

SC26-4223-02

VS FORTRAN Version 2

Interactive Debug Guide and Reference

Release 3

SC26-4223-02

VS FORTRAN Version 2

Interactive Debug Guide and Reference

Release 3

2 VS FORTRAN Version 2 Interactive Debug Guide and Reference

VS FORTRAN Version 2
Interactive Debug Guide and Reference

Release 3

Document Number SC26-4223-02

| Third Edition (March 1988)

| This edition replaces and makes obsolete the previous edition, SC26-4223-1.

| This edition applies to Release 3 of VS FORTRAN Version 2, Program Numbers 5668-805 and 5668-806, and to
any subsequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under “Summary of Changes” following the preface. Specific changes
are indicated by a vertical bar to the left of the change. These bars will be deleted at any subsequent publication of
the page affected. Editorial changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in connection with the operation of
| IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibliography, GC20-0001, for

the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM licensed program in this publication is
not intended to state or imply that only IBM's program may be used. Any functionally equivalent program may be
used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office serving your
locality. If you request publications from the address given below, your order will be delayed because publications
are not stocked there.

A Reader's Comment Form is provided at the back of this publication. If the form has been removed, comments
may be addressed to IBM Canada Ltd. Laboratory Information Development 2G/345/1150/TOR 1150 Eglinton
Avenue East North York, Ontario, Canada M3C 1H7

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

 Copyright International Business Machines Corporation 1986, 1987, 1988. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

About This Book

| This book describes how to use VS FORTRAN Version 2 Interactive Debug to monitor
| and test the running of VS FORTRAN programs. This book can be used easily and
| effectively by scientists, engineers, other professionals, and students—all those who use
| VS FORTRAN for engineering and scientific problem solving.

| How This Book Is Organized
| � “Part One. User's Guide,” discusses how to use Interactive Debug.

| – Chapter 1, “Introduction,” discusses the features, requirements and restrictions
| of Interactive Debug.

| – Chapter 2, “Debugging in Full Screen Mode,” discusses how to invoke and
| use Interactive Debug in full screen mode.

| – Chapter 3, “Debugging in Line Mode,” discusses how to invoke and use Inter-
| active Debug in line mode.

| – Chapter 4, “Debugging in Batch Mode,” discusses how to invoke and use
| Interactive Debug in batch mode.

| – Chapter 5, “Using Interactive Debug Files,” discusses how to use the Interac-
| tive Debug files AFFOUT, AFFIN, AFFPRINT, AFFON, AFFLST, and AFFPIF.

| – Chapter 6, “Debugging Tasks,” discusses how to perform common debugging
| tasks

| – Chapter 7, “Special Considerations When Using Interactive Debug,”
| describes special considerations in using Interactive Debug.

| – Chapter 8, “A Sample Debugging Session,” is a tutorial shows some of the
| basic features of Interactive Debug.

| � “Part Two. Command Reference,” describes all Interactive Debug commands.

| � Appendixes

| – Appendix A, “Interactive Debug Messages,” contains a list of Interactive
| Debug messages.

| – Appendix B, “ISPF Dialog Variable Names Defined by Interactive Debug,”
| lists ISPF dialog variable names which are defined by Interactive Debug.

 About This Book iii

| How to Use This Book
| � Read Part One to learn how to use Interactive Debug. The chapters should be read
| in order of appearance.

| � After you are familiar with how to use Interactive Debug, use Part Two and the
| Appendixes as reference material. Part Two is alphabetically organized, with running
| headers on each page, to make commands easy to find.

| Syntax Notation
| For the syntax notation of all Interactive Debug commands, refer to page 100.

| Summary of the VS FORTRAN Version 2 Publications
| The following table lists the VS FORTRAN Version 2 publications and the tasks they
| support.

| Table 1. VS FORTRAN Version 2 publications and the tasks they support.

| Task| VS FORTRAN Version 2 Publications| Order Numbers

| Evaluation and
| Planning
| General Information
| Licensed Program Specifications
| GC26-4219
| GC26-4225

| Installation and
| Customization
| Installation and Customization for VM
| Installation and Customization for MVS
| SC26-4339
|
| SC26-4340

| Application
| Programming
| Language and Library Reference
| Programming Guide
| Interactive Debug Guide and Reference
| Reference Summary

| SC26-4221
| SC26-4222
| SC26-4223

| SX26-3751

| Diagnosis| Diagnosis Guide| LY27-9516

iv VS FORTRAN Version 2 Interactive Debug Guide and Reference

Summary of Changes

| Release 3, March 1988

| Major Changes to the Product
| � A new main debugging panel in full screen mode that allows you to:

| – Display AUTOLIST data in a monitor window, in addition to displaying your
| source listing in a source window and your interaction with Interactive Debug in
| a log window.

| – Change the size and configuration of the windows with the enhanced WINDOW
| command and the new commands SIZE and ZOOM.

| � Automatic refresh of the main debugging panel by Interactive Debug after a specified
| number of lines of output have been written to the log.

| � Vector tuning assistance that allows you to:

| – Gather vector length and stride information with the new LISTVEC and
| VECSTAT commands.

| – Gather DO loop sampling and timing information with the enhanced LISTSAMP
| and LISTTIME commands.

| – Get on-line help for vector report messages with the enhanced HELP command.

| – View the source order vector report in full screen mode.

| � Double-byte data support. After you specify the new DBCS YES command, double-
| byte data can be:

| – Displayed in the source listing (full screen mode only).

| – Contained in variable names and array names.

| – Contained in character literals, both entered and printed.

| – Used in terminal input and output to VS FORTRAN Version 2 programs.

| � The addition of the new full screen commands RESTORE and RETRIEVE.

| � Recognition of the restart file (AFFIN) and log file (AFFOUT) in line mode debug-
| ging.

| � Enhancements to the include file (AFFON):

| – Defaults can be defined for listed and unlisted program units.

| – A program information file can be defined for a program unit. This file is
| needed by Interactive Debug to gather vector tuning information.

| – Debugging hooks can be placed only at DO loops, to improve DO loop timing
| accuracy.

| – Sequence numbers in columns 73 through 80 on 80 column records are ignored.

| � Enhancement to the LISTTIME command to show average times.

| � Enhancements to the format of the output produced by the ANNOTATE command.

 Summary of Changes v

| � Addition of the default ddnames AFFLST and AFFPIF for the listing filename and
| program information filename respectively, for use in MVS batch mode debugging.

| � New IAD EXEC which allows you to invoke Interactive Debug in full screen mode
| using ISPF without PDF.

| Major Changes to This Manual
| � Documentation of the major product enhancements has been added.

| � Information on the Interactive Debug files AFFOUT, AFFIN, AFFPRINT, and
| AFFON is now found in Chapter 5, “Using Interactive Debug Files” on page 39.

| � Information on the commands UP, DOWN, LEFT, and RIGHT has been added.

| � Appendix B, Interactive Debug Command Summary, has been deleted. (You can
| find the information in the VS FORTRAN Version 2 Reference Summary.)

| � A new Appendix B, ISPF Dialog Variable Names Defined by Interactive Debug, has
| been added.

vi VS FORTRAN Version 2 Interactive Debug Guide and Reference

Release 2, June 1987

Major Changes to the Product
� Support for 31-character symbolic names, including the underscore (_) character.

� Addition of a program sampling capability, to assist in identifying areas of a program
that use the most CPU time.

� Addition of four new commands:

1. ANNOTATE, to support program sampling.

2. LISTSAMP, to support program sampling.

3. LISTINGS, to display the listings panel when using ISPF Version 2.

4. RECONNECT, to allow a CLOSED unit to be reset to its original (preconnected)
state so that it can be implicitly opened again.

� Capability of providing substring notation for character variables.

� Capability of referencing array subscripts outside the range of the declared dimen-
sions.

� Reduced dependency on TSO, including removal of the TSOLIB requirement in
CMS batch mode debugging.

� Capability to debug programs invoked in TSO LOADGO.

� Support for debugging CMS MODULE files in ISPF.

Major Changes to This Manual
Documentation of the major product enhancements has been added.

 Summary of Changes vii

viii VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Contents

About This Book . iii
| How This Book Is Organized . iii
| How to Use This Book . iv
| Syntax Notation . iv
| Summary of the VS FORTRAN Version 2 Publications iv

Summary of Changes . v
| Release 3, March 1988 . v
| Major Changes to the Product . v
| Major Changes to This Manual . vi

Release 2, June 1987 . vii
Major Changes to the Product . vii
Major Changes to This Manual . vii

Part One. User's Guide . 1

Chapter 1. Introduction . 3
Features . 3
Requirements . 5
Restrictions . 6

| Migration . 6

Chapter 2. Debugging in Full Screen Mode . 7
Invoking Interactive Debug in CMS . 7

Using ISPF/PDF . 7
| Using ISPF without PDF . 9

Invoking Interactive Debug in TSO . 10
Using ISPF/PDF . 10
Using ISPF without PDF . 12

| Using the Main Debugging Panel . 14
| Changing the Way Your Windows Look . 17

Entering Commands . 18
Changing the Defaults for Your Debugging Session 20
Using the Split Screen Feature (ISPF/PDF Only) . 23
Ending the Debugging Session . 23

In ISPF without PDF . 24
In ISPF/PDF . 24

Chapter 3. Debugging in Line Mode . 27
Invoking Interactive Debug in CMS . 27

Using the LOAD and START Commands . 27
Using the LOAD and GENMOD Commands . 27
Using an Invocation EXEC . 29

Invoking Interactive Debug in TSO . 30
Entering Commands . 31

Chapter 4. Debugging in Batch Mode . 33
Invoking Interactive Debug in CMS . 33
Invoking Interactive Debug in MVS . 34

 Contents ix

Using TSO . 34
Without Using TSO . 36

Running a Batch Debugging Session . 37

Chapter 5. Using Interactive Debug Files . 39
Log File (AFFOUT) . 39
Restart File (AFFIN) . 40
Print File (AFFPRINT) . 42

| Include File (AFFON) . 43
| Listing File (AFFLST) . 48
| Program Information File (AFFPIF) . 49

| Chapter 6. Debugging Tasks . 51
Getting On-line Help about Interactive Debug . 51
Displaying Information about Debuggable Program Units 54
Referring to Statements or Variables in Other Program Units 54
Setting Breakpoints at Debugging Hooks . 56
Controlling Program Execution . 58
Using Command Lists . 60
Displaying Data Types of Variables and Arrays . 61
Determining Statement Execution Frequency . 62
Program Sampling . 63
Program Unit Timing . 66

| Vector Tuning Assistance . 67
| Program Information File . 67
| DO Loop Analysis Hooks . 67
| Gathering Vector Length and Stride Information 68
| DO Loop Sampling . 69
| DO Loop Timing . 70
| Vector Report Source Listing . 71
| On-line Help for Vector Messages . 71

Tracing Program Execution . 71
Animating the Execution of Your Program . 73
Displaying Formatted Variable and Array Values . 73
Handling Run-Time Errors . 74
Processing External Files . 76
Using System Commands . 78
Entering Terminal Input . 78
Continuing Execution without Further Debugging . 80

Chapter 7. Special Considerations When Using Interactive Debug 83
Recognizing Common Errors in Setting up a Debugging Session 83
Issuing Commands after a Program Runs . 84
Handling Loops in Nondebuggable Program Units 84
Specifying Default Run-Time Options . 85
Monitoring Floating-Point Equalities . 85
Referring to Unused VS FORTRAN Variables . 85
Entering Commands in an Attention-Interrupt Exit 85
Debugging Optimized and Vectorized Code . 86
Improving Program Performance while Debugging 91

| Using Interactive Debug Double-byte Data Support 92

Chapter 8. A Sample Debugging Session . 93

x VS FORTRAN Version 2 Interactive Debug Guide and Reference

Part Two. Command Reference . 99
Syntax Notation . 100
Statement Identifier Conventions . 101
Commands Summarized by Function . 102
* or " (Comments) . 104
ANNOTATE . 105
AT . 109
AUTOLIST (full screen mode only) . 112
BACKSPACE . 116
CLOSE . 117
COLOR (full screen mode only) . 119

| DBCS . 120
DESCRIBE . 121

| DOWN (full screen mode only) . 123
ENDDEBUG . 124
ENDFILE . 127
ERROR . 128
FIXUP . 130
GO . 131
HALT . 133
HELP . 135
IF . 138

| LEFT (full screen mode only) . 140
LIST . 141
LISTBRKS . 145
LISTFREQ . 146
LISTINGS (full screen mode only) . 148
LISTSAMP . 149
LISTSUBS . 154
LISTTIME . 156

| LISTVEC . 159
MOVECURS (full screen mode only) . 163
NEXT . 164
OFF . 165
OFFWN . 167
POSITION (full screen mode only) . 168
PREVDISP (full screen mode only) . 169
PROFILE (full screen mode only) . 170
PURGE . 172
QUALIFY . 173
QUIT . 174
RECONNECT . 175
REFRESH (full screen mode only) . 176
RESTART (full screen mode only) . 177

| RESTORE (full screen mode only) . 178
| RETRIEVE (full screen mode only) . 179

REWIND . 180
| RIGHT (full screen mode only) . 182

SEARCH (full screen mode only) . 183
SET . 185

| SIZE (full screen mode only) . 188
STEP . 189
SYSCMD . 191

 Contents xi

TERMIO . 192
TIMER . 194
TRACE . 197

| UP (full screen mode only) . 199
| VECSTAT . 200

WHEN . 202
WHERE . 205
WINDOW (full screen mode only) . 206

| ZOOM (full screen mode only) . 208

Appendix A. Interactive Debug Messages . 209

| Appendix B. ISPF Dialog Variable Names Defined by Interactive Debug 257

Glossary . 259

Index . 265

xii VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Figures

 1. Foreground Interactive Debug Panel for CMS 7
 2. ISPF Foreground Interactive Debug Panel for TSO 11

| 3. Sample Modifications to the ISPF Invocation CLIST 12
| 4. Sample Modifications to ISPF Master Application Menu 13
| 5. Sample Application Panel (USERISP) to Prompt for the Text File Name . . . 13
| 6. Sample CLIST (USERDBG) to Invoke the Program without PDF 14
| 7. Sample Main Debugging Panel . 14
| 8. Sample Monitor Window . 16
| 9. Sample Source Window . 16
| 10. Sample Log Window . 17
| 11. Sample Interactive Debug Listings Panel (CMS) 22
| 12. Sample Interactive Debug Listings Panel (TSO) 22

13. Foreground Print Options Panel in ISPF in CMS 24
| 14. Sample EXEC to Invoke Interactive Debug in CMS Line Mode 30
| 15. Sample CLIST to Invoke Interactive Debug in TSO Line Mode 31

16. Sample Commands for a Batch Debugging Session in CMS 34
| 17. Sample JCL for Batch Mode Debugging in MVS with TSO 35
| 18. Sample JCL for Batch Mode Debugging in MVS without TSO 36
| 19. Sample AFFON File . 48
| 20. Sample AFFON File for Vector Tuning . 48
| 21. Main HELP Menu (full screen mode) . 52
| 22. Task HELP Menu (full screen mode) . 52

23. Sample Command HELP Panel (full screen mode) 53
| 24. Sample Vector Message HELP Panel (full screen mode) 53

25. Sample DESCRIBE Output . 61
26. Sample LISTFREQ Output . 62
27. Sample LISTSAMP Output for Programs . 65
28. Sample LISTSAMP Output for Programs . 65

| 29. Sample LISTVEC Output . 69
| 30. Sample LISTSAMP Output for DO Loops . 70

31. Sample WHERE Output . 72
32. Sample Use of FIXUP . 75
33. Sample Use of FIXUP . 76
34. Sample Use of FIXUP . 76
35. Sample Use of FIXUP . 76
36. Sample VS FORTRAN Version 2 Program 93

| 37. Sample VS FORTRAN Version 2 Program Listing 94
38. Summary of Commands by Function . 103

| 39. Interactive Debug Color Panel . 119
| 40. Sample CMS listings panel . 148
| 41. Sample LISTVEC Output . 162

42. Interactive Debug Profile Panel . 170
| 43. Interactive Debug Window Configuration Selection Panel 207
| 44. ISPF Dialog Variable Nmaes Defined by Interactive Debug 257

 Figures xiii

xiv VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Part One. User's Guide

 Part One. User's Guide 1

2 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Chapter 1. Introduction

VS FORTRAN Version 2 Interactive Debug is a flexible and efficient tool that assists
you in monitoring the running of VS FORTRAN Version 1 and VS FORTRAN Version
2 programs. For convenience, “Interactive Debug” is used to refer to VS FORTRAN
Version 2 Interactive Debug, and “VS FORTRAN” is used to refer to both VS
FORTRAN Version 1 and VS FORTRAN Version 2.

Interactive Debug allows you to:

� Start, suspend, and continue program execution
� Examine, change, and display values of variables
� Gather and display program performance information
� Trace program transfers
� Control the action taken for run-time errors
� Save output in a file

You can use Interactive Debug in full screen mode, line mode, or batch mode. (Please
refer to the separate chapters for each of the modes.)

 Features
31-character names: You can use symbolic names up to 31 characters in length,
including the underscore (_) character, for both local and global names.

On-line help information: By using the HELP command, you can get on-line help
| information on all Interactive Debug commands and tasks, as well as for vector report
| messages in the optional vector report source listing. Help is available in Time Sharing

Option (TSO), Conversational Monitor System (CMS), and ISPF (Interactive System
Product Facility).

| Windows: In full screen mode, Interactive Debug allows you to view your source
| listing in a source window, view your interaction with Interactive Debug in a log
| window, and view variable and array information in a monitor window.

Program animation: In full screen mode, you can highlight the command currently
running in the source window and control the pace of execution.

Split-screen display: Using ISPF with the Program Development Facility (PDF), you
can split your screen to perform debugging on one section of the screen while editing
your program on the other section.

| Ability to issue AT, DESCRIBE, LIST, and OFF with PF keys: In full screen
mode, you can assign the AT, DESCRIBE, LIST, and OFF commands to a PF key, and
then perform many tasks by “pointing” with the cursor, instead of typing identifiers on
the command line. This allows you to use Interactive Debug without knowing complex
syntax or remembering command names.

Selective debugging of program units: An optional run-time control file (AFFON)
lets you specify which program units will be debugged, and which statements in those
program units will have debugging hooks. Those not selected for debugging will run at
normal speed.

 Chapter 1. Introduction 3

Manipulation of external files while debugging: Commands that are similar to VS
FORTRAN Version 2 I/O statements (for example, ENDFILE, BACKSPACE, CLOSE,
and REWIND) allow you to manipulate external sequential files. Also, while remaining
in debug mode, you can browse or edit external sequential files used by the program
being debugged.

Ability to issue system commands while debugging: Without terminating your
debug session, you can issue commands at the system level.

On MVS/XA, ability to debug programs in either addressing mode: Programs
that run in 31-bit addressing mode and reside either above or below the 16-megabyte line
can be debugged, with restrictions (see page 6).

Debugging optimized and/or vectorized code: Programs compiled with optimiza-
tion and/or vectorization can be debugged, with restrictions (see page 6).

Debugging reentrant code: Programs that are compiled with the RENT option and
run in reentrant mode can be debugged, with restrictions (see appropriate bullet under
“Compiler Requirements” on page 5).

Using sequence numbers instead of ISNs for source statements: Programs
compiled with the SDUMP (SEQ) option will generate the SDUMP statement table using
the sequence numbers you supply in columns 73 through 80. This makes it possible for
you to debug programs using those numbers instead of internal statement numbers (ISNs).

Program sampling: This capability enables you to analyze an application program
and identify areas that take the most CPU time to run. This information can assist you in
improving your program's performance.

Saving output: Interactive Debug allows you to place the output from some of the
commands in a print data set for later examination.

Set up expected input: A log of the debugging session is placed in a file (AFFOUT).
This file can subsequently be used as input to Interactive Debug to re-create a previous
debugging session.

| Vector tuning assistance: Interactive Debug assists in the analysis and tuning of
| vectorized programs by providing the capability of:

| � Gathering vector length and stride information at run time

| � Summarizing program sampling counts by DO loop

| � Timing DO loops

| � Providing the capability of displaying a vector report source listing in the source
| window (full screen mode only)

| � Providing help on the vector report messages in the vector report source listing

| Double-byte data support: Interactive Debug enables you to specify double-byte
| data in Interactive Debug commands that contain symbolic names or character data as
| parameters. a source listing containing double-byte data.

4 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Requirements

 System Requirements
Interactive Debug can be used in:

� MVS/System Product Version 1 (5740-XYN or 5740-XYS) —all current releases,
with TSO/E (5665-285).

� MVS/XA: MVS/System Product Version 2 (5665-291 or 5740-XC6) —all current
releases. and MVS/XA DFP Version 2 (5665-XA2)—all current releases, with
TSO/E (5665-285).

� VM/System Product (5664-167)—Release 4 or later, with or without VM/SP HPO
(5664-173) —Release 4 or later.

Use of the double-byte character set requires VM/System Product Release 5.

� VM/XA System Facility (5664-169)—Release 2.

� VM/XA System Product (5664-308)—Release 1, with bimodal CMS.

VS FORTRAN Version 2 Release 3 will support VM/XA System Product Release 1
with bimodal CMS concurrent with the availability of ISPF support.

Using Interactive Debug in full screen mode requires:

� In MVS, ISPF Version 2 (5665-319), with or without ISPF/PDF Version 2 for MVS
(5665-317).

� In VM, ISPF Version 2 for VM (5664-282), with or without ISPF/PDF Version 2 for
VM (5664-285).

ISPF/PDF is required in order to use the following capabilities:

PDF browse and edit facilities in split-screen mode
Automatic browse of the debug print file and log at session end
Start of debugging using Interactive Debug's foreground invocation panel

VS FORTRAN Version 2 Release 2 will run in the VM/SP operating system only with
the OS simulation facility. It cannot run with the DOS simulation capability of VM/CMS
active.

TSO/E is required on MVS, or if TSO commands are issued in batch mode.

 Compiler Requirements
VS FORTRAN programs to be debugged with Interactive Debug must have been com-
piled with:

| � VS FORTRAN Version 1 Release 4 or later, or with any release of VS FORTRAN
| Version 2

� The SDUMP compiler option

� The TEST compiler option, if the program is reentrant and will reside in a shared
area (DCSS or LPA). Reentrant VS FORTRAN Version 2 programs can be
debugged in user storage with or without the TEST option.

| Vector tuning information can be gathered only for those programs compiled with the
| IVA suboption of the VECTOR option of VS FORTRAN Version 2 Release 3.

 Chapter 1. Introduction 5

 Library Requirements
Programs compiled with releases subsequent to Version 1 Release 4 (including Version 2
releases) require link editing with the corresponding library release or a later library. For
example, programs compiled on the Release 4.1 compiler would require link editing with
the Release 4.1 library or a later library.

Using Interactive Debug in batch mode requires the VS FORTRAN Version 2 library.

| Sampling requires the VS FORTRAN Version 2 Release 2 or later library.

 Storage Requirements
| Interactive Debug requires about 400K bytes of storage to begin execution (plus the

storage required to load the program that will be debugged). Interactive Debug also
acquires additional dynamic storage during execution. The amount varies according to
the nature of the program being debugged, and the type and quantity of debugging com-
mands issued.

 Restrictions
Vectorized and Optimized Code: If a program unit is compiled with optimization
and/or vectorization, Interactive Debug will issue a warning message indicating that the
results of some debugging commands are unpredictable.

Overlays: Interactive Debug cannot debug programs that use overlays.

Multitasking Facility: If you are using the Multitasking Facility (MTF), only the
main task can be debugged.

| Migration
| AFFON File: AFFON files of debugging jobs run with VS FORTRAN Interactive
| Debug Version 2 Release 2 or earlier must be modified to run on Release 3. See page 46
| for more information.

| AFFOUT File: AFFOUT files must be defined to Interactive Debug with a RECFM of
| FB and LRECL of 80. See page 39 for more information.

| MOVECURS Command: Because there are now three windows in the main debug-
| ging panel, MOVECURS works differently from last release. In particular, if you specify
| a command on the command line, and then press a PF key assigned to MOVECURS in
| order to move the cursor to the affected window, the PF key must be set to

| MOVECURS;

| and not

| MOVECURS

| as in the previous release. See pages 163, 168, and 183 for more information.

6 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Chapter 2. Debugging in Full Screen Mode

When Interactive Debug runs with ISPF (Interactive System Product Facility) in either
CMS or TSO, it is running in full screen mode because the entire screen is available.

| Full screen mode debugging allows you to view the source listing in a source window,
| commands and output in a log window, and variable and array values in a monitor
| window.

Invoking Interactive Debug in CMS

 Using ISPF/PDF
1. Invoke ISPF/PDF. The ISPF/PDF Primary Option Panel will be displayed.

2. Select option 4, FOREGROUND. The Foreground Selection Panel will be displayed.

3. Select the Interactive Debug option (usually option 11).

The foreground Interactive Debug panel will be displayed. See Figure 1.

Note: To proceed directly to this panel, type 4.11 on the command line of the
Primary Option Panel.

� �
 ------- FOREGROUND VS FORTRAN VERSION 2.3.� INTERACTIVE DEBUG --------
 COMMAND ===>

 ISPF LIBRARY:
 PROJECT ===>
 LIBRARY ===>
 TYPE ===>

MEMBER ===> (Blank for member selection list)

 CMS FILE:
FILE ID ===> (TEXT or MODULE file or LOADLIB)
MEMBER ===> (If member of a LOADLIB)
IF NOT LINKED, SPECIFY:
OWNER'S ID ===> DEVICE ADDR. ===> LINK ACCESS MODE ===>

 READ PASSWORD ===>

 EXECUTION TIME OPTIONS:
DEBUG ===> (Enter DEBUG or NODEBUG)

 OTHER ===>

 SYSLIB TXTLIB: (VSF2FORT, TSOLIB and CMSLIB already specified)
===> ===> ===> ===>

� �
Figure 1. Foreground Interactive Debug Panel for CMS

4. Fill in either the ISPF LIBRARY fields or the CMS FILE fields.

If you are not already familiar with ISPF libraries, you should probably use the CMS
FILE fields. If both groups of fields are filled in, the ISPF LIBRARY fields will be
ignored. If you do not provide the file ID, the ISPF library member name will be
used.

Here are some additional guidelines:

� For a TEXT file, fill in the FILE ID line with the filename optionally followed
by a filetype of TEXT. Leave the MEMBER line blank.

 Chapter 2. Debugging in Full Screen Mode 7

� For a MODULE file, fill in the FILE ID line with the filename followed by a
filetype of MODULE. Leave the MEMBER line blank.

� For a LOAD LIBRARY member, fill in the FILE ID line with the filename and
do not specify a filetype. Fill in the MEMBER line with the library member
name of your program.

� For the files described in Chapter 5, “Using Interactive Debug Files” on
page 39, fill in the FILEID or MEMBER field with the appropriate name:

fname INCLUDE * - for AFFON
fname LIST A - for AFFPRINT
fname LISTING * - default listing name
fname LOG A - for AFFOUT

| fname PIF * - default program information file name
fname RESTART * - for AFFIN

5. Fill in the READ PASSWORD field to access the disk if you don't already have
access.

6. Fill in the DEBUG field under EXECUTION TIME OPTIONS with DEBUG.

If you specify NODEBUG, Interactive Debug will not be invoked unless you include
a special object module to override the default. For further information about over-
riding the default options, see “Specifying Default Run-Time Options” on page 85.

7. Optionally, specify additional run-time options in the OTHER field.

You can continue the list of other options onto the second line if necessary. Separate
options, and keywords within one option, with commas. Do not type in any extra
blanks. For more information on run-time options, see VS FORTRAN Version 2 Pro-
gramming Guide.

8. Optionally, specify up to four additional TXTLIBS on the last line of the panel.

These may be accessed in addition to VSF2FORT whenever CMS determines that it
needs to search a TXTLIB (for example, when loading a TEXT file and resolving all
the external references).

If you want your program to operate in link mode, specify VSF2LINK as an addi-
tional TXTLIB. (For more information on link mode, see VS FORTRAN Version 2
Programming Guide.)

Loading Multiple Text Files
When you use the ISPF panel to start debugging a TEXT file, you can specify only a
single TEXT file (program name). Should you be debugging a program that calls other
programs, the calls will be automatically resolved for you — provided the called pro-
grams are either in a TXTLIB (specified on the panel as a SYSLIB TXTLIB) or refer-
enced in the calling program by their file names. (The file names must be the same as
the SUBROUTINE or FUNCTION names.) If your called programs are not in a SYSLIB
TXTLIB or referenced by their file names, you will need to follow a different procedure.
Here are three alternative methods:

Loading from a LOADLIB

Before invoking ISPF, place your main program and all its called programs in a
LOADLIB. You can use the CMS LKED command to build a LOADLIB.

8 VS FORTRAN Version 2 Interactive Debug Guide and Reference

The input to LKED is a file containing any combination of text files and LKED control
statements. (LKED control statements are the same as those accepted by the MVS
linkage editor.) For example, you could create a file of control statements:

 INCLUDE MYPROG
 INCLUDE SUB1
 INCLUDE MYMATH
 ENTRY MAIN
 NAME MYPROG(R)

Assume this file is named “MYFILE TEXT.” Each control statement must be preceded
by at least one blank.

Now, enter the FILEDEF and LKED commands for your LOADLIB:

| FILEDEF SYSLIB DISK VSF2FORT TXTLIB �
LKED MYFILE (MAP

This produces a file named “MYFILE LOADLIB,” which contains a link-edited program
named MYPROG. It also produces a listing file named “MYFILE LKEDIT,” which con-
tains a map of your link-edited program.

Specify the LOADLIB name and member name in the FOREGROUND Interactive Debug
panel.

Loading a concatenated TEXT file

Alternatively, you can concatenate all the TEXT files into a single TEXT file. Use the
CMS COPYFILE command with the APPEND option, or an editor such as XEDIT or the
ISPF/PDF editor, to create a composite TEXT file. Then, specify this composite TEXT
file in the FOREGROUND Interactive Debug Panel.

Loading a module file

If you have generated a MODULE file containing your VS FORTRAN program, you can
specify the module filename and filetype on the ISPF panel. However, the module must
be generated with a higher origin than the default in order to leave room for the invoca-
tion program. (ORIGIN 22000 will probably be high enough.) If the module origin is
too low, the following message will appear:

| LOAD ADDRESS TOO LOW

| Using ISPF without PDF
| The product tape provides the IAD EXEC which allows you to invoke Interactive Debug
| using ISPF without PDF. To use it, simply follow these steps:

| 1. Link to the product minidisk(s) containing ISPF and VS FORTRAN Version 2.

| 2. Type the following, where name is the program name (filetype of TEXT):

| IAD name

| To see the full syntax of the IAD EXEC, simply type

| IAD

| The following should then appear:

 Chapter 2. Debugging in Full Screen Mode 9

| Proper syntax is:

| IAD name <type> <(<options> <MEMBER=member name>>

| where:
| "name" is the name of the file containing the FORTRAN
| program.

| "type" is the type of the file containing the FORTRAN
| program: TEXT, MODULE, LOADLIB or blank. If blank
| is specified, the default type is TEXT.
| (Note: If type is LOADLIB a member must be specified.)

| "options" are the VS FORTRAN execution_time options.
| (Note: DEBUG is defaulted.)

| "member name" is the name of the member if LOADLIB was
| specified and blank otherwise.

| 3. After pressing ENTER, the Interactive Debug main debugging panel (page 14) should
| appear.

| The IAD EXEC issues FILEDEF statements for AFFON, AFFIN, AFFOUT, and
| AFFPRINT. It defines Interactive Debug files with the following names:

| name INCLUDE * - for AFFON
| name LIST A - for AFFPRINT
| name LISTING * - default listing name
| name LOG A - for AFFOUT
| name PIF * - default program information file name

name RESTART * - for AFFIN

For more information on these Interactive Debug files, see Chapter 5, “Using Interactive
Debug Files” on page 39.

Invoking Interactive Debug in TSO

 Using ISPF/PDF
1. Invoke ISPF/PDF. The ISPF/PDF Primary Option Panel will be displayed.

2. Select option 4, FOREGROUND. The Foreground Selection Panel will be displayed.

3. Select the Interactive Debug option (usually option 11).

The foreground Interactive Debug panel will be displayed. See Figure 2 on page 11.

10 VS FORTRAN Version 2 Interactive Debug Guide and Reference

� �
---------------- FOREGROUND VS FORTRAN VERSION 2.3.� INTERACTIVE DEBUG -------
COMMAND ===>

ISPF LIBRARY:
 PROJECT ===>
 LIBRARY ===>
 TYPE ===>

MEMBER ===> (Blank for member selection list)

OTHER PARTITIONED DATA SET:
 DATASET NAME ===>

FILE ID FOR DEBUG FILES
 ===> PASSWORD ===>

EXECUTION TIME OPTIONS:
 DEBUG ===> (Enter DEBUG or NODEBUG)
 OTHER ===>

� �
Figure 2. ISPF Foreground Interactive Debug Panel for TSO

4. Fill in either the ISPF LIBRARY fields or the OTHER PARTITIONED DATA SET
fields.

If both groups of fields are filled in, the ISPF LIBRARY fields will be ignored.

If the OTHER PARTITIONED DATA SET line is filled in, you should specify both
the data set and member names. If you do not specify the member name, you will
see a panel with a list of member names. You then choose the member name you
need. Specify the data set and member names as follows:

'data.set.name(member)'

Note: If you omit the quotation marks, ISPF will supply the data set prefix speci-
fied as the default in your TSO profile.

5. Optionally, use the FILE ID FOR DEBUG FILES line to specify the file ID of the
following Interactive Debug files:

userid.fileid.INCLUDE - for AFFON
userid.fileid.LOG - for AFFOUT
userid.fileid.PRINT - for AFFPRINT
userid.fileid.RESTART - for AFFIN
userid.fileid.LIST - default listing name
userid.fileid.PIF - default program information file

If you do not provide the file ID for any of the first four files, the ISPF library
| member name will be used. The last two files (userid.fileid.LIST or userid.fileid.PIF)
| always use the ISPF library member name.

6. Fill in the PASSWORD field to specify a password for any password-protected data
sets.

7. Fill in the DEBUG field under EXECUTION TIME OPTIONS with DEBUG.

If you do not specify DEBUG, Interactive Debug will not be invoked unless you
include a special object module to override the default. (For further information
about overriding the default options, see “Specifying Default Run-Time Options” on
page 85.)

8. Optionally, specify additional run-time options in the OTHER field.

You can continue the list of other options onto the second line if necessary. Separate
options, and keywords within one option, with commas. Do not type in any extra
blanks. For more information on run-time options, see VS FORTRAN Version 2 Pro-
gramming Guide.

 Chapter 2. Debugging in Full Screen Mode 11

Using ISPF without PDF
| 1. Define the necessary data sets for running ISPF and Interactive Debug.

| Modify your allocations for the ISPF data sets to include allocations for the CLIST
| library, the IAD panel library, message library and command table. Examples of
| lines which could be included in a CLIST are shown in Figure 3.

| CAUTION: We advise you to use the procedures in this manual to establish your
| Interactive Debug libraries; they are the only ones supported by IAD. If you use
| another approach, such as the ISPF LIBDEF service, you may get unpredictable
| results.

| /��/
| /� �/
| /� THIS IS AN EXAMPLE OF A CLIST FOR SETTING UP ISPF W/O PDF. IT �/
| /� INCLUDES DEFINITIONS FOR THE DATA SETS REQUIRED BY VS FORTRAN �/
| /� VERSION 2 INTERACTIVE DEBUG. THE ISPF NAMES SHOWN IN THIS �/
| /� EXAMPLE MAY BE DIFFERENT FROM THE ONES USED AT YOUR LOCATION. �/
| /� �/
| /��/

| FREE FI(ISPPLIB ISPMLIB ISPLLIB ISPTLIB ISPPROF)
| ALLOC FI(ISPPROF) DA('userid.ISPF.PROFILE') SHR REUSE
| ALLOC FI(SYSPROC) DA('VSF2.VSF2CLIB') SHR REUSE
| ALLOC FI(ISPMLIB) DA('VSF2.VSF2MLIB' 'ISP.V2R1M�.ISPMLIB') SHR REUSE
| ALLOC FI(ISPPLIB) DA('VSF2.VSF2PLIB' 'ISP.V2R1M�.ISPPLIB') SHR REUSE
| ALLOC FI(ISPTLIB) DA('VSF2.VSF2TLIB' 'ISP.V2R1M�.ISPTLIB') SHR REUSE
| ALLOC FI(ISPLLIB) DA('VSF2.VSF2LOAD' 'ISP.V2R1M�.ISPLOAD') SHR REUSE
| ALLOC FI(FT�5F��1) DA(�)
| ALLOC FI(FT�6F��1) DA(�)

| Figure 3. Sample Modifications to the ISPF Invocation CLIST

| 2. Modify the ISPF Master Application Menu to include an option for Interactive
| Debug, if the menu does not already include this option. The menu may also have to
| be modified to call an application panel created by your installation (see step 3).

| Figure 4 on page 13 shows how you might modify the ISPF master application
| menu to provide an option for Interactive Debug (here, option 2) and invoke a
| prompt panel (here, called USERISP).

12 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| %------------------------ ISPF MASTER APPLICATION MENU -----------------------
| %OPTION ===>_ZCMD % +USERID - &ZUSER
| % 1 +SAMPLE1 - Sample application 1 +TIME - &ZTIME
| % 2 +VSF IAD - VS FORTRAN Interactive Debug +TERMINAL - &ZTERM <-----(new
| % 3 +. - (Description for option 3) +PF KEYS - &ZKEYS option)
| % 4 +. - (Description for option 4)
| % 5 +. - (Description for option 5)
| % X +EXIT - Terminate ISPF using list/log defaults
| %
| +Enter%END+command to terminate ISPF.
| %
|)INIT
| .HELP = ISP����5 /� Help for this master menu �/
| &ZPRIM = YES /� This is a primary option menu �/
|)PROC
| &ZSEL = TRANS(TRUNC (&ZCMD,'.')
| 1,'PANEL(ISP@PRIM)' /� Sample primary option menu �/
| 2,'PANEL(USERISP)' /� SAMPLE PANEL TO INVOKE IAD �/ <-----(new
| /���/ prompt)
| /� �/
| /� Add other applications here. �/
| /� �/
| /���/
| ' ',' '
| X,'EXIT'
| �,'?')
|)END

| Figure 4. Sample Modifications to ISPF Master Application Menu

| 3. Create an application panel that prompts for the name of your load module and then
| invokes a CLIST created by your installation (see step 4).

| You must create an application panel at your installation similar to the one shown in
| Figure 5. The sample prompts the user for the name of the text file, and then
| invokes a CLIST called USERDBG.

|)ATTR DEFAULT(%+_)
| /� % TYPE(TEXT) INTENS(HIGH) defaults displayed for �/
| /� + TYPE(TEXT) INTENS(LOW) information only �/
| /� _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) �/
| ! TYPE(INPUT) INTENS(LOW) PAD(' ') /� input field padded with ' ' �/
|)BODY
| %-------------------- SAMPLE VSF IAD PANEL ------------------------------------
| %COMMAND ===>_ZCMD +
| %
| + ENTER THE NAME OF YOUR PROGRAM BELOW...
| + %===>!MEM
| +
| + ENTER THE NAME OF YOUR LIBRARY BELOW...
| + %===>!LIB

| + ENTER THE LIST OF YOUR EXECUTION TIME OPTIONS BELOW...
| + %===>!FDEBUG
| +
|)PROC
| VER(&MEM,NB,NAME)
| VPUT (MEM,LIB,FDEBUG) PROFILE
| &ZSEL='CMD(%USERDBG)'
|)END

| Figure 5. Sample Application Panel (USERISP) to Prompt for the Text File Name

| 4. Create a CLIST to run the VS FORTRAN program and pass the run-time options.

 Chapter 2. Debugging in Full Screen Mode 13

| The sample CLIST in Figure 6 invokes AFFLOAD which in turn loads the VS
| FORTRAN Version 1 program with the DEBUG parameter. For this example, we
| have called the CLIST “USERDBG.”

| PROC �
| CONTROL NOLIST MAIN NOFLUSH NOMSG
| /� MEM - MEMBER NAME �/
| /� LIB - LIBRARY NAME �/
| /� FDEBUG - EXECUTION TIME OPTIONS �/
| ISPEXEC VGET (MEM,LIB,FDEBUG,ZPREFIX)
| SET &FAFFID = &MEM /� DEFAULT TO MEMBER NAME �/
| SET &ZFAFFIN = &STR('&ZPREFIX..&FAFFID..RESTART')
| SET &ZFAFFOU = &STR('&ZPREFIX..&FAFFID..LOG')
| SET &ZFAFFON = &STR('&ZPREFIX..&FAFFID..INCLUDE')
| SET &ZFAFFPR = &STR('&ZPREFIX..&FAFFID..PRINT')
| FREE FI(AFFPRINT AFFIN AFFOUT AFFON AFFLOAD)
| ALLOC FI(AFFIN) DA(&ZFAFFIN) SHR
| IF &LASTCC ¬= � THEN ALLOC FI(AFFIN) DUMMY RECFM(F)
| ALLOC FI(AFFON) DA(&ZFAFFON) SHR
| IF &LASTCC ¬= � THEN ALLOC FI(AFFON) DUMMY RECFM(F)
| DELETE &ZFAFFOU
| ALLOC FI(AFFOUT) DA(&ZFAFFOU) MOD CATALOG SPACE (1) CYLINDERS
| DELETE &ZFAFFPR
| ALLOC FI(AFFPRINT) DA(&ZFAFFPR) MOD CATALOG SPACE(1) CYLINDERS
| ALLOC FI(AFFLOAD) DA(&LIB) SHR
| ISPEXEC SELECT PGM(AFFLINKF) PARM(&MEM/&FDEBUG) NEWAPPL(AFF) NEWPOOL
| FREE FI(AFFPRINT AFFIN AFFOUT AFFON AFFLOAD)

| Figure 6. Sample CLIST (USERDBG) to Invoke the Program without PDF

| Using the Main Debugging Panel
| When you enter Interactive Debug, the main debugging panel is displayed. Figure 7
| shows the main debugging panel for program SAMPLE found in Chapter 8, “A Sample
| Debugging Session” on page 93.

| Note: You may initially be presented with the Interactive Debug Listings Panel (page
| 21) if listings are not defined for every debuggable program unit.

| �| �
| �1� �2� �3�
| IAD Q: SAMPLE W: SAMPLE.3 �5�
| �4� COMMAND ===> SCROLL ===> PAGE
| �6� MONITOR --+----1----+----2----+----3----+----4----+----5----+----6 LINE: � OF �
| �7� ������������������������������� TOP OF MONITOR ��������������������������������
| �8� ������������������������������ BOTTOM OF MONITOR ������������������������������

| SOURCE �----+----1----+----2----+----3----+----4----+----5----+- LINE: 1 OF 11
| 1 PROGRAM SAMPLE .
| 2 INTEGER A1(1�),A2(1�),A3(1�) .
| 3 DO 2� I=1,1� �
| 4 A1(I)=I+1 �
| 5 A2(I)=I-1 �
| 6 2� CONTINUE �
| 7 CALL DIVIDE (A1,A2,A3) �
| 8 WRITE (6,3�)(A3(I),I=1,1�) �
| 9 3� FORMAT (' ',I5) �
| 1� STOP �
| LOG �----+----1----+----2----+----3----+----4----+----5----+----6- LINE: 2 OF 4
| ���2 5668-8�6 (C) COPYRIGHT IBM CORP 1985, 1988
| ���4 LICENSED MATERIALS-PROPERTY OF IBM
| ���5 WHERE: SAMPLE.3

| �| �

| Figure 7. Sample Main Debugging Panel

14 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| The main debugging panel consists of a two header lines, a monitor window, a source
| window, and a log window. The boxed numbers in Figure 7 correspond to the dis-
| cussion below.

| The header contains:

| �1� IAD Indicates Interactive Debug status. It may be followed by a /R (read), /E
| (error), /W (write), or /F (finished).

| �2� Q: The name of the currently qualified program unit. Normally, the name is that of
| the program unit running. In the sample panel, the program unit is

| SAMPLE

| �3� W: The statement in the VS FORTRAN program at which execution has been sus-
| pended. Also displayed is the name of the program unit where the statement is
| located. In the sample panel, this is statement 3 in program unit SAMPLE, or

| SAMPLE.3

| �4� COMMAND ===> The command line. Interactive Debug, ISPF, and PDF com-
| mands may be entered here.

| �5� SCROLL ===> Indicates the default scrolling amount to be used by the UP,
| DOWN, LEFT, and RIGHT commands.

| Each window contains:

| �6� Header line. This line contains:

| � The window identifier (either MONITOR, SOURCE, or LOG)
| � A character scale
| � The current position (line number) of the contents of the window

| �7� Top-of-data marker

| �8� Bottom-of-data marker

| The log and monitor window contain up to 1000 lines; there is no limit for the source
| window.

| Each window is either:

| � Closed (not displayed).

| � Open (displayed with contents).

| � Empty (displayed with no contents). An empty window shows only the top-of-data
| and bottom-of-data markers. The monitor window is initially empty.

| Let's now examine each window more closely.

| Monitor Window

 Chapter 2. Debugging in Full Screen Mode 15

| �| �
| MONITOR --+----1----+----2----+----3----+----4----+----5----+---- LINE: 1 OF 1�
| ���1 SAMPLE.A1(1) = �
| ���2 SAMPLE.A1(2) = �
| ���3 SAMPLE.A1(3) = �
| ���4 SAMPLE.A1(4) = �
| ���5 SAMPLE.A1(5) = �
| ���6 SAMPLE.A1(6) = �

| �| �

| Figure 8. Sample Monitor Window

| The monitor window consists of two parts: prefix area and output from the AUTOLIST
| command (page 112). Figure 8 shows the monitor window for program SAMPLE (page
| 93), after autolist a1 has been entered on the command line.

| The contents of the window are automatically refreshed each time a command is entered.
| If you were now to run the program SAMPLE statement by statement, using the STEP
| command, you would see the values change for array A1.

| During the session, you can view up to 1000 lines of information in the monitor window.

| Specifying AUTOLIST with no operands will terminate monitoring and remove all infor-
| mation from the monitor window. If the monitor window was originally open, it will
| become empty and will show the "TOP OF MONITOR/BOTTOM OF MONITOR"
| markers.

| Source Window

| �| �
| SOURCE �----+----1----+----2----+----3----+----4----+----5----+- LINE: 1 OF 11
| 1 PROGRAM SAMPLE .
| 2 INTEGER A1(1�),A2(1�),A3(1�) .
| 3 DO 2� I=1,1� �
| 4 A1(I)=I+1 �
| 5 A2(I)=I-1 �
| 6 2� CONTINUE �

| �| �

| Figure 9. Sample Source Window

| The source window consists of three parts: prefix area, source listing area, and suffix
| area.

| 1. Prefix area: the eight leftmost columns of the source window, containing the state-
| ment numbers (ISNs or sequence numbers) that the compiler uses to identify each
| statement in the program. They are extracted from the source listing.

| The commands AT and OFF can be typed in the prefix area. They can be typed on
| more than one prefix line, but only one per line. AT and OFF commands that are
| specified in the prefix area are logged as if they had been entered on the command
| line.

| Whenever a displayed line in the source window has an AT breakpoint associated
| with it, the prefix is highlighted, as specified on the Interactive Debug color panel
| (page 119).

| If an AT or OFF command is typed incorrectly, the erroneous command is redis-
| played in the prefix area with a different attribute (highlighted or different color if
| supported) and followed by a question mark. On the next interaction, if the user has

16 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| not taken any action to correct the error, the prefix is restored to its previous con-
| tents.

| 2. Source listing area: contains the source lines of the currently qualified program unit
| extracted from the listing.

| If annotation (page 105) is set on, then the source listing area can also contain bar
| charts or vector messages.

| 3. Suffix area: contains the statement run-time count or sampling count. The suffix
| area can be removed by changing the appropriate field in the Interactive Debug
| Profile Panel (page 170).

| The source window will be empty if:

| � You specified "NOSOURCE" when you compiled the program.
| � The source listing for the currently qualified program unit does not exist (you erased
| it).
| � The source listing exists, but the disk containing the source listing is not accessed.
| � You specified "NO" in the DISPLAY field of the Interactive Debug Listings Panel.

| Log Window

| �| �
| LOG �----+----1----+----2----+----3----+----4----+----5----+----6- LINE: 1 OF 15
| ���1 VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG
| ���2 5668-8�6 (C) COPYRIGHT IBM CORP. 1985, 1988
| ���3 LICENSED MATERIALS-PROPERTY OF IBM
| ���4 WHERE: SAMPLE.3
| ���5 � list a1
| ���6 SAMPLE.A1(1) = �
| ���7 SAMPLE.A1(2) = �
| ���8 SAMPLE.A1(3) = �
| ���9 SAMPLE.A1(4) = �
| ��1� SAMPLE.A1(5) = �
| ��11 SAMPLE.A1(6) = �
| ��12 SAMPLE.A1(7) = �
| ��13 SAMPLE.A1(8) = �
| ��14 SAMPLE.A1(9) = �
| ��15 SAMPLE.A1(1�) = �

| �| �

| Figure 10. Sample Log Window

| The log window consists of two parts: prefix area and a session log, which is a record of
| recent interactions between you and Interactive Debug. Input lines are preceded by aster-
| isks. ISPF commands and full screen commands are not logged. The sample log
| window in Figure 10 shows that the list a1 command was entered.

| During the session, the last 1000 log lines are retained in storage to be viewed by the
| user. If the output log file AFFOUT (page 39) exists, the entire log will be written to
| AFFOUT.

| Changing the Way Your Windows Look
| Commands used: DOWN (page 123), LEFT (page 140), MOVECURS (page 163),
| POSITION (page 168), RIGHT (page 182), SEARCH (page 183), SIZE (page 188), UP
| (page 199), WINDOW (page 206), ZOOM (page 208)

| Here are some ways to manipulate the windows:

| � To open a window, use the WINDOW OPEN command. You can open a window
| even if it's empty.

 Chapter 2. Debugging in Full Screen Mode 17

| � To close a window, use the WINDOW CLOSE command.

| � Various window configurations are possible. The initial configuration is shown in
| Figure 7 on page 14. To change the window configuration, use the WINDOW
| command with no operands.

| � To change window sizes, use the SIZE command.

� To scroll up, down, left, or right within a window, use the UP, DOWN, LEFT, and
RIGHT commands. If you have not changed the default program function key (PF
key) settings, you can also use the PF7 and PF8 keys to scroll up and down, and
PF10 and PF11 to scroll left and right.

� To change the top line of any window, use the POSITION command.

 Entering Commands
In full screen mode, you can enter a command in the following ways:

� Type the command on the command line.

� Modify the command in the log window.

� Use a program function key (PF key).

| � Use the RETRIEVE command.

� Use the command as a cursor-sensitive command (does not apply to all Interactive
Debug commands).

Typing the Command on the Command Line
The simplest way to enter an Interactive Debug command is to type it on the command
line.

If a command is too long to fit on the command line, enter as much of the command as
you can, followed by the continuation character (-) to indicate that the command is not
yet complete. Press ENTER. Then enter the remainder of the command.

The continuation character (-) must be the last character entered on the command line.
| You may enter up to 251 characters, including blanks, in one command. If a continuation

segment requires leading blanks, type a quotation mark (") first, then the required leading
blanks. Interactive Debug will remove the quotation mark and recognize the leading
blanks.

While Interactive Debug is awaiting the continuation of a command, COMMAND will be
| replaced on the panel by MORE... and you will receive the message

| AFFA�19I CURRENT COMMAND IS INCOMPLETE, PENDING MORE INPUT

If you do not wish to continue the command, type END (or press a PF key that has been
assigned to END) and the command will be ignored.

Modifying the Command in the Log Window
If you want to enter a command that has already been logged, you can move the cursor

| into the log window, modify the desired command (such as blanking out the leading
asterisk), and press ENTER. This will cause the command to be copied to the command
line. You may then modify the command further before pressing ENTER. This method
allows you to avoid re-typing a long variable name.

18 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| If the output line contains double-byte characters, only the visible portion of the line will
| be copied to the command line. The integrity of the double-byte characters will be pre-
| served.

Using PF Keys
Using program function keys (PF keys) to enter commands saves you time because you
can simply press a PF key instead of typing in a long command.

To define PF keys, enter the ISPF command KEYS on the command line. ISPF then
presents you with a panel that displays the current PF key definitions and allows you to
change them. You can assign any Interactive Debug command or a stack of commands

| to any PF key. To set a PF key to a stack of commands, like STEP and WHERE, type
| the following on the PF key definition line:

| STEP; WHERE

When you have made all the changes you want, press the END key.

For information on setting the MOVECURS command to a PF key, see page 163.

Use the ISPF command PFSHOW to display your PF key settings across the bottom of
the screen. Use PFSHOW OFF to hide the settings.

Using the RETRIEVE Command
Enter the command RETRIEVE (page 179) either on the command line or from a PF key

| to retrieve up to the twelve most recent commands to the command line. (Note that if
| you are using ISPF Version 2 Release 3 or later, RETRIEVE will behave differently. See
| page 179 for details.)

Using Cursor-Sensitive Commands
You can specify operands of a command by pointing to them with the cursor, instead of
typing them on the command line. The commands that can be issued this way are called
cursor-sensitive commands. The following are cursor-sensitive commands:

AT POSITION
| DESCRIBE RIGHT
| DOWN SEARCH
| HELP (for vector report messages) SIZE
| LEFT UP
| LIST WINDOW CLOSE
| OFF ZOOM

| A cursor-sensitive command affects the window in which the cursor is located. For
| example, if you want to scroll up four lines in the log window, type UP 4 on the
| command line, position the cursor in the log window, and press ENTER.

| If, however, the cursor is not in a window, the following window hierarchy applies:

| � If the source window is open, the source window will be affected.

| � If the source window is not open and the log window is open, the log window will
| be affected.

| � If neither the source window or the log window are open, the monitor window will
| be affected.

 Chapter 2. Debugging in Full Screen Mode 19

| Note: The rules above do not apply to the WINDOW CLOSE command: if WINDOW
| CLOSE is specified without a window name and the cursor is not in a window, an error
| message will be displayed.

The two cursor-sensitive commands AT and OFF can also be typed in the prefix area of
the source window (see page 16).

Non-full screen cursor-sensitive commands are recorded in your session log as if the
equivalent command had been typed on the command line. For example, if you type AT
over ISN 12 in the source window while program unit SUB1 is displayed, the command
AT 12 is recorded in the log.

| If the command line contains information when you press a PF key for a cursor-sensitive
| command, the information will be appended to that command. For example, if you enter
| 12 on the command line, and then press a PF key set to the AT command, AT 12 will be
| run and recorded in the log.

| Interactive Debug allows you to type over multiple ISN or sequence number fields with
| AT or OFF commands before pressing ENTER.

Changing the Defaults for Your Debugging Session
In full screen mode, your Interactive Debug session can be customized by changing the
default values for:

� The way your debugging session runs

� The window configuration

� The color of the various parts of the main debugging panel

 � Listing information

� PF keys (see page 19)

Changing the Way Your Debugging Session Runs
Commands used: PROFILE (page 170)

| Use the PROFILE command to display and change the current settings for various param-
eters that affect the way Interactive Debug runs. To see these parameters, enter the
command PROFILE. A display panel will then appear on your screen. You can modify
this display any time during a debugging session.

| One of the parameters on the profile screen is “Output refresh value.” This specifies the
| number of output lines after which Interactive Debug automatically refreshes the main
| debugging panel.

| For each refresh, the following will occur:

| � The “W:” field is updated.

| � The values of variables are updated in the monitor window.

| � The currently executing line in the program is highlighted in the source window.

| � The last line of output is displayed in the log window.

20 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| Changing the Window Configuration
| Commands used: SIZE (page 188), WINDOW (page 206)

| Initially, the main debugging panel is divided into three windows (monitor, source, and
| log), each section spanning the full width of the screen. You can, however, change the
| way the windows are arranged, by using the WINDOW command. Using WINDOW
| allows you to choose among six predefined configurations, and save the one you find
| most useful. The SIZE command allows you to further customize the window configura-
| tion by making a window bigger or smaller.

| You can save the customized configuration by doing the following:

| 1. Use the SIZE command until you are satisfied with the window configuration.
| 2. Enter WINDOW SAVE on the command line.

| To restore the default window and size settings, enter WINDOW on the command line to
| display the Window Configuration Selection Panel. Then enter RESET on the command
| line.

Changing the Display Color
Commands used: COLOR (page 119)

You will probably find debugging more convenient if you highlight certain parts of the
Interactive Debug main debugging panel, such as the current statement in the source
window, and the statement identifiers at which breakpoints have been set. You can
change the color, highlighting, or intensity of various fields on the panel, using the
COLOR command.

Changing Listing Information
Commands used: LISTINGS (page 148)

If there is at least one debuggable program routine that has no listing defined, the Interac-
tive Debug listings panel is automatically displayed at Interactive Debug initialization.
This can occur if these routines are not all specified in AFFON (page 43), or subse-
quently not found in an attempt made by Interactive Debug to search a file or data set
whose name is generated by Interactive Debug from the given application program name.
You can enter missing data set definitions on the listings panel. Press the END key when
you are done.

Note: If a restart file is present, this automatic display of the listings panel is deferred
until the end of the restart file is reached. If a QUIT command is run from the restart
file, the automatic intervention is bypassed.

You can also request the listings panel from the debugging session by entering the
LISTINGS command. Here are some sample listings panels:

 Chapter 2. Debugging in Full Screen Mode 21

| �| �
| INTERACTIVE DEBUG LISTINGS PANEL ROW 1 OF 5
| COMMAND ===> SCROLL ===> PAGE

| PROGRAM UNIT NAME CMS LISTING FILE DISPLAY

| MAIN________________________ XYZPROG LISTING A1 Y

| THCOM_______________________ THCOM LISTING E1 N
| AFFA756E LISTING FILE COULD NOT BE FOUND ON ACCESSED DISKS.
| THE281J_____________________ THE281J LISTING A1 Y

| THY1�66_____________________ THY1�66 LISTING �_ N

| ������������������������������ BOTTOM OF DATA ���������������������������������

| �| �

| Figure 11. Sample Interactive Debug Listings Panel (CMS)

| �| �
| INTERACTIVE DEBUG LISTINGS PANEL ROW 1 OF 5
| COMMAND ===> SCROLL ===> PAGE

| PROGRAM UNIT NAME LISTING DATA SET DISPLAY

| MAIN___________________________ FORTEST.TEST1.LIST___________________________ Y

| THCOM__________________________ FORTEST.THCOM.LIST___________________________ N

| ������������������������������ BOTTOM OF DATA ���������������������������������

| �| �

| Figure 12. Sample Interactive Debug Listings Panel (TSO)

If the source listing you want does not appear on the panel, you must specify the file ID
or data set name for the program unit source listing. To fill in the listings panel, enter

| the name of the program unit source listing in the CMS LISTING FILE or LISTING DATA
| SET column. Interactive Debug then automatically fills in the names of all program units
| found in that listing, and changes the DISPLAY column to YES. If the listing is in a PDS

member, include the member name in parentheses at the end of the data set name.

| To display a listing in the source window, the DISPLAY column for that listing must
specify YES. You may want to change some of these values to NO if you do not want
particular program units to be displayed.

| In Figure 11, the CMS message LISTING FILE COULD NOT BE FOUND ON ACCESSED
| DISKS indicates that the specified file was not found on any of your accessible disks. In
| TSO, the equivalent message is LISTING DATASET COULD NOT BE FOUND IN ALLOCATED
| DATASETS. To correct the problem, make sure the file ID for the listing containing the

program unit is correctly spelled and is accessible. If it is necessary to use system com-
mands (CMS or TSO) to make the listing accessible, you can enter them on the command
line prefixed by “CMS” or “TSO,” as appropriate.

| The message SPECIFIED PROGRAM UNIT NAME NOT FOUND IN LISTING indi-
cates that the listing file was found, but did not contain the named program. To correct
the problem, make sure the file ID for the listing containing the program unit is correctly
spelled and is accessible.

| If you receive any of the following messages:

| LISTING FILE COULD NOT BE OPENED

22 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| LISTING DATASET COULD NOT BE OPENED
| LISTING COULD NOT BE LOADED INTO STORAGE
| INSUFFICIENT STORAGE TO LOAD LISTING

| then the listing data set was found, but cannot be used as a listing in the source window.
| This could be caused by an invalid record length (it should not be greater than 137
| bytes), a very large listing, or security protection by another user (in TSO).

| After filling in the listings panel, you return to the main debugging panel by entering END,
| usually PF key 3.

Using the Split Screen Feature (ISPF/PDF Only)
With ISPF/PDF, you can split the physical screen into two logical screens. With a split
screen, you can then edit a source or listing file (or even recompile it, in TSO) while
debugging.

To split the screen, use the SPLIT command (or a PF key assigned the SPLIT function,
normally PF2), and then use EDIT to look at the appropriate file or data set.

Note: The second screen in split-screen mode cannot be used to run a second session of
Interactive Debug (or any other debugging product). You cannot run any program in the
second screen that would intercept attentions, unless you let that program terminate before
trying to continue with Interactive Debug.

Recompiling a Program while Using a Split Screen (TSO Only)
You can use the split screen to perform a number of tasks. For example, in TSO, you
might want to split the screen, recompile a program, and then restart the debugging
session using the new compilation. You would need to complete the following steps:

1. Split the screen into two portions.

2. Go into edit mode on the lower half of the screen (usually panel 2).

3. Make changes to the source program in the lower half of your screen.

4. Request the VS FORTRAN compilation panel (usually 4.3), and specify the member
name to be compiled.

5. When the program has compiled, request the link-edit panel (usually 4.7), and specify
the member name to be link-edited.

6. When the program has been link-edited, end the split-screen mode and issue the
RESTART command on the command line of the execution panel.

You can now debug the newly-compiled program.

Ending the Debugging Session
Commands used: QUIT (page 174)

 Chapter 2. Debugging in Full Screen Mode 23

In ISPF without PDF
Enter the QUIT command to end the Interactive Debug session.

