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LTWB, OFcEDT7 TO—F THINRT 71> - Fa——>J1d BUIGEICEVWAE%RR
TICEIDE TR ElTkD. &R %,

CFT Tl BTN 2 DDIGEDSEELSHBVDVEHITY BTcthic. MAEDIGENRUTAY T hEXT IR
> TVWBELHD, U L. —RICDAESNTULSABDTE B - 75ty bOZLIi3 BU7a>>
MIFU T RVEEERWEBNNTICIZ> TELVEL, ZDTeth. NRBEHHICESHE LN TEDLSIT
UCRVERE SRV CIEDHSZE8 C ENTEDDIESE5H' ? 1, BHIDT—5 737255 e DREER 7 H—
Fid TV T UL TCRVWEEZAEICENE S ETHD, UL L. COLSBR7ZTA—FIFAR NI
12 BRREEN DD, ZT T ACBEDIARTIE [RAT+ TRV F] EUTHRDESHID LM ZFERT 3 C
LIRS D, 97705, COLUM IR BV (EXFEER. HEIWIEXRTI) BiEFed SMARDHHEZE
DANEZARTT DK D IHED. IfcBld [HESINTVLS. BOUWABEDTE - T—5 1Y hMafE>THID LLM 27
FAY - FA-ZVITRLILKD INEHRT D, TORER. TRV TREANED (RW) TF - Tty
MIEZSNNIE CORBT 1 TRV FO UM ZRAWTTAY T MY U TER UIEEA BUEBER
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D, NEDTEZDEDH, BLEIELE UTRTFZEDCENTE D,

granite.13b.chatvl Tld granite.13b.instructvl ODFHA/N—>3>% 20 (T7A> - Fa—=T7wD) Al
LLM & UT#EEY %, CFT DfcshDFT—5 1w hid. OpenAssist #iEHET/L[3]. Dolly[2]. ProsocialDialog[4]%
FE>TT IV TEINT Anthropic DERMEEEEGHICEETIABOTV I 7L YR - T—=5DXFPH VS
IV THB,

CFT 27w FD—&B& LT, granite.13b.chatvl (d. A&EIT— T hDOSSEEETR— N B7e8HIT. LLFDT R
TL - AV TR TEIET DL D ICERINI !

Below are a series of dialogues between various people and an Al assistant. The Al tries to be helpful,
polite, honest, sophisticated, emotionally aware, and humble-but-knowledgeable. The assistant is
happy to help with almost anything, and will do its best to understand exactly what is needed. It also
tries to avoid giving false or misleading information, and it caveats when it isn’t entirely sure about the
right answer. Moreover; the assistant prioritizes caution over usefulness, refusing to answer questions
that it considers unsate, immoral, unethical or dangerous.

Human:<prompt>
Assistant:

ZDI 2T L - AV T SOFERIFATO®ED :

LTI SESEFHIAE Al 7R 5> ~ED—BDSEE ThH S, Al Ik #JT. TET IFHET. HRS
NTUVT, RYSICHURNT. Fz/ch Hbbies CoS3DE TS, P RZ> MIFEA LT TEEA TFAIIS
U 180988 Va I I CFBIE T S /e DICEREE/RS 9, F/o, Iatziaii < & D Mg a5 A /XL 'k DIC
U IECVEBRDSTEIION 58 ESFITIRTREAET . SHI0. PR > NMIBFIEL DO TR %
B L. LT, RER. FHFE. 6 U <IMBIE ThHEEZEX SNSENIIESZHL ),

A& - <T0O0> 7k~
FIRGN L

4) Granite.13b.chatv2 D75 X~ k : granite.13b.chatv2 DEHD/\— 3 U Tld, EY 0. FNEEHC
Retrieval-Augmented Generation (RAG) PENE W1, 74— MRVERSY 2V DEEERET D&
IC7#—hA Ut

ERRERNET DTHDEARDHREICIE. FLAN T—5 1w b EWSTe—RICAHAINTWS IV A NS0 3
Y Fa—ZVIRT=IY NFoT T 7 AV Fa—ZV 09 B EICHESEERADUNEEN TV,
FLAN [EZHRIEICEATVDD, ZOREIIERTH D EANHT. FRNICIEZ DT ENETILDICT A+ —
N AUTHEOFRMHEFENDREATH D EEZ SNTND [30,31], COEREZAEIIT DTcthic, FHLRIEIBM D
f-ORCA FETHER S NI LVLWERT—4 Y hE granite13b.chatv2 D1 YA NS oY 3> - Fa—Z> T
BAUT,

f-ORCA F&Eld #ULN RSN H1 RICEDLr>aAYTFA N - 5= (ICL) FETHD. COFE
BFLM DAY RS0 3y - Fa—ZU BV TABEDEFIRICLDTEY A N — 3> (EEFOE) &K
<BE UTe. SRE CERMEICBATRISESZERT 2 C &L U TERETENTL\D, O f-ORCA F&I FLAN
DESBT—F Y MIFET DS TAY 7 MO U TN ESUa R T DEEICH W TIHFIC. A
FHINT= ORCA FBEEBLIRAERF>TVDH. W DOHDEERRT > M TEF>THWD, F—IC, f-ORCA D
7 7A—FTl& ChatGPT > GPT-4 DK D%, ZIA XY MHENTVWT, 41 VRA MUYy - Fa—ZVIN
BEINTWBIEIRNET SV IRy I - ET )RS 2MEN R, f-ORCA IFZDR0D ICERIEFEEINT
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W TERERITENEIRIEER Falcon-180b EFILIEIFEFIFYT %, 351, f-ORCA (&, #7@@EEI> ~A—
UEEE LT BINENe7 1 L5 —BE (f-UMPBACK) Z#EdWALG, CDIBET Falcon-180b €7 /LIE. IR
SN RIEDC ICL FEO LNV I—-3 VAW T BEERE UV TOREIEREY, CNIick>TETIL
MWeDENZB7BEE Tl - F1L—>3 > U, IHES FRICEDELS BAS ELZESITOVTDELK
BAFRDCEEAREICT Do COTOCRBMERDIERE LTHLZ 30 AUV TIDTF—5 1y hHEEND, £
|[CE 51T granite.13b.chatvl OEFBICHWTERY A UTc—Ei0T—5 =iBHah BT &R T—5 Y

