
AIX Version 7.1

Understanding the Diagnostic Subsystem
for AIX

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
247 .

This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new
editions.
© Copyright International Business Machines Corporation 2010, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..v
Highlighting...v
Case sensitivity in AIX.. v
ISO 9000...v

Understanding the Diagnostic Subsystem for AIX... 1
Diagnostic subsystem for AIX concepts..1

Structure of diagnostics... 1
Strategy for diagnostics..3
Diagnostic commands.. 5

Operating Environments.. 6
Online Diagnostics..6
Standalone diagnostics (POWER® processor-based systems only)..7
NIM Diagnostics..8

Diagnostic components... 9
Diagnostic controller.. 9
Diagnostic applications.. 12
Tasks and service aids..20
Application test units... 45
Test unit 64-bit porting guideline.. 60
Diagnostic kernel extension...63
Diagnostic library... 100
Diagnostic object classes...170
Diagnostic header files...190
Diagnostic user interface... 190
Examples: Diagnostic menus...198

Diagnostic features..205
Missing Options Resolution..205
Error log analysis..208
Periodic diagnostics... 209
Automatic error log analysis (DIAGELA)..210
Loop testing..211

Diagnostic Packaging...212
Hardfile packaging... 212
CDROM packaging (POWER® processor-based only).. 213
Diagnostic supplemental media.. 213

Diagnostic debugging hints... 217
Debugging hints for diagnostic applications... 217
Debugging hints for diagnostic kernel extension.. 218
Diagnostic patch diskette procedure...221

Code examples.. 222
Example {DEVICE}_ERR_DETAIL.H: TU specific outputs... 222
Example {DEVICE}_INPUT_PARAMS.H: TU specific inputs..223
Example TU local leader file.. 223
Example TU exectu function.. 224
Example TU open/close device interface.. 226
Example TU makefiles... 230
Example C source file for TU interrupt handler...231
Example TU interrupt handler makefile.. 232
Example diagnostic application...233

 iii

Example diagnostic application message file... 241
Diagnostic task matrix... 243

Notices..247
Privacy policy considerations.. 248
Trademarks.. 249

Index.. 251

iv

About this document

This document provides application developers with complete information about writing their own
diagnostic applications or service aids for the AIX® operating system. Programmers can use this topic
collection to gain knowledge of the hardware diagnostic subsystem and the databases used to perform
hardware diagnostics. Topics include operating environments, diagnostic components, features and
packaging, debugging hints, and code examples.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Bold highlighting also identifies
graphical objects, such as buttons, labels, and icons that the you select.

Italics Identifies parameters for actual names or values that you supply.

Monospace Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you might
write as a programmer, messages from the system, or text that you must type.

Case sensitivity in AIX
Everything in the AIX® operating system is case sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2010, 2014 v

vi AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Understanding the Diagnostic Subsystem for AIX
This topic collection provides application developers with complete information about writing their own
diagnostic applications or service aids for the AIX® operating system.

Programmers can use this topic collection to gain knowledge of the hardware diagnostic subsystem and
the databases used to perform hardware diagnostics. Topics include operating environments, diagnostic
components, features and packaging, debugging hints, and code examples.

Diagnostic subsystem for AIX concepts
This topic collection provides application developers with complete information about writing their own
diagnostic applications or service aids for the AIX® operating system. Programmers can use this topic
collection to gain knowledge of the hardware diagnostic subsystem and the databases used to perform
hardware diagnostics. Topics include operating environments, diagnostic components, features and
packaging, debugging hints, and code examples.

Structure of diagnostics
This topic gives an overview of the diagnostic system. Key application modules are described and their
relationships to one another is shown.

The Diagnostic System is a collection of application modules that work together to perform some software
or hardware action. This collection of application modules are comprised of various distinct components.

The following figure illustrates the diagnostic architecture:

© Copyright IBM Corp. 2010, 2014 1

The architecture shows that the Diagnostic Controller has two main functions:

• Resource Selection
• Task Selection

Tasks are operations that can be performed on a resource. Running Diagnostics, Displaying VPD, or
Formatting a Resource, are examples of tasks. Service aids are also considered as tasks.

Resources are devices contained by the system unit. The diskette drive and CD ROM drive are examples of
resources.

The Function Selection Menu contains selections allowing either resources or tasks to be displayed.
When Task Selection is made and a task has been selected, a list of resources supporting that task is
displayed. Alternatively, when Resource Selection is made, and a resource or group of resources are
selected, then a list of tasks supporting the selected resources is displayed.

A Diagnostic Application or Task, may involve the use of Application Test Unit code, which in turn may
involve the use of a Diagnostic Kernel Extension, or a Device Driver to gain access to the hardware.

2 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

The figure below illustrates the current diagnostic structure that allows access to diagnostic function
concurrent with system operation. Diagnostics for a given resource consists of an executable file
containing Diagnostic Application code, which controls the execution of one or more Application Test
Units. This executable is started by the Diagnostic Controller, which allows the user to select diagnostic
modes and devices to test. To properly execute the Application Test Units, the Diagnostic Application
currently must have detailed specific knowledge about each of the Application Test Units.

The exectu() interface is the call interface for Application Test Units, and contains all the information
necessary to run the Application Test Unit against a particular device and return results. PDiagex is a
special generic device driver written for use by Application Test Units, which can be used in place of the
functional device driver to provide a simple direct interface to the device under test. Doing so places a
greater requirement on the Application Test Unit to directly manipulate the device hardware, but in doing
so, it provides earlier use of the Application Test Unit during the hardware power on and debug phase,
since the Application Test Unit is not dependent on the availability of a working functional device driver.

Strategy for diagnostics
This topic gives an overview of the strategy used by the diagnostic system to discover and analyze
problems on the system.

The strategy for diagnostics is founded on:

• Staging diagnostics based on underlying hardware capabilities according to three levels of testing:

– Shared
– Subtest
– Full-test

• Isolating defective field replaceable units (FRUs) such that there is the least impact to the system. This
is accomplished by either:

– Option Checkout
– System Checkout

Understanding the Diagnostic Subsystem for AIX 3

Staging the impact of diagnostics
The impact of diagnostics is staged. There are three levels of tests supported by diagnostics.

Item Description

Shared The tests in this category are nondisruptive. Diagnostics does not need exclusive access
to run these tests. All Diagnostic Applications (DA) should support the shared testing
category since DAs perform error-log analysis. Other possible shared tests are error
circuitry testing, cyclic redundancy checks of Loadable ROS, On Board Self Tests
(provided the appropriate recovery procedures are included), and selected functional
testing such as diagnostic reads and writes.

Subtest The tests in this category apply to multiplexed resources such as Native I/O Planar and
multiport async cards. The sub-tests are disruptive, but only to a portion of the resource.
To run these tests, diagnostics needs exclusive access to the portion of the resource that
is being tested.

Full-test The tests in this category impact the entire resource. Diagnostics must have exclusive
access to the entire resource to run these tests.

Option Checkout
In this method, the configuration is viewed as a tree structure, and the diagnostics starts testing at the
leaves of the tree, and moves vertically and horizontally down the tree toward the root. The leaves
represent terminal devices, and the root is the processor.

The following algorithm generally describes the isolation strategy. It starts at an arbitrary node in the tree
and isolates to the correct FRU bucket based on the good or bad status of siblings and parent resources.

The steps are:

1. Test resource x. If no problems are detected, no further isolation is required.
2. Test a sibling of resource x, called resource y. If no problems are found, the fault of resource x is

isolated to resource x.
3. Test the parent of resources x and y. If no problems are detected, the problem has not been isolated to

a single failing resource. The FRU buckets associated with resources x and y will both be reported. No
further isolation is required. However, if the parent fails its tests, disregard the failures of resources x
and y and continue isolating the problem for the parent.

This general process of testing siblings and parents is repeated until a resource passes its tests or until a
DA indicates that no further testing is required.

The diagnostic subsystem attempts to isolate to a single failing device. When multiple child devices fail
their tests, the fault most likely lies with the parent. Thus the DA testing the parent in step 3 should name
the parent as being defective and indicate that no more devices should be tested, in which case the
diagnostic controller would only report the parent. The status of the child devices that have been tested is
identified in the DA's control block.

System checkout
Each resource in the system that has not been deleted from the resource selection list is tested during
system checkout. System Checkout selection is accomplished by selecting All Resources from the
Resource Selection Menu. User interaction is not allowed unless a problem has been detected and a
question needs to be asked to isolate the problem.

Configuration processing for system checkout is different from that for option checkout, which impacts
the effectiveness of the FRU Callout. Option checkout is the specification of an individual resource to test.
When option checkout is chosen, the option chosen is tested first, and if a problem is found, it is traced
back through its siblings and parents until it has been isolated. The configuration is processed from the
outside in. When system checkout is chosen, the configuration is processed from the inside out. For
example, the configuration is processed starting with the system planar, and works its way out on a per-
card basis. First a card is tested, then the devices attached to the card are tested, and then the devices
attached to the device attached to the card are tested, and so on. This process is repeated for each card
attached to the system planar.

4 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Option Checkout is more effective because the children are tested before the parent, which allows the
parent to determine its own culpability above and beyond its own test results. The parent can implicate
itself for no other reason than that its children are failing.

Diagnostic commands
This topic describes the usage and command line flags for the diag and diagrpt commands.

diag command
The diag command performs hardware problem determination. When you suspect there is a problem,
diag assists you in finding it.

The command has the following syntax:

diag [-a] | [-s [-c]] [-E days] [-e] | [-d Device [-c] [-v] [-e] [-A]] | [-B [-c]] | [-T taskname] | [-S
testsuite] | [-c -d Device -L pending | complete]

Most users should enter the diag command without any flags. The following flags perform various actions:

Item Description

-A Advanced mode. Default is non-advanced mode.

-a Processes the changes in the hardware configuration. For example, missing
and/or new resources.

-B Tests the base system devices, such as planar, memory, processor.

-c Indicates that the machine will not be attended. No questions will be asked.
Results are written to standard output. Normally used by shell scripts.

-d Device Names the resource that should be tested. The Device parameter is a resource
name displayed by the lscfg command.

-E Days Number of days used to search the error log.

-e Causes the device's Diagnostic Application to be run in Error Log Analysis mode.

-L pending | complete Log Repair Action for a resource specified with the -d and -c flags. Use pending if
the part has been replaced, but it is not yet known if this part will remain in the
system. Use complete if the part has been replaced and it is known that this part
will remain in the system.

-S testsuite Tests the Test Suite Group:

1. Base System
2. I/O Devices
3. Async Devices
4. Graphics Devices
5. SCSI Devices
6. Storage Devices
7. Commo Devices
8. Multimedia Devices

-s Causes the system to be tested in System Checkout mode.

-T taskstring Specifies a particular Task to execute. The taskstring depends on the particular
task to be executed. SeeTasks for more information.

-v System Verification Mode. Default is Problem Determination mode.

Understanding the Diagnostic Subsystem for AIX 5

diagrpt command
Displays the conclusions made by diagnostics.

The diagrpt command has the following syntax:

/usr/lpp/diagnostics/bin/diagrpt [[-o] | [-s mmddyy] | [-a] | [-r]

The diagrpt command reports the conclusions made by diagnostics.

If the user does not specify a flag, a scrollable menu with all diagnostic conclusion reports is displayed.

Item Description

-o Displays the latest diagnostic conclusion.

-smmddyy Reports diagnostic conclusions made after the date specified (mmddyy).

-a Displays the long version of the Diagnostic Event Log.

-r Displays the short version of the Diagnostic Event Log.

Operating Environments
This topic describes the type of environments under which diagnostics are performed.

Online Diagnostics
This topic describes the types of modes in which online diagnostics can be run.

Online diagnostics can be run in three modes:

Concurrent mode
Allows the normal system functions to continue while selected resources are being checked.

Concurrent mode provides a way to run online diagnostics on some of the system resources while the
system is running normal system activity. Because the system is running in normal operation, devices
such as the following may require additional actions by the user or diagnostic application before testing
can be done.

• SCSI adapters connected to paging devices
• Disk drive(s) used for paging, or are part of the rootvg
• LFT devices and graphic adapters if a Windowing system is active
• Memory
• Processor

Service mode
Allows checking of most system resources.

Service mode provides the most complete checkout of the system resources. This mode also requires that
no other programs be running on the system. All system resources, except the SCSI adapter and the disk
drives used for paging, can be tested. However, note that the memory and processor are only tested
during power-on self-test (POST).

Service Mode is entered by booting the operating system in service mode.

Maintenance Mode
Allows checking of most system resources.

Maintenance mode provides the exact same test coverage as Service Mode. The difference between the
two modes is the way they are invoked. Maintenance mode requires that all activity on the operating
system be stopped.

6 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

The shutdown -m command is used to stop all activity on the operating system and put the operating
system into maintenance mode. After setting the terminal type, use the diag command to start
Diagnostics.

Standalone diagnostics (POWER® processor-based systems only)
Standalone diagnostics provide a method to test the system when the online diagnostics are not installed
and a method of testing the disk drives that cannot be tested by the online diagnostics.

Standalone diagnostics are currently packaged on CDROM. They are run by placing the Standalone
Diagnostic CDROM into the cdrom drive, then booting the system in service mode.

The Standalone Diagnostic CDROM file system is mounted over a RAM-file system for execution. Because
of this, the CDROM drive (and the SCSI controller that controls it) cannot be tested by the standalone
diagnostics.

Device support that is not on the Diagnostic CDROM must be supported by Diagnostic Supplemental
Media.

Tasks not supported in standalone diagnostics
Some tasks and service aids are not supported in standalone diagnostics. This is due to the fact that
Standalone diagnostics runs from a RAM-file system, they have no direct access to the hardfile.

See the Diagnostic Task Matrix for the list of supported tasks and their operating environments.

Console configuration diskette
This topic describes the way to create and use Console Configuration Diskette.

The Standalone Diagnostic Package allows the use of a Console Configuration Diskette to accomplish two
tasks:

• Use a Different Async Terminal as the Console
• Set the Refresh rate on a High-Function Terminal

The Create Customized Configuration Diskette task allows this diskette to be created.

Different async terminal for console
The Standalone Diagnostic Package allows a terminal attached to any RS232 or RS422 adapter to be
selected as a console device.

The default device is an RS232 tty attached to the first native serial port. However, a file is provided
allowing the console device to be changed. The file name is /etc/consdef. The format of the file is:

COMPONENT_NAME: (cfgmeth) Device Configuration Methods
#
FUNCTIONS: consdef
#
ORIGINS: 27, 28
#
(C) COPYRIGHT International Business Machines Corp. YYYY,YYYY
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp
#
#
The console definition file is used for defining async terminal
devices, which are the console candidates at system boot. During
system boot,all natively attached graphic displays, any async
terminal on native serial port s1, and async terminals defined in
this file will display the "Select System Console" message. Only
one terminal may be selected as console. If the terminal
attributes are not specified in this file, default values from the
odm database are assumed. However, the location and connection
attributes are mandatory. The location value may be displayed with
the lsdev command.
#
The entries must be in the following format:

Understanding the Diagnostic Subsystem for AIX 7

#
#ALTTTY:
connection=value
location=nn-nn-ss-nn
attribute=value
.
.
#ALTTTY:
connection=value
location=nn-nn-ss-nn
attribute=value
.
.
Lines in this file must not exceed 80 characters. All comments
must be preceded by a pound sign (#) in the first column.
#
For backward compatibility, the "ALTTTY:" keyword is not required
for the first entry.
#
#
For example, to display the console selection message on the ttys
attached to the S1 and S2 ports, uncomment the following stanzas:
#
#ALTTTY:
connection=rs232
location=00-00-S1-00
speed=9600
bpc=8
stops=1
xon=yes
parity=none
term=ibm3163
#ALTTTY:
connection=rs232
location=00-00-S2-00
speed=9600
bpc=8
stops=1
xon=yes
parity=none
term=ibm3151

High function terminals 60/77-Mhz refresh rate
Certain high-function terminals might be set to run at a different refresh rate. The Console Configuration
Diskette might be created setting the appropriate refresh rate for the terminal used as the console.

The Standalone Diagnostic Package uses the default 60-Mhz rate. The Create Customized Configuration
Diskette task allows this value to be changed, and a new Console Configuration Diskette to be created.

NIM Diagnostics
Hardware diagnostics can be performed on all NIM clients using a diagnostic boot image from a NIM
server, rather than booting from removable media or hard disk.

This is useful for standalone clients, because the diagnostics do not have to be installed on the local
hardfile. Diagnostic support comes from a SPOT resource.

In addition, diskless and dataless clients have another way of loading diagnostics from the network. You
can boot a diskless or dataless client from the network the same way you do for normal use, but with the
machine's key mode switch in the Service position. If the client's key mode switch is in the Service
position at the end of the boot process, hardware diagnostics from the server's SPOT are loaded. If a
standalone client boots with the key in the Service position, the diagnostics (if installed) are loaded from
the hard disk.

Running diagnostics in a NIM environment is very similar to running in Standalone mode.

See Installing AIX for more information on the NIM environment.

8 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Diagnostic components
This section contains information on the various components that make up the Diagnostic Subsystem
environment.
Related concepts
SLIH conversion required changes
The following required changes must be applied to all SLIHs being ported to 64-bit kernel.

Diagnostic controller
The Diagnostic Controller function is started when the root user enters the diag command. Various flags
that allow operations to be performed directly may be specified as input. For example, a flag may specify
that the system or a particular resource is to be tested or that the system is to be run unattended. If no
flags are specified, then the Diagnostic Controller presents menus to determine what the user wants to
do.

Diagnostic object classes define the resources and tasks available for the Diagnostic Controller to work
with. Predefined data in these object classes specify various attributes about the resources and tasks that
may be available on the system.

The Customized Device object class (CuDv)contains information describing the resource instances
actually defined to the system. A defined resource instance may or may not have a corresponding device
driver that is used to control it. A resource may be a rack, drawer, adapter, disk, memory card, floating
point chip, planar, bus, and so on.

The Diagnostic Controller is a data-driven program. It uses information found in both the CuDv and the
Predefined Diagnostic Resources object class (PDiagRes) to generate a list of supported resources. This
list of supported resources is used to build the Resource Selection menu.

The Diagnostic Controller supports dynamic reconfiguration of processors by updating the Resource
Selection menu if a reconfiguration operation occurs while the diagnostic controller is running.

Given the user's selection from the Resource Selection Menu, the Diagnostic Controller employs the
PDiagRes object class to determine the appropriate Diagnostic Application (DA) to start. The Diagnostic
Controller waits for the DA to complete. Diagnostic Application status is returned by the exit system call.

The Diagnostic Controller employs a system-wide view of the configuration enabling the Diagnostic
Controller to walk through the configuration database testing resources. For example, if a resource fails its
tests, the Diagnostic Controller may attempt to test other resources until the problem has been isolated.
The Diagnostic Controller understands the dependencies between the resources. The term "resource" is
used in a generic sense and includes adapters, as well as terminal devices.

The Diagnostic Controller analyzes the conclusions made by the Diagnostic Applications and generates a
Problem Report. The Problem Report lists the field replaceable units (FRUs) that should be replaced, the
probability of failure associated with each FRU, and the reason why the diagnosis was made.

The Diagnostic Controller writes its analysis to the directory /etc/lpp/diagnostics/data, and the diagrpt
command, or Display Previous Diagnostic Results task, can be used at a later date to retrieve these
results.

In addition, notification of problems can be sent to external programs registered with the Diagnostic
Controller. The registration is by ODM objects in the PDiagAtt class. There are 2 possible registrations:

For Systems attached to a Hardware Management Console:

PDiagAtt:
 DType = <fileset nickname>
 DSClass = ""
 attribute = "notify_service"
 value = ""
 rep = "s"
 DClass = ""
 DApp = <complete path to external notification program>

Understanding the Diagnostic Subsystem for AIX 9

The program specified in DApp of the notify_service attribute is invoked when the system is managed by
a Hardware Management Console (HMC). The program is invoked with the diagnostic event log sequence
number of the diagnostic conclusion. The diagnostic event log API can be used to extract the specific data
of the diagnostic analysis and perform any customized notifications.

The <fileset nickname> is any 15 character (or less) string that represents which fileset ships this stanza.
Diagnostics does not use the nickname, but a unique value per fileset is required in DType to facilitate
installing and updating the attribute because the same attribute name can be shipped in other filesets.
For example, fileset devices.chrp.base.diag would ship a stanza like:

PDiagAtt:
 DType = "DevChrBasDia"
 DSClass = ""
 attribute = "notify_service"
 value = ""
 rep = "s"
 DClass = ""
 DApp = /usr/lpp/diagnostics/bin/diagServiceEvent

For Systems not attached to a Hardware Management Console:

PDiagAtt:
 DType = <fileset nickname>
 DSClass = ""
 attribute = "notify_extern"
 value = ""
 rep = "s"
 DClass = ""
 DApp = <complete path to external notification program>

The program specified in DApp of the notify_extern attribute is invoked when the system is not managed
by a Hardware Management Console (HMC). The program is invoked with the diagnostic event log
sequence number of the diagnostic conclusion. The diagnostic event log API can be used to extract the
specific data of the diagnostic analysis and perform any customized notifications.

The <fileset nickname> is any 15 character (or less) string that represents which fileset ships this stanza.
Diagnostics does not use the nickname, but a unique value, per fileset, is required in DType to facilitate
installing and updating the attribute because the same attribute name can be shipped in other filesets.
For example, fileset devices.chrp.base.diag would ship a stanza like:

PDiagAtt:
 DType = "DevChrBasDia"
 DSClass = ""
 attribute = "notify_extern"
 value = ""
 rep = "s"
 DClass = ""
 DApp = /usr/lpp/diagnostics/bin/diagServiceEvent

Control flow of the diagnostic controller
Use the topic to learn about the control flow of the Diagnostic Controller with the diag command.

Invoking the diag command without any flags starts the Diagnostic Controller which performs the
following:

1. Displays the Operating Instructions menu. The version number will reflect the version of the Diagnostic
code installed.

2. Displays the Function Selection menu, and starts the command associated with the user's selection.

Invoking the diag command with flags starts the Diagnostic Controller and passes the flags on to the
Controller.

The Diagnostic Controller performs the following tasks:

1. Initialize the user interface. It is assumed that if there is no display and keyboard, then the
initialization will fail.

10 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

• If -a, then performs configuration management.
• If -s, then performs system checkout once.
• If -S#, then runs diagnostics on the resources indicated by the Test Suite ID.
• If a flag was not specified, Diagnostics prompts the user.

2. From the Function Selection Menu, allows the user to select one of the following:

• Select Diagnostics
• Select Advanced Diagnostics
• Select Task Selection Menu
• Select Resource Selection Menu

3. If Diagnostics or Advanced Diagnostics is selected, then the following happens:

• The Diagnostic Mode Selection menu is displayed, to determine if System Verification or Problem
Determination should be run.

• If Problem Determination is chosen, then the Diagnostic Controller automatically scans the error
log for any PERMANENT HARDWARE errors that have been logged within the last 7 days to
determine if any devices should be automatically tested. A problem report may be generated.