 In ISPF/PDF
After entering QUIT, ISPF will then automatically enter BROWSE so you can examine
the complete output log (AFFOUT). If you have used the PRINT keyword on any Inter-
active Debug commands that allow it, ISPF first enters BROWSE for the AFFPRINT file.

After browsing these files, enter the END command, or use the PF key assigned to END
(usually PF 3). You will then be presented with the standard ISPF FOREGROUND
PRINT OPTIONS panel, allowing you to print each file and then to keep or delete the
file. A sample panel is shown in Figure 13.

� �
------------------------------ FOREGROUND PRINT OPTIONS -------------------------
OPTION ===>

PK - Print file and keep K - Keep file (without printing)
PD - Print file and delete D - Delete (erase) file (without printing)

If END command is entered, file is kept without printing.

FILE ID: MAIN LOG A

SPOOL OPTIONS:
NUMBER OF COPIES ===> 1 SPOOL CLASS ===> A

 BIN NUMBER ===> 'FOR' USER ===>
 38�� KEYWORDS ===>

FOR SPOOLING TO ANOTHER USER OR MACHINE:
USER / MACHINE ID ===>
NODE / LINK ID ===>

 TAG TEXT ===>

� �

Figure 13. Foreground Print Options Panel in ISPF in CMS

You can fill in the file ID field and any spooling options, and then enter one of the four
options listed at the top of the panel. To leave this panel without printing your log file,
enter the END command or use the PF key assigned to END.

Bypassing the BROWSE Step
It is possible to bypass the BROWSE step by modifying the AFFFX11 EXEC in CMS, or
the AFFFC11 CLIST in TSO.

In CMS

1. Edit the AFFFX11 EXEC.

2. Add the lines zfbrows = '' and zfprint = '' to the EXEC as follows:

zfbrows = ''
zfprint = ''
/� Browse print file if it exists, set message if not �/
afftype = 'PRINT' /� afftype is used in message AFFS��6 �/

3. Alternatively, you can use '/�' and '�/' to comment out the lines

If zfbrows ¬= '' then 'ISPEXEC BROWSE FILE('lid')'
If zfprint ¬= '' then
'ISPEXEC SELECT CMD(ISRFXPRT ISRFPPRT' lid')'

These lines occur twice--once for displaying the print file and once for displaying the
log file. For example, after you comment out the lines for displaying the log file, the
EXEC should look like this:

24 VS FORTRAN Version 2 Interactive Debug Guide and Reference

/� Browse log file if it exists, set message if not �/
formsg = ''
afftype = 'LOG'
lid = zfname 'LOG A'

 'STATE' lid
If rc <= � then Do

 Address 'ISPEXEC'
 /� If zfbrows ¬= '' then 'ISPEXEC BROWSE FILE('lid')'

If zfprint ¬= '' then
'ISPEXEC SELECT CMD(ISRFXPRT ISRFPPRT' lid')'�/

 Address CMS
 End
Else formsg = 'AFFS��6'

If you want to bypass browsing the print menu, search for the first occurrence of
these lines and comment them out also.

In TSO

1. Edit the AFFFC11 CLIST.

2. Search for the following line:

SET ZFBROWS = BROWSE /� ASK FOR BROWSE �/

3. Change the line to read as follows:

SET ZFBROWS = &Z /� BYPASS BROWSE �/

You can also bypass the print menu by setting ZFPRINT to a null string, as follows:

SET ZFPRINT = &Z /� BYPASS PRINT �/

 Chapter 2. Debugging in Full Screen Mode 25

26 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Chapter 3. Debugging in Line Mode

Interactive Debug may be run in line mode in either a CMS or a TSO environment. In
line mode debugging, input and output are presented sequentially, one line at a time.
Line mode debugging is intended primarily for users with access to only a typewriter-like
terminal or when ISPF is not installed.

Invoking Interactive Debug in CMS

Using the LOAD and START Commands
This method will not make a permanent copy of the executable program. The LOAD
command creates a temporary copy of your executable program in virtual storage. The
object code from which the executable program is built is either in TEXT files or in text
libraries, or both.

1. Make the appropriate VS FORTRAN Version 2 Library text libraries, as well as your
own text libraries, available:

a. For link mode execution:

| GL�BAL TXTLIB VSF2LINK VSF2FORT CMSLIB userlib...

b. For load mode execution:

| GLOBAL TXTLIB VSF2FORT CMSLIB userlib...

For more information on link mode and load mode execution, refer to the VS
FORTRAN Version 2 Programming Guide.

2. Create a temporary copy of your executable program in virtual storage:

LOAD myprog...

 3. Issue:

GLOBAL LOADLIB VSF2LOAD

4. Run the temporary copy of your program that has been built in virtual storage, and
invoke Interactive Debug:

START � DEBUG

Using the LOAD and GENMOD Commands
This method will create an executable program that is stored as a nonrelocatable file on
your CMS disk. The object code from which the executable program is built is either in
a TEXT file or in a member of a text library.

Note: If you have created a nonrelocatable file with a file type of MODULE for your
program in the past, you can run the program by completing steps 4 through 6 in the
“Running the Program” section that follows.

Creating the MODULE File

1. Make the appropriate VS FORTRAN Version 2 Library text libraries, as well as your
own text libraries, available.

a. For link mode execution:

GLOBAL TXTLIB VSF2LINK VSF2FORT userlib...

 Chapter 3. Debugging in Line Mode 27

b. For load mode execution:

GLOBAL TXTLIB VSF2FORT userlib...

For more information on link mode and load mode execution, refer to the VS
FORTRAN Version 2 Programming Guide.

2. Create a temporary copy of your executable program in virtual storage:

LOAD myprog...

3. Create a nonrelocatable file on your CMS disk:

GENMOD modname

This command builds a file with the file name assigned as modname, and a file type
of MODULE. This program can be run at any time.

Running the Program

4. You may need to issue one or more GLOBAL commands before running your
program. Issue the following command if the simulation of extended precision
floating-point instructions is required on the machine you are using:

| GLOBAL TXTLIB CMSLIB

 5. Issue:

GLOBAL LOADLIB VSF2LOAD

6. Run the program that is stored as a nonrelocatable file, and invoke Interactive Debug:

modname DEBUG

where modname is the file name of your MODULE file, as originally specified in the
GENMOD command.

With the LKED Command
This method link-edits your program and stores it as a relocatable load module in a
member of a CMS LOADLIB.

Note: If you have created a load module from your program in the past, you can run the
program by completing steps 3 through 5 in the “Running the Program” section that
follows.

Creating a Load Module

 1. Issue:

FILEDEF SYSLIB DISK VSF2FORT TXTLIB fm

where fm is either the file mode of the CMS disk that contains the library
VSF2FORT, or an asterisk (*).

 2. Issue:

LKED myprog (LIBE libname NAME membname

where:

myprog is the file name of the TEXT file that contains your object code.

libname is the file name of the LOADLIB file into which the resulting load
module is to be placed as a member.

membname is the name of the member in the LOADLIB file designated by
libname above, into which the resulting load module is to be placed.

Running the Program

28 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 3. Issue:

GLOBAL LOADLIB VSF2LOAD libname

where libname is the file name of the LOADLIB file into which your load module
was placed as a member by the LKED command.

4. Issue the following command if the simulation of extended precision floating-point
instructions is required on the machine you are using:

| GLOBAL TXTLIB CMSLIB

5. Issue FILEDEF statements for the AFFON (page 43) and AFFPRINT (page 42) files,
such as:

FILEDEF AFFON DISK progname AFFON A
FILEDEF AFFPRINT DISK progname AFFPRINT A

6. Run your program, and invoke Interactive Debug:

OSRUN membname PARM=DEBUG

where membname is the name of the member that contains the load module created
with the LKED command.

Using an Invocation EXEC
The easiest way to invoke Interactive Debug in CMS line mode is to use an invocation
EXEC.

Figure 14 shows an EXEC that invokes a VS FORTRAN program with the DEBUG
| option. The EXEC allocates a print file, AFFPRINT, and a log file, AFFOUT. And if
| they exist, the EXEC also allocates an include file, AFFON, and a restart file, AFFIN.
| (For more information on these files, see page 39.) Specifying DEBUG on the START

statement invokes Interactive Debug. see “Specifying Default Run-Time Options” on
page 85.

| This sample EXEC assumes your program is compiled, and the entire program is con-
| tained in one TEXT file with filetype TEXT. It is also assumed that the TEXT file will

be linked with the VS FORTRAN Version 2 Library to run in load mode. If you are
running in link mode, change the GLOBAL TXTLIB statement to:

GLOBAL TXTLIB VSF2LINK VSF2FORT CMSLIB

For more information on link mode and load mode execution, refer to the VS FORTRAN
Version 2 Programming Guide.

 Chapter 3. Debugging in Line Mode 29

| /� FORTIAD EXEC: Invokes VS FORTRAN Interactive Debug in line mode. �/
| arg program .

| /� If there is an include file, use it. �/
| 'STATE' program 'INCLUDE �'
| if rc = � then
| 'FILEDEF AFFON DISK' program 'INCLUDE �'
| else
| 'FILEDEF AFFON DUMMY'

| /� If there is a restart file, use it. �/
| 'STATE' program 'RESTART �'
| if rc = � then
| 'FILEDEF AFFIN DISK' program 'RESTART �'
| else
| 'FILEDEF AFFIN DUMMY'

| /� Create a log file, deleting the old log, if any. �/
| 'FILEDEF AFFOUT DISK' program 'LOG (RECFM F LRECL 8�'

| /� Create a print file, deleting the old print, if any. �/
| 'FILEDEF AFFPRINT DISK' program 'PRINT'

| /� Define VS FORTRAN V2 library and required system libraries. �/
| 'GLOBAL TXTLIB VSF2FORT CMSLIB'
| 'GLOBAL LOADLIB VSF2LOAD'

| /� Load and run the program. �/
| 'LOAD' program '(CLEAR'
| 'START � DEBUG'

| exit rc

| Figure 14. Sample EXEC to Invoke Interactive Debug in CMS Line Mode

If the EXEC in this example is invoked without specifying a second parameter, DEBUG
will be the default option. If the EXEC were named FORTIAD, specifying

fortiad m�6

would cause the program named M06 to be invoked with the DEBUG option.

Invoking Interactive Debug in TSO
To invoke Interactive Debug in TSO line mode, you can use either of the following:

CALL progname 'DEBUG'

LOADGO progname 'DEBUG'

| The most convenient method is to use a TSO CLIST. For example, if the CLIST is in
| 'userid.CLIST.CLIST(FORTIAD)', you can invoke Interactive Debug by typing

| FORTIAD program-name

| The following sample CLIST assumes that your program is compiled and the object code
| is in a data set named program.OBJ.

30 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| /� FORTIAD CLIST: INVOKES VS FORTRAN INTERACTIVE DEBUG IN LINE MODE. �/
| PROC 1 PROGRAM
| CONTROL MSG NOFLUSH NOLIST NOSYMLIST NOCONLIST

| /� MAKE SURE THE OBJECT CODE FOR THE PROGRAM EXISTS. �/
| IF &SYSDSN(&PROGRAM..OBJ) ¬= OK THEN DO
| WRITE DATA SET &PROGRAM..OBJ COULD NOT BE FOUND.
| EXIT
| END

| /� IF THERE IS AN INCLUDE (AFFON) FILE, USE IT. �/
| IF &SYSDSN(&PROGRAM..INCLUDE) = OK THEN +
| ALLOCATE FILE(AFFON) DATASET(&PROGRAM..INCLUDE) SHR
| ELSE +
| ALLOCATE FILE(AFFON) DUMMY

| /� IF THERE IS A RESTART FILE, USE IT. �/
| IF &SYSDSN(&PROGRAM..RESTART) = OK THEN +
| ALLOCATE FILE(AFFIN) DATASET(&PROGRAM..RESTART) SHR
| ELSE +
| ALLOCATE FILE(AFFIN) DUMMY

| /� DELETE OLD LOG FILE, THEN ALLOCATE A NEW ONE. �/
| IF &SYSDSN(&PROGRAM..LOG) = OK THEN +
| DELETE &PROGRAM..LOG
| ALLOCATE FILE(AFFOUT) DATASET(&PROGRAM..LOG) NEW +
| SPACE(1�,1�) TRACKS RELEASE +
| RECFM(F,B) LRECL(8�) BLKSIZE(4���)

| /� DELETE OLD PRINT FILE, THEN ALLOCATE A NEW ONE. �/
| IF &SYSDSN(&PROGRAM..PRINT) = OK THEN +
| DELETE &PROGRAM..PRINT
| ALLOCATE FILE(AFFPRINT) DATASET(&PROGRAM..PRINT) NEW +
| SPACE(1�,1�) TRACKS RELEASE

| /� ALLOCATE VS FORTRAN FILES. �/
| ALLOCATE FILE(FT�5F��1) DATASET(�)
| ALLOCATE FILE(FT�6F��1) DATASET(�)

| /� ALLOCATE VS FORTRAN V2 LIBRARY. �/
| ALLOCATE FILE(SYSLIB) DATASET('SYS1.VSF2FORT') SHR

| /� LINK EDIT AND RUN THE PROGRAM. �/
| LOADGO &PROGRAM..OBJ 'DEBUG'

| /� FREE FILES. �/
| FREE FILE(AFFON AFFIN AFFOUT AFFPRINT FT�5F��1 FT�6F��1 SYSLIB)

| Figure 15. Sample CLIST to Invoke Interactive Debug in TSO Line Mode

 Entering Commands
After invoking Interactive Debug, the copyright information will be displayed:

VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG
5668-8�6 (C) COPYRIGHT IBM CORP. 1985, 1988
LICENSED MATERIALS-PROPERTY OF IBM

At this point, execution is temporarily suspended to allow you to enter debugging com-
mands. You can enter a command in the following ways:

� Type the command following the Interactive Debug prompt.

� Use a program function key (PF key).

 Chapter 3. Debugging in Line Mode 31

Typing the Command Following the Interactive Debug Prompt
Commands are normally entered following the Interactive Debug prompt. Commands
may also be issued when execution is suspended because of an input request originating
in the VS FORTRAN program while TERMIO IAD is in effect. This is described in
“Entering Terminal Input” on page 78.

If a command is too long to fit on one line, enter as much of the command as you can,
followed by the continuation character (-) to indicate that the command is not yet com-
plete. Press ENTER. Then enter the remainder of the command.

The continuation character (-) must be the last character entered on the command line.
| You may enter up to 251 characters, including blanks, in one command. If a continuation

segment requires leading blanks, type a quotation mark (") first, then the required leading
blanks. Interactive Debug will remove the quotation mark and recognize the leading
blanks.

| Interactive Debug waits for you to type in the continuation of a command by displaying
| the following prompt:

| PENDING:

| If you do not wish to continue the command, type END and the command will be
| ignored.

Using Program Function Keys
If you are using a 3270-type terminal on VM/SP, you can use program function keys (PF
keys) to enter commands in line mode.

Using PF keys to enter commands saves you time because you can simply press a PF key
instead of typing in a long command.

To define PF keys, use the SYSCMD command (page 191) with the CP command SET
PF.

| For example, to set PF key 4 to the STEP command, issue:

| syscmd cp set pf4 step

32 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Chapter 4. Debugging in Batch Mode

Interactive Debug can run in batch mode, which creates a non-interactive debugging
session. Batch mode debugging can be done in either a CMS or MVS (with or without
TSO) environment.

In batch mode, Interactive Debug takes its input from a file or data set with the ddname
AFFIN, and writes its normal output to one with the ddname AFFOUT. During a batch
session, you cannot interact with the batch job from your terminal. Commands that
require user interaction (such as prompt panels) cannot be used.

You might want to run a debugging session in batch mode if:

� You want to restrict the resources used. Batch mode generally uses fewer resources
than interactive mode.

� You have a program that might tie up your terminal for long periods of time. If you
use batch mode, you can continue to use your terminal for other work while the
batch job runs.

� You are using Interactive Debug to collect performance or run-time data about your
program. For example, batch mode might be helpful if you want to use LISTFREQ
to get statement frequency information, but you do not want to do any debugging.

The following commands cannot be used in batch mode:

| AUTOLIST COLOR DOWN
| HELP LEFT LISTINGS
| MOVECURS POSITION PREVDISP
| PROFILE REFRESH RESTART
| RESTORE RETRIEVE RIGHT
| SEARCH SIZE UP
| WINDOW ZOOM

The invocation procedure you use to start a batch session will depend on the batch proce-
dures set up for you by your installation. Be sure you understand how batch mode is
invoked on your system before running Interactive Debug in batch mode.

Invoking Interactive Debug in CMS
There are many batch facilities that can be run on CMS (CMSBATCH, BATCHMON,
VMBATCH, and so on). Interactive Debug considers batch mode to occur whenever
there is no physical terminal attached to the console, which is true of all the batch facili-
ties listed above. The following gives an overview of an EXEC or job file for a batch
job to be run on CMS:

1. The first part of the job is usually a set of control statements for the batch machine,
such as a job statement, accounting information, console routing control, and resource
limit specifications.

2. The job probably needs CMS commands to link and access the disks containing the
application program, the Interactive Debug product, input files, and any other EXECs
or programs needed.

 Chapter 4. Debugging in Batch Mode 33

3. Next, the job needs commands to run your application with the DEBUG option.
These are similar to the commands in the sample EXEC to invoke Interactive Debug
in line mode (FORTIAD EXEC), but must include definitions for the AFFIN (page
40) and AFFOUT files (page 39). The sample FORTIAD EXEC is described on
page 30.

If you have a FORTIAD EXEC, modify it as above if necessary, and then enter the
following in your job file:

EXEC FORTIAD myprog

If you want to include the information contained in FORTIAD directly in your job
file, it might look like that shown in Figure 16.

GLOBAL TXTLIB VSF2FORT CMSLIB
GLOBAL LOADLIB VSF2LOAD
FILEDEF AFFIN DISK myprog AFFIN �
FILEDEF AFFOUT DISK myprog AFFOUT A (RECFM F LRECL 8�

 FILEDEF AFFON DUMMY
FILEDEF AFFPRINT DISK myprog AFFPRINT A
LOAD myprog (CLEAR
START � DEBUG

Figure 16. Sample Commands for a Batch Debugging Session in CMS

These sample statements invoke the program with the DEBUG option. They allocate
an AFFPRINT file (page 42), but not an AFFON file (page 43). They assume you
are starting with TEXT files you want to link with the VS FORTRAN Version 2
Library to run in load mode.

4. Finally, you need CMS commands to send back any output files that were written to
disk.

For example, to send the AFFOUT file to your reader, you might use these com-
mands:

CP SPOOL PUN TO userid NOCONT
PUNCH myprog AFFOUT

To send the AFFPRINT file to the printer, you might use these commands:

CP SPOOL PRT FOR userid
PRINT myprog AFFPRINT

When the EXEC or job file is complete, submit it to the batch machine using the proce-
dures set up for your installation.

Invoking Interactive Debug in MVS
In MVS, Interactive Debug considers batch mode to occur whenever no physical terminal
is attached. There are two ways to run Interactive Debug in MVS: with TSO and without
TSO.

 Using TSO
| The sample JCL below runs the program with subroutine timing and tracing active. The
| program is assumed to be compiled and link edited, with the load module in:
| userid.FORTRAN.LOAD(program).

34 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| The JCL defines AFFON, AFFIN, AFFOUT, and AFFPRINT data sets (page 39). The
| AFFON entry restricts debugging hooks to only subroutine entry and exit hooks, which is
| optimum for subroutine tracing and timing. The AFFIN file contains debugging com-
| mands to activate tracing and timing, execute the program to completion, and list program
| unit names.

| //BATCHIAD JOB (accounting-information),'programmer-name',
| // MSGLEVEL=1,MSGCLASS=Z,USER=userid,
| // TIME=(�,5),NOTIFY=userid,CLASS=A,
| // PASSWORD=password
| //FORTIAD EXEC PGM=IKJEFT�1,DYNAMNBR=1��,REGION=2�48K
| //STEPLIB DD DSN=SYS1.VSF2FORT,DISP=SHR
| //SYSTSIN DD �
| CALL 'userid.FORTRAN.LOAD(program)' 'DEBUG'
| /�
| //SYSTSPRT DD SYSOUT=�,DCB=(RECFM=F,LRECL=255,BLKSIZE=255)
| //AFFON DD �
| (all) entry
| /�
| //AFFIN DD �
| termio library
| trace entry
| timer � on
| go
| listtime
| quit
| /�
| //AFFOUT DD SYSOUT=�,DCB=(RECFM=F,LRECL=8�,BLKSIZE=8�)
| //AFFPRINT DD SYSOUT=�
| //FT�6F��1 DD SYSOUT=�

| Figure 17. Sample JCL for Batch Mode Debugging in MVS with TSO

| Lowercase variables, such as accounting-information and programmer-name, must be
| substituted with the appropriate information. (The ability to substitute an asterisk (*) for
| your user ID and password is system-dependent.) You may need to add DD cards to the
| last job step to define files used by your program.

 Chapter 4. Debugging in Batch Mode 35

Without Using TSO
| The sample JCL below performs program sampling. It consists of three job steps:
| compile, link-edit, and run with Interactive Debug.

| The JCL defines AFFPRINT, AFFOUT, AFFIN, AFFLST, and AFFPIF data sets (page
| 39). Because listing or program information data sets were not defined using the AFFON
| file, they are taken from AFFLST and AFFPIF respectively.

| //SAMPLE JOB (accounting-information),'programmer-name'
| // MSGLEVEL=(1,1),MSGCLASS=Z,USER=userid
| // TIME=(1,�),NOTIFY=userid,CLASS=A,
| // PASSWORD=password
| //��
| //� COMPILE THE FORTRAN PROGRAM. �
| //��
| //COMP EXEC PGM=FORTVS2,REGION=2�48K,PARM='SDUMP,SOURCE'
| //STEPLIB DD DSN=SYS1.VSF2COMP,DISP=SHR
| //SYSIN DD DSN=fortran-source-name,DISP=SHR
| //SYSTERM DD SYSOUT=�
| //SYSPRINT DD DSN=&&LISTSET,DISP=(NEW,PASS),UNIT=SYSDA,
| // SPACE=(TRK,(1�,1�),RLSE),DCB=BLKSIZE=3429
| //VSF2PIF DD DSN=&&PIFSET,DISP=(NEW,PASS),UNIT=SYSDA,
| // SPACE=(TRK,(1�,1�),RLSE)
| //SYSLIN DD DSN=&&OBJSET,DISP=(NEW,PASS),UNIT=SYSDA,
| // SPACE=(TRK,(1�,1�),RLSE),DCB=BLKSIZE=312�
| //��
| //� LINK EDIT THE PROGRAM. �
| //��
| //LKED EXEC PGM=IEWL,REGION=768K
| //SYSLIB DD DSN=SYS1.VSF2FORT,DISP=SHR
| //SYSLIN DD DSN=&&OBJSET,DISP=(OLD,DELETE)
| //SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(1�,1�))
| //SYSPRINT DD SYSOUT=�
| //SYSLMOD DD DSN=&&LOADSET(MAIN),DISP=(NEW,PASS),UNIT=SYSDA,
| // SPACE=(TRK,(1�,1�,1),RLSE),DCB=BLKSIZE=3276�
| //��
| //� PERFORM PROGRAM SAMPLING. �
| //��
| //GO EXEC PGM=MAIN,REGION=2�48K,PARM='DEBUG'
| //STEPLIB DD DSN=&&LOADSET,DISP=(OLD,DELETE)
| // DD DSN=SYS1.VSF2LOAD,DISP=SHR
| //AFFON DD DUMMY
| //AFFLST DD DSN=&&LISTSET,DISP=(OLD,DELETE)
| //AFFPIF DD DSN=&&PIFSET,DISP=(OLD,DELETE)
| //AFFIN DD �
| ENDDEBUG SAMPLE
| LISTSAMP �.� TOP(1��)
| ANNOTATE �
| QUIT
| /�
| //AFFOUT DD SYSOUT=�,DCB=(RECFM=F,LRECL=8�)
| //AFFPRINT DD SYSOUT=�
| //FT�6F��1 DD SYSOUT=�

| Figure 18. Sample JCL for Batch Mode Debugging in MVS without TSO

| Lowercase variables, such as accounting-information and programmer-name, must be
| substituted with the appropriate information. (You can usually substitute an asterisk (*)
| for your user ID and password if you prefer.) You may need to add DD cards to the last
| job step to define files used by your program.

36 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Running a Batch Debugging Session
In batch mode, all Interactive Debug prompts are suppressed. Whenever a simulated ter-
minal input line is read, it is echoed to the simulated terminal output, prefixed with an
equal sign and asterisk (=*). If the AFFIN file does not exist or the AFFOUT file is not
defined, the program is terminated.

Standard corrective action is taken for all VS FORTRAN errors (unless the VS
FORTRAN program calls ERRSET to change them). This will cause the program to
terminate for unrecoverable errors.

Note: Interactive Debug avoids any real terminal interaction in batch mode. However, it
cannot guard against interactions required by the application program or by SYSCMD
commands. It is your responsibility to restrict the use of interactive commands during
batch sessions.

Ending a Debugging Session
It is your responsibility to make sure that the appropriate batch output files are returned
to you or sent to a printer. The batch output files are:

� AFFOUT for debug output (required in batch mode)
� AFFPRINT for debug print output (optional in batch mode)
� Any output files that your VS FORTRAN program writes

 Chapter 4. Debugging in Batch Mode 37

38 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Chapter 5. Using Interactive Debug Files

This chapter describes six files that are used by Interactive Debug, and how they should
be defined before invoking Interactive Debug. The six files are:

� Log file (AFFOUT)

� Restart file (AFFIN)

� Print file (AFFPRINT)

� Include file (AFFON)

| � Listing file (AFFLST)

| � Program information file (AFFPIF)

AFFOUT and AFFIN are required for batch mode debugging.

| AFFLST and AFFPIF can be used in MVS batch mode debugging only.

Log File (AFFOUT)
During your debugging session, Interactive Debug creates a log of activity for you to
examine; you can view this log after completion of the debugging session. The log infor-
mation is contained in the AFFOUT file. AFFOUT is optional in full screen mode and
line mode debugging; it is required for batch mode debugging.

How to Define AFFOUT to Interactive Debug
AFFOUT does not need to exist prior to execution of the VS FORTRAN program, but it
must be defined:

In CMS

� Full screen mode: The ISPF invocation procedures define a file named fname LOG
(where fname is the name specified on the FILE ID line of the invocation panel).

� Line mode and batch mode: Issue a FILEDEF statement for AFFOUT.

In TSO

� Full screen mode: The ISPF invocation procedures define a data set named
userid.fname.LOG (where fname is the name specified on the MEMBER line or on
the FILE ID FOR DEBUG FILES line on the invocation panel).

� Line mode and batch mode: Issue a DD statement for AFFOUT. (AFFOUT is
required for batch mode debugging.)

 Characteristics
AFFOUT has the following characteristics:

� All Interactive Debug I/O (except full screen commands) is logged. Unless TERMIO
LIBRARY has been specified, all program-initiated terminal I/O is also logged.

| � The file must be created with a RECFM of FB and an LRECL of 80.

� Each line starts with a '=' (equal sign).

 Chapter 5. Using Interactive Debug Files 39

� Each input line starts with a '=*' (equal sign, asterisk).

� Input and output occurring within an attention exit are not logged; however, the
entering of an attention exit is logged.

Restart File (AFFIN)
AFFIN is a file of debugging commands, initially created with either an editor or
obtained by editing the output from a previous debugging session. AFFIN is optional in
full screen and line mode debugging; it is required for batch mode debugging.

How to Define AFFIN to Interactive Debug
AFFIN must exist and be defined prior to execution of the VS FORTRAN program:

In CMS

� Full screen mode: The ISPF invocation procedures supplied by IBM assume that the
AFFIN file is called fname RESTART (where fname is the name specified on the
FILE ID line or MEMBER line of the invocation panel). If you are using a previous
output log file as the restart file, use the RESTART command to change the allo-
cation or the content of the log file.

� Line mode and batch mode: Issue a FILEDEF statement for AFFIN.

In TSO

� Full screen mode: It is assumed to be userid.fname.RESTART (where fname is the
name specified on the MEMBER line or on the FILE ID FOR DEBUG FILES line
on the invocation panel). If you are using a previous output log file as the restart
file, use the RESTART command to change the allocation or the content of the log
file.

� Line mode and batch mode: Issue a DD statement for AFFIN. (AFFIN is required
for batch mode debugging.)

 Characteristics
AFFIN must have the following characteristics:

� It must have a RECFM of F or FB and an LRECL of 80.

� No sequence numbers are permitted in columns 73 through 80.

� SYSCMD and CMS or TSO commands are not permitted without operands.

� Interactive commands, such as HELP, are not permitted.

The file will be read until end-of-file or a QUIT command is encountered. (A QUIT
command is forced if end-of-file is reached in batch mode.) If the log file of a previous
debugging session is used as the restart file, Interactive Debug will ignore any output
contained in the file (anything preceded by only an equal sign, or only an asterisk). It
accepts any line preceded by =�, or by nothing, as input.

| In full screen mode and line mode, additional input can be entered from the terminal after
the commands in the file have been run.

40 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Special Considerations
| Using the output log file as an restart file in full screen mode or line mode:

You may want to use the log file (AFFOUT) as input to a subsequent debugging session
if, for example, you had to discontinue a debugging session but had not yet solved the
problem. To do this, follow these steps:

1. Use the QUIT command to stop debugging.

2. Keep the AFFOUT log file, and edit it to remove the QUIT command.

3. Prior to using the AFFOUT file as input to Interactive Debug, you must rename it, as
described above.

4. The log file can now be used as input to retrace the steps taken in the previous
session.

After the log file has been run, you should be at the same position as when you stopped
the previous session.

Using the output log file from a full screen or line mode debugging session as an
restart file to a batch debugging session:

| Although it is possible in principle to use the log file from a full screen mode or line
| mode debugging session as AFFIN input for a batch debugging session, you should be

aware that there are some differences.

� TERMIO is likely to have different effects in batch. In MVS it is not possible to
connect a data set to a terminal device in batch. However, you can use the
DEBUNIT run-time option to specify one or more units that will be treated as termi-
nals. It is then possible, for example, for you to use your output from a full screen
session as a restart file, with TERMIO set to IAD.

In CMS, you can still use TERMINAL in a FILEDEF command. However, do not
issue TERMIO LIBRARY if there will be any terminal input, because your program
would then attempt to actually get terminal input and the batch job would stall.

You may want to add TERMIO MSG and NOMSG commands in order to get some
notification as the job progresses. (This should normally be used with restraint.)

� Error handling is different in batch. In order to avoid unplanned interactions, the
debugger always forces standard fixup for errors in batch mode. Thus ERROR EXIT
will never cause an exit to be taken. Error limits are in effect as if Interactive Debug
were not present.

� SYSCMD commands with no system command specified are considered an error in
batch mode (but cause no harm otherwise). You should also avoid any system com-
mands that might themselves require interaction.

� Prompts are suppressed in batch. For example, GO with a statement identifier does
not prompt for confirmation in batch mode, even if an optimized program unit is
being debugged.

Including program input in AFFIN in batch mode:

When TERMIO IAD is in effect, all terminal input is obtained from AFFIN, preceded
with %, and interspersed with the IAD comments.

 Chapter 5. Using Interactive Debug Files 41

In batch mode in MVS, you do not have a terminal available, so it is therefore impossible
to connect VS FORTRAN files to a terminal. However, by specifying the DEBUNIT
run-time option, which specifies a device to be treated as a terminal, you can use the
TERMIO command with MVS batch.

The DEBUNIT option may already be set up for you as a local default whenever you
specify the DEBUG option, or you may need to specify it at run-time when you run your
program. If you need to specify it, the format is as follows:

DEBUNIT(S1[,S2,...])

where S is a unit number (such as 5), or an inclusive range of unit numbers (such as
35-40).

Note that in CMS, the commas must be replaced by blanks, unless the program will be
invoked by an EXEC2 or REXX EXEC and uses the extended PLIST facilities. If I/O is
to be issued to the units, the job stream must also include a FILEDEF (in CMS) or a DD
card (in TSO) for each unit.

Remember that, when running in batch, the program must get its input from real data
sets, and must send its output to real data sets. In CMS batch, you should not specify
TERMIO LIBRARY if there will be any terminal input, because this requests interaction
and will cause the batch job to fail.

For more information on TERMIO, see “Entering Terminal Input” on page 78 and
“TERMIO” on page 192.

Print File (AFFPRINT)
Commands used: ANNOTATE (page 105), DESCRIBE (page 121), LIST (page 141),
LISTBRKS (page 145), LISTFREQ (page 146), LISTSAMP (page 149), LISTSUBS
(page 154), LISTTIME (page 156), LISTVEC (page 159), TRACE (page 197), WHERE
(page 205)

The commands above allow you to send command output to a print file instead of to the
terminal (or in the case of batch mode debugging, to AFFOUT). This can be useful, for
example, when you are listing the contents of a large array and want to keep that output
separate from the output log. This print file is referred to as the AFFPRINT file.
AFFPRINT is optional.

How to Define AFFPRINT to Interactive Debug
AFFPRINT does not need to exist prior to execution of the VS FORTRAN program, but
it must be defined:

In CMS

� Full screen mode: The invocation procedures will define a file named fname LIST A
(where fname is the name specified on the FILE ID line of the invocation panel).

� Line mode and batch mode: The EXEC used to run VS FORTRAN programs should
contain a FILEDEF statement for AFFPRINT.

FILEDEF AFFPRINT DISK progname LIST A

In TSO

42 VS FORTRAN Version 2 Interactive Debug Guide and Reference

� Full screen mode: The invocation procedures will define a data set named
userid.fname.PRINT (where fname is the name specified on the MEMBER line or on
the FILE ID FOR DEBUG FILES line on the invocation panel).

� Line mode and batch mode: The CLIST used to run VS FORTRAN programs
should contain an ALLOCATE command for AFFPRINT.

ALLOCATE FI(AFFPRINT) DA(progname.PRINT)

Note: To prevent an existing AFFPRINT file from being overwritten, you must rename
it before running a program with the same name.

 Characteristics
AFFPRINT is created with a RECFM of VB and an LRECL of 137 (and a blocksize of
1733 for TSO).

| Include File (AFFON)
| The AFFON file is helpful in debugging large programs that are divided into separately
| compiled sections, and programs in which many sections are known to be free of errors.
| AFFON is optional in full screen mode, line mode, and batch mode debugging.

| The AFFON file allows you to:

| � Define separate listing data sets (TSO) or files (CMS) for different program units. In
| full screen mode, these listings are displayed in the source window during the debug-
| ging session, and are used when annotating listings with frequency or sampling data
| using the ANNOTATE command.

| � Define separate program information data sets (TSO) or files (CMS) for different
| program units. Program information files are generated by the compiler when the
| VECTOR(IVA) option is specified, and are used by Interactive Debug to gather
| vector tuning information (page 67).

| � Restrict debugging hooks to certain program units or sections of program units.
| Hooks are used to pass control from the program to Interactive Debug in order to
| monitor the execution of the program (tracing, timing, and frequency) and to provide
| breakpoint capabilities (AT, STEP, WHEN, HALT, NEXT).

| By default, Interactive Debug inserts hooks at all executable statements of all
| debuggable program units. This allows you to set a breakpoint at any statement in
| the program. Because there is overhead associated with this ability, it is more effi-
| cient to exclude from debugging those program units that are known to be error free.
| You can also exclude a part of a program unit, which may be helpful if there are
| heavily run sections of that unit which are error free.

| How to Define AFFON to Interactive Debug
| AFFON must exist and be defined prior to execution of the VS FORTRAN Version 2
| program:

| In CMS

| � Full screen mode: The invocation procedures must include a correct FILEDEF state-
| ment for AFFON. In full screen mode with ISPF/PDF, it is assumed to be fname
| INCLUDE (where fname is the name specified on the FILE ID line of the invocation
| panel).

 Chapter 5. Using Interactive Debug Files 43

| Using the RESTART command, you can change the allocation or the content of the
| existing file prior to restarting.

| Using the information in the AFFON file entries, Interactive Debug will attempt to
| automatically identify the data sets containing the program listings for use in the
| source window and with the ANNOTATE command.

| � Line mode and batch mode: The EXEC used to run VS FORTRAN programs should
| contain a FILEDEF statement for the AFFON file, for example:

| FILEDEF AFFON DISK progname INCLUDE A

| In TSO

| � Full screen mode: The invocation procedures must include a correct ALLOCATE
| statement for AFFON. In full screen mode with ISPF/PDF, it is assumed to be
| userid.fname.INCLUDE (where fname is the name specified on the MEMBER line or
| on the FILE ID FOR DEBUG FILES line on the invocation panel).

| � Line mode and batch mode: The CLIST used to run VS FORTRAN programs,
| should contain an ALLOCATE command for the AFFON data set.

| ALLOCATE FI(AFFON) DA(progname.INCLUDE)

| where progname is the name of the program you want to debug.

| Characteristics
| An AFFON file consists of records called AFFON entries. An AFFON entry can be:

| � A comment entry, which begins with an asterisk.

| � A program unit entry, which specifies debugging attributes for a program unit.

| � An ALL entry, which is used to change the default attributes.

| The attributes that can be specified for a program unit are:

| � The name of a data set (TSO) or file (CMS) that contains the source listing for the
| unit.

| � The name of a data set or file that contains the program information for the unit.

| � A hook restriction list, describing how hooks should be placed in the program unit.

| Syntax
| For an explanation of syntax conventions, see page 100.

| Syntax for an AFFON Entry

| { program-unit-name | (ALL) }
| ['listing-file-name' ['program-info-file-name']]
| [ENTRY | NONE | specification-list]

| program-unit-name
| specifies the name, up to 31 characters long, of the program unit to be selected for
| debugging.

44 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| (ALL)
| specifies that defaults are to be set for all program units. The defaults pertain to all
| program units following the ALL entry, whether they are specified in the AFFON
| file or not.

| More than one ALL entry can be placed in the AFFON file. Subsequent ALL entries
| override the defaults set by previous ALL entries. If listing-file-name (and optional
| prog-info-file-name) or specification-list is not specified on an ALL entry, then the
| default for that field is unchanged.

| 'listing-file-name'
| specifies the name of the file containing the source listing of the program unit. It
| must be enclosed with quotes.

| 'program-info-file-name'
| specifies the name of the program information file for the program unit. It must be
| enclosed with quotes. If it is specified, listing-file-name must also be specified.

ENTRY
specifies that only ENTRY and EXIT hooks are to be placed in the program unit.
This is helpful when you want to increase the accuracy of timing information.

NONE
allows file names to be specified, but bypasses the inclusion of debugging hooks.

| specification-list
| specifies a list of statement entries, separated by either blanks or commas. Each
| entry in specification-list has the following format:

| {n[:n] | *} [DOLOOP | DONEST | DOVECT]

| n[:n] specifies either a single or a range of statement numbers (ISNs or
| sequence numbers) that are to be selected for debugging. ISNs are the
| default, unless you specified SDUMP(SEQ) when you compiled the
| program unit.

| * specifies that hooks are to be placed at every statement in the program
| unit, unless DOLOOP, DONEST, or DOVECT follows the asterisk. If
| this is the case, only DO loop analysis hooks are to be placed in the
| program unit.

| DOLOOP specifies that only DO loop analysis hooks are to be placed in DO loops
| only for the preceding ISN or ISN range. If a single ISN was specified,
| then it must be the ISN of a DO statement.

| DONEST specifies that DO loop analysis hooks are to be placed only in the outer-
| most DO loops in nested DO loops for the preceding ISN or ISN range.
| If a single ISN was specified, then it must be the ISN of a DO statement.
| If the DO statement is part of a nest of DO loops, it must be the DO
| statement of the outermost loop.

| DOVECT specifies that DO loop analysis hooks are to be placed only in vectorized
| DO loops for the preceding ISN or ISN range. If a single ISN was spec-
| ified, then it must be the ISN of the DO statement if it is a vectorized
| DO loop.

 Chapter 5. Using Interactive Debug Files 45

 Usage Notes
1. There may be executable statements in the specified ranges that cannot have debug-

ging hooks placed on them because of optimization or vectorization. To find out
which statements have had hooks placed on them, you can use the LISTFREQ
command.

2. Program units that do not meet the requirements for debugging will not have program
hooks inserted, even though they may be in the AFFON list. For compiler and
library restrictions that may make a program unit nondebuggable, see “Requirements”
on page 5.

3. AFFON can have any record format. The logical record length can be any value up
to 255 bytes. Entries can be in lower case.

If the file exists but has incorrect attributes, you will receive an error message stating
that the AFFON file cannot be read.

AFFON can contain references to sequence numbers for VS FORTRAN programs
compiled with SDUMP(SEQ), but AFFON itself cannot be sequenced.

| 4. The initial ALL entry settings are:

| � In line mode and batch mode, listing-file-name and prog-info-file-name are unde-
| fined:

| (ALL) '' '' �

| If you are debugging in MVS batch mode, however, Interactive Debug will try
| to get the listing-file-name and prog-info-file-name from the files AFFLST (page
| 48) and AFFPIF (page 49) respectively.

| � In ISPF/PDF on TSO:

| (ALL) 'userid.module-name.LIST' 'userid.module-name.PIF' �

| where userid is the prefix set with the PROFILE command and module-name is
| the name of the module being debugged.

| � In ISPF/PDF on CMS:

| (ALL) 'module-name LISTING �' 'module-name PIF �' �

| where userid is the user's logon id and module-name is the name of the module
| being debugged.

| 5. Migration: To migrate AFFON file entries for programs created prior to release 3 of
| VS FORTRAN Version 2, place the following entry at the end of the AFFON file:

| (ALL) none

| 6. If ISN range is followed by DOLOOP, DONEST, or DOVECT, then hooks are
| placed in the appropriate DO loops in the range. A DO loop is in the range if the
| ISN of the DO statement of the loop is in the range. The starting and ending ISNs
| do not have to be DO statements.

| 7. DO loop analysis hooks are placed in DO loops in all ranges where standard hooks
| are placed. For example, suppose the following AFFON entry is in the AFFON file:

| sub1 '' 'prog1.pif' 1�:4�

| DO loop analysis hooks would be placed in all DO loops whose DO statement is
| within the range ISN 10 through 40, in addition to standard hooks at statement
| boundaries.

46 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| 8. If any hooks are placed in the program unit, including DO loop analysis hooks, then
| hooks will also be placed at program unit entry and exit.

| 9. An ALL entry cannot have a statement restriction list that contains ISN's. This is
| because the entry is supposed to contain defaults, and particular ISN's are meaningful
| only for a single program unit.

Examples of AFFON Entries
1. In CMS, make an AFFON entry with debugging hooks placed between statements 6

and 16 and at statement 18 of SUB1.

sub1 'sub1 listing �' 6:16 18

sub1 listing � is defined as the default listing. ENTRY and EXIT hooks are
always placed in the program unit whenever any statement number ranges are speci-
fied.

2. In TSO, make an AFFON entry with debugging hooks placed between statements 6
and 16 and at statement 18 of SUB1.

Sub1 'userid.sub1.list' 6:16 18

| 3. In MVS, set the default listing data set and program information data set for the
| program to 'state.fort.listings(prog1)' and 'state.fort.compinfo(prog1)' respectively.
| Also, by default, place hooks only at outermost nested DO loops, and program unit
| entry and exit.

| (all) 'state.fort.listings(prog1)' 'state.fort.compinfo(prog1)' � donest

| 4. In CMS, set the program information file for program unit SHENNA to SHENNA
| INFOFILE A. Also, only place hooks at entry and exit of the program unit and in the
| DO loop at ISN 35.

| shenna '' 'shenna infofile a' 35 doloop

| 5. For program unit SUBSRT, place DO loop analysis hooks at vectorized DO loop
| whose DO statement is at ISN 34, place standard statement boundary hooks in state-
| ments at ISNs 25 through 36, and place DO loop analysis hooks in all DO loops
| whose DO statement is in the range 32 through 65.

| subsrt 34 dovect 25:36 32:65 doloop

 Chapter 5. Using Interactive Debug Files 47

| Examples of AFFON Files
| 1. The following is an example of a complete AFFON file.

| � I want to do detailed debugging on these three routines.
| (all) 'user33.vlop33.list' �
| main
| rachek
| mcslip

| � The following four routines are frequently used and I believe
| � have no errors. So, suppress all hooks.
| (all) none
| lrakd
| lrjjb
| lrral
| lrsst

| � For everything else, use a common listing, and hook entry and exit
| � so subroutine tracing is possible.
| (all) 'group8.vlop.list' entry

| Figure 19. Sample AFFON File

| 2. The following is an example of a complete AFFON file used to gather vector tuning
| information (page 67).

| � Define program information file and set hooks placement
| � to only DO loop analysis hooks.
| (all) " 'user33.vlop33.pif' � doloop

| � Stop in RACHEK at ISNs 44 and 48 to temporarily
| � turn off DO loop timing.
| rachek 44 48 � doloop

| Figure 20. Sample AFFON File for Vector Tuning

| Listing File (AFFLST)
| This file is used in MVS batch mode debugging only, and must be used if a listing-file-
| name is not defined in an AFFON file. Thus, AFFLST is the default ddname used when
| the listing-file-name is not defined.

| Characteristics
| AFFLST must have the same characteristics as the source listing generated by the com-
| piler (ddname SYSPRINT).

48 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| Program Information File (AFFPIF)
| This file is used in MVS batch mode debugging only, and must be used if a program-
| info-file-name is not defined in an AFFON file. Thus, AFFPIF is the default ddname
| used when the prog-info-filename is not defined.

| Characteristics
| AFFPIF must have the same characteristics as the program information file generated by
| the compiler (ddname VSF2PIF).

 Chapter 5. Using Interactive Debug Files 49

50 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| Chapter 6. Debugging Tasks

This section describes some of the common debugging tasks you can perform with Inter-
active Debug.

For complete descriptions of all commands, see “Part Two. Command Reference” on
page 99.

Getting On-line Help about Interactive Debug
Command used: HELP (page 135)

While using Interactive Debug, you can get on-line information about:

� Interactive Debug commands, each description containing:

– Function and syntax
 – Usage notes
 – Examples

� Common Interactive Debug tasks

| � Vector report messages that are in the vector report source listing

Invoke help by entering HELP with:

� No operands (or press an equivalent PF key). If the most recently specified
command was in error, the help panel for that command will appear.

Otherwise, the main help menu will appear. From this menu, you can select help on
commands, tasks, or a tutorial describing a basic debugging session.

Figure 21 on page 52 shows the Interactive Debug main HELP menu in full screen
mode.

Figure 22 on page 52 shows the Interactive Debug task HELP menu in full screen
mode. The task menu may be accessed from the main menu.

� A command name. This takes you directly to the help information for that
command.

Figure 23 on page 53 shows a sample first screen of a set of screens for an indi-
vidual command in full screen mode.

| � A message identifier. This displays help for a vector report message in the vector
| report source listing.

| Figure 24 on page 53 shows a sample first screen of a set of screens for a vector
| message in full screen mode.

 Chapter 6. Debugging Tasks 51

| �| �
| SELECTION ===> VS FORTRAN VERSION 2 INTERACTIVE DEBUG

| MAIN HELP MENU

| Choose a topic by typing its number on the command line and pressing ENTER.
| Return to this menu from any topic by typing TOP on the command line and
| pressing ENTER. Return to debugging from any topic by pressing PF3. Toggle
| between this menu and the task menu by pressing ENTER.

| 1 Task Menu 16 fixup 31 next 46 right
| 2 Tutorial 17 go 32 off 47 search
| 3 �," 18 halt 33 offwn 48 set
| 4 annotate 19 help 34 position 49 size
| 5 at 2� if 35 prevdisp 5� step
| 6 autolist 21 left 36 profile 51 syscmd
| 7 backspace 22 list 37 purge 52 termio
| 8 close 23 listbrks 38 qualify 53 timer
| 9 color 24 listfreq 39 quit 54 trace
| 1� dbcs 25 listings 4� reconnect 55 up
| 11 describe 26 listsamp 41 refresh 56 vecstat
| 12 down 27 listsubs 42 restart 57 when
| 13 enddebug 28 listtime 43 restore 58 where
| 14 endfile 29 listvec 44 retrieve 59 window
| 15 error 3� movecurs 45 rewind 6� zoom

| �| �

| Figure 21. Main HELP Menu (full screen mode)

| �| �
| SELECTION ===> VS FORTRAN VERSION 2 INTERACTIVE DEBUG

| TASK HELP MENU

| Choose a topic by typing its number on the command line and pressing ENTER.
| Return to the main menu from any topic by typing TOP on the command line and
| pressing ENTER. Return to debugging from any topic by pressing PF3. Toggle
| between this menu and the main menu by pressing ENTER.

| 1 Main Menu 13 Display variable values
| 2 Specify files to debug 14 Handle library errors
| 3 Full screen animation 15 Enter program input
| 4 Enter cmds in attention 16 Debug optimized code
| 5 Debug in batch mode 17 Program sampling
| 6 Command continuation 18 Process external files
| 7 Command lists 19 Listing information
| 8 Control program execution 2� Set breakpoints
| 9 Cursor-sensitive cmds 21 Execute system commands
| 1� Display frequencies 22 Program timing
| 11 Display pgm information 23 Trace program execution
| 12 Display data types 24 Vector tuning assistance

| �| �

| Figure 22. Task HELP Menu (full screen mode)

Additional Features of Interactive Debug On-line Help in Line Mode
In either CMS or TSO line mode, you can not only specify a command for which you
want help, but also whether you want the function, syntax, or keyword information of a
particular command.

52 VS FORTRAN Version 2 Interactive Debug Guide and Reference

� �
COMMAND ===> VS FORTRAN VERSION 2 INTERACTIVE DEBUG
CLOSE Command Panel 1 of 4

CLOSE disconnects a VS FORTRAN external file from an input or output unit.
Its usage is similar to that of the CLOSE statement in the VS FORTRAN Version
2 language. This command allows you to close an external file, for example to
assign another file to the input or output unit, or to examine the contents of
the file.

Abbreviation: None

Syntax:
 CLOSE

< number <qual.>integer-variable <qual.>integer-array-element >

number
is the number of the I/O unit associated with the file that is to be

 closed.

TOP for main menu hit ENTER for next page

� �

Figure 23. Sample Command HELP Panel (full screen mode)

| �| �
| COMMAND ===> VS FORTRAN VERSION 2 INTERACTIVE DEBUG
| Vector Report Message ILX�113I Panel 1 of 5

| Short Form: RESTRICTED CONSTRUCT
| Long Form: THE LANGUAGE CONSTRUCT(S) <clist> ARE NOT ANALYZED FOR
| VECTORIZATION.

| Explanation: Indicates that a loop is rejected because it contains some
| language construct that cannot be analyzed by the compiler. These constructs
| include assigned and computed GOTO statements and NAMELIST statements.

| Supplemental Data:

| <clist>
| is a list consisting of the names of the language constructs
| responsible for the rejection along with the ISNs (Internal Statement
| Numbers) of the statements in which they are used.

| hit ENTER for next page

| �| �

| Figure 24. Sample Vector Message HELP Panel (full screen mode)

For example, if you wished to get on-line help about the syntax of the LISTTIME
command in CMS line mode, type:

help listtime (form

In TSO line mode, you would request the same information by typing:

help listtime syntax

You can request such specific help information in CMS full screen mode. To get syntax
information about LISTTIME in full screen mode, type:

cms help aff listtime (form

 Chapter 6. Debugging Tasks 53

Displaying Information about Debuggable Program Units
Command used: LISTSUBS (page 154)

Most debugging activities, such as displaying variables, can be performed only on
program units that are considered debuggable by Interactive Debug. To be debuggable, a
program unit must be compiled with the SDUMP option. In addition, it must be in
storage at the time the VS FORTRAN Library is initialized.

Note: The reentrant part of a program unit compiled with the RENT option need not be
in storage at this time.

If you want to see which program units are debuggable, you can use the LISTSUBS
command.

The following is a sample of the output produced by LISTSUBS:

PROGRAM UNIT COMPILER OPT HOOKED TIMING
| MAINLINE VSF 2.3.� V2 YES ON

SUBBUILD VSF 1.4.� 3 NO OFF RENT NOT LOADED
SUBDOWN VSF (TEST) � YES OFF

In this example, we see that the program unit MAINLINE was compiled using VS
| FORTRAN Version 2, Release 3, identified as VSF 2.3.0, and SUBBUILD was compiled

with Release 4 of VS FORTRAN Version 1, identified as VSF 1.4.0. VSF (TEST) tells
us that SUBDOWN was compiled prior to VS FORTRAN Version 1 Release 4, and the
TEST option was specified. In this case, it is not possible to determine the VS
FORTRAN release level.

Notice that, for MAINLINE, the OPT column specifies V2. This indicates that
| vectorization was specified.

In the HOOKED column, "YES" means that hooks are installed at entry and exit points
and possibly at some or all statement boundaries as well. You can set breakpoints only
in program units that have hooks. The hook settings are controlled by the AFFON file.
"NO" in the HOOKED column indicates that no hooks are installed in the program unit.
The TIMING column indicates whether the TIMER command has been activated for each
program unit listed. This column may also be followed by an indication of the load
status for reentrant programs. In our example, SUBBUILD indicates RENT NOT LOADED,
meaning that the program unit has not yet been called, and has not been located (although
it may actually be in storage).

Referring to Statements or Variables in Other Program Units
Commands used: AT (page 109), LIST (page 141), LISTBRKS (page 145), QUALIFY
(page 173)

Programs often contain more than one program unit. A program unit is defined as a main
program, a function subprogram, or a subroutine subprogram. Each of these units has its
own set of variables, but variables in different program units may have the same names.

A similar situation exists with statement identification; two statements in different
program units may have the same statement label or be assigned the same ISN by the VS
FORTRAN compiler. On Interactive Debug commands that refer to statements or vari-
ables, you can specify the program unit as a qualifier (in the form of the program unit

54 VS FORTRAN Version 2 Interactive Debug Guide and Reference

name followed by a period). If no qualifier is specified in a command that references
statements or variables, Interactive Debug resolves these references using the current
program qualification.

The current program qualification is normally the program unit that is running (or in
which execution is suspended). However, you can change the current qualification by
issuing the QUALIFY command.

Note: Each time execution is resumed, Interactive Debug will reset the qualification to
the program unit currently running.

Displaying the Current Program Qualification
To see which program unit is currently qualified, enter the QUALIFY command with no
parameters:

qualify

The response will be something like:

QUALIFICATION IS MAIN

where MAIN is the name of the program unit.

Changing the Current Program Qualification
If the current qualification is MAIN, unqualified statement identifiers and variable names
will refer to statements and variables in MAIN. Issuing the command AT /10 will set a
breakpoint at the statement labeled 10 in MAIN. If your program has a subroutine (or
function) named SUB1 and you wanted to set a breakpoint in that subroutine, you could
do so by using an explicit qualifier. For example:

AT sub1./1�

You could also change the current qualification. For example:

qualify sub1

Now entering:

at /1�

sets a breakpoint at the statement labeled 10 in your subroutine SUB1. To check current
breakpoint settings, entering the LISTBRKS command:

listbrks

would produce output similar to that shown below.

CURRENT BREAKPOINTS:
 MAIN.25/1�
 SUB1.32/1�
CURRENT WHEN CONDITIONS:
 NONE
CURRENT HALT STATUS: OFF

Breakpoint settings are displayed for both the main program and the subroutine SUB1.

You can display all the variables in the currently qualified program unit with the LIST
command by entering:

list �

 Chapter 6. Debugging Tasks 55

To issue commands without explicit qualification that reference statements or variables in
MAIN, change the currently qualified program unit back to the main program by
entering:

qualify main

Now enter LIST * again to display all the variables in MAIN. If, on resuming execution,
the breakpoint you set in SUB1 was reached, the currently qualified program unit would
be set to SUB1. For example:

go
AT SUB1.32/1�
list �

would list all the variables in SUB1.

Qualifying Individual Variables
You can qualify individual variables without a QUALIFY command by preceding the
variable name with the name of the program unit that it belongs to and a period. For
example, you can refer to variable x from MAIN as:

main.x

You can refer to an array element data(10) from sub2 as:

sub2.data(1�)

When qualifying an array element with a symbolic subscript, remember to also qualify
the subscript. For example, to display array element data(i) from sub2 while execution is
suspended in MAIN, enter:

list sub2.data(sub2.i)

If you omit the second SUB2, and the current qualification is MAIN, Interactive Debug
will look for a value of I in MAIN. If it finds one, it will give you that element of
DATA instead of the one you want in SUB2. You must qualify each variable that is not
in the currently qualified program unit.

You can reference variables outside the currently executing program unit in any command
dealing with VS FORTRAN variables. For example:

list (a,b,sub1.alpha,sub2.beta,x,y,z)
set a=sub1.value
when over (sub1.rchg=5.)

Setting Breakpoints at Debugging Hooks
Command used: AT (page 109)

The AT command sets breakpoints at specific statements. Breakpoints can be set only at
statements that have debugging hooks. A hook gives temporary control to Interactive
Debug at a specific point within a program (usually at the beginning of an executable
statement).

For VS FORTRAN code compiled with the TEST option, debugging hooks are placed in
the object code by the compiler. For VS FORTRAN code compiled with the NOTEST
and SDUMP options, hooks are inserted into the object code by Interactive Debug at
debugging time.

56 VS FORTRAN Version 2 Interactive Debug Guide and Reference

When using the AT command, you can identify the statement either by its statement
number or by the statement label, if it has one. Normally, the statement number refers to
the Internal Statement Number (ISN) generated by the compiler (see “Statement Identifier
Conventions” on page 101 for more details). However, you can specify at compile time
that you want to use the sequence numbers in columns 73 through 80 as the statement
numbers for your debugging session instead of the ISNs.

As an example, assume that your main program has a write statement labeled 10 and that
the compiler has assigned an ISN of 6 to this statement. The listing might show:

ISN 6 1� WRITE(�,�) 'Example Program'

You can set a breakpoint at this statement by issuing either of the following two com-
mands:

at 6
at /1�

Statement labels are preceded with a slash to distinguish them from ISNs or sequence
numbers. Remember that, if no qualifier is specified, Interactive Debug uses the current
qualification to determine which program unit this statement is located in. (MAIN is
assumed here.) When the statement is reached, execution is suspended and the following
message is displayed:

AT: MAIN.6/1�

You may specify a list of statements or a range of statements with the AT command. For
example, the following command:

at (6 /15 14 3)

sets breakpoints at statement numbers 6, 14, and 3, and also at statement label 15, pro-
viding they are all executable statements and have debugging hooks.

at (6:/15)

sets breakpoints at every hooked executable statement between the statement whose ISN
is 6 and the statement labeled 15. Both statements specified in a range must be execut-
able, and the statement on the left must appear in the program before the statement on the
right.

Breakpoints cannot be set if optimization or vectorization causes the statement to be col-
lapsed. A collapsed statement is an executable source statement that occupies no object
code because of the effects of optimization or vectorization. (The code was either moved
to a new location, or eliminated.) For further explanation, see “Debugging Optimized and
Vectorized Code” on page 86.

If the statement is non-executable, you cannot set a breakpoint.

If you have specified statement ranges for one or more program units in the AFFON
control file, breakpoints can only be set in the specified statement ranges for those
program units. Multiple units and ranges can be specified. See chapters on full screen
mode, line mode, or batch mode for more information about specifying statement ranges
in your environment.

 Chapter 6. Debugging Tasks 57

You cannot suspend execution at the “trailer” statement following a logical IF under any
of these conditions:

� The trailer statement is a GOTO statement.
� Sequence numbers were used instead of ISNs.

Controlling Program Execution
Commands used: HALT (page 133), NEXT (page 164), OFFWN (page 167), WHEN
(page 202)

Note: The following section refers only to statements that have hooks. You cannot
suspend execution at a statement that does not have a hook.

You can suspend execution:

� At every executable statement
� At the next executable statement (without knowing which it is)
� At every apparent program branch
� At every entry to and exit from a program unit
� Whenever a user-defined condition is met
� Whenever a specific variable is modified

The HALT command allows you to suspend execution under certain specified conditions.
For example:

halt stmt

suspends execution at every executable statement. This allows you to single step through
your program, which can be helpful in finding errors related to the processing flow.

halt goto

suspends execution at every apparent program branch. Halting can occur for several
reasons, including a GOTO, a DO group, and an IF statement.

halt entry

suspends execution at every entry to or exit from a debuggable program unit.

The HALT command remains in effect until you cancel it with:

halt off

The NEXT command requests that execution be suspended at the next executable state-
ment. It is similar to the HALT STMT command, except that the NEXT command is
temporary and does not remain in effect after execution is suspended.

The WHEN command allows you to suspend execution every time a particular condition
is met. You define the condition and supply its name. Later you can refer to the condi-
tion by name without redefining it. With WHEN, you can monitor:

� An arithmetic relationship between two variables or between a variable and a con-
stant

� The status of a logical variable
� A change in the value of a variable

For example, to cause execution to be suspended when variable SMITH equals 30, define
a condition, such as the one below named RDS. (The name can be one to four alpha-
meric characters, the first character alphabetic.)

58 VS FORTRAN Version 2 Interactive Debug Guide and Reference

when rds (smith = 3�)

Execution is suspended at the first possible statement following the point at which the
condition becomes true. For example, if condition RDS was found to be satisfied at the
beginning of statement 46 in program unit MAIN, you would receive the following:

WHEN: "RDS" SATISFIED;
CURRENTLY AT MAIN.46

The first line tells you which condition was satisfied; the second tells you where exe-
cution is suspended. To detect when SMITH changes value, enter:

when rds smith

Notice that when you want to define a condition that monitors any change in the value of
a variable, the variable name is not enclosed in parentheses.

If the value of SMITH is continually being changed, and SMITH changes initially from 2
to 3, you are notified. If SMITH changes to 4, you are notified again.

Examples:

when rds1 (smith = md)

when rds2 (smith .lt. 4.7)

when rds3 (rich)

In the final example, RICH is a logical variable. In this case, you get control when
RICH is true. If the parentheses were omitted, you would get control whenever RICH
was modified.

