

Donde empieza la Innovación: El Laboratorio de Investigación de IBM Zurich

Cristiano Malossi, IBM Research THINKLab

@C_Malossi

IBM Research - Zurich

- Established in 1956
- 45+ different nationalities
- Open Collaboration:
 - Horizon2020: 43 funded projects and 500+ partners
- Two Nobel Prizes, One Kavli Prize
 - 1986: Nobel Prize in Physics for the invention of the scanning tunneling microscope by Heinrich Rohrer and Gerd K. Binnig
 - 1987: Nobel Prize in Physics for the discovery of hightemperature superconductivity by K. Alex Müller and J. Georg Bednorz
 - 2016: Kavli Prize in Nanoscience for the invention and realization of atomic force microscopy by Gerd K. Binnig and Christoph Gerber
- Binnig and Rohrer Nanotechnology Centre opened in 2011 (Public Private Partnership with ETH Zürich and EMPA)
- 7 European Research Council Grants
- 2017 Named Historical Site by the European Physical Society

Major Historic Accomplishments

Success in Petascale computing: implicit linear solver to scale!

An Extreme-scale Implicit Solver for Complex PDEs: Highly Heterogeneous Flow in Earth's Mantle

J. Rudi¹, A.C.I. Malossi², T. Isaac¹, G. Stadler³, M. Gurnis⁴, P.W.J. Staar², Y. Ineichen², C. Bekas², A.

Curioni², O. Ghattas¹

- 1: The University of Texas at Austin
- 2: IBM Research Zurich
- 3: New York University
- 4: California Institute of Technology

velocity magnitude [cm/yr]
2.50 5.00 7.50 10.0

11.8

© 2016 IBM Corporation

Cognitive Discovery

Technical R&D today: The three pillars

Traditional R&D has limits

R&D Today

- We cannot beat complexity with brute force simulation
- □ We need a new, data driven, holistic approach

Unstructured Data Deluge in Peer Review Publications

Cognitive Discovery based on AI to reverse the pyramid

R&D Today

R&D Future

Scalable Knowledge Ingestion

- SYSML 2018 (https://www.sysml.cc/doc/76.pdf))
 KDD 2018 (https://doi.org/10.1145/3219819.3219834)

Knowledge Extraction: PDF – Accelerate via ML

- 1. Categorize documents into similar layouts
- 2. Annotate a few pages
- 3. A Machine Learning model is trained automatically
- 4. Huge boost in the annotation process

https://samaster.smartannotator-productionv2.zc2.ibm.com/manager/projects/afb2ddec29d5179 ab415e1061e627837f886e271

Accuracy > 98%

Corpus Processing Service

Al Automation

Narrow AI: Initial Value Creation

2010

2015

AI learns to solve specific tasks, or focuses on **individual domains** or modalities primarily using **human-curated**, **training data sets** & **manually-crafted architectures**

Narrow AI: Initial Value Creation General AI: Revolutionary

2050-Beyond

AI acquires knowledge by **reading**, **discussion**, **observation**, **experiments**. **Broad transfer of knowledge** across tasks. **Cross-domain reasoning** is common. **Broad autonomy** within human-managed teams.

Narrow Al: Initial Value Creation

Broad AI: Disruptive and Pervasive

General AI: Revolutionary

2010

2015

🧭 We are here

2050-Beyond

AI selectively acquires and integrates knowledge from multiple modalities and sources, including interaction; develops and retains skills that it adapts and combines to complete new tasks; learning is adaptive, using automatically-constructed architectures.

Today's neural networks: how do they look like?

Millions of parameters to tweak and growing

- Highly skilled researchers/data-scientists are needed to hand-craft custom neural networks
- Hand-crafting complex networks is time-consuming, error prone, and does not scale with time and resources
- Neural networks continue to grow in size and complexity

How does it work?

20 | © 2019 - IBM Corporation Copyright

Classical LSE

(Real et al. 2017)

- Search time: 256h
- Resources: 250 workers (~250-1000 GPUs)
- CIFAR-10 top accuracy: 94.6%
- CIFAR-100 top accuracy: 77%

TAPAS-NeuNetS

(Istrate et al. 2018)

- Search time: 400s (2300x faster)
- Resources: 1 GPU (250-1000x less expensive)
- CIFAR-10 top accuracy: 93.67% (1% worse)
- CIFAR-100 top accuracy: 81.01% (4% better)

SPEED UP ORDER: 1M (architecture discovery) – 100k (trained model)

NeuNetS: Neural Network Synthesis

Try it now! http://ibm.biz/neunets

Al for Chemistry

IBM **RXN** for Chemistry

Forward Chemical reaction prediction

SMILES to **SMILES** Seq255 Wodel

Predictions in short (how a Se2Seq works)

Encoder

- analytic

interesting features

Decoder

- generative

target/output

Schwaller et. al. Chem. Sci., 2018, 9, 6091-6098

Freely available for everyone:

http://www.research.ibm.com/ai4chemistry

Released on August 19th at ACS Boston. In 6 months (Dec. 2018):

- 5150 active users
- 20000 chemical reactions predictions
- 8000 projects opened
- 60000 molecules generated

Performance

SMILES to SMILES

using sequence-2-

sequence models

prediction

USPTO*		S2S	WLDN	ELECTRO		WLDN5	our work
		[13]	[28]	[30]	[31]	[29]	
_MIT	separated	80.3	79.6		82.4	85.6	90.4
_MIT	mixed		74				88.6

Currently, best method in FORWARD chemical reaction prediction

Muchas gracias

Cristiano Malossi, IBM Research THINKLab

@C_Malossi

