
IBM Analytics

Build a text analysis app
in 3 hours with Word2vec
Put unstructured text data to work
for improved insight and decision-making

Delivering the
application

Build a text analysis app in 3 hours with Word2vec

 1 2 3 4 5 6
 Introduction Getting started Preparing

 the data
 Building
 the model

 Visualizing
the analysis

Build a text analysis app in 3 hours with Word2vec

3

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

Introduction

Between the Internet of Things, customer
experience and loyalty programs, social
network monitoring, connected enterprise
systems and other information sources,
today’s organizations have access to more
data than they ever had before—and
frankly, more than they may know what to
do with. The challenge is to not just
understand that data, but actualize it and
use it to recognize real business value.

It’s a difficult endeavor, in part because
the majority of business-relevant
information originates in unstructured
formats, primarily text. This data is
unusable until it can be “read” by analytics

systems and applied by people to solve
problems. Mathematical exploration of
text data can make it more readable,
yielding insights that translate into better
decisions by marketers, entrepreneurs,
doctors, teachers and others.

This ebook will walk you through a sample
scenario with Albert, a data scientist who
wants to put text analytics to work by
using the Word2vec algorithm and other
data science tools.

Along the way, you’ll learn some tips and
tricks for working with Word2vec and applying
it to analytical models. Let’s get started.

1 Introduction

What is Word2vec?
Word2vec uses machine learning
techniques to come up with
vector representations of words.
Associating vectors to words is a
practical way to measure the

distance between them. The angle formed
between two vectors is a commonly used metric
to measure the similarity of the vectors. If the
two legs of the angle are close together, then
the two words are frequently mentioned
together. If the legs of the angle are farther
apart, then the two words are not associated as
frequently. The angle between vectors is called
the cosine distance and it provides a numerical
value that applications can analyze and interpret.

Build a text analysis app in 3 hours with Word2vec

4

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

Albert’s challenge
Albert is a data scientist working for a
large retailer. His job is to help his company
get the most out of its data for maximum
business advantage.

Albert’s company is introducing a major
new product line, and the marketing
department is planning a big launch
campaign to promote it. But while the
marketing team has traditional business
intelligence solutions, it doesn’t have a

way to rapidly assess how the campaign
is performing as it unfolds. The marketers
need to know how the company and its
products are being perceived in the
marketplace in near-real time so they can
adjust the campaign elements for
optimum results.

Also, the campaign starts in a couple of
weeks—so Albert needs to come up with
a solution that doesn’t take a long time
to develop.

1 Introduction

Build a text analysis app in 3 hours with Word2vec

5

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

Data source: Tweets
Albert chose Twitter feeds as the specific
data source because they reflect changes
in public opinion and are easy to obtain in
large quantities. He used the Twitter
Decahose API, which continuously provides
about a 10 percent sample of public tweets.

Analytics requirements: Text analysis
The analysis needed to show in a
mathematically valid way what kinds of
words were being associated with the new
product on Twitter—good, bad and so on.
Tweets take the form of unstructured text,
which can’t be mined in the same traditional
way as structured databases. To meet the

Getting started

What you’ll learn
• How to select the elements needed

to build a text analysis model

2 Getting started

Problem to solve: Brand and
product perception
Is the public developing a positive impression
of the company and its new product line?
Albert decided to use social media as a way
to obtain this information, knowing that it is
constantly updated and provides a large
potential pool of data.

marketers’ deadline, Albert needed tools he
could use to rapidly build a suitable text
analysis model and structure for processing
tweets. Albert also wanted a model versatile
enough to use for multiple purposes as the
needs of his company changed or new
departments wanted to analyze text data.

Data science tools: Apache Spark,
Python, Word2vec
Albert chose the Apache Spark open source
framework as the backbone for processing
and centralizing his data. He selected Spark
because he wanted to be able to perform
computations in a distributed fashion,
reading data from multiple different nodes.

support.gnip.com/apis/firehose/overview.html
support.gnip.com/apis/firehose/overview.html

Build a text analysis app in 3 hours with Word2vec

6

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application2 Getting started

This approach allowed him to use large
training sets and perform computations in a
reasonable amount of time. Because Spark
is not tied to a particular storage type or
format, it can handle a wide variety of data
sources. This may be useful later if Albert
uses his model to run different analyses with
different text data.

Albert also chose the Python programming
language, which is widely used with Spark,
to write his application. He liked the fact
that Python is easy to use yet powerful
enough for professionals. His critical
decision, however, was to use the Word2vec
algorithm implemented in Spark to build
and train his model.