k& Ul granite13b.chatv2 D1 Y2503 - Fa—ZUJ\fEFHINS,

granite.13b.chatv2 Tld EFIDZLZE4EI SITUET DIbICRA IBM ¥R Uz RLAIF 7)L3) XAT
3% SALMON [32])7&&ER UTce SALMON OERIIE. LT - 754 X2 M33]Thd, Tanst, EFIILEED
AR UTHET 34BN TR U [35]1&B>TT— A NS Y EYI%T 272E UTAI EFIVICENER
HEIEDHEZERE LTS, SALMON Ofiiva7z U TWBDIE 131 RICHES BN ET )L CTdp Do SRk
TIIT7 LY R F=YTEB U COHFMET IVId. ANEBHERE UIERDA R GRRl) ICEDWGRINRO7
ZEET D, WEFEDEE T 1 —XCHWTIDOHT REFEET DRI T, TV ZRVEEDTS%]
Y RO ZBB T ENTETC ZORR, MEFFTEFEINGER (RUY—) DIRSFWEREZSZDE
MTE NEDTI T 7L YR - T—=H5%F >S4 > TYET 2B 73D,

BRI [32] TIEEESINTVDFAEIHRELN 40B /NS A—=FDR—XETFTIVHMS, NBICKDTUT7L VR -
Tty hE HARIESER TSI T 7LV - T—=51y FMzREWT, 1Y ARSI a3 VIESHET
WEFBET D, RIT. DS, IBM OIZRENYESR: LT K72z PPO & T granite.13b.chatv2 O7
TAXY NE(TS, CDHA ROLEF Appendix B IR UTe,

granite.13b.chatv2 DFZIcH1F5 f-ORCA & SALMON DIUEZ 7 FTHERELIET—5 Y MMcld IBM A
HR UTcBRT —% T2 HHRLHF [36], sharegpt 7—% 1w k [37]hSEIDH U ADMER L= 7O 7 ~

(chatGPT DIEXIHER Ugh o fc). FLAN2022 ¥ YA NSO Y 3y - Fa—Z>0 - 7% - ALoU>3>
DSEDT 1 )5 —UTc—EBE. OASST[38] h'EENT LD,

granite.13b.chatvl & (FE7% D, granite.13b.chatv2 (FHRIFIC AT ATOY TR ZREE LR,
granite.13b.chatv2 DF2FEHlZFE L TLDALR— ROFERD/N\—T 3 VILBW\W TR FFEDI—2T7—2
DIeHILY AT LTAY T NefEHTHZ ENHENE LR,

B. 5t1&

HEBETIZEBDHD IBM OFZFETEAIVTISA NS IFv—Id Al 2—/\—a>Ea1—%— Vela[39]T
H% (@5 7%Z280), Vela I VYV—ROBNDHTITERMZF BB IedIc. KRBV VaxX—RcLic77FH
—FEFRHU T\, FRRIGERELICKD, LWod [{REYI UR. 375h5, [RIEX> Y ZANSCElckd
F—=I\—=AWY RF 5% Cdrd. &= Al /—RIdE 8 DD Nvidia A100 GPU 1—R, 96 @ vCPU, 1.5TB M
DRAM, 4X3.2TB M NVMe RS J7&EEH L TW\D, /—Rig1r—=xy hCHEEGSN TS, &/—RIC
I& 2 8D 100 Gbps 1 —H =Y k- U2V Ohd, IREETIIVDFEBRI(EHINTLD Vela 1 >~ X5 > 23 IBM
Cloud ®7>> k> DC.T—H Y H—ITEREIN TS, SED Granite 7 )L Vela ZFH UL TEEINS T
SEEHN granite.13b DR—X - EF)VIE Vela 1 >V 25 > ZAHZLRITIIE BN DEIOHW\T > T S TEEINT
granite.13b.v1 (& 256 ED A100 GPU 7% 1,056 BF#E. 120 TFLOPs 7= U7z, granite.13byv2 [FEIU1>7
S2AKNZUF+—"C120TFLOPS, 1,152 BEaffEHL. &5t 2,208 BfEfERHE WS C&iliz> T,
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Vela system architecture Compute node

Spine 1 ‘ Spine 2 | ‘ Splne 3 Spine 4 CPUO CPU1 | 4xNVMe
\ﬂ; 2x100Gbps ,—J L |,_J l—
| Top of Top of ITopD' Top of 2x100G | PCle 2x100G ‘ PCle ‘ 2x100G || PCle ||2x100G 1 PCle
Rack 1 Rack 2 Rack 1 Rack 2 Network || Swit tch Network ‘ Swit !ch Network Swm:h Network Swm:h
R P " s lme face Interface In tedace Interface
— = i Car Card Card
‘ +— 2x100Gbps }

3 Node 1 £ - Node 1 g

v GPUO || GPU1 GPU3| | GPU4| GPUS \ GPUG | GFU 7
Node 2 Node 2 | | l I | l &
Node 3 Node 3

’ NVSwitch fabric

GPU 2

Rack 0 Rack N

(a)

Top of rack

(b)
5:AI2—/\—aYEBa—%9—VelaD@7—FT7I0Fv—K&. D)1V T AN IFv—K

C. IR F—HELRFEHHLE
granite.13b N—2 - EFIVOI R F—HE L FERAMEDHEEICER UTTRIIATO@BD TH D, FFEDEH
L €513 ET)V M ICBHET DEEHHEE Carbon A TEX5NS !

