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Introduction

Between the Internet of Things, customer 
experience and loyalty programs, social 
network monitoring, connected enterprise 
systems and other information sources, 
today’s organizations have access to more 
data than they ever had before—and 
frankly, more than they may know what to 
do with. The challenge is to not just 
understand that data, but actualize it and 
use it to recognize real business value. 

It’s a difficult endeavor, in part because 
the majority of business-relevant 
information originates in unstructured 
formats, primarily text. This data is 
unusable until it can be “read” by analytics 

systems and applied by people to solve 
problems. Mathematical exploration of 
text data can make it more readable, 
yielding insights that translate into better 
decisions by marketers, entrepreneurs, 
doctors, teachers and others.

This ebook will walk you through a sample 
scenario with Albert, a data scientist who 
wants to put text analytics to work by 
using the Word2vec algorithm and other 
data science tools.

Along the way, you’ll learn some tips and 
tricks for working with Word2vec and applying 
it to analytical models. Let’s get started.

1 Introduction

What is Word2vec?
Word2vec uses machine learning 
techniques to come up with 
vector representations of words. 
Associating vectors to words is a 
practical way to measure the 

distance between them. The angle formed 
between two vectors is a commonly used metric 
to measure the similarity of the vectors. If the 
two legs of the angle are close together, then 
the two words are frequently mentioned 
together. If the legs of the angle are farther 
apart, then the two words are not associated as 
frequently. The angle between vectors is called 
the cosine distance and it provides a numerical 
value that applications can analyze and interpret.



Build a text analysis app in 3 hours with Word2vec

4

1 Introduction 2 Getting started 3 Preparing the data 4 Building the model 5 Visualizing the analysis 6 Delivering the application

Albert’s challenge
Albert is a data scientist working for a 
large retailer. His job is to help his company 
get the most out of its data for maximum 
business advantage. 

Albert’s company is introducing a major 
new product line, and the marketing 
department is planning a big launch 
campaign to promote it. But while the 
marketing team has traditional business 
intelligence solutions, it doesn’t have a 

way to rapidly assess how the campaign 
is performing as it unfolds. The marketers 
need to know how the company and its 
products are being perceived in the 
marketplace in near-real time so they can 
adjust the campaign elements for 
optimum results.  

Also, the campaign starts in a couple of 
weeks—so Albert needs to come up with  
a solution that doesn’t take a long time  
to develop. 

1 Introduction
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Data source: Tweets
Albert chose Twitter feeds as the specific 
data source because they reflect changes  
in public opinion and are easy to obtain in 
large quantities. He used the Twitter 
Decahose API, which continuously provides 
about a 10 percent sample of public tweets. 

Analytics requirements: Text analysis
The analysis needed to show in a 
mathematically valid way what kinds of 
words were being associated with the new 
product on Twitter—good, bad and so on. 
Tweets take the form of unstructured text, 
which can’t be mined in the same traditional 
way as structured databases. To meet the 

Getting started

What you’ll learn
• How to select the elements needed

to build a text analysis model

2 Getting started

Problem to solve: Brand and  
product perception
Is the public developing a positive impression 
of the company and its new product line? 
Albert decided to use social media as a way 
to obtain this information, knowing that it is 
constantly updated and provides a large 
potential pool of data.

marketers’ deadline, Albert needed tools he 
could use to rapidly build a suitable text 
analysis model and structure for processing 
tweets. Albert also wanted a model versatile 
enough to use for multiple purposes as the 
needs of his company changed or new 
departments wanted to analyze text data. 

Data science tools: Apache Spark, 
Python, Word2vec
Albert chose the Apache Spark open source 
framework as the backbone for processing 
and centralizing his data. He selected Spark 
because he wanted to be able to perform 
computations in a distributed fashion, 
reading data from multiple different nodes. 

support.gnip.com/apis/firehose/overview.html
support.gnip.com/apis/firehose/overview.html
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This approach allowed him to use large 
training sets and perform computations in a 
reasonable amount of time. Because Spark 
is not tied to a particular storage type or 
format, it can handle a wide variety of data 
sources. This may be useful later if Albert 
uses his model to run different analyses with 
different text data.