• Walks the configuration database to determine which resources in the current configuration can be
tested. This information is presented in the Resource Selection Menu.

• If Advanced Diagnostics Routines is chosen, and the system is in Online Service mode of operation,
the Diagnostic Controller will display the Test Method menu to determine if the tests should be
repeated.

• Initializes the input parameters to the Diagnostic Application (DA), which are contained in the
TMInput - Test Mode Input object class.

• Runs the Diagnostic Application (DA) of the resource to be tested.
• Waits for the DA to complete.
• The Diagnostic Controller then:

– Performs isolation process.
– Presents conclusions to the screen.
– If no trouble is found, diagnostics exits with a return value of 0. Otherwise, a value of 1 is returned

if the hardware was tested bad.
4. If Task Selection Menu is selected, then the following happens:

• The Diagnostic Controller displays a list of Tasks that are available for the system.
• After a task has been selected, a Resource Selection Menu appears if the selected task supports a

resource selection. After selection of a Resource, the task is called with the selected resource name
as a command-line argument.

• If the selected task does not support resource selection, then the task is invoked.
5. If Resource Selection Menu is selected, then the following happens:

• The Diagnostic Controller displays a list of Resources available on the system.
• After a Resource has been selected, a Task Selection Menu will appear containing the commonly

supported tasks for each selected Resource. After selection of a task, the task is invoked.

Return Status

The Diagnostic Controller returns the following values:

Diagnostic Controller Value Meaning

DIAG_EXIT_GOOD 0 No problems found

DIAG_EXIT_DEVICE_ERROR 1 Error running diagnostics

DIAG_EXIT_INTERRUPT 2 Received an interrupt while running diagnostics

Understanding the Diagnostic Subsystem for AIX 11

Diagnostic Controller Value Meaning

DIAG_EXIT_NO_DEVICE 3 Device to test was not found in system configuration

DIAG_EXIT_BUSY 4 Another Dctrl program is running

DIAG_EXIT_LOCK_ERROR 5 Cannot create lock file for diagnostic controller

DIAG_EXIT_OBJCLASS_ERROR 6 Error accessing ODM database

DIAG_EXIT_USAGE 7 Usage error

DIAG_EXIT_SCREEN 8 Screen size incorrect

DIAG_EXIT_NoPDiagDev 9 Device not supported by diagnostics

DIAG_EXIT_NO_DIAGSUPPORT 10 Diagnostics is not supported

DIAG_EXIT_NOT_MISSING 11 Device is not missing

DIAG_EXIT_NO_AUTHORIZATION 12 User is not authorized to run diagnostics

DIAG_EXIT_KERNSUPPORT 13 Device is not supported on the 64-bit kernel

Diagnostic applications
This topic describes the applications that are supported by the Diagnostic subsystem.

Note: The Diagnostic subsystem supports 32-bit diagnostic applications only.

Most resources in a system have a Diagnostic Application (DA), started by the Diagnostic Controller, that
tests an area. DAs are associated with each resource supported by diagnostics in the configuration
database.

DAs analyze the error log, display prompts and questions to the user, control which tests are run, call
Application Test Units, and analyze test results.

The following topics are discussed in detail:

Device configuration
In some cases, the DA will have to configure a device in order to test it. If the Configuration Method
associated with the device does not contain the code that is required to load the device driver into the
kernel and initialize it, then the DA performs this function.

However, in most cases, the DA may use one of the diagnostic library functions provided to perform the
configuration. The following library functions aid in the configuration/unconfiguration process:

• configure_device
• initial_state
• diagex_cfg_state
• diagex_initial_state

If a resource is reconfigured, then it must be restored to its initial state before the DA exits. Also, never
assume that the parent resource(s) are always configured.

Determining the level of tests to execute
Each diagnostic application (DA) is responsible for determining the level of tests that can be safely
executed. This determination is a function of how the underlying device drivers support access to the
device.

Each DA is responsible for determining the level of tests that can be safely executed. This determination is
a function of how the underlying device drivers support access to the device.

For nonshared, nonmultiplexed devices, the DA should attempt to open() the device with read/write
privileges and thus determine its access privileges. For shared or multiplexed devices, a more
complicated strategy needs to be developed. Perhaps the simplest method - at least from an application
standpoint - is to add support for an openx() system call to the device driver, where the ext parameter
distinguishes between port-level and card-level diagnostics.

12 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Drivers used for diagnostic purposes
There are different scenarios for configuring a resource to test. Depending on the relationship of the
resource to be tested with other resources, it may be desirable to use one method over another.

For instance, to unconfigure a resource in order to load a separate diagnostic driver or kernel extension, it
is necessary to unconfigure all of the children resources connected to the particular resource, if any. This
could cause a problem if the child resources are in use. In this case, it is desirable to use the production
driver for diagnostic purposes. In all cases, it is important to restore the resource (and child resources) to
their original state after testing.

Production Driver Used for Diagnostic Purposes

If the resource is in the DEFINED state, the resource must be configured before testing. After the
resource is configured, tests can be performed on the resource, and then the resource must be put back
into its original state.

Separate Diagnostic Driver Used for Diagnostic Purposes

If the resource is in the DEFINED state, the diagnostic driver may be loaded for testing, then unloaded
after testing. If the resource is in the AVAILABLE state because the production driver is loaded, it is
necessary to unload the production driver, load the diagnostic driver, perform the tests, unload the
diagnostic driver, and then reload the production driver. Any child resources must be unconfigured before
the resource under test can be unconfigured.

Diagnostic Kernel Extension Used for Diagnostic Purposes

If the resource is in the DEFINED state, the resource must be put into the DIAGNOSE state for testing. If
the resource is in the AVAILABLE state because the production driver is loaded, it is necessary to
unconfigure the resource and all its children, reconfigure the resource into the DIAGNOSE state, test it,
and then reconfigure the resource and all its children back to their original states.

Acquiring a greater share of the resource
If further testing is required, then the diagnostic application (DA) should assist the user in determining if
the user should proceed with the testing.

For some devices, it may be best to ask the user to switch to another window and vary the device offline
before continuing. For others, it may be best to send software-terminate signals. And for still others, it
may be best to start the commands that have been specifically provided to gracefully degrade the system.

Error log analysis
If the dmode field in the Test Mode Input, object class is set to either DMODE_ELA or DMODE_PD, then
Error Log Analysis should be performed. Error log analysis should be considered a shared test.

The getdainput subroutine is used to get the test mode input parameters.

resource_alias attribute
When a DA needs to analyze error logs from multiple resources, like the base system DA and system
planar, memory and l2 cache resources, or a DA wants to analyze error logs that are logged against
hardware events, like machine checks or environmental and power warnings (EPOW), then a PDiagAtt
stanza must be used to define the alias between the device under test and the additional resources.

For example, the DA for the system planar on the RSPC platform performs error log analysis for machine
checks that are logged by the RSPC Machine Check Error Handler. The following PDiagAtt stanza must be
used to define the alias between the resource, sysplanar0, and the machine check event, MACHCHECK.

PDiagAtt:
 DClass = "planar"
 DSClass = "sys"
 DType = "sysplanar_rspc"
 attribute = "resource_alias"
 value = "MACHCHECK"

Understanding the Diagnostic Subsystem for AIX 13

 rep = "n"
 DApp = ""

Thus, any error logged against "MACHCHECK" is analyzed by the DA for the resource of the class, subclass
and type of "planar/sys/sysplanar_rspc", which is typically "sysplanar0". Any repair action done for the
resource (sysplanar0) is associated with the error logged against "MACHCHECK".

Another example: The Diagnostic Application for the base system on the CHRP platform performs error
log analysis for the firmware generated error logs for the system planar, memory and l2 cache resources.
The following stanzas are used to invoke error log analysis from Problem Determination mode and to
record the repair action in the error log after the system verification procedure.

PDiagAtt:
 DClass = "planar"
 DSClass = "sys"
 DType = "sysplanar_rspc"
 attribute = "resource_alias"
 value = "mem0"
 rep = "n"
 DApp = ""

PDiagAtt:
 DClass = "planar"
 DSClass = "sys"
 DType = "sysplanar_rspc"
 attribute = "resource_alias"
 value = "l2cache0"
 rep = "n"
 DApp = ""

Enhanced Error Handling (EEH) option
EEH is an error-recovery mechanism for errors that occur during load and store operations on the PCI bus.

EEH is made possible by EADS chips incorporated in newer POWER processor-based servers. In effect,
each PCI slot on the EADS is its own PCI bus. This allows each adapter to be isolated (which is useful if
PCI bus errors occur because error recovery can occur without affecting the operation of other adapters).
Isolating the failing adapter prevents a faulty component from causing problems on the system and
allows continued operation of other PCI devices during error recovery. Information about the faulty
component and nature of the error (recoverable versus permanent) is logged in the AIX Error log.

The Diagnostics Application interface includes the pdiag_set_eeh_option, pdiag_set_slot_reset, and
pdiag_read_slot_reset subroutines. These subroutines provide the DA with the necessary tools for
adequate testing on the EEH option. The DA Support for this feature requires that the DA perform the
following sequence of instructions in order:

1. Open I/O Adapter Test Units (TU_OPEN).
2. Call pdiag_read_slot_reset.Verify that the EEH option is supported.
3. Execute full suite of Test Units (normal Test Units execution for affected component).If an EEH error is

reported and EEH is supported:- Call pdiag_set_slot_reset.- Set the PCI slot to reset state (reset
active) for the I/O adapter being tested.- Report EEH error.If an EEH error is reported and EEH is not
supported: - Report a software error

4. Close I/O Adapter Test Units (TU_CLOSE).

Device driver EEH support is enabled for most IBM feature code adapters including all storage, network,
USB, cryptography, and graphics adapters supported on Power 7 and beyond systems.

Known problems
Use the topic to discover the list of existing issues.

The following EEH error labels contain incorrect Description fields:

14 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Table 1. Description Fields

Label Incorrect Description Correct Description

EEH_ERR Unable to allocate in JFS2 snapshot EEH Kernel services error

PCI_TEMP_ERR Write error on JFS2 snapshot EEH temporary error for adapter

PCI_PERM_ERR Unable to write into a JFS2 snapshot EEH permanent error for adapter

All other fields in the error log are correct and relevant to the EEH error. Error Ids contained in the /usr/
include/sys/errids.h file are also correct. When contacting IBM® service and support, please use
the Error Id field. The following are the Error Ids for these labels:

Table 2. Error IDs

Label Error ID

EEH_ERR A1E9B3BF

PCI_TEMP_ERR 07AFC8D7

PCI_PERM_ERR D1E7854F

Persistent variables

DAs must store state variables in the DAVars, Diagnostic Application Variables, object class to support
loop mode. DAs are executed for each pass of loop mode, and thus lose state.

The putdavar and getdavar subroutines are used to put or get persistent variables.

Field Replaceable Units (FRUs)

DAs report FRU Buckets to identify parts that need to be replaced. The addfrub subroutine is used to add
a FRU bucket to the FRU Bucket object class in the configuration database.

As part of the FRU information, a FRU part number for a fru not in the ODM database can be returned by
the DA. The FRU part number is placed in the DAVars object class. Also, if the FRU bucket contains a sub-
FRU (for example a memory module or daughter cards), the DA must return its physical or logical location
code as part of the FRU bucket.

Each DA should base its good or bad status on the status of its children. A resource may pass its tests and
be labeled bad when it has multiple children that have been labeled bad.

If a problem is detected with resource x, which has a parent called resource y and a sibling called
resource z, then two FRU Buckets should be output.

• FRU Bucket 1 should identify the resources x and y, and any cables that can be identified. If the cables
cannot be uniquely identified, then the Service Repair Action should implicitly include any cables that
may be needed.

• FRU Bucket 2 should only identify resource x and any cables if possible.

The Diagnostic Controller decides which FRU Bucket to use, based on the good/bad status of the sibling.
If the sibling passes its tests, then FRU Bucket 2 is named.

Specifying a text conclusion

DAs can also specify a menu as a conclusion. A menu should be specified if the repair action can be
performed by the customer. For example, if the problem can be solved by formatting a hard disk, then a
menu should be specified.

The menugoal subroutine performs this function by adding the menu goal to the Menugoal object class.

Understanding the Diagnostic Subsystem for AIX 15

Library restrictions for diagnostic programs

Library libc.a.min is the libc included in the standalone diagnostic package. Do not use any function that
is not part of libc.a.min in your application. If a function is used in a diagnostic program that is not an
exported symbol of libc.a.min, then an immediate software error (803-xxx) occurs when attempting to
run the diagnostic program in standalone diagnostic mode.

To ensure that all symbols used by your diagnostics application are included in the standalone
environment, compile and link the application code with the libc.a.min library found in the /usr/ccs/lib
directory.

One method is to create a directory containing the libraries needed for linking:

1. Copy libraries libodm.a, libcfg.a, and libcrypt.a to the new directory.
2. Make a link from /usr/ccs/lib/libc.a.min to libc.a in the new directory.
3. Make a link from /usr/ccs/lib/libc.a.min to libbind.a in the new directory.
4. Export LIBPATH to the new directory.
5. Compile and Link your application.

You can ignore any unresolved symbols coming from libasl, or others that you know about.

Errors found indicating unresolved symbols must be fixed before the program will properly execute in
standalone diagnostics mode.

Guidelines for writing diagnostic programs using C++

1. The standard library libC.a is not supported. Do not use this library's API.
2. All of the language support functions in libC.a need to be statically linked at compile time. Use -
lCns.a and -bI:/usr/lpp/xlC/lib/libC.imp arguments to compile with xlC.

3. Use an exception only for exceptional cases. For example, an exception should not be used for a
program's normal flow of control.

4. Never throw an exception across a shared library and executable boundaries.
5. No kernel extension shall be written in C++.

Completion status for diagnostic applications

DAs must issue the macro DA_EXIT() to exit.

Individual values can be set by calling the appropriate DA_SETRC_XXXXXX() macro definition.

The following values are defined:

Item Description

DA_STATUS_GOOD No problems were found.

DA_STATUS_BAD A FRU Bucket or a Menu Goal was reported.

DA_USER_NOKEY No special function keys were entered.

DA_USER_EXIT The Exit key was entered by the user.

DA_USER_QUIT The Cancel key was entered by the user.

DA_ERROR_NONE No errors were encountered performing a normal operation such
as displaying a menu, accessing the object repository, and
allocating memory.

DA_ERROR_OPEN Could not open the device.

DA_ERROR_OTHER An error was encountered performing a normal operation.

DA_TESTS_NOTEST No tests were executed.

DA_TEST_FULL The full tests were executed.

16 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Item Description

DA_TEST_SUB The subtests were executed.

DA_TEST_SHR The shared tests were executed.

DA_MORE_NOCONT The isolation process is complete.

DA_MORE_CONT The path to the device should be tested. The next DA to be called
is either the parent or sibling, depending on the value of DNext in
the Predefined Diagnostic Resources PDiagRes object class.

Control flow of a diagnostic application

The DA performs these tasks:

1. Displays first stand-by menu.
2. Obtains its input from the TMInput object class.
3. References the state1 and state2 variables in the TMInput object class to determine if the child

devices which were tested during the current session are defective. If so, then the DA should name
the parent as being bad.

4. Determines the level of tests to run.
5. Calls TU_OPEN.
6. Calls Application Test Units (TU).
7. Calls TU_CLOSE.
8. Reconfigures the device if DA caused it to be configured.
9. Performs error-log analysis if the dmode variable in the TMInput object class is equal to PD or ELA.

10. Returns status to the Diagnostic Controller through the DA_EXIT() macro call.

SRN architecture

Diagnostic applications report problems through SRNs (Service Request Numbers). SRNs take the
following forms:

• Six-digit SRNs consist of two grouping of three digits seperated by the character "-" (for example,
922-101, where the first group of three digits is referred to as the source number. The second group of
three digits is referred to as the reason code. The source number is a unique number that identifies the
diagnostic application that produced the SRN. The source number is usually synonymous with the LED
field of the PdDV object class of the configuration database. For a diagnostic applications that can not
use the LED value, for whatever reason, a value must be assigned to avoid duplication. The reason code
can be used to identify a particular failure cause detected by the diagnostic application.

• Other SRN Types. See the addfrub subroutine for details.

Six-digit SRNs should be grouped so that each set of FRU callouts are grouped together. For example, if a
Diagnostic Application callout consists of:

• 10 SRNs for FRU A
• 20 SRNs for FRU B
• 5 SRNs for FRU A most likely with FRU B next
• 6 SRNs for FRU B most likely with FRU A next

Then the SRNs should be grouped like the following:

• 921-111 to 921-120 FRU A
• 921-131 to 921-150 FRU B
• 921-211 to 921-215 FRU A FRU B
• 921-221 to 921-226 FRU B FRU A

Understanding the Diagnostic Subsystem for AIX 17

The guidelines for the Reason Codes for SRN Source Numbers 700 to 799 and 811 to 999 that are not
decoded from some type of special information are:

Item Description

000 Reserved

001 Indicates that an adapter or device could not be found

002 to 100 Reserved

101 to 199 Reserved for non-ELA callouts with a single FRU

200 to 299 Reserved for non-ELA callouts with two FRUs

300 to 399 Reserved for non-ELA callouts with three FRUs

400 to 499 Reserved for non-ELA callouts with four or more FRUs

500 to 599 Reserved for non-ELA cases that require a special action such as waiting for a thermal
device to cool or checking the level of a device.

600 to 699 Reserved for ELA callouts with a single FRU

700 to 799 Reserved for ELA callouts with two or more FRUs

800 to 899 Reserved for ELA cases that require a special action, such as waiting for a thermal
device to cool or checking the level of a device.

900 to 999 Reserved

This is done to group the SRNs with like FRUs into one entry in the SRN Tables.

Diagnostic controller generated SRNs

The following table lists SRN generated by the diagnostic controller when the event shown in the
description column occurs.

Note: "xxx" in the following table represents the source number of the diagnostic application that
executed.

SRN Description

802-xxx The diagnostic did not detect an installed device
(Online Diagnostics).

803-xxx An error not related to the diagnostic tests
occurred.

804-xxx A halt occurred in the diagnostic application.

801-101 801-102 The diagnostics did not detect an installed device
(Standalone Diagnostics).

Source numbers

The following source numbers are defined for use by third party vendors.

Note: If the LED field of the PdDV object class for a particular device is different than the source number
shown in the table below, the LED takes precedence. Source Numbers shown in the following table are
hexadecimal values.

Source Number Description

661 IDE Tape Drive

66a USB Open Host Controller Type

66b USB Universal Host Controller Type

18 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Source Number Description

74b ATM Adapter

74d Sound Card

74e Fibre Channel Adapter

892 Graphics Display Adapter

893 Local Area Network (LAN) Adapter

894 Async Protocol Adapter

901 SCSI Protocol Device

902 Graphics Display

904 Parallel Port Attached Device

753 IDE CD ROM Drive

891 SCSI Device Adapter

752 IDE Disk Drive

805 CD Read/Write Drive

711 Generic Adapter (Not covered above)

Diagnostic application code checklist

The following checklist can be helpful in ensuring successful Diagnostic Application (DA) code.

1. Code must execute Good Machine Path (GMP) testing without abending or returning an SRN under the
following conditions:

a. IPL Mode: Service from hard disk.
b. Select Advanced mode.
c. Select PD mode.
d. Run a single time.

Follow all instructions presented by the DA. If the question presented on a screen is unclear, note the
ambiguity and answer the question as you understand it.

Use wrap plugs where required. Unplug cables as required.

Look for:

a. Spelling errors
b. Grammatical errors

2. Code must execute GMP testing without abending or returning an SRN under the following conditions:

a. IPL Mode: Service from CD-ROM.
b. Select Advanced mode.
c. Select PD mode.
d. Run a single time.

Use wrap plugs where required. Unplug cables as required.
3. Code must execute GMP testing without abending or returning an SRN under the following conditions:

a. IPL Mode: Normal.
b. Run diagnostics from command line in no-console mode. diag -cd device

Understanding the Diagnostic Subsystem for AIX 19

c. Run diagnostics from command line in no-console Advanced mode. diag -Acd device
4. Code must execute Good Machine Path (GMP) testing without abending or returning an SRN under the

following conditions:

a. IPL Mode: Service from hard disk.
b. Select PD mode.
c. Select Advanced mode.
d. Select ALL Resources.

Follow all instructions presented by the DA. If the question presented on a screen is unclear, note the
ambiguity and answer the question as you understand it.

Look for: No interactive menus displayed while the application is executing.

Other test scenarios

1. Bring the device to the DEFINED state; then run diagnostics to ensure the DA causes the device to be
made available. After testing is completed, ensure adapter is placed back in the DEFINED state.

2. If microcode is used by the device, rename the microcode file, run the DA, and make sure the DA
reports the absence of the file.

3. Run Advanced Diagnostics on the device. When a wrap plug is called for, do not use it. Make sure an
SRN is generated. Alternatively, do anything that causes an SRN to be reported. Check the SRN for
accuracy.

4. Try to cause an open error by renaming device driver. Ensure that a software error is reported.
5. Place the adapter in the DEFINED state. Cause the configuration to fail by renaming the method.

Observe how the DA handles this. In most instances, an SRN should be generated stating that the
device could not be configured.

6. Place the adapter in the second I/O planar of a supported system. Ensure the adapter is in the
DEFINED state. Run diagnostics to ensure the DA causes the device to be made available. After testing
is completed, ensure adapter is placed back in the DEFINED state.

Tasks and service aids
The Diagnostic Package contains programs that are called Tasks. Tasks can be thought of as performing a
specific function on a resource; for example, running diagnostics, or performing a Service Aid on a
resource.

Creating a task
Tasks are represented by an entry in the Predefined Diagnostic Task object class (PDiagTask). To create
a new task, a PDiagTask object is needed plus the binary executable of the task itself, as specified by the
PDiagTask->Action class member.

Note: The diagnostic subsystem only supports 32-bit Tasks and Service Aids.

When you are creating a task to display a subtask list, use a %name,comma separated list in the
PDiagTask-> Action field. The comma-separated list displays the TaskId values of each subtask TaskId. If
a task and its subtasks have the same TaskId, a %name can be used. The following is an example of a
task and subtask that have the same TaskId:

"%ThisTask,73,12,19" or "%ThisTask"

Some Task IDs are reserved for use by the Diagnostic Controller:

Task ID 0
Built-in Controller Task

Task ID 1000+
Reserved for Third-Party Use. Any number may be used above 999. A clash of task IDs by third-party
tasks may occur if the same task ID is used. The problem may appear to the user as seeing a

20 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

particular resource supported by a task, when in reality it is not. Each third-party supported task
should be able to handle the condition of a nonsupported resource given as a command-line
argument, if the PDiagTask->ResourceFlag is set.

Performing a task
Use the topic to perform a task.

Menu

Select the following from the Function Selection Menu:

Task Selection (Diagnostics, Advanced Diagnostics, Service Aids, etc.)
This selection will list the tasks supported by these procedures.
Once a task is selected, a resource menu may be presented showing
all resources supported by the task.

The displaying of the resource menu is dependent on the value of the PDiagTask->ResourceFlag value.