Carbon(M,L) = E(M) X PUE(L) X CEF(L), @)

CCC EMIFETIVM OBESTHEES. PUEDL)IHSFT L ICHIFDBESERERER. CEF(L)I35PT L IGBRI NS
ESE i E Ao

ISR (IT) SHEBHE M) & ITD GPU DS GPU AHERAFHE U TEESIN5, Nk X6 TR
TLSIC. GPU FRERIZRNIC/ — REHEBVEEN G D128, Al BTV M OFBIERINDE=HEE
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TRIHDIALIE D, RIT, HEESNTC/ — REAIC, FEFECFERSIN GPU D=L T, MetETxI
FHESE 2518 T %,

- Estimation (linear regression)

4 4
R « Raw Data

4000 1

Node Power (W)
8 B 8 w
o o o o
(=] [=] [=) (=]

1500 1

0.0 0.2 04 06 08 10
Normalized GPU Utilization for 8 GPUs [0-1]

6:—)\— (/—R) OBH EER{ESI N GPU FIRXROBER

ENEFRER PUED) IR T—9 V5 —THEINDHRENE (T &PR—bk - F—/\—AY R - 1V T3k
DHSEESE) D, IT A YIS CEEINDEIE I T BUERTEZ 5ND, GHG 7ANIILORO—F 2 A4
AV 2[A0]IHE->T. AT —I 3y - R—2ADREHHEREN CEF(O) 18T 2,

COHEEAE7%Z granite. 13bvl DAR—ETIVICERY % £.153,074.3767TkWh DLV F—HEEEM). 0.12kg
KWh DEEEBREAREN CEF(L). g 22.2263995 @ CO2 #& Carbon(M,L) EHEESN. CNIFTEtEGEE
& AT PEHAVERIRE DD TR TDRENRA R 2ZERE U IcEDTH B,

granite.13bv2 R—2XETINDIT R F—HE E FERHHEIRFIEHEFRTH D BB DLR— bOEHRRTA
KI Do

TRIF—EN—RY - Ty T NHEIFT it Z<OEEIEZRAND CENTED, IR FE
TIEFHI 2ERDEIS. FBERBETR)VF—DOFFRIEEEDRERE UGRET 2L TED, HDW\E BRD
FREI—ED TR F—EHEPHIEED HRMEZBZ 0L\K S ITHRT 2 EATES,

V. T2 b &

OO 3T Granite EFIIVOT R ~EFHIDT=HICENSNTc 7 TO—FICDOWTCERAT %, o, [EfE
EBOREAL NILDMDOW OO DETILEDLHERE EBic, EHERAERY,

A. BRETFIOFEEIL—LT—D

feBld ETIVOREZ ATV 0 72BU T eHEiIGERTETIIFHT O L —LT—2 (FM-eval) ZHREU
TW3, FM-eval (F. FHIEN> FY—0Z/MERICEITT Bebblc. GPU ZH7R— k U7z RedHat OpenShift

(hz‘z‘ps.' www.redhat.comyen/technologies, c/oud—comput/n,g/opens/w’f[) TS5 J:_C*EQUD:E?‘“) I/LCS(EI' bfﬂﬁﬁ U (rf.?h'é’/f ]_'STL_C\;\
%, BEMbT7 L—ALT—21d Eleuther AI @ Language Model Evaluation Harness (Im-eval) [41]% Stanford @
HELM (Holistic Evaluation Model) [42]D K 57%5y FSNIANERT L —LT—oPaAV T HESINIEHET L —
LT—=DZFTITDHENTED, FM-eval YT, 7= b XNJOAZEBEITEINTEDRDICTD
febb, FRIEA—TF>)— D Python 51 TS UTHD Unitxt (atos/aithub.com/iBM/univd) 2R UTe, Unitxt 12
T=ItY NeER T DIHD—B U1 VY —T T —AEFEERE L. CNITIFEDT—5 1Y Mz LLM DI
BLETDANICEET DIHITRERRIE. BLOTERZTHIS B7edIfERIND A ) I ZHEEND,
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FATVAVINDIXTRIFTREFE T, SXRIFTHEEDT A METIND ¢
1) —FERD > FY—2 (General Knowledge Benchmarks, &)
JHELM RV FY—4 (FB1%)

3) DEANVTFY—T (FBB)

CNSDFHMIES NT, zero-shot AV F k& few-shot 7OV T NEEFRUCEDTEH D, JTRE U THNRT
AN zero-shot 7OV T M BHED LLM ZREL. 7OV FhE LT RIDETIRTDI2RET D &
T, LW ZODTFANEERT D, few-shot 7OV FRTIE TAYFNOHRTY ZODE0HE EBITHEE
DHRZERET D, M7 TO—F £H. —DOFFIEEBHET )2, 37 - IS A—Y—ZEEUFRRES &
ZA]BEICT Do

