© 2023 IBM Corporation

Train AI model in IBM Cloud
&
Deploy on mainframe

Table of Contents

L. INTrOAUCTION ceeeiiie et s ne e enee e 3
R U E 1= o= 1] = PP PPTPOPTRTN 3
3. Setup secure environment iNn IBM ClOUdceeeeieiieeiciiieeeeec ettt eeerrreee e e 4
4. Al model building in IBM CLOUd ..cceeeieeeeeee et eeerree e e e evere e e e e e e 8
4.1 AL MOdel BUILAING STEPS..ciiiuiieeeeiiiee ettt e eree e e et e e e sre e e e e saaae e e e eaaeeeeesnsaeeeenes 9
4.2 Data CONNECTION .uuttii ittt ittt ettt e e et e e et e e s s stee e e e stbaee s s abaeeesssaeeeessssaeeessseaeesssssaeessnnns 9
G I A I g gV Yo = B o TUT | U L o =SSR 14
A4 AL MOUEL PEISISTENCE eeiiiiiieeeirreeieeeeeeeeiirrreeeeeeeeesesrrreeeeeesessesraeeeeeeeesesssrasaseeessensansrrseees 16
4.5 AT MOAEL CONVEISION...ciiiiiiiiiiiiieeetee ettt s e s e s s 16
4.6 AT MOdel VISUALIZATION ...cccviiiiiiiiiiieeecce e 17
5. Al model deployment on MaiNframeceeieeiccciiiiieee e ereee e 18
5.1 Deploy AT Modelin MLZ OSCE ... iieeieeeeeeecireeeeeee e eererrvereeeeeeseenraeeeeeeessennssssenesesenns 19
5.2 Deploy AI model in TensorFlow Serving CONTaINEruieiiriiieeieiiieee et erree e seieee e 20
6. AIMOAEl INFEIENCE...ciiiiiiiiiii e st 22
7. CONCLUSION ittt st s e e bt e e e bt e sne e e n e sneesane s 24

© 2023 IBM Corporation

1. Introduction

Across the globe companies are increasingly relying on cloud computing to operate their
business. According to Gartner, cloud will be the centerpiece of new digital experiences, and
companies will deploy 95% of new digital workloads on cloud-native platforms

by 2025.

Cloud offers a great deal of flexibility and scalability and allows one to access data from
anywhere. Meanwhile, mainframe computers still plays a central role in the daily operations of
most of the world’s largest corporations, including 92 of the world’s top 100 worldwide banks,
10 out of 10 of the world’s largest insurers, 23 of the world’s largest airlines & 23 out of 25 of
the US’s largest retailers (IBM Z°). Mainframes process around 29 billion annual ATM
transactions and 12.6 billion transactions per day (The modern mainframe).

Companies are working to have intelligent built into their transaction processing logic, which
requires real-time Al in enterprise workloads without impacting SLAs. Meanwhile, batch
workloads also face challenges with increasing transaction volume and shrinking processing
time window. IBM Z Integrated Accelerator for Al embedded in the IBM Telum” chip within
IBM z16" can help clients achieve large-scale low-latency model inference for both real-time
and batch workloads. Combining the power of cloud and mainframe can bring clients the
benefits of both worlds.

2. Use case

To unleash the power of data to better support existing applications and to explore new
business initiatives, transactional data on mainframe needs to be made available. Transactional
data is highly sensitive and needs to be protected. Security incidents are extremely expensive.
Data needs to be secured and governed, and yet can be easily discovered and used in hybrid
cloud environment.

Take credit card fraud for example, it is very important to flag and stop the fraudulent
transaction while it happens, rather than starting a fraud investigation afterwards. However, it is
impossible for financial firms to score all transactions in real-time by sending inference requests
to a scoring engine over the network. By collocating the model inference with the transaction
processing application on mainframe and utilizing the Al accelerator on z16, large-scale real-
time scoring for all the transactions is feasible.

Data scientists do not normally train and tune AI models on mainframe. It is more convenient

and cost efficient for data scientists to utilize the rich set of tools and services and pay for only
what they consume in cloud.

© 2023 IBM Corporation

https://www.gartner.com/en/newsroom/press-releases/2021-11-10-gartner-says-cloud-will-be-the-centerpiece-of-new-digital-experiences
https://www.ibm.com/academic/topic/ibm-z
https://www.ibm.com/downloads/cas/8MGOLOB7

In this article, we will use credit card fraud detection as a sample use case and discuss how to
set up a secure training environment and train a sample AI model in IBM Cloud®, deploy the
trained model back to mainframe for real-time inference, and invoke model inference

on mainframe.

3. Set up secure environment in IBM Cloud

Although cloud provides many benefits, security is the main concern when using cloud
computing services. According to the data breach report 2023, average cost of a data breach for
Financial industry is $5.90M. Setting up a secure environment in cloud is critical.

There are many different factors to consider when designing a secure environment in cloud,
including network security, identity and access control, application security, and data security. It
requires deep knowledge in each area to design the infrastructure and make sure that there are
no security holes in the design.

IBM Cloud Framework for Financial Services is designed to build trust and enable a transparent
public cloud ecosystem with security, compliance, and resiliency features that financial
institutions require. The Framework utilizes services in IBM Cloud to create secure and
compliant environment, (for example, IBM Hyper Protect Crypto Services (HPCS), IBM DevOps
toolchain, IBM Security and Compliance Center (SCC)), includes reference architectures and
best practices. The Security and Compliance Center has a set of profiles with pre-defined
controls and polices that will run, monitor, and audit the services. The policies and controls are
determined by IBM Cloud Regulatory Council of members who are from risk and compliance of
leading financial industry companies and Promontory Financial Group, an IBM subsidiary, to
ensure that it is current with new and updated regulations.

The IBM Cloud Framework for Financial Services defines a few reference architectures, which
can be deployed via infrastructure as code DevOps toolchain and used as a basis for meeting the
security and regulatory requirements. Sensitive workloads (eg. AI model training jobs) can then
be deployed into the environment.

e VPC reference architecture for IBM Cloud for Financial Services
e Satellite reference architecture for IBM Cloud for Financial Services
e IBM Cloud for VMware Regulated Workloads architecture

To create DevOps toolchain for IBM Cloud for Financial Services”, log in to IBM Cloud, click on
the hamburger menu on the upper-left corner, and then click on DevOps -> Toolchains.