Note: Many of these tasks work on all system model architectures. (The Diagnostic Task Matrix shows all
current supported tasks and their supported platforms.) Some tasks are only accessible from Online
Diagnostics in Service or Concurrent mode, others may be accessible only from Standalone Diagnostics.
While still other tasks may only be supported on a particular system architecture, such as CHRP (Common
Hardware Reference Platform), or RSPC (PowerPC® Reference Platform).

Fastpath with Unknown Resource

A fastpath method is also available to perform a task by using the -T flag with the diag command. This
means that the user does not have to go through most of the introductory menus just to get to a particular
task. Instead the user is presented with a list of resources available that support the task specified.

The current fastpath tasks are:

Item Description

format Format Media

certify Certify Media

download Download Microcode

umcode_latest Download Latest Available Microcode

disp_mcode Display Microcode Level

chkspares Spare Sector Availability

identify PCI RAID Physical Disk Identify

Fastpath with Known Resource

Each of these tasks can also be invoked directly from the command line specifying the resource and other
task unique flags. This implies that the user already knows the resource to perform the task operation on.
See publications Diagnostic Information for Micro Channel Bus Systems or Diagnostic Information for
Multiple Bus Systems for more specific information on the tasks and flags.

Task list
Tasks have been separated into one of six groups.

The following is a list of all known supported tasks on the latest level of diagnostics.

• Run Diagnostics
• Run Error Log Analysis
• Display or Change Diagnostic Run Time Options
• 7135 RAIDiant Array Service Aid
• Add or Delete Drawer Configuration

Understanding the Diagnostic Subsystem for AIX 21

• Add Resource to Resource List
• AIX® Shell Prompt
• Analyze Adapter Internal Log
• Backup and Restore Media
• Certify Media
• Change Hardware Vital Product Data
• Configure Dials and LPFKeys
• Configure ISA Adapter
• Configure Reboot Policy (CHRP)
• Configure Remote Maintenance Policy (CHRP)
• Configure Ring Indicate Power On Policy (CHRP)
• Configure Ring Indicate Power On (RSPC)
• Configure Service Processor (RSPC)

– Call In/Out Setup
– Modem Configuration
– Site Specific Call In/Out Setup
– Surveillance Setup

• Configure Surveillance Policy (CHRP)
• Create Customized Configuration Diskette
• Delete Resource from Resource List
• Disk Maintenance

– Disk to Disk Copy
– Display/Alter Sector

• Display Checkstop Analysis Results
• Display Configuration and Resource List
• Display Firmware Device Node Information (CHRP)
• Display Hardware Error Report
• Display Hardware Vital Product Data
• Display Machine Check Error Log
• Display Microcode Level
• Download Latest Available Microcode Level
• Display Previous Diagnostic Results
• Display Resource Attributes
• Display Service Hints
• Display Software Product Data
• Display System Environmental Sensors (CHRP)
• Display or Change Bootlist
• Display or Change BUMP Configuration
• Display or Change Electronic Mode Switch
• Display or Change Multiprocessor Configuration
• Display Test Patterns
• Download Microcode
• ESCON Bit Error Rate Service Aid

22 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

• Fibre Channel RAID Service Aids
• Flash SK-NET FDDI Firmware
• Format Media
• Generic Microcode Download
• Load ISO Image to USB Mass Storage Device
• Local Area Network Analyzer
• Log Repair Action
• Microcode Tasks
• PCI RAID Physical Disk Identify
• Periodic Diagnostics
• Process Supplemental Media
• Save or Restore Hardware Management Policies (CHRP)
• Save or Restore Service Processor Configuration (RSPC)
• SCSD Tape Drive Service Aid
• SCSI Bus Analyzer
• SCSI Device Identification and Removal
• Service Aids for use with Ethernet
• Spare Sector Availability
• Update Disk Based Diagnostics
• Update System Flash (RSPC)
• Update System or Service Processor Flash (CHRP)

Add or delete drawer configuration

Attention: This diagnostic task has been removed in AIX® 5.2. The information has been retained
for reference only.

Note: Not applicable to RSPC or CHRP systems.

This task invokes SMIT to provide the following options:

• List all Drawers
• Add a Drawer
• Remove a Drawer

The supported drawer types are:

• Media SCSI Device Drawer
• DASD SCSI DASD Drawer

Add resource to resource list

Use this task to add resources back to the resource list.

Note: Only resources that were previously detected by the diagnostics and deleted from the Diagnostic
Test List are listed. If no resources are available to be added, then none are listed.

Shell prompt

Note: Online Service Mode only.

This Service Aid allows access to the command line. To use this Service Aid the user must know the root
password (when a root password has been established).

Understanding the Diagnostic Subsystem for AIX 23

Do not use this task to install code, or change the configuration of the system. It is intended to be used to
look at files, configuration, data, etc. Changing the system configuration, or installing code may produce
problems after exiting back to the Diagnostic Controller.

Analyze adapter internal log (Device specific)

The PCI RAID adapter has an internal log that logs information about the adapter and the disk drives
attached to the adapter. Whenever data is logged in the internal log, the device driver copies the entries to
the system error log and clears the internal log.

The Analyze Adapter Internal Log Service Aid analyzes these entries in the system error log. The Service
Aid displays the errors and the associated service actions. Entries that do not require any service actions
are ignored.

Backup and restore media

This Service Aid allows verification of backup media and devices. It presents a menu of tape and diskette
devices available for testing and prompts for selection of the desired device. It then presents a menu of
available backup formats and prompts for selection of the desired format. The supported formats are tar,
backup, and cpio. After the device and format are selected, the Service Aid backups a known file to the
selected device, restores that file to /tmp, and compares the original file to the restored file. The restored
file is also left in /tmp to allow for visual comparison. All errors are reported.

Certify media

This task allows the selection of diskette or hardfiles to be certified. Hardfiles can be connected either to
a SCSI adapter(non RAID) or a PCI SCSI RAID adapter. The usage and certify criteria for a hardfile
connected to a non RAID SCSI adapter are different from those for a hardfile connected to a PCI SCSI
RAID adapter.

Note: The certify function for devices attached to a PCI SCSI RAID adapter is supported for certain PCI
SCSI RAID adapters only.

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage: diag -T "certify"

Change hardware vital product data

Use this Service Aid to display the Display/Alter VPD Selection Menu. The menu lists all resources
installed on the system. When a resource is selected, a menu displays all the VPD that are recognized by
the operating system for that resource.

Note: The user cannot alter the VPD for a specific resource unless it is not machine readable.

Configure dials and LPF keys

This Service Aid provides a tool for configuring and removing dials/LPFKs to the asynchronous serial ports.

This selection invokes the SMIT utility to allow Dials and LPFKs configuration. A tty must be in the
available state on the async port before the Dials and LPFKs can be configured on the port. The task
allows an async adapter to be configured, then a tty port defined on the adapter, and then Dials and LPFKs
can be defined on the port.

Configure ISA adapter

Attention: This diagnostic task has been removed in AIX® 5.2. The information has been retained
for reference only.

This task invokes SMIT to allow the identification and configuration of ISA adapters on systems that have
an ISA bus and adapters.

Diagnostic support for ISA adapters not shown in the list may be supported from a Supplemental
Diskette. ISA adapter support can be added from a Supplemental Diskette with the Process Supplemental
Media task.

24 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Whenever an ISA adapter is installed, this Service Aid must be run and the adapter configured before the
adapter can be tested. This Service Aid must also be run (and the adapter removed) whenever an ISA
adapter is physically removed from the system.

If diagnostics are run on an ISA adapter that has been removed from the system, the diagnostics fail.

ISA adapters cannot be detected by the system.

Note: When using this Service Aid choose the option that places the adapter in the "Defined State". Do not
select the option that places the device in the "Available State".

Configure reboot policy (CHRP) on POWER4 and earlier RS/6000 systems

This Service Aid controls how the system tries to recover from a system crash.

Use this Service Aid to display and change the following settings for the Reboot Policy.

Note:

1. This Service Aid runs on POWER4 and earlier RS/6000® CHRP systems units only.
2. Because of system capability, some of the following settings may not be displayed by this Service Aid.

• Maximum Number of Reboot Attempts

Enter a number that is 0 or greater.

Note: A value of 0 indicates 'do not attempt to reboot' to a crashed system.

This number is the maximum number of consecutive attempts to reboot the system. The term "reboot",
in the context of this Service Aid, is used to describe bringing system hardware back up from scratch, for
example from a system reset or power on.

When the reboot process completes successfully, the reboot attempts count is reset to 0, and a
"restart" begins. The term "restart", in the context of this Service Aid, is used to describe the operating
system activation process. Restart always follows a successful reboot.

When a restart fails, and a restart policy is enabled, the system attempts to reboot for the maximum
number of attempts.

• Use the O/S Defined Restart Policy (1=Yes, 0=No)

When 'Use the O/S Defined Restart Policy' is set to Yes, the system attempts to reboot from a crash if
the operating system has an enabled Defined Restart or Reboot Policy.

When 'Use the O/S Defined Restart Policy' is set to No, or the operating system restart policy is
undefined, then the restart policy is determined by the 'Supplemental Restart Policy'.

• Enable Supplemental Restart Policy (1=Yes, 0=No)

The 'Supplemental Restart Policy', if enabled, is used when the O/S Defined Restart Policy is undefined,
or is set to False.

When surveillance detects operating system inactivity during restart, an enabled 'Supplemental Restart
Policy' causes a system reset and the reboot process begins.

• Call-Out Before Restart (on/off)

When enabled, Call-Out Before Restart allows the system to call out (on a serial port that is enabled for
call out) when an operating system restart is initiated. Such calls can be valuable if the number of these
events becomes excessive, thus signaling bigger problems.

• Enable Unattended Start Mode (1=Yes, 0=No)

When enabled, 'Unattended Start Mode' allows the system to recover from the loss of AC power.

If the system was powered-on when the AC loss occurred, the system reboots when power is restored.
If the system was powered-off when the AC loss occurred, the system remains off when power is
restored.

This Service Aid may be accessed directly from the command line, by entering:

Understanding the Diagnostic Subsystem for AIX 25

/usr/lpp/diagnostics/bin/uspchrp -b

Configure reboot Policy (CHRP) on POWER5 systems or later

This Service Aid controls how the system tries to recover when power is restored after a power outage.

Use this Service Aid to display and change the following setting for the Reboot Policy.

Note:

1. This Service Aid runs only on POWER5 systems or later.

• Enable Platform Automatic Power restart

When enabled, Enable Platform Auto Power Restart allows the platform firmware to restart a system
after power is restored following a power outage. If the system is partitioned, each partition that was
running when the power outage occurred is restarted as indicated by that partition's setting of the SMIT
option:

Automatically REBOOT operating system after a crash

This Service Aid can be accessed directly from the command line by typing:

/usr/lpp/diagnostics/bin/uspchrp -b

The parameter setting can be read and set directly from the command line. To read the parameter, run the
following command:

/usr/lpp/diagnostics/bin/uspchrp -q platform-auto-power-restart

To set the parameter, run the following command:

/usr/lpp/diagnostics/bin/uspchrp -e platform-auto-power-restart=[0|1]

where

• 1 = Enable Platform Automatic Power Restart
• 0 = Disable Platform Automatic Power Restart

Configure remote maintenance policy (CHRP)

The Remote Maintenance Policy includes modem configurations and phone numbers to use for remote
maintenance support.

Use this Service Aid to display and change the following settings for the Remote Maintenance Policy.

Note:

1. Runs on CHRP systems units only.
2. Because of system capability, some of the following settings may not be displayed by this Service Aid.

• Configuration File for Modem on S1 Configuration File for Modem on S2

Enter the name of a modem configuration file to load on either serial port 1 (S1) or serial port 2 (S2).
The modem configuration files are located in the directory /usr/share/modems. If a modem file is
already loaded, it is showed by Modem file currently loaded.

• Modem file currently loaded on S1 Modem file currently loaded on S2

This is the name of the file that is currently loaded on serial port 1 or serial port 2.

26 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Note: These settings are only shown when a modem file is loaded for a serial port.
• Call In Authorized on S1 (on/off) Call In Authorized on S2 (on/off)

Call In allows the Service Processor to receive a call from a remote terminal.
• Call Out Authorized on S1 (on/off) Call Out Authorized on S2 (on/off)

Call Out allows the Service Processor to place calls for maintenance.
• S1 Line Speed S2 Line Speed

A list of line speeds is available by using 'List' on the screen.
• Service Center Phone Number

This is the number of the service center computer. The service center usually includes a computer that
takes calls from systems with call-out capability. This computer is referred to as "the catcher". The
catcher expects messages in a specific format to which the Service Processor conforms. For more
information about the format and catcher computers, refer to the README file in the /usr/samples/
syscatch directory. Contact the service provider for the correct telephone number to enter here.

• Customer Administration Center Phone Number

This is the number of the System Administration Center computer (catcher) that receives problem calls
from systems. Contact the system administrator for the correct telephone number to enter here.

• Digital Pager Phone Number In Event of Emergency

This is the number for a pager carried by someone who responds to problem calls from your system.
• Customer Voice Phone Number

This is the number for a telephone near the system, or answered by someone responsible for the
system. This is the telephone number left on the pager for callback.

• Customer System Phone Number

This is the number to which your system's modem is connected. The service or administration center
representatives need this number to make direct contact with your system for problem investigation.
This is also referred to as the Call In phone number.

• Customer Account Number

This number could be used by a service provider for record keeping and billing.
• Call Out Policy Numbers to call if failure

This is set to either 'first' or 'all'. If the call out policy is set to 'first', call out stops at the first successful
call to one of the following numbers in the order listed:

1. Service Center
2. Customer Admin Center
3. Pager

If Call Out Policy is set to 'all', call out attempts to call all of the following numbers in the order listed:

1. Service Center
2. Customer Admin Center
3. Pager

• Customer RETAIN Login ID Customer RETAIN Login Password

These settings apply to the RETAIN service function.
• Remote Timeout, in seconds Remote Latency, in seconds

These settings are functions of the service provider's catcher computer.
• Number of Retries While Busy

This is the number of times the system should retry calls that resulted in busy signals.
• System Name (System Administrator Aid)

Understanding the Diagnostic Subsystem for AIX 27

This is the name given to the system and is used when reporting problem messages.

Note: Knowing the system name aids the support team to quickly identify the location, configuration,
history, etc. of your system.

This Service Aid may be accessed directly from the command line, by entering:

/usr/lpp/diagnostics/bin/uspchrp -m

Configure ring indicate power on (RSPC)

This Service Aid allows the user to display and change the NVRAM settings for the Ring Indicate power on
capability of the service processor.

Note: Runs on RSPC systems units only.

The settings allows the user to:

• Enable/Disable power on from Ring Indicate
• Read/Set the number of rings before power on

Configure Ring Indicate Power On Policy (CHRP)

This Service Aid allows the user to power on a system by telephone from a remote location. If the system
is powered off, and Ring Indicate Power® On is enabled, the system powers on at a predetermined
number of rings. If the system is already on, no action is taken. In either case, the telephone call is not
answered and the caller receives no feedback that the system has powered on.

Use this Service Aid to display and change the following settings for the Ring Indicate Power On Policy.

Note:

1. Runs on CHRP systems units only.
2. Because of system capability, some of the following settings may not be displayed by this Service Aid.

• Power On Via Ring Indicate (on/off)
• Number of Rings Before Power On

This Service Aid may be accessed directly from the command line, by entering:

/usr/lpp/diagnostics/bin/uspchrp -r

Configure service processor (RSPC)

Attention: This diagnostic task has been removed in AIX® 5.2. The information has been retained
for reference only.

This Service Aid allows you to display and change the NVRAM settings for the service processor.

This Service Aid supports the following functions:

Note: Runs on RSPC systems units only.

• Surveillance Setup
• Modem Configuration
• Call In/Call Out Setup
• Site Specific Call In/Call Out Setup

28 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Surveillance setup

This selection allows you to display and change the NVRAM settings for the surveillance capability of the
service processor.

The settings allow you to:

• Enable/disable surveillance
• Set the surveillance time interval, in minutes
• Set the surveillance delay, in minutes

The current settings are read from NVRAM and displayed on the screen. Any changes made to the data
shown are written to NVRAM.

Modem configuration

Use this selection when setting the NVRAM for a modem attached to any of the Service Processor's serial
ports. The user enters the file name of a modem configuration file and the serial port number. The
formatted modem configuration file is read, converted for NVRAM than loaded into NVRAM. Refer to the
Service Processor Installation and User's Guide for more information.

Call in/out setup

This selection allows the user to display and change the NVRAM settings for the Call In/Call Out capability
of the service processor.

The settings allows the user to:

• Enable/Disable call in on either serial port.
• Enable/Disable call out on either serial port.
• Set the line speed on either serial port.

Site specific call in/out setup

This selection allows you to display and change the NVRAM settings that are site specific for the call in/
call out capability of the service processor.

The site specific NVRAM settings allow you to:

• Set the phone number for the service center
• Set the phone number for the customer administration center
• Set the phone number for a digital pager
• Set the phone number for the customer system to call in
• Set the phone number for the customer voice phone
• Set the customer account number
• Set the call out policy
• Set the customer RETAIN ID
• Set the customer RETAIN password
• Set the remote timeout value
• Set the remote latency value
• Set the number of retries while busy
• Set the system name

The current settings are read from NVRAM and displayed on the screen. Any changes made to the data
shown are written to NVRAM.

Understanding the Diagnostic Subsystem for AIX 29

Configure surveillance policy (CHRP)

This Service Aid monitors the system for hang conditions, that is, hardware or software failures that cause
operating system inactivity. When enabled, and surveillance detects operating system inactivity, a call is
placed to report the failure.

Use this Service Aid to display and change the following settings for the Surveillance Policy.

Note:

1. Runs on CHRP systems units only.
2. Because of system capability, some of the following settings may not be displayed by this Service Aid.

• Surveillance (on/off)
• Surveillance Time Interval

This is the maximum time between heartbeats from the operating system.
• Surveillance Time Delay

This is the time to delay between when the operating system is in control and when to begin operating
system surveillance.

• Changes are to take affect immediately

Set this to Yes if the changes made to the settings in this menu are to take place immediately. Otherwise
the changes takes place beginning with the next system boot.

This Service Aid may be accessed directly from the command line, by entering:

/usr/lpp/diagnostics/bin/uspchrp -s

Create customized configuration diskette

This selection invokes the Diagnostic Package Utility Service Aid which allows the user to Create a
Standalone Diagnostic Package Configuration Diskette

The Standalone Diagnostic Package Configuration Diskette allows the following to be changed when
running diagnostics from removable media:

• High-Function Terminals 60/77-Mhz Refresh Rate

The refresh rate used by the standalone diagnostic package is 60Hz. If the display's refresh rate is
77Hz, then set the refresh rate to 77.

• Different async terminal console

A console configuration file that allows a terminal attached to any RS232 or RS422 adapter to be
selected as a console device can be created using this Service Aid. The default device is a RS232 tty
attached to the first standard serial port (S1).

Delete resource from resource list

Use this task to delete resources from the resource list.

Note: Only resources that were previously detected by the diagnostics and have not been deleted from
the Diagnostic Test List are listed. If no resources are available to be deleted, then none are listed.

Disk maintenance (SCSI disks)
Disk Maintenance includes Disk to Disk Copy and Display or Alter Sector.

Disk to disk copy
This selection allows you to recover data from an old drive when replacing it with a new drive.

The Service Aid only supports copying from a drive to another drive of similar size. This Service Aid cannot
be used to update to a different size drive. The migratepv command should be used when updating
drives. The Service Aid recovers all LVM software reassigned blocks. To prevent corrupted data from being

30 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

copied to the new drive, the Service Aid aborts if an unrecoverable read error is detected. To help prevent
possible problems with the new drive, the Service Aid aborts if the number of bad blocks being reassigned
reaches a threshold.

Note: Use the migratepv command when copying the contents to other disk drive types. This command
also works when copying SCSI disk drives or when copying to a different size SCSI disk drive. Refer to AIX
Version 7.1 Operating system and device management for a procedure on Migrating the contents of a
physical volume.

The procedure for using this Service Aid requires that both the old and new disks be installed in or
attached to the system with unique SCSI addresses. This requires that the new disk drive SCSI address
must be set to an address that is not currently in use and the drive be installed in an empty location. If
there are no empty locations, then one of the other drives must be removed. Once the copy is complete,
only one drive may remain installed. Either remove the target drive to return to the original configuration,
or perform the following procedure to complete the replacement of the old drive with the new drive.

1. Remove both drives.
2. Set the SCSI address of the new drive to the SCSI address of the old drive.
3. Install the new drive in the old drive's location.
4. Install any other drives that were removed into their original location.

To prevent problems that may occur when running this Service Aid from disk, it is suggested that this
Service Aid be run from the diagnostics that are loaded from removable media when possible.

Display or alter sector
This selection allows the user to display and alter information on a disk sector.

Care must be used when using this Service Aid because inappropriate modification to some disk sectors
may result in total loss of all data on the disk. Sectors are addressed by their decimal sector number. Data
is displayed both in hex and in ASCII. To prevent corrupted data from being incorrectly corrected, the
Service Aid does not display information that cannot be read correctly.

Display checkstop analysis results

Attention: This diagnostic task has been removed in AIX® 5.2. The information has been retained
for reference only.

This Service Aid analyzes checkstop files and displays the results. During a system reboot, following a
checkstop, a data file is written to /usr/lib/ras that contains the state of the system at the time of the
checkstop. The files have names that begin with checkstop and end with either .A or .B.

The analysis of the file(s) produce a description of the problem and provide an action plan with repair
instructions or recommendations. Following the action plans, a detailed dump of the data that was saved
for the checkstop is displayed.

The following options are provided:

• Analyze Checkstop Files Created Within the Last 7 Days

Analyze and display the results of any checkstop file that was created in the last 7 days. This is the same
file(s) that the system planar diagnostics analyzed, but will provide more detail.

• Analyze All of the Checkstop Files

Analyze and display the results of all of checkstop files.

For either option, carefully read the results of the analysis and perform any recommended actions.

Display configuration and resource list

This Service Aid displays the item header only for all installed resources. Use this Service Aid when there
is no need of seeing the VPD. (No VPD is displayed.)

Understanding the Diagnostic Subsystem for AIX 31

Display firmware device node information (CHRP)

This task displays the firmware device node information that appears on CHRP platforms. The format of
the output data does not necessarily have to be the same between different levels of the operating
system. It is intended to be used to gather more information about individual or particular devices on the
system.

Note: Runs on CHRP systems units only.

Display hardware error report

This Service Aid provides a tool for viewing the hardware error log. It uses the errpt command.

The Display Error Summary and Display Error Detail selection provide the same type of report as the errpt
command. The Display Error Analysis Summary and Display Error Analysis Detail selection provide
additional analysis.

Display hardware vital product data

This Service Aid displays all installed resources along with any VPD that is recognized by the operating
system for those resources. Use this Service Aid when you want to look at the VPD for a specific resource.

