
IBM CL/SuperSession for z/OS

SSPL Programming Guide
Version 2 Release 1

SC27-4589-00

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
119.

Second Edition (April 2018)

This edition applies to Version 2 Release 1 of IBM CL/SuperSession for z/OS (program number 5601-B28) and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality.

IBM welcomes your comments. For information about how to send comments, see “How to send your comments to
IBM” on page v.

© Copyright IBM Corporation 1993, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Read This First. v
How to send your comments to IBM v
Documentation Conventions vi

Introduction vi
Panels and figures vi
Revision bars vi
Variables and literals vi
Symbols vi

Chapter 1. Preparing to Use SSPL . . . 1
Accessibility 1
Overview 1

The need 1
The solution 1
What this guide offers 1
Architecture of CL/SuperSession 2

What Is SSPL? 3
Definition 3
Advantages. 3
Features 3

What Is an SSPL Dialog? 3
Definition 3
Dialog elements 3

Security 4
Introduction 4
Controlling access to CL/SuperSession product
elements 4
Controlling use of CL/SuperSession 4

Chapter 2. Using SSPL Dialogs. 7
Overview 7

Introduction 7
Preparing to use a dialog 7
Location of featured dialogs 7
Typographic conventions 8

Automated Logon 8
Introduction 8
Customization 8
Testing the dialog. 9
Testing the dialog in debug mode 9
KLSCILOG dialog 10

Application Termination 12
Introduction 12
Customization 12
Testing the dialog 13
KLSTERMD dialog 13

Group Profile Assignment 14
Introduction 14
Important 14
How it works. 15
Customization 15
Testing the dialog 15
KLSUDEF dialog 16
KLSSGRPS dialog 17

Variable Encryption. 19

Introduction 19
Customization 19
KLGLGONE dialog. 19
KLGVAL dialog 19

Pop-up Help 20
Introduction 20
Dialogs used 20
How it works. 20
Customization for testing 21
Testing the dialog 21
Creating your own help system 21
KLSCICLS dialog 22
KLSCETH dialog 26
Sample help dialogs 27

Application Blending 28
Introduction 28
Customization 28
Testing the dialog 29
KLSTSOCS dialog 30

Chapter 3. Implementing SSPL Dialogs 33
Documenting, Compiling, and Testing Dialogs. . . 33

Documenting your dialogs 33
Compiling your dialogs 33
Testing your dialogs 33

Storing and Installing Dialogs 34
Storing your dialogs 34
Installing and maintaining your dialogs 34

Troubleshooting 34
Introduction 34
LOG function. 34
Return codes 35
Dialog trace facility 35

Chapter 4. Defining a Dialog 37
Where the Dialogs Are Stored 37
Defining a Dialog 37
Defining SSPL 38

Placeholders 38
Functions 38
Statements. 39
Operators 39
Variables 39
Literals 40

Chapter 5. Managing Dialogs 41
Structuring a Dialog 41

Understanding Placeholders 41
Programming in SSPL 42

Compiling a Dialog. 43
Executing a Dialog 43
Documenting a Dialog. 45

)COMMENT Placeholder 45
Comment Delimiters 45

© Copyright IBM Corp. 1993, 2018 iii

Chapter 6. Planning a Dialog 47
Personal Computer Inventory System (PCIS) . . . 47
Designing the Panels 48

Coding Field Attributes 48
Defining Field Attributes 49

Using Variables 49
Defining Variables 50
Assigning an Alias 50
Referencing Variables 50
Evaluating Variables 50

Chapter 7. Beginning the Dialog 53
Programming the Invoking Dialog. 53
Coding the Logo Panel 56
Coding the Logon Panel 58

KLSZPLOG - Part 1 58
KLSZPLOG - Part 2 59
KLSZPLOG - Part 3 60
KLSZPLOG - Part 4 62
KLSZPLOG - Part 5 65

Chapter 8. Creating and Displaying a
Table 69
Using Tables 69

Table Functions 69
Table Variables 70

Creating the Table 70
KLSZPINA - Part 1 70
KLSZPINA - Part 2 71

Displaying the Table 74
KLSZPINB - Part 1 74
KLSZPINB - Part 2 76
KLSZPINB - Part 3 80
KLSZPINB - Part 4 81
KLSZPINB - Part 5 84
KLSZPINB - Part 6 86

Chapter 9. Managing a Table 89
Adding a Record 89

KLSZPINC - Part 1 89

KLSZPINC - Part 2 91
KLSZPINC - Part 3 91
KLSZPINC - Part 4 93
KLSZPINC - Part 5 96

Editing a Record. 97
KLSZPIND - Part 1 98
KLSZPIND - Part 2 99
KLSZPIND - Part 3 100
KLSZPIND - Part 4 101
KLSZPIND - Part 5 102

Deleting a Record 103
KLSZPINE - Part 1 103
KLSZPINE - Part 2 104
KLSZPINE - Part 3 105

Chapter 10. Creating an Error Routine 107
KLSZPERR - Part 1 107
KLSZPERR - Part 2 108
KLSZPERR - Part 3 110

Chapter 11. Programming Techniques 113
Making a Dialog Operational 113
Using Structured Programming 113
Copying Members into a Dialog 114
Making a Dialog Readable 114
Documenting Your Dialog 114

Using Comments 114
Using Naming Conventions 115

Debugging a Dialog 115
Displaying a Return Code 115
Managing Dialog Implementation 115

Chapter 12. Appendix A. Dialog
Naming Conventions 117

Notices 119
Trademarks 120

Index 121

iv SSPL Programming Guide

Read This First

About this document

The first part of this guide is designed for CL/SuperSession users who want to
learn the basics about using and customizing the dialogs provided with the
product.

You need no programming expertise, but a basic understanding of programming
concepts is helpful. This document assumes that you have already read the IBM
CL/SuperSession for z/OS V2.1 User's Guide and are familiar with CL/SuperSession.
You should also be familiar with the dataset naming conventions explained in the
IBM CL/SuperSession for z/OS V2.1 Program Directory and IBM CL/SuperSession for
z/OS V2.1 Configuration Guide.

The guide then goes into more advanced topics and describes how to create a
dialog using the Structured Session Procedure Language (SSPL), a programming
language.

The guide explains the elements of SSPL and the structure of a dialog. It shows
how to design and code several interrelated dialogs that create and manage an
inventory table. Techniques for programming and managing dialogs are also
provided.

The advanced topics are designed for users who are familiar with programming
and dialog implementation using a product such as the Interactive System
Productivity Facility (ISPF) from IBM.

Familiarity with the following CL/SuperSession documents is also recommended.
v Operator's Guide

v Dialog Language Reference Manual

v Problem Determination Guide

v Messages Manual

Familiarity with the IBM manual ISPF Dialog Management Guide and Reference is
also recommended. In addition, access to the following documentation for your
operating system environment may be helpful:
v IBM utilities
v IBM service aids
v 3270 programmer's reference

How to send your comments to IBM
Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this information or any other IBM®

CL/SuperSession for z/OS® documentation, contact us in one of these ways:
v Use the Online Readers' Comments Form at www.ibm.com/software/awdtools/

rcf/.
v Send your comments to the following address: comments@us.ibm.com.

© Copyright IBM Corp. 1993, 2018 v

http://www.ibm.com/software/awdtools/rcf/
http://www.ibm.com/software/awdtools/rcf/

Be sure to include the name of the document, the publication number, the version
of IBM CL/SuperSession for z/OS, and, if applicable, the specific location (for
example, the page number or section heading) of the text that you are commenting
on.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way that IBM believes appropriate without
incurring any obligation to you.

Documentation Conventions

Introduction
The following typographical conventions are used for command syntax in this
documentation.

Panels and figures
The panels and figures in this document are representations. Actual product panels
may differ.

Revision bars
Revision bars (|) may appear in the left margin to identify new or updated
material.

Variables and literals
In examples of command syntax, uppercase letters are actual values (literals) that
the user should type; lowercase letters are used for variables that represent data
supplied by the user. Default values are underscored.
LOGON APPLID(cccccccc)

In the above example, you type LOGON APPLID followed by an application identifier
(represented by cccccccc) within parentheses. The application identifier can have at
most eight characters.

Note: In ordinary text, variable names appear in italics.

Symbols
The following symbols may appear in command syntax.

Symbol Usage

| The 'or' symbol is used to denote a choice. Either the argument
on the left or the argument on the right may be used. Example:

YES | NO

In this example, YES or NO may be specified.

[] Denotes optional arguments. Those arguments not enclosed in
square brackets are required. Example:

APPLDEST DEST [ALTDEST]

In this example, DEST is a required argument and ALTDEST is
optional.

How to send your comments to IBM

vi SSPL Programming Guide

Symbol Usage

{ } Some documents use braces to denote required arguments, or to
group arguments for clarity. Example:

COMPARE {workload} -
REPORT={SUMMARY | HISTOGRAM}

Theworkload variable is required. The REPORT keyword must be
specified with a value of SUMMARY or HISTOGRAM.

_ Default values are underscored. Example:

COPY infile outfile -
[COMPRESS={YES | NO}]

In this example, the COMPRESS keyword is optional. If
specified, the only valid values are YES or NO. If omitted, the
default is YES.

b The symbol b indicates a blank space, when needed for clarity.

Symbols

Read This First vii

Symbols

viii SSPL Programming Guide

Chapter 1. Preparing to Use SSPL

Accessibility
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in CL/SuperSession enable users to:
v Use assistive technologies such as screen readers and screen magnifier software.

Consult the assistive technology documentation for specific information when
using it to access z/OS interfaces.

v Customize display attributes such as color, contrast, and font size.
v Operate specific or equivalent features using only the keyboard.

You can perform most tasks required to set up and run CL/SuperSession using a
3270 emulator logged on to TSO.

IBM Personal Communications for Windows provides 3270 emulation with
accessibility features for people with disabilities. You can use this product to
provide the accessibility features you need.

Overview

The need
Today's organizations require computer systems that serve diverse users, from the
most expert to the novice. Besides user friendliness, these systems must offer
improved efficiency and productivity. As always, system security is essential.

The solution
CL/SuperSession provides a tool that you can use to make your systems more
accessible to all types of users. The tool is called the Structured Session Procedure
Language (SSPL).

With SSPL you can customize CL/SuperSession menus and panels to suit the
needs of any user. You can also create panels and labor-saving routines, while
preserving the security of your system.

What this guide offers
This guide demonstrates the power of SSPL by walking you through some
example programs, called dialogs. These dialogs are used to introduce and explain
basic SSPL concepts and coding techniques.

The dialogs presented in this guide are designed to accomplish the following tasks:
v automate the logon to a CICS® application and initiate a transaction
v clean up after a disorderly termination
v automate the assignment of a user to a group profile
v encrypt a password
v create pop-up help windows formatted according to SAA/CUA standards
v blend data from various applications

© Copyright IBM Corp. 1993, 2018 1

After you read this guide and try out some of the dialogs, you will be equipped to
perform simple customization of IBM-supplied dialogs. If you want to learn more
about programming in SSPL (perhaps to write your own dialogs), see the following
CL/SuperSession document:
v Dialog Language Reference Manual

Architecture of CL/SuperSession
Before you learn more about SSPL, you may want to see where SSPL fits in with
CL/SuperSession.

SSPL is part of a CL/SuperSession component called the dialog manager. Among
other things, the dialog manager compiles SSPL dialogs and controls their
execution. The following figure illustrates the relationship of SSPL to
CL/SuperSession.

CL/SuperSession is written in SSPL and assembler code. You can use the SSPL
source code provided with CL/SuperSession to create and customize dialogs to
meet your requirements.

CL/SuperSession

CL/SuperSession Engine

Dialog Manager

S S P L

What this guide offers

2 SSPL Programming Guide

What Is SSPL?

Definition
Structured Session Procedure Language (SSPL) is a high-level language
programming interface. Much of CL/SuperSession is programmed in SSPL.

Advantages
SSPL programs save processing time because they are compiled only the first time
they are invoked; each subsequent usage of a program invokes the
already-compiled instructions.

You can also modify an SSPL dialog, and the compiled programming instructions
will be updated when you dynamically refresh the dialog or when you restart the
CL/SuperSession address space.

Features
Some of the SSPL features that speed the development of new applications and the
modification of existing ones are listed below:
v easy-to-learn syntax
v limitless variable generation
v arithmetic, algebraic, and Boolean operators
v dynamic string generation and manipulation
v assembler language exit support
v fully programmed simulation of 3270 keyboard activities
v VSAM (NAM and table database) read and write support
v partitioned dataset (PDS) read and write support
v table services similar to those in ISPF

What Is an SSPL Dialog?

Definition
A program written in SSPL is called a dialog. A dialog consists of a PDS member
(or a group of members) that is stored in the CL/SuperSession panel library. If the
dialog requires multiple members, they are chained together to perform a single
process.

Dialog elements
Each dialog can have as many as 10 sections. Each section begins with a
placeholder, such as)PROLOGUE.

Not every dialog uses all 10 placeholders. The program logic determines which
placeholders are required. The placeholders described below are only those used in
the sample dialogs discussed in Chapter 2. (You can find definitions of all 10
placeholders in the Chapter 5, “Managing Dialogs,” on page 41.)

Most dialogs have three main sections:

What Is SSPL?

Chapter 1. Preparing to Use SSPL 3

)prologue
Contains the statements that are executed before the BODY is displayed.
Also, any unnamed section of code is presumed by the system to belong to
the PROLOGUE.

)body Contains the layout of the panel or pop-up window. Omit this section if
your dialog involves no panel display.

)epilogue
Contains the logic that is executed after the display of the panel or pop-up
window, although it is not limited to this purpose. Terminal input can be
interrogated when the epilogue section is executed.

The other placeholders used in this document are described below.

)comment
Usually the beginning section, it is used to document the function,
conventions used, and other information about the dialog. It is good
practice to use a standard model for the comment block, such as the one
used in the sample dialogs.

)option
Sets various dialog options and is also used to set the SSPL syntax level.
(The sample dialogs in this guide use syntax level 1, which requires that
function arguments appear inside parentheses.)

)copy Specifies inclusion of a member of the panel library. The member is
logically copied into the current dialog when it is first executed or
refreshed.

)declare
Defines the scope of variables, that is, whether or not they are available to
dialogs other than the one that defines them.

Additionally, SSPL provides statements, functions, and operators for creating
applications. These are all fully documented in the Dialog Language Reference
Manual.

Security

Introduction
When we talk about CL/SuperSession and security, we have two distinct things in
mind.
1. Controlling user access to the elements of CL/SuperSession.
2. Controlling use of CL/SuperSession itself (including user access to your

VTAM® applications and controlling access to Host applications).

Controlling access to CL/SuperSession product elements
Like any system, CL/SuperSession depends on the integrity of its product
elements for proper operation. This includes, for example, the panel and command
libraries. Especially for your production system(s), IBM advises you to take steps
to protect the relevant system libraries from unauthorized modification.

Controlling use of CL/SuperSession
Logon access to CL/SuperSession can be controlled in either of two ways:
v CL/SuperSession's internal security mechanism

Dialog elements

4 SSPL Programming Guide

v an external security product, such as RACF®, CA-ACF2, or CA-TOP SECRET

Note: The Basic Configuration Guide and the Customization Guide contain
background information and instructions for establishing security.

Controlling use of CL/SuperSession

Chapter 1. Preparing to Use SSPL 5

Controlling use of CL/SuperSession

6 SSPL Programming Guide

Chapter 2. Using SSPL Dialogs

Overview

Introduction
This chapter walks you through several SSPL dialogs that are provided with
CL/SuperSession. Each example falls into one of the following categories:
v functional dialogs that require no modification; included to illustrate a particular

programming technique
v samples that require modification before they can be useful at a specific

customer site
v samples that were created to illustrate a programming technique; not intended

to perform a real-life function

The explanation and comments that accompany each dialog in this chapter help
you determine what, if any, actions you must take if you choose to use a particular
dialog.

Preparing to use a dialog
Always develop, modify, and test your dialogs on a part of your system that is
isolated from the daily processing activities of your company. This practice ensures
the integrity of the production system until the new dialogs are operational. You
can use the test system as a staging area for product maintenance.

Perform the following steps before you attempt to use any of this guides featured
dialogs in your production system.
1. Copy the desired member(s) from the appropriate dataset into the

-RHILEV-RLSPNLS dataset, where -RHILEV- represents the high-level qualifier
for your runtime libraries.

2. Reference the dialogs new location in the startup JCL. (See “Testing your
dialogs” on page 33 for instructions.)

3. Customize the member as needed. Use the comments in the member and the
information in this guide to help you determine what changes are necessary.

4. Document your modifications. (See “Documenting your dialogs” on page 33)
5. Compile the dialog. (See “Compiling your dialogs” on page 33)
6. Test the dialog. (See “Testing your dialogs” on page 33.)
7. Repeat steps 5 and 6 until the dialog functions satisfactorily.
8. Store and install the dialog. (See “Storing and Installing Dialogs” on page 34)

Location of featured dialogs
The dialogs presented in this chapter are located in the PDS members listed in the
following table.

Dialog
Type Location Function

Automated
logon

SKLSSAMP(KLSCILOG) Automates a logon sequence to a CICS
system using CA-ACF2.

© Copyright IBM Corp. 1993, 2018 7

Dialog
Type Location Function

Application
termination

SKLSSAMP(KLSTERMD) Provides logic to exit from CICS in a
controlled manner.

Group
profile

SKLSPNLS(KLSUDEF)
SKLSPNLS(KLSSGRPS)

Assigns a group profile based on user
ID.

Variable
encryption

SKLSPNLS(KLGLGONE)
SKLSPNLS(KLGVAL)

Encrypts the contents of a variable.

Pop-up
help

SKLSSAMP(KLSCICLS)
SKLSSAMP(KLSCETH)

Provides customized help for a
pop-up window.

Application
blending

SKLSSAMP(KLSTSOCS) Demonstrates data access across
applications.

Typographic conventions
In this document, SSPL statements appear in bold type. Dialog comments appear
in italics.

Automated Logon

Introduction
The sample dialog KLSCILOG automates your logon to CICS and initiates a
transaction. KLSCILOG uses a "find string" dialog, KLSFNSTR, which automates
the search for a string in the application buffer. The KLSFNSTR dialog uses the
KLSPARSE dialog to parse the control information passed from KLSCILOG into
separate parameters.

You can copy KLSCILOG to help you set up automated logons to other
applications as well. (Only KLSCILOG is presented in this document. You can find
the related dialogs in SKLSSAMP.)

Note: This dialog assumes that you use CA-ACF2 as your external security
package.

Customization
1. Copy KLSCILOG, KLSFNSTR, and KLSPARSE from SKLSSAMP to RLSPNLS.
2. In KLSCILOG, find the section that begins with the heading ENTER_TRAN. In this

section you will see the following statement:
VSSTYPE(&sid TRNX)

3. Change TRNX to the name of a CICS transaction used at your site.
4. Find the following statement a few lines below:

if (dialog klsfnstr ’&sid,YOUR SEARCH TEXT,=,10,x’)

5. Delete the words YOUR SEARCH TEXT and substitute some identifying text from
the panel that is first displayed when your selected transaction is executed. (For
example, you could enter the panel title.)
This allows the dialog to verify that it has found the correct panel.

6. Perform one of the following actions to update the CICS application definition:
v Use the APPLDEF INITDLG parameter to specify KLSCILOG as the logon

dialog for CICS. (See the Basic Configuration Guide for instructions on
updating APPLDEF.)

Location of featured dialogs

8 SSPL Programming Guide

v Access the Modify a Session Definition panel for CICS and specify
KLSCILOG as the logon dialog (requires Maintain Customized Menu
authority).

Testing the dialog
After you perform steps 1-5 described in “Preparing to use a dialog” on page 7,
you can test the dialog.

Note: To test this dialog, you must use CA-ACF2 as your external security
package.
1. Log onto CL/SuperSession.

Result: The CL/SuperSession Main Menu appears.
2. Select CICS.

Result: You are logged onto CICS, and the panel for the selected transaction
appears.

Testing the dialog in debug mode
You can also test the KLSCILOG dialog in debug mode, which allows you to see
diagnostic information. When you log onto CICS with debug mode enabled, a
pop-up window will overlay the CL/SuperSession Main Menu during the logon
process and display the diagnostics. Pressing Enter will display all available
information.

To use this feature, perform the following steps before testing the dialog.
1. Copy dialog KLSDSPRM from SKLSSAMP to RLSPNLS.
2. Modify the first instruction in the prologue of KLSFNSTR by changing

set $debug$ ’’

to
set $debug$ ’3’

For an explanation of the values you can use with $debug$, see the KLSDSPRM
dialog.

Note: To enable this change to KLSFNSTR, you must refresh the dialog.

After testing is complete, you can disable debug mode by changing set $debug$
’3’ to set $debug$ ’’ and refreshing the dialog.

Customization

Chapter 2. Using SSPL Dialogs 9

KLSCILOG dialog
)COMMENT

Member:
KLSCILOG

Function:
Sample initial or LOGON dialog. This example performs
an automated LOGON to CICS in a CA-ACF2 environment.
It also clears the screen and issues a transaction.

Conventions:
All variables are declared.

Special notes:
To implement this dialog as the initial dialog for the
application, either add it to the applications APPLDEF, or
add it online by accessing the ’modify a session definition’
screen available to authorized users by typing an ’M’ next
to the application.

Installation procedure:
Copy this dialog into RLSPNLS. Also,
see special notes.

Called from:
The LOGON process.

System variables:
None.

Session variables:
vssuser,vsspswd

Shared variables:
sysparm, sysrc

Local variables:
rc, sid

Major commands:
VSSTYPE,VSSKEY

KLSCILOG dialog

10 SSPL Programming Guide

)OPTION LEVEL(1) * set syntax level
)COPY KLSSDCL
sysparm scope(shared) * session ID input parameter
sysrc scope(shared) * shared return code
rc scope(local) * local return code
sid scope(local) * session ID

)INIT
set sid &sysparm /* save session ID */

/*
The following compound statement calls dialog KLSFNSTR to look
in the application buffer for the find string provided
(LOGONID:). The ’IF’ statement evaluates the return code. If
the return code is greater that zero, the ’CONTINUE’
statement is executed, causing a branch directly to the
PROLOGUE section, where an error message is written out. If
the return code is zero, processing resumes at the next
instruction after the ’CONTINUE’.

*/

if (dialog KLSFNSTR ’&sid,LOGONID:,=,10,x’) /* signon screen ? */
continue /*no write warning msg*/

vsstype(&sid ’&vssuser’) /* yes enter userid */
vsskey(&sid TAB) /* tab once */
vsstype(&sid (encdec(’&vsspswd’))) /* enter password */
vsskey(&sid ENTER) /* press enter */

if (dialog KLSFNSTR ’&sid,SIGNON COMPLETED:,=,10,x’) /* signon ok?*/
continue /*no write warning msg*/

vsskey(&sid CLEAR) /* clear the screen */
/*

To check that the CLEAR did clear the screen, look for the
same text as before. If it is gone, proceed to enter the
transaction. If it is still there, continue to the prologue
for an error message.
*/

if not (dialog KLSFNSTR ’&sid,SIGNON COMPLETED:,!,0,x’) /* clear?*/
continue /*no write warning msg*/

KLSCILOG dialog

Chapter 2. Using SSPL Dialogs 11

ENTER_TRAN:

vsstype(&sid TRNX) /* enter transaction */
vsskey(&sid ENTER) /* press enter */

/*
The next call to dialog KLSFNSTR will look for specific text in
your application screen. Modify the instruction to include your
actual text.

*/

if (dialog KLSFNSTR ’&sid,YOUR SEARCH TEXT,=,10,x’) /*found text? */
continue /*no write warning msg*/

/*
This dialog now returns control back to the user, displaying
the selected transaction screen. If desired, this dialog may
be further developed to provide input to that screen so
successive screens may be accessed, and so on.

*/

return

/*
The PROLOGUE section calls standard message services to display
the message. This section only executes if an error was
recognized in the previous section.

*/

)PROLOGUE
set rc &sysrc
dialog KLSMSGBL ’USERERR1,Y,P, Logon script failed for application:-

&sid:-
Unable to find panel in alloted time:-

RC=&rc

Application Termination

Introduction
A dialog script is sometimes needed when the application termination process does
not properly clean up the session (that is, it leaves some portion of the user ID or
session active for that application). This happens most frequently with IMS™ and
CICS sessions.

Note: This situation is usually handled by the standard VTAM LOSTERM exit. The
dialog described in this section executes a clean exit on the rare occasions when
LOSTERM is not sufficient.

Customization
1. Copy KLSTERMD from SKLSSAMP to RLSPNLS.
2. In the dialog, find the following SSPL statement:

If ’substr(&sysparm,0,4)’ ne ’CICS’

3. Change CICS to the first four characters of your CICS session ID. (Make no
change if your session IDs first four characters are CICS, as in the sample
dialog.)

4. Perform one of the following actions to update the CICS application definition:
v Use the APPLDEF TERMDLG parameter to specify KLSTERMD as the

termination dialog for CICS. (See the Basic Configuration Guide for instructions
on updating APPLDEF.)

KLSCILOG dialog

12 SSPL Programming Guide

v Access the Modify a Session Definition panel for CICS and specify
KLSTERMD as the termination dialog (requires Maintain Customized Menu
authority).

Testing the dialog
After you perform steps 1-5 described in “Preparing to use a dialog” on page 7,
you can test the dialog.
1. Log onto CL/SuperSession.
2. Establish a CICS session.
3. Return to the main menu. (Use the \m trigger.)
4. Type T in the space next to the CICS selection.