© 2023 IBM Corporation

https://www.ibm.com/reports/data-breach
https://cloud.ibm.com/docs/framework-financial-services?topic=framework-financial-services-about
https://cloud.ibm.com/docs/framework-financial-services?topic=framework-financial-services-vpc-architecture-about
https://cloud.ibm.com/docs/framework-financial-services?topic=framework-financial-services-satellite-architecture-about
https://cloud.ibm.com/docs/framework-financial-services?topic=framework-financial-services-vmware-overview

< cC o @ cloud.ibm.com

Dashboard

= Resource list

B Classic Infrastructure >

@ Cloud Foundry > o

. . N

T Code Engine o Create an OpenShift cluster

@) Functions > Deploy apps on highly
available clusters with Red

© Kubernetes > Hat OpenShift on IBM
Cloud.

<5 OpenShift >

@ satellite >

&Y Security and Compliance >

vm VMware N Getting started 20 min

X VPC Infrastructure >

¥ API Management > Manage users

O App Development > witojump directly into

[E2 container Registry >

1% Devops > Overview

olo Interconnectivity > Toolchains

Toolchains. Introdu
| Observability >
€4 Partner Center >

Click ‘Create toolchain’ button.

IBM Cloud Q catalog Managev 1ty ® BH BH 4O &

DevOps 1

e Toolchains

Toolchains Resource Group Location
yytest-slz-rg v Washington DC v
Q search o] Create toolchain +
Name Tool Integrations Tags Status

ASK A QUESTION

Start by adding toolchain

Your resource group does not contain any toolchains, or you do not have access to any toolchains
in this resource group.

Create toolchain aF

Look for the tile titled ‘Deploy Infrastructure as code for the IBM Cloud for Financial Services’,
which will clone the Secure Landing Zone toolchain repository with Terraform templates to set
up the environment. You can update the config files based on your needs before provisioning
the environment.

© 2023 IBM Corporation

https://github.com/open-toolchain/landing-zone

T

Develop a Code Engine application

Continuously deliver a secure Code Engine app to
a Code Engine project.

Tools: @ &2 ¢

%)

CI - Develop secure infrastructure as code with
DevSecOps practices
18M

Deliver infrastructure as code using DevSecOps
best practices and Continuous Integration(CI).

Tools: Q &2 ¢ Ft

a»
PR
Build your own toolchain

1BM

For advanced users, create your toolchain from
scratch

building, deployment, and inference.

© 2023 IBM Corporation

Deploy infrastructure as code for the IBM Cloud
for Financial Services

Create a secure and compliant Financial VPC

framework architecture using a VSI, OpenShift o...

Tools: Q &2 ¢

Develop and test microservices on Kubernetes
with Helm
18M

Continuously deliver a microservices app on
Kubernetes using quality gates and Helm releas...

Tos: ¢ OB 2 @

)

DevOps Insights Quick Start Demo
1BM

Get to know DevOps Insights with this fully
functional demo with populated Quality.

Here is a VPC based reference architecture for Al pipeline. This article focuses on the AI model

ASK A QUESTION

ECnnsumer E IBM Cloud

User

iy

Internet

= Region A
EVPC 1 (EdgerTransit

‘On-Prem (IBM zSystems)
Data
Integration*

mchud Services I ; v | |

Secure Data Storage Messaging DevOps ToolChain e
DBaaS Event Streams Artitacts Cl
Triggers
data
¥ processing Logging & Monitaring Security & Compliance
'{ D| = @ @
ApplD ppCs SCC
Code Engine
Platiorm Services
1AM

Zone @
EACU Direct
@ Link
] e
]
Cloud Public LB Data
\mmet N Bastion Block Storage VPN Export
= a)
Services ataw ¥ Connection API Connect Data
T N
i 5 ZDIH
VPG 2 (Management] 'y
.Zone D]
e AcLi L, Data
. Sﬁ Pre-processing
2/08 Connect
.
A A
£ <
Private Jranak
LB ROKS Block Storage Gateway
VPG 3 (Workioad) hd E
Data Virtualization Manager
.ZﬂﬂE for /OS (DVM)
ACL1 h
Data
Private @ @
LB VPE Block Storage
QI rEEl= ¥ \ IMS VSAM DB2
AL~ Rl r,: ofe
Watson Speech Watson
Assistant 1o Text mSpeech OpenScale
— IDMS ADABAS Others
@ @ - Enterprise Data
v
Watson Watson Watson
Machine Learning ~ Studio knowledge Catalog
d Pak fory
Data Linux on Z
Integration &
Governance Model
| Monitoring”_| Deployment
Woal Tiodel | ™
el *
o Development Testing i)) . ?

Watson Machine Learmng TensorFlow

for Z/OS (WM
Madel e

Inference

Apps

Data
Preparation

Transactions

1. Set up the infrastructure by creating DevOps toolchain for “Deploy infrastructure as Code
for the IBM Cloud for Financial Services”, which provides a secure environment for
model training jobs. For more information, refer to reference architecture for IBM Cloud

for Financial Services.

Make the enterprise data on-prem accessible in refer to data integration blog cloud.
There are different ways to expose the data on-prem.
Understand, prepare, and manage the governance of the data with tools in IBM Cloud
Pak® for Data, for example, organizing and managing data with Watson Knowledge

Catalog.

© 2023 IBM Corporation

https://cloud.ibm.com/docs/framework-financial-services?topic=framework-financial-services-best-practices
https://cloud.ibm.com/docs/framework-financial-services?topic=framework-financial-services-best-practices
https://www.ibm.com/downloads/cas/V3G9VXWO

4. Training jobs can be run in the workload VPC. Various tools in IBM Cloud Pak for Data can
be used. IBM Watson® Studio can be used as the model development environment.
Different machine learning platforms and tools can be used to train the model (example,
TensorFlow, pyTorch, SnapML, etc.). Model can be tested in Machine Learning. For
conversational Al tools like Watson Assistant, Speech-to-Text, and Text-to-Speech can
be used.

5. IBM DevOps Toolchains can be used to manage the model source codes and
tested models.

6. Linux onIBM Z or IBM Wazi as a Service can be used to test the AI models and Al

applications before pushing them to on-premises IBM Z.