Display machine check error log

When a machine check occurs, information is collected and logged in a NVRAM error log before the
system unit shuts down. This information is logged in the error log and cleared from NVRAM when the
system is rebooted from either hard disk or LAN. The information is not cleared when booting from
Standalone Diagnostics. When booting from Standalone Diagnostics, this Service Aid can take the logged
information and turn it into a readable format that can be used to isolate the problem. When booting from
the hard disk or LAN, the information can be viewed from the error log using the Hardware Error Report
Service Aid. In either case the information is analyzed when running the sysplanar0 diagnostics in
Problem Determination Mode.

Note: The Machine Check Error Log Service Aid is available only on Standalone Diagnostics.

Display microcode level

This selection, located in the Microcode Tasks submenu, provides a way to display microcode on a device
or adapter. Once invoked, a list of resources are available for selection that supports this function. Once a
resource is selected, a specific application that supports that function on the resource is invoked. See the
description on PDiagAtt for the stanza that is needed to achieve this.

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage:

diag -T "disp_mcode"

Display or change bootlist

This Service Aid allows the bootlist to be displayed, altered, or erased.

The system attempts to perform an IPL from the first device in the list. If the device is not a valid IPL
device or if the IPL fails, the system proceeds in turn to the other devices in the list to attempt an IPL.

Display or change BUMP configuration

Attention: This diagnostic task has been removed in AIX® 5.2. The information has been retained
for reference only.

This Service Aid is unique to the POWER® processor-based SMP system units and provides the following
functions:

• Display or Change Remote Support Phone Number

32 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

This function allows the remote support phone number to be displayed or altered.
• Display or Change Diagnostics Modes

This function displays a dialog screen that lists the states of all the BUMP (Bringup Micro-Processor)
Diagnostic Flags. The states can be changed via the dialog screen.

• Save or Restore Diagnostics Modes and Remote Support Phone Number

This function allows the diagnostics modes and remote support phone number to be saved or restored.
The location of the save area is to be defined.

• Flash EPROM Download

This function updates the Flash EPROM.

Display or change diagnostic run time options

The Display or Change Diagnostic Run Time Options task allows the diagnostic run time options to be set.

The run time options are:

• Display Diagnostic Mode Selection Menus

This option allows the user to turn on or turn off displaying the DIAGNOSTIC MODE SELECTION MENU.
The default value is on.

• Include Advanced Diagnostics

This option allows the user to turn on or off including the Advanced Diagnostics. The default value is
off.

• Run Tests Multiple Times

This option allows the user to turn on or off running the diagnostic in Loop Mode. The default value is
off.

Note: This option is only displayed when running Online Diagnostics in Service Mode.
• Include Error Log Analysis

This option allows the user to turn on or off including the Error Log Analysis (ELA). The default value is
off.

• Number of days used to search error log

This option allows the user to select the number of days to search the error log for errors when running
Error Log Analysis. The default value is 7 days, but can be changed from 1 to 60 days.

• Display Progress Indicators

This option allows the user to turn on or off the progress indicators shown when running Diagnostic
Applications. The progress indicators are a popup box at the bottom of the screen indicating the test
being run. The default value is on.

• Diagnostic Event Logging

This option allows the user to turn on or off logging information to the Diagnostics Event Log. The
default value is on.

• Diagnostic Event Log file size

This option allows the user to select the maximum size of the Diagnostic Event Log. The default value is
100K, but can be changed from 100K to 1000K.

• Save changes to the database

This option allows the user to save any changes made to the run time options. Without saving the
changes, any changes made are only applicable to that session of diagnostics. The default value is no.

Display or change electronic mode switch

Attention: This diagnostic task has been removed in AIX® 5.2. The information has been retained
for reference only.

Understanding the Diagnostic Subsystem for AIX 33

This Service Aid is unique to the POWER® processor-based SMP system units and displays the states of
the Physical and Electronic Keys. It also allows the electronic keys to be set.

Display or change multiprocessor configuration (multiprocessor service)

Attention: This diagnostic task has been removed in AIX® 5.2. The information has been retained
for reference only.

This Service Aid is unique to the POWER® processor-based SMP system units and provides the following
functions:

• Display or Change Processor States

This function displays or changes the state of available processors.
• Bind Process

This function provides a tool for binding a process and all its threads to a specified processor.

Display multipath I/O (MPIO) device configuration

The Display MultiPath I/O (MPIO) Device Configuration service aid displays the status of MPIO devices
and their connections to their parents It is capable of sending SCSI commands on each available path
regardless of the default MPIO path algorithm, therefore, it is useful for testing the unused path for
integrity. You may wish to run this service aid if you suspect there is a problem with the path between
MPIO devices and their parents.

This service aid is capable of the following:

1. Listing MPIO devices
2. Listing the parents of MPIO devices
3. Displaying the status and location of specified MPIO devices.
4. Displaying the hierarchy of MPIO adapters and devices

You can access this service aid directly from the AIX command line, by typing:

/usr/lpp/diagnostics/bin/umpio

Flags: None.

Display previous diagnostic results

This service aid allows a service representative to display results from a previous diagnostic session.
When the Display Previous Results option is selected, the user will be able to view up to 25 no
trouble found (NTF) and service request number (SRN) results.

This service aid also displays diagnostic log information. The diagnostic log can be displayed in a short
version or a long version. The diagnostic log contains information about events logged by a diagnostic
session.

This service aid displays the information in reverse chronological order. If more information is available
than what can be displayed on the screen, the Page Down and Page Up keys can be used to scroll through
the information.

Note: This Service Aid is not available when you load the diagnostics from a source other than a disk drive
or from a network.

This information is not from the error log maintained by the operating system. This information is stored in
the /var/adm/ras directory.

Display resource attributes

This task displays the Customized Device Attributes associated with a selected resource. This task is
similar to running the lsattr -E -l resource command.

34 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Display service hints

This Service Aid reads and displays the information in the CEREADME file from the diagnostics media.
This file contains information that is not in the publications for this version of the diagnostics. It also
contains information about using this particular version of diagnostics.

This Service Aid presents a menu if multiple CEREADME files are present in the /usr/lpp/diagnostics/
directory. This allows other non-related CEREADME files to be displayed containing information about
unrelated functions.

Use the arrow keys to scroll through the information in the file.

Display software product data

This task invokes SMIT to display information about the installed software and provides the following
functions:

• List Installed Software
• List Applied but Not Committed Software Updates
• Show Software Installation History
• Show Fix (APAR) Installation Status
• List Fileset Requisites
• List Fileset Dependents
• List Files Included in a Fileset
• List File Owner by Fileset

Display system environmental sensors (CHRP)

This Service Aid displays the environmental sensors implemented on a CHRP system. The information
displayed is the sensor name, physical location code, literal value of the sensor status, and the literal
value of the sensor reading.

Note: Runs on CHRP systems units only.

The sensor status can be any one of the following:

• Normal

The sensor reading is within the normal operating range.
• Critical High

The sensor reading indicates a serious problem with the device. Run diagnostics on sysplanar0 to
determine what repair action is needed.

• Critical Low

The sensor reading indicates a serious problem with the device. Run diagnostics on sysplanar0 to
determine what repair action is needed.

• Warning High

The sensor reading indicates a problem with the device. This could become a critical problem if action is
not taken. Run diagnostics on sysplanar0 to determine what repair action is needed.

• Warning Low

The sensor reading indicates a problem with the device. This could become a critical problem if action is
not taken. Run diagnostics on sysplanar0 to determine what repair action is needed.

• Hardware Error

The sensor could not be read because of a hardware error. Run diagnostics on sysplanar0 in problem
determination mode to determine what repair action is needed.

• Hardware Busy

Understanding the Diagnostic Subsystem for AIX 35

The system has repeatedly returned a busy indication, and a reading is not available. Try the Service Aid
again. If the problem continues, run diagnostics, on sysplanar0 in problem determination mode to
determine what repair action is needed.

This Service Aid can also be run as a command. The command can be used to list the sensors and their
values in a text format, list the sensors and their values in numerical format, or a specific sensor can be
queried to return either the sensor status or sensor value.

The command can be run by entering one of the following:

/usr/lpp/diagnostics/bin/uesensor -l | -a
/usr/lpp/diagnostics/bin/uesensor -t token -i index [-v]

Flags

Item Description

-l List the sensors and their values in a text format.

-a List the sensors and their values in a numerical format. For each sensor, the
following numerical values are displayed as:

<token> <index> <status> <measured value> <location code>

-t token Specifies the sensor token to query.

-i index Specifies the sensor index to query.

-v Indicates to return the sensor measured value. The sensor status is returned by
default.

Examples

1. Display a list of the environmental sensors:

/usr/lpp/diagnostics/bin/uesensor -l

Sensor Token = Fan Speed
Status = Normal
Value = 2436 RPM
Location Code = F1

Sensor Token = Power Supply
Status = Normal
Value = Present and operational
Location Code = V1

Sensor Token = Power Supply
*Status = Critical low
Value = Present and not operational
Location Code = V2

2. Display a list of the environmental sensors in a numerical list:

/usr/lpp/diagnostics/bin/uesensor -a

3 0 11 87 P1
9001 0 11 2345 F1
9004 0 11 2 V1
9004 1 9 2 V2

36 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

3. Return the status of sensor 9004, index 1:

/usr/lpp/diagnostics/bin/uesensor -t 9004 -i 1

9

4. Return the value of sensor 9004, index 1:

/usr/lpp/diagnostics/bin/uesensor -t 9004 -i 1 -v

2

Display test patterns

This Service Aid provides a means of adjusting system display units by providing displayable test patterns.
Through a series of menus the user selects the display type and test pattern. After the selections are
made, the test pattern is displayed.

Download microcode

This selection, located in the Microcode Tasks submenu, provides a way to update microcode to a device
or adapter. Once invoked, a list of resources are available for selection that supports this function. Once a
resource is selected, a specific application that supports that function on the resource is invoked. See the
description on PDiagAtt for the stanza that is needed to achieve this.

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage:

diag -T "download"

Download latest available microcode

This selection, located in the Microcode Tasks submenu, provides a way to determine which resources
can be updated from a specified source of microcode images. After you select a source of microcode
images from a list of possible sources, a list of resources is displayed, where each resource in the list was
found to have an older firmware image than what is available on the specified source. From this list, you
can select any or all of the resources. Then the resource specific download task is executed to update the
microcode with the image on the specified source.

This task may be entered directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage:

diag -T "download_latest [-s source]"

The command form of this task is:

/usr/lpp/diagnostics/bin/umcode_latest

For more information, refer to the umcode_latest command.

ESCON bit error rate

Attention: This diagnostic task has been removed in AIX® 5.2. The information has been retained
for reference only.

This Service Aid is used to check the bit error rate for an ESCON adapter to assure that the link to the host
system is functioning properly. To run the ESCON Bit Error Rate Service Aid, the adapter must be

Understanding the Diagnostic Subsystem for AIX 37

connected, configured, and online. If the adapter is not configured properly, the Service Aid is not able to
check the bit error rate.

Fibre channel RAID (device specific)

The Fibre Channel RAID Service Aids contain the following functions:

• Certify LUN

This selection reads and checks each block of data in the LUN. If excessive errors are encountered the
user is notified.

This task may be run directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage:

diag -T "certify"

• Certify Spare Physical Disk

This selection allows the user to certify (check the integrity of the data) on drives designated as spares.

This task may be run directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage: diag -T "certify"
• Format Physical Disk

This selection is used to format a selected disk drive.

This task may be run directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage: diag -T "format"
• Array Controller Microcode Download

This selection allows the microcode on the Fibre Channel RAID controller to be updated when required.

This task may be run directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage: diag -T "download"
• Physical Disk Microcode Download

This selection is used to update the microcode on any of the disk drives in the array.

This task may be run directly from the command line. The following usage statement describes the
syntax of the fastpath command:

Usage: diag -T "download"
• Update EEPROM

This selection is used to update the contents of the EEPROM on a selected controller.
• Replace Controller

Use this selection when it is necessary to replace a controller in the array.

Flash SK-NET FDDI firmware

This task allows the Flash firmware on the SysKonnect SK-NET FDDI adapter to be updated.

Format media

The Format Media task supports the selection of diskettes, SCSI hardfiles, or SCSI optical media.

38 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

This task may be run directly from the command line. The following displays the syntax of the fastpath
command:

diag -c -d deviceName -T "format [-s* fmtcert | erase -a {read | write}
 -P {comma separated list of patterns}] [-F]*

Table 3. Flags that are not available for pdisk devices

Flags Description

fmtcert Formats and certifies the disk.

erase Overwrites the data on the disk.

* Available in no-console mode only.

-F Forces the disk erasure even if all blocks cannot be erased because of errors
accessing the grown defect map.

-P Comma separated list of hexadecimal patterns to be written to the drive serially. Up to
eight patterns can be specified using a single command. The patterns must be 1, 2, or
4 bytes long without a leading 0x or 0X. Example using five patterns: -P ff, a5c0, 00,
fdb97531, 02468ace. If no patterns are specified for the erase disk option in
command line mode, then the default pattern of 00 is used.

Generic microcode download

This Service Aid, located in the Microcode Tasks submenu, provides a means of executing a "generic"
script from a diskette. The intended purpose for this "generic" script is to load microcode to a supported
resource. This script is responsible for executing whatever program is required in order to download the
microcode onto the adapter or device.

This Service Aid is supported in both concurrent and standalone modes from disk, LAN, or removable
media.

On entry, the Service Aid displays information about what it does. It then asks for a "Genucode" diskette
to be inserted into the diskette drive. The diskette must be in tar format. The Service Aid then restores the
script file, "genucode", to the /tmp directory. Then the script is executed. The script must at that point
then pull off any other needed files from the diskette. The script should then exec whatever program is
necessary in order to perform its function. On completion, a status code is returned, and the user is
returned to the Service Aid.

The genucode script should have a #!/usr/bin/ksh line at the beginning of the file. Return status of 0
should be returned if the program was successful, else a non-zero status should be returned.

Hot plug task

This Service Aid allows the user to choose a SCSI device or location from a menu and to identify a device,
located in a 7027 system unit.

The Service Aid also does the following:

• Generates a menu displaying all SCSI devices.
• Lists the device and all of it's sibling devices.
• List all SCSI adapters and their ports.
• List all SCSI devices on a port.

Load ISO image to USB mass storage device

This selection, allows you to load an ISO9660 image onto a supported USB mass storage device. To
connect a USB mass storage device, select the USB mass storage device from a list of available storage
devices and select a source ISO image. The source ISO image can be located on the filesystem or on

Understanding the Diagnostic Subsystem for AIX 39

removable media. This service aid can also be used to copy the contents of optical media and other USB
mass storage device to a USB mass storage device.

Local area network analyzer

This selection is used to exercise the LAN communications adapters (Token-Ring, Ethernet, and (FDDI)
Fiber Distributed Data Interface). The following services are available:

• Connectivity testing between two network stations

Data is transferred between the two stations. This requires the user to input the Internet Addresses of
both stations.

• Monitoring ring (Token-Ring only)

The ring is monitored for a period of time. Soft and hard errors are analyzed.

Log repair action

The Log Repair Action task logs a repair action in the AIX Error Log. A Repair Action log indicates that an
FRU has been replaced, and error log analysis should not be done for any errors logged before the repair
action. The Log Repair Action task lists all resources. Replaced resources can be selected from the list,
and when commit (F7 key) is selected, a repair action is logged for each selected resource.

The Log Repair Action can also be logged from the command line, using the diag command. The syntax is
the following:

diag -c -d Resource -L pending | complete

where

• pending indicates the part has been replaced, but it is not yet known if this part will remain in the
system.

• complete indicates the part has been replaced and it is known that this part will remain in the system.

Microcode tasks

This selection provides a way to access the microcode and flashing features of Display Microcode Level,
Download Microcode, Generic Microcode Download, and Update and Manage System Flash/Update
System or Service Processor Flash.

PCI RAID physical disk identify

This selection identifies physical disks connected to a PCI SCSI-2 F/W RAID adapter.

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage:

diag -T "identify"

Periodic diagnostics

This selection provides a tool for configuring periodic diagnostics and automatic error log analysis. A
hardware resource can be chosen to be tested once a day, at a user specified time. If the resource cannot
be tested because it is busy, error log analysis is performed. Hardware errors logged against a resource
can also be monitored by enabling Automatic Error Log Analysis. This allows error log analysis to be
performed every time a hardware error is put into the error log. If a problem is detected, a message is
posted to the system console and a mail message sent to the user(s) belonging to the system group with
information about the failure such as Service Request Number.

The Service Aid provides the following functions:

40 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

• Add or delete a resource to the periodic test list
• Modify the time to test a resource
• Display the periodic test list
• Modify the error notification mailing list
• Disable or Enable Automatic Error Log Analysis

Process supplemental media

Diagnostic Supplemental Media contains all the necessary diagnostic programs and files required to test a
particular resource. The supplemental is normally released and shipped with the resource as indicated on
the diskette label. Diagnostic Supplemental Media must be used when the device support has not been
incorporated into the latest Diagnostic CDROM.

This task processes the Diagnostic Supplemental Media. Insert the Supplemental Media when prompted,
then press Enter. After processing has occurred, go to the Resource Selection list to find the resource to
test.

Notes:

• This task is supported in Standalone Diagnostics only.
• Always process and test one resource at a time.
• Do not process multiple supplementals at a time.

More information on Diagnostic Supplemental Media can be found at the following link:Diagnostic
Supplemental Media.

Run diagnostics

The Run Diagnostics task invokes the Resource Selection List menu. When the commit key is pressed,
Diagnostics are run on all selected resources.

The procedures for running the diagnostics depends on the state of the Diagnostics Run Time Options.
See Display or Change Diagnostic Run Time Options section.

Run error log analysis

The Run Error Log Analysis task invokes the Resource Selection List menu. When the commit key is
pressed, Error Log Analysis is run on all selected resources.

Save or restore hardware management policies (CHRP)

Use this Service Aid to save or restore the settings from Ring Indicate Power On Policy, Surveillance
Policy, Remote Maintenance Policy and Reboot Policy.

Note: Runs on CHRP systems units only.

• Save Hardware Management Policies

This selection writes all of the settings for the hardware management policies to the file:

/etc/lpp/diagnostics/data/hmpolicies

• Restore Hardware Management Policies

This selection restores all of the settings for the hardware management policies from the contents of
the file:

/etc/lpp/diagnostics/data/hmpolicies

Understanding the Diagnostic Subsystem for AIX 41

This Service Aid may be accessed directly from the command line, by entering:

/usr/lpp/diagnostics/bin/uspchrp -a

Save or restore service processor configuration (RSPC)

Attention: This diagnostic task has been removed in AIX® 5.2. The information has been retained
for reference only.

Use this Service Aid to save or restore the Service Processor Configuration to or from a file. The Service
Processor Configuration includes the Ring Indicator Power On Configuration.

Note: Supported on RSPC system units only.

• Save Service Processor Configuration

This selection will write all of the settings for the Ring Indicate Power On and the Service Processor to
the file:

/etc/lpp/diagnostics/data/spconfig

• Restore Service Processor Configuration

This selection will restore all of the settings for the Ring Indicate Power On and the Service Processor
from the file:

/etc/lpp/diagnostics/data/spconfig

SCSD tape drive service aid

This Service Aid provides a means to obtain the status or maintenance information from a SCSD tape
drive. Only some models of SCSI tape drive are supported.

The Service Aid provides the following options:

• Display time since a tape drive was last cleaned.

The time since the drive was last cleaned is displayed onto the screen. In addition, a message whether
the drive is recommended to be cleaned is also displayed.

• Copy a tape drive's trace table.
• The trace table of the tape drive is written to diskettes.

The required diskettes must be formatted for DOS. Writing the trace table may require several diskettes.
The actual number of required diskettes is determined by the Service Aid based on the size of the trace
table. The names of the data files are of the following format:

TRACE[X].DAT

where X is the sequential diskette number. The complete trace table consists of the sequential
concatenation of all the diskette data files.

• Display or copy a tape drive's log sense information.

The Service Aid provides options to display the log sense information onto the screen, to copy it to a
DOS formatted diskette or to copy it to a file. The file name LOGSENSE.DAT is used when the log sense
data is written on the diskette. The Service Aid prompts for a file name when the log sense data is
chosen to be copied to a file.

SCSI bus analyzer

This Service Aid provides a means to diagnose a SCSI Bus problem in a free-lance mode.

To use this Service Aid, the user should have an understanding of how a SCSI Bus works. This Service Aid
should be used when the diagnostics cannot communicate with anything on the SCSI Bus and cannot

42 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

isolate the problem. Normally the procedure for finding a problem on the SCSI Bus with this Service Aid is
to start with a single device attached, ensure that it is working, then start adding additional devices and
cables to the bus ensuring that each one works. This Service Aid works with any valid SCSI Bus
configuration.

The SCSI Bus Service Aid transmits a SCSI Inquiry command to a selectable SCSI Address. The Service
Aid then waits for a response. If no response is received within a defined amount of time, the Service Aid
displays a timeout message. If an error occurs or a response is received, the Service Aid then displays one
of the following messages:

• The Service Aid transmitted a SCSI Inquiry Command and received a valid response back without any
errors being detected.

• The Service Aid transmitted a SCSI Inquiry Command and did not receive any response or error status
back.

• The Service Aid transmitted a SCSI Inquiry Command and the adapter indicated a SCSI bus error.
• The Service Aid transmitted a SCSI Inquiry Command and an adapter error occurred.
• The Service Aid transmitted a SCSI Inquiry Command and a check condition occurred.

When the SCSI Bus Service Aid is entered a description of the Service Aid is displayed.

Pressing the Enter key displays the Adapter Selection menu. This menu allows the user to enter which
address to transmit the SCSI Inquiry Command.

When the adapter is selected the SCSI Bus Address Selection menu is displayed. This menu allows the
user to enter which address to transmit the SCSI Inquiry Command.

Once the address is selected the SCSI Bus Test Run menu is displayed. This menus allows the user to
transmit the SCSI Inquiry Command by pressing the Enter key. The Service Aid then indicates the status
of the transmission. When the transmission is completed, the results of the transmission are displayed.

Note:

1. A Check Condition can be returned when there is nothing wrong with the bus or device.
2. The operating system does not allow the command to be sent if the device is in use by another

process.

Service aids for use with ethernet

Attention: This diagnostic task has been removed in AIX® 5.2. The information has been retained
for reference only.

This selection provides a tool for diagnosing Ethernet problems. This Service Aid is used to exercise the
Ethernet adapter and parts of the Ethernet network. The Service Aid works by transmitting a data block to
itself. This Service Aid works with a wrap plug or with any valid Ethernet network and can be used as a
tool to diagnose Ethernet network problems.

When the Ethernet Service Aid is executed, one of the following messages is returned:

• No errors occurred.
• An adapter error occurred.
• A transmit time-out occurred.
• A transmit error occurred.
• A receive time-out occurred.
• A receive error occurred.
• A system error occurred.
• Receive and transmit data did not match.
• An error occurred that could not be identified.
• The configuration indicates that there are no Ethernet adapters in this system unit.
• Another application is currently using the adapter.

Understanding the Diagnostic Subsystem for AIX 43

• The resource could not be configured.

