
REPORT

Developing
Open Cloud
Native
Microservices
Your Java Code in Action

Graham Charters,
Sebastian Daschner,
Pratik Patel & Steve Poole

Compliments of

Preview
Edition

Java is the open language for modern,
microservice applications. Explore Java for
your next cloud app today.

ibm.biz/OReilly-Java

https://ibm.biz/OReilly-Java

This Preview Edition of Developing Open Cloud
Native Microservices, Chapter 3, is a work in

progress. The final book is currently scheduled
for release in August 2019 and will be available

at oreilly.com once it is published.

Graham Charters, Sebastian Daschner,
Pratik Patel, and Steve Poole

Developing Open Cloud
Native Microservices

Your Java Code in Action

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05272-2

[LSI]

Developing Open Cloud Native Microservices
by Graham Charters, Sebastian Daschner, Pratik Patel, and Steve Poole

Copyright © 2019 IBM Corporation. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or cor‐
porate@oreilly.com.

Development Editor: Michele Cronin
Interior Designer: David Futato

Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

July 2019: First Edition

Revision History for the First Edition
2019-07-15: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Developing Open
Cloud Native Microservices, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and IBM. See our statement of
editorial independence.

http://oreilly.com
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Preface. v

1. Foundation. 1
Rapidly Developing Service Implementations 1
Persisting Service Data 7
Implementing REST Services 12
Conclusion 20

iii

Preface

Prerequisites for Reading This Book
This book is primarily aimed at readers with some knowledge of the
Java programming language who wish to understand how to get
started with creating cloud native Java applications. Readers wihout
an understanding of Java can still benefit from the book, as many of
the principles will hold regardless of programming language or
framework.

Why This Book Exists
This book exists to help the Java developer begin their journey into
cloud native. There is much to learn on this voyage, and this book is
intended to provide initial guidence to important high level con‐
cepts and start the reader along a well-trodden and proven technical
direction.

What You Will Learn
By the end of this book you will understand the unique challenges
that arise when creating, running and supporting cloud-native
microservice applications. This book will help you decide what else
you need to learn when embarking on the journey to the cloud and
how modern techniques will help with deployment of new applica‐
tions in general.

The book will briefly explain the important characteristics to con‐
sider when designing an application for the Cloud and cover the key
principles for microservices of distribution, data consistency, con‐

v

tinuous delivery etc. that not only are important for a cloud applica‐
tion but which will support the operational and deployment needs
of modern 24x7, highly available Java based applications in general.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

vi | Preface

Using Code Examples
This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example:
“Developing Open Cloud Native Microservices by Graham Charters,
Sebastian Daschner, Pratik Patel, and Steve Poole (O’Reilly). Copy‐
right 2019 IBM Corporation, 978-1-492-05272-2.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permis‐
sions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a
membership-based training and reference
platform for enterprise, government, educa‐
tors, and individuals.

Members have access to thousands of books, training videos, Learn‐
ing Paths, interactive tutorials, and curated playlists from over 250
publishers, including O’Reilly Media, Harvard Business Review,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among oth‐
ers.

For more information, please visit http://oreilly.com/safari.

Preface | vii

mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

viii | Preface

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Foundation

In this chapter, we’re going to lay the foundation for developing
cloud native microservice applications. First of all, we will focus on
how to implement the business logic in plain Java with as little cou‐
pling to framework-specific APIs as possible. We will then look at
the edges of the applications that communicate with other applica‐
tions and databases. We’ll see how to persist our business objects
and how to implement HTTP-based services.

When it comes to implementing the communication boundaries,
there are two main approaches to developing cloud native microser‐
vices: contract-first and implementation-first. With contract-first,
the service API (the contract) is defined, for example using Swagger
or OpenAPI, and this is used to generate the service implementation
skeleton. With implementation-first, the service is implemented and
then the contract generated (e.g., using runtime or tools-based
OpenAPI generation). Both are valid approaches, but we mainly see
developers using implementation-first, which is the approach taken
in this chapter.

Rapidly Developing Service Implementations
Let’s dive into the implementation of our applications. One of the
most important aspects enterprise developers should focus on is
implementing the business logic. Not on cross-cutting concerns,
integration, observability, or anything else for now, but only what
adds value to the application and its users. That is, at the core of our
microservices, we at first start from a plain Java view, and only

1

model and implement components that have a direct relation to our
business use case.

The convenience of Enterprise Java is that the programming model
puts little weight on top of our individual classes and methods,
thanks to the declarative approaches of both Jakarta EE and Micro‐
Profile. Typically, the classes of our core domain logic are simple
Java classes, enhanced with a few annotations, and that’s it.