Result: The termination dialog executes, and the CICS application terminates.

KLSTERMD dialog
The following example was constructed for a CICS application. The dialog first
verifies that the first four characters of the session ID are CICS . If so, it enters the
keystrokes that will result in a clean logoff.

)COMMENT

Member:
KLSTERMD

Function:
Proper session clean-up for CICS applications.

Conventions:
None.

Special notes:
Upon entry, variable &SYSPARM will contain the session-id
of the application being processed.

Installation procedure:
1) Copy dialog into RLSPNLS
2) Modify for application characteristics
3) Specify name in APPLDEF TERMDLG parameter, or modify

online via the "modify a session definition" screen,
available to authorized users by entering an ’m’ next
to the session ID.

Called from:
Termination procedure.

System variables:
None.

Session variables:
None.

Shared variables:
Sysparm.

Local variables:
None.

Major commands:
VSSKEY,VSSWAIT,VSSTYPE

Customization

Chapter 2. Using SSPL Dialogs 13

Copy files:
None.

Messages:
None.

)OPTIONS LEVEL(1) * set syntax level

)DECLARE
sysparm scope(shared) * declare input variable

)PROLOGUE

/*
The &SUBSTR SSPL string function checks the variable &SYSPARM
(session-id) starting at relative position ð (first character)
for a length of 4 to see if it matches the specified literal.
If not, control is immediately passed back to the calling dialog.

*/

If ’&substr(&sysparm,0,4)’ ne ’CICS’ /* session-id start w/ CICS? */
return /* no - return to caller */

/*
Having verified the proper application, the actual logoff
script begins.

*/

VSSKEY(&sysparm ’PF3’) /* issue PF3 to end transaction */
VSSWAIT(&sysparm 10 9 1) /* wait for cics to acknowledge */

/* OR 10 seconds. */
VSSKEY(&sysparm ’CLEAR’) /* issue a CLEAR key */
VSSWAIT(&sysparm 10 3 1) /* issue a wait for 10 secs. */

/* or incoming message */

VSSTYPE(&sysparm ’CSSF LOGOFF’) /* type logoff transaction */
VSSKEY(&sysparm ’ENTER’) /* issue an ENTER key */
VSSWAIT(&sysparm 10 4) /* issue a wait for 10 secs. */

/* or session end */
return /* return to caller */

Group Profile Assignment

Introduction
CL/SuperSession has the capability of associating a set of users with a profile
definition that applies just to those users. If, for example, you wanted to assign
printer PRT1 to be the printer to receive screen prints for the payroll programmers,
you could add the printer assignment just once to a group definition.

For instructions on creating group profiles (including establishing printer
assignments), see the Basic Configuration Guide.

There are two ways to assign a group profile to a user:
v Use the User Common Profile Segment panel.
v Use the dialogs described in this section: KLSUDEF and KLSSGRPS.

Important
If a users group profile is assigned using these dialogs, the assignment is
re-evaluated by the dialogs each time that user logs onto CL/SuperSession. Thus,
any logic changes in KLSSGRPS may change or nullify the assignment.

KLSTERMD dialog

14 SSPL Programming Guide

If you use the User Common Profile Segment panel to assign a group profile, the
assignment is unaffected by any changes in KLSSGRPS. It can be changed only by
modifying the assignment on the panel.

How it works
The process is as follows:
1. During user logon, dialog KLSUDEF is executed.
2. KLSUDEF looks for a group profile assignment for the user ID of the user who

is logging on.
3. One of the following happens:
v If an assignment has been entered on the User Common Profile Segment

panel, the logon process continues without changing the assignment.
KLSSGRPS is not called.

v If an assignment has not been entered on the User Common Profile Segment
panel, KLSUDEF calls KLSSGRPS.

4. If KLSSGRPS finds a prefix that matches the user ID, it assigns a group profile
to the user ID.

5. KLSUDEF regains control and sets the flag that indicates that the group profile
assignment was made by KLSSGRPS.

6. The user now has access to all the options set for that group profile (including,
for example, the PRT1 printer assignment).

Note: KLSSGRPS, as it is shipped, simply returns control to KLSUDEF. No
assignment is made.

Customization
1. Copy KLSSGRPS from SKLSPNLS to RLSPNLS.
2. In KLSSGRPS find the SET GROUPS statement.
3. Change the first value in parentheses to an actual user ID substring. For

example, if you have a group of user IDs that begin with RCDD, change
P(CSTSPY) to P(RCDD).

4. Change the second value in parentheses to an actual group ID. For example, if
you want to assign all RCDD user IDs to a group called ADMIN, change
G(TECHGRP1) to G(ADMIN). This results in a line that looks like this:

P(RCDD) G(ADMIN) -

5. Continue changing user ID substrings and group profile IDs as necessary.

Testing the dialog
After you perform steps 1-5 described in “Preparing to use a dialog” on page 7,
you can test the dialog.
1. Using an Administrator ID, log onto CL/SuperSession.
2. Access the User Common Profile Segment panel. (See the User's Guide if you

need assistance.)
3. Delete the value in the Group Profile Name field. (This is necessary to

demonstrate that, during your next logon, the dialog assigns the appropriate
profile ID.)

4. Log off CL/SuperSession.
5. Log onto CL/SuperSession.
6. Access the User Common Profile Segment panel.

Important

Chapter 2. Using SSPL Dialogs 15

7. Check the Group Profile Name field to verify that the correct profile was
assigned during logon.

KLSUDEF dialog
The dialog KLSUDEF is supplied in the base product; it requires no modifications
for this functionality. Therefore, it is displayed in an abbreviated format, showing
only the relevant lines of code:

)COMMENT

Member:
KLSUDEF

Function:
Sets user defaults and authorizations.

)PROLOGUE

set vspdflt ’&vupdflt’ /* save user’s default group */
set holddflt ’&vspdflt’ /* save current group name */

/* in local variable */

if (’&length(’&vspdflt’)’) > 8 /* current group prof. derived */
/* from KLSSGRPS? */

set vspdflt ’’ /* yes, blank it out */
if &vspdflt = ’’ or ’&vspdflt’ = ’N/A’ /* no valid assignment? */

do /* yes */
set vspdflt ’’ /* Ensure vspdflt is null */
if (ISDIALOG(’KLSSGRPS’)) do /* does Dialog KLSSGRPS exist? */

dialog ’KLSSGRPS’ /* yes, call it. */

Testing the dialog

16 SSPL Programming Guide

KLSSGRPS dialog
)COMMENT

Member:
KLSSGRPS

Function:
To provide users with a customizable exit to set the user’s
group profile dynamically. The example provided shows how to
set the user’s group profile based on the logon ID prefix. Calls
to external security exits to set the group profile may be done
here also.

Conventions:
None.

Called from:
KLSUDEF

System variables:
None.

Session variables:
VSSUSER,VIGUSER,VSPDFLT

Shared variables:
None.

Local variables:
groups,cntr,prefix,check,startg,endg

Major commands:
LENGTH, INDEX, FOLD, SUBSTR

Copy files:
KLSSDCL

Messages:
None.

)OPTIONS LEVEL(1) * set syntax level

)COPY KLSSDCL /* declare session variables */

KLSSGRPS dialog

Chapter 2. Using SSPL Dialogs 17

)DECLARE
groups scope(local) * These variables, local
cntr scope(local) * to this dialog, will
prefix scope(local) * have their values
check scope(local) * automatically set to
startg scope(local) * ’’ (null) when the
endg scope(local) * dialog is entered.

)PROLOGUE
/* If &vspdflt passed from KLSUDEF is NULL, set group profile
based on userid prefix. The &groups variable is set to a
string of userid prefix and group name pairs. Each pair has
the following format:

P(prefix) G(groupname)

The prefixes are in descending length order so that the longest
matching prefix will be found and its corresponding group name
will be assigned.

NOTE:
To use this dialog, customize the groups assignment to specify
your userid prefixes and group names.

*/

RETURN /* this ’return’ statement should be
deleted to implement this dialog */

if &vspdflt /* if &vspdflt is already set, return */
return

if !&vssuser /* make sure userid is set */
set vssuser ’&viguser’ /* CL/SuperSession variables */

if !&vssuser /* if userid has no value, return */
return

SET GROUPS ’P(CSTSPY) G(TECHGRP1) -
P(CSTSSY) G(TECHGRP2) -
P(CSTS) G(TECHGEN) -
P(CSOPSU) G(OPSGRP1) -
P(CSOP) G(OPSGEN) -
P(IDCI) G(ISDCOMI) -
P(IDCC) G(ISDCOMC) -
P(ID) G(ISCOMMON)’

set groups (FOLD ’&groups’) /* set groups to uppercase */
set vssuser (FOLD ’&vssuser’) /* make sure userid is uppercase */
set cntr (LENGTH ’&vssuser’) /* set to length of userid */

KLSSGRPS dialog

18 SSPL Programming Guide

/* The following DO / UNTIL loop checks to see if the userid
matches one of the above prefixes. The userid is decremented
by one character from the end until either a match is found
or there are no characters left.

*/

do
set prefix ’&substr(’&vssuser’,0,&cntr)’ /* save part of userid */
set prefix ’P(&prefix.)’ /* add P() around it */
set check (INDEX(’&groups’ ’&prefix’)) /*check for match in groups*/
set cntr &cntr-1 /* decrement counter */

until (&check >=0 or &cntr <=1)

/* if successful, &check will contain offset of prefix found */

if &check > 0 /* found match? */
do /* yes */
set groups ’&substr(’&group;’,✓’ /* set to start of prefix*/
set startg (INDEX(’&groups’ ’G(’)) /* find start of group */
set groups ’&substr(’&groups’,&startg)’ /* set to start of group */
set endg (INDEX(’&groups’ ’)’)) /* find end of group */
set endg &endg-2 /* subtract for correct length */
set vspdflt ’&substr(’&grous;’,2,&endg)’ /* set vspdflt to group */

end
return /* return to caller */

Variable Encryption

Introduction
CL/SuperSession provides a function called ENCDEC, which encrypts the contents
of a variable, a user password, for example. Encryption converts a value to an
unrecognizable set of characters. To return the value to its original state, the
ENCDEC function is used again.

This section demonstrates an application of the ENCDEC function by showing you
how it is used in the KLGLGONE and KLGVAL dialogs, which CL/SuperSession
uses during entry validation.

Customization
KLGLGONE and KLGVAL are fully functional when you install CL/SuperSession.
No customization is necessary.

KLGLGONE dialog
When a user enters a password on the CL/SuperSession entry validation panel, the
password value is received by KLGLGONE. The dialog handles the value in the
following way:

set vigpswd fold(LJUST(’&vigpswd’ 8)) /* left justify password */
set i (INDEX(’&vigpswd’,’ ’)) /* check for blank and */
if &i >= 0

set vigpswd (SUBSTR(’&vigpswd’,0,&i)) /* correct length */

set vigpswd ’&encdec(’&vigpswd’)’ /* encrypt the password */

KLGVAL dialog
Following the processing shown above, KLGVAL receives control and saves the
data elements concerning logon into a CL/SuperSession control block:

KLSSGRPS dialog

Chapter 2. Using SSPL Dialogs 19

VIGELEM(userid,put,’&viguser’) /* store CL/SuperSession element */
VIGELEM(password,put,’&vigpswd’) /* store CL/SuperSession element */
VIGELEM(newpswd,put,’&vignpswd’) /* store CL/SuperSession element */
VIGELEM(group,put,’&viggroup’) /* store CL/SuperSession element */
VIGELEM(acct,put,’&vigacct’) /* store CL/SuperSession element */
VIGELEM(proc,put,’&vigproc’) /* store CL/SuperSession element */

When CL/SuperSession does the security validation to complete the logon,
KLGVAL issues the ENCDEC function again to decrypt the password and new
password data elements before the parameters are passed to the VALIDATE
function. VALIDATE may result in a call to an external security package.

if (set rc
(VALIDATE(’&viguser’ /* perform validation */

’&encdec(’&vigpswd’)’
’&encdec(’&vignpswd’)’
’&viggroup’
’&vigacct’
’&vigproc’))) ne &0 do

Pop-up Help

Introduction
If you have applications that have inadequate online help systems, this set of
sample dialogs can help you make the applications more user friendly through the
creation of your own online help panels. This results in an easier learning curve
and greater productivity.

To demonstrate this function, this example uses a simple CICS transaction, CEOT,
which displays information about terminal characteristics. Two sample help panels
are provided to allow you to test this dialog.

Dialogs used
The dialogs used in this example are the following:

KLSCICLS
Logs onto CICS, initiates a transaction, and establishes a help trigger.

KLSCETH
Identifies the field for which help is requested.

KLSSHELP
Performs standard help services, including calling the appropriate help
members.

KLSCTHP
Contains sample help text for the PAGE/AUTOPAGE field.

KLSCTHPI
Contains sample help text for the ATI/NOATI field.

How it works
The first dialog in the process, KLSCICLS, is similar to the logon dialog
(KLSONDLG) described earlier in this guide, in that it also automates a logon as
part of its function. The steps below summarize the process:
1. KLSCICLS logs onto CICS.

KLGVAL dialog

20 SSPL Programming Guide

2. KLSCICLS establishes a trigger (in this example, the PF1 key) to access
customized pop-up help panels.

3. When the user invokes the trigger, KLSCETH is called.
4. KLSCETH determines which field the cursor is in and calls KLSSHELP.
5. KLSSHELP displays the help panel that corresponds to the field.

Customization for testing
1. Copy all the dialogs listed under “Dialogs used” on page 20 from SKLSSAMP

to RLSPNLS.
2. In KLSCETH, find the following SSPL statement:

if (&sess ne ’CICSSS’)

3. Change CICSSS to your CICS session ID.
4. Perform one of the following actions to update the CICS application definition:
v Use the APPLDEF INITDLG parameter to specify KLSCICLS as the logon

dialog for CICS. (See the Basic Configuration Guide for instructions on
updating APPLDEF.)

v Access the Modify a Session Definition panel for CICS and specify
KLSCICLS as the logon dialog (requires Maintain Customized Menu
authority).

Testing the dialog
After you perform steps 1–5 described in “Preparing to use a dialog” on page 7,
you can test the dialog.

Note: To test this dialog, you must use CA-ACF2 as your external security
package.
1. Log onto CL/SuperSession.

Result: The CL/SuperSession Main Menu appears.
2. Select CICS.

Result: You are logged onto CICS and the panel for the CEOT transaction
appears.

3. Press the Tab key to move the cursor to the PAGE/AUTOPAGE field.
4. Press PF1.

Result: The corresponding help panel is displayed.
5. Press the Tab key again to move the cursor to the ATI/NOATI field.
6. Press PF1.

Result: The corresponding help panel is displayed.

Creating your own help system
If you want to use the dialog as a basis for your own online help system, perform
the following steps.
1. If you do not want to use PF1 as your help key, select your own trigger and

code it in KLSCICLS. (For more information about triggers, see the User's
Guide.)

2. In KLSCICLS and KLSCETH, search for references to CEOT and change each
reference to the name of the transaction for which you are creating help panels.

3. In KLSCETH, code the exact location of each field that will have pop-up help.
4. Create a member for each help panel and enter the help text. (You can use

KLSCTHP and KLSCTHPI as models for the creation of your help members.)

How it works

Chapter 2. Using SSPL Dialogs 21

KLSCICLS dialog
)COMMENT

Member:
KLSCICLS

Function:
This dialog performs an initial LOGON to CICS and, if
successful, establishes a trigger to access customized
pop-up help screens.

Conventions:
All variables are declared.

Special notes:
This dialog is intended to automate the LOGON to CICS in a
CA-ACF2 environment. To specify this dialog as the initial
dialog, either add it to the application’s APPLDEF, or add
it online by accessing the ’modify a session definition’
screen available to authorized users by typing an ’M’ next
to the application.

Installation procedure:
Copy this member to RLSPNLS. Also, see Special
notes.

Called from:
The application LOGON process.

System variables:
None.

Session variables:
VSSUSER,VSSPSWD as declared in KLSSDCL

Shared variables:
sysparm

Local variables:
sid, dparm, dparm1, dparm2, dparml, loop#, rc1, retries

Major commands
VSSKEY, VSSWAIT, VSSFIND, VSSTYPE, SUBSTR, INDEX

Copy files:
KLSSDCL

KLSCICLS dialog

22 SSPL Programming Guide

Messages:
two error messages to TLVLOG:
’No variables passed to CICLS2’
’CICLS2 unable to find ______ userid=user’

)OPTION LEVEL(1) * set SSPL syntax level 1
)DECLARE
sid scope(local) * variable for session ID
dparm scope(local) * variable for passed parameter
dparm1 scope(local) * variable for sub parameter 1
dparm2 scope(local) * variable for sub parameter 2
dparml scope(local) * variable for length calculations
loop# scope(local) * loop counter
rc1 scope(local) * variable for the return code
retries scope(local) * counter for VSSFIND loop
sysparm scope(shared) * input parameter
)COPY KLSSDCL * copy session variables

)PROLOGUE
set sid ’&sysparm’ /* save passed session ID */
/*

Set search argument, and retry count. The CICS application
buffer should contain the CA-ACF2 signon screen.

*/

set dparm ’CICS/VS - ACF2,5’
call cicls2 /* call our subroutine */
if &sysrc > 0 /* zero return code ? */

return /* no, return */
vsstype(&sid ’&vssuser’) /* yes, enter USERID */
vsskey(&sid tab) /* tab to next field */
vsstype(&sid (encdec(’&vsspswd’))) /* enter PASSWORD */
vsskey(&sid enter) /* press enter */
set dparm ’ACFAE139,5’ /* search for successful signon msg */
call cicls2 /* call our subroutine */
if &sysrc > 0 /* zero return code? */

return /* no, return */
vsskey(&sid clear) /* yes,clear screen */
vsswait(&sid 5 1) /* wait for keyboard reset */
vsstype(&sid ’CEOT’) /* put transaction name in buffer */
vsskey(&sid enter) /* press enter */
vsswait(&sid 5 8) /* wait for data to reach buffer */

KLSCICLS dialog

Chapter 2. Using SSPL Dialogs 23

/*
Define our trigger. Dialog KLSCETH will get control whenever
PF1 is pressed.

*/

vsstrig(pf1 ’’ klsceth)

return /* initial logon complete - return */
/*

This subroutine expects to receive a passed parameter of the
format: parm1,parm2,parm3,...parmn. The logic is coded with
the capability that the individual parms between the commas
will be stored in ascending variables dparm1,dparm2,...dparmn.
Two sub-parms are actually passed to this routine: where:
parm1 = the character string to search the application buffer
for, and parm2 = the amount of times we will try the
VSSWAIT/VSSFIND operation.

*/

CICLS2:
set rc1 1 /* set default return code */
if &dparm eq ’’ /* no value passed? */
do /* yes */

log(’No variables passed to cicls2 .’) /* LOG error msg. */
return &rc1 /* return to caller with bad return code */

end

set loop# 0 /* initialize counter */
/*

The logic is repeated between the DO and its corresponding
END for as long as the WHILE condition is true.

*/

while &dparm ne ’’ /* dparm not equal to null? */
do /* yes */

set loop# &loop# + 1 /* increment counter */

/*
Use the INDEX function to see if the passed parameter
contains a comma. If yes, variable dparml is set to the
position. Else it is set to -1.

*/

KLSCICLS dialog

24 SSPL Programming Guide

if (set dparml (index(’&dparm’ ’,’))) eq (neg 1) /* comma found?*/
do /* no */

set ’dparm&loop#’ &dparm /* set DPARMn to rest of */
/* string */

set dparm ’’
end

else
do /* yes */

/*
This command extracts the individual parm from the total
string by using the SUBSTR (substring) function. It is
stored in variable DPARMn (where ’n’ is substituted by the
value of ’loop#’).

*/

set ’dparm&loop#’ (substr(’&dparm’ 0 ’&dparml’))

set dparml &dparml + 1 /* increment the position */
/*

Shorten the original passed string to remove the previously found
parm.

*/
set dparm (substr(’&dparm’ ’&dparml’))

end
end

set retries 0 /* initialize retry counter */

/*
The logic is repeated between the DO and its corresponding
UNTIL as long as the UNTIL condition is true.

*/

do

/*
VSSWAIT suspends the dialog until certain events relating to
the application session have occurred. This is to synchronize
the logic in the dialog with the right screen image in the
virtual buffer. The command below specifies that we should
wait for 4 seconds OR until the application sends a
datastream and clears the keyboard. &sid holds the name of
our CICS system.

*/

vsswait(&sid 4 9 1)

/*
VSSFIND now checks to see if the buffer contains the parm
info that we passed to this dialog, held in variable dparm1.
A successful ’find’ is indicated by return code zero.

*/
set rc1 (vssfind(&sid ’&dparm1’))
set retries &retries + 1 /* increment the retry cntr. */

/*
If VSSFIND found the string, this loop will be exited. If
not, the DO/UNTIL loop will be retried until the amount of
retries is equal to the contents of dparm2.

*/

until &rc1 = 0 or &retries = &dparm2

if &rc1 > 0 /* vssfind unsuccessful ? */
log(’cics failed to find &dparm1 userid=&vssuser’)/* log error msg*/

return &rc1 /* return, and pass return code to caller */

KLSCICLS dialog

Chapter 2. Using SSPL Dialogs 25

KLSCETH dialog
)COMMENT

Member:
KLSCETH

Function:
Provide pop-up help for CEOT transaction.

Conventions:
All variables are declared.

Special notes:
This dialog receives control whenever PF1 is pressed from
the foreground session. The logic checks to see that we
are in the right application and the right transaction
before proceeding. This dialog is defined as a trigger in
dialog KLSCICLS.

Installation procedure:
Copy this member to RLSPNLS.

Called from:
PF1 trigger.

System variables:
None.

Session variables:
None.

Shared variables:
None.

Local variables:
sess,cicrow,ciccol,rc

Major commands:
VSSINFO, VSSFIND, VSSROW, VSSCOL, VSSKEY

Copy files:
KLSATTRS

Messages:

KLSCETH dialog

26 SSPL Programming Guide

)OPTION LEVEL(1) * set syntax level 1

)COPY KLSATTRS * copy standard display attributes

)DECLARE
sess scope(local) * cics session ID
cicrow scope(local) * current row
ciccol scope(local) * current column
rc scope(local) * return code
/*
**
* The execution logic follows. Because this trigger will get *
* control whenever PF1 is pressed, regardless of the originating *
* application, we must quickly disqualify any other applications *
* and pass the PF1 to them directly. *
**
*/

)PROLOGUE
set sess (VSSINFO(’FOREGRID’)) /* get foreground session id */

if (&sess ne ’CICSSS’) /* is it CICSSS ? */
do /* no, just pass PF1 to */

vsskey(&sess ’PF1’) /* application */
return

end
/* it is CICSSS, proceed */

set cicrow (vssrow(&sess)) /* save current row and */
set ciccol (vsscol(&sess)) /* column */

/*
Use VSSFIND to search the buffer for the string ’CEOT SYNTAX:’

*/

set rc (vssfind(&sess ’CEOT SYNTAX:’)) /* The right screen ? */
if (&rc ne 0)
do /* no, pass PF1 to */

vsskey(&sess ’PF1’) /* application */
return

end

/*
We are now in the right application and the right screen. If
the cursor is in either the first or second input fields,
process the corresponding pop-up help. Else, just pass the
PF1 to the application.
*/
if (&cicrow eq 2) and (&ciccol ge 32) and (&ciccol le 34)
do

dialog KLSSHELP ’KLSCTHP’ /* use standard help services to */
/* display pop-up for first field */

return /* exit this dialog after display */
end

if (&cicrow eq 2) and (&ciccol ge 40) and (&ciccol le 42)
do

dialog KLSSHELP ’KLSCTHPI’ /* display help for second field */
return /* exit this dialog after display */

end

vsskey(&sess ’PF1’) /* if cursor is elsewhere, just pass it */
return /* to application and relinquish control */

Sample help dialogs
Dialog KLSSHELP is called to process the panels that contain the help text,
KLSCTHP and KLSCTHPI. The coding above causes them to be passed as
parameters.

KLSCETH dialog

Chapter 2. Using SSPL Dialogs 27

The contents of KLSCTHP and KLSCTHPI are shown below. You can use these
members as models for your own help members.

Note: Each line of help text must be no longer than 56 characters.

KLSCTHP dialog
)COMMENT

Help for CEOT transaction field PAGE/AUTOPAGE
)PROLOGUE
set h0 ’help for PAgeable|AUtopageable’
set h1 ’a status of PAgeable means that the first page’
set h2 ’in a series of pages is written to the terminal’
set h3 ’as soon as it is ready.’
set h4 ’subsequent pages are retrieved using the CSPG’
set h5 ’transaction.’
set h6 ’ ’
set h7 ’AUtopageable means that subsequent pages after’
set h8 ’the first page are automatically written to the’
set h9 ’terminal. AUTopageable should never be set for a’
set h10 ’display device’

KLSCTHPI dialog
)COMMENT

Help for CEOT transaction field ATI/NOATI
)PROLOGUE
set hð ’Help for ATi|NOAti’
set h1 ’When a terminal has a status of ATI,’
set h2 ’it means the device is available for’
set h3 ’use by transactions that are started’
set h4 ’by automatic transaction initiation.’

Application Blending

Introduction
Sometimes it is useful to capture some data from one application and bring it into
the screen buffer of another application. We call this application blending.

For example, lets say that you are using an incident reporting system that runs
under TSO. This reporting system requires the entry of customer names and
addresses, which reside on another database, accessible to CICS. It is possible to
customize the KLSTSOCS dialog to retrieve information from one application into
another.

