
Technical Whitepaper
IBM Cloud

Streaming broadcast
video over IP networks
How to enable near-live and live streaming
of any format and bit rate over commodity
Internet

Overview
Live and near-live streaming of broadcast quality video content (20 -
100 Mbps) over IP networks with small start-up delays and glitch-free
experiences have traditionally required expensive and specially-
provisioned infrastructure. Traditional distribution systems use live
satellite feeds from the streaming source or dedicated terrestrial
networks with heavy quality of service to ensure low latency and low
packet loss rates so as to not degrade the play out quality. In recent
years, advances in broadcast quality video compression have also made
it possible to distribute lower bit rate versions through web streaming
over consumer broadband bandwidths (1-10 Mbps), but even at these
bit rates, providers have relied heavily on global content distribution
networks (CDNs) to stream the video content from the network edge to
the consumer. These CDNs allow the user to take advantage of low
round-trip latency and relatively low packet loss rates for a better quality
user experience. Note that lower bit rate transcoding does not eliminate
the need to ingest a high quality stream to transcoders, which may be
remote from the source.

Contents:
1 Overview

2 The challenge

2 The solution

3 The Aspera Streaming model

3 Enabling start-up delay

4 “Glitch” probability and the full 	
mathematical model

5 Some expectation values

5 Data pipeline

6 Skip heatmap

6 Benchmarking our improvement over
TCP

9 Conclusion

The solution
IBM Aspera’s FASP transport technology is a patented bulk data
transport widely utilized in digital media for achieving highly
efficient, high-speed bulk media transfer over IP networks, with
efficiency independent of distance and quality (round-trip latency
and packet loss). However, the Aspera FASP architecture
originally had no suitable application interface for transporting live
data. In contrast with bulk file-structured data (e.g. VoD), live
stream data need be delivered to the play out application in the
same order it was passed to the transport tier. This ordered
delivery constraint required Aspera to innovate a new byte
streamlining capability in its transport platform on top of the FASP
datagram delivery protocol. The resulting protocol is a fully
reliable bulk data streaming protocol that delivers data and video
streams over Internet WANs including minimal buffering or
glitches, and with negligible start-up delay. In this paper we
describe the underlying protocol design and statistical model that
predicts the streaming performance and we demonstrate through
real world measurements the resulting quality in live video
delivery that creates radically new possibilities for live streaming
video. Media companies can achieve long distance ingest, remote
play out, and even distribution of live video to play out systems
running Aspera Streaming without the assistance of CDN edge
technology, “game changing” capabilities that could ultimately
revolutionize the transport of live video.

Aspera has productized its streaming technology as part of the
IBM Aspera Streaming solution. It is also available as an
embeddable gateway to replace TCP porting, or as SDK bindings
available for C/C++, .NET, and Java for use in third-party
applications. The first production use case delivered live video
during the World Cup in a pioneering second screen system that
captured 14,000 hours of live video from multiple camera
angles, ingested this video in real time using Aspera FASP from
Brazil to an AWS cloud storage for live transcoding, ultimately
yielding approximately 3 million minutes of transcoded content
served by broadcasters, and ultimately to consumers.
Subsequently for the 2018 Men’s World Cup, the Aspera
Streaming technology integrated into Telestream’s Vantage and
Lightspeed Live products delivered about 4000 hours of HD and
UHD live feeds (nearly two petabytes of video) from all 64 World
Cup matches in Russia to remote production teams in Los
Angeles in near real-time — over unmanaged IP networks. An
expanded deployment of the Aspera Streaming solution was
used for the 2019 Women’s World Cup in France.

IBM Software

2

The challenge
At both ends of the spectrum — broadcast quality ingest and
remote play out, as well as consumer web streaming — the
media enterprise and, indirectly, the consumer pay a heavy
premium in infrastructure costs to minimize the network
factors that degrade the play out experience, such as network
round-trip time and packet loss. This cost is burdensome in
any media application or service, but is especially impractical
in live and second screen experiences for events that occur
only once. One time events, such as sport events, movie
premieres, concerts, operas, etc., cannot as easily justify the
investment associated in erecting dedicated infrastructure for
direct distribution, or amortize the CDN costs over long periods
of viewing. Additionally, there exist practical constraints that
make it difficult to employ CDNs for direct distribution in many
second screen applications; media needs to flow through
distant cloud services where scale out properties of the cloud
computing platform are necessary for concurrent transcoding
of the live stream for several formats. Thus, more often than
not, content providers are left to over-provision infrastructure
for such live events as a precaution, and pay higher costs.