What’s the big deal about Word2vec?
To make data useful for building his model,
Albert needed to transform it into vector arrays
that show the mathematical relationships
between words. Given the short time frame
and the complexity of the problem he was
trying to solve, Albert couldn’t have done
this from scratch. Fortunately, Word2vec is
one of the quickest and easiest tools to use.

Behind this ease of use is some very
complex mathematics: Word2vec word
vectors capture linguistic similarities (Figure 1).
For example: vec(‘king’) + vec(‘woman’) -
vec(‘man’) = vec(‘queen’)

vec(‘king’) + vec(‘woman’) - vec(‘man’) = vec(‘queen’)

Figure 1. Example of linguistic similarities.

https://code.google.com/p/word2vec/

Build a text analysis app in 3 hours with Word2vec

7

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application2 Getting started

Given a search word, Word2vec can relate
the word with other terms in Twitter. For
example, the OpenTable app uses Word2vec
to recommend restaurants based on reviews
from users.1 Word2vec assigns a vector to
each word in the reviews, including restaurant
names and other keywords such as “Steak,”
“Patio,” “Jazz” or “View” (Figure 2).

It only takes a little imagination to see that
Word2vec models can be useful for many
similar purposes, such as associating tweeted
words with the name of a product or service.
Hashtags (#), handles (@) and even
emoticons (☺) can be included as words.

Figure 2. Word2vec can be used to recommend restaurants based on words used in reviews.

Translating restaurants via concepts

Harris’
Steakhouse in
downtown area

Patio Las Sendas
Steakhouse with

 amazing patio

Broadway Jazz
Steakhouse
with live jazz

Celestial
Steakhouse
Steakhouse
with a view

Source: OpenTable Spark Summit presentation, June 2015

Build a text analysis app in 3 hours with Word2vec

8

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

To build his Word2vec model, Albert first
loaded his data into the Spark framework,
reading about 300,000 tweets every
15 minutes. He filtered the data in Spark
and used Python to interact with Spark
for cleaning and parsing the data. As he
proceeded with these steps, he stored the
relevant code in a github repo. The code for
each step is shown in the following sections.

Preparing the data

3 Preparing the data

What you’ll learn
• How to filter, clean and parse the

data to get it ready for use

Filtering
Albert decided to keep his application focused on the English language for the time being,
so he set the filter to retain only tweets in English. That reduced the number of tweets to
about 40 percent of the original total. Albert also decided to write up a list of words that he
thought were relevant for his analysis, and use it to filter out any tweets in English that did
not contain at least one of the words on his list.

The relevant code:

Construct SQL Command
t0 = time.time()
sqlString = "("
for substr in filter: #iteration on the list of words to filter (usually 50-100 words)

 sqlString = sqlString+"text LIKE '%"+substr+"%' OR "
 sqlString = sqlString+”text LIKE '%"+substr.upper()+"%' OR "
sqlString=sqlString[:-4]+")"
sqlFilterCommand = "SELECT lang, text FROM tweets WHERE (lang = 'en') AND "+sqlString

Query tweets in english that contain at least one of the keywords
tweetsDF = sqlContext.sql(sqlFilterCommand).cache()
twf = tweetsDF.count()

Build a text analysis app in 3 hours with Word2vec

9

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

Cleaning and parsing
Parsing breaks sentences into separate
words. Cleaning removes dots, commas
and stop words such as “the” that get in
the way of processing. For example,
without cleaning, the word “apple” and
the word “apple,” (with a comma after it)
could both appear in the same data set
and be counted by the model as two
different words.

The code:

3 Preparing the data

select the text from the tweets and map it to an rdd
tweetsRDD = tweetsDF.select(‘text’).rdd

def parseAndRemoveStopWords(text):
 t = text[0].replace(“;”,” “).replace(“:”,” “).replace(‘”’,’ ‘).replace(‘-’,’ ‘)
 t = t.replace(‘,’,’ ‘).replace(‘.’,’ ‘)
 t = t.lower().split(“ “)
 stop = stopwords.words(‘english’)
 return [i for i in t if i not in stop]

map rdd of raw text to clean and parsed text without stop words
tw = tweetsRDD.map(parseAndRemoveStopWords)

Build a text analysis app in 3 hours with Word2vec

10

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

time you want to spend on each
experiment. Albert started with a small
batch of tweets to make sure his PySpark
script was working correctly. For his final
model, Albert decided to train a model
using about 6.2 TB of Twitter data because
adding more tweets did not change the
results of the model.