Tested AI models are deployed on IBM Machine Learning for z/OS".

Al model inference is invoked to gain insights from the data.

9. AI models are continuously monitored via IBM Watson OpenScale, which is an
enterprise-grade environment for Al applications that provides enterprise visibility into
how your Al is built and used, and delivers return on investment. Its open platform
enables businesses to operate and automate Al at scale with transparent, explainable
outcomes that are free from harmful bias and drift.

© ~

4. AI model building in IBM Cloud

Al model building is an iterative process. It normally starts with understanding the business
problem on hand, and iterate through data understanding and preparation, model training and
testing, model deployment, model inference, and model monitoring. We will focus on model
building in IBM Cloud in this section.

In the last section, we set up a secure environment in cloud, now we can deploy our favorite
training framework into the environment. This demo uses Cloud Pak for Data (CP4D) as the
training environment and CP4D is set up in the workload VPC. Refer to the CP4D documentation
if you need to install CP4D.

In this demo, we will build a sample model that analyzes historic credit card transaction data to
predict whether a new credit card transaction is fraudulent. The source code is in ai-on-z-fraud-
detection github repository, and we will use one of the sample models to demonstrate the
model development and deployment process.

© 2023 IBM Corporation

https://www.ibm.com/products/cloud-pak-for-data?utm_content=SRCWW&p1=Search&p4=43700074359384440&p5=e&gclid=Cj0KCQiAlKmeBhCkARIsAHy7WVsVeZ8ZZSa-6k_TpV0VNYtu-vNgHOR6TkNU3uzS2RZL6d7SBXPbwZEaApiwEALw_wcB&gclsrc=aw.ds
https://www.ibm.com/z/linux
https://www.ibm.com/cloud/wazi-as-a-service
https://www.ibm.com/docs/en/cloud-paks/cp-data/4.6.x?topic=services-watson-openscale
https://www.ibm.com/products/cloud-pak-for-data
https://www.ibm.com/docs/en/cloud-paks/cp-data/4.0
https://github.com/IBM/ai-on-z-fraud-detection
https://github.com/IBM/ai-on-z-fraud-detection

4.1 Al model building steps

You can choose your favorite framework to build the AI model. In this demo, TensorFlow
framework is used to build a deep learning model, and Watson Studio in CP4D is used as the
development environment.

The following steps are needed to build and persist the model:

e Project setup — Watson Studio project is the logical organization of resources and can be
used to manage access to the resources.

e Data connection — Watson Studio supports data connectors to various data sources. In our
case, the batch data from on-prem is uploaded to IBM Cloud Object Storage (COS), which is
protected by IBM Cloud Hyper Protect Crypto Services (HPCS) keys. HPCS is an industry-
leading key management and hardware security module service built with mainframe-level
encryption and offered as a service in the cloud. It can be integrated with other IBM Cloud
services to protect digital assets in Cloud. Data in motion, data at rest, and data in use are
all fully protected in IBM Cloud for Financial Services environment.

e Model training — Data scientists can play with the data, use the framework of their choice,
and build AI models. In this demo, TensorFlow framework is used to train the demo model.

e Model persistence — Trained model is persisted, so that it can be brought to the deployment
environment for model inference. In this demo, the model is persisted in a couple of
different ways, TensorFlow format and Open Neural Network Exchange (ONNX) format, and
we will show how to deploy each of them on the mainframe.

o Model conversion — ONNX defines a common set of operators - the building blocks of
machine learning and deep learning models - and a common file format to enable AI
developers to use models with a variety of frameworks, tools, runtimes, and compilers. By
converting the model into ONNX format, the model can be hosted in a framework that is
independent of the model training framework, so that data scientists have more flexibility
when they choose the framework they are most familiar with to train the model.

If you want to learn more about how to build a model in Watson Studio in CP4D environment,
this tutorial has detailed instructions.

4.2 Data connection

IBM CP4D provides a suite of services to connect, catalog, discover, and govern the data. CP4D
supports data connectors to various data sources, regardless of the physical location of the data.
Watson Knowledge Catalog helps user to catalog and understand the data and control access of
the data. Here is a sample screenshot of the various data sources that one can connect from
Watson Studio. The list may change over time.

© 2023 IBM Corporation

https://developer.ibm.com/tutorials/build-a-recurrent-neural-network-tensorflow-keras/

Add connection

Createa I from the list of
New To service
Provider ~ QF
O em All connection types.

() Third-party

Compatible services &

Qg Amazon RDS for Oracle

RDS for MySQL

0y Amazon RDS for PostgresQL

9 Compose for MysQL

 Google BigQuery

Oy Google Cloud Pub/Sub

% msat

Qg Netezza Performance Server (Optimized)

Sy Amazon Redshift 4 Google Cloud Storage 9 opata
9y Amazons3 9y Greenplum 9 opBC
O3 Watson studio 0y Analytics @y Databases for PostgreSQL o HrTe 0y oracle
Oy Apache Cassandra 9 ob2 9 Informix Qy Oracle (optimizec)
Prv
Apache Cassandra (optimized) Db2 (optimized) Looker Planning Analytics
protacal
Satellte
Es - Qg Apache Derby 9 Db2BigsQL 9 MariaDB 9 PostgresqL
ecure Gateway
9y Apache HOFS Gy Db2 Event Store 9 Match 360 9 Salesforce.com
9y Apache Hive 9 Db2fori Gy Microsoft Azure Blob Storage 9y Salesforce.com (optimized)
9 Apache Kafka 9y Db2forz/05 9 Mi Oy SAP ASE
% Box Sy Db2 Hosted 9y Microsoft Azure Data Lake Store 9 SAPI0
9 Cloud Object Storage 9 Db2on Cloud 9y Microsoft Azure File Storage 9y SAPOData
9y Cloud Object Storage (nfrastructure A Db2 Warehouse 9 Microsoft Azure SQL Database 9y Snowflake
9 Cloudant 9 Dropbox 9y Microsoft SQL Server 9 5oL Query
9 Cloudera Impala 9 Elasticsearch 9 MongoDB 9 Tableau
9 Cognos Analytics 9 FTP % Mo 9 Teradata

Data connection to different data sources

For this demo, the data is stored in Hyper Protect Crypto Service (HPCS) protected Cloud Object
Storage (COS) bucket. IBM Cloud HPCS is a key management service and cloud Hardware
Security Module (HSM) that is built on FIPS 140-2 Level 4-certified hardware which supports
clients with Keep Your Own Key (KYOK). The synthesized data of this demo can be found in this
github repository.