Note: Interactive Debug cannot tell you exactly which statement changed the variable
being monitored. (It might have occurred in a section of code that has no debugging
hooks.) However, you can get a list of the last ten branches known to the debugger by
entering WHERE FLOW. This should help you deduce which statement actually caused the
change.

To turn off WHEN condition monitoring, use the OFFWN command. For example, to
turn off condition RDS, enter:

offwn rds

To turn off condition DJV along with condition RDS, enter:

offwn (djv,rds)

To stop all condition monitoring, enter:

offwn �

WHEN condition monitoring is not automatically turned off when a condition is satisfied.
If you do not want to continue monitoring the same condition, you must issue the
OFFWN command after the condition has been satisfied.

 Chapter 6. Debugging Tasks 59

If you want to reactivate a condition after it has been deactivated by an OFFWN
command, enter WHEN with the condition name. For example:

when rds

Using Command Lists
Command used: AT (page 109)

As part of an AT command, you can specify a list of commands to be run whenever a
breakpoint is reached. This allows you to conditionally suspend execution at a specific
statement or to specify a list of commands to be executed there. When you specify a
command list, you can control whether Interactive Debug will wait for a command, or
whether it will continue execution without the need for intervention.

In this example, the value of variable A will be displayed each time sequence number 10
is reached, and execution will then continue.

at 1� (list a %go)

This is useful for observing how the value of a variable changes in a loop. Here,
sequence number 10 could be at the end of a loop and the value of variable A would be
displayed at each iteration of the loop.

Note: The percent sign (%) is used to separate commands within the list.

To conditionally suspend execution at a particular statement, you can use the IF and
HALT commands within an AT command list. The HALT command will suspend the
execution of the command list. For example, entering:

at 1� (list (a,b) %if (a.lt.b) halt %go)

will cause execution to be suspended at sequence number 10 only if A is less than B.
Otherwise, the GO command will cause execution to continue. In either case, the values
of A and B will be displayed.

A command in an AT command list that causes execution to resume or halt will cause
the remainder of the command list to be ignored. In this example:

at /2�� (if (a=�) go /1� %if (b=�) go /1� %go /3��)

if the value of A or B is equal to 0, execution will resume at the statement labeled 10;
otherwise, execution will resume at the statement labeled 300.

The following commands cannot be used in a command list:

AUTOLIST MOVECURS RIGHT
COLOR POSITION SEARCH

| DOWN PREVDISP SIZE
| FIXUP PROFILE UP

HELP REFRESH WINDOW
| LEFT RESTART ZOOM
| LISTINGS RESTORE
| LISTSAMP RETRIEVE

60 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Displaying Data Types of Variables and Arrays
Command used: DESCRIBE (page 121)

To display the data types of variables and arrays, use the DESCRIBE command.
DESCRIBE also displays dimension information for arrays. This command can be useful
for checking the attributes of variables and arrays when it is inconvenient to search the
source listing for their declarations. It is particularly useful for displaying the dimensions
that were passed for dummy array arguments.

For example, to see the data type of the variable “a” in program unit “sub1,” enter this
command:

describe sub1.a

By entering an asterisk (*), you can request a display of the type of every variable in the
currently qualified program unit. To see a list of all the names in the current program
unit, with their data types, enter this:

describe �

Let's say you have a program that uses a mixture of variables and arrays, and you would
like to display the type of a specific group of them. You can specify the variables and
arrays in a name list, for example:

describe (i,k,sub2.dumchr,r8ary,sub2.r4dumy,l1aymn)

Possible output:

SUB3.I: INTEGER�4
SUB3.K: INTEGER�4 DUMMY
SUB2.DUMCHR: CHARACTER�(�) DUMMY
SUB3.R8ARY: REAL�8

RANK = 2, SIZE = 49 ELEMENTS
DIM 1: EXTENT = 7, LBOUND = (1), UBOUND = (7)
DIM 2: EXTENT = 7, LBOUND = (1), UBOUND = (7)

SUB2.R4DUMY: REAL�4 DUMMY
RANK = 3; DUMMY ARRAY ARGUMENT OF INACTIVE SUBPROGRAM OR

ALTERNATE ENTRY POINT;
DIMENSION INFORMATION NOT AVAILABLE

SUB3.L1AYMN: LOGICAL�1 DUMMY
RANK = 2, SIZE = � ELEMENTS
DIM 1: EXTENT = 5, LBOUND =(-2), UBOUND = (2)
DIM 2: EXTENT = �, LBOUND = (1), UBOUND = (�)

Figure 25. Sample DESCRIBE Output

Dummy arguments are identified by DUMMY in the right-hand column. The length of
DUMCHR could not be determined because it is a dummy argument in an inactive
program unit, so the length is displayed as CHARACTER�(�).

Dimension information is not available for R4DUMY. This information is never dis-
played for arrays that are dummy arguments in an inactive program unit, or that are
defined only when entered by some other entry point.

 Chapter 6. Debugging Tasks 61

L1AYMN is an assumed-size array. The upper bound for the last dimension of such
arrays is displayed as an asterisk (*), and the size is indicated as follows:

� ELEMENTS

| In full screen mode, DESCRIBE can be used as a cursor-sensitive command. For
| example, if the variable “A1” is displayed on the main debugging panel, you could type
| DESCRIBE on the command line, then position the cursor on “A1” and press ENTER.

Determining Statement Execution Frequency
Command used: LISTFREQ (page 146)

The LISTFREQ command displays the number of times each statement has been run.
For example, to see how often the statement whose statement number is 100 has been
run, enter:

listfreq 1��

You can specify a statement label or a statement number (an ISN or sequence number), a
list of statement labels or statement numbers (in parentheses), or a range of statements.
For example, to see how often each statement between sequence numbers 45 and 52 has
been run, enter:

listfreq 45:52

To list the number of times every statement in the currently qualified program unit has
been run, enter:

listfreq

Possible output:

STATEMENT FREQUENCY
MAIN.ENTRY NO HOOK
MAIN.EXIT NO HOOK
MAIN.14/8� 6
MAIN.15 6
MAIN.16 9�
MAIN.17 9�
MAIN.18 12
MAIN.19 9�
MAIN.2�/5� 9�
MAIN.21 6
MAIN.22 5

Figure 26. Sample LISTFREQ Output

The LISTFREQ output tells you which statements have debugging hooks. Those that do
will have an execution count in the FREQUENCY column; those that do not will be
identified as either COLLAPSED STMT or NO HOOK. COLLAPSED STMT indicates
that, because of optimization or vectorization, there is no code at this location. NO
HOOK indicates that the statement was not in the AFFON statement range list, or that it
is an ENTRY/EXIT to the main program unit.

62 VS FORTRAN Version 2 Interactive Debug Guide and Reference

You can also use LISTFREQ to list statements that have never been run. The
ZEROFREQ keyword is used to create such a list. The PRINT keyword can be added to
obtain a listing file or a print data set.

listfreq 11:74 zerofreq print

Interactive Debug will list to the print file all the statements between statement numbers
11 and 74 that have never been run.

 Program Sampling
Program sampling can help you identify the portions of your program that are using the
most CPU time, without using the resources required when using debugging hooks. The
information developed by program sampling can be displayed at your terminal using the
LISTSAMP command, or reported as printed output using the ANNOTATE command.

Initiating Program Sampling
Command used: ENDDEBUG (page 124)

You can initiate program sampling by issuing the ENDDEBUG command with the
SAMPLE option. This will cause Interactive Debug to interrupt your program's execution
periodically to collect sampling data. Data is collected for each statement of every
debuggable program unit and for each entry point in every nondebuggable program unit.
The sampling data is recorded in two counters for each of the statements and entry points,
as follows:

 � DIRECT counter

If the interruption occurs in the code of a debuggable program unit, the DIRECT
counter for the interrupted statement is incremented. If the interruption occurs while
the VS FORTRAN library is active, the DIRECT counter for the library entry point
is also incremented.

 � CALLED counter

If sampling is initiated with the CALLED option of ENDDEBUG, the CALLED
counter is incremented for each statement (or entry) included in the sequence of
calling program units that lead to the interrupted statement. In addition, if an I/O
operation is in process when an interruption occurs, the CALLED counter is incre-
mented for the statement (or entry) that requested the operation.

All interruptions that cannot be associated with any statement or entry are recorded in the
*UNKNOWN DIRECT counter. (In order to be properly identified, nondebuggable
modules must follow standard MVS linkage conventions.) This count is incremented if
an interruption occurs in a program that has no entry identifier or in system code ser-
vicing an asynchronous interrupt. The *UNKNOWN CALLED counter is incremented
when the save area chain cannot be successfully traced back to the main program.

An additional counter, *LIBRARY DIRECT, shows the sampling count for all VS
FORTRAN library modules, other than the mathematical functions and the Error Monitor.
This includes lower-level calls to system services. The *LIBRARY CALLED counter is
never incremented.

 Chapter 6. Debugging Tasks 63

Displaying Program Sampling Information
Commands used: ANNOTATE (page 105), LISTSAMP (page 149)

When your program has completed, you can view the program sampling statistics in three
ways:

1. Terminal display: Using LISTSAMP, you can display sampling counts either by
statement or program unit. Additionally, LISTSAMP allows you to list only those
statements or program units having the highest sampling counts, using the TOP(n)
option.

2. Printed output: Using ANNOTATE, you can copy the source listings to
AFFPRINT. Sampling data is added to the right of each statement and is summa-
rized by program unit. All program units and nondebuggable entries that were
encountered are included in the summary. Page number references are shown for
program units whose listings were annotated.

3. Bar chart: In full screen mode, you can overlay the source window with a bar chart
that displays the frequency or sampling data for each statement in the listing. You
control this feature by your choice of options for the ANNOTATE command, speci-
fying whether you want the bar chart to be in terms of “frequency” (total executions)

| or “sample” (timer interrupts). You can also overlay the frequency or sampling data
| with short vector REPORT(SLIST) messages in the source window.

The bar chart adjusts to the size of the window so that 100% would cover the full
width. On a seven color terminal, the bar charts are shown by simply changing the
color (reverse video is assumed). Otherwise, asterisks (*) are displayed.

The ANNOTATE and LISTSAMP commands provide options to let you display the
DIRECT counts, the CALLED counts, or the sum of the two (ALL) in your terminal or
printed output.

The following examples illustrate some forms of the ANNOTATE and LISTSAMP com-
mands. For more examples, please see pages 107 and 152.

1. Copy the source listing for SUB2 to AFFPRINT, annotating it with sampling infor-
mation.

annotate sub2

2. Overlay the source window with a bar chart showing the sum of the DIRECT and
CALLED counters.

annotate on all

3. Display a summary of the sampling counts for all program units.

listsamp � summary

Possible output:

64 VS FORTRAN Version 2 Interactive Debug Guide and Reference

PROGRAM SAMPLING INTERVAL WAS 1� MS; TOTAL NUMBER OF SAMPLES
 WAS 2698.
DIRECT SAMPLES:
 PROGRAM UNIT SAMPLES %TOTAL
 MAIN 9� 3.34 �
 INIT � �.��
 FUN1 177 6.56 �
 SUB1 752 27.87 ������
 S#QRT 61 2.26
 S#IN 4 �.15
 A#LOG 5 �.19
 �LIBRARY 16�9 59.64 ������������

Figure 27. Sample LISTSAMP Output for Programs

(MAIN, INIT, FUN1, and SUB1 are VS FORTRAN program units; S#QRT, S#IN,
and A#LOG are VS FORTRAN math library entry points; *LIBRARY contains the
counts of sampling occurrences in VS FORTRAN non-math library routines.)

4. Display the sampling counts for SUB1, including the CALLED counts. (Sampling
counts will include interruptions which occurred in the code of a statement as well as
in any lower-level routines called by the statement.)

listsamp sub1.� all

Possible output:

PROGRAM SAMPLING INTERVAL WAS 1� MS; TOTAL NUMBER OF SAMPLES
 WAS 2698.
SUM OF DIRECT AND CALLED SAMPLES:
STATEMENT SAMPLES %UNIT %TOTAL
 SUB1.ENTRY/EXIT 52 6.47 1.93
 SUB1.8 7 �.87 �.26
 SUB1.9 34 4.23 1.26
 SUB1.1� 561 69.78 2�.79 ����
SUB1.11/1� 146 18.16 5.41 �
 SUB1.12 4 �.5� �.15
 SUB1.13 � �.�� �.��

Figure 28. Sample LISTSAMP Output for Programs

Limitations of Program Sampling
1. Use of sampling will cancel any active timer interval at the start of execution (one

millisecond per timer interruption).

2. In CMS, the BLIP will be turned off during sampling.

3. Program performance will be slightly degraded due to the execution of sampling code
at each interrupt, one millisecond per timer interruption. Use of the CALLED option
executes additional code in order to trace back through the call chain.

4. Interruptions that occur in math library routines called by program units compiled
with NOSDUMP will be attributed to the program unit instead of the library routine.
You can eliminate this inaccuracy by recompiling with the SDUMP option.

5. The accuracy of the STIMER macro, used to provide periodic interruptions on VM
and MVS, is sensitive to system activity. Thus, sampling may occur less often than
the interval you specified in ENDDEBUG. If your CPU has the virtual interval timer
assist facility, and you are using CMS, you may be able to improve the timing
values. You can turn on this facility by issuing:

 Chapter 6. Debugging Tasks 65

SYSCMD CP SET ASSIST ON TMR

| 6. If you use the STIMER macro in your program, or a system service that uses
| STIMER, sampling will be discontinued. For example, SVC 99 on MVS uses
| STIMER in performing dynamic file allocation. (If you use VS FORTRAN dynamic
| file allocation, however, sampling will not be discontinued.)

Program Unit Timing
If you want to time one or more program units and then see the timing information
produced by Interactive Debug, use the TIMER and LISTTIME commands.

Initiating Program Unit Timing
Command used: TIMER (page 194)

The TIMER command turns timing on and off, or resets the activation count and time to
zero for a specified program unit. When you want to turn timing on for a program unit
named LR63, for example, you must issue the command:

TIMER LR63

Displaying Program Unit Timing Information
Command used: LISTTIME (page 156)

After your program has run, you can use the LISTTIME command to display timing
information. The following information is provided for each program unit and entry
point:

� Total time: total execution time.

� % total: percentage of total execution time.

� Invocations: number of invocations.

| � Average time: total time divided by the number of invocations.

The timing information is presented by entry point, although timing is controlled by the
program unit name. LISTTIME shows values only for those program units for which
timing has been turned on (using TIMER). To get a printed listing of the LISTTIME
information, enter the command:

LISTTIME PRINT

To see the information at your terminal, omit the PRINT keyword.

If you want to increase the accuracy of timing information for subroutines, you must
minimize the overhead caused by debugging hooks in your program. To do this, use the
AFFON file (page 43) to specify hooks only on entry and exit points. Your AFFON file
might look like this:

| (all) entry

| which will place hooks at entry and exit points of all program units.

Next use the TIMER command to turn timing on for the subroutine you are interested in.
If the subroutine calls any other routines, be sure to turn timing on for them also. If you
do not, the time spent in any called routines is included in the measurement for the
calling routine.

66 VS FORTRAN Version 2 Interactive Debug Guide and Reference

When you ask for your LISTTIME display, you should see a fairly accurate execution
time for that subroutine.

| Vector Tuning Assistance
| Interactive Debug can help you analyze and tune vectorized programs by:

| � Gathering vector length and stride information at run time

| � Summarizing sample counts by DO loop

| � Timing analyzable DO loops

| � Providing the capability of displaying a vector report source listing in the source
| window (full screen mode only)

| � Providing help on the vector report messages in the vector report source listing

| Program Information File
| Before Interactive Debug can gather vector tuning information, your program must have
| been compiled with the VECTOR(IVA) option. This causes the compiler to generate a
| program information file, which is needed by Interactive Debug to gather vector tuning
| information. The file contains information on DO loops and how they are vectorized,
| locations where hooks need to be placed to determine vector length and stride and DO
| loop timing, and compiler estimates of vector lengths and strides.

| Specify the program information file as an entry in the AFFON file (page 43).

| If a program information file is not specified for a program unit, or if a program informa-
| tion file exists but does not contain the necessary specifications, vector tuning information
| cannot be gathered on the program unit and an error will occur.

| DO Loop Analysis Hooks
| Interactive Debug places special hooks, called DO loop analysis hooks, into the code of
| your program to perform vector analysis. They differ from regular debugging hooks in
| that breakpoints cannot be set, and execution cannot be suspended at these hooks.

| By default, DO loop analysis hooks will be placed in every DO loop of every program
| unit compiled with the VECTOR(IVA) option, in addition to regular debugging hooks.
| The AFFON file can be used to restrict hooks to only DO loop analysis hooks, for
| improved execution performance and more accurate DO loop times.

 Chapter 6. Debugging Tasks 67

| For example, if your program contains a subroutine called MFPDIV, and you want to
| time a single DO loop at ISN 23, you can limit hooks to only DO loop analysis hooks for
| this loop by placing this in the AFFON file:

| mfpdiv 23 doloop
| (all) none

| If you restrict hooks to only DO loop analysis hooks, entry and exit debugging hooks will
| still be placed in the program unit. These hooks are required for Interactive Debug to
| function properly, but you may take advantage of them by setting breakpoints to display
| vector analysis results partially through the execution of the program, and, perhaps, to
| turn on and off the analysis of certain DO loops.

| For example, the following commands will set breakpoints at the entry and exit of sub-
| routine MFPDIV:

| at mfpdiv.entry (timer � doloop reset% go)
| at mfpdiv.exit (listtime � doloop% go)

| The breakpoint at the entry of the subroutine will reset DO loop times for the subroutine.
| The breakpoint at the exit of the subroutine will display DO loop times for that execution
| of the subroutine.

| Gathering Vector Length and Stride Information
| Commands used: LISTVEC (page 159), VECSTAT (page 200)

| Interactive Debug can record the average length and stride of vectors in a program at
| run-time, and display the averages as well as compiler estimates for length and stride.
| Averages are calculated over all executions of the loop where vector length and stride
| recording is active.

| The length of a vector is equivalent to the iteration count of the DO loop. Thus, the
| lengths of all vectors in one DO loop are equal. The stride of a vector is the distance
| between successive elements of a vector, in units of the array element size.

| Length and stride statistics can be gathered for all DO loops that were analyzable by the
| compiler. Refer to the VS FORTRAN Version 2 Programming Guide for a list of condi-
| tions that causes an unanalyzable loop.

| Run-time vector length and stride information can be used in several ways:

| � The average iteration count can be used in the ASSUME directive for DO loops
| whose iteration count could not be accurately determined at compile-time.

| � Average stride information can be used to restructure a DO loop to decrease vector
| strides. This improves data cache usage and thus the performance of the loop.

| � Length and stride information can be used to determine if a DO loop should or
| should not be vectorized. If the average iteration count of the loop is small, or the
| average stride of vectors in the loop is large, it may not be profitable to vectorize the
| loop. A PREFER directive can then be used to force or inhibit vectorization of the
| DO loop.

68 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| � Length and stride information can be compared to compiler estimates to verify that
| the compiler is using reasonable estimates for vector cost analysis.

| The VECSTAT command is used to activate, deactivate, or reset vector length and stride
| recording. The LISTVEC command is used to display average length and stride for
| vectors, recorded during execution, as well as compiler estimates for length and stride.

| Examples
| 1. Activate vector length and stride recording for all loops in a program:

| vecstat �.� on

| 2. List vector lengths and strides for all loops in program unit COPY_MATRIX:

| listvec copy_matrix.�

| Possible output:

| COPY_MATRIX.4:
| STATUS = ON
| TOTAL NUMBER OF EXECUTIONS = 33
| AVERAGE ITERATION COUNT = 1�
| ESTIMATED ITERATION COUNT = 1�
| STATEMENT ARRAY AVG STRIDE EST STRIDE
| S COPY_MATRIX.6 M1 1 1
| S COPY_MATRIX.6 M2 1 1
| COPY_MATRIX.5:
| STATUS = ON
| TOTAL NUMBER OF EXECUTIONS = 33�
| AVERAGE ITERATION COUNT = 1�
| ESTIMATED ITERATION COUNT = 1�
| STATEMENT ARRAY AVG STRIDE EST STRIDE
| S COPY_MATRIX.6 M1 1� 1�
| S COPY_MATRIX.6 M2 1� 1�

| Figure 29. Sample LISTVEC Output

| DO Loop Sampling
| Commands used: ENDDEBUG (page 124), LISTSAMP (page 149)

| Interactive Debug allows you to summarize sampling statistics by DO loop:

| � To initiate sampling, use the ENDDEBUG command with the SAMPLE option.
| Interactive Debug will remove DO loop analysis hooks as well as standard statement
| hooks before execution under ENDDEBUG.

| � To list sampling information, use the LISTSAMP command for DO loops.

| Example
| Display sampling statistics by DO loop for program unit DISPLAY_MATRIX:

| listsamp display_matrix.� doloop

| Possible output:

 Chapter 6. Debugging Tasks 69

| PROGRAM SAMPLING INTERVAL WAS 4 MS; TOTAL NUMBER OF SAMPLES WAS 269.
| DIRECT SAMPLES:
| DO LOOP SAMPLES %UNIT %TOTAL
| DISPLAY_MATRIX.6 84 1��.�� 31.23 ������
| DISPLAY_MATRIX.7 48 57.14 17.84 ����
| DISPLAY_MATRIX.15 7 8.33 2.6� �

| Figure 30. Sample LISTSAMP Output for DO Loops

| DO Loop Timing
| Commands used: LISTTIME (page 156), TIMER (page 194)

| DO loop timing allows you to measure the actual performance improvement gained from
| vectorizing a loop. You can time an analyzable DO loop before and after vectorization,
| and then use the PREFER compiler directive to force compilation of the most efficient
| form of the loop. (For information on the PREFER compiler directive, see the
| vectorization chapter in VS FORTRAN Version 2 Programming Guide.)

| Here is a suggested method:

| 1. Place PREFER SCALAR directives before the loops being analyzed, in the source
| file of the program.

| 2. Compile the program with the VEC option.

| 3. Create an AFFON file with an entry that will restrict hooks to only those needed to
| accurately time DO loops:

| (all) � doloop

| 4. Invoke the program with Interactive Debug using the AFFON file created.

| 5. Issue the following commands:

| timer � doloop
| go
| listtime �.� doloop print
| quit

| This will run the program, time all DO loops, write the times in the print file, and
| quit the debugging session.

| 6. Rename the print file (in order to run the program again without it being erased).

| 7. Place PREFER VECTOR directives before the loops being analyzed in the source file
| of the program.

| 8. Recompile the program.

| 9. Invoke the program again with Interactive Debug

| 10. Type in the same commands as in step 5 above.

| 11. Compare the DO loop timings in the two print files.

| Interactive Debug run time is included in the times for DO loops. It is proportional to
| the number of times a loop is executed, and so should be identical for two runs of the
| program with the same input data. Thus, times can and should be used for comparison
| only, not for absolute measures of performance.

| DO loop timing cannot be performed on unanalyzable loops.

70 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| Vector Report Source Listing
| The compiler generates a new source listing when REPORT(SLIST) is specified with the
| VECTOR compiler option. Interactive Debug uses this listing, when available, instead of
| the standard listing in the source window and in listing annotation with the ANNOTATE
| command. In full screen mode, the source window is overlaid with vector messages.

| To avoid getting duplicate information on the source listing, compile your program with:

| NOSOURCE VECTOR(REPORT(SLIST))

| On-line Help for Vector Messages
| Command used: HELP (page 135)

| Interactive Debug provides on-line help for vector messages contained in the vector report
| source listing.

| For example, to display information on vector message ILX0109I, type either of the fol-
| lowing:

| help ILX�1�9I
| help �9

| In full screen mode, you can also get information on vector messages by using HELP as
| a cursor-sensitive command. Simply type help on the command line, and point the cursor
| on the line displaying the vector message number, and press ENTER. Or, if you have set
| HELP to a PF key, point the cursor on the line displaying the vector message number,
| and press the specified PF key.

Tracing Program Execution
Commands used: TRACE (page 197), WHERE (page 205)

The TRACE command traces control transfers within your program as it executes. To
trace each entry to and exit from any subprogram as it occurs, enter:

trace entry

This produces output similar to the following:

TRACE: FROM MAIN.14 TO SUB1.ENTRY

To trace the origin and destination of every apparent branch within the program
(including entry to and exit from subprograms) listed by statement identifier, enter:

trace goto

This produces output similar to the following:

TRACE: FROM SUB1.15�/2� TO SUB1.21�/4�

If you don't need to examine your TRACE output right away, you can add PRINT to the
TRACE command and send the output to the print data set.

trace goto print

To stop tracing, enter:

trace off

 Chapter 6. Debugging Tasks 71

The WHERE command shows you the number of the statement at which execution is
suspended. This statement will normally be the one run next. For example, if MAIN
calls subroutine TAD at sequence number 150, but a breakpoint is set at sequence number
20 in TAD, a WHERE command produces:

WHERE: TAD.2�

WHERE has a TRBACK keyword that gives you a trace of the calls that got you to your
current location. For example, if your program MAIN calls subroutine TAD and exe-
cution is suspended, entering:

where trback

might produce the following:

WHERE: TAD.2�
TAD CALLED AT MAIN.15�

TRBACK output is limited to the transfers between debuggable program units.

WHERE also has a FLOW keyword that gives you a trace of the last ten program trans-
fers run. For example, if you specify the FLOW keyword:

where flow

you will receive output similar to that in Figure 31.

WHERE: MAIN.92 (WHERE response)
TO: MAIN.8� FROM: MAIN.85 (FLOW response, prev. branch)
TO: MAIN.65 FROM: MAIN.7� (Next most recent branch)
TO: MAIN.51 FROM: MAIN.53
TO: MAIN.49 FROM: MAIN.53 (Loop in MAIN)
TO: MAIN.49 FROM: MAIN.53
TO: MAIN.47 FROM: MAIN.4�
TO: MAIN.38 FROM: MAIN.2�
TO: MAIN.15 FROM: MAIN.1�
TO: MAIN.3 FROM: MAIN.1� (Loop in MAIN)
TO: MAIN.3 FROM: MAIN.1�

Figure 31. Sample WHERE Output

Note that Interactive Debug can only keep track of statements that have debugging hooks.
If there is a block of code that has no hooks, it appears to Interactive Debug as if there
was a branch from the statement before the block to the statement after it.

The PRINT keyword can be used to send WHERE information to the print data set. For
example, you can record the contents of a 100-element array, “ar,” at several points in
your program by issuing the following sequence of commands each time you want “ar”
recorded:

where print
list ar(1):ar(1��) print

This produces a record on your print data set both of the array “ar” and of the exact
program location where “ar” had that particular content. Issuing the GO command will
resume execution until the next break.

72 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Animating the Execution of Your Program
Command used: STEP (page 189)

| When you use the STEP command in full screen mode, Interactive Debug “animates” the
| execution of your program so you can watch the execution progress. The currently exe-
| cuting line is highlighted in the source window.

| The source, log, and monitor (if the AUTOLIST command was specified) windows are
| refreshed after each step of the program has been run. When the STEP command termi-

nates, or when execution is halted by some other means (such as breakpoints), animation
ends.

Controlling the Pace of Program Animation
Command used: PROFILE (page 170)

You can control the timing of animation by modifying the STEP DELAY field in the
profile panel. To change the value, enter the command PROFILE.

Displaying Formatted Variable and Array Values
Commands used: AUTOLIST (page 112), LIST (page 141)

Interactive Debug allows you to display the values of variables and arrays through the
LIST command. In full screen mode, you can use either the LIST command or the
AUTOLIST command. The difference between the two is that LIST displays values in
the log window, whereas AUTOLIST displays values in the monitor window. Also, as a
program runs and the value of a variable changes, AUTOLIST will reflect the change,
whereas LIST will not.

LIST can be used as a cursor-sensitive command in full screen mode.

To display the value of variable A, enter:

list a

To display the values of variables A, B, C, D, enter:

list (a,b,c,d)

Similarly, to display array elements ARY(1,1) through ARY(3,4), enter:

list ary(1,1):ary(3,4)

Output from the LIST command can be very long and you may not want it displayed at
the terminal. The LIST command has a PRINT keyword that sends its output to a print
data set.

list a(1):a(1��) print

The value of each variable in a LIST command is normally displayed in its correct VS
FORTRAN data type and precision: integer, real, complex, and so on. If you want to
display the values in a different format, you can use the FORMAT or DUMP keyword.
To display the hexadecimal values of some variables, enter:

list (a,i,n,r) format(x)

 Chapter 6. Debugging Tasks 73

To display the values as if they were character strings, enter:

list (a,i,n,r) format(a)

The DUMP keyword is similar to the FORMAT keyword, but shows the hexadecimal
storage location instead of the name. For example, to display the storage location and the
hexadecimal value of variable A, enter:

list (a) dump(x)

The FORMAT and DUMP keywords and codes are described in the reference section in
Table 3 on page 113.

Note: For the LIST command and other commands that allow array element references,
the subscripts must use simple arithmetic expressions no more complex than the form
“variable plus (or minus) a constant.” For example, the following are valid:

A(I), A(3), ARY(I+3) or ARY(I-3)

Handling Run-Time Errors
Commands used: ERROR (page 128), FIXUP (page 130)

Interactive Debug allows you to control the action taken when you encounter run-time
errors. The ERROR command allows you to specify whether to take corrective action or
to suspend execution when an error occurs. If you choose the latter, corrective action can
be specified by the FIXUP command. It also allows you to suppress the VS FORTRAN
library run-time error messages for specific errors.

 Identifying Errors
Initially, whenever a run-time error occurs, execution is suspended and VS FORTRAN
library run-time error messages are displayed. The ERROR command allows you to
change these initial error settings. ERROR uses the identification numbers from the VS
FORTRAN library to identify run-time errors. (You can find these error numbers in VS
FORTRAN Version 2 Language and Library Reference.)

 Examples
1. Cause corrective action to be taken and a full diagnostic message to be displayed for

error AFB215I.

error 215 noexit msg

2. Cause corrective action to be taken and suppress the diagnostic message.

error 215 noexit nomsg

After entering this command you will not be notified if error AFB215I occurs again.
You can change the error settings back to their original settings by entering any one
of the following commands:

error 215
error 215 exit
error 215 msg
error 215 msg exit

All these commands have the same effect because of keyword defaults.

74 VS FORTRAN Version 2 Interactive Debug Guide and Reference

3. Cause corrective action to be taken, and display full diagnostic messages for errors
AFB215I, AFB243I, AFB247I, and AFB289I.

error (215 243 247 289) noexit

4. Cause execution to be suspended and suppress diagnostic messages for errors
AFB215I, AFB216I, AFB217I, AFB218I, and AFB290I.

error (215:218 29�) nomsg

Note: When executing in Interactive Debug (except in batch mode), the VS FORTRAN
library does not update the run-time error occurrence counts; therefore, settings in the VS
FORTRAN Version 2 error option table that depend on these counts have no effect. This
permits unlimited occurrences of errors and messages regardless of the settings in the
error option table.

In batch mode, the error counts are updated and tested just as if running without Interac-
tive Debug.

Performing Corrective Action
When execution is suspended because of an error, Interactive Debug displays a message
like this:

ERROR EXIT: ERROR 243 AT MAIN.6/15

and waits for you to enter a command. You may not enter a GO command with a state-
ment identifier. Entering the FIXUP command with no arguments, or a GO command
with no statement identification, will cause standard corrective action to be taken and
execution to resume. If the error is caused by an incorrect value passed to a VS
FORTRAN library mathematical routine, you may use the FIXUP command to specify
corrected values to be used to recalculate the function.

With FIXUP, you can assign values to the first, second, or both arguments of a function.
The following examples illustrate some of the uses of the FIXUP command:

1. The function has been reevaluated using both arguments, and execution continues.

ERRMSG=> AFB241I FIXPI : INTEGER BASE=�, INTEGER EXPONENT=�, LESS THAN
ERRMSG=> OR EQUAL TO ZERO
ERRMSG=> FIXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM
ERRMSG=> MAIN AT ISN 44 (OFFSET ���954).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.
ERROR EXIT: ERROR 241 AT MAIN.44
IAD/E
fixup arg1(2) arg2(2)
INFMSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

Figure 32. Sample Use of FIXUP

2. A new value is given for the first argument (base) only; the second argument (expo-
nent) remains unchanged.

 Chapter 6. Debugging Tasks 75

ERRMSG=> AFB242I FRXPI : REAL�4 BASE=�.�, INTEGER EXPONENT = �, LESS
ERRMSG=> THAN OR EQUAL TO ZERO
ERRMSG=> FRXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM
ERRMSG=> MAIN AT ISN 51 (OFFSET ���99E).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.
ERROR EXIT: ERROR 242 AT MAIN.51
IAD/E
fixup arg1(2.�)
INFMSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

Figure 33. Sample Use of FIXUP

3. The function has been reevaluated by changing the second argument; the first argu-
ment is unchanged.

ERRMSG=> AFB244I FRXPR : REAL�4 BASE=�.�, REAL�4 EXPONENT= �.�������E
ERRMSG=> +��,LESS THAN OR EQUAL TO ZERO
ERRMSG=> FRXPR : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM MAIN
ERRMSG=> AT ISN 61 (OFFSET ���A�E).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.
ERROR EXIT: ERROR 244 AT MAIN.61
IAD/E
fixup arg2(1.�e)
INFMSG=> USER CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

Figure 34. Sample Use of FIXUP

4. The abbreviation F for FIXUP is used with no arguments. Standard corrective action
is taken. The same action would have been taken if GO had been entered instead.

ERRMSG=> AFB243I FDXPI : REAL�8 BASE=�.�, INTEGER EXPONENT = �, LESS
ERRMSG=> THAN OR EQUAL TO ZERO
ERRMSG=> FDXPI : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM
ERRMSG=> MAIN AT ISN 56 (OFFSET ���9D6).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.
ERROR EXIT: ERROR 243 AT MAIN.56
IAD/E
f
INFMSG=> STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.

Figure 35. Sample Use of FIXUP

To determine what standard corrective action is applied for a particular error or for more
information about mathematical functions and their arguments, see VS FORTRAN Version
2 Language and Library Reference.

Processing External Files
Commands used: BACKSPACE (page 116), CLOSE (page 117), ENDFILE (page 127),
GO (page 131), NEXT (page 164), RECONNECT (page 175), REWIND (page 180)

Interactive Debug allows you to manipulate external files used by a VS FORTRAN
program through a set of commands that are similar to corresponding VS FORTRAN
statements.

The BACKSPACE command positions a sequentially accessed external file at the begin-
ning of the previous record. For example:

76 VS FORTRAN Version 2 Interactive Debug Guide and Reference

backspace 8

positions the file connected to I/O unit 8 at the beginning of the last record written or
read, allowing it to be written or read again.

The REWIND command positions a sequentially accessed external file at the beginning
of the first record of the file. For example:

rewind 4

positions the file connected to I/O unit 4 at the beginning. This permits you to perform
I/O operations as though the file had just been opened. VS FORTRAN supports multiple
files under the same I/O unit. The REWIND command sets the VS FORTRAN file name
to the first in the sequence of files for the specified I/O unit. For example, if you were
currently processing file FT08F003 on I/O unit 8 and entered:

rewind 8

I/O unit 8 would be connected to file FT08F001, which would be positioned at the begin-
ning of the first record.

The ENDFILE command writes an end-of-file record on a sequentially accessed external
file. This causes subsequent I/O operations to be performed on the next file for the speci-
fied I/O unit. For example, if you are currently processing file FT05F001 on I/O unit 5,
entering:

endfile 5

causes subsequent I/O operations to be performed, using file FT05F002. If REWIND
were issued for I/O unit 5, the filename would be set back to FT05F001.

The CLOSE command disconnects an external file from an I/O unit. For example:

close 1

disconnects the VS FORTRAN file connected to I/O unit 1, allowing you to associate a
different file or data set with that I/O unit, if desired, or to examine the file contents
using an editor or browser.

The RECONNECT command resets a file to its original (preconnected) condition. For
example, if unit 8 has been closed, you can make it possible for the program to perform
additional I/O on unit 8 (without executing an OPEN) by issuing

reconnect 8

to reconnect unit 8 to file FT08F001. This is necessary only if the OCSTATUS run-time
option is in effect.

If you neglected to allocate a file that is needed by your program, you will receive an
error message when the program attempts to access that file. If the program is
debuggable and ERROR EXIT is in effect, you can recover from this condition by issuing
the following sequence:

NEXT
GO
SYSCMD ALLOCATE...(or FILEDEF...)
GO n

 Chapter 6. Debugging Tasks 77

where n is the statement identifier for the I/O statement. The ALLOCATE or FILEDEF
command must be completed as appropriate for allocating the required file. This proce-
dure will work whether or not the OCSTATUS run-time option is in effect.

Using System Commands
Command used: SYSCMD (page 191)

Use SYSCMD to issue a system command while debugging.

CMS Examples:

1. Begin processing a different file using I/O unit 8:

close 8
syscmd filedef 8 disk example data a

2. In line mode, view your VS FORTRAN source or listing file:

syscmd xedit example fortran a
syscmd type example listing a

3. Show which CMS files are currently defined:

syscmd filedef

TSO Examples:

1. Begin processing a different data set using I/O unit 8:

close 8
syscmd allocate file (ft�8f��1) da(example.data) reuse

2. In line mode, view your VS FORTRAN source or listing file:

syscmd edit example.fort
syscmd list example.list

3. Show which TSO data sets are currently allocated:

syscmd listalc status

Entering Terminal Input
Command used: TERMIO (page 192)

When a VS FORTRAN program attempts to perform any I/O to or from the terminal,
either the Interactive Debug I/O routines or the VS FORTRAN library I/O routines can
be used. The TERMIO setting determines which set of routines is used. Using the Inter-
active Debug routines gives you the advantage of being told which unit is being read, and
you have the ability to issue Interactive Debug commands while the read is pending. In
addition, when operating in full screen mode, the Interactive Debug routines remain in
full screen mode for the read or write.

When running in Interactive Debug, the initial TERMIO setting is IAD, specifying that
the Interactive Debug routines should be used for terminal I/O. The TERMIO command
allows you to change the setting to either IAD or LIBRARY or to display the current
TERMIO setting. When the option selected is LIBRARY, all terminal I/O is performed
in line mode in the same manner as when Interactive Debug is not active.

78 VS FORTRAN Version 2 Interactive Debug Guide and Reference

When running in batch mode on MVS, no actual terminal is available. However, the
DEBUNIT run-time option may be used to specify that certain I/O units are to be treated
as if they were allocated to the terminal. These units then come in the control of
TERMIO. For details about using DEBUNIT, see VS FORTRAN Version 2 Programming
Guide.

When the TERMIO setting is IAD and your program attempts to read from the terminal,
the following message is displayed:

FT�5F��1 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND

where FT05F001 indicates the VS FORTRAN file being read. (In full screen mode,
“IAD/R” will also be displayed, in the upper left corner of the main debugging panel.)

When this message is displayed, you may either:

� Issue a debugging command (other than STEP, GO, or ENDDEBUG).

� Enter the requested input, prefaced with a percent sign (%).

The percent sign is not passed to the VS FORTRAN program. For example:

FT�5F��1 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND
%743

inputs the number 743 to your program. Alternatively, you could have first determined
which statement in your program was issuing the read, as follows:

FT�5F��1 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND
where
WHERE: MAIN.1�
FT�5F��1 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND
%743

When the TERMIO setting is IAD:

� The leading and trailing percent signs are removed before the input is sent to the VS
FORTRAN program (the trailing percent sign is not required). Whenever you want
to include a percent sign as part of your input, you must include a trailing percent
sign. For example, to input the string 55% to a VS FORTRAN program, enter:

%55%%

To enter two percent signs (%%), enter:

%%%%

� To signify an end-of-file from the terminal, use two percent signs. For example:

%%

� All terminal input is padded on the right with blanks to the LRECL of the terminal
file.

� All terminal input is converted to uppercase. To avoid this in environments that
support mixed-case input, use the TERMIO LIBRARY setting.

� Both Interactive Debug commands and terminal input can be continued on suc-
ceeding lines by ending each continued line with a hyphen (-). For example:

FT�5F��1 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND
% hello, this input line is -
broken across two lines.

 Chapter 6. Debugging Tasks 79

� In ISPF, leading blanks are stripped from the beginning of all continuation lines. To
avoid this, precede the continuation line with a single quotation mark ("). The quota-
tion mark will not be passed to the program. For example:

FT�5F��1 INPUT: PRECEDE INPUT WITH % OR ENTER IAD COMMAND
% hello, this input line is -
" broken across two lines.

� The maximum length of an input line is 151 characters. In CMS and TSO line
mode, any input longer than this is truncated.

� When this limit is exceeded in full screen mode, a message is displayed and the input
is ignored.

� All output written from your program to the terminal is shown in the log, preceded
by the name of the VS FORTRAN file it was written to, and is broken into lines that
are 60 characters long.

Continuing Execution without Further Debugging
Command used: ENDDEBUG (page 124)

When you complete debugging and want to finish execution of the program, use the
ENDDEBUG command. This command discontinues communication between the
program and Interactive Debug until the program terminates. Use ENDDEBUG only
when you are certain that further debugging is not required.

Using ENDDEBUG causes the program to run as if the DEBUG run-time option had
never been specified, except that attention interrupts are possible, and Interactive Debug
will be reentered at termination.

After ENDDEBUG has been issued, all terminal I/O is handled by the VS FORTRAN
library I/O routines (as if TERMIO LIBRARY had been issued).

In addition, the VS FORTRAN library begins updating the occurrence count for run-time
errors. All error handling is determined by settings in the VS FORTRAN Version 2 error
option table. The error summary displayed when the program terminates reflects only
errors occurring after ENDDEBUG was issued. WHERE information is not available.

When the program terminates after issuing an ENDDEBUG command, you may issue
Interactive Debug commands. However, commands such as LISTFREQ and LISTTIME
will display only the information that was current when ENDDEBUG was issued.

80 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Attention interrupts (page 85) can still be used to interrupt the program after
ENDDEBUG is issued; however, no program information is available at that time. To
resume execution after an attention interrupt, enter a null line. The only command
allowed while in an attention exit after ENDDEBUG has been issued is QUIT, which
terminates the program execution. You can then list the values of variables or issue other
commands that do not require program execution.

 Chapter 6. Debugging Tasks 81

82 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Chapter 7. Special Considerations When Using
Interactive Debug

This section discusses debugging tasks that are more specialized than those discussed in
the previous chapter:

� Recognizing some common errors when setting up a debugging session

� Issuing commands after a program has run

� Handling loops in nondebuggable program units

� Specifying the default run-time options

� Monitoring floating-point equalities

� Referring to unused FORTRAN variables

� Entering commands in an attention-interrupt exit

� Debugging optimized and vectorized code

� Improving program performance while debugging

| � Using Interactive Debug double-byte data support

For conventions when using any Interactive Debug command with statement labels or
statement numbers, see “Statement Identifier Conventions” on page 101.

Recognizing Common Errors in Setting up a Debugging
Session

If you try to begin a debugging session without success, or if you try to debug a program
unit that Interactive Debug considers nondebuggable, look through the following list of
common errors to find a possible solution:

 Chapter 7. Special Considerations When Using Interactive Debug 83

Problem Solution

All program units are
nondebuggable.

Check your AFFON file (page 43) for incor-
rectly coded AFFON entries.

Insure that the AFFON file matches the
program being run. Make the necessary cor-
rections and try again.

One or more program units are
nondebuggable.

Check to see whether the program unit was
compiled without SDUMP, or was compiled
with a FORTRAN compiler level that is not
supported. If so, recompile the program unit.

Interactive Debug is not loaded and
a debugging session is not initial-
ized.

Be sure you have specified the DEBUG run-
time option, or have taken steps to override
the default option.

Be sure you are running your program with a
level of the VS FORTRAN library that sup-
ports Interactive Debug. If a program was
link-edited with an older library, re-link-edit
it with the current library.

In ISPF, you receive the message
“LOG FILE NOT FOUND,” and
Interactive Debug never runs.

Be sure that the VS FORTRAN Version 2
libraries are accessible and that you have
allocated the FT06F001 file, then rerun the
program. Also be sure you have allocated
enough storage.

Issuing Commands after a Program Runs
The following commands cannot be issued after your program runs:

Table 2. Commands which cannot be issued after program runs

AT
ENDDEBUG
ERROR
FIXUP
GO

HALT
IF
NEXT
OFF
OFFWN

RECONNECT
STEP
TIMER
TRACE
WHEN

Handling Loops in Nondebuggable Program Units
Many programs may contain units that cannot be debugged. These may be subroutines
coded in some language other than VS FORTRAN Version 1 or VS FORTRAN Version
2, a VS FORTRAN module that is not debuggable, and so forth. It is possible for exe-
cution to get caught in a loop in such a nondebuggable program unit. When this
happens, the only way to suspend the program is by issuing an attention interrupt, and the
only accepted command that will affect program execution is QUIT. When QUIT is
entered following an attention interrupt, Interactive Debug terminates the program and
allows you to list the values of variables or issue other Interactive Debug commands that
do not require further execution. When QUIT is issued again, the debugging session is
terminated.

84 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Specifying Default Run-Time Options
You may occasionally need to use a program compiled with a compiler other than VS
FORTRAN (COBOL, for example), which then invokes a VS FORTRAN program.
However, when you have no FORTRAN main program to accept a parameter, there is no
way to explicitly specify DEBUG or any other run-time option. One way to solve this
problem is to override the normal VS FORTRAN default options by including a local
parameter specification module (AFBVLPRM) when you link-edit your module, or by
using a customized library containing a global parameter specification module
(AFBVGPRM). You can create either a local or a global parameter specification program
by assembling a small program that invokes a macro supplied with the VS FORTRAN
Version 2 library. For details, see VS FORTRAN Version 2 Programming Guide.

Monitoring Floating-Point Equalities
Requesting Interactive Debug to monitor equal conditions for floating-point numbers
requires caution. Equality comparisons are performed on a bit-by-bit basis. Numbers
may appear to be equal in a program designed to be insensitive to minor differences, but
may differ by a single bit and not be considered equal when compared by Interactive
Debug. Because only simple relations are supported, there is no way to monitor equality
to a given precision. See “WHEN” on page 202 for more information.

Referring to Unused VS FORTRAN Variables
If you define a variable in your VS FORTRAN program without assigning an initial
value, and never refer to it in your program, no storage is allocated for the variable and it
does not appear in the symbol table used by Interactive Debug. If you try to refer to the
variable in your debug session, you will get an error message stating that the variable
does not exist.

Therefore, if there are VS FORTRAN variables that you may want to reference in Inter-
active Debug but which are not referenced in the VS FORTRAN program, you should
assign initial values to them.

Entering Commands in an Attention-Interrupt Exit
You can interrupt processing in full screen or line mode by issuing an attention interrupt
signal. You can use this signal to gain control if your program appears to be looping, or
if an Interactive Debug command is producing excessive output.

The way you issue an attention interrupt signal varies with the operating system and with
the type of terminal. A line mode terminal typically has a BREAK key, or one marked
ATTN. On a 3270-type terminal, you can use the PA1 key. In VM, pressing ENTER
may signal attention.

When you enter an attention interrupt, Interactive Debug issues the attention prompt
(IAD/A), and temporarily suspends your program. Your program is now in an attention
exit. You can either:

� Enter a null line, which will cause execution to continue. (You will leave the atten-
tion exit.)

� Enter an Interactive Debug command.

 Chapter 7. Special Considerations When Using Interactive Debug 85

� Enter QUIT, which will terminate your program. (However, you will still have a
chance to issue any Interactive Debug command that is valid after program termi-
nation.)

If you issue any of the following commands while in an attention exit, the command will
be run and you will remain in the attention exit:

PURGE To terminate excessive output, such as from a LIST command.

WHERE To identify the last statement that was begun in a debuggable
program unit (parameters are not honored).

NEXT To request a pause at the next executable statement in a debuggable
program unit. However, if your program is looping in a
nondebuggable program unit, you may never get back to a
debuggable unit.

* or " (comment) To enter a comment. (However, the comment will not be logged.)

If you issue a QUIT command while the program is executing, the program will be termi-
nated and Interactive Debug will accept debugging commands that are not related to exe-
cution.

If you issue any other non-fullscreen Interactive Debug command while the program is
executing, the command will be saved, the attention routine will be exited, and execution
will continue. The saved command is deferred until an executable statement in a
debuggable program unit is reached (which may not happen). Note that if the program is
looping in a nondebuggable routine, the saved command will never be run. Full screen
commands cannot be issued from an attention exit.

Debugging Optimized and Vectorized Code
Interactive Debug allows you to debug VS FORTRAN Version 2 programs compiled with

� Optimization: compiler option OPTIMIZE(0), OPTIMIZE(1), OPTIMIZE(2), or
OPTIMIZE(3)

| � Vectorization: compiler option VECTOR (or VEC)

| Vectorization requires either optimization level 2 or 3, so debugging vectorized code
always involves debugging optimized code.

Debugging is least complicated for programs compiled at optimization level 0 with no
vectorization. Optimization level 0 provides object code that most closely follows the
source code, so a bug found in the executing object code can be most easily and directly
traced to its corresponding source statement.

Debugging optimized or vectorized programs may be necessary, but it requires careful,
informed interpretation of the results. You must recognize certain actions taken by the
compiler for vectorization, and for the different optimization levels. These actions are:

Register optimization: Retaining values in registers instead of in storage.

Common expression elimination: Eliminating duplicated instructions by retaining sub-
expression values for later use.

86 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Strength reduction: Replacing an operation by a faster one to improve execution of
DO-loops.

Code motion: Altering the placement of calculations, usually by moving instructions
from inside a loop to outside

Vectorization: Running certain computations in DO-loops with vector instructions rather
than scalar instructions.

Interactive Debug will not be able to counter all the effects of optimization or
vectorization, but will issue a warning message to inform you that optimized or
vectorized code is being debugged. These messages are issued at your first attempt to
reference a variable in an optimized or vectorized program unit. Rather than appearing
every time an affected command is used, such messages appear only once for each
program unit.

If you must debug optimized or vectorized code, you can determine how optimization or
vectorization has affected your program by looking at the listing and vector report.

 Optimization Examples
Constant Propagation: Constant propagation is a calculation done at compile time.
The pre-calculated results are used at run-time. For example:

II = 1�
JJ = II is replaced by JJ = 1�

Results may be unexpected when you change the value of II at a breakpoint and later
look at the value of JJ.

Common Expression Elimination: Common expressions are those in which the
result of a calculation is available because of a previous calculation. In the example
below, the calculation J + K is performed twice:

2� M = J + K
21 II = 1�
22 JJ = J + K can be replaced by JJ = M

Note the opportunity for unexpected results when you change the value of J or K while at
ISN 21. Because the recalculation of the common expression J+K has been eliminated,
JJ will be equal to M, not the new sum of J + K. If there is a breakpoint set at ISN 21
and the value of K is altered, it will have no effect on the value assigned to JJ.

Backward Movement: If the variables involved in an expression are not changed in a
loop, it may be possible to move an expression outside of the loop. In the example
below, A = B could be moved out of the loop:

2� X = Y
21 DO 1� I = 1,1�
22 ARR(I) = ARR (I) + I
23 A = B
24 1� CONTINUE
25 WRITE(6,�) X,A

 Chapter 7. Special Considerations When Using Interactive Debug 87

The program then becomes:

2� X = Y
21 A = B

DO 1� I = 1,1�
22 ARR(I) = ARR (I) + I
23
24 1� CONTINUE
25 WRITE(6,�) X,A

The optimizer recognizes that both A and B are loop invariant, and the computation can
therefore be moved outside the loop. Note that ISN 23 is still there, but is empty, or
“collapsed.” An attempt to set a breakpoint at ISN 23 would result in an Interactive
Debug error message.

Strength Reduction: Strength reduction replaces one operation by a faster one to
improve execution of DO loops.

Let's assume that elements of an array such as ARR, in the example below, are 4 bytes
long.

21 DO 1� J = 1,1�
22 ARR(J) = ARR(J) + B
23 1� CONTINUE

Since each element is 4 bytes long, the subscript J must be internally multiplied by 4 to
obtain the proper offset from the start of the array. The addresses of elements in this
array actually increase in steps of 4, rather than in the steps of 1 implied by the DO loop.
Thus, the offset takes on values of 4, 8, 12, and so on, as the subscript J takes on values
of 1, 2, 3, and so on.

Strength reduction replaces one operation (in this case, the internal multiplication) by a
faster one (in this case, addition). The loop code generated for the loop would contain
instructions to add 4 to each iteration of an internally maintained offset, rather than
keeping the subscript J and multiplying it by 4 on each iteration.

If strength reduction occurred in the example above and you set a breakpoint at the state-
ment following CONTINUE to display the value of J, the value would be 1. This is a
misleading value. J is never really used in the optimized loop. A compiler-generated
temporary is used instead to calculate the offsets.

Global Register Assignment: Global register assignment is another way to improve
the generated code. The example below illustrates the principle involved.

21 DO 1� I = 1,1�
22 J = J + I
23 1� CONTINUE

results in machine code that performs these actions:

load 1 into a register
store register at I

� add register to J
add 1 to register
compare register contents with 1�
branch (to �) if compare is less than or equal
store final value at J

88 VS FORTRAN Version 2 Interactive Debug Guide and Reference

This is not an exact representation of the machine code, but illustrates the principle of
register assignment. Instructions that use registers are faster than instructions that refer-
ence storage. For the duration of this loop, I is assigned to a register.

If you were to set a breakpoint at ISN 22 and display the variable I, the value would be
1.

If a program works correctly at OPT(0) and fails when optimized at a higher level, check
for uninitialized variables. Frequently, a variable kept in storage at OPT(0) is assigned to
a register under OPT(3). This is only one of the effects of debugging an optimized
program.

 Vectorization Examples
Grouping of Data Elements: When a DO-loop is vectorized, individual loops that
operate on single elements are modified to produce less-frequently run loops that operate
on groups of elements. When you try to set a breakpoint at a particular statement in a
program unit that has been vectorized, you may find that the loop index and/or the con-
tents of storage have unexpected values. For example, examine the following code:

1 REAL A(1��), B(1��)
2 DO 2 K = 1, N
3 2 A(K) = B(K)

The single loop in the above example may actually look like this in the vectorized code:

DO 2 K = 1, N, Z
DO 2 KK = K, K+MIN(N-K,Z-1)

2 A(KK) = B(KK)

where Z is the size of the group, and the inner “loop” is actually performed by vector
instructions.

After vectorization, the single loop over individual elements becomes a loop over groups
of elements. This loop contains a second “conceptual” loop, run in vector instructions,
over elements in the group.

The original statement labeled “2” (ISN 3) no longer exists. It has been placed under
ISN 2 in a different form. If you try to set a breakpoint there, Interactive Debug may
issue a message saying that it cannot find the statement.

Statement Reordering: To vectorize certain loops, the order of execution of state-
ments may have to be modified. When you later try to debug a statement in this loop,
you may find that it doesn't appear where you expected to find it.

For example, you may have coded the following:

1 DIMENSION A(1��),B(1��),C(1��)
2 DO 5�� I = 2,1��
3 A(I) = B(I-1) � 3.�
4 B(I) = C(I) � 3.�
5 5�� CONTINUE

 Chapter 7. Special Considerations When Using Interactive Debug 89

But your vector report listing after vectorization may look like this:

ISN FLAG NESTING �....�...1.........2.........3.........4....
___ ____ _______
���1 DIMENSION A(1��),B(1��),C(1��)
���2 VECT +------- DO 5�� I = 2,1��
���4 | B(I) = C(I) � 3.�
���3 |_______ A(I) = B(I-1) � 3.�

| In this case, ISNs 3 and 4 have swapped positions. They have been placed under ISN 2
in a different form. You will not be able to set breakpoints at these statements.

Loop Distribution: During vectorization, statements coded within a single DO loop
are sometimes distributed to separate loops during vectorization.

For example, if you code this loop:

1 REAL A(2��), B(2��)
2 DO 2� I = 2,1��,2
3 A(I) = A(I) + 2
4 B(I+2) = B(I) + 2
5 2� CONTINUE

your vector report listing might look like this after vectorization:

ISN FLAG NESTING �....�...1.........2.........3.........4....
+___ ____ _______
���1 REAL A(2��),B(2��)
���2 VECT +------- DO 2� I = 2,1��,2
���3 |_______ A(I) = A(I) + 2

���2 SCAL +------- DO 2� I = 2,1��,2
���4 |_______ B(I+2) = B(I) + 2
���6 END

You will not be able to set breakpoints inside the original loop. If you attempt to debug
statements within the original loop, you will find that ISNs 3, 4, and 5 have disappeared.
They have been placed under ISN 2 in a different form.

Commands Affected by Optimization and Vectorization
The following Interactive Debug commands may produce unexpected or inaccurate results
when used in debugging optimized or vectorized code.

AT: If you use AT on a statement that has been moved or completely eliminated due to
vectorization or optimization, Interactive Debug will issue a message telling you that no
breakpoint can be established at that statement.

AUTOLIST: If you use AUTOLIST on an optimized or vectorized program, it is pos-
sible that the current value of a variable, or of an array element, is only in a register. As
a result, what is displayed by the AUTOLIST command may not be the current value of
the variable or variables.

GO: If you use GO on a statement identifier in an optimized program, you will receive
a message indicating that results are unpredictable, and requires your confirmation before
proceeding. The VS FORTRAN Version 2 optimizer produces code assuming that the
possible paths through a module are known—for example, that a sequence of ten assign-
ment statements will always be run in order. Based on this assumption, a register may be
loaded once at the beginning, and used by subsequent statements without being reloaded.
If you issue a GO command referring to a statement in the middle of that sequence, you

90 VS FORTRAN Version 2 Interactive Debug Guide and Reference

may be bypassing code that causes an important register to be loaded. Results are unpre-
dictable when a statement using that register is subsequently run.

IF: If IF is used to examine the value assigned to a variable, results may be unpredict-
able if the value is being kept in a register.

LIST: If LIST is used on an optimized or vectorized program, it is possible that the
current value of a variable, or of an array element, is only in a register. As a result, what
is displayed by the LIST command may not be the current value of the variable or vari-
ables.

LISTFREQ: The LISTFREQ command lists statements even though they may have
been removed or relocated due to optimization or vectorization, but indicates that these
are “collapsed statements” in the “frequency” field. Execution counts cannot be main-
tained for these statements.

SET: The SET command alters the contents of a storage location assigned to a variable
by the compiler. However, optimized or vectorized code may not be using this storage
location to contain the current value. Even if the optimized or vectorized code has stored
the value in this location, VS FORTRAN Version 2 may use a copy of the register value
or values (without reloading it from storage) for the next use of the variable. Further-
more, subsequent instructions may store the values from the registers into storage, thereby
overwriting the value just stored by the SET command. Under either of these circum-
stances, changing the value in storage will not have the desired effect.

WHEN: The WHEN command uses the storage value of a variable, and may not
produce correct results if the value is being kept in a register.

 Warning Messages
On the first AUTOLIST, IF, LIST, SET, or WHEN command in any program unit com-

| piled with OPT(1), OPT(2), or OPT(3), or with VECTOR, a warning message will
appear, stating that the program unit contains optimized or vectorized code. Subsequent
commands involving the same unit will not result in further messages.

Improving Program Performance while Debugging
When you debug a program with Interactive Debug, the program runs slower. This is
because Interactive Debug checks every statement boundary for breakpoints or other con-
ditions.

This is especially true when you are debugging a program that runs many simple VS
FORTRAN statements, with debugging hooks at all (or most) of them.

Ways to Improve Performance
If you find performance seriously affected when running in Interactive Debug, there are a
number of things you can do to improve it.

� Limit the amount of input to be processed.

� Limit the number of program units being debugged at one time. The include file
(AFFON) can be used to specify which program units you want to debug, allowing
the rest to run at full speed. This is especially important if some subroutines are
called often. You can debug some of the program units in one debugging session,

 Chapter 7. Special Considerations When Using Interactive Debug 91

and others in another debugging session. For more information on AFFON, see page
43.

� Insert only entry/exit hooks in heavily run subroutines. This may be all you need to
decide whether the subroutine is incorrectly changing a variable, for example. If you
find that such a subroutine is producing errors, you may be able to use the AT
command with a command list to temporarily generate correct values while you are
debugging other subroutines. Later, you can restart the debugging session with a
different AFFON file and concentrate on the other subroutines that are generating
incorrect results.

� Avoid putting hooks in heavily run code, especially if it consists of many simple
statements. Use the include file (AFFON) to specify which parts of each program
unit are to have hooks inserted in them.

| Using Interactive Debug Double-byte Data Support
| After you specify the command DBCS YES (page 120), you can:

| � Specify double-byte data in Interactive Debug commands that contain symbolic
| names or character data as parameters.

| Mixed character data, or data that contains single-byte and/or double-byte data, is
| supported. Double-byte data is enclosed by shift-in (X'0F') and shift-out (X'0E')
| characters.

| If a command containing double-byte data cannot fit on one input line, it can be
| continued on additional lines in the usual way; specify a single-byte dash (-) as the
| last non-blank character in the line. If the character immediately preceding the dash
| is a shift-in character and the first character of the next line is a shift-out character,
| then the shift-in/shift-out pair will be removed.

| � Display a source listing containing double-byte data in the source window (full
| screen mode only)

| If the DBCS YES command is not specified, double-byte data will not be correctly inter-
| preted and displayed.

| A valid double-byte character consists of two bytes, each of which is in the range of
| X'41' to X'FE', except for the double-byte character blank, which is represented by
| X'4040'.

92 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Chapter 8. A Sample Debugging Session

This section will acquaint you with some of the basic concepts and commands of Interac-
tive Debug through a sample line mode debugging session.