Vector dimensionality: Each word is
represented by a vector, and the user is
allowed to choose its dimensionality. Albert
used the default setting of 100 dimensions
because adding more dimensionality did

Building the model

not add accuracy to the results of the
model. Also, adding more dimensionality
would lengthen the time needed to train
the model and to perform operations
with the word vectors.

minCount: This is the number of times
that a word needs to appear in the tweets
to be considered in the model. A low
setting such as 2 or 3 lets in unusual
words that must be included in a model,
but may also let in other words that are not
desired. A high setting of 15 or 20 excludes
words that do not appear very often.

4 Building the model

What you’ll learn
• How to filter, clean and parse the

data to get it ready for use

With the data loaded and prepared, it was
now time for Albert to build and train the
model. He began by setting important
Word2vec parameters.

Data size: Generally, more data is better.
Your limitations, however, include the
computational power available and the

Build a text analysis app in 3 hours with Word2vec

11

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

Albert performed experiments with variations
of this parameter and realized that 5 was a
good choice to make sure all words of
interest were shown in the final model.

The complexity of the Spark implementation
of Word2vec is O(log(V)), where V is the
number of words in the model. In other
words, the fewer the words used, the faster
Word2vec trains. See http://spark.
apache.org/docs/latest/mllib-feature-
extraction.html#model for more details.

Return closest n words: Given a search
term, how many other similar terms in
Twitter should be listed? Albert decided the
number of words to show would depend on
the final application. For visualization
purposes he decided to use the 20 closest
terms to avoid overwhelming the plot.

Albert then ran multiple iterations to test
the parameters and tune them for optimum
performance using a search word that he
knew would easily produce associations.
Each time he fed the data into Word2vec,
it returned a data frame with words and
vectors (Figure 3).

4 Building the model

Figure 3. Distance between words mathematically calculated
by Word2vec.

Closest words to #shopping
1. #style
2. #decor
3. #casual
4. #homedecor
5. #etsy

http://spark.apache.org/docs/latest/mllib-feature-extraction.html#model
http://spark.apache.org/docs/latest/mllib-feature-extraction.html#model
http://spark.apache.org/docs/latest/mllib-feature-extraction.html#model

Build a text analysis app in 3 hours with Word2vec

12

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application4 Building the model

These experiments showed how the quality of results changed as Albert increased or
decreased different parameters. The last iteration provided the final model.

The code:

Word2vec is an easy-to-use algorithm with highly complex math behind the scenes that
is extremely useful in practice. And it’s fast: reading the data, preparing the data and
building and training the model took Albert just 3.1 hours on a 10-node cluster using
6.2 TB of data.

map to df
twDF = tw.map(lambda p: Row(text=p)).toDF()

default minCount = 5 (we may need to try something larger: 20-100 to reduce the training time)
default vectorSize = 100 (we may want to increase dimensionality when it increases model's quality)
t0 = time.time()
word2Vec = Word2Vec(vectorSize=100, minCount=5, inputCol="text", outputCol="result")
modelW2V = word2Vec.fit(twDF)
wordVectorsDF = modelW2V.getVectors()
print "Elapsed time (seconds) to train Word2Vec: ", time.time() - t0

Build a text analysis app in 3 hours with Word2vec

13

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

Visualizing the analysis

5 Visualizing the analysis

 What you’ll learn
• How to visualize Word2vec analytic

results in different ways

Word2vec delivers results using numbers.
But Albert’s application users—the
marketing teams and their clients—may
not be numbers people. To help them
visualize the results of the analysis, Albert

Figure 4. Word2vec force graph of nearest terms (green for
hashtags, yellow for words).

used the D3 JavaScript library to show a
force graph with the word of interest at the
center (Figure 4). The graph uses bubbles
to show how many times each word or
hashtag appears (indicated by bubble size)
and how close or distant they are from the
original search term (located in the center).

Albert knew he could use the Principal
Components Analysis (PCA) procedure to
reduce the number of Word2vec dimensions.
Dimensionality reduction enabled Albert to

https://d3js.org/
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis

Build a text analysis app in 3 hours with Word2vec

14

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application5 Visualizing the analysis

visualize the word vectors (originally 100
dimensions) in a three-dimensional space—
in this case, a 3D cube graph (Figure 5).

What if the marketers using the application
want to see how tweets about one
company and its products stack up against
tweets about other related companies and
products? To group the results in this way,
Albert can employ the K-means clustering
algorithm on top of Word2vec (Figure 6).
The larger the circle’s diameter, the more
frequently the term appears.

Figure 5. Three-dimensional visualization of Word2vec results. Figure 6. Grouping of Word2vec results using K-means.

https://datasciencelab.wordpress.com/2013/12/12/clustering-with-k-means-in-python/
https://datasciencelab.wordpress.com/2013/12/12/clustering-with-k-means-in-python/

Build a text analysis app in 3 hours with Word2vec

15

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application5 Visualizing the analysis

K-means clustering can also show marketers
how many positive, negative and neutral
words are associated with a product,
company or other search term. In Figure 7,
the analysis of Twitter data includes one day
of tweets that contain emoticons as a way
to ensure terms with polarized sentiment
(positive or negative) cluster together.

Figure 7. Clustering words from tweets with emoticons.

K-means clustering of terms with polarized sentiment

Source: Wang, H. and Castañón, J., “Sentiment Expression Via Emoticons in Social Media,” IEEE Big Data Conference 2015

:) :D =)

;) :-) ;-)
:-D =D ;P =]

;(:-/ :I :\ :(
:/ XD :’) :-(D:

(:

Build a text analysis app in 3 hours with Word2vec

16

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

Delivering the application

6 Delivering the application

What you’ll learn
• How to put a model into use as

an application

At this point, Albert is confident he has built
an application that can be used by the
marketing team and others who want to
see which words Twitter users associate
with their company, its products, management,
advertising slogans and even strategic ideas.

In Albert’s marketing application, the text
used for analysis comes from tweets.

But any text document can be an input to
the model, and marketing is only one of
many uses for the analysis. For example:

• Human resources might use it to gauge
employee acceptance of a new HR policy

• IT could use it to see how employees feel
about switching to a new email solution

• Sales could use it to enhance customer
service

In fact, a new use presented itself quickly
once Albert finished the Twitter analysis. The
sales manager saw it and told Albert she
would love to have that kind of analysis in
the field when she is on sales calls. Albert

Build a text analysis app in 3 hours with Word2vec

17

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application6 Delivering the application

did some research and found Project
RedRock, which offers a variety of ways to
visually present big data for iPads. He
hooked his model into RedRock to provide
processed text data for display (Figure 8).
With the ability to view analytic results in
visual displays such as force graphs and
K-means clusters on her iPad, the sales
manager can now compare trends and
customer opinions while on the road—and
without calling Albert every few days for
updated reports.

Ultimately, Albert showed how quick and
easy it is to train a Word2vec model with
Twitter, and how simple it can be to
incorporate the model into data products
once you have a clear idea of your goal.
Applying mathematical thinking to text data
using Word2vec is especially important
now, at a time when organizations of all
types are experiencing an explosion of text
data and are looking to gain market
advantage by using it in new ways.

Figure 8. ML pipeline for RedRock iPad prototype.

Filters Word2vec K-means

www.spark.tc/project-redrock-design-data/
www.spark.tc/project-redrock-design-data/

Build a text analysis app in 3 hours with Word2vec

18

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

Resources

For more information about Word2vec, see:
https://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-
phrases-and-their-compositionality.pdf

Interested in building your own Word2vec
models? Sign up for the IBM Data Science
Experience and get started with this notebook:
https://github.com/IBMDataScience/word2vec

About the (real) data scientist
Jorge Castañón hails
from Mexico City and
received his PhD in
Computational and
Applied Mathematics from
Rice University. He has a
genuine passion for data

science and machine learning applications
of any kind. Since 2007, he has been

developing numerical optimization models
and algorithms for regularization and inverse
problems. At IBM, Jorge joined the Big
Data Analytics team at Silicon Valley
Laboratory, where he is building the future
of machine learning and text analytics tools
using Apache Spark and Hadoop.

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://datascience.ibm.com/
http://datascience.ibm.com/
https://github.com/IBMDataScience/word2vec

© Copyright IBM Corporation 2016

IBM Analytics
Route 100
Somers, NY 10589

Produced in the United States of America
September 2016

IBM, the IBM logo, and ibm.com are trademarks of International
Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is
available on the web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

This document is current as of the initial date of publication and
may be changed by IBM at any time. Not all offerings are available
in every country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM products are warranted according
to the terms and conditions of the agreements under which they
are provided.

1 Das, Sudeep, “Navigating themes in restaurant reviews with Word
Mover’s Distance,” http://tech.opentable.com/2015/08/11/navigating-
themes-in-restaurant-reviews-with-word-movers-distance/

CDM12351-USEN-01

Please Recycle

http://ibm.com/legal/copytrade.shtml
http://tech.opentable.com/2015/08/11/navigating-themes-in-restaurant-reviews-with-word-movers-distance/
http://tech.opentable.com/2015/08/11/navigating-themes-in-restaurant-reviews-with-word-movers-distance/