This is why in this book we start with only covering Java and CDI
(Context and Dependency Injection), then gradually add more spec‐
ifications as our application requires some more cross-cutting con‐
cerns. However, with this plain approach you can already achieve a
lot.

Implementing Domain Classes Using CDI
In our coffee shop application, one of the entry points for our uses
case, sometimes also referred to as boundary, is a class called Coffee
Shop. This class implements functionality to order a cup of coffee, or
retrieve the status of previous orders:

public class CoffeeShop {

 @Inject
 Orders orders;

 @Inject
 Barista barista;

 public List<CoffeeOrder> getOrders() {
 return orders.retrieveAll();
 }

 public CoffeeOrder getOrder(UUID id) {
 return orders.retrieve(id);
 }

 public CoffeeOrder orderCoffee(CoffeeOrder order) {
 OrderStatus status = barista.brewCoffee(order);
 order.setStatus(status);

 orders.store(order.getId(), order);
 return order;
 }

 public void processUnfinishedOrders() {
 // ...

2 | Chapter 1: Foundation

 }
}

The CoffeeShop class exposes the use cases for ordering a new cof‐
fee, retrieving a list of all orders, or a single one, and for processing
unfinished orders. It defines two dependencies, Orders and Bar
ista, to which it delegates the further execution.

As you can see, the only Enterprise Java-specific declarations are the
injections of our dependencies via @Inject. Dependency injection,
as well as inversion of control in general, is one of the most useful
patterns for developing our applications. We developers are not
required to instantiate and wire dependent components, including
all their transitive dependencies, which means we can focus on effi‐
ciently writing the business domain logic. We define the dependen‐
cies in a way of “we need to use this component in our class”
without regarding the instantiation. The life cycle of our instances,
or beans, is managed by CDI.

You can mix and match injecting CDI beans of differ‐
ent scopes. The injection framework makes sure that
all combinations work as desired.

The CoffeeOrder which represents the entities of our domain, is
written using plain Java only, for now. It’s a POJO (plain old Java
object) containing properties for the order ID, type, and status:

public class CoffeeOrder {

 private final UUID id = UUID.randomUUID();
 private CoffeeType type;
 private OrderStatus status;

 // getters & setters ...

}

The CoffeeType and OrderStatus types are Java enums which
define the available types of drinks (ESPRESSO, LATTE, POUR_OVER)
and order statuses (PREPARING, FINISHED, COLLECTED), respectively.

The components that implement our business logic are also the ones
that should be tested well. Writing test cases is beyond the scope of
this book. However, with the approach of plain-Java first we can effi‐

Rapidly Developing Service Implementations | 3

ciently develop test cases that cover the majority of our business
logic using test frameworks such as JUnit and mocking framworks
such as EasyMock or Mockito.

Scopes
Besides dependency injection, CDI also enables us to define the
scope of beans. The scope of the bean determines its lifecycle, for
example, when it will be created and when it will be destroyed.
Instances of the shown CoffeeShop class are created with an implicit
dependent scope, that is the scope is dependent on the scope of who‐
ever uses them. If, for example, a request-scoped HTTP endpoint is
injected with our CoffeeShop bean, the CoffeeShop instance lifecyle
will also exist within the same request scope.

If we have the need to define a different scope, for example for a
class that exists only once in our application, we annotate our class
accordingly. The following example shows the application-scoped
Orders class:

@ApplicationScoped
public class Orders {

 private final ConcurrentHashMap<UUID, CoffeeOrder> orders =
 new ConcurrentHashMap<>();

 public List<CoffeeOrder> retrieveAll() {
 return orders.entrySet().stream()
 .map(Map.Entry::getValue)
 .collect(Collectors.toList());
 }

 public CoffeeOrder retrieve(UUID id) {
 return orders.get(id);
 }

 public void store(UUID id, CoffeeOrder order) {
 orders.put(id, order);
 }

 public List<CoffeeOrder> getUnfinishedOrders() {
 return orders.values().stream()
 .filter(o -> o.getStatus() != OrderStatus.COLLECTED)
 .collect(Collectors.toList());
 }
}

4 | Chapter 1: Foundation

The Orders class is responsible for storing and retrieving coffee
orders, including their status. The @ApplicationScoped annotation
declares that there is to be one instances of the Orders bean. No
matter how many injection points we have in our application—Cof

feeShop is one of them—they will always be injected with the same
instance.