You can use direct link or create VPN to connect on-prem to IBM Cloud. You can also config IBM
Cloud Functions or IBM Code Engine to listen on COS write events and process the data
automatically when it arrives.

Once you have the connection created, Watson Studio can generate code to access data from
the given connection. For example, you can first create connection to the data source, in this
case COS bucket. Under ‘Assets’, click ‘New asset’.

Projects / test T 8+ Launch IDE @

Add e EE

oo
o

QOverview Assets Jobs Manage

Q, Find assets

In the New asset window, under ‘Data access tools’ on the left, click on ‘Connection’ tile.

© 2023 IBM Corporation

https://csrc.nist.gov/projects/cryptographic-module-validation-program/Certificate/3410
https://github.com/IBM/ai-on-z-fraud-detection

New asset

Select the tool to create an operational or configuration asset. ‘

Tool type |
Q_ Find tools by name or description

88 Alltypes ‘
3 Automated build

7 Automated bullders Data access tools

3 Graphical builders

</> Code editors

¢ Component editors

% A B & 8

£ Data access tools

Connected data Connection Data Replication Metadata import
Data in an external Supply the information Replicate data to target Import asset metadata
data source that is necessary to connect systems with low from a connection into
accessed through a to a data source. latency, with a project or a catalog.
connection transactional integrity

and with optimized
data captures

®

Model

Add an existing PMML
(predictive model
markup language) file
(xml) from your local
system as a model

Choose Cloud Object Storage and fill in the connection information to the COS instance.

Add connection Supported connection types [

Create a new connection, select an existing connection from the list of platform connections, or connect to a service.

New To service
Provider ~ Q_ Find connection types
[18BM X .

Qg Apache Cassandra Qg Db2 Qg Informix Qg Oracle (optimized)
[Third-party

Qg Apache Cassandra (optimized) Qg Db2 (optimized) Qg Looker Qg Planning Analytics
Compatible services ~ ~

Qg Apache Derby Qg Db2 Big SOL Qg MariaDB Qg PostgreSQL
[] catalogs
(] pashboard Qg Apache HDFS Qg Db2 Event Store Qg Match 360 Qg Salesforce.com
[_] Data Replication

Qg Apache Hive Qg Db2 fori Qg Microsoft Azure Blob Storage Qy Salesforce.com (optimized)
[J pata virtualization
[] pataStage i

Qg Apache Kafka Qg Db2 for z/0S Qg Microsoft Azure Cosmos DB Qg SAP ASE
[[] Metadata Import
[7] Watson Studio Qg Box Qg Db2 Hosted Qg Microsoft Azure Data Lake Store Qg SAPIQ

Qg Cloud Object Storage Qg Db2 on Cloud Qg Microsoft Azure File Storage Qg SAP OData
Private communication ~
protocol

Qg Cloud Object Storage (infrastructure) Qg Db2 Warehouse Qg Microsoft Azure SQL Database Qg Snowflake
[] satellite
[secure Gateway Qg Cloudant Qg Dropbox Qg Microsoft SQL Server Qg SQL Query

Qg Cloudera Impala Qg Elasticsearch Qg MongoDB Qg Tableau

Qg Cognos Analytics Qg FTP Qe MO Qg Teradata

Select

The new connection should be under the Connection section.

© 2023 IBM Corporation

Projects / test A & launchIDE v 6] 88
Overview Assets Jobs Manage
Q. Findassts hid asset 2
20 assets Connection S
' All assets
[] Name Created by Last modified N
Asset types cos test datasets Yichong Yu (You 2 days ago
U % Connection g Yu (You) Yichong Yu (You)
v /2 Dataaccess 1
Connection 1

> 85 Data 3
v </> Source Code 16

Notebook 16

Now in notebook, Watson Studio can help insert pandas Dataframe to the code.

v L : ®© O B 8
Data X
Files Connections

Upload one file at a time. All file types
accepted. 5 GB max file size.

Drag and drop files here or upload.

card_transaction

Insert to code ~

pandas DataFrame

Credentials

Insert code to access data

If you want to write your own codes to connect to COS buckets via APIs, here are sample codes
to do so. Please make sure to update the COS connection information and API keys.

TODO: Replace with your API Key
COS_API_KEY = 'YOUR API KEY'

TODO: Replace with your COS bucket endpoint
COS_ENDPOINT = 'https://YOUR_COS_ENDPOINT'

TODO: Replace with your COS resource CRN
COS_RESOURCE_CRN = 'YOUR_COS_RESOURE_CRN'

TODO: Replace with your COS location
location = 'YOUR_COS_LOCATION'

IAM endpoint
IAM AUTH_ENDPOINT = 'https://iam.cloud.ibm.com/oidc/token’

© 2023 IBM Corporation

import os, types

import pandas as pd

from botocore.client import Config
import ibm_ boto3

def iter (self): return 0

@hidden cell
The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.
You might want to remove those credentials before you share the notebook.
cos_client = ibm boto3.client(service_name='s3',
ibm_api_key id=COS_API_KEY,
ibm auth_endpoint=IAM_ AUTH_ENDPOINT,
config=Config(signature_version='ocauth'),
endpoint_url=COS_ENDPOINT)

Then you can read data in.

1BM Cloud Pak for Data i

Projects / test / Demo CCF LSTM Static v3 tf2.7

File Edit View |Insert Cell Kernel Help
) ® +FHEBE ®Q® PRn @ C MW Fomat Code v

Data loading
Cloud Pak for Data supports connection to various data sources. In this demo, we are using COS bucket to hold the sample data file.
Download the sample data file from the github repo, and upload to your COS bucket. Link to data file: https:/github.com/IBM/TabFormer/tree/main/data/credit card

YYou can create the data connection, and then go to the 'Find and add data' menu on the top-right hand corner, under 'Connections' tab, 'Insert to code' and insert 'pandas Dataframe'.

