PROXSCAL
PROXSCAL 在 取樣及檢定中可用。
PROXSCAL 會執行多維度近似性資料的尺度,以尋找低維度空間中個體的最小平方表示法。 多個來源容許個別差異模型。 Majorization 演算法可保證在各種模型和限制下,選擇性地轉換度量和非度量資料的單調收斂。
PROXSCAL varlist
[/TABLE = {rowid BY columnid [BY sourceid]}]
{sourceid }
[/SHAPE = [{LOWER**}]]
{UPPER }
{BOTH }
[/INITIAL = [{SIMPLEX** }]]
{TORGERSON }
{RANDOM[({1})] }
{n}
{[('file'|'dataset')] [varlist] }
[/WEIGHTS = varlist]
[/CONDITION = [{MATRIX** }]]
{UNCONDITIONAL }
[/TRANSFORMATION = [{RATIO** }]]
{INTERVAL }
{ORDINAL[({UNTIE })] }
{KEEPTIES}
{SPLINE [DEGREE = {2}] [INKNOT = {1}]}
{n} {n}
[/PROXIMITIES = [{DISSIMILARITIES**}]]
{SIMILARITIES }
[/MODEL = [{IDENTITY** }]]
{WEIGHTED }
{GENERALIZED }
{REDUCED[({2})]}
{n}
[/RESTRICTIONS = {COORDINATES('file'|'dataset') [{ALL }] }]
{varlist}
{VARIABLES('file'|'dataset') [{ALL }][({INTERVAL })]}
{varlist} {NOMINAL }
{ORDINAL[({UNTIE })] }
{KEEPTIES}
{SPLINE[DEGREE={2}][INKNOT={1}]}
{n} {n}
[/ACCELERATION = NONE]
[/CRITERIA = [DIMENSIONS({2** })]
{min[,max]}
[MAXITER({100**})]
{n }
[DIFFSTRESS({0.0001**})]
{value }
[MINSTRESS({0.0001**}) ]]
{value }
[/PRINT = [NONE][INPUT][RANDOM][HISTORY][STRESS**][DECOMPOSITION]
[COMMON**][DISTANCES][WEIGHTS**][INDIVIDUAL]
[TRANSFORMATIONS][VARIABLES**][CORRELATIONS**]]
[/PLOT = [NONE][STRESS][COMMON**][WEIGHTS**][CORRELATIONS**]
[INDIVIDUAL({varlist})]
{ALL }
[TRANSFORMATIONS({varlist}) [({varlist})[...]] ]
{ALL } {ALL }
[RESIDUALS({varlist}) [({varlist})[...]] ]
{ALL } {ALL }
[VARIABLES({varlist})]]
{ALL }
[/OUTFILE = [COMMON('file'|'dataset')] [WEIGHTS('file'|'dataset')] [DISTANCES('file'|'dataset')]
[TRANSFORMATIONS('file'|'dataset')] [VARIABLES('file'|'dataset')] ]
[/MATRIX = IN('file'|'dataset')]].
** 如果省略次指令,則為預設值。
此指令會讀取作用中資料集,並導致執行任何擱置指令。 如需相關資訊,請參閱主題 指令順序 。
可從 多維度方法 (PROXSCAL) 對話框產生 PROXSCAL 指令的語法。