The need to ingest and distribute live media over low-cost,
wide area IP networks, and with the option to go through
distant cloud-based transcoding platforms has created a
significant technology void. This is not just an opportunity for
small incremental advantage solvable through adaptive bit rate
“down sampling”, or clever buffering schema – instead, this
calls for a fundamental solution.

Traditional TCP-based transport approaches such as adaptive
bit rate streaming over HTTP have a significant bottleneck in
throughput over commodity Internet WANs. The best case
transfer rates for live HTTP streams over a commodity Internet
WAN path between South America and Europe (200
milliseconds round-trip time) is 2 Mbps, and with worst case
internet packet loss rates (≥ 2%), falls to < 1 Mbps. A 10 Mbps
live ingest stream transported with TCP simply isn’t possible
over these distances. And for higher video bandwidths or more
distant delivery, the gap between realizable throughput and
required play-out rate widens.

Technical Whitepaper

The Aspera FASP protocol, however, has a reliability algorithm
fully decoupled from its congestion avoidance algorithm and
independent of round-trip delay. If data is dropped, the
Aspera FASP receiver requests retransmission of dropped
packets by the sender, and does not slow down its the
sending rate; packets are retransmitted along with new data
at the effective bandwidth rate of the channel. So, if the
Aspera FASP design principals hold for in-order stream data,
we can predict precisely how long we need to wait for a video
stream to begin.

For example, we conclude that for a live stream over a WAN
with 2% packet loss, on average, only one in every 50 data
blocks will be dropped, and for 50 blocks to arrive, we need to
wait only the OWD time, plus the time to retransmit a block, 1
round trip time (RTT). While close to accurate already, this
doesn’t entirely capture the story. Let’s scale up a bit.

Consider 2500 blocks to be sent. 2% of these blocks are
expected to drop, i.e. 50. For each of these 50 blocks, we have
two possibilities:

Capability details are highlighted below.

•	 The message requesting block retransmission sent by the
receiver to the sender could be dropped in transit. This
may occur with probability 2%

•	 The retransmitted block might be dropped on its second
trip. This may occur with probability 2%.	

One can readily compute that we expect 1 of our 50 blocks to
be dropped a second time, and 1 of our retransmission
requests to be dropped. How would this in turn affect the
stream delivery time? Of all blocks, we would expect 2450 to
arrive on time, that is, after the OWD time. We expect 48 to
arrive after the retransmission request. This is 1 RTT plus 1
OWD. For the two remaining blocks (the double dropped
blocks), their arrival delay will suffer another RTT; arrival will
occur in 2 RTT + 1 OWD.

Finally, we consider the special case that if the final block’s
retransmission request is dropped, the Aspera FASP protocol
will detect this case and one RTT later, send another
retransmission request. Then the block is retransmitted
successfully (with 98% likelihood). This entire process takes 1
RTT + 1 RTT + 1 OWD. Thus, we have two blocks arriving after 2
RTT + 1 OWD. To give a sense of this in human time, RTT in our
model network is 200ms, and OWD is 100ms.

We begin with a tour of the mathematical model that
underlies the protocol, and predicts its efficiency. We then
generate live stream data on networks similar to those
described above to compare to our expectations—200 ms
delay, 2% packet loss— and three representative bit rates (6
Mbps, 10 Mbps, 40 Mbps). These actual transfer data sets
confirm both our model, and the transfer protocol as bona
fide solutions to the streaming video challenge. We end with
some simple visualizations to expose the hard numbers that
Aspera’s streaming technology achieves in terms of skips per
second of video playback.

The Aspera Streaming Model
Consider a live video stream being “played out” over a wide area
IP network. Viewers react to two important measures of
“quality” — how long the stream takes to start playing (the start
up delay), and whether the stream plays smoothly or
“glitches”/“buffers” waiting for the expected next data to arrive
(the “glitch” probability). Our formal evaluation of the Aspera
Streaming model in this section considers both facets of quality.

Enabling Start-up Delay
Let’s start with quantifying the start-up delay. If all of the
packets that comprise the video stream were to always arrive at
the play out location on the initial attempt, to determine the
delay before play out begins, we would need only ask, what is
the One-Way-Transfer time for the network? Simply knowing
that time would determine how long the first packet in the
stream would take to arrive, and all of the remaining packets
would also arrive precisely in time for the player. However, IP
networks are imperfect and merely “best effort” by design:
packets are lost or delayed in transit and there is no guarantee
that any packet will arrive at its destination on the first attempt
or at any particular time!