In [11]: import pandas as pd

bucket_name = 'test-datasets’
item name = 'card_transaction.vl.csv'

body = cos_client.get_object (Bucket=bucket_name, Key=item_ name)['Body']
add missing __iter__ method, so pandas accepts body as file-like object
if not hasattr(body, "_iter "): body. iter _ = types.MethodType(_ iter_, body) D t

To load csv file, just call pd.read csv
#item name = 'card transaction.vl.csv'
tdf = pd.read_csv(body)

loading

To read zip file, use compression='zip’
#item name = 'creditcard.csv.zip'
#raw_data = pd.read csv(io.BytesIO(body.read()),compression="zip")

to read gzip, use compression='gzip'. It reads the data, but has the filename as the name for the first column. Need to rename it.
#item name = 'transactions.tgz'
#tdf = pd.read csv(io.BytesIO(body.read()), compression='gzip')

tdf.head()
Out[1l1]: User Card Year Month Day Time Amount Use Chip Merchant Name Merchant City Merchant State Zip MCC Errors? Is Fraud?
0 0 0 2002 9 1 0621 $134.09 Swipe Transaction 3527213246127876953 La Verne CA 917500 5300 NaN No
10 0 2002 9 1 0642 $38.48 Swipe Transaction -727612092139916043 Monterey Park CA 917540 5411 NaN No
2 0 0 2002 9 2 06:22 $120.34 Swipe Transaction -727612092139916043 Monterey Park CA 917540 5411 NaN No
3 0 0 2002 9 2 1745 $128.95 Swipe Transaction 3414527459579106770 Monterey Park CA 917540 5651 NaN No
4 0 0 2002 9 3 06:23 $104.71 Swipe Transaction 5817218446178736267 La Verne CA 917500 5912 NaN No

Here are sample helper functions to download file from and upload file to COS bucket.

© 2023 IBM Corporation

In [7]: # define functions that will be used later to upload and download models
def get_item(cos_resource, bucket_name, item name, file name):

print("Retrieving item from bucket: {0}, key: {1}".format(bucket_name, item name))

try:
item = cos_resource.Object(bucket_name, item name)
item.download_file(file_name)

except ClientError as be:
print("CLIENT ERROR: {0}\n".format(be))

except Exception as e:
print("Unable to retrieve file contents: {0}".format(e))

def upload_large_file(cos_cli, bucket_name, item name, file_path):
print("Starting large file upload for {0} to bucket: {1}".format(item_name, bucket_name))

set the chunk size to 5 MB
part_size = 1024 * 1024 * 5

set threadhold to 5 MB
file_threshold = 1024 * 1024 * 5

set the transfer threshold and chunk size in config settings

transfer_config = ibm boto3.s3.transfer.TransferConfig(
multipart_threshold=file_threshold,
multipart_chunksize=part_size

)

create transfer manager
transfer_mgr = ibm boto3.s3.transfer.TransferManager(cos_cli, config=transfer_config)

try:
initiate file upload

future = transfer_mgr.upload(file_path, bucket_name, item name)

wait for upload to complete
future.result()

print ("Large file upload complete!")
except Exception as e:

print("Unable to complete large file upload: {0}".format(e))
finally:

transfer mgr.shutdown()

4.3 AI model building

When building AI models, it is critical to understand the data. You can inspect the data
distribution and data quality (e.g. missing, duplicate data, etc.). You may need to map
categorical data to numerical and normalize numerical data. Here are the data transformations
on the demo data set.

Cloud Pak for Data

Projects [test / Demo CCF LSTM Static v3 tf2.7

File Edit View |Insert Cell Kemel Help
B ® +HFf @@ PRn@ C MW Foma Code >

In [20]: from sklearn_pandas import DataFrameMapper
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelBinarizer
from sklearn.impute import SimpleImputer

mapper = DataFrameMapper([('Is Fraud?', FunctionTransformer (fraudEncoder)),

(['Merchant State'], [SimpleImputer(strategy='constant'), FunctionTransformer(np.ravel),
LabelEncoder(), Functi former (decimal der), O der()]),
(['Zip'], [SimpleImputer(strategy='constant'), FunctionTransformer(np.ravel),

FunctionTransformer (decimalEncoder), OneHotEncoder()]).
('Merchant Name', [LabelEncoder(), FunctionTransformer (decimalEncoder), OneHotEncoder()]),

('Merchant City', [LabelEncoder(), FunctionTransformer(decimalEncoder), OneHotEncoder()]),
Data ('MCC', [LabelEncoder(), FunctionTransformer(decimalEncoder), OneHotEncoder()]),
. (['Use Chip'], [SimpleImputer(strategy='constant'), LabelBinarizer()]),
processlng (['Errors?’'], [SimpleImputer(strategy='constant'), LabelBinarizer()]),
(['Year', 'Month', 'Day', 'Time'], [FunctionTransformer(timeEncoder), MinMaxScaler()]),
('Amount', [FunctionTransformer(amtEncoder), MinMaxScaler()])

], input_df=True, df_out=True)

In [21]: if flag_training:
mapper.fit(tdf)
joblib.dump(mapper, open(os.path.join(save_dir, 'fitted_mapper.pkl'), 'wb'}))
else:
mapper = joblib.load(open(os.path.join(save_dir, 'fitted mapper.pkl'),'rb'))

© 2023 IBM Corporation

This demo builds a deep learning model, which has an input layer, an output layer, and a couple
of hidden layers.

© 2023 IBM Corporation

IBM Cloud Pak for Data

Projects / test / Demo CCF LSTM Static v3 tf2.7
File Edit View Inset Cell Kernel Help
B ® -+ A FH ®® PRin @ C MW Format Code v
Graph parameters
In [25]: units = [200,200]

input_size = mapped_size - 1
output_size = 1

Model

Tensorflow graph construction .
creation
In [26]: batch_size = 16

tf_input = ([batch_size, input_size])

lstm model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(units[0], input_shape=tf input, batch_size=7, time_major=True, return_sequences=True),
tf.keras.layers.LSTM(units[1], return_sequences=True, time major=True),
tf.keras.layers.Dense(output_size, activation='sigmoid')

1

1lstm_model.summary()
tf.keras.utils.plot_model(lstm model, 'model.png', show_shapes=True)

Model: "sequential”

Layer (type) Output Shape Param #
lstm (LSTM) (7, 16, 200) 336800
lstm 1 (LSTM) (7, 16, 200) 320800
dense (Dense) (7, 16, 1) 201

Total params: 657,801
Trainable params: 657,801
Non-trainable params: 0

IBM Cloud Pak for Data

Projects / test / Demo CCF LSTM Static v3 tf2.7

File Edit View Insert Cell Kernel Help

B ® +EBFH ®Q® PRin @ C M Format Code =

In [27]): metrics=['accuracy',
TP(name='TP'),
FP(name='FP'),
FN(name='FN'),
TN(name='TN'),
tf.keras.metrics.TruePositives(name='tp'),
tf.keras.metrics.FalsePositives(name='fp'),
tf.keras.metrics.FalseNegatives (nam fn'),
tf.keras.metrics.TrueNegatives(name='tn')

Compile graph

In [28]: lstm model.compile(optimizer='adam', loss='binary crossentropy', metrics=metrics)

Tensorflow training parameters

In [29]: steps_per_epoch = 5000
checkpoint_dir = './checkpoints/{}/'.format(model_name)
filepath = checkpoint_dir + "iter-{epoch:02d}/model.ckpt"

Model
training

Tensorflow training

In [30]: print ("Learning...")
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=filepath, save_weights_only=True, verbose=1)
train_generate = gen_training batch(tdf,mapper,train_indices,batch_size)

if flag_training:
lstm model.fit(train_generate, epochs=20, steps_per_epoch=steps_per_epoch, verbose=1, callbacks=[cp_callback])

4.4 Al model persistence

TensorFlow model can be saved via
model.save(save_dir)
Refer to TensorFlow documentation for more details.

You can save the trained model to repository of your choice, and later picked up by the
CI/CD pipeline. In this demo, the TensorFlow model is zipped and uploaded to COS bucket.

!zip -r '{model_name}.zip' ./saved_models

adding: saved_models/ (stored 0%)

adding: saved_models/ccf_220_keras_lstm_public/ (stored 0%)

adding: saved_models/ccf_220_keras_lstm public/1/ (stored 0%)

adding: saved_models/ccf_ 220 _keras_lstm public/l/wts.index (deflated 66%)

adding: saved_models/ccf_220_keras_lstm_public/l/saved_model.pb (deflated 91%)

adding: saved_models/ccf 220 keras_lstm public/l/keras_metadata.pb (deflated 89%)

adding: saved_models/ccf_220_keras_lstm public/1/wts.data-00000-0f-00001 (deflated 7%)
adding: saved_models/ccf_220_keras_lstm_public/1/checkpoint (deflated 35%)

adding: saved_models/ccf_220_keras_lstm public/1l/variables/ (stored 0%)

adding: saved_models/ccf 220 _keras_lstm public/l/variables/variables.index (deflated 67%)
adding: saved_models/ccf_220_keras_lstm public/1/variables/variables.data-00000-0f-00001 (deflated 7%)
adding: saved models/ccf 220 keras_lstm public/1/fitted _mapper.pkl (deflated 61%)

adding: saved_models/ccf 220 _keras_lstm public/l/assets/ (stored 0%)

Upload model to COS bucket
local_file name = '{}.zip'.format(model_name)
cos_file name = local_file name

upload_large_file(cos_client, bucket_name, cos_file name, local_file_name)

Starting large file upload for ccf_220_keras_lstm public.zip to bucket: test-datasets
Large file upload complete!

4.5 Al model conversion

ONNX is an open format for AI models, allowing interchangeability of models between various
Al frameworks and tools. Models developed using different frameworks can be saved or
converted in ONNX format. For example, tf2onnx converts TensorFlow (tf-1.x or tf-2.x), keras,
tensorflow.js and tflite models to ONNX via command line or python api. Refer to the tf2onnx
information here.

Here is the sample code to convert demo TensorFlow model to ONNX format:

import tf2onnx
convert to onnx
spec = (tf.TensorSpec((7, 16, 220), tf.float32, name="input"),)

onnx_model tf2onnx filename = '{}_tf2onnx.onnx'.format(model_ name)

onnx_model tf2onnx = tf2onnx.convert.from keras(new model, spec, output_path=onnx model_tf2onnx filename)

ONNX model can be validated.

© 2023 IBM Corporation

https://www.tensorflow.org/tutorials/keras/save_and_load
https://github.com/onnx/tensorflow-onnx
https://github.com/onnx/tensorflow-onnx

check onnx model
import onnx

Preprocessing: load the ONNX model
model_path = onnx model_ tf2onnx_ filename
onnx_model = onnx.load(model_path)

#print('The model is:\n{}'.format(onnx model))

Check the model
try:
onnx.checker.check_model (onnx_model)
except onnx.checker.vValidationError as e:
print('The model is invalid: %s' % e)
else:
print('The model is walid!"')

In the demo, TensorFlow model was converted to ONNX format, and it is also uploaded to
COS bucket.

local_file name = onnx model tf2onnx filename
cos_file name = onnx model tf2onnx filename

upload_large_file(cos_client, bucket name, cos_file name, local_file name)

Starting large file upload for ccf_ 220_keras_lstm_public_tf2onnx.onnx to bucket: test-datasets
Large file upload complete!

4.6 AI model visualization

Netron is an open-source multi-platform visualizer and editor for artificial intelligence models. Tt
supports many extensions for deep learning, machine learning and neural network models. You
can find more information here.

Here is the view of our demo model.

© 2023 IBM Corporation

https://github.com/lutzroeder/netron

7x1x220

W (1x800x220)
R (1x800x200)
B {1x1600)

initial_h {1x1x200)
initial_c {(1x1x200)

Squeeze

W {1x800x200)
R {1x800x200)
B (1x1600)

initial_h {1x1x200)
initial_c {(1x1x200)

Squeeze

Reshape

MatMul

B (200x1)

Reshape

Sigmoid

5. Al model deployment on mainframe

There are different ways to deploy AI models on IBM Z, for example:

. Deploying with IBM Machine Learning for z/OS (MLz)

. Deploying with MLz Online Scoring Community Edition (OSCE)
. Deploying with TensorFlow Serving

. IBM zDNN plugin for TensorFlow

© 2023 IBM Corporation

IBM Machine Learning for z/OS (MLz) is an enterprise-grade and production-ready platform that
enables embedding ML and DL models into transactional applications for real-time insights.
With MLz, organizations can build, deploy, and run models on IBM Z and leverage several
essential enterprise-grade ML features, such as model versioning, auditing, and monitoring.
Models trained on other platforms can be converted to PMML or ONNX format and deployed on
MLz. Refer to IBM Machine Learning for z/OS for details.

The MLz Online Scoring Community Edition (OSCE) is a special no-charge version of MLz that is
intended for simple, non-production testing of the real-time scoring function of pretrained ONNX
models. MLz OSCE can be used for rapid use case evaluation of embedding DL models in
transactional z/OS applications while leveraging the Integrated Accelerator for AI. MLz OSCE is
packaged as an s390x Docker container image that is easily deployed in IBM z/OS Container
Extensions (zCX). IBM zCX enables clients to deploy Linux applications as Docker containers on
z/0S as part of a z/OS workload.

TensorFlow Serving is an open-source, high-performance deployment option that is a good fit
for enterprises that are heavily invested in the TensorFlow ecosystem or have complex model
pipelines. TensorFlow Serving is available as a container image in the IBM Z Container Image
Registry, and it can be used in a zCX or a Linux on IBM Z environment. Any z/OS application can
access the TensorFlow model by using a REST API call.

IBM zDNN Plugin for TensorFlow can also be used to deploy TensorFlow model and utilize the
IBM Integrated Accelerator on Z. IBM-zDNN-Plugin will detect the operations in your model that
are supported by the Integrated Accelerator for Al and transparently target them to the device.

We will demonstrate how to deploy the TensorFlow model built in the previous section to MLz
OSCE edition and TensorFlow Serving container.

5.1 Deploy AI model in MLz OSCE

IBM Machine Learning for z/OS (MLz) is an enterprise machine learning solution that runs on
IBM Z and Red Hat" OpenShift” Container Platform (OCP). It delivers predictive analytics
capabilities to the platform and enables the generation of real-time insights at the source. MLz
OSCE offers a no-charge option to test the MLz feature of real-time inferencing of pre-trained DL
ONNX models.

You can set up IBM Machine Learning for z/OS Online Scoring Community Edition for testing
purpose, and IBM Machine Learning for z/OS for production usage. Once LMz is setup, it has a
link to the portal that you can use to manage your model.

(@) Import ONNX model
Go to the MLz link and import the ONNX model.

© 2023 IBM Corporation

https://www.ibm.com/products/machine-learning-for-zos
https://www.ibm.com/products/machine-learning-for-zos
https://www.ibm.com/docs/en/wmlce/1.7.0?topic=wml-ce-planning
https://www.ibm.com/products/machine-learning-for-zos

IBM Watson Machine Learning for z/OS Online Scoring Community Edition

Models /

Models

Q Import model +
IBM Watson Machine Learning for z/OS Online Scoring Community Edition ®

Import Model

nhame

Enter display name for the model

Model file

Drop your .onnx file here or browse for a file
i to upload (Max file size: 300 MB).

Cancel Import

(b) Test the model
Once the model is imported, you can click on the model, and inspect details. The General

tab has the link to the scoring endpoint. The Schema tab has information about the input
and output data. The Test tab allows you to give some sample payload and do a quick
test on the model.

ved_model:predict' \

--header 'Content

--header 'A

--data-raw {"instances": [... test data ...]}

5.2 Deploy AI model in TensorFlow serving container

© 2023 IBM Corporation

TensorFlow Serving is an open-source, high-performance serving system for AI models.
TensorFlow Serving is available as a container image in the IBM Z Container Image Registry, and
it can be used in azCX or a Linux on IBM Z environment.

TensorFlow models can be deployed in TensorFlow Serving container. TensorFlow models that
are trained in TensorFlow 2.7 or later can be deployed on IBM Z without endian conversion,
otherwise the byte order of the models need to be converted using this endian converter tool.

You can also find the IBM Z Accelerated Serving for TensorFlow container in the IBM Z Container
Image Registry, which will leverage new inference acceleration capabilities that transparently
target the IBM Integrated Accelerator for Al through the IBM z Deep Neural Network (zDNN)
library.

Here are the steps to deploy model in TensorFlow Serving container:

(@) Get dockerimage
Here is the link to IBM image registry for z/OS, which has trusted container images for
z/0OS. Find the ‘tensorflow-serving’ entry and run the ‘docker pull’ command as
documented.

(b) Start docker container

Here is the command to start docker container and serve the model.
docker run -t ——rm —p $MODEL_PORT:S$MODEL_PORT \
—v "SMODEL_PATH: /models/SMODEL_NAME" \

—& MODEL_NAME=$MODEL_NAME $TF_SERVING &

Here is sample setting for our demo:
MODEL_BASEDIR=/path/to/model
MODEL_NAME=ccf_220_keras_Ilstm_public
MODEL_PATH=$MODEL_BASEDIR/$MODEL_NAME
MODEL_PORT=8501

(c) Testthe model
Once the model is deployed, a curl command can be used to validate the deployment.

invoke predict on the model

curl -X POST -d {“instances”: [... data
payload ... [}’

© 2023 IBM Corporation

https://ibm.github.io/ibm-z-oss-hub/main/main.html
https://ibm.github.io/ibm-z-oss-hub/containers/tensorflow-serving.html
https://github.com/ambitus/zos-native/tree/master/tools/Endian_converter
https://ibm.github.io/ibm-z-oss-hub/main/main.html
https://ibm.github.io/ibm-z-oss-hub/main/main.html
https://github.com/IBM/zDNN
https://ibm.github.io/ibm-z-oss-hub/containers/index.html
http://localhost:$MODEL_PORT/v1/models/$MODEL_NAME:predict

6. Al model Inference

Now model is deployed, it can be invoked for real-time inference. Just like model training, data
needs to be prepared and transformed to the format before invoking the model. The data
transformations should be consistent with the ones that are done at model training time.

Take the credit card fraud detection sample for example, when the model is trained, past 7
transactions from the user is grouped together for model to learn the behavior of the user. At
model inference time, when a new transaction is received, the past few transactions from the
user should be looked up. Then the data is transformed to the format that can be fed to the
model. Transformation could include encoding strings to numbers, normalizing numbers, etc.
The data preparation and transformation application can be deployed in application that is
collocated with the model.