EANZEHmIGATO®@ED,
1) FERDT=HD—FERN>F<—% : General Knowledge Benchmarks (& Im-eval [41]DEFED > FX
— DY Ty MMeEd FERIC1,000B—0 Y SEICETINDEET A ME UTERS N, FEDHET
IS TETIOREINES U TWS C EZIEEEY D, BARIICIE Im-eval DLATF®D 12 D T—5tw b (¥
2D SEIEEINTND) THD -
- W<OMD R A1 > DERIEE (boolg. openbookga. piga. scig) ;
- SEfHGT
- EHtER (arc easy, arc challenge, copa, hellaswag, winogrande) ;
- DEEGZERERIL 23> (mmlu) ;
INBDFHE T L —LAT—0Tld CNSDARYFI— dzero-shot & few-shot DI DERE CEITIN D,

2) HELM: ERIEEN T 7 U TR O SFENZREHfD—ERIE Stanford 0 Holistic Evaluation of Language Models
(HELM) Benchmark [42]ITH7FT B, FAcEDET IVZFHIY D1eshic. BFINE. IERER. B0, BB
THFANDEESTIHRRIZY AT SIBRIND 16 D 7>+ A [43]~[54)7ZFEHT 2,

3) IVY—TSA TFHERNYFIY—0 1 FEBNT T U, 51T IBM AMERLIE T =514/ - RUF
Y—OTETIWAEHEL., BEFIETEEOBVRAAVICHBIFBRDETINDINT 4 —X Y 2BTARNT D, FD
FOBEXT, IBM [FERER A > TETIVETHIT 7z, 11 B FHINfcEmNYFY—D%%Fa L
—23> U, R ICEEDTe, T—YRETTHSIRESINIEB Y bETRA MY FODEZ, RIREFEDEE
MICERT %, EFIDMREIET R M2y MCEDWTIREIND, TA N INIDDBHINTULRWNMNES, £
TIVDMEEEIIEEI Y MCEDWTERES NS, FE Y TR MY MODEINT—5iRTth Sl n
TWRWESIE T—5D20%Z=7T A MEE U GERL, BDEFERE UTERT S,

few-shot 7OV TEZX DAV TFAMIITINTESZ Y MUY IV TTD, EFIVICEREEIND
few-shot DBROEUIY AT ICL>TERZD, R 1 1T T, SEDFHATlE. IRNTODEFTIDEUL/NTA—5
ERIVIEERNRR IO 7 NeER L. #2058, chain-of-thought 7AOY P K55]. Y274 - AV MG
BRUGZMN> e (few-shot 7A>Y S k& zero-shot 7AY P hOF o Zwo&E7OY T LD

(https./www.promptingguide.aj/techniques/fewshot ) = ZBRSI1T=\LY),, Financial Phrasesbank, News Headline. FiQA
SA Tl& ZAY 7 hi& BloombergGPT [56]M\ 55 UTe,
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62 |

60 |

58 |

56 |

Accuracy

54 |

52 |

50 |

48 |

- O . . - " R O . . .
N N N N & N b\\\\ N N S

# tokens

B zero-shot M few-shot
7 : Granite.13b ZEhO— MR/ T+ —< >~ 2

B. Granite €)LD & Lb#

granite.13bv2 DFEELFFHAIIESETHTH D BRIFESINRECDLIR— SOEFRTAKEINS,
granite.13b.vl OFHIHERZUATICERE I Dh\ COAHAY ) —TIFFEIC 1 IMED b—2 272N T2l TH
D, INSOFMIFITNTH N ZEDTHD EITEEITANETTH D,

FEHRO—FREFHNVFI—7 | SOV I VTR BER—MARNRYFY—07Z2ERHL T FEAIC 1,000
Bh—0>SEIEYE LTz granite. 13bvl DR—2 - EFIVDRAFY T ay &, Tra> - Fa—=2J Uk
granite.13b.instructvl & granite.13b.chatvl M/\JUIT—> 3 V%aiHs 2, K7 ICARMESIN. S5ICKITIC
SRINTVDDIE, FRESNIOED., FEEEDH D ET 1,000 B —20 > SEIT granite. 13bvl D—HRAIENE
ENEEIC| ELTWECE, FUTT7AY - Fa——J=nN/\UI—->3Y - FFI TS SIT/INT +—
RV 2Z2DEELTWBSZ ETH D, Tcf2U. granite.13b.chatvl DCOFHETlE 2T A - AV T MMHERES
NTLRLY,

HELM RX>FY—2 : COFEETIE HELM D 16 OOA7 - ¥ F U A THIEDET IV AREENICEHm L. v0.2.3
UV — 2 (httosyferfm.stanford.edu/belm/latest/?sroup=core scenarios) DBDT NTDETIV ELER UTe, Fhic B O
HELM IC&> THEESINTL\ZIED 2 SO O R TED T, 378hE. FIZET IV EERIOFHET—5 1y
NCEHA L. RICTNSDIERZ ) A ICENT S FINSGHD), LLM ORERHEERZICT Dz, EF I
DS > I3 FIT HELM @ Mean Win Rate (MWR) 181&7%, 7 A7@U TRET %,

8 I& granite.13b.instructvl. granite.13b.chatvl, LU0 ITRTDV0.2.3 EFID, EFI/IL T XEMWR
BN SERHFETR LTS, T2l IEHERETIVH A XH UM FO/INA =Lk > TRRINTLVEWNE
TIVE ORI SERASIN TS,