Spare sector availability

This selection checks the number of spare sectors available on the optical disk. The spare sectors are
used to reassign when defective sectors are encountered during normal usage or during a format and
certify operation. Low availability of spare sectors shows that the disk needs to be backed up and
replaced. Formatting the disk does not improve the availability of spare sectors.

This task may be run directly from the command line. The following usage statement describes the syntax
of the fastpath command:

Usage: diag -T "chkspares"

Update disk based diagnostics

This Service Aid allows fixes (APARs) to be applied.

This task invokes the SMIT Update Software by Fix (APAR) task. The task allows the input device and
APARs to be selected. Any APAR can be installed using this task.

Update system flash (RSPC)

This selection updates the system flash for RSPC systems.

The user provides a valid binary image either on diskette or qualified path name. The diskettes can be in
DOS or a backup format.

The flash update image is copied to the /var file system. If there is not enough space in the file system for
the flash update image file, an error will be reported. If this occurs, increase the file size of the /var file
system. The current flash image is not saved. The command automatically removes the /var/
update_flash_image.

After user confirmation, the command will reboot the system twice to complete the flash update.

Note: Supported on RSPC system units only.

Update system or service processor flash (CHRP)

This selection, located in the Microcode Tasks submenu, updates the system or service processor flash
for CHRP system units.

Further update and recovery instructions may be provided with the update. It is necessary to know the
fully qualified path and file name of the flash update image file that was provided. If the flash update
image file is on a diskette, the Service Aid can list the files on the diskette for selection.

Refer to the update instructions, or the system unit's service guide to determine the level of the system
unit or service processor flash.

Note: Runs on CHRP system units only.

When run from online diagnostics, the flash update image file is copied to the /var file system. If there is
not enough space in the /var file system for the flash update image file, an error is reported. If this occurs,
exit the Service Aid, increase the size of the /var file system and retry the Service Aid. After the file is
copied, a warning screen asks for confirmation to continue the update flash. Continuing the update flash
reboots the system. The system does not return to diagnostics. The current flash image is not saved. After
the reboot, the /var/update_flash_image can be removed.

When running from standalone diagnostics, the flash update image file is copied to the file system from
diskette. The user needs to provide the image on a diskette since the user does not have access to remote
file systems or any other files that are on the system. If enough space is not available, an error is reported
stating additional system memory is needed. After the file is copied, a warning screen asks for
confirmation to continue the update flash. Continuing the update flash reboots the system. The current
flash image is not saved.

The update_flash command can be used in place of this Service Aid. It is located in the /usr/lpp/
diagnostics/bin directory.

44 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Attention: The update_flash command reboots the entire system. Do not use this command if
more than one user is signed onto the system.

7135 RAIDiant array service aid

The 7135 RAIDiant Array Service Aids contain the following functions:

• Certify LUN

This selection reads and checks each block of data in the LUN. If excessive errors are encountered the
user is notified.

• Certify Spare Physical Disk

This selection allows the user to certify (check the integrity of the data) on drives designated as spares.
• Format Physical Disk

This selection is used to format a selected disk drive.
• Array Controller Microcode Download

This selection allows the microcode on the 7135 controller to be updated when required.
• Physical Disk Microcode Download

This selection is used to update the microcode on any of the disk drives in the array.
• Update EEPROM

This selection is used to update the contents of the EEPROM on a selected controller.
• Replace Controller

Use this selection when it is necessary to replace a controller in the array.

Application test units
Application Test Units (TU) are used by the Diagnostic Applications to test a device. Typically, due to
either their large size or their functional composition, TUs are more appropriately written as applications
as opposed to being included within device drivers.

The Application Test Units section defines requirements for Application Test Unit code and provides
guidance for TU Developers who need to develop code for multiple target environments. The TU code
should be developed in ANSI C language and according to generally accepted good programming
practices, including, but not limited to:

• Modularity
• Readability
• Self Documenting
• Maintainability
• Re-entrant Capability

The use of assembler-level code is strongly discouraged, but may be necessary in certain cases where
performance is critical to the effectiveness of the test function. Such code would not be considered
portable and would have to be rewritten for the target platform.

The following topics are discussed in detail:

Test unit definition
Fundamental to the Test Unit methodology is a basic, modular building block that is referred to as a Test
Unit. A test unit is a single operation performed on the system or subsystem under test.

Most often this is an individual function test, such as a register read/write test. Several basic assumptions
are made for the test units:

• Only one modular test function is performed in each individual test unit.

Understanding the Diagnostic Subsystem for AIX 45

• Test units are numbered, and the calling application specifies the number of the test unit it wishes to
execute.

• No environmental specific code is allowed in a test unit. This specifically includes user interface calls.
Also, device-access methods such as reads or writes are done with generic function calls, which can
then be defined in a different source file and coded, if necessary, to meet the specific requirements of
the target environments.

• Test units are grouped appropriately in source files. This allows custom building of executable libraries
to meet the requirements of the target environments.

• In cases where the same test unit may be used to test hardware in different ways based on some
control variables (for example, speed or mode settings), that test unit may be used to represent several
"logical" test units, each with a different test unit number. When the test unit is called, it would interpret
the test unit number requested and set the control variables appropriately.

Hardware functional coverage
The Test Unit package should be designed and implemented such that if the TUs are run in the
recommended order as documented, then a minimum coverage of 95% of the hardware function is
achieved.

Test unit numbering
Test Units should be numbered according to some logical sequence, which is determined by the TU
Developer. Zero should not be used as a TU number.

The allowable range for TU numbers is 1 through 61439 (1 through EFFF hex). This numbering
requirement must be respected even though the TU member of the tucb header structure is defined as a
32 bit integer. It is desirable that a numbering scheme be developed by the TU Developer allowing TUs to
be executed in sequential numerical order when executing them as designated. This might include
spacing the TUs so that future TUs can be inserted into the number sequence, where appropriate.

Test unit code device open and close
Before a device can be tested by one of the test units, it must be opened for access through the
interfaces defined in the Programming Interfaces for TUs and Interrupt Handlers section.

Also, when testing is complete, the device must be closed and restored to its original state. The opening
and closing of the device for testing presents some problems that must be accounted for in the design of
the Test Unit library for the device:

• Errors may occur on the open and close operation, and these must be presented back to the calling
applications in a form those applications know how to handle; that is, test unit results.

• Since the calling application will typically run through all or most of the Test Units for a given device, the
performance penalty of opening and closing the device for each call to a Test Unit is prohibitive.

• Under different conditions, test units may be run in different combinations and sequences, so the calling
application must be able to call the functions which do device open and close independent of the other
test functions.

Test Unit Conventions
To provide a standard solution for handling the above problems, the following conventions for Test Units
within a specific device library are required.

1. There must be a Test Unit number 1, referred to as TU_OPEN, which includes functions to initialize
data structures, place the device in the correct state for diagnostics, and open the device for testing. It
does not perform any other test functions. Any error conditions are returned as diagnostic results. The
define value TU_OPEN should be used as the numerical identifier for this Test Unit.

Specifically, TU_OPEN performs the following:

a. Sees that the TU_INFO_HANDLE parameter is set to NULL, allocates a memory buffer to hold
persistent data, and assigns TU_INFO_HANDLE to that address. For more information, see
"Persistent Data and the TU_INFO_HANDLE".

46 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

b. Reads needed device attribute information by making calls to the configuration services
(pdiag_cs_get_attr), and places appropriate information into the pdiagex_dds_t structure that is
passed as a parameter on the pdiag_open call.

c. Calls pdiag_diagnose_state to place the device into a testable state.
d. Calls pdiag_open to open the device for testing, and loads the interrupt handler, if one exists.
e. Assuming all the above functions are performed without error, returns a value of "0" as the major

return code.
2. There must be a Test Unit number 61439 (0xEFFF hex), referred to as TU_CLOSE, which closes the

device and restores the device to the original state it was in prior to diagnostics being invoked. The
define value TU_CLOSE should be used as the numerical identifier for this test unit.

Specifically, TU_CLOSE performs the following:

a. Calls pdiag_close to close the device, and unloads the interrupt handler.
b. Calls pdiag_restore_state to return the device to the state it was in prior to TU_OPEN.
c. Frees any memory buffers that were allocated by TU_OPEN. For the most part, the buffers that

need to be freed are "secondary" persistent data buffers, pointed to by pointers in
TU_INFO_HANDLE.

d. Assuming all the above functions are performed without error, returns a value of "0" as the major
return code.

e. A valid diagnostic sequence consists of a call to Test Unit TU_OPEN, some arbitrary number of calls
to Test Units other than TU_OPEN or TU_CLOSE, and then a final call to Test Unit TU_CLOSE.

Portability
With today's systems, multiple operating systems are typically supported on a single hardware platform.
Since these systems usually share the same hardware features, diagnostics need to be written to support
hardware failure analysis that works within any of these operating environments. For this reason, all TU
packages must be designed with portability in mind.

Besides the operating environment differences, there is also the need for different types of user
interfaces for the different execution environments. For instance, system diagnostics for the field may use
a different interface than the hardware exerciser used in the design verification test.

By ensuring that the TU package performs no interaction with the user (output to screen and input from
keyboard), one third of the problem will have been solved. Then all the invocations of the TUs will be
made through one interface, and different types of user interfaces can be developed with no need to
change the TU package.

Another third of the problem concerns how the device gets accessed through the operating environment.
Since different operating environments have different device drivers (for example, UNIX drivers, DOS/WIN
drivers, Firmware based, or generic I/O, there must be a way to isolate the functional test from the burden
of knowing what driver/environment is being used for access. Therefore, standard device-access routines
are needed to perform the device accesses on the functional test's behalf. The device accesses typically
needed for functional tests are:

• Device Open
• Read
• Write
• Interrupt Setup and Handling
• Direct Memory Access (DMA) Setup and Cleanup
• Device Close

The interface of these routines must be independent of the underlying device-access method (that is,
execution environment) by design, and must not change across operating environments. The internals of
these routines will change per operating environment, using the appropriate system/driver calls to
accomplish the device-access requests on the functional tests' behalf.

Understanding the Diagnostic Subsystem for AIX 47

In-service versus out-of-service test units
The architecture described in this document is primarily for the creation of "out-of-service" Test Units,
meaning that the device being tested is not available for any other use by the operating system while it is
under test. In high-availability systems, however, it is often desirable to have Test Units which can be used
while the device is "in-service." This may be especially true for devices which can have partial failures; for
example, DASD media, RAID, memory/cache arrays, and multi-port adapters. A variation of In-Service
diagnostics can sometimes be done with an Out-of-Service Test Unit that takes over the device for such a
short period of time that no service outage is detected.

Test units designed to be run truly concurrently with other operations on the same hardware component
will, in general, have to perform their testing through the "normal" functional device driver installed by the
operating system. Because the device driver model tends to be unique to each operating system, the Test
Unit written to that interface may not be easily portable to other operating systems. However, proper
structuring of the Test Unit library, as discussed below in "Recommended General Structure of Test Unit
Code," will help isolate into a single source file those functions which must be modified.

Recommended general structure of test unit code
The TU environment specified in this document is designed to provide source code portability of TUs
across multiple operating environments.

TUs should only use the device and system interfaces specified in this document to ensure portability.
However, experience has shown that it is good programming practice to isolate and abstract external
functions so that any problems in porting can be corrected within a single source code file. For this
reason, it is strongly recommended that TU developers include a special source file in their TU library for
the purpose of providing that isolation and abstraction. The following describes a recommended
implementation of that source file, given to help promote consistency in TU development. The
consistency is very important for long-term maintenance of the Test Unit code.

TU libraries should include a C source file called interface.c, which provides a set of abstracted device
functions that can be used by the actual TU functions. The following is a list of functions that should be
implemented within the interface.c.

TU Function Description

dd_open Prepares a device for testing and obtains needed device attributes.

dd_close Cleans up after testing.

dd_read Performs a read operation.

dd_write Performs a write operation.

dd_dma Initializes, pins, and cross-memory attaches the user buffer for a DMA
operation.

dd_dma_enable Enables/Disables a DMA operation.

dd_dma_cleanup Deallocates any resources previously allocated for a DMA operation.

dd_interrupt Processes interrupt conditions.

As illustrated below, these functions should provide mappings to one or more of the services described in
"Programming Interfaces for TUs and Interrupt Handlers" .

The figure also illustrates how TU libraries should include a C source file that implements the exectu()
interface, which provides the program entry point for the TU library, decodes the specified TU number to
the correct internal function, and calls that function.

48 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Designing for multitasking environments
Test units should be designed with rules of re-entrance in mind. Although it is unlikely that a given set of
Test Units could be run simultaneously against the same device, it is possible that more than one of the
same type of device (or devices which are tested by the same TU code) exists in the system.

Since it may be desirable to run the Test Units concurrently as part of a system exerciser or a stress test
for a specific subsystem, it is possible that the same TU code may be run in different threads under the
same process. The use of static variables in this case could lead to data conflicts between the multiple
instances of TU code execution.

Persistent data and the TU_INFO_HANDLE
Because of the requirement to allow multi-threaded, simultaneous execution of Test Units, the TU
functions must be written to be re-entrant, implying that statically defined variables or structure are not
allowed.

Note: Static constant values are not a problem.

To illustrate the problem, imagine two threads of execution calling the same TU to run simultaneously
against two device instances of the same type. Values stored in static variables would get changed in both
threads of execution, probably leading to a program failure. Therefore, all variables and structures must
be either defined locally as stack variables, or created using allocated memory. Without static variables, it
is difficult to retain any data around from one execution of a TU to the next.

The intent of the TU_INFO_HANDLE pointer in the exectu()interface is to provide the TU writer with a
pointer to a data buffer that will persist across multiple execution calls to specific Test Units. On the first
call to a TU library, the TU_INFO_HANDLE pointer will be set to NULL. The first TU, TU_OPEN, must
allocate the buffer and set the TU_INFO_HANDLE pointer. Data that the TU writer wants to have persist
(for example, device attribute information) can then be placed within that buffer, and the pointer to the
buffer will be passed back on each subsequent call to the TU library.

Because the data buffer remains allocated after the TU returns control to the calling application, it is the
responsibility of the calling application to free the buffer any time that a premature termination is
required, or after it calls the last TU (TU_CLOSE).

Data that should be kept in the persistent data buffer includes:

• The pdiagex_dds_t structure which contains several device attributes and is used as a parameter to the
pdiag_open call.

• The PDIAG_INFO_HANDLE returned from the pdiag_open call, which is used as an input parameter to
all the other device operation functions.

• An indicator of the state of the device (DIAGNOSE or NORMAL)

Understanding the Diagnostic Subsystem for AIX 49

• Other device-attribute information obtained from Configuration Services using the pdiag_cs_get_attr
function (to avoid the overhead of rerequesting it for each TU call).

• Any other information the TU writer would like to have persist from one call to the next.

Test unit call interface
To execute test units, a C language function with the name exectu() has been defined to provide the
interface between the test unit code and the managing application.

The definition of this interface has been developed to:

• Hide the complexity of the structures and protocols used in performing functional tests
• Provide a uniform interface for all the different management applications that may invoke the test unit

code.

See the section "Definition of EXECTU".

Definition of the TU_TYPE input structure
The exectu() interface is dependent on the definition of a Test Unit Control Block (TUCB) structure. The
TUCB is defined as a C language data type called TU_TYPE, and is located in the diag/tucb.h header file.
This header file must be used without modification and included in each source file using the structure.

To make the test unit functions available to a wide range of managing applications, this TUCB structure
must not deviate from the defined structure. No new data types or structures may be added. Each test
unit should be self-sufficient in the function provided. The data types OUTPUT_DATA and INPUT_DATA are
declared as 'void' in the diag/tucb.h file. If these structures are to be used, two header files are required
to redefine these parameters:

• The {DEVICE}_err_detail.h File file should be used to define device specific error log detail output data
(OUTPUT_DATA).

• The {DEVICE}_input_params.h File file should be used to define device specific input parameter data
for a test unit (INPUT_DATA).

Both header files (if used) should be included before the diag/tucb.h file.

The TU_TYPE structure is specified as follows:

typedef struct tucb_t {
 char *resource_name;
 TU_INPUT_TYPE parms;
} TU_TYPE;

The resource_name is a string containing the name of the hardware or physical device (as defined by the
operating system) on which to run the test unit. TU_INPUT_TYPE is a substructure of TU_TYPE, and
contains several input parameters, as specified in the following:

typedef struct tucb_in_t {
 ulong tu;
 ulong loop;
 OUTPUT_DATA *data_log;
 ulong data_log_length;
 INPUT_DATA *tu_data;
 ulong tu_data_length;
 FILE *msg_file;
} TU_INPUT_TYPE;

See "Definition of EXECTU()" for structure member definitions.

Note: For most applications, the TU number and loop count are the only parameters required. However,
this interface allows for an open way of passing special parameters into the Test Units and receiving
detailed data back out, to allow for specialized testing environments.

Using such data requires specific knowledge about the Test Unit design in the calling application, and
does not allow for generic diagnostic handling, as would be required from a system management

50 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

application. However, this design would allow a remote diagnostic application, which could have detailed
diagnostic design knowledge, to work through a local agent function which only has generic diagnostic
knowledge. The local agent would only have to allocate buffers of the requested size, and pass data
between the Test Units and the remote diagnostic application.

Definition of the TU_RETURN_TYPE output structure
The exectu() interface expects, as a return value, a unsigned long major_rc return code value. As an
extension of this return value, a Test Unit Control Block (TUCB) return structure is included as a third
argument to the exectu() function call. The TUCB return structure is defined as a C language data type
called TU_RETURN_TYPE, and is defined in the diag/tucb.h header file.

This header file must be used without modification and included in each source file where the structure is
used.

typedef struct tucb_out_t {
 ulong major_rc;
 ulong minor_rc;
 ulong actual_loop;
 ulong data_log_length;
 ulong severity;
} TU_RETURN_TYPE;

See Definition of EXECTU() for structure member definitions.

Return codes
Use the topic to view the list of return codes.

major_rc

The major_rc return value from the exectu() function should indicate the success or failure of the TU
which was executed. If all testing is successful, it should return a value of zero (0), otherwise a non-zero
value should be returned corresponding to a specific value. A managing application uses the major_rc
return code to determine the flow of the diagnostic procedure, and to look up the appropriate card level
Field Replaceable Unit (FRU) or FRUs to be replaced. To satisfy the failure-isolation requirements of all
managing applications, the return codes should be designed to be as granular as possible to provide
maximum fault isolation. For most purposes, this means attempting to isolate to a single FRU.

Note: When defining major_rc return codes, keep the following in mind:

• Never return memory offset information in the return code.
• Do not return any detailed information, such as failing bits, through the return code. Instead, use the

OUTPUT_DATA error log.

minor_rc

The minor_rc return value is used to pass back a more specific error indication, and would typically be
provided as an aid for fault isolation within a FRU, perhaps down to modules or I/O lines. This information
is intended for use in bring-up and debug, and in manufacturing, to point to a specific hardware defect.
Used in conjunction with the OUTPUT_DATA error log, the TU writer should be able to pass back enough
information to isolate to a failure to whatever level is needed. However, most management applications
will only be interested in the major_rc return value.

Interrupt handler call interface
The diagnostic interrupt handler function for a device must be packaged in an executable module
separate from the Test Unit library. This module is loaded into the operating system and registered with
the diagnostic system services when the TU_OPEN calls the pdiag_open function.

When the services receive an interrupt, control is passed to these "second-level" interrupt handlers in
sequential order. Each interrupt handler reads the status of its respective adapter to see if it was the
source of the interrupt. If the Test Unit is waiting for the interrupt by calling the
pdiag_dd_watch_for_interrupt service, the sleep_flag will be set to 1, indicating that the interrupt
handler should do a pdiag_dd_interrupt_notify when it has completed.

Understanding the Diagnostic Subsystem for AIX 51

Interrupt handlers can use the device methods to read and write operations on the device. Typically, they
will read registers on the device to obtain more information about the interrupt, and write registers (if
necessary) to clear the interrupt condition. The content of any data passed back to the TU through the
data_area buffer, and whether the TUs even wait for interrupts, is a decision left to the designer of the
TUs and interrupt handler. That decision depends upon the operation of the specific device and how it is
being tested.

Syntax

The function entry prototype for an interrupt handler is as follows:

int device_interrupt (
 PDIAG_INFO_HANDLE *handle,
 pdiag_addr_t data_area,
 int32 *interrupt_flag,
 uint32 sleep_flag,
 uint32 *sleep_word)

Parameters

Parameter Description

handle Pointer to a handle for use in device operations

data_area Buffer area where the interrupt handler can store information that the Test Unit
can review after interrupt processing is complete.

interrupt_flag Bit field indicating which interrupt occurred

sleep_flag Boolean value to indicate whether the waiting Test Unit should be notified

sleep_word Semaphore that the Test Unit is waiting for, used as a parameter to the
pdiag_dd_interrupt_notify service

Related concepts
SLIH conversion required changes
The following required changes must be applied to all SLIHs being ported to 64-bit kernel.

Interrupt handling in test units
A typical sequence of events in the functional flow of a Test Unit is to set up a device operation through
reads and writes to the device address space, and then wait to receive an interrupt from the device to
indicate that an operation has completed or needs attention. Since interrupt handling is device-specific
and part of the test process, an interrupt handler function must be provided in addition to the Test Unit
library.

When a device is opened for testing by Test Unit 1 (TU_OPEN), an interrupt handler may be loaded (if one
is needed) by passing an interrupt handler module name as one of the parameters on the pdiag_open
system service. A data buffer address is also passed as part of the input to the pdiag_open function, so
the device methods know which interrupt handler to use, as well as where to pass back data from the
interrupt handler.

The purpose of the interrupt handler function is to receive the interrupt indication, possibly gather some
information from the device, clear the interrupt condition on the device, and notify a waiting Test Unit that
the interrupt has occurred. Clearing of the interrupt condition is critical, because the interrupt handler will
be called continuously as long as the interrupt condition exists. Since this function is called to handle a
specific device I/O interrupt, the information it gathers from the device is useful in diagnosing the device
behavior. The interrupt handler puts this information into the data buffer area (defined at device-open
time), where the waiting Test Unit can access it for analysis.

The basic flow of interrupt processing is shown in the "Interrupt Processing in Test Units" illustration. The
flow of events is as follows:

52 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

1. An exectu() call is made to Test Unit 1 (TU_OPEN), which calls pdiag_open to open the device for
testing. Included in the input information passed to pdiag_open is the name of the interrupt handler
module and the address of a memory-allocated data buffer area.

2. A Test Unit is started, which performs some operations on the device, and then calls
pdiag_dd_watch_for_interrupt to wait for a response in the form of a device interrupt (or a time-out if
no interrupt occurs).

3. The device-methods layer receives an interrupt indication from the operating system.
4. The device-methods pass control to the registered interrupt handler.
5. The interrupt handler function gathers data from the device and places it in the data buffer area, clears

the interrupt, and releases the Test Unit from its WAIT state.
6. The interrupt handler completes and returns to the caller (the device methods).
7. The Test Unit continues execution by processing the data returned from the interrupt handler.
8. When testing is completed, a call is made to Test Unit 0xEFFF (TU_CLOSE), which calls pdiag_close to

close the device and unload the interrupt handler.