1. Type in the following program:

@PROCESS
 PROGRAM SAMPLE
 INTEGER A1(1�),A2(1�),A3(1�)

| DO 2� I=1,1� ! Assign values to elements
| A1(I)=I+1 ! in arrays A1 and A2

 A2(I)=I-1
2� CONTINUE

CALL DIVIDE (A1,A2,A3)
| DO 4� J=1,1� ! Write out contents of
| WRITE (6,3�) J,A3(J) ! array A3
| 3� FORMAT (5X,'A3(',I2,')=',I5)
| 4� CONTINUE

 STOP
 END
@PROCESS

| SUBROUTINE DIVIDE (DIVEND,DIV,RES) ! Divide every element in
| INTEGER DIVEND(1�),DIV(1�),RES(1�) ! A1 by the corresponding
| DO 1� I=1,1� ! element in A2, put result
| RES(I)=DIVEND(I)/DIV(I) ! in array A3

1� CONTINUE
 RETURN
 END

Figure 36. Sample VS FORTRAN Version 2 Program

2. Compile the program with the SDUMP and OPT(0) options.

3. Run the program with the DEBUG option.

The following figure shows how the compiler listing for the SAMPLE program might
appear. During the debugging session, this listing will be useful for determining
statement identifiers for breakpoints. A statement identifier can be an ISN, a
sequence number in columns 73 through 80, or a statement label.

The compiler assigns a number known as the internal statement number (ISN) to
each statement in the program. For example, the first executable statement in
Figure 37 has an ISN of 3. To reference that statement in an Interactive Debug
command, you would normally use this ISN. You can use a qualifier to distinguish
ISNs with the same number in different program units.

However, if you specify SDUMP(SEQ) when you compile your program, refer to the
sequence numbers in columns 73 through 80 instead of the compiler-generated ISNs.

Statements that have a user-specified statement label in columns 1 through 5, such as
the CONTINUE statement in program SAMPLE, can also be referenced by that state-
ment label. When a statement label is used, the number must be preceded by a slash
(/). The CONTINUE statement in SAMPLE may be referenced as /2� as well as 6.

 Chapter 8. A Sample Debugging Session 93

| LEVEL 2.3.� (MAR 1988) VS FORTRAN OCT 16, 1987 13:21:5� PAGE: 1
| REQUESTED OPTIONS (EXECUTE): SDUMP OPT(�)
| REQUESTED OPTIONS (PROCESS):
| OPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NOSYM NORENT
| SDUMP(ISN) NOSXM NOVECTOR IL(DIM) NOTEST NODC NOICA NODIRECTIVE NODBCS NOSAA
| OPT(�) LANGLVL(77) NOFIPS FLAG(I) AUTODBL(NONE) NAME(MAIN) LINECOUNT(6�) CHARLEN(5��)
| IF DO ISN �....�...1.........2.........3.........4.........5.........6.........7.�.......8
| 1 PROGRAM SAMPLE
| 2 INTEGER A1(1�),A2(1�),A3(1�)
| 3 DO 2� I=1,1� ! Assign values to elements
| 1 4 A1(I)=I+1 ! in arrays A1 and A2
| 1 5 A2(I)=I-1
| 1 6 2� CONTINUE
| 7 CALL DIVIDE (A1,A2,A3)
| 8 DO 4� J=1,1� ! Write out contents of
| 1 9 WRITE (6,3�) J,A3(J) ! array A3
| 1 1� 3� FORMAT (5X,'A3(',I2,')=',I5)
| 1 11 4� CONTINUE
| 12 STOP
| 13 END
| �STATISTICS� SOURCE STATEMENTS = 13, PROGRAM SIZE = 956 BYTES, PROGRAM NAME = SAMPLE PAGE: 1.
| �STATISTICS� NO DIAGNOSTICS GENERATED.
| ��SAMPLE�� END OF COMPILATION 1 ������ TIME STAMP: 87.28913.21.5�
| LEVEL 2.3.� (MAR 1988) VS FORTRAN OCT 16, 1987 13:21:5� PAGE: 2
| REQUESTED OPTIONS (PROCESS):
| OPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NOSYM NORENT
| SDUMP(ISN) NOSXM NOVECTOR IL(DIM) NOTEST NODC NOICA NODIRECTIVE NODBCS NOSAA
| OPT(�) LANGLVL(77) NOFIPS FLAG(I) AUTODBL(NONE) NAME(MAIN) LINECOUNT(6�) CHARLEN(5��)
| IF DO ISN �....�...1.........2.........3.........4.........5.........6.........7.�.......8
| 1 SUBROUTINE DIVIDE (DIVEND,DIV,RES) ! Divide every element in
| 2 INTEGER DIVEND(1�),DIV(1�),RES(1�) ! A1 by the corresponding
| 3 DO 1� I=1,1� ! element in A2, put result
| 1 4 RES(I)=DIVEND(I)/DIV(I) ! in array A3
| 1 5 1� CONTINUE
| 6 RETURN
| 7 END
| �STATISTICS� SOURCE STATEMENTS = 7, PROGRAM SIZE = 736 BYTES, PROGRAM NAME = DIVIDE PAGE: 2.
| �STATISTICS� NO DIAGNOSTICS GENERATED.
| ��DIVIDE�� END OF COMPILATION 2 ������ TIME STAMP: 87.28913.21.5�
| LEVEL 2.3.� (MAR 1988) VS FORTRAN OCT 16, 1987 13:21 :5� PAGE: 3
| SUMMARY OF MESSAGES AND STATISTICS FOR ALL COMPILATIONS
| �STATISTICS� SOURCE STATEMENTS = 13, PROGRAM SIZE = 956 BYTES, PROGRAM NAME = SAMPLE PAGE: 1.
| �STATISTICS� NO DIAGNOSTICS GENERATED.
| ��SAMPLE�� END OF COMPILATION 1 ������ TIME STAMP: 87.28913.21.5�
| �STATISTICS� SOURCE STATEMENTS = 7, PROGRAM SIZE = 736 BYTES, PROGRAM NAME = DIVIDE PAGE: 2.
| �STATISTICS� NO DIAGNOSTICS GENERATED.
| ��DIVIDE�� END OF COMPILATION 2 ������ TIME STAMP: 87.28913.21.5�
| ������� SUMMARY STATISTICS ������� � DIAGNOSTICS GENERATED. HIGHEST SEVERITY CODE IS �.

| Figure 37. Sample VS FORTRAN Version 2 Program Listing

94 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Before running the first statement, Interactive Debug suspends execution and allows
you to enter commands. The log tells you that execution is suspended at ISN 3:

WHERE: SAMPLE.3

Interactive Debug will prompt you for commands wherever execution is suspended.
You can enter commands in upper- or lowercase letters, but all system responses will
appear in uppercase letters.

To begin our debugging session, let's list the program units available for debugging.

4. List the program units:

listsubs

The output to LISTSUBS should look like this:

PROGRAM UNIT COMPILER OPT HOOKED TIMING
SAMPLE VSF 2.3.� � YES OFF
DIVIDE VSF 2.3.� � YES OFF

Now let's try running the program. The GO command begins execution at the next
executable statement. Because we are not aware of any errors in the program, let's
try running it without setting any breakpoints.

5. Run the program:

go

Unfortunately, there is an error in the program. You should receive an error message
that looks like this:

ERRMSG=> AFB2�9I VFNTH : PROGRAM INTERRUPT - FIXED-POINT DIVIDE EXCEP
ERRMSG=> TION

| ERRMSG=> VFNTH : PSW FFE4���9A2�2�62�
ERRMSG=> VFNTH : LAST EXECUTED FORTRAN STATEMENT IN PROGRAM D

| ERRMSG=> IVIDE AT ISN 4 (OFFSET ���21�).
INFMSG=> USER ERROR CORRECTIVE ROUTINE ENTERED.
ERROR EXIT: ERROR 2�9 AT DIVIDE.4

Now we know that there is a problem at ISN 4 in program unit DIVIDE. Because
ISN 4 contains several variables, it might help to look at the values of the variables
there.

6. Display variable information:

list (i,divend(i),div(i),res(i))

The output to LIST should look like this:

DIVIDE.I = 1
| DIVIDE.DIVEND(1)
| = 2

DIVIDE.DIV(1) = �
DIVIDE.RES(1) = �

Look at the value of our divisor, DIV. At this point in the program, DIV is 0, an
invalid value for a division operation. But how did the value become 0? To find
out, let's set a breakpoint at the first statement in main program SAMPLE after
returning from the call to DIVIDE, using the AT command. Looking at our listing,
we see that we will set a breakpoint at ISN 8. Since we are currently in DIVIDE,
we must qualify the ISN with the name of the main program.

7. Set the breakpoint:

at sample.8

 Chapter 8. A Sample Debugging Session 95

8. Now resume execution:

go

Execution is suspended at ISN 8 in main program SAMPLE. You should receive the
following messages:

INFMSG=> STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.
AT: SAMPLE.8

The error in DIVIDE has been temporarily corrected, and execution has resumed up
to ISN 8. The AT message indicates where execution is now suspended by dis-
playing the ISN of the statement and the name of its program unit (in this case,
SAMPLE, the main program).

By using the GO command with a statement identifier, the initialization loop can be
run again. We can check the values in the three arrays just before DIVIDE is called.
To do this, we should set a breakpoint at the statement labeled 20, and use a
command list to list the values of the variables at this point:

9. Set another breakpoint:

at /2� (list (i,a1(i),a2(i),a3(i)))

Before resuming execution, we can verify that we set the correct breakpoints by
listing them:

10. List the breakpoints:

listbrks

The output to LISTBRKS should look like this:

CURRENT BREAKPOINTS:
 SAMPLE.6/2�
 SAMPLE.8
CURRENT WHEN CONDITIONS:
 NONE
CURRENT HALT STATUS: OFF

We see that a breakpoint is indeed set at ISN 6, which is also statement label 20, in
SAMPLE. So we are ready to resume execution at the beginning of the array initial-
ization loop, ISN 3.

11. Execute SAMPLE at ISN 3:

go 3

Execution will be suspended at ISN 6, and the values of the variables listed:

AT: SAMPLE.6/2�
SAMPLE.I = 1
SAMPLE.A1(1) = 2
SAMPLE.A2(1) = �
SAMPLE.A3(1) = 2

Again, we can see that the value in the second array, A2, which is referenced indi-
rectly by subroutine DIVIDE as DIV, is 0. For now, let's temporarily correct this
value with the SET command.

12. Change the value of A2(1), for the current debugging session only, with:

set a2(1) = 1

13. Remove all the breakpoints:

off �

96 VS FORTRAN Version 2 Interactive Debug Guide and Reference

14. Now run the program:

go

You should now get this output:

| FT�6F��1 A3(1)= 2
| FT�6F��1 A3(2)= 3
| FT�6F��1 A3(3)= 2
| FT�6F��1 A3(4)= 1
| FT�6F��1 A3(5)= 1
| FT�6F��1 A3(6)= 1
| FT�6F��1 A3(7)= 1
| FT�6F��1 A3(8)= 1
| FT�6F��1 A3(9)= 1
| FT�6F��1 A3(1�)= 1
| PROGRAM HAS TERMINATED; RC = (�)

The last message indicates that the program has completed execution, in this case as
the result of the STOP statement. Because the arrays are integer, the values are
truncated. The output is correct up to the truncated value, so you can assume that
the value of A2 was the bug in the program.

15. End the debugging session:

quit

To permanently correct the problem in this program, you must:

1. Edit the source program so that no value of A2 in DIV is ever 0.

2. Save the new version of the program.

3. Re-compile and run the program.

To edit the source listing without ending the debugging session, use the SYSCMD
command:

syscmd edit sample.for (TSO)

syscmd xedit sample fortran a (CMS)

 Chapter 8. A Sample Debugging Session 97

98 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Part Two. Command Reference

 Part Two. Command Reference 99

 Syntax Notation
The following items explain how to interpret the syntax used in this section:

� UPPERCASE letters and special characters (such as commas and parentheses) are to
be coded exactly as shown, except where otherwise noted. You can, however, mix
lowercase and uppercase letters; lowercase letters are equivalent to their uppercase
counterparts.

� Italicized lowercase letters or words indicate variables, such as array names or data
types, and are to be substituted.

� Underlined letters or words indicate IBM-supplied defaults.

� Ellipses (...) indicate that the preceding optional items may appear one or more times
in succession.

� Braces ({ }) group items from which you must choose one.

� Square brackets ([]) group optional items from which you may choose none, one, or
more.

� OR signs (|) indicate you may choose only one of the items they separate.

� A command can be abbreviated only with the abbreviation shown.

| � Keywords within a command, except those for full screen commands, can be abbrevi-
ated to any unique shortened form.

 Sample Syntax

POUR_CUP
[ONE | TWO | THREE]
{ ESPRESSO | CAFE_DELUX | CAFE_AU_LAIT }

The syntax above shows how to specify the imaginary command POUR_CUP. If no
number is specified with CUP, ONE will be assumed. A choice must be made between
ESPRESSO, CAFE_DELUX, and CAFE_AU_LAIT. According to the syntax rules, all
the following are valid:

pour_cup espresso
pour_cup three cafe_au_lait
pour_cup one cafe_d
pour_cup cap
pour_cup e

The following are not valid:

pour_cup
pour_cup ca
pour_cup one two

100 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Statement Identifier Conventions
Follow these conventions when using any Interactive Debug command with VS
FORTRAN statement labels, ISNs, or sequence numbers:

� All statement labels (numbers in columns 1 through 5 of the source program) must
be preceded with a slash (for example, /100).

� The type of statement number is determined by the compiler and the options used
when the program was compiled. A statement number is either an ISN or a sequence
number.

– If the program was compiled with VS FORTRAN Version 2, you can use either
the ISN or the sequence number. ISNs are the default; to use sequence numbers,
specify the compiler option SDUMP(SEQ).

– If the program was compiled with VS FORTRAN Version 1, and if both TEST
and NOSDUMP were in effect or if VS FORTRAN Release 2 was used, and if
the first record has a number in columns 73 through 80, use the sequence
numbers. If the first record does not have a number in positions 73 through 80,
use the internal statement number (ISN) provided in the compiler listing. VS
FORTRAN Version 1 sequence numbers are not supported in full screen mode.

– For all other combinations of VS FORTRAN Version 1 options, use the ISN.

 Part Two. Command Reference 101

Commands Summarized by Function

102 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Controlling Program Execution AT
 ENDDEBUG
 GO
 HALT
 LISTBRKS
 NEXT
 OFF
 OFFWN
 RESTART
 STEP
 WHEN

Monitoring and Modifying Variables AUTOLIST
 DESCRIBE
 IF
 LIST
 QUALIFY
 SET

Processing Sequential Files BACKSPACE
 CLOSE
 ENDFILE
 RECONNECT
 REWIND

Controlling Full Screen Display COLOR

| DOWN
| LEFT

 LISTINGS
 MOVECURS
 POSITION
 PREVDISP
 PROFILE
 REFRESH

| RESTORE
| RETRIEVE
| RIGHT

 SEARCH
| SIZE
| UP

 WINDOW
| ZOOM

Handling Run-Time Errors ERROR
 FIXUP

| Gathering Vector Tuning Information LISTVEC
| VECSTAT
|

Tracing and Timing ANNOTATE
 LISTFREQ
 LISTSAMP
 LISTSUBS
 LISTTIME
 TIMER
 TRACE
 WHERE

General * or " (comment)

| DBCS
 HELP
 PURGE
 QUIT
 SYSCMD
 TERMIO

Figure 38. Summary of Commands by Function

 Part Two. Command Reference 103

 Comments

* or " (Comments)
Function: A comment may be inserted into the Interactive Debug log by preceding it
with either an asterisk (*) or a quotation mark ("). Comments are useful in helping you
identify items for later examination.

 Abbreviation: None

 Syntax

{* | "}
[comment]

comment
is any character string. This character string will appear in the log of the debugging
session.

 Usage Notes
1. In CMS, the use of a quotation mark (") to identify a comment may be inhibited

because the (") mark is normally assigned to be the CMS escape character. In this
case, a double quotation mark is required to enter a comment. For example:

"" This is a comment.

2. Entered comments are ignored:

� in a command list as part of an AT command
� in an attention exit
� as the command portion on the IF command

 Examples
� This is how comments are inserted into the log.

" A quotation mark also works.

104 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 ANNOTATE

 ANNOTATE
Tasks:

Specifying Output to a Print File (page 42)
Program Sampling (page 63)

Function: ANNOTATE provides program sampling or frequency data in either:

� A source listing to the AFFPRINT file
� A bar chart overlay in the source window (full screen mode only)

 Abbreviation: AN

Format 1

Syntax for Copying Source Listings to a Print File

ANNOTATE
{unit | (unit-list) | * }
[SAMPLING [DIRECT | CALLED | ALL] | FREQUENCY]

Format 2

Syntax for Providing a Bar Chart in the Source Window

ANNOTATE
{ON | OFF | TOGGLE}

| [SAMPLING [DIRECT | CALLED | ALL] | FREQUENCY | MESSAGE]

| Format 3

| Syntax for Querying ANNOTATE Settings

| ANNOTATE

unit
specifies the name of a program unit whose listing is to be copied to a print file
(AFFPRINT) with sampling or frequency data added. The program unit must be a
VS FORTRAN program unit compiled with the SDUMP option. Listing files must
be identified either by specification in AFFON or on the Interactive Debug Listings
Panel.

unit-list
specifies a list of program units whose listings are to be copied to AFFPRINT with
sampling or frequency data added. (See restrictions under unit, above.)

*
specifies that all available program unit listings are to be copied to AFFPRINT with
sampling or frequency data added. (See restrictions under unit, above.)

 Part Two. Command Reference 105

 ANNOTATE

ON | OFF | TOGGLE
ON, OFF, and TOGGLE are used in full screen mode only.

ON specifies that the source listing window is to be shown with overlaid sampling or
frequency bar charts. ON cannot be abbreviated.

OFF specifies that overlaid sampling or frequency bar charts are not to be shown in
the source window. OFF cannot be abbreviated.

TOGGLE specifies that overlaying of the source window with sampling or frequency
bar charts is to be changed to ON if currently OFF, or to OFF if currently ON. This
form is intended for assignment to a PF key. TOGGLE cannot be abbreviated.

SAMPLING
specifies sampling information annotation. For Format 1, SAMPLING is the default
when neither SAMPLING or FREQUENCY is specified.

DIRECT | CALLED | ALL
DIRECT counts interruptions occurring in the code.

CALLED counts interruptions occurring in lower-level routines. This option is valid
only if sampling was initiated with CALLED.

ALL specifies that sampling counts are to be the sum of the DIRECT and CALLED
counts.

FREQUENCY
specifies statement frequency annotation information.

| MESSAGE
| (Format 2 only) specifies that short vector REPORT(SLIST) messages are to replace
| sampling or frequency annotation (whichever was previously specified) in the source
| window, if the program is compiled with REPORT(SLIST).

 Usage Notes
1. Annotated information listings show a summary of all program units and entries for

which sampling counts have been accumulated. This summary includes
non-FORTRAN units, FORTRAN units compiled with NOSDUMP, and program
units not specified in the unit list operand of the command.

2. When SAMPLING is specified along with the ON, OFF, or TOGGLE options, the
current ANNOTATE settings are unchanged if FREQUENCY, DIRECT, CALLED,

| or ALL are not specified. The initial ANNOTATE setting is

| ON MESSAGE

| If sampling is done, the setting is automatically changed to

| ON SAMPLING DIRECT

3. Only unit | (unit-list) | * may be used in a restart file or in batch mode. Annotation
is then limited to listings identified in the AFFON or AFFLST (for MVS batch mode
debugging) file.

| 4. Histograms are scaled at the subroutine level such that the most CPU-intensive state-
| ment within any subroutine receives the maximum histogram width.

| 5. With full screen message annotation, messages are truncated on the right so that the
| message overlays at most 50% of the width of the source window.

106 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 ANNOTATE

 Examples
1. Overlay the source window with bar charts indicating the sum of both DIRECT and

CALLED sampling.

annotate on all

2. Remove the bar chart overlays from the source window.

annotate off

3. Query the ANNOTATE settings.

annotate

4. Copy the VS FORTRAN source listings (if known) for all program units to
AFFPRINT, annotating them with DIRECT sampling information.

annotate �

| 5. Copy the VS FORTRAN source listing for program unit SUB2 to AFFPRINT, anno-
| tating it with frequency information.

| annotate sub2 frequency

| Possible output:

| AFF563I VS FORTRAN INTERACTIVE DEBUG V2 R3 ANNOTATED LISTINGS:
| AFF568I FREQUENCIES:
| LEVEL 2.3.� (MAR 1988) VS FORTRAN DEC 15, 1987 14:34:49 PAGE 1
| OPTIONS IN EFFECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE TERM OBJECT FIXED TRMFLG SRCFLG NOSYM NORENT
| SDUMP(ISN) NOSXM NOVECTOR IL(DIM) NOTEST NODC NOICA NODIRECT IVE NODBCS NOSAA
| OPT(3) LANGLVL(77) NOFIPS FLAG(I) AUTODBL(NONE) NAME(MAIN) LINECOUNT(6�) CHARLEN(5��)
| IF DO ISN �....�...1.........2.........3.........4.........5.........6....7.�.......8 FREQUENCY DISTRIBUTION
| 1 subroutine sub2 14
| 2 integer i, j, k
| 3 real a(1�,1�,1�)
| 4 do 1� i = 1, 1� 14
| 1 5 call sub3 (2, 8�, 4) 132
| 1 6 1� continue 131
| 7 do 2� i = 1, 1� 13
| 1 8 do 2� j = 1, 1� 13�
| 2 9 do 2� k = 1, 2 13�� ������
| 3 1� 2� a(i,j,k) = a(k,j,i) 26�� �������������
| 11 return 13
| 12 end �
| ��SUB2�� END OF COMPILATION 3 ������ TIME STAMP: 87.34914.34.49

| AFF568I FREQUENCIES:
| AFF347I PROGRAM UNIT PAGE FREQUENCY DISTRIBUTION
| AFF348I CTAFF1 191
| AFF348I SUB1 43
| AFF348I SUB2 1 436� ������
| AFF348I SUB3 9165 �������������

| 6. In full screen mode, request that the source window be overlaid with statement fre-
| quency annotation. (Note that if you are using an extended color terminal, your
| output will look a little different.)

| annotate on freq

| Possible output:

 Part Two. Command Reference 107

 ANNOTATE

| �| �
| IAD/F Q: SUB1 W: SUB1.11
| COMMAND ===> SCROLL ===> HALF
| SOURCE �----+----1----+----2----+----3----+----4----+----5----+- LINE: 1 OF 14
| C �� ...
| C � SUBROUTINE SUB1 ...
| C �� ...
| 1 SUBROUTINE SUB1 ...
| 2 INTEGER I ...
| 3 DO 1� I = 1, 2 � 17
| 4 IF (I.EQ.1) THEN ��� 39
| 5 CALL SUB3 ������������������� 296
| 6 ENDIF 6
| 7 IF (I.EQ.2) THEN ���� 56
| 8 CALL SUB2 �������������� 218
| 9 ENDIF � 17
| 1� 1� CONTINUE ����� 73
| 11 END �� 34
| ������������������������������ BOTTOM OF SOURCE �������������������������������
| LOG �----+----1----+----2----+----3----+----4----+----5----+----6 LINE: 8 OF 12
| ���8 � q sub3
| ���9 � go
| ��1� PROGRAM HAS TERMINATED; RC (�)
| ��11 � q sub1
| ��12 � annotate on freq

| �| �

| 7. In full screen mode, request vector report message annotation.

| annotate on message

| Possible output:

| �| �
| IAD/F Q: VREP23 W: VREP23.16
| COMMAND ===> SCROLL ===> HALF
| SOURCE �----+----1----+----2----+----3----+----4----+----5----+ LINE: 12 OF 34
| 1� U DO 14� I = 1, 7 USER FUNCTION OR SUBROUTINE 1
| 11 S1 DO 13� J = 1, 128 NESTED NON-CONSTANT INDUCTION 1
| 12 V2 DO 13� K = 1, 128 1
| 13 s1 CC(K,J,I) = BB(K,J,I) EQUIVALENCE USED 12
| 14 s1 CC(K,J,I) = BB(K,J,I) � 23 EQUIVALENCE USED 12
| 15 v2 CC(K,J,I) = I + J + K 12
| 16 v2 DD(K,J,I) = I � J � K 11
| 17 s1 13� AA(K,J,I) = DD(K,J,I) EQUIVALENCE USED 11
| 18 14� CALL SUB1(AA,CC) �
| C
| C �
| C SUM REDUCTION �
| C
| C �
| 19 S4 = �.� �
| 2� V1 DO 29� I = 1, 1�� �
| 21 v S4 = A(I) + S4 VECTOR SUM REDUCTION �
| 22 v 29� CONTINUE �
| LOG �----+----1----+----2----+----3----+----4----+----5----+----6 LINE: 8 OF 12
| ���8 � enddebug sample
| ���9 � PROGRAM HAS TERMINATED; RC (�)
| ��1� � annotate on message

| �| �

108 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 AT

 AT
Tasks:

Using Cursor-Sensitive Commands (page 19)
Referring to Statements or Variables in Other Program Units (page 54)
Setting Breakpoints at Debugging Hooks (page 56)
Using Command Lists (page 60)

Function: AT sets breakpoints in a VS FORTRAN program at executable statements,
entry points, or exit points. When defining a breakpoint, you may specify a list of Inter-
active Debug commands to be run whenever the breakpoint is reached. Execution will be
suspended before the specified statement is run.

 Abbreviation: None

 Syntax

AT
{ [qual.]{number [:[qual.]number] | ENTRY
| EXIT} | (number/ENTRY/EXIT list)}
[(command-list)]
[COUNT(n)]
[NOTIFY | NONOTIFY]

qual
specifies a program unit name prefix to temporarily override the current qualifier for
the prefixed operand only.

number
specifies the statement label, ISN, or sequence number of an executable VS
FORTRAN statement. Precede a statement label with a slash to distinguish it from
an ISN or sequence number. The type of statement number used (ISN or sequence
number) is determined by the compiler and the options used. See “Statement Identi-
fier Conventions” on page 101.

number:[qual.]number
specifies a range of statement labels and/or statement numbers (either ISNs or
sequence numbers). A breakpoint is set at each executable statement within the
range. Statement labels can be combined with ISNs or sequence numbers in the
range, but the first and last must both be executable statements. Precede each state-
ment label with a slash.

Statement identifiers can be qualified with a program unit name. The default
program unit for the first identifier is the current qualifier. The default program unit
for the second identifier in a range is the program unit specified or defaulted for the
first identifier. Both identifiers must have the same program unit in effect.

For example, A.5:6 is the same as A.5:A.6. However, A.5:B.6 is invalid.

 Part Two. Command Reference 109

 AT

ENTRY
specifies that an entry breakpoint is to be set. The breakpoint occurs in the prolog of
the program unit. The subroutine or function is not yet active, so dummy arguments
are not accessible, and a GO with a statement identifier cannot be issued. The break-
point occurs regardless of which entry point of the program unit is entered.

EXIT
specifies that an exit breakpoint is to be set. The breakpoint occurs after the last
FORTRAN statement in the program unit has been executed.

(number/ENTRY/EXIT list)
specifies a list of statement labels, ISNs, sequence numbers, entry breakpoints, exit
breakpoints, and/or ranges of numbers. A breakpoint is set at each executable state-
ment specified. Enclose the list in parentheses, and separate entries with commas or
blanks. Precede each statement label with a slash.

Note: If a statement that does not have a debugging hook is specified in the number
list, an error message is issued but breakpoints are still set at the remaining state-
ments.

(command-list)
specifies a list of commands to be run at the specified statement. If more than one
statement is listed, the command list is run at every statement listed. Enclose the
command list in parentheses, and separate commands with percent signs (%).

The qualification in effect when AT is issued is used as the default for any variables
and statements referenced in the command list.

COUNT(n)
specifies that a breakpoint occurs only every nth time the specified statement is
reached. Specify n as an integer. If more than one statement is specified, the iter-
ation count is applied independently to each listed statement.

NOTIFY | NONOTIFY
NOTIFY specifies that the location of every breakpoint is to be displayed when it is
reached. This includes breakpoints that cause the program to resume without user
intervention.

NONOTIFY specifies that no notification is given when the AT command list con-
tains a command, such as GO, that causes execution to resume.

NOTIFY and NONOTIFY have no effect on the notification that is done when a
breakpoint is reached and execution is suspended. You cannot turn off notification
when execution is suspended.

 Usage Notes
1. In full screen mode, AT can be used as a cursor-sensitive command. Place the

| cursor in the prefix area of the source window, and press the PF key assigned to AT.
You can type over multiple ISN or sequence numbers with the AT command before
pressing ENTER.

Instead of assigning a PF key to the AT command, you can type the AT command
| over the statement number, or you can type AT on the command line and move the

cursor to the target statement number before pressing ENTER.

110 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 AT

2. Unless you have attached a command list containing GO, ENDDEBUG, STEP,
RESTART, or QUIT, execution is always suspended when a breakpoint is reached.

| 3. The following commands cannot be used in a command list: AUTLOLIST, COLOR,
| DOWN, FIXUP, HELP, LEFT, LISTINGS, LISTSAMP, MOVECURS, POSITION,
| PREVDISP, PROFILE, REFRESH, RESTART, RESTORE, RETRIEVE, RIGHT,
| SEARCH, SIZE, UP, WINDOW, ZOOM.

4. An AT statement specified for a statement that already contains a breakpoint will
replace the old breakpoint with a new breakpoint.

5. HALT, NEXT, WHEN conditions, and AT breakpoints all cause execution to be sus-
pended. When execution is suspended for multiple reasons, messages are issued for
all the reasons.

6. At ENTRY, the following restrictions apply:

� GO with a statement ID is not permitted.
� Variables in a dynamic common cannot be referenced.
� Dummy arguments are not accessible.

7. You can display a comment with a breakpoint by using LIST (page 141) to display a
quoted string as part of the command list for the breakpoint.

8. You can set a breakpoint only on statements that have a debugging hook. You
cannot set a breakpoint on statements outside the AFFON statement list, on state-
ments that are collapsed, on the ENTRY of a VS FORTRAN main program, or on
the EXIT of a VS FORTRAN main program. For more information on debugging
hooks, see “Setting Breakpoints at Debugging Hooks” on page 56.

9. A command in an AT command list that causes execution to resume will cause the
remainder of the command list to be ignored. These commands are GO, STEP,
ENDDEBUG, and RESTART. QUIT and HALT IMMED also cause the remainder
of the command list to be ignored.

10. AT is not permitted after the VS FORTRAN program has terminated.

 Examples
1. Stop execution every 10th time the program reaches the beginning of a loop that

begins at statement label 65.

at /65 count(1�)

2. Set breakpoints at ISNs 180 and 220 in the currently qualified program unit, at every
executable statement in program unit SUB1 between ISN 10 and statement label 50,
and at entry to program unit CHECK. Execution is suspended at each of these
points.

at (18� 22� sub1.1�:/5� check.entry)

3. At ISN 140, list the value of variable A, set variable I to 10, and continue execution.
Except for listing the value of A, no notification is given.

at 14� (list a%set i=1�%go) nonotify

4. At ISN 5 in program unit STUB, set variable ANSWER to 100 and exit the subrou-
tine.

at stub.5 (set stub.answer=1��%go stub.exit)

 Part Two. Command Reference 111

 AUTOLIST

AUTOLIST (full screen mode only)
| Function: AUTOLIST is used to define a group of variables and array elements for
| which values are to be displayed in the monitor window of the main debugging panel.

The values are continuously displayed during execution.

The containing program unit name is shown with all variable or array names. Array ele-
| ments may be displayed outside the defined dimensions. If AUTOLIST is specified with
| no operands, the monitor window will become empty.

 Abbreviation: AL

 Syntax

AUTOLIST
[{[qual.]name[:[qual.]name] | * | 'string' | number | (list)}
[FORMAT [(code)] | DUMP [(code)]]]

[qual.]name
specifies the name of a variable, array, or array element used in the program. If
qual. is specified, it overrides the current qualifier for the specified name. Substring
notation may be used with string variables.

[qual.]name:[qual.]name
specifies a range of variable, array, or array element names used in the program. If
qual. is specified, it overrides the current qualifier for the specified name.

AUTOLIST displays all storage locations between the two variables. Unless
FORMAT or DUMP is specified, the format of the displayed storage is the same as
the type of the first variable.

*
specifies that a list of all the variables and arrays in the currently qualified program
unit is desired. Unless FORMAT or DUMP is specified, each is displayed according
to its own type.

'string'
specifies a character string to be displayed as a remark. You can use this operand to
help identify the AUTOLIST display.

number
specifies an integer or real numeric constant to be displayed as a remark. This func-
tion can be useful in converting numbers, when used in conjunction with the
FORMAT option.

list
identifies a list of individual specifications. The list must be enclosed in parentheses.
Individual entries must be separated by commas or blanks.

FORMAT [(code)] | DUMP [(code)]
specifies a particular data format:

� FORMAT displays the names listed and their values in the specified format.

� DUMP displays the address in storage of the names listed and their values in the
specified format.

112 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 AUTOLIST

� code specifies the format or dump code for the names to be listed. The default
format code is X. The default dump code is Z. FORMAT and DUMP codes for
the AUTOLIST command are shown in Table 3 on page 113.

� FORMAT and DUMP are mutually exclusive.

Table 3. DUMP and FORMAT Codes for the AUTOLIST Command

Code Output

L1 Logical*1

L4 Logical*4

I2 Integer*2

I4 Integer*4

R4 Real*4

R8 Real*8

R16 Real*16

C8 Complex*8

C16 Complex*16

C32 Complex*32

L Logical with size closest to internal data size

I Integer with size closest to internal data size

R Real with size closest to internal data size

C Complex with size closest to internal data size

X[nnn] Hexadecimal with nnn bytes per data item
(default to internal data size)

Z[nnn] Hexadecimal with nnn bytes per data item
(default to Z4)

A[nnn] Character with nnn bytes per data item
(default to internal data size)

H[nnn] Character with nnn bytes per data item
(default to continuous full line output)

 Usage Notes
1. Each time you issue AUTOLIST, the set of variables to be listed is redefined. The

lists are not cumulative.

For example, if you type AL (X,Y), then X and Y are displayed. If you later type AL
Z, only Z will be displayed.

| 2. The output is displayed in the monitor window. No AUTOLIST output is shown in
| the log window. If more than 1000 lines of output are requested, the excess is not

displayed.

3. Dummy arguments can only be displayed when the program unit in which they are
defined is active. For example, when executing in MAIN before calling SUB1,
entering:

autolist sub1.a

will cause a message to be produced if a is a parameter. Results are unpredictable if
you display a dummy argument that is not defined at the entry point called. (Note
that a program unit is not yet active when suspended at entry.)

 Part Two. Command Reference 113

 AUTOLIST

4. Variables in dynamic commons can only be displayed if the program unit used to
qualify the variable has been activated at least once. (If not, you may receive an
error message. However, if a variable has a large displacement in its dynamic
common, Interactive Debug cannot detect that it is not initialized.)

5. When you request an individual name or list of names, the default format is deter-
mined by the type of each variable being displayed. When you request a range of
names, the formatting of the values is determined by the format of the first name in
the range. The locations of the listed names are not identified in the output. You
may, however, specify a different format using FORMAT or DUMP.

6. VS FORTRAN defines storage layout only within arrays, variables in a common
block (defined in a COMMON statement), and variables in equivalence groups
(defined in an EQUIVALENCE statement). The relative positions of any other
names in storage cannot be predicted. Names that you may expect to be adjacent in
storage may be widely separated by other data. Therefore, a range specification for
names other than array, equivalence, or common variables may produce unexpected
results.

7. The DUMP option is not permitted with constant operands, including strings.

8. The length specification in a FORMAT or DUMP code may be entered with 1
through 3 digits. Thus, I4, I04, and I004 are equivalent.

9. A length specification of 0 in character and hexadecimal FORMAT and DUMP codes
(for example, A0 or Z0) causes the data to be displayed as a continuous string, rather
than split into pieces of some specified length.

10. If a FORMAT or DUMP code with no length specification is given for a range of
variables or array elements, each variable or array element is displayed separately in
the specified format. However, if a length specification is given, Interactive Debug
will consider the entire storage area occupied by all the range of variables or array
elements, or occupied by the entire array, as if it were broken into pieces, each with
a length equal to that specified in the DUMP or FORMAT code, and will display
each piece according to the specified format. For example, if PRIMES is a 2 x 3
array of INTEGER*4 values, then:

autolist primes format(x)

will cause a display of 6 values, each corresponding to an element of the array.
However:

autolist primes format(x2)

will cause a display of 12 values, each displaying the contents of successive 2-byte
storage areas within the array.

11. An assumed size array cannot be listed by just specifying the array name; the specific
element or range of elements must be specified. (An assumed size array is an array
with the last upper bound specified as an asterisk (*).) This restriction does not
apply to arrays whose last dimension is “1” even though such arrays are otherwise
treated as assumed size arrays. However, only the elements whose last subscript is
“1” will be displayed if no subscripts are specified.

12. For array elements, subscripts may have values beyond the range of the corre-
sponding array dimensions. A warning message will be issued except in the special
case where the last dimension is “1” or “*” and only the last subscript is out of
range.

114 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 AUTOLIST

13. Array subscripts may contain simple arithmetic expressions no more complex than
the form “variable plus (or minus) a constant.” For example, the following are valid
forms:

autolist ARY(I) autolist ARY(3)
autolist ARY(I + 3) autolist ARY(I - 3)

 Examples
| 1. Continuously display the value of variable NCOUNT.

| autolist ncount

| 2. Continuously display a hexadecimal dump (FORMAT(X)) showing values of array
| variables A(1,1) through A(2,3).

| autolist a(1,1):a(2,3) format

| 3. Continuously display several variables in hexadecimal, each with as many bytes as
| are appropriate for its data type.

| autolist (i,j,p,q,r) format

| 4. Continuously display an entire array (CHARAY) containing a series of 30-character
| alphabetic strings so that each character string is separated from the others. (If the
| array is declared in the program to be a CHARACTER*30 array, then the elements
| of the array will be separated from each other when the array is listed.)

| autolist charay format(a3�)

| 5. Continuously display the value of the variable REAL1 in SUB1, ARRAY(I,J) in
| SUB2, and STRING, I, and J in the currently qualified program unit.

| autolist (sub1.real1,sub2.array(i,j),string,i,j)

 Part Two. Command Reference 115

 BACKSPACE

 BACKSPACE
Tasks: Processing External Files (page 76)

Function: BACKSPACE positions a sequentially accessed external file to the begin-
ning of the previous record. It is similar to the BACKSPACE statement in the VS
FORTRAN Version 2 language. This command allows you to move backward in the file,
for example to rewrite or reread a record.

Abbreviation: BACKSPAC, BACKS

 Syntax

BACKSPACE
{number | [qual.]integer-variable | [qual.]integer-array-element}

number
is the number of the I/O unit associated with the sequential file on which the back-
space is to be performed.

[qual.]integer-variable
is the name of an integer variable in the VS FORTRAN program. This variable
specifies the number of the I/O unit associated with the sequential file on which the
backspace is to be performed.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program. This
element specifies the number of the I/O unit associated with the sequential file on
which the backspace is to be performed.

 Usage Notes
1. number, integer-variable, or integer-array-element must be specified; there is no

default number.

2. This command may not be issued when I/O is currently active.

3. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example, the following are valid:

A(I), A(3), ARY(I+3), ARY(I-3)

 Example
Backspace the sequentially accessed external file associated with I/O unit 8 so that the
last record written can be rewritten.

backspace 8

116 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 CLOSE

 CLOSE
Tasks: Processing External Files (page 76)

Function: CLOSE disconnects a VS FORTRAN external file from an input or output
unit. Its usage is similar to that of the CLOSE statement in the VS FORTRAN Version 2
language. This command allows you to close an external file, for example to assign
another file to the input or output unit, or to examine the contents of the file.

 Abbreviation: None

 Syntax

CLOSE
{number | [qual.]integer-variable | [qual.]integer-array-element}

number
is the number of the I/O unit associated with the file that is to be closed.

[qual.]integer-variable
is the name of an integer-variable in the VS FORTRAN program. This variable
specifies the number of the I/O unit associated with the file that is to be closed.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program. This
element specifies the number of the I/O unit associated with the file that is to be
closed.

 Usage Notes
1. Number, integer-variable, or integer-array-element must be specified; there is no

default number.

2. This command may not be issued when I/O is currently active.

3. Files used in the program but not explicitly closed will still be open when Interactive
Debug gives you control at termination. If you want to examine such a file, you
must CLOSE it first.

4. Under certain conditions, use of the CLOSE command may make it necessary for
you to use the RECONNECT command (page 175) before your program can perform
additional I/O operations on the file. This situation occurs when the OCSTATUS
run-time option is in effect, and the program cannot be made to run an OPEN state-
ment before doing more I/O to the file.

5. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example, the following are valid:

A(I), A(3), ARY(I+3), ARY(I-3)

 Part Two. Command Reference 117

 CLOSE

 Examples
1. In CMS, reallocate an external output file for I/O unit 8.

close 8
sys filedef 8 disk output file a

2. In TSO, reallocate an external output file for I/O unit 8.

close 8
sys allocate file(ft�8f��1) dataset(output.file)

118 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 COLOR

COLOR (full screen mode only)
Tasks: Changing the Display Color (page 21)

Function: COLOR allows you to customize the color, highlighting and intensity of the
various parts of the main debugging panel.

 Abbreviation: None

 Syntax

COLOR

The color panel is shown in Figure 39.

| �| �
| VS FORTRAN INTERACTIVE DEBUG COLOR PANEL
| COMMAND ===>
| COLOR HIGHLIGHT INTENSITY
| TITLE : FIELD HEADERS WHITE NONE HIGH ENTER:
| OUTPUT FIELDS BLUE NONE LOW SAVE TO SAVE YOUR
| MONITOR: CONTENTS TURQ REVERSE LOW COLOR SETTINGS.
| LINE NUMBERS TURQ REVERSE HIGH RESET TO RESTORE
| SOURCE : LISTING AREA WHITE REVERSE LOW PROFILE SETTINGS.
| PREFIX AREA TURQ REVERSE LOW END TO RETURN TO
| SUFFIX AREA BLUE REVERSE LOW DEBUG SESSION WITH
| CURRENT LINE YELLOW REVERSE HIGH CURRENT SETTINGS IN
| BREAKPOINT RED REVERSE HIGH EFFECT.
| BAR GRAPHS GREEN REVERSE HIGH
| LOG : OUTPUT LINES GREEN NONE LOW
| INPUT LINES YELLOW NONE HIGH
| LINE NUMBERS TURQ NONE HIGH
| COMMAND LINE YELLOW NONE LOW COLOR and HIGHLIGHT
| AREA HEADERS GREEN REVERSE HIGH ARE VALID ONLY WITH
| TOF & EOF DELIMITER BLUE REVERSE LOW COLOR TERMINALS.
| SEARCH TARGET WHITE NONE HIGH

| VALID COLOR : WHITE YELLOW BLUE TURQ GREEN PINK RED
| VALID INTENSITY : HIGH LOW
| VALID HIGHLIGHT : USCORE BLINK REVERSE NONE

| �| �

| Figure 39. Interactive Debug Color Panel

| The following commands can be entered on the command line:

| SAVE: saves current color settings in the ISPF profile for future debugging sessions.

| RESET: restores color settings to the profile settings.

| END: returns to main debugging panel with current settings in effect. (Unless a SAVE
| has been issued, these settings will remain in effect for only the duration of the debug-
| ging session.)

 Usage Notes
1. COLOR cannot be issued in: a command list, an IF command, an attention exit, or a

restart file.

2. COLOR will operate as usual with a parameter list, but the panel will include the
message “PARAMETERS IGNORED.”

 Part Two. Command Reference 119

 DBCS

| DBCS
| Function: DBCS specifies whether X'0E' and X'0F' are interpreted as the DBCS
| shift-out and shift-in characters in input and output.

| Abbreviation: None

| Syntax

| DBCS
| [YES | NO]

| YES
| specifies that X'0E' and X'0F' are interpreted as DBCS shift codes.

| NO
| specifies that X'0E' and X'0F' are not interpreted as DBCS shift codes. NO is the
| initial setting.

| Usage Note
| To query the current status of DBCS, specify DBCS with no operands.

| Example
| Query DBCS status.

| dbcs

120 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 DESCRIBE

 DESCRIBE
Tasks:

Using Cursor-Sensitive Commands (page 19)
Specifying Output to a Print File (page 42)
Displaying Data Types of Variables and Arrays (page 61)

Function: DESCRIBE displays the data type of variables or arrays, and also supplies
dimension information for arrays.

 Abbreviation: DE

 Syntax

DESCRIBE
{[qual.]name | * | (name-list)}
[PRINT]

[qual.]name
specifies the name of a variable, or array used in the program. The name can be
qualified by the name of a program unit.

*
specifies a list of all the names in the currently qualified program unit. The type of
each is displayed.

(name-list)
specifies a list of names. Enclose the list in parentheses and separate individual
names with commas or blanks.

PRINT
specifies that output be sent to a print file (AFFPRINT) instead of the terminal.

 Usage Notes
| 1. In full screen mode, DESCRIBE can be used as a cursor-sensitive command. If the
| DESCRIBE command is already assigned to a PF key, place the cursor at a variable
| name in the source window, and press the PF key for DESCRIBE. The variable may
| include either subscript or substring notation. If both are present, only the subscript
| will be included in the command.

2. In your output, dummy arguments are identified in the last column with the word
DUMMY.

3. Interactive Debug cannot determine the length of character variables that are dummy
arguments in an inactive program unit. The length is displayed as CHAR-
ACTER*(*). (Note that at ENTRY, the program unit is not yet active.)

4. Dimension information is not displayed for arrays that are dummy arguments in an
inactive program unit, or that are defined only when entered by some other entry
point. (Note that at ENTRY, the program unit is not yet active.)

5. The upper bound for the last dimension of an assumed-size array is displayed as an
asterisk, and the size is indicated as * ELEMENTS.

 Part Two. Command Reference 121

 DESCRIBE

 Example
Display the data type information for the variables I and R4, for array CM8ARY, for the
dummy array R8ASAR, for the dummy variable WHERE in program unit SUB1, and for
dummy array L1AYMN in program unit SUB1.

describe (i,r4,cm8ary,r8asar,sub1.where,sub1.l1aymn)

The output from this command should look something like this:

SUB2.I: INTEGER�4
SUB2.R4: REAL�4
SUB2.CM8ARY: COMPLEX�8

RANK = 2, SIZE = 21 ELEMENTS
DIM 1: EXTENT = 3, LBOUND = (1), UBOUND = (3)
DIM 2: EXTENT = 7, LBOUND = (1), UBOUND = (7)

SUB2.R8ASAR: REAL�8 DUMMY
RANK = 1, SIZE = � ELEMENTS
DIM 1: EXTENT = �, LBOUND = (-3), UBOUND = (�)

SUB1.WHERE: CHARACTER�(�) DUMMY
SUB1.L1AYMN: LOGICAL�1 DUMMY

RANK = 1; DUMMY ARRAY ARGUMENT OF INACTIVE SUBPROGRAM OR
ALTERNATE ENTRY POINT
DIMENSION INFORMATION NOT AVAILABLE

122 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 DOWN

| DOWN (full screen mode only)
| Tasks:

| Changing the Way Your Windows Look (page 17)
| Using Cursor-Sensitive Commands (page 19)

| Function: DOWN scrolls the contents of a window so that lines below those currently
| displayed in the window can be seen.

| Abbreviation: None

| Syntax

| DOWN
| [number | PAGE | HALF | CSR | DATA | MAX]

| number
| is the number of lines to scroll down, from 1 to 9999.

| PAGE (or P)
| scrolls down by the number of lines in the window.

| HALF (or H)
| scrolls down by half the number of lines in the window.

| CSR (or C)
| scrolls down by PAGE, unless the cursor is in the window, in which case the
| window is scrolled down by the appropriate number of lines to place the cursor at the
| edge of the window.

| DATA (or D)
| scrolls down by PAGE-1 number of lines. If only one line is visible, the scrolling is
| equivalent to that of PAGE.

| MAX (or M)
| scrolls down so that the last line of the window will contain the bottom-of-data
| marker (see page 15).

| Usage Notes
| 1. DOWN is cursor-sensitive. The window that is scrolled is determined from the
| cursor position and the windows currently open.

| 2. DOWN cannot be issued in: a command list, an IF command, an attention exit, or a
| restart file.

| 3. If an operand is not specified with DOWN, the scrolling amount is taken from the
| SCROLL ===> field on the main debugging panel.

| Example
| Scroll down ten lines in the listing displayed in the source window, assuming that the
| cursor is on the command line and the source window is open.

| down 1�

 Part Two. Command Reference 123

 ENDDEBUG

 ENDDEBUG
Tasks:

Program Sampling (page 63)
Continuing Execution without Further Debugging (page 80)

Function: ENDDEBUG allows you to:

1. Discontinue debugging and run the program at full speed. Except for entering
limited commands after the program has terminated, no debugging is available after
using the ENDDEBUG command.

2. Initiate program sampling to obtain an approximation of relative CPU time, using the
SAMPLE option.

 Abbreviation: None

 Syntax

ENDDEBUG
[SAMPLE[(msecs)] [MAXSAMP(n[,STOP])] [CALLED]]

SAMPLE [(msecs)]
indicates that sampling is to occur during subsequent execution. msecs is the time
interval in milliseconds between sampling interruptions; the default is 10 millisec-
onds.

MAXSAMP(n[,STOP])
specifies the maximum number of sampling interruptions (n) that can occur. If
STOP is specified, the program will be terminated when the specified number of
samples is reached. Otherwise, the program will continue execution without sam-
pling interruptions after the specified number of samples is reached. If MAXSAMP
is not specified, sampling interruptions will continue until the program terminates.
MAXSAMP is valid only if SAMPLE is specified.

CALLED
specifies that each sampling interruption is to be counted for each caller in the save
chain. This option may cause an appreciable increase in overhead for the sampling
function; however, it makes it much easier to determine when CPU usage is prima-
rily due to called subroutines. CALLED is valid only if SAMPLE is specified.

If CALLED is not specified in the ENDDEBUG command, the CALLED option will
not be permitted with the ANNOTATE and LISTSAMP commands.

124 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 ENDDEBUG

 Usage Notes
1. All breakpoints and WHEN conditions are removed and the HALT command status

is set to OFF.

2. TERMIO is set to LIBRARY.

3. Timing is turned off for all program units.

4. The VS FORTRAN Library will begin updating the occurrence count for run-time
errors. All error handling actions will be determined by the settings in the VS
FORTRAN error option table.

5. The attention exit will no longer allow entry of Interactive Debug commands after
ENDDEBUG is called. The only Interactive Debug commands allowed from an
attention exit are PURGE and QUIT, which will terminate the VS FORTRAN
program. You will then be prompted for further Interactive Debug commands.
Entering QUIT a second time will terminate the debugging session. To resume exe-
cution following an attention interrupt, enter a null line.

6. At the end of program execution, Interactive Debug will prompt for commands.
LISTTIME and LISTFREQ will show information that was current when the
ENDDEBUG command was issued. WHERE information cannot be determined after
ENDDEBUG is issued.

7. Unless the program was compiled with the TEST option, or SAMPLE was specified,
execution will proceed at the same speed at which it would run if the DEBUG run-
time option had not been specified.

If a program unit was compiled with the TEST option, Interactive Debug will still be
called for each VS FORTRAN statement in that program unit. While this activity
will not be apparent, there will be a slight increase in the time required to run your
program.

8. If SAMPLE was specified, program speed will be reduced due to the overhead
involved in recording the sampling information at each interrupt. Sampling will
cancel any active timer interval at the start of execution (one millisecond per timer
interruption).

9. If SAMPLE is specified without CALLED, the ANNOTATE settings (for the source
window) are changed to ON. If SAMPLE and CALLED are both specified, the set-
tings are changed to ON and CALLED.

10. ENDDEBUG is not permitted after the VS FORTRAN program has terminated or
while a read is pending. If issued in an error exit, standard corrective action is taken.

11. The BLIP is turned off when sampling is in operation and restored when sampling
completes.

| 12. The service routine CPUTIME cannot be used while sampling is in progress. For
| more information on CPUTIME, see VS FORTRAN Version 2 Language and Library
| Reference.

 Part Two. Command Reference 125

 ENDDEBUG

 Examples
1. Continue running a program from the current statement to the end of the program

with no further debugging activity.

enddebug

2. End debugging, but continue running the program with sampling interruptions every
10 milliseconds.

enddebug sample

3. End debugging, but continue running the program with sampling interruptions every
20 milliseconds and CALLED counts accumulated.

enddebug sample(2�) called

4. End debugging, but continue running the program with sampling interruptions occur-
ring every 40 milliseconds. Continue running the program without interruptions if
the number of interruptions exceeds 10,000.

enddebug sample(4�) maxsamp(1����)

126 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 ENDFILE

 ENDFILE
Tasks: Processing External Files (page 76)

Function: ENDFILE writes an end-of-file record on a sequentially accessed external
file. Its usage is similar to that of the ENDFILE statement in the VS FORTRAN Version
2 language.

 Abbreviation: ENDF

 Syntax

ENDFILE
{number | [qual.]integer-variable | [qual.]integer-array-element}

number
is the number of the I/O unit associated with the sequential file on which the end-of-
file record is to be written.

[qual.]integer-variable
is the name of an integer-variable in the VS FORTRAN program. This variable
specifies the number of the I/O unit associated with the sequential file on which the
end-of-file record is to be written.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program. This
element specifies the number of the I/O unit associated with the sequential file on
which the end-of-file record is to be written.

 Usage Notes
1. number, integer-variable, or integer-array-element must be specified; there is no

default number.

2. This command may not be issued when I/O is currently active.

3. Writing an end-of-file record erases all records that may follow.

4. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example, the following are valid:

ARY(I), ARY(3), ARY(I+3), ARY(I-3)

 Example
Write an end-of-file record on the sequentially accessed external file associated with I/O
unit 8.

endfile 8

 Part Two. Command Reference 127

 ERROR

 ERROR
Tasks: Handling Run-Time Errors (page 74)

Function: ERROR specifies whether corrective action is to be performed or execution
is to be suspended, and whether messages are to be received for run-time errors. If exe-
cution is suspended, you may specify the corrective action to be taken by issuing the
FIXUP command. For more information on library error messages, see VS FORTRAN
Version 2 Language and Library Reference.

 Abbreviation: ER

 Syntax

ERROR
{error | error:error | (error-list)}
[MSG|NOMSG]
[EXIT|NOEXIT]

error
specifies the identification number of a single error as defined by the VS FORTRAN
Version 2 or VS FORTRAN Version 1 Library, or as defined by an auxiliary
product.

error:error
specifies a range of error identification numbers to which all specified keywords
apply.

(error-list)
specifies a list of error numbers or ranges to which all specified keywords apply.
Enclose the list in parentheses, and separate entries with commas or blanks.

MSG | NOMSG
specifies whether or not a diagnostic message is to be displayed if a run-time error
occurs among those specified.

EXIT | NOEXIT
EXIT specifies that program execution is to be suspended if any of the listed errors
occur.

NOEXIT specifies that the VS FORTRAN library is to take corrective action and
execution is to continue if any of the listed errors occur.

128 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 ERROR

 Usage Notes
1. The default options at the start of a debugging session are to provide all diagnostic

messages (MSG) and to suspend execution of the program if any run-time error
occurs (EXIT). If your program calls ERRSET, this will change the settings for the
specified errors to MSG and NOEXIT.

2. If the EXIT keyword is in effect for a particular error, you are notified of the
location and error number when the error occurs. You can then trace the sequence of
control that led to the error location by issuing the WHERE command with the
TRBACK or FLOW keyword. If NOEXIT and NOMSG are both in effect, no notifi-
cation of error location or error number is given. If MSG is in effect, the error
number will be contained in the error message.

3. If you specify a large range of error numbers, the ERROR command may generate a
large number of diagnostic messages. You can use the PURGE command in an
attention exit to terminate ERROR if the messages are excessive.

4. If NOEXIT has been specified, standard corrective action will be taken unless you
have defined user corrective action by calling ERRSET from your VS FORTRAN
program. Execution will not be suspended in either case.

5. Not all VS FORTRAN library error numbers may be specified by the ERROR
command. If you specify one that may not, you will receive the following message:

AFB198I VIADI : ATTEMPT TO CHANGE UNMODIFIABLE MESSAGE TABLE ENTRY,
MESSAGE NUMBER 24�

6. ERROR is not permitted after the VS FORTRAN program has terminated.

 Examples
1. You have set a variable to a negative value to test a condition but then realize that

the square root of the variable will be taken later. To avoid halting execution when
this occurs, you want the library to perform standard corrective action and continue
with no notification of the error. The error number for the square root of a negative
number is 251.

error 251 nomsg noexit

2. If any single or double precision arithmetic run-time errors (logs, trigonometric func-
tions, exponents) occur, you want Interactive Debug to provide full diagnostics and to
also take standard corrective action. The error numbers are 241 through 285.

error 241:285 noexit

 Part Two. Command Reference 129

 FIXUP

 FIXUP
Tasks: Handling Run-Time Errors (page 74)

Function: FIXUP specifies corrected argument values when execution has been sus-
pended because of errors in a VS FORTRAN Library mathematical function. This
command causes the function to be evaluated with new arguments and execution to be
continued. A FIXUP command with no arguments causes standard corrective action to be
taken.

 Abbreviation: F

 Syntax

FIXUP
[ARG1(value)]
[ARG2(value)]

ARG1(value)
specifies the value of the first argument of the function. The value can be a variable,
an array element, or a constant.

ARG2(value)
specifies the value of the second argument of the function. The value can be a vari-
able, an array element, or a constant.

 Usage Notes
1. FIXUP is permitted only when execution is suspended for a library function error.

2. If the library function for which FIXUP is to be performed has two arguments, you
can specify a single value for either of the two arguments, or you can specify values
for both arguments.

3. If you issue GO or FIXUP without arguments after an run-time error, standard cor-
rective action is performed and execution is resumed.

4. You cannot change the actual value of the variable in storage by using FIXUP.

5. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example, the following are valid:

A(I), A(3), ARY(I+3), ARY(I-3)

 Examples
1. Your program stops because of an arithmetic error. You want the library to perform

standard corrective action and to resume execution.

fixup

2. Your program attempts to take the square root of a variable that is set to a negative
value. Instead of taking standard corrective action, you reset the negative variable to
a positive number and resume execution. (The value of the variable in storage is not
changed.)

fixup arg1(36)

130 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 GO

 GO
Tasks:

Animating the Execution of Your Program (page 73)
Processing External Files (page 76)

Function: GO resumes program execution.

 Abbreviation: None

 Syntax

GO
[[qual.]{number | EXIT}]

qual.
specifies a program unit name to temporarily override the current qualifier for this
command. The qualifier must be the program unit that will be in execution when the
GO is run.

number
specifies the statement identifier of an executable VS FORTRAN statement at which
execution is to be resumed. The statement identifier is a statement label, an ISN, or
a sequence number in columns 73 through 80. The type of statement number used
(ISN or sequence number) is determined by the compiler and the options used. (See
“Statement Identifier Conventions” on page 101.) Precede a statement label with a
slash. The statement must be an executable statement with a debugging hook.

EXIT
specifies that Interactive Debug will resume execution of the program unit at the exit
point that corresponds to the entry point used.

 Usage Notes
1. The statement identifier or EXIT keyword is optional, and is used if execution is to

resume at a specific point outside of the normal execution sequence. GO without an
operand causes execution to be resumed at the currently suspended statement.

2. If execution has stopped because of an run-time error, resuming it with GO produces
standard corrective action to fix the error. (GO with an operand is not allowed in an
error exit.)

3. Execution of the GO command is subject to the same language restrictions as the
GOTO statement in VS FORTRAN. Branches into DO-loops and inner DO-loops
(except from the extended range of the DO loop (LANGLVL(66) only)) will produce
unpredictable results.

4. The number or EXIT operand is not allowed with the GO command:

� In an error exit
� When execution is suspended at the ENTRY point of a program unit
� When execution is suspended for output
� When execution is suspended during a terminal read

5. It is not advisable to specify a statement label or statement identifier when running in
a program unit that has been compiled with an optimization level higher than zero.

 Part Two. Command Reference 131

 GO

(This is because optimized code is highly dependent on register contents.) Interactive
Debug allows the operand, but will warn you (except in batch mode) that the
program unit is optimized and ask if you wish to continue. If you type YES, the GO
will be run.

6. GO is not permitted after the VS FORTRAN program has terminated. It is also not
permitted if execution is suspended during a terminal read.

 Examples
1. Your program suspends execution at a breakpoint for debugging, and you now want

to resume execution at the currently suspended statement.

go

2. Your program suspends execution at a breakpoint for debugging, and you now want
to skip ahead and resume execution at sequence number 410.

go 41�

3. Your program suspends execution at a breakpoint for debugging, and you have
changed the qualification to display variables in another program unit. You now
want to skip ahead and resume execution at the exit point of the program unit cur-
rently executing, which is SUB1.

go sub1.exit

4. You know that program unit BUGGY produces incorrect results past the statement
labeled 100. For now, you want to set RESULT to the value A, and exit whenever
statement 100 is reached.

at buggy./1�� (set result = a % go buggy.exit) nonotify

132 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 HALT

 HALT
Tasks:

Animating the Execution of Your Program (page 73)
Controlling Program Execution (page 58)

Function: HALT causes execution to be suspended for every statement of a given
class, or at a specific point in a command list. The classes of statements are: at the start
of every statement, or after every branch, or at entry to and exit from a debuggable
routine.

 Abbreviation: None

 Syntax

HALT
[OFF |STMT | GOTO | ENTRY |IMMED]

OFF
specifies that the HALT setting in effect is to be terminated. This is the setting when
Interactive Debug execution begins.

STMT
indicates that execution is to be suspended before every executable statement that has
a debugging hook.

GOTO
indicates that execution is to be suspended whenever two consecutively executed
debugging hooks are not on consecutively stored statements. This could occur for
several reasons, including a GOTO, a DO group, a CALL, or an IF statement. It
also might occur if one or more statements have been collapsed by optimization or
vectorization, or because of hook restrictions specified for ranges in AFFON, or
when debug packets occur in the code.

ENTRY
specifies that execution is to be suspended whenever any debuggable program unit is
entered or exited. This could be as a result of a subroutine or function call or return
from a subroutine or function.