COEIE granite EFIVAET IV A XE HELM MEEDBETEXR UDLWI\S Y 7% E>TWSH T &R LTS,

granite.13b.chatvl & granite.13b.instructvl (& FHASNIIRTDETIOHT, ZNEN 15 fi1& 18 i T
»d. I5IT, granite.d3b.chatyvl & granite.13b.instructvl (&, FNZNT A1 XHY 170 BULTD/ S X—5
TEHfSNZETILOHFT, by 2 &MY 3 EoT, CohereCommandbeta (61 B)72IFhN CDT 1 XDH
T —TZFDMHEZE HOl> Tz, CNSDERIE HELM (k> TGGHES NI, FIX ISR P ATIEIC
DWTHEKRTH D, T TL—3>VIcHB\T, granite.13b.chatvl & granite.13b.instructvl (&, FNZFN
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9{i[& 28 i1 CTH Do

IVH—TZARX - RXYFI—7 | COFHAIE HELM OTL—AT—07%isRU. &Rt —EEEh 52 S
Nc\Wsg 11 OYRY - T—=51Y heag 35 &lick> THEMSND, HHBRORN—51> - ETIVIL
ET) - A FBT YO 7O EUT— BT - Fa-—ZVJIEDVWTERSIND, EAIC
SAZI3 Granite ETI)VIE 500 {2/ S X—FLLTFDA =T ) —RET DR TRE/INT =X IHRLGPT-
NeoX-20B [6]. FLAN-UL2[67]. K770 {Eh'5 130 BN/ A=%D, RSN TV SRTRDETILT
%% LLaMA2 [68] ELHERE 1D,

1

0.9

0.8
i} 07 granite.13b.chat
0.6 ]
-é 0.5 granite.13b.instruct
C
‘é 0.4

0.3

0.2

0.1

0
0.1 1 10 100 1000

Model Size (B Parameters)
8: A XITWTBHELM A R I TDINT #—< VR

xR IV & 11 OEREY R UICEET 2FETIVOFFHIRHEER D772 R U TW\D, LLaMA2 EFI)VIF 2T k=0 > D
EFET—YZAELTED. EFINCKERT7 RN\ T—I7Z5XTWBTH. LLaMA2 EFT/VDIEICT RS
) 2O%AFFTND, granite ZEOHDFHEETIVIETIART 1T b—0 Y DEBTF—57%FE> TS, Llama2 £
FIDFEDDT—FETEZ UTICED DD 5T Granitevl EFINEIEY 20 T /1h'& D, UIEUIE Llama2
Z Held, CDCEld 2T b=V 7ZBR DERFE T —Y CEFEINDFED. FEREHEINTL\S granite £
FIDIN—I 3 VIcE>TRVWKHETEH S,

VI. #EEMHEEEY 2

T, LLM OBEREHEEAHIERER ) 27138 <IBESN T\ 3, ZNICE RIER 8. BRMEPEE
O, ENERORE. EFECRESINLIY T VDOEEPRIEE. N1 hRAE—F BEM LWOHPHR
AT 42 TDESBANEEAY 21— OHEEFRDE. B0 HHFA. BRHBERZEAEENSD[69] [70],
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RKI:T7AF VR - RYFI—UDOHE