A sample dialog that would perform that specific task would not work on every
users system, however. For this reason, we will illustrate the power of this dialog
by simply copying some data from a CICS transaction (CEOT).

Customization
1. In CL/SuperSession, access the Update Current Trigger Profile panel. (See the

Users Guide if you need assistance.)
2. Establish as the trigger phrase for dialog KLSTSOCS.
3. Copy dialog KLSTSOCS from SKLSSAMP to RLSPNLS.
4. In KLSTSOCS, find the following SSPL statement:

set cicsess ’CICSSS’

5. Change CICSSS to your CICS session ID.

Sample help dialogs

28 SSPL Programming Guide

Testing the dialog
After you perform steps 1–5 described in “Preparing to use a dialog” on page 7,
you can test the dialog.
1. Log onto CL/SuperSession.
2. Establish a CICS session.
3. Clear the screen.
4. Type and press Enter to return to the CL/SuperSession Main Menu.
5. Select a TSO session.
6. Access ISPF in edit mode.
7. Select/create a member into which you want to copy data.
8. Create at least four blank lines at the top of the member.
9. On the command line, type the following:

\CC CEOT

10. Press Enter.
Result: The screen displays a header that consists of the following text:

Fields from the ceot transaction are:

This is followed by a blank line and the first two lines of text from the CEOT
transaction. This data has been copied into your member.

Testing the dialog

Chapter 2. Using SSPL Dialogs 29

KLSTSOCS dialog
)COMMENT

Member:
KLSTSOCS

Function:
To retrieve information from a CICS session and return
certain fields back to the TSO EDIT screen.

Conventions:
All variables are declared.

Special notes:
Variable SYSPARM will contain the name of
the CICS transaction, passed as a TRIGGER parameter.

Installation procedure:
Copy this trigger dialog into RLSPNLS and define
the calling trigger. The literal ’CICSSS’ should be replaced
with the session ID of your target CICS system.

Called from:
The related trigger.

System variables:
None.

Session variables:
None.

Shared variables:
None.

Local variables:
field1,field2,field3,field4,field5,field6,field7,field8,
cicsess,rc,tsosess, tran

Major commands:
VSSWAIT,VSSPOINT,VSSTYPE,VSSKEY and VSSFIELD

)OPTION LEVEL(1) * set syntax level for SSPL

KLSTSOCS dialog

30 SSPL Programming Guide

)DECLARE
cicsess scope(local)
rc scope(local)
field1 scope(local)
field2 scope(local)
field3 scope(local)
field4 scope(local)
field5 scope(local)
field6 scope(local)
field7 scope(local)
field8 scope(local)
tsosess scope(local)
tran scope(local)
)PROLOGUE

set tsosess (vssinfo(’FOREGRID’)) /* get TSO session ID */
set tran &sysparm /* access the transaction */
set cicsess ’CICSSS’ /* set session id to our CICS */
vsstype(&cicsess ’&tran’) /* put transaction in buffer */
vsskey(&cicsess ENTER) /* press enter */
vsswait(&cicsess 5 9) /* wait for response */

/*
In the virtual buffer, position cursor to the field that we
want to start extracting data from: row 2, column 3.

*/

vsspoint(&cicsess 2 3)

set field1(vssfield(&cicsess 9)) /* get cics tctte name */
/*

VSSFIELD positions the virtual cursor to the beginning of the
next field, so all the subsequent fields that we want will be
found automatically.

*/

set field2(vssfield(&cicsess 9)) /* get tran name */
set field3(vssfield(&cicsess 8)) /* get priority */
set field4(vssfield(&cicsess 3)) /* get page status */
set field5(vssfield(&cicsess 3)) /* get ins status */
set field6(vssfield(&cicsess 3)) /* get ati status */
set field7(vssfield(&cicsess 3)) /* get tti status */

vsspoint(&cicsess 3 6) /* point to next line */
set field8(vssfield(&cicsess 13)) /* get netname */

KLSTSOCS dialog

Chapter 2. Using SSPL Dialogs 31

/*
Now, switch our attention back to our TSO session, and
position the cursor at the start of the first data line by
tabbing four times.

*/
vsstype(&tsosess ’RESET’) /* type RESET */
vsskey(&tsosess ENTER) /* press ENTER */
vsswait(&tsosess 3 9) /* wait for response */
vsskey(&tsosess TAB)
vsskey(&tsosess TAB)
vsskey(&tsosess TAB)
vsskey(&tsosess TAB)
vsskey(&tsosess ERASEEOF) /* erase the line */
vsstype(&tsosess ’Fields from the ceot transaction are:’)
vsskey(&tsosess TAB) /* reposition to next line */
vsskey(&tsosess TAB)
vsskey(&tsosess ERASEEOF) /* clear it */
vsstype(&tsosess ’ ’) /* and enter a blank line */
vsskey(&tsosess TAB) /* reposition to next line */
vsskey(&tsosess TAB)
vsskey(&tsosess ERASEEOF) /* clear it */

set field1 ’&field1. ’ /* concatenate a blank */
set field2 ’&field2. ’ /* concatenate a blank */
set field3 ’&field3. ’ /* concatenate a blank */
set field4 ’&field4. ’ /* concatenate a blank */
set field5 ’&field5. ’ /* concatenate a blank */
set field6 ’&field6. ’ /* concatenate a blank */

/*
VSSTYPE repositions the cursor to be one position after the
string. The following VSSTYPEs propagate the data line.

*/

vsstype(&tsosess ’&field1’)
vsstype(&tsosess ’&field2’)
vsstype(&tsosess ’&field3’)
vsstype(&tsosess ’&field4’)
vsstype(&tsosess ’&field5’)
vsstype(&tsosess ’&field6’)
vsstype(&tsosess ’&field7’)

vsskey(&tsosess TAB) /* reposition to new line */
vsskey(&tsosess TAB)
vsskey(&tsosess ERASEEOF) /* clear the line */
vsstype(&tsosess ’&field8’) /* enter our final field */

/*
To clean up things in CICS, we issue a PF3 followed by a
CLEAR. This ends the CEOT transaction, and leaves a clear
screen.

*/

vsskey(&cicsess pf3) /* press PF3 */
vsswait(&cicsess 9 9 1) /* wait for tran to end */
vsskey(&cicsess CLEAR) /* enter CLEAR */
vsswait(&cicsess 5 1) /* wait for keyboard reset */
return /* return */

KLSTSOCS dialog

32 SSPL Programming Guide

Chapter 3. Implementing SSPL Dialogs

Documenting, Compiling, and Testing Dialogs

Documenting your dialogs
Documentation is crucial to creating a dialog that can be easily maintained and
modified. A good program is one that can be used by anyone, not just the creator,
and this requires a record of certain important information. This record can be in
the form of online comments or printed documentation or both.

Use the COMMENT placeholder at the beginning of each dialog to describe the
function/purpose of the dialog, to define variables, and to include special notes
and any other useful information. You can also insert comments among the lines of
code to record the function of a particular part of the dialog. Such insights into the
subtleties of the logic can be invaluable when you need to modify the code six
months (or more) later.

If a dialog requires a great deal of documentation, it may be best to type it and
print it, using some kind of word processing or in-house publishing system.

Compiling your dialogs
When you finish customizing a dialog, the next step is to compile it. You can do
this in either of the following ways:
v Stop CL/SuperSession and restart it.
v Without stopping CL/SuperSession, issue the REFRESH command.

The REFRESH command is available through the CL/SuperSession operator
facility, the MVS console, or the dialog trace facility (described in “Dialog trace
facility” on page 35). The format of the command is

REFRESH P dialogname

where dialogname represents the name of the dialog you want to compile. This
command also accepts D (ialog) in place of P (anel).

The CL/SuperSession dialog manager checks the SSPL instructions for proper
syntax. If they are correct, the dialog is made immediately available. If syntactical
errors are detected, the approximate line numbers are displayed along with a
description of the problem. Correct the problem and reissue the REFRESH
command.

Testing your dialogs
Before you can test a dialog, you must make sure that the ddname TLVPNLS in
the startup JCL references the dataset in which the dialog resides. (At this point,
the dialog should still be in your RLSPNLS dataset.)

Test each dialog carefully after you compile it. Try to execute the dialog in your
test environment. If it performs as you intended, you can proceed to store and
install it. If it does not function properly, you may need to use CL/SuperSession
troubleshooting tools to help you identify the source of the problem. See
“Troubleshooting” on page 34 for information about these tools.

© Copyright IBM Corp. 1993, 2018 33

Storing and Installing Dialogs

Storing your dialogs
When you are satisfied with the performance of the dialog, move it to the dataset
in which you want it to reside permanently. Many users prefer to let their dialogs
remain in the dataset in which they were customized and tested, namely
RLSPNLS.

Be sure that the ddname TLVPNLS in your startup JCL refers to the dialogs
permanent location.

Installing and maintaining your dialogs
When you are ready to use the dialog on a production system, you must have the
dialog installed.

Important

Future maintenance may affect IBM-supplied dialogs that you have modified.

For this reason, IBM recommends that you format your customized dialogs as
USERMODs and that you use IBM SMP/E to install them. SMP/E keeps a record
of all software changes. When you apply updates, whether developed by you or
IBM, SMP/E alerts you if new changes affect previous modifications. This gives
you the opportunity to rework your USERMODs to preserve your modifications.

Note: SKLSSAMP(KLSUSRMD) contains a skeleton that you can use to create
USERMODs for installing the customizations and new dialogs that you develop.

Troubleshooting

Introduction
If testing exposes a problem with a dialog, you must identify the source of the
problem in order to solve it. CL/SuperSession provides three facilities that help
you troubleshoot or debug your dialogs.
v LOG function
v return codes
v dialog trace facility

Each plays a different role in troubleshooting. Depending on the problems
complexity, you may use one or more of these tools.

LOG function
The LOG function is simple to use. You can imbed this function anywhere in a
dialog to
v display the value of a variable
v display literals to determine the logic path
v display return codes of functions

Output from the LOG function is sent to the VIEWLOG, which you can view
online through the CL/SuperSession operator facility. You can also find the output
in the TLVLOG SYSOUT dataset.

Storing and Installing Dialogs

34 SSPL Programming Guide

The LOG function is described in detail in the Dialog Language Reference Manual.

Return codes
SSPL functions yield return codes that indicate various conditions. You can set a
variable to the value of the return code and make decisions through additional
SSPL logic. Another option is to write the return code to the VIEWLOG.

Here is an example of interrogating the return code and using the LOG function:
set rc (vsswait(&cicsess 5 9))
log(’ return code from vsswait=&rc)
if (&rc ne 0

do
......

Dialog trace facility
The dialog trace facility (DTF) is a good choice when you want to examine a logic
flow that is too long and complicated for a simple LOG function.

One of DTFs options is interactive debugging. You can use it to set breakpoints at
strategic SSPL instructions, causing the dialog to halt at those points. This allows
you to inspect and modify particular variables.

When execution resumes, the new variable values are used by the dialog, which
may result in changes in the logic flow. This flexibility allows you to test each
dialog thoroughly.

DTF is fully described in the document called Dialog Trace Facility, LS99-4221.

Return codes

Chapter 3. Implementing SSPL Dialogs 35

36 SSPL Programming Guide

Chapter 4. Defining a Dialog

You can use SSPL to create and customize interactive dialogs between VTAM
applications and a terminal user. The applications can be products or application
subsystems such as TSO, CICS, and IMS.

This guide shows you how to use SSPL to create a dialog that displays a logo
panel, validates a user ID and password, and maintains an inventory table. The
information in this guide is sufficient to create the sample dialog. For a complete
description of SSPL, see the Dialog Language Reference Manual .

Note: No support is provided for dialogs and dialog modifications that you
develop using this guide. Discuss the benefits of a services engagement with your
IBM client rep.

The remainder of this chapter defines a dialog and the elements of SSPL.

Where the Dialogs Are Stored
All of the sample dialogs described in this manual are located in SKLSSAMP, the
sample panel library. Any dialogs that are modified or are created by the user
should be stored in RLSPNLS, the user panel library.

Defining a Dialog
A dialog is one program or several programs that work together to perform an
application function. You can write dialogs to
v create customized panels for data entry
v design panels that follow the IBM SAA/CUA standard
v automate a sequence of keystrokes
v interact with multiple environments, such as IMS, CICS, and TSO,

simultaneously

A dialog is written in SSPL and can consist of
v input panels
v display panels
v processing logic

This guide shows you how to write dialogs by explaining a sample application.
The application manages an inventory of personal computers for a fictitious
company, Acme Industries. The application is named the Personal Computer
Inventory System, abbreviated to PCIS. You will see how to write dialogs that
display a logo panel; build a table; allow a user to add, modify, and delete data
from the table; and detect invalid entries.

The terms dialog and panel are sometimes used interchangeably. In this guide,
dialog refers to the application program and panel refers to the screen that is
displayed at the user terminal.

The remainder of this chapter defines the elements of SSPL. In later chapters, the
elements are explained in detail as they are used in the PCIS application.

© Copyright IBM Corp. 1993, 2018 37

Defining SSPL
SSPL is a dialog language that creates panels to prompt for user entries and the
logic to process the input. A dialog can also process without input from a user.

SSPL is a component of the Dialog Manager. The Dialog Manager provides the
system services that compile and execute programs written in SSPL, as well as the
general and application-specific functions of the language.

The Dialog Manager is a facility of CL/SuperSession.

SSPL consists of placeholders, functions, statements, operators, and variables.

Placeholders
Placeholders divide an SSPL program into sections. Each section performs a
different type of processing. A placeholder consists of a right parenthesis and the
name of the section. For example, the)COMMENT placeholder introduces the
section that contains internal documentation for the dialog. An example is shown
below.

)comment
Dialog Name: KLSZPTRK
Use: SSPL dialog that maintains a personal computer inventory

The 10 placeholders are listed and described in “Understanding Placeholders” on
page 41.

Functions
A function is a program, supplied with SSPL, that performs an action such as
logging off or transferring control from one dialog to another. After a function
completes, the next line of code in the dialog is executed.

When a function executes, it generates a return code. The return code can be tested
to see if the function completed successfully. Return codes are listed under each
function in the Dialog Language Reference Manual .

A function can be a single term, such as LOGOFF, or have required and optional
arguments, such as TBDISPL, as shown below.

LOGOFF terminates a session and physically disconnects the user from a terminal.
The function is coded as follows:

logoff()

TBDISPL displays rows from a table. Arguments follow the function name and
specify how it is executed. Arguments are enclosed in parentheses and are
positional. If an argument is not required, it is represented by two single quotation
marks. Arguments following the last argument specified need not be noted by the
single quotation marks if they are not used. A space separates the arguments. See
the example below.

tbdispl(&pcitblh ’’ ’’ nrows ’’ ’’ toprow)

You can use a comma between arguments instead of a space to increase readability
as shown below.

tbdispl(&pcitb1h,’’,’’,nrows,’’,’’,toprow)

Functions are described in this guide as they are used in the PCIS application.

Defining SSPL

38 SSPL Programming Guide

Statements
A statement assigns a value or controls the flow of the dialog. It consists of the
statement name and one or more operands. Unlike the arguments in a function,
the operands in a statement are not enclosed in parentheses.

In the following example, the SET statement assigns the value of the literal
enclosed in single quotation marks to the variable ERRMSG:

set errmsg ’User ID must be specified’

An IF...ELSE statement tests the truth of a condition and initiates an action based
on the result of the test. The following example tests the value of variable RC. If
the value is 0, the dialog terminates (RETURN). If the value is not 0 (ELSE), the
dialog is re-executed (RESHOW).

if &rc=0
return

else
reshow

In the above example, RETURN and RESHOW are SSPL statements.

Statements are described throughout this guide as they are used in the PCIS
application.

Operators
An operator performs operations on terms. For example, the equals sign (=) in
&rc=0 , shown above, is an operator. The four types of operators are shown in
Table 1.

Table 1. Operators Header

Operator Examples

arithmetic + (addition), - (subtraction), / (division), * (multiplication), NEG
(negation)

relational = (equals), NE or != (not equal), < or LE (less than), > or GT (greater
than)

logical NOT or ! (logical not), AND (logical and), OR (logical or)

string LENGTH and NUMERIC

Variables
A variable is a name that represents data in a dialog. A variable name is not
case-sensitive. The two types of variables in SSPL are predefined variables and
user-defined variables.

Predefined variables are included with CL/SuperSession. They contain information
that you can use in an operation or display on a panel. Some predefined variables
used in this guide include SYSTIME, the system time of day, and SYSKEY, the last
attention key pressed such as PA1 or ENTER.

User-defined variables are defined by you in your dialog. They have these
characteristics:
v Their names are 1 to 8 characters long. User-defined variables in the sample

dialog include USERID and ERRMSG.

Statements

Chapter 4. Defining a Dialog 39

v Their names should be different from predefined variable names and SSPL
function and statement names.

A variable has a scope that defines its availability. The two scopes used in the PCIS
application are:

Local The variable is available to the current dialog. It is set to null when it is
defined.

Shared
The variable is available to other dialogs. It remains for the duration of the
physical session or until it is set to null.

Two other scopes, SESSION and SYSTEM, are not used in the PCIS application.
They are described in the Dialog Language Reference Manual .

Using variables in a dialog is explained in more detail in “Using Variables” on
page 49.

Literals
A literal is a character or character string that represents itself. For example, the
messages that display on the panel to alert the user of an error are coded in the
dialog as literals, such as

’User name must be specified’

Literals must be enclosed in single quotation marks when they contain embedded
blanks and when you want to preserve uppercase and lowercase characters.

Variables

40 SSPL Programming Guide

Chapter 5. Managing Dialogs

This chapter presents programming concepts. It tells you about
v structuring a dialog
v compiling a dialog
v documenting a dialog using SSPL

Structuring a Dialog
A dialog can be a single member or several members. For example, the PCIS
application is made up of 11 members, 9 members containing dialogs and 2
members containing data that is copied into the dialogs. Each member has 80
columns and is stored in a partitioned dataset (PDS). All user-created or modified
dialogs are stored in the library RLSPNLS.

Each dialog is structured with placeholders that divide the dialog into sections that
determine the type of processing and order of execution. For example, the
EPILOGUE section processes data that was entered in the BODY section, and the
PROLOGUE section is processed before the EPILOGUE section.

Understanding Placeholders
The 10 placeholders are described below. They are presented in the order they
typically appear in a dialog.

)option
Controls the characteristics of the panel that is displayed by the dialog.
Panel characteristics include width, depth, justification, and pop-up
window definitions. It also sets the syntax level of the dialog, that is,
whether or not the arguments of a function must be enclosed in
parentheses.

The)OPTION placeholder, when used, must be the first or second
placeholder in a dialog. Only the)COMMENT placeholder can precede it.

)comment
)comment Documents the dialog or sections of the dialog. The COMMENT
section is not compiled by the Dialog Manager. Its purpose is
documentation only.

A)COMMENT placeholder can be used in any section of a dialog, except
the BODY section. A COMMENT section is ended by the next placeholder.
A plus sign (+) as the last character in a COMMENT section is interpreted
as a continuation character and should not be used.

)attrs Defines the characters that are used in the BODY section to create fields
with attributes such as color, intensity, and highlighting.

)copy Defines the variables that are used in the dialog. The scope is also
specified. Variables that are not defined in the DECLARE section but used
in a SET statement or the BODY section are automatically assigned a scope
of shared. The DECLARE section is also used to assign an alias to a
variable. An alias is an alternate name for a variable that you can use only
in the BODY section.

© Copyright IBM Corp. 1993, 2018 41

)declare
Defines the variables that are used in the dialog. The scope is also
specified. Variables that are not defined in the DECLARE section but used
in a SET statement or the BODY section are automatically assigned a scope
of shared. The DECLARE section is also used to assign an alias to a
variable. An alias is an alternate name for a variable that you can use only
in the BODY section.

)init Executes first in the dialog. This section is executed only once, even if the
dialog is re-executed by a RESHOW statement within the dialog. Use the
INIT section to initialize variables or to execute code that should be
executed once.

)prologue
)prologue Executes before the BODY section is executed. The PROLOGUE
section is used to execute code before displaying the panel defined in the
BODY section. The PROLOGUE section executes every time the dialog is
executed or re-executed by a RESHOW statement within the dialog.

If no sections are named in the dialog, the entire dialog becomes a
PROLOGUE section.

)body Formats the panel for display. You can design a full-screen panel or a
pop-up window. The area that this section defines is referred to as the
presentation space. You can design fields for input and output and use
color for emphasis. The BODY section cannot contain other placeholders
except for the)COPY placeholder; any other placeholder within the BODY
section prevents compilation.

The sample panels in this guide are designed according to the IBM
guidelines, SAA/CUA (System Application Architecture/Common User
Access). These guidelines were created to promote ease of use in software
interfaces. For more information about these guidelines, refer to the IBM
manual, z/OS ISPF Dialog Developer's Guide and Reference - Common User
Access (CUA) guidelines.

)epilogue
Executes after the BODY section is processed. The EPILOGUE section is
used to interpret input from users and perform actions based on the input.

)term Contains the termination code, which executes prior to the termination of
the dialog. The TERM section executes after the EPILOGUE section
completes. In a called dialog, the TERM section executes when control
returns to the calling dialog. This section executes only once.

Programming in SSPL
For coding placeholders, observe the following rules:
1. Placeholders begin in column 1.
2. The)OPTION placeholder, when used, must be the first or second placeholder

in the dialog. Only a)COMMENT placeholder can precede it.
3. Placeholders, except for)OPTION, can be specified as often as needed and in

any order.
4. A section is ended by the next placeholder, except for the)COPY placeholder,

which can appear in any section.
5. Placeholders are optional. If no placeholders are specified, the dialog becomes a

PROLOGUE section.

For programming within sections, observe the following rules:

Understanding Placeholders

42 SSPL Programming Guide

1. SSPL statements are freeform. However, to increase readability and
maintainability, use a consistent format.

2. You can code in uppercase and lowercase. Literals and variables must be
enclosed in single quotation marks to retain capitalization and spacing.

More recommendations for designing and coding a dialog are presented in
Chapter 11, “Programming Techniques,” on page 113.

Compiling a Dialog
A dialog is compiled and retained in memory when it is invoked the first time.
This compiled version is saved; it is the version that executes at subsequent
invocations of the dialog. During a recycling of CL/SuperSession, the compiled
version is lost, and the dialog is compiled at the next invocation.

After modifying a dialog, you can recompile it manually with the REFRESH
command then test your changes. See Chapter 11, “Programming Techniques,” on
page 113 for more information on REFRESH.

Executing a Dialog
Regardless of the order of the placeholders in the dialog, the five executable
sections are executed in the following order:
1.)INIT
2.)PROLOGUE
3.)BODY
4.)EPILOGUE
5.)TERM

Dialog flow is illustrated in Figure 1 on page 44.

Programming in SSPL

Chapter 5. Managing Dialogs 43

)comment

.

.

.

)init

.

.

.

)prologue

.

.

.

return

.

.

)body

.

.

.

)epilogue

.

.

call label

.

.

.

label

.

.

.

return

.

.

.

reshow

.

.

.

)term

.

.

.

.

.

Figure 1. Order of Execution

Executing a Dialog

44 SSPL Programming Guide

Documenting a Dialog
You can make the dialog self-documenting in two ways:
1.)COMMENT placeholder
2. comment delimiters

)COMMENT Placeholder
A)COMMENT placeholder can appear anywhere in a dialog except in a BODY
section. The COMMENT section is not displayed or used by the dialog. You can
enter any text that describes the dialog and use as many lines as you need.

Placing a COMMENT section at the beginning of a dialog is good coding practice.
You can document the dialog name and purpose and other information that would
be useful to anyone reading the dialog.

The COMMENT section in the PCIS application begins each dialog with the four
categories of information shown in Figure 2.

In this example, the COMMENT section describes:

Dialog Name
Name of the member that contains the dialog

Function
Brief summary of the purpose of the dialog

Input Data that the user enters. Input can also be user-defined variables or data
in predefined variables

Output
Data that must be returned to the calling dialog

Depending on your needs, there are many other possible categories that could be
included. For example, the purpose or main function of this dialog, a list of dialogs
that call or are called by this dialog, Return Codes, other side effects of the dialog,
maintenance history, and so on.

Comment Delimiters
Comment delimiters document the dialog within the code. Two delimiters are
used:
v asterisk (*) within the)ATTRS and)DECLARE placeholders
v slash-asterisk (/*...*/) within the)INIT,)EPILOGUE,)PROLOGUE, and)TERM

placeholders

Asterisk (*)

In a DECLARE section or ATTRS section, you can end a line of code with an *
followed by a comment. Information following the * is ignored by the Dialog

)comment
Dialog Name: KLSZPLOG
Function: Prompt for user ID and password
Input: USERID, PASSWORD
Output: Not applicable

Figure 2.)COMMENT Placeholder Example

Documenting a Dialog

Chapter 5. Managing Dialogs 45

Manager. Each line of comment in a DECLARE section or ATTRS section must
begin with the *. In the example shown in Figure 3, the text following * describes
how the variable ERRMSG is used in the dialog.

Slash-Asterisk (/*...*/)

Within the)INIT,)PROLOGUE,)EPILOGUE, and)TERM placeholders and any
statement or function, you can write comments before or after a line when you
enclose the text in /* and */ . In Figure 4, the text enclosed between /* and */
explains a SET statement.

For additional examples, see Figure 14 on page 60.

)declare
errmsg scope(local) * Contains error messages

Figure 3. Comment Delimiter (*) Example

set errmsg ’’ /*Clear message area after each key press*/

Figure 4. Comment Delimiter (/*...*/) Example

Comment Delimiters

46 SSPL Programming Guide

Chapter 6. Planning a Dialog

This chapter gives an overview of the Personal Computer Inventory System (PCIS).
It
v lists the nine dialogs that make up the application and shows their relationship
v describes the contents of two members that are copied into the dialog
v explains how to design panels and use variables

Personal Computer Inventory System (PCIS)
The PCIS application is the dialog that is described in this guide. It manages the
personal computer inventory for a fictitious company, Acme Industries.

The application
v displays a panel with the company's logo
v prompts for user ID and password
v builds and maintains an inventory table
v validates user input and displays error messages when invalid data is entered

The PCIS application runs as a single application, but it consists of several dialogs
that are linked together. The dialogs and their functions are described below, and
the relationships among the dialogs are shown in Figure 5 on page 48.

KLSZPTRK
Invokes the PCIS application and calls three dialogs: KLSZPLGO,
KLSZPLOG, and KLSZPINA.

KLSZPLGO
Displays a panel with the Acme Industries logo.

KLSZPLOG
Prompts for and validates logon information.

KLSZPINA
Opens and creates the inventory table and invokes KLSZPINB.

KLSZPINB
Displays the inventory table and invokes KLSZPINC, KLSZPIND, and
KLSZPINE.

KLSZPINC
Adds an inventory record.

KLSZPIND
Edits an inventory record.

KLSZPINE
Deletes an inventory record.

KLSZPERR
Displays error messages when invalid data is entered. This dialog can be
invoked by any of the dialogs prefixed with PCINV.

Two members store information that is copied into the dialogs:

© Copyright IBM Corp. 1993, 2018 47

KLSZPATT
Identifies the characters that define the attributes for the panel display.

KLSZPDCL
Defines the shared variables.

Designing the Panels
The panels that are displayed at the terminal are designed in the BODY section.
The text that you put in the BODY section is displayed with the capitalization and
spacing you entered. You can change the appearance of the text by changing the
attributes of the fields. Each field can be modified in function and appearance by
assigning these four field attributes:

Type Specifies the function of the field: input or output.

Color Specifies the color of the field: green, yellow, turquoise, blue, or white.

Display
Specifies the intensity of the display: normal, high, or invisible.

Highlight
Specifies a highlight: underscore.

Other attributes, not used in the PCIS application, are described in the Dialog
Language Reference Manual .

Coding Field Attributes
The four field attributes are associated with characters that you define in your
dialog in the ATTRS section. You can specify attributes individually or copy them
in from a member stored in one of the PDS libraries referenced by DDNAME
TVLPNLS.

KLSZPTRK

KLSZPLGO KLSZPLOG KLSZPINA KLSZPERR

KLSZPINB

KLSZPINC KLSZPIND KLSZPINE

Figure 5. PCIS Application Dialog Flow

Personal Computer Inventory System (PCIS)

48 SSPL Programming Guide

In the PCIS application, the member KLSZPATT containing the attributes is copied
into the dialog in the ATTRS section as explained below.

Defining Field Attributes
Field attributes must be declared before the BODY section where they are used.
The field attributes for the PCIS application are defined in KLSZPATT, shown in
Figure 6. The)ATTRS placeholder is the first line of the member. No matter where
the member is copied into a dialog it is identifiable as containing field attributes.

In Figure 6, the first character in each line enclosed in single quotation marks
represents the field attributes that follow it. In the BODY section, the specified
character begins a line or precedes a field and sets the attributes associated with
the character.

See Figure 7 and note the characters $, _, and # and how they are used in the
design of the panel.

A field attribute remains in effect until another field attribute is encountered. An
output field attribute, for example, # in Figure 7, terminates an input field and sets
the length of the input field.

You will see how attributes are used in the BODY sections of the dialogs as they
are explained in subsequent chapters of this guide.

Using Variables
The following paragraphs explain how to
v define a variable efficiently
v reference the contents of a variable
v prevent the loss of characters in a variable

)attrs
’_’ type(input) color(green) display(normal) highlight(underscore)
’%’ type(input) color(green) display(invisible) highlight(underscore)
’$’ type(output) color(yellow) display(high)
’#’ type(output) color(turquoise) display(normal)
’{’ type(output) color(blue) display(normal)
’}’ type(output) color(white) display(normal)

Figure 6. KLSZPATT: Field Attributes

)body top
$ ACME Industries #Date: &sysdate
$ Personal Computer Inventory #Time: &systime
#--#
)body center
#Type the requested information, then press Enter.
#
User ID..._userid
Password..%password#
)body bottom
$&errmsg
#--#
{Enter F3=Logoff

Figure 7. Using Field Attributes

Coding Field Attributes

Chapter 6. Planning a Dialog 49

Defining Variables
You can define variables in a dialog in three ways:
1. BODY section by using the variable
2. SET statement by using the variable
3. DECLARE section by declaring the variable

A variable that is used in the BODY section or a SET statement is automatically
defined as a variable with a scope of shared when it is not explicitly declared in
the DECLARE section.

Defining variables in the DECLARE section or in a member that you copy into the
dialog in the DECLARE section makes managing your variables easier. You can
v assign the correct scope to each variable
v document the variables in one place in the dialog
v modify the variables more easily
v specify an alias for a variable name that is longer than the field it represents in

the BODY section
v speed execution by enabling the Dialog Manager to locate the variables quickly

In the PCIS application, local variables are defined in the DECLARE section and
shared variables are copied from member KLSZPDCL, shown in Figure 8.

Assigning an Alias
An alias is an alternate name for a variable. The alias is used in the BODY section.
It enables you to give a variable a meaningful name and still conform to the length
of the field. In the figure above, the variable PCIact has a one-character alias that
appears in the one-character action code field of the panel.

Referencing Variables
To reference the contents of a variable, begin the variable name with an ampersand
(&). For example, the following statement from the sample dialog checks the
contents of a user-defined variable USERID for a value. Depending on the value of
USERID, the value of another user-defined variable (ERRMSG) is changed:

if &userid = ’’
set errmsg ’User ID must be specified.’

Note that in a SET statement the variable that is set does not use an ampersand.

Evaluating Variables
During compilation, characters are converted to uppercase and strings are
truncated after the first blank or space. This truncation, called tokenization, can
cause characters to be lost. To prevent the loss of meaningful characters and to

PCIact scope(share) alias(a) * Action code field
PCIext scope(share) * Telephone extension
PCImtyp scope(share) * Machine type
PCIname scope(share) * User name
PCIram scope(share) * Amount of RAM
PCItblH scope(share) * Inventory table handle

Figure 8. KLSZPDCL: Shared Variables

Defining Variables

50 SSPL Programming Guide

retain lower case characters, you must enclose the variable in single quotation
marks. For example, if variable ERRMSG contains the string 'User ID must be
specified', the following SET statement assigns the value USER to string,
truncating the characters that follow the first space:

set string &errmsg

However, if you enclose &errmsg in single quotation marks, all characters are
retained and variable string is set to User ID must be specified :

set string ’&errmsg’

Evaluating Variables

Chapter 6. Planning a Dialog 51

Evaluating Variables

52 SSPL Programming Guide

Chapter 7. Beginning the Dialog

This chapter describes three dialogs of the PCIS application:

KLSZPTRK
Initiates the Personal Computer Inventory System.

KLSZPLGO
Displays the company logo.

KLSZPLOG
Prompts for and validates user ID and password.

For each dialog, the code is shown first, then described line by line. Additionally,
the dialogs are documented internally in COMMENT sections and with comment
delimiters.

Programming the Invoking Dialog
The dialog that initiates the PCIS application is KLSZPTRK. It performs three
functions:
v Invokes three other dialogs: KLSZPLGO, KLSZPLOG, and KLSZPINA.
v Logs the user off if the logon data is invalid.
v Logs the user off when the dialog is terminated.

KLSZPTRK is shown in Figure 9 on page 54 and described in the sections that
follow.

© Copyright IBM Corp. 1993, 2018 53

)option
The)OPTION placeholder appears first in the nine dialogs that make up
the PCIS application. An)OPTION placeholder as the first placeholder
ensures that the desired options are set for the dialog and reserves the
presentation space for displaying panels when a BODY section is implied
by the parameters MAXWIDTH and MAXDEPTH or specified in a BODY
section.

The)OPTION placeholder in a dialog that calls other dialogs is inherited
by the called dialogs, unless the called dialogs specify their own
presentation space. After a called dialog completes, the presentation space
reverts to the definition in the calling dialog. In the PCIS application, each
dialog has an OPTION section. This programming practice ensures
consistency and facilitates maintenance if the dialogs are modified later.

In KLSZPTRK, the)OPTION placeholder uses these parameters:

level(1)
Specifies that the dialog is coded in level l syntax. Syntax level
refers to how the Dialog Manager interprets function names. A
syntax level of 1 specifies that arguments must be enclosed in

)option level(1) maxwidth maxdepth
)comment
**
******** ********
****** ******
**** PC Inventory System ****
**** ACME Industries ****
****** ******
******** ********
**
* Dialog Name: KLSZPTRK *
* Function : Initial dialog for the Personal Computer Inventory *
* System application. This dialog is initiated when a *
* user logs on to the PCIS application. This applid *
* is specified on the CL/SuperSession DIALOG statement: *
* *
* DIALOG PCINV KLSZPTRK *
* *
* This statement can be placed in the CL/SuperSession *
* startup CLIST, or via the operator console. *
* *
* Input : N/A *
* Output : N/A *
* Created : 10/20/17 *
**
* Modification History Log *
**
* Date Modid Description *
-------- ------ --
* *
**
* *
**

)init
dialog KLSZPLGO /* Display logo panel. */
dialog KLSZPLOG /* Call logon validation. */
if &sysrc <<0 /* User pressed F3 to terminate. */

logoff() /* Terminate the session. */
/*
* User validation complete. Start the inventory application.
*/

dialog KLSZPINA
logoff() /* Logoff after KLSZPINA returns.*/

Figure 9. KLSZPTRK - Invoking a Dialog

Programming the Invoking Dialog

54 SSPL Programming Guide

parentheses. When parentheses are omitted, the function name is
interpreted as a variable name, and compilation errors may occur.

maxwidth
Specifies that the entire width of the screen is used to display the
panel.

maxdepth
Specifies that the entire height of the screen is used to display the
panel.

)comment
The COMMENT section is the second section, after OPTION, in each
dialog of the PCIS application. You can design the COMMENT section to
suit your application documentation needs.

In this example, the COMMENT section describes the dialog and provides
a method for tracking modifications. In subsequent dialogs, you will see
input and output specified.

The Modification History Log creates a record of revisions to a dialog. You
can note the date of change, the modification identifier (modid), and a
brief description of the modification.

)init KLSZPTRK uses the INIT section to perform all processes. It invokes two
dialogs of the PCIS application, and a third dialog, depending on the
results of an IF statement.
v KLSZPLGO to display the logo panel
v KLSZPLOG to validate the logon information
v KLSZPINA to open the inventory table, if the logon is valid

The INIT section uses a DIALOG statement, an IF statement, and a
LOGOFF function as described below.

dialog KLSZPLGO
The DIALOG statement calls another dialog. When the called
dialog completes, control returns to the statement following the call
to the dialog.

This DIALOG statement invokes KLSZPLGO, which displays the
logo panel and asks the user to press Enter. (KLSZPLGO is shown
and described under “Coding the Logo Panel” on page 56.) After
KLSZPLGO completes, control returns to the next line in the
calling dialog, DIALOG KLSZPLOG.

dialog KLSZPLOG
The DIALOG statement invokes KLSZPLOG after the user presses
Enter from the panel displayed by KLSZPLGO. It validates user ID
and password. (See “Coding the Logon Panel” on page 58 for a
description of KLSZPLOG.) The results of the validation are
returned in the predefined variable SYSRC, and the variable is
evaluated in the next line.

if &sysrc < 0
This IF statement executes a function or another statement,
conditionally. In this sequence of code, IF is followed by an
expression that is either true or false: Is the value of SYSRC less
than 0? When the expression is true, the next statement, LOGOFF,
is executed. When the expression is false, the next statement is
ignored, and control branches to the statement DIALOG
KLSZPINA.

Programming the Invoking Dialog

Chapter 7. Beginning the Dialog 55

The value of SYSRC is set in dialog KLSZPLOG. A value less than
0 indicates that the user pressed F3, a request to logoff.

logoff()
The LOGOFF function terminates a session. In this dialog,
LOGOFF executes only if SYSRC is less than 0. When SYSRC is 0
or greater, this line is skipped and DIALOG KLSZPINA, shown
next, is executed.

dialog KLSZPINA
When SYSRC is not less than 0, control branches to this DIALOG
statement. It invokes KLSZPINA, which opens the table.
(KLSZPINA is shown and explained in “KLSZPINA - Part 1” on
page 70.) After KLSZPINA completes processing, control is
returned to the next line in KLSZPTRK to log the user off the
terminal.

logoff()
After KLSZPTRK completes processing, it is terminated by the
LOGOFF function. It physically disconnects the terminal.

Coding the Logo Panel
KLSZPLGO is the first dialog called by KLSZPTRK. It displays a logo panel,
shown in Figure 10, that prompts the user to press Enter to continue the
application.

KLSZPLGO is shown in Figure 11 on page 57 and explained in the sections that
follow.

AAA CCCC MM MMM EEEEEEE
AA AA CCCCCC MMMM MMMM EE

AA AA CC MM MMM MM EE
AA AA CC MM MM EEEEE
AAAAAAA CC MM MM EE
AA AA CCCCCC MM MM EE
AA AA CCCC MM MM EEEEEEE

Welcome to the Acme Industries Personal Computer Inventory System
Press Enter to continue...

Figure 10. Logo Panel

Programming the Invoking Dialog

56 SSPL Programming Guide

)option
See the explanation that follows Figure 9 on page 54 for a description of
the OPTION placeholder.

)comment
See the explanation that follows Figure 9 on page 54 for a description of
the)COMMENT placeholder.

)copy In this example, the member KLSZPATT is copied. It contains the)ATTRS
placeholder and the field attributes that are used to format the panel. See
Figure 6 on page 49 for the contents of KLSZPATT.

)body The BODY section formats the panel for display. It uses the following
parameters:

center Specifies that the information is displayed in the center of the
screen. The data is centered vertically as a block, not by individual
line.

input Specifies that although no fields are modifiable, the screen remains

)option level(1) maxwidth maxdepth
)comment
**
******** ********
****** ******
**** PC Inventory System ****
**** ACME Industries ****
****** ******
******** ********
**
* Dialog Name: KLSZPLGO *
* Function : Display the logo panel. *
*
* Input : N/A *
* Output : N/A *
* Created : 10/20/17 *
**
* Modification History Log *
**
* Date Modid Description *
-------- ------ --
* *
**
* *
**

)copy KLSZPATT

)body center input
#
#
#
AAA CCCC MM MMM EEEEEEE
AA AA CCCCCC MMMM MMMM EE
AA AA CC MM MMM MM EE
AA AA CC MM MM EEEEE
AAAAAAA CC MM MM EE
AA AA CCCCCC MM MM EE
AA AA CCCC MM MM EEEEEEE
#
#
#

Welcome to the Acme Industries Personal Computer Inventory System
#
Press$Enter#to continue...

Figure 11. KLSZPLGO - Displaying a Logo Panel

Coding the Logo Panel

Chapter 7. Beginning the Dialog 57

displayed until a function key or Enter is pressed. Without the
INPUT parameter, the panel flashes briefly on the screen, but does
not remain displayed.

freeform text
Freeform text is any text that you type as you want it to appear on
the screen. In Figure 11 on page 57, the freeform text is ACME,
Welcome to the Acme Industries Personal Computer Inventory System ,
and Press Enter to continue... . The text is displayed as it appears in
the BODY section as modified by the field attributes. The first
character in a field sets the attributes that are associated with that
character in KLSZPATT:

Sets the field as an output field, displayed in turquoise in
normal intensity.

$ Defines Enter as an output field, displayed in yellow in
high intensity. The # following Enter causes the rest of the
line to be displayed in turquoise in normal intensity.

Coding the Logon Panel
After the user presses Enter from the logo panel, the logon panel is displayed. It
prompts for user ID and password as shown in Figure 12.

The dialog that processes the logon is KLSZPLOG. It performs four functions:
1. Prompts for user ID and password.
2. Validates the user ID and password.
3. Gives the user the opportunity to log off.
4. Returns an indication of the success of the validation.

KLSZPLOG is divided into five figures for ease of explanation. The dialog is
contained in one member.

KLSZPLOG - Part 1
The first three placeholders of KLSZPLOG are shown in Figure 13 on page 59 and
are described below. These sections document the dialog and copy in the field
attributes.

ACME Industries Date: 10/20/17
Personal Computer Inventory Time: 11:08:19

--

Type the requested information, then press Enter.

User ID...
Password..

--

Enter F3=Logoff

Figure 12. Logon Panel

Coding the Logo Panel

58 SSPL Programming Guide

)option
See the explanation that follows Figure 9 on page 54 for a description of
the)OPTION placeholder. This dialog uses another parameter of the
)OPTION placeholder:

leftjustify
Specifes that the BODY section is not centered in the presentation
space, but justified at the left side.

)comment
The COMMENT section is the second section, after OPTION, in each
dialog of the PCIS application. Refer to the explanation that follows
Figure 9 on page 54 for more information.

KLSZPLOG requires input from the user and generates output. The output
is stored in a predefined variable, SYSRC, for use later in the dialog.

)copy The COPY placeholder copies the member KLSZPATT into the dialog. It
contains the)ATTRS placeholder and the field attributes that are used to
format the panel. See Figure 6 on page 49 for the contents of KLSZPATT.

KLSZPLOG - Part 2
The next three placeholders of KLSZPLOG define and initialize the variables. They
are presented in Figure 14 on page 60. An explanation follows the figure.

)option level(1) maxwidth maxdepth leftjustify
)comment
**
******** ********
****** ******
**** PC Inventory System ****
**** ACME Industries ****
****** ******
******** ********
**
* Dialog Name: KLSZPLOG *
* Function : Prompts user for and validates userid and password. *
* This dialog provides minimal verification. Any *
* validation failure causes the application to exit. *
* A full implementation checks for expired passwords *
* and requests a password change. *
* *
* Input : Entered by user in panel body. *
* Output Variable SYSRC - 0 Valid user id/password *
* <0 Invalid user id/password *
* *
* Created : 10/20/17 *
**
* Modification History Log *
**
* Date Modid Description *
-------- ------ --
* *
**
* *
**

)copy KLSZPATT

Figure 13. KLSZPLOG - Part 1

KLSZPLOG - Part 1

Chapter 7. Beginning the Dialog 59

)declare
The DECLARE section specifies six local variables. The text following the
asterisk (*) is a comment and explains how the variables are used in the
dialog.

Note that USERID and PASSWORD are input variables that accept user
entries. They appear later in the BODY section.

)init The INIT section contains a SET statement that is executed once. SET is
used to assign values to variables. Variables declared in the DECLARE
section with a scope of local are set to null automatically when the dialog
is invoked.

This SET statement sets the initial cursor position to the USERID field. The
text enclosed between /* and */ is a comment.

)prologue
This PROLOGUE section contains two SET statements that are executed
each time the dialog runs or is re-executed through a RESHOW statement.
(A RESHOW statement can appear in an EPILOGUE or PROLOGUE to
cause the dialog to re-execute from the beginning of the PROLOGUE
section.)

set password ''
Clears the password field. To ensure that no data remains in the
field from previous executions of the dialog, it is cleared in the
PROLOGUE section.

set syscsr...
Sets the cursor in the field where the user needs to enter data.
SYSCSR is a predefined variable that contains the desired cursor
location when the panel is displayed. During execution of the
dialog, CURSOR is assigned the value of an input field. Initially,
CURSOR is set to USERID.

KLSZPLOG - Part 3
The BODY section, shown in Figure 15 on page 61, is next. It formats the logon
panel shown in Figure 12 on page 58.

)declare
errmsg scope(local) * Contains error messages
userid scope(local) * Input verification: user id
password scope(local) * password
rc scope(local) * Function call return code
cursor scope(local) * Contains cursor location
valid scope(local) * Valid input flag

)init
set cursor userid /* Initial cursor position */

)prologue
set password ’’ /* Clear password entry field */
set syscsr &cursor /* Position cursor location */

Figure 14. KLSZPLOG - Part 2

KLSZPLOG - Part 2

60 SSPL Programming Guide

)body The BODY section contains the layout of the panel. The text that follows is
displayed as it is entered in the dialog. This dialog uses three)BODY
placeholders as shown in Figure 15. Each has a positioning parameter that
places the text at the top, middle, and bottom of the panel. The positioning
parameter ensures that the panel is displayed proportionally, regardless of
the screen size.

)body top
Text appears at the top of the panel.

)body center
Text appears in the center of the panel. Data is centered as a block,
not by individual line.

)body bottom
Text appears at the bottom of the panel.

field attributes
Field attributes, as defined in KLSZPATT shown in Figure 6 on page 49, are
used throughout the panel to format the input and output fields.

$ Defines an output field, displayed in yellow in high intensity. Acme
Industries and Personal Computer Inventory are displayed with these
characteristics.

Defines an output field, displayed in turquoise in normal intensity.
The horizontal lines that divide the panel and several fields are
displayed with these characteristics. Note that the # is repeated in
column 80 only as a marker of the right margin of the panel to
assist the programmer in formatting the text; it is not required.

- Defines an input field, displayed in green in normal intensity and
underscored. The user ID is visible as the user types it.

% Defines an input field, not displayed, with a green underscore that
marks the field for input. The password is invisible as the user
types it to provide security and confidentiality.

{ Defines an output field, displayed in blue in normal intensity.
Enter and F3 are displayed at the bottom of the panel in blue.

variables
In the BODY section, output variables are preceded by an &. Input
variables have no leading &.

&sysdate
The value of the predefined variable SYSDATE, which is the
system date, is displayed at this location on the panel.

)body top
$ ACME Industries #Date: &sysdate
$ Personal Computer Inventory #Time: &systime
#--#
)body center
#Type the requested information, then press Enter.
#
User ID..._userid
Password..%password#
)body bottom $&errmsg
#--#
{Enter F3=Logoff

Figure 15. KLSZPLOG - Part 3

KLSZPLOG - Part 3

Chapter 7. Beginning the Dialog 61

&systime
The value of the predefined variable SYSTIME is displayed at this
location on the panel. It is the system time of day in the format
hh:mm:ss.

userid USERID is a user-defined variable defined in the DECLARE
section. Note that the variable field, delimited by two field
attributes (_ and #), is long enough to accept the maximum length
of input, 8 characters.

password
PASSWORD is a user-defined variable defined in the DECLARE
section. Note that field length, delimited by two field attributes (%
and #), is long enough to accept the maximum length of input, 8
characters.

&errmsg
The contents of the variable ERRMSG are displayed in this
location. ERRMSG usually contains a prompt or information
alerting the user to an error.

KLSZPLOG - Part 4
The EPILOGUE section processes the input from the BODY section. This part of
the dialog performs the following actions:
1. Checks if the user pressed F3 to log off.
2. Checks for entry of a user ID.
3. Validates the user ID and password.
4. Returns control of the dialog to KLSZPTRK.

The EPILOGUE section is shown in Figure 16. An explanation follows the figure.

)epilogue
The EPILOGUE section processes input from the BODY section. It
redisplays the logon panel or returns control to KLSZPTRK, the invoking
dialog.

)epilogue
set errmsg ’’ /* Clear error message area */
set valid ð /* Assume error */
set password (’encdec(’&password’)’)/* Encrypt user password */

if &syskey = ’ENTER’ do /* Enter key pressed? */
call ChkValid /* Validate input */
if &valid /* Input valid? */

return 0 /* Return with 0 return code */
end

else if &syskey = ’PF3’ /* Does user want to quit? */
return (neg 1) /* Yes, indicate logoff */

else do /* Not ENTER or PF3? */
set errmsg ’Press Enter to proceed, or F3 to Logoff’
set cursor userid /* Position cursor */

end

dialog KLSZPERR ’&errmsg’ /* Display error message */

reshow /* Reshow panel */

Figure 16. KLSZPLOG - Part 4

KLSZPLOG - Part 3

62 SSPL Programming Guide

set errmsg ''
This SET statement clears ERRMSG of any previous message.

set valid 0
This SET statement initializes the variable VALID to 0 to ensure that it has
a known value. VALID is used to test the result of the logon validation.

set password
This SET statement sets the contents of the variable PASSWORD with the
encrypted password that results from the ENCDEC function.

('encdec
The ENCDEC function encrypts a non-encrypted string and
decrypts an encrypted string. Encryption adds a level of security in
protecting the password. Note parentheses that enclose the
arguments of the function.

('&password')')
The contents of variable PASSWORD are encrypted. Note the
single quotation marks that prevent tokenization.

if...else
The IF...ELSE statement tests the truth of a condition and initiates an action
depending upon the result. When the IF test is true, the DO...END
statement is executed. When the IF test is false, control branches to ELSE.

if &syskey='ENTER'
SYSKEY, a predefined variable, contains the value of the last attention
identifier (AID) key that was pressed. SYSKEY may contain PF1 through
PF24 (F1 through F24 on some keyboards), PA1 through PA3, ENTER,
CLEAR, ATTN, and, for SNA terminals, SYSRQ.

The IF statement checks the contents of SYSKEY for ENTER, which the
user presses after entering the user ID and password. When the IF
statement is true, the DO...END statement is executed to validate the
logon. When the IF statement is false, the dialog branches to ELSE.

do...end
A DO...END statement forms a single statement from a group of
statements. DO marks the start and END marks the finish of the statement
group. The statements between DO and END are called a compound
statement.

This DO...END statement groups three statements:
1. It ends the current dialog.
2. It places the value that you specify in SYSRC, a predefined variable. In

this RETURN statement, 0 is placed in SYSRC.
3. It returns to the calling dialog. In this statement, it returns to

KLSZPTRK.

These statements are explained below.

call ChkValid
The CALL statement branches to a subroutine label that resides in the
same section of the dialog where it is invoked. CHKVALID is the name or
label of the subroutine that appears later in the EPILOGUE. A subroutine
ends with a RETURN statement to return control to the statement
following the CALL to the subroutine.

if &valid
The IF statement tests for a true or false condition. If the subroutine

KLSZPLOG - Part 4

Chapter 7. Beginning the Dialog 63

CHKVALID found no error, VALID contains a 1 and the condition is true.
If an error was found, VALID contains a 0 and the condition is false. The
following statement is executed.

return 0
The RETURN statement performs three functions:
1. It ends the current dialog.
2. It places the value that you specify in SYSRC, a predefined variable. In

this RETURN statement, 0 is placed in SYSRC.
3. It returns to the calling dialog. In this statement, it returns to

KLSZPTRK.

KLSZPTRK tests SYSRC. When its value is less than 0, logoff occurs. When
it is 0 or greater, the next dialog, KLSZPINA, is invoked.

if...else
Refer to the previous IF...ELSE statement for a description.

if &syskey = 'PF3'
The IF statement tests SYSKEY for the value PF3, which indicates that the
user wants to log off. If PF3 is the value, the next statement is executed. If
it is not, control branches to ELSE.

return (neg 1)
The RETURN statement returns control to KLSZPTRK and sets SYSRC to
-1. NEG is an arithmetic operator that makes an arithmetic value negative.
KLSZPTRK performs a logoff when the returned value is less than 0.

else do
IF SYSKEY does not contain ENTER or PF3, control branches to this line.
See the explanations of the IF...ELSE statement and DO...END statement
that appear earlier in the EPILOGUE.

set errmsg 'Press...'
The SET statement moves the literal enclosed in single quotation marks
into the user-defined variable ERRMSG.

set cursor userid
The SET statement causes the cursor to be moved to the USERID field to
enable the user to continue or log off.

dialog KLSZPERR...
The DIALOG statement invokes KLSZPERR, the dialog that handles error
processing. The predefined variable SYSPARM passes the contents of
ERRMSG to KLSZPERR. KLSZPERR displays the literal as an error
message.

This statement is executed if the subroutine CHKVALID shows the logon
was invalid or if the user pressed a key other than Enter or PF3.

reshow
The RESHOW statement causes the dialog to re-execute from the
PROLOGUE section. The BODY section is displayed with the literal stored
in ERRMSG from the above SET statement or from a SET statement in the
subroutine CHKVALID.

The RESHOW statement is used commonly in the EPILOGUE section in
dialogs that contain panels for user input. When you want the user to type
more entries or correct entries, code a RESHOW statement to re-execute the
dialog from the PROLOGUE section.

KLSZPLOG - Part 4

64 SSPL Programming Guide

KLSZPLOG - Part 5
The remaining part of the EPILOGUE contains the CHKVALID subroutine that
validates the user ID and password. It consists of several IF...ELSE statements that
check for various error conditions. It is shown in Figure 17. An explanation follows
the figure.

ChkValid:
CHKVALID, the subroutine called earlier in the EPILOGUE section, begins
with the subroutine label followed by a colon (:). It concludes with a
RETURN statement that returns control to the statement following the call
to CHKVALID.

if...else
See the description that follows Figure 16 on page 62 for an explanation of
the IF...ELSE statement.

/*
* Get here if Enter pressed. Validate User id and Password.
*/
ChkValid:

if &userid = ’’ do /* User id not specified */
set errmsg ’User ID must be specified’
set cursor userid

end

else do
/*
* Validate the user id and password. Return value is based on
* VALIDATE return code. A full implementation checks for
* expired passwords, valid GROUP, ACCOUNT, and PROC., etc. The
* ENCDEC function passes the password unencrypted to the
* VALIDATE function.
*/

set rc (validate(’&userid’,(encdec(’&password’))))

if &rc =0; /* Validation successful? */
set valid 1 /* Indicate validation OK. */

else do /* No? Tell user what happened*/
if &rc = 4 do /* Invalid userid? */

set errmsg ’Invalid user ID entered.’
set cursor userid

end
else if &rc = 8 do /* Invalid password? */

set errmsg ’Invalid password entered.’
set cursor password

end
else if &rc = 12 do /* Expired password? */

set errmsg ’Password has expired.’
set cursor password

end
else if &rc = 28 do /* Access revoked? */

set errmsg ’User access revoked.’
set cursor userid

end
else do /* Everything else! */

set errmsg ’Validation failed, Return code was &rc’
set cursor userid

end
end

end

return

Figure 17. KLSZPLOG - Part 5

KLSZPLOG - Part 5

Chapter 7. Beginning the Dialog 65

if &userid = ''
The IF statement checks if the user pressed Enter without entering a
USERID. When USERID is blank, the DO...END statement is executed.

do...end
See the explanation that follows Figure 16 on page 62 for an explanation of
the DO...END statement.

set errmsg...
The SET statement sets the variable ERRMSG to the literal enclosed by
single quotation marks that alerts the user to enter a user ID.

set cursor userid
This SET statement causes the cursor to be moved to the USERID field in
readiness for the user's entry.

When the user fails to enter a user ID, control branches to the concluding
RETURN statement that returns control to the statement following the
CALL to the subroutine IF &VALID. From that statement, control branches
to DIALOG KLSZPERR &ERRMSG since intervening code does not match
test criteria. Otherwise, control branches to the next statement.

set rc This SET statement places the return code from the function VALIDATE
into the user-defined variable, RC. Successful validation is indicated by a
return code of 0.

(validate('&userid',
The VALIDATE function invokes security control. It generates a
return code that indicates if the validation was successful.
VALIDATE return codes are standard for RACF, CA-ACF/2,
CA-TOP SECRET , and NAM, CL/SuperSession's access control
mechanism. Both USERID and PASSWORD are used for validation.
The variables are enclosed in single quotation marks to prevent
tokenization.

((encdec ('password'))
The ENCDEC function decrypts the password before validation.

if &rc=0
The IF statement tests the value of RC. When the validation is successful,
RC contains 0 and control passes to the next statement.

set valid 1
The SET statement sets variable VALID to 1. When the validation is
successful, control branches to the RETURN statement. The intervening
code is skipped.

if &rc=...
The next four IF...ELSE statements test for return codes of 4, 8, 12, and 28.
Each code indicates a different kind of failure as noted in the comment
beside each IF statement.

do...end
Each IF statement is followed by a DO...END statement that encloses the
two SET statements explained next.

set errmsg...
The SET statement sets the variable ERRMSG to the value of the literal
enclosed in single quotation marks.

KLSZPLOG - Part 5

66 SSPL Programming Guide

set cursor...
The SET statement causes the cursor to be moved to the invalid field so
that the user can correct the entry.

Control branches to the RETURN statement, which causes control to return
to the statement following the call to the subroutine CHKVALID. Then,
control branches to DIALOG KLSZPERR &ERRMSG, which displays the
error message. The next statement, RESHOW, causes the dialog to
re-execute from the PROLOGUE, where the PASSWORD field is cleared
and the cursor is placed in the USERID field.

else do
When all previous IF statements are false, the dialog reaches this
statement, which covers any other error.

set errmsg...
The SET statement sets variable ERRMSG to the literal enclosed in single
quotation marks.

set cursor userid
The SET statement causes the cursor to be moved to the USERID field so
that the user can try the logon again.

return
The RETURN statement returns control to the statement IF &VALID that
follows the call to the subroutine CHKVALID.

KLSZPLOG - Part 5

Chapter 7. Beginning the Dialog 67

KLSZPLOG - Part 5

68 SSPL Programming Guide

Chapter 8. Creating and Displaying a Table

The table created and maintained by the PCIS application contains the user name,
telephone extension, machine type, and amount of RAM (random access memory)
in megabytes for the employees of Acme Industries. The panel displaying the table
is shown in Figure 18.

In this chapter, you will learn how to design the panel and create and display the
table.

Using Tables
A table is a two-dimensional array that is used for storing and managing data. A
table consists of rows and columns. Each column is associated with a variable. In a
table, a variable is a piece of data such as a name or telephone number. It is
equivalent to a field in a record. A row is a collection of variables that are related.
It is equivalent to a record in a file.

A table can be read and written to by several users, and one user can open the
same table several times. You can access the data in the table by keys, which are
variables in your table that you identify as key variables. You can also access the
data in the table by moving the current row pointer (CRP), which points to the
current row in the table, by using SSPL functions designed for this purpose. These
functions are described in this chapter.

Table Functions
SSPL functions that manage tables begin with TB. Their names suggest the
operations they perform. For example, TBOPEN opens a table. Like other SSPL
functions, table functions generate return codes. The table functions are explained
in the dialog as they are used.

ACME Industries Personal Computer Inventory System
--
Type one or more action codes, then press Enter.

E=Edit D=Delete (F5 to Add new user)

Tel. Machine
Action User Name Ext. Type RAM (Megs)
------ -------------------- ------- --------------- -----------

J. Doe 1234 IBM PC 8
R. Johnson 4844 IBM PC 12
L. Jones 5000 Mac 4
C. Miller 2197 iMac 12
D. Mills 2345 IBM PC 16
M. Smith 1234 IBM PC 32

F3=Exit F5=Add

Figure 18. Inventory Table

© Copyright IBM Corp. 1993, 2018 69

Table Variables
Predefined variables that automatically store information about tables are provided
with CL/SuperSession. These variables begin with ZTB. For example, ZTBSIZE
contains the maximum number of rows that can be displayed on the panel.

Creating the Table
The dialog that creates the table, KLSZPINA, is divided into two sections for ease
of explanation. The dialog is contained in one member.

KLSZPINA - Part 1
The first section of the dialog is shown in Figure 19. It contains

)OPTION,)COMMENT,)DECLARE, and)COPY placeholders.

)option
Refer to the explanation that follows Figure 9 on page 54 for a description
of the)OPTION placeholder.

)comment
The COMMENT section is the second section, after OPTION, in each
dialog of the PCIS application. Refer to the explanation that follows
Figure 9 on page 54 for more information.

)declare
The)DECLARE placeholder begins the DECLARE section. It contains a
)COPY placeholder and the definition for three local variables: ERRMSG,
RC, and PCITBL.

)copy The member KLSZPDCL is copied in the DECLARE section.

)option level(1) maxwidth maxdepth
)comment
**
******** ********
****** ******
**** PC Inventory System ****
**** ACME Industries ****
****** ******
******** ********
**
* Dialog Name: KLSZPINA *
* Function : Open/create inventory table. *
* Input : N/A *
* Output : Inventory table if not previously created. *
* Created : 10/20/17 *
**
* Modification History Log *
**
* Date Modid Description *
-------- ------ --
* *
**
* *
**

)declare
)copy KLSZPDCL

errmsg scope(local) * Error message
rc scope(local) * Return code
PCItbl scope(local) * Table name

Figure 19. KLSZPINA - Part 1

Table Variables

70 SSPL Programming Guide

KLSZPDCL, shown in Figure 8 on page 50, contains 6 variables with a scope of
shared .

KLSZPINA - Part 2
The INIT section, shown in Figure 20, is the last part of KLSZPINA. It does the
following:
v opens the table if it exists or creates it if it does not
v defines the table variables
v specifies the type of access: read, write, and share
v establishes the sort order

)init The)INIT placeholder identifies the section.

set This SET statement names the table and stores the name in a user-defined
variable.

PCItbl This user-defined variable is assigned the value of the table name
that follows. Storing the table name in a variable gives you one
place to modify if you need to change the table name in a future
update. It can also be inserted in an error message.

'PC.INVEN.TABLE'
The table name as it is known to the Dialog Manager has a
minimum of 2 qualifiers and a maximum of 5. Each qualifier has a
maximum of 8 characters. A table name can have a maximum of 44
characters. The table name in the PCIS application has 3 qualifiers
and 14 characters.

)init
/*
* Open inventory table. If table is not found, create it.
*/

set PCItbl ’PC.INVEN.TABLE’
set rc (tbopen(&PCItbl, /* Table name */

0, /* Write access */
1, /* Share access */
PCItblH)) /* Table handle */

if &rc = 8 do /* Table not found? */
set rc (tbcreate(&PCItbl, /* Table name */

’PCIname’, /* Key variable */
’PCIact,PCIext,PCImtyp,PCIram’, /* Name variables */
0, /* Write access */
0, /* No replace */
1, /* Share access */
PCItblH)) /* Table handle */

if &rc=0;
tbsort(&PCItblH, ’PCIname,C,A,PCIext,C,A’)

end
if &rc > 0 do

set errmsg ’Cannot open/create Inventory Table, RC(&rc)’
dialog KLSZPERR ’&errmsg’
return

end
/*
* The table is open. Use TBDISPL to display the table and
* process user requests.
*/
tbdispl(&PCItblH, KLSZPINB) /* Display the table */
tbclose(&PCItblH)
set PCItblH ’’
return /* Processing done */

Figure 20. KLSZPINA - Part 2

KLSZPINA - Part 1

Chapter 8. Creating and Displaying a Table 71

set rc This SET statement places the return code from the TBOPEN function into
the user-defined variable RC. A 0 indicates that the table was opened
successfully; an 8 means that the table does not exist in virtual storage or
the table database.

(tbopen
The TBOPEN function opens a table. It copies it from the table
database into virtual storage.

(&PCItbl
PCITBL is a variable that contains the name of the table to be
opened.

0 A 0 in this position authorizes write access to the table database
and allows it to be saved. A 1 in this position denies write access
to the table database.

The copy of the table in virtual storage has no write restrictions.

1 A 1 in this position authorizes shared access; that is, several users
can access the table at the same time. The shared table is the copy
in virtual storage. A 0 in this position limits access to one user at a
time.

PCItblH))
A variable name in this position identifies a variable that will
contain the table handle. The table handle is used by the Dialog
Manager as a pointer to a table. When several users open the same
table or a single user opens the same table several times, the table
handle maintains the location of each access to the table. You can
name a table handle in TBOPEN or TBCREATE. The variable used
for the table handle was defined as a shared variable in
KLSZPDCL, shown in Figure 8 on page 50, so that it is available to
the other dialogs in the PCIS.

if &rc=8
The IF statement tests the value of RC for 8. TBOPEN generates a return
code of 8 the first time the dialog is executed if the table does not exist. In
later executions when the table is successfully opened, TBOPEN generates
a return code of 0. With a return code of 8, the DO...END statement is
executed to create the table.

do...end
The DO...END statement groups the enclosed statements into a single
statement.

set rc The SET statement places the return code from the TBCREATE function in
the user-defined variable RC.

(tbcreate
TBCREATE is a table function that creates a table, identifies the
table variables, and opens the table for processing.

(&PCItbl,
The variable contains the name of the table to be created.

'PCIname'
The table name is followed by a list of variables. The first variable,
enclosed in single quotation marks, is PCINAME. It is the key
variable, which allows random retrieval and update of rows. The
user name is the key variable in this dialog.

KLSZPINA - Part 2

72 SSPL Programming Guide

'PCIact...PCIram',
The next four variables are name variables. Name variables become
columns in the table. In this dialog, the action code, telephone
extension, machine type, and RAM are the columns.

0 A 0 in this position authorizes write access to the table database
and allows the table to be saved. A 1 in this position denies write
access to the table database.

The copy of the table in virtual storage has no write restrictions.

0 Authorizes the replacement of an existing table in the table
database. A 1 in this position denies write access.

1 Authorizes sharing of the table by many users. A 0 in this position
denies sharing.

PCItblH
The last position in the TBCREATE function names the variable
that will contain the table handle. Table handle is described under
TBOPEN, above.

if &rc=0
This IF statement tests variable RC for 0. It is the return code from
TBCREATE that indicates success. When the condition is true, the next
statement is executed. When it is false, the dialog branches to the next IF
statement.

tbsort TBSORT is a table services function that sorts an existing table in the order
that you specify. For a new table, it establishes the sort order.

PCItblH
Specifies the handle of the table to be sorted.

'PCIname
Specifies the key variable, named in TBCREATE above, as the
primary sort item.

C Specifies a character sort. Other sort types are binary (B) and
numeric (N).

A Specifies ascending sequence. The other sequence choice is D for
descending.

PCIext
Specifies ascending sequence. The other sequence choice is D for
descending.

C Specifies a character sort for the secondary sort.

A' Specifies ascending character sequence for the secondary sort.

if &rc > 0
This IF statement examines variable RC for a value greater than 0. If the
function fails, TBOPEN and TBCREATE generate a return code that is
greater than 0. The DO...END statement is executed to perform error
handling when this IF statement is true.

do...end
The DO...END statement groups the enclosed statements into a single
statement.

KLSZPINA - Part 2

Chapter 8. Creating and Displaying a Table 73

set errmsg...
The SET statement sets the value of ERRMSG to the literal enclosed in
single quotation marks.

dialog KLSZPERR...
The DIALOG statement invokes a dialog from the current dialog and
passes a string expression, &ERRMSG, in the predefined variable
SYSPARM to the called dialog.

The message 'Cannot open/create Inventory Table, RC(&rc)' is the string
expression that is stored in SYSPARM and passed to KLSZPERR. Note that
the contents of RC are displayed as part of the message.

return After KLSZPERR completes, control returns to this RETURN statement,
which returns control to the calling dialog, KLSZPTRK, and the statement
LOGOFF() that follows the call to dialog KLSZPINA.

tbdispl
TBDISPL is a table function that invokes a dialog to display a row or rows
from an opened table.

&PCItblH
Specifies the variable that contains the table handle specified
previously with a TBOPEN or TBCREATE.

KLSZPINB
Specifies the name of the dialog that controls displaying the table.
KLSZPINB is described in “Displaying the Table.”

tbclose
TBCLOSE is a table function that terminates processing of the table. If the
table was opened with write access, the table database is updated and the
copy of the table in virtual storage is deleted. Without write access, no
update to the table database occurs. In this example, the table is closed and
updated.

&PCItblH
Specifies the variable that contains the table handle of the table
that is being closed.

return This statement returns control to dialog KLSZPTRK to the statement
LOGOFF(), which follows the call to KLSZPINA.

Displaying the Table
KLSZPINA, the dialog just described, creates and opens the table and invokes
dialog KLSZPINB. KLSZPINB performs these tasks:
v manages scrolling and the display of scrolling indicators
v formats and displays table data
v evaluates the user's request for adding, editing, and deleting a record and

branches to another dialog as requested

The dialog is divided into six figures for ease of explanation. KLSZPINB is
contained in a single member.

KLSZPINB - Part 1
Figure 21 on page 75 shows the first part of KLSZPINB. Like the other dialogs, it
copies in field attributes and defines variables. An explanation follows the figure.

KLSZPINA - Part 2

74 SSPL Programming Guide

)option
Refer to the explanation that follows Figure 16 on page 62 for a description
of the)OPTION placeholder with the LEFTJUSTIFY parameter.

)comment
The COMMENT section is the second section, after OPTION, in each
dialog of the PCIS application. Refer to the explanation that follows
Figure 9 on page 54 for more information.

)copy The)COPY placeholder copies in the member KLSZPATT, which contains
the field attributes as shown in Figure 6 on page 49.

)declare
The)DECLARE placeholder begins the DECLARE section. It contains a
)COPY placeholder and defines several local variables. Note that two
user-defined variables are assigned aliases; they are used to display scroll
indicators on the panel.

The last three variables, beginning with ZTB, are predefined, table services
variables. ZTBSEL and ZTBSIZE are used in the dialog for managing scroll
indicators and updating the table.

)option level(1) maxwidth maxdepth leftjustify
)comment
**
******** ********
****** ******
**** PC Inventory System ****
**** ACME Industries ****
****** ******
******** ********
**
* Dialog Name: KLSZPINB *
* Function : Display the inventory table and provide action support. *
* Input : &PCItblH contains table handle of table to display. *
* Output : Updated inventory table. *
* Created : 10/20/17 *
**
* Modification History Log *
**
* Date Modid Description *
-------- ------ --
* *
**
* *
**

)copy KLSZPATT

)declare
)copy KLSZPDCL

numrows scope(local) * Number of rows in inventory table
toprow scope(local) * Id of top row
f7 scope(local) * PF7 key area text
f8 scope(local) * PF8 key area text
backward scope(local) alias(b) * Bkwd scroll indicator (- or ’ ’)
forward scope(local) alias(f) * Fwd scroll indicator (+ or ’ ’)
more scope(local) * Scroll indicator (More: or ’ ’)
errmsg scope(local) * Error message
fkeys scope(local) * Valid function keys
ZTBsel scope(local) * Number of selected table rows
ZTBsize scope(local) * Number of table rows on display
ZTBmark scope(local) * End of table text area

Figure 21. KLSZPINB - Part 1

KLSZPINB - Part 1

Chapter 8. Creating and Displaying a Table 75

ZTBMARK appears only in the DECLARE section. It is set to null when it
is defined with a scope of local. When ZTBMARK is not null, this message
prints at the end of the table: (**BOTTOM OF DATA**)

)copy KLSZPDCL
The)COPY placeholder copies shared variables from member KLSZPDCL,
shown in Figure 8 on page 50, into the DECLARE section.

KLSZPINB - Part 2
The PROLOGUE section of KLSZPINB sets and displays the scrolling indicators
when more data is available than is currently displayed:
v The indicator, More followed by a + (plus sign) or a - (minus sign), is displayed

in the upper right corner of the panel.
v The scroll function keys, F7 and F8, are displayed at the bottom of the panel in

the function key area.

The PROLOGUE is shown in Figure 22 on page 77 and explained in the sections
that follow.

KLSZPINB - Part 1

76 SSPL Programming Guide

tbquery
The TBQUERY function returns information about a table.

&PCItblH
Specifies the variable that contains the table handle of the table
being queried.

'' Specifies TBQUERY arguments that are not used.

numrows
Specifies that the user-defined variable will contain the number of
rows in the table.

'' Specifies TBQUERY arguments that are not used.

toprow
Specifies that the user-defined variable will contain the row
number of the current row of the table (the row currently at the
top of the display).

)Prologue

/*
* Set scrolling indicators.
*/

tbquery(&PCItblH, /* Table handle */
’’,
’’,
numrows, /* Number of rows in table */
’’,
’’,
toprow) /* Current row pointer */

if &toprow = 0 /* At top of table? */
set toprow 1 /* Set top row value */

if (&toprow+&ZTBsize) > &numrows do /* More rows to be displayed? */
set forward ’’ /* No, clear fwd scroll indic. */
set f8 ’**’ /* Disable fwd function key */

end
else do

set forward ’+’ /* Yes, set fwd scroll indic. */
set f8 ’F8’ /* Show fwd function key */

end

if (&toprow > 1) do /* Is there a previous display */
set backward ’-’ /* Yes, bkwd scroll indic. */
set f7 ’F7’ /* Show bkwd function key */

end
else do

set f7 ’**’ /* No, disable bkwd key */
set backward ’’ /* And clear bkwd scroll indic */

end

/*
* Build Function Key Area and Scroll indicator area
*/

set fkeys ’Enter F3=Exit F5=Add’

if (&forward = ’’) and (&backward = ’’) /* Any scrolling ? */
set more ’’ /* No, clear scroll indicator */

else do
set more ’More:’ /* Yes, set scroll indicator */
set fkeys ’&fkeys &f7=Bkwd &f8=Fwd’ /* And scroll keys */

end

Figure 22. KLSZPINB - Part 2

KLSZPINB - Part 2

Chapter 8. Creating and Displaying a Table 77

if &toprow=0
The IF statement checks the contents of TOPROW for 0. Some table
functions move the pointer to the front of the top row, and this statement
checks for this condition.

set toprow 1
The SET statement sets the value of variable TOPROW to 1. This variable
is tested later in the dialog.

if...else
The IF...ELSE statement tests the truth of a condition and initiates an action
based on the result of the test. When the IF part of the statement is false,
the ELSE part of the statement is executed.

This IF...ELSE statement determines if more rows are available for display
by comparing the sum of the current row (top of the display) and the
maximum number of rows in the display to the total number of rows in
the table. If more rows are available, the forward scrolling indicators are
set.

(&toprow+
The number of the row currently at the top of the display is added
to ZTBSIZE.

&ZTBsize
&ZTBsize ZTBSIZE is a predefined variable that contains the
number of rows that can be shown on the screen. If the current
row number plus the number of rows in the current display is
greater than the total number of rows in the table (contained in
NUMROWS), the DO...END statement is executed to set the
forward scroll indicator to Off. Otherwise, the ELSE statement is
executed to set the forward scroll indicator to On.

> &numrows
NUMROWS is a user-defined variable that contains the number of
rows in the table.

set forward ''
The SET statement sets the forward scroll indicator that appears in the
upper left of the panel to blank if forward scrolling is not available.

set f8 '**'
The SET statement sets user-defined variable F8 to two asterisks (**). The
asterisks are displayed at the bottom of the panel in the function key area
beside Fwd to indicate that forward scrolling is not available.

else This part of the IF...ELSE statement executes when the IF statement is false.

do...end
DO...END forms a compound statement of the two statements enclosed
between them.

set forward '+'
The SET statement sets the value of user-defined variable FORWARD to +.
It is displayed on the panel in the upper right corner to indicate that
forward scrolling is available.

set f8 'F8'
This SET statement sets the value of user-defined variable F8 to F8 . It is
displayed at the bottom of the panel in the function key area to indicate
that F8 is active for forward scrolling.

KLSZPINB - Part 2

78 SSPL Programming Guide

if (&toprow > 1)
The IF...ELSE statement checks the value of user-defined variable
TOPROW. If it is greater than 1, rows are available for backward scrolling.
The backward scroll variables are set by the DO...END statement. If the IF
statement is false, the statement introduced by ELSE, below, is executed.

do...end
The DO...END statement causes the statements between them to be treated
as a single statement.

set backward '-'
The SET statement sets the variable for the backward scroll indicator to a
minus sign (-). It is displayed in the upper right corner of the panel to
indicate that backward scrolling is available.

set f7 'F7'
User-defined variable F7 is set to F7 . This value is displayed at the bottom
of the panel in the function key area to indicate backward scrolling is
available.

else The statements following the ELSE statement are executed if the IF
statement is false (the value of TOPROW is less than 1.) The backward
scroll indicators are set to show that scrolling is not available.

do...end
The statements enclosed between DO and END are executed if no previous
rows exist.

set f7 '**'
User-defined variable F7 is set to two asterisks (**) that are displayed in
the function key area beside Bkwd to indicate that backward scrolling is
not available.

set backward ''
The backward scroll indicator is set to blank, and no display for backward
scrolling is shown on the panel.

set fkeys...
This SET statement sets user-defined variable FKEYS so that the function
keys for Exit and Add are displayed at the bottom of the panel in the
function key area.

if...else
The IF...ELSE statement uses the results of the preceding part of the
PROLOGUE to set the scrolling indicators on the panel. The contents of the
variables for forward and backward scrolling are checked. When the IF
statement is false, the statements following ELSE are executed.

(&forward = '') and (&backward = '')
The IF statement tests the contents of variables FORWARD and
BACKWARD for null.

and AND is a logical operator. The expressions on either side of the operator
must both be true for the entire expression to be true.

set more ''
The SET statement sets the scroll indicator variable MORE to null, when
FORWARD and BACKWARD contain nulls.

else When the previous IF statement is false, that is, when the forward and
backward scroll indicators contain values, the statements following ELSE
are executed. They display scrolling indicators.

KLSZPINB - Part 2

Chapter 8. Creating and Displaying a Table 79

do...end
The DO...END statement groups the statements that they enclose into a
single statement.

set more 'More:'
User-defined variable MORE is set to More , which is displayed in the
upper right corner of the panel when additional data is available for
display.

set fkeys...
A previous SET statement placed a literal in the variable FKEYS to indicate
the function keys for Exit and Add. This SET statement adds the function
keys for forward and backward scrolling.

KLSZPINB - Part 3
The BODY section is next in KLSZPINB. It formats the table for display and is
shown in Figure 23. An explanation follows the figure.

)body The BODY section creates the panel that is shown in Figure 18 on page 69.
It displays the table and its contents. Three)BODY placeholders are used
to position the information on the screen.

)body top input
Specifies that the information appear at the top of the screen.

)body table
Specifies that the section that follows is the layout, also called a
model, of a table.

)body bottom
Specifies that information appear at the bottom of the screen.

variables
The variable, A, is shown in the Action code column. It is the alias
for PCIACT, a shared variable defined in KLSZPDCL, shown in
Figure 8 on page 50. It accepts the action codes, E for edit or D for
delete, that the user can enter in the action code column. The alias
is used because the length of the input field does not accommodate
the full name of the variable. Because it is an input variable, it
does not have a leading &. Other variables are preceded by an &
because they are used as output. These variables were set in the
PROLOGUE or copied in from member KLSZPDCL. Note the
scroll indicators in the upper right corner of the panel, the function
key area at the bottom of the panel, and the attribute characters
that set the field characteristics.

)body top input
$ACME Industries Personal Computer Inventory System #

--#
Type one or more action codes, then press Enter. #

E=Edit D=Delete (F5 to Add new user) #
{&more &b&f #

Tel. Machine #
Action User Name Ext. Type RAM (Megs) #
------ -------------------- ------- --------------- ----------- #
)body table
_a} &PCIname # &PCIext#&PCImtyp # &PCIram#

)body bottom

{&fkeys

Figure 23. KLSZPINB - Part 3

KLSZPINB - Part 2

80 SSPL Programming Guide

KLSZPINB - Part 4
The EPILOGUE section of KLSZPINB processes the user's entries in the BODY
section. Depending on the action code or function key selected by the user, the
EPILOGUE invokes another dialog:
v KLSZPINC to add a record
v KLSZPIND to edit a record
v KLSZPINE to delete a record

The first part of the EPILOGUE is shown in Figure 24. An explanation follows the
figure.

)epilogue
The EPILOGUE processes the input from the BODY section. It uses
IF...ELSE statements to check the contents of SYSKEY, the predefined
variable that contains the value of the last attention key pressed, to
determine the action that the user requested.

if...else
The IF...ELSE statement tests the truth of a condition and initiates an action

)epilogue
if &syskey = ’ENTER’ do

call Get_Select /* Process selected rows first*/
call Re_Position /* Set top row of table disply*/

end
else if &syskey = ’PF3’ /* Exit requested? */

return /* Yes, return to caller */

else if &syskey = ’PF5’ do /* Add new inventory record? */
dialog KLSZPINC /* Call inventory add dialog */
call Re_Position /* Set top row of table disply*/

end

else if &syskey = ’PF7’ do /* Backward scroll requested? */
if &f7 = ’**’ /* Is bkwd disabled? */

call badkey /* Yes, beep at user */
else do /* No, scroll 1 scr back */

call Get_Select /* Process selected rows first*/
call Re_Position /* Set top row of table disply*/
tbskip(&PCItblH (neg (&ZTBsize-1)))

end
end

else if &syskey = ’PF8’ do /* Forward Scroll requested */
if &f8 = ’**’ /* Is Fwd disabled? */

call badkey /* Yes, beep at user */
else do /* No, scroll 1 scr fwd */

call Get_Select /* Process selected rows first*/
call Re_Position /* Set top row of table disply*/
tbskip(&PCItblH (&ZTBsize-1))

end
end

else
call badkey /* Invalid key pressed */

reshow
/*
* bad key routine
*/

badkey:
set errmsg ’&syskey is not active’ /* Set error message */
dialog KLSZPERR ’&errmsg’ /* Call error msg dialog */
return /* Return to caller */

Figure 24. KLSZPINB - Part 4

KLSZPINB - Part 4

Chapter 8. Creating and Displaying a Table 81

based on the result of the test. The five IF...ELSE statements in the first part
of the EPILOGUE test for the last attention key pressed.

&syskey = 'ENTER'
If SYSKEY contains ENTER, the user pressed the Enter key. The
DO...END statement is executed when the condition is true.

do...end
The DO...END statement associated with each IF statement is
executed when the condition tested is true. When the condition is
false, control passes to the subsequent ELSE statement.

call Get_Select
The CALL statement branches to the label GET_SELECT, a
subroutine that apears later in the EPILOGUE. GET_SELECT
invokes the dialogs that handle editing and deleting a record in the
table. When GET_SELECT completes processing, control returns to
the statement following the CALL statement, CALL RE_POSITION.

call Re_Position
The CALL statement branches to the label RE_POSITION, a
subroutine that appears later in the EPILOGUE. It repositions the
cursor after a record is added to the table or after all rows are
processed. When RE_POSITION completes, control returns to the
statement following the CALL to the RE_POSITION. Control
branches to the RESHOW statement when SYSKEY equals ENTER.

if &syskey = 'PF3'
When SYSKEY does not contain ENTER, control branches to this IF
statement, which checks if the user pressed F3 to log off.

return
If SYSKEY contains PF3, the RETURN statement is executed and control of
the dialog is returned to KLSZPTRK, where the logoff occurs.

if &syskey = 'PF5'
This IF statement is executed when SYSKEY does not contain Enter or PF3.
It tests for PF5 which indicates that the user wants to add a record to the
table. The statements enclosed between DO and END are executed when
SYSKEY contains PF5.

dialog KLSZPINC
The DIALOG statement calls KLSZPINC, the dialog that adds a record to
the table. KLSZPINC is described in Chapter 9, “Managing a Table,” on
page 89.

call Re_Position
After KLSZPINC completes processing, control returns to this statement.
The CALL statement branches to the label RE_POSITION, a subroutine that
appears later in the EPILOGUE.

if &syskey = 'PF7'
If SYSKEY does not contain Enter, PF3, or PF5, control branches to this
ELSE statement where the value of SYSKEY is tested again. The IF
statement checks to see if the user pressed F7 to select backward scrolling.
The DO...END statement is executed when SYSKEY contains F7.

if &f7 = '**'
This IF statement checks the contents of the variable F7 for two asterisks
(**), which means that backward scrolling is not available. When this IF
statement is true, the next statement is executed.

KLSZPINB - Part 4

82 SSPL Programming Guide

call badkey
The CALL statement branches to the label BADKEY when forward
scrolling is requested and the forward scrolling key is disabled. BADKEY is
a subroutine that appears later in the EPILOGUE. It creates an error
message and invokes KLSZPERR, the error handling dialog.

If F7 does not contain two asterisks (**), the scroll request was valid and
the DO...END statement is executed.

call Get_Select
The CALL statement branches to the label GET_SELECT, a subroutine that
appears later in the EPILOGUE. See the description of GET_SELECT that
appears earlier in this section.

call Re_Position
The CALL statement branches to the label RE_POSITION, a subroutine that
appears later in the EPILOGUE. See the call to RE_POSITION earlier in
this section for a description.

tbskip TBSKIP is a table function that scrolls backward and forward through a
table by moving the CRP a specified number of rows.

&PCItblH
This variable contains the handle of the table that is being acted
upon by TBSKIP.

neg (&ZTBsize-1)
This formula specifies the number of rows to scroll. NEG is an
arithmetic operator that makes an arithmetic value negative.
ZTBSIZE is a predefined variable that contains the number of rows
in the previous display. This formula causes the table to scroll
backward one row short of a full panel display.

For example, if ZTBSIZE contains 20, the result of the subtraction
is 19. The arithmetic operator, NEG, converts it to -19, which tells
TBSKIP to move backward 19 lines.

if &syskey = 'PF8'
If SYSKEY does not equal Enter, PF3, PF5, or PF7, this IF statement is
executed to check for PF8, indicating that the user requested forward
scrolling. The DO...END statement is executed when SYSKEY equals PF8.

if &f8 = '**'
This IF statement checks the contents of the variable F8. If F8 contains two
asterisks (**), no rows are available for forward scrolling and the request is
invalid. The next statement is executed.

call badkey
The CALL statement branches to the label BADKEY, a subroutine that
appears later in the EPILOGUE section. See the earlier call to BADKEY for
a description of the subroutine.

call Get_Select
The CALL statement branches to label GET_SELECT, a subroutine that
appears later in the EPILOGUE. See the earlier call to GET_SELECT for a
description of the subroutine.

call Re_Position
The CALL statement branches to the label, RE_POSITION, a subroutine
that appears later in the EPILOGUE. See the earlier call to RE_POSITION
for a description of the subroutine.

KLSZPINB - Part 4

Chapter 8. Creating and Displaying a Table 83

tbskip This TBSKIP scrolls forward through the table according to the formula
enclosed in parentheses.

(&ZTBsize-1)
This formula specifies the number of rows to scroll. ZTBSIZE is a
predefined variable that contains the number of rows in the
previous display. This formula causes the table to scroll forward
one row short of a full panel display.

For example, if ZTBSIZE contains 20, the result of the subtraction
is 19. TBSKIP causes the table to scroll forward 19 lines.

call badkey
The CALL statement branches to the label BADKEY, a subroutine that
appears later in the EPILOGUE, if SYSKEY contained none of the keys
tested in the IF statements, indicating that an invalid key was pressed.

reshow
When BADKEY completes execution, control is returned to the RESHOW
statement, which causes the dialog to re-execute from the PROLOGUE
section. RESHOW is also executed after all IF...ELSE statements.

badkey:
The subroutine label, BADKEY, begins the subroutine.

Note the required colon that follows the label.

set errmsg...
The SET statement sets the variable ERRMSG with the value of the
literal enclosed in single quotation marks. The current value of
SYSKEY is displayed as part of the error message.

dialog KLSZPERR ...
The DIALOG statement calls KLSZPERR to perform the error
handling and display a message indicating that the user pressed an
invalid key.

The error message is stored in ERRMSG and is passed to
KLSZPERR in the predefined variable SYSPARM.

return
This statement returns control to the statement following the call to
the BADKEY subroutine. The statement is RESHOW; it causes the
dialog to re-execute from the PROLOGUE section.

KLSZPINB - Part 5
The remainder of the EPILOGUE section contains two subroutines, shown in
Figure 25 on page 85, that are called earlier in the EPILOGUE:
v GET_SELECT to invoke other dialogs depending upon the action code entered

by the user.
v RE_POSITION to move the CRP after the table is modified.

KLSZPINB - Part 4

84 SSPL Programming Guide

Get_Select:
GET_SELECT is the label that begins the subroutine that manages the
action codes the user enters to select the edit and delete functions. The
statememt CALL GET_SELECT, which appears earlier in the EPILOGUE,
causes the dialog to branch to this statement.

while The WHILE statement causes a set of statements to execute repeatedly as
long as a condition is true. A WHILE statement does not execute the first
time if the condition is false. (The DO...UNTIL statement performs the
same function, but it executes at least once.)

&ZTBsel > 0
ZTBSEL is a predefined variable that contains the number of rows
in a table that are pending processing. As long as the value of
ZTBSEL is greater than 0, the looping through the subroutine
continues.

do...end
Two DO...END statements are nested. Each encloses several statements that
are treated as a single statement.

if...else
Two IF...ELSE statements test the value of PCIACT. When the IF part is
false, the ELSE part is executed.

if &PCIact = 'E'
If PCIACT contains an E, the user selected the edit function, and the next
statement is executed.

dialog KLSZPIND
The DIALOG statement invokes KLSZPIND, the dialog that edits a
table row. It is explained in “Editing a Record” on page 97.

else If PCIACT does not contain an E, control branches to this ELSE statement.

if &PCIact = 'D'
If PCIACT does not contain an E, this IF statement is executed to check for
D, the action code for deleting.

/*
* Act on rows that have been modified (action code has been set)
*/

Get_Select:
while &ZTBsel > 0 do /* While selected rows remain */

if &PCIact = ’E’ /* E - Edit ? */
dialog KLSZPIND /* Yes, edit selected item */

else
if &PCIact = ’D’ /* D - Delete ? */

dialog KLSZPINE /* Yes, delete it */
else do /* Anything else is an error. */

set errmsg ’Invalid action code: &PCIact. Retry’
dialog KLSZPERR ’&errmsg’

end
end
tbdispl(&PCItblH) /* Get next selected row */

end
return /* Return to caller */

/*
* reposition table to top
*/

Re_Position:
tbtop(&PCItblH) /* Go to top of table */
tbskip(&PCItblH, &toprow) /* Skip to top row */
return /* Return to caller */

Figure 25. KLSZPINB - Part 5

KLSZPINB - Part 5

Chapter 8. Creating and Displaying a Table 85

dialog KLSZPINE
This DIALOG statement invokes dialog KLSZPINE to delete a
record. KLSZPINE is described in “Deleting a Record” on page
103.

else If PCIACT is not E or D, the user made an invalid selection. The next
statement is executed to invoke the error routine.

set errmsg...
The SET statement sets the value of ERRMSG to the literal enclosed in
single quotation marks.

dialog KLSZPERR...
The DIALOG statement invokes KLSZPERR, the error handling dialog. The
error message stored in ERRMSG is passed to KLSZPERR in predefined
variable SYSPARM.

tbdispl (&PCItblH)
After PCIACT is processed, the TBDISPL function gets the next selected
row as long as the WHILE statement is true. After all rows are processed,
the next statement is executed.

return The RETURN statement returns control of the dialog to statement CALL
RE_POSITION, that follows the call to the subroutine GET_SELECT.

Re_Position:
RE_POSITION is the label that begins the subroutine that repositions the
table display after a record is added to the table or after all rows are
processed. The statement, CALL RE_POSITION, which appears earlier in
the EPILOGUE, causes control to branch to this statement.

TbTop TBTOP is a table function that sets the CRP to the top of the table.
The table is identified by the variable that contains the table
handle, PCITBLH.

TbSkip
TBSKIP is a table function that scrolls through a table. The table is
identified by the variable that contains the table handle, PCITBLH.
The number of rows to scroll is contained in the variable
TOPROW.

return
RETURN causes the dialog to branch to the statement that follows
the call to the subroutine RE_POSITION. The statement is either an
IF statement that tests the value of SYSKEY or a TBSKIP function.

KLSZPINB - Part 6
The last part of KLSZPINB is the TERM section, shown in Figure 26 on page 87. It
updates and saves the table.

KLSZPINB - Part 5

86 SSPL Programming Guide

)term The)TERM placeholder starts the termination code.

loopctr 0
The LOOPCTR statement limits the iterations of a loop. This statement
disables the loop counter, which has a default value of 512, because the
number of rows in the table is unknown.

Tbtop(&PCItblH)
TBTOP is a table function that sets the CRP to the top row. The variable,
PCITBLH, contains the table handle that identifies the table.

set PCIact ''
The SET statement sets PCIACT, the variable for the action code, to null.
The cleared variable is compared against the action field in the table to
find rows containing data.

while The WHILE statement controls the number of executions of the DO...END
statement. While the condition specified in the WHILE statement is true,
processing continues. When the return code is 8 or more, an error has
occurred.

((tbscan
TBSCAN is a table function that searches a table for a row that
matches the argument list. The table, represented by the table
handle contained in variable PCITBLH, is searched for an action
code not equal (NE) to null.

'PCIact,NE'))
TBSCAN selects any rows that matches this criterion, that is, a
non-null action code field.

do...end
The DO...END statement is executed as long as the WHILE statement is
true.

set PCIact ' '
The action code field, PCIACT, is set to null before the row is written to
the table.

TbPut TBPUT is a table function that replaces an existing row.

&PCItblH
The variable contains the table handle of the table to be acted
upon.

' ' The single quotation marks note a parameter of TBPUT that was
not used in this statement.

1 A 1 in this position denotes that the table is kept in sorted order.

)term
/*
* On exit, set all action codes back to blanks...
*/

loopctr 0; /* Disable loop counter */
tbtop(&PCItblH) /* Go to top of table */
set PCIact ’’ /* Set TBSCAN argument */
/*
* TBSCAN below selects all records that are non-blank. */
while ((tbscan(&PCItblH, ’PCIact, NE’)) < 8) do

set PCIact ’’ /* Set action code blank */
tbput(&PCItblH, ’’, 1) /* Re-write row */

end

Figure 26. KLSZPINB - Part 6

KLSZPINB - Part 6

Chapter 8. Creating and Displaying a Table 87

KLSZPINB - Part 6

88 SSPL Programming Guide

Chapter 9. Managing a Table

This chapter describes the three dialogs that add, change, and delete records from
a table. They are KLSZPINC, KLSZPIND, and KLSZPINE, respectively.

Adding a Record
The pop-up window, shown in Figure 27, is displayed when the user presses F5 to
add a new record to the table.

KLSZPINC is the dialog that handles the addition of new rows to a table. It is
invoked in dialog KLSZPINB in the EPILOGUE section when the user presses F5.
KLSZPINC is divided into five parts for ease of discussion. The dialog is contained
in a single member.

KLSZPINC - Part 1
The first part of the dialog, shown in Figure 28 on page 90, defines attributes and
variables. An explanation follows the figure.

ACME Industries Personal Computer Inventory System
--
Type one or more action codes, then press Enter.

E=Edit D=Delete (F5 to Add new user)
Tel. Machine

Action User Name Ext. Type RAM (Megs)
------ -------------------- ------- --------------- -----------

J. Doe 1234 IBM PC 4
+---+ 12
| PC Inventory - Add Item | 3
| -- | 12
| Type requested information, then Enter. | 2
| | 10
| User Name . . . |
| Phone Ext . . . |
| Machine Type. . |
| RAM (Megs). . . |
| |
| Enter F12=Cancel |
+---+

F3=Exit F5=Add

Figure 27. Pop-up Window for Adding a Record

© Copyright IBM Corp. 1993, 2018 89

)option
Refer to the explanation that follows Figure 9 on page 54 for a description
of the)OPTION placeholder. This dialog uses another parameter of the
)OPTION placeholder:

popup Causes the panel defined in the BODY section to be displayed as a
pop-up window.

)comment
Refer to the explanation that follows Figure 9 on page 54 for a description
of the)COMMENT placeholder. In this dialog, note the description of
input and output.

)copy KLSZPATT
The attributes for field design are contained in member KLSZPATT, which
is copied into the dialog. See Figure 6 on page 49 for for the contents of
KLSZPATT.

)declare
The DECLARE section defines variables for the dialog. Shared variables are
copied with the)COPY placeholder, and local variables are defined within

)option level(1) popup
)comment
**
******** ********
****** ******
**** PC Inventory System ****
**** ACME Industries ****
****** ******
******** ********
**
* Dialog Name: KLSZPINC *
* Function : Adds inventory record to table. *
* Input : Entered by user in panel body. *
* Output : Updated inventory table. *
* Created : 10/20/17 *
**
* Modification History Log *
**
* Date Modid Description *
-------- ------ --
* *
**
* *
**

)copy KLSZPATT

)declare
)copy KLSZPDCL

name scope(local) * Name
ext scope(local) * Phone extension
type scope(local) * PC type
ram scope(local) alias(rm) * RAM
cursor scope(local) * Cursor position
valid scope(local) * Valid input flag
errmsg scope(local) * Error message
rc scope(local) * Return code from functions

)init
set cursor NAME /* Position cursor in NAME field */
set name ’’ /* On ADD, */
set ext ’’ /* clear */
set type ’’ /* all */
set ram ’’ /* fields */

)prologue
set syscsr &cursor /* Set cursor in requested field */

Figure 28. KLSZPINC - Part 1

KLSZPINC - Part 1

90 SSPL Programming Guide

this section. The local variable RAM is given a two-character alias for use
as an input field on the pop-up window.

)copy KLSZPDCL
Member KLSZPDCL, shown in Figure 8 on page 50, contains shared
variables that are copied into the dialog. Following the)COPY placeholder
and still in the DECLARE section are the local variables that are used in
the dialog.

)init The INIT section clears all fields. Initializing local variables is not required,
but is done here for documentation purposes. The variable CURSOR is set
to the NAME variable initially. Variable CURSOR is used in the dialog to
control cursor movement.

)prologue
This section is run each time the dialog re-executes because of a RESHOW
statement. It consists of a SET statement that sets the predefined variable
SYSCSR to the value of CURSOR, which contains the cursor location.

SYSCSR is a predefined variable that you can use to control the cursor
location. By placing the name of an input field in SYSCSR, you place the
cursor in that field.

KLSZPINC - Part 2
The next part of the dialog, shown in Figure 29 and explained below, contains the
BODY section, which formats the pop-up window illustrated in Figure 27 on page
89.

)body The BODY section formats the pop-up window for user entry of a new
item to the table. Note the use of field attributes $, #, _, and {. User-defined
variables NAME, EXT, TYPE, and RM are placed in the input fields.

KLSZPINC - Part 3
The EPILOGUE section processes the input from the BODY section. The first part
of the EPILOGUE is shown in Figure 30 on page 92 and explained below. It
processes the user's request to log off or validates and updates the table with a
new entry.

)body
$PC Inventory - Add Item #

--#
Type requested information, then Enter. #

#
User Name . . ._name #
Phone Ext . . ._ext #
Machine Type. ._type #
RAM (Megs). . ._rm#

#
{Enter F12=Cancel #

Figure 29. KLSZPINC - Part 2

KLSZPINC - Part 1

Chapter 9. Managing a Table 91

if...else
Two IF...ELSE statements test the value of SYSKEY and execute alternate
statements depending on its value.

if &syskey...
The IF statement tests the value of SYSKEY for ENTER to see if the user
added new information for a record. When SYSKEY contains ENTER, the
next statement is executed; otherwise, the dialog branches to ELSE.

call ChkValid
The CALL statement branches to the label CHKVALID, a subroutine that
validates the user entries. It appears later in the EPILOGUE.

if &valid
CHKVALID sets VALID to 1 if the validation is successful. After execution,
the control returns to this IF statement. If VALID is 1, the next statements
that update the table are executed. If VALID is 0, the data was invalid, and
control branches to the RESHOW statement.

call UpdInfo
The CALL statement branches to the label UPDINFO, a subroutine that
appears later in the EPILOGUE. It updates the table with the new
information.

if &rc=0
The subroutine UPDINFO includes a TBADD function, which updates the
table. TBADD issues a 0 return code when the addition of the record is
successful. This IF statement checks for a return code of 0 from that
function.

return After a successful addition of a record to the table, this RETURN statement
returns control to dialog KLSZPINB.

if &syskey = 'PF12'
The IF statement checks the value of SYSKEY to see if the user wants to
cancel the request to add a record.

return If the value of SYSKEY is F12, the RETURN statement is executed, and

)epilogue
/*
* Determine the function key pressed. F12 drops out w/o updates.
*/

if &syskey = ’ENTER’ do /* Was Enter pressed? */
call ChkValid /* Validate input */
if &valid do /* Input valid? */

call UpdInfo /* Yes, update fields */
if &rc = 0; /* Update OK? */

return /* Yes, return to caller */
end

end

else if &syskey = ’PF12’ /* Was cancel requested? */
return /* Yes, return w/o update */

else do /* Else user pressed wrong key*/
set errmsg ’&syskey is not active’
dialog KLSZPERR ’&errmsg’

end

reshow /* Reshow panel */

Figure 30. KLSZPINC - Part 3

KLSZPINC - Part 3

92 SSPL Programming Guide

control returns to dialog KLSZPINB to the statement following the
invocation of KLSZPINC, which is CALL RE_POSITION as shown in
Figure 24 on page 81.

else If the value of SYSKEY is not F12, the ELSE statement is executed.

do...end
The statements enclosed between DO and END are executed when the
value of SYSKEY is neither ENTER nor PF12.

set errmsg...
The SET statement sets the variable ERRMSG to the value of the literal
enclosed by single quotation marks.

dialog KLSZPERR...
The DIALOG statement invokes KLSZPERR, the dialog that handles error
processing. ERRMSG is passed to KLSZPERR in SYSPARM.

reshow
The RESHOW statement causes the dialog to re-execute from the
PROLOGUE section. It is executed when CHKVALID finds an invalid
entry or the user pressed a key other than F12.

KLSZPINC - Part 4
The next part of the EPILOGUE section in KLSZPINE contains a subroutine,
CHKVALID. It is shown in Figure 31 on page 94 and explained below.

The CHKVALID subroutine validates the user's entries in the BODY section. It
contains
v six IF...ELSE statements to test that user input is complete and numeric, where

required
v a DIALOG statement to invoke the error handling routine, when an error is

found

Control returns to IF &VALID, the statement that follows the call to CHKVALID,
when processing is complete.

KLSZPINC - Part 3

Chapter 9. Managing a Table 93

ChkValid:
The subroutine label is followed by a colon (:) when it defines the entry
point into the subroutine, but not when the subroutine is called.

set valid 0
The SET statement sets user-defined variable VALID to 0 to ensure that it
has a known value. Later in the subroutine, the value is changed to 1 if the
entries are valid.

set errmsg ''
The SET statement clears ERRMSG of any previous message data.

if...else
The subroutine contains six IF...ELSE statements. When the IF part of the
statement is true, the next line of the dialog is executed. When the IF part
of the statement is false, control branches to ELSE.

if &name = ' '
The IF statement checks the variable NAME for null. A null value indicates
an incomplete entry. When the field is null, the DO... END statement is
executed. Otherwise, control branches to ELSE.

/*
* Subroutine to validate input
*/

ChkValid:
set valid ð /* Assume errors */
set errmsg ’’ /* Clear error message */
if &name = ’’ do /* Was name specified ? */

set errmsg ’User name must be specified’
set cursor ’NAME’ /* Cursor position after msg */

end

else if &ext = ’’ do
set errmsg ’Telephone extension must be specified’
set cursor ’EXT’ /* Cursor position after msg */

end

else if ! (numeric &ext) do
set errmsg ’Telephone extension must be numeric’
set cursor ’EXT’ /* Cursor position after msg */

end

else if &type = ’’ do
set errmsg ’Machine type must be specified’
set cursor ’TYPE’ /* Cursor position after msg */

end

else if &ram = ’’ do
set errmsg ’RAM size must be specified’
set cursor ’RAM’ /* Cursor position after msg */

end

else if ! (numeric &ram) do
set errmsg ’RAM size must be numeric’
set cursor ’RAM’ /* Cursor position after msg */

end

if &errmsg /* Any errors? */
dialog KLSZPERR ’&errmsg’ /* Display error message */

else /* Else */
set valid 1 /* Indicate success */

return /* Return to caller */

Figure 31. KLSZPINC - Part 4

KLSZPINC - Part 4

94 SSPL Programming Guide

do...end
The DO...END statement groups two statements into one for execution
when the IF statement is true. Each IF statement is followed by a
DO...END statement.

set errmsg 'User...'
The SET statement sets the variable ERRMSG to the value of the literal
enclosed in single quotation marks. Later in the subroutine, the variable is
passed to the error handling dialog.

set cursor 'NAME'
The SET statement causes the cursor to be moved to the NAME field so
that the user can make the entry.

if &ext = ''
The IF statement checks the variable EXT for null. If it is null, the user
entry is incomplete, and the DO...END statement is executed. If EXT
contains a value, control branches to the next ELSE statement.

set errmsg...
The SET statement sets the variable ERRMSG to the value of the literal
enclosed in single quotation marks. It is passed to the error handling
dialog later in the subroutine.

set cursor 'EXT'
The SET statement causes the cursor to be moved to the EXT field so that
the user can make an entry.

if ! (numeric &ext)
This IF statement tests for a numeric value in the EXT field. The
exclamation point (!) is a logical operator meaning NOT. NUMERIC is a
string operator that evaluates a string for a numeric value. If EXT (the
variable that contains the user entry for the telephone extension) is not
numeric, the DO...END statement is executed.

NUMERIC is an operator, and its arguments need not be enclosed in
parentheses. However, parentheses are often used to improve readability.

set errmsg 'Tel...'
The SET statement sets ERRMSG to the value of the literal enclosed in
single quotation marks. It is passed to the error handling routine later in
the dialog. If ERRMSG contains a value, KLSZPERR is invoked to execute
the error routine.

if &type = ''
The IF...ELSE and DO...END statements that evaluate TYPE follow the
same logic as those that evaluate NAME. See the earlier explanation.

if &ram = ''
The IF...ELSE and DO...END statements that evaluate RAM follow the
same logic as those that evaluate EXT. See the earlier explanation.

if &errmsg
This IF statement tests the contents of ERRMSG for a value. If any
previous IF...ELSE statement detects an error, it places a value in ERRMSG.
When ERRMSG contains a value, the next statement is executed.
Otherwise, control branches to the ELSE statement.

dialog KLSZPERR...
The DIALOG statement invokes KLSZPERR, the dialog that handles error
processing.

KLSZPINC - Part 4

Chapter 9. Managing a Table 95

set valid 1
This SET statement is executed when the dialog falls through because no
errors were detected. User-defined variable VALID is set to 1 to indicate
success.

return When the data is valid, the RETURN statement is executed to return
control to the statement IF &VALID DO, which follows CALL CHKVALID.

KLSZPINC - Part 5
The last part of the EPILOGUE section in KLSZPINC contains the subroutine
UPDINFO shown in Figure 32. It adds a validated record to the table.

UpdInfo:
The subroutine label is followed by a colon (:).

set... The first four SET statements assign the values for name, extension,
machine type, and RAM, to the variables associated with the table handle
in KLSZPINA. (See Figure 20 on page 71.) The last SET statement sets the
action code variable to null since this value is not added to the table.

Note that single quotation marks enclose variables with string values to
maintain uppercase and blanks, but are not necessary for a numeric value,
for example, &RAM.

set rc The SET statement sets user-defined variable RC to the return code
generated by the TBADD function.

tbadd TBADD is a table function that adds a row to an open table.

&PCItblH
Identifies the variable that contains the table handle of the table
being updated.

' ' Indicates that the parameter for this position is not used.

/*
* Subroutine to update table data row
*/

UpdInfo:
set PCIname ’&name’ /* Update */
set PCIext ’&ext’ /* Table */
set PCImtyp ’&type’ /* Variables */
set PCIram &ram /* */
set PCIact ’’ /* */

set rc (TBADD(/* Add to table */
&PCItblH, /* Table Name */
’’, /* No extension variables */
1)) /* Add in sorted order */

if &rc=8 do
set errmsg ’&name already in Inventory Table. Not added.’
set cursor ’NAME’ /* Cursor position after msg */

end
else

if &rc >0 do
set errmsg ’Error(&rc) adding &name to Inventory Table.’
set cursor ’NAME’ /* Cursor position after msg */

end

if &rc /* Any error? */
dialog KLSZPERR ’&errmsg’ /* Display error message */

return /* Return to caller */

Figure 32. KLSZPINC - Part 5

KLSZPINC - Part 4

96 SSPL Programming Guide

1 Specifies that the table is added in the order specified in the sort
record.

if &rc=8
The IF...ELSE statement examines the return code generated by TBADD.
An 8 indicates a duplicate entry. When RC equals 8, the DO...END
statement is executed. Otherwise, control branches to ELSE.

set errmsg...
The SET statement sets ERRMSG to the literal enclosed in single quotation
marks.

set cursor 'NAME'
The SET statement causes the cursor to be moved to the NAME field so
that the user to correct the entry.

if &rc>0
The IF statement tests RC to see if it is greater than 0, which indicates that
adding the record to the table failed.

set errmsg...
The SET statement sets ERRMSG to the value of the literal enclosed in
single quotation marks.

if &rc This IF statement tests for a value in RC, which indicates that an error
occurred and that the error handling dialog must be invoked.

dialog KLSZPERR...
The DIALOG statement invokes KLSZPERR and passes the contents of
ERRMSG in SYSPARM.

return The RETURN statement returns control to IF &RC = 0, the statement
following the call to the subroutine UPDINFO.

Editing a Record
When the user enters the E action code to edit an inventory record, the pop-up
window shown in Figure 33 on page 98 is displayed.

KLSZPINC - Part 5

Chapter 9. Managing a Table 97

KLSZPIND is the dialog that is called from KLSZPINB when the user enters the E
action code. (See Figure 25 on page 85.) KLSZPIND is shown in the five figures
that follow.

KLSZPIND - Part 1
The first part of KLSZPIND, shown in Figure 34 on page 99, follows the format of
the dialogs in the PCIS application. An explanation follows the figure.

ACME Industries Personal Computer Inventory System
--
Type one or more action codes, then press Enter.

E=Edit D=Delete (F5 to Add new user)
Tel. Machine

Action User Name Ext. Type RAM (Megs)
------ -------------------- ------- --------------- -----------

J. Doe 1234 IBM PC 4
e R. Johnson 4844 Wyse 12

+---+ 3
| PC Inventory - Edit Record | 12
| -- | 2
| Type requested information, then Enter. | 10
| |
| User Name . . : R. Johnson |
| Phone Ext . . . 4844 |
| Machine Type. .Wyse |
| RAM (Megs). . .12 |
| |
| Enter F12=Cancel |
+---+

F3=Exit F5=Add

Figure 33. Pop-up Window for Editing a Record

Editing a Record

98 SSPL Programming Guide

)option
Refer to the explanation that follows Figure 28 on page 90 for a description
of the)OPTION placeholder with the POPUP parameter.

)comment
Refer to the explanation that follows Figure 9 on page 54 for a description
of the)COMMENT placeholder. Note the description of input and output.

)copy KLSZPATT
The COPY section copies in the member that contains the field attributes.

)declare
The DECLARE section copies the shared variables from member
KLSZPDCL and specifies local variables for this dialog.

KLSZPIND - Part 2
The INIT, PROLOGUE, and BODY sections of KLSZPIND are shown in Figure 35
on page 100.

)option level(1) popup
)comment
**
******** ********
****** ******
**** PC Inventory System ****
**** ACME Industries ****
****** ******
******** ********
**
* Dialog Name: KLSZPIND *
* Function : Edit an inventory record. *
* Input : Table values from selected table row. *
* Output : Updated inventory table. *
* Created : 10/20/17 *
**
* Modification History Log *
**
* Date Modid Description *
-------- ------ --
* *
**
* *
**

)copy KLSZPATT

)declare
)copy KLSZPDCL

name scope(local) * Local value for PCIname
ext scope(local) * Local value for PCIext
type scope(local) * Local value for PCImtyp
ram scope(local) alias(rm) * Local value for PCIram
rc scope(local) * Return code value
cursor scope(local) * Contains cursor location
valid scope(local) * Validated input flag
errmsg scope(local) * Contains error messages

Figure 34. KLSZPIND - Part 1

KLSZPIND - Part 1

Chapter 9. Managing a Table 99

)init The INIT section initializes the variables. It places the cursor in the EXT
field and sets the local variables to the current table row values.

)prologue
The PROLOGUE section contains a SET statement that places the value of
the user-defined variable CURSOR, which is the location of the cursor, into
the pre-defined variable SYSCSR. By placing the name of an input field in
SYSCSR, you place the cursor in that field.

This SET statement is executed when the RESHOW statement in the
EPILOGUE is executed. The RESHOW statement is executed when an error
is encountered and the panel is reshown so that the user can make
corrections.

)body The BODY section contains the design of the pop-up window. Note the use
of field attributes. The attribute definitions were copied from member
KLSZPATT shown in Figure 6 on page 49.

KLSZPIND - Part 3
The EPILOGUE, shown in Figure 36 on page 101, processes the user's entries in the
BODY section. It invokes two subroutines:
v CHKVALID to validate the user's entries
v UPDINFO to update the table with the new information

This EPILOGUE is the same as the EPILOGUE section in KLSZPINC, shown in
Figure 30 on page 92. See the explanation that follows that figure for a description
of this part of the dialog.

)init
set cursor ’EXT’ /* Position cursor in EXT field */
set name ’&PCIname’ /* Assign */
set ext ’&PCIext’ /* table data */
set type ’&PCImtyp’ /* to input */
set ram ’&PCIram’ /* fields. */

)prologue
set syscsr &cursor /* set cursor in requested field */

)body
$PC Inventory - Edit Record #

--#
Type requested information, then Enter. #

#
User Name . . : &name
Phone Ext . . ._ext #
Machine Type. ._type #
RAM (Megs). . ._rm#

#
{Enter F12=Cancel #

Figure 35. KLSZPIND - Part 2

KLSZPIND - Part 2

100 SSPL Programming Guide

KLSZPIND - Part 4
The next part of the dialog contains the subroutine CHKVALID that validates the
entries. It follows the design of the CHKVALID subroutine in KLSZPINC, shown
in Figure 31 on page 94. See the explanation following that figure for a description
of this part of the EPILOGUE.

The CHKVALID subroutine in this dialog does not validate NAME since it is not a
modifiable field.

)epilogue
/*
* Determine the function key pressed. F12 drops out w/o updates.
*/

if &syskey = ’ENTER’ do /* User pressed Enter key? */
call ChkValid /* Validate input */
if &valid do /* Input valid? */

call UpdInfo /* Yes, update fields */
return /* And return */

end
end

else
if &syskey = ’PF12’ /* Was cancel requested? */

return /* Yes, return w/o update */

else do /* Else invalid key pressed */
set errmsg ’&syskey is not active’
dialog KLSZPERR ’&errmsg’

end

reshow /* Reshow panel */

Figure 36. KLSZPIND - Part 3

KLSZPIND - Part 4

Chapter 9. Managing a Table 101

KLSZPIND - Part 5
The last part of the EPILOGUE contains the subroutine, UPDINFO, which updates
the table in virtual storage. It is shown in Figure 38.

/*
* Subroutine to validate input
*/

ChkValid:
set valid 0 /* Assume errors */
set errmsg ’’ /* Clear message area */
if &ext = ’’ do /* Blank phone extension? */

set errmsg ’Telephone extension must be specified’
set cursor ’EXT’ /* Cursor position after msg */

end

else
if ! (numeric &ext) do

set errmsg ’Telephone extension must be numeric’
set cursor ’EXT’

end

else
if &type = ’’ do /* Blank machine type? */

set errmsg ’Machine type must be specified’
set cursor ’TYPE’ /* Cursor position after msg */

end

else
if &ram = ’’ do /* Blank RAM size? */

set errmsg ’RAM size must be specified’
set cursor ’RAM’ /* Cursor position after msg */

end

else
if ! (numeric &ram) do /* RAM contains non-numerics? */

set errmsg ’RAM size must be numeric’
set cursor ’RAM’ /* Cursor position after msg */

end

if &errmsg /* Any error message? */
dialog KLSZPERR ’&errmsg’ /* Display error message */

else
set valid 1 /* Indicate success */

return /* Return to caller */

Figure 37. KLSZPIND - Part 4

/*
* Subroutine to update table data row
*/

UpdInfo:
set PCIext ’&ext’ /* Assign input */
set PCImtyp ’&type’ /* fields to */
set PCIram &ram /* table */
set PCIact ’’ /* variables*/

set rc (tbput(&PCItblH, ’’, 1)) /* Update inventory table. */

if &rc > 0 do /* Error updating table? */
set errmsg ’Error(&rc) on update.’
dialog KLSZPERR ’&errmsg’ /* Display error message */

end

return /* Return to caller. */

Figure 38. KLSZPIND - Part 5

KLSZPIND - Part 5

102 SSPL Programming Guide

This subroutine is similar to the UPDINFO subroutine in KLSZPINC, shown in
Figure 32 on page 96. See the explanation following that figure for a description.
The differences between the two versions are the following:
1. The PCINAME is not updated because the NAME field cannot be altered in the

edit process.
2. The table function TBPUT is used to replace an existing row in a table. TBADD,

in the earlier version of the subroutine, is used to add a new record to a table.

Deleting a Record
When the user enters D for Delete in KLSZPINB, shown in Figure 23 on page 80,
the pop-up window shown in Figure 39 is displayed.

KLSZPINE is the dialog that controls the display of the pop-up window and
removes the record from the table. It is shown in the next three figures and
described in the explanations that follow the figures.

KLSZPINE - Part 1
The first part of KLSZPINE contains the seven placeholders, shown in Figure 40 on
page 104. An explanation follows the figure.

ACME Industries Personal Computer Inventory System
--
Type one or more action codes, then press Enter.

E=Edit D=Delete (F5 to Add new user)

Tel. Machine
Action User Name Ext. Type RAM (Megs)
------ -------------------- ------- ---------------- -----------

d J. Doe 1234 IBM PC 4
+---+ 12
| PC Inventory - Delete Record | 3
| -- | 12
| To delete record, press Enter. | 2
| | 10
| User Name . . : J. Doe |
| Phone Ext . . : 1234 |
| Machine Type. : IBM PC |
| RAM (Megs). . : 4 |
| |
| Enter F12=Cancel |
+---+

F3=Exit F5=Add

Figure 39. Pop-up Window for Deleting a Record

KLSZPIND - Part 5

Chapter 9. Managing a Table 103

)option
Refer to the explanation that follows Figure 28 on page 90 for a description
of the)OPTION placeholder with the POPUP parameter.

)comment
Refer to the explanation that follows Figure 9 on page 54 for a description
of the)COMMENT placeholder. Note that input to the dialog is defined as
SYSPARM, which contains error messages.

)copy KLSZPATT
The)COPY placeholder copies the member KLSZPATT into the dialog. The
contents of KLSZPATT are shown in Figure 6 on page 49.

)declare
The DECLARE section copies the shared variables from member
KLSZPDCL, shown in Figure 8 on page 50, and specifies local variables for
this dialog.

)init The INIT section initializes the local variables with the values from the
table.

KLSZPINE - Part 2
The next part of the dialog is the BODY section, which formats the pop-up
window. This pop-up window displays the information that was selected for

)option level(1) popup
)comment
**
******** ********
****** ******
**** PC Inventory System ****
**** ACME Industries ****
****** ******
******** ********
**
* Dialog Name: KLSZPINE *
* Function : Delete an inventory record. *
* Input : &sysparm contains error message text. *
* Output : N/A *
* Created : 10/20/17 *
**
* Modification History Log *
**
* Date Modid Description *
-------- ------ --
* *
**
* *
**
)copy KLSZPATT

)declare
)copy KLSZPDCL

name scope(local) * Local value for PCIname
ext scope(local) * Local value for PCIext
typ scope(local) * Local value for PCImtyp
rm scope(local) * Local value for PCIram
rc scope(local) * Contains return code value
errmsg scope(local) * Contains error message

)init
set name ’&PCIname’ /* Assign */
set ext ’&PCIext’ /* table data */
set typ ’&PCImtyp’ /* to input */
set rm ’&PCIram’ /* fields.*/

Figure 40. KLSZPINE - Part 1

KLSZPINE - Part 1

104 SSPL Programming Guide

deletion. It is shown in Figure 41.

)body input
Since all fields are output fields, the INPUT parameter is specified with the
BODY placeholder so that the panel remains displayed until the user
presses ENTER or a function key.

Note the use of field attributes to format the panel. The & before each of
the variables indicates that the contents of the variables are displayed.

KLSZPINE - Part 3
The last part of the dialog is the EPILOGUE section, which processes the input
from the BODY section. It is shown in Figure 42. An explanation follows the figure.

)epilogue
The EPILOGUE processes the input on the pop-up window. It tests for the
Enter key (delete a record) and PF12 (cancel the delete).

if...else
Three IF...ELSE statements test the value of variables and execute different
processes according to the result of the test.

if &syskey = 'ENTER'
The IF statement tests pre-defined variable SYSKEY for the Enter key,
indicating that the user requested the deletion of the record. When SYSKEY

)body input
$PC Inventory - Delete Record #

---#
To delete record, press Enter. #

#
User Name . . : &name #
Phone Ext . . : &ext #
Machine Type. : &typ #
RAM (Megs). . : &rm#

#
{Enter F12=Cancel #

Figure 41. KLSZPINE - Part 2

)epilogue
/*
* Determine the function key pressed. F12 drops out w/o updates.
*/

if &syskey = ’ENTER’ do /* Was Enter pressed? */
set rc(tbdelete(&PCItblH)) /* Yes, delete the row */
if &rc > 0 do /* Error deleting row? */

set errmsg ’Error(&rc) deleting table row.’
dialog KLSZPERR ’&errmsg’ /* Display error message */

end
else /* Else row was deleted */

return /* Return to caller */
end

else
if &syskey = ’PF12’ /* Cancel requested? */

return /* Yes, return w/o update */

else /* Else user pressed wrong key*/
beep() /* So BEEP at user. */

reshow /* Reshow panel */

Figure 42. KLSZPINE - Part 3

KLSZPINE - Part 2

Chapter 9. Managing a Table 105

contains ENTER, the DO...END statement is executed. Otherwise, control
passes to the ELSE statement to test for PF12.

set rc The SET statement sets the value of RC to the return code generated by the
table services function TBDELETE.

tbdelete
TBDELETE is a table function that deletes a row pointed to by the
CRP from an open table. The CRP then points to the row preceding
the deleted row or to the top of the table if the first row is deleted.

PCItblH
Variable that contains the table handle of the table that has the row
to be deleted.

if &rc > 0
The IF statement tests RC, the variable containing the return code from
TBDELETE. A value greater than 0 means an error occurred and the record
was not deleted. When this condition is true, the DO...END statement is
executed. Otherwise, control branches to the RETURN statement.

set errmsg...
The SET statement sets the variable ERRMSG to the literal enclosed in
single quotation marks.

dialog KLSZPERR...
The DIALOG statement invokes the error handling dialog, KLSZPERR, and
passes the error message (ERRMSG) to it.

return After the row is deleted, RETURN returns control to the calling dialog,
KLSZPINB, and the statement TPDISPL(&PCItblH).

if &syskey = 'PF12'
The IF statement is executed when SYSKEY does not contain ENTER. It
tests for PF12, the key that cancels the delete request. When the condition
is true, the next statement, RETURN, is executed. Otherwise, control
branches to the ELSE statement.

beep() The BEEP function sounds an audible alarm at the terminal. The dialog
falls through to this statement when SYSKEY does not contain ENTER or
PF12.

The BEEP function provides a simple method for alerting the user that an
error has occurred. Unlike an error handling routine such as KLSZPERR, it
does not display a message describing the error or guide the user in
correcting it.

reshow
The dialog is re-executed from the PROLOGUE section if the user pressed
an invalid key.

KLSZPINE - Part 3

106 SSPL Programming Guide

Chapter 10. Creating an Error Routine

This chapter describes KLSZPERR, a dialog that performs an error routine. It is
called by other dialogs to display a message when an error is detected. The
message is displayed in a pop-up window, such as the one shown in Figure 43 that
tells the user that the telephone extension is a required entry.

KLSZPERR is shown and described in the three figures that follow.

KLSZPERR - Part 1
The first part of KLSZPERR, shown in Figure 44 on page 108, identifies the panel
as a pop-up window and defines field attributes and local variables.

ACME Industries Personal Computer Inventory System
--
Type one or more action codes, then press Enter.

E=Edit D=Delete (F5 to Add new user)

Tel. Machine
Action User Name Ext. Type RAM (Megs)
------ -------------------- ------- ---------------- -----------

J. Doe 1234 IBM PC 4
+---+ 12
| PC Inventory - Add Item | 3
| -- | 12
| Type requested information, then Enter. | 2
| | 10
| User Name . . .D. Mills |
| Phone Ext . . . |
| Machine Type. .Compaq |
| RAM (Megs). . .2 |
| +---+
| F12=Cancel | PC Inventory System Message |
+--------------------- | --------------------------------------- |

| Telephone extension must be specified |
| |
| |
| |
| |
| |
| |
| Press Enter to continue. |
+---+

F3=Exit F5=Add

Figure 43. Pop-up Window for an Error Message

© Copyright IBM Corp. 1993, 2018 107

)option
Refer to the explanation that follows Figure 28 on page 90 for a description
of the)OPTION placeholder with the POPUP parameter.

)comment
Refer to the explanation that follows Figure 9 on page 54 for an
explanation of the)COMMENT placeholder. Note that SYSPARM is
identified as input to this dialog.

)copy The member KLSZPATT, which contains the field attributes shown in
Figure 6 on page 49, is copied into the dialog.

)declare
Local variables that are used for displaying the error message are specified
in the DECLARE section. Their use is described in “KLSZPERR - Part 2”

KLSZPERR - Part 2
The next part of KLSZPERR contains the INIT section shown in Figure 45 on page
109. It determines the length of the error message and divides the message text
into a maximum of five lines.