Assuming a typical full duplex intercontinental IP network with
a 200 millisecond round-trip time (RTT) and one way
propagation delay (OWD) of 100 milliseconds and loss
probability of 2% in each direction, for a reliable delivery
protocol like HTTP over TCP, the transmission rate has been
shown to collapse to an effective rate of less than 1 Mbps, due
to the congestion windowing protocol of TCP that reduces the
sending rate aggressively in response to packet loss. Thus
“live” transmission and play out of data stream rates greater
than 1 Mbps using TCP based protocols is impossible at such
network distances because start-up delays to compensate are
unbearably long.

IBM Software

3

Technical Whitepaper

4

Thus, in 2500 blocks, all but two arrive within three-tenths of a
second, and the last two, in three-fifths of a second. This
means that we can ensure a worst-case start up delay of only
three-fifths of a second, assuming Aspera’s streaming
technology can continue to deliver data at the play out rate and
with no data pre-buffered in reserve.

Lest these predictions of block numbers seem sleight-of-hand,
consider the actual calculated number of blocks for some
sample tests. For 6 Mbps data streams, 547 blocks are sent
per second; for 10 Mbps streams, 911 blocks are sent per
second, and for 40 Mbps streams, 3641 blocks are sent per
second. Compare these numbers with the sample numbers
described above, and you’ll get an immediate sense on the
performance we are expecting. Later we will show some real
data to compare, but for now, these are concrete numbers to
keep our feet on the ground.

“Glitch” Probability and The Full
Mathematical Model
The more interesting question in characterizing the streaming
performance is how to know the probability that the live
stream will “glitch” during playback because the next expected
data is not available to the player, and how much additional
start up delay is needed to ensure enough data is stored in
reserve to prevent this given the network conditions. To
formalize this, we set out to compute a probability model for
“skipping” a frame. Specifically, we want to know the
probability that a skipped block will not be received in time for
its expected playback.

First we need consider how the Aspera FASP datagram size
equates to playback time. Video is delivered in a number of
frames per second (the ’framerate’) and has a number of bytes
per frame. For one second of live video, the number of data
bytes Aspera will send is framerate multiplied by framesize. In
other words, Aspera’s transmission rate in bits per second
equals video framerate multiplied by framesize multiplied by 8.
We assume also that Aspera’s streaming transport reads the
video stream from the video source in “readchunks” of a
known size, and delivers these chunks to the receiving player
application in order (while individual blocks within the chunks
may arrive out of order). It turns out that the size of the chunk
has no affect on the formal model.

To determine the probability of a “glitch” in the live transmission,
we need to first compute the probability P of waiting a number M
RTTs before the next needed chunk arrives and then normalize M
for the playback rate of the video.

IBM Cloud

Note: The absolute baseline for any block to travel the network
is 1 OWD. For this reason, we normalize by this OWD and don’t
include it in all of our computations. When we say “wait M
RTTs”, we always mean “wait M Rtts after the first OWD”.

The probability model is an iterated probability of a single block
failing. For streaming files, order matters, and thus the delay of
playback is the result of a packet being dropped multiple times.

The probability of waiting one RTT for one block is P, i.e. the
probability that one block is dropped. The probability of waiting
two RTTs for one block is P2, or, the probability of that block
being dropped, and then being dropped again. This may be
iterated for M RTTs.

Hence, the probability of a block not being received in M RTTs
is PM+1. The index change is to reflect precisely how many
RTTs are needed to receive the block, i.e. the block arrives
within M RTTs.

From this we can see that the probability that a block will be
received in M Rtos is 1 − PM+1. Now given two blocks, the
probability that we receive the first block within M RTTs, AND we
receive the second block within M RTTs is the product of their
individual probabilities. This is because each block transmission
is an independent event. Whence:

P(M,2) = (1 − PM+1)(1 − PM+1) = (1 − PM+1)2. 	 (1)

Now, assume N is the number of blocks in a single readchunk.
By this we mean N is the readchunk size divided by the block
size. This unit represents the minimal number of blocks to
begin playing.

Now, the probability of receiving N blocks in greater than M
RTTs is

P(M,N) = 1 − (1−PM+1)N 				 (2)

This is a result of the previous fact: that receiving all N packets in
M RTTs is the product of their individual probabilities.

Technical Whitepaper

IBM Cloud

5

Some expectation values
To test our theory we ran a number of experiments to create a
dataset consisting of 100 transfers of 30 seconds of video, using
two host computers connected over an IP network (10 Gbps
Ethernet end-to-end) via a network emulation device configured
with 200ms round trip delay and 2% packet loss. We created
data streams at 40, 10, and 6 Mbps via netcat to serve as
representative video bit rate examples. We assumed that the
available bandwidth capacity of the network was greater than
the data stream rate and configured the emulated channel
bandwidth to 50, 15, and 10 Mbps respectively. Finally, we
captured the arrival timestamps of all packets at the Aspera
Streaming receiver host and recorded the arrival rate for original
and retransmitted packets by block number and by readchunk
for our analysis.