The cycle of device setup and wait for interrupt can be repeated as often as necessary during the
execution of the Test Units. Registration of the interrupt handler only needs to be done once, at the time
when the device is opened for testing. However, different interrupt handlers could be used (if necessary)
by closing the device, then reopening the device with a different interrupt handler module-name
parameter.

Using the interrupt flag bit mask
The interrupt_flag parameter to the interrupt handling routine and the flag_mask parameter on the
pdiag_dd_watch_for_interrupt system service are used by the Test Unit and interrupt handler to

Understanding the Diagnostic Subsystem for AIX 53

communicate the type of interrupt that occurred, and which types of interrupts the Test Unit wants to
know about.

The bit fields within these words can be defined in whatever way the TU developer wants to assign them,
based on the device involved and how many different interrupt types it can surface. However, it is
important to understand how these parameters should be used.

When an interrupt handler is called as the result of an interrupt condition, it should examine its device to
see which type of interrupt, if any, occurred on that device. If it detects no interrupt condition, the
interrupt_flag should be set to 0 before it returns. If it does detect an interrupt condition, then it should
set an appropriate bit equal to 1 in the interrupt_flag before it returns.

A TU waits for an interrupt condition to occur by calling the pdiag_dd_watch_for_interrupt service, and
one of the parameters to that function is a flag_mask word. This is defined as a bit mask, using the same
bit definitions as in the interrupt handler, to indicate the interrupt types for which the TU wants to watch.
It does this by setting one or more bit values equal to 1, where each bit represents an interrupt type. The
pdiag_dd_watch_for_interrupt will not return until either an appropriate interrupt is detected
(essentially determined by a non-zero result when "and"ing the flag_mask and the interrupt_flag 0
values), or until the time limit is reached.

Note: If the Test Unit writer wants to watch for more than one interrupt type, but also needs to know
which specific interrupt occurred, the writer should define a structure element in the data_area buffer
where the interrupt handler can pass back that information.

Example

#define Int_A 80000000 /* Common defines used by both the TU and */
#define Int_B 40000000 /* interrupt handler */
#define Int_C 20000000

Assume TU calls pdiag_dd_watch_for_interrupt with:

flag_mask = Int_A | Int_B

Case 1:

1. Interrupt received
2.

interrupt_flag = Int_C

3. pdiag_dd_watch_for_interrupt does not return until timeout occurs.

Case 2:

1. Interrupt received
2. Interrupt handler reads device, sees interrupt A, sets:

interrupt_flag = Int_A

3. pdiag_dd_watch_for_interrupt returns

Case 3:

1. Interrupt received
2. Interrupt handler reads device, sees both interrupt B and C, sets:

interrupt_flag = Int_B | Int_C

3. pdiag_dd_watch_for_interrupt returns

54 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Programming interfaces for TUs and interrupt handlers
System interface calls and use of header files should conform to the X/Open Portability Guide Issue 4
standards. This ensures portability to other platforms meeting the same standards.

The following table lists the standard set of services available to TU developers. Using only these services
provides portability of TUs to other platforms where this diagnostic infrastructure is supported. See
"Diagnostic Kernel Extension Interfaces" for more information on these functions, their input
parameters, and the function prototypes.

Function Name Description Usable by:

pdiag_open Opens a device for testing TU

pdiag_close Frees up a device after testing TU

pdiag_dd_read Performs a read operation to a device TU, 32-bit Interrupt

pdiag_dd_write Performs a write operation to a device TU, 32-bit Interrupt

pdiag_dd_dma_setup Initializes, pins, and cross-memory attaches user buffer for a dma operation TU

pdiag_dd_dma_enable Enables/disables a dma operation TU

pdiag_dd_dma_complete Unpins the dma user buffer and detaches the cross-memory descriptor TU

pdiag_dd_watch_for_interrupt Waits for device interrupt to occur, or until a specified timeout is reached TU

pdiag_dd_interrupt_notify Notifies waiting test unit that an interrupt has been received 32-bit Interrupt

pdiag_diagnose_state Places device under test into a testable state TU

pdiag_restore_state Places device under test into original state before testing TU

pdiag_cs_open Open/Initialize configuration data services TU

pdiag_cs_close Close/Terminate configuration data services TU

pdiag_cs_get_attr Obtain device attribute value TU

pdiag_cs_free_attr Free storage that was allocated by pdiag_cs_get_attr TU

findmcode Locate specific microcode file for loading TU

pdiag_dd_read_64 Performs a read operation to a device 64-bit Interrupt

pdiag_dd_write_64 Performs a write operation to a device 64-bit Interrupt

Configuration services device attributes
The configuration data services provided by the pdiag_cs_* functions (described in the previous table)
define the interface by which the TU developer may obtain information about the device under test. The
table below lists the standard attributes which may be available for a given device; however, not all
attributes are supported for all devices, since some are specific to particular device types.

Normally, the TU developer should use this service to gather the required attribute information during the
call to Test Unit TU_OPEN (the Test Unit which opens the device for testing), and save this device
information for reference during subsequent Test Unit calls. This avoids the performance overhead of
calling the configuration services many times during the execution of a set of Test Units.

Standard Attribute Description

bus_id Adapter I/O bus ID value

bus_intr_lvl Bus interrupt level

bus_io_length Base address of bus I/O area

bus_mem_addr Base address of Shared Bus Memory area

bus_mem_length Length of Shared Bus Memory area

bus_type Type of bus (for example, Microchannel, PCI, 60X)

connwhere Connwhere location as stored in CuDv

dms_bus_flags Bus flags for DMA operation (PCI/ISA only)

dma_bus_length Length of bus memory DMA area in bytes (MCA only)

dma_bus_mem Address of bus memory used for DMA (MCA only)

dma_chan_id DMA channel ID of device

dma_flags Flags to indicate DMA actions (MCA only)

Understanding the Diagnostic Subsystem for AIX 55

Standard Attribute Description

dma_lvl DMA bus arbitration level (MCA only)

intr_flags Interrupt flags

intr_priority Interrupt priority

maxmaster Maximum number of concurrent DMA master calls

parent_name Parent device name

slot_num Slot number of adapter (for MCA, actual slot number, for PCI, device number)

Message handling
In general, there should be no printf() or fprintf() calls imbedded in TU code which is delivered for
production use. This includes debug messages, execution-progress messages, and so on. However, it is
understood that such practices are common and useful during the initial code development, and
sometimes desirable at a later time when something breaks.

Therefore, to satisfy both requirements, the messages should be allowed to be conditionally compiled in
and out of the code. To allow the calling application to redirect the messages to any file, including stdout,
only the fprintf() call should be used. Then, to conditionally compile the messages, the following
convention should be followed:

In one of the include files, define the following PRINT macros conditionally with the standard conditional
flag TU_DEBUG_MSG.

 #ifdef TU_DEBUG_MSG
 #define PRINT(args) fprintf args
 #else
 #define PRINT(args)
 #endif

Next, use the "msg_file" pointer in the TUCB structure definition which determines where messages will
be sent.

Then, at any place in the code where a message should be output, use the PRINT macro. The calling
application would then set the "msg_file" parameter to stdout in order to have messages directed to a
terminal or monitor. Alternatively, to have messages directed to a file, the calling application would use
the fopen() function to open a file and set "msg_file" to the pointer returned from this call.

For example, you want to print the message "Hello, World number 1", and tucb_ptr is a pointer to the
TU_TYPE structure passed by the application, and w_num is a variable with a value of 1. You could then
insert, at an appropriate place in the TU code, a line like the following:

PRINT((tucb_ptr->parms.msg_file, "Hello, World number %d",w_num));

Note: The double parentheses are required to pass variable-length argument lists through the PRINT
macro to the fprintf() function.

Signal handling
In general, signal handling is the responsibility of the diagnostic application (DA).

When a signal to terminate is caught, the signal handler must start TU_CLOSE through the exectu()
interface, so that a proper cleanup of the device is performed and a release of resources occurs.
TU_CLOSE should be started only if TU_OPEN has already been called successfully.

Definition of exectu()
Executes test unit (TU) bound into a Diagnostic Application (DA).

Syntax

#include <diag/tucb.h>

56 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

ulong
exectu (TU_TYPE *tucb_ptr, TU_INFO_HANDLE *tu_handle, TU_RETURN_TYPE *tu_rc)

Description

The exectu subroutine runs an TU referenced by the test unit control block. The test units are normally
built and packaged as a loadable library. The device to be tested by the test unit is referenced by a
character-string designator indicating the device instance.

Parameters

Parameter Description

tucb_ptr Pointer to the test-unit control block. This structure is defined in diag/tucb.h
file.

typedef struct tucb_t {
 char *resource_name;
 TU_INPUT_TYPE parms;
 } TU_TYPE;

where TU_INPUT_TYPE is as follows:

typedef struct tucb_in_t {
 ulong tu;
 ulong loop;
 OUTPUT_DATA *data_log;
 ulong data_log_length;
 INPUT_DATA *tu_data;
 ulong tu_data_length;
 FILE *msg_file;
} TU_INPUT_TYPE;

tu Test-unit number of the test unit to run.

loop Indicates the number of times the test unit should be run provided that an
error does not occur.

data_log Error details log and or output data log. This log is device specific and is
defined by the {device}_output_data.h file. It should point to an empty array
of structures and then filled in with output or error detail data by the test
unit(s). This parameter should be initialized by the calling application if
intended to be used.

data_log_length Size of the data_log structure. This field is used when passing the tucb data to
a remote managing application. This number is initialized by the calling
application by calculating the size of the data structure to be filled in and
multiplying it by the number of records to be logged. The test unit calculates
the number of records by dividing this number by the size of the intended
OUTPUT_DATA structure to be used. A data_log_length value of zero results in
no data being logged to the data_log.

tu_data Input parameter to be used to pass extra input data to the test units. This
parameter must only be used as special case scenarios. It is intended for
special applications such as manufacturing or hardware exercisers.

tu_data_length Size of the tu_data structure. This field is used when passing the tucb data to
a remote managing application. This number is initialized by the calling
application by calculating the size of the data structure to be filled in and
multiplying it by the number of records to be logged. The test unit calculates
the number of data records by dividing this number by the size of the intended
INPUT_DATA structure to be used.

Understanding the Diagnostic Subsystem for AIX 57

Parameter Description

tu_handle Pointer to a block of data that the TUs need to have persist between
subsequent calls to the TU library. Content and layout of the persistent data is
a decision left to the TU writer, but there are certain data structures which
should be kept here, as described in the next section. Pointer variable is
defined in the diagnostic application, but it is set by TU_OPEN to point to a
memory buffer allocated by the TU_OPEN code. This structure is defined in
diag/tucb.h file.

tu_rc Pointer to the test-unit control block return code structure. This structure is
defined in diag/tucb.h file.

 typedef struct tucb_out_t {
 ulong major_rc;
 ulong minor_rc;
 ulong actual_loop;
 ulong data_log_length;
 ulong severity;
 } TU_RETURN_TYPE;

major_rc
Major return code. Used for FRU isolation.

minor_rc
Minor return code. Used for more granular detailed fault isolation.

actual_loop
Indicates the number of times the test unit ran.

data_log_length
Returns the total number of data log records that have been recorded.

severity
Indicates the severity of a diagnostic failure.

Return Value

The major_rc return code is defined as the output from a test unit. This is the same value contained in the
TU_RETURN_TYPE structure.

Upon successful completion with no failure, a value of 0 should be returned in the major_rc field.

PCI configuration space for I/O devices
There are several writable fields in the standard PCI Configuration Header for PCI devices.

They are:

• Command Register
• Latency Timer
• Cache Line Size
• Base Address Registers
• Expanded ROM Base Address
• Interrupt Line

Some of these are written by the firmware and should never be changed by the device driver. The PCI
Configuration Header Programming Table must be followed when programming the PCI Configuration
Header registers.

58 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Register/Bit Name Firmware Action (Boot or ibm,
configure-connector call)

Software (Device Driver) Action

Command/Fast Back-to-Back
Enable

Write to a value of 0 on platforms
capable of PCI Hot Plug. May be
written to a value of 1 on non-
Hot-Plug capable platforms if all
I/O devices on the same PCI bus
are capable of Fast Back-to-Back
transfers.

Preserve value

Command/SERR# enable Write a value of 1

Command/Wait cycle control Write to a value of 0 (may be
hardwired to a 1, so may be a 1
when read even after being
written to a 0)

Command/Parity Error Response Write a value of 1

Command/VGA Palette snoop Write a value of 0

Command/Memory Write and
Invalidate Enable

Write to 0 (reset value)

Command/Special Cycles

Command/Bus Master Write to 0 (reset value) unless
boot device.

Must write to a 1 before the first
DMA operation. Must write to a 0
before unconfiguring device
driver.

Command/Memory Space Write a value of 0 (reset value)
unless boot device, in which case
does not write a value of 1 until
BARs and Expansion ROM Base
Address are set. Only written to a
1 if that specific address space is
used for that I/O device.

Must write to a 1 before the first
operation (if any) to the I/O
devices memory space. Must
write to a 0 before unconfiguring
device driver.

Command/IO Space Must write to a 1 before the first
operation (if any) to the I/O
devices I/O space. Must write to
a 0 before unconfiguring device
driver.

Build-in Self Test (BIST) Write a value of 0 If BIST is implemented, can write
to a 1 to initiate BIST

Latency Timer Initialize to a system-specific
value

Preserve value

Cache Line Size

Base Address Registers Initialize based on size requested
and address space available

Writes based on the ODM M.n
and O.n customized attributes

Expansion ROM Base Address Writes based on the ODM M.n
and O.n customized attributes.
Write LSB to a 0 before enabling
the Command/Memory Space if
Expansion ROM not used by
software.

Interrupt Line Ignore Ignore - get information from
ODM

Understanding the Diagnostic Subsystem for AIX 59

Test unit 64-bit porting guideline
This porting guideline describes the required changes to the test units and SLIH in order to function under
a 64-bit kernel.

Changes to the pdiagex kernel extension running under a 64-bit kernel were designed with the test unit
developer in mind. Most of the changes required to port the test units are done at the Second Level
Interrupt Handler (SLIH) level. For a test unit developer that has followed the architecture specified in this
document, the changes are minor and will require minimal testing.

Before porting an existing set of test units, it is important to understand the test units application
environment as well as the 64-bit C language data model and how it differs from the 32-bit model.

Test units execute as 32-bit applications under a 32-bit kernel and therefore only use 32-bit kernel
extensions (pdiagex). The test units will continue executing as 32-bit applications: only the SLIHs will be
64-bit applications.

C language data model
The C language data model used in the 32-bit and 64-bit operating system environments are defined in
the following table.

You must consider the size of the data passed from the Test Units to the SLIHs and back, since sizes can
change as they are passed from one environment to the other. Use special care when passing information
in the form of structures or pointers.

C Type 32-bit Data Size 64-bit Data Size

char 8 bits 8 bits

short 16 bits 16 bits

int 32 bits 32 bits

long 32 bits 64 bits

long long 64 bits 64 bits

pointer 32 bits 64 bits

Makefile

To support 32-bit and 64-bit SLIHs, the SLIH Makefile has to be modified to build two executables; one
for 32-bits that will remain named as it is today and one for the 64-bit SLIH which will have 64 appended
to the name.

File Names Syntax Example

32-bit filename fcphal_intr

64-bit filename64 fcpthal_intr64

Makefile Source

Here is an example of what a common source 32-bit and 64-bit SLIH Makefile might look like:

Note: Replace the environment variables and file names with your own names to customize this example
for your own use.

@(#)17 1.1 src/idd/en_US/aixprggd/diagunsd/TU_64bit_port.htm,
iddiagunsd, idd500 5/23/00 13:54:31
#

.include <${MAKETOP}bos/kernext/Kernext.mk>

TU_VPATH = ${MAKETOP}/bos/diag/tu/tu_dir
VPATH = ${MAKETOP}bos/kernel/exp:${MAKETOP}bos/kernext/exp:$TU_VPATH

60 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

32-bit version of load object
#
KERNEL_EXT = your_intr

64-bit version of load object
#
KERNEL_EXT64 = your_intr64

IDIR = /usr/lpp/diagnostics/slih/

install list containing 32-bit and 64-bit version
#
ILIST = your_intr your_intr64

OPT_LEVEL = -qlist -qsource

entry point, import and export files for 32-bit version
#
your_intr_DEPENDS = your_intr.exp
your_intr_ENTRYPOINT = your_interrupt
your_intr_IMPORTS = -bI:pdiagex.exp
your_intr_EXPORTS = -bE:your_intr.exp

entry point, import and export files for 64-bit version
(common with 32-bit version)
your_intr64_DEPENDS = your_intr.exp
your_intr64_ENTRYPOINT = your_interrupt
your_intr64_IMPORTS = -bI:pdiagex.exp \
 pdiagex64.exp
your_intr64_EXPORTS = -bE:your_intr.exp

object list definition for 32-bit version
#
your_intr_OFILES = your_intr.o

object list definition for 64-bit version (common objects
across 32-bit and 64-bit versions), with 64-bit objects
renamed to .64o
#
your_intr64_OFILES = your_intr.64o

INCFLAGS = -I${MAKETOP}/bos/diag/tu/tu_dir \
 -I${MAKETOP}bos/usr/include
LIBS = ${KERNEXT_LIBS}

.include <${RULES_MK}>

SLIH conversion tips
To achieve a clean SLIH conversion, pay special attention to the SLIH Conversion Tips.

• Any source code that assumes that int, long and pointer types are the same size must be corrected
(reshaped) for 64-bit environment.

• Review any type casting, since the underlying data types may have changed.
• Make sure that any data structures containing long types and pointers are checked for sizes, especially

data passed between test units and SLIHs (data_area). Refer to the C Language Data Model table. Also
see Interrupt Handler Call Interface to make sure the data_area contains the proper data types.

When long types or pointers (or both) are passed in this structure, the structure must be reshaped
before it is used by the SLIH.

• Use system-derived types for type declarations whenever possible.

SLIH conversion required changes
The following required changes must be applied to all SLIHs being ported to 64-bit kernel.

1. Performing Read Operations to a Device

All instances of pdiag_dd_read will have to be duplicated with pdiag_dd_read_64 for 64-bit. Every
place where pdiag_dd_read is used for a 32-bit SLIH, a pdiag_dd_read_64 will be used for a 64-bit
SLIH. This will be accomplished by using conditional preprocessor compiler statements (#ifdef).

Understanding the Diagnostic Subsystem for AIX 61

Here is an example of what a common source 32-bit and 64-bit read call might look like:

#ifdef __64BIT_KERNEL
 rc = pdiag_dd_read_64(pdiagex_handle, IOSHORT16, io_addr, &datas,
&flags);
#else
 rc = pdiag_dd_read(pdiagex_handle, IOSHORT16, io_addr, &datas,
&flags);
#endif

Note:

a. The __64BIT_KERNEL compiler directive is defined for 64-bit kernel compilers, therefore the user
will not need to define it.

b. Special case for IOLONG32 reads, the data has to be shifted 32-bits right after the function call,
such as, (data = data >> 32;).

c. The pdiag_dd_read_64 function is used in kernel environment only, therefore the intrlev flag must
always be set to INTRKMEM.

2. Performing Write Operations to a Device

All instances of pdiag_dd_write have to be duplicated with pdiag_dd_write_64 for 64-bit. Every place
where pdiag_dd_write is used for a 32-bit SLIH, a pdiag_dd_write_64 will be used for a 64-bit SLIH.
This will be accomplished by using conditional preprocessor compiler statements (#ifdef).

Here is an example of what a common source 32-bit and 64-bit write call might look like:

#ifdef __64BIT_KERNEL
 rc = pdiag_dd_write_64(pdiagex_handle, IOLONG32, io_addr,
&datal, &flags);
#else
 rc = pdiag_dd_write(pdiagex_handle, IOLONG32, io_addr, &datal,
&flags);
#endif

Note:

a. The __64BIT_KERNEL compiler directive is defined for 64-bit kernel compilers, therefore the user
will not need to define it.

b. The pdiag_dd_read_64 function is used in kernel environment only, therefore the intrlev flag must
always be set to INTRKMEM.

3. SLIH function prototype

The SLIH function prototype requires change in the type declaration for *sleep_word and sleep_flag
as follows:

int your_interrupt(pdiag_info_handle_t pdiagex_handle, char
*data_area, int *interrupt_flag,
#ifdef __64BIT_KERNEL
 long sleep_flag, long *sleep_word)
#else
 int sleep_flag, int *sleep_word)
#endif

Related concepts
Diagnostic components
This section contains information on the various components that make up the Diagnostic Subsystem
environment.
Interrupt handler call interface

62 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

The diagnostic interrupt handler function for a device must be packaged in an executable module
separate from the Test Unit library. This module is loaded into the operating system and registered with
the diagnostic system services when the TU_OPEN calls the pdiag_open function.
Related reference
pdiag_dd_read, pdiag_dd_read_64
pdiag_dd_write, pdiag_dd_write_64

Microcode download or display requirements for test units
Any adapter or device that has resident microcode or firmware that can be updated in the field has a
separate Test unit for both the display of the installed microcode or firmware level and the installation of
the microcode or firmware. Use a separate Test Unit for each specific function (display and install) as
follows:

Test Unit Description

Microcode Display: This Test Unit provides the calling application with
all the present microcode revision levels residing in
the adapter or device under test. All device specific
output resulting from a microcode device or
adapter queries are passed to the calling
application using OUTPUT_DATA (*data_log) as
defined in TU_INPUT_TYPE. For more information
refer to Definition of EXECTU().

Microcode Installation: This Test Unit provides a function to update the
Adapter or Device Microcode. The Microcode file
name is passed from the calling application using
INPUT_DATA (*tu_data) as defined in
TU_INPUT_TYPE. For more information refer to
Definition of EXECTU().

Enhanced error handling option
The Diagnostics Test Units Application interface consists of adapting all read functions.

• All data reads for the adapter must be verified that the data read is other than all 1s, unless otherwise
expected. Any data reads that result in all 1s produce a unique error, which is reported to the
Diagnostics application.

• A test unit that expects all 1s as normal operation, because of a particular test's nature, does not report
the error until that error is verified by the requesting data as being caused by all 1s.

• Diagnostics application developers and test unit developers must determine jointly a unique error code
for enhanced error handling.

Diagnostic kernel extension
This section describes the use of and programming interfaces to the Diagnostic Kernel Extension
(PDIAGEX) and device configuration services.

The pdiag_ calls are contained in /usr/lib/libpdiag.a. The pdiag_dd_ calls are contained in /usr/lib/
drivers/pdiagex kernel extension.

The following topics are discussed in detail:

Overview
The Portable Diagnostic Kernel Extension (PDIAGEX) is designed to allow a user-level application to
exercise or test a device without requiring specialized diagnostic code to be added to the device driver.
PDIAGEX is loaded and bound into the kernel by the Diagnostic Controller before the application is
invoked.

The PDIAGEX provides system calls for reading and writing device registers, performing Direct Memory
Access (DMA), and handling interrupts.