)option level(1) popup
)comment
**
******** ********
****** ******
**** PC Inventory System ****
**** ACME Industries ****
****** ******
******** ********
**
* Dialog Name: KLSZPERR *
* Function : Display an error message in a pop-up box. *
* Input : &sysparm contains error message text. *
* Output : N/A *
* Created : 10/20/17 *
**
* Modification History Log *
**
* Date Modid Description *
-------- ------ --
* *
**
* *
**

)copy KLSZPATT

)declare
line1 scope(local) * Message line
line2 scope(local) * .
line3 scope(local) * .
line4 scope(local) * .
line5 scope(local) * Message line
i scope(local) * Message line index
len scope(local) * Variable set after LENGTH function
numlines scope(local) * # of lines in message pop-up

Figure 44. KLSZPERR - Part 1

KLSZPERR - Part 1

108 SSPL Programming Guide

)init The INIT section moves the error message into the user-defined variables
LINE1 through LINE5 in preparation for displaying them in the pop-up
window.

set len
The SET statement sets the user-defined variable LEN with the result of the
string operation LENGTH. The string operator LENGTH returns the length
of the error message.

(length('&sysparm'))
LENGTH is a string operator that returns the length of a string.
SYSPARM contains a string passed to KLSZPERR by the DIALOG
statement when it invokes KLSZPERR. The string is a literal
enclosed in single quotation marks to preserve spacing and
capitalization. Note that SYSPARM is also enclosed in single
quotation marks.

set numlines...
This SET statement sets the value of NUMLINES to the result of the
expression (&LEN/40+1) . The expression divides the number of characters
in SYSPARM by 40, the number of characters that can be displayed
horizontally in a pop-up window. A 1 is added to the result of the division
in case SYSPARM has fewer than 40 characters to ensure that a single-line
error message is retained.

The result, the number of lines to be displayed in the error message, is
stored in NUMLINES. All arithmetic is in integers.

if &numlines > 5
This IF statement tests NUMLINES to determine if the number of lines in
the error message is greater than 5. Lines in excess of 5 are not displayed.

set numlines 5
This SET statement truncates the message to 5 lines.

set i 1 This SET statement establishes the variable I as a counter for looping
through the lines of the error message and storing each line in a variable.

while The WHILE statement controls execution of the loop.

(&i <= &numlines)
The DO...END statement is executed repeatedly while the value of
I is less than or equal to the value of NUMLINES. The two SET

)init
/*
* Break message into 4ð-character segments (line1-line5)
*
* Note: This error routine works for up to 5 lines of text.
* Excess text is truncated before display. This dialog
* does not break the text at word boundaries.
*/

set len (length(’&sysparm’)) /* Get length of message */
set numlines (&len/40)+1 /* Number of text lines */
if &numlines > 5 /* Too many lines ? */

set numlines 5 /* Yes, truncate to 5 */
set i 1 /* Start with line 1 */
while (&i <= &numlines) /* Loop for #lines found */
do

set ’line&i’ (substr(’&sysparm’,(40*(&i-1)),40))
set i &i+1 /* Increment index */

end
beep() /* Provide audio notice */

Figure 45. KLSZPERR - Part 2

KLSZPERR - Part 2

Chapter 10. Creating an Error Routine 109

statements select 40 characters in each execution from SYSPARM
and move them into a maximum of 5 variables that are displayed
in the pop-up window.

set 'line&i'
The SET statement moves portions of the message into the user-defined
variables LINE1 through LINE5. These variables are used in the BODY
section to display the error message.

When the variable name that receives a value is enclosed in single
quotation marks, the Dialog Manager first evaluates the string.

The result is used as the variable name.

(substr
SUBSTR is a string function that returns a portion of a string. It
uses three parameters: the string to be acted upon, an offset to
move through the string, and the number of characters to return.

('&sysparm'
SYSPARM contains the string that is being divided.

(40*(&i-1)
This formula provides the offset into SYSPARM from which 40
characters will be extracted. The first time this line is executed the
value of &I is 1. Therefore, &I minus 1 equals 0. Multiplying 40
times 0 equals 0. The offset is at the first character in the string. At
the next iteration, &I contains 2: 2 minus 1 is 1; 1 times 40 is 40;
and the offset is 40 characters into SYSPARM. The next SET
statement increments &I by 1 which causes the variable LINE&I to
be incremented by 1. In this way, the LINE1 through LINE5
variables are set.

This SUBSTR statement executes until &I equals NUMLINES.

40 The last parameter, 40, specifies the number of characters to copy
into the variable LINE&I.

set i &i+1
The SET statement increments the variable I by 1. The dialog branches
back to the WHILE statement and the value of I is evaluated.

beep() The BEEP function causes the audible alarm to sound when the error
message is displayed on the pop-up window.

KLSZPERR - Part 3
The BODY section, shown in Figure 46 on page 111, displays the error message.
The five lines of text are placed at the left side of the panel. After the user presses
Enter, the pop-up window disappears. The user can correct the error on the
underlying panel.

KLSZPERR - Part 2

110 SSPL Programming Guide

)body The BODY section formats the pop-up window. The INPUT parameter
specifies that, although no fields are modifiable, the screen remains
displayed until a function key or Enter is pressed. Control returns to the
line following the invocation to KLSZPERR.

The contents of the variables (LINE1 through LINE5) are displayed and the
field attributes, copied from KLSZPATT, are used to format the fields.

The message at the bottom of the panel tells the user to press Enter. In fact,
pressing any AID key causes the dialog to continue.

Control returns to the statement following the DIALOG statement that invoked
this dialog at the completion of KLSZPERR.

)body input
$PC Inventory System Message
#--#
#&line1 #
#&line2 #
#&line3 #
#&line4 #
#&line5 #
#
#
Press$Enter#to continue.

Figure 46. KLSZPERR - Part 3

KLSZPERR - Part 3

Chapter 10. Creating an Error Routine 111

112 SSPL Programming Guide

Chapter 11. Programming Techniques

This chapter describes some programming techniques that will help you code,
debug, and manage your dialogs. Before coding or modifying a dialog, you may
want to review the Dialog Language Reference Manual for a complete description of
any element of SSPL that you plan to use.

Making a Dialog Operational
As stated earlier, you create the dialog in the user panel library, RLSPNLS.
RLSPNLS is concatenated ahead of the product supplied panel libraries (e.g.
SKLSPNLS for DDNAME TLVPNLS in the product JCL).

To run your dialog using the DIALOG command, you must first supply VTAM
with an Application Control Block (ACB) name for the dialog. For information on
creating an ACB and on the DIALOG command itself, see the CL/SuperSession
Operator's Guide .

To test your program, do the following:
1. Issue a REFRESH operator command through the CL/SuperSession operator

interface. For example:
refresh p KLSZPINB

The system responds with a message that indicates success or provides a list of
errors. Correct the errors and repeat the REFRESH command until the dialog is
compiled successfully.

2. Test the dialog.
The steps below assume that you are using CL/SuperSession to test the dialog:
a. Log onto CL/SuperSession.
b. Set a trigger to invoke your dialog.
c. Use the trigger to run the dialog.

Alternately, if authorized, you can use the DIALOG command from the
command line of the CL/SuperSession Main Menu to invoke the dialog.
Modify the dialog to correct any problems, and then use the REFRESH
command to recompile it.

Using Structured Programming
The dialogs in this guide use structured programming techniques to increase
maintainability and efficiency. The specific techniques are:
1. One dialog acts as the main dialog; it invokes other dialogs and terminates the

application. In the PCIS application, it is KLSZPTRK.
2. Members are recognizable as components of the same application by the

naming convention. Each member of the application begins with the same five
characters: KLSZP.

3. Variables with a scope other than local are stored in a separate member and
copied into the dialog with the COPY placeholder in a DECLARE section. In
the PCIS application, the member containing shared variables is KLSZPDCL.
Shared variables begin with the same three characters: PCI.

© Copyright IBM Corp. 1993, 2018 113

4. A routine that is used by more than one dialog is coded as a separate dialog
and invoked with the DIALOG statement.

5. A routine that is used more than once in a dialog or is a candidate for
modification is coded as a subroutine within the dialog.

Copying Members into a Dialog
The PCIS application copies two members into several dialogs:
v KLSZPATT containing field attributes
v KLSZPDCL containing shared variables

KLSZPATT is shown in Figure 47. Note that the first line of the member is the
placeholder)ATTRS. It identifies the section of the dialog where the member will
be copied.

Identifying the copied member with a placeholder can eliminate problems later if
statements are added between the section placeholder and the)COPY placeholder.

Making a Dialog Readable
Indention makes a dialog easier to read. The sample dialog uses three spaces to the
right for all lines except placeholders, which must begin in column 1, as shown
below:

)epilogue
set row (psmrow())

if &syskey = ’PF3’
return

Indention is also a tool for emphasizing modularity. For example, you can indent a
DO...END statement following an IF statement.

Documenting Your Dialog
You can document your dialog two ways: explicitly with the)COMMENT
placeholder and comment delimiters, and implicitly, with naming conventions.

Using Comments
The)COMMENT placeholder and the comment delimiters are explained in
“Documenting a Dialog” on page 45. They should be used liberally to document
your dialog. Variables should be documented where they are specified, in the
DECLARE section or in a separate member that is copied into the dialog. The use
of the variable should be clearly stated.

)attrs
’_’ type(input) color(green) display(normal) highlight(underscore)
’%’ type(input) display(invisible) color(green) highlight(underscore)
’$’ type(output) color(yellow) display(high)
’#’ type(output) color(turquoise) display(normal)
’{’ type(output) color(blue) display(normal)
’}’ type(output) color(white) display(normal)

Figure 47. KLSZPATT As a Copied Member

Using Structured Programming

114 SSPL Programming Guide

When you modify a dialog, add comments, either in the COMMENT section or
with the comment delimiters, to explain when and why the changes were made.
This information is useful for debugging and for other programmers who may
read your dialog.

Using Naming Conventions
You can provide additional documentation within your programs by the way you
name variables and subroutines.

A consistent format for naming variables makes them immediately recognizable.
For example, in the PCIS application, shared variables begin with the uppercase
characters PCI. Subroutines are identifiable by the use of mixed case, as in
ChkValid.

Debugging a Dialog
SSPL provides two functions for debugging dialogs:
1. LOG function
2. WTO function

These functions enable you to imbed statements within your dialog to display
information. You can display
v the value of a variable
v the return codes generated by SSPL
v the messages that you imbed in the dialog

The results of LOG are written to VIEWLOG. You can view them through the
CL/SuperSession operator facility. The WTO function displays information at the
MVS console. You can display any printable variable or literal.

Displaying a Return Code
Many SSPL functions issue a return code to indicate a condition. For example, the
table function TBCREATE has several return codes that indicate how the function
executed. Return codes are listed under each function in the Dialog Language
Reference Manual . When you code a function, set a variable to contain the return
code and write it to VIEWLOG.

For example, to evaluate the success of creating a table, display the value of a
return code that is stored in variable RC by coding the following LOG function
after the TBCREATE function:

set rc (tbcreate(&PCItbl...
log(’Return code from TBCREATE &rc’)

You can also write the value of RC to the MVS console:
wto(’Table open executed.’)

Managing Dialog Implementation
Controlling the addition of new dialogs and modifications to existing dialogs is
simplified by using IBM's System Modification Program Extended (SMP/E).

Using Comments

Chapter 11. Programming Techniques 115

SMP/E keeps a record of all software changes. When you apply updates, whether
developed by you or by IBM, SMP/E alerts you when new changes affect previous
modifications. The new changes are not applied.

SMP/E classifies the customized changes that you develop as USERMODs.
SKLSSAMP(KLSUSRMD) contains a skeleton that you can use to create
USERMODs for installing your dialogs.

For a description of SMP/E, see the IBM manual System Modification Program
Extended User's Guide .

Managing Dialog Implementation

116 SSPL Programming Guide

Chapter 12. Appendix A. Dialog Naming Conventions

The following conventions have been observed in naming CL/SuperSession
dialogs.

IF . . . THEN. . .

dialog name begins with KLS it is a CL/SuperSession dialog

dialog name begins with KLG it is a CL/SuperSession dialog

dialog name ends with P it serves as the PROLOGUE section of
another dialog

dialog name ends with E it serves as the EPILOGUE section of
another dialog

dialog name ends with 1 it is the English version of the dialog (also
the primary dialog)

dialog name ends with 2 it is the French version of the dialog

dialog name ends with 3 it is the German version of the dialog

dialog name ends with 4 it is the Canadian French version of the
dialog

Note: If you make changes to a dialog that ends with P or E, you must refresh the
corresponding primary dialog, which ends with a numeral.

For example, if you modify the PROLOGUE (KLSVSELP) or the EPILOGUE
(KLSVSELE) for the national language support dialog, you must refresh only
KLSVSELn (where n is 1, 2, 3, or 4, depending on the language version).
Refreshing either the PROLOGUE or EPILOGUE dialog causes an error.

© Copyright IBM Corp. 1993, 2018 117

118 SSPL Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

© Copyright IBM Corp. 1993, 2018 119

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark
information”, http://www.ibm.com/legal/copytrade.shtml.

120 SSPL Programming Guide

http://www.ibm.com/legal/copytrade.shtml

Index

Special characters
- (subtraction) 39
/* 45
/*...*/ 45
)attrs

copying 49
definition 41
documenting within a dialog 45
example 56

)body
definition 41
with BOTTOM parameter 60
with CENTER parameter 56, 60
with INPUT parameter 56
with TABLE parameter 80
with TOP parameter 60

)comment 41, 45
delimiter 45, 59
placeholder 45

)copy 38, 41, 49
)declare

definition 41
documenting within a dialog 45
example 59

)epilogue 62
definition 42
documenting within a dialog 45
example 62

)init
definition 41
example 53

)option
definition 41
example 53

)prologue
definition 41
example 59

)term
definition 42
example 86

* (multiplication) 39
&

See ampersand (&)
+ (addition) 39
= (equal) 39

A
accessibility

of IBM CL/SuperSession for z/OS 1
adding a record 89
addition 39, 76
AID

See attention identifier key (AID)
alarm

See BEEP
alias

definition 41
example 50, 80
table handle 71

ampersand (&)
output variable 60
referencing a variable 50

AND logical operator 76
Application Control Block (ACB) 113
argument 38
arithmetic operators 39
asterisk (*) 45
attention identifier key (AID) 62
attributes 48

B
BEEP 105
bottom parameter 80
branching

conditionally (IF...ELSE statement) 62
to a dialog (DIALOG statement) 53
to a subroutine (CALL statement) 62

C
CALL statement 62
center

parameter with)BODY
placeholder 56

character string 40
closing a table 74
coding

conventions 42
dialogs 42
techniques 114

color 48
column 69
Common User Access (CUA) 41
compilation

error 53
process 43

compound statement 62
conditional processing

DO...UNTIL statement 84
IF...ELSE statement 62
WHILE statement 84, 86, 108

control statement
DO...END 62
IF 53
IF...ELSE 62, 76

conventions 42
conventions, documentation vi
copying a member 41, 114
creating a table 71
CRP

See current row pointer (CRP)
current row pointer (CRP) 69, 86
cursor

positioning 59, 86, 93

D
date

See SYSDATE
debugging a dialog 115
decryption 62
defining a variable 41, 50
deleting a row 105
delimiter 45
dialog

coding 42
coding techniques 114
compilation 43
debugging 115
definition 37
design 114
execution 43
installing 115
purpose 37
structure 113
termination 86

Dialog Manager 38
DIALOG statement 53

Application Control Block (ACB) 113
using SYSPARM 71

dialogs, location of
RLSPNLS 37
SKLSSAMP 37

displaying a table 74
/ (division) 39

documentation conventions vi
documenting a dialog 45, 115

DO...END statement
definition 62
example 62
in structured programming 114

DO...UNTIL 84

E
ENCDEC function 62
encryption 62
equal 39
error routine 107
exclamation point (!) 93
execution 43

F
false condition 84
field attributes 48
field length 49, 60
formatting a panel 80
function 38

argument 38
return code 38

function keys
displaying 76
setting 76
testing 62

© Copyright IBM Corp. 1993, 2018 121

G
greater than 39
grouping statements 62

H
handle 71
highlighting 48

I
IF statement 53, 114
IF...ELSE statement

definition 39
example 39, 62

indention 115
input

field 48
parameter with)BODY

placeholder 56
to a dialog 45

installing dialogs 115
Interactive System Productivity Facility

(ISPF) v
invalid key routine 81
invoking a dialog 53
ISPF

See Interactive System Productivity
Facility (ISPF)

K
key variable 69, 71
KLSZPDCL 50
KLSZPERR 107
KLSZPINA 70
KLSZPINB 74
KLSZPINC 89
KLSZPLGO 56
KLSZPLOG 58
KLSZPTRK 53

L
label 62
leftjustify 58
LENGTH string operator 108
less than 39
level(1) 53
literal 40
local variable 40
LOG function 115
logging off 53
logical operators 39
logo panel 56
LOGOFF() function 53
logon

code 58
panel 58

LOOPCTR statement
description 86
disabling 86

looping 84, 86, 108
lowercase 42

M
maxdepth 53
maxwidth 53

N
name variable 71
naming a table 71
naming conventions 114, 115
NE (not equal) relational operator 84
NEG (negation) operator 81
not equal 39
NOT logical operator 93
NUMERIC string operator 93
numeric value 93

O
opening a table 71
operand 38
operator

arithmetic 39
logical 39
relational 39
string 39

output
field 48
from a dialog 45

P
panel design

field attributes 48
positioning text 60
standards 41

panel library 41
partitioned dataset (PDS) 41
password encryption 62
password validation 65
PCIS

See Personal Computer Inventory
System (PCIS)

PDS
See partitioned dataset (PDS)

Personal Computer Inventory System
(PCIS) 38

placeholder
)attrs 41, 49
)body 41, 56
)comment 41, 45
)copy 38, 41, 49, 56, 58
)declare 41, 45
)epilogue 42, 62
)init 41
)option 41, 45, 53
)prologue 41
)term 42, 86
default 41
definition 38
description 41

pop-up windows
designing 89
for an error message 110

predefined variable
definition 40

predefined variable (continued)
SYSCSR 91
SYSDATE 60
SYSKEY 40, 62
SYSPARM 71
SYSRC 53, 58, 62
SYSTIME 40, 60
ZTBMARK 76
ZTBSEL 84
ZTBSIZE 70, 76

presentation space
defining 41
inheriting 53
reserving 53

programming techniques 113

R
random access 71
re-executing a dialog 59, 65
redisplaying the panel 65
relational operators 39
repositioning routine 81
RESHOW statement 39, 41, 59, 65
return code

definition 38
displaying 115
SYSRC 62

RETURN statement 62
RLSPNLS 41
row 69

S
SAA/CUA 41
sample dialog 38, 47
scope 40
scrolling 81

indicators 76
through a table 81

security 65
See also ENCDEC function
See VALIDATE function

SET statement 50, 59
setting variables 59
shared access 71
shared variable 40
SMP/E 115
sort

See TBSORT function
SSPL

See Structured Session Procedure
Language

statement
compound 62
definition 38

storing a dialog 41
string functions 108
string operator 39

NUMERIC 93
string operators

LENGTH 108
Structured Session Procedure Language

(SSPL) 38
subroutines

calling 62, 81

122 SSPL Programming Guide

subroutines (continued)
example 84
invalid key 81
naming 81
repositioning 81

SUBSTR function 108
symbols, use of vi
syntax level 53
SYSCSR 91

positioning the cursor 59
SYSDATE 60
SYSKEY 62, 81
SYSPARM 65, 71, 108
SYSRC 53
System Application Architecture/

Common User
Access 41

system date
See SYSDATE

system time
See SYSTIME

SYSTIME 60

T
table

See also tables
access 71
adding a record 89
closing 74
creating 70, 71
definition 69
displaying 74, 80
end of table message 76
handle 71
model 80
name 71
naming conventions 71
opening 71
predefined variable 70
updating 71, 74, 86
writing 86

table function
definition 70
TBADD 96
TBCLOSE 74
TBCREATE 71
TBDELETE 105
TBDISPL 74
TBOPEN 71
TBPUT 86
TBQUERY 76
TBSCAN 86
TBSKIP 81, 86
TBSORT 71
TBTOP 86

table handle 71
tables 69

See table
TBADD function 96
TBCLOSE function 74
TBCREATE function 71
TBDELETE function 105
TBDISPL function 74
TBOPEN function 71
TBPUT function 86
TBQUERY function 76

TBSCAN function 86
TBSKIP function 81, 86
TBSORT function 71
TBTOP function 86
terminating a dialog 42
time

See SYSTIME
TLVPNLS 41
tokenization 50
TOP parameter 80
true condition 84

U
underscore 48
updating a table 71, 74, 86
uppercase 40, 42
user-defined variable 40
USERMOD 115

V
VALIDATE function 65
variable

contents 50
defining 50
evaluating 50
in a table 69
in the BODY section 62
input 62
key 69, 71
local 40
name 71
output 62
predefined 40, 70
referencing 50
scope 40, 41
setting 59
shared 40, 41, 50, 70
user-defined 40

VIEWLOG 115

W
warning

See BEEP
WHILE statement 84, 86, 108
write protection 71
writing to a table 71, 86
WTO function 115

Z
ZTBMARK 76
ZTBSEL 76, 84
ZTBSIZE 76, 81

Index 123

124 SSPL Programming Guide

IBM®

Printed in USA

SC27-4589-00

	Contents
	Read This First
	How to send your comments to IBM
	Documentation Conventions
	Introduction
	Panels and figures
	Revision bars
	Variables and literals
	Symbols

	Chapter 1. Preparing to Use SSPL
	Accessibility
	Overview
	The need
	The solution
	What this guide offers
	Architecture of CL/SuperSession

	What Is SSPL?
	Definition
	Advantages
	Features

	What Is an SSPL Dialog?
	Definition
	Dialog elements

	Security
	Introduction
	Controlling access to CL/SuperSession product elements
	Controlling use of CL/SuperSession

	Chapter 2. Using SSPL Dialogs
	Overview
	Introduction
	Preparing to use a dialog
	Location of featured dialogs
	Typographic conventions

	Automated Logon
	Introduction
	Customization
	Testing the dialog
	Testing the dialog in debug mode
	KLSCILOG dialog

	Application Termination
	Introduction
	Customization
	Testing the dialog
	KLSTERMD dialog

	Group Profile Assignment
	Introduction
	Important
	How it works
	Customization
	Testing the dialog
	KLSUDEF dialog
	KLSSGRPS dialog

	Variable Encryption
	Introduction
	Customization
	KLGLGONE dialog
	KLGVAL dialog

	Pop-up Help
	Introduction
	Dialogs used
	How it works
	Customization for testing
	Testing the dialog
	Creating your own help system
	KLSCICLS dialog
	KLSCETH dialog
	Sample help dialogs

	Application Blending
	Introduction
	Customization
	Testing the dialog
	KLSTSOCS dialog

	Chapter 3. Implementing SSPL Dialogs
	Documenting, Compiling, and Testing Dialogs
	Documenting your dialogs
	Compiling your dialogs
	Testing your dialogs

	Storing and Installing Dialogs
	Storing your dialogs
	Installing and maintaining your dialogs

	Troubleshooting
	Introduction
	LOG function
	Return codes
	Dialog trace facility

	Chapter 4. Defining a Dialog
	Where the Dialogs Are Stored
	Defining a Dialog
	Defining SSPL
	Placeholders
	Functions
	Statements
	Operators
	Variables
	Literals

	Chapter 5. Managing Dialogs
	Structuring a Dialog
	Understanding Placeholders
	Programming in SSPL

	Compiling a Dialog
	Executing a Dialog
	Documenting a Dialog
)COMMENT Placeholder
	Comment Delimiters

	Chapter 6. Planning a Dialog
	Personal Computer Inventory System (PCIS)
	Designing the Panels
	Coding Field Attributes
	Defining Field Attributes

	Using Variables
	Defining Variables
	Assigning an Alias
	Referencing Variables
	Evaluating Variables

	Chapter 7. Beginning the Dialog
	Programming the Invoking Dialog
	Coding the Logo Panel
	Coding the Logon Panel
	KLSZPLOG - Part 1
	KLSZPLOG - Part 2
	KLSZPLOG - Part 3
	KLSZPLOG - Part 4
	KLSZPLOG - Part 5

	Chapter 8. Creating and Displaying a Table
	Using Tables
	Table Functions
	Table Variables

	Creating the Table
	KLSZPINA - Part 1
	KLSZPINA - Part 2

	Displaying the Table
	KLSZPINB - Part 1
	KLSZPINB - Part 2
	KLSZPINB - Part 3
	KLSZPINB - Part 4
	KLSZPINB - Part 5
	KLSZPINB - Part 6

	Chapter 9. Managing a Table
	Adding a Record
	KLSZPINC - Part 1
	KLSZPINC - Part 2
	KLSZPINC - Part 3
	KLSZPINC - Part 4
	KLSZPINC - Part 5

	Editing a Record
	KLSZPIND - Part 1
	KLSZPIND - Part 2
	KLSZPIND - Part 3
	KLSZPIND - Part 4
	KLSZPIND - Part 5

	Deleting a Record
	KLSZPINE - Part 1
	KLSZPINE - Part 2
	KLSZPINE - Part 3

	Chapter 10. Creating an Error Routine
	KLSZPERR - Part 1
	KLSZPERR - Part 2
	KLSZPERR - Part 3

	Chapter 11. Programming Techniques
	Making a Dialog Operational
	Using Structured Programming
	Copying Members into a Dialog
	Making a Dialog Readable
	Documenting Your Dialog
	Using Comments
	Using Naming Conventions

	Debugging a Dialog
	Displaying a Return Code
	Managing Dialog Implementation

	Chapter 12. Appendix A. Dialog Naming Conventions
	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