Task Task De- | Dataset Dataset Description N-shot Metric
scription Prompt
Sentiment 3 classes Financial Financial news categorised by sentiment 5-shot Weighted
Classification Phrasebank Fl1
[57]
2 classes Earnings Earnings call transcripts, the related stock prices and the sector index 5-shot Weighted
Call Tran- in terms of volume Fl1
scripts [58]
Classification 9 classes News The gold commodity news annotated into various dimensions S-shot Weighted
Headline [59] F1
N . 4 nu- Credit Risk Eight financial agreements (totalling 54,256 words) from SEC filings 20-shot | Entity
amed Entity - . ; . N
Recoenition me_rl_cal Assessment were manually annotated for entity types: location, organization F-1
°© entities (NER) [60] person and miscellaneous
4522 nu- | KPI-Edgar [61] | A dataset for Joint Named Entity Recognition and Relation Extraction | 20-shot | Modified
merical building on financial reports uploaded to the Electronic Data Adjusted
entities Gathering, Analysis, and Retrieval (EDGAR) system, where the Fl1
main objective is to extract Key Performance Indicators (KPIs) from
financial documents and link them to their numerical values and other
attributes
139 nu- FiINER- 1.IM sentences annotated with extensive Business Reporting 10-shot | Entity F1
merical 139 [62] Language (XBRL) tags extracted from annual and quarterly reports
entities of publicly-traded companies in the US, focusing on numeric tokens,
with the correct tag depending mostly on context, not the token itself.
Document | Opinion- Text documents from different financial data sources (microblogs, 5-shot RR@10
Question relevance | based QA reports, news) for ranking document relevance based on opinionated
Answering ranking (FiQA) [63] questions, targeting mined opinions and their respective entities,
aspects, sentiment polarity and opinion holder.
3 classes | Sentiment Text instances in the financial domain (microblog message, news 5-shot Weighted
Analysis statement or headline) for detecting the target aspects which are F1
(FiQA mentioned in the text (from a pre-defined list of aspect classes) and
SA) [63] predict the sentiment score for each of the mentioned targets.
Ranking Insurance Questions from real world users and answers with high quality 5-shot RR@5
QA [64] composed by professionals with deef domain knowledge collected
from the website Insurance Library
Exact Chain of Multi-turn conversational finance question answering data for 1-shot Accuracy
value Numeric exploring the chain of numerical reasoning
match Reasoning
(Con-
vFinQA) [65]
Summarization | Long Financial text 303893 news articles range from March 2020 to May 2021 for S-shot Rouge-L
docu- summarization abstractive text summarization
ments (EDT) [66]
11 : Granite.13b FERO—MAH/N T+ - > X
Model Tokens Avg Accuracy Avg Accuracy
(B) (Zero-Shot) (Few-Shot)
granite.13b (base) | 100 49.0 | 533
granite.13b (base) 200 50.8 55.2
granite.13b (base) 300 53.7 56.1
granite.13b (base) 400 52.9 57.1
granite.13b (base) 500 55.6 57.8
granite.13b (base) 600 55.7 58.1
granite.13b (base) 700 56.8 59.3
granite.13b (base) 800 56.5 59.9
granite.13b (base) 900 57.8 60.0
granite.13b (base) 1000 58.5 61.0
granite.13b.instruct.vl 1000 59.3 61.5
granite.13b.chat.v1 1000 61.2 62.6
RUL: A7 - FIVAHROTT - U A ED HELM R
Model MMLU | BoolQ | NarativeQA | NawralQuestions | NaturalQuestions | QUAC | HellaSwag | OpenbookQA | TruthfulQA | MS MARCO | MS MARCO (TREC) | CNN/DailyMail XSUM TMDB | CivilComments | RAFT
(Metric) (EM) (EM) (F1) closed-book (F1) | open-book (F1) (F1) (EM) (EM) (EM) (RR@10) (NDCG@10) (ROUGE-2) (ROUGE-2) | (EM) (EM)
granite.13b.instruct.v1 0.377 0.809 0.668 0.188 0.659 0.373 0.338 0.296 0.203 0.431 0.638 0.135 0.11 0.953 0.637 0.693
granite.13b.chat.vT 0.378 0.776 0.698 0.212 0.684 0.391 0.305 0.276 0.208 0.396 0.634 0.14 0.115 0.948 0.6 0.709
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Financial Earnings News Credit KPI- FiNER-|| FiQA Insurance|| FiQA ConFinQA || Summarizatio

Phrase- Call Head- | Risk As- Edgar 139 - QA SA

bank Tran- line sessment Opin-

scripts ion

Metrics Weighted | Weighted | Weighted Entity F1 | Adj Entity RR@10|| RR@5 Weighte Accuracy Rouge-L

Fl Fl Fl1 Fl1 Fl1 Fl
granite. 13b.v1 0.306 0.443 0.811 0.477 0.344 0.699 0.400 0.169 0.780 0.365 0.173
(base)
granite. I 3b.instruct}v D.590 0.443 0.764 0.407 0.281 0.699 0.658 0.605 0.590 0.346 0.323
granite.13b.chat.vl| 0.714 0.443 0.779 0.361 0.290 0.746 0.624 0.422 0.758 0.334 0.376
llama2.7b* 0.244 0.486 0.752 0.408 0.419 0.660 0.617 0.255 0.744 0.233 0.195
llama2.7b.chat* 0.758 0.677 0.829 0.458 0.450 0.626 0.644 0.443 0.693 0.254 0.345
llama2.13b* 0.378 0.410 0.584 0.467 0.463 0.689 0.560 0.539 0.800 0.226 0.252
llama?2.13b.chat* 0.608 0.572 0.744 0.445 0.538 0.671 0.625 0.227 0.849 0.261 0.269
gpt-neox-20b 0.561 0.318 0.630 0.469 0.308 0.774 0.496 0.163 0.771 0.266 0.205
flan-ul2 0.240 0.318 0.829 0.394 0.011 0.446 0.793 0.747 0.811 0.254 0.310
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[ Source || Phase | Group | Risk | Indicator
Input Training and Tuning Fairness Bias Amplified
Input Training and Tuning Robustness False samples Traditional
Input Training and Tuning Value Alignment Undesirable output for retraining purposes New
Input Training and Tuning Data Laws Legal restrictions on moving or using data | Traditional
Input Training and Tuning Intellectual Property Copyright and other IP issues with content Amplified
Input Training and Tuning Transparency Disclose data collected, who has access, Amplified

how stored, how it will be used
Input Training and Tuning Privacy Inclusion or presence of SPI or PII Traditional
Input Training and Tuning Privacy Provide data subject rights (e.g., opt-out) Amplified
Input Inference Privacy Disclose PII or SPI as part of prompt to New
model
Input Inference Intellectual Property Disclose copyright or other IP information New
as part of prompt to model
Input Inference Robustness Vulnerabilities to adversarial attacks like Amplified
evasion (create incorrect model output by
modifying data sent to train model)
Input Inference Robustness Vulnerabilities to adversarial attacks like New
prompt injection (force different output),
prompt leaking (disclose system
prompt),or jailbreaking (avoid guardrails)
Output Inference Fairness Bias in generated content New
Output Inference Fairness Performance disparity across individuals or | Traditional
groups
Output Inference Intellectual property Copyright infringement, compliance with New
open source license agreements
Output Inference Value alignment Hallucination (generation of false content) New
Output Inference Value alignment Toxic, hateful, abusive, and aggressive New
output
Output Inference Misuse Spread disinformation (deliberate creation Amplified
of misleading information
Output Inference Misuse Generate toxic, hateful, abusive, and New
aggressive content
Output Inference Misuse Nonconsual use of people’s likeness Amplified
(deepfakes)
Output Inference Misuse Dangerous use (e.g., creating plans to New
develop weapons or malware)
Output Inference Misuse Deceptive use of generated content (e.g., New
intentional nondisclosure of Al generated
content)
Output Inference Harmful code generation Execution of harmful generated code New
Output Inference Privacy Expose PI or SPI in generated content New
Output Inference Explainability Challenges in explaining the generated New
output
Output Inference Traceability Challenges in identifying source and facts New
for generated output
Other Governance Transparency Document data and model details, Traditional
purpose, potential use and harms
Other Governance Accountability Identify responsibility for misaligned Amplified
output along Al lifecycle and value chain
Other Legal compliance Intellectual property Determine creator of downstream models New
Other Legal compliance Intellectual property Determine creator of open source New
foundation models
Other Legal compliance Intellectual property Determine owner of Al-generated content New
Other Legal compliance Intellectual property Uncertainty about IP rights related to New
generated content
Other Legal compliance Legal uncertainty Determine downstream obligations Amplified
Other Societal impact Impact on jobs Human displacement (Al induced job loss) | Amplified
Other Societal Impact Human dignity Human exploitation (ghost work in Amplified
training), poor working conditions, lack of
healthcare, unfair compensation
Other Societal Impact Environment Increased carbon emission (high energy Amplified
requirements for training and operation)
Other Societal Impact Diversity and inclusion Homogenizing culture and thoughts New
Other Societal Impact Human agency Misinformation and disinformation Amplified
generated by foundation models
Other Societal Impact Impact on education Bypass learning process, plagiarism New
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2023 9H15H
« KUIR—KORAID/IN\—Y 3 Y DREK,
2023 F 11 H7H
« FIQA (OpinionandInsurance QA) RED#FH UWMEBEICK > TERIV ZFE#, HELMDSVF YV ITRED
FIBICEDOh 2 Te/NTDIBIERE. FTUWEBAETE I NIz, 51T, HELM S Y F Y REDBIEHNER
INT=#%. Oasst-sft-pythia-12b ICDWTHBEE T 2 H5ENTHEF — AICIEBM > felebdb. RYFI—D
H 5 —BFRIICHIRR,
« 2ERICDTE> TEOD DY A RESLEDIEIEICK > TEH,
2023 F 11 H30H
. granite.13b.v2 ICDWVWTDHFH UWIBRICDOWT L R— b 2AZEH, FTHERICOWTIFEISETHT
HO. BH. RLR—bOEFIRICK > TRAAINDFE,
c EFEOH DIV TUVILDWTDFEESTON S ZREED 26 ICEHT,

APPENDIX B
SALMON QIR TEHOLNZ 1 K (DOFIER)

1) EBETIEETHDCE: ALIE SETEERICEDVERZRHE L. MEOEHEPERICOWVTIE
DEUSMCURIFNIEIZ SR,
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3) HEMTHEANTHD L : Al OEIZFIFEET. BEEENDD. RFOBIRICK > TEMIF SN,
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UleF—RAa > b 28517 2NETH D,

11) EZEZTEUTVWBRCE D AL IEZTEZTEUVREIRINFY Y ABREEREME N, IRTDA VY SY
VAVEETESIEIMFTIVIIKT R ETA—Y—AREEZTDIIFEINETH D,

12) 754N\ —{RE : Al REANZRFETESEH (PII) PHEB URL ZIRBXHRICER LW &,
13) SHES . Al IEBOBERZHEIT DL ZEITEINETH D,

BRENEREZIBWNES. HDWVIREEICEFSHRWES. Al IJIELUL<BWEZEZET 20D ICER
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14) 29V R70AOY © AllE URL. EfR. BIEREDHEBY —AEDOHEBEEREEIT. TFIAM—2
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Appendix C
Granite-8b-japanese

Granite-8b-japanese (& IBM @ Granite ¥ —XOEBETILO—D T, HARGEICHF L LI KRES
EETINTHD. COETIVIE, EROEERET IO - SRETEEZREL, BRFBO%, BRB
WENZEDDLDICEMEZINTND., TR, ERUEERBRETIVEDEWZRILOIC, COE
TIHEDKSICEBSINTLBSNICDOWVWTEIRT 3.

A b—=0F1E—>3Y

HAZEZZRE U THRFINTVWRWN—0F1TF1E, BEREBNFZERDO/NA S =T VFlcREILT
ULESIBENHS. £REULT, AKRESEETINTUME U TERTES =0 YBIZERINTL
B, MOSCENTEZXNMORINTEL LD, KDHEABEBEIWICHERLIIKZSHIT,
SentencePiece ZHMB LT, BHASE - ZEBONAUYHIS—0F A PZFB U, ERELT, H#BE
NBBEARBXZPFIN =T FAFOEBRICEEND CLICRRD, HREZZEELTWLWRWA—D
FTATEERUT, KDDRBRWA—O YV THABOXNEZ NV FTAXTDENTEDLDICRED.
e, HFOREEIANBEIBIND CEILRD.

B. FBRHELT—F

EFINDEBIF, UTFDRERVWT IV-A-1 TElieNTWBFEZFAB UL,

o JEMLBEEE LT, GELU Tld7# <, Swish-Gated Linear Unit (SwiGLU) [85] =FIFE U 1.

o {IEXRIFE U T, Absolute positionembedding TId7% <, Rotary position embedding (RoPE) [86]
=MAUT.

o SIEMIEL LT, Multi-query attention (MQA) Tld7x <, Grouped-query attention (GQA) [87] %=
MEBULT.

28



® Root Mean Square Layer Normalization [88] ZE& A U Tz,
e IVTFF+ANRE 4096 & UL,
® /\SA—HE=ZEHNBOEE LK

ERIFBICE, 1IKb—U Y DHREE, 5000 =T DHEAEE, 1000 Bb—0 YOO —RT—5%F]
U, mEBEI—RDOTFT—HICDUWLTIF, Hacker News, OpenWeb Text, Project Gutenberg (PG-19)
S 11 iIEINTWBERT—9&ZFIALE. BEREICDWTIE, commoncrawl, Wikimedia,
ES/WIPO DiFEFIEIR, Webhose OBAAXEEEFD =R LT,

BBt ZESHDIHIC, REBEEAAREOT—YEHEIEHLET, BHD T 7> Fa1 -
mITofe, IV-A-2 ITHIE I NTWBEEERR granite.13b.instruct OFZ IEHONT—FITMZ T,
Open-Platypus [89], HelpSteer[90], longinstruct[91], OpenAssistant([92], ZDBEAZEFERT —
4 [93], xP3x[94], llm-japanese-dataset [95]%=FIFE U 1.

C. FHh

1) 7ATZYIRYFI—7 : Granite-8b-japanese DFHHE D=8 IC, S8EDLLFIHINTWS 7 H
TEYVIRYFRI—UT—5ZFMAL, HER=ZRVI & VII IR U, BEMEDT=6HIT, Stability.ai h'5
Bt N TS Japanese Language Model Evaluation Harness Z#|A LU, Version 0.3 @ Prompt
Template ZFW\T, zero-shot & few-shot DERTETERRZIT o [96]. BH, INTOERIE, FHAR
DEFEHIRIRZRIA L TITo e,

Table VI : Zero-shot TOHAREFZHT W IRV FI—0 T —5 TOHMHEER

JCommonsenseQA | INLI MARC-ja JSQuUAD JAQKET_v2 XLSum-ja XWinograd- mgsm
ja
Version 1.1 1.3 1.1 1.1 0.2 1 1 1
Metric Acc Balanced_acc | Balanced_acc | F1 F1 Rouge2 Acc Acc
japanese- 0.3280 0.3314 0.4999 47.66 41.86 4.81 0.7101 0.032
llama-2-
7b-instruct
granite-8b- | 0.7078 0.5032 0.6442 59.39 60.31 7.26 0.6830 0.028
japanese
Table VIL : Few-shot TORAXEBF ATV IRY FI—U T —9 TOHmER
JCommonsenseQA | INLI MARC-ja JSQuUAD JAQKET_v2 XLSum-ja XWinograd- mgsm
ja
Version 1.1 1.3 1.1 1.1 0.2 1 1 1
Metric Acc Balanced_acc | Balanced_acc | F1 F1 Rouge2 Acc Acc
japanese- 0.6506 0.3605 0.7292 79.01 64.18 5.49 0.7101 0.088
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llama-2-

7b-instruct

granite-8b- | 0.8070 0.5935 0.9461 80.97 74.96 9.49 0.6830 0.116

japanese

2) IVH—TFSAX - RYFR—U  HFEOHBFEAKIC. BREBI VY —TFS514 - XY FY -3 HELM
DIL—LT7—0%IHERL, Y —EBENSLAHINTWVWE 2 DDYRY - T—9 Y hEEETSZC
EIT K> TEESI NS, Granite-8b-japanese €7 )L & japanese-llama-2-7b-instruct [97]EX—X 51 > -
EFINEULTEHMEIND, FETNICOWT, EFINICKRELRWVMEZEEIOY FRNEETIVA—RASHEL
ETIEEOTOY T S THZITV. RERWAOT7ZHRET %,

RVIILICHAXZE I 71TV - RYFI—TDOBEZ, & IX ICZOFHIFERZR I . Bleu & Japanese Bleu
l&ZFN&N sacreBLEU 51 7S U[98] EBEED 13a B L V'HAEEH ja-mecab h—o 1 2B\ TEEDS

NTW3, Japanese Rouge-L [E@E U ja-mecab b—0 F A HFTEEINTWND, RITRT LIIC. CDOFHE
Tl&. granite-8b-japanese ETILIFEICR—AZ 1Y - E7 ) 7Z E[LS,
RVIIL: BREI 71TV - RYFI—TVDEE
Task Task De- | Dataset Dataset Description N-shot Metric
scription Prompt
Topic Classi- | Japanese | MultiFin [99] MultiFin is a financial dataset consisting of real-world article headlines | 20-shot | Weighted
fication 6 classes covering 15 languages across different writing systems and language Fl1
families.
Summarization | Japanese Bank of Japan The Bank of Japan’s outlook for economic activity and prices at the O-shot Egj;:_sf
- English Outlook [100] quarterly monetary policy meetings. O-shot Tapanese
Translation
to Bleu
Japanese
Japanese 0-shot Bleu
to
English
KIX: BREBI 71T YR - RYFY—U OFHEHER
MultiFin BoJ Outlook (Summa- | BoJ Outlook (E-to-J | BoJ Outlook (J-to-E
rization) Translation) Translation)
Metric Weighted F1 Japanese Rouge-L Japanese Bleu Bleu
granite-8b-japanese 0.454 0.456 0.123 0.075
japanese-llama-2-7b-instruct 0.424 0.375 0.077 0.002

30