Be aware of the default concurrency management of
EJB singletons if you’re using them instead of
application-scoped CDI beans. CDI beans don’t man‐
age concurrency, and it’s the developers’ responsibility
to make them thread-safe.

The most commonly used scopes that are available in CDI are
dependent, request, application, and session. If these capabilities are,
for some reason, not enough, developers can write their own scopes
and extend the features of CDI. In a typical enterprise application,
however, this is seldom required.

Configuration
A typical application contains a few concerns that we might need to
configure, such as how to look up and access external systems, how
to connect to databases, or which credentials to use. The good news
is that in a cloud native world, we can externalize a lot of different
kinds of configuration from the application-level to the environ‐
ment. That is, we don’t have to configure and change the application
binaries, but instead, can have the different configuration values
injected from the environment, for example containers or container
orchestration, such as from Kubernetes ConfigMaps.

As a developer, we want to focus on configuration that relates to the
application business logic. Depending on your business, it might
sometimes be required that applications behave differently in differ‐
ent environments.

In general, we want to be able to inject configuration values with
minimal developer effort. We just covered dependency injection
earlier, and ideally, we’d like to have a similar way of injecting con‐
figured values into our code.

Rapidly Developing Service Implementations | 5

With CDI we could write CDI producers that lookup our configured
values and make them available. However, there’s an even easier
method, if we use MicroProfile Config.

MicroProfile Config
MicroProfile Config defines functionality that allows developers to
easily inject configured values, in a very similar way that we’re used
to from CDI. For example, it ships with default config sources for
environment variables that we can use right away. Available environ‐
ment values in our systems are loaded and ready to be injected
without any further developer effort.

Let’s assume that we want to enhance our coffee-shop example to
define default coffee drinks, if the clients don’t explicitly mention,
which type of coffee they’d like to have. That is, we set some default
CoffeeType in our CoffeeOrders if the provided type is empty.

Have a look at our updated CoffeeShop class:

public class CoffeeShop {

 @Inject
 @ConfigProperty(name = "coffeeShop.order.defaultCoffeeType",
 defaultValue = "ESPRESSO")
 private CoffeeType defaultCoffeeType;

 // ...

 public CoffeeOrder orderCoffee(CoffeeOrder order) {
 setDefaultType(order);
 OrderStatus status = barista.brewCoffee(order);
 order.setStatus(status);

 orders.store(order.getId(), order);
 return order;
 }

 private void setDefaultType(CoffeeOrder order) {
 if (order.getType() == null)
 order.setType(defaultCoffeeType);
 }

 // ...
}

The CoffeeType is resolved from the environment variable coffee
Shop.order.defaultCoffeeType. Some operating systems don’t
support dots in their variable names, which is why MicroProfile

6 | Chapter 1: Foundation

Config supports multiple ways of replacing the dots with under‐
scores. We could thus define this very variable as COFFEE

SHOP_ORDER_DEFAULTCOFFEETYPE, also. If that environment variable
is not set in the running application, the value will default to
ESPRESSO.

The CoffeeType enum defines multiple values that can be resolved
by the string representations and so we can choose the ESPRESSO
string representation as the default.

Persisting Service Data
We just saw how to implement the main business logic components
into our applications. Besides stateless processing logic, most appli‐
cations require to persist state, usually the domain entities that rep‐
resent the core of our business.

There are many database technologies to choose from. In this chap‐
ter we want to focus on relational database management systems
(RDBMS), which arguably offer a straightforward way of persisting
domain objects that, from experience, cover the majority of use
cases.

Java Persistence API
In the Enterprise Java world, the Java Persistence API (JPA) is one of
the most widely used technologies to persist domain entities. It
offers an effective, declarative way to map types and their properties
to relational database tables. JPA integrates well with models that are
built following the concepts of domain-driven design. Persisting
entities doesn’t introduce much code overhead and doesn’t overly
constraint the modeling. This enables us to construct the domain
model first, focusing on the business aspects, and integrating the
persistence concerns afterwards.

JPA’s main concepts are the entity beans, which represent the indi‐
vidual persisted domain entities, and the entity manager, which is
responsible for storing and retrieving entity beans.

Persisting Service Data | 7

Mapping Domain Models
JPA enables us to directly map our domain entities as well as aggre‐
gates to the database. In order to do that we define domain types
such as the CoffeeOrder as JPA entity beans:

@Entity
@Table(name = "orders")
public class CoffeeOrder {

 @Id
 private String id;

 @Basic(optional = false)
 @Enumerated(EnumType.STRING)
 @Column(name = "coffee_type")
 private CoffeeType type;

 @Basic(optional = false)
 @Enumerated(EnumType.STRING)
 private OrderStatus orderStatus;

 // getters & setters

}

The @Entity annotation defines the CoffeeOrder as an entity bean.
Each entity bean is required to define the notation of identity, that is,
contain an ID property, annotated with @Id. The individual fields
are usually mapped to database columns which are also configured
declaratively, using the corresponding annotations. Full examples
can be found in the JPA documentation.

The CoffeeOrder example will persist our coffee order to the orders
table, with the enumerations persisted as string representations.

Managing Persisted Entities
The EntityManager is the main entry point which manages the per‐
sistence of our entities. Our business logic invokes its functionality
during the processing of a coffee order use case:

@ApplicationScoped
public class CoffeeShop {

 @PersistenceContext
 EntityManager entityManager;

 // ...

8 | Chapter 1: Foundation

 @Transactional
 public CoffeeOrder orderCoffee(CoffeeOrder order) {
 order.setId(UUID.randomUUID().toString());
 setDefaultType(order);
 OrderStatus status = barista.brewCoffee(order);
 order.setOrderStatus(status);

 return entityManager.merge(order);
 }

}

The merge operation make the coffee order a managed entity, mean‐
ing JPA will manage its storing to, and retrieval from, the database.

The @Transactional annotation states that the orderCoffee is to be
executed within a transaction. The default for the annotation is to
require a transaction so if there isn’t one already, a new one will be
started. If a new transaction was started, once this method returns
the container will automatically commit the transaction and the cof‐
fee order will be persisted to the database. The merge operation
make the coffee order to cause the coffee order to be persisted.

If we define aggregate entities that not only contain primitive types
or value objects but references to other entities, the persist opera‐
tions are invoked on the root entities and cascaded to the referenced
sub-entities. The difference between entities and value objects, such
as strings, enumerations, or currency values, is the notation of iden‐
tity. It doesn’t make a difference to (most) businesses which instance
of a 10 EUR bill we refer to, but it does make a difference which cof‐
fee order has just been completed successfully. The latter needs to be
identified individually and thus represents a domain entity.

The EntityManager implements the DAO (Data Access Object) pat‐
tern. Depending on the complexity of the invocations made on the
EntityManager type it is often not necessary to encapsulate them in
a separate DAO-like type.

Integrating RDBMS Systems
Our basic example shows the persistence configuration that is
required on the project code level. In order to integrate the database
into our application, we need to define the datasource—that is, how
to connect to the database.

Persisting Service Data | 9

Ideally, we can abstract the detailed configuration from our applica‐
tion configuration. As we saw earlier, environment-specific configu‐
ration should not be part of the application code but be managed by
the infrastructure.

JPA manages the persistence of entities within persistence contexts.
The entity manager of a persistence context acts as a cache for the
entities and uses a single persistence unit which corresponds to a
database instance. If only one database instance is used within the
application, the entity manager can be obtained directly, as shown in
the example, without specifying the persistence unit.

Persistence units are specified in the persistence.xml which
resides under the META-INF directory of our project:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd">
 <persistence-unit name="coffee-orders" transaction-type="JTA">
 </persistence-unit>
</persistence>

This example configures a persistence unit that doesn’t specify a data
source, thus uses the default data source. Our application container
is required to define a default datasource which is used here. With
this approach we can decouple the infrastructure configuration
from our application binary build. This means we only need to build
the application once and can change the configuration as we take it
through test, staging and into production—a best practice in the
world of cloud native microservices.

If we use multiple datasources in our application, we define multiple
persistence units and refer the datasources via JDNI:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_2.xsd">
 <persistence-unit name="coffee-orders" transaction-type="JTA">
 <jta-data-source>jdbc/CoffeeOrdersDB</jta-data-source>
 </persistence-unit>
 <persistence-unit name="customers" transaction-type="JTA">
 <jta-data-source>jdbc/CustomersDB</jta-data-source>
 </persistence-unit>
</persistence>

10 | Chapter 1: Foundation

In this case, we are required to qualify the EntityManager lookups
with the corresponding persistence unit:

@PersistenceContext(unitName = "coffee-orders")
EntityManager entityManager;

Transactions
As introduced before, Java Enterprise makes it easy to execute busi‐
ness logic within transactions. This is required, once we make use of
relational databases, and also once we want to ensure that our data is
stored in an all-or-nothing fashion. In one way or another, the
majority of enterprise applications require ACID (Atomic, Consis‐
tent, Isolated, Durable) transactions.

However, in a distributed system, a business use case might involve
multiple external systems, databases, or backend services. Tradition‐
ally, these distributed transactions, have relied on the use of a two-
phase commit (2PC) protocol to coordinate updates across the
external systems. To achieve this consistency across distributed sys‐
tems takes time and resources, and thus it comes at the cost of avail‐
ability. However, in modern internet-scale systems, availability is
often key and so other techniques based around the goal of eventual
consistency are employed. This has resulted in the emergence of pat‐
terns such as Sagas and CQRS (Command Query Responsibility
Separation). In moving to an eventual consistency model, a system
becomes more loosely-coupled and responsive with the caveat that
the data may be a little stale. For a more detailed understanding of
these principals, we recommend you take a look at the literature on
CAP Theorem.

However, local transactions, that only span a single service and a
single database are typically required in order to guarantee data con‐
sistency. As we’ve seen in the example, the @Transactional annota‐
tion enables this functionality without requiring developers to write
boilerplate code or extensive configuration. If required, we can fur‐
ther refine the behavior of how multiple, nested methods are exe‐
cuted. For example, methods that are executed within an active
transaction can suspend the transaction and start a new transaction
which is active during the execution of the method, or be part of an
existing transaction. For further information, have a closer look at
the semantics of the parameters of the @Transactional annotation
and the JTA (Java Transaction API) specification.

Persisting Service Data | 11

In our CoffeeShop example, we used a CDI bean. An
alternative approach, although less in favor nowadays,
would have been to use a session EJB (Enterprise Java
Beans). With session EJBs, by-default, all the EJB
methods are transactional and so there would be no
need for the @Transactional annotation.

Implementing REST Services
After seeing how our domain entities can be persisted, let’s have a
look at how to integrate other applications using HTTP-based com‐
munication. We’re going to show how to implement HTTP-based
services using JAX-RS, how to map entities to transfer objects, and
how applications can benefit from the ideas behind Hypermedia

Once we have implemented our business logic and potentially
implemented persistence, we have to further integrate our applica‐
tion into our system. Business logic that is not accessible from the
outside mostly provides little value, and typically enterprise systems
are required to provide endpoints to communicate with other sys‐
tems.

The following shows how to implement REST services using Java
Enterprise technology. We’ll implement JAX-RS resource classes that
handle the HTTP functionality and make our business logic accessi‐
ble to outside of the application.

Boundary Classes
JAX-RS resource classes typically represent the boundaries, the
entrypoints of our business use cases. Clients make HTTP requests
and thus start a specific business process in the backend.

The following shows a JAX-RS resources class that implements the
HTTP handling for retrieving coffee orders:

import javax.ws.rs.*;
import javax.ws.rs.core.*;

@Path("/orders")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class OrdersResource {

 @Inject
 CoffeeShop coffeeShop;

12 | Chapter 1: Foundation

 @GET
 public List<CoffeeOrder> getOrders() {
 return coffeeShop.getOrders();
 }
}

The @Path annotation declares the class as a JAX-RS resource for
handling the /orders URL path. There are annotations for all stan‐
dard HTTP verbs, such as @GET, @POST, @HEAD, etc. These annota‐
tions declare a method as a JAX-RS resource method. Once a client
makes an HTTP GET request to the /orders resource, the request
will be handled in the getOrders method of this class.

JAX-RS automatically maps Java objects to HTTP requests and
responses, respectively. It supports content negotiation, that is cli‐
ents can instruct the servers which content type they use for request
bodies, and which one they expect for the server’s responses. This
example resource class supports JSON, which is specified by the
@Consumes and @Produces annotations. Developers can declare fur‐
ther content type capabilities by implementing and registering Messa
geBodyWriter and MessageBodyReader types in JAX-RS, but for
most microservices, JSON is the format used. We may pay attention
not to confuse and use the wrong import for the @Produces annota‐
tion, since CDI also defines on with the same name but different
behavior.

In order to create some coffee orders, clients typically create new
resources by sending POST requests to the backend’s URLs. The fol‐
lowing shows the JAX-RS resource method for creating new orders:

@Path("/orders")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class OrdersResource {

 @Inject
 CoffeeShop coffeeShop;

 @Context
 UriInfo uriInfo;

 @POST
 public Response orderCoffee(CoffeeOrder order) {
 final CoffeeOrder storedOrder = coffeeShop.orderCoffee(order);
 return Response.created(buildUri(storedOrder)).build();
 }

Implementing REST Services | 13

 private URI buildUri(CoffeeOrder order) {
 return uriInfo.getRequestUriBuilder()
 .path(OrdersResource.class)
 .path(OrdersResource.class, "getOrder")
 .build(order.getId());
 }
}

The orderCoffee resource method will recieve the POST request
with the coffee order as body in the JSON content type, and map it
to an CoffeeOrder object. The resource method calls the business
functionality of the boundary and returns a Response object, a
wrapper object for HTTP responses with additional information, to
indicate that the resources has been created successfully. The JAX-
RS implementation will map this to the 201 Created HTTP status
code and the Location header field. We’ll see later in the Validating
resources section how other response codes can be returned when
the input data is invalid.

This is all we need to do to implement HTTP endpoints on our side.

Mapping Entitites to JSON
By default, all properties of a business entity for which we define
getter and setter methods are mapped to JSON. However, often we
require some further control, how exactly the properties of an object
are serialized, especially when the mapping slightly varies from what
we represent in Java.

In Enterprise Java, there are two ways to map Java objects from and
to JSON.

The first way is to declaratively map the properties, using a standard
called JSON-B (Java API for JSON Binding). This is what we implic‐
itly used in the previous examples. By default, this approach will
map all properties for which an object defines getter and setter
methods to JSON object fields. Nested object types are handled
recursively.

The second way is to programmatically create or read JSON objects
using a technology called JSON-P (Java API for JSON Processing).
JSON-P defines methods that we can call directly to create arbitrary
objects. This approach provides the biggest flexibility in how objects

14 | Chapter 1: Foundation

are mapped. Let’s look at an example how to programmatically map
our coffee order type:

@Path("/orders")
public class OrdersResource {

 @Inject
 CoffeeShop coffeeShop;

 @Context
 UriInfo uriInfo;

 @GET
 public JsonArray getOrders() {
 return coffeeShop.getOrders().stream()
 .map(this::buildOrder)
 .collect(JsonCollectors.toJsonArray());
 }

 private JsonObject buildOrder(CoffeeOrder order) {
 return Json.createObjectBuilder()
 .add("type", order.getType().name())
 .add("status", order.getStatus().name())
 .add("_self", buildUri(order).toString())
 .build();
 }

 private URI buildUri(CoffeeOrder order) {
 return uriInfo.getRequestUriBuilder()
 .path(OrdersResource.class)
 .path(OrdersResource.class, "getOrder")
 .build(order.getId());
 }
}

The JsonArray type defines a JSON array of arbitrary elements. The
getOrders resource method maps the individual coffee orders to
JsonObject and aggregates them into the array type. We can see
how the object builder allows us to compose objects with any
desired structure. The produced JSON objects differ slightly from
the declaratively mapped approach.

The question often arises as to when to use JSON-B or JSON-P. Typ‐
ically, we find that the declarative approach of JSON-B is the sim‐
plest and covers most use cases.

If the default JSON-B serialization is not what you need then it also
allows you to control how the Java objects are mapped to JSON,
especially how and whether individual properties are being mapped.

Implementing REST Services | 15

The following example will slightly modify the mapping of our cof‐
fee order:

public class CoffeeOrder {

 @JsonbTransient
 private final UUID id = UUID.randomUUID();

 @JsonbTypeAdapter(CoffeeTypeDeserializer.class)
 private CoffeeType type;

 @JsonbProperty("status")
 private OrderStatus orderStatus;

 // methods omitted
}

The @JsonbTransient annotation declares the id field as transient,
that is, this field will be ignored by JSON-B and neither be read from
nor written to JSON. @JsonbProperty allows for further customiz‐
ing of the JSON object field name.

If the default mapping of a Java type doesn’t work for us, we can
always declare a custom type adapter, for example, using the @Jsonb
TypeAdapter annotation as shown above. You can have a look at the
adapter for the coffee type enum in the further resources of this
book.

These and a few other ways of customizing the JSON mapping built
into JSON-B already fulfil a majority of cases. If more flexibility or
control is required, we can switch to programmatically create or
read JSON structures using JSON-P. This approach is especially
helpful when dealing with Hypermedia REST resources, as we will
see later in this chapter.

Validating Resources
Request data that is received from clients needs to be sanitized
before it can be used further. For security reasons you should never
trust the data that has come from and external source such as a Web
form or REST request. In order to make it simple to validate input,
Java Enterprise ships with the Bean Validation API that allows us to
declaratively configure the desired validation. The good news for
developers is that this standard integrates seemlessly with the rest of
the platform, for example with JAX-RS resources.

16 | Chapter 1: Foundation

To ensure that only valid coffee orders are accepted in our applica‐
tion, we enhance our JAX-RS resource method with Bean Validation
constraints:

...

@POST
public Response orderCoffee(@Valid @NotNull CoffeeOrder order) {
 final CoffeeOrder storedOrder = coffeeShop.orderCoffee(order);
 return Response.created(buildUri(storedOrder)).build();
}

The @NotNull annotation ensures that we’ll recieve properly popula‐
ted orders. @Valid makes sure that the order itself is validated for
potential subsequent validation constraints.

Let’s have a look at our enhanced coffee order class, that defines
what makes a valid order:

public class CoffeeOrder {

 @JsonbTransient
 private final UUID id = UUID.randomUUID();

 @NotNull
 @JsonbTypeAdapter(CoffeeTypeDeserializer.class)
 private CoffeeType type;

 private OrderStatus status;

 // ... getters & setters
}

The type of a coffee order must not be null either, that is, clients
must provide a valid enumeration value. The value is automatically
mapped by the provided JSON-B type adapter and would provide a
null value in case an invalid value has been transmitted. Conse‐
quently, validation will fail for any invalid values.

JAX-RS integrates with Bean Validation in the way that means if any
constraint validations fail, an HTTP status code of 400 Bad Request
is automatically returned. Therefore, the presented example is
already sufficient to ensure that only valid orders can be sent to our
application.

Implementing REST Services | 17

REST and Hypermedia
Representational State Transfer (REST) provides an architectural
style of web services that often well-suits the needs and structure of
web applications. The idea is to loosely-couple applications with
interfaces that are accessible in a uniform way, located by URLs.
There are a few REST constraints such as the use of uniform inter‐
faces, identification of individual resources, that is the entities in our
domain, or the use of Hypermedia as the engine of application state,
commonly referred to as HATEOAS. The representations of the
domain entities are modified in a uniform way, in HTTP for exam‐
ple using the HTTP methods such as GET, POST, DELETE, PATCH,
or PUT.

Hypermedia adds linking related resources and resource actions,
that are accessible by URLs. If some HTTP resources are somewhat
related to others, they can link to these, providing full URLs that the
client directly follow. In this way, the server guides the clients
through the available resources using semantic link relations. The
clients don’t require knowledge of how the URLs are structured on
the server. Its usage was originally described in the work by Roy T.
Fielding and his dissertation, Architectural Styles and the Design of
Network-based Software Architectures.

The following shows a basic example of a coffee order representa‐
tion in the JSON format:

{
 "type": "ESPRESSO",
 "status": "PREPARING",
 "_links": {
 "self": "https://api.coffee.example.com/orders/123",
 "customer": "https://api.coffee.example.com/customers/234"
 }
}

The _links field of the representation gives some example links, to
the coffee order resource itself and to the customer who created this
order. If a client would like to know more about the customer, it
would follow the provided URL in a subsequent GET request.

It’s usually not sufficient to only follow links and read resources
using GET, therefore it’s possible as well to exchange information on
how to modify resources, for example using POST or PUT request.

18 | Chapter 1: Foundation

The following demonstrates an example Hypermedia response that
uses the concept of actions. There are a few Hypermedia-aware con‐
tent types that support these approaches, such as the Siren content
type on which this example is based:

{
 "class": ["coffee-order"],
 "properties": {
 "type": "ESPRESSO",
 "status": "PREPARING"
 },
 "actions": [
 {
 "name": "cancel-order",
 "method": "POST",
 "href": "https://api.coffee.example.com/cancellations",
 "type": "application/json",
 "fields": [
 { "name": "reason", "type": "text" },
 { "name": "order", "type": "number", "value": 123 }
]
 }
],
 "links": [
 "self": "https://api.coffee.example.com/orders/123",
 "customer": "https://api.coffee.example.com/customers/234"
]
}

In this example, the server provides the client the ability to cancel a
coffee order and describes its usage in the cancel-order action. A
new cancellation means the client would POST a JSON representa‐
tion of a cancellation containing the order number and a reason to
the provided URL. In this way, the client only requires knowledge of
the action itself, represented by the name cancel-order, and where
the provided information originate from, for example the order
number, which is provided, and the reason, which is only known by
the client and, for example, may be entered in a text field in the UI.

This is one example of a content type that enables the use of Hyper‐
media controls. There is no real standard format that the industry
has agreed upon. However, this Siren-based example nicely demon‐
strates the concepts of links and actions. Whatever content type and
representation structure is being used, the projects need to agree
and document on their usage. But as you can see, this way of struc‐
turing the web services requires far less documentation since the
usage of the API is baked into the resource representations already.