Albert also chose the Python programming 
language, which is widely used with Spark, 
to write his application. He liked the fact 
that Python is easy to use yet powerful 
enough for professionals. His critical 
decision, however, was to use the Word2vec 
algorithm implemented in Spark to build 
and train his model. 

What’s the big deal about Word2vec?
To make data useful for building his model, 
Albert needed to transform it into vector arrays 
that show the mathematical relationships 
between words. Given the short time frame 
and the complexity of the problem he was 
trying to solve, Albert couldn’t have done 
this from scratch. Fortunately, Word2vec is 
one of the quickest and easiest tools to use. 

Behind this ease of use is some very 
complex mathematics: Word2vec word 
vectors capture linguistic similarities (Figure 1). 
For example: vec(‘king’) + vec(‘woman’) - 
vec(‘man’) = vec(‘queen’)

vec(‘king’) + vec(‘woman’) - vec( ‘man’) = vec(‘queen’)

Figure 1. Example of linguistic similarities.

https://code.google.com/p/word2vec/
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Given a search word, Word2vec can relate 
the word with other terms in Twitter. For 
example, the OpenTable app uses Word2vec 
to recommend restaurants based on reviews 
from users.1 Word2vec assigns a vector to 
each word in the reviews, including restaurant 
names and other keywords such as “Steak,” 
“Patio,” “Jazz” or “View” (Figure 2).

It only takes a little imagination to see that 
Word2vec models can be useful for many 
similar purposes, such as associating tweeted 
words with the name of a product or service. 
Hashtags (#), handles (@) and even 
emoticons (☺) can be included as words.

Figure 2. Word2vec can be used to recommend restaurants based on words used in reviews.

Translating restaurants via concepts

Harris’ 
Steakhouse in 
downtown area

Patio Las Sendas 
Steakhouse with 

 amazing patio

Broadway Jazz
Steakhouse 
with live jazz

Celestial 
Steakhouse
Steakhouse 
with a view

Source: OpenTable Spark Summit presentation, June 2015
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To build his Word2vec model, Albert first 
loaded his data into the Spark framework, 
reading about 300,000 tweets every  
15 minutes. He filtered the data in Spark 
and used Python to interact with Spark  
for cleaning and parsing the data. As he 
proceeded with these steps, he stored the 
relevant code in a github repo. The code for 
each step is shown in the following sections.

Preparing the data 

3 Preparing the data

What you’ll learn
• How to filter, clean and parse the

data to get it ready for use

Filtering
Albert decided to keep his application focused on the English language for the time being, 
so he set the filter to retain only tweets in English. That reduced the number of tweets to 
about 40 percent of the original total. Albert also decided to write up a list of words that he 
thought were relevant for his analysis, and use it to filter out any tweets in English that did 
not contain at least one of the words on his list.

The relevant code:

# Construct SQL Command 
t0 = time.time() 
sqlString = "(" 
for substr in filter: #iteration on the list of words to filter (usually 50-100 words) 

 sqlString = sqlString+"text LIKE '%"+substr+"%' OR " 
   sqlString = sqlString+”text LIKE '%"+substr.upper()+"%' OR " 
sqlString=sqlString[:-4]+")" 
sqlFilterCommand = "SELECT lang, text FROM tweets WHERE (lang = 'en') AND "+sqlString

# Query tweets in english that contain at least one of the keywords 
tweetsDF = sqlContext.sql(sqlFilterCommand).cache() 
twf = tweetsDF.count()
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Cleaning and parsing 
Parsing breaks sentences into separate 
words. Cleaning removes dots, commas 
and stop words such as “the” that get in  
the way of processing. For example,  
without cleaning, the word “apple” and  
the word “apple,” (with a comma after it) 
could both appear in the same data set  
and be counted by the model as two  
different words. 

The code:

3 Preparing the data

# select the text from the tweets and map it to an rdd 
tweetsRDD = tweetsDF.select(‘text’).rdd

def parseAndRemoveStopWords(text): 
   t = text[0].replace(“;”,” “).replace(“:”,” “).replace(‘”’,’ ‘).replace(‘-’,’ ‘) 
   t = t.replace(‘,’,’ ‘).replace(‘.’,’ ‘) 
   t = t.lower().split(“ “) 
   stop = stopwords.words(‘english’) 
   return [i for i in t if i not in stop]

# map rdd of raw text to clean and parsed text without stop words 
tw = tweetsRDD.map(parseAndRemoveStopWords)
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time you want to spend on each 
experiment. Albert started with a small 
batch of tweets to make sure his PySpark 
script was working correctly. For his final 
model, Albert decided to train a model 
using about 6.2 TB of Twitter data because 
adding more tweets did not change the 
results of the model.

Vector dimensionality: Each word is 
represented by a vector, and the user is 
allowed to choose its dimensionality. Albert 
used the default setting of 100 dimensions 
because adding more dimensionality did 

Building the model

not add accuracy to the results of the 
model. Also, adding more dimensionality 
would lengthen the time needed to train 
the model and to perform operations  
with the word vectors.   

minCount: This is the number of times 
that a word needs to appear in the tweets 
to be considered in the model. A low 
setting such as 2 or 3 lets in unusual 
words that must be included in a model, 
but may also let in other words that are not 
desired. A high setting of 15 or 20 excludes 
words that do not appear very often. 

4 Building the model

What you’ll learn
• How to filter, clean and parse the

data to get it ready for use

With the data loaded and prepared, it was 
now time for Albert to build and train the 
model. He began by setting important 
Word2vec parameters. 

Data size: Generally, more data is better. 
Your limitations, however, include the 
computational power available and the 
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Albert performed experiments with variations 
of this parameter and realized that 5 was a 
good choice to make sure all words of 
interest were shown in the final model. 

The complexity of the Spark implementation 
of Word2vec is O(log(V)), where V is the 
number of words in the model. In other 
words, the fewer the words used, the faster 
Word2vec trains. See http://spark.
apache.org/docs/latest/mllib-feature-
extraction.html#model for more details.

Return closest n words: Given a search 
term, how many other similar terms in 
Twitter should be listed? Albert decided the 
number of words to show would depend on 
the final application. For visualization 
purposes he decided to use the 20 closest 
terms to avoid overwhelming the plot.

Albert then ran multiple iterations to test 
the parameters and tune them for optimum 
performance using a search word that he 
knew would easily produce associations. 
Each time he fed the data into Word2vec, 
it returned a data frame with words and 
vectors (Figure 3).

4 Building the model

Figure 3. Distance between words mathematically calculated
by Word2vec.

Closest words to #shopping
1. #style
2. #decor
3. #casual
4. #homedecor
5. #etsy

http://spark.apache.org/docs/latest/mllib-feature-extraction.html#model
http://spark.apache.org/docs/latest/mllib-feature-extraction.html#model
http://spark.apache.org/docs/latest/mllib-feature-extraction.html#model
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These experiments showed how the quality of results changed as Albert increased or 
decreased different parameters. The last iteration provided the final model. 

The code:

Word2vec is an easy-to-use algorithm with highly complex math behind the scenes that 
is extremely useful in practice. And it’s fast: reading the data, preparing the data and 
building and training the model took Albert just 3.1 hours on a 10-node cluster using 
6.2 TB of data.

# map to df 
twDF = tw.map(lambda p: Row(text=p)).toDF()

# default minCount = 5 (we may need to try something larger: 20-100 to reduce the training time) 
# default vectorSize = 100 (we may want to increase dimensionality when it increases model's quality) 
t0 = time.time() 
word2Vec = Word2Vec(vectorSize=100, minCount=5, inputCol="text", outputCol="result") 
modelW2V = word2Vec.fit(twDF) 
wordVectorsDF = modelW2V.getVectors() 
print "Elapsed time (seconds) to train Word2Vec: ", time.time() - t0
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Visualizing the analysis

5 Visualizing the analysis

 What you’ll learn
• How to visualize Word2vec analytic

results in different ways

Word2vec delivers results using numbers. 
But Albert’s application users—the 
marketing teams and their clients—may 
not be numbers people. To help them 
visualize the results of the analysis, Albert 

Figure 4. Word2vec force graph of nearest terms (green for
hashtags, yellow for words).

used the D3 JavaScript library to show a 
force graph with the word of interest at the 
center (Figure 4). The graph uses bubbles 
to show how many times each word or 
hashtag appears (indicated by bubble size) 
and how close or distant they are from the 
original search term (located in the center).

