscribing to verbose garbage collection logging:

You can subscribe to verbose Garbage Collection (GC) data logging through an
IBM JVMTI extension.

The RegisterVerboseGCSubscriber() API has the JVMTI Extension function
identifier com.ibm.RegisterVerboseGCSubscriber. The identifier is declared as
macro COM_IBM_REGISTER_VERBOSEGC_SUBSCRIBER in ibmjvmti.h.

To register a subscription to verbose GC data logging, use:
jvmtiError RegisterVerboseGCSubscriber(jvmtiEnv* jvmti_env, char *description,
jvmtiVerboseGCSubscriber subscriber, jvmtiVerboseGCAlarm alarm, void

An ASCII character string describing the subscriber must be passed in.

An arbitrary pointer to user data must be supplied. This pointer is passed to the
subscriber and alarm functions each time these functions are called. This pointer
can be null.

A pointer to a subscription ID must be supplied. This pointer is returned by the
RegisterVerboseGCSubscriber call if successful. The value must be supplied to a
future call to DeregisterVerboseGCSubscriber.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

description: A string that describes your subscriber.

subscriber: A function of type jvmtiVerboseGCSubscriber.

alarm: A function pointer of type jvmtiVerboseGCAlarm.

user_data: User data that is passed to the subscriber function.

subscription_id: A pointer to a subscription identifier that is returned.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: One of the supplied parameters is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is not valid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

JVMTI_ERROR_NOT_AVAILABLE: GC verbose logging is not available.

JVMTI_ERROR_INTERNAL: An internal error has occurred.

The subscriber function type

The jvmtiVerboseGCSubscriber function is called with the following parameters:
typedef jvmtiError (*jvmtiVerboseGCSubscriber)(jvmtiEnv *jvmti_env, const char *record, jlong length, void *user_data);

The subscriber function must be of type jvmtiVerboseGCSubscriber, which is
declared in ibmjvmti.h. This function is called with each record of verbose logging
data produced by the JVM. The verbose logging record supplied to the subscriber
function is valid only for the duration of the function. If the subscriber wants to

Chapter 9. Troubleshooting and support 403

|

|
|

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|

|

|

|

|

|

|
|

|

|
|

|

|
|

|

|

|

|
|

|
|
|
|

save the data, the data must be copied elsewhere. If the subscriber function returns
an error, the alarm function is called, and the subscription is de-registered.

Alarm function parameters:
jvmti_env: A pointer to the JVMTI environment.

record: An ascii string that contains a verbose log record.

length: The number of ascii characters in the verbose log record.

user_data: User data supplied when the subscriber is registered.

The alarm function type

The jvmtiVerboseGCAlarm function is called with the following parameters:
typedef jvmtiError (*jvmtiVerboseGCAlarm)(jvmtiEnv *jvmti_env, void *subscription_id, void *user_data);

The alarm function must be of type jvmtiVerboseGCAlarm, which is declared in
ibmjvmti.h. This function is called if the subscriber function returns an error.

Alarm function parameters:
jvmti_env: A pointer to the JVMTI environment.

user_data: User data supplied when the subscriber is registered.

subscription_id: The subscription identifier.

Unsubscribing from verbose garbage collection logging:

You can unsubscribe from verbose Garbage Collection (GC) data logging through
an IBM JVMTI extension.

The DeregisterVerboseGCSubscriber() API has the JVMTI Extension Function
identifier com.ibm.DeregisterVerboseGCSubscriber. The identifier is declared as
macro COM_IBM_DEREGISTER_VERBOSEGC_SUBSCRIBER in ibmjvmti.h.

To unsubscribe from verbose GC data logging, use:
jvmtiError DeregisterVerboseGCSubscriber(jvmtiEnv* jvmti_env, void *userData, void *subscription_id)

You must supply the subscription ID returned by the call to
RegisterVerboseGCSubscriber. The previously registered subscriber function is no
longer called with future verbose logging records.

Parameters:
jvmti_env: A pointer to the JVMTI environment.

subscription_id: The subscription identifier.

Returns:
JVMTI_ERROR_NONE: Success.

JVMTI_ERROR_NULL_POINTER: The subscription_id parameter is null.

JVMTI_ERROR_OUT_OF_MEMORY: There is insufficient system memory to
process the request.

JVMTI_ERROR_INVALID_ENVIRONMENT: The jvmti_env parameter is not valid.

JVMTI_ERROR_WRONG_PHASE: The extension has been called outside the JVMTI
live phase.

404 IBM SDK for Java: SDK and Runtime Guide

|
|

|
|

|

|

|

|

|
|

|
|

|
|

|

|

|

|
|

|
|
|

|
|

|
|
|

|
|

|

|
|

|

|
|

|

|
|

Using the Diagnostic Tool Framework for Java
The Diagnostic Tool Framework for Java (DTFJ) is a Java application programming
interface (API) from IBM used to support the building of Java diagnostic tools.
DTFJ works with data from a system dump or a Javadump.

Note: The IBM Monitoring and Diagnostic Tools for Java use the DTFJ interface,
and should provide all the functionality that you need. However, you can use
DTFJ to write your own diagnostic tools if required.

For analysis of core dumps from Linux and AIX platforms, copies of executable
files and libraries are required along with the system dump. You must run the
jextract utility provided in the SDK to collect these files, see “Using jextract” on
page 276. You must run jextract with the same SDK level, on the system that
produced the system dump. The jextract utility compresses the dump, executable
files, and libraries into a single compressed file for use in subsequent problem
diagnosis.

For Java 7 SDKs on Windows and z/OS platforms, you do not need to run the
jextract utility. For Java 6 and Java 5.0 SDKs containing versions of the IBM J9
virtual machine before V2.6, you must still run the jextract utility for all
platforms.

To work with a Javadump, no additional processing is required.

The DTFJ API helps diagnostic tools access the following information:
v Memory locations stored in the dump (System dumps only)
v Relationships between memory locations and Java internals (System dumps

only)
v Java threads running in the JVM
v Native threads held in the dump (System dumps only)
v Java classes and their class loaders that were present
v Java objects that were present in the heap (System dumps only)
v Java monitors and the objects and threads they are associated with
v Details of the workstation on which the dump was produced (System dumps

only)
v Details of the Java version that was being used
v The command line that launched the JVM

If your DTFJ application requests information that is not available in the
Javadump, the API will return null or throw a DataUnavailable exception. You
might need to adapt DTFJ applications written to process system dumps to make
them work with Javadumps.

DTFJ is implemented in pure Java and tools written using DTFJ can be
cross-platform. Therefore, you can analyze a dump taken from one workstation on
another (remote and more convenient) machine. For example, a dump produced on
an AIX PPC workstation can be analyzed on a Windows Thinkpad.

This chapter describes DTFJ in:
v “Using the DTFJ interface” on page 406
v “DTFJ example application” on page 410

Chapter 9. Troubleshooting and support 405

API documentation for the DTFJ interface can be found here: API documentation

Using the DTFJ interface
To create applications that use DTFJ, you must use the DTFJ interface.
Implementations of this interface have been written that work with system dumps
from IBM SDK for Java versions 1.4.2 and later, and Javadumps from IBM SDK for
Java 6 and later.

All DTFJ implementations support the same interface, but the DTFJ
implementations supplied in Version 5.0 and later are different to the
implementation supplied in Version 1.4.2. The DTFJ implementations have different
factory class names that you must use. The DTFJ implementation supplied in
Version 1.4.2 does not work with system dumps from Version 5 or later, and the
DTFJ implementations supplied in Version 5 and later do not work with system
dumps from Version 1.4.2.

Figure 1 on page 409 illustrates the DTFJ interface. The starting point for working
with a dump is to obtain an Image instance by using the ImageFactory class
supplied with the concrete implementation of the API.

Working with a system dump

The following example shows how to work with a system dump.
import java.io.File;
import java.util.Iterator;
import java.io.IOException;

import com.ibm.dtfj.image.CorruptData;
import com.ibm.dtfj.image.Image;
import com.ibm.dtfj.image.ImageFactory;

public class DTFJEX1 {
public static void main(String[] args) {

Image image = null;
if (args.length > 0) {

File f = new File(args[0]);
try {

Class factoryClass = Class
.forName("com.ibm.dtfj.image.j9.ImageFactory");

ImageFactory factory = (ImageFactory) factoryClass
.newInstance();

image = factory.getImage(f);
} catch (ClassNotFoundException e) {

System.err.println("Could not find DTFJ factory class");
e.printStackTrace(System.err);

} catch (IllegalAccessException e) {
System.err.println("IllegalAccessException for DTFJ factory class");
e.printStackTrace(System.err);

} catch (InstantiationException e) {
System.err.println("Could not instantiate DTFJ factory class");
e.printStackTrace(System.err);

} catch (IOException e) {
System.err.println("Could not find/use required file(s)");
e.printStackTrace(System.err);

}
} else {

System.err.println("No filename specified");
}
if (image == null) {

return;
}

406 IBM SDK for Java: SDK and Runtime Guide

publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.api.70.doc/api_overview.html

Iterator asIt = image.getAddressSpaces();
int count = 0;
while (asIt.hasNext()) {

Object tempObj = asIt.next();
if (tempObj instanceof CorruptData) {

System.err.println("Address Space object is corrupt: "
+ (CorruptData) tempObj);

} else {
count++;

}
}
System.out.println("The number of address spaces is: " + count);

}
}

In this example, the only section of code that ties the dump to a particular
implementation of DTFJ is the generation of the factory class. Change the factory
to use a different implementation.

The getImage() methods in ImageFactory expect one file, the dumpfilename.zip file
produced by jextract (see “Using the dump viewer” on page 273). If the
getImage() methods are called with two files, they are interpreted as the dump
itself and the .xml metadata file. If there is a problem with the file specified, an
IOException is thrown by getImage() and can be caught. An appropriate message
issued. If a missing file is passed to the example shown, the following output is
produced:

Could not find/use required file(s)
java.io.FileNotFoundException: core_file.xml (The system cannot find the file specified.)

at java.io.FileInputStream.open(Native Method)
at java.io.FileInputStream.<init>(FileInputStream.java:135)
at com.ibm.dtfj.image.j9.ImageFactory.getImage(ImageFactory.java:47)
at com.ibm.dtfj.image.j9.ImageFactory.getImage(ImageFactory.java:35)
at DTFJEX1.main(DTFJEX1.java:23)

In the this case, the DTFJ implementation is expecting a dump file to exist.
Different errors are caught if the file existed but was not recognized as a valid
dump file.

Working with a Javadump

To work with a Javadump, change the factory class to
com.ibm.dtfj.image.javacore.JCImageFactory and pass the Javadump file to the
getImage() method.

import java.io.File;
import java.util.Iterator;
import java.io.IOException;

import com.ibm.dtfj.image.CorruptData;
import com.ibm.dtfj.image.Image;
import com.ibm.dtfj.image.ImageFactory;

public class DTFJEX2 {
public static void main(String[] args) {

Image image=null;

if (args.length > 0) {
File javacoreFile = new File(args[0]);

try {

Chapter 9. Troubleshooting and support 407

Class factoryClass = Class.forName("com.ibm.dtfj.image.javacore.JCImageFactory");
ImageFactory factory = (ImageFactory) factoryClass.newInstance();
image = factory.getImage(javacoreFile);

} catch

The rest of the example remains the same.

After you have obtained an Image instance, you can begin analyzing the dump.
The Image instance is the second instance in the class hierarchy for DTFJ
illustrated by the following diagram:

408 IBM SDK for Java: SDK and Runtime Guide

The hierarchy displays some major points of DTFJ. First, there is a separation
between the Image (the dump, a sequence of bytes with different contents on
different platforms) and the Java internal knowledge.

<<Java Class>>
MemoryAccessException

<<Java Class>>
DataUnavailable

<<Java Class>>
DTFJException

<<Java Class>>
CorruptDataException

<<Java Interface>>
ImageFactory

ImagePointer
<<Java Interface>>

<<Java Interface>>
ImageSymbol

<<Java Interface>>
ImageModule

<<Java Interface>>
ImageProcess

<<Java Interface>>
ImageThread

<<Java Interface>>
JavaThread

<<Java Interface>>
ImageRegister

<<Java Interface>>
ImageStackFrame

<<Java Interface>>
JavaStackFrame

<<Java Interface>>
JavaLocation

<<Java Interface>>
JavaVMOption

<<Java Interface>>
JavaVMInitArgs

<<Java Interface>>
JavaMonitor

<<Java Interface>>
JavaObject

<<Java Interface>>
JavaMethod

<<Java Interface>>
JavaField

<<Java Interface>>
ManagedRuntime

<<Java Interface>>
JavaRuntime

<<Java Interface>>
JavaReference

<<Java Interface>>
JavaClass

<<Java Interface>>
JavaHeap

<<Java Interface>>
JavaMember

<<Java Interface>>
JavaClassLoader

<<Java Interface>>
JavaRuntimeMemorySection

<<Java Interface>>
JavaRuntimeMemoryCategory

<<Java Interface>>
ImageSection

<<Java Interface>>
ImageAddressSpace

Image
<<Java Interface>><<Java Interface>>

CorruptData

<<JavaPackage>>
com.ibm.dtfj.image

<<JavaPackage>>
com.ibm.dtfj.runtime

<<JavaPackage>>
com.ibm.dtfj.java

<<use>>

<<use>>

<<use>>

<<use>><<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>><<use>>

<<use>> <<use>> <<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>><<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

<<use>>

Figure 1. DTFJ interface diagram

Chapter 9. Troubleshooting and support 409

Some things to note from the diagram:
v The DTFJ interface is separated into two parts: Classes with names that start

with Image and classes with names that start with Java.
v Image and Java classes are linked using a ManagedRuntime (which is extended

by JavaRuntime).
v An Image object contains one ImageAddressSpace object (or, on z/OS, possibly

more).
v An ImageAddressSpace object contains one ImageProcess object (or, on z/OS,

possibly more).
v Conceptually, you can apply the Image model to any program running with the

ImageProcess. For the purposes of this document discussion is limited to the
IBM JVM implementations.

v There is a link from a JavaThread object to its corresponding ImageThread
object. Use this link to find out about native code associated with a Java thread,
for example JNI functions that have been called from Java.

v If a JavaThread was not running Java code when the dump was taken, the
JavaThread object has no JavaStackFrame objects. In these cases, use the link to
the corresponding ImageThread object to find out what native code was running
in that thread. This situation is typically the case with the JIT compilation thread
and Garbage Collection threads.

v The DTFJ interface enables you to obtain information about native memory.
Native memory is memory requested from the operating system using library
functions such as malloc() and mmap(). When the JRE allocates native memory,
the memory is associated with a high-level memory category. For more
information about native memory detailed in a javadump, see “Native memory
(NATIVEMEMINFO)” on page 246.

DTFJ example application
This example is a fully working DTFJ application.

For clarity, this example does not perform full error checking when constructing
the main Image object and does not perform CorruptData handling in all of the
iterators. In a production environment, you use the techniques illustrated in the
example in the “Using the DTFJ interface” on page 406.

In this example, the program iterates through every available Java thread and
checks whether it is equal to any of the available image threads. When they are
found to be equal, the program displays the following message: Found a match.

The example demonstrates:
v How to iterate down through the class hierarchy.
v How to handle CorruptData objects from the iterators.
v The use of the .equals method for testing equality between objects.

import java.io.File;
import java.util.Iterator;
import com.ibm.dtfj.image.CorruptData;
import com.ibm.dtfj.image.CorruptDataException;
import com.ibm.dtfj.image.DataUnavailable;
import com.ibm.dtfj.image.Image;
import com.ibm.dtfj.image.ImageAddressSpace;
import com.ibm.dtfj.image.ImageFactory;
import com.ibm.dtfj.image.ImageProcess;
import com.ibm.dtfj.java.JavaRuntime;
import com.ibm.dtfj.java.JavaThread;
import com.ibm.dtfj.image.ImageThread;

410 IBM SDK for Java: SDK and Runtime Guide

public class DTFJEX2
{

public static void main(String[] args)
{

Image image = null;
if (args.length > 0)
{

File f = new File(args[0]);
try
{

Class factoryClass = Class
.forName("com.ibm.dtfj.image.j9.ImageFactory");

ImageFactory factory = (ImageFactory) factoryClass.newInstance();
image = factory.getImage(f);

}
catch (Exception ex)
{ /*

* Should use the error handling as shown in DTFJEX1.
*/
System.err.println("Error in DTFJEX2");
ex.printStackTrace(System.err);

}
}
else
{

System.err.println("No filename specified");
}

if (null == image)
{

return;
}

MatchingThreads(image);
}

public static void MatchingThreads(Image image)
{

ImageThread imgThread = null;

Iterator asIt = image.getAddressSpaces();
while (asIt.hasNext())
{

System.out.println("Found ImageAddressSpace...");

ImageAddressSpace as = (ImageAddressSpace) asIt.next();

Iterator prIt = as.getProcesses();

while (prIt.hasNext())
{

System.out.println("Found ImageProcess...");

ImageProcess process = (ImageProcess) prIt.next();

Iterator runTimesIt = process.getRuntimes();
while (runTimesIt.hasNext())
{

System.out.println("Found Runtime...");
JavaRuntime javaRT = (JavaRuntime) runTimesIt.next();

Iterator javaThreadIt = javaRT.getThreads();

while (javaThreadIt.hasNext())
{

Object tempObj = javaThreadIt.next();

Chapter 9. Troubleshooting and support 411

/*
* Should use CorruptData handling for all iterators
*/
if (tempObj instanceof CorruptData)
{

System.out.println("We have some corrupt data");
}
else
{

JavaThread javaThread = (JavaThread) tempObj;
System.out.println("Found JavaThread...");
try
{

imgThread = (ImageThread) javaThread.getImageThread();

// Now we have a Java thread we can iterator
// through the image threads
Iterator imgThreadIt = process.getThreads();

while (imgThreadIt.hasNext())
{

ImageThread imgThread2 = (ImageThread) imgThreadIt
.next();

if (imgThread.equals(imgThread2))
{

System.out.println("Found a match:");
System.out.println("\tjavaThread "

+ javaThread.getName()
+ " is the same as " + imgThread2.getID());

}
}

}
catch (CorruptDataException e)
{

System.err.println("ImageThread was corrupt: "
+ e.getMessage());

}
catch (DataUnavailable e)
{

System.out.println("DataUnavailable: "
+ e.getMessage());

}
}

}
}

}
}

}
}

Many DTFJ applications will follow similar models.

Using JConsole
JConsole (Java Monitoring and Management Console) is a graphical tool which
allows the user to monitor and manage the behavior of Java applications.

Note: The preferred tools for monitoring Java applications are the IBM Monitoring
and Diagnostic Tools for Java.

The tool is built on the java.lang.management API which was introduced in Java
5.0. JConsole connects to applications running on the same workstation as itself, or
on a remote workstation. The applications must be configured to allow access.
JConsole is not part of the core SDK, and it is experimental and unsupported.

412 IBM SDK for Java: SDK and Runtime Guide

When JConsole connects to a Java application, it reports information about the
application. The details include memory usage, the running threads, and the
loaded classes. This data allows you to monitor the behavior of your application
and the JVM. The information is useful in understanding performance problems,
memory usage issues, hangs, or deadlocks.

Setting up JConsole to monitor a Java application
1. The Java application you want to monitor must be started with command-line

options which make it accessible to JConsole. The simplest set of options for
monitoring are:
-Dcom.sun.management.jmxremote.port=<port number>
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

<port number> is a free port on your workstation. In this example, the
authenticate and ssl options prevent password authentication and encryption
using Secure Sockets Layer (SSL). Using these options allow JConsole, or any
other JMX agent, to connect to your Java application if it has access to the
specified port. Only use these non-secure options in a development or testing
environment. For more information about configuring security options, see
http://download.oracle.com/javase/7/docs/technotes/guides/jmx/overview/
connectors.html.

2. Start JConsole by typing jconsole at a command prompt. Your path must
contain the bin directory of the SDK.

3. The JConsole New Connection dialog opens: Enter the host name and port
number that you specified in step 1. If you are running JConsole on the same
workstation as your Java application, leave the host name value as localhost.
For a remote system, set the host field value to the host name or IP address of
the workstation. Leave the Username and Password fields blank if you used
the options specified in step 1.

4. Click connect. JConsole starts and displays the summary tab.

Setting up JConsole to monitor itself

JConsole can monitor itself. This ability is useful for simple troubleshooting of the
Java environment.
1. Start JConsole by typing jconsole at a command prompt. Your path must

contain the bin directory of the SDK.
2. The JConsole New Connection dialog opens: Enter localhost:0 in the Remote

Process field.
3. Click connect. JConsole starts and displays the summary tab.

Using JConsole to monitor a Java application

The JConsole summary tab shows key details of the JVM you have connected to.
From here, you can select any of the other tabs for more details on a particular
aspect. The Memory tab shows a history of usage of each memory pool in the
JVM, – the most useful being the heap memory usage.

You can also request that a GC is carried out by clicking the Perform GC button.
You must be connected with security options disabled as described previously, or
be authenticated as a control user.

Chapter 9. Troubleshooting and support 413

http://download.oracle.com/javase/7/docs/technotes/guides/jmx/overview/connectors.html
http://download.oracle.com/javase/7/docs/technotes/guides/jmx/overview/connectors.html

The Threads tab shows the number of threads currently running and a list of their
IDs.

Clicking a thread ID shows the thread state and its current stack trace.

The Classes tab displays the current number of loaded classes and the number of
classes loaded and unloaded since the application was started. Selecting the
verbose output check box allows verbose class loading output to be switched on
and off to see a list of classes that are loaded in the client JVM. The output is
displayed on the stderr output of the client JVM.