Understanding the Diagnostic Subsystem for AIX 63

To use PDIAGEX for exercising a device, make the device unavailable to the rest of the system by invoking
device methods to move the device from the DEFINED or AVAILABLE state to the DIAGNOSE state. Once
the device is in the DIAGNOSE state, the device may be exercised using PDIAGEX. This is accomplished
by using the libpdiag.a call pdiag_diagnose_state.

Applications using PDIAGEX must be linked with the pdiagex.exp file specified as an import file.

Device configuration
Using PDIAGEX requires that serialization be used to limit access to the adapters by the diagnostics and
the normal device drivers. Serialization is provided by the device configuration software.

A device state, DIAGNOSE, is defined. The state is identified by state=4 in the CuDv object for the device.
A define statement:

#define DIAGNOSE 4

has been added to the /usr/include/sys/cfgdb.h file.

This state can be entered only from the DEFINED state and only by running the /usr/lib/methods/cfgdiag
method. From the DIAGNOSE state, a device can be changed back to the DEFINED state only by running
the /usr/lib/methods/ucfgdiag method. Transitions between the AVAILABLE and DIAGNOSE states are
not allowed. This provides a mechanism for serializing access to the devices that support this DIAGNOSE
state. While in the AVAILABLE state, a device's normal device driver is loaded and operational, but while it
is in the DIAGNOSE state, the PDIAGEX (or separate diagnostic device driver) is loaded and has control of
the device.

The /usr/lib/methods/cfgdiag method checks that the parent of the device is in the correct state. If the
device is a Micro Channel adapter, it verifies that the adapter is in the slot. Busresolve then runs to ensure
that bus resources are allocated properly.

Two diagnostic library routines have been created to move the device and its children to their appropriate
states for testing. The routines are pdiag_diagnose_state and pdiag_restore_state.

Loading PDIAGEX
The Diagnostic Controller coordinates the loading and unloading of the kernel extensions required before
executing the Diagnostic Application.

The KernExt field in the PDiagRes and PDiagTask object class is used to tell the Controller that the
device requires a kernel extension. This is a ',' comma-separated list of required kernel extensions for the
application. Each kernel extension is loaded before the application is invoked.

Second level interrupt handlers
All second-level interrupt handlers should reside in the directory /usr/lpp/diagnostics/slih.

This directory is defined by environment variable DIAGX_SLIH_DIR. Avoid code names at all times. Use
the component name if applicable.

Programming interfaces for libpdiag.a
This section provides information on application programming interfaces to the Portable Diagnostic
library.

• pdiag_diagnose_state
• pdiag_diagnose_multifunc_state
• pdiag_restore_state
• pdiag_restore_multifunc_state
• pdiag_cs_open
• pdiag_cs_close
• pdiag_cs_get_attr
• pdiag_cs_free_attr

64 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

• pdiag_open
• pdiag_close
• pdiag_pcicfg_read
• pdiag_pcicfg_write
• pdiag_set_eeh_option
• pdiag_shared_slot
• pdiag_read_slot_reset
• pdiag_set_slot_reset

pdiag_diagnose_state

Purpose

Puts the device under test into the correct state for testing.

Syntax

#include <sys/pdiag_def.h>

int32 pdiag_diagnose_state (char *device_instance)

Description

The pdiag_diagnose_state subroutine unconfigures the device, and its children if necessary, to set the
device into the DIAGNOSE state. Original states of all devices changed will be saved. Use
pdiag_restore_state to put the changed devices back to their original states.

This function is platform-implementation specific. Its main purpose is to make sure that the target device
is in the correct state for diagnostic purposes and that the Enhanced Error Handling (EEH) option is
enabled during the test. If the device is already in a diagnostic state, or any state allowed by the operating
system for this purpose, then this function should return a successful status value of zero. If an error
occurs, then this function should return a non-zero value.

The global variable diag_cfg_errno will be set to the return value of the method invoked for the device.

Parameters

Parameter Description

device_instance Name of the device under test.

Return Value

The pdiag_diagnose_state subroutine returns one of the following values:

Return Value Description

0 Successful return.

-1 Software error.

1 Error returned from device method. The
diag_cfg_errno variable contains the error code
from the device method. Refer to the/usr/
include/cf.h file. The E_FINDCHILD and
E_NEWCHILD values are not failures.

-2 EEH hardware error.

Related reference
pdiag_diagnose_multifunc_state
pdiag_restore_state

Understanding the Diagnostic Subsystem for AIX 65

pdiag_restore_multifunc_state

pdiag_diagnose_multifunc_state

Purpose

Puts a single function device, a multifunction non-bridged device, and a bridged device under test, into
the correct state for testing.

Syntax

#include <sys/pdiag_def.h>
int32 pdiag_diagnose_multifunc_state (char *device_instance, int eeh_activate)

Description

The pdiag_diagnose_multifunc_state subroutine unconfigures the device, and its children if necessary,
to set the device into the DIAGNOSE state. The original states of all changed devices will be saved. Use
pdiag_restore_multifunc_state to put the changed devices back to their original states.

This function is platform-implementation specific. Its main purpose is to make sure that the target device
is in the correct state for diagnostic purposes, and that the Enhanced Error Handling (EEH) option is
enabled during test. If the device is already in a diagnostic state, or any state allowed by the operating
system for this purpose, this function should return successful status. If an error occurs, this function
should return a non-zero.

The global variable, diag_cfg_errno, will be set to the return value of the method invoked for the device.

Parameters

Parameter Description

device_instance Name of device under test.

eeh_activate 0
Do not enable the EEH option

1
Enable the EEH option for bridged adapters

2
Enable the EEH option for multifunction non-bridged adapters

3
Enable the EEH option for single function adapters

Return Value

The pdiag_diagnose_multifunc_state subroutine function returns one of the following values:

Return Value Description

0 Successful return

-1 Software error

1 Error returned from device method. The diag_cfg_errno variable
contains the error code from the device method. Refer to the/usr/
include/cf.h file. The E_FINDCHILD and E_NEWCHILD values are not
failures.

-2 Hardware error

Related reference
pdiag_diagnose_state
pdiag_restore_state

66 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

pdiag_restore_multifunc_state

pdiag_restore_state

Purpose

Restores resource and children to their initial state before testing.

Syntax

#include <sys/pdiag_def.h>

int32 pdiag_restore_state (char *device_instance)

Description

The pdiag_restore_state subroutine puts the device, and its children if necessary, back to the original
state before the pdiag_diagnose_state routine was called.

This function is platform-implementation specific. Its main purpose is to make sure that the target device
is back in its original state prior to performing diagnostics on the device, and that the Enhanced Error
Handling (EEH) option is disabled. If the device is already in the correct state, then this function should
return a successful status value of zero. If an error occurs, then this function should return a non-zero
value.

The diag_cfg_errno global variable will be set to the return value of the method invoked for the device.

Parameters

Parameter Description

device_instance Name of the device under test.

Return Value

The pdiag_restore_state subroutine returns one of the following values:

Return Value Description

0 Successful return.

-1 Software error.

1 Error returned from device method. The diag_cfg_errno variable
contains the error code from the device method. Refer to the/usr/
include/cf.h file. The E_FINDCHILD and E_NEWCHILD values
are not failures.

-2 EEH hardware error.

Related reference
pdiag_diagnose_multifunc_state
pdiag_diagnose_state
pdiag_restore_multifunc_state

pdiag_restore_multifunc_state

Purpose

Restores a device and its children to their initial state before testing.

Syntax

#include <sys/pdiag_def.h>
int32 pdiag_restore_multifunc_state (char *device_instance, int eeh_activate)

Understanding the Diagnostic Subsystem for AIX 67

Description

The pdiag_restore_multifunc_state subroutine puts the device, and its children if necessary, back to the
original state before the pdiag_diagnose_multifunc_state routine was called.

This function is platform-implementation specific. Its main purpose is to make sure that the target device
is back in its original state before diagnostic functions were performed on the device and the Enhanced
Error handling (EEH) option is returned to the state originally encountered. If the device is already in the
correct state, this function should return a successful status. If an error occurs, this function should return
a non-zero.

The diag_cfg_errno global variable will be set to the return value of the method invoked for the device.

Parameters

Parameter Description

device_instance Name of device under test.

eeh_activate 0
Do not disable the EEH option

1
Disable the EEH option

Return Value

The pdiag_restore_multifunc_state function returns one of the following values:

Return Value Description

0 Successful return

-1 Software error

1 Error returned from device method. The diag_cfg_errno variable
contains the error code from the device method. Refer to the/usr/
include/cf.h file. The E_FINDCHILD and E_NEWCHILD values are not
failures.

-2 Hardware error

Related reference
pdiag_diagnose_multifunc_state
pdiag_diagnose_state
pdiag_restore_state

pdiag_cs_open

Purpose

Opens and initializes the configuration services, which are used to obtain device information. This is the
Object Data Manager (ODM).

Syntax

int32 pdiag_cs_open ()

Description

The pdiag_cs_open subroutine issues an odm_initialize call to the Object Data Manager.

Parameters

Takes no parameters.

68 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Return Value

A value of 0 is always returned.

pdiag_cs_close

Purpose

Closes the configuration services, which are used to obtain device information. This is the Object Data
Manager (ODM).

Syntax

int32 pdiag_cs_close ()

Description

The pdiag_cs_close subroutine issues an odm_terminate call to the Object Data Manager.

Parameters

Takes no parameters.

Return Value

A value of 0 is always returned.

pdiag_cs_get_attr

Purpose

Returns resource attribute information.

Syntax

int32 pdiag_cs_get_attr (char *device_instance, char *attribute,
 char **cvalue, char *type)

Description

The pdiag_cs_get_attr subroutine searches the data configuration database to obtain the value of the
attribute for the device. The value and type is returned to the calling application.

Parameters

Parameter Description

device_instance Name of the device under test.

attribute Character string describing attribute to be retrieved. Supported device attribute
names:

alias

alt_addr

attn_mac

beacon_mac

bus_addr_start

bus_id

bus_intr_lvl

bus_io_addr

bus_io_length

Understanding the Diagnostic Subsystem for AIX 69

Parameter Description

bus_mem_addr

bus_mem_start

bus_type

dma1_start

dma2_start

dma3_start

dma4_start

dma_bus_mem

dma_channel

dma_lvl

gd_frequency

int_level

intr_priority

rcv_que_size

ring_speed

use_alt_addr

vram_start

xmt_que_size

cvalue Pointer to data buffer, set by this function to address of buffer allocated to hold
the attribute data.

type Character set by this function to indicate the returned data type. Supported
data types are:

s
String

i
Long integer

Return Value

A value of 0 is returned if successful.

pdiag_cs_free_attr

Purpose

Frees a buffer allocated by a pdiag_cs_get_attr request.

Syntax

int32 pdiag_cs_free_attr (char *cvalue)

Description

The pdiag_cs_free_attr subroutine frees the buffer allocated by a previous pdiag_cs_get_attr call.

Parameters

70 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

cvalue Pointer to previously allocated data buffer.

Return Value

A value of 0 is returned if successful.

pdiag_open

Purpose

Prepares a resource for testing.

Syntax

#include <sys/pdiagex_dds.h>
#include <sys/pdiag_def.h>

int32 pdiag_open(device_instance, dds_ptr, int_handler, handle)

pdiag_addr_t device_instance;
pdiagex_dds_t *dds_ptr;
pdiag_addr_t int_handler;
pdiag_info_handle_t *handle;

Description

The pdiag_open() function allocates memory for a handle for this particular resource. The pdiagex_dds_t
structure contains information about the resource to be tested. The Test Unit code must initialize the data
in this structure before calling pdiag_open. The returned pdiag_info_handle_t structure is the handle
created for the resource. The Test Unit does not need to know any of the internal details of this structure,
but must retain the pointer for use in subsequent function calls. The DMA channel is initialized by calling
the d_init kernel service and then the DMA channel is unmasked for transfer; that is, you are not required
to do a pdiag_dd_dma_setup(). For Micro Channel bus_types, it also initializes a DMA TCW management
table to indicate that all buffers are available.

If a user interrupt-handler routine exists, it pins the handler, initializes this handler (using the i_init kernel
service), and allocates memory for interrupt data.

Both this routine and pdiag_close() share a common lock while executing to prevent simultaneous
resource allocation/deallocation. If a call is made to this routine or pdiag_close() while the lock is being
held by a previous call, the calling process will sleep until the routine is available.

Note: In some instances, the members of the dds structure may not be necessary. For example, if dds-
>bus_type is equal to BUS_60X, the dds members, bus_io_addr, bus_io_length, dma_bus_addr,
dma_bus_length, dma_lvl, dma_flags, and dma_chan_id are not used and are ignored by PDIAGEX.
See “Programming interfaces for libpdiag.a” on page 64.

Execution Environment

The pdiag_open() function can be called from the process environment only.

Parameters

Parameter Description

device_instance Pointer to the string name of the specific device to open.

dds_ptr Points to a pdiagex_dds_t structure which should already be initialized
with attributes for the particular resource described by the dds (see " Data
Dictionary").

int_handler Pointer to the string name of the interrupt handler to be loaded.

handle Returned pointer to diagnostic resource handle.

Understanding the Diagnostic Subsystem for AIX 71

Return Value

The pdiag_open function returns one of the following values:

Return Value Description

DGX_OK The operation was successful. The errno is not set.

DGX_BOUND_FAIL An input parameter is out of bounds (dds.dma_bus_len is not a
multiple of PAGESIZE or zero) (Micro Channel bus type only). The
errno is not set.

DGX_BADVAL_FAIL An input parameter (dds.bus_type) is not valid. The errno is not set.

DGX_INVALID_HANDLE Specified handle pointer is not valid. The errno is set to the suword()
return code.

DGX_COPYDDS_FAIL Application could not copy the dds information. The errno is set to
the copyin()/copyout() return code.

DGX_DINIT_FAIL Application could not initialize the DMA channel. The errno is set to
the d_init() return code.

DGX_IINIT_FAIL Application could not initialize the user's interrupt handler. The errno
is set to the i_init() return code.

DGX_KMOD_FAIL Application could not locate the user's interrupt handler in kernel
space. The errno is set to the kmod_entrypt() return code.

DGX_PINCODE_FAIL Application could not pin the user's interrupt handler or the interrupt
environment PDIAGEX functions. The errno is set to the pincode()
return code.

DGX_PINU_FAIL Application could not pin the specified user buffer. The errno is set to
the pinu() return code.

DGX_XMALLOC_FAIL Application could not allocate resources. The errno is set to the
xmalloc() return code.

DGX_XMATTACH_FAIL Application could not attach user buffer to the physical address. The
errno is set to the xmattach() return code.

Related reference
pdiag_close

pdiag_close

Purpose

Frees up PDIAGEX Kernel Extension resources.

Syntax

#include <sys/pdiagex_dds.h>
#include <sy/pdiag_def.h>

int pdiag_close(handle)
pdiag_info_handle_t handle;

Description

The pdiag_close() function frees the DMA and interrupt channels, if they were initialized. This function
also masks the DMA channel; that is, you are not required to do a pdiag_dd_dma_complete(). Any
memory that was allocated, pinned, or cross-memory attached is detached, unpinned, and freed
appropriately.

If this is the last use of the user's interrupt-handler routine, it is unloaded from kernel memory.

72 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Both this routine and pdiag_open() share a common lock while executing to prevent simultaneous
resource allocation and deallocation. If a call is made to this routine or pdiag_open() while the lock is
being held by a previous call, the calling process will sleep until the routine is available.

Note: All pdiag_dd_dma_setup()) calls should be matched with a pdiag_dd_dma_complete() call prior
to calling this routine. Any outstanding DMA operations results in the failure of this routine.

Execution Environment

The pdiag_close() function can be called from the process environment only.

Parameters

Parameter Description

handle Pointer to pdiag_info_handle_t structure which is returned from pdiag_open().

Return Value

The pdiag_close function returns one of the following values:

Return Value Description

DGX_OK The operation was successful. The errno is not set.

DGX_INVALID_HANDLE Specified handle has been closed or was not generated by
the (pdiag_open) call. The errno is not set.

DGX_OUTSTANDINGDMA_FAIL An outstanding DMA operation is preventing closure. The
errno is not set.

Related reference
pdiag_open

pdiag_pcicfg_read

Purpose

Reads a PCI Configuration register.

Syntax

#include <sys/pdiagex_dds.h>
#include <sys/pdiag_def.h>

int32 pdiag_pcicfg_read(device_instance, reg_offset, datasize, data)

pdiag_addr_t device_instance;
ulong reg_offset;
int datasize;
uchar *data;

Description

The pdiag_pcicfg_read() function reads 8, 16, or 32 bits of a PCI Configuration register for this particular
resource. The reg_offset parameter contains the register offset into the device's PCI configuration table.
The calling application must provide a valid register offset before calling pdiag_pcicfg_read. The
returned data is the 8, 16, or 32 bit value read from the PCI register configuration table. All the byte
swapping required is performed internally by this function; the calling application must not alter the byte
positioning of the data.

Execution Environment

The pdiag_pcicfg_read() function can be called from the process environment only.

Parameters

Understanding the Diagnostic Subsystem for AIX 73

Parameter Description

device_instance Pointer to the string name of the specific device to read.

reg_offset Contains the offset within the PCI configuration table register to be read.

datasize The data size will be specified as follows:
Size

Type
8 bits

IOCHAR8
16 bits

IOSHORT16
32 bits

IOLONG32

data Pointer to the data to be read within the PCI Configuration Table.

Note: The value read is the specified size on the datasize parameter.

Return Value

The pdiag_pcicfg_read function returns one of the following values:

Return
Value

Description

0 Successful return

-1 Software error

Related reference
pdiag_pcicfg_write

pdiag_pcicfg_write

Purpose

Writes to a PCI Configuration register.

Syntax

#include <sys/pdiagex_dds.h>
#include <sys/pdiag_def.h>

int32 pdiag_pcicfg_write(device_instance, reg_offset, datasize, data)

pdiag_addr_t device_instance;
ulong reg_offset;
int datasize;
uchar data;

Description

The pdiag_pcicfg_write() function writes 8, 16, or 32 bits to a PCI Configuration register for this
particular resource. The reg_offset parameter contains the register offset into the device's PCI
configuration table. The Test Unit code must provide a valid register offset when calling
pdiag_pcicfg_write. The data value is the 8, 16, or 32 bit value to be written to the PCI register
configuration table depending on the data size specified in the datasize parameter. All the byte swapping
required is performed internally by this function; the calling application must not alter the byte positioning
of the data.

Execution Environment

74 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

The pdiag_pcicfg_write() function can be called from the process environment only.

Parameters

Parameter Description

device_instance Pointer to the string name of the specific device to write.

reg_offset Contains the offset within the PCI configuration table register to be written.

datasize The data size will be specified as follows:
Size

Type
8 bits

IOCHAR8
16 bits

IOSHORT16
32 bits

IOLONG32

data Contains the value to be written to a specific PCI register.

Note: The size of the value must be specified in the datasize parameter and
must be IOCHAR8, IOSHORT16, or IOLONG32.

Return Value

The pdiag_pcicfg_write function returns one of the following values:

Return Value Description

0 Successful return

-1 Software error

Related reference
pdiag_pcicfg_read

Programming Interfaces for PDIAGEX

This section provides information on application programming interfaces to the Portable Diagnostic
Kernel Extension PDIAGEX.

Test unit developers should use these interfaces to ensure their code has maximum portability across
platforms.

pdiag_dd_big_dma_complete
The pdiag_dd_big_dma_complete() function unmaps, unpins, and detaches the user space DMA buffer.

Syntax

#include <sys/pdiagex_dds.h>
int32 pdiag_dd_big_dma_complete(handle, daddr, operation)
pdiag_info_handle_t handle;
pdiag_addr_t daddr;
uint32 operation;

Description

Attention:

• At this time, you can only use this call if the bus type is BUS_BID.
• The operation argument to this function must be PDIAG_DMA_MASTER.

Understanding the Diagnostic Subsystem for AIX 75

The pdiag_dd_big_dma_complete() must be called after I/O completion involving the area mapped by
the prior pdiag_dd_big_dma_setup() function call.

This function utilizes the D_UNMAP_LIST macro to unmap the specified address.

Execution Environment

The pdiag_dd_big_dma_complete() function can only be called from the process environment.

Parameters

Parameter Description

handle Points to pdiag_info_handle_t structure, which is returned from pdiag_open().

daddr The bus address that was returned by the previous pdiag_dd_big_dma_setup()
routine.

operation Type of operation to perform.

Note:

At this time, this must be PDIAG_DMA_MASTER.

Return Value

The pdiag_dd_dma_complete function returns one of the following values:

Return Value Description

DGX_OK The operation was successful. The errno is not set.

DGX_INVALID_HANDLE Specified handle has been closed or was not generated by the
pdiag_open() call. The errno is not set.

DGX_BADVAL_FAIL The daddr value is not valid. The errno is not set.

DGX_UNPINU_FAIL Application could not unpin the specified user buffer. The errno is set to
the unpinu() return code.

DGX_XMDETACH_FAIL Application could not detach user space from the physical address. The
errno is set to the xmdetach() return code.

Related reference
pdiag_dd_big_dma_setup
The pdiag_dd_big_dma_setup() function initializes, pins, and cross-memory attaches a large user buffer
for a DMA operation. The size can be up to DIAG_MULTIPAGESIZE (currently, this is 0x8000) bytes.

pdiag_dd_big_dma_setup
The pdiag_dd_big_dma_setup() function initializes, pins, and cross-memory attaches a large user buffer
for a DMA operation. The size can be up to DIAG_MULTIPAGESIZE (currently, this is 0x8000) bytes.

Syntax

#include <sys/pdiagex_dds.h>
#include <sys/dma.h>
int32 pdiag_dd_big_dma_setup(
handle, dma_flags, baddr, users_daddr, count, minxfer,operation)
pdiag_info_handle_t handle;
int32 dma_flags;
pdiag_addr_t baddr;
pdiag_addr_t users_daddr;
uint32 count;
uint32 minxfer;
uint32 operation;

Description

76 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Attention:

• This function is not supported for Micro Channel or 60X bus type adapters.
• At this time, you can only use this call if the bus type is BUS_BID.
• The operation argument to this function must be PDIAG_DMA_MASTER.

The following is performed by the pdiag_dd_big_dma_setup function depending on the bus type and
operation:

• The pdiag_dd_big_dma_setup() function cross-memory attaches, pins, and maps the user buffer for
DMA access by the device. The function currently allows for a transfer sizes greater than 0x1000 bytes,
up to DIAG_MULTIPAGESIZE (which is 0x8000 bytes). The resulting bus addresses are mapped as a
contiguous space.

• This function issues the d_map_list kernel call for the specified address. The DMA space is managed for
the user.

The following are requirements that must be met in order to use the pdiag_dd_big_dma_setup()
function:

• The device-dependant structure (DDS) member maxmaster, which was previously set with
pdiag_open(), must have been set to the maximum number of concurrent pdiag_dd_dma_setup()s and
pdiag_dd_big_dma_setup()s to be used (that is, the maximum number of pdiag_dd_dma_setup()s
and pdiag_dd_big_dma_setup()s called above the number of associated pdiag_dd_dma_complete()s
and pdiag_dd_big_dma_complete()s at any given time). maxmaster must be set to at least 1 (one) for
this call to pass without a DGX_BOUND_FAIL error.

• The DMA_CONTIGUOUS flag must have been set on the DDS member dma_flags, which was previously
set with pdiag_open(), This function returns only a single bus address as a result of the memory
mapping operation. The DMA_CONTIGUOUS flag is used to request that the mapping returns only a
single address space, rather than a list of discontiguous bus memory regions.

Execution Environment

The diag_dd_big_dma_setup() function can be called from the process environment only.

Parameters

Parameter Description

handle Points to pdiag_info_handle_t structure, which is returned from pdiag_open().

dma_flags Use the DMA_READ flag for transferring data from the adapter to user memory. Use 0 (zero) for transferring data from the system to
the adapter. For more information on other DMA flags, see the sys/dma.h header file.

baddr Points to the user's read or write buffer where the DMA transfer should take place.

users_daddr Points to an integer to be filled with the bus memory address of baddr upon successful completion of this call.

count Number of bytes to be transferred.

Return Value

The pdiag_dd_big_dma_setup function returns one of the following values:

Return Value Description

DGX_OK The operation was successful. The errno is not set.

DGX_INVALID_HANDLE Specified handle has been closed or was not generated by the pdiag_open() call. The errno is not set.

DGX_BOUND_FAIL The application tried to set up a DMA outside its resources, the count is too large, the resources are
currently unavailable, or maxmaster is set to zero. The errno is not set.

DGX_BADVAL_FAIL PDIAGEX was unable to update the specified daddr. This might be because the DMA_CONTIGUOUS flag
was not set as described above, or other causes. The errno is set to the suword() return code.

DGX_PINU_FAIL The application could not pin the specified user buffer. The errno is set to the pinu() return code.

DGX_XMATTACH_FAIL The application could not attach user buffer to the physical address. The errno is set to the xmattach()
return code.

DGX_XMALLOC_FAIL The function could not allocate necessary temporary memory. The errno is not set.

Understanding the Diagnostic Subsystem for AIX 77

Return Value Description

DGX_FAIL The user memory could not be mapped to bus memory space. The errno is set to the return code from the
d_map_list() call.

Related reference
pdiag_dd_big_dma_complete
The pdiag_dd_big_dma_complete() function unmaps, unpins, and detaches the user space DMA buffer.

pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode
The pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode() function writes any number of
locations in the hardware and sleeps until a desired number of interrupts occur or a timeout occurs. The
timeout occurs if any of the expected interrupts does not occur within the timeout time for that interrupt.

The pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode() function provides a thread-safe way
to kick off a hardware operation and guarantees that all (up to four) expected
pdiag_dd_interrupt_notify() service calls by the adapter SLIH are not missed by this routine. A pdiagex
internal locking mechanism prevents interrupts from being missed. The user SLIH will not be called until
this routine first releases the lock.

The pdiag_dd_watch_for_interrupt() legacy routine does not handle the hardware kick-off operation.
With the legacy function, the hardware interrupt may have already occurred before the user application
calls the legacy watch function.

Syntax

#include <sys/pdiagex_dds.h>
int32 pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode
(handle, kick_vec_parm_p,
 num_kick_records, num_intrpts_expected, flag_found_p, timeout_sec);
pdiag_info_handle_t handle;
kick_io_t*kick_vec_parm_p;
uint32 num_kick_records;
uint32 num_intrpts_expected;
uint32 *flag_found_p;
uint32 timeout_sec;

Description

The pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode() function performs the following
operations:

• Copies in the caller-provided table of hardware write operations required to kick off the hardware. This
table is an array of kick_io_t structures. Each element in the array describes a hardware location that
must be written to start the hardware operation. The calling application can pass an array of any size to
this routine. The kick_io_t structure is described in the pdiagex_dds.h header file. The size of the array
is passed in using the parameter num_kick_records.

• Acquires the pdiagex intr_lock lock.
• Clears the flag_word variable.
• Kicks off the hardware by writing the addresses, size, and data value or values that were just copied in.
• For each of the interrupts that the user expects (passed in using the num_intrpts_expected

parameter), this function does an e_sleep_thread() system call to process each
pdiag_dd_interrupt_notify() function that the SLIH generates. The pdiagex intr_lock lock is released
only during the e_sleep_thread() system call. A timeout value for each sleep is passed in using the
timeout_sec parameter. The flag_word variable that the SLIH created is saved for each time the routine
is awakened.

• Releases the pdiagex intr_lock lock.
• The values of flag_word variable saved after each sleep are copied out to the user's array of type uint32

variables pointed to by the flag_found_p parameter to this routine. The array should be of type
uint32[4].

78 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

If the SLIH calls pdiag_dd_interrupt_notify() function, then the e_sleep_thread() system call no longer
blocks. Once the SLIH calls pdiag_dd_interrupt_notify() function, the kernel guarantees that the
e_sleep_thread() system call will be first to reacquire the intr_lock lock. This means that the SLIH will not
be reentered until this routine releases the lock, either starting another e_sleep_thread(), or at exit of this
routine. The pdiagex and kernel locks only permit the user SLIH to be called once each time this routine
does this e_sleep_thread() system call.

To be awakened from the sleep state and get interrupt condition information, this routine is highly
dependent on the interaction of the application's interrupt handler. This interaction is maintained by using
the handle.flag_word, handle.sleep_word, and handle.sleep_flag variables. The handle.flag_word bit
format is determined by the user's application. It must be of type uint32.

The application's interrupt handler should update the handle.flag_word each time it receives an
interrupt. The application's interrupt handler should also test the handle.sleep_flag each time it receives
an interrupt to determine if the pdiag_dd_watch_for_interrupt() routine is sleeping. If handle.sleep_flag
is TRUE, the application's interrupt handler should wake the
pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode() routine using the
pdiag_dd_interrupt_notify() service with handle.sleep_word as the sleep word.

Execution Environment

The pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode() function can be called from the
process environment.

Parameters
Parameter Description

handle Points to pdiag_info_handle_t structure, which is returned from pdiag_open().

kick_vec_param_p Pointer to a user space array of kick_io_t records. These records are used to describe the hardware write or writes required to initiate an
operation that should result in an interrupt caused by the hardware. The kick_io_t is defined in the /usr/include/sys/pdiagex_dds.h
header file. It has four uint32 entries that specify the address, data, data type, and whether the register is in I/O space or memory-
mapped space.

num_kick_records The number of write operations needed to kick off the hardware. This value specifies the number of kick_io_t records that need to be
copied from the calling application at the kick_vec_param_p user address.

num_intrpts_expected Specifies the number of interrupt notifications that are expected from the SLIH. This must be in the range of 1 to
PDIAGEX_MAX_WATCH_INTRPTS interrupts.

flag_found_p Pointer to a user space array of PDIAGEX_MAX_WATCH_INTRPTS elements of uint32 type. The routine copies out the values of the
flag_word as set by the user's SLIH, after each sleep.

timeout_sec Number of seconds to wait for the interrupt condition before timing out. This value is for each of the num_intrpts_expected. This must
always be a non-zero value.

Return Value

The pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode() function returns one of the following
values:

Return Value Description

0 The operation was successful.

x80000023 The e_sleep_thread timed out. If any interrupts occurred, the SLIH did not call
pdiag_dd_interrupt_notify().

0x80000024 One interrupt notification was received, but the e_sleep_thread timed out the second
time. If another interrupt occurred, the SLIH did not call pdiag_dd_interrupt_notify().

0x80000025 Two interrupt notifications were received, but the e_sleep_thread timed out the third
time. If another interrupt occurred, the SLIH did not call pdiag_dd_interrupt_notify().

0x80000026 Three interrupt notifications were received, but the e_sleep_thread timed out the fourth
time. If another interrupt occurred, the SLIH did not call pdiag_dd_interrupt_notify().

0xFFFFFFFF The e_sleep_thread failed for reason other than a timeout.

0x80000000 Specified handle has been closed or was not generated by the pdiag_open() call.

0x80000027 num_intrpts_expected was out of range. It must be 1, 2, 3, or 4.

Understanding the Diagnostic Subsystem for AIX 79

Return Value Description

0x80000028 The hardware write to kick off the adapter operation failed.

Related reference
pdiag_dd_dma_enable

pdiag_dd_watch_for_interrupt

Purpose

The pdiag_dd_watch_for_interrupt() function sleeps until a desired interrupt condition occurs, or a time-
out occurs if the interrupt does not occur within the specified time.

Syntax

#include <sys/pdiagex_dds.h>
int32 pdiag_dd_watch_for_interrupt(handle, flag_mask, timeout_sec)
pdiag_info_handle_t handle;
uint32 flag_mask;
uint32 timeout_sec;

Description

pdiag_dd_watch_for_interrupt() sleeps until a desired interrupt condition occurs or timeout_sec seconds
pass. If the interrupt condition occurs before the routine is called, the function simply returns, without
sleeping. To be awakened from the sleep state and get interrupt condition information, this routine is
highly dependent on the interaction of the application's interrupt handler. This interaction is maintained
by using the handle.flag_word, handle.sleep_word, and handle.sleep_flag.

The application's interrupt handler should update the handle.flag_word each time it receives an interrupt.
The handle.flag_word and flag_mask format is determined by the application. The application's interrupt
handler should also test the handle.sleep_flag each time it receives an interrupt to determine if the
pdiag_dd_watch_for_interrupt() routine is sleeping. If handle.sleep_flag is TRUE, the application's
interrupt handler should wake the pdiag_dd_watch_for_interrupt() routine using the
pdiag_dd_interrupt_notify() service with handle.sleep_word as the sleep word.

Execution Environment

The pdiag_dd_watch_for_interrupt() function can be called from the process environment.

Parameters

Parameter Description

handle Points to pdiag_info_handle_t structure which is returned from pdiag_open().

flag_mask 32-bit flag mask which, when bitwise ANDed with the handle.flag_word, produces a
nonzero result only when the handle.flag_word identifies the desired interrupt
condition.

timeout_sec Number of seconds to watch for the interrupt condition before timing out. (A value of
zero will never time-out; possible hang condition).

Return Value

The pdiag_dd_watch_for_interrupt function returns one of the following values:

Return Value Description

DGX_OK The operation was successful. The errno is not set.

DGX_FAIL The interrupt condition did not occur before timeout_sec seconds
passed.

80 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Return Value Description

DGX_INVALID_HANDLE Specified handle has been closed or was not generated by the
pdiag_open() call. The errno is not set.

pdiag_dd_interrupt_notify

Purpose

The pdiag_dd_interrupt_notify() function can only be used by the interrupt handling function of the TU
library. This function notifies a pending pdiag_dd_watch_for_interrupt call that an interrupt has been
processed.

Syntax

#include <sys/pdiagex_dds.h>
int32 pdiag_dd_interrupt_notify(sleep_word)
uint32 sleep_word;

Description

pdiag_dd_interrupt_notify() is used to notify a previously pending call to
pdiag_dd_watch_for_interrupt that an expected interrupt has been received and processed. This call is
only used by the second-level interrupt-handler code provided in the TU library.

Execution Environment

The pdiag_dd_interrupt_notify() function can only be called from the interrupt environment.

Parameters

Parameter Description

sleep_word Semaphore handle that TU is waiting on, passed in as a parameter to the interrupt
handler.

Return Value

The pdiag_dd_interrupt_notify function returns one of the following values:

Return Value Description

DGX_OK The operation was successful. The errno is not set.

pdiag_dd_write, pdiag_dd_write_64

Note: pdiag_dd_write_64 is only used in 64-bit kernel.

Purpose

The pdiag_dd_write() and the pdiag_dd_write_64() functions perform write operations on a resource.

Syntax for 32-Bit Kernel

#include <sys/pdiagex_dds.h>
int32 pdiag_dd_write(handle, type, offset, data, flags)
pdiag_info_handle_t handle;
uint32 type;
uint32 offset;
pdiag_addr_t data;
pdiagex_opflags_t *flags;

Syntax for 64-Bit Kernel

#include <sys/pdiagex_dds.h>
int32 pdiag_dd_write_64(handle, type, offset, data, flags)
pdiag_info_handle_t handle;

Understanding the Diagnostic Subsystem for AIX 81

uint32 type;
uint32 offset;
pdiag_addr_t data;
pdiagex_opflags_t *flags;

Description

The pdiag_dd_write() and the pdiag_dd_write_64() functions write the specified data to the specified
offset address. If the user enables the times variable, timing information for this function is also returned.
Each write performed is dependent on the memio operation and count parameters.

memio Operation Description

PDIAG_IO_OP If count is1, data is written to the specified bus I/O offset address.

PDIAG_MEM_OP If count is1, data is written to the specified memory offset address.

PDIAG_POS_OP If count is1, data is written to the specified POS offset address.

A specified number of write accesses to the offset address may be performed if count is greater than 1.
The user may choose to write the data to one location (the offset address) count times, or write the data
to count consecutive locations, starting at the offset address. In either case, the data to be written is
supplied by consecutive locations of the data buffer starting at the specified buffer address.

Note: When writing data, it is imperative that the write data buffer is at least the size of count * type
(unless the write data buffer address is not being incremented) and filled with valid data for each write
operation to be performed. If this is not done, meaningless data is written to the designated area. This
may cause problems with your testing.

Execution Environment

The pdiag_dd_write() function can be called from the process or the interrupt environment. The
pdiag_dd_write_64() function can only be called from the interrupt environment.

Parameters

Parameter Description

handle Points to pdiag_info_handle_t structure which is returned from pdiag_open().

type Defines the data length (byte, word or long) read from the address specified
when type is IOCHAR8, IOSHORT16, and IOLONG32 respectively.

offset Offset value that is dependent on the type of operation being performed. It can
be one of the following values:
PDIAG_IO_OP

Offset from base I/O address.
PDIAG_MEM_OP

Offset from base memory address.
PDIAG_POS_OP

offset from base POS address.

82 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

data Pointer to a block of information to be written to the specified address. This
block will be of size:
count for type IOCHAR8

(1 if not incrementing data)

OR

count *2 for type IOSHORT16
(2 if not incrementing data)

OR

count *4 for type IOLONG32
(4 if not incrementing data).

flags The flags structure contains the following members:

memio Indication of the type of read operation to perform.
PDIAG_IO_OP

For I/O write operations.
PDIAG_MEM_OP

For memory write operations.
PDIAG_POS_OP

For I/O Configuration Space write operations.

count Number of accesses to perform.
PDIAG_IO_OP

Number of write operations to be performed.
PDIAG_MEM_OP

Number of times data is written.
PDIAG_POS_OP

Count should be set to 1.

addr_incr_flag Determines whether the data buffer address and the offset address get
incremented on each of count accesses:
PDIAG_SING_LOC_ACC

Single-location accesses: neither address is incremented.
PDIAG_SING_LOC_BUF

Single-location access for buffer: the data address is never incremented.
The address referred to by offset is incremented by type.

PDIAG_SING_LOC_HW
Single-location access for hardware: the data address is incremented by
type. The address referred to by offset is not incremented.

PDIAG_MULT_LOC_ACC
Multiple-location accesses: both addresses are incremented by type.

intrlev Indicates which environment the calling routine is in:
PROCLEV

If calling from the process level.
INTRKMEM

If calling from the interrupt level and the data buffer is in kernel memory.

Note: For the pdiag_dd_write function, the intrlev parameter may be set to
either PROCLEV or INTRKMEM. For the pdiag_dd_write_64 function, the intrlev
parameter must always be set to INTRKMEM.

Understanding the Diagnostic Subsystem for AIX 83

Parameter Description

times Points to the timestruc_t structure which returns timing information. If times is
a null pointer, no timing information will be returned back to the user.

Return Value

The pdiag_dd_write and the pdiag_dd_write_64 functions return one of the following values:

Return Value Description

DGX_OK The operation was successful. The errno is not set.

DGX_INVALID_HANDLE Specified handle has been closed or was not generated by the
pdiag_open() call. The errno is not set.

DGX_BOUND_FAIL offset given was larger than the width of the I/O address range. The errno
is not set.

DGX_BADVAL_FAIL Type field was not valid (that is, not IOCHAR8, IOSHORT16, or
IOLONG32). The errno is not set.

DGX_FAIL Error occurred during the I/O write access. The errno is set to
BUS_PUT(L/S/C)X macro return code.

DGX_COPY_FAIL User data buffer could not be copied to or from kernel memory. The
errno is set to the xmemin/out or copyin/out return code.

Related concepts
SLIH conversion required changes
The following required changes must be applied to all SLIHs being ported to 64-bit kernel.
Related reference
pdiag_dd_read, pdiag_dd_read_64

pdiag_dd_read, pdiag_dd_read_64

Note: pdiag_dd_read_64 is only used in the 64-bit kernel.

Purpose

The pdiag_dd_read() and the pdiag_dd_read_64() functions perform read operations on a resource.

Syntax for 32-Bit Kernel

#include <sys/pdiagex_dds.h>
int32 pdiag_dd_read (handle, type, offset, data, flags)
pdiag_info_handle_t handle;
uint32 type;
uint32 offset;
pdiag_addr_t data;
pdiagex_opflags_t *flags;

Syntax for 64-Bit Kernel

#include <sys/pdiagex_dds.h>
int32 pdiag_dd_read_64 (handle, type, offset, data, flags)
pdiag_info_handle_t handle;
uint32 type;
uint32 offset;
pdiag_addr_t data;
pdiagex_opflags_t *flags;

Description

84 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

The pdiag_dd_read() and the pdiag_dd_read_64() functions read the data from the specified address. If
the user enables the times variable, timing information for this function is also returned. Each read
performed is dependent on the memio operation and count parameters.

memio Operation Description

PDIAG_IO_OP If count is 1, data is read from the specified bus I/O offset address.

PDIAG_MEM_OP If count is 1, data is read from the specified memory offset address.

PDIAG_POS_OP If count is 1, data is read from the specified POS offset address.

A specified number of read accesses from the offset address may be performed if count is greater than 1.
The user may choose to read the data from one location (the offset address) count times, or read the data
from count consecutive locations, starting at the offset address. In either case, the read data is stored in
the data buffer starting at the specified buffer address.

Note: When reading data, it is imperative that the read data buffer is at least the size of count * type
(unless the read data buffer address is not being incremented). If this is not done, meaningless data is
written to an area outside the read buffer. This may cause problems with your testing.

Execution Environment

The pdiag_dd_read() function can be called from the process or the interrupt environment. The
pdiag_dd_read_64() function can only be called from the interrupt environment.

Parameters

Parameter Description

handle Points to pdiag_info_handle_t structure which is returned from pdiag_open().

type Defines the data length (byte, word or long) read from the address specified
when type is IOCHAR8, IOSHORT16, and IOLONG32 respectively.

offset Offset value that is dependent on the type of operation being performed. It can
be one of the following values:
PDIAG_IO_OP

offset from base I/O address.
PDIAG_MEM_OP

offset from base memory address.
PDIAG_POS_OP

offset from base POS address.

data Address of the information read from the specified address.

Note: For PDIAG_IO_OP and PDIAG_MEM_OP: The value read from the
specified offset will be placed at the specified data address in the form
specified by type. If the data buffer is smaller than the specified type, the value
will overwrite the bounds of your buffer. If the data buffer is larger than the
specified type, the value will reside in the upper type bytes of the buffer.

For PDIAG_POS_OP: The value read from the specified offset will be placed at
the specified data address and will occupy 1 byte. If the data buffer is larger
than 1 byte, the value will reside in the upper byte of the buffer.

flags The flags structure contains the following members:

Understanding the Diagnostic Subsystem for AIX 85

Parameter Description

memio Indication of the type of read operation to perform.
PDIAG_IO_OP

For I/O read operations.
PDIAG_MEM_OP

For memory read operations..
PDIAG_POS_OP

For I/O Configuration Space read operations.

count Number of accesses to perform.
PDIAG_IO_OP

Number of read operations to be performed.
PDIAG_MEM_OP

Number of times data is read.
PDIAG_POS_OP

Count should be set to 1.

addr_incr_flag Determines whether the data buffer address and the offset address get
incremented on each of count accesses:
PDIAG_SING_LOC_ACC

Single-location accesses: neither address is incremented.
PDIAG_SING_LOC_BUF

Single-location access for buffer: the data address is never incremented.
The address referred to by offset is incremented by type.

PDIAG_SING_LOC_HW
Single-location access for hardware: the data address is incremented by
type. The address referred to by offset is not incremented.

PDIAG_MULT_LOC_ACC
Multiple-location accesses: both addresses are incremented by type.

intrlev Indicates which environment the calling routine is in:
PROCLEV

If calling from the process level
INTRKMEM

If calling from the interrupt level and the data buffer is in kernel memory.

Note: For the pdiag_dd_read function, the intrlev parameter may be set to
either PROCLEV or INTRKMEM. For the pdiag_dd_read_64 function, the intrlev
parameter must always be set to INTRKMEM.

times Points to the timestruc_t structure which returns timing information. If times is
a null pointer, no timing information will be returned back to the user.

Return Value

The pdiag_dd_read and the pdiag_dd_read_64 functions return one of the following values:

Return Value Description

DGX_OK The operation was successful. The errno is not set.

DGX_INVALID_HANDLE Specified handle has been closed or was not generated by the
pdiag_open() call. The errno is not set.

DGX_BOUND_FAIL offset given was larger than the width of the I/O address range. The errno
is not set.

86 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Return Value Description

DGX_BADVAL_FAIL Type field was not valid (that is, not IOCHAR, IOSHORT, or IOLONG). The
errno is not set.

DGX_FAIL Error occurred during the I/O read access. The errno is set to
BUS_GET(L/S/C)X macro return code.

DGX_COPY_FAIL User data buffer could not be copied to or from kernel memory. The
errno is set to the xmemin/out or copyin/out return code.

Related concepts
SLIH conversion required changes
The following required changes must be applied to all SLIHs being ported to 64-bit kernel.
Related reference
pdiag_dd_write, pdiag_dd_write_64

pdiag_dd_dma_setup

Purpose

The pdiag_dd_dma_setup() function initializes, pins, and cross-memory attaches the user buffer for a
DMA operation.

Syntax

#include <sys/pdiagex_dds.h>
#include <sys/dma.h>
int32 pdiag_dd_dma_setup
(handle, dma_flags, baddr, users_daddr, count, minxfer,operation)
pdiag_info_handle_t handle;
int32 dma_flags;
pdiag_addr_t baddr;
pdiag_addr_t users_daddr;
uint32 count;
uint32 minxfer;
uint32 operation;

Description

The following is performed by the pdiag_dd_dma_setup depending on the bus type and operation:

Where bus type = BUS_MICRO_CHANNEL or BUS_60X and operation is PDIAG_DMA_MASTER

• The DMA master function on Micro Channel and 60X bus systems pins and cross-memory attaches the
user buffer for the length of count.

For Micro Channel bus type adapters, the DMA master function issues the d_master kernel call for the
specified address and length. The DMA address space is managed for you, and the offset into the DMA
buffer is supplied in the daddr parameter. For 60X bus type adapters, the DMA master function issues
the xmemdma kