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Abstract

Recently, a method [5] was proposed to generate contrastive explana-
tions for differentiable models such as deep neural networks, where one
has complete access to the model. In this work, we propose a method,
Model Agnostic Contrastive Explanations Method (MACEM), to generate
contrastive explanations for any classification model assuming only oracle
access, i.e., one is able to only query the class probabilities for a desired
input. This allows us to generate contrastive explanations for not only
neural networks, but models such as random forests, boosted trees and even
arbitrary ensembles that are still heavily used when learning on structured
data given their state-of-the-art performance in many domains [10]. More-
over, to obtain meaningful explanations on structured data we propose
a principled approach to handle real and categorical features leading to
novel formulations for computing pertinent positives and negatives that
form the essence of a contrastive explanation. A detailed treatment of
the different data types of this nature was not performed in the previous
work, which assumed all features to be positive real valued with zero being
indicative of the least interesting (i.e. feature being absent) value. This
was a strong implicit assumption which of course may not true for different
datasets.

1 Introduction

Given the wide spread use of deep networks [9] across various applications and
their black box nature, explainability in artificial intelligence (XAI) has been one
of the problems at the forefront in AI research recently [5}7}16}21}25]. Darpa’s
call for creating interpretable solutions [11] and the General Data Protection
Regulation (GDPR) passed in Europe [33] which requires businesses to provide
understandable justifications to their users for decisions that may affect them
has made this need even more acute.

*1 and 2 indicate affiliation to IBM Research and IBM Watson Group respectively.



There have been many (posthoc) interpretability methods proposed to in-
terpret decisions of neural networks [1L[5]7}/16}24,130] which assume complete
access to the model. Locally interpretable model-agnostic explanation method
(LIME) [25] is amongst the few that can provide local explanations for any model
with just oracle access. In other words, LIME just needs to be able to query the
classification model and based on its outputs can generate an explanation. This
is an extremely attractive feature as it can be used in settings where the model
owner may not want to expose the inner details of the model but may desire local
explanations using say a remote service. Another application is that the method
can be used to interpret decisions not just of neural networks but other models
such as random forests, boosted trees and ensembles of heterogeneous models
which are known to perform quite well in many domains that use structured
data [10].

In this paper, we thus propose the model agnostic contrastive explanations
method (MACEM) that requires only oracle access to the classification model
with particular focus on structured data. Structured data can be composed
of real and categorical features, and we provide a principled way of creating
contrastive explanations for such data. Contrastive explanations are a rich
form of explanation where one conveys not only what is (minimally) sufficient
to justify the class of an input i.e. pertinent positives (PPs), but also what
should be (minimally) necessarily absent to maintain the original classification
i.e. pertinent negatives (PNs) [5]. Such explanations are commonly used in
social settings as well as in domains such as medicine and criminology [13].
For example, a patient with symptoms of cough, cold and fever (PPs) could
have flu or pneumonia. However, the absence of chills or mucous (PNs) would
indicate that the person has flu rather than pneumonia. Thus, in addition to
the symptoms that were present, the symptoms that are absent are also critical
in arriving at a decision.

In previous works [5], a method to produce such explanations was proposed.
However, the method was restricted to differentiable models such as deep neural
networks and strong (implicit) assumptions were made in terms of the semantics
of the data used to train the models and obtain explanations. In particular,
following are the key differences between our current and the prior work:

e Gradients not available: In this work we want to create contrastive
explanations with only oracle or query access to the classification model.
This is a significant step given that the prior work a) assumed complete
access to the model and b) could be used only for differentiable models like
deep neural networks. Our method can be used for any classification model
that may be differentiable or non-differentiable (viz. decision trees, forests,
ensembles), where we estimate gradients (with theoretically bounded bias)
using only oracle access.

e Adaptively estimating and using base values: To compute PPs and
PNs one needs to know what it means for a feature to be absent. In
other words, what value for a feature indicates that there is no signal



or is essentially the least interesting value for that feature. We refer to
such values as base values. In the prior work the value 0 for a feature was
considered as the base value, with positive deviation from it being indicative
of more interesting values or values that have more signal. However, this
may not be the case for many features especially those that are categorical.
Ideally, the user should provide us with these values, however in many
situations this may not be the case. In this paper we adapt our methods
to utilize these given base values and also propose ways to estimate them
from the data using best judgment in situations that they are not provided.

e Handling categorical features: In the prior work all features were
considered to be real valued and no special consideration was given to
handle categorical features. However, in this work we remain cognizant
to the fact that categorical features are fundamentally different than real
valued ones and propose principled approaches to handle them given our
form of explanations.

e Computing PPs and PNs: Given the above differences we propose new
ways of computing PPs and PNs that are consistent with their intuitive
definitions mentioned before. Although conceptually similar to the previous
work, the details of the methods to compute these are quite different as
can be witnessed in the later sections.

2 Related Work

Trust and transparency of Al systems has received a lot of attention recently
[11]. Explainability is considered to be one of the cornerstones for building
trustworthy systems and has been of particular focus in the research community
[6L/18]. Researchers are trying to build better performing interpretable models
[2}4k/7,/141(31}32] as well as improved methods to understand black box models
such as deep neural networks [1}[5[25].

The survey [21] which is mainly focused on deep learning explainability
methods looks broadly at i) prototype selection methods [22}/23] to explain
a particular class and ii) methods that highlight relevant features for a given
input |14{16}2528]. There are other works that fall under (i) such as [12,/15] as
well as those that fall under (ii) for vision [24}29|30] and NLP applications [17].
Most of these works though do not provide contrastive explanations in a model
agnostic setting.

There are also interesting works which try to quantify interpretability [6427]
and suggest methods for doing so.

Two of the most relevant recent works besides [5] which we have already
contrasted with are [26,/34]. In [26], the authors try to find sufficient conditions
to justify a classification that are global in nature. For example, the presence of
the word "bad” in a sentence would automatically indicate negative sentiment
irrespective of the other words. As such, they do not find input specific minimally
sufficient values that would maintain the classification or minimal values that
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Figure 1: Above we see a visual representation of PPs and PNs. Depending on
where the input x lies relative to the base value the PPs and PNs will be above
or below the base value. However, in both cases the search moves away from the
base value for both PPs and PNs.

would change classification. Such global anchors also may not always be present
in the data that one is interested in. The other work [34] tries to provide (stable)
suggestions more than local explanations for decisions based on a neural network.
Moreover, the approach is restricted to neural networks using rectified linear
units and is feasible primarily for smallish to medium sized neural networks in
asymmetric binary settings, where suggestions are sought for a specific class (viz.
loan rejected) and not the other (viz. loan accepted).

3 MACEM Method

Let X denote the feasible data space and let (xg,tg) denote an example xg € X
and its inferred class label ¢ty obtained from a black-box classification model.
The modified example x € X based on xq is defined as x = x¢ + 8, where § is a
perturbation applied to xg. Our method of finding pertinent positives/negatives
is formulated as an optimization problem over the perturbation variable & that
is used to explain the model’s prediction results. We denote the prediction of the
model on the example x by Pred(x), where Pred(+) is any function that outputs
a vector of confidence scores over all classes, such as the log value of prediction
probability.

3.1 Pertinent Positives

Assume an example xo has d features each with base values {b;}% . Let
App denote the space {§ : |xg +d — b| < |x9 — b| and xg + § € X'}, where
b = [b1,...,b4], and |-| and < implies element-wise absolute value and inequality,



Algorithm 1 Model Agnostic Contrastive Explanations Method (MACEM)

Input: example (xo, %), black box model M and optionally base values b,

allowed space X, (v > 0) an autoencoder AFE.

1) Solve and obtain,

P = argmingea ., ¢ [R*(x0,6) + Blxo+8 = bl + o+ —b[3+
Ylxo + 8 — AE(xo + 8)|3.

2) Solve and obtain,
6" ¢« argmingen ¢ f1¥(x0,8) + B8]y + [10]3 +][x0 + 6 — AE(xo + 8) 3.

return 6" and §"°®. {Explanation: The input xo would still be classified
into class tg even if its feature values were (closer to base values as in) §°°°.
However, its class would change if it were perturbed (away from base values)
by ", i.e., if the input became xg + 6"®. Code at https://github.ibm,
com/tejaswinip/CEM }

respectively. To solve for PP, we propose the following problem formulation:

min c¢- fP%(xg,0) + Bl|xo+ 8 — b||1 + ||xo + I — b||§+ (1)
d€EApP

Yllxo + & — AE(xo + )| 3. (2)

The first term fP°%(xg, d) is a designed loss function that encourages the modified
example x = xg + d relative to the base value vector b, defined as x — b, to be
predicted as the same class as the original top-1 label ¢y = arg max;[Pred(xq)];.
The loss function is defined as:

fPo%(xq,8) = max{rgé&%x[Pred(xo +90)]; — [Pred(xo + 9)]t,, — <} (3)
0

The loss function fP® is a hinge-like loss and the term s > 0 controls the gap
between [Pred(xg+9)]:, and the other most probable class. In particular, the loss
attains its minimal value when [Pred(xo+9)], is x larger than max; 4, [Pred(xo+
8)];. The parameter ¢ > 0 (1)) is the regularization coefficient associated with fPo=.
The second and third terms in are jointly called the elastic-net regularizer [35],
which aids in selecting a set of highly relevant features from x — b, and the
parameter 8 > 0 controls the sparsity of the vector x — b. In other words, if the
i-th element of x — b is 0, this means the i-th is not significant for constituting

PP.
Optionally, an autoencoder also maybe learned on the data which could be

used to further direct the search so that we produce realistic or high probability
X.

3.2 Pertinent Negatives

Analogous to PP, for PN let Apy denote the space {d : |[xg +d — b| > |xo —
bl and xg + § € X}. To solve for PN, we propose the following problem
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formulation:

Soin e fi8(x0,8) + B8]l + [0]13 +vllxo + & — AB(xo + )2, (4)

where

f%8(x0,0) = max{[Pred(x¢ + 6)]s, — I_I;ng[Pl"ed(Xo +9))i, —K}. (5)
i#£tg

In other words, for PN, we aim to find the least modified changes in § € Apy,

evaluated by the elastic-net loss on 8, such that its addition to xy leads to a

different top-1 prediction from tg,

3.3 Method Details

We now describe the details of how the optimization of the above objectives is
implemented along with estimation and modeling of certain key aspects.

3.3.1 Optimization Procedure

If the gradient of the designed loss functions for PP and PN with respect
to § can be obtained, then one can readily apply We apply a projected fast
iterative shrinkage-thresholding algorithm (FISTA) [3] to solve problems (4] and
. However, in our black-box setting such gradient is inadmissible. We will
illustrate how to get around this problem in the following subsection.

Here we first illustrate how FISTA solves for PP and PN, assuming the
gradient is available. FISTA is an efficient solver for optimization problems
involving L; regularization. Take pertinent negative as an example, let g(d) =
fie8(xg,d) + ||6]|3 denote the objective function of (4) without the L; regular-
ization term. Given the initial iterate 6% = 0, projected FISTA iteratively
updates the perturbation I times by

8 = T, {85y — anVg(y ™)} ©)

k
(k+1) _ 11 (k+1) (k+1) _ s(k)
y APN{(s + k+3(5 o )}7 (7)

where IIa,, denotes the vector projection onto the set Apy, i is the step size,

y*) is a slack variable accounting for momentum acceleration with y(©) = 5(0),
and Sg : R? — R? is an element-wise shrinkage-thresholding function defined as

z; — B, ifz;>pB;
[Sp(z)]i =1 0, if [z;] < 5; (8)
z; + 5, ifz; <—p,

for any i € {1,...,d}. The final perturbation 8% for pertinent negative
analysis is selected from the set {J(k)}ézl such that f2°8(xo,8%)) = 0 and
k* = argmingeq,.. 1y 8101 + 16]|3. A similar projected FISTA optimization
approach is applied to pertinent positive analysis.



3.3.2 Gradient Estimation

In the black-box setting, in order to balance the model query complexity and
algorithmic convergence rate using zeroth-order optimization, in this paper we
use a two-point evaluation based gradient estimator averaged over ¢ different
random directions [8l/1920]. Specifically, given a scalar function f(-), its gradient
at a point x € R? is estimated by

-4y, (9)

@f(x):i fx+py) — f(x)

1 M

J

where {u;}_, is a set of i.i.d. random directions drawn uniformly from a unit
sphere, and x> 0 is a smoothing parameter.

The estimation error between V f(x) and the true gradient V f(x) can be
analyzed through a smoothed function f,(x) = Eyev, [f(x + pu)], where U, is
a uniform distribution over the unit Euclidean ball. Assume f is an L-smooth
function, that is, its gradient V f is L-Lipschitz continuous. It has been shown
in [20, Lemma 2] that V f(x) is an unbiased estimator of the gradient V f,(x),
i.e., Eq[Vf(x)] = Vf(x). Moreover, using the bounded error between f and fu
as specified in [20, Lemma 1], one can show that the mean squared error between
@f(x) and V f(x) is upper bounded by

Eu[IIV/(x) = V/(x)|3] <O <Q+qd> IVF)II3 + O(u*L*d?).  (10)

3.3.3 Determining Base Values

As mentioned before, ideally, we would want base values as well as allowed
ranges or limits for all features be specified by the user before running our
method to obtain contrastive explanations. This should in all likelihood provide
the most useful explanations. However, this may not always be feasible given
the dimensionality of the data and the level of expertise of the user. In such
situations we compute base values using our best judgment.

For real valued features, we set the base value to be the median value of
the feature. This without knowing anything more about the feature is possibly
the least interesting value for that feature. Moreover, medians are known to be
robust to outliers and are thus preferable to using means. They also are a point
estimate that has minimum L; error w.r.t. the values for that feature. Medians
also make intuitive sense where for sparse features 0 would rightly be chosen
as the base value as opposed to some other value which would be the case for
means.

For categorical features, we set the base value to be the mode or most
frequent value for that feature. Here again we hypothesize that a more uniquely
occurring value is probably more interesting to the user. For example in a dataset
containing health records most people will probably not have cancer and so
having cancer is something that should stand out as it indicates a state away
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Figure 2: Above we see a categorical feature taking three values A, B and C
with frequencies 11, 6 and 1 respectively as indicated on the vertical axis. Our
mapping function in equation [L1]| for FMA maps these frequencies and hence the
categorical values to 0, 0.5 and 1 in the [0, 1] interval. The red horizontal lines
depict the function h(.) showcasing the range of values that map back to either
A, BorC.

from the norm. Such states or behaviors we believe carry information that is
more likely to surprise the user and draw attention, which could be a prelude to
further actions.

3.3.4 Modeling Categorical Features

Given that categorical features do not impose an explicit ordering like real
features do along with the fact that only the observed values have semantic
meaning, there is a need to be model them differently than real features when
obtaining explanations. We now present two different strategies for handling
categorical features in our framework along with a formal interpretation of what
these strategies are actually accomplishing.

3.3.4.1 Frequency Map Approach (FMA)

In this approach we want to directly leverage the optimization procedure de-
scribed above where we need to define an ordered set/interval in which to find
the perturbations § for both PPs and PNs.

Mapping: As described above for categorical features we set the base value
to be the mode of the values that occur. Given this a natural ordering can be
created based on the frequencies of the different values. Thus, the least frequent
value would be considered to be the farthest from the base value. Based on this
we can map the k discrete values v;1, ..., v;; of the ith feature occurring with
frequencies/counts ¢;1, ..., ¢;;, to real values r;q, ..., r;, respectively in the [0, 1]
interval using the following mapping for any j € {1,...,k}:



Cmax — Cij
rii=— 11
* Cmax — 1 ( )
where cpax = max c¢;;. This maps the discrete value with the highest fre-

Je{1,....k}
quency to 0 making it the base value, while all other values with decreasing
frequencies lie monotonically away from 0. Every candidate value has to have a
frequency of at least 1 and so every discrete value gets mapped to the [0, 1] inter-

val. We divide by cpax — 1, rather than cpax — ¢min, where cpin = %nin 0 Cij
JE{l s,
since, we do not want values that occur with almost equal frequency to be pushed

to the edges of the interval as based on our modeling they are of similar interest.
For example, a feature may just have two values occurring with frequencies of 50
and 49. We want to be able to switch between these values easily when finding
PPs and PNs rather than mapping them to two ends of the interval i.e. 50 to
0 and 49 to 1. This is particularly important when we notice the fact that a
different categorical feature may have more extreme frequencies such as 50 and 10,
and we want to maintain this relative difference between features in our mapping.

Method and Interpretation: Based on equation we run our algorithm for
categorical features in the interval [0, 1], where every time we query the model
we round the x¢ + 6 to the closest 7;; so that a valid categorical value v;; can
be mapped back to and sent as part of the query input.

The question now is what are we exactly doing in the mathematical sense.
It turns out that rather than optimizing fP°®(xg,d) or fP°(xo,d), we are
optimizing f2°8(h(xo,d)) or fP°%(h(xo, d)) respectively, where h(.) is the identity
map for real features, that is f28(h(xo,d)) = f2°8(x0,d) and fP°%(h(x0,d)) =
fP%%(xq,d), but a step function defined over the [0, 1] interval for categorical
features. Let h;(.) denote the application of the function h(.) to the categorical
feature i. If x = xg + § and x; denotes the value of the feature in the mapped
[0, 1] interval then,

hi(X(),(S) = Vij, if |Xi — Tij| S |X1' — rim| VYm € {1, ,k} and m #] (12)

where |.| denotes absolute value. An example function h(.) is depicted in figure
where we see how the mapping occurs and how values in the [0, 1] interval are
mapped back to valid categorical values by rounding to the closest r;;.

3.3.4.2 Simplex Sampling Approach (SSA)

In this method of handling categorical variables, we will assume that a one-hot
encoding of the input. Let x = [xcxg| be the input feature vector where x¢
denotes the categorical part while xz denote the set of real features. Let there
be C' categorical features in total. Then for all c € [1: C],z. € [1 : d.] where
x. is the c-th categorical variable and it takes one of d. values. Note that we
imply no ordering amongst the d. values. Generically they are assumed to have
distinct integer values from 1 till d..



We assume that input x is processed into into X = [X¢Xg| where Xg = xp
while x¢ € R'™*Ileccde. And each component %, € R*4 is set to e;, the
canonical unit vector with 1 in the i-th coordinate, if . takes the value 1.

Now, we provide an interpretation when every categorical component c lies
in the d. dimensional simplex, i.e. when X, € A, . Here, Ay denotes the
N-dimensional simplex. The actual function can be evaluated only on the inputs
where each categorical component takes values from one of the corner points on
the simplex, namely e;, 7 € [1: d.]. Therefore, we interpolate the function when
X, is assigned a real vector in the simplex.

Let f(-) that captures the soft output of the classifier when the one-hot en-
coded categorical variables take the values at the corner points of their respective
simplices. Now, we extend the definition of f as follows:

f(Xexr]) = Ee,_~x., veer:o) [f(€iy;---€i 5. . €0, XR)]. (13)

Essentially, we sample the c-th unit vector from the distribution represented by
Xe € Ay, on the simplex independent of other categorical variable. The function
value value is the expected value of the functional evaluated on unit vectors
obtained from this product distribution along with the fixed real coordinates xpg.

When we perform the gradient descent as a part of algorithm [I} we actually
do a projected gradient descent for X in the product of simplices Ay, X ... A4, .
We cannot evaluate the function exactly, hence we can average over a certain
number of samples drawn from the product distribution for every function evalu-
ation on a candidate X.

3.3.4.2 Approach Tradeoffs

As such the SSA strategy has stronger theoretical grounding, however from
a practical standpoint it requires a lot of additional averaging through sampling
for every function evaluation along with repeated projections to the simplices
defined for every categorical feature during gradient descent to optimize the
objective in Algorithm [T}

Additionally, FMA can take more general format of inputs as they don’t need
to be one-hot-encoded which guards against further explosion of the feature space
which could potentially result from categorical features having many distinct
values.
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Figure 3: We see above a decision tree built for the German Credit dataset.

4 Experimental Results

Our initial results indicate that there is roughly 75% overlap between features
identified by our PPs and the relevant path of the points lying in that class.

Moreover, PNs show negative correlation with the true paths which makes
sense since changes to low level attributes will result in changes to the class in a
minimal sense. The PPs generally have positive correlation.

SM-3 SM-5 SM-7 SM-9
Standard 73.15(£ 0.7) | 75.78(£0.5) | 78.76(£0.35) | 79.9(£0.34)
ConfWeight 76.27 (£0.48) | 78.54 (£0.36) | 81.46(+0.50) | 82.09 (£0.08)
Distillation 65.84(+0.60) | 70.09 (£0.19) | 73.4(£0.64) | 77.30 (£0.16)
ProfWeight®°tU [ 77.52 (£0.01) | 78.24(£0.01) | 80.16(40.01) | 81.65 (£0.01)
ProfWeight*U® [ 76.56 (+0.62) | 79.25(£0.36) | 81.34(£0.49) | 82.42 (£0.36)

Table 1: Averaged accuracies (%) of simple model trained with various weighting
methods and distillation. The complex model achieved 84.5% accuracy. Weight-
ing methods that average confidence scores of higher level probes perform the
best or on par with the best in all cases. In each case, the improvement over
the unweighted model is about 3 — 4% in test accuracy. Distillation performs
uniformly worse in all cases.

5 Discussion

In this paper we provided a model agnostic black box explanation method
specifically tailored for structured data that is able to handle real as well
as categorical features in a meaningful manner. We see that our method is
quantitatively as well as qualitatively superior to other black box explainability
approaches in this regime.

In the future, we would like to extend our approach here to be applicable to
also unstructured data. In a certain sense, the current approach could be applied
to such data if it is already vectorized or the text is embedded in a feature space.
In such cases, although recovering a semantically correct sentence would be hard,
one could identify important words or phrases which a language model or human

11



could use as the basis for creating a valid sentence. In the text domain one could
also envision using sampling approaches developed in the multi-armed bandit
literature to produce meaningful explanations as an alternative to zeroth order
optimization as we have done for structured data.
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