The MBeans tab allows you to inspect the state of the platform MBeans, which
provides more detail about the JVM. For more details, see “MBeans and MXBeans”

Finally, the VM tab gives information about the environment in which your Java
application is running including any JVM arguments and the current class path.

Troubleshooting JConsole

JConsole is a Swing application. You might find that running JConsole on the same
workstation as the Java application you want to monitor affects the performance of
your Java application. You can use JConsole to connect to a JVM running on a
remote workstation to reduce the affect of running JConsole on the application
performance.

Because JConsole is a Java application, you can pass it Java command-line options
through the application that starts JConsole by prefixing them with –J. For
example, to change the maximum heap size that JConsole uses, add the
command-line option -J-Xmx<size>.

Known Limitations

Using the local process list
The local process list does not work. Use localhost:<port> in the Remote
Process field to connect to a local JVM.

CPU usage in the Overview tab
The CPU usage display does not work.

Further information

More details about JConsole and the definitions of the values it displays can be
found at http://download.oracle.com/javase/7/docs/technotes/guides/
management/index.html.

MBeans and MXBeans
MBeans and MXBeans can be used to provide information about the state of the
Java virtual machine (JVM). IBM provides additional MXBeans that extend the
monitoring and management capabilities.

MXBeans are a generalized variant of MBeans. Because MXBeans are constructed
by using only a pre-defined set of data types, MXBeans can be referenced and used
more easily by applications such as JConsole.

Start JConsole by running the command jconsole from a command line. When
you connect to a running JVM, you see an MBeans tab. This tab displays a
navigation tree that contains the MBeans exported by the JVM. The list of available

414 IBM SDK for Java: SDK and Runtime Guide

http://download.oracle.com/javase/7/docs/technotes/guides/management/index.html
http://download.oracle.com/javase/7/docs/technotes/guides/management/index.html

MBeans depends on the version of Java that you are using. The
java.lang.management package includes MBean categories such as Memory,
OperatingSystem, and GarbageCollector.

Clicking an MBean category in the navigation tree shows you all the related
MBeans that are available. Clicking an individual MBean shows you the
information that the MBean extracts from the JVM, separated into the following
sections:

Attributes
Information about the current state. You can use some MBeans to change
the JVM options. For example, in the Memory MBean, you might select the
Verbose option to enable VerboseGC logging output.

Operations
Detailed information from the JVM. For example, in the Threading MBean,
you see thread information that helps you to monitor deadlocked threads.

Notifications
Notifications that are supported by the MBean. Applications such as
JConsole receive information from the MBean by subscribing to these
notifications.

Info Details about the available notifications.

IBM MXBeans

IBM provides further MXBeans to extend the monitoring and management
capabilities:

GarbageCollectorMXBean
For monitoring garbage collection operations. You can obtain data about
GC collection times, heap memory usage, number of compactions, and the
amount of total freed memory.

MemoryMXBean
For monitoring memory usage, including data about maximum and
minimum heap sizes, and shared class caches sizes.

MemoryPoolMXBean
For monitoring the usage of the memory pool, where supported.

OperatingSystemMXBean
For monitoring operating system settings such as physical and virtual
memory size, processor capacity, and processor utilization.

For more information about the standard platform MBeans, see the Oracle API
documentation for the java.lang.management package at http://
download.oracle.com/javase/7/docs/api/java/lang/management/package-
summary.html.

For information about IBM MXBeans, see the IBM API documentation: API
documentation

Chapter 9. Troubleshooting and support 415

http://download.oracle.com/javase/7/docs/api/java/lang/management/package-summary.html
http://download.oracle.com/javase/7/docs/api/java/lang/management/package-summary.html
http://download.oracle.com/javase/7/docs/api/java/lang/management/package-summary.html
publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.api.70.doc/com.ibm.lang.management/index.html
publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.api.70.doc/com.ibm.lang.management/index.html

416 IBM SDK for Java: SDK and Runtime Guide

Chapter 10. Reference

This part of the Information Center contains reference information.

The appendixes are:
v “CORBA minor codes” on page 467
v “Environment variables” on page 469
v “Command-line options”
v “Default settings for the JVM” on page 474

Command-line options
You can specify the options on the command line while you are starting Java. They
override any relevant environment variables. For example, using -cp <dir1> with
the Java command completely overrides setting the environment variable
CLASSPATH=<dir2>.

This chapter provides the following information:
v “Specifying command-line options”
v “General command-line options” on page 418
v “System property command-line options” on page 419
v “JVM command-line options” on page 428
v “JIT and AOT command-line options” on page 448
v “Garbage Collector command-line options” on page 453

Specifying command-line options
Although the command line is the traditional way to specify command-line
options, you can also pass options to the JVM by using options files and
environment variables.

The sequence of the Java options on the command line defines which options take
precedence during startup. Rightmost options have precedence over leftmost
options. In the following example, the -Xjit option takes precedence:
java -Xint -Xjit myClass

Use single or double quotation marks for command-line options only when
explicitly directed to do so. Single and double quotation marks have different
meanings on different platforms, operating systems, and shells. Do not use
'-X<option>' or "-X<option>". Instead, you must use -X<option>. For example, do
not use ’-Xmx500m’ and "-Xmx500m". Write this option as -Xmx500m.

At startup, the list of JVM arguments is constructed in the following order, with
the lowest precedence first:
1. Environment variables that are described in are translated into command-line

options. For example, the following environment variable adds the parameter
-Xrs to the list of arguments:
export IBM_NOSIGHANDLER=<non_null_string>

© Copyright IBM Corp. 2011, 2013 417

2. The IBM_JAVA_OPTIONS environment variable. You can set command-line options
using this environment variable. The options that you specify with this
environment variable are added to the command line when a JVM starts in that
environment.
The environment variable can contain multiple blank-delimited argument
strings, but must not contain comments. For example:
export IBM_JAVA_OPTIONS="-Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump"

Note: The environment variable JAVA_TOOLS_OPTIONS is equivalent to
IBM_JAVA_OPTIONS and is available for compatibility with JVMTI.

3. Certain options are created automatically by the JVM. These specify arguments
such as search paths and version information.

4. Options that are specified on the command line. For example:
java -Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump MyJavaClass

The Java launcher adds some automatically generated arguments to this list,
such as the names of the main class.

You can also use the -Xoptionsfile parameter to specify JVM options. This
parameter can be used on the command line, or as part of the IBM_JAVA_OPTIONS
environment variable. The contents of an option file are expanded in place during
startup. For more information about the structure and contents of this type of file,
see “-Xoptionsfile” on page 438.

To troubleshoot startup problems, you can check which options are used by a JVM.
Append the following command-line option, and inspect the Javadump file that is
generated:
-Xdump:java:events=vmstart

Here is an extract from a Javadump file that shows the options that are used:
....

2CIUSERARG -Xdump:java:file=/home/test_javacore.txt,events=vmstop
2CIUSERARG -Dtest.cmdlineOption=1
2CIUSERARG -XXallowvmshutdown:true
2CIUSERARG -Xoptionsfile=test1.test_options_file

....

General command-line options
Use these options to print help on assert-related options, set the search path for
application classes and resources, print a usage method, identify memory leaks
inside the JVM, print the product version and continue, enable verbose output, and
print the product version.

-cp, -classpath <directories and compressed or .jar files separated by : (;
on Windows)>

Sets the search path for application classes and resources. If -classpath and -cp
are not used, and the CLASSPATH environment variable is not set, the user
classpath is, by default, the current directory (.).

-help, -?
Prints a usage message.

-fullversion
Prints the build and version information for the JVM.

-showversion
Prints product version and continues.

418 IBM SDK for Java: SDK and Runtime Guide

-verbose:<option>[,<option>...]
Enables verbose output. Separate multiple options using commas. These
options are available:

class
Writes an entry to stderr for each class that is loaded.

dynload
Provides detailed information as each bootstrap class is loaded by the JVM:
v The class name and package
v For class files that were in a .jar file, the name and directory path of the

.jar
v Details of the size of the class and the time taken to load the class

The data is written out to stderr. An example of the output on a Windows
platform follows:
<Loaded java/lang/String from C:\sdk\jre\lib\vm.jar>
<Class size 17258; ROM size 21080; debug size 0>
<Read time 27368 usec; Load time 782 usec; Translate time 927 usec>

gc Provide verbose garbage collection information.

init
Writes information to stderr describing JVM initialization and termination.

jni
Writes information to stderr describing the JNI services called by the
application and JVM.

sizes
Writes information to stderr describing the active memory usage settings.

stack
Writes information to stderr describing the Java and C stack usage for
each thread.

-version
Prints the full build and version information for the JVM.

System property command-line options
Use the system property command-line options to set up your system.

-D<name>=<value>
Sets a system property.

-Dcom.ibm.cacheLatestUserDefinedLoader
This system property enables caching of the Latest User Defined Class Loader
(LUDCL), which can improve performance when a serialized object is
de-serialized.

-Dcom.ibm.cacheLatestUserDefinedLoader[true|false]
The default value for this setting is false.

This property addresses only the de-serialization of objects that use default
serialization. For more information about Java object serialization, see
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/
serialTOC.html .

Note: This system property is superseded by “-Dcom.ibm.enableClassCaching”
on page 420 in IBM SDK for z/OS, V7 service refresh 4.

Chapter 10. Reference 419

|
|
|
|

|
|

|
|
|
|

|
|

http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html

-Dcom.ibm.dbgmalloc
This option provides memory allocation diagnostic information for class library
native code.

-Dcom.ibm.dbgmalloc=true
When an application is started with this option, a javadump records the
amount of memory allocated by the class library components. You can use this
option together with the -Xcheck:memory option to obtain information about
class library call sites and their allocation sizes. Enabling this option has an
impact on throughput performance. For sample javadump output, see “Native
memory (NATIVEMEMINFO)” on page 246.

-Dcom.ibm.enableClassCaching
Setting this property to true enables caching of the Latest User Defined Class
Loader (LUDCL).

-Dcom.ibm.enableClassCaching=[true|false]
By reducing repeated lookups, Java applications that use deserialization
extensively can see a performance improvement. This system property
supersedes “-Dcom.ibm.cacheLatestUserDefinedLoader” on page 419, which is
available only in IBM SDK for Java 7 SR3. The default value for this property
is false.

-Dcom.ibm.jsse2.renegotiate
If your Java application uses JSSE for secure communication, you can disable TLS
renegotiation by installing APAR IZ65239.

-Dcom.ibm.jsse2.renegotiate=[ALL | NONE | ABBREVIATED]

ALL Allow both abbreviated and unabbreviated (full) renegotiation
handshakes.

NONE
Allow no renegotiation handshakes. This value is the default setting.

ABBREVIATED
Allow only abbreviated renegotiation handshakes.

-Dcom.ibm.lang.management.verbose
Enables verbose information from java.lang.management operations to be written
to the output channel during VM operation.

-Dcom.ibm.lang.management.verbose
There are no options for this system property.

-Dcom.ibm.IgnoreMalformedInput
Invalid UTF8 or malformed byte sequences are replaced with the standard unicode
replacement character \uFFFD.

-Dcom.ibm.IgnoreMalformedInput=true
To retain the old behavior, where invalid UTF8 or malformed byte sequences
are ignored, set this system property to true.

-Dcom.ibm.streams.CloseFDWithStream
Determines whether the close() method of a stream object closes a native file
descriptor even if the descriptor is still in use by another stream object.

-Dcom.ibm.streams.CloseFDWithStream=[true | false]
Usually, you create a FileInputStream or FileOutputStream instance by passing
a String or a File object to the stream constructor method. Each stream then
has a separate file descriptor. However, you can also create a stream by using

420 IBM SDK for Java: SDK and Runtime Guide

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

an existing FileDescriptor instance, for example one that you obtain from a
RandomAccessFile instance, or another FileInputStream or FileOutputStream
instance. Multiple streams can then share the same file descriptor.

If you set this option to false, when you use the close() method of the stream,
the associated file descriptor is also closed only if it is not in use by any other
streams. If you set the option to true, the file descriptor is closed regardless of
any other streams that might still be using it.

The default setting is true.

Note: Before version 7 service refresh 5, the default behavior was to close the
file descriptor only when all the streams that were using it were also closed.
This system property exists so that you can revert to this previous default
behavior if necessary. This system property will be removed in a future release,
so you should adjust your applications to use the new default behavior before
you upgrade to a later release.

-Dcom.ibm.tools.attach.enable
Enable the Attach API for this application.

-Dcom.ibm.tools.attach.enable=yes
The Attach API allows your application to connect to a virtual machine. Your
application can then load an agent application into the virtual machine. The
agent can be used to perform tasks such as monitoring the virtual machine
status.

-Dcom.ibm.xtq.processor.overrideSecureProcessing
This system property affects the XSLT processing of extension functions or
extension elements when Java security is enabled.

Purpose

From IBM SDK for z/OS, V7 service refresh 5, the use of extension functions or
extension elements is not allowed when Java security is enabled. This change is
introduced to enhance security. The system property can be used to revert to the
behavior in earlier releases.

Parameters

com.ibm.xtq.processor.overrideSecureProcessing=true
To revert to the behavior in earlier releases of the IBM SDK, set this system
property to true.

-Dcom.ibm.zipfile.closeinputstreams
The Java.util.zip.ZipFile class allows you to create InputStreams on files held in a
compressed archive.

-Dcom.ibm.zipfile.closeinputstreams=true
Under some conditions, using ZipFile.close() to close all InputStreams that
have been opened on the compressed archive might result in a
56-byte-per-InputStream native memory leak. Setting the
-Dcom.ibm.zipfile.closeinputstreams=true forces the JVM to track and close
InputStreams without the memory impact caused by retaining native-backed
objects. Native-backed objects are objects that are stored in native memory,
rather than the Java heap. By default, the value of this system property is not
enabled.

Chapter 10. Reference 421

|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|

|

|
|
|
|

|

|
|
|

|

-Dfile.encoding
Use this property to define the file encoding that is required.

-Dfile.encoding=value
Where value defines the file encoding that is required.

By default the IBM GBK converter follows Unicode 3.0 standards. To force the
IBM GBK converter to follow Unicode 2.0 standards, use a value of bestfit936.

-Dibm.jvm.bootclasspath
The value of this property is used as an additional search path.

-Dibm.jvm.bootclasspath
The value of this property is used as an additional search path, which is
inserted between any value that is defined by -Xbootclasspath/p: and the
bootclass path. The bootclass path is either the default or the one that you
defined by using the -Xbootclasspath: option.

-Dibm.stream.nio
This option addresses the ordering of IO and NIO converters.

-Dibm.stream.nio=[true | false]
When this option is set to true, the NIO converters are used instead of the IO
converters. By default the IO converters are used.

-Dil8n.vs
This system property enables awareness of Unicode Ideographic Variation
Sequence (IVS) to draw characters, except in peered components.

-Dil8n.vs=[true]
The behavior depends on the font specified. If the font supports IVS, and has a
glyph based on the combination of a base character and a variation selector
character, an accurate glyph can be picked up. If not, the base character is
displayed and the variation selector character is ignored. Because this option
changes the behavior of the font drawing engine, the option is disabled by
default. When disabled, a variation selector is displayed as an undefined
character. This option is supported only for Japanese.

-Djava.compiler
Disables the Java compiler by setting to NONE.

-Djava.compiler=[NONE | j9jit<vm_version>]
Enable JIT compilation by setting to j9jit<vm_version> (Equivalent to –Xjit).

-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm
Use this property to turn off an enhanced hashing algorithm for
javax.xml.namespace.QName.hashCode().

-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm=1.0
From Java 7 SR2 an enhanced hashing algorithm is used for
javax.xml.namespace.QName.hashCode(). This algorithm can change the
iteration order of items returned from hash maps. For compatibility, you can
restore the earlier hashing algorithm by setting the system property
-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm=1.0.

-Djdk.map.althashing.threshold
This system property controls the use of an enhanced hashing algorithm for
hashed maps.

422 IBM SDK for Java: SDK and Runtime Guide

|
|

|
|
|

|
|
|
|
|
|

|
|
|

-Djdk.map.althashing.threshold=value
This alternative hashing algorithm is used for string keys when a hashed data
structure has a capacity larger than value.

A value of 1 ensures that this algorithm is always used, regardless of the
hashed map capacity. A value of -1 prevents the use of this algorithm, which is
the default value.

The hashed map structures affected by this threshold are: java.util.HashMap,
java.util.Hashtable, java.util.LinkedHashMap, java.util.WeakHashMap, and
java.util.concurrent.ConcurrentHashMap.

The capacity of a hashed map is related to the number of entries in the map,
multiplied by the load factor. Because the capacity of a hashed map is rounded
up to the next power of two, setting the threshold to intermediate values has
no affect on behavior. For example, threshold values of 600, 700, and 1000 have
the same effect. However, values of 1023 and 1024 cause a difference in
behavior. For a more detailed description of the capacity and load factor, see
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html.

When entries are removed from a hashed map the capacity does not shrink.
Therefore, if the map ever exceeds the threshold to use alternative hashing for
Strings, the map always uses alternative hashing for Strings. This behavior
does not change, even if entries are later removed or the map is emptied using
clear().

The enhanced hashing algorithm is available from Java 7 SR2

-Djdk.reflect.allowGetCallerClass
Use this option to re-enable the sun.reflect.Reflection.getCallerClass(int depth)
method.

-Djdk.reflect.allowGetCallerClass
To enhance security, the sun.reflect.Reflection.getCallerClass(int depth) method
is not supported from Version 7 service refresh 6. Use the
sun.reflect.Reflection.getCallerClass() method instead. This method always uses
a depth of 2.

If you use the sun.reflect.Reflection.getCallerClass(int depth) method in your
application, an UnsupportedOperationException exception is thrown.

Note: You can use this option to re-enable support for the
sun.reflect.Reflection.getCallerClass(int depth) method, but this option will be
removed in a future release. You must set the option on the command line
when you start the application; you cannot set it from within the application at
run time.

You can use this option in several ways. The following methods enable the
option:
v -Djdk.reflect.allowGetCallerClass

v -Djdk.reflect.allowGetCallerClass=

v -Djdk.reflect.allowGetCallerClass=true (true is not case sensitive, so TRUE
or tRuE are equally valid)

The option is disabled by default, but you can also specifically disable it by
using one of the following methods:
v -Djdk.reflect.allowGetCallerClass=false

v -Djdk.reflect.allowGetCallerClass=any_other_value

Chapter 10. Reference 423

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

|

|

|
|

|
|

|

|

http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html

-Djdk.xml.entityExpansionLimit
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the number of entity expansions in an XML document.

-Djdk.xml.entityExpansionLimit=value

Where value is a positive integer. The default value is 64,000.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.entityExpansionLimit=<value>

Related reference:
“-Djdk.xml.maxGeneralEntitySizeLimit”
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 425
This option provides limits for Java API for XML (JAXP) processing. This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 425
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.totalEntitySizeLimit” on page 426
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the total size of all entities that include general and parameter
entities.

-Djdk.xml.maxGeneralEntitySizeLimit
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the maximum size of a general entity.

To protect an application from malformed XML, set this value to the minimum size
possible.

-Djdk.xml.maxGeneralEntitySizeLimit=value

Where value is the maximum size that is allowed for a general entity. The
default value is 0.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxGeneralEntitySizeLimit=<value>

424 IBM SDK for Java: SDK and Runtime Guide

|
|
|

|

|

|

|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|

|
|

|

|
|

|

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 424
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxOccur”
This option provides limits for Java API for XML (JAXP) processing. This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxParameterEntitySizeLimit”
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.totalEntitySizeLimit” on page 426
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the total size of all entities that include general and parameter
entities.

-Djdk.xml.maxOccur
This option provides limits for Java API for XML (JAXP) processing. This option
defines the maximum number of content model nodes that can be created in a
grammar.

When building a grammar for a W3C XML schema, use this option to limit the
number of content model nodes that can be created when the schema defines
attributes that can occur multiple times.

-Djdk.xml.maxOccur=value

Where value is a positive integer. The default value is 5,000.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxoccur=<value>

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 424
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 424
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxParameterEntitySizeLimit”
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the maximum size of a parameter entity.
“-Djdk.xml.totalEntitySizeLimit” on page 426
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the total size of all entities that include general and parameter
entities.

-Djdk.xml.maxParameterEntitySizeLimit
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the maximum size of a parameter entity.

To protect an application from malformed XML, set this value to the minimum size
possible.

Chapter 10. Reference 425

|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|

|

|
|

|

|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

-Djdk.xml.maxParameterEntitySizeLimit=value

Where value is the maximum size that is allowed for a parameter entity. The
default value is 0.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.maxParameterEntitySizeLimit=<value>

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 424
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 424
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 425
This option provides limits for Java API for XML (JAXP) processing. This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.totalEntitySizeLimit”
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the total size of all entities that include general and parameter
entities.

-Djdk.xml.totalEntitySizeLimit
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the total size of all entities that include general and parameter
entities.

-Djdk.xml.totalEntitySizeLimit=value

Where value is the collective size of all entities. The default value is 5x10^7.

A value of 0 or a negative number sets no limits.