HALT ENTRY causes suspension of execution at the same points as AT EXIT or
AT ENTRY. At an entry breakpoint, the program unit is not yet active. Thus,
dummy arguments or variables in a dynamic common cannot be accessed, and GO
with an operand is not permitted.

IMMED
indicates that execution of an AT command list should be suspended immediately
and a prompt should be issued. This is the default action when HALT is issued with
no operand. In an attention exit, this will terminate the current AT command list if
one is running.

 Part Two. Command Reference 133

 HALT

 Usage Notes
1. In full screen mode, HALT can be used as a cursor-sensitive command.

2. You can issue a HALT IMMED command to terminate a command list. You can
also use HALT IMMED in an attention exit to terminate command loops. For
example: AT 5 (GO 5).

3. If a statement at which execution would normally be suspended by the current HALT
setting has an AT breakpoint with a command list that causes execution to resume,
the HALT setting will not suspend that statement.

For example, if HALT STMT is in effect but you have issued the command AT 5
(SET A=1�%GO), execution will not be suspended at statement 5.

4. Any statement for which execution would be suspended by HALT GOTO will also
have execution suspended by HALT STMT.

Any statement for which execution would be suspended by HALT ENTRY will also
have execution suspended by HALT GOTO and HALT STMT.

5. HALT is not permitted after the VS FORTRAN program has terminated.

6. To see the current HALT setting, type LISTBRKS.

 Examples
1. Suspend execution at entry to or exit from all debuggable units.

halt entry

2. Suspend execution prior to executing each statement with a debugging hook in the
program.

halt stmt

3. At statement identifier 10, halt execution if A is greater than B; otherwise, continue
executing with no notification of the breakpoint.

at 1� (if (a .gt. b) halt%go) nonotify

134 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 HELP

 HELP
Tasks:

Using Cursor-Sensitive Commands (page 19)
Getting On-line Help about Interactive Debug (page 51)

| HELP provides on-line information about Interactive Debug commands, common tasks,
| and vector messages contained in the vector report source listing, as well as a task-
| oriented tutorial.

 Abbreviation: H

Syntax in CMS or TSO Full Screen Mode

HELP
| [command | vecmsg-id]

Syntax in CMS Line Mode

HELP
| [command [(ALL | (DESC | (PARM | (FORM] | vecmsg-id]

Syntax In TSO Line Mode

HELP
[command [ALL | FUNCTION | SYNTAX | OPERANDS [(keyword-list)]]

| | vecmsg-id]

command
specifies the name of a command, or one of the keywords TASK or MENU
(IADMENU in TSO line mode). If no command is specified, a HELP menu is dis-
played for further selection. You can specify a command abbreviation in full screen
mode, but not in line mode.

ALL
requests the function, syntax, keywords, usage notes, and examples of the specified
command.

DESC
requests the function of the specified command.

FORM
requests the syntax of the specified command.

PARM
requests the keywords, usage notes, and examples of the specified command.

FUNCTION
requests the function of the specified command.

 Part Two. Command Reference 135

 HELP

SYNTAX
requests the syntax of the specified command.

OPERANDS [(keyword-list)]
requests the keywords of the specified command. Enclose the list in parentheses and
separate the keywords in the list with commas or blanks. If the list is omitted, all
keywords, usage notes, and examples of the specified command are displayed.

| vecmsg-id
| specifies the number of a vector message on the vector report source listing. It can
| be in either of two forms:

| ILX�1nnI
| nn

| where nn is the two-digit number that uniquely identifies the message.

 Usage Notes
1. HELP cannot be issued in: an AT command list, an IF command, or a restart file.

2. In TSO line mode, you can request that usage notes and examples be shown by spec-
ifying NOTES or EXAMPLES as a keyword with OPERANDS.

3. In full screen mode, vector message information can be displayed by using the HELP
command as a cursor-sensitive command:

� If the source window displays a vector report source listing, the cursor is in the
source window, and the user hits PF1 (normally HELP), the help for the vector
report message on that line of the listing will be displayed.

The cursor may be in the prefix area, the source listing area, or the prefix area of
the source window corresponding to the line of the listing. If PF1 is not set to
HELP, the user can type HELP on the command line, place the cursor on the
desired line in the source window, and press ENTER for the same effect.

� Placing the cursor on a line in the vector report source listing which does not
have a vector report message results in the following message being displayed:

NO VEC(REP) MESSAGE

� If the cursor is outside the source window or if the listing being displayed is not
a vector report source listing, then HELP will not function as a cursor-sensitive
command.

 Examples
1. Display a list of all available HELP topics.

help

2. Display a list of all available HELP task topics.

help task

3. Display all available information on the IF command.

help if

4. In CMS line mode, display the syntax for the ERROR command.

help error (form

5. In TSO line mode, display the syntax for the ERROR command.

help error syntax

136 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 HELP

6. In TSO line mode, display the syntax and the EXIT keyword for the ERROR
command.

help error syntax operands(exit)

7. In TSO line mode, display the syntax, usage notes, and examples for the GO
command.

help go syntax operands(notes, examples)

| 8. Display information on the vector message ILX0113I.

| help 13

| 9. In full screen mode, display information for vector message ILX0109I on ISN 423 of
| the vector report listing for LBTAB:

| a. Qualify to program unit LBTAB by typing q lbtab

| b. Scroll down to ISN 423 in the source window by typing position 423 on the
| command line, putting the cursor in the source window, and pressing ENTER.

| c. Place cursor on the statement at ISN 423 in the source window.

| d. Press the HELP PF key (normally PF1).

 Part Two. Command Reference 137

 IF

 IF
Function: IF is used, usually within an AT command list, to test a relational or a
logical condition when the specified breakpoint is reached. If the condition is true, the
command specified within the IF command is run.

 Abbreviation: None

 Syntax

IF
(condition) command

(condition)
is the condition to be tested. It can be either a relational or a logical condition:

� Relational condition: a signed or unsigned variable or array element or constant,
followed by a relational operator, followed by another signed or unsigned vari-
able or array element or constant. There are six relational operators that can be
used to test relational conditions.

 = or .EQ.
¬= or .NE.

 > or .GT.
 < or .LT.

>= or .GE.
<= or .LE.

� Logical condition: a logical variable or a logical array element, optionally pre-
ceded by the negation operator (¬ or .NOT.). No other operators are permitted.

command
is a single Interactive Debug command that is run only if the specified condition is
true.

 Usage Notes
1. The following is an example of the relational condition form of the IF command:

IF (A .GT. B) HALT

With the relational condition form of the IF command, the following is true:

� When either variable or constant is a logical or character type, both must be of
that same type, and no sign is permitted preceding either variable or constant.

� When either variable or constant is a logical or complex type, only the relational
operators .EQ. and .NE. (or = and ¬=) may be used.

2. Substring notation is permitted for string variables.

3. For array elements, subscripts may have values beyond the range of the corre-
sponding array dimensions. A warning message will be issued except in the special
case where the last dimension is “1” or “*” and only the last subscript is out of
range.

4. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example, the following are valid:

138 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 IF

ARY(I), ARY(3), ARY(I+3), ARY(I-3)

5. You cannot reference variables that are not currently defined, such as dummy argu-
ments in an inactive subroutine.

6. Logical variables must have been set to VS FORTRAN logical constants for condi-
tion testing to produce predictable results.

7. Variables in different program units can be referenced by qualifying the variable
names with program unit names:

IF (MAIN.A .LT. SUB1.B) SET SUB1.B = MAIN.A

8. The command specified with IF cannot be HELP, QUALIFY, or FIXUP. You also
cannot specify any of the full screen display commands.

9. When character variables or constants of unequal length are compared, the shorter is
considered to be extended with blanks during the comparison.

10. IF is not permitted after the VS FORTRAN program has terminated.

 Examples
1. At the statement labeled 100, determine whether logical variable OVER is true, and

if it is true, reinitialize counter i and resume processing; if OVER is false, continue
processing without resetting i.

at /1�� (if (over) set i=�%go)

2. At statement number 10, test if variable A in subroutine SUB is zero; if it is, suspend
execution; if A is not zero, continue processing.

at 1� (if (sub.a = �.�) halt%go)

3. At statement 5, test the following set of logical conditions: if either A or B is true,
go to the statement labeled 10 and continue processing; if neither is true, continue
processing at the next executable statement.

at 5 (if (a) go /1�%if (b) go /1� %go)

4. At statement 7, if the first five characters of the variable SOLAR are ABCDE, set
counter J to 2

at 7 (if (solar(1:5)='ABCDE') set J=2)

 Part Two. Command Reference 139

 LEFT

| LEFT (full screen mode only)
| Tasks:

| Changing the Way Your Windows Look (page 17)
| Using Cursor-Sensitive Commands (page 19)

| Function: LEFT scrolls the contents of a window so that columns to the left of those
| currently displayed in the window can be seen.

| Abbreviation: None

| Syntax

| LEFT
| [number | PAGE | HALF | CSR | DATA | MAX]

| number
| is the number of columns to scroll left, from 1 to 9999.

| PAGE (or P)
| scrolls left by the number of columns in the window.

| HALF (or H)
| scrolls left by half the number of columns in the window.

| CSR (or C)
| scrolls left by PAGE, unless the cursor is in the window, in which case the window
| is scrolled left by the appropriate number of columns to place the cursor at the edge
| of the window.

| DATA (or D)
| scrolls left by PAGE-1 number of columns. If only one column is visible, the
| scrolling is equivalent to that of PAGE.

| MAX (or M)
| scrolls left so that the leftmost column of the window will contain the leftmost
| column of the contents for the window.

| Usage Notes
| 1. LEFT is cursor-sensitive. The window that is scrolled is determined from the cursor
| position and the windows currently open.

| 2. LEFT cannot be issued in: a command list, an IF command, an attention exit, or a
| restart file.

| 3. If an operand is not specified with LEFT, the scrolling amount is taken from the
| SCROLL ===> field on the main debugging panel.

| Example
| Scroll left so that the farthest left column of the window will contain the farthest left
| column of the contents for the window.

| left max

140 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LIST

 LIST
Tasks:

Using Cursor-Sensitive Commands (page 19)
Specifying Output to a Print File (page 42)
Referring to Statements or Variables in Other Program Units (page 54)
Displaying Formatted Variable and Array Values (page 73)

Function: LIST displays the values of specified scalar variables, arrays, array elements,
or string constants at the terminal or in a print file (AFFPRINT). Values can be dis-
played in a variety of formats. The specified or implied qualifier is shown with all vari-
able or array names and the array elements may be displayed outside the defined
dimensions.

 Abbreviation: L

 Syntax

LIST
{[qual.]name[:[qual.]name] | * | 'string' | number | (list)}
[PRINT]
[FORMAT [(code)] | DUMP [(code)]]

[qual.]name
specifies the name of a variable, array, or array element used in the program. If a
qualifier is specified, it overrides the current qualifier for the specified name.

[qual.]name:[qual.]name
specifies a range of variable, array, or array element names used in the program. If a
qualifier is specified, it overrides the current qualifier for the specified name.

LIST displays all storage locations between the two variables. Unless FORMAT or
DUMP is specified, the format of the displayed variables is the same as the type of
the first variable.

*
specifies that a list of all the names in the currently qualified program unit is desired.
Unless FORMAT or DUMP is specified, each is displayed according to its own type.

'string'
specifies a character string to be displayed as a remark. You can use this operand to
help identify breakpoints.

number
specifies an integer or real numeric constant to be displayed as a remark. This func-
tion is useful for converting numbers, in conjunction with the FORMAT option.

list
specifies a list of individual specifications. Enclose the list in parentheses and sepa-
rate entries with commas or blanks.

PRINT
specifies that output be sent to a print file (AFFPRINT) instead of the terminal.

 Part Two. Command Reference 141

 LIST

FORMAT [(code)] | DUMP [(code)]
specifies a particular data format:

� FORMAT displays the names listed and their values in the specified format.
� DUMP displays the address in storage of the names listed and their values in the

specified format.
� (code) specifies the format or dump code for the names to be listed. The default

format code is X. The default dump code is Z.
� FORMAT and DUMP are mutually exclusive.

FORMAT and DUMP codes for the LIST command are the same as for the
AUTOLIST command, and are shown again in Table 4.

Table 4. DUMP and FORMAT Codes for the LIST Command

Code Output

L1 Logical*1

L4 Logical*4

I2 Integer*2

I4 Integer*4

R4 Real*4

R8 Real*8

R16 Real*16

C8 Complex*8

C16 Complex*16

C32 Complex*32

L Logical with size closest to internal data size

I Integer with size closest to internal data size

R Real with size closest to internal data size

C Complex with size closest to internal data size

X[nnn] Hexadecimal with nnn bytes per data item
(default to internal data size)

Z[nnn] Hexadecimal with nnn bytes per data item
(default to Z4)

A[nnn] Character with nnn bytes per data item
(default to internal data size)

H[nnn] Character with nnn bytes per data item
(default to continuous full line output)

 Usage Notes
1. In full screen mode, LIST can be used as a cursor-sensitive command. If the LIST

command is already assigned to a PF key, place the cursor at a variable name in the
source window, and press the PF key for LIST. The variable may include either
subscript or substring notation. If both are present, only the subscript will be
included in the command.

Instead of assigning a PF key to the LIST command, you can type LIST on the
command line and move the cursor to a variable name before pressing ENTER.

2. When you request an individual name or list of names, the default formatting of
values is determined by the type of each name being displayed. When you request a
range of names, the formatting of the values is determined by the format of the first
name in the range. You may, however, specify a different format using the

142 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LIST

FORMAT or DUMP keyword. The locations of the listed names are identified in the
output only if DUMP is specified.

3. VS FORTRAN defines storage layout only for arrays, variables in a common block
(defined in a COMMON statement), and variables in equivalence groups (defined in
an EQUIVALENCE statement). The relative positions of any other names in storage
cannot be predicted. Names that you may expect to be adjacent in storage may be
widely separated by other data. Therefore, a range specification for names other than
array, equivalence, or common variables may produce unexpected results.

4. The length specification in a FORMAT or DUMP code may be entered with 1
through 3 digits. Thus, I4, I04, and I004 are equivalent.

5. A length specification of 0 in character and hexadecimal FORMAT and DUMP codes
(for example, A0 or Z0) causes the data to be displayed as a continuous string, rather
than split into pieces of some specified length.

6. If a FORMAT or DUMP code with no length specification is given for a range of
variables or array elements, each variable or array element is displayed separately in
the specified format. However, if a length specification is given, Interactive Debug
will consider the entire storage area occupied by all the range of variables or array
elements, or occupied by the entire array, as if it were broken into pieces, each with
a length equal to that specified in the DUMP or FORMAT code, and will display
each piece according to the specified format. For example, if PRIMES is a 2 x 3
array of INTEGER*4 values, then:

list primes format(x)

will cause a display of 6 values, each corresponding to an element of the array.
However:

list primes format(x2)

will cause a display of 12 values, each displaying the contents of successive 2-byte
storage areas within the array.

7. The DUMP option is not permitted with constant operands, including strings; using it
will produce an error message.

8. An assumed size array cannot be listed by just specifying the array name; the specific
element or range of elements must be specified. (An assumed size array is an array
with the last upper bound declarator specified as an asterisk (*).) This restriction
does not apply to arrays whose last dimension is “1,” even though such arrays are
otherwise treated as assumed size arrays. However, only the elements whose last sub-
script is “1” will be displayed if no subscripts are specified.

9. For array elements, subscripts may have values beyond the range of the corre-
sponding array dimensions. A warning message will be issued except in the special
case where the last dimension is “1” or “*” and only the last subscript is out of
range.

 Part Two. Command Reference 143

 LIST

10. Array subscripts must consist of simple arithmetic expressions no more complex than
the form “variable plus (or minus) a constant.” For example, the following are valid:

list ARY(J), list ARY(3), list ARY(J + 3), list ARY(J - 3)

11. Dummy arguments can only be displayed when the program unit in which they are
defined is active. If not, an error message is issued. Results are unpredictable if you
display a dummy argument that is not defined at the entry point called. Note that a
program unit is not yet active when suspended at entry.

12. Variables in dynamic commons can only be displayed if the program unit used to
qualify the variable has been activated at least once. (If not, an error message may
be issued. However, if a variable has a large displacement in its dynamic common,
Interactive Debug cannot detect that it is not initialized.)

13. Although a quoted string can be used as an operand on the LIST command, you
cannot point the cursor at a quoted string in the source listing window (when using
LIST as a cursor-sensitive command).

 Examples
1. Display at the terminal the value of the variable named NCOUNT.

list ncount

2. Obtain a hexadecimal dump (FORMAT(X)) showing values of array variables A(1,1)
through A(7,10). Have the display sent to the print data set.

list a(1,1):a(7,1�) print format

3. List the decimal number 12345 in hex.

list 12345 f(x)

4. Display an entire array (CHARAY) containing a series of 30-character alphabetic
strings so that each character string is separated from the others. (If the array is
declared in the program to be a CHARACTER*30 array, the elements of the array
will be separated from each other when the array is listed.)

list charay format(a3�)

5. Display the value of the variable named CTR in subroutine SUB1.

list sub1.ctr

6. Display the message “inside loop” whenever ISN 100 is run.

at 1�� (list 'inside loop'%go)

7. Display variable LONG_NAME_VAR in program unit SUB1, and variable SHORT
in program unit SUB2. This illustrates the LIST format in support of long (31 char-
acter) names. Note that long names cause a line break to allow alignment of the
“=”s without excessive horizontal spread.

list (sub1.long_name_var,sub2.short)
SUB1.LONG_NAME_VAR
 = 1�
SUB2.SHORT = 25

8. Display values of the second through sixth characters in the character variable PORT

list PORT(2:6)

144 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LISTBRKS

 LISTBRKS
Tasks:

Specifying Output to a Print File (page 42)
Referring to Statements or Variables in Other Program Units (page 54)

Function: LISTBRKS provides the following information:

� All breakpoints that are currently set, including entry, exit, and statement breakpoints

� All WHEN conditions (both on and off) that are currently defined, and the condition
being tested

� The current HALT status (OFF, STMT, GOTO, or ENTRY)

 Abbreviation: LB

 Syntax

LISTBRKS
[PRINT]

PRINT
specifies that output be sent to a print file (AFFPRINT) instead of the terminal.

 Example
Possible output:

CURRENT BREAKPOINTS:
 MAIN.15/3�
 SUB.ENTRY
 SUB.8/1�
CURRENT WHEN CONDITIONS:
ABCD ON (SUB.X > 5)
EFGH ON (CH(1:2)='AB')

CURRENT HALT STATUS: OFF

 Part Two. Command Reference 145

 LISTFREQ

 LISTFREQ
Tasks:

Specifying Output to a Print File (page 42)
Determining Statement Execution Frequency (page 62)

Function: LISTFREQ displays the number of times statements in the currently quali-
fied program unit have been run. This command can also be used to list the statements
that have not been run.

 Abbreviation: LF

 Syntax

LISTFREQ
[[qual.]{number[:[qual.]number] | ENTRY | EXIT} |
(number/ENTRY/EXIT list)]
[ZEROFREQ]
[PRINT]

qual.
specifies a program unit name prefix to temporarily override the current qualifier for
the prefixed operand only.

number
specifies the statement label, ISN, or sequence number of an executable VS
FORTRAN statement whose execution counts are to be listed or checked for zero.
Precede a statement label with a slash to distinguish it from an ISN or sequence
number.

number:[qual.]number
specifies a range of statement labels or statement numbers (ISNs or sequence
numbers) whose execution counts are to be listed or checked for zero. Statement
labels can be combined with ISNs or sequence numbers in the range specification,
but the first and last must be executable statements. Precede each statement label
with a slash.

Statement identifiers can be qualified with a program unit name. The default
program unit for the first identifier is the current qualifier. The default program unit
for the second identifier is the program unit specified or defaulted for the first identi-
fier. Both identifiers must have the same program unit in effect.

(number/ENTRY/EXIT list)
requests a list of statement labels, ISNs or sequence numbers, entry points, exit
points, and ranges. (Note that ENTRY and EXIT are not permitted in a range.) The
frequency for each specified statement is listed. Enclose the list in parentheses, with
individual entries separated by commas or blanks. Precede each statement label with
a slash.

ZEROFREQ
requests a list of statements that have not been run. All statements may be tested, or
specific statements may be specified using the options discussed above.

146 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LISTFREQ

PRINT
specifies that output be sent to a print file (AFFPRINT) instead of the terminal.

 Usage Notes
1. If no operand is specified, the counts are displayed for ENTRY, EXIT, and all exe-

cutable statements with debugging hooks in the currently qualified program unit.

2. If LISTFREQ is issued after an ENDDEBUG command, the execution counts dis-
played are those that existed when ENDDEBUG was issued.

3. Execution counts of unhooked or collapsed statements are not displayed. Instead,
you will see the phrase “NO HOOK” or “COLLAPSED STMT.”

4. Before a RENT program unit is first entered, all statements are considered to have no
hook. Statements in a reentrant program unit that are excluded in the AFFON file
will show “COLLAPSED STMT” on the LISTFREQ display.

5. After ENDDEBUG is issued, LISTFREQ displays counts for all non-collapsed state-
ments.

6. Statements in a debug packet will be treated as collapsed in VS FORTRAN programs
compiled prior to Version 1 Release 4.0. If the program is compiled with VS
FORTRAN Version 1 Release 4.0 or later, the debug statements are inserted directly
into the code and LISTFREQ will show duplicate statements in addition to the
DEBUG packet code.

7. If you request ZEROFREQ, Interactive Debug displays only hooked statements that
have not been run.

 Examples
1. On the print data set, list how many times each executable statement in the currently

qualified program unit has been run.

listfreq print

Your output might look something like this:

STATEMENT FREQUENCY
MAIN.ENTRY NO HOOK
MAIN.EXIT NO HOOK
MAIN.6 1
MAIN.7 COLLAPSED STMT
MAIN.8 COLLAPSED STMT
MAIN.9 NO HOOK
MAIN.1� 3
MAIN.11 3
MAIN.12 NO HOOK
MAIN.13/1��14 NO HOOK

2. List the statements that have not been run in the currently qualified program unit.

listfreq zerofreq

3. List how many times some specific statements have been run in the currently quali-
fied program unit.

listfreq (1�:/8�,3��,/95,/1�5,ENTRY)

listfreq (2�:13� ENTRY 25� /1���)

4. List how many times the executable statements 12 through 15 in subroutine SUB1
have been run.

listfreq sub1.12:sub1.15

 Part Two. Command Reference 147

 LISTINGS

LISTINGS (full screen mode only)
Tasks: Changing Listing Information (page 21)

| Function: LISTINGS displays the Interactive Debug listings panel.

 Abbreviation: None

 Syntax

LISTINGS

 Usage Notes
1. LISTINGS cannot be issued in: a command list, an IF command, an attention exit,

or a restart file.

2. LISTINGS will operate as usual with a parameter list, but the panel will indicate the
| message “THE PARAMETERS ARE INVALID AND HAVE NO EFFECT WITH
| THIS COMMAND.”

Sample listings panel in CMS:

| �| �
| INTERACTIVE DEBUG LISTINGS PANEL ROW 1 OF 5
| COMMAND ===> SCROLL ===> PAGE

| PROGRAM UNIT NAME CMS LISTING FILE DISPLAY

| MAIN________________________ XYZPROG LISTING A1 Y

| THCOM_______________________ THCOM LISTING E1 N
| AFFA756E LISTING FILE COULD NOT BE FOUND ON ACCESSED DISKS.
| THE281J_____________________ THE281J LISTING A1 Y

| THY1�66_____________________ THY1�66 LISTING �_ N

| ������������������������������ BOTTOM OF DATA ���������������������������������

| �| �

| Figure 40. Sample CMS listings panel

The column labelled “PROGRAM UNIT NAME” identifies the debuggable VS
| FORTRAN program units. The second column, “CMS LISTING FILE,” indicates the
| names of files where the listings are to be found. In the column labelled “DISPLAY,”

YES indicates that the listing will be displayed in the source window.

| A message area is located under each program unit name. In the sample panel above, the
| CMS message LISTING FILE COULD NOT BE FOUND ON ACCESSED DISKS indicates that

the specified file was not found on any of your accessible disks. The equivalent TSO
| message is LISTING DATASET COULD NOT BE FOUND IN ALLOCATED DATASETS.

After filling in the listings panel, return to the execution panel by entering END, usually
PF key 3.

148 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LISTSAMP

 LISTSAMP
Tasks:

Specifying Output to a Print File (page 42)
Program Sampling (page 63)
Vector Tuning Assistance (page 67)

| Function: LISTSAMP lists sampling counts by statement, program unit, or DO loop.
Percentage of program unit samples and percentage of total number of samples are also
listed, along with a bar chart of the sampling counts.

 Abbreviation: None

Format 1

Syntax for Listing Sampling Counts by Statement

LISTSAMP
{[qual.]number[:[qual.]number] | [qual.]ENTRY | [qual.]* | (list) | *.*}
[DIRECT | CALLED | ALL]
[TOP[(n)]]
[PRINT]

Format 2

 Syntax for Listing Sampling Counts by Program Unit

LISTSAMP
{unit-name | (unit-name-list) | *}
SUMMARY
[DIRECT | CALLED | ALL]
[TOP[(n)]]
[PRINT]

| Format 3

| Syntax for Listing Sampling Counts by DO Loop

| LISTSAMP
| {[qual.]number[:[qual.]number] | [qual.]* | (list) | *.*}
| DOLOOP
| [DIRECT | CALLED | ALL]
| [TOP[(n)]]
| [PRINT]

 Part Two. Command Reference 149

 LISTSAMP

| [qual.]
| specifies a program unit name to temporarily override the current qualifier for the
| prefixed operand only.

[qual.]number
is the statement label, ISN, or sequence number of an executable statement (formats

| 1 and 2) or DO statement for a DO loop (format 3) for which sampling information
is to be listed. Qualification is optional. A statement label must be prefixed with a
slash (/).

[qual.]number:[qual.]number
| specifies a range of statements in the program (formats 1 and 2) or a range of state-
| ments in the program for all DO loops in the range (format 3) for which sampling

counts is to be displayed. (A DO loop is in the range if the DO statement of the
loop is in the range. All the statements of the loop do not have to be in the range.
The starting and ending statement identifiers do not have to be DO statements.)
Qualification is optional. If the second qualifier is specified, it must be the same as
that specified for the first qualifier.

[qual.]ENTRY
indicates that the sampling count for the entry and exit code of the specified or cur-
rently qualified program unit is to be listed. There is only one sampling count to
cover both entry and exit code.

[qual.]*
| indicates that sampling counts for all statements (formats 1 and 2) or DO loops
| (format 3) in the specified or currently qualified program unit are to be displayed.

list
| specifies a list of individual statement (formats 1 and 2) or DO loop (format 3) spec-

ifications. Enclose the list in parentheses and separate entries using commas or
blanks.

.
indicates that sampling counts for all statements in all programming units (formats 1

| and 2) or all DO loops in the program (format 3) are to be displayed.

unit-name
specifies the name of a program unit whose sampling summary is to be listed. This
must be a VS FORTRAN unit compiled with SDUMP.

unit-name-list
specifies a list of program unit names separated by commas or blanks.

*
indicates that all program units, debuggable or not, are to be included. In addition,
there are two special names that are reported when “*” is specified:

*LIBRARY shows the sampling count accumulated for all VS FORTRAN
Library modules other than the mathematical functions and the Error Monitor.
This includes lower-level calls to system services.

*UNKNOWN shows the count of sampling interrupts that could not be assigned
to any program unit.

SUMMARY
indicates that sampling counts are to be summarized by program unit. This keyword
is allowed only in format 2.

150 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LISTSAMP

| DOLOOP
| indicates that sampling counts are to be summarized by DO loop. This keyword is
| allowed only in format 3.

DIRECT | CALLED | ALL
DIRECT indicates that interruptions occurring in the code are to be included in the
sampling counts for that code. DIRECT is the default.

CALLED indicates that interruptions occurring in lower-level routines are also to be
included in the sampling counts of the code being sampled. This option is valid only
when sampling is initiated with the CALLED option.

ALL indicates that sampling counts are to be the sum of the DIRECT and CALLED
counts.

TOP(n)
indicates that only n number of statements (format 1), programming units (format 2),

| or DO loops (format 3) having the highest counts are to be listed. The output is
sorted in descending order by count. The default for n is “1”; the maximum value is
“9999.”

If TOP is not specified, the output is in the order shown in the specification list, and
within that by statement table order.

PRINT
specifies that output be sent to a print file (AFFPRINT) instead of the terminal.

 Usage Notes
1. The LISTSAMP command is valid only when sampling has been performed.

2. Qualifiers and unit names are restricted to VS FORTRAN program units compiled
with SDUMP.

3. Non-FORTRAN program units (and units compiled with NOSDUMP) are identified
by the entry ID located using the value of GPR 15 saved in the save area. Programs
that do not follow MVS standards for entry identifiers will not be correctly identified.
Note that the entire ID string is shown, up to 31 characters. This often includes
blanks and additional information such as date and time of compilation.

4. Sampling counts for non-debuggable program units cannot be requested by name;
however, the '*' operand with the SUMMARY option will show sampling counts
for both debuggable and non-debuggable program units, including VS FORTRAN
library counts.

| 5. For format 3:

| � The program information for a program unit must have been successfully
| obtained at initialization of the debugging session in order to display sampling
| counts by DO loop for the program unit.

| � A LISTSAMP command with a specification list or a program-unit-name list will
| run if one or more of the DO statement identifiers or program unit names in the
| list are valid.

| � Since there are likely to be statements in the program that are not contained in
| DO loops, DIRECT sampling counts for all DO loops in the program may not
| add up to the total number of samples. Also, since DO loops can be nested,
| DIRECT sampling counts for all DO loops in the program may add up to more
| than the total number of samples.

 Part Two. Command Reference 151

 LISTSAMP

| � If a DO loop has been distributed into several loops due to vectorization, then
| sampling counts are summed for all of the distributed loops, and displayed as if
| the DO loop was not distributed.

 Examples
1. Display a summary of the sampling counts for all program units.

listsamp � summary

Possible output:

PROGRAM SAMPLING INTERVAL WAS 2� MS; TOTAL NUMBER OF SAMPLES
 WAS 9745.
DIRECT SAMPLES:
 PROGRAM UNIT SAMPLES %TOTAL
 MAIN 613 6.35 �
 SUB1 15 �.15
 SUB2 5763 59.71 ������������
 SUB3 1882 19.31 ���
 S#IN 1251 12.83 ���
 �LIBRARY 128 1.31
 �UNKNOWN 93 1.�1

2. Display a summary of the sampling counts for SUB1 and SUB2.

listsamp (sub1,sub2) summary

Possible output:

PROGRAM SAMPLING INTERVAL WAS 2� MS; TOTAL NUMBER OF SAMPLES
 WAS 9745.
DIRECT SAMPLES:
 PROGRAM SAMPLES %TOTAL
 SUB1 15 �.15
 SUB2 5763 59.71 ������������

3. Display the sampling counts for a range of statements in SUB2. (Sampling counts
will include interruptions which occurred in the code of a statement as well as in any
lower-level routines called by the statement.)

listsamp sub2.1�:2� all

Possible output:

PROGRAM SAMPLING INTERVAL WAS 2� MS; TOTAL NUMBER OF SAMPLES
 WAS 9745.
SUM OF DIRECT AND CALLED SAMPLES:
STATEMENT SAMPLES %UNIT %TOTAL
 SUB2.1�/92� 1142 73.15 12.53 ���������������
 SUB2.11/93� 231 15.42 3.�2 ���
 SUB2.13 12 1.22 �.15
 SUB2.15 COLLAPSED
 SUB2.16 22 2.38 �.32
 SUB2.18 14 1.24 �.16
 SUB2.2� 46 5.17 �.77 �

4. Display the four highest counts in SUB2. (Sampling counts will include interruptions
which occurred in the code of a statement as well as in any lower-level routines
called by the statement.)

listsamp sub2.� top(4) all

Possible output:

PROGRAM SAMPLING INTERVAL WAS 2� MS; TOTAL NUMBER OF SAMPLES
 WAS 9745.
SUM OF DIRECT AND CALLED SAMPLES:
STATEMENT SAMPLES %UNIT %TOTAL
 SUB2.1�/92� 1142 73.15 12.53 ���������������
 SUB2.11/93� 231 15.42 3.�2 ���
 SUB2.2� 46 5.17 �.77 �
 SUB2.ENTRY/EXIT 42 4.92 �.72 �

152 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LISTSAMP

| 5. List DIRECT sampling counts by DO loop for the 10 DO loops in the currently
| qualified program unit that have the highest counts, sorted in order from largest to
| smallest number of samples.

| listsamp � doloop top(1�)

| Possible output:

| PROGRAM SAMPLING INTERVAL WAS 2� MS; TOTAL NUMBER OF SAMPLES
| WAS 9745.
| DIRECT SAMPLES:
| DO LOOP SAMPLES %UNIT %TOTAL
| MAIN.9 613 1��.�� 6.35 �����������
| MAIN.49 165 26.92 1.69 ���
| MAIN.41 46 7.48 �.77 �
| MAIN.4� 46 7.48 �.77 �
| MAIN.27 35 5.69 �.51 �
| MAIN.26 35 5.69 �.51 �
| MAIN.24/2�� 35 5.69 �.51 �
| MAIN.34/3�� 22 3.58 �.32
| MAIN.33 22 3.58 �.32
| MAIN.32 22 3.58 �.32

| 6. List the CALLED sampling count for the DO loop whose DO statement is at ISN 53
| in program unit LOLLI, and place the output in the print file.

| listsamp lolli.53 doloop called print

 Part Two. Command Reference 153

 LISTSUBS

 LISTSUBS
Tasks:

Specifying Output to a Print File (page 42)
Displaying Information about Debuggable Program Units (page 54)

Function: LISTSUBS displays a list of all VS FORTRAN program units compiled
with SDUMP, including those not listed in AFFON, with the following information for
each:

� Compiler level used to produce the object code (if it can be determined)
 � Optimization level
 � Vectorization level
 � Hook existence
 � Timing status
� Load status for units compiled with RENT

 Abbreviation: LS

 Syntax

LISTSUBS
[PRINT]

PRINT
specifies that output be sent to the print file instead of the terminal.

 Sample output:

PROGRAM UNIT COMPILER OPT HOOKED TIMING
MAINLINE VSF 2.3.� V2 YES ON
SUBBUILD VSF 1.4.� 3 NO OFF RENT NOT LOADED
SUBDOWN VSF (TEST) � YES OFF

In the sample output above, VSF (TEST) means that the program unit was compiled prior
to VS FORTRAN Version 1 Release 4.0, and the TEST option was specified. In this
case, it is not possible to determine the VS FORTRAN release level.

For non-vectorized programs, the “OPT” column displays the level of optimization: 0, 1,
| 2, or 3. For vectorized programs, the “OPT” column displays “V2.”

YES means that hooks are installed at entry and exit points and possibly at some or all
statement boundaries as well. The hook settings are controlled by the AFFON file. NO
in the “HOOKED” column indicates that no hooks are installed in the program unit.

ON in the “TIMING” column indicates that timing has been activated for the program
unit. The TIMER command is used to set timing ON or OFF.

The possible load status indications for RENT program units are:

RENT NOT LOADED The program unit has not yet been called, and has not been
located (although it may actually be in storage).

RENT IN USER AREA The program unit has been called and is in user-owned storage.

154 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LISTSUBS

RENT IN PROT AREA The program unit has been called and is in protected storage.

 Part Two. Command Reference 155

 LISTTIME

 LISTTIME
Tasks:

Specifying Output to a Print File (page 42)
Program Unit Timing (page 66)
Vector Tuning Assistance (page 67)

| Function: LISTTIME displays timing information for either program units or
| analyzable DO loops. The following information is provided for each program unit or

DO loop:

� Total time: total execution time.
� % total: percentage of total execution time.
� Invocations: number of invocations.

| Timing information for program units also includes average time (calculated by dividing
| the total time by the number of invocations).

Use the TIMER command (page 194) to activate, deactivate, or reset timing.

 Abbreviation: LT

Format 1

Syntax for Displaying Timing Information by Program Unit

LISTTIME
[PRINT]

| Format 2

| Syntax for Displaying Timing Information by DO Loop

| LISTTIME
| { [qual.]number[:[qual.]number] | [qual.]* | (list) | *.* }
| DOLOOP
| [PRINT]

PRINT
specifies that output be sent to the print file instead of the terminal.

| [qual.]
| specifies a program unit name to temporarily override the current qualifier for the
| prefixed operand only.

| [qual.]number
| specifies the statement label, ISN, or sequence number of the DO statement for a DO
| loop whose timing is to be displayed. Qualification is optional. A statement label
| must be prefixed with a slash (/).

156 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LISTTIME

| [qual.]number:[qual.]number
| specifies a range of statements in the program for which the timing for all DO loops
| in the range is to be displayed. Qualification is optional. (A DO loop is in the range
| if the DO statement of the loop is in the range. All the statements of the loop do not
| have to be in the range. The starting and ending statement identifiers do not have to
| be DO statements.) Qualification is optional. If the second qualifier is specified, it
| must be the same as that specified or defaulted for the first qualifier.

| [qual]*
| specifies that the timing for all DO loops in the specified or currently qualified
| program unit is to be displayed.

| list
| specifies a list of individual DO loop specifications. Enclose the list in parentheses
| and separate entries using commas or blanks.

| *.*
| specifies that timing for all DO loops in the program is to be displayed.

 Usage Notes
1. The timing information provided by Interactive Debug may include overhead caused

by the debugging hooks in your program. Thus, the timing information is not an
accurate representation of the time it takes to run without Interactive Debug.

| To reduce DO loop timing distortion, restrict hooks in the program to only DO loop
| analysis hooks. This can be done by creating an AFFON file for the debugging
| session, with one entry of (ALL) � DOLOOP inside it.

| 2. DO loop timing cannot be performed on unanalyzable loops.

| 3. The program information for a program unit must have been successfully obtained at
| initialization of the debugging session in order to time DO loops in the program unit.

| 4. The DO statement for a DO loop must have been included in the AFFON statement
| restriction list (page 43) for the program unit in order to display timing for the loop.

| 5. A LISTTIME command with a specification list will run if one or more of the DO
| statement identifiers in the list are valid.

| 6. If a DO loop has been distributed into several loops due to vectorization, then all of
| the distributed loops are timed and the time is presented as if the DO loop was not
| distributed.

| 7. Time is measured in microseconds. Average time is rounded to the nearest micro-
| second. Percentages are rounded to the nearest hundredth of a percent.

| 8. The execution times displayed are CPU times. The time may not include time spent
| in paging and other operating system activities.

| 9. The accuracy of the times depends on CPU model and operating system. The accu-
| racy may be sensitive to system load.

10. Timing for very small subroutines may be erratic.

11. Timing is measured separately for each entry point in the program unit.

12. If LISTTIME is issued after an ENDDEBUG command, the times and activation
counts are those that existed when ENDDEBUG was issued.

 Part Two. Command Reference 157

 LISTTIME

 Examples
1. Display timing information to the terminal for all program units.

listtime

Possible output:

| ENTRY POINT TOTAL TIME %TOTAL INVOCATIONS AVERAGE TIME
| MAIN 54274 8.69 1 54274
| INITIALIZE_OVERVIEW_SYSTEM
| 3423 �.55 1 3423
| FIELDS 52438 8.4� 12 437�
| FIELDS_ALPHA 2432 �.39 24 1�1
| FIELDS_BETA 23331 3.74 5 4666
| XSORT 487391 78.�5 563 866
| FHALL 1142 �.18 2 571

| 2. Display timing information to the terminal for all DO loops.

| listtime �.� doloop

| Possible output:

| DO LOOP TOTAL TIME EXECUTIONS AVERAGE TIME STATUS
| MAIN.13 23421 1 23421 ON
| INITIALIZE_OVERVIEW_SYSTEM.122/1�1��
| 1342 1 1342 ON
| FIELDS_ALPHA.23 2234 24 93 ON
| FIELDS_ALPHA.24 15�3 12� 63 ON
| FIELDS_BETA.48 19231 5 3846 ON
| FIELDS_BETA.49 1�765 25 431 OFF
| FIELDS_BETA.65 2342 5 468 ON
| XSORT.12 473223 563 841 OFF
| XSORT.23 365253 251 1455 OFF

| In interpreting the values in the EXECUTIONS column, consider the following:

| � If a DO loop is divided into several loops due to vectorization, the number of
| executions of the loop is the number of executions of the first recurrence of the
| loop.

| � If the DO loop (or first recurrence) is nested in a vectorized loop, the number of
| executions will be less than that obtained if the loop were nested in a scalar
| loop. This is because the inner loop will be run only once for each vector
| section processed by the outer loop.

| If Z denotes vector section size, and N is the iteration count of the outer loop,
| then the inner loop will be run INT ((N - 1) / Z) + 1 times for each execution of
| the outer loop.

| 3. Display timing information for DO loops in subroutine SUBSEL.

| lt subsel.� d

158 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LISTVEC

| LISTVEC
| Tasks:

| Specifying Output to a Print File (page 42)
| Vector Tuning Assistance (page 67)

| Function: LISTVEC displays vector length and stride information. The LISTVEC
| report contains:

| � the total number of executions of the DO loop
| � the average iteration count (length) of a DO loop
| � the compiler estimate for the iteration count
| � the average stride for each array indexed by the DO variable of the loop
| � the compiler estimates for these strides

| Abbreviation: LV

| Syntax

| LISTVEC
| { [qual.]number[:[qual.]number] | [qual.]* | (list) | *.* }
| [TOP [(n)]]
| [PRINT]

| [qual.]number
| is the statement label, ISN, or sequence number for a DO statement of a DO loop for
| which vector information is to be displayed. A statement label must be prefixed with
| a slash (/). qual specifies a program unit name to temporarily override the current
| qualifier for the prefixed operand only.

| [qual.]number:[qual.]number
| specifies a range of statements in the program for which the vector information for
| all DO loops in the range is to be displayed. (A DO loop is in the range if the DO
| statement of the loop is in the range. All the statements of the loop do not have to
| be in the range. The starting and ending statement identifiers do not have to be DO
| statements.) If the second qual is specified, it must be the same as that specified or
| defaulted for the first qual.

| [qual.]*
| indicates that the vector information for all DO loops in the specified or currently
| qualified program unit is to be displayed.

| list
| is a list of individual DO loop specifications. Enclose the list in parentheses and
| separate entries with commas or blanks.

| *.*
| indicates that vector information for all DO loops in the program is to be displayed.

| TOP[(n)]
| specifies that only array references with the highest n average strides are to be dis-
| played. (Since there may be more than one array reference with the same stride,
| more than n array references may be displayed.) The references are listed in order

 Part Two. Command Reference 159

 LISTVEC

| from largest stride to smallest. Array references with the same stride are listed in
| order of statement appearance in the source listing.

| PRINT
| indicates that output be sent to a print file (AFFPRINT) instead of the terminal.

| Usage Notes
| 1. Length and stride statistics are only available for DO loops that were analyzable by
| the compiler. An error message is issued if the LISTVEC command explicitly speci-
| fies a DO loop that was not analyzable. If a range of DO loops is specified on the
| LISTVEC command, and a loop in the range was not analyzable, then the message
| “NOT ANALYZABLE” appears in place of length and stride information for the
| loop in the LISTVEC output.

| 2. The program information for a program unit must have been successfully obtained at
| initialization of the debugging session in order to display length and stride statistics
| for DO loops in the program unit.

| 3. VECSTAT must be issued to turn on length and stride recording before the
| LISTVEC command can give useful information. If not, then the average length,
| average stride, and number of invocations for the loop are set to zero.

| 4. The DO statement for a DO loop must have been included in the AFFON statement
| restriction list for the program unit in order to record run-time vector information. If
| not, the message “NO HOOK” appears instead of values for number of executions,
| average iteration count, and average strides.

| 5. A LISTVEC command with a specification list runs if one or more of the DO state-
| ment identifiers in the list are valid.

| 6. Length and stride statistics are updated during the execution of the DO statement for
| the loop. Thus, if the user breaks at a statement in the middle of the loop and per-
| forms a LISTVEC, the number of executions, average iteration count, and average
| strides are already updated for that execution of the loop.

| 7. Some strides for non-vectorized DO loops may not be obtainable at run-time. For
| such strides, the word “UNKNOWN” appears instead of a value for the average
| stride in the LISTVEC output.

| 8. For the TOP(n) option, average strides marked “NO HOOK” or “UNKNOWN” are
| not included.

| 9. A question mark (?) following a compiler estimate indicates that the value could not
| be accurately determined at compile time. The estimate shown is an arbitrary value
| that was chosen by the compiler for vector cost analysis.

| 10. If a DO loop has been distributed into several loops due to vectorization, then length
| and stride information is collected for all of the distributed loops, and presented as if
| the DO loop was not distributed.

| 11. DO loops are listed in the LISTVEC output in order of appearance in the source
| listing. Array references for strides of a loop are listed in order of statement appear-
| ance in the source listing. Multiple references in the statement are not listed in any
| particular order.

| 12. The PURGE command can be used to terminate output of a LISTVEC command
| after the output has been suspended by an attention interrupt.

160 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 LISTVEC

| Examples
| 1. Display length and stride information for all DO loops in the program.

| LISTVEC �.�

| 2. Display length and stride information for all DO loops in SUBROUTINE1 from
| statement label 10 to statement label 40.

| LISTVEC SUBROUTINE1./1�:/4�

| Sample Output
| Below is an example of LISTVEC output for all DO loops of a program. The DO state-
| ment identifier is listed first, followed by the number of executions, average and esti-
| mated iteration counts, and a list of strides for each array reference indexed by the DO
| variable of the loop.

| In interpreting the values for the TOTAL NUMBER OF EXECUTIONS line, consider the
| following:

| � If a DO loop is divided into several loops due to vectorization, the number of exe-
| cutions of the loop is the number of executions of the first recurrence of the loop.

| � If the DO loop (or first recurrence) is nested in a vectorized loop, the number of
| executions is less than that obtained if the loop is nested in a scalar loop. This is
| because the inner loop only runs once for each vector section processed by the outer
| loop.

| If Z denotes vector section size, and N is the iteration count of the outer loop, then
| the inner loop runs INT ((N - 1) / Z + 1 times for each execution of the outer loop.

 Part Two. Command Reference 161

 LISTVEC

| IVA�4.7:
| NOT ANALYZABLE
| IVA�4.1�:
| STATUS = ON
| TOTAL NUMBER OF EXECUTIONS = 75
| AVERAGE ITERATION COUNT = 13
| ESTIMATED ITERATION COUNT = 2�?
| STATEMENT ARRAY AVG STRIDE EST STRIDE
| V IVA�4.12 A1 3 3
| V IVA�4.12 A1 UNKNOWN 3?
| V IVA�4.12 C1 3� 4?
| S IVA�4.13 B1 3 3
| S IVA�4.13 B1 3 3
| S IVA�4.13 C1 21 21
| IVA�4.11:
| STATUS = ON
| TOTAL NUMBER OF EXECUTIONS = 945
| AVERAGE ITERATION COUNT = 8
| ESTIMATED ITERATION COUNT = 4��?
| STATEMENT ARRAY AVG STRIDE EST STRIDE
| S IVA�4.12 A1 5�� 5��
| S IVA�4.12 A1 5�� 5��
| S IVA�4.12 C1 25�� 4��?
| V IVA�4.13 B1 5�� 5��
| V IVA�4.13 C1 55�� 55��
| IVA�4.2�:
| STATUS = OFF
| TOTAL NUMBER OF EXECUTIONS = NO HOOK
| AVERAGE ITERATION COUNT = NO HOOK
| ESTIMATED ITERATION COUNT = 2�?
| STATEMENT ARRAY AVG STRIDE EST STRIDE
| IVA�4.21 A1 NO HOOK 1?
| IVA�4.21 B1 NO HOOK 1?
| TALLY_UP_IVA_STATISTICS.42:
| STATUS = OFF
| TOTAL NUMBER OF EXECUTIONS = 3�
| AVERAGE ITERATION COUNT = 1��
| ESTIMATED ITERATION COUNT = 2�?
| STATEMENT ARRAY AVG STRIDE EST STRIDE
| V TALLY_UP_IVA_STATISTICS.43
| A1 1 1
| V TALLY_UP_IVA_STATISTICS.43
| CALCULATED_IVA_GSTATS
| 4 1?

| Figure 41. Sample LISTVEC Output

162 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 MOVECURS

MOVECURS (full screen mode only)
| Function: MOVECURS toggles the cursor between the command line and its most
| recent position in the main debugging panel.

 Abbreviation: MC

 Syntax

MOVECURS

 Usage Notes
1. MOVECURS cannot be issued in: a command list, an IF command, an attention

exit, or a restart file.

2. You may find it convenient to set MOVECURS to a PF key. To do this, specify
KEYS on the command line. You will then see a list of all current PF key assign-
ments. You can change the CURSOR key (usually PF 12) to MOVECURS by
typing

| MOVECURS;

| next to the appropriate PF key number and pressing ENTER. Note a semicolon must
| follow MOVECURS. For more information on PF keys, see page 19.

 Part Two. Command Reference 163

 NEXT

 NEXT
Tasks:

Controlling Program Execution (page 58)
Processing External Files (page 76)

Function: NEXT suspends program execution at the next statement, entry, or exit with
a debugging hook. Because some statements may not have been included in the AFFON
list or may have been collapsed, execution need not necessarily be suspended at the next
statement to be run.

 Abbreviation: N

 Syntax

NEXT

 Usage Notes
1. You are notified of the point where execution is suspended because of NEXT.

2. NEXT suspension is not a breakpoint. It is not listed by LISTBRKS.

3. Certain commands are not allowed while I/O is active. When execution is suspended
for output, the NEXT command can be issued to cause execution to be suspended
again after the completion of the I/O operation. At the next statement boundary with
a debugging hook, execution will be suspended, and you may issue other commands.

4. If the statement at which execution is to be suspended has a breakpoint set with an
AT command, including a command list that causes execution to resume, the NEXT
command will not cause execution to be suspended at that statement.

5. NEXT is not permitted after the VS FORTRAN program has terminated.

6. The STEP command (page 189) can be issued to replace NEXT/GO combinations.

 Examples
1. Suspend execution after executing one statement.

AT: MAIN.1�
next
go
NEXT: MAIN.11
next
go 4�
NEXT: MAIN.4�

2. You are in an error exit, and want to suspend execution after having performed cor-
rective action.

ERROR EXIT: ERROR 2�9 AT MAIN.11
next
fixup
STANDARD CORRECTIVE ACTION TAKEN. EXECUTION CONTINUING.
NEXT: MAIN.12

164 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 OFF

 OFF
Tasks: Using Cursor-Sensitive Commands (page 19)

Function: OFF removes breakpoints in the currently qualified program unit.

 Abbreviation: None

 Syntax

OFF
{ [qual.]{number[:[qual.]number] | ENTRY | EXIT}
| * | (number/ENTRY/EXIT list) }

qual.
specifies a program unit name prefix to temporarily override the current qualifier.
The program unit name is used for the prefixed operand only.

number
specifies the statement label, ISN, or sequence number of a single breakpoint you
want to remove. Precede a statement label with a slash to distinguish it from an ISN
or sequence number.

number:[qual.]number
specifies a range of statement labels and/or statement numbers (ISNs or sequence
numbers). Breakpoints set at any statement within the range are removed. Statement
labels and statement numbers (ISNs or sequence numbers) can be combined in the
range. Precede each statement label with a slash.

Statement identifiers can be qualified with a program unit name. The default
program unit for the first identifier is the current qualifier. The default program unit
for the second identifier is the program unit specified or defaulted for the first identi-
fier. Both identifiers must have the same program unit in effect.

ENTRY
specifies that the entry breakpoint is to be removed.

EXIT
specifies that the exit breakpoint is to be removed.

*
specifies that all breakpoints will be removed from the qualified program unit.

(number/ENTRY/EXIT list)
specifies a list of statement labels, ISNs or sequence numbers, entry points, exit
points, and ranges of numbers. Breakpoints set at each specified statement and
within each range are removed. Enclose the list in parentheses, and separate entries
with commas or blanks. Precede each statement label with a slash.

If the number of a statement that does not have a debugging hook is entered in the
number list, an error message is issued but breakpoints are still removed from the
remaining statements.

 Part Two. Command Reference 165

 OFF

 Usage Notes
1. In full screen mode, OFF can be used as a cursor-sensitive command. If the OFF

command (with no parameters) is already assigned to a PF key, place the cursor in
the prefix area of the source window, and press the PF key for OFF.

Instead of assigning a PF key to the OFF command, you can type the OFF command
in the prefix area, or you can type OFF on the command line and move the cursor to
the target statement number before pressing ENTER.

2. OFF is not permitted after the VS FORTRAN program has terminated.

 Examples
1. Remove all breakpoints in the currently qualified program unit.

off �

2. Remove breakpoints at statement numbers 120 and 560 in program SUB1.

off (sub1.12� sub1.56�)

3. Remove specific breakpoints in the currently qualified program unit.

off (2�:8� /1�� ENTRY)

166 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 OFFWN

 OFFWN
Tasks: Controlling Program Execution (page 58)

Function: OFFWN turns off the monitoring of WHEN conditions.

 Abbreviation: None

 Syntax

OFFWN
{condition-name | * | (condition-name-list)}

condition-name
specifies the 1- through 4-character name of a WHEN condition that is currently
being monitored and that you want to stop monitoring.

*
turns off all WHEN condition monitoring.

(condition-name-list)
specifies a list of such WHEN condition names. Monitoring is stopped for all of
them. Enclose the list in parentheses, with individual names separated by commas or
blanks.

 Usage Notes
1. Use of OFFWN to turn off monitoring of a condition does not remove the definition

of the condition. Any condition can be reactivated by using the WHEN command.

2. To see the currently defined conditions, use the LISTBRKS command.

3. OFFWN is not permitted after the VS FORTRAN program has terminated.

 Examples
1. Stop monitoring all WHEN conditions.

offwn �

2. Stop monitoring a certain WHEN condition called ABS.

offwn abs

 Part Two. Command Reference 167

 POSITION

POSITION (full screen mode only)
Tasks:

Using Cursor-Sensitive Commands (page 19)
Changing the Way Your Windows Look (page 17)

Function: POSITION allows you to search for a line and place it at the top of a speci-
fied window.

 Abbreviation: POS

 Syntax

POSITION
number

number
specifies either a statement number (an ISN or sequence number), a log line number,

| or a monitor line number to be used as the target.

 Usage Notes
1. POSITION cannot be issued in: a command list, an IF command, an attention exit,

or a restart file.

| 2. Only the last 1000 lines of the log window and the first 1000 lines of the monitor
| window are available for display during the debugging session. A target located

below the last 1000 lines will cause an error message to be displayed.

3. Sequence numbers (in columns 73 through 80) can be used only for program units
that were compiled with VS FORTRAN Version 2 with the SDUMP(SEQ) option.
In all other cases, ISNs must be used.

| 4. If you have MOVECURS; assigned to a PF key, you can type the POSITION
command on the command line. Then press the MOVECURS PF key to move the
cursor to its previous position in the main debugging panel, and press ENTER to
position the specified line at the top of the window.

 Example
| Search for line number 100 in either the source, monitor, or log window, depending on
| where the cursor is currently positioned, and place it at the top of the window.

| position 1��

168 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 PREVDISP

PREVDISP (full screen mode only)
Function: PREVDISP re-displays the previous panel displayed by the application
program (if ISPF was used). The panels are saved automatically by ISPF, and are re-
displayed with an ISPF message “Saved Panel Display.”

Warning: The variables in the program are actually reset to the values of the variables
in the previously displayed panel, (unless the application program has used VDELETE for
those variables). The information in a saved panel is re-displayed exactly as it appeared
when the panel was originally displayed, and may no longer be correct. You will not
receive a message to remind you of this, nor will the change in values be logged.

 Abbreviation: PREV

 Syntax

PREVDISP

 Usage Notes
1. PREVDISP cannot be issued in: a command list, an IF command, an attention exit,

or a restart file.

2. If no previous panel exists, the first PREVDISP Help panel is displayed.

If the HELP panel is displayed, you cannot access the main menu or subsequent
panels.

3. The display of a previous panel is not an active display. For example, if you re-
display an EDIT session, you cannot edit the panel as if you were in an editing
session.

You can, however, change the values of application variables on a saved panel
display, but this is not recommended. The application program may not be prepared
to have the variables changed at that point.

4. GDDM must still be active to re-display a panel with a graphic area. If GDDM is
not active (for example, if GRTERM has been invoked), the graphic area will be
empty.

 Part Two. Command Reference 169

 PROFILE

PROFILE (full screen mode only)
Tasks: Changing the Way Your Debugging Session Runs (page 20)

Function: PROFILE displays a panel containing the settings for various parameters that
affect the way your debugging session runs. The current settings are shown for each
parameter.

 Abbreviation: None

 Syntax

PROFILE

The profile panel will contain the following initial settings:

� �
VS FORTRAN INTERACTIVE DEBUG PROFILE

COMMAND ===>

 CURRENT SETTING

 STEP DELAY 5� (1�� UNITS = 1 SECOND)
 FREQUENCY COUNT DISPLAY YES (YES OR NO)
 MONITOR LINE NUMBERS YES (YES OR NO)
 LOG LINE NUMBERS YES (YES OR NO)
 OUTPUT REFRESH VALUE 5� (1 TO 9999)

 ENTER:
SAVE TO SAVE YOUR PROFILE SETTINGS.
RESET TO RETURN TO THE PREVIOUSLY-SAVED SETTINGS.
END TO RETURN TO THE MAIN PANEL WITH SPECIFIED PROFILE

SETTINGS IN EFFECT.

� �

Figure 42. Interactive Debug Profile Panel

The parameters displayed in the PROFILE panel are:

Step delay: Controls the pace of animation, measured in hundredths of a second.

Frequency count display: Indicates whether the statement execution counts will be
shown in the source window.

| Monitor line numbers: Indicates whether line numbers in the monitor window will be
| displayed.

| Log line numbers: Indicates whether line numbers in the log window will be displayed.

| Output refresh value: Indicates the number of output lines after which Interactive
| Debug will refresh the main debugging panel.

170 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 PROFILE

| The following commands may be entered on the command line:

| SAVE: saves the current settings in the profile.

| RESET: restores the current settings to last saved settings, or the default settings if no
| previous save was done.

| END or RETURN: changes the current settings without changing the profile settings.
| That is, unless a SAVE has been issued, these settings will remain in effect for only the
| duration of the current debugging session.

| Usage Notes
| 1. PROFILE cannot be issued in: a command list, an IF command, an attention exit, or
| a restart file.

| 2. Initially, the current setting for any of the parameters displayed will be the same as
| your profile setting.

 Part Two. Command Reference 171

 PURGE

 PURGE
Function: PURGE terminates the output of a single Interactive Debug command after
the output has been suspended by an attention interrupt. Subsequent commands in a
command list are not affected. Following the PURGE command, resume execution by
entering a null line.

 Abbreviation: None

 Syntax

PURGE

 Usage Notes
1. PURGE cannot be used to stop output being produced as a result of a VS FORTRAN

WRITE statement or a command in a static DEBUG packet.

2. PURGE cannot be used to stop output from the HELP command.

3. The terminal displays the results of commands more slowly than the processor
produces these results. This may cause the processor to begin processing the
command(s) following the one displayed on the terminal at the same time the null
line (ATTN) was issued. In this case, PURGE may not have the desired results.

4. PURGE has no effect outside an attention exit.

 Example
The following AT command list is being run:

at 1�� (list a% set i=�%list b% where% go)

A contains 1000 elements. When A starts to be displayed, stop the display before its
completion.

Press ENTER (or ATTN)
purge

This sequence suppresses the output of A. When a null line is entered, execution will
resume with the next command in the command list (set i=0).

172 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 QUALIFY

 QUALIFY
Tasks: Referring to Statements or Variables in Other Program Units (page 54)

Function: QUALIFY changes or displays the current qualification. This command
allows you to change the default qualification that determines which program unit any
unqualified statement or variable references apply to.

 Abbreviation: Q

 Syntax

QUALIFY
[program-unit-name]

program-unit-name
specifies the name of the main program or subroutine, or the name of a function
subprogram.

 Usage Notes
1. The QUALIFY command remains in effect until the next QUALIFY command, or

until execution is resumed. When execution is resumed, the current qualification is
reset to the executing program unit.

2. If QUALIFY is not entered, it is assumed that any Interactive Debug commands
apply to the currently executing program unit (except for individually qualified oper-
ands).

3. QUALIFY command specified without the program unit parameter will display the
name of the currently qualified program unit.

4. QUALIFY is not permitted as the command specified in an IF command.

5. To qualify an individual VS FORTRAN variable, place the variable name after the
name of the program unit.

list sub1.x

6. To qualify an individual statement identifier, place the number or statement label
after the name of the program unit. The statement label must be preceded by a slash.

at sub1./5�

 Examples
1. Display the value of all the variables in subroutine SUB1 while execution is sus-

pended at a breakpoint in the main program.

qualify sub1
list �

2. Display the name of the currently qualified program unit.

qualify

 Part Two. Command Reference 173

 QUIT

 QUIT
Function: QUIT allows you to exit Interactive Debug.

 Abbreviation: None

 Syntax

QUIT

 Usage Notes
1. If QUIT is issued following an attention interrupt, your program will be terminated.

You may then issue certain Interactive Debug commands (for example, LIST) before
returning to ISPF, CMS, or TSO. You must issue another QUIT to terminate the
session.

2. Commands following QUIT in a command list are ignored.

3. The ISPF END command cannot be used to terminate a debugging session. The
QUIT command must be used. This is designed to avoid accidentally terminating a
debugging session with PF key 3.

174 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 RECONNECT

 RECONNECT
Tasks: Processing External Files (page 76)

Function: RECONNECT resets a file to its original (preconnected) condition. This
may be necessary if you have used the CLOSE command or your program has run a
CLOSE, and you wish to make it possible for the program to do additional I/O to the
preconnected file.

Abbreviation: RECONN, RECONNEC

 Syntax

RECONNECT
{number | [qual.]integer-variable | [qual.]integer-array-element}

number
is the number of the I/O unit associated with the sequential file on which the recon-
nect is to be performed.

[qual.]integer-variable
is the name of an integer variable in the VS FORTRAN program. This variable
specifies the number of the I/O unit associated with the sequential file on which the
reconnect is to be performed.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program. This
element specifies the number of the I/O unit associated with the sequential file on
which the reconnect is to be performed.

 Usage Notes
1. number, integer-variable, or integer-array-element must be specified; there is no

default number.

2. This command may not be issued when I/O is currently active.

3. RECONNECT is only necessary if the OCSTATUS run-time option is in effect and
you wish to allow your program to perform additional I/O on a file that has been
closed, without running another OPEN.

4. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example, the following are valid:

ARY(J), ARY(3), ARY(J+3) or ARY(J-3)

 Example
Reconnect the sequentially accessed external file associated with I/O unit 8.

reconnect 8

 Part Two. Command Reference 175

 REFRESH

REFRESH (full screen mode only)
Function: REFRESH controls whether or not the Interactive Debug panel is completely
refreshed when Interactive Debug panels are displayed.

If you have applications that do full screen I/O without using ISPF, there may be changes
to the screen contents that ISPF is not aware of, and portions of the application display
may remain on the screen. REFRESH is helpful in these situations.

 Abbreviation: None

 Syntax

REFRESH
[ON|OFF]

ON
indicates that every display of an Interactive Debug panel should rewrite the entire
screen.

OFF
indicates that ISPF does not need to rewrite portions of the screen that already seem
to have the proper contents. This is the initial setting for REFRESH.

 Usage Notes
1. REFRESH cannot be issued in: a command list, an IF command, an attention exit,

or a restart file.

2. When refresh is on, animation is less smooth because the entire screen is refreshed
for each step. The screen may appear to flash each time.

3. Response time may increase for remote terminals when refresh is on.

4. Entering REFRESH without a parameter queries the status of REFRESH.

 Example
Query the current status of REFRESH:

refresh

176 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 RESTART

RESTART (full screen mode only)
Function: RESTART allows you to restart a debugging session in full screen mode
without clearing the log file. The variable values are all cleared unless they are in
dynamic commons. The VS FORTRAN program restarts at the first executable state-
ment. Any new log information is appended to the existing log file.

 Abbreviation: None

 Syntax

RESTART

 Usage Notes
1. RESTART cannot be issued in: a command list, an IF command, an attention exit,

or a restart file.

2. When RESTART is issued, breakpoints and the settings for WHEN conditions,
HALT status, and AUTOLIST window, are reset. The TIMER status is turned off
and all times are cleared.

3. In TSO, you can recompile a program unit using a split screen, then issue RESTART
to restart the debugging session using the new object deck. (This is not possible in
CMS.)

4. The AFFON and AFFIN files are re-read when you issue RESTART. If you have
modified these files (for example, in a split-screen edit session), the new files are
used.

 Example
Restart a debugging session in full screen mode, but retain the current log file.

restart

 Part Two. Command Reference 177

 RESTORE

| RESTORE (full screen mode only)
| Function: RESTORE is used to restore the source window to the last point of exe-
| cution.

| Abbreviation: RES

| Syntax

| RESTORE

| Usage Notes
| 1. RESTORE cannot be issued in: a command list, an IF command, an attention exit,
| or a restart file.

| 2. If the source window is open and the listing is available, the source window is
| restored to the point of execution with the current statement highlighted.

| 3. If the currently qualified program unit is different than the program unit where exe-
| cution was suspended, the currently qualified program unit is reset.

178 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 RETRIEVE

| RETRIEVE (full screen mode only)
| Function: RETRIEVE is used to re-display up to the last twelve Interactive Debug
| commands entered on the command line.

| RETRIEVE also displays commands that are partly specified on the command line and
| partly specified by a PF key. For example, if you type PAGE on the command line and
| press PF8 (initially set to the DOWN command), and then enter RETRIEVE, the fol-
| lowing appears on the command line:

| down page

| Abbreviation: None

| Syntax

| RETRIEVE

| Usage Notes
| 1. RETRIEVE cannot be issued in: a command list, an IF command, an attention exit,
| or a restart file.

| 2. Commands issued before a RESTART command cannot be retrieved.

| 3. If you are using ISPF Version 2 Release 3 or later, RETRIEVE will behave differ-
| ently:

| � RETRIEVE will re-display Interactive Debug as well as ISPF commands.
| � Commands entered by PF key are not re-displayed. For example, if you type
| PAGE on the command line and press PF8 (initially set to the DOWN
| command), and then enter RETRIEVE, the following appears on the command
| line:

| page

| � The number of commands that RETRIEVE can re-display depends on the size of
| the stack allocated by your system programmer.

 Part Two. Command Reference 179

 REWIND

 REWIND
Tasks: Processing External Files (page 76)

Function: REWIND positions a sequentially accessed external file at the beginning of
the first record. Its usage is similar to that of the REWIND statement in the VS
FORTRAN Version 2 language, allowing you to move to the beginning of the file.

 Abbreviation: REW

 Syntax

REWIND
{number | [qual.]integer-variable | [qual.]integer-array-element}

number
is the number of the I/O unit associated with the sequential file that is to be rewound.

[qual.]integer-variable
is the name of an integer variable in the VS FORTRAN program. This variable
specifies the number of the I/O unit associated with the sequential file that is to be
rewound.

[qual.]integer-array-element
is the name of an element of an integer array in the VS FORTRAN program. This
element specifies the number of the I/O unit associated with the sequential file that is
to be rewound.

 Usage Notes
1. number, integer-variable, or integer-array-element must be specified; there is no

default number.

2. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)

are valid forms.

3. This command may not be issued when I/O is currently active.

4. VS FORTRAN Version 1 and VS FORTRAN Version 2 support multiple files under
the same I/O unit. The REWIND command sets the VS FORTRAN file name to the
first in the sequence of files for the specified I/O unit. For example, if you were
currently processing file FT08F003 on I/O unit 8, and entered:

rewind 8

I/O unit 8 would be connected to file FT08F001, which would be positioned at the
beginning of the first record.

180 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 REWIND

 Example
Rewind the sequentially accessed external file associated with logical unit 4 so that it
may be rewritten.

rewind 4

 Part Two. Command Reference 181

 RIGHT

| RIGHT (full screen mode only)
| Tasks:

| Changing the Way Your Windows Look (page 17)
| Using Cursor-Sensitive Commands (page 19)

| Function: RIGHT scrolls the contents of a window so that columns to the right of
| those currently displayed in the window can be seen.

| Abbreviation: None

| Syntax

| RIGHT
| [number | PAGE | HALF | CSR | DATA | MAX]

| number
| is the number of columns to scroll right, from 1 to 9999.

| PAGE (or P)
| scrolls right by the number of columns in the window.

| HALF (or H)
| scrolls right by half the number of columns in the window.

| CSR (or C)
| scrolls right by PAGE, unless the cursor is in the window, in which case the window
| is scrolled right by the appropriate number of columns to place the cursor at the edge
| of the window.

| DATA (or D)
| scrolls right by PAGE-1 number of columns. If only one column is visible, the
| scrolling is equivalent to that of PAGE.

| MAX (or M)
| scrolls right so that the rightmost column of the window will contain the rightmost
| column of the contents for the window.

| Usage Notes
| 1. RIGHT cannot be issued in: a command list, an IF command, an attention exit, or a
| restart file.

| 2. RIGHT is cursor-sensitive. The window that is scrolled is determined from the
| cursor position and the windows currently open.

| 3. If an operand is not specified with RIGHT, the scrolling amount is taken from the
| SCROLL ===> field on the main debugging panel.

| Example
| Scroll right by the number of columns visible in the window.

| right p

182 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 SEARCH

SEARCH (full screen mode only)
Tasks: Using Cursor-Sensitive Commands (page 19)

Function: SEARCH searches a window for a given character string.

 Abbreviation: None

 Syntax

SEARCH
/string[/]

string
specifies a character string to be searched for. The search is not case sensitive, so
your string can be found in any combination of upper or lower case.

You can use any non-blank character as a delimiter. A slash (/) is shown in the
syntax above.

The initial and final delimiter must be the same character. The final delimiter is
required if the search string contains trailing blanks. In all other cases, it is optional.

 Usage Notes
1. SEARCH cannot be issued in: a command list, an IF command, an attention exit, or

a restart file.

| 2. SEARCH is a cursor-sensitive command. After typing SEARCH followed by the
| string on the command line, position the cursor in the desired window and press
| ENTER.

3. The search is performed starting at the top line displayed on the screen. However, if
a search is done immediately after a search, the second search begins at the location
of the last-found search argument.

4. When searching the log, only the last 1000 lines of the log are available.

5. If the search reaches the bottom of the window and wraps around to the beginning of
| the window, the message “SEARCH CONTINUED FROM THE TOP OF AREA” is

displayed in the upper right corner of the screen.

6. If you search without a parameter, the most recent character string used as a target is
searched for again.

7. If you have

| MOVECURS;

| assigned to a PF key, you can type the SEARCH command on the command line.
| Then press the MOVECURS PF key to move the cursor to its previous position in
| the main debugging panel, and press ENTER to search the window.

| 8. If the search string contains double-byte characters and the DBCS option is in effect,
| highlighting of the search string is suppressed, but the cursor is still positioned in the
| window at the beginning of the string.

 Part Two. Command Reference 183

 SEARCH

 Example
Search for the character string VM/CMS, using a question mark as the delimiter.

search ?VM/CMS?

184 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 SET

 SET
Function: SET changes the value of a variable, array, array element, or group of array
elements.

 Abbreviation: S

 Syntax

SET
[qual.]name=value[,value...]

qual.
specifies a program unit name to temporarily override the current qualifier for the
prefixed name only.

name
specifies the name of a variable, array, or array element.

value
is the value to be assigned to a single variable or single array element. A group of
values (separated by commas or blanks) can be assigned to an entire array or part of
an array. A value can also be another qualified variable name or array element, and
can be prefixed by a numeric replication factor.

 Usage Notes
1. Valid SET command assignments for the different types of names are shown in

Table 5. All names can be qualified.

2. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)

are valid forms.

3. No arithmetic operations (except negation) are allowed in the value assignments; for
example, SET A=B+4 is not allowed.

4. Upper- and lowercase character constants may be entered at the terminal. They must
be enclosed in single quotation marks when entered, but the enclosing single quota-
tion marks are removed before the assignment is performed. If a single quotation
mark is to be assigned as part of the character constant, two single quotation marks
must be entered; for example:

set c=''''

sets C to a single quotation mark. Character strings are truncated or extended with
blanks to match the length of the receiving character variable or array element.

 Part Two. Command Reference 185

 SET

5. In assigning values to contiguous array elements, values may be repeated using the
notation n*value. For example,

set ary=1��4

sets the first 10 elements of the array ARY to 4.

6. In assigning values to contiguous array elements, elements can be omitted by using
the asterisk notation with no value following the asterisk. For example, a single
omission is entered as 1*, and a multiple omission might be entered as 3* (this
would leave three successive elements of the array unchanged).

7. Substring notation is permitted with string variables.

8. On the right side of the “=” sign, an array reference can have subscripts that exceed
the bounds of the dimensions. A warning message will be issued except for the
special case where only the last dimension is exceeded, and that dimension is “*” or
“1.”

9. An assumed size array is not set unless a specific element or range of elements is
specified. An assumed size array is an array with the last upperbound declarator
specified as an asterisk (*). Results are unpredictable if you SET array elements
beyond the end of the original array.

10. Dummy arguments can only be used or set when the program unit in which they are
defined is active. (Note that a program unit is not yet active when suspended at
entry.) If this rule is violated, you will get an error message.

11. Variables in a dynamic common can only be used or set after the program unit used
to qualify the variable has been activated at least once. If this rule is violated, you
will get an error message.

12. When setting a variable, results are unpredictable if:

Table 5. Valid SET Command Assignments

Name Set Type of Value Example

Real,
Integer,
or
Complex
scalar

= Another scalar variable

An array element

A constant

ALPHA=BETA
ALPHA=-BETA
ALPHA=A(3)
ALPHA=-A(3) NUM=7

Logical = Another logical variable
An array element
A logical value

LOG1=LOG2
LOG1=LOG(2)
LOG=.TRUE.

Character = Another character variable
An array element
A character constant
A substring

CHAR1=CHAR2
CHAR1=CHAR(2)
MSG='HELLO'
A(1:3)='ABC'

Array element = Another array element

A scalar variable

A constant

A(4)=B(1)
AR(2,2)=-AR(5,5)
C(7)=RATE
C(8)=-TIME D(I,J)=0.0

Contiguous array
elements

= Value,value,...
 (Values can be variables,
 array elements, or
 constants; multiple
 assignments of a value
 can be entered as
 n*value.)

A=3*1.0,4*0.0,
 7.2,5.,ACCL,
 8.5E9

B(J,K)='C',
 3*'Q',2*,'X'

186 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 SET

� More values are specified than will fit in an assumed-size array or an array
whose last dimension is “1.”

� The right hand side contains an array reference whose subscripts are not all
within the array dimensions. You will get a warning message in this case.

� The right-hand side of the statement contains an inaccessible variable. You will
get an error message in this case.

 Examples
1. Change the values of several variables.

set jt=8.9e+7
set m=-int
set a(3)=b(5)
set c(i,2)=4.1
set d(1�)=xray
set a(i-1,3)=b(4,j+6)
set main.x=sub1.x
set quote='he said: “bye, bye.”'

2. Set the ten elements of array DH to 0, 0, 0, .666, .21E-08, 1.0, 0, 0, 0, 0.

set dh=3��.�,.666,.21e-8,1.�,4��.�

3. Set the second element of array DATA to 0, leave the third element unchanged, set
the fourth through eighth elements to 1.0, and leave all other elements unchanged.

set data(2)=�,1�,5�1.�

4. Set the third through the fifth characters of character string E423 to 'ABC'.

set e423(3:5)='ABC'

 Part Two. Command Reference 187

 SIZE

| SIZE (full screen mode only)
| Tasks:

| Changing the Way Your Windows Look (page 17)
| Changing the Window Configuration (page 21)

| Function: SIZE is used to re-size the windows on the main debugging panel. Cursor
| position is used to determine the size of the window specified by SIZE:

| � If the cursor is in the specified window, the window is reduced to the cursor position.
| � If the cursor is not in the specified window, the window is enlarged to the cursor
| location.

| The size of the other windows are adjusted accordingly.

| Abbreviation: None

| Syntax

| SIZE
| [SOURCE | MONITOR | LOG]

| SOURCE | MONITOR | LOG
| specifies that either the source, monitor, or log window is to be sized.

| Usage Notes
| 1. SIZE cannot be issued in: a command list, an IF command, an attention exit, or a
| restart file.

| 2. The minimum window height is one row and the minimum window width is seven
| columns.

| 3. To save re-sized windows, specify WINDOW SAVE (page 206) on the command
| line after using SIZE.

| 4. If SIZE is specified with no parameters, the window border that is closest to the
| current cursor position will move to that position.

188 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 STEP

 STEP
Tasks: Animating the Execution of Your Program (page 73)

Function: STEP runs one or more FORTRAN statements and then gives control back
to you. STEP is similar to a series of NEXT and GO command pairs.

| In full screen mode, STEP execution is automatically animated if the source listing is
available to Interactive Debug. Animated execution means that the source window is
refreshed at each statement boundary where a hook exists, and the current statement is

| highlighted. Highlighting is determined by the COLOR settings. The monitor window
| will also be updated, or refreshed as necessary at each debugging hook.

 Abbreviation: ST

 Syntax

STEP
[number]

number
specifies the maximum number of hooked statements to be run before execution
stops. The number must be a positive integer. The default is one.

 Usage Notes
1. To change the pace of animation, use the PROFILE command (page 170). When the

profile panel is displayed, change the STEP DELAY field.

2. The STEP command itself causes your program to resume execution. You do not
need to use a GO command.

3. If any of the following conditions occur, STEP execution will terminate before the
STEP count runs out:

� A breakpoint is encountered.
� A WHEN condition is satisfied.
� The HALT status is satisfied.
� An error condition is detected.
� Terminal input occurs with TERMIO IAD in effect.
� An attention is issued.
� The program terminates.

4. If STEP processing ends after finding one of the above conditions or after reaching
the end of the step count, you cannot resume STEP. You must issue a new STEP
command.

5. If a STEP command is terminated because of a terminal READ, a NEXT will be
forced at the next hooked statement.

6. If STEP is issued within a command list, the remainder of the list is ignored.

7. STEP counts only those statements that have debugging hooks. Thus, STEP may run
many statements before stopping. Statements that have been collapsed and state-
ments not included in the AFFON statement list are not counted and execution does
not stop.

 Part Two. Command Reference 189

 STEP

8. STEP is not permitted after the VS FORTRAN program has terminated, or while a
READ is pending. If issued in an error exit, standard corrective action is taken.

| 9. The service routine CPUTIME cannot be used while animation is in progress. For
| more information on CPUTIME, see VS FORTRAN Version 2 Language and Library
| Reference.

 Example
Run the next 12 hooked statements before suspending execution:

step 12

190 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 SYSCMD

 SYSCMD
Tasks: Using System Commands (page 78)

Function: SYSCMD runs system commands during an Interactive Debug session.
SYSCMD can also be included in a command list and on the IF command.

Abbreviation: SYS, CMS, TSO

 Syntax

SYSCMD
[system-command]

system-command
is a CMS or TSO system command to be run.

 Usage Notes
1. Caution should be observed when issuing commands that would cause the currently

executing program to be overlaid. For example, a CMS LOAD command with the
CLEAR option could cause Interactive Debug and the VS FORTRAN application
program to be erased from storage.

2. (CMS) If the system command is omitted, the standard CMS SUBSET will be
entered. In this mode, CMS commands may be issued and Interactive Debug will
not regain control until the RETURN command is issued. CMS commands issued in
this mode (or specified with the SYSCMD command) are limited to those commands
allowed in CMS SUBSET mode.

3. (TSO) If the system command is omitted, a special command entry mode will be
entered. Interactive Debug will produce the message,

ENTER A TSO COMMAND OR A NULL LINE

In this mode, TSO commands may be issued and Interactive Debug will pass them
along to TSO until a null line is entered.

4. In order to use SYSCMD in batch mode on MVS, it is necessary to run a TSO
Terminal Monitor Program (TMP).

5. In batch mode, the system command must be specified, and must not be a command
that requires interaction. Interactive Debug cannot guard against system commands
that require interaction during a batch session; this is your responsibility.

 Examples
1. (CMS) List the files that have been allocated:

syscmd q filedef

2. (TSO) List the data sets that have been allocated:

syscmd listalc status

 Part Two. Command Reference 191

 TERMIO

 TERMIO
Tasks: Entering Terminal Input (page 78)

Function: TERMIO allows you to select the I/O routines that you want to use for
terminal I/O for your VS FORTRAN program. You can select either the Interactive
Debug I/O routines, or the VS FORTRAN library routines.

You can also use TERMIO to send a copy of batch mode output to a user as message
text. To query the current settings, enter TERMIO with no operands.

 Abbreviation: None

 Syntax

TERMIO
[IAD | LIBRARY]
[MSG [(userid)] | NOMSG]

IAD | LIBRARY
IAD indicates that terminal I/O is to be performed using the Interactive Debug I/O
routines. The Interactive Debug I/O routines combine input and output from the VS
FORTRAN program with Interactive Debug input and output. You must precede
terminal input with a percent sign (%) to distinguish it from Interactive Debug com-
mands.

This is the initial setting.

In full screen mode or batch mode, terminal input and output are included in the log
file. This includes library error messages.

LIBRARY indicates that terminal I/O is to be performed using the VS FORTRAN
library routines. The library I/O routines cause output from the VS FORTRAN
program to be displayed as it would be if the program were not being debugged.

Terminal input and output are not included in the log file. In full screen mode, a
request for terminal input causes the screen to be cleared and the keyboard to be
unlocked. Terminal output is written on a blank screen.

MSG [(userid)] | NOMSG
In batch mode only, MSG indicates that a copy of each line of Interactive Debug
input and output is to be sent to the specified or defaulted user ID as message text.

userid specifies the user ID to which message text is to be sent. If this operand is
omitted, it defaults to the previously established user ID (if one exists), or to the
submitter's user ID if available. The operand is required if the submitter's user ID is
not available and no user ID has been previously established.

The default user ID is obtained from the JOB card information in MVS, if available.
In CMS, no default user ID is available.

NOMSG specifies that Interactive Debug input and output are not to be copied as
message text.

192 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 TERMIO

 Usage Notes
1. When no operands are specified, the current TERMIO setting is displayed.

2. This command does not affect I/O operations other than those requested by the VS
FORTRAN application program. This implies that, if Interactive Debug is running in
ISPF, a specification of LIBRARY will cause any application program terminal I/O
operation to occur in line mode. At the completion of the I/O operation, full screen
operation will resume.

3. When running in batch mode on MVS, a VS FORTRAN program has no real ter-
minal inputs or outputs. You can simulate these terminal inputs and outputs by spec-
ifying one or more units on the DEBUNIT run-time option for your VS FORTRAN
program. If you do not specify the DEBUNIT option, the IAD/LIBRARY operand
has no effect on program I/O.

4. Whenever character data is entered, Interactive Debug I/O routines change it to
uppercase. If mixed-case input is required (and supported by the host system), the
library I/O routines must be used.

5. If output cannot fit on one line in whatever mode Interactive Debug is operating, it is
split across multiple lines. The lengths of these lines are 60 characters if Interactive
Debug I/O routines are used. When the library routines are used, I/O operations
produce the same results as would be produced if the program were run without
Interactive Debug.

6. When TERMIO IAD is in effect, any continuation line that begins with leading
blanks must be prefixed with a quotation mark ("). The quotation mark will not be
passed to the program.

 Examples
1. Specify that Interactive Debug routines are to be used for subsequent I/O requests of

the VS FORTRAN program.

termio iad

2. Display the current setting of the terminal I/O mode.

termio

3. Specify that Interactive Debug input and output are to be echoed to user ID
“SMITH” (in batch mode).

termio msg(smith)

 Part Two. Command Reference 193

 TIMER

 TIMER
Tasks:

Program Unit Timing (page 66)
Vector Tuning Assistance (page 67)

| Function: TIMER activates, deactivates, and resets the timing of program units or DO
| loops. Timing must be activated in order for a program unit or DO loop to be timed

when invoked. The LISTTIME command displays the timing information.

 Abbreviation: None

Format 1

Syntax for Timing a Program Unit

TIMER
{ * | program-unit-name | (program-unit-name-list) }
[ON | OFF | RESET]

| Format 2

| Syntax for Timing a DO Loop

| TIMER
| { [qual.]number: [qual.]number | [qual.]* | (list) | *.* }
| DOLOOP
| [ON | OFF | RESET]

*
specifies that the command applies to all debuggable program units.

program-unit-name
specifies an individual program unit.

program-unit-name-list
specifies a list of program unit names. Enclose the list in parentheses and separate
entries with commas or blanks.

| [qual.]
| specifies a program unit name to temporarily override the current qualifier for the
| prefixed operand only.

| [qual.]number
| specifies the statement label, ISN, or sequence number of the DO statement for a DO
| loop for which timing is to be activated, deactivated, or reset. Qualification is
| optional. A statement label must be prefixed with a slash (/).

| [qual.]number:[qual.]number
| specifies a range of statements in the program for which the timing for all DO loops
| in the range is activated, deactivated, or reset. (A DO loop is in the range if the DO
| statement of the loop is in the range. All the statements of the loop do not have to

194 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 TIMER

| be in the range. The starting and ending statement identifiers do not have to be DO
| statements.) Qualification is optional. If the second qualifier is specified, it must be
| the same as that specified or defaulted for the first qualifier.

| [qual.]*
| specifies that the timing of all DO loops in the specified or currently qualified
| program unit is activated, deactivated, or reset.

| list
| specifies a list of individual DO loop specifications. Enclose the list in parentheses
| and separate entries using commas or blanks.

| *.*
| specifies that timing for all DO loops in the program is activated, deactivated, or
| reset.

| DOLOOP
| indicates that timing for DO loops, not program units, is to be measured.

ON | OFF | RESET
specifies that timing is to be activated, deactivated, or reset to zero for the specified
program units (format 1) or DO loops (format 2). OFF is the initial setting for
TIMER.

 Usage Notes
1. Timing is cumulative. Timing values are only reset by specifying RESET.

2. The time for a routine is measured beginning at the entry point and ending at the
exit. If a call is made to another routine for which TIMER is on, the time spent in
the second routine (and lower-level routines) is not included in the measurement for
the first routine. However, time spent in called (and lower-level) non-timed routines
is included in the measurement for the calling routine. For example, if program A
calls program B and you do not want the time in B to be included in the timing of
A, you must specify: TIMER (A,B) ON. Program B must be debuggable.

3. In MVS, timing measurements will be incorrect if your program uses the STIMER
macro, or if it uses a system service that calls STIMER. This includes the BTAM
OPEN and LINE OPEN operations, and Dynamic Allocation.

4. Timing for very small routines may be erratic.

5. The timing information provided by Interactive Debug includes overhead caused by
the debugging hooks in your program. Thus, the timing information is not a com-
pletely accurate representation of the time it takes to run without Interactive Debug.

| However, the overhead is consistent. Therefore, you can use program unit and DO
| loop timing to measure changes to run times due to vector tuning efforts.

To get the most accurate timing information for program units, place hooks only at
entry and exit of the program unit. This can be done by specifying this in the
AFFON file:

| (all) entry

 Part Two. Command Reference 195

 TIMER

| Likewise, to get the most accurate timing information for DO loops, specify this in
| the AFFON file:

| (all) � doloop

6. The ENDDEBUG command turns timing off for all program units and DO loops.

7. TIMER is not permitted after the VS FORTRAN program has terminated.

8. Timing is measured separately for each entry point into the program unit.

| 9. The service routine CPUTIME cannot be used while timing is in progress. For more
| information on CPUTIME, see VS FORTRAN Version 2 Language and Library Refer-
| ence.

| 10. Format 2 only:

| � DO loop timing cannot be performed on unanalyzable loops.

| � The program information for a program unit must have been successfully
| obtained at initialization of the debugging session in order to time DO loops in
| the program unit.

| � The DO statement for a DO loop must have been included in the AFFON state-
| ment restriction list for the program unit in order to time the loop.

| � If a DO loop has been distributed into several loops due to vectorization, then all
| of the distributed loops are timed and the time is presented as if the DO loop
| was not distributed.

 Examples
1. Turn timing on for program units MAIN and SUB2:

timer (main,sub2)

2. Reset timing to zero for program unit MAIN:

timer main reset

3. Turn timing off for all debuggable program units:

timer � off

| 4. Activate timing for all DO loops in the program:

| timer �.� doloop on

| 5. Reset timing for DO loops in the ISN range 12 to 44 in program unit PLACES.

| timer places.12:44 doloop reset

196 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 TRACE

 TRACE
Tasks:

Specifying Output to a Print File (page 42)
Tracing Program Execution (page 71)

Function: TRACE starts or stops tracing of the flow of the program as it runs. You
can trace each transfer of control in the program, trace just entries to and exits from
debuggable subroutines, or determine the current trace status.

 Abbreviation: T

 Syntax

TRACE
[GOTO | ENTRY | OFF]
[PRINT]

GOTO | ENTRY | OFF
GOTO specifies that a record of each apparent branch taken within the program is to
be created. GOTO produces a listing showing a statement label or statement identi-
fier for the origin and destination of each transfer made, including entries to and exits
from debuggable subroutines.

ENTRY specifies that only a record of entries to and exits from debuggable subrou-
tines is to be produced.

OFF turns off tracing that you previously initiated.

PRINT
specifies that output be sent to a print file (AFFPRINT) instead of the terminal.

 Usage Notes
1. Tracing continues until turned off, or altered by another TRACE command, or an

ENDDEBUG command is issued.

2. TRACE operations apply to all debuggable program units.

3. TRACE GOTO issues a trace message if two consecutively executed debugging
hooks are not on consecutively stored statements. This also occurs if statements have
been collapsed or vectorized, or have no debugging hooks.

4. TRACE is not permitted after the VS FORTRAN program has terminated.

5. If no operand is specified, TRACE issues a message describing the current trace
status.

 Examples
1. Trace each program transfer, and have the trace output sent to the print data set

instead of to the terminal.

trace goto print

2. Discontinue tracing entirely.

trace off

 Part Two. Command Reference 197

 TRACE

3. Trace only the calls to and returns from subroutines and functions.

trace entry

198 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 UP

| UP (full screen mode only)
| Tasks:

| Changing the Way Your Windows Look (page 17)
| Using Cursor-Sensitive Commands (page 19)

| Function: UP scrolls the contents of a window so that lines above those currently dis-
| played in the window can be seen.

| Abbreviation: None

| Syntax

| UP
| [number | PAGE | HALF | CSR | DATA | MAX]

| number
| is the number of lines to scroll up, from 1 to 9999.

| PAGE (or P)
| scrolls up by the number of lines in the window.

| HALF (or H)
| scrolls up by half the number of lines in the window.

| CSR (or C)
| scrolls up by PAGE, unless the cursor is in the window, in which case the window is
| scrolled up by the appropriate number of lines to place the cursor at the edge of the
| window.

| DATA (or D)
| scrolls up by PAGE-1 number of lines. If only one line is visible, the scrolling is
| equivalent to that of PAGE.

| MAX (or M)
| scrolls up so that the uppermost line of the window will contain the top-of-data
| marker (see page 15).

| Usage Notes
| 1. UP cannot be issued in: a command list, an IF command, an attention exit, or a
| restart file.

| 2. UP is cursor-sensitive. The window that is scrolled is determined from the cursor
| position and the windows currently open.

| 3. If an operand is not specified with UP, the scrolling amount is taken from the
| SCROLL ===> field on the main debugging panel.

| Example
| Scroll up by half the number of lines visible in the window.

| up half

 Part Two. Command Reference 199

 VECSTAT

| VECSTAT
| Tasks: Vector Tuning Assistance (page 67)

| Function: VECSTAT is used to activate, deactivate, or reset DO loop length and stride
| recording.

| Abbreviation: VEC

| Syntax

| VECSTAT
| { [qual.]number[:[qual.]number] | [qual.]* | (list) | *.* }
| [ON | OFF | RESET]

| [qual.]number
| is the statement label, ISN, or sequence number of a DO statement for a DO loop in
| the specified or currently qualified program unit. qual. specifies a program unit to
| temporarily override the current qualifier for the prefixed operand only.

| [qual.]number:[qual.]number
| specifies a range of statements in the program for which vector information for all
| DO loops in the range is to be recorded. (A DO loop is in the range if the DO
| statement of the loop is in the range. All the statements of the loop do not have to
| be in the range. The starting and ending statement identifiers do not have to be DO
| statements.) Qualification is optional. If the second qual is specified, it must be the
| same as that specified or defaulted for the first qual.

| [qual.]*
| indicates that vector information is to be recorded for all DO loops in the specified or
| currently qualified program unit.

| list
| is a list of individual DO loop specifications. Enclose the list in parentheses and
| separate entries with commas or blanks.

| *.*
| indicates that vector information for all DO loops in the program is to be recorded.

| ON | OFF | RESET
| ON activates length and stride recording.

| OFF deactivates length and stride recording.

| RESET clears length and stride information. Length and stride averages and number
| of invocations are set to zero. Also, length and stride recording is activated for the
| DO loops.

| Usage Notes
| 1. Length and stride statistics can only be gathered for DO loops that were analyzable
| by the compiler.

| 2. The program information for a program unit must have been successfully obtained at
| initialization of the debugging session in order to record length and stride statistics
| for DO loops in the program unit.

200 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 VECSTAT

| 3. The DO statement for a DO loop must have been included in the AFFON statement
| restriction list for the program unit in order to record vector information.

| 4. A VECSTAT command with a specification list will run if one or more of the DO
| statement identifiers in the list are valid.

| 5. If a DO loop has been distributed into several loops due to vectorization, then length
| and stride information is collected for all of the distributed loops, and presented as if
| the DO loop was not distributed.

| Examples
| 1. Activate length and stride data recording for all DO loops in the program.

| VECSTAT �.� ON

| 2. Reset the length and stride data for DO loops in function FUN1 at ISN 23, and in
| subroutine SUB1 at ISN 44.

| VECSTAT (FUN1.23, SUB1.44) RESET

 Part Two. Command Reference 201

 WHEN

 WHEN
Tasks: Controlling Program Execution (page 58)

Function: WHEN allows you to suspend execution every time a particular condition is
met. You can define a condition and supply its name, or restart monitoring of a previ-
ously defined condition. The condition is tested at all statements with debugging hooks.

 Abbreviation: WN

 Syntax

WHEN
condition-name
[(condition) | variable]

condition-name
identifies the condition. condition-name must be 1 through 4 alphameric characters,
with the first character alphabetic. condition-name is only a name; it is not to be
confused with the definition of the condition.

(condition)
defines a condition to be monitored. The condition itself appears only in the initial
WHEN command. The condition must be enclosed in parentheses.

Only scalars and single array elements are allowed in the condition expressions.
They can be explicitly qualified; for example, sub1.x=4.�

It can be either a relational or a logical condition:

� Relational condition: a signed or unsigned variable or array element or constant,
followed by a relational operator, followed by another signed or unsigned vari-
able or array element or constant.

There are six relational operators that can be used to define test conditions
between scalar variables, array elements or constants.

 = or .EQ.
¬= or .NE.

 > or .GT.
 < or .LT.

>= or .GE.
<= or .LE.

� Logical condition: a logical variable or a logical array element, optionally pre-
ceded by the negation operator (¬ or .NOT.). No other operators are permitted.
If the value being tested is a logical variable or a logical array element, the
negation operator can be applied in the condition definition. For example:

WHEN NTON (¬ LOGVAR)

variable
specifies the name of a variable or an array element to be monitored for any change
in value. Only the name is specified; no parentheses to enclose the name are used.
The name can be explicitly qualified.

202 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 WHEN

 Usage Notes
1. The condition itself is only defined once. At that time, a condition name must be

supplied. Subsequent WHEN commands referring to that condition should contain
only the condition name.

2. Monitoring remains in effect after a condition is satisfied. To turn the condition off,
issue an OFFWN command, naming the condition.

3. After being turned off by an OFFWN, condition monitoring can be reactivated by
reissuing WHEN and specifying only the condition name.

4. WHEN conditions are evaluated at each debugging hook in each debuggable program
unit. If you use a variable subscript, it is reevaluated each time the condition is
tested. The array element actually tested, therefore, depends on the subscript value at
that moment.

5. You can redefine an existing WHEN condition by entering a new WHEN command
with the same condition name and a new condition definition.

6. Variables can be prefixed by a program unit qualifier to override the current quali-
fication (at the time the WHEN command is issued). For example,

WHEN COND (MAIN.A .LT. SUB1.B)

7. When referring to array elements, the subscripts must use simple arithmetic
expressions no more complex than the form “variable plus (or minus) a constant.”
For example,

ARY(I), ARY(3), ARY(I+3) or ARY(I-3)

are valid.

8. In the relational condition form of the WHEN command, for example, WHEN TEST
(A .GT. B):

� When either variable or constant is a logical, character, or complex type, both
must be of that same type, and a sign preceding the variable or constant is not
permitted.

� When either variable or constant is a logical or complex type, only the relational
operators .EQ. and .NE. (or = and ¬=) may be used.

� When character variables or constants of unequal length are compared, the
shorter is considered to be extended with blanks during the comparison.

9. When an unparenthesized variable name is specified as the condition (for example,
WHEN TEST NAME) and the variable is a character variable:

� The length of the character variable is determined at the time the WHEN
command is issued.

� If the character variable subsequently changes length (perhaps because it is a
parameter to the subroutine being monitored), the old and new values are com-
pared by effectively extending the shorter one with blanks.

� If a change in value is found, the new value is preserved, either extended or
truncated, using the size of the variable at the time the WHEN command was
issued.

 Part Two. Command Reference 203

 WHEN

� The current length and value of the variable can be captured at any time by
issuing the WHEN command with just the condition name (for example, WHEN
TEST). It is not necessary to issue an OFFWN command first or to state the
variable name again. (The WHEN command can be embedded in an AT
command list to automate this process.)

10. When a specified condition is met, messages will be displayed. These indicate the
condition name that was satisfied, and where execution is currently suspended.

11. If you refer to undefined variables (such as dummy arguments in an inactive subpro-
gram), you will receive an error message at each statement where the condition is
tested. To avoid these messages, you can use OFFWN in an AT EXIT command
list, and WHEN to reactivate it in an AT ENTRY command list.

12. WHEN is not permitted after the VS FORTRAN program has terminated.

 Examples
1. Start monitoring variable MIKE to see if it changes. Call the condition (the change

to variable MIKE) OLD.

when old mike

2. Define a condition named OVFL as an array element A(1,5) greater than 3.5E10.
Start monitoring it.

when ovfl (a(1,5) .gt. 3.5e+1�)

3. If the monitoring from Example 2 has been turned off with an OFFWN command,
restart monitoring condition OVFL.

when ovfl

204 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 WHERE

 WHERE
Tasks:

Specifying Output to a Print File (page 42)
Tracing Program Execution (page 71)

Function: WHERE identifies the statement at which execution is suspended.

 Abbreviation: W

 Syntax

WHERE
[TRBACK]
[FLOW]
[PRINT]

TRBACK
specifies a traceback showing the names of all program units that are currently
active.

FLOW
specifies a trace of the last 10 program transfers that were run.

PRINT
specifies that output is be sent to a print file (AFFPRINT) instead of the terminal.

 Usage Notes
1. If WHERE is used following an attention interrupt, it can only be used to identify the

current statement. Any parameters are ignored.

2. If there are no active program units, WHERE TRBACK indicates that no subroutines
have been called.

3. The current statement identified by the WHERE command has not yet been run.

4. An automatic WHERE command is forced at the first debugging hook found. This is
usually the first executable statement in the main program.

 Examples
1. Find out where you are after execution was suspended by an attention interrupt.

where

2. Find out the sequence of control transfers that led to the current breakpoint.

where trback flow

3. Conditionally indicate that a breakpoint has been reached, even though the AT
command list does not cause execution to be suspended. The WHERE command
will only be run if A is less than or equal to 4.8.

at 12� (if (a .gt. 4.8) go%where%list a%go) nonotify

 Part Two. Command Reference 205

 WINDOW

WINDOW (full screen mode only)
| Tasks:

| Changing the Way Your Windows Look (page 17)
| Using Cursor-Sensitive Commands (page 19)
| Changing the Window Configuration (page 21)

| Function: WINDOW allows you to:

| � Change and save the window configuration of the debugging session
| � Open or close a specified window

| Abbreviation: None

| Syntax for Changing the Window Configuration

| WINDOW

| Syntax for Saving the Window Configuration

| WINDOW
| SAVE

| Syntax for Opening or Closing a Window

| WINDOW
| {OPEN | CLOSE}
| {SOURCE | MONITOR | LOG}

| WINDOW
| allows you to change the window configuration. After you type WINDOW with no
| operands on the command line and press ENTER, the Window Configuration
| Selection Panel will appear. The panel initially looks like Figure 43 on page 207.

| WINDOW SAVE
| saves the current window configuration.

| WINDOW CLOSE {SOURCE | MONITOR | LOG}
| closes the specified window.

| WINDOW OPEN {SOURCE | MONITOR | LOG}
| opens the specified window.

206 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 WINDOW

| �| �
| WINDOW CONFIGURATION SELECTION PANEL
| COMMAND ===>
| .----------. .-----------. .-----------. LEGEND:
| | _ | _ | | _ | | _ | _ |
| | | | | | | | | L - LOG
| |----------| |-----------| |-----| | M - MONITOR
| | _ | | _ | _ | | _ | | S - SOURCE
| | | | | | | | |
| '----------' '-----------' '-----------' TO REASSIGN THE
| SOURCE, MONITOR,
| .----------. .-----------. .-----------. AND LOG WINDOWS,
| | _ | _ | | M | | _ | _ | _ | TYPE OVER THE
| | | | |-----------| | | | | CURRENT SETTINGS
| | |----| | S | | | | | OR UNDERSCORES
| | | _ | |-----------| | | | | WITH L, M, OR S.
| | | | | L | | | | |
| '----------' '-----------' '-----------'

| ENTER SAVE TO SAVE WINDOW CONFIGURATION IN PROFILE.
| ENTER RESET TO RETRIEVE WINDOW CONFIGURATION FROM PROFILE.
| ENTER END TO RETURN TO DEBUG SESSION WITH CURRENT SETTINGS IN EFFECT.

| �| �

| Figure 43. Interactive Debug Window Configuration Selection Panel

| From this panel, the following commands may be entered on the command line:

| SAVE: saves the current window configuration in the profile.

| RESET: restores the current window configuration to the last saved configuration, or to
| the initial configuration if no previous save was done.

| END or RETURN: changes the current configuration without changing the last saved
| configuration. That is, unless a SAVE has been issued, this configuration will remain in
| effect for only the duration of the current debugging session.

| Usage Notes
| 1. WINDOW cannot be issued in: a command list, an IF command, an attention exit,
| or a restart file.

| 2. Besides specifying WINDOW CLOSE with either SOURCE, MONITOR, or LOG,
| you can also close a window by typing WINDOW CLOSE on the command line,
| positioning the cursor in the desired window, and pressing ENTER.

| 3. If you close a window, and then specify WINDOW OPEN with no operands, you
| will open the window you just closed.

| 4. When changing the window configuration, only one configuration may be selected at
| a time, and each object type can be assigned to only one window area.

| 5. You can use WINDOW SAVE to save windows re-sized with the SIZE command
| (page 188).

 Part Two. Command Reference 207

 ZOOM

| ZOOM (full screen mode only)
| Tasks: Using Cursor-Sensitive Commands (page 19)

| Function: ZOOM allows you to toggle between displaying one window (either the
| source, monitor, or log window) on the entire screen, and displaying a configuration of
| windows as defined by the WINDOW command.

| Abbreviation: None

| Syntax

| ZOOM
| [SOURCE | MONITOR | LOG]

| SOURCE | MONITOR | LOG
| specifies either the source, monitor, or log window to be allocated to the entire
| screen.

| Usage Notes
| 1. ZOOM cannot be issued in: a command list, an IF command, an attention exit, or a
| restart file.

| 2. ZOOM is a cursor-sensitive command. That is, if ZOOM is specified with no oper-
| ands, the hierarchy of windows for cursor-sensitive commands will determine which
| window will be affected.

| 3. To return to the configuration of windows specified by the WINDOW command,
| enter ZOOM with no operands.

| 4. When one window is displayed in the entire screen, default cursor-sensitive com-
| mands apply to that window.

| 5. Any subsequent WINDOW OPEN or WINDOW CLOSE command will cancel the
| ZOOM mode.

208 VS FORTRAN Version 2 Interactive Debug Guide and Reference

Appendix A. Interactive Debug Messages

Each Interactive Debug message can be identified by its own message number. It is
composed of:

1. The prefix AFF

2. A 3-digit number

3. A suffix, which indicates the level of the message:

� I - informational
� W - warning
� E - error
� A - action required

You can control whether or not the message numbers are displayed. In CMS, use the
SET EMSG command. In TSO, use the PROFILE MSGID command.

In this appendix, an Explanation section is provided for each Interactive Debug message.
User Response and System Action sections are also provided if they differ from the fol-
lowing:

� User Response - reenter the command, correcting the problem that was identified in
the error message.

� System Action - issue the Interactive Debug prompt (FORTIAD) in line mode, or
re-display the screen in full screen mode, and await entry of another command.

 Appendix A. Interactive Debug Messages 209

 Debugging messages

 Debugging messages

AFF000E THIS MESSAGE IS RESERVED FOR FUTURE USE; INFORM IBM

Explanation: This message should never occur. If it does, it is the result of a program-
ming error within Interactive Debug.

User Response: Contact your IBM representative.

AFF001A FORTIAD

Explanation: This is the standard prompt displayed when running Interactive Debug in
line mode.

User Response: Enter any Interactive Debug command.

AFF002A IAD/E

Explanation: This is the prompt displayed when execution is suspended during an error
exit for an error detected by the VS FORTRAN Version 1 or VS FORTRAN Version 2
Library.

User Response: When appropriate, use the FIXUP command to supply corrected values
for invalid arguments. Use the GO command to cause standard corrective action to be
taken.

AFF003A IAD/A

Explanation: This is the prompt displayed when execution is suspended because of an
attention interrupt. When this prompt is displayed, processing is within the Interactive
Debug attention exit.

User Response: Enter an Interactive Debug command or a null line.

| AFF004A PENDING:

| Explanation: This is the prompt displayed when an input line has been continued by
| using the continuation character "-".

| AFF010I VS FORTRAN VERSION 2 RELEASE 3 INTERACTIVE DEBUG

| Explanation: This message is issued during initialization of Interactive Debug to iden-
| tify the product and release level.

| AFF011I 5668-806 (C) COPYRIGHT IBM CORP 1985, 1988

| Explanation: This message is issued during initialization of Interactive Debug.

| AFF013I LICENSED MATERIALS - PROPERTY OF IBM

| Explanation: This message is issued during initialization of Interactive Debug.

210 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF020E INTERNAL IAD ERROR number. FORTRAN PROGRAM MAY HAVE
MODIFIED IAD STORAGE

Explanation: This message is issued when an internal error occurs.

User Response: Make sure the application program has not modified Interactive Debug
storage. If it has not, contact your IBM representative.

AFF100E “PRINT” OPTION NOT PERMITTED

Explanation: The AUTOLIST command was entered with the PRINT option.

AFF102E “name” MUST SPECIFY A COMMAND IN BATCH MODE

Explanation: A SYSCMD, CMS, or TSO command was entered with no operand while
operating in batch mode.

User Response: Correct the problem and resubmit the job. If you want to issue a
sequence of system commands, you must enter separate SYSCMDs.

AFF103E “name” IS SUPPORTED ONLY IN FULLSCREEN MODE;
COMMAND IGNORED

Explanation: AUTOLIST, REFRESH, or RESTART was entered in line mode or batch
mode.

User Response: Be sure you are running in ISPF before entering this command.

AFF111I PROGRAM TERMINATED EARLY BECAUSE MAXIMUM COUNT
WAS REACHED

Explanation: The maximum count value specified in the sublist for the MAXSAMP
keyword of the ENDDEBUG command was reached. STOP was also specified which
caused the program to be terminated.

AFF112E INTERVAL TIMER WAS RESET BY USER PROGRAM, THUS CAN-
CELLING SAMPLING

Explanation: A non-VS FORTRAN routine called by a VS FORTRAN program per-
formed an STIMER macro, resetting the STIMER set by IAD program sampling.

System Action: Program sampling was discontinued.

AFF121E THE AFFON STATEMENT RESTRICTION LIST WILL BE
IGNORED FOR “name” BECAUSE IT WAS COMPILED WITH THE
“TEST” OPTION

Explanation: You cannot restrict statement hooks if the program unit is compiled with
“TEST” because the compiler inserts the hooks.

User Response: Remove the statement restriction list, or recompile the program unit.

System Action: The restriction list is ignored.

 Appendix A. Interactive Debug Messages 211

 Debugging messages

AFF122E THE AFFON STATEMENT RESTRICTION LIST FOR “name” CON-
TAINS AN INVALID RANGE, WHICH WILL BE TREATED AS A
SINGLE ISN

Explanation: If an invalid range syntax is specified in the AFFON file, only the first
ISN will be considered.

User Response: Correct the restriction list, and rerun the job.

System Action: The second ISN is ignored.

| AFF123E THE AFFON STATEMENT RESTRICTION LIST FOR "program-unit-
| name" CONTAINS INVALID SYNTAX AND WILL BE IGNORED

| Explanation: A hook restriction list on an AFFON entry contains invalid syntax. This
| can be caused by any of the following:

| � An invalid character was found (not alphanumeric or a colon).
| � An unrecognized keyword was found (probably misspelled).
| � ENTRY or NONE keywords were followed by other operands.
| � Missing an ISN number before or after a colon.

| System Action: The restriction list is ignored. For a program unit name entry, hooks
| will be set according to the current defaults. For an ALL entry, the default hook
| restriction list will remain unchanged.

| User Response: Determine the cause of the invalid syntax in the entry, correct the
| restriction list, and restart the debugging session.

AFF124E THE AFFON STATEMENT RESTRICTION LIST FOR “name” CON-
TAINS AN ENTRY THAT EXCEEDS THE MAXIMUM POSSIBLE
ISN; THE MAXIMUM IS ASSUMED

Explanation: An ISN greater than 16777215 was specified in the AFFON restriction
list.

User Response: Correct the restriction list, and rerun the job.

System Action: The entry is treated as 16777215.

AFF190E ATTEMPT TO REFERENCE INACCESSIBLE STORAGE

Explanation: Interactive Debug tried to examine storage in an area where it was not
allowed to look. This was probably caused by either an invalid address entered as part of
a LIST command, or an invalid address within a VS FORTRAN module.

User Response: If you specified an invalid address on a LIST command, reissue the
command with valid addresses. If not, try to determine the cause of the invalid address
in the program.

AFF192I CURRENT HALT STATUS: status

Explanation: This message tells you whether HALT has been issued to indicate when
execution is to be suspended. Possible status is STMT, GOTO, or ENTRY.

User Response: None required. This is an informational message.

212 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF194E I/O IS ALREADY ACTIVE; COMMAND IGNORED

Explanation: An attempt to issue BACKSPACE, CLOSE, ENDFILE, RECONNECT or
REWIND, has been detected while I/O was already active.

User Response: If you need to issue one of these commands, issue a NEXT command
so that execution will be suspended after the I/O event is completed.

AFF195E NO DEBUGGABLE FORTRAN PROGRAMS WERE FOUND

Explanation: Interactive Debug has not found any programs within the module to be
run that are debuggable program units. In general, for a program unit to be considered
debuggable, it must have been compiled with the SDUMP option.

User Response: The problem may be because of an incorrectly specified AFFON file.
If so, you should have received other messages detailing other errors.

AFF196E THERE IS NO PRINT DATA SET DEFINED

Explanation: An error has occurred while attempting to open the AFFPRINT data set.

User Response: Correct the cause of the error.

System Action: Processing continues. You will not be able to use the PRINT keyword
on any Interactive Debug command.

AFF200E STORAGE EXHAUSTED; SIMPLIFY THE COMMAND OR REMOVE
SOME BREAKPOINTS

Explanation: While attempting to build internal control blocks to represent a command,
Interactive Debug used up all available storage.

User Response: If possible, issue a less complicated command, or re-invoke Interactive
Debug with more virtual storage (VM) or a larger user region (MVS).

AFF210E STORAGE EXHAUSTED DURING SAMPLING, ENTRY POINT SAM-
PLING INFORMATION WILL BE INCOMPLETE

Explanation: IAD was not able to obtain storage for recording the sampling counts for
some entry points of nondebuggable VS FORTRAN routines, VS FORTRAN math.
library routines, or non-VS FORTRAN routines. Counts that would have normally been
categorized by entry point are grouped together in the *UNKNOWN count.

User Response: Reinvoke Interactive Debug with more virtual storage (VM) or a larger
user region (MVS).

AFF220I synad message

Explanation: This is the error message returned by the operating system when an
attempt was made to write to the AFFPRINT data set.

User Response: Correct the error that caused the message. If printed output is required,
after correcting the problem, re-invoke Interactive Debug.

 Appendix A. Interactive Debug Messages 213

 Debugging messages

| AFF224I “count” LINES OF OUTPUT WRITTEN TO AFFPRINT

Explanation: Confirms that information was written to the print file, following a
command that was specified with the print option.

AFF225E ERROR WRITING THE PRINT DATA SET; SUBSEQUENT OUTPUT
WILL BE WRITTEN TO THE TERMINAL

Explanation: An error was detected when attempting to send “printed” output to the
AFFPRINT data set. From this point on, output that would be destined for the print data
set is redirected to the terminal.

User Response: If you need to have the print output in a print data set, terminate your
debugging session, correct the error, and re-invoke the program.

System Action: Further print output is sent to the terminal.

AFF226E ERROR WRITING THE PRINT DATA SET; SUBSEQUENT OUTPUT
WILL BE DISCARDED.

Explanation: An error was detected when attempting to send “printed” output to the
AFFPRINT data set in TSO batch mode. From this point on, output that would be des-
tined for the print data set is discarded.

User Response: If you must have the print output in a print data set, terminate your
debugging session, correct the error, and re-invoke the program.

System Action: Further print output is discarded.

AFF229E INVALID COUNT VALUE SPECIFIED IN “number”

Explanation: A count value larger than 65535 was specified on the AT command.

User Response: Specify a smaller count value, and reissue the AT command.

AFF230E NO BREAKPOINTS CAN BE SET AT STATEMENT “number”
BECAUSE IT IS COLLAPSED

Explanation: The indicated statement occupies no storage so a breakpoint cannot be set.

User Response: Set your breakpoint at a statement before or after the indicated state-
ment. You can use LISTFREQ to see which statements have hooks.

AFF231E NO BREAKPOINT CAN BE SET AT STATEMENT “number”
BECAUSE THERE IS NO HOOK THERE

Explanation: The specified statement was not included in the AFFON file restriction
list, or is an ENTRY or EXIT of a main program unit.

User Response: None required. You can use LISTFREQ to see which statements have
hooks.

AFF240W A SUBSCRIPT IS OUT OF RANGE IN “array element”

Explanation: A subscript has been specified for the indicated array element that exceeds
the dimension specified when the array element was defined.

214 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF241W WARNING: A SUBSTRING BOUNDARY IS OUT OF RANGE IN
“string”

Explanation: A substring value has been specified which is outside the defined variable
length.

System Action: The command is run as normal.

AFF242E “name” CANNOT BE ACCESSED; IT COULD BE IN AN UNINITIAL-
IZED DYNAMIC COMMON

Explanation: Variables in a dynamic common cannot be accessed until the common has
been initialized and the address has been obtained for the qualifying VS FORTRAN
program unit. This occurs the first time the program unit is entered.

User Response: Set a breakpoint at some point that will be reached after the program
unit is entered, and access the variables when you get there. If the dynamic common has
been initialized, you may be able to access it using a different program unit that has
already been entered at least once.

AFF245E “WHERE” INFORMATION IS NOT AVAILABLE AFTER
“ENDDEBUG” IS ISSUED

Explanation: ENDDEBUG has been issued and WHERE information cannot be deter-
mined.

AFF292E LISTING FILE “dsname” CANNOT BE READ

Explanation: Issued when a read error occurs while attempting to annotate a listing.
Can occur due to an actual read error or unexpected file format.

User Response: Insure that the file or data set is sequential or is a PDS member and
that the LRECL is not greater than 151.

AFF293E AN ARRAY WAS USED WHERE A SCALAR IS REQUIRED IN “vari-
able”

Explanation: While scanning the syntax of the previous command, an array variable
was found when a scalar variable was required.

AFF294E A SIGN WAS SPECIFIED IN “text,” BUT THE VARIABLE IS NOT A
NUMERIC SCALAR

Explanation: While scanning the previous command, a sign (+ or -) was specified for a
non-numeric variable. Only numeric variables may have signs.

AFF295E THERE IS NO ROOM TO INSERT A HOOK IN STATEMENT
“name.number”; STATEMENT TREATED AS COLLAPSED

Explanation: This is an internal error and should not occur. It indicates that the VS
FORTRAN Version 1 or VS FORTRAN Version 2 compiler only allocated two bytes for
a VS FORTRAN statement. The compiler should allocate at least four bytes so that an
Interactive Debug hook can be inserted.

User Response: Contact your IBM representative. Debugging may be continued,
however.

 Appendix A. Interactive Debug Messages 215

 Debugging messages

System Action: The statement is treated as a collapsed statement, and you will not be
allowed to set a breakpoint at the statement.

AFF296E THE AFFON FILE CANNOT BE READ; FILE IGNORED

Explanation: An I/O error occurred trying to access the AFFON file.

User Response: Correct the cause of the I/O error if you want the AFFON file to be
read.

System Action: The AFFON file is ignored and processing continues.

AFF299E ERROR WRITING AFFOUT FILE; FILE IGNORED

Explanation: An I/O error has occurred while attempting to write to the AFFOUT data
set. No further attempts will be made to access the file.

User Response: Correct the problem that caused the message. If the log is required,
re-invoke Interactive Debug after correcting the problem.

AFF300I AT: name.number

Explanation: Execution has been suspended at the identified statement in the identified
program unit. It is suspended because a prior AT command requested a breakpoint at this
statement.

User Response: Enter debugging commands, or GO to resume execution.

AFF301I NEXT: name.number

Explanation: Execution has been suspended at the identified statement in the identified
program unit. It is suspended because a NEXT or STEP command was issued.

User Response: Enter debugging commands, or GO to resume execution.

AFF303I TRACE STATUS: status

Explanation: Provides the current trace status in response to the TRACE command with
no operands.

AFF304I TRACE: FROM name.number TO name.number

Explanation: Execution has passed from the first identified statement to the second
identified statement. The second statement did not immediately follow the first statement
in the VS FORTRAN source. This message is received because of an earlier TRACE
command that was issued.

User Response: None required.

AFF305W “ERROR” COMMAND TERMINATED AFTER PROCESSING
ERROR NUMBER number

Explanation: The PURGE command was used to terminate excessive output from an
ERROR command. The last error number processed was “number.”

User Response: None required.

216 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF306I PROGRAM HAS TERMINATED; RC=(code)

Explanation: The application program being run has completed. If a return code was
coded on the STOP statement, it is provided.

User Response: None required.

System Action: You will be allowed to continue entering commands until a QUIT
command is entered, at which time the debugging session will be terminated.

AFF307W COMMAND OUTPUT REFLECTS THE STATE OF EXECUTION
PRIOR TO ENTERING “ENDDEBUG”

Explanation: The information presented as output for the command which was just
issued, is not necessarily current information. It was correct when you issued an
ENDDEBUG command earlier in the debugging session, and has not been updated since
ENDDEBUG was issued.

User Response: None required.

| AFF310E MISSING ISN OR "*" BEFORE "DOLOOP", "DONEST", OR
| "DOVECT" IN AFFON ENTRY FOR "program-unit-name".

| Explanation: A DOLOOP, DONEST, or DOVECT keyword was found on an AFFON
| entry without an ISN, an ISN range, or an asterisk preceding it.

| System Action: The restriction list is ignored. For a program unit name entry, hooks
| will be set according to the current defaults. For an ALL entry, the default hook
| restriction list will remain unchanged.

| User Response: Determine the cause of the invalid syntax in the entry, correct the
| restriction list, and restart the debugging session.

| AFF311E PROGRAM INFORMATION FILE "file-name" SPECIFIED FOR
| "program-unit-name" CANNOT BE FOUND.

| Explanation: The data set or file specified to contain program information for the
| program unit could not be opened.

| System Action: The program unit is treated as having an undefined program informa-
| tion file.

| User Response: The name is probably misspelled. The name must be fully qualified
| and enclosed in quotes. If it is spelled correctly, then the file either does not exist or
| cannot be accessed. You may need to recompile the program to generate the file, or
| obtain read access to the file. Then, restart the debugging session.

| AFF312E FILE "file-name" SPECIFIED AS PROGRAM INFORMATION FILE
| FOR "program-unit-name" IS NOT A PROGRAM INFORMATION
| FILE.

| Explanation: The data set or file specified to contain program information for the
| program unit is not a program information file.

| System Action: The program unit is treated as having an undefined program informa-
| tion file.

 Appendix A. Interactive Debug Messages 217

 Debugging messages

| User Response: Check to make sure that the right data set or file was specified. If so,
| then the file may have been modified in some way since compilation. Try recompiling
| the program to re-create the file.

| AFF313E PROGRAM INFORMATION FILE "file-name" WAS SPECIFIED FOR
| "program-unit-name", BUT PROGRAM UNIT IS NOT COMPILED
| WITH THE IVA OPTION.

| Explanation: A program information file was specified for the program unit, but the
| program unit was not compiled with the IVA sub-option of the VECTOR option.

| System Action: The program is treated as having an undefined program information
| file.

| User Response: If you wish to perform vector analysis functions with this program unit,
| you will need to recompile it with the IVA sub-option of the VECTOR option.

| AFF315E ERROR READING PROGRAM INFORMATION FILE FOR "program-
| unit-name".

| Explanation: A read error occurred while reading the program information for the
| program unit.

| System Action: The program unit is treated as having an undefined program informa-
| tion file.

| User Response: Check to make sure you are properly accessed to the file. If on CMS,
| try re-accessing the mini-disk containing the file.

| AFF316E ERROR IN THE PROGRAM INFORMATION FILE DATA FOR
| "program-unit-name".

| Explanation: An error was found in the program information for the program unit.
| This is probably because the file has been changed in some way since compilation.

| System Action: The program unit is treated as having an undefined program informa-
| tion file.

| User Response: Check to make sure you are properly accessed to the file. If on CMS,
| try re-accessing the mini-disk containing the file. If the file has been modified in some
| way since compilation, you will need to recompile the program unit to re-create the file.

| AFF317E PROGRAM INFORMATION FILE "file-name" DOES NOT CONTAIN
| DATA FOR "program-unit-name".

| Explanation: The program information file specified for the program unit does not
| contain program information for the program unit. The wrong program information file
| was probably specified.

| System Action: The program unit is treated as having an undefined program informa-
| tion file.

| User Response: Check to make sure that the file specified is correct for the program
| unit.