The demo loads the saved information into a mapper and use it to transform the input data.
mapper = joblib.load(open(os.path.join(save dir,'fitted mapper.pkl'), 'rb'))

The transformed data is then used for prediction.

make prediction on the input data
result = ne‘:.ﬂr_mcu:hc\.l.predic}l:(tes‘.t_.-:lata_input[0]lr verbose=0)
print(result)

For this sample test data:

test_tran_data = p:i.read_csv(body, dtype={"Merchant Name":"str"}, index col='Index')
test_tran_data.head(7)

Out[48]:
User Card Year Month Day Time Amount Use Chip Merchant Name Merct;;rtl; Mercs};:?; Zip MCC Errors? Fraudl’s'

Index

0 0 2 2016 2 14 0942 $75.50 Chip Transaction 4055257078481058705 La Verne CA 91750.0 7538 NaN No
. . N Monterey

1 0 2 2016 2 15 06:56 $41.98 Chip Transaction -727612092139916043 Park CA 91754.0 5411 NaN No
. . Monterey

2 0 2 2016 2 16 06:54 $14.45 Chip Transaction -5475680618560174533 Park CA 91755.0 5942 NaN No

3 0 2 2016 2 17 10:49 $31.40 Chip Transaction -86825621511712373 La Verne CA 91750.0 7230 NaN No

4 0 2 2016 2 20 06:04 $149.73 Chip Transaction 1913477460590765860 La Verne CA 91750.0 5300 NaN No

5 0 2 2016 3 6 11:18 $81.93 Chip Transaction -6680087784759370261 Claremont CA 91711.0 4121 NaN Yes

6 0 2 2016 3 6 12:10 $297.86 opine -3220758452254689706 ONLINE NaN NaN 5311 NaN Yes

Transaction

Here is the sample inference, and you can see that the last transaction has high probability to be
a fraudulent transaction.

© 2023 IBM Corporation

In [53]: # make prediction on the input data
result = new_model.predict(test_data_input[0], verbose=0)
print(result)

[[[2-1156309e-06]]
[[5.1383051e-07]]
[[1.1301381e-06]]
[[3.4556518e-07]]
[[6.2667988e-07]]
[[3.1004033e-06]]

[[9.9862576e-01]]]

© 2023 IBM Corporation

7. Conclusion

Companies are moving to cloud. Data scientists can train, tune, and test AI models in cloud, and
benefit from the flexibility, scalability, and pay-as-you-go model. For highly regulated industries,
eg. Financial industry, it is critical to protect the sensitive data and meet the regulatory
requirements. IBM Cloud for Financial Services is designed to build trust and enable a
transparent public cloud ecosystem with the features for security, compliance, and resiliency
that financial institutions require. Financial institutions can confidently host their mission-critical
applications in the cloud and transact quickly and efficiently.

Mainframe is still the main transaction processing engine for enterprises for unbeatable
performance, reliability, and security. Companies try to build intelligence into their transaction
processing logic for real-time workloads. They also try to process large volume of data with
shrinking processing time. This requires low-latency large-scale AI model inference. The IBM
Integrated Accelerator for AI Telum chip on z16 can help companies to achieve this goal.

Combining the secure environment in IBM Cloud with the low-latency inference capability on

mainframe, companies can benefit from both worlds and achieve their goals in Hybrid
cloud environment.

© 2023 IBM Corporation

®

©Copyright IBM Corporation 2023
IBM Corporation
New Orchard Road
Armonk, NY 10504

12/23

IBM, ibm.com, IBM logo, IBM Cloud, IBM Cloud Paks, IBM Cloud for Financial Services, IBM Z, Telum, z16 and z/0S,........ are trademarks or registered
trademarks of the International Business Machines Corporation.

A current list of IBM trademarks is available on the Web at https://www.ibm.com/legal/us/en/copytrade.shtml, and select third party trademarks that
might be referenced in this document is available at https://www.ibm.com/legal/us/en/copytrade.shtml#section 4.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license
therefrom.

InfiniBand and InfiniBand Trade Association are registered trademarks of the InfiniBand Trade Association.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
OpenStack is a trademark of OpenStack LLC. The OpenStack trademark policy is available on the OpenStack website.

Red Hat®, JBoss®, OpenShift®, Fedora®, Hibernate®, Ansible®, CloudForms®, RHCA®, RHCE®, RHCSA®, Ceph®, and Gluster® are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in the United States and other countries.

RStudio®, the RStudio logo and Shiny® are registered trademarks of RStudio, Inc.

TEALEAF is a registered trademark of Tealeaf, an IBM Company.

UNIX s a registered trademark of The Open Group in the United States and other countries.

Worklight is a trademark or registered trademark of Worklight, an IBM Company.

Zowe™, the Zowe™ logo and the Open Mainframe Project™ are trademarks of The Linux Foundation.

All statements regarding IBM’s future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

The information contained in this documentation is provided for informational purposes only. While efforts were made to verify the completeness and
accuracy of the information contained in this documentation, it is provided “as is” without warranty of any kind, express or implied. In addition, this
information is based on IBM’s current product plans and strategy, which are subject to change by IBM without notice. IBM shall not be responsible for
any damages arising out of the use of, or otherwise related to, this documentation or any other documentation. Nothing contained in this
documentation is intended to, nor shall have the effect of, creating any warranties or representations from IBM (or its suppliers or licensors), or altering
the terms and conditions of the applicable license agreement governing the use of IBM software.

References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.

Product release dates and/or capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities
or other factors and are not intended to be a commitment to future product or feature availability in any way.

© 2023 IBM Corporation

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml#section_4
http://www.openstack.org/brand/openstack-trademark-policy

	1. Introduction
	2. Use case
	3. Set up secure environment in IBM Cloud
	4. AI model building in IBM Cloud
	4.1 AI model building steps
	4.2 Data connection
	4.3 AI model building
	4.4 AI model persistence
	4.5 AI model conversion
	4.6 AI model visualization
	5. AI model deployment on mainframe
	5.1 Deploy AI model in MLz OSCE
	5.2 Deploy AI model in TensorFlow serving container
	6. AI model Inference
	7. Conclusion