Albert knew he could use the Principal 
Components Analysis (PCA) procedure to 
reduce the number of Word2vec dimensions. 
Dimensionality reduction enabled Albert to 

https://d3js.org/
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
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visualize the word vectors (originally 100 
dimensions) in a three-dimensional space—
in this case, a 3D cube graph (Figure 5). 

What if the marketers using the application 
want to see how tweets about one 
company and its products stack up against 
tweets about other related companies and 
products? To group the results in this way, 
Albert can employ the K-means clustering 
algorithm on top of Word2vec (Figure 6). 
The larger the circle’s diameter, the more 
frequently the term appears.

Figure 5. Three-dimensional visualization of Word2vec results. Figure 6. Grouping of Word2vec results using K-means.

https://datasciencelab.wordpress.com/2013/12/12/clustering-with-k-means-in-python/
https://datasciencelab.wordpress.com/2013/12/12/clustering-with-k-means-in-python/
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K-means clustering can also show marketers
how many positive, negative and neutral
words are associated with a product,
company or other search term. In Figure 7,
the analysis of Twitter data includes one day
of tweets that contain emoticons as a way
to ensure terms with polarized sentiment
(positive or negative) cluster together.

Figure 7. Clustering words from tweets with emoticons.

K-means clustering of terms with polarized sentiment

Source: Wang, H. and Castañón, J., “Sentiment Expression Via Emoticons in Social Media,” IEEE Big Data Conference 2015 
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Delivering the application

6 Delivering the application

What you’ll learn
• How to put a model into use as  

an application 

At this point, Albert is confident he has built 
an application that can be used by the 
marketing team and others who want to  
see which words Twitter users associate 
with their company, its products, management, 
advertising slogans and even strategic ideas. 

In Albert’s marketing application, the text 
used for analysis comes from tweets.  

But any text document can be an input to 
the model, and marketing is only one of 
many uses for the analysis. For example:

• Human resources might use it to gauge 
employee acceptance of a new HR policy 

• IT could use it to see how employees feel 
about switching to a new email solution

• Sales could use it to enhance customer 
service 

In fact, a new use presented itself quickly 
once Albert finished the Twitter analysis. The 
sales manager saw it and told Albert she 
would love to have that kind of analysis in 
the field when she is on sales calls. Albert 
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did some research and found Project 
RedRock, which offers a variety of ways to 
visually present big data for iPads. He 
hooked his model into RedRock to provide 
processed text data for display (Figure 8). 
With the ability to view analytic results in 
visual displays such as force graphs and 
K-means clusters on her iPad, the sales
manager can now compare trends and
customer opinions while on the road—and
without calling Albert every few days for
updated reports.

Ultimately, Albert showed how quick and 
easy it is to train a Word2vec model with 
Twitter, and how simple it can be to 
incorporate the model into data products 
once you have a clear idea of your goal. 
Applying mathematical thinking to text data 
using Word2vec is especially important 
now, at a time when organizations of all 
types are experiencing an explosion of text 
data and are looking to gain market 
advantage by using it in new ways.

Figure 8. ML pipeline for RedRock iPad prototype.

Filters Word2vec K-means

www.spark.tc/project-redrock-design-data/
www.spark.tc/project-redrock-design-data/
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Resources

For more information about Word2vec, see: 
https://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-
phrases-and-their-compositionality.pdf

Interested in building your own Word2vec 
models? Sign up for the IBM Data Science 
Experience and get started with this notebook: 
https://github.com/IBMDataScience/word2vec

About the (real) data scientist
Jorge Castañón hails 
from Mexico City and 
received his PhD in 
Computational and 
Applied Mathematics from 
Rice University. He has a 
genuine passion for data 

science and machine learning applications 
of any kind. Since 2007, he has been 

developing numerical optimization models 
and algorithms for regularization and inverse 
problems. At IBM, Jorge joined the Big 
Data Analytics team at Silicon Valley 
Laboratory, where he is building the future 
of machine learning and text analytics tools 
using Apache Spark and Hadoop.

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://datascience.ibm.com/
http://datascience.ibm.com/
https://github.com/IBMDataScience/word2vec
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