You can also set this limit by adding the following line to your jaxp.properties
file:
jdk.xml.totalEntitySizeLimit=<value>

426 IBM SDK for Java: SDK and Runtime Guide

|

|
|

|

|
|

|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

|

Related reference:
“-Djdk.xml.entityExpansionLimit” on page 424
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the number of entity expansions in an XML document.
“-Djdk.xml.maxGeneralEntitySizeLimit” on page 424
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the maximum size of a general entity.
“-Djdk.xml.maxOccur” on page 425
This option provides limits for Java API for XML (JAXP) processing. This option
defines the maximum number of content model nodes that can be created in a
grammar.
“-Djdk.xml.maxParameterEntitySizeLimit” on page 425
This option provides limits for Java API for XML (JAXP) processing. Use this
option to limit the maximum size of a parameter entity.

-Dsun.awt.keepWorkingSetOnMinimize
The -Dsun.awt.keepWorkingSetOnMinimize=true system property stops the JVM
trimming an application when it is minimized.

-Dsun.awt.keepWorkingSetOnMinimize=true
When a Java application using the Abstract Windowing Toolkit (AWT) is
minimized, the default behavior is to “trim” the “working set”. The working
set is the application memory stored in RAM. Trimming means that the
working set is marked as being available for swapping out if the memory is
required by another application. The advantage of trimming is that memory is
available for other applications. The disadvantage is that a “trimmed”
application might experience a delay as the working set memory is brought
back into RAM.

The default behavior is to trim an application when it is minimized.

-Dsun.net.client.defaultConnectTimeout
Specifies the default value for the connect timeout for the protocol handlers used
by the java.net.URLConnection class.

-Dsun.net.client.defaultConnectTimeout=<value in milliseconds>
The default value set by the protocol handlers is -1, which means that no
timeout is set.

When a connection is made by an applet to a server and the server does not
respond properly, the applet might seem to hang. The delay might also cause
the browser to hang. The apparent hang occurs because there is no network
connection timeout. To avoid this problem, the Java Plug-in has added a
default value to the network timeout of 2 minutes for all HTTP connections.
You can override the default by setting this property.

-Dsun.net.client.defaultReadTimeout
Specifies the default value for the read timeout for the protocol handlers used by
the java.net.URLConnection class when reading from an input stream when a
connection is established to a resource.

-Dsun.net.client.defaultReadTimeout=<value in milliseconds>
The default value set by the protocol handlers is -1, which means that no
timeout is set.

-Dsun.nio.MaxDirectMemorySize
Limits the native memory size for nio Direct Byte Buffer objects to the value
specified.

Chapter 10. Reference 427

|

|
|
|

|
|
|

|
|
|
|

|
|
|

-Dsun.nio.MaxDirectMemorySize=<value>
Specify <value> in bytes.

-Dsun.rmi.transport.tcp.connectionPool
Enables thread pooling for the RMI ConnectionHandlers in the TCP transport layer
implementation.

-Dsun.rmi.transport.tcp.connectionPool=val
val is either true or a value that is not null.

-Dswing.useSystemFontSettings
This option addresses compatibility problems for Swing programs.

-Dswing.useSystemFontSettings=[false]
By default, Swing programs running with the Windows Look and Feel render
with the system font set by the user instead of a Java-defined font. As a result,
fonts differ from the fonts in earlier releases. This option addresses
compatibility problems like these for programs that depend on the old
behavior. By setting this option, v1.4.1 fonts and those of earlier releases are
the same for Swing programs running with the Windows Look and Feel.

JVM command-line options
Use these options to configure your JVM. The options prefixed with -X are
nonstandard.

Options that relate to the JIT are listed under “JIT and AOT command-line
options” on page 448. Options that relate to the Garbage Collector are listed under
“Garbage Collector command-line options” on page 453.

-X
Displays help on nonstandard options.

-X Displays help on nonstandard options.

-Xaggressive
Enables performance optimizations.

-Xaggressive
Enables performance optimizations and new platform exploitation that are
expected to be the default in future releases.

-Xargencoding
Include Unicode escape sequences in the argument list.

-Xargencoding
You can put Unicode escape sequences in the argument list. This option is set
to off by default.

-Xbootclasspath
Sets the search path for bootstrap classes and resources.

-Xbootclasspath:<directories and compressed or Java archive files separated
by : (; on Windows)>

The default is to search for bootstrap classes and resources in the internal VM
directories and .jar files.

-Xbootclasspath/a:

Appends to the end of the search path for bootstrap classes.

428 IBM SDK for Java: SDK and Runtime Guide

-Xbootclasspath/a:<directories and compressed or Java archive files
separated by : (; on Windows)>

Appends the specified directories, compressed files, or .jar files to the end of
the bootstrap class path. The default is to search for bootstrap classes and
resources in the internal VM directories and .jar files.

-Xbootclasspath/p:

Adds a prefix to the search path for bootstrap classes.

-Xbootclasspath/p:<directories and compressed or Java archive files
separated by : (; on Windows)>

Adds a prefix of the specified directories, compressed files, or Java archive files
to the front of the bootstrap class path. Do not deploy applications that use the
-Xbootclasspath: or the -Xbootclasspath/p: option to override a class in the
standard API. The reason is that such a deployment contravenes the Java 2
Runtime Environment binary code license. The default is to search for
bootstrap classes and resources in the internal VM directories and .jar files.

-Xcheck
You can use the -Xcheck option to run checks during JVM startup, such as memory
checks or checks on JNI functions.

-Xcheck:<option>
The options available are detailed in separate topics.

-Xcheck:classpath:

Displays a warning message if an error is discovered in the class path.

-Xcheck:classpath
Checks the classpath and reports if an error is discovered; for example, a
missing directory or JAR file.

-Xcheck:gc:

Runs additional checks on garbage collection.

-Xcheck:gc[:<scan options>][:<verify options>][:<misc options>]
By default, no checks are made. See the output of -Xcheck:gc:help for more
information.

-Xcheck:jni:

Runs additional checks for JNI functions.

-Xcheck:jni[:help][:<option>=<value>]
This option is equivalent to -Xrunjnichk. By default, no checks are made.

-Xcheck:memory:

Identifies memory leaks inside the JVM.

-Xcheck:memory[:<option>]
Identifies memory leaks inside the JVM using strict checks that cause the JVM
to exit on failure. If no option is specified, all is used by default. The available
options are as follows:

all
Enables checking of all allocated and freed blocks on every free and

Chapter 10. Reference 429

allocate call. This check of the heap is the most thorough. It typically
causes the JVM to exit on nearly all memory-related problems soon after
they are caused. This option has the greatest affect on performance.

callsite=<number of allocations>

Displays callsite information every <number of allocations>. De-allocations
are not counted. Callsite information is presented in a table with separate
information for each callsite. Statistics include:
v The number and size of allocation and free requests since the last report.
v The number of the allocation request responsible for the largest

allocation from each site.

Callsites are presented as sourcefile:linenumber for C code and assembly
function name for assembler code.

Callsites that do not provide callsite information are accumulated into an
"unknown" entry.

failat=<number of allocations>
Causes memory allocation to fail (return NULL) after <number of
allocations>. Setting <number of allocations> to 13 causes the 14th allocation
to return NULL. De-allocations are not counted. Use this option to ensure
that JVM code reliably handles allocation failures. This option is useful for
checking allocation site behavior rather than setting a specific allocation
limit.

ignoreUnknownBlocks
Ignores attempts to free memory that was not allocated using the
-Xcheck:memory tool. Instead, the -Xcheck:memory statistics that are
printed out at the end of a run indicates the number of “unknown” blocks
that were freed.

mprotect=<top|bottom>
Locks pages of memory on supported platforms, causing the program to
stop if padding before or after the allocated block is accessed for reads or
writes. An extra page is locked on each side of the block returned to the
user.

If you do not request an exact multiple of one page of memory, a region on
one side of your memory is not locked. The top and bottom options control
which side of the memory area is locked. top aligns your memory blocks
to the top of the page (lower address), so buffer underruns result in an
application failure. bottom aligns your memory blocks to the bottom of the
page (higher address) so buffer overruns result in an application failure.

Standard padding scans detect buffer underruns when using top and
buffer overruns when using bottom.

nofree
Keeps a list of blocks that are already used instead of freeing memory. This
list, and the list of currently allocated blocks, is checked for memory
corruption on every allocation and deallocation. Use this option to detect a
dangling pointer (a pointer that is "dereferenced" after its target memory is
freed). This option cannot be reliably used with long-running applications
(such as WebSphere Application Server), because “freed” memory is never
reused or released by the JVM.

noscan
Checks for blocks that are not freed. This option has little effect on

430 IBM SDK for Java: SDK and Runtime Guide

performance, but memory corruption is not detected. This option is
compatible only with subAllocator, callsite, and callsitesmall.

quick
Enables block padding only and is used to detect basic heap corruption.
Every allocated block is padded with sentinel bytes, which are verified on
every allocate and free. Block padding is faster than the default of checking
every block, but is not as effective.

skipto=<number of allocations>
Causes the program to check only on allocations that occur after <number
of allocations>. De-allocations are not counted. Use this option to speed up
JVM startup when early allocations are not causing the memory problem.
The JVM performs approximately 250+ allocations during startup.

subAllocator[=<size in MB>]
Allocates a dedicated and contiguous region of memory for all JVM
allocations. This option helps to determine if user JNI code or the JVM is
responsible for memory corruption. Corruption in the JVM subAllocator
heap suggests that the JVM is causing the problem; corruption in the
user-allocated memory suggests that user code is corrupting memory.
Typically, user and JVM allocated memory are interleaved.

zero
Newly allocated blocks are set to 0 instead of being filled with the
0xE7E7xxxxxxxxE7E7 pattern. Setting these blocks to 0 helps you to
determine whether a callsite is expecting zeroed memory, in which case the
allocation request is followed by memset(pointer, 0, size).

Note: The -Xcheck:memory option cannot be used in the -Xoptionsfile.

-Xcheck:vm:

Performs additional checks on the JVM.

-Xcheck:vm[:<option>]
By default, no checking is performed. For more information, run
-Xcheck:vm:help.

-Xclassgc
Enables dynamic unloading of classes by the JVM. Garbage collection of class
objects occurs only on class loader changes.

-Xclassgc
Dynamic unloading is the default behavior. To disable dynamic class
unloading, use the -Xnoclassgc option.

-Xcompressedrefs
Enables the use of compressed references.

-Xcompressedrefs
(64-bit only) To disable compressed references, use the
-Xnocompressedreferences option. For more information, see “Compressed
references” on page 27.

From service refresh 4, compressed references are enabled by default for all
platforms other than z/OS, but only when the value of the -Xmx garbage
collector option is less than or equal to 25 GB. Before service refresh 4,
compressed references were disabled by default for all platforms.

Chapter 10. Reference 431

|
|
|
|

You cannot include this option in an options file. You must specify this option
on the command line, or by using the IBM_JAVA_OPTIONS environment variable.

-XCEEHDLR
Controls 31-bit z/OS JVM Language Environment condition handling.

-XCEEHDLR (31-bit z/OS only)
This option is used to control 31-bit z/OS JVM Language Environment
condition handling. Use the -XCEEHDLR option if you want the new behavior for
the Java and COBOL interoperability batch mode environment, because this
option makes signal and condition handling behavior more predictable in a
mixed Java and COBOL environment.

When the -XCEEHDLR option is enabled, a condition triggered by an arithmetic
operation while executing a Java Native Interface (JNI) component causes the
JVM to convert the Language Environment condition into a Java
ConditionException.

When the -XCEEHDLR option is used the JVM does not install POSIX signal
handlers for the following signals:
v SIGBUS
v SIGFPE
v SIGILL
v SIGSEGV
v SIGTRAP

Instead, user condition handlers are registered by the JVM, using the
CEEHDLR() method. These condition handlers are registered every time a
thread calls into the JVM. Threads call into the JVM using the Java Native
Interface and including the invocation interfaces, for example
JNI_CreateJavaVM.

The JRE continues to register POSIX signal handlers for the following signals:
v SIGABRT
v SIGINT
v SIGQUIT
v SIGTERM

Signal chaining using the libjsig.so library is not supported.

When the -XCEEHDLR option is used, condition handler actions take place in the
following sequence:
1. All severity 0 and severity 1 conditions are percolated.
2. If a Language Environment condition is triggered in JNI code as a result of

an arithmetic operation, the JVM condition handler resumes executing Java
code as if the JNI native code had thrown a
com.ibm.le.conditionhandling.ConditionException exception. This exception
class is a subclass of java.lang.RuntimeException.

Note: The Language Environment conditions that correspond to arithmetic
operations are CEE3208S through CEE3234S. However, the Language
Environment does not deliver conditions CEE3208S, CEE3213S, or
CEE3234S to C applications, so the JVM condition handler will not receive
them.

432 IBM SDK for Java: SDK and Runtime Guide

3. If the condition handling reaches this step, the condition is considered to be
unrecoverable. RAS diagnostic information is generated, and the JVM ends
by calling the CEE3AB2() service with abend code 3565, reason code 0, and
cleanup code 0.

-Xdiagnosticscollector
Enables the Diagnostics Collector.

-Xdiagnosticscollector[:settings=<filename>]
See “The Diagnostics Collector” on page 328 for more information. The settings
option allows you to specify a different Diagnostics Collector settings file to
use instead of the default dc.properties file in the JRE.

-Xdisablejavadump
Turns off Javadump generation on errors and signals.

-Xdisablejavadump
By default, Javadump generation is enabled.

-Xdump
Use the -Xdump option to add and remove dump agents for various JVM events,
update default dump settings (such as the dump name), and limit the number of
dumps that are produced.

-Xdump
See “Using dump agents” on page 221 for more information.

-Xenableexplicitgc
This options tells the VM to trigger a garbage collection when a call is made to
System.gc().

-Xenableexplicitgc
Signals to the VM that calls to System.gc() trigger a garbage collection. This
option is enabled by default.

-Xfastresolve
Tune performance by improving the resolution time for classes.

-Xfastresolve<n>
This option is used to tune performance by improving the resolution time for
classes when the field count exceeds the threshold specified by <n>. If profiling
tools show significant costs in field resolution, change the threshold until the
costs are reduced. If you enable this option, additional memory is used when
the threshold is exceeded.

-Xfuture
Turns on strict class-file format checks.

-Xfuture
Use this flag when you are developing new code because stricter checks will
become the default in future releases. By default, strict format checks are
disabled.

-Xifa
Enables Java applications to run on IFAs if they are available.

-Xifa:<on | off | force> (z/OS only)
z/OS V1R6 or later can run Java applications on a new type of special-purpose
assist processor called the System z Application Assist Processor (zAAP). The
zAAP is also known as an IFA (Integrated Facility for Applications).

Chapter 10. Reference 433

The -Xifa option enables Java applications to run on IFAs if they are available.
The default value for the -Xifa option is on. Only Java code and system native
methods can be on IFA processors.

The force option is obsolete and should not be used. This option is superseded
by the SYS1.PARMLIB(IEAOPTxx) PROJECTCPU=YES parameter, which is available
on all supported levels of z/OS. Xifa:force can be used for testing purposes
when a zAAP is not available, but can have a negative performance impact.

-Xiss
Sets the initial stack size for Java threads.

-Xiss<size>
By default, the stack size is set to 2 KB. Use the -verbose:sizes option to
output the value that the VM is using.

-Xjarversion
Produces output information about the version of each .jar file.

-Xjarversion
Produces output information about the version of each .jar file in the class
path, the boot class path, and the extensions directory. Version information is
taken from the Implementation-Version and Build-Level properties in the
manifest of the .jar file.

Note: The -Xjarversion option cannot be used in the -Xoptionsfile.

-Xjni
Sets JNI options.

-Xjni:<suboptions>
You can use the following suboption with the -Xjni option:

-Xjni:arrayCacheMax=[<size in bytes>|unlimited]
Sets the maximum size of the array cache. The default size is 8096 bytes.

-Xlinenumbers
Displays line numbers in stack traces for debugging.

-Xlinenumbers
See also -Xnolinenumbers. By default, line numbers are on.

-Xlockword
Test whether performance optimizations are negatively impacting an application.

-Xlockword:<options>

-Xlockword:[mode=all|mode=default]
See “Testing JVM optimizations” on page 192.

-Xlockword:nolockword=<class_name>
This option removes the lockword from object instances of the class
<class_name>, reducing the space required for these objects. However, this
action might have an adverse effect on synchronization for those objects.
You should not use this option unless you are directed to by IBM service.

-Xlog
Enables message logging.

-Xlog[:help]|[:<option>]

Optional parameters are:

434 IBM SDK for Java: SDK and Runtime Guide

|

|
|

|
|
|
|
|

v help - details the options available
v error - turns on logging for all JVM error messages (default).
v vital - turns on logging for selected information messages JVMDUMP006I,

JVMDUMP032I, and JVMDUMP033I, which provide valuable additional
information about dumps produced by the JVM (default).

v info - turns on logging for all JVM information messages
v warn - turns on logging for all JVM warning messages
v config - turns on logging for all JVM configuration messages
v all - turns on logging for all JVM messages
v none - turns off logging for all JVM messages

Note: Changes made to message logging using the -Xlog option do not affect
messages written to the standard error stream (stderr).
The options all, none and help must be used on their own and cannot be
combined. However, the other options can be grouped. For example, to include
error, vital and warning messages use -Xlog:error,vital,warn. For message
details see “JVM messages” on page 465.

-Xlp
Requests the JVM to allocate the Java object heap with large pages.

-Xlp[<size>]
z/OS: Requests the JVM to allocate the Java object heap using large page sizes.
If <size> is not specified, the 1M nonpageable size is used. If large pages are
not supported by the hardware, or enabled in RACF, the JVM does not start
and produces an error message.

Allocating large pages using -Xlp[<size>] is only supported on the 64-bit SDK
for z/OS, not the 31-bit JVM for z/OS.

1M pageable pages, when available, are the default size for the object heap and
the code cache. The options that control these sizes are Xlp:codecache: and
-Xlp:objectheap:.

On z/OS, -Xlp<size> only supports a large page size of 2G and 1M
(nonpageable).

For more information, see “Configuring large page memory allocation” on
page 154.

AIX, Linux, Windows, and z/OS: If a <size> is specified, the JVM attempts to
allocate the JIT code cache memory using pages of that size. If unsuccessful, or
if executable pages of that size are not supported, 1M pageable is attempted. If
1M pageable is not available, the JIT code cache memory is allocated using the
default or smallest available executable page size.

-Xlp1M uses a 1M pageable size for the code cache, when available. -Xlp2G sets
the object heap size, but generates a warning that 2G nonpageable pages
cannot be used for the code cache. Use the -Xlp:objectheap=2G,nonpageable
option to avoid the warning.

All platforms: To obtain the large page sizes available and the current setting,
use the -verbose:sizes option. Note the current settings are the requested
sizes and not the sizes obtained. For object heap size information, check the
-verbose:gc output.

There is no error message issued when the operating system does not have
sufficient resources to satisfy the request. This limitation and a workaround for

Chapter 10. Reference 435

|
|
|

|

|
|
|
|

verifying the page size used can be found in Known limitations.
For more information, see “Configuring large page memory allocation” on
page 154.

-Xlp:codecache:

Requests the JVM to allocate the JIT code cache by using large page sizes.

-Xlp:codecache:pagesize=<size>,pageable (z/OS)

If the requested large page size is not available, the JVM starts, but the JIT
code cache is allocated using a platform-defined size. A warning is displayed
when the requested page size is not available.

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and
not the sizes obtained.

For more information, see “Configuring large page memory allocation” on
page 154.

1M pageable pages, when available, are the default size for the code cache.

z/OS: The -Xlp:codecache:pagesize=<size>,pageable option supports only a
large page size of 1M pageable large pages. The use of 1M pageable large
pages for the JIT code cache can improve the runtime performance of some
Java applications. A page size of 4K can also be used.

-Xlp:objectheap:

Requests the JVM to allocate the Java object heap by using large page sizes.

-Xlp:objectheap:pagesize=<size>,[non]pageable (z/OS)

If the requested large page size is not available, the JVM starts, but the Java
object heap is allocated using a platform-defined size. A warning is displayed
when the requested page size is not available.

To obtain the large page sizes available and the current setting, use the
-verbose:sizes option. Note the current settings are the requested sizes and
not the sizes obtained. For object heap size information, check the -verbose:gc
output.

For more information, see “Configuring large page memory allocation” on
page 154.

z/OS: The [non]pageable argument defines the type of memory to allocate for
the Java object heap.

1M pageable pages, when available, are the default size for the object heap.

Supported large page sizes are 2G nonpageable, 1M nonpageable, and 1M
pageable.

A page size of 4K can also be used.

All platforms: There is no error message issued when the operating system
does not have sufficient resources to satisfy the request. This limitation and a
workaround for verifying which page size is used can be found in “Known
issues and limitations” on page 476.

-Xmso
Sets the initial stack size for operating system threads.

436 IBM SDK for Java: SDK and Runtime Guide

|

|
|
|

|
|
|

|
|

|

|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

|

|
|

|

|
|
|
|

-Xmso<size>
The default value can be determined by running the command:
java -verbose:sizes

The maximum value for the stack size varies according to platform and
specific machine configuration. If you exceed the maximum value, a
java/lang/OutOfMemoryError message is reported.

-Xnoagent
Disables support for the old JDB debugger.

-Xnoagent
Disables support for the old JDB debugger.

-Xnoclassgc
Disables class garbage collection.

-Xnoclassgc
This option switches off garbage collection of storage associated with Java
classes that are no longer being used by the JVM. The default behavior is as
defined by -Xclassgc. Enabling this option is not recommended except under
the direction of the IBM Java support team. The reason is the option can cause
unlimited native memory growth, leading to out-of-memory errors.

-Xnocompressedrefs
Disables the use of compressed references.

-Xnocompressedrefs
(64-bit only) To enable compressed references, use the -Xcompressedreferences
option. For more information, see “Compressed references” on page 27.

From service refresh 4, compressed references are enabled by default for all
platforms other than z/OS, but only when the value of the -Xmx garbage
collector option is less than or equal to 25 GB. Before service refresh 4,
compressed references were disabled by default for all platforms.

You cannot include this option in an options file. You must specify this option
on the command line, or by using the IBM_JAVA_OPTIONS environment variable.

-Xnolinenumbers
Disables the line numbers for debugging.

-Xnolinenumbers
See also -Xlinenumbers. By default, line number are on.

If you start the JVM with -Xnolinenumbers when creating a new shared classes
cache, the Class Debug Area is not created. The option -Xnolinenumbers
advises the JVM not to load any class debug information, so there is no need
for this region. If -Xscdmx is also used on the command line to specify a non
zero debug area size, then a debug area is created despite the use of
-Xnolinenumbers.

-Xnosigcatch
Disables JVM signal handling code.

-Xnosigcatch
See also -Xsigcatch. By default, signal handling is enabled.

-Xnosigchain
Disables signal handler chaining.

Chapter 10. Reference 437

|
|
|
|

-Xnosigchain
See also -Xsigchain. By default, the signal handler chaining is enabled, except
for z/OS.

-Xoptionsfile
Specifies a file that contains JVM options and definitions.

-Xoptionsfile=<file>
where <file> contains options that are processed as if they had been entered
directly as command-line options. By default, a user option file is not used.

Here is an example of an options file:
#My options file
-X<option1>
-X<option2>=\
<value1>,\
<value2>
-D<sysprop1>=<value1>

The options file does not support these options:
v -assert

v -fullversion

v -help

v -showversion

v -version

v -Xcompressedrefs

v -Xcheck:memory

v -Xjarversion

v -Xoptionsfile

Although you cannot use -Xoptionsfile recursively within an options file, you
can use -Xoptionsfile multiple times on the same command line to load more
than one options files.

Some options use quoted strings as parameters. Do not split quoted strings
over multiple lines using the line continuation character '\'. The '¥' character is
not supported as a line continuation character. For example, the following
example is not valid in an options file:
-Xevents=vmstop,exec="cmd /c \
echo %pid has finished."

The following example is valid in an options file:
-Xevents=vmstop, \
exec="cmd /c echo %pid has finished."

-Xoss
Sets the maximum Java stack size for any thread.

-Xoss<size>
Recognized but deprecated. Use -Xss and -Xmso instead. The maximum value
for the stack size varies according to platform and specific machine
configuration. If you exceed the maximum value, a java/lang/
OutOfMemoryError message is reported.

-Xrdbginfo
Loads the remote debug information server with the specified host and port.

438 IBM SDK for Java: SDK and Runtime Guide

-Xrdbginfo:<host>:<port>
By default, the remote debug information server is disabled.

-Xrs
Disables signal handling in the JVM.

-Xrs
Setting -Xrs prevents the Java run time environment from handling any
internally or externally generated signals such as SIGSEGV and SIGABRT. Any
signals raised are handled by the default operating system handlers. Disabling
signal handling in the JVM reduces performance by approximately 2-4%,
depending on the application.

-Xrs:sync
As with -Xrs, the use of -Xrs:sync reduces performance by approximately
2-4%, depending on the application.

-Xscdmx
Use the -Xscdmx option to control the size of the class debug area when creating a
shared class cache.

-Xscdmx<size>
The -Xscdmx option works in a similar way to the -Xscmx option used to
control the overall size of the shared class cache. The size of -Xscdmx must not
exceed the size of -Xscmx. By default, the size of the class debug area is a
percentage of the free bytes in a newly created or empty cache.

size is expressed as an absolute value.

A class debug area is still created if you use the -Xnolinenumbers option with
the -Xscdmx option on the command line.

-Xscmx
Specifies cache size.

-Xscmx<size>
This option applies only if a cache is being created and no cache of the same
name exists. The default cache size is platform-dependent. You can find out the
size value being used by adding -verbose:sizes as a command-line argument.
Minimum cache size is 4 KB. Maximum cache size is platform-dependent. The
size of cache that you can specify is limited by the amount of physical memory
and paging space available to the system. The virtual address space of a
process is shared between the shared classes cache and the Java heap.
Increasing the maximum size of the Java heap reduces the size of the shared
classes cache that you can create.

-Xshareclasses
Enables class sharing.

-Xshareclasses:<suboptions>

This option can take a number of suboptions, some of which are cache utilities.
Cache utilities perform the required operation on the specified cache, without
starting the VM. You can combine multiple suboptions, separated by commas,
but the cache utilities are mutually exclusive.

You can use the following suboptions with the -Xshareclasses option:

cacheDir=<directory>
Sets the directory in which cache data is read and written. By default,
<directory> is /tmp/javasharedresources on Linux, AIX, z/OS, and IBM i.

Chapter 10. Reference 439

You must have sufficient permissions in <directory>. Nonpersistent caches
are stored in shared memory and have control files that describe the
location of the memory. Control files are stored in a javasharedresources
subdirectory of the cacheDir specified. Do not move or delete control files
in this directory. The listAllCaches utility, the destroyAll utility, and the
expire suboption work only in the scope of a given cacheDir.

cacheDirPerm=<permission>
Sets UNIX-style permissions when creating a cache directory. <permission>
must be an octal number in the ranges 0700 - 0777 or 1700 - 1777. If
<permission> is not valid, the JVM terminates with an appropriate error
message.

The permissions specified by this suboption are used only when creating a
new cache directory. If the cache directory already exists, this suboption is
ignored and the cache directory permissions are not changed.

If you set this suboption to 0000, the default directory permissions are
used. If you set this suboption to 1000, the machine default directory
permissions are used, but the sticky bit is enabled.If the cache directory is
the platform default directory, /tmp/javasharedresources, this suboption is
ignored and the cache directory permissions are set to 777. If you do not
set this suboption, the cache directory permissions are set to 777, for
compatibility with earlier Java versions.

cacheRetransformed
Enables caching of classes that are transformed by using the JVMTI
RetransformClasses function. See “JVMTI redefinition and retransformation
of classes” on page 354 for more information.

destroy (Utility option)
Destroys a cache that is specified by the name, cacheDir, and nonpersistent
suboptions. A cache can be destroyed only if all JVMs using it have shut
down and the user has sufficient permissions.

destroyAll (Utility option)
Tries to destroy all caches available using the specified cacheDir and
nonpersistent suboptions. A cache can be destroyed only if all JVMs using
it have shut down and the user has sufficient permissions.

disableBCI
Turns off BCI support. This option can be used to override
-XX:ShareClassesEnableBCI. For more information, see “JVM -XX
command-line options” on page 446.

enableBCI

Allows a JVMTI ClassFileLoadHook event to be triggered every time, for
classes that are loaded from the cache. This mode also prevents caching of
classes that are modified by JVMTI agents. For more information about this
option, see “Using the JVMTI ClassFileLoadHook with cached classes” on
page 353. This option is incompatible with the cacheRetransformed option.
Using the two options together causes the JVM to end with an error
message, unless -Xshareclasses:nonfatal is specified. In this case, the
JVM continues without using shared classes.

This mode stores more data into the cache, and creates a Raw Class Data
area by default. See the rcdSize= suboption. When using this suboption,
the cache size might need to be increased with -Xscmx<size>.

440 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

A cache that is created without the enableBCI suboption cannot be reused
with the enableBCI suboption. Attempting to do so causes the JVM to end
with an error message, unless -Xshareclasses:nonfatal is specified. In this
case, the JVM continues without using shared classes. A cache that is
created with the enableBCI suboption can be reused without specifying this
suboption. In this case, the JVM detects that the cache was created with the
enableBCI suboption and uses the cache in this mode.

expire=<time in minutes> (Utility option)
Destroys all caches that are unused for the time that is specified before
loading shared classes. This option is not a utility option because it does
not cause the JVM to exit.

groupAccess
Sets operating system permissions on a new cache to allow group access to
the cache. Group access can be set only when permitted by the operating
system umask setting. The default is user access only.

help
Lists all the command-line options.

listAllCaches (Utility option)
Lists all the compatible and incompatible caches that exist in the specified
cache directory. If you do not specify cacheDir, the default directory is
used. Summary information, such as Java version and current usage, is
displayed for each cache.

Note: Some features, when enabled, result in the creation of caches that
cannot be shared with caches that are created when the feature is disabled.
The multitenancy support is one such example. In this situation, you can
have more than one cache with the same name. The output from the
listAllCaches option has a feature column which lists the feature that
created the cache, usually default. For multitenancy support, the feature is
mt, and the cache is listed in the Incompatible shared caches section of the
output.

mprotect=[all | default | none]
By default, the memory pages that contain the cache are always protected,
unless a specific page is being updated. This protection helps prevent
accidental or deliberate corruption to the cache. The cache header is not
protected by default because this protection has a small performance cost.
Specifying all ensures that all the cache pages are protected, including the
header. Specifying none disables the page protection.

modified=<modified context>
Used when a JVMTI agent is installed that might modify bytecode at run
time. If you do not specify this suboption and a bytecode modification
agent is installed, classes are safely shared with an extra performance cost.
The <modified context> is a descriptor chosen by the user; for example,
myModification1. This option partitions the cache, so that only JVMs using
context myModification1 can share the same classes. For instance, if you run
an application with a modification context and then run it again with a
different modification context, all classes are stored twice in the cache. See
“Dealing with runtime bytecode modification” on page 351 for more
information.

name=<name>
Connects to a cache of a given name, creating the cache if it does not exist.
This option is also used to indicate the cache that is to be modified by

Chapter 10. Reference 441

|
|
|
|
|
|
|

cache utilities; for example, destroy. Use the listAllCaches utility to show
which named caches are currently available. If you do not specify a name,
the default name “sharedcc_%u” is used. "%u" in the cache name inserts
the current user name. You can specify “%g” in the cache name to insert
the current group name.

Note: Some features, when enabled, result in the creation of caches that
cannot be shared with caches that were created when the feature was
disabled. The multitenancy support is one such example. In this situation,
you can have more than one cache with the same name.

noaot
Disables caching and loading of AOT code.

noBootclasspath
Disables the storage of classes loaded by the bootstrap class loader in the
shared classes cache. Often used with the SharedClassURLFilter API to
control exactly which classes are cached. See “Using the SharedClassHelper
API” on page 359 for more information about shared class filtering.

none
Added to the end of a command line, disables class data sharing. This
suboption overrides class sharing arguments found earlier on the
command line.

nonfatal
Allows the JVM to start even if class data sharing fails. Normal behavior
for the JVM is to refuse to start if class data sharing fails. If you select
nonfatal and the shared classes cache fails to initialize, the JVM attempts
to connect to the cache in read-only mode. If this attempt fails, the JVM
starts without class data sharing.

printAllStats (Utility option)
Displays detailed information about the contents of the cache that is
specified in the name=<name> suboption. If the name is not specified,
statistics are displayed about the default cache. Every class is listed in
chronological order with a reference to the location from which it was
loaded. See “printAllStats utility” on page 366 for more information.

printStats[=<data_types>] (Utility option)
Displays summary information for the cache that is specified by the name,
cacheDir, and nonpersistent suboptions. The most useful information that
is displayed is how full the cache is and how many classes it contains.
Stale classes are classes that are updated on the file system and which the
cache has therefore marked as "stale". Stale classes are not purged from the
cache and can be reused.

Specify one or more data types, which are separated by a plus symbol (+),
to additionally see more detailed information about the cache content. Data
types include AOT data, class paths, and ROMMethods.See “printStats
utility” on page 362 for more information.

rcdSize=nnn

Controls the size of the Raw Class Data Area. The number of bytes passed
to rcdSize must always be less than the total cache size. This value is
always rounded down to the nearest multiple of the system page size. For
example, these variations specify a Raw Class Data Area with a size of 1
MB:

442 IBM SDK for Java: SDK and Runtime Guide

|

|
|
|
|
|

-Xshareclasses:enableBCI,rcdSize=1048576
-Xshareclasses:enableBCI,rcdSize=1024k
-Xshareclasses:enableBCI,rcdSize=1m

If rcdSize is not used, and enableBCI is used, the JVM chooses a default
Raw Class Data Area size.

If rcdSize is used, memory is reserved in the cache regardless of whether
enableBCI is used.

If neither rcdSize or enableBCI is used, nothing is reserved in the cache for
the Raw Class Data Area.

readonly
Opens an existing cache with read-only permissions. The JVM does not
create a new cache with this suboption. Opening a cache read-only
prevents the JVM from making any updates to the cache. It also allows the
JVM to connect to caches created by other users or groups without
requiring write access. By default, this suboption is not specified.

reset
Causes a cache to be destroyed and then re-created when the JVM starts
up. This option can be added to the end of a command line as
-Xshareclasses:reset.

silent
Disables all shared class messages, including error messages.
Unrecoverable error messages, which prevent the JVM from initializing, are
displayed.

verbose
Gives detailed output on the cache I/O activity, listing information about
classes that are stored and found. Each class loader is given a unique ID
(the bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is typical to see many failed requests;
this behavior is expected for the class loader hierarchy. The standard
option -verbose:class also enables class sharing verbose output if class
sharing is enabled.

verboseAOT
Enables verbose output when compiled AOT code is being found or stored
in the cache. AOT code is generated heuristically. You might not see any
AOT code that is generated at all for a small application. You can disable
AOT caching using the noaot suboption. See the IBM JVM Messages Guide
for a list of the messages produced.

verboseHelper
Enables verbose output for the Java Helper API. This output shows you
how the Helper API is used by your class loader.

verboseIO
Gives detailed output on the cache I/O activity, listing information about
classes that are stored and found. Each class loader is given a unique ID
(the bootstrap loader is always 0) and the output shows the class loader
hierarchy at work, where class loaders must ask their parents for a class
before they can load it themselves. It is typical to see many failed requests;
this behavior is expected for the class loader hierarchy.

-Xsigcatch
Enables VM signal handling code.

Chapter 10. Reference 443

|
|
|

|
|

|
|

|
|

-Xsigcatch
See also -Xnosigcatch. By default, signal handling is enabled.

-Xsigchain
Enables signal handler chaining.

-Xsigchain
See also -Xnosigchain. By default, signal handler chaining is enabled.

-Xsignal:posixSignalHandler=cooperativeShutdown
This option affects the behavior of JVM signal handlers.

-Xsignal:posixSignalHandler=cooperativeShutdown
When the JVM signal handlers for SIGSEGV, SIGILL, SIGBUS, SIGFPE,
SIGTRAP, and SIGABRT end a process, they call exit(), by default. In this case,
the z/OS Language Environment is not aware that the JVM ended abnormally.

With -Xsignal:posixSignalHandler=cooperativeShutdown, the JVM no longer
uses exit() to end the process from the signal handlers. Instead, the JVM
behaves in one of the following ways:
v In response to a z/OS hardware exception, the JVM uses return().
v In response to signals raised or injected by software, the JVM ends the

enclave with abend 3565.

Language Environment detects that the JVM is ending abnormally and initiates
Resource Recovery Services. For more information about signal handlers, see
“Signals used by the JVM” on page 124.

-Xsignal:userConditionHandler=percolate (31-bit z/OS only)
This option results in similar behavior to the -XCEEHDLR option: the JVM registers
user condition handlers to handle the z/OS exceptions that would otherwise be
handled by the JVM POSIX signal handlers for the SIGBUS, SIGFPE, SIGILL,
SIGSEGV, and SIGTRAP signals.\

-Xsignal:userConditionHandler=percolate
As with the -XCEEHDLR option, the JVM does not install POSIX signal handlers
for these signals. This option differs from the -XCEEHDLR option in that the JVM
percolates all Language Environment conditions that were not triggered and
expected by the JVM during normal running, including conditions that are
severity 2 or greater. The JVM generates its own diagnostic information before
percolating severity 2 or greater conditions.

Notes:

v The JVM is in an undefined state after percolating a severity 2 or greater
condition. Applications cannot resume running then call back into, or return
to, the JVM.

v This option is not compatible with the following options:
– -XCEEHDLR

– -Xsignal:posixSignalHandler=cooperativeShutdown

-Xss
Sets the maximum stack size for Java threads.

-Xss<size>
The default is 256 KB for 32-bit JVMs and 512 KB for 64-bit JVMs. The
maximum value varies according to platform and specific machine
configuration. If you exceed the maximum value, a java/lang/
OutOfMemoryError message is reported.

444 IBM SDK for Java: SDK and Runtime Guide

|
|

|
|
|
|

|
|
|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|

|

|

|

-Xssi
Sets the stack size increment for Java threads.

-Xssi<size>
When the stack for a Java thread becomes full it is increased in size by this
value until the maximum size (-Xss) is reached. The default is 16 KB.

-Xthr
-Xthr:<suboptions>

-Xthr:<AdaptSpin|noAdaptSpin>
This tuning option is available to test whether performance optimizations
are negatively impacting an application. See “Testing JVM optimizations”
on page 192.

-Xthr:minimizeUserCPU
Minimizes user-mode CPU usage in thread synchronization where
possible. The reduction in CPU usage might be a trade-off in exchange for
decreased performance.

-Xthr:<secondarySpinForObjectMonitors|noSecondarySpinForObjectMonitors>
This tuning option is available to test whether performance optimizations
are negatively impacting an application. See “Testing JVM optimizations”
on page 192.

-Xtrace
Trace options.

-Xtrace[:help] | [:<option>=<value>, ...]
See “Controlling the trace” on page 293 for more information.

-Xtune:elastic
This option turns on JVM function that accommodates changes in the machine
configuration dynamically at run time.

-Xtune:elastic
Such changes might include the number of processors, or the amount of
installed RAM.

-Xtune:virtualized
Optimizes JVM function for virtualized environments, such as a cloud.

-Xtune:virtualized
Optimizes JVM function for virtualized environments, such as a cloud.

-Xverify
Use this option to enable or disable the verifier.

-Xverify[:<option>]
With no parameters, enables the verifier, which is the default. Therefore, if
used on its own with no parameters, for example, -Xverify, this option does
nothing. Optional parameters are as follows:
v all - enable maximum verification
v none - disable the verifier
v remote - enables strict class-loading checks on remotely loaded classes

The verifier is on by default and must be enabled for all production servers.
Running with the verifier off is not a supported configuration. If you
encounter problems and the verifier was turned off using -Xverify:none,
remove this option and try to reproduce the problem.

Chapter 10. Reference 445

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

-Xzero
Enables reduction of the memory footprint of the Java runtime environment when
concurrently running multiple Java invocations.

-Xzero[:<option>]
-Xzero might not be appropriate for all types of applications because it
changes the implementation of java.util.ZipFile, which might cause extra
memory usage. -Xzero includes the optional parameters:
v j9zip - enables the j9zip sub option
v noj9zip - disables the j9zip sub option
v sharezip - enables the sharezip sub option
v nosharezip - disables the sharezip sub option
v sharebootzip - enables the sharebootzip sub option
v nosharebootzip - disables the sharebootzip sub option
v none - disables all sub options
v describe - prints the sub options in effect

Because future versions might include more default options, -Xzero options are
used to specify the sub options that you want to disable. By default, -Xzero
enables j9zip and sharezip. A combination of j9zip and sharezip enables all
.jar files to have shared caches:
v j9zip - uses a new java.util.ZipFile implementation. This suboption is not

a requirement for sharezip; however, if j9zip is not enabled, only the
bootstrap .jar files have shared caches.

v sharezip - puts the j9zip cache into shared memory. The j9zip cache is a map
of zip entry names to file positions used to quickly find entries in the .zip
file. You must enable -Xshareclasses to avoid a warning message. When
using the sharezip suboption, note that this suboption allows every opened
.zip file and .jar file to store the j9zip cache in shared memory, so you might
fill the shared memory when opening multiple new .zip files and .jar files.
The affected API is java.util.zip.ZipFile (superclass of
java.util.jar.JarFile). The .zip and .jar files do not have to be on a class
path.

v sharebootzip - enabled by default on all platforms. Puts the zip entry caches
for bootstrap .jar files into the shared cache. A zip entry cache is a map of
zip entry names to file positions, used to quickly find entries in the .zip file.

The system property com.ibm.zero.version is defined, and has a current value
of 2. Although -Xzero is accepted on all platforms, support for the sub options
varies by platform:
v -Xzero with the sharebootzip and nosharebootzip sub options are accepted

on all platforms.
v -Xzero with all other sub options are available only on Windows x86-32 and

Linux x86-32 platforms.

.

JVM -XX command-line options
JVM command-line options that are specified with -XX are not recommended for
casual use.

These options are subject to change without notice.

446 IBM SDK for Java: SDK and Runtime Guide

-XXallowvmshutdown
This option is provided as a workaround for customer applications that cannot
shut down cleanly, as described in APAR IZ59734.

-XXallowvmshutdown:[false|true]
Customers who need this workaround should use -XXallowvmshutdown:false.
The default option is -XXallowvmshutdown:true.

-XX:codecachetotal
Use this option to set the maximum size limit for the JIT code cache. This option
also affects the size of the JIT data cache.

-XX:codecachetotal=<size>
This option is an alias for the “-Xcodecachetotal” on page 449 option.

-XX:MaxDirectMemorySize
Sets the maximum size for an nio direct buffer.

-XX:MaxDirectMemorySize=<size>
When you set a value for this property, the size cannot exceed that value. If
you do not set a value, a soft limit of 64 MB is set. The JVM automatically
expands this soft limit in 32 MB chunks, as required.

-XXnosuballoc32bitmem
When compressed references are used with a 64-bit JVM on z/OS, this option
forces the JVM to use 31-bit memory allocation functions provided by z/OS.

-XXnosuballoc32bitmem

This option is provided as a workaround for customers who need to use fewer
pages of 31-bit virtual storage per JVM invocation. Using this option might
result in a small increase in the number of frames of central storage used by
the JVM. However, the option frees 31-bit pages for use by native code or
other applications in the same address space.

If this option is not specified, the JVM uses an allocation strategy for 31-bit
memory that reserves a region of 31-bit virtual memory.

-XX:ShareClassesEnableBCI
This option is equivalent to -Xshareclasses:enableBCI.

-XX:ShareClassesEnableBCI

-XX:ShareClassesEnableBCI can be specified for any version of the IBM J9
virtual machine, but is ignored by JVMs that are earlier than the IBM J9 2.6
virtual machine. If BCI support is enabled with this option, you can turn off
BCI support with -Xshareclasses:disableBCI.

For more information about -Xshareclasses:enableBCI and
-Xshareclasses:disableBCI, see “JVM command-line options” on page 428.

-XX:-StackTraceInThrowable
This option removes stack traces from exceptions.

-XX:-StackTraceInThrowable
By default, stack traces are available in exceptions. Including a stack trace in
exceptions requires walking the stack and that can affect performance.
Removing stack traces from exceptions can improve performance but can also
make problems harder to debug.

Chapter 10. Reference 447

|
|
|

|
|

|
|
|

|

|
|
|
|
|

|
|

|
|

|

|
|
|
|

|
|

When this option is enabled, Throwable.getStackTrace() returns an empty array
and the stack trace is displayed when an uncaught exception occurs.
Thread.getStackTrace() and Thread.getAllStackTraces() are not affected by this
option.

-XX:[+|-]UseCompressedOops (64-bit only)
This option enables or disables compressed references in 64-bit JVMs, and is
provided to help when porting applications from the Oracle JVM to the IBM JVM.
This option might not be supported in subsequent releases.

-XX:[+|-]UseCompressedOops

The -XX:+UseCompressedOops option enables compressed references in 64-bit
JVMs. The -XX:+UseCompressedOops option is similar to specifying
-Xcompressedrefs, which is detailed in the topic “JVM command-line options”
on page 428.

The -XX:-UseCompressedOops option prevents the use of compressed references
in 64-bit JVMs.

-XX:[+|-]VMLockClassLoader
This option affects synchronization on class loaders that are not parallel-capable
class loaders, during class loading.

-XX:[+|-]VMLockClassLoader

The option, -XX:+VMLockClassLoader, causes the JVM to force synchronization
on a class loader that is not a parallel capable class loader during class loading.
This action occurs even if the loadClass() method for that class loader is not
synchronized. For information about parallel capable class loaders, see
java.lang.ClassLoader.registerAsParallelCapable(). Note that this option might
cause a deadlock if class loaders use non-hierarchical delegation. For example,
setting the system property osgi.classloader.lock=classname with Equinox is
known to cause a deadlock.

When specifying the -XX:-VMLockClassLoader option, the JVM does not force
synchronization on a class loader during class loading. The class loader still
conforms to class library synchronization, such as a synchronized loadClass()
method. This is the default option, which might change in future releases.

JIT and AOT command-line options
Use these JIT and AOT compiler command-line options to control code
compilation.

For options that take a <size> parameter, suffix the number with “k” or “K” to
indicate kilobytes, “m” or “M” to indicate megabytes, or “g” or “G” to indicate
gigabytes.

For more information about JIT and AOT, see JIT and AOT problem
determination“JIT and AOT problem determination” on page 322.

-Xaot
Use this option to control the behavior of the AOT compiler.

-Xaot[:<parameter>=<value>, ...]
With no parameters, enables the AOT compiler. The AOT compiler is enabled
by default but is not active unless shared classes are enabled. Using this option
on its own has no effect. The following parameters are useful:

448 IBM SDK for Java: SDK and Runtime Guide

|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|

count=<n>
Where <n> is the number of times a method is called before it is compiled
or loaded from an existing shared class cache. For example, setting count=0
forces the AOT compiler to compile everything on first execution.

limitFile=(<filename>,<m>,<n>)
Compile or load only the methods listed on lines <m> to <n> in the
specified limit file. Methods not listed in the limit file and methods listed
on lines outside the range are not compiled or loaded.

loadExclude=<methods>
Do not load methods beginning with <methods>.

loadLimit=<methods>
Load methods beginning with <methods> only.

loadLimitFile=(<filename>,<m>,<n>)
Load only the methods listed on lines <m> to <n> in the specified limit
file. Methods not listed in the limit file and methods listed on lines outside
the range are not loaded.

verbose
Reports information about the AOT and JIT compiler configuration and
method compilation.

-Xcodecache
This option is used to tune performance.

-Xcodecache<size>
This option sets the size of each block of memory that is allocated to store the
native code of compiled Java methods. By default, this size is selected
internally according to the processor architecture and the capability of your
system. If profiling tools show significant costs in trampolines, that is a good
reason to change the size until the costs are reduced. Changing the size does
not mean always increasing the size. The option provides the mechanism to
tune for the correct size until hot interblock calls are eliminated. A reasonable
starting point to tune for the optimal size is
(totalNumberByteOfCompiledMethods * 1.1).

Note: Trampolines are small pieces of code that facilitate the transition
between two compiled methods that are far apart from each other in memory.

-Xcodecachetotal
Use this option to set the maximum size limit for the JIT code cache. This option
also affects the size of the JIT data cache.

-Xcodecachetotal<size>
See “JIT and AOT command-line options” on page 448 for more information
about the <size> parameter.

By default, the total size of the JIT code cache is determined by your operating
system, architecture, and the version of IBM SDK Java Technology Edition that
you are using. Long-running, complex, server-type applications can fill the JIT
code cache, which can cause performance problems because not all of the
important methods can be JIT-compiled. Use the -Xcodecachetotal option to
increase the maximum code cache size beyond the default setting, to a setting
that suits your application.

Chapter 10. Reference 449

|
|
|

|
|
|

|
|
|
|
|
|
|

The value that you specify is rounded up to a multiple of the code cache block
size, as specified by the “-Xcodecache” on page 449 option. If you specify a
value for the -Xcodecachetotal optoin that is smaller than the default setting,
that value is ignored.

When you use this option, the maximum size limit for the JIT data cache,
which holds metadata about compiled methods, is increased proportionally to
support the additional JIT compilations.

The maximum size limits, for both the JIT code and data caches, that are in use
by the JVM are shown in Javadump output. Look for lines that begin with
1STSEGLIMIT. Use this information together with verbose JIT tracing to
determine suitable values for this option on your system. For example
Javadump output, see “Storage Management (MEMINFO)” on page 248.

Related reference:
“-Xjit” on page 451
Use the JIT compiler command line option to produce verbose JIT trace output.
Related information:
“Using Javadump” on page 240
Javadump produces files that contain diagnostic information that is related to the
JVM and a Java application that is captured at a point during execution. For
example, the information can be about the operating system, the application
environment, threads, stacks, locks, and memory.

-Xcomp (z/OS only)
Forces methods to be compiled by the JIT compiler on their first use.

-Xcomp
The use of this option is deprecated; use -Xjit:count=0 instead.

-XcompilationThreads
Use this option to specify the number of compilation threads that are used by the
JIT compiler.

-XcompilationThreads<number of threads>
The number of threads must be in the range 1 - 4, inclusive. Any other value
prevents the JVM from starting successfully.

Setting the compilation threads to zero does not prevent the JIT from working.
Instead, if you do not want the JIT to work, use the -Xint option.

When multiple compilation threads are used, the JIT might generate several
diagnostic log files. A log file is generated for each compilation thread. The
naming convention for the log file generated by the first compilation thread
follows the same pattern as for IBM SDK and JRE for Java v6.
<specified_filename>.<date>.<time>.<pid>

The first compilation thread has ID 0. Log files generated by the second and
subsequent compilation threads append the ID of the corresponding
compilation thread as a suffix to the log file name. The pattern for these log
file names is as follows:
<specified_filename>.<date>.<time>.<pid>.<compThreadID>

For example, the second compilation thread has ID 1. The result is that the
corresponding log file name has the form:
<specified_filename>.<date>.<time>.<pid>.1

450 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|

|
|
|
|
|

-Xint
This option makes the JVM use the Interpreter only, disabling the Just-In-Time (JIT)
and Ahead-Of-Time (AOT) compilers.

-Xint
By default, the JIT compiler is enabled. By default, the AOT compiler is
enabled, but is not used by the JVM unless shared classes are also enabled.

-Xjit
Use this option to control the behavior of the JIT compiler.

-Xjit[:<parameter>=<value>, ...]
With no parameters, enables the JIT compiler. The JIT compiler is enabled by
default, so using this option on its own has no effect. Useful parameters are:

count=<n>
Where <n> is the number of times a method is called before it is compiled.
For example, setting count=0 forces the JIT compiler to compile everything
on first execution.

exclude={<method>}
Excludes the specified method from compilation.

limitFile=(<filename>, <m>, <n>)
Compile only the methods listed on lines <m> to <n> in the specified limit
file. Methods not listed in the limit file and methods listed on lines outside
the range are not compiled.

optlevel=[noOpt | cold | warm | hot | veryHot | scorching]
Forces the JIT compiler to compile all methods at a specific optimization
level. Specifying optlevel might have an unexpected effect on
performance, including reduced overall performance.

verbose[={compileStart|compileEnd}]
Reports information about the JIT and AOT compiler configuration and
method compilation.

The ={compileStart|compileEnd} option reports when the JIT starts to
compile a method, and when it ends.

vlog=<filename>
Sends verbose output to a file. If you do not specify this parameter, the
output is sent to the standard error output stream (stderr).

Related tasks:
“Diagnosing a JIT or AOT problem” on page 322
Occasionally, valid bytecodes might compile into invalid native code, causing the
Java program to fail. By determining whether the JIT or AOT compiler is faulty
and, if so, where it is faulty, you can provide valuable help to the Java service team.

-Xnoaot
This option turns off the AOT compiler and disables the use of AOT-compiled
code.

-Xnoaot
By default, the AOT compiler is enabled but is active only when shared classes
are also enabled. Using this option does not affect the JIT compiler.

-Xnojit
This option turns off the JIT compiler.

Chapter 10. Reference 451

-Xnojit
By default, the JIT compiler is enabled. This option does not affect the AOT
compiler.

-Xquickstart
This option causes the JIT compiler to run with a subset of optimizations.

-Xquickstart
The effect is faster compilation times that improve startup time, but longer
running applications might run slower. When the AOT compiler is active (both
shared classes and AOT compilation enabled), -Xquickstart causes all methods
to be AOT compiled. The AOT compilation improves the startup time of
subsequent runs, but might reduce performance for longer running
applications. -Xquickstart can degrade performance if it is used with
long-running applications that contain hot methods. The implementation of
-Xquickstart is subject to change in future releases. By default, -Xquickstart
is disabled..

Another way to specify a behavior identical to -Xquickstart is to use the
-client option. These two options can be used interchangeably on the
command line.

-XsamplingExpirationTime
Use this option to disable JIT sampling after a specified amount of time.

-XsamplingExpirationTime<time>
Disables the JIT sampling thread after <time> seconds. When the JIT sampling
thread is disabled, no processor cycles are used by an idle JVM.

-Xscmaxaot
Optionally applies a maximum number of bytes in the class cache that can be used
for AOT data.

-Xscmaxaot<size>
This option is useful if you want a certain amount of cache space guaranteed
for non-AOT data. If this option is not specified, the maximum limit for AOT
data is the amount of free space in the cache. The value of this option must not
be smaller than the value of -Xscminaot and must not be larger than the value
of -Xscmx.

-Xscmaxjitdata
Optionally applies a maximum number of bytes in the class cache that can be used
for JIT data.

-Xscmaxjitdata<x>
This option is useful if you want a certain amount of cache space guaranteed
for non-JIT data. If this option is not specified, the maximum limit for JIT data
is the amount of free space in the cache. The value of this option must not be
smaller than the value of -Xscminjitdata, and must not be larger than the
value of -Xscmx.

-Xscminaot
Optionally applies a minimum number of bytes in the class cache to reserve for
AOT data.

-Xscminaot<size>
If this option is not specified, no space is reserved for AOT data. However,
AOT data is still written to the cache until the cache is full or the -Xscmaxaot
limit is reached. The value of this option must not exceed the value of -Xscmx

452 IBM SDK for Java: SDK and Runtime Guide

or -Xscmaxaot. The value of -Xscminaot must always be considerably less than
the total cache size, because AOT data can be created only for cached classes. If
the value of -Xscminaot equals the value of -Xscmx, no class data or AOT data
can be stored.

-Xscminjitdata
Optionally applies a minimum number of bytes in the class cache to reserve for JIT
data.

-Xscminjitdata<x>
If this option is not specified, no space is reserved for JIT data, although JIT
data is still written to the cache until the cache is full or the -Xscmaxjit limit is
reached. The value of this option must not exceed the value of -Xscmx or
-Xscmaxjitdata. The value of -Xscminjitdata must always be considerably less
than the total cache size, because JIT data can be created only for cached
classes. If the value of -Xscminjitdata equals the value of -Xscmx, no class data
or JIT data can be stored.

Garbage Collector command-line options
Use these Garbage Collector command-line options to control garbage collection.

You might need to read “Memory management” on page 23 to understand some of
the references that are given here.

The -verbose:gc option detailed in “Verbose garbage collection logging” on page
334 is the main diagnostic aid that is available for runtime analysis of the Garbage
Collector. However, additional command-line options are available that affect the
behavior of the Garbage Collector and might aid diagnostic data collection.

For options that take a <size> parameter, suffix the number with "k" or "K" to
indicate kilobytes, "m" or "M" to indicate megabytes, or "g" or "G" to indicate
gigabytes.

For options that take a <percentage> parameter, use a number from 0 to 1, for
example, 50% is 0.5.

-Xalwaysclassgc
Always perform dynamic class unloading checks during global collection.

-Xalwaysclassgc
The default behavior is as defined by -Xclassgc.

-Xclassgc
Enables dynamic unloading of classes by the JVM. Garbage collection of class
objects occurs only on class loader changes.

-Xclassgc
Dynamic unloading is the default behavior. To disable dynamic class
unloading, use the -Xnoclassgc option.

-Xcompactexplicitgc
Enables full compaction each time System.gc() is called.

-Xcompactexplicitgc
Enables full compaction each time System.gc() is called.

-Xcompactgc
Compacts on all garbage collections (system and global).

Chapter 10. Reference 453

-Xcompactgc
The default (no compaction option specified) makes the GC compact based on
a series of triggers that attempt to compact only when it is beneficial to the
future performance of the JVM.

-Xconcurrentbackground
Specifies the number of low-priority background threads attached to assist the
mutator threads in concurrent mark.

-Xconcurrentbackground<number>
The default is 0 on Linux System z and 1 on all other platforms.

-Xconcurrentlevel
Specifies the allocation "tax" rate.

-Xconcurrentlevel<number>
This option indicates the ratio between the amount of heap allocated and the
amount of heap marked. The default is 8.

-Xconcurrentslack
Attempts to keep the specified amount of the heap space free in concurrent
collectors by starting the concurrent operations earlier.

-Xconcurrentslack<size>
Using this option can sometimes alleviate pause time problems in concurrent
collectors at the cost of longer concurrent cycles, affecting total throughput.
The default value is 0, which is optimal for most applications.

-Xconmeter
This option determines the usage of which area, LOA (Large Object Area) or SOA
(Small Object Area), is metered and hence which allocations are taxed during
concurrent mark.

-Xconmeter:<soa | loa | dynamic>
Using -Xconmeter:soa (the default) applies the allocation tax to allocations
from the small object area (SOA). Using -Xconmeter:loa applies the allocation
tax to allocations from the large object area (LOA). If -Xconmeter:dynamic is
specified, the collector dynamically determines which area to meter based on
which area is exhausted first, whether it is the SOA or the LOA.

-Xdisableexcessivegc
Disables the throwing of an OutOfMemory exception if excessive time is spent in
the GC.

-Xdisableexcessivegc
Disables the throwing of an OutOfMemory exception if excessive time is spent
in the GC.

-Xdisableexplicitgc
Disables System.gc() calls.

-Xdisableexplicitgc

Many applications still make an excessive number of explicit calls to
System.gc() to request garbage collection. In many cases, these calls degrade
performance through premature garbage collection and compactions. However,
you cannot always remove the calls from the application.

454 IBM SDK for Java: SDK and Runtime Guide

The -Xdisableexplicitgc parameter allows the JVM to ignore these garbage
collection suggestions. Typically, system administrators use this parameter in
applications that show some benefit from its use.

By default, calls to System.gc() trigger a garbage collection.

-Xdisablestringconstantgc
Prevents strings in the string intern table from being collected.

-Xdisablestringconstantgc
Prevents strings in the string intern table from being collected.

-Xenableexcessivegc
If excessive time is spent in the GC, the option returns null for an allocate request
and thus causes an OutOfMemory exception to be thrown.

-Xenableexcessivegc

The OutOfMemory exception is thrown only when the heap has been fully
expanded and the time spent is making up at least 95%. This behavior is the
default.

You can control the percentage that triggers an excessive GC event with the
-Xgc:excessiveGCratio option. For more information, see “-Xgc.”

-Xenablestringconstantgc
Enables strings from the string intern table to be collected.

-Xenablestringconstantgc
This option is on by default.

-Xgc
Options that change the behavior of the Garbage Collector (GC).

-Xgc:<excessiveGCratio | minContractPercent | maxContractPercent |
overrideHiresTimerCheck | verboseFormat>

excessiveGCratio=value
Where value is a percentage. The default value is 95. This option can be
used only when -Xenableeexcessivegc is set. For more information,
see “-Xenableexcessivegc.”

minContractPercent=<n>
The minimum percentage of the heap that can be contracted at any
given time.

maxContractPercent=<n>
The maximum percentage of the heap that can be contracted at any
given time. For example, -Xgc:maxContractPercent=20 causes the heap
to contract by as much as 20%.

overrideHiresTimerCheck
When the JVM starts, the GC checks that the operating system can
meet the timer resolution requirements for the requested target pause
time. Typically, this check correctly identifies operating systems that
can deliver adequate time resolution. However, in some cases the
operating system provides a more conservative answer than strictly
necessary for GC pause time management, which prevents startup.
Specifying the -Xgc:overrideHiresTimerCheck option causes the GC to
ignore the answer returned by the operating system. The JVM starts,
but GC pause time management remains subject to operating system
performance, which might not provide adequate timer resolution.

Chapter 10. Reference 455

|

|
|
|
|
|
|
|
|
|
|
|

Note: Use this option with caution, and only when you are unable to
use a supported operating system.

verboseFormat=<format>
Accepted values are:
v default: The default verbose garbage collection format for this release

of the SDK. See “Verbose garbage collection logging” on page 334.
v deprecated: The verbose garbage collection format available in earlier

releases of the SDK. For more information, see the Diagnostics
Guide: http://www.ibm.com/developerworks/java/jdk/diagnosis/
index.html.

-Xgcpolicy
Controls the behavior of the Garbage Collector.

-Xgcpolicy:< balanced | gencon | optavgpause | optthruput >

gencon
The gencon policy (default) uses a concurrent mark phase combined with
generational garbage collection to help minimize the time that is spent in
any garbage collection pause. This policy is particularly useful for
applications with many short-lived objects, such as transactional
applications. Pause times can be significantly shorter than with the
optthruput policy, while still producing good throughput. Heap
fragmentation is also reduced.

balanced
The balanced policy uses mark, sweep, compact and generational style
garbage collection. The concurrent mark phase is disabled; concurrent
garbage collection technology is used, but not in the way that concurrent
mark is implemented for other policies. The balanced policy uses a
region-based layout for the Java heap. These regions are individually
managed to reduce the maximum pause time on large heaps and increase
the efficiency of garbage collection. The policy tries to avoid global
collections by matching object allocation and survival rates. If you have
problems with application pause times that are caused by global garbage
collections, particularly compactions, this policy might improve application
performance. For more information about this policy, including when to
use it, see “Balanced Garbage Collection policy” on page 39.

optavgpause
The optavgpause policy uses concurrent mark and concurrent sweep
phases. Pause times are shorter than with optthruput, but application
throughput is reduced because some garbage collection work is taking
place while the application is running. Consider using this policy if you
have a large heap size (available on 64-bit platforms), because this policy
limits the effect of increasing heap size on the length of the garbage
collection pause. However, if your application uses many short-lived
objects, the gencon policy might produce better performance.

subpool
The subpool policy is deprecated and is now an alias for optthruput.
Therefore, if you use this option, the effect is the same as optthruput.

optthruput
The optthruput policy disables the concurrent mark phase. The application
stops during global garbage collection, so long pauses can occur. This
configuration is typically used for large-heap applications when high
application throughput, rather than short garbage collection pauses, is the

456 IBM SDK for Java: SDK and Runtime Guide

|
|

http://www.ibm.com/developerworks/java/jdk/diagnosis/index.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/index.html

main performance goal. If your application cannot tolerate long garbage
collection pauses, consider using another policy, such as gencon.

-Xgcthreads
Sets the number of threads that the Garbage Collector uses for parallel operations.

-Xgcthreads<number>
The total number of GC threads is composed of one application thread with
the remainder being dedicated GC threads. By default, the number is set to
n-1, where n is the number of reported CPUs, up to a maximum of 64. Where
SMT or hyperthreading is in place, the number of reported CPUs is larger than
the number of physical CPUs. Likewise, where virtualization is in place, the
number of reported CPUs is the number of virtual CPUs assigned to the
operating system. To set it to a different number, for example 4, use
-Xgcthreads4. The minimum valid value is 1, which disables parallel
operations, at the cost of performance. No advantage is gained if you increase
the number of threads to more than the default setting.

On systems running multiple JVMs or in LPAR environments where multiple
JVMs can share the same physical CPUs, you might want to restrict the
number of GC threads used by each JVM. The restriction helps prevent the
total number of parallel operation GC threads for all JVMs exceeding the
number of physical CPUs present, when multiple JVMs perform garbage
collection at the same time.

-Xgcworkpackets
Specifies the total number of work packets available in the global collector.

-Xgcworkpackets<number>
If you do not specify a value, the collector allocates a number of packets based
on the maximum heap size.

-Xloa
Allocates a large object area (LOA).

-Xloa
Objects are allocated in this LOA rather than the SOA. By default, the LOA is
enabled for all GC policies except for subpool, where the LOA is not available.

-Xloainitial
Specifies the initial percentage (between 0 and 0.95) of the current tenure space
allocated to the large object area (LOA).

-Xloainitial<percentage>
The default value is 0.05, which is 5%.

-Xloamaximum
Specifies the maximum percentage (between 0 and 0.95) of the current tenure space
allocated to the large object area (LOA).

-Xloamaximum<percentage>
The default value is 0.5, which is 50%.

-Xloaminimum
Specifies the minimum percentage (between 0 and 0.95) of the current tenure space
allocated to the large object area (LOA).

-Xloaminimum<percentage>
The LOA does not shrink to less than this value. The default value is 0, which
is 0%.

Chapter 10. Reference 457

-Xmaxe
Sets the maximum amount by which the garbage collector expands the heap.

-Xmaxe<size>
Typically, the garbage collector expands the heap when the amount of free
space falls to less than 30% (or by the amount specified using -Xminf), by the
amount required to restore the free space to 30%. The -Xmaxe option limits the
expansion to the specified value; for example -Xmaxe10M limits the expansion to
10 MB. By default, there is no maximum expansion size.

-Xmaxf
Specifies the maximum percentage of heap that must be free after a garbage
collection.

-Xmaxf<percentage>
If the free space exceeds this amount, the JVM tries to shrink the heap. The
default value is 0.6 (60%).

-Xmaxt
Specifies the maximum percentage of time to be spent in Garbage Collection.

-Xmaxt<percentage>
If the percentage of time exceeds this value, the JVM tries to expand the heap.
The default value is 13%.

-Xmca
Sets the expansion step for the memory allocated to store the RAM portion of
loaded classes.

-Xmca<size>
Each time more memory is required to store classes in RAM, the allocated
memory is increased by this amount. By default, the expansion step is 32 KB.
Use the -verbose:sizes option to determine the value that the VM is using. If
the expansion step size you choose is too large, OutOfMemoryError is reported.
The exact value of a “too large” expansion step size varies according to the
platform and the specific machine configuration.

-Xmco
Sets the expansion step for the memory allocated to store the ROM portion of
loaded classes.

-Xmco<size>
Each time more memory is required to store classes in ROM, the allocated
memory is increased by this amount. By default, the expansion step is 128 KB.
Use the -verbose:sizes option to determine the value that the VM is using. If
the expansion step size you choose is too large, OutOfMemoryError is reported.
The exact value of a “too large” expansion step size varies according to the
platform and the specific machine configuration.

-Xmine
Sets the minimum amount by which the Garbage Collector expands the heap.

-Xmine<size>
Typically, the garbage collector expands the heap by the amount required to
restore the free space to 30% (or the amount specified using -Xminf). The
-Xmine option sets the expansion to be at least the specified value; for example,
-Xmine50M sets the expansion size to a minimum of 50 MB. By default, the
minimum expansion size is 1 MB.

458 IBM SDK for Java: SDK and Runtime Guide

-Xminf
Specifies the minimum percentage of heap to remain free after a garbage collection.

-Xminf<percentage>
If the free space falls to less than this amount, the JVM attempts to expand the
heap. The default value is 30%.

-Xmint
Specifies the minimum percentage of time to spend in Garbage Collection.

-Xmint<percentage>
If the percentage of time drops to less than this value, the JVM tries to shrink
the heap. The default value is 5%.

-Xmn
Sets the initial and maximum size of the new area to the specified value when
using -Xgcpolicy:gencon.

-Xmn<size>
Equivalent to setting both -Xmns and -Xmnx. If you set either -Xmns or -Xmnx,
you cannot set -Xmn. If you try to set -Xmn with either -Xmns or -Xmnx, the VM
does not start, returning an error. By default, -Xmn is not set. If the scavenger is
disabled, this option is ignored.

-Xmns
Sets the initial size of the new area to the specified value when using
-Xgcpolicy:gencon.

-Xmns<size>
By default, this option is set to 25% of the value of the -Xms option. This option
returns an error if you try to use it with -Xmn. You can use the -verbose:sizes
option to find out the values that the VM is currently using. If the scavenger is
disabled, this option is ignored.

-Xmnx
Sets the maximum size of the new area to the specified value when using
-Xgcpolicy:gencon.

-Xmnx<size>
By default, this option is set to 25% of the value of the -Xmx option. This option
returns an error if you try to use it with -Xmn. You can use the -verbose:sizes
option to find out the values that the VM is currently using. If the scavenger is
disabled, this option is ignored.

-Xmo
Sets the initial and maximum size of the old (tenured) heap to the specified value
when using -Xgcpolicy:gencon.

-Xmo<size>
Equivalent to setting both -Xmos and -Xmox. If you set either -Xmos or -Xmox,
you cannot set -Xmo. If you try to set -Xmo with either -Xmos or -Xmox, the VM
does not start, returning an error. By default, -Xmo is not set.

-Xmoi
Sets the amount the Java heap is incremented when using -Xgcpolicy:gencon.

-Xmoi<size>
If set to zero, no expansion is allowed. By default, the increment size is
calculated on the expansion size, set by -Xmine and -Xminf.

Chapter 10. Reference 459

-Xmos
Sets the initial size of the old (tenure) heap to the specified value when using
-Xgcpolicy:gencon.

-Xmos<size>
By default, this option is set to 75% of the value of the -Xms option. This option
returns an error if you try to use it with -Xmo. You can use the -verbose:sizes
option to find out the values that the VM is currently using.

-Xmox
Sets the maximum size of the old (tenure) heap to the specified value when using
-Xgcpolicy:gencon.

-Xmox<size>
By default, this option is set to the same value as the -Xmx option. This option
returns an error if you try to use it with -Xmo. You can use the -verbose:sizes
option to find out the values that the VM is currently using.

-Xmr
Sets the size of the Garbage Collection "remembered set".

-Xmr<size>
The Garbage Collection "remembered set" is a list of objects in the old
(tenured) heap that have references to objects in the new area. By default, this
option is set to 16 K.

-Xmrx
Sets the remembered maximum size setting.

-Xmrx<size>
Sets the remembered maximum size setting.

-Xms
Sets the initial Java heap size.

-Xms<size>
<size> can be specified in megabytes (m) or gigabytes (g). For example: -Xms2g
sets an initial Java heap size of 2GB. The minimum size is 1 MB.

You can also use the -Xmo option.

If the scavenger is enabled, -Xms >= -Xmn + -Xmo.

If the scavenger is disabled, -Xms >= -Xmo.

Note: The -Xmo option is not supported by the balanced garbage collection policy.

-Xmx
Sets the maximum memory size for the application (-Xmx >= -Xms).

-Xmx<size>
<size> can be specified in megabytes (m) or gigabytes (g). For example: -Xmx2g
sets a maximum heap size of 2GB.

For information about default values, see “Default settings for the JVM” on
page 474.

If you are allocating the Java heap with large pages, read the information provided
for the “-Xlp” on page 435 option.

460 IBM SDK for Java: SDK and Runtime Guide

Examples of the use of -Xms and -Xmx:

-Xms2m -Xmx64m
Heap starts at 2 MB and grows to a maximum of 64 MB.

-Xms100m -Xmx100m
Heap starts at 100 MB and never grows.

-Xms20m -Xmx1024m
Heap starts at 20 MB and grows to a maximum of 1 GB.

-Xms50m
Heap starts at 50 MB and grows to the default maximum.

-Xmx256m
Heap starts at default initial value and grows to a maximum of 256 MB.

If you exceed the limit set by the -Xmx option, the JVM generates an
OutofMemoryError.

-Xnoclassgc
Disables class garbage collection.

-Xnoclassgc
This option switches off garbage collection of storage associated with Java
classes that are no longer being used by the JVM. The default behavior is as
defined by -Xclassgc. Enabling this option is not recommended except under
the direction of the IBM Java support team. The reason is the option can cause
unlimited native memory growth, leading to out-of-memory errors.

-Xnocompactexplicitgc
Disables compaction on System.gc() calls.

-Xnocompactexplicitgc
Compaction takes place on global garbage collections if you specify
-Xcompactgc or if compaction triggers are met. By default, compaction is
enabled on calls to System.gc().

-Xnocompactgc
Disables compaction on all garbage collections (system or global).

-Xnocompactgc
By default, compaction is enabled.

-Xnoloa
Prevents allocation of a large object area; all objects are allocated in the SOA.

-Xnoloa
See also -Xloa.

-Xsoftmx
This option sets a "soft" maximum limit for the initial size of the Java heap.

-Xsoftmx<size>
Use the -Xmx option to set a "hard" limit for the maximum size of the heap. By
default, -Xsoftmx is set to the same value as -Xmx. The value of -Xms must be
less than, or equal to, the value of -Xsoftmx. See the introduction to this topic
for more information about specifying <size> parameters.

You can set this option on the command line, then modify it at run time by
using the MemoryMXBean.setMaxHeapSize() method in the
com.ibm.lang.management API. By using this API, Java applications can

Chapter 10. Reference 461

|
|

|
|
|
|
|

|
|
|

dynamically monitor and adjust the heap size as required. This function can be
useful in virtualized or cloud environments, for example, where the available
memory might change dynamically to meet business needs. When you use the
API, you must specify the value in bytes, such as 2147483648 instead of 2g.

For example, you might set the initial heap size to 1 GB and the maximum
heap size to 8 GB. You might set a smaller value, such as 2 GB, for -Xsoftmx,
to limit the heap size that is used initially:
–Xms1g –Xsoftmx2g –Xmx8g

You can then use the com.ibm.lang.management API from within a Java
application to increase the -Xsoftmx value during run time, as load increases.
This change allows the application to use more memory than you specified
initially.

If you reduce the -Xsoftmx value, the garbage collector attempts to respect the
new limit. However, the ability to shrink the heap depends on a number of
factors. There is no guarantee that a decrease in the heap size will occur. If or
when the heap shrinks to less than the new limit, the heap will not grow
beyond that limit.

When the heap shrinks, the garbage collector might release memory. The
ability of the operating system to reclaim and use this memory varies based on
the capabilities of the operating system.

Notes:

v When using -Xgcpolicy:gencon, -Xsoftmx applies only to the non-nursery
portion of the heap. In some cases the heap grows to greater than the
-Xsoftmx value because the nursery portion grows, making the heap size
exceed the limit that is set. See -Xmn for limiting the nursery size.

v When using -Xgcpolicy:metronome, -Xsoftmx is ignored because the
Metronome garbage collector does not support contraction or expansion of
the heap.

-Xsoftrefthreshold
Sets the value used by the garbage collector to determine the number of garbage
collections after which a soft reference is cleared if its referent has not been
marked.

-Xsoftrefthreshold<number>
The default is 32, meaning that the soft reference is cleared after 32 *
(percentage of free heap space) garbage collection cycles where its referent was
not marked. For example, if -Xsoftrefthreshold is set to 32, and the heap is
50% free, soft references are cleared after 16 garbage collection cycles.

-Xtgc
Provides garbage collection tracing options.

-Xtgc:<arguments>
<arguments> is a comma-separated list containing one or more of the following
arguments:

backtrace
Before a garbage collection, a single line is printed containing the name of
the master thread for garbage collection, as well as the value of the
osThread slot in the J9VMThread structure.

462 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|

compaction
Prints extra information showing the relative time spent by threads in the
“move” and “fixup” phases of compaction

concurrent
Prints extra information showing the activity of the concurrent mark
background thread

dump
Prints a line of output for every free chunk of memory in the system,
including "dark matter" (free chunks that are not on the free list for some
reason, typically because they are too small). Each line contains the base
address and the size in bytes of the chunk. If the chunk is followed in the
heap by an object, the size and class name of the object is also printed.
This argument has a similar effect to the terse argument.

freeList
Before a garbage collection, prints information about the free list and
allocation statistics since the last garbage collection. Prints the number of
items on the free list, including "deferred" entries (with the scavenger, the
unused space is a deferred free list entry). For TLH and non-TLH
allocations, prints the total number of allocations, the average allocation
size, and the total number of bytes discarded during allocation. For
non-TLH allocations, also included is the average number of entries that
were searched before a sufficiently large entry was found.

parallel
Produces statistics on the activity of the parallel threads during the mark
and sweep phases of a global garbage collection.

scavenger
Prints extra information after each scavenger collection. A histogram is
produced showing the number of instances of each class, and their relative
ages, present in the survivor space. The information is obtained by
performing a linear walk-through of the space.

terse
Dumps the contents of the entire heap before and after a garbage
collection. For each object or free chunk in the heap, a line of trace output
is produced. Each line contains the base address, "a" if it is an allocated
object, and "f" if it is a free chunk, the size of the chunk in bytes, and, if it
is an object, its class name.

-Xverbosegclog
Causes -verbose:gc output to be written to a specified file.

-Xverbosegclog[:<file>[,<X>,<Y>]]
If the file cannot be found, -verbose:gc tries to create the file, and then
continues as normal if it is successful. If it cannot create the file (for example, if
an invalid filename is passed into the command), it redirects the output to
stderr.

If you specify <X> and <Y> the -verbose:gc output is redirected to X files,
each containing Y GC cycles.

The dump agent tokens can be used in the filename. See “Dump agent tokens”
on page 234 for more information. If you do not specify <file>,
verbosegc.%Y%m%d.%H%M%S.%pid.txt is used.

By default, no verbose GC logging occurs.

Chapter 10. Reference 463

Balanced Garbage Collection policy options
The policy supports a number of command-line options to tune garbage collection
(GC) operations.

About the policy

The policy uses a hybrid approach to garbage collection by targeting areas of the
heap with the best return on investment. The policy tries to avoid global
collections by matching allocation and survival rates. The policy uses mark, sweep,
compact and generational style garbage collection. For more information about the
Balanced Garbage Collection policy, see “Balanced Garbage Collection policy” on
page 39. For information about when to use this policy, see “When to use the
Balanced garbage collection policy” on page 43.

You specify the Balanced policy with the -Xgcpolicy:balanced command-line
option. The following defaults apply:

Heap size
The initial heap size is Xmx/1024, rounded down to the nearest power of
2, where Xmx is the maximum heap size available. You can override this
value by specifying the -Xms option on the command line.

Command-line options

The following options can also be specified on the command line with
-Xgcpolicy:balanced:
v -Xalwaysclassgc

v -Xclassgc

v -Xcompactexplicitgc

v -Xdisableexcessivegc

v -Xdisableexplicitgc

v -Xenableexcessivegc

v -Xgcthreads<number>

v -Xgcworkpackets<number>

v -Xmaxe<size>

v -Xmaxf<percentage>

v -Xmaxt<percentage>

v -Xmca<size>

v -Xmco<size>

v -Xmine<size>

v -Xminf<percentage>

v -Xmint<percentage>

v -Xmn<size>

v -Xmns<size>

v -Xmnx<size>

v -Xms<size>

v -Xmx<size>

v -Xnoclassgc

v -Xnocompactexplicitgc

v -Xnuma:none

464 IBM SDK for Java: SDK and Runtime Guide

v -Xsoftmx<size>

v -Xsoftrefthreshold<number>

v -Xverbosegclog[:<file> [, <X>,<Y>]]

A detailed description of these command-line options can be found in “Garbage
Collector command-line options” on page 453.

The behavior of the following options is different when specified with
-Xgcpolicy:balanced:

-Xcompactgc
Compaction occurs when a System.gc() call is received (default). Compaction
always occurs on all other collection types.

-Xnocompactgc
Compaction does not occur when a System.gc() call is received. Compaction
always occurs on all other collection types.

The following options are ignored when specified with -Xgcpolicy:balanced:
v -Xconcurrentbackground<number>

v -Xconcurrentlevel<number>

v -Xconcurrentslack<size>

v -Xconmeter:<soa | loa | dynamic>

v -Xdisablestringconstantgc

v -Xenablestringconstantgc

v -Xgc:splitheap

v -Xloa

v -Xloainitial<percentage>

v -Xloamaximum<percentage>

v -Xloaminimum<percentage>

v -Xmo<size>

v -Xmoi<size>

v -Xmos<size>

v -Xmr<size>

v -Xmrx<size>

v -Xnoloa

v -Xnopartialcompactgc (deprecated)
v -Xpartialcompactgc (deprecated)

A detailed description of these command-line options can be found in “Garbage
Collector command-line options” on page 453.

JVM messages
Messages are issued by the IBM Java Virtual Machine (JVM) in response to certain
conditions.

There are three main categories of message:

Information
Information messages provide information about JVM processing. For
example, a dump information message is typically issued when a dump
agent requests a Java dump.

Chapter 10. Reference 465

Warning
Warning messages are issued by the JVM to indicate conditions that might
need user intervention.

Error Error messages are issued by the JVM when normal processing cannot
proceed, because of unexpected conditions.

IBM JVM messages have the following format:
JVMTYPENUM&

where:
v JVM is a standard prefix.
v TYPE refers to the JVM subcomponent that issued the message.
v NUM is a unique numerical number.
v & is one of the following codes:

– I - Information message
– W - Warning message
– E - Error message

These messages can help you with problem determination. Refer to diagnostic
information for more detailed information about diagnosing problems with the
IBM JVM.

By default, all error and some information messages are routed to the system log
and also written to stderr or stdout. The specific information messages are
JVMDUMP039I, JVMDUMP032I, and JVMDUMP033I, which provide valuable additional
information about dumps produced by the JVM. To route additional message types
to the system log, or turn off message logging to the system log, use the -Xlog
option. The -Xlog option does not affect messages written to the standard error
stream (stderr). See “JVM command-line options” on page 428.

Finding logged messages
Logged messages can be found in different locations, according to platform.

Finding z/OS messages

On z/OS, messages are sent to the operator console. To see the messages, go from
the ispf panel to the sdsf panel, then open the log panel.

Obtaining detailed message descriptions
Detailed message information is available to help with problem diagnosis.

Understanding the warning or error message issued by the JVM can help you
diagnose problems. All warning and error messages issued by the JVM are listed
by type in the IBM JVM Messages Guide.
v IBM JVM Messages

The messages, error codes, and exit codes in this guide apply to multiple versions
of the JVM.

Note: If the JVM fills all available memory, the message number might be
produced without a description for the error that caused the problem. Look for the

466 IBM SDK for Java: SDK and Runtime Guide

message number in the relevant section of the IBM JVM Messages Guide to see the
message description and the additional information provided.

CORBA minor codes
This appendix gives definitions of the most common OMG- and IBM-defined
CORBA system exception minor codes that the Java ORB from IBM uses.

See “Completion status and minor codes” on page 200 for more information about
minor codes.

When an error occurs, you might find additional details in the ORB FFDC log. By
default, the Java ORB from IBM creates an FFDC log with a filename in the format
of orbtrc.DDMMYYY.HHmm.SS.txt. If the ORB is operating in the WebSphere
Application Server or other IBM product, see the publications for that product to
determine the location of the FFDC log.

CONN_CLOSE_REBIND CONN_CLOSE_REBIND

Explanation: An attempt has been made to write to a
TCP/IP connection that is closing.

System action: org.omg.CORBA.COMM_FAILURE

User response: Ensure that the completion status that
is associated with the minor code is NO, then reissue
the request.

CONN_PURGE_ABORT CONN_PURGE_ABORT

Explanation: An unrecoverable error occurred on a
TCP/IP connection. All outstanding requests are
cancelled. Errors include:

v A GIOP MessageError or unknown message type

v An IOException that is received while data is being
read from the socket

v An unexpected error or exception that occurs during
message processing

System action: org.omg.CORBA.COMM_FAILURE

User response: Investigate each request and reissue if
necessary. If the problem occurs again, enable ORB,
network tracing, or both, to determine the cause of the
failure.

CONNECT_FAILURE_1 CONNECT_FAILURE_1

Explanation: The client attempted to open a
connection with the server, but failed. The reasons for
the failure can be many; for example, the server might
not be up or it might not be listening on that port. If a
BindException is caught, it shows that the client could
not open a socket locally (that is, the local port was in
use or the client has no local address).

System action: org.omg.CORBA.TRANSIENT

User response: As with all TRANSIENT exceptions,
trying again or restarting the client or server might
solve the problem. Ensure that the port and server host

names are correct, and that the server is running and
allowing connections. Also ensure that no firewall is
blocking the connection, and that a route is available
between client and server.

CONNECT_FAILURE_5 CONNECT_FAILURE_5

Explanation: An attempt to connect to a server failed
with both the direct and indirect IORs. Every client side
handle to a server object (managed by the
ClientDelegate reference) is set up with two IORs
(object references) to reach the servant on the server.
The first IOR is the direct IOR, which holds details of
the server hosting the object. The second IOR is the
indirect IOR, which holds a reference to a naming
server that can be queried if the direct IOR fails.

Note: The two IORs might be the same at times.
For any remote request, the ORB tries to reach the
servant object using the direct IOR and then the
indirect IOR. The CONNECT_FAILURE_5 exception is
thrown when the ORB failed with both IORs.

System action: org.omg.CORBA.TRANSIENT (minor
code E07)

User response: The cause of failure is typically
connection-related, for example because of “connection
refused” exceptions. Other CORBA exceptions such as
NO_IMPLEMENT or OBJECT_NOT_EXIST might also
be the root cause of the (E07) CORBA.TRANSIENT
exception. An abstract of the root exception is logged in
the description of the (E07) CORBA.TRANSIENT
exception. Review the details of the exception, and take
any further action that is necessary.

CREATE_LISTENER_FAILED
CREATE_LISTENER_FAILED

Explanation: An exception occurred while a TCP/IP
listener was being created.

System action: org.omg.CORBA.INTERNAL

CONN_CLOSE_REBIND • CREATE_LISTENER_FAILED

Chapter 10. Reference 467

User response: The details of the caught exception are
written to the FFDC log. Review the details of the
exception, and take any further action that is necessary.

LOCATE_UNKNOWN_OBJECT
LOCATE_UNKNOWN_OBJECT

Explanation: The server has no knowledge of the
object for which the client has asked in a locate request.

System action: org.omg.CORBA.OBJECT_NOT_EXIST

User response: Ensure that the remote object that is
requested resides in the specified server and that the
remote reference is up-to-date.

NULL_PI_NAME NULL_PI_NAME

Explanation: One of the following methods has been
called:

org.omg.PortableInterceptor.ORBInitInfoOperations.
add_ior_interceptor

org.omg.PortableInterceptor.ORBInitInfoOperations.
add_client_request_interceptor

org.omg.PortableInterceptor.ORBInitInfoOperations
.add_server_request_interceptor

The name() method of the interceptor input parameter
returned a null string.

System action: org.omg.CORBA.BAD_PARAM

User response: Change the interceptor implementation
so that the name() method returns a non-null string.
The name attribute can be an empty string if the
interceptor is anonymous, but it cannot be null.

ORB_CONNECT_ERROR_6
ORB_CONNECT_ERROR_6

Explanation: A servant failed to connect to a
server-side ORB.

System action: org.omg.CORBA.OBJ_ADAPTER

User response: See the FFDC log for the cause of the
problem, then try restarting the application.

POA_DISCARDING POA_DISCARDING

Explanation: The POA Manager at the server is in the
discarding state. When a POA manager is in the
discarding state, the associated POAs discard all
incoming requests (for which processing has not yet
begun). For more details, see the section that describes
the POAManager Interface in the http://
www.omg.org/cgi-bin/doc?formal/99-10-07.

System action: org.omg.CORBA.TRANSIENT

User response: Put the POA Manager into the active
state if you want requests to be processed.

RESPONSE_INTERRUPTED
RESPONSE_INTERRUPTED

Explanation: The client has enabled the
AllowUserInterrupt property and has called for an
interrupt on a thread currently waiting for a reply from
a remote method call.

System action: org.omg.CORBA.NO_RESPONSE

User response: None.

TRANS_NC_LIST_GOT_EXC
TRANS_NC_LIST_GOT_EXC

Explanation: An exception was caught in the
NameService while the NamingContext.List() method
was executing.

System action: org.omg.CORBA.INTERNAL

User response: The details of the caught exception are
written to the FFDC log. Review the details of the
original exception, and any further action that is
necessary.

UNEXPECTED_CHECKED_EXCEPTION
UNEXPECTED_CHECKED_EXCEPTION

Explanation: An unexpected checked exception was
caught during the servant_preinvoke method. This
method is called before a locally optimized operation
call is made to an object of type class. This exception
does not occur if the ORB and any Portable Interceptor
implementations are correctly installed. It might occur
if, for example, a checked exception is added to the
Request interceptor operations and these higher level
interceptors are called from a back level ORB.

System action: org.omg.CORBA.UNKNOWN

User response: The details of the caught exception are
written to the FFDC log. Check whether the class from
which it was thrown is at the expected level.

UNSPECIFIED_MARSHAL_25
UNSPECIFIED_MARSHAL_25

Explanation: This error can occur at the server side
while the server is reading a request, or at the client
side while the client is reading a reply. Possible causes
are that the data on the wire is corrupted, or the server
and client ORB are not communicating correctly.
Communication problems can caused when one of the
ORBs has an incompatibility or bug that prevents it
from conforming to specifications.

System action: org.omg.CORBA.MARSHAL

User response: Check whether the IIOP levels and
CORBA versions of the client and server are
compatible. Try disabling fragmentation (set
com.ibm.CORBA.FragmentationSize to zero) to
determine whether it is a fragmentation problem. In

LOCATE_UNKNOWN_OBJECT • UNSPECIFIED_MARSHAL_25

468 IBM SDK for Java: SDK and Runtime Guide

http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?formal/99-10-07

this case, analysis of CommTraces
(com.ibm.CORBA.CommTrace) might give extra
information.

Environment variables
This appendix describes the use of environment variables. Environment variables
are overridden by command-line arguments. Where possible, you should use
command-line arguments rather than environment variables.

The following information about environment variables is provided:
v “Displaying the current environment”
v “Setting an environment variable”
v “Separating values in a list”
v “JVM environment settings” on page 470
v “z/OS environment variables” on page 473

Displaying the current environment
This description describes how to show the current environment and how to show
an environment variable.

To show the current environment, run:
set (Windows)
env (UNIX)
set (z/OS)
WRKENVVAR (i5/OS command prompt)
env (i5/OS qsh or qp2term)

To show a particular environment variable, run:
echo %ENVNAME% (Windows)
echo $ENVNAME (UNIX, z/OS and I5/OS)

Use values exactly as shown in the documentation. The names of environment
variables are case-sensitive in UNIX but not in Windows.

Setting an environment variable
This section describes how to set an environment variable and how long a variable
remains set.

To set the environment variable LOGIN_NAME to Fred, run:
set LOGIN_NAME=Fred (Windows)
export LOGIN_NAME=Fred (UNIX ksh or bash shells and i5/OS)

These variables are set only for the current shell or command-line session.

Separating values in a list
The separator between values is dependant on the platform.

If the value of an environment variable is to be a list:
v On UNIX, i5/OS, and z/OS the separator is typically a colon (:).
v On Windows the separator is typically a semicolon (;).

Chapter 10. Reference 469

JVM environment settings
This section describes common environment settings. The categories of settings are
general options, deprecated JIT options, Javadump and Heapdump options, and
diagnostic options.

General options

The following list summarizes common options. It is not a definitive guide to all
the options. Also, the behavior of individual platforms might vary. See individual
sections for a more complete description of behavior and availability of these
variables.

CLASSPATH=<directories and archive or compressed files>
Set this variable to define the search path for application classes and resources.
The variable can contain a list of directories for the JVM to find user class files
and paths to individual Java archive or compressed files that contain class files;
for example, /mycode:/utils.jar (UNIX or i5/OS), D:\mycode;D:\utils.jar
(Windows).

Any class path that is set in this way is replaced by the -cp or -classpath Java
argument if used.

IBM_JAVA_COMMAND_LINE
This variable is set by the JVM after it starts. Using this variable, you can find
the command-line parameters set when the JVM started.

This setting is not available if the JVM is invoked using JNI.

IBM_JAVA_OPTIONS=<option>
Set this variable to store default Java options including -X, -D or -verbose:gc
style options; for example, -Xms256m -Djava.compiler.

Any options set are overridden by equivalent options that are specified when
Java is started.

This variable does not support -fullversion or -version.

If you specify the name of a trace output file either directly, or indirectly, using
a properties file, the output file might be accidentally overwritten if you run
utilities such as the trace formatter, dump extractor, or dump viewer. For
information about avoiding this problem, see “Controlling the trace” on page
293, Note these restrictions.

JAVA_ASSISTIVE={ OFF | ON }
Set the JAVA_ASSISTIVE environment variable to OFF to prevent the JVM from
loading Java Accessibility support.

JAVA_FONTS=<list of directories>
Set this environment variable to specify the font directory. Setting this variable
is equivalent to setting the properties java.awt.fonts and
sun.java2d.fontpath.

JAVA_PLUGIN_AGENT=<version>
Set this variable to specify the version of Mozilla.

This variable is for Linux and z/OS only.

JAVA_PLUGIN_REDIRECT=<value>
Set this variable to a non-null value to redirect JVM output, while serving as a
plug-in, to files. The standard output is redirected to the file plugin.out. The
error output is redirected to the file plugin.err.

470 IBM SDK for Java: SDK and Runtime Guide

This variable is for Linux and z/OS only.

LANG=<locale>
Set this variable to specify a locale to use by default.

This variable is for AIX, Linux, and z/OS only.

LIBPATH=<list of directories>
Set this variable to a colon-separated list of directories to define from where
system and user libraries are loaded. You can change which versions of
libraries are loaded, by modifying this list.

This variable is for AIX, i5/OS, and z/OS only.

SYS_LIBRARY_PATH=<path>
Set this variable to define the library path.

This variable is for Linux and z/OS only.

Deprecated JIT options

The following list describes deprecated JIT options:

IBM_MIXED_MODE_THRESHOLD
Use -Xjit:count=<value> instead of this variable.

JAVA_COMPILER
Use -Djava.compiler=<value> instead of this variable.

Javadump and Heapdump options

The following list describes the Javadump and Heapdump options. The
recommended way of controlling the production of diagnostic data is the -Xdump
command-line option, described in “Using dump agents” on page 221.

DISABLE_JAVADUMP={ TRUE | FALSE }
This variable disables Javadump creation when set to TRUE.

Use the command-line option -Xdisablejavadump instead. Avoid using this
environment variable because it makes it more difficult to diagnose failures.
On z/OS, use JAVA_DUMP_OPTS in preference.

IBM_HEAPDUMP or IBM_HEAP_DUMP={ TRUE | FALSE }
These variables control the generation of a Heapdump.

When the variables are set to 0 or FALSE, Heapdump is not available. When
the variables are set to anything else, Heapdump is enabled for crashes or user
signals. When the variables are not set, Heapdump is not enabled for crashes
or user signals.

IBM_HEAPDUMP_OUTOFMEMORY={ TRUE | FALSE }
This variable controls the generation of a Heapdump when an out-of-memory
exception is thrown.

When the variable is set to TRUE or 1 a Heapdump is generated each time an
out-of-memory exception is thrown, even if it is handled. When the variable is
set to FALSE or 0, a Heapdump is not generated for an out-of-memory
exception. When the variable is not set, a Heapdump is generated when an
out-of-memory exception is not caught and handled by the application.

IBM_HEAPDUMPDIR=<directory>
This variable specifies an alternative location for Heapdump files.

On z/OS, _CEE_DMPTARG is used instead.

Chapter 10. Reference 471

IBM_JAVACOREDIR=<directory>
This variable specifies an alternative location for Javadump files; for example,
on Linux IBM_JAVACOREDIR=/dumps

On z/OS, _CEE_DMPTARG is used instead.

IBM_JAVADUMP_OUTOFMEMORY={ TRUE | FALSE }
This variable controls the generation of a Javadump when an out-of-memory
exception is thrown.

When the variable is set to TRUE or 1, a Javadump is generated each time an
out-of-memory exception is thrown, even if it is handled. When the variable is
set to FALSE or 0, a Javadump is not generated for an out-of-memory
exception. When the variable is not set, a Javadump is generated when an
out-of-memory exception is not caught and handled by the application.

IBM_NOSIGHANDLER={ TRUE }
This variable disables the signal handler when set to any value. If no value is
supplied, the variable has no effect and the signal handler continues to work.

The variable is equivalent to the command-line option -Xrs:all

JAVA_DUMP_OPTS=<value>
This variable controls how diagnostic data are dumped.

For a fuller description of JAVA_DUMP_OPTS and variations for different
platforms, see “Dump agent environment variables” on page 237.

TMPDIR=<directory>
This variable specifies an alternative temporary directory. This directory is
used only when Javadumps and Heapdumps cannot be written to their target
directories, or the current working directory.

This variable defaults to /tmp on Linux, z/OS, AIX, and i5/OS.

Diagnostic options

The following list describes the diagnostic options:

IBM_COREDIR=<directory>
Set this variable to specify an alternative location for system dumps and snap
trace.

On z/OS, _CEE_DMPTARG is used instead for snap trace, and transaction dumps
are written to TSO according to JAVA_DUMP_TDUMP_PATTERN.

On Linux, the dump is written to the OS specified directory, before being
moved to the specified location.

IBM_JVM_DEBUG_PROG=<debugger>
Set this variable to start the JVM under the specified debugger.

This variable is for Linux only.

IBM_MALLOCTRACE=TRUE
Setting this variable to a non-null value lets you trace memory allocation in the
JVM. You can use this variable with the -Dcom.ibm.dbgmalloc=true system
property to trace native allocations from the Java classes.

This variable is equivalent to the command-line option -Xcheck:memory.

472 IBM SDK for Java: SDK and Runtime Guide

IBM_XE_COE_NAME=<value>
Set this variable to generate a system dump when the specified exception
occurs. The value supplied is the package description of the exception; for
example, java/lang/InternalError.

A Signal 11 is followed by a JVMXE message and then the JVM terminates.

JAVA_PLUGIN_TRACE=TRUE
When this variable is set to TRUE or 1, a Java plug-in trace is produced for the
session when an application runs. Traces are produced from both the Java and
Native layer.

By default, this variable is set to FALSE, so that a Java plug-in trace is not
produced.

z/OS environment variables
This section describes the environment variables of the z/OS JVM.

IBM_JAVA_ABEND_ON_FAILURE=Y
Tells the Java launcher to mark the Task Control Block (TCB) with an
abend code if the JVM fails to load or is terminated by an uncaught
exception. By default, the Java launcher will not mark the TCB.

JAVA_DUMP_OPTS
See “Using Heapdump” on page 262 for details.

JAVA_DUMP_TDUMP_PATTERN=string
Result: The specified string is passed to IEATDUMP to use as the data/set
name for the Transaction Dump. The default string is as follows:

For the 31-bit JVM:
%uid.JVM.TDUMP.%job.D%y%m%d.T%H%M%S

For the 64-bit JVM:
%uid.JVM.%job.D%y%m%d.T%H%M%S.X&DS

where %uid is found from the following C code fragment:
pwd = getpwuid(getuid());
pwd->pw_name;

For more information about the other variables, see “Dump agent tokens”
on page 234.

You can use the output of the -Xdump:what option to see the default string
for your operating system. For more information, see “Using dump agents
on z/OS” on page 238.

JAVA_LOCAL_TIME
The z/OS JVM does not look at the offset part of the TZ environment
variable and will therefore incorrectly show the local time. Where local
time is not GMT, you can set the environment variable
JAVA_LOCAL_TIME to display the correct local time as defined by TZ.

JAVA_THREAD_MODEL
JAVA_THREAD_MODEL can be defined as one of:

NATIVE
JVM uses the standard, POSIX-compliant thread model that is
provided by the JVM. All threads are created as _MEDIUM_WEIGHT
threads.

Chapter 10. Reference 473

HEAVY
JVM uses the standard thread package, but all threads are created as
_HEAVY_WEIGHT threads.

MEDIUM
Same as NATIVE.

NULL
Default case: Same as NATIVE/MEDIUM.

Related information:
“Using dump agents on z/OS” on page 238
Dump output is written to different files, depending on the type of the dump. File
names include a time stamp. The z/OS platform has an additional dump type
called CEEDUMP.

Default settings for the JVM
This appendix shows the default settings that the JVM uses. These settings affect
how the JVM operates if you do not apply any changes to its environment. The
tables show the JVM operation and the default setting.

These tables are a quick reference to the state of the JVM when it is first installed.
The last column shows how the default setting can be changed:

c The setting is controlled by a command-line parameter only.

e The setting is controlled by an environment variable only.

ec The setting is controlled by a command-line parameter or an environment
variable. The command-line parameter always takes precedence.

JVM setting Default Setting
affected by

Javadump Enabled ec

Heapdump Disabled ec

System dump Enabled ec

Snap traces Enabled ec

Verbose output Disabled c

Boot classpath search Disabled c

JNI checks Disabled c

Remote debugging Disabled c

Strict conformance checks Disabled c

Quickstart Disabled c

Remote debug info server Disabled c

Reduced signaling Disabled c

Signal handler chaining Enabled c

Classpath Not set ec

Class data sharing Disabled c

Accessibility support Enabled e

JIT compiler Enabled ec

AOT compiler (AOT is not used by the JVM unless
shared classes are also enabled)

Enabled c

474 IBM SDK for Java: SDK and Runtime Guide

JVM setting Default Setting
affected by

JIT debug options Disabled c

Java2D max size of fonts with algorithmic bold 14 point e

Java2D use rendered bitmaps in scalable fonts Enabled e

Java2D freetype font rasterizing Enabled e

Java2D use AWT fonts Disabled e

JVM setting AIX IBM i Linux Windows z/OS Setting
affected

by

Default locale None None None N/A None e

Time to wait before starting
plug-in

N/A N/A Zero N/A N/A e

Temporary directory /tmp /tmp /tmp c:\temp /tmp e

Plug-in redirection None None None N/A None e

IM switching Disabled Disabled Disabled N/A Disabled e

IM modifiers Disabled Disabled Disabled N/A Disabled e

Thread model N/A N/A N/A N/A Native e

Initial stack size for Java Threads
32-bit. Use: -Xiss<size>

2 KB 2 KB 2 KB 2 KB 2 KB c

Maximum stack size for Java
Threads 32-bit. Use: -Xss<size>

256 KB 256 KB 256 KB 256 KB 256 KB c

Stack size for OS Threads 32-bit.
Use -Xmso<size>

256 KB 256 KB 256 KB 32 KB 256 KB c

Initial stack size for Java Threads
64-bit. Use: -Xiss<size>

2 KB N/A 2 KB 2 KB 2 KB c

Maximum stack size for Java
Threads 64-bit. Use: -Xss<size>

512 KB N/A 512 KB 512 KB 512 KB c

Stack size for OS Threads 64-bit.
Use -Xmso<size>

256 KB N/A 256 KB 256 KB 256 KB c

Initial heap size. Use -Xms<size> 4 MB 4 MB 4 MB 4 MB 4 MB c

Maximum Java heap size. Use
-Xmx<size>

Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB

2 GB Half the available
memory with a
minimum of 16
MB and a
maximum of 512
MB

Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB
See note.

Half the
available
memory
with a
minimum
of 16 MB
and a
maximum
of 512 MB

c

Chapter 10. Reference 475

|
|
|
|
|
|
|
|
|

JVM setting AIX IBM i Linux Windows z/OS Setting
affected

by

Compressed references Disabled.
From
service
refresh 4,
enabled
for -Xmx
values of
less than
or equal to
25 GB

Disabled.
From
service
refresh 4,
enabled
for -Xmx
values of
less than
or equal
to 25 GB

Disabled. From
service refresh 4,
enabled for -Xmx
values of less
than or equal to
25 GB

Disabled.
From
service
refresh 4,
enabled for
-Xmx values
of less than
or equal to
25 GB

Disabled ec

Page size for the Java object heap
and code cache. For restrictions,
see “Configuring large page
memory allocation” on page 154

Operating
system
default

Operating
system
default

Architecture:

v Linux on x86
and
AMD64/
EM64T: 2 MB

v Linux on
System z: 1 MB

v Other
architectures:
operating
system default

Operating
system
default

1M
pageable

c

Note: For earlier releases of Java, the value of -Xmx for the Windows JVM is half
the physical memory with a minimum of 16 MB, and a maximum of 2 GB.

“Available memory” is defined as being the smallest of two values:
v The real or “physical” memory.
v The RLIMIT_AS value.

Known issues and limitations
Known issues or limitations that you might encounter in specific system
environments, or configurations.

If you find a problem, see the “Hints and Tips” pages, at http://www.ibm.com/
systems/z/os/zos/tools/java/faq/javafaq.html.

If you find a problem that you have been unable to solve after looking through the
“Hints and Tips” pages, see http://www.ibm.com/systems/z/os/zos/tools/java/
services/services.html for advice and information about how to raise problems.

The problems described in this topic might not be limitations with the SDK or JRE.
Instructions are provided to work around problems, where possible.

Chinese characters stored as ? in an Oracle database

When you configure an Oracle database to use the ZHS16GBK character set, some
Chinese characters or symbols that are encoded with the GBK character set are
incorrectly stored as a question mark (?). This problem is caused by an
incompatibility of the GBK undefined code range Unicode mapping between the

476 IBM SDK for Java: SDK and Runtime Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

http://www.ibm.com/systems/z/os/zos/tools/java/faq/javafaq.html
http://www.ibm.com/systems/z/os/zos/tools/java/faq/javafaq.html
http://www.ibm.com/systems/z/os/zos/tools/java/services/services.html
http://www.ibm.com/systems/z/os/zos/tools/java/services/services.html

Oracle ZHS16GBK character set and the IBM GBK converter. To fix this problem,
use a new code page, MS936A, by including the following system property when
you start the JVM:
-Dfile.encoding=MS936A

For IBM WebSphere Application Server users, this problem might occur when web
applications that use JDBC configure Oracle as the WebSphere Application Server
data source. To fix this problem, use a new code page, MS936A, as follows:
1. Use the following system property when you start the JVM:

-Dfile.encoding=MS936A

2. Add the following lines to the WAS_HOME/properties/converter.properties file,
where WAS_HOME is your WebSphere Application Server installation directory.
GBK=MS936A
GB2312=MS936A

Java 2D rendering pipeline

The improved Java 2D graphics pipeline, based on the X11 XRender extension,
accelerates rendering using hardware support. However, the XRender library is not
supported on the z/OS operating system, and is therefore not available in the
SDK. If the new pipeline is not present, Java 2D uses the existing X11 pipeline.

These known issues and limitations also apply to earlier releases of the SDK and
JRE:

Limitation on class path length

If there are more than 2031 characters in your class path, the shell truncates your
class path to 2031 characters. If you need a class path longer than 2031 characters,
use the extension class loader option to refer to directories containing your .jar
files, for example:
-Djava.ext.dirs=<directory>

Where <directory> is the directory containing your .jar files.

ThreadMXBean Thread User CPU Time limitation

There is no way to distinguish between user mode CPU time and system mode
CPU time on this platform. ThreadMXBean.getThreadUserTime(),
ThreadMXBean.getThreadCpuTime(), ThreadMXBean.getCurrentThreadUserTime(),
and ThreadMXBean.getCurrentThreadCpuTime() all return the total CPU time for
the required thread.

You can get the CPU time only for the current thread by calling
ThreadMXBean.isCurrentThreadCpuTimeSupported(). Calling
ThreadMXBean.isThreadCpuTimeSupported() returns a value of false because
getting the CPU time for a thread other than the current thread is not supported.

Using -Xshareclasses:destroy during JVM startup

When running the command java -Xshareclasses:destroy on a shared cache that
is being used by a second JVM during startup, you might have the following
issues:
v The second JVM fails.

Chapter 10. Reference 477

v The shared cache is deleted.

Changes to locale translation files

From Java 7 service refresh 1, changes are made to the locale translation files to
make them consistent with Oracle JDK 7. The same changes were applied to the
IBM SDK for Java 6 for consistency with Oracle JDK 6. To understand the
differences in detail, see this Java 6 support document:http://www.ibm.com/
support/docview.wss?uid=swg21568667.

Large page request fails

There is no error message issued when the JVM is unable to honor the -Xlp
request.

There are a number of reasons why the JVM cannot honor a large page request.
For example, there might be insufficient large pages available on the system at the
time of the request. To check whether the -Xlp request was honored, you can
review the output from -verbose:gc. Look for the attributes requestedPageSize
and pageSize in the -verbose:gc log file. The attribute requestedPageSize contains
the value specified by -Xlp. The attribute pageSize is the actual page size used by
the JVM.

ThreadMXBean thread CPU time might not be monotonic on SMP
systems

On SMP systems, the times returned by ThreadMXBean.getThreadUserTime(),
ThreadMXBean.getThreadCpuTime(), ThreadMXBean.getCurrentThreadUserTime(),
and ThreadMXBean.getCurrentThreadCpuTime() might not increase monotonically
if the relevant thread migrates to a different processor.

Unexpected CertificateException

IBM SDK for z/OS, V7 service refresh 4 fix pack 1 and later releases contain a
security enhancement to correctly validate certificates on jar files of applications.
After upgrading, a CertificateException occurs for any applications in one of the
following scenarios:
v The application jar is not properly signed.
v The application jar has incorrect certificates.
v A certificate in the certificate chain is revoked.

To avoid these exceptions, make sure that your application jars are signed with
valid certificates before you upgrade from an earlier release. This issue relates to
APAR IV38456.

Unexpected application errors with RMI

If your application uses RMI and you experience unexpected errors after applying
IBM SDK for z/OS, V7 service refresh 4 fix pack 2, or later releases, the problem
might be associated with a change to the default value of the RMI property
java.rmi.server.useCodebaseOnly. For more information, see http://
docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html.

478 IBM SDK for Java: SDK and Runtime Guide

|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|

|

|

|

|
|
|

|

|
|
|
|
|

http://www.ibm.com/support/docview.wss?uid=swg21568667
http://www.ibm.com/support/docview.wss?uid=swg21568667
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/enhancements-7.html

Unexpected XSLT error on extension elements or extension
functions when Java security is enabled

From IBM SDK for z/OS, V7 service refresh 5, any attempt to use extension
elements or extension functions when Java security is enabled, results in a
javax.xml.transform.TransformerException error during XSLT processing. This
change in behavior is introduced to enhance security.

The following XSLT message is generated when extension functions are used: Use
of the extension function '<method name>' is not allowed when Java security
is enabled. To override this, set the
com.ibm.xtq.processor.overrideSecureProcessing property to true. This
override only affects XSLT processing.

The following XSLT message is generated when extension elements are used: Use
of the extension element '<element name>' is not allowed when Java security
is enabled. To override this, set the
com.ibm.xtq.processor.overrideSecureProcessing property to true. This
override only affects XSLT processing.

To allow extensions when Java security is enabled, set the
com.ibm.xtq.processor.overrideSecureProcessing system property to true. For
more information about this system property, see
“-Dcom.ibm.xtq.processor.overrideSecureProcessing” on page 421.

Behavior change to java.lang.logging.Logger

To enhance security, java.lang.logging.Logger no longer walks the stack to search
for resource bundles. Instead, the resource bundles are located by using the caller
's class loader. If your application depends upon stack-walking to locate resource
bundles, this behavior change might affect your application. To work around this
problem, a system property is available in this release to revert to the earlier
behavior. To set this property on the command line specify:
-Djdk.logging.allowStackWalkSearch=true.

Support for virtualization software
The IBM SDK for Java is tested with a number of virtualized server products.

The following virtualization software is tested with the latest release of the IBM
SDK for z/OS, V7:

Table 12. Virtualization software tested for the IBM SDK for Java

Vendor Architecture Server virtualization Version

IBM System z PR/SM™ z10, z11, z196, zEC12

IBM System z z/VM® 6.1, 6.2

IBM POWER® PowerVM®

Hypervisor
Power6, Power7

VMware x86-64 VMware ESX and
ESXi Server

4.1, 5.0

Red Hat x86-64 Red Hat Enterprise
Virtualization
(RHEV)

2.1, 3.0

SUSE x86-64 SUSE KVM SLES 11

Chapter 10. Reference 479

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

Table 12. Virtualization software tested for the IBM SDK for Java (continued)

Vendor Architecture Server virtualization Version

Microsoft x86-64 Hyper-V Server 2012

480 IBM SDK for Java: SDK and Runtime Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1758
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2011, 2013 481

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

JIMMAIL@uk.ibm.com
[Hursley Java Technology Center (JTC) contact]

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

482 IBM SDK for Java: SDK and Runtime Guide

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Privacy Policy Considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see: (i) IBM’s Privacy Policy at http://www.ibm.com/privacy ; (ii)
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details (in
particular, the section entitled “Cookies, Web Beacons and Other Technologies”);
and (iii) the “IBM Software Products and Software-as-a-Service Privacy Statement”
at http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at Copyright and trademark information.

Intel, Intel logo, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks of Intel Corporation
in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Notices 483

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

484 IBM SDK for Java: SDK and Runtime Guide

����

Printed in USA

jkessler
Typewritten Text
ZSL03227-USEN-02

	Contents
	Preface
	Chapter 1. Product overview
	Introduction to Java
	IBM Software Developers Kit (SDK)
	IBM Java Runtime Environment (JRE)
	IBM Java Virtual Machine (JVM)

	What's new
	IBM J9 Virtual Machine
	Memory management
	Class data sharing
	The JIT compiler
	Diagnostic component

	Conventions and terminology
	Other sources of information
	Accessibility

	Chapter 2. Understanding the IBM Software Developers Kit (SDK) for Java
	The building blocks of the IBM Virtual Machine for Java
	Java application stack
	Components of the IBM Virtual Machine for Java
	JVM Application Programming Interface (API)
	Diagnostic component
	Memory management
	Class loader
	Interpreter
	Platform port layer

	Memory management
	Overview of memory management
	Object allocation
	Reachable objects
	Garbage collection
	Heap sizing problems

	Allocation
	Heap lock allocation
	Cache allocation
	Large Object Area
	Compressed references

	Detailed description of global garbage collection
	Mark phase
	Sweep phase
	Compaction phase
	Reference objects
	Final reference processing
	JNI weak reference
	Heap expansion
	Heap shrinkage

	Generational Concurrent Garbage Collector
	Tenure age
	Tilt ratio

	Balanced Garbage Collection policy
	Region age
	Partial Garbage Collection
	Global Mark Phase
	When to use the Balanced garbage collection policy

	How to do heap sizing
	Initial and maximum heap sizes
	Using verbose:gc
	Using fine tuning options

	Interaction of the Garbage Collector with applications
	How to coexist with the Garbage Collector
	Root set
	Thread local heap
	Bug reports
	Finalizers
	Manually starting the Garbage Collector

	Frequently asked questions about the Garbage Collector

	Class loading
	The parent-delegation model
	Namespaces and the runtime package
	Custom class loaders

	Class data sharing
	The JIT compiler
	JIT compiler overview
	How the JIT compiler optimizes code
	Phase 1 - inlining
	Phase 2 - local optimizations
	Phase 3 - control flow optimizations
	Phase 4 - global optimizations
	Phase 5 - native code generation

	Frequently asked questions about the JIT compiler

	The AOT compiler
	Java Remote Method Invocation
	The RMI implementation
	Thread pooling for RMI connection handlers
	Understanding distributed garbage collection
	Debugging applications involving RMI

	The ORB
	CORBA
	RMI and RMI-IIOP
	Java IDL or RMI-IIOP?
	RMI-IIOP limitations
	Further reading
	Examples of client–server applications
	Interfaces
	Remote object implementation (or servant)
	Stubs and ties generation
	Server code
	Summary of major differences between RMI (JRMP) and RMI-IIOP

	Using the ORB
	How the ORB works
	The client side
	The server side

	Additional features of the ORB
	Portable object adapter
	Fragmentation
	Portable interceptors
	Interoperable Naming Service (INS)

	The Java Native Interface (JNI)
	Overview of JNI
	The JNI and the Garbage Collector
	Overview of JNI object references
	JNI transitions

	Copying and pinning
	Using the isCopy flag
	Using the mode flag
	A generic way to use the isCopy and mode flags

	Handling exceptions
	Synchronization
	Debugging the JNI
	JNI checklist

	Chapter 3. Planning
	Migrating from earlier IBM SDK or JREs
	Version compatibility
	Supported environments

	Chapter 4. Installing and configuring the SDK
	Working with BPXPRM settings
	Setting the region size
	Setting MEMLIMIT
	Setting LE runtime options
	Setting LE 31-bit runtime options
	Setting LE 64-bit runtime options

	Marking failures
	Setting the path
	Setting the class path
	Updating your SDK or JRE for daylight saving time changes
	Running the JVM under a different code page
	Using non-default system fonts

	Chapter 5. Developing Java applications
	Using XML
	Migrating to the XL-TXE-J
	Securing JAXP processing against malformed input
	XML reference information
	XL XP-J reference information
	XL TXE-J reference information
	Using an older version of Xerces or Xalan

	Debugging Java applications
	Java Debugger (JDB)

	Determining whether your application is running on a 31-bit or 64-bit JVM
	How the JVM processes signals
	Signals used by the JVM
	Linking a native code driver to the signal-chaining library

	Writing JNI applications
	Supported compilers
	Native formatting of Java types long, double, float

	Support for thread-level recovery of blocked connectors
	CORBA support
	System properties for tracing the ORB
	System properties for tuning the ORB
	Java security permissions for the ORB
	ORB implementation classes

	RMI over IIOP
	RMI-IIOP Programmer's Guide
	Background reading
	What are RMI, IIOP, and RMI-IIOP?
	Using RMI-IIOP
	Additional information

	Implementing the Connection Handler Pool for RMI
	Enhanced BigDecimal
	Working in a multiple network stack environment
	Support for XToolkit
	Support for the Java Attach API

	Chapter 6. Running Java applications
	The java and javaw commands
	Obtaining version information
	Specifying Java options and system properties
	Standard options
	Globalization of the java command

	The Just-In-Time (JIT) compiler
	Disabling the JIT
	Enabling the JIT
	Determining whether the JIT is enabled

	Specifying a garbage collection policy
	Garbage collection options
	More effective heap usage using compressed references
	Pause time
	Pause time reduction
	Environments with very full heaps

	Euro symbol support
	Configuring large page memory allocation

	Chapter 7. Performance
	Class data sharing between JVMs
	Overview of class data sharing
	Class data sharing command-line options
	Creating, populating, monitoring, and deleting a cache
	Performance and memory consumption
	Considerations and limitations of using class data sharing
	Cache size limits
	JVMTI RetransformClasses() is unsupported
	Required APAR for Shared Classes
	Working with BPXPRMxx settings
	Runtime bytecode modification
	Operating system limitations
	Using SharedClassPermission

	Adapting custom class loaders to share classes

	Performance problems

	Chapter 8. Security
	Chapter 9. Troubleshooting and support
	Submitting problem reports
	Problem determination
	First steps in problem determination
	z/OS problem determination
	Setting up and checking your z/OS environment
	General debugging techniques
	Diagnosing crashes
	Debugging hangs
	Understanding Memory Usage
	Debugging performance problems
	MustGather information for z/OS

	NLS problem determination
	Overview of fonts
	Font utilities
	Common NLS problem and possible causes

	ORB problem determination
	Identifying an ORB problem
	Debug properties
	ORB exceptions
	Completion status and minor codes
	Java security permissions for the ORB
	Interpreting the stack trace
	Interpreting ORB traces
	Common problems
	IBM ORB service: collecting data

	Attach API problem determination

	Using diagnostic tools
	Overview of the available diagnostic tools
	Categorizing the problem
	Summary of diagnostic information
	Summary of cross-platform tooling
	Scenarios in which dumps might not be produced

	Using the IBM Monitoring and Diagnostic Tools for Java
	Garbage Collection and Memory Visualizer
	Health Center
	Interactive Diagnostic Data Explorer
	Memory Analyzer

	Using dump agents
	Using the -Xdump option
	Dump agents
	Dump events
	Advanced control of dump agents
	Dump agent tokens
	Default dump agents
	Removing dump agents
	Dump agent environment variables
	Signal mappings
	Using dump agents on z/OS
	Disabling dump agents with -Xrs and -Xrs:sync

	Using Javadump
	Enabling a Javadump
	Triggering a Javadump
	Interpreting a Javadump
	Environment variables and Javadump

	Using Heapdump
	Getting Heapdumps
	Available tools for processing Heapdumps
	Using -Xverbose:gc to obtain heap information
	Environment variables and Heapdump
	Text (classic) Heapdump file format
	Portable Heap Dump (PHD) file format

	Using system dumps and the dump viewer
	Overview of system dumps
	System dump defaults
	Using the dump viewer

	Tracing Java applications and the JVM
	What can be traced?
	Types of tracepoint
	Default tracing
	Where does the data go?
	Controlling the trace
	Using the trace formatter
	Determining the tracepoint ID of a tracepoint
	Application trace
	Using method trace

	JIT and AOT problem determination
	Diagnosing a JIT or AOT problem
	Performance of short-running applications
	JVM behavior during idle periods

	The Diagnostics Collector
	Introduction to the Diagnostics Collector
	Using the Diagnostics Collector
	Collecting diagnostic data from Java runtime problems
	Verifying your Java diagnostics configuration
	Configuring the Diagnostics Collector
	Known limitations

	Garbage Collector diagnostic data
	Verbose garbage collection logging
	-Xtgc tracing

	Class-loader diagnostic data
	Class-loader command-line options
	Class-loader runtime diagnostic data
	Loading from native code

	Shared classes diagnostic data
	Deploying shared classes
	Dealing with runtime bytecode modification
	Understanding dynamic updates
	Using the Java Helper API
	Understanding shared classes diagnostic output
	Debugging problems with shared classes
	Class sharing with OSGi ClassLoading framework

	Using the Reliability, Availability, and Serviceability Interface
	Preparing to use JVMRI
	JVMRI functions
	API calls provided by JVMRI
	RasInfo structure
	RasInfo request types
	Intercepting trace data
	Formatting

	Using the HPROF Profiler
	Explanation of the HPROF output file

	Using the JVMTI
	IBM JVMTI extensions
	IBM JVMTI extensions - API reference

	Using the Diagnostic Tool Framework for Java
	Using the DTFJ interface
	DTFJ example application

	Using JConsole
	MBeans and MXBeans

	Chapter 10. Reference
	Command-line options
	Specifying command-line options
	General command-line options
	System property command-line options
	-Dcom.ibm.cacheLatestUserDefinedLoader
	-Dcom.ibm.dbgmalloc
	-Dcom.ibm.enableClassCaching
	-Dcom.ibm.jsse2.renegotiate
	-Dcom.ibm.lang.management.verbose
	-Dcom.ibm.IgnoreMalformedInput
	-Dcom.ibm.streams.CloseFDWithStream
	-Dcom.ibm.tools.attach.enable
	-Dcom.ibm.xtq.processor.overrideSecureProcessing
	-Dcom.ibm.zipfile.closeinputstreams
	-Dfile.encoding
	-Dibm.jvm.bootclasspath
	-Dibm.stream.nio
	-Dil8n.vs
	-Djava.compiler
	-Djavax.xml.namespace.QName.useCompatibleHashCodeAlgorithm
	-Djdk.map.althashing.threshold
	-Djdk.reflect.allowGetCallerClass
	-Djdk.xml.entityExpansionLimit
	-Djdk.xml.maxGeneralEntitySizeLimit
	-Djdk.xml.maxOccur
	-Djdk.xml.maxParameterEntitySizeLimit
	-Djdk.xml.totalEntitySizeLimit
	-Dsun.awt.keepWorkingSetOnMinimize
	-Dsun.net.client.defaultConnectTimeout
	-Dsun.net.client.defaultReadTimeout
	-Dsun.nio.MaxDirectMemorySize
	-Dsun.rmi.transport.tcp.connectionPool
	-Dswing.useSystemFontSettings

	JVM command-line options
	-X
	-Xaggressive
	-Xargencoding
	-Xbootclasspath
	-Xcheck
	-Xclassgc
	-Xcompressedrefs
	-XCEEHDLR
	-Xdiagnosticscollector
	-Xdisablejavadump
	-Xdump
	-Xenableexplicitgc
	-Xfastresolve
	-Xfuture
	-Xifa
	-Xiss
	-Xjarversion
	-Xjni
	-Xlinenumbers
	-Xlockword
	-Xlog
	-Xlp
	-Xmso
	-Xnoagent
	-Xnoclassgc
	-Xnocompressedrefs
	-Xnolinenumbers
	-Xnosigcatch
	-Xnosigchain
	-Xoptionsfile
	-Xoss
	-Xrdbginfo
	-Xrs
	-Xscdmx
	-Xscmx
	-Xshareclasses
	-Xsigcatch
	-Xsigchain
	-Xsignal:posixSignalHandler=cooperativeShutdown
	-Xsignal:userConditionHandler=percolate (31-bit z/OS only)
	-Xss
	-Xssi
	-Xthr
	-Xtrace
	-Xtune:elastic
	-Xtune:virtualized
	-Xverify
	-Xzero

	JVM -XX command-line options
	-XXallowvmshutdown
	-XX:codecachetotal
	-XX:MaxDirectMemorySize
	-XXnosuballoc32bitmem
	-XX:ShareClassesEnableBCI
	-XX:-StackTraceInThrowable
	-XX:[+|-]UseCompressedOops (64-bit only)
	-XX:[+|-]VMLockClassLoader

	JIT and AOT command-line options
	-Xaot
	-Xcodecache
	-Xcodecachetotal
	-Xcomp (z/OS only)
	-XcompilationThreads
	-Xint
	-Xjit
	-Xnoaot
	-Xnojit
	-Xquickstart
	-XsamplingExpirationTime
	-Xscmaxaot
	-Xscmaxjitdata
	-Xscminaot
	-Xscminjitdata

	Garbage Collector command-line options
	-Xalwaysclassgc
	-Xclassgc
	-Xcompactexplicitgc
	-Xcompactgc
	-Xconcurrentbackground
	-Xconcurrentlevel
	-Xconcurrentslack
	-Xconmeter
	-Xdisableexcessivegc
	-Xdisableexplicitgc
	-Xdisablestringconstantgc
	-Xenableexcessivegc
	-Xenablestringconstantgc
	-Xgc
	-Xgcpolicy
	-Xgcthreads
	-Xgcworkpackets
	-Xloa
	-Xloainitial
	-Xloamaximum
	-Xloaminimum
	-Xmaxe
	-Xmaxf
	-Xmaxt
	-Xmca
	-Xmco
	-Xmine
	-Xminf
	-Xmint
	-Xmn
	-Xmns
	-Xmnx
	-Xmo
	-Xmoi
	-Xmos
	-Xmox
	-Xmr
	-Xmrx
	-Xms
	-Xmx
	-Xnoclassgc
	-Xnocompactexplicitgc
	-Xnocompactgc
	-Xnoloa
	-Xsoftmx
	-Xsoftrefthreshold
	-Xtgc
	-Xverbosegclog

	Balanced Garbage Collection policy options

	JVM messages
	Finding logged messages
	Obtaining detailed message descriptions

	CORBA minor codes
	Environment variables
	Displaying the current environment
	Setting an environment variable
	Separating values in a list
	JVM environment settings
	z/OS environment variables

	Default settings for the JVM
	Known issues and limitations
	Support for virtualization software

	Notices
	Privacy Policy Considerations
	Trademarks