218 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

| AFF318E PROGRAM INFORMATION for "program-unit-name" DOES NOT
| HAVE THE SAME COMPILATION DATE AS THE CODE FOR THE
| PROGRAM UNIT.

| Explanation: Time stamps in the program information file and in the code for the
| program unit do not match.

| System Action: The program unit is treated as having an undefined program informa-
| tion file.

| User Response: Re-compile or re-link edit the program to make sure that the module
| being debugged contains the latest compilations of the program units and that the
| program information file is from the latest compilation.

| AFF319E AN "(ALL)" ENTRY IN THE AFFON FILE HAS A STATEMENT
| RESTRICTION LIST THAT CONTAINS ISN'S. THE RESTRICTION
| LIST IS IGNORED.

| Explanation: The "ALL" entry in the AFFON file specified an ISN or an ISN range.
| These are not allowed on the ALL entry, because the ALL entry is supposed to contain
| defaults for all program units. ISN's are only meaningful to a specific program unit.

| System Action: The default hook restriction list will remain unchanged.

| User Response: Remove the ISN's on the ALL entry in the AFFON file. You may
| specify "*", "* DOLOOP", "* DONEST", "* DOVECT", "ENTRY", or "NONE" as the
| statement restriction list for an ALL entry.

| AFF320E AFFON ENTRY FOR "program-unit-name" CONTAINS STATEMENT
| RESTRICTION "isn DOLOOP", BUT ISN IS NOT A DO STATE-
| MENT.

| Explanation: The statement restriction list for a program unit in the AFFON file speci-
| fies a DO loop ISN that is not the ISN of a DO statement.

| System Action: The statement restriction is ignored. If this is the only statement
| restriction in the list, then hooks are only set at entry and exit of the program unit.

| User Response: Check to make sure the correct ISN was specified. It must be the ISN
| of a DO statement.

| AFF321E AFFON ENTRY FOR "program-unit-name" CONTAINS STATEMENT
| RESTRICTION "isn DONEST", BUT ISN IS NOT THE DO STATE-
| MENT OF AN OUTERMOST NESTED DO LOOP.

| Explanation: The statement restriction list for a program unit in the AFFON file speci-
| fies an ISN that either is not the ISN of a DO statement, or is the ISN of a DO statement
| but the DO statement is not for the outermost loop in a nest of DO loops.

| System Action: The statement restriction is ignored. If this is the only statement
| restriction in the list, then hooks are only set at entry and exit of the program unit.

| User Response: Check to make sure the correct ISN was specified. It must be the ISN
| of the DO statement of the outermost DO loop in a nest of DO loops.

 Appendix A. Interactive Debug Messages 219

 Debugging messages

| AFF322E AFFON ENTRY FOR "program-unit-name" CONTAINS STATEMENT
| RESTRICTION "isn DOVECT", BUT ISN IS NOT THE DO STATE-
| MENT OF A VECTORIZED DO LOOP.

| Explanation: The statement restriction list for a program unit in the AFFON file speci-
| fies an ISN that either is not the ISN of a DO statement, or is the ISN of a DO statement
| but the DO loop is not vectorized.

| System Action: The statement restriction is ignored. If this is the only statement
| restriction in the list, then hooks are only set at entry and exit of the program unit.

| User Response: Check to make sure the correct ISN was specified. It must be the ISN
| of the DO statement of a vectorized DO loop.

| AFF323I statement-id:

| Explanation: This is the first line of the LISTVEC output for each DO loop listed. It is
| the identifier of the DO statement for the loop.

| AFF324I STATUS = status

| Explanation: This message is part of the LISTVEC output for a DO loop. It shows the
| current status of vector statistics recording for the loop (set by the VECSTAT command).
| It has two settings, "ON" and "OFF". If the setting is OFF, then the statistics are not
| updated when the loop is run.

| AFF325I TOTAL NUMBER OF EXECUTIONS = number

| Explanation: This message is part of the LISTVEC output for a DO loop. It shows the
| total number of executions of the DO loop. The number of executions of a DO loop is
| defined as the number of times the DO statement for the loop is entered. If the total
| number of executions could not be determined because the DO loop does not contain DO
| loop analysis hooks, then "NO HOOK" appears instead of the value.

| AFF326I AVERAGE ITERATION COUNT = number

| Explanation: This message is part of the LISTVEC output for a DO loop. It shows the
| average iteration count of the loop. The iteration count is equivalent to the length for all
| vectors in the loop. The iteration count is calculated by dividing the sum of the iterations
| for each execution of the loop by the number of executions of the loop. If the average
| iteration count could not be determined because the DO loop does not contain DO loop
| analysis hooks, then "NO HOOK" appears instead of the value.

| AFF327I ESTIMATED ITERATION COUNT = number ?

| Explanation: This message is part of the LISTVEC output for a DO loop. It shows the
| compiler estimate for the iteration count (length) of the DO loop. A question mark after
| the compiler estimate indicates that the compiler could not accurately estimate the value.
| The value displayed is an arbitrary value that the compiler used for vector cost analysis.

| AFF328I STATEMENT ARRAY AVG STRIDE EST STRIDE

| Explanation: This message is part of the LISTVEC output for a DO loop. It is the
| header message before the listing of the strides of a DO loop.

220 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

| AFF329I v statement-id array-name number number ?

| Explanation: This is a line of the LISTVEC output for a stride of a DO loop. It shows:

| � a "V" or "S" indicating that the statement is part of a vector or scalar loop, respec-
| tively. "S" will also be placed on statements belonging to the scalar portion of a
| partially vectorized loop.
| � the statement identifier of the array reference,
| � an array reference indexed by the DO variable of the loop,
| � the average stride of reference, and
| � the compiler estimated stride.

| If the stride could not be obtained for an array reference, because the DO loop does not
| contain DO loop analysis hooks, then "NO HOOK" appears instead of the value. If the
| stride could not be obtained because information was not supplied by the compiler to
| locate and calculate the value, then, "UNKNOWN" appears instead of the value. A ques-
| tion mark (?) after the compiler estimate indicates that the compiler could not accurately
| estimate the value. The value displayed is an arbitrary value that the compiler used for
| vector cost analysis.

| AFF330I NOT ANALYZABLE

| Explanation: This message is displayed as part of the LISTVEC output, in place of the
| vector statistics for a DO loop. The listed DO loop could not be analyzed for
| vectorization by the VS FORTRAN compiler. Run-time statistics could not be gathered
| for the loop, and compiler estimates are not available.

| AFF331E PROGRAM INFORMATION FILE DATA IS NOT AVAILABLE FOR
| "program-unit-name".

| Explanation: A program information data set or file was not defined for the program
| unit. This file is needed by Interactive Debug to perform DO loop analysis functions
| (VECSTAT, LISTVEC, TIMER DOLOOP, LISTTIME DOLOOP, and LISTSAMP
| DOLOOP).

| User Response: Create or change the AFFON file entry for the program unit to specify
| a correct program information file for the program unit. You may also need to recompile
| the program unit with the VECTOR(IVA) option. Restart the debugging session.

| AFF332E DO LOOP "statement-id" IS NOT ANALYZABLE.

| Explanation: A VECSTAT, LISTVEC, TIMER DOLOOP, or LISTTIME DOLOOP
| command was entered stating a DO loop (not in a range) that was not analyzable by the
| compiler.

| User Response: If you wish to gather length and stride information for this loop, or
| time this loop, you must modify your program to make the loop analyzable.

 Appendix A. Interactive Debug Messages 221

 Debugging messages

| AFF333E DO LOOP "statement-id" DOES NOT CONTAIN DO LOOP ANALYSIS
| HOOKS.

| Explanation: The DO loop explicitly specified on the command does not contain the
| DO loop analysis hooks. These hooks are needed to gather length and stride information,
| and to time DO loops.

| User Response: Change the AFFON file entry for the program unit to specify that DO
| loop analysis hooks be placed in the loop. Restart the debugging session.

| AFF334E STATEMENT "statement-id" IS NOT A DO STATEMENT.

| Explanation: A statement explicitly specified on a VECSTAT, LISTVEC, TIMER
| DOLOOP, LISTTIME DOLOOP, or LISTSAMP DOLOOP command is not a DO state-
| ment.

| AFF335I DO LOOP SAMPLES %UNIT %TOTAL

| Explanation: This is the header message for LISTSAMP DOLOOP output.

| AFF336I statement-id number prcnt prcnt histogram

| Explanation: This is a line in the LISTSAMP DOLOOP output. It shows:

| � the statement identifier of the DO statement for the loop,
| � the total number of samples in the loop,
| � the percentage of samples to the total for the program unit,
| � the percentage of samples to the total for the program, and
| � a histogram of the percentage of samples to the total for the program (where one
| asterisk is 5 percent, rounded).

| AFF337I NO STRIDE INFORMATION AVAILABLE

| Explanation: This message is issued in place of a list of strides for a DO loop on a
| LISTVEC report if the DO loop does not contain any vectors.

| AFF339I DO LOOP TOTAL TIME EXECUTIONS AVERAGE
| TIME STATUS

| Explanation: This is the header message for LISTTIME output for DO loops.

| AFF340I statement-id number number number status

| Explanation: This is a line of LISTTIME output for DO loops. It shows:

| � the statement identifier of the DO statement for the loop,
| � the execution time of the DO loop (in microseconds),
| � the number of executions of the DO loop, and
| � the average time per execution of the loop (in microseconds).
| � the timing status for the DO loop (set by the TIMER command). The settings are
| "ON" and "OFF".

222 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

| AFF347I PROGRAM UNIT PAGE FREQUENCY
| DISTRIBUTION

| Explanation: This is the header message for an annotate summary for statement fre-
| quency counts.

| AFF348I program-unit-name number frequency histogram

| Explanation: This is a line of an annotate summary for statement frequency counts. It
| shows:

| � the program unit name
| � the sum of the frequencies of all statements in the program unit
| � a histogram showing the sum in item as a percentage of the sum of frequencies of
| all statements in the entire program.

| AFF349E INVALID SYNTAX "text" AT START OF AFFON ENTRY.
| PROGRAM UNIT NAME, "(ALL)", OR "*" EXPECTED.

| Explanation: An entry in the AFFON file begins with a character string that is not valid
| syntax for a program unit name, does not begin with the string “(ALL)” used to signify
| ALL entries, and does not begin with “*” used to indicate comment entries.

| System Action: The entry is ignored.

| User Response: Correct cause of invalid syntax, and restart debugging session.

| AFF350E ERROR OBTAINING STORAGE FOR PROGRAM INFORMATION
| FOR "program-unit-name".

| Explanation: There is not enough storage to contain program information file data for
| the program unit.

| System Action: The program unit is treated as having an undefined program informa-
| tion file.

| User Response: Re-invoke Interactive Debug with more virtual storage (VM) or a larger
| user region (MVS).

| AFF351E ERROR OBTAINING STORAGE FOR AFFON FILE INFORMATION.

| Explanation: There is not enough storage to contain AFFON file information.

| System Action: The AFFON file is ignored.

| User Response: Re-invoke Interactive Debug with more virtual storage (VM) or a larger
| user region (MVS).

| AFF352E NO DO LOOP INFORMATION IS AVAILABLE FOR PROGRAM
| UNIT "program-unit-name".

| Explanation: A VECSTAT, LISTVEC, TIMER DOLOOP, LISTTIME DOLOOP, or
| LISTSAMP DOLOOP, command specified a program unit that does not contain any DO
| loops.

 Appendix A. Interactive Debug Messages 223

 Debugging messages

| AFF353E THERE ARE NO DO LOOPS IN ANY DEBUGGABLE PROGRAM
| UNIT.

| Explanation: A VECSTAT, LISTVEC, TIMER DOLOOP, LISTTIME DOLOOP, or
| LISTSAMP DOLOOP command was issued with the *.* operand, yet there are no DO
| loops in any debuggable program unit.

| AFF354E THERE ARE NO PROGRAM INFORMATION FILES DEFINED FOR
| ANY DEBUGGABLE PROGRAM UNIT.

| Explanation: A VECSTAT, LISTVEC, TIMER DOLOOP, LISTTIME DOLOOP, or
| LISTSAMP DOLOOP command was issued with the *.* operand, yet there is no
| program information for any debuggable program unit.

| AFF355E THERE ARE NO DO LOOPS IN THE RANGE "statement-range-id".

| Explanation: A statement range was specified on a VECSTAT, LISTVEC, TIMER
| DOLOOP, LISTTIME DOLOOP, or LISTSAMP DOLOOP command, but there are no
| DO loops in the range.

| AFF356I array-name number number ?

| Explanation: This is a continuation message for message AFF329I.

| AFF357I number number ?

| Explanation: This is a continuation message for message AFF356I.

| AFF358I number prcnt prcnt histogram

| Explanation: This is a continuation message for message AFF336I.

| AFF360E ERROR READING AFFLST FILE; "program-unit-name" CANNOT BE
| ANNOTATED.

| Explanation: There was a problem reading a listing from the AFFLST file during the
| execution of an ANNOTATE command. The AFFLST file is probably not defined cor-
| rectly.

| User Response: Check the AFFLST DD statement in the JCL to make sure the listings
| are properly defined. Correct the JCL and rerun the job.

| AFF361E "program-unit-name" CANNOT BE ANNOTATED BECAUSE ITS
| LISTING WAS NOT FOUND IN THE AFFLST FILE.

| Explanation: The listing for the specified program unit was not in the AFFLST file.

| User Response: Check the AFFLST DD statement in the JCL to make sure that the
| listing for the program unit is specified. Correct the JCL and rerun the job.

224 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

| AFF362E ERROR READING AFFPIF FILE; FILE IGNORED.

| Explanation: There was an error reading program information from the AFFPIF file.
| The file is probably not defined correctly.

| System Action: The AFFPIF file is ignored. Program units whose program information
| was to be taken from the AFFPIF file are treated as having undefined program informa-
| tion.

| User Response: Check the AFFPIF DD statement in the JCL to make sure that it is
| properly defined. Correct the JCL and rerun the job.

| AFF363E THE AFFPIF FILE DOES NOT CONTAIN PROGRAM INFORMA-
| TION.

| Explanation: The AFFPIF file contains data that could not be interpreted as program
| information.

| System Action: The AFFPIF file is ignored. Program units whose program information
| was to be taken from the AFFPIF file are treated as having undefined program informa-
| tion.

| User Response: Check the AFFPIF DD statement in the JCL to make sure that program
| information is being properly defined. Correct the JCL and rerun the job.

| AFF364E THE AFFPIF FILE DOES NOT CONTAIN PROGRAM INFORMA-
| TION FOR "program-unit-name".

| Explanation: Program information for the specified program unit was not in the
| AFFPIF file.

| System Action: The program unit is treated as having undefined program information.

| User Response: Check the AFFPIF DD statement in the JCL to make sure that program
| information for the program unit is specified. Correct the JCL and rerun the job.

| AFF370E A SHIFT-IN CONTROL CHARACTER WAS NOT FOUND IN THE
| DBCS LITERAL.

| Explanation: A shift-in control character is required to indicate the end of a DBCS
| character string.

| AFF370W LINE TRUNCATED

| Explanation: Line continuation was used to enter a line to Interactive Debug that
| exceeded 255 characters.

| System Action: The line is truncated to 255 characters.

| User Response: If the input line is a command, simplify the command (perhaps by
| using abbreviations) to fit into 255 characters.

| AFF371I INPUT ABORTED BY "END"

| Explanation: This message is issued when an continued input line (using the line con-
| tinuation character "-") was aborted by typing "END" on a continuation line.

 Appendix A. Interactive Debug Messages 225

 Debugging messages

| AFF372E THE SHIFT-OUT CHARACTER CAN NOT BE USED AS A DELIM-
| ITER.

| Explanation: The DBCS shift-out control character can not be used as a delimiter of the
| SEARCH command.

| AFF372W "command-name" IS SUPPORTED ONLY IN FULLSCREEN MODE;
| COMMAND IGNORED.

| Explanation: A full screen only command was issued in line mode or batch mode.

| User Response: Make sure you are running in ISPF before entering this command.

| AFF373W "command-name" COMMAND CANNOT BE ISSUED IN A RESTART
| FILE.

| Explanation: The specified command (a full screen command or the RESTART
| command) is not allowed in a restart (AFFIN) file.

| System Action: The command is ignored.

AFF400I THE COMMAND LIST FOR THE BREAKPOINT AT “name.number”
HAS BEEN TERMINATED BY AN ATTENTION

Explanation: Because of entering an attention exit, the indicated command list cannot
be completed.

User Response: If necessary, enter the commands that were not completed.

AFF405E THE NONIMMEDIATE COMMAND “command” WAS IGNORED DUE
TO A PENDING ERROR EXIT

Explanation: The indicated command could not be run now because it is not a
command that can be immediately processed (that is, processed easily by issuing a
message, like WHERE, or by setting a flag, like NEXT), and cannot be deferred to later
processing because execution is currently within an error exit.

User Response: Issue a NEXT, and then issue the command after execution has left the
error exit.

AFF410E UNKNOWN COMMAND

Explanation: The syntax of the previous “command” name was not a valid Interactive
Debug command.

User Response: Check your spelling of the command name for accuracy or insure that
you have included the SYSCMD command for a system command.

AFF450E “name” IS AN ASSUMED SIZE ARRAY; SUBSCRIPTS MUST BE
SPECIFIED FOR “LIST”

Explanation: A LIST or SET command was issued for the specified array. However,
the final dimension of the array is unknown because it was not defined at compile time.
For example, B(*) may have been specified. Interactive Debug will not LIST or SET
values in an assumed size array unless a specified element (for example, B(3)) is speci-
fied.

226 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF454E “GOTO” OR “ENTRY” MUST BE SPECIFIED WITH “PRINT”

Explanation: GOTO or ENTRY was not specified with the PRINT option on the
TRACE command.

User Response: Reissue the TRACE command with either the GOTO or ENTRY
options.

AFF455E INVALID OPERAND SYNTAX SPECIFIED IN “text”

Explanation: Invalid syntax has been specified for the indicated command operand.

AFF456E “word” IS NOT A VALID KEYWORD FOR THE “cmnd” COMMAND

Explanation: Issued when an invalid keyword option is detected in an IAD command.

AFF457E “abbr” IS AN AMBIGUOUS KEYWORD ABBREVIATION FOR THE
“cmnd” COMMAND

Explanation: Issued when an ambiguous abbreviation is detected in an IAD command.

User Response: Use a longer abbreviation for the keyword.

AFF458E KEYWORD “word” WAS SPECIFIED MORE THAN ONCE FOR THE
“cmnd” COMMAND

Explanation: Issued when an option keyword is specified more than once in an IAD
command.

User Response: Specify the option keyword only once.

AFF459E “word1” AND “word2” CANNOT BOTH BE SPECIFIED ON THE
“cmnd” COMMAND

Explanation: Conflicting keywords are specified.

User Response: Reissue the command with only one of the keywords.

AFF460E UNBALANCED DELIMITERS SPECIFIED IN “text”

Explanation: While scanning the syntax of the previous command, an invalid use of
delimiters was detected. Usually, a right or left parenthesis is missing.

AFF461E INVALID SUBLIST SYNTAX IN “text”

Explanation: Issued when incorrect syntax is detected in a parenthesized sublist fol-
lowing a keyword.

AFF462E KEYWORD “word” OF THE “cmnd” COMMAND REQUIRES A
SUBLIST

Explanation: Issued when a parenthesized sublist was not specified for a keyword that
requires one.

User Response: Reissue the command with the required sublist.

 Appendix A. Interactive Debug Messages 227

 Debugging messages

AFF463E KEYWORD “word” OF THE “cmnd” COMMAND DOES NOT ALLOW
A SUBLIST

Explanation: Issued when a parenthesized sublist was specified for a keyword that does
not permit one.

AFF464E SUBLIST VALUE “number” IS TOO LARGE FOR KEYWORD “word”

Explanation: The value specified in the sublist is larger than the maximum allowed.

AFF470E UNKNOWN COMMAND “text”

Explanation: The indicated string was found in a command list, but is not recognized as
a valid Interactive Debug command.

AFF481E THE DESTINATION CANNOT BE BRANCHED TO IN “text”

Explanation: A GO command was entered that references a VS FORTRAN statement
that has no hook. This includes a GO EXIT for a VS FORTRAN Version 1 MAIN
program.

User Response: You can use LISTFREQ to see which statements have hooks.

AFF483E “GO” WITH A STATEMENT IDENTIFIER CANNOT BE ISSUED
FROM AN ENTRY

Explanation: A GO command with a statement identifier cannot be issued from the
entry point of any VS FORTRAN program unit. At entry, the unit is not yet active.

User Response: Issue STEP 1 to get to the first statement with a hook. You should be
able to issue the GO command from there.

AFF484E CONTINUATION IS NOT PERMITTED WITH THE “command”
COMMAND

Explanation: A command valid only in full screen mode was entered in full screen
mode, but with continuation. Continuation is not supported for these commands.

AFF485E “cmnd” COMMAND CANNOT BE ISSUED FROM AN ATTENTION
EXIT

Explanation: A full screen display command is not allowed from an attention exit.

User Response: Exit the attention mode and reissue the command.

AFF486E “cmnd” COMMAND CANNOT BE ISSUED FROM A RESTART FILE

Explanation: A full screen display command is not allowed in a RESTART file.

System Action: The command is ignored.

228 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF500E STATEMENT number IS NOT EXECUTABLE

Explanation: The statement reference does not identify an executable statement. Pos-
sibly the current qualification identifies a program unit that does not contain a statement
with the specified number.

User Response: Use the QUALIFY command to set the proper qualification, or select a
different statement.

AFF510E INVALID RANGE; THE RIGHT SIDE (number) IS LESS THAN THE
LEFT SIDE (number)

Explanation: If a command has been entered with a range of statements specified, the
first statement must appear prior to the second in the program.

AFF511E INVALID SUBSTRING RANGE; THE RIGHT SIDE IS LESS THAN
THE LEFT SIDE IN “string”

Explanation: The value specified on the right side of the substring notation is larger
than the value specified on the left side.

AFF520E program IS NOT A DEBUGGABLE FORTRAN PROGRAM UNIT

Explanation: The indicated program unit cannot be debugged.

1. If it is a VS FORTRAN Version 1 or VS FORTRAN Version 2 program, it probably
was compiled with the NOSDUMP option. Either SDUMP or TEST must be speci-
fied (or defaulted) for the program unit to be eligible for debugging.

2. A valid AFFON file was found but did not contain this program unit.

User Response: If you want to debug the indicated program unit, terminate the current
debugging session, using the QUIT command, correct the AFFON file or recompile the
program unit with the appropriate compiler options, and re-execute the program.

AFF530E “text” IS INVALID “FIXUP” SYNTAX

Explanation: Invalid keyword syntax has been detected for a FIXUP command. The
only valid keywords are ARG1 and ARG2 and both must contain a value within paren-
theses following the keyword.

AFF535E NONNUMERIC VALUE “text” IS NOT ALLOWED IN FIXUP

Explanation: A logical or character value has been specified in a FIXUP command as
value for either ARG1 or ARG2. Only numeric values are valid.

AFF540E FORTRAN TERM “text” IS NOT ALLOWED IN FIXUP

Explanation: Usually, valid syntax has been detected where it is not allowed in a
FIXUP command (for example, a duplication factor).

AFF545E A NULL FORTRAN TERM IS INVALID

Explanation: One of the sides of a range specification is missing (for example, "LIST
A(1):").

 Appendix A. Interactive Debug Messages 229

 Debugging messages

AFF549E PROGRAM SAMPLING REQUIRES VS FORTRAN VERSION 2
RELEASE 2.0 LIBRARY OR LATER

Explanation: The module being debugged was link-edited with an older release of the
VS FORTRAN library. Interactive Debug needs Version 2 Release 2.0 in order to
perform program sampling.

User Response: Relink-edit the program with the latest release of the library.

AFF550I PROGRAM SAMPLING INTERVAL WAS m MS; TOTAL NUMBER
OF SAMPLES WAS n

Explanation: This is the header message for a LISTSAMP display, where “m” is the
sampling time interval used and “n” is the total number of sampling interruptions that
occurred.

AFF551I “type” SAMPLES:

Explanation: The sampling counts that follow are for sampling interruptions of the type
indicated.

AFF552I SUM OF DIRECT AND CALLED SAMPLES:

Explanation: The counts that follow are the sum of both DIRECT and CALLED
counts.

AFF553E “unitname” CANNOT BE ANNOTATED BECAUSE ITS LISTING FILE
IS NOT KNOWN

Explanation: Issued when the listing file has not been identified for a program unit that
has had annotation requested for it.

User Response: Specify the file or data set name in the AFFON file, or use the
LISTINGS panel in full screen mode.

AFF554E “unitname” CANNOT BE ANNOTATED BECAUSE IT WAS NOT
FOUND IN “dsname”

Explanation: Issued when the listing for a specified program unit cannot be found in
the specified listing data set.

User Response: Be sure the correct file or data set name is specified in the AFFON file.

AFF555I STATEMENT SAMPLES %UNIT %TOTAL

Explanation: This is the title line for a LISTSAMP output when statement information
is listed.

AFF556I PROGRAM UNIT SAMPLES %TOTAL

Explanation: This is the title line for LISTSAMP output when summary information is
listed.

230 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF557I statement samples %unit %total histogram

Explanation: This is the program sampling information for a statement, showing state-
ment number, number of samples, percentage of total samples for the program unit, per-
centage of total samples for the entire program, and a histogram (bar chart) that
graphically displays the size of this value relative to the other sampling values listed.

AFF558I program samples %total histogram

Explanation: This is the program sampling information for a program unit, showing
program unit name, number of samples, percent of total samples, and a histogram (bar
chart).

AFF559E “unitname” CANNOT BE ANNOTATED BECAUSE IT WAS NOT
COMPILED WITH VS FORTRAN V2

Explanation: Issued when annotation is requested for a program unit that was not com-
piled with VS FORTRAN VERSION 2. Annotation is not supported for listings produced
by previous versions of the compiler.

AFF560E PROGRAM SAMPLING HAS NOT BEEN DONE; ISSUE
“ENDDEBUG” WITH THE “SAMPLE” OPTION TO INITIATE
PROGRAM SAMPLING

Explanation: Issued when LISTSAMP or ANNOTATE with the SAMPLING option is
entered but program sampling has not been initiated.

AFF561I ANNOTATING LISTING FOR PROGRAM UNIT “unitname”

Explanation: An informational message indicating the progress of the ANNOTATE
command.

AFF562I samples %unit %total histogram

Explanation: This is program sampling information for a statement, showing number of
samples, percentage of total samples for the program unit, percentage of total samples for
the entire program, and a histogram (bar chart) that graphically displays the size of this
value relative to the other sampling values listed. This information will appear on the
line below the statement number, in those cases where these fields and the statement
number are too long to display together on a single line.

| AFF563I VS FORTRAN INTERACTIVE DEBUG V2 R3 ANNOTATED
| LISTINGS:

Explanation: This is the heading line for annotated listings.

AFF564I PROGRAM UNIT PAGE %TOTAL DISTRIBUTION

Explanation: This is the heading line for the summary page of annotated listings.

 Appendix A. Interactive Debug Messages 231

 Debugging messages

AFF565I unitname page percent histogram

Explanation: This is the format of the output of the summary lines shown on the
summary page of annotated listings.

AFF566I ANNOTATE: status

Explanation: Indicates the current status of the ANNOTATE controls that are used for
| displaying bar charts on the source window. The status may be any one of the following:

| ON SAMPLING DIRECT
| ON SAMPLING CALLED
| ON SAMPLING ALL
| OFF SAMPLING DIRECT
| OFF SAMPLING CALLED
| OFF SAMPLING ALL
| ON FREQUENCY
| OFF FREQUENCY
| ON MESSAGE
| OFF MESSAGE

AFF567E “CALLED” IS NOT VALID UNLESS SAMPLING WAS INITIATED
WITH THE “CALLED” OPTION

Explanation: The CALLED keyword must be specified in the ENDDEBUG command
in order for CALLED to be valid in the ANNOTATE and LISTSAMP commands.

User Response: Reissue the command without the CALLED option, or restart the
debugging and specify the CALLED option, in ENDDEBUG, when initiating sampling.

AFF568I FREQUENCIES

Explanation: Heading for annotated listing by program unit when frequency values are
displayed.

AFF569E “word” KEYWORD IS NOT PERMITTED WITHOUT THE
“SAMPLE” KEYWORD

Explanation: The MAXSAMP or CALLED keywords are only valid if SAMPLE has
been specified for the ENDDEBUG command.

AFF570E TIMING INTERVAL MUST BE AN INTEGER LARGER THAN ZERO

Explanation: The sample time specified in the SAMPLE sublist of the ENDDEBUG
command must be an integer value larger than zero.

AFF571E INVALID STOP PARAMETER SPECIFIED IN “MAXSAMP”
SUBLIST

Explanation: STOP, or an abbreviated form of STOP, was incorrectly specified in the
MAXSAMP sublist of the ENDDEBUG command.

232 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF572E NO SUBLIST SPECIFIED FOR THE “word” KEYWORD

Explanation: A sublist is required with the indicated keyword.

AFF573E “number” IS AN INVALID “word” VALUE

Explanation: The numeric value specified in the keyword sublist is too large.

AFF574E MAXIMUM NUMBER OF SAMPLING INTERRUPTS MUST BE AN
INTEGER GREATER THAN ZERO

Explanation: The maximum number of sampling interrupts specified in the MAXSAMP
sublist of the ENDDEBUG command must be an integer value greater than zero.

AFF575E “text” IS NOT A VALID SUBLIST FOR “word”

Explanation: A sublist after the keyword on a command contains invalid syntax.

AFF576E “DUMP” IS NOT PERMITTED WITH A CONSTANT OPERAND

Explanation: LIST or AUTOLIST has been specified with both a constant operand and
the dump option. This combination is not permitted.

AFF577E THE MINIMUM SAMPLING INTERVAL ON CMS IS 4 MILLISEC-
ONDS.

Explanation: When using CP timer assist, the minimum accuracy of the interval timer
on CMS is about 3.3 milliseconds. To prevent sampling interruptions from occurring in
the operating system code servicing of the interruption, the interval time is restricted to 4
milliseconds or greater.

AFF605E ONLY REALS ALLOWED IN COMPLEX CONSTANT “text”

Explanation: Integers have been used as part of a complex constant. Only real numbers
are allowed.

AFF610E REAL AND IMAGINARY PARTS OF “variable” DIFFER IN LENGTH

Explanation: One part of a complex constant has been entered as a REAL*4 number
and the other part has been entered as a REAL*8 number. Both parts must be of equal
length.

AFF615E “text” IS INVALID FORTRAN TERM SYNTAX

Explanation: While scanning the previous command, an operand that must be a VS
FORTRAN term had invalid syntax.

AFF620E SUBSCRIPTS ARE NOT PERMITTED ON “variable”; THE VARI-
ABLE IS NOT AN ARRAY

Explanation: Subscripts have been specified for a variable that is not an array.

 Appendix A. Interactive Debug Messages 233

 Debugging messages

AFF625E THE NUMBER OF SUBSCRIPTS ON “array” DOES NOT MATCH
THE DECLARED NUMBER OF DIMENSIONS

Explanation: There are too many or too few subscripts specified for the indicated array.

AFF630E “variable” IS AN INVALID FORTRAN VARIABLE NAME

Explanation: The name of a VS FORTRAN variable is invalid. For example, the name
contains more than six characters, or does not begin with an alphabetic character.

AFF631E PROGRAM UNIT “name” IS NOT ACTIVE; “varname” IS A DUMMY
ARGUMENT AND CANNOT BE ACCESSED

Explanation: An AUTOLIST, LIST, SET, IF, or WHEN command attempted to access
variables that have no storage because the program unit is not active.

User Response: Set a breakpoint within the program unit and access the variables when
you get there. If the dynamic common has been initialized, you may be able to access it
using a different program unit.

AFF632E “varname” IS A DUMMY ARGUMENT THAT IS NOT DEFINED AT
THE ENTRY POINT BY WHICH “program” WAS ENTERED, AND
CANNOT BE ACCESSED

Explanation: An attempt was made to reference a dummy argument that is defined only
in an alternate entry point.

User Response: Wait until the program unit is entered by an entry point that defines the
dummy variable you want to access.

AFF633E “QUIT” HAS BEEN ISSUED. ENTER “QUIT” AGAIN TO FORCE
AN ABNORMAL TERMINATION

Explanation: This message is issued by the attention interrupt handler.

User Response: Enter QUIT again if you want to terminate debugging; otherwise, enter
any command that is appropriate in an attention exit.

AFF635E VARIABLE “variable” IS NOT IN PROGRAM UNIT program

Explanation: The specified variable was not found in the specified program unit. The
variable may be misspelled, the program qualification may be missing or incorrect, or the
variable may have been removed by the optimizer.

User Response: Make sure that the variable is defined in the currently qualified
program unit. If not, then either use the QUALIFY command, or explicitly qualify the
variable name in the Interactive Debug command.

AFF636E “COMMAND NOT FOUND”

Explanation: The TSO command requested using the SYSCMD command was not
found by TSO.

234 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF640E “text” IS INVALID CONSTANT SYNTAX

Explanation: There is a syntax error in the indicated constant.

AFF645E CONSTANT “number” EXCEEDS THE MACHINE CAPACITY

Explanation: The indicated constant is too large. This may occur if leading zeros are
specified with the constant.

AFF650E INVALID SUBSCRIPT IN “text”; A SUBSCRIPT CANNOT BE AN
ARRAY OR ARRAY ELEMENT

Explanation: The subscripts of the indicated array must be scalar constants or variables.

AFF655E ONE OR MORE PARTS OF COMPLEX CONSTANT “text” ARE
MISSING

Explanation: Either the real or the imaginary portion of the indicated complex constant
is missing. Both portions are required.

AFF660E “text” HAS INVALID SUBSCRIPT SYNTAX

Explanation: While scanning what appears to be a subscript, invalid syntax was discov-
ered. Possibly the right parenthesis was missing.

AFF665E INVALID SUBSCRIPT IN “array”; A NON-INTEGER VARIABLE
WAS SPECIFIED

Explanation: A logical, real, character, or complex variable has been used as a subscript
for the indicated array. Only integer numbers may be used as subscripts.

AFF670E “text” IS INVALID ON THE LEFT SIDE OF A SET COMMAND

Explanation: A duplication factor, a minus sign, or a constant appears on the left side
of a SET command. None of these are valid on the left side.

AFF675E “text” IS INVALID “SET” SYNTAX

Explanation: Either the equal sign (=) or the right side of the SET assignment has been
omitted.

AFF680E “text” IS INVALID IN THE “LIST” RANGE

Explanation: An item is specified in a range that is not allowed in a LIST command.

AFF690E VARIABLE “variable” IS INVALID IN “command” COMMAND

Explanation: A duplication factor, a minus sign (-), or a constant appears with a vari-
able in the indicated command.

 Appendix A. Interactive Debug Messages 235

 Debugging messages

AFF691E LITERAL OR NUMERIC CONSTANTS ARE NOT PERMITTED IN
THE “DESCRIBE” COMMAND

Explanation: Only variables and array names can be specified on the DESCRIBE
command.

AFF700E NULL VARIABLE LIST/RANGE SPECIFIED IN “text”

Explanation: While scanning the previous command, the end of the command was
found before a list or range specification was completed.

AFF715E “variable” IS NOT A LOGICAL VARIABLE

Explanation: While scanning the previous command, a logical variable was expected,
but the indicated variable, which is not a logical variable, was found instead.

AFF720E “condition” HAS AN INVALID CONDITION

Explanation: The indicated condition is not syntactically correct. For example, “.EE.”
may have been used instead of “.EQ..”

AFF725E INVALID COMBINATION OF DATA TYPES IN CONDITION “condi-
tion”

Explanation: While scanning the syntax of the previous command, an invalid combina-
tion of data type was found within the condition specification. The data types of the
variables must be the same or compatible.

AFF730E “condition” IS INVALID CONDITION SYNTAX

Explanation: In the specification of an arithmetic condition, either the right side of the
condition has been omitted, or some extraneous data follows what appears to be a com-
plete condition.

AFF735E CONDITION “condition” HAS AN INVALID FORTRAN TERM

Explanation: A duplication factor is specified within a condition specification. This is
not valid.

AFF740E “text” IS INVALID “IF” SYNTAX

Explanation: Invalid syntax has been detected within an IF command. For example,
parentheses may be missing around the condition definition.

AFF741E A USERID MUST BE SPECIFIED WITH THE MSG OPERAND; NO
DEFAULT IS AVAILABLE

Explanation: TERMIO MSG was entered and the default user ID cannot be determined.

User Response: If the MSG operand is desired, specify the desired user ID.

236 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF742W “MSG” OPERAND IGNORED; “MSG” IS NOT VALID OUTSIDE
BATCH MODE

Explanation: A TERMIO command containing a MSG operand was entered while
Interactive Debug was being used interactively. The MSG operand is only for batch
mode.

AFF743E “command” COMMAND IS NOT PERMITTED IN BATCH MODE

Explanation: The indicated command was entered while in batch mode, but is not per-
mitted there.

AFF745E “text” IS INVALID “WHEN” SYNTAX

Explanation: In the specification of an arithmetic condition, either the right side of the
condition has been omitted, or some extraneous data follows what appears to be a com-
plete condition.

AFF750E A COMMAND MUST BE SPECIFIED AFTER “text”

Explanation: No command was specified after the condition on an IF statement.

AFF755E “QUALIFY” IS NOT PERMITTED IN AN “IF” COMMAND

Explanation: QUALIFY cannot be the command specified as the action to be taken if
the condition specified in an IF command is true.

AFF760E “text” REQUIRES AN OPERAND; THE COMMAND IS IGNORED

Explanation: An operand must be specified on the indicated command.

AFF765E “condition” HAS AN INVALID “WHEN” CONDITION NAME

Explanation: The name of the indicated condition has a syntactically invalid name.
Valid names must begin with an alphabetic character and contain no more than four
alphameric characters.

AFF768W “condition” CONDITION IS NOT ON

Explanation: An attempt to turn off the indicated condition has been detected, but the
condition is already off.

AFF775E “command” COMMAND IGNORED IN AN IF OR COMMAND LIST

Explanation: The indicated command was found in an IF command or a command list
specified with an AT command. The command is not valid in this context and is
ignored.

 Appendix A. Interactive Debug Messages 237

 Debugging messages

AFF780E “command” IS NOT PERMITTED TO HAVE OPERANDS; THE
COMMAND IS IGNORED

Explanation: A keyword has been specified for a command that has no keywords. The
extra keyword is ignored.

User Response: Determine why the extra keyword was entered. Possibly the wrong
command was issued. If so, issue the right command.

AFF795E INVALID COMBINATION OF DATA TYPES IN “text”

Explanation: In a SET command, the data type of the variables and constants on the
right side of the equal sign is different from the data type of the variable on the left side
of the equal sign.

� A character variable may be assigned only character data items.

� A logical variable may be assigned only logical data items.

� An arithmetic variable may be assigned only arithmetic data items.

AFF800E INVALID “GO”; THE STATEMENT IDENTIFIER IS NOT IN THE
CURRENT PROGRAM UNIT

Explanation: An attempt has been detected to go to a statement outside the program
unit that was being run when processing was suspended.

User Response: Reenter the GO command either without an ISN or sequence number,
or with an ISN or sequence number that is within the correct program unit.

AFF801I QUALIFICATION IS program

Explanation: This message is issued in response to a QUALIFY command, and identi-
fies the currently qualified program unit. Unless you have issued a QUALIFY command
to set a different program unit, the currently qualified program unit will be the program
unit which is currently being run.

AFF802E COMMAND IGNORED; THE PROGRAM HAS FINISHED EXE-
CUTION

Explanation: The VS FORTRAN program has finished execution. Interactive Debug
will allow you to enter most commands before you enter the QUIT command, but the last
command entered is not one of those that may be issued at this time.

User Response: Enter a valid command. Valid commands are:

238 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

ANNOTATE POSITION
AUTOLIST PROFILE
BACKSPACE PREVDISP
CLOSE PURGE
COLOR QUALIFY
comment QUIT
DESCRIBE RECONNECT
ENDFILE REFRESH
HELP RESTART
LIST REWIND
LISTBRKS SEARCH
LISTFREQ SET
LISTINGS SYSCMD
LISTSAMP TERMIO
LISTSUBS WHERE
LISTTIME WINDOW
MOVECURS

For a list of commands that are invalid, see “Issuing Commands after a Program Runs”
on page 84.

AFF805W program IS OPTIMIZED; “GO” WITH STATEMENT ID MAY CAUSE
UNPREDICTABLE RESULTS

Explanation: The indicated program unit was compiled with OPT(n) with n>0.
Because the program is optimized, it may depend on values being kept in registers
between some statements. A GO command to a specific statement may bypass code that
is needed to set registers, and may cause unpredictable results.

System Action: Message AFF806 is issued to confirm whether the command should be
run.

AFF806A DO YOU WISH TO EXECUTE THIS COMMAND? (YES OR NO)

Explanation: This message was preceded by message AFF805, which warned of the
possible consequences of running the GO command. You must now confirm your desire
to issue the command.

User Response: Reply YES or NO.

System Action: If YES is specified, the command is issued. If NO is specified, the
command is not issued. Following either action, processing continues.

AFF820E OPEN ERROR ON AFFOUT FILE

Explanation: This message is issued to your SYSMSG file or spooled console when the
OPEN of the AFFOUT file fails while running batch mode.

User Response: Correct the cause of the I/O error.

AFF821E ERROR PROCESSING AFFOUT FILE

Explanation: This message is issued to your SYSMSG file or spooled console when a
PUT to the AFFOUT file fails while running batch mode.

User Response: Correct the cause of the I/O error.

 Appendix A. Interactive Debug Messages 239

 Debugging messages

AFF822E OPEN ERROR ON AFFIN FILE

Explanation: This message is issued when the OPEN of the AFFIN file fails while
running batch mode.

User Response: Correct the cause of the I/O error.

System Action: Debugging is terminated.

AFF823E ERROR PROCESSING AFFIN FILE

Explanation: This message is issued if a GET to the AFFIN file fails while running
batch mode.

User Response: Correct the cause of the I/O error.

System Action: Debugging is terminated.

AFF824E END-OF-FILE ON AFFIN FILE

Explanation: This message is issued when end-of-file is reached on the AFFIN file for
batch mode.

User Response: Correct the input file and rerun the job if more commands are desired.

System Action: A QUIT command is forced.

AFF825E UNABLE TO WRITE DIAGNOSTIC MESSAGE CONCERNING
AFFIN FILE

Explanation: This message is issued to your SYSMSG file or spooled console when an
AFFIN diagnostic cannot be written to the AFFOUT file in batch mode.

User Response: Correct the cause of the I/O error.

AFF831E “ENTRY” AND “EXIT” ARE NOT PERMITTED IN A RANGE

Explanation: An ENTRY or EXIT keyword was issued in a statement ID range.

User Response: Use ISNs or sequence numbers for ranges. ENTRY and EXIT are
usable only as individual elements.

AFF832E THE QUALIFIER ON THE RIGHT SIDE OF A RANGE MUST
MATCH THE QUALIFIER ON THE LEFT SIDE

Explanation: A statement ID range was entered where a qualifier was specified for the
right statement ID that does not match the one on the left side.

User Response: Use a matching qualifier or allow it to default.

AFF840E LIST RANGE IGNORED; THE SECOND VARIABLE PRECEDES
THE FIRST IN STORAGE

Explanation: A LIST command has been entered with a range of variables specified.
In a range, the first variable must appear in storage prior to the second variable so that
the area between the two variables may be displayed.

240 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF841I RANK = number; DUMMY ARRAY ARGUMENT OF INACTIVE SUB-
PROGRAM OR ALTERNATE ENTRY POINT

Explanation: This message is produced by the DESCRIBE command for a dummy
array argument of an inactive subprogram or alternate entry point.

AFF850I variable value

Explanation: This is the output of a LIST command that did not include the DUMP
keyword. The name of the requested variable is shown along with its current value.

AFF851I PROGRAM UNIT COMPILER OPT HOOKED TIMING

Explanation: This is the title line for LISTSUBS output.

| AFF852I ENTRY POINT TOTAL TIME %TOTAL INVOCATIONS
| AVERAGE TIME

| Explanation: This is the header message for LISTTIME output for program units.

| AFF853I entry-point-name number prcnt number number

| Explanation: This is a line of LISTTIME output for program units. It shows:

| � the name of the entry point into the program
| � the execution time of the program (in microseconds)
| � the percent of total execution time for the program
| � the number of invocations of the program unit
| � the average time per invocation of the program unit (in microseconds)

AFF854I NO TIMING INFORMATION IS AVAILABLE

Explanation: This message is issued if no program units are timing or have accumu-
lated time.

AFF855I name datatype

Explanation: This is the DESCRIBE output for a scalar variable.

AFF856I RANK = number, SIZE = number ELEMENTS

Explanation: This message provides DESCRIBE information about the size of an array
variable.

AFF857I DIM number, LBOUND = (number), UBOUND = (number)

Explanation: This message provides DESCRIBE information about the dimensions of
an array variable.

AFF859I DIMENSION INFORMATION NOT AVAILABLE

Explanation: Dimension information is not available for dummy arguments of an inac-
tive subprogram or for an alternate entry point.

 Appendix A. Interactive Debug Messages 241

 Debugging messages

AFF860E FIXUP IGNORED; SUBSCRIPT ERROR

Explanation: A subscript specified within a FIXUP command was out of range for the
variable it was subscripting.

AFF861E FIXUP IGNORED; NOT IN ERROR EXIT

Explanation: You can issue a FIXUP command only if a run-time error has occurred in
the VS FORTRAN program.

AFF862E FIXUP IGNORED; NO ARGUMENTS MAY BE MODIFIED

Explanation: A FIXUP command with either ARG1 or ARG2 (or both) specified was
entered for an error that has no modifiable arguments.

User Response: Enter a corrected FIXUP command or a GO command.

AFF863E FIXUP IGNORED; ARG2 MAY NOT BE MODIFIED

Explanation: A FIXUP command has been entered with a value specified for ARG2,
but the VS FORTRAN library subroutine that detected the error only has one modifiable
argument.

AFF865E “GO” WITH A STATEMENT ID IS NOT ALLOWED IN AN ERROR
EXIT

Explanation: This type of GO command is not allowed within an error exit.

User Response: If you want to continue processing at some other statement, you may
issue a NEXT command followed by a GO command. When execution is suspended
because of the NEXT command, you may issue the GO command with a specific state-
ment identification.

AFF866E LAST COMMAND IGNORED DUE TO AN ERROR EXIT

Explanation: The last command entered within an attention exit was not run because an
error exit occurred.

AFF867E ERROR EXIT: ERROR number AT name.number

Explanation: This is the notification message that occurs when an error exit is taken. It
is also the response to a WHERE command in an error exit. The indicated statement and
program unit name identify the last statement that was running prior to the indicated
error.

User Response: None required. Use the FIXUP or GO command to terminate the error
exit processing.

AFF868E “text” IS INVALID I/O COMMAND SYNTAX

Explanation: The syntax of the previous BACKSPACE, CLOSE, ENDFILE, or
REWIND command is invalid. An integer variable or constant must be specified.

242 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF871I WHEN: condition SATISFIED

Explanation: The indicated WHEN condition has been satisfied.

System Action: This message will be followed by message AFF872I.

AFF872I CURRENTLY AT name.number

Explanation: This message is issued after message AFF871I to identify the current
location within the program unit.

AFF873I PROGRAM TERMINATED BY USER REQUEST

Explanation: This message is issued when you enter the “QUIT” command in an atten-
tion exit to terminate execution of a VS FORTRAN program.

System Action: Control is returned to Interactive Debug.

AFF874E ERROR ON AFFIN FILE; FILE IGNORED

Explanation: An error has occurred while attempting to open the AFFIN file. No
further attempts to access this file are made.

User Response: Correct the problem that caused the message. If the file is required,
correct the problem and re-invoke Interactive Debug.

AFF875E WHEN IGNORED; CONDITION “condition” NOT DEFINED

Explanation: A WHEN command has been detected that contains only a condition
name. This is interpreted as a request to “turn the condition on.” However, no condition
with the specified name has been defined.

AFF876E WHEN IGNORED; SUBSCRIPT ERROR

Explanation: A subscript error was encountered while processing the WHEN command.

AFF880E OFFWN IGNORED; NO WHEN CONDITIONS ARE DEFINED

Explanation: The previous OFFWN command was ignored because there are no WHEN
conditions defined that could be turned off.

AFF881E OFFWN IGNORED FOR UNDEFINED CONDITION “condition”

Explanation: The previous OFFWN command specified a WHEN condition that does
not exist. The command is ignored.

AFF900E SYSTEM COMMAND RETURN CODE: code

Explanation: The indicated code was received from processing the previous system
command using Interactive Debug's SYSCMD command.

 Appendix A. Interactive Debug Messages 243

 Debugging messages

AFF910I CURRENT TERMIO STATUS: status

Explanation: This message indicates the status of settings that are controlled by the
TERMIO command.

AFF920E SET COMMAND NOT COMPLETED NORMALLY

Explanation: Because of an error described in the preceding message, the SET
command was unable to be completed; not all values were assigned.

| AFF915I CURRENT DBCS STATUS: status

| Explanation: Provides the current DBCS status in response to the DBCS command with
| no operands.

AFF925E TOO MANY VALUES; EXCESS IGNORED; SET COMPLETED

Explanation: Too many values for an array have been specified with a SET command.
The extraneous values are ignored.

AFF929E MULTIPLE FORTRAN MAIN PROGRAMS HAVE BEEN FOUND;
PROGRAM “program-unit-name” IS ALSO A MAIN PROGRAM

Explanation: Multiple main FORTRAN program units were found in the program being
debugged. Only programs with a single main program unit can be debugged.

System Action: Processing continues. Interactive Debug assumes that the last main
program unit in the load module is the main program that was invoked. If this is not the
case, message AFF937E will be issued.

User Response: Relink-edit the program to contain only one main program unit.

AFF930E NAME “name” GREATER THAN 31 CHARACTERS; TRUNCATED

Explanation: A program unit name in the AFFON file is greater than 31 characters.
The name is truncated to 31 characters.

User Response: If the name is misspelled, correct the spelling in the AFFON file and
re-invoke the debugger.

| AFF931E INVALID FILE NAME IN AFFON ENTRY FOR "program-unit-name".

| Explanation: A data set name or file identifier specified in the AFFON file entry for
| the named program unit (or ALL) is invalid.

| System Action: The data set name or file identifier is ignored. For a program unit
| name entry, the default name will be used. For an ALL entry, the default name will
| remain unchanged.

| User Response: The data set name or file identifier is misspelled. Check to make sure
| the name is fully qualified and enclosed in quotes.

244 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF932E DUPLICATE NAME “name”

Explanation: The indicated program unit name has been found more than once in the
AFFON file.

System Action: The duplicate entry is ignored, and processing continues.

| AFF933I THE AFFON FILE WAS PROCESSED WITH number ERRORS

| Explanation: This is an informational message informing you that the AFFON file was
| processed. number is the number of errors found from parsing the file. Additional errors
| may be printed after this message indicating that certain data in the AFFON file is not
| valid for certain program units.

AFF934E PROGRAM NAME “program” NOT FOUND

Explanation: The indicated program unit name was specified in the AFFON file, but
could not be found in the program to be debugged.

System Action: The program unit name is ignored, and processing continues.

AFF935E INTERNAL ERROR IN GENERATED CODE FOR “program”

Explanation: This is an internal error and should never occur. It indicates that, within
the first four bytes generated by the VS FORTRAN Version 1 or VS FORTRAN Version
2 compiler for a VS FORTRAN statement, an instruction of the form "BALR x,y" was
detected. Such an instruction is only valid if y=0.

User Response: Contact your IBM representative.

System Action: Debugging is discontinued.

AFF937E HOOK FOUND AT UNKNOWN LOCATION

Explanation: This is probably an internal error. It indicates that what appears to be an
Interactive Debug hook was found at a location that Interactive Debug could not recog-
nize.

User Response: Contact your IBM representative.

System Action: Interactive Debug returns control to the VS FORTRAN Version 2
Library for its normal program check handling.

AFF938E ADDRESSING MODE CHANGED IN program unit name

Explanation: An external routine called from a VS FORTRAN program unit has
changed the MVS/XA addressing mode and not restored it. Unless this is an unusual or
intentional situation, an abend will probably occur. Be aware that there are some situ-
ations in which an abend will occur before Interactive Debug can get control and issue
this message. For example, a program running above the 16-megabyte line that switches
to 24-bit addressing mode will abend immediately.

There are situations, however, where this message will be issued as informational only.
For example, the Release 4 VS FORTRAN Version 1 library always enters user error
exits in 31-bit addressing mode. If an MVS/XA program is linked to run 24/24, this
message will be issued the first time such a routine is entered. In this case, it should be
treated as informational only, and not regarded as an error condition.

 Appendix A. Interactive Debug Messages 245

 Debugging messages

User Response: Unless the change of addressing mode was intentional, or unless a user
exit was taken by a 24/24 program, you should check and correct the addressing mode
logic in any external routines called by the specified program unit.

AFF940I ZERO-FREQUENCY STATEMENTS

Explanation: This is the heading of a listing of statements within the indicated program
unit that have not been run, in response to LISTFREQ.

System Action: The ISNs or sequence numbers are listed.

AFF942I name.statement

Explanation: This is the output of the LISTFREQ command when the ZEROFREQ
keyword has been specified.

AFF943I NONE

Explanation: One of the following is true:

� A LISTFREQ command with the ZEROFREQ keyword was entered, and all state-
ments in the currently qualified program unit have been run at least once.

� A LISTBRKS command was entered, and no breakpoints have been established using
the AT command.

� A LISTBRKS command was entered, and no WHEN conditions have been estab-
lished.

AFF945I STATEMENT FREQUENCY

Explanation: This is the heading for a listing of execution counts, in response to
LISTFREQ.

System Action: The ISNs or sequence numbers are listed.

AFF947I name.number frequency

Explanation: This is the output of the LISTFREQ command.

AFF950I CURRENT BREAKPOINTS:

Explanation: This is the heading for the output of the LISTBRKS command for break-
points set by the AT command.

System Action: All active breakpoints are listed.

AFF952I name.statement

Explanation: This is the output from the LISTBRKS command for AT commands with
a COUNT of 1.

AFF953I name.statement COUNT(count)

Explanation: This is the output from the LISTBRKS command for AT commands with
a COUNT greater than 1.

246 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF955I CURRENT WHEN CONDITIONS:

Explanation: This is the heading for the output of the LISTBRKS command for WHEN
conditions.

AFF957I condition name setting condition

Explanation: This is the output from the LISTBRKS command for WHEN conditions.
Each defined condition is shown, along with an indication of whether the condition is
currently being monitored (ON) or not (OFF).

AFF960W COMMAND WILL BE ATTEMPTED, BUT PROGRAM HAS FIN-
ISHED EXECUTION

Explanation: The previous command has been accepted and will be run normally, but
execution of the program has completed and may not be restarted.

AFF970W program IS OPTIMIZED; SETS MAY BE INEFFECTIVE AND REFER-
ENCES MAY GET INVALID VALUES

Explanation: The indicated program unit has been compiled with the OPT(n) or
VECTOR(n) compiler option with n>0. Because the program unit is optimized, Interac-
tive Debug commands that reference storage locations may produce unexpected results.
For example, LIST A will report the value in the storage location the compiler established
for variable A, but the compiled code may not be using the storage location to keep the
value of the variable; it may be kept in a register instead. Interactive Debug cannot
detect this situation, but it is likely to occur in optimized program units.

User Response: Use affected commands with care. See “Debugging Optimized and
Vectorized Code” on page 86, which discusses the effect of optimized code on Interac-
tive Debug.

System Action: Processing continues. This message should only appear the first time
you issue one of the affected commands in a program unit.

AFF971E STATEMENT number IS COLLAPSED AND MAY NOT BE USED
FOR DEBUGGING

Explanation: The indicated statement cannot have a breakpoint associated with it
because it occupies no storage (because of optimization or vectorization).

User Response: If necessary, set a breakpoint at a statement immediately before or after
the collapsed statement. You can use LISTFREQ to show which statements are col-
lapsed.

AFF972I STATEMENT number DOES NOT HAVE AN ESTABLISHED BREAK-
POINT

Explanation: An OFF command specifies that a breakpoint at the indicated statement is
to be removed. There is no breakpoint at this statement.

 Appendix A. Interactive Debug Messages 247

 Debugging messages

AFF973I “OFF” IGNORED; NO BREAKPOINTS ARE DEFINED

Explanation: An OFF command has been issued, but there are no breakpoints defined
in the currently qualified program unit.

AFF975E command COMMAND IGNORED; NO CURRENT QUALIFICATION

Explanation: There is no program unit serving as the current qualification. Perhaps
execution was suspended before any debuggable program was executed.

User Response: Set a qualification using the QUALIFY command, and reenter the
command causing the message.

AFF976E SYNTAX ERROR IN command COMMAND

Explanation: A syntax error was detected in scanning the indicated command.

User Response: Determine the cause of the error, and reenter the command with the
correct syntax.

AFF977E I/O UNIT NUMBER IN “command” MUST BE AN INTEGER

Explanation: While scanning the previous command, where an integer value or integer
variable was expected, a duplication factor or some other type of data was found.

User Response: Reenter the command with an integer value or the name of an
INTEGER variable.

AFF978E COMMAND IGNORED; “ENDDEBUG” HAS BEEN ISSUED

Explanation: The last command entered is being ignored because of a previously issued
ENDDEBUG command. After ENDDEBUG is issued, you no longer have the ability to
debug.

User Response: You may issue QUIT if you no longer want to run the program, or may
enter a null line to continue execution.

AFF979E “command” IGNORED; TERMINAL INPUT PENDING

Explanation: A GO, ENDDEBUG, or STEP command was entered, but is not permitted
when a program is waiting for input.

User Response: If you want to enter a GO, ENDDEBUG, or STEP command, enter a
NEXT command now, and, when execution stops for the NEXT, enter the GO or
ENDDEBUG command.

AFF980E THE “STEP” OPERAND MUST BE AN INTEGER GREATER THAN
ZERO

Explanation: STEP was entered with an invalid operand.

AFF981I ALL BREAKPOINTS IGNORED FOR PROGRAM UNIT “name”

Explanation: A dynamically loaded program unit with pending breakpoints was found
to be loaded in read-only storage.

248 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Debugging messages

AFF982I NO BREAKPOINTS ARE DEFINED WITHIN THE SPECIFIED
RANGE

Explanation: The OFF command specified a range where no breakpoints were defined.

AFF990I START OF RUN OR NO DEBUGGABLE PROGRAM EXECUTING

Explanation: A WHERE command has been detected, but either only the first prompt
has been received and execution has not really started, or execution was interrupted while
a nondebuggable program was executing.

AFF991I program CALLED AT name.number

Explanation: This message is the output of the WHERE command with the TRBACK
keyword. The message indicates the logic flow through the program units.

AFF992I NO SUBROUTINES CALLED

Explanation: This message is issued following a WHERE TRBACK command when no
subroutines have been called. This implies that execution is currently within the topmost
debuggable program unit (usually the “main” program).

AFF995I WHERE: name.number

Explanation: This is the output of the WHERE command. It shows that execution is
currently at the indicated statement in the indicated program unit. If execution is cur-
rently within a program unit that is not debuggable (and execution was suspended
because of an attention interrupt), then the specified statement will be the last statement
executed in a debuggable program unit.

AFF996I TO: name.number FROM: name.number

Explanation: This message is the output of the WHERE command with the FLOW
keyword. The message indicates the logic flow through the program units.

AFF998E INTERNAL ERROR number AT LOCATION number; IAD STORAGE
MAY HAVE BEEN OVERLAID BY PROGRAM

Explanation: This message is issued when an internal Interactive Debug abend occurs.

User Response: Contact your IBM representative.

System Action: Abend 101 is issued.

 Appendix A. Interactive Debug Messages 249

 Full screen mode messages

| Full screen mode messages
| These messages appear only in full screen mode. They are displayed below the command
| line, and will not appear in the log.

| AFFA001E “AT” OR “OFF” ARE THE ONLY VALID PREFIX COMMANDS

| Explanation: An invalid prefix command was detected. In the prefix command area,
| only the AT and OFF commands are allowed.

| User Response: Press ENTER or type a valid command.

| AFFA002E string PLACED ON A NON-EXECUTABLE STATEMENT

| Explanation: The statement corresponding to where the prefix command was entered is
| not an executable statement.

| AFFA004E THE ONLY VALID LISTING PANEL COMMANDS ARE “END” OR
| “RETURN”

| Explanation: While in the listings panel, Interactive Debug commands are not recog-
| nized.

| User Response: To issue Interactive Debug commands, first type END or RETURN in
| the listings panel to return to the main panel.

| AFFA006I SEARCH HAS BEEN CONTINUED FROM TOP OF AREA

| Explanation: The target of the SEARCH command was not found between the starting
| point of the search to the end of the object, so the search for the string wrapped to the
| top of the object.

| AFFA007I NO VEC(REP) MESSAGE

| Explanation: There is no vector message for the line pointed to by the cursor.

| AFFA008E TARGET OF command NOT FOUND

| Explanation: The argument of the POSITION or SEARCH command was not found.

| AFFA009E NO PREVIOUS SEARCH ARGUMENT EXISTS; SEARCH NOT PER-
| FORMED

| Explanation: A SEARCH command was issued without an operand and there was no
| previous instance of a search. Thus, Interactive Debug has no string for which to search.

| AFFA011I THIS IA A DISPLAY OF A SAVED PANEL. ALL COMMANDS WILL
| BE IGNORED

| Explanation: By issuing the PREVDISP command, Interactive Debug will display the
| last displayed ISPF panel of the application program. The saved panel display is not an
| active panel; it is merely a picture of the display information. Thus, any commands or
| modifications made on this panel will have no effect.

250 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Full screen mode messages

| AFFA015I CURSOR MUST BE IN THE OBJECT AREA OF THE WINDOW

| Explanation: A cursor sensitive command was issued but the cursor placement was not
| in the correct area of the window for the operation to take place.

| User Response: Place the cursor in one of the three windows where the operation is to
| take place.

| AFFA018I CURSOR MUST BE IN LOG, SOURCE OR MONITOR WINDOW

| Explanation: A cursor sensitive command was issued but the cursor was not in a
| window.

| User Response: Place the cursor in one of the three windows where the operation is to
| take place.

| AFFA019I CURRENT COMMAND IS INCOMPLETE, PENDING MORE INPUT

| Explanation: When Interactive Debug recognizes that a block of commands are being
| entered, it will display this informational message until the command block is closed by
| an END statement.

| AFFA020I ONLY COMMAND LINE INPUT IS ACCEPTED DURING PENDING
| MODE

| Explanation: When the command continuation mode is on, the only input areas recog-
| nized are the command area and the log window where command modification may take
| place.

| AFFA030E VALID DISPLAY FIELD VALUES ARE: YES, NO FOR THIS FIELD.

| Explanation: The only valid values are YES and NO.

| AFFA037E txtlib-name TXTLIB COULD NOT BE FOUND

| Explanation: In CMS, the specified txtlib name on the invocation panel could not be
| found on any of the accessed disks.

| AFFA045I INTERACTIVE DEBUG HAS ENDED NORMALLY

| Explanation: The Interactive Debug session has completed.

| AFFA050I THE RETRIEVE QUEUE IS EMPTY

| Explanation: No previous command was issued from the command line during the
| current debug session.

| AFFA051I EACH WINDOW MUST HAVE UNIQUE LETTERS OF L, M, AND S

| Explanation: Objects cannot simultaneously reside in multiple windows. Each window
| must contain a unique object.