Implementing REST Services | 19

This also greatly reduces the likelihood of API documentation
becoming out of date with the code. We’ll see later in Chapter 4 of
this book how OpenAPI can further improve this.

One of the benefits of using HATEOAS is that the control of how
the resources are accessed resides on the server side. The server
owns the communication and is even free to change the URL struc‐
tures, since the clients are no longer required to make any assump‐
tions on how the URLs are being constructed.

The decoupling the communication also results in less duplication
of business logic. Clients do not need to contain the logic for the
conditions under which an order can be cancelled, they can simply
display the functionality of cancelling orders if the corresponding
action is provided in the HATEOAS response. Only the knowledge
that is actually required to reside on the client side, for example how
the reason of cancelling an order is being provided, needs to be
implemented on the client side (i.e. UI decisions).

Let’s come back to how we map our domain entities to JSON on the
server side. As you can see, the JSON structures of Hypermedia
resources can become quite complex, may result in complex Java
type hierarchies if we were to us the declarative approach of JSON-
B. For this reason, it’s worth considering the programmatic
approach using JSON-P to create these Hypermedia resources. The
creation of coffee order representation, for example, can be factored
out into a separate class with that single responsibility to remove
redundancy in the JAX-RS resources, if required.

Conclusion
As you saw, we can already implement the vast majority of our
enterprise application using plain Java and CDI. At its core, our
business logic is written in plain Java with some dependency injec‐
tion added to simplify defining dependent components. MicroPro‐
file Config enables us to inject required configuration with minimal
impact in the code. Besides that, what’s left is mainly integration into
our overall enterprise system, as well as non-functional require‐
ments such as resiliency and observability.

We saw how to integrate persistence into our applications using JPA,
and how to map domain entities to relational databases with mini‐
mal developer effort. Thanks to the previous specification work

20 | Chapter 1: Foundation

being done in the JTA standard, we can define transactional behav‐
ior without obscuring the business code.

We can implement REST endpoints using the JAX-RS standard with
JAX-RS resources. The declarative programming model allows us to
efficiently define the endpoints with default HTTP bindings, and
also to further customize the HTTP request and response mappings,
if required.

Enterprise Java supports binding our entities to and from JSON,
either declaratively using JSON-B, or programmatically using
JSON-P. It depends on the complexity of the entity representations
which approach makes more sense. The requests can be validated
using Bean Validation which allows developers to specify the valida‐
tion programmatically or declaratively, as well. Enterprise develop‐
ers might want to have a look into the concepts behind Hypermedia,
that allow further decoupling from the server, make the server
resources discoverable, and the communication more flexible and
adaptive to change.

Conclusion | 21

About the Authors
Graham Charters is an IBM Senior Technical Staff Member and
WebSphere Applications Server Developer Advocacy Lead based at
IBM’s R&D Laboratory in Hursley, UK. He takes a keen interest in
emerging technologies and practices and in particular programming
models. His past exploits include establishing and contributing to
open source projects at PHP and Apache and participation in, and
leading, industry standards at OASIS and the OSGi Alliance.

Sebastian Daschner is a Lead Java Developer Advocate for IBM. His
role is to share knowledge and educate developers about Java, enter‐
prise software, and IT in general. He enjoys speaking on conferen‐
ces, writing articles and blog posts, producing videos, newsletters,
and other content.

Pratik Patel is a Lead Developer Advocate at IBM. He wrote the first
book on ‘enterprise Java’ in 1996, Java Database Programming with
JDBC. He has also spoken at various conferences and participates in
several local tech groups and startup groups. He hacks Java, iOS,
Android, HTML5, CSS3, JavaScript, Clojure, Rails, and, well, every‐
thing except Perl.

Steve Poole is a long time Java developer, leader, and evangelist. He
is a DevOps practitioner (whatever that means). He has been work‐
ing on IBM Java SDKs and JVMs since Java was less than 1. A seas‐
oned speaker and regular presenter at international conferences on
technical and software engineering topics.

	Copyright
	Table of Contents
	Preface
	Prerequisites for Reading This Book
	Why This Book Exists
	What You Will Learn
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us

	Chapter 1. Foundation
	Rapidly Developing Service Implementations
	Implementing Domain Classes Using CDI

	Persisting Service Data
	Java Persistence API
	Mapping Domain Models
	Managing Persisted Entities
	Integrating RDBMS Systems
	Transactions

	Implementing REST Services
	Boundary Classes
	Mapping Entitites to JSON
	Validating Resources
	REST and Hypermedia

	Conclusion

	About the Authors