For our three cases of 40 Mbps, 10 Mbps, and 6 Mbps we
estimate 3641, 911, and 547 blocks per readchunk, where we
assume the readchunks are 1 second long, assuming a block
size of 1464 bytes. We assume that all streaming applications
can have a 1 second start-up delay and thus pre-buffer one
chunk of one second duration, which translates to 5 RTTs on a
200ms network. We assume a packet loss probability of 2%,
and calculate the probability that any 1 chunk will be delayed
more than the 1 second of buffer and cause a “glitch” as follows:

P (5, 547) = 1 − (1 − .025)547 = 0.00000175 	 (3)

P (5, 911) = 1 − (1 − .025)911 = 0.00000292 	 (4)

P (5, 3641) = 1 − (1 − .025)3641 = 0.00001165 	 (5)

After running 100 tests of 30 seconds of live data(30 chunks)
the probability of a “skipped” chunk is as follows:

0.00000175 x 30 x 100 = 0.00525 		 (6)

0.00000292 x 30 x 100 = 0.00875 		 (7)

0.00001165 x 30 x 100 = 0.03495 		 (8)

This data tells us that with a one second buffer, at 6 and 10
Mbps, we should skip less than 1% of the time, and even at 40
Mbps, we should skip less than 4% of the time.

Video bit rate Time before expected skip

6 Mbps 6.6 days

10 Mbps 3.96 days

40 Mbps 0.99 days

Our tests of Aspera Streaming experimentally confirm these
bold claims. We see exactly as predicted, zero observable
skips, and the majority of frames arrive ahead of time,
suggesting the buffer time can be reduced under a second (on
the order of 0.5 seconds).

Data pipeline
In our experiment we record the arrival rate of blocks of data
including the following five fields:

Timestamp–Time since last block–Full block size–Payload
size–Block Number–Original or Retransmission

All times are computed in microseconds. We ran 100 transfers
of 30 seconds duration, aggregate the data and calculate the
“lateness” of each block (original or retransmission), where the
lateness is given as:

Lateness = FinalRexTime–SenderTime–OneWayDelay,

Where FinalRexTime is the timestamp of the Received
Retransmission, and SenderTime is the timestamp when the
corresponding original block was sent. Thus, the Lateness is
the amount of time passed between the sender originally
trying to send, and the final time the block is successfully
delivered to the receiver, less the OWD.

The RexCount is computed by counting the number of
retransmission requests for that block sent on the receiver side.

We expect that

RexCount x RTT ≤ Lateness. 			 (9)

From this dataset, we generate our scatterplots (figures 1, 2,
and 3). These scatterplots display test number vs. lateness on
a per block basis. Some immediate, but important
observations:

•	 There is no statistically significant correlation between test
number and lateness.

•	 The vertical bands in the data, cluster exactly into the
expected regions predicted by the FASP protocol.

•	 Our predicted probabilities are manifest in the dataset.
•	 We have no inexplicable delays.

Skip heatmap
Rather than visualize the absolute values of lateness on a per
block basis, we want to frame this data in terms observable by
users. Specifically, we want to look at the lateness on a per-
readChunk level. Humans don’t see when a block is late –

Technical Whitepaper

IBM Cloud

instead they see when a block is so late that the video skips. The
readChunk abstraction bridges us from what we see, to what is
happening at the protocol level. Heatmaps are a visual
technique for associating regions to values, and are an excellent
tool for identifying values above a certain threshold. In our case,
we will use white—or “hot”—squares to refer to readchunks that
are troublesome. Green squares—or, “cool” squares—designate
readchunks that arrive close to the minimum possible dictated
by network conditions. Our output will appear as a matrix of
squares, where rows correspond to individual tests, and
columns indicate the index of the readchunk in the video. We
will hope to see primarily green; as the squares grade to white,
the corresponding readChunks are arriving later. We now need
the data in a very different form:

TestNum — ChNum — Lateness

Again, TestNum and ChNum are as before, however Lateness
is computed differently. We want to see how long the entire
readChunk will take to arrive. We can’t simply look at the
timestamp of the last block in a readchunk and subtract the
timestamp of the first block, because this doesn’t respect the
possibility that some block retransmissions will come later. So
we look at the latest arrival of any block in the readChunk, and
subtract from this time the first arrival time. This tells us how
long the block took to arrive. We subtract the readChunk’s
index times the buffer time to convert this value to a
comparison to when it was expected.

In symbols,

ChunksLastRexTime − ChunksFirstTime − BufferTime x
(ChNum) = ChunkLate. 			 	 (10)

We see excellent performance. In the three test case scenarios
we see performance as predicted by the theoretical model. We
see in Figure 4 almost exclusively green, and even better, a dark
green, close to ideal. Nothing in our testing suggests our model
was overoptimistic, and to the contrary, provides us with evidence
that we can effectively operate under these assumptions.

Benchmarking our improvement over TCP
The TCP protocol underlying HTTP adaptive bit rate streaming
protocols behaves quite differently from the Aspera streaming
technology and is not directly comparable under this model.
TCP’s congestion avoidance algorithm slows down so aggressively
with packet loss that much longer start-up delays are necessary
for live streams. For near-live use cases, a huge delay is
problematic. To quantify the difference, we show show the kind of
startup delay anticipated, for direct comparison to Aspera.

Figure 1 – 6 Mbps Lateness Scatterplot

6

Technical Whitepaper

IBM Cloud

7

Figure 2 – 10 Mbps Lateness Scatterplot

Figure 3 – 40 Mbps Lateness Scatterplot

Technical Whitepaper

IBM Cloud

8

Figure 4 – 6, 10, and 40 Mbps Skip Heatmaps (resp.)

Technical Whitepaper

9

IBM Cloud

For the scatterplots (Figures 5, 6, and 7) associated to TCP tests,
we plot test number vs. startup delay in milliseconds. The startup
delay means the amount of time before the first 1 second bucket,
is ready to display. Notice that we can’t guarantee continuous
playback even from here; this is the minimal time, before we can
start playing.

Some immediate take-aways from these scatterplots are:

•	 The variance in these statistics is extremeley high.
•	 The values themselves are huge, both in comparison to

Aspera FASP, and for normal use-cases.

As suggested before, delays on the order of 15-120 seconds are
totally unacceptable. In any of the cases, we see values well
outsides the bounds of what we’re willing to accept.
Furthermore, we don’t even see some cases with good
performance; all cases are bad.

Conclusion
IBM Aspera’s streaming technology is no more a faster
replacement to TCP streaming, than air travel is a faster
replacement to American-European driving; you just cannot
drive across the ocean. Aspera Streaming offers minimal
playback delays, consistent delivery rates, and high network
performance with excellent quality including negligible
probability of skipping, opening new game changing
possibilities for live and near live streaming at distance. For
more information about Aspera Streaming and the underlying
technology, please visit us at https://www.ibm.com/us-en/
marketplace/aspera-streaming-for-video.

Technical Whitepaper

About IBM Aspera
IBM Aspera offers next-generation transport technologies that
move the world’s data at maximum speed regardless of file size,
transfer distance and network conditions. Based on its patented,
Emmy® award-winning FASP® protocol, Aspera software fully
utilizes existing infrastructures to deliver the fastest, most
predictable file-transfer experience. Aspera’s core technology
delivers unprecedented control over bandwidth, complete
security and uncompromising reliability. Organizations across a
variety of industries on six continents rely on Aspera software for
the business-critical transport of their digital assets.

For more information
For more information on IBM Aspera solutions, please visit
https://www.ibm.com/products/aspera or contact us
at aspera-sales@ibm.com

https://www.ibm.com/us-en/marketplace/aspera-streaming-for-video
https://www.ibm.com/us-en/marketplace/aspera-streaming-for-video
https://www.ibm.com/products/aspera
mailto:aspera-sales%40ibm.com?subject=IBM%20Aspera%20Streaming%20WP

53018853USEN-01

Please Recycle

© Copyright IBM Corporation 2019

IBM Corporation
Route 100
Somers, NY 10589

Produced in the United States of America
December 2019

IBM, the IBM logo, ibm.com and Aspera are trademarks or registered
trademarks of International Business Machines Corporation in the United
States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available
on the Web at “Copyright and trademark information” at:ibm.com/legal/
us/en/copytrade.shtml

Other product, company or service names may be trademarks or service
marks of others.

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every country
in which IBM operates.

The performance data and client examples cited are presented for
illustrative purposes only. Actual performance results may vary depending
on the specific configurations and operating conditions. It is the user’s
responsibility to evaluate and verify the operation of any other products or
programs with IBM product and programs. THE INFORMATION IN THIS
DOCUMENT IS PROVIDED “AS IS” WITHOUT ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY
WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM products are
warranted according to the terms and conditions of the agreements under
which they are provided.