 Appendix A. Interactive Debug Messages 251

 Full screen mode messages

| AFFA052I window-name WINDOW IS ALREADY OPEN

| Explanation: A WINDOW OPEN command was issued for a window which is already
| open.

| AFFA053I window-name WINDOW IS ALREADY CLOSED

| Explanation: A WINDOW CLOSE command was issued for a window which was
| already closed.

| AFFA054I ONE WINDOW MUST BE OPEN AT ALL TIMES

| Explanation: A WINDOW CLOSE command was given with only one window open.
| At least one window must be open at any time.

| AFFA055I SPECIFY A WINDOW NAME ON THE command-name COMMAND

| Explanation: A full screen command which requires one of the window object names
| as an operand was not given a window object name as an argument.

| AFFA501S INSUFFICIENT STORAGE FOR ENVIRONMENT SETUP, CANNOT
| CONTINUE.

| Explanation: During initialization, not enough storage was available to set up the exe-
| cution environment.

| AFFA502S FAILURE DURING PROGRAM LOAD. CANNOT CONTINUE.

| Explanation: During initialization, several modules are dynamically loaded. If there
| were any kind of errors while loading system routines, this message will be issued.

| AFFA503S TSO COMMAND NOT EXECUTED. ATTENTION HANDLER INVO-
| CATION ERROR.

| Explanation: In line mode TSO operation, an attention handler is established when the
| TSO command is run. This message will appear if the attention handler cannot be set up.

| AFFA504S TSO COMMAND NOT EXECUTED. COMMAND NOT RECOG-
| NIZED OR INVALID.

| Explanation: In line mode TSO operation, an operand following the TSO command has
| been passed to TSO for execution. TSO doesn't recognize the operand as a command.

| AFFA505S HELP COMMAND NOT EXECUTED. ATTENTION HANDLER
| INVOCATION ERROR

| Explanation: In line mode TSO operation, an attention handler is established when the
| HELP command is run. This message will appear if the attention handler cannot be set
| up.

252 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Full screen mode messages

| AFFA751E LISTING TAGS MISSING. LISTING MUST BE COMPILED WITH
| FORTRAN V2R3

| Explanation: The listing file was not compiled with the VS FORTRAN Version 2
| Release 3 compiler.

| AFFA752E LISTING FILE COULD NOT BE OPENED.
| AFFA753E LISTING DATASET COULD NOT BE OPENED.
| AFFA754E LISTING COULD NOT BE LOADED INTO STORAGE.
| AFFA755E INSUFFICIENT STORAGE TO LOAD LISTING.

| Explanation: There is not enough storage available to load the listing for the program
| unit.

| AFFA756E LISTING FILE COULD NOT BE FOUND ON ACCESSED DISKS.

| Explanation: The default or the specified listing name could not be found on any of the
| CMS accessed disks.

| AFFA757E LISTING DATASET COULD NOT BE FOUND IN ALLOCATED
| DATASETS.

| Explanation: The default or the specified dataset name could not be found on any of
| the allocated datasets.

| AFFA758E SPECIFIED PROGRAM UNIT NAME NOT FOUND IN LISTING.

| Explanation: The compile unit name entered on the listing panel could not be found in
| the listing associated with it.

| AFFA851E LOG FILE LRECL GREATER THAN 256; LOG WILL NOT BE
| CREATED.

| Explanation: A user defined log file must have a logical record length greater than or
| equal to 32 bytes and less than or equal to 256 bytes.

| AFFA852E LOG FILE LRECL LESS THAN 32; LOG WILL NOT BE CREATED.

| Explanation: A user defined log file must have a logical record length greater than or
| equal to 32 bytes and less than or equal to 256 bytes.

| AFFA853E ERROR WRITING TO LOG FILE.

| Explanation: An I/O error occurred while trying to write to the log file.

| AFFA854E LOG FILE COULD NOT BE OPENED.

| Explanation: An I/O error caused some problem with creating the log file.

 Appendix A. Interactive Debug Messages 253

 Full screen mode messages

| AFFS002 ERROR DETECTED BY IAD

| Explanation: An error was detected while trying to process an Interactive Debug
| command.

| User Response: Check the log window for an explanation.

| AFFS003 THE FORTRAN LIBRARY DETECTED AN ERROR DURING THE
| PROGRAM EXECUTION

| Explanation: An error in the program was detected by the VS FORTRAN library.

| User Response: Check the log window for an explanation.

| AFFS006 filetype FILE NOT FOUND

| Explanation: Either the LOG or PRINT file was not found by Interactive Debug.
| Therefore, it cannot be browsed after IAD completion.

| AFFS007A THE PARAMETERS USED ARE INVALID AND HAVE NO EFFECT
| WITH THIS COMMAND

| Explanation: This command does not require an operand. The command is executed as
| if no operand was specified.

| AFFS008A NO PREVIOUS SEARCH ARGUMENT EXISTS; SEARCH NOT PER-
| FORMED.

| Explanation: A SEARCH command was entered without operands, but there was no
| previous search argument to use as a default.

| User Response: Reissue the command with an operand.

| AFFS010 file-id LOADS TOO LOW IN STORAGE TO RUN UNDER ISPF

| Explanation: A MODULE could not be loaded into storage for debugging since its
| origin is too low.

| User Response: GENMOD the module at a larger address. (ORIGIN 22000 should be
| high enough.)

| AFFS016 FUNCTION ERROR, RC = rc
| LONG FORM: ERROR TRYING TO LOAD PROGRAM, RC = rc
| CHECK IAD MANUAL FOR INFO.

| Explanation: The VS FORTRAN program could not be invoked. The possible return
| codes from Interactive Debug are:

| 5 The OPEN failed when trying to use a LOADLIB.

| 6 The BLDL failed when trying to use a LOADLIB, other than the specified
| member was not found.

| 12 The LOADMOD failed when trying to use a MODULE, other than the MODULE
| origin too low.

| 99 The LOAD failed when trying to use a TEXT file or LOADLIB.

254 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| AFFS017 EXECUTED WITHOUT DEBUG
| LONG FORM: NODEBUG SPECIFIED AS EXECUTION TIME
| OPTION, DEBUG NOT INVOKED

| Explanation: Interactive Debug was not invoked because NODEBUG was specified as
| an execution-time option.

| AFFS018 TXTLIB NOT FOUND
| LONG FORM: SPECIFIED TXTLIB NOT FOUND ON ANY
| ACCESSED DISK

| Explanation: One of the TXTLIBs specified on the invocation panel or either
| VSF2FORT or CMSLIB TXTLIB was not found when trying to invoke Interactive
| Debug.

| User Response: Make sure that the specified TXTLIBs are properly accessed.

| AFFS018A LOADLIB NOT FOUND
| LONG FORM: VSF2LOAD LOADLIB NOT FOUND ON ANY
| ACCESSED DISK

| Explanation: The VS FORTRAN Interactive Debug library was not found on any of
| your accessed disks.

| User Response: Make sure the VS FORTRAN disk is properly accessed.

 Appendix A. Interactive Debug Messages 255

256 VS FORTRAN Version 2 Interactive Debug Guide and Reference

| Appendix B. ISPF Dialog Variable Names Defined by
| Interactive Debug

| Following are names of ISPF dialog variables defined by Interactive Debug, and should
| not be used in defining ISPF dialog variables in VS FORTRAN Version 2 programs.

| AFFRSTRT AMT_LITERAL AQACRP_LITERAL
| AQAHELP_LITERAL AQAMENU AQATRAP
| CMD_LINE_FIELD CMD_MODE_STRING CNAME
| COL1 COL2 COL3
| CONFIG COUNTL CPOS
| DYNAM_AREA_NAME FREQUENCY_DISPLAY ISPALRM
| ISPCLST ISPCRLST ISPDSMS
| ISPDSN ISPFCMD ISPFID
| ISPHALT ISPLINE ISPLNUM
| ISPLOGN ISPLOGNO ISPMO
| ISPMONNO ISPPGM ISPSRFL
| ISPWAIT ISP1LST ISP2LST
| LAST LINE LISTING_TYPE
| LOG_OUTPUT_TYPE LOGDSN LOGFID
| MIXED_MODE_FIELD MLOG NO_LITERAL
| PARM1 PARM2 PFKEY_NAME
| PREVDISP_MARK QUALIFY_FIELD REFRESH_FIELD
| RESET_LITERAL RESTFID RETCBUF
| RETCLEN ROW1 ROW2
| ROW3 RST RSTDSN
| SAVE_LITERAL SCREEN_WIDTH TABLE_LINE
| VGET_BUFFER WHERE_FIELD WINDOW1
| WINDOW2 WINDOW3 W1OPEN
| W2OPEN W3OPEN YES_LITERAL
| ZAPPLID ZHILITE ZKEYS
| ZSCREEND ZSCREENW ZSCRMIN2
| ZSCROLLN_LITERAL ZSPLIT_LITERAL ZTDSELS_LITERAL
| ZUSER ZVERB

| Figure 44. ISPF Dialog Variable Nmaes Defined by Interactive Debug

 Appendix B. ISPF Dialog Variable Names Defined by Interactive Debug 257

258 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Glossary

 Glossary

This glossary includes definitions developed by the American
National Standards Institute (ANSI), and the International
Organization for Standardization (ISO).

This material is reproduced from the American National Dic-
tionary for Information Processing, copyright 1977 by the
Computer and Business Equipment Manufacturers Associ-
ation, copies of which may be purchased from the American
National Standards Institute, 1430 Broadway, New York,
New York 10018.

An asterisk (*) to the right of an item number indicates an
ANSI definition in an entry that also includes other defi-
nitions.

The symbol “(ISO)” at the beginning of a definition indicates
that it has been discussed and agreed upon at meetings of the
International Organization for Standardization Technical
Committee 97/Subcommittee 1 (Data Processing Vocabu-
lary), and has also been approved by ANSI and included in
the American National Dictionary for Information
Processing.

A
addressing mode. The length of an address, either 24 bits
or 31 bits, used by the processor. Indicated by the high-
order bit of the PSW in an MVS/XA environment.

alphabetic character. A character of the set A, B, C, ... Z.
See also “letter.” In VS FORTRAN Version 1 and VS
FORTRAN Version 2, the currency symbol ($) is considered
an alphabetic character. In VS FORTRAN Version 2, lower-
case letters (a through z) are also valid.

alphameric. Pertaining to a character set that contains
letters (A through Z) and digits (0 through 9) only. In VS
FORTRAN Version 2, the character set may also contain
lowercase letters (a through z).

alphameric character set. A character set that contains
both letters and digits.

alternate entry. (1) In VS FORTRAN, an entry provided
by means of the ENTRY statement. (2) As used by Interac-
tive Debug, an entry other than the one by which the subpro-
gram was actually entered.

analyzable DO loop. See also “DO loop.” A DO loop that
is eligible for vectorization by the compiler. The loop may
or may not have been vectorized, depending on compiler
directives used and decisions made by the compiler based on
cost analysis.

animation. In ISPF with Interactive Debug, the ability to
highlight the command currently running and control the
pace of execution when using the STEP command. This
creates an “animated” picture of your program's execution.

argument. A parameter passed between a calling program
and a SUBROUTINE subprogram, a FUNCTION subpro-
gram, or a statement function.

arithmetic constant. A constant of type integer, real,
double-precision, or complex.

arithmetic expression. One or more arithmetic operators
and/or arithmetic primaries, the evaluation of which produces
a numeric value. An arithmetic expression can be an
unsigned arithmetic constant, the name of an arithmetic con-
stant, or a reference to an arithmetic variable, array element,
or function reference, or a combination of such primaries
formed by using arithmetic operators and parentheses.

arithmetic operator. A symbol that directs VS FORTRAN
to perform an arithmetic operation. The arithmetic operators
are:

+ addition
- subtraction
* multiplication
/ division
** exponentiation

array. An ordered set of data items identified by a single
name.

array declarator. The part of a statement that describes an
array used in a program unit. It indicates the name of the
array, the number of dimensions it contains, and the size of
each dimension. An array declarator may appear in a
DIMENSION, COMMON, or explicit type statement.

array element. A data item in an array, identified by the
array name followed by a subscript indicating its position in
the array.

array name. The name of an ordered set of data items that
make up an array.

assignment statement. A statement that assigns a value to
a variable or array element. It is made up of a variable or
array element, followed by an equal sign (=), followed by an
expression. The variable, array element, or expression can
be of type character, logical, or arithmetic. When the assign-
ment statement is run, the expression to the right of the
equal sign replaces the value of the variable or array element
to the left.

 Glossary 259

 Glossary

B
basic real constant. A string of decimal digits containing a
decimal point, and expressing a real value.

blank common. An unnamed common block.

breakpoint. (1) (ISO) A place in a computer program,
usually specified by an instruction, where its execution may
be interrupted by external intervention or by a monitor
program. (2) As used by Interactive Debug, a VS FORTRAN
statement where the user has specified that execution is to be
suspended, or that some action is to be taken.

C
character constant. A string of one or more characters
enclosed in apostrophes. The delimiting apostrophes are not
part of the constant.

character expression. An expression in the form of a
single character constant, variable, array element, substring,
function reference, or another expression enclosed in paren-
theses. A character expression is always of type character.

character type. A data type that can consist of any charac-
ters; in storage, one byte is used for each character.

collapsed statement. A statement for which no machine
code has been generated because of the nature of the state-
ment, or as a result of optimization or vectorization.

common block. A storage area that may be referred to by a
calling program and one or more subprograms.

complex constant. An ordered pair of real or integer con-
stants separated by a comma and enclosed in parentheses.
The first real constant of the pair is the real part of the
complex number; the second is the imaginary part.

complex type. An approximation of the value of a complex
number, consisting of an ordered pair of real data items sep-
arated by a comma and enclosed in parentheses. The first
item represents the real part of the complex number; the
second represents the imaginary part.

connected file. A file that has been connected to a unit and
defined by a FILEDEF command or by job control state-
ments.

constant. An unvarying quantity. The four classes of con-
stants specify numbers (arithmetic), truth values (logical),
character data (character), and hexadecimal data.

| continuation character. a hyphen (-), used to continue a
| command that is longer than the Interactive Debug command
| line. Enter it as the last character before continuation.

control statement. Any of the statements used to alter the
normal sequential execution of FORTRAN statements, or to
terminate the execution of a VS FORTRAN program.
FORTRAN control statements are any of the forms of the
GO TO, IF, and DO statements, or the PAUSE, CON-
TINUE, and STOP statements.

| cursor-sensitive command. A command for which its
| operands can be specified by pointing to them with the
| cursor, instead of typing them on the command line. Applies
| to full screen mode debugging only.

D
data. (1) * (ISO) A representation of facts or instructions in
a form suitable for communication, interpretation, or proc-
essing by human or automatic means. (2) In FORTRAN,
data includes constants, variables, arrays, and character sub-
strings.

data item. A constant, variable, array element, or character
substring.

data set. The major unit of data storage and retrieval con-
sisting of data collected in one of several prescribed arrange-
ments and described by control information to which the
system has access.

data set reference number. A constant or variable in an
input or output statement that identifies a data set to be proc-
essed.

data type. The properties and internal representation that
characterize data and functions. The basic types are integer,
real, complex, logical, double precision, and character.

| debugging hook. See also “DO loop analysis hook” and
| “hook.” A type of hook used to give Interactive Debug
| control of a user's program for debugging purposes, such as
| for AT and WHEN breakpoints, tracing, and single stepping.
| These hooks are different from DO loop analysis hooks.

* digit. (ISO) A graphic character that represents an
integer. For example, one of the characters 0 through 9.

DO loop. See also “analyzable DO loop.” A range of state-
ments run repetitively by a DO statement.

| DO loop analysis hook. See also “debugging hook” and
| “hook.” A type of hook used to give Interactive Debug
| control of the user's program for DO loop analysis purposes,
| such as for vector length and stride gathering and DO loop
| timing. These hooks are different from debugging hooks.

| double-byte character. A character which is represented
| by two bytes.

| double-byte data. Data consisting of double-byte charac-
| ters.

260 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Glossary

double precision. The standard name for real data of
storage length 8.

DO variable. A variable, specified in a DO statement, that
is initialized or incremented prior to each execution of the
statement or statements within a DO range. It is used to
control the number of times the statements within the range
are run.

dummy argument. A variable within a subprogram or
statement function definition with which actual arguments
from the calling program or function reference are posi-
tionally associated. Dummy arguments are defined in a
SUBROUTINE or FUNCTION statement, or in a statement
function definition.

dynamic common. A VS FORTRAN named common
which the DC compiler option specifies should be allocated
at run- time.

E
executable program. A program that can be run as a self-
contained procedure. It consists of a main program and,
optionally, one or more subprograms or
non-FORTRAN-defined external procedures, or both.

executable statement. A statement that causes an action to
be taken by the program; for example, to calculate, to test
conditions, or is a control statement.

existing file. A file that has been defined by a FILEDEF
command or by job control statements. A valid unit number
in FORTRAN's internal unit assignment table, as specified at
installation time.

The INQUIRE statement considers a file to exist on the basis
of FORTRAN I/O statements that have been processed.

existing unit. A valid unit number in FORTRAN's internal
unit assignment table, as specified at installation.

expression. A notation that represents a value: a constant
or a reference appearing alone, or combinations of constants
and/or references with operators. An expression can be
arithmetic, character, logical, or relational.

external file. A set of related external records treated as a
unit; for example, in stock control, an external file would
consist of a set of invoices.

external function. A function defined outside the program
unit that refers to it.

external procedure. A SUBROUTINE OR FUNCTION
subprogram written in FORTRAN.

F
file. A set of records. If the file is located in internal
storage, it is an internal file; if it is on an input/output
device, it is an external file.

file definition statement. A statement that describes the
characteristics of a file to a user program. For example, the
OS/VS DD statement or the FILEDEF command for CMS
processing.

file reference. A reference within a program to a file. It is
specified by a unit identifier.

formatted record. (1) A record, described in a FORMAT
statement, that is transmitted, when necessary with data con-
version, between internal storage and internal storage or to
an external record. (2) A record transmitted with list-
directed READ or WRITE statements and an EXTERNAL
statement.

FORTRAN-supplied procedure. See “intrinsic function.”

function reference. A source program reference to an
intrinsic function, to an external function, or to a statement
function.

function subprogram. A subprogram invoked through a
function reference, and headed by a FUNCTION statement.
It returns a value to the calling program unit at the point of
reference.

H
hexadecimal constant. A constant that is made up of the
character Z followed by two or more hexadecimal digits.

hierarchy of operations. The relative priority order used to
evaluate expressions containing arithmetic, logical, or char-
acter operations.

| hook. See also “debugging hook” and “DO loop analysis
| hook.” A segment of code, imbedded in the user's program,
| that gives control to Interactive Debug during execution of
| the program. This code is independent of the algorithm
| being implemented by the program. Hooks may be compiled
| in (by using the TEST option) or inserted during initializa-
| tion.

I
IAD. Interactive Debug.

implied DO. An indexing specification, similar to a DO
statement, causing repetition over a range of data elements.
(The word DO is omitted, hence the term “implied.”)

 Glossary 261

 Glossary

integer constant. A string of decimal digits containing no
decimal point and expressing a whole number.

integer expression. An arithmetic expression whose values
are of integer type.

integer type. An arithmetic data type, capable of expressing
the value of an integer. It can have a positive, negative, or
zero value; it must not include a decimal point.

internal file. A set of related internal records treated as a
unit.

internal statement number (ISN). A number assigned to
each statement in a VS FORTRAN program by the VS
FORTRAN compiler. ISNs are assigned sequentially begin-
ning with 1, and are visible on the listing produced by the
compiler.

ISN is sometimes referred to as “internal sequence number.”
See also “statement identifier” and “sequence number.”

interruption localizing. A function that occurs at optimiza-
tion level 2. It restricts certain optimizations so that no code
is moved out of a loop if it would cause an interruption that
would not occur without optimization.

intrinsic function. A function, supplied by VS FORTRAN,
that performs mathematical or character operations.

I/O. Pertaining to either input or output, or both.

I/O list. A list of variables in an input or output statement
specifying which data is to be read or which data is to be
written. An output list may also contain a constant, an
expression involving operators or function references, or an
expression enclosed in parentheses.

L
labeled common. See “named common.”

length specification. A source language specification of the
number of bytes to be occupied by a variable or an array
element.

letter. A symbol representing a unit of the English
alphabet.

list-directed. An input/output specification that uses a data
list instead of a FORMAT specification.

logical constant. A constant that can have one of two
values: “true” or “false.”

logical expression. A combination of logical primaries and
logical operators. A logical operator can have one of two
values: true or false.

logical operator. Any of the set of operators .NOT.
(negation), .AND. (connection: both), or .OR. (inclusion:
either or both), .EQV. (equal), .NEQV. (not equal).

logical primary. A primary that can have the value “true”
or “false.” See also “primary.”

logical type. A data type that can have the value “true” or
“false” for VS FORTRAN Version 1 or VS FORTRAN
Version 2. See also “data type.”

looping. Repetitive execution of the same statement or
statements. Usually controlled by a DO statement.

M
main program. A program unit, required for execution,
that can call other program units but cannot be called by
them.

| mixed character data. character data which contains both
| single-byte and double-byte data.

N
name. A string of from one through thirty-one alphameric
characters, the first of which must be alphabetic. The under-
score (_) is a valid character. Used to identify a constant, a
variable, an array, a function, a subroutine, or a common
block.

named common. A separate common block consisting of
variables, arrays, and array declarators, and given a name.

nested DO. A DO statement whose range of statements is
entirely contained within the range of another DO statement.

nonexecutable statement. A statement that describes the
characteristics of the program unit, of data, of editing infor-
mation, or of statement functions, but does not cause an
action to be taken by the program.

nonexisting file. A file that has not been defined by a
FILEDEF command or by job control statements.

* numeric character. (ISO) Synonym for digit.

numeric constant. A constant that expresses an integer,
real, or complex number.

P
preconnected file. A unit that was defined at installation
time. However, a preconnected unit does not exist for a
program if the unit is not defined by a FILEDEF command
or by job control statements.

262 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Glossary

predefined specification. The implied type and length
specification of a data item, based on the initial character of
its name in the absence of any specification to the contrary.
The initial characters I-N type data items as integer; the
initial characters A-H, O-Z, and $ type data items as real.
No other data types are predefined. For VS FORTRAN
Version 1 and VS FORTRAN Version 2, the length of both
types is 4 bytes.

primary. An irreducible unit of data; a single constant, var-
iable, array element, function reference, or expression
enclosed in parentheses.

procedure. A sequenced set of statements that may be used
at one or more points in one or more computer programs,
and that usually is given one or more input parameters and
returns one or more output parameters. A procedure consists
of subroutines, function subprograms, and intrinsic functions.

procedure subprogram. A function or subroutine subpro-
gram.

program return code. When a program is terminated with
a nonzero return code, the code is available for interrogation
by means of job control language for the appropriate oper-
ating system.

program unit. A sequence of statements constituting a
main program or subprogram.

R
real constant. A string of decimal digits that expresses a
real number. A real constant must contain either a decimal
point or a decimal exponent and may contain both.

real type. An arithmetic data type, capable of approxi-
mating the value of a real number. It can have a positive,
negative, or zero value.

record. A collection of related items of data treated as a
unit.

relational expression. An expression that consists of an
arithmetic expression followed by a relational operator, fol-
lowed by another arithmetic expression or a character
expression followed by a relational operator, followed by
another character expression. The result is a value that is
true or false. In Interactive Debug the only arithmetic
expression permitted in a relational expression is a variable,
an array element, or a constant.

relational operator. Any of the set of operators that can
express a comparison between arithmetic expressions, and
that can be either true or false:

.GT. greater than

.GE. greater than or equal to

.LT. less than

.LE. less than or equal to

.EQ. equal to

.NE. not equal to

residence mode. Where a program resides in virtual storage
in an MVS/XA environment: above or below 16 megabytes.

S
scale factor. A specification in a FORMAT statement that
changes the location of the decimal point in a real number
(and, if there is no exponent, the magnitude of the number).

sequence number. A number found in positions 73 through
80 of records containing source statements for the VS
FORTRAN compiler. Sequence numbers are not necessarily
unique, in sequence, or present in every record. See
“internal statement number” and “statement identifier.”

| shift-in (SI) character. The character indicating the end of
| double-byte data. It has an internal representation of X'0F'.

| shift-out (SO) character. The character indicating the
| beginning of double-byte data. It has an internal represen-
| tation of X'0E'.

| single-byte character. A character which is represented by
| a single byte. Also known as an EBCDIC character.

| single-byte data. Data consisting of single-byte characters.

specification statement. One of the set of statements that
provides the compiler with information about the data used
in the source program. In addition, the statement supplies
the information required to allocate data storage.

specification subprogram. A subprogram headed by a
BLOCK DATA statement and used to initialize variables in
named common blocks.

statement. The basic unit of a VS FORTRAN program,
that specifies an action to be performed, or the nature and
characteristics of the data to be processed, or information
about the program itself. Statements fall into two broad
classes: executable and nonexecutable.

statement function. A name, followed by a list of dummy
arguments, that is equated to an arithmetic, logical, or char-
acter expression. In the remainder of the program the name
can be used as a substitute for the expression.

statement function definition. A statement that defines a
statement function. Its form is a name, followed by a list of
dummy arguments, followed by an equal sign (=), followed
by an arithmetic, logical, or character expression.

statement function reference. A reference in an arithmetic,
logical, or character expression to the name of a previously
defined statement function.

 Glossary 263

 Index

statement identifier. The statement label, internal statement
number (ISN), or sequence number used by Interactive
Debug to identify a statement in a VS FORTRAN program.
The options that existed when the program was compiled
determine whether the ISN or the sequence number is valid.
In many cases, you can also use the statement label, pre-
ceded by a slash, as a valid identifier for a statement.

See also “internal statement number” and “sequence
number.”

statement label. A number of from one through five
decimal digits that is used to identify a statement. Statement
labels can be used to transfer control, to define the range of
a DO statement, or to refer to a FORMAT statement.

subprogram. A program unit that is invoked by another
program unit in the same program. In FORTRAN, a subpro-
gram has a FUNCTION, SUBROUTINE, or BLOCK DATA
statement as its first statement.

subroutine subprogram. A subprogram whose first state-
ment is a SUBROUTINE statement. It optionally returns
one or more parameters to the calling program unit.

* subscript. A subscript quantity or set of subscript quanti-
ties, enclosed in parentheses and used with an array name to
identify a particular array element.

subscript quantity. A component of a subscript: an
integer constant, an integer variable, or an expression evalu-
ated as an integer constant.

T
type specification. The explicit specification of the type of
a constant, variable, array, or function by use of an explicit
type specification statement.

U
unformatted record. A record that is transmitted
unchanged between internal storage and an external record.

unit. A means of referring to a file in order to use
input/output statements. A unit can be connected or not con-
nected to a file. If connected, it refers to a file. The con-
nection is symmetric: that is, if a unit is connected to a file,
the file is connected to the unit.

unit identifier. The number that specifies an external unit.

1. An integer expression whose value must be zero or posi-
tive. For VS FORTRAN Version 1 and VS FORTRAN
Version 2, this integer value of length 4 must correspond
to a DD name, a FILEDEF name, or an ASSGN name.

2. An asterisk (*) that corresponds on input to FT05F001
and on output to FT06F001.

3. The name of a character array, character array element,
or character substring for an internal file.

V
variable. A data item, identified by a name, that is not a
named constant, array, or array element, and that can assume
different values at different times during program execution.

vectorization. The process of creating machine instructions
that will run on the special vector processing facility of the
IBM 3090 Vector Facility.

vectorize. To compile a source program so its eligible DO
loop statements are transformed into vector object code.

264 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Index

 Index

Special Characters
- (hyphen) 79

and entering terminal input 79
and full screen mode continuation 18
and line mode continuation 32

/ (slash) 109
[] (square brackets) 100
" (quotation mark)

inserting comments into debug log 104
use with continuation lines 80

""(double quotation mark) 104
{ } (braces) 100
* (asterisk)

and AFFOUT file 39
inserting comments into debug log 104

% (percent sign) 79
= (equal sign)

and AFFOUT file 39
| (vertical line) 100

Numerics
16-megabyte line, MVS/XA 4
31-bit addressing mode, MVS/XA 4

A
addressing mode, definition 259
AFFIN

how to use 40
new feature summary v

AFFLST
how to use 48
new feature summary v

AFFON
examples 47
feature summary 3
how to use 43
migration 6
new feature summary v
syntax 44
with TIMER command 66

AFFOUT
feature summary 4
how to use 39
migration 6
new feature summary v

AFFPIF
how to use 49
new feature summary v

AFFPRINT
how to use 42

alphabetic character, definition 259
alphameric, definition 259
analyzable DO loop, definition 259
animation

and program execution 73
definition 259
feature summary 3
specifying step delay 170

ANNOTATE command
description and syntax 105
examples 106
new feature summary v
use in program sampling 64

argument
assigning values to 75
definition 259

arithmetic expression, definition 259
arithmetic operator, definition 259
array

definition 259
displaying data type of 61, 121
how to change value of 185

array declarator, definition 259
array element, definition 259
array name, definition 259
assigning values 185
assignment statement, definition 259
asterisk (*)

and AFFOUT file 39
inserting comments into debug log 104

AT command
at specific statements 57
COUNT keyword
description and syntax 109
effects of optimization or vectorization 90
examples 111
setting up command lists 60
specifying breakpoints 57
used as a PF key 3

attention interrupt
and QUIT command 81, 86
attention prompt 85
entering commands 85
exit, entering commands in an 85
PURGE, NEXT, WHERE, or * (comment) 86
resuming execution with null line 80, 85

AUTOLIST command
description and syntax 112
effects of optimization or vectorization 90
examples 115

 Index 265

 Index

B
BACKSPACE command

description and syntax 116
position external files 77

basic real constant, definition 259
batch mode

and FORTIAD EXEC 33
commands that cannot be used in 33
connecting a data set to a terminal device 41
DEBUNIT run-time option 41
description of 33
library requirements for 6
restrictions 37

bit-by-bit comparison 85
blank common, definition 260
blanks, inputting 79
bottom-of-data marker 15
braces ({ }) 100
breakpoint

list all 145
qualifying 55
remove 165
set 56, 93, 109, 164

breakpoint, definition 260
browsing and editing 23

C
changes to Interactive Debug v
character constant

definition 260
enclosed in single quotation marks 185

character data type, definition 260
character expression, definition 260
character string, searching for 183
CLIST, using to invoke VS FORTRAN programs 31
CLOSE command

description and syntax 117
disconnect external file 77
examples 117

CMS
AFFON

using in ISPF 48
entering system commands 191
invoking Interactive Debug

in batch mode 33
in line mode 27
using ISPF with PDF 7
using ISPF without PDF 9

on-line help 52
show defined files 78

collapsed statement
and debugging hooks 56
definition 260

COLOR command
description and syntax 119
using ISPF 21

command
* or " 104
ANNOTATE 105
AT 109
AUTOLIST 112
BACKSPACE 116
CLOSE 117
COLOR 119
continuation of 18, 32
DBCS 120
DESCRIBE 121
DOWN 123
ENDDEBUG 124
ENDFILE 127
entering in an attention-interrupt exit 85
entering in full screen mode 18
entering in line mode 32
ERROR 128
examples of common usage 54
FIXUP 130
functions 93
GO 131
HALT 133
HELP 135
IF 138
KEYS 163
LEFT 140
LIST 141
LISTBRKS 145
LISTFREQ 146
LISTINGS 148
LISTSAMP 149
LISTSUBS 154
LISTTIME 156
LISTVEC 159
maximum length 32
MOVECURS 163
NEXT 164
OFF 165
OFFWN 167
on the ISPF execution panel 18
POSITION 168
PREVDISP 169
PROFILE 170
PURGE 172
QUALIFY 173
QUIT 174
RECONNECT 175
REFRESH 176
RESTART 177
RESTORE 178
restrictions in batch mode 33
RETRIEVE 179

266 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Index

command (continued)
REWIND 180
RIGHT 182
SEARCH 183
SET 185
SIZE 188
STEP 189
summary by function 103
SYSCMD 191
table of 103
TERMIO 192
TIMER 194
TRACE 197
UP 199
usage, advanced 54
using system 78
valid after program execution, list of 84
VECSTAT 200
WHEN 202
WHERE 205
WINDOW 206
ZOOM 208

command list
commands that cannot be used in 60
effects of optimization or vectorization 90
IF command used within AT 138
parameters 109
resuming execution 60
setting up 60
uses 60

comments into debug log, inserting 104
common block, definition 260
COMMON statement 114
common variable 114
compare floating point numbers 85
compare variables 138
compiler option

SDUMP 5
TEST 5
VECTOR 5
VECTOR REPORT(SLIST) 71
VECTOR(IVA) 67

compiler requirements 5
complex constant, definition 260
complex data type, definition 260
connected file, definition 260
constant (WHEN) 202
constant, definition 260
continuation character

how to enter 18
restricted commands 18
terminal input 79

continuation character, definition 260
control statement, definition 260
conventions

statement identifier 101

conventions (continued)
syntax 100

Conversational Monitor System
See CMS

corrective action 75
CP SET PF command 32
CPUTIME service routine 125, 190, 196
current statement boundary 205
cursor-sensitive command, definition 260
cursor-sensitive commands 19
cursor, moving between window and command line 163

D
data item, definition 260
data set reference number, definition 260
data set, definition 260
data type

definition 260
displaying 61

data type, displaying 121
data, definition 260
DBCS command 120
DBCS support

feature summary 4
how to use it 92
modifying commands in log window 18
new feature summary v
system requirements 5

DCSS, compiler requirements to use 5
ddname VSF2PIF 49
DEBUG run-time option 11
debuggable program unit

defined 54
display a list of 154
how to list 54

debugging
changing defaults for session 20
data sets required 11
files required 11
functions that affect 86
optimized code 86
restarting 177
using common commands 54
vectorized code 86
warning messages 87

debugging hook
See hook, debugging

debugging hook, definition 260
debugging panel

See main debugging panel
DEBUNIT run-time option 41
default qualification, how to change 173
default settings for profile panel 170
DESCRIBE command

description and syntax 121

 Index 267

 Index

DESCRIBE command (continued)
examples 61, 121
setting up 61
used as a PF key 3

digit, definition 260
display

compiler level 154
current statement boundary 205
data types 61, 121
load status 154
log line numbers 170
nonexecuted statements 146
optimization level 154
previous panel 169
timing status 154
values of variables 73, 141
vectorization level 154

DO loop analysis hook, definition 260
DO loop analysis hook, in vector tuning assistance 67
DO loop timing 70
DO loop, definition 260
DO variable, definition 261
double precision, definition 260
double quotation mark ("") 104
double-byte data support

See DBCS support
DOWN command 123
dummy argument, definition 261
DUMP codes for LIST 113, 142
dynamic common

definition 261
displaying variables in 113

dynamic invocation
considerations 85
in batch mode 33
in CMS line mode 27
in CMS with ISPF 7
in TSO line mode 30

E
end Interactive Debug session 174
end-of-file, entering 79
ENDDEBUG command

description and syntax 124
end debugging 80
entering subsequent commands 80
examples 126
terminal I/O 80

ENDFILE command
description and syntax 127
end-of-file record 77
perform I/O operations 77

entering
commands 18
terminal input 78

equal sign (=)
and AFFOUT file 39

EQUIVALENCE statement 114
equivalence variable 114
error

handling 75
messages, list of 209
occurrence counts 75
option table 75

ERROR command
corrective action with FIXUP command 74
description and syntax 128
examples 129
EXIT|NOEXIT keywords

definitions 128
display messages 74

initial error settings 74
messages 74
MSG|NOMSG keywords

definitions 128
perform corrective action 74
suspend execution 74

example
See also sample
of a debugging session 93
of execution panel 14

excluding program units 57
EXEC, invocation

CMS full screen mode 9
CMS line mode 29

executable program, definition 261
executable statement, definition 261
execution

controlling program 57
frequency 146
frequency, determining statement 62
of one or more statements using STEP 189
panel for ISPF 14
tracing program 71

execution-time
See run-time

existing file, definition of 261
existing unit, definition of 261
exit Interactive Debug session 174
expression, definition 261
external file

definition 261
disconnect 77
end-of file record, writing 77
positioning 77
processing 77
sequentially accessed 77

external function, definition 261

268 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Index

F
features, Interactive Debug v, 3
file definition statement, definition 261
file name

for CMS files in Interactive Debug 8
of optional debugging files 8

file reference, definition 261
file, definition 261
finish Interactive Debug session 174
FIXUP command

assign values to arguments 75
description and syntax 130
examples 130
specify corrected values 75

fixup, standard 74
floating-point equalities 85
foreground panel 7
FORMAT codes for LIST 113, 142
formatted record, definition 261
FORTIAD EXEC

as a TSO CLIST to invoke line mode 31
modified for batch mode 33
to invoke line mode in CMS 29

frequency count
modifying on profile panel 170

frequency of execution 146
full screen display command

restriction in command list 111
restriction with IF 139

full screen mode
debugging in 6
system requirements 5

function reference, definition 261
function subprogram, definition 261

G
global register assignment 88
glossary

ANSI definitions 259
definitions of terms 259—264
ISO definitions 259

GO command
beginning or resuming execution 93
description and syntax 131
effects of optimization or vectorization 90
examples 132
in command lists 62

H
HALT command

description and syntax 133
examples 134
in command lists 60
stop execution 58

handling errors 75
help

See on-line help
HELP command

description and syntax 135
examples 136

hexadecimal constant, definition 261
hierarchy of operations, definition 261
hook, debugging

and compiler options 56
display list of 62
displaying list of 46
eliminating overhead caused by 66
entry and exit 48
how to insert 56
none 48
suspending execution at a 58
use of LISTSUBS command 154

hook, definition 261
hyphen (-)

and entering terminal input 79
and full screen mode continuation 18
and line mode continuation 32

I
I/O list, definition 262
I/O, definition 262
IAD

See Interactive Debug
IAD EXEC 9
IF command

description and syntax 138
effects of optimization or vectorization 90
examples 139
in command lists 60

implied DO, definition 261
include file

See AFFON
individual variable qualification 54
information, help 135
informational messages 209
initializing variables 85
input

using log of debugging session as 4
input, entering terminal 78
input/output

See I/O
integer constant, definition 261
integer expression, definition 262
integer type, definition 262
Interactive Debug

batch mode support 33
browsing and editing 23
command summary 103
definition 261

 Index 269

 Index

Interactive Debug (continued)
dynamic invocation of 85
entering terminal input 78
execution panel, contents and use 14
features 3
full screen mode debugging 6
full screen support 23
HELP command 51
invoking

in batch mode 33
in line mode 27
using ISPF 7

new features v
options to allocate files and control Interactive Debug

I/O 3
requirements 4
routines for terminal input 78
warning messages 87

Interactive System Product Facility
See ISPF

internal file, definition 262
Internal Statement Number

See ISN
interruption localizing

definition 262
intrinsic function, definition 262
invoking Interactive Debug

in batch mode
overview 33
using CMS 33
using MVS with TSO 34
using MVS without TSO 36

in full screen mode
overview 7
using CMS with PDF 7
using CMS without PDF 9
using TSO with PDF 10
using TSO without PDF 12

in line mode
overview 27
using CMS 27
using TSO 30

ISN
definition 262
position at 168
referencing 93
when to use 101

ISO, identifies ISO glossary definitions 259
ISPF

See also full screen mode
and PDF 3
CMS, operating in
dialog variable names 257
foreground selection panel 7
primary option panel 7
requirement for full screen mode debugging 5

IVA suboption of VECTOR compiler option 5
See also vector tuning assistance

K
KEYS command 19, 163

L
label, statement, definition 264
LEFT command 140
length specification, definition 262
length, vector 68, 159
letter, definition 262
library requirements 6
limitations of using Interactive Debug 6
line mode

changing PF key definitions 32
maximum length of an input line 80
use of Interactive Debug with 27

line number
displaying or inhibiting 170
on main debugging panel 15

link mode
modifications for batch mode 34
specifying as GLOBAL TXTLIB for line mode 27
specifying on ISPF invocation panel 8

LIST command
array elements 73
arrays, display values of 144
common variables 143
description and syntax 141
display all variables 55
DUMP keyword

conditions 114, 143
definition 141
use of 73

effects of optimization or vectorization 90
EQUIVALENCE statement 143
equivalence variables 143
examples 144
FORMAT keyword

conditions 114, 143
definition 141
use of 73

hexadecimal, display values in 144
series of variables 73
to a print data set 73
used as a PF key 3
variables in different format 73

list the number of times statements have been run 146
list-directed, definition 262
LISTBRKS command

check breakpoint settings 55
description and syntax 145

270 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Index

LISTFREQ command
description and syntax 146
effects of optimization or vectorization 90
examples 147
obtain a listing file or a print data set 62

listing file
See AFFLST

listing file, using while debugging 23
LISTINGS command

description and syntax 148
listings panel

display with LISTINGS command 148
modifying 21

LISTSAMP command
description and syntax 149
examples 152
use in program sampling 64

LISTSUBS command
description and syntax 154
for determining debuggable program units 54

LISTTIME command
description and syntax 156
examples 157
new feature summary v
to get timing information 66
used with TIMER command 194

LISTVEC command
description and syntax 159
examples 160

load mode
default for Interactive Debug 8
default in line mode 27

load status, displaying 154
location information (WHERE) 72, 205
log

example 14
file at termination of activity 23, 37
inhibiting display of line numbers 170
restarting a debugging session 177
searching for character string 183
searching for log line number 168
viewing the scrollable 18

log file
See AFFOUT

log number
See line number

log window
See also log
contents 17
in full screen mode debugging 15

logical condition 202
logical constant, definition 262
logical expression, definition 262
logical operator

definition 262
used with IF command 138

logical primary, definition 262
logical type, definition 262
loop in nondebuggable program unit

escaping from 84
using the QUIT command 84

looping, definition 262
LPA, compiler requirements to use 5

M
main debugging panel

in full screen mode debugging 14
new feature summary v

main program, definition 262
maximum length of an input line

in CMS or TSO line mode 80
in ISPF 80

messages 209
migration considerations 6
mixed-case input 79
monitor

a condition using WHEN 58
a condition, turn off 167
a condition, turn on 202
across program boundaries (QUALIFY) 55

monitor window
and AUTOLIST command 112
contents 15
in full screen mode debugging 15

MOVECURS command
description and syntax 163
migration 6

MTF 6
multiple assignments of a value 185
Multitasking Facility

See MTF
MVS/XA

31-bit addressing mode 4

N
name, definition 262
named common, definition 262
nested DO, definition 262
new features, Interactive Debug v
NEXT command

description and syntax 164
examples 164
next executable statement 58
suspend execution 58
using STEP as NEXT/GO pair 189

NODEBUG option 11
nonexecutable statement, definition 262
nonexecuted statements, display 146
nonexisting file, definition 262

 Index 271

 Index

null line 81
number, internal statement

See ISN
numeric character, definition 262
numeric constant, definition 262

O
occurrence count for run-time errors 80
OCSTATUS run-time option 117, 175
OFF command

description and syntax 165
examples 166
used as a PF key 3

OFFWN command
condition name list 167
description and syntax 167
examples 167
reactivate condition monitoring 59

on-line help
CMS procedures 52
feature summary 3
HELP menu 51
invoking 51
overview 51
task menu 52
TSO procedures 52
tutorial 51
using 19

one-time testing of conditions (IF) 138
operating procedures, ISPF 14
optimization

commands effected 90
display level for debuggable units 154
effects on debugging 86
execution of DO loops 88
levels and functions 86
operational situations 84
restrictions in debugging optimized code 6
warning messages 91
warning messages while debugging 87

option
DEBUG/NODEBUG 85
overriding run-time 85
See also compiler option
See also run-time option
to allocate files and control Interactive Debug I/O 3

output halt value 164
output, printing

See printing output
overlays 6
overriding run-time default 11

P
panel

display previous 169
filling in the CMS 7
filling in the TSO 10
foreground selection 7
primary option 7
refreshing the screen 176

PDF
as a system requirement 5
browsing and editing 23
invocation without PDF 9, 12
required for browse and edit 7
split-screen browsing and editing 3

performance
DO loop timing 70
hints for improving debugging 91
program sampling 63
program unit timing 66

PF key
feature summary 3
how to change in full screen mode 19
how to change in line mode 32
limited number of lines 18
restrictions 18
scrolling with 18
setting up for MOVECURS 163
using with cursor-sensitive commands 19

POSITION command
description and syntax 168
example 168

preconnected file, definition 262
predefined specification, definition 263
PREVDISP command

description and syntax 169
primary option panel 7
primary, definition 263
print file

See AFFPRINT
printing output

feature summary 4
procedure subprogram, definition 263
procedure, definition 263
processing flow errors 58

See also HALT command
PROFILE command

changing settings 20
description and syntax 170

program animation
See animation

Program Development Facility
See PDF

program function key
See PF key

272 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Index

program information file
See AFFPIF

program return code, definition 263
program sampling

bar charts in full screen mode 64
feature summary 4
initiation 63
limitations 65
statistics 64
use of ANNOTATE command 105
use of CALLED counter 63
use of DIRECT counter 63
use of ENDDEBUG 124
use of LISTSAMP 149

program unit
See also AFFON
activating timing 194
changing qualification 173
definition 263
main, subprogram, subroutine 54
moving between 55
multi-subroutine modules 57
qualifying 54
to be debugged, specifying
transfers 72

program unit timing
displaying information 66
initiation 66
use of LISTTIME 156
use of TIMER 194

PURGE command
description and syntax 172
example 172

Q
qualification

apply commands to another unit 54
in another program 55
individual variables 55
overriding on AT statement 109
overriding on OFF statement 165
set breakpoints in another program 55

QUALIFY command
description and syntax 173
examples 173
qualify variables 54

QUIT command
description and syntax 174
terminate debugging 97
terminate execution 80
while in attention exit 81, 85

quit Interactive Debug session 174
quotation mark (")

inserting comments into debug log 104
use with continuation lines 80

R
reactivate WHEN monitoring 167
real constant, definition 263
real type, definition 263
RECONNECT command

description and syntax 175
example 175
use with CLOSE command 117

record, definition 263
recovery after messages 209
reentrant programs

compiler requirements for 5
reference number, data set (definition) 260
REFRESH command

description and syntax 176
relational condition 202
relational conditions 138
relational expression, definition 263
relational operator, definition 263
remove WHEN breakpoints (OFFWN) 167
RENT compiler option

display load status for units compiled with RENT 154
requirements 4
residence mode, definition 263
respond to errors 74
RESTART command

description and syntax 177
using to start session with new compilation 23

restart file
See AFFIN

RESTORE command
description and syntax 178
new feature summary v

restrictions of using Interactive Debug 6
RETRIEVE command

description and syntax 179
new feature summary v

return to system 97
See also QUIT command

REWIND command
description and syntax 180
example 180
perform I/O operations 77
position external file 77

RIGHT command 182
routine, service (CPUTIME) 125, 190, 196
run-time

error, handling 74
option

DEBUG 93
OCSTATUS 117, 175
overriding default value 85
with ISPF 7

 Index 273

 Index

S
sample

See also example
debugging session 95
program 93

sampling
DO loop 69
library requirements for 6
program 63

scalar variable
and WHEN command 202
displaying data type of 61, 121

scale factor, definition 263
screen support, full 23
SDUMP compiler option 4

compiler requirements for 5
SEARCH command

description and syntax 183
example 183

search for an ISN or log number 168
select I/O routines 192
sequence number 4

definition 263
generating instead of ISNs 101
restriction in AFFIN 40

sequence of control, tracing
TRACE 197
WHERE 205

service routine CPUTIME 125, 190, 196
SET command

changing the value of variables 96
description and syntax 185
effects of optimization or vectorization 90
examples 187

SIZE command 188
slash (/) 109
source listing, vector report 71
source statement, tracing (TRACE) 197
source window

and AT command 110
and cursor-sensitive commands 19
and DESCRIBE command 121
and RESTORE command 178
and STEP command 189
and STEP command for animation 73
changing color or highlighting 21
columns 20
contents 16
defining 206
defining defaults 170
in full screen mode debugging 15
inhibiting display of source listing 21
introduction 7
moving cursor to command line 163
rows 20

source window (continued)
searching for character string 183
searching for ISN or sequence number 168
setting default values 20
turning on and off 170

space requirements 6
special characters, entering 100
special considerations

entering commands in an attention-interrupt exit 85
excluding program units 57
identifying debuggable statements 57
initializing VS FORTRAN variables 85
loops in nondebuggable program units 84
modifying default value for run-time option 85
monitoring floating-point equalities 85
statement identifier conventions 101

specification statement, definition 263
specification subprogram, definition 263
split screen, debugging in 23
split-screen display

feature summary 3
square brackets ([]) 100
standard corrective action 74
statement

definition 263
not executed, displaying 146

statement boundary, displaying 205
statement function definition, definition 263
statement function reference, definition 263
statement function, definition 263
statement identifier

conventions 100
definition 263
internal statement numbers 101
ISNs 101
position at ISN or log number 168
sequence numbers 101
statement labels 101
with TEST and NOSDUMP options 101

statement label
definition 264
preceded with a slash 101
referencing 93

STEP command
description and syntax 189
example 190

STOP statement 96
storage requirements 6
strength reduction 88
stride, vector 68
subprogram transfers, tracing (TRACE) 71
subprogram, definition 264
subroutine subprogram, definition 264
subroutines, how to exclude 57
subscript

definition 264

274 VS FORTRAN Version 2 Interactive Debug Guide and Reference

 Index

subscript (continued)
for arrays 185

subscript quantity, definition 264
suspend execution at condition (HALT) 133
syntax conventions 100
SYSCMD command

description and syntax 191
examples 191

system commands
CMS files defined 78
TSO data sets allocated 78
using 78
view listing files 78
view source files 78

system requirements 5

T
table

commands 103
terminal input, entering 78
terminate Interactive Debug session 174
termination

entering commands after 84
TERMIO command

and DEBUNIT run-time option 41
default setting 78
description and syntax 192
examples 193
with MVS batch 41

test a condition 138
TEST compiler option 5
Time Sharing Option

See TSO
TIMER command

description and syntax 194
examples 196
to get timing information 66

timing
activating with TIMER 194
display all program units with timing active 156
display status 154
DO loop 70
program unit 66
using the LISTTIME command 156
using TIMER and LISTTIME 66

top-of-data marker 15
TRACE command

control transfers 71
description and syntax 197
examples 197
source statements 72

trailer statements 57
TSO

AFFON
using in ISPF 48

TSO (continued)
connecting a data set to a terminal device in batch 41
entering system commands 191
invoking Interactive Debug

in batch mode 34
in line mode 30
using ISPF with PDF 10
using ISPF without PDF 12

on-line help 52
show allocated data sets 78

TSO/E, as a system requirement 5
tutorial

a sample debugging session 93
HELP 51

type specification, definition 264

U
unformatted record, definition 264
unit identifier, definition 264
unit, definition 264
unit, program 55
UP command 199
uppercase terminal input 79

V
variable

common 114
defining 85
definition 264
display value of 73
equivalence 114
how to change value of 185
initializing 85
qualifying 54

VECSTAT command
description and syntax 200
examples 201

VECTOR compiler option 5
vector length 68, 159
vector report source listing 71
VECTOR REPORT(SLIST) compiler option 71
vector stride 68
vector tuning assistance

AFFON example 48
compiler requirements for 5
feature summary 4
how to use it 67
IVA suboption of VECTOR compiler option 5
new feature summary v

VECTOR(IVA) compiler option 67
vectorization

definition 264
display level for debuggable units 154
effects on debugging 86

 Index 275

 Index

vectorization (continued)
levels and functions 86
restrictions in debugging vectorized code 6

vectorize, definition 264
vertical line (|) 100
VS FORTRAN Version 2

assigning initial values 85
initializing variables 85

VS FORTRAN Version 2 Interactive Debug
See Interactive Debug

W
warning messages 87, 209
WHEN command

See also OFFWN command
canceling 59
description and syntax 202
effects of optimization or vectorization 90
examples 204
list conditions 145
monitoring a condition 58
naming a condition 58
resume monitoring 59
see also OFFWN 59
suspend execution at a defined condition 58

WHERE command
description and syntax 205
examples 205
next executing statement 72
tracing 72

window
changing the way they look 17
DOWN command 123
feature summary 3
in full screen mode debugging 15
LEFT command 140
POSITION command 168
RIGHT command 182
SEARCH command 183
See also log window
See also monitor window
See also source window
SIZE command 188
UP command 199
WINDOW command 206
ZOOM command 208

WINDOW command
description and syntax 206

Z
ZOOM command 208

276 VS FORTRAN Version 2 Interactive Debug Guide and Reference

We'd Like to Hear from You

VS FORTRAN Version 2
Interactive Debug Guide and Reference
Release 3

Publication No. SC26-4223-02

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form from a
country other than the United States, give it to your local IBM branch office or IBM represen-
tative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMLink: HLASMPUB at STLVM27
 – Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the information is
presented. To request additional publications, or to comment on other IBM information or the
function of IBM products, please give your comments to your IBM representative or to your IBM
authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

VS FORTRAN Version 2
Interactive Debug Guide and Reference
Release 3

Publication No. SC26-4223-02

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-4223-02 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58
International Business Machines Corporation
PO BOX 49023
SAN JOSE CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-4223-02

Program Number
5668-805
5668-806

Printed in U.S.A.

	About This Book
	How This Book Is Organized
	How to Use This Book
	Syntax Notation

	Summary of the VS FORTRAN Version 2 Publications

	Summary of Changes
	Release 3, March 1988
	Major Changes to the Product
	Major Changes to This Manual

	Release 2, June 1987
	Major Changes to the Product
	Major Changes to This Manual

	Contents
	Figures
	Part One. User's Guide
	Chapter 1. Introduction
	Features
	Requirements
	System Requirements
	Compiler Requirements
	Library Requirements
	Storage Requirements

	Restrictions
	Migration

	Chapter 2. Debugging in Full Screen Mode
	Invoking Interactive Debug in CMS
	Using ISPF/PDF
	Loading Multiple Text Files

	Using ISPF without PDF

	Invoking Interactive Debug in TSO
	Using ISPF/PDF
	Using ISPF without PDF

	Using the Main Debugging Panel
	Monitor Window
	Source Window
	Log Window
	Changing the Way Your Windows Look

	Entering Commands
	Typing the Command on the Command Line
	Modifying the Command in the Log Window
	Using PF Keys
	Using the RETRIEVE Command
	Using Cursor-Sensitive Commands

	Changing the Defaults for Your Debugging Session
	Changing the Way Your Debugging Session Runs
	Changing the Window Configuration
	Changing the Display Color
	Changing Listing Information

	Using the Split Screen Feature (ISPF/PDF Only)
	Recompiling a Program while Using a Split Screen (TSO Only)

	Ending the Debugging Session
	In ISPF without PDF
	In ISPF/PDF
	Bypassing the BROWSE Step

	Chapter 3. Debugging in Line Mode
	Invoking Interactive Debug in CMS
	Using the LOAD and START Commands
	Using the LOAD and GENMOD Commands
	With the LKED Command

	Using an Invocation EXEC

	Invoking Interactive Debug in TSO
	Entering Commands
	Typing the Command Following the Interactive Debug Prompt
	Using Program Function Keys

	Chapter 4. Debugging in Batch Mode
	Invoking Interactive Debug in CMS
	Invoking Interactive Debug in MVS
	Using TSO
	Without Using TSO

	Running a Batch Debugging Session
	Ending a Debugging Session

	Chapter 5. Using Interactive Debug Files
	Log File (AFFOUT)
	How to Define AFFOUT to Interactive Debug
	Characteristics

	Restart File (AFFIN)
	How to Define AFFIN to Interactive Debug
	Characteristics
	Special Considerations

	Print File (AFFPRINT)
	How to Define AFFPRINT to Interactive Debug
	Characteristics

	Include File (AFFON)
	How to Define AFFON to Interactive Debug
	Characteristics
	Syntax
	Usage Notes
	Examples of AFFON Entries
	Examples of AFFON Files

	Listing File (AFFLST)
	Characteristics

	Program Information File (AFFPIF)
	Characteristics

	Chapter 6. Debugging Tasks
	Getting On-line Help about Interactive Debug
	Additional Features of Interactive Debug On-line Help in Line Mode

	Displaying Information about Debuggable Program Units
	Referring to Statements or Variables in Other Program Units
	Displaying the Current Program Qualification
	Changing the Current Program Qualification
	Qualifying Individual Variables

	Setting Breakpoints at Debugging Hooks
	Controlling Program Execution
	Using Command Lists
	Displaying Data Types of Variables and Arrays
	Determining Statement Execution Frequency
	Program Sampling
	Initiating Program Sampling
	Displaying Program Sampling Information
	Limitations of Program Sampling

	Program Unit Timing
	Initiating Program Unit Timing
	Displaying Program Unit Timing Information

	Vector Tuning Assistance
	Program Information File
	DO Loop Analysis Hooks
	Gathering Vector Length and Stride Information
	Examples

	DO Loop Sampling
	Example

	DO Loop Timing
	Vector Report Source Listing
	On-line Help for Vector Messages

	Tracing Program Execution
	Animating the Execution of Your Program
	Controlling the Pace of Program Animation

	Displaying Formatted Variable and Array Values
	Handling Run-Time Errors
	Identifying Errors
	Examples
	Performing Corrective Action

	Processing External Files
	Using System Commands
	Entering Terminal Input
	Continuing Execution without Further Debugging

	Chapter 7. Special Considerations When Using Interactive Debug
	Recognizing Common Errors in Setting up a Debugging Session
	Issuing Commands after a Program Runs
	Handling Loops in Nondebuggable Program Units
	Specifying Default Run-Time Options
	Monitoring Floating-Point Equalities
	Referring to Unused VS FORTRAN Variables
	Entering Commands in an Attention-Interrupt Exit
	Debugging Optimized and Vectorized Code
	Optimization Examples
	Vectorization Examples
	Commands Affected by Optimization and Vectorization
	Warning Messages

	Improving Program Performance while Debugging
	Ways to Improve Performance

	Using Interactive Debug Double-byte Data Support

	Chapter 8. A Sample Debugging Session

	Part Two. Command Reference
	Syntax Notation
	Statement Identifier Conventions
	Commands Summarized by Function
	* or " (Comments)
	Usage Notes
	Examples
	ANNOTATE
	Usage Notes
	Examples
	AT
	Usage Notes
	Examples
	AUTOLIST (full screen mode only)
	Usage Notes
	Examples
	BACKSPACE
	Usage Notes
	Example
	CLOSE
	Usage Notes
	Examples
	COLOR (full screen mode only)
	Usage Notes
	DBCS
	Usage Note
	Example
	DESCRIBE
	Usage Notes
	Example
	DOWN (full screen mode only)
	Usage Notes
	Example
	ENDDEBUG
	Usage Notes
	Examples
	ENDFILE
	Usage Notes
	Example
	ERROR
	Usage Notes
	Examples
	FIXUP
	Usage Notes
	Examples
	GO
	Usage Notes
	Examples
	HALT
	Usage Notes
	Examples
	HELP
	Usage Notes
	Examples
	IF
	Usage Notes
	Examples
	LEFT (full screen mode only)
	Usage Notes
	Example
	LIST
	Usage Notes
	Examples
	LISTBRKS
	Example
	LISTFREQ
	Usage Notes
	Examples
	LISTINGS (full screen mode only)
	Usage Notes
	LISTSAMP
	Usage Notes
	Examples
	LISTSUBS
	LISTTIME
	Usage Notes
	Examples
	LISTVEC
	Usage Notes
	Examples
	Sample Output
	MOVECURS (full screen mode only)
	Usage Notes
	NEXT
	Usage Notes
	Examples
	OFF
	Usage Notes
	Examples
	OFFWN
	Usage Notes
	Examples
	POSITION (full screen mode only)
	Usage Notes
	Example
	PREVDISP (full screen mode only)
	Usage Notes
	PROFILE (full screen mode only)
	Usage Notes
	PURGE
	Usage Notes
	Example
	QUALIFY
	Usage Notes
	Examples
	QUIT
	Usage Notes
	RECONNECT
	Usage Notes
	Example
	REFRESH (full screen mode only)
	Usage Notes
	Example
	RESTART (full screen mode only)
	Usage Notes
	Example
	RESTORE (full screen mode only)
	Usage Notes
	RETRIEVE (full screen mode only)
	Usage Notes
	REWIND
	Usage Notes
	Example
	RIGHT (full screen mode only)
	Usage Notes
	Example
	SEARCH (full screen mode only)
	Usage Notes
	Example
	SET
	Usage Notes
	Examples
	SIZE (full screen mode only)
	Usage Notes
	STEP
	Usage Notes
	Example
	SYSCMD
	Usage Notes
	Examples
	TERMIO
	Usage Notes
	Examples
	TIMER
	Usage Notes
	Examples
	TRACE
	Usage Notes
	Examples
	UP (full screen mode only)
	Usage Notes
	Example
	VECSTAT
	Usage Notes
	Examples
	WHEN
	Usage Notes
	Examples
	WHERE
	Usage Notes
	Examples
	WINDOW (full screen mode only)
	Usage Notes
	ZOOM (full screen mode only)
	Usage Notes
	Appendix A. Interactive Debug Messages
	Debugging messages
	Full screen mode messages

	Appendix B. ISPF Dialog Variable Names Defined by Interactive Debug
	Glossary
	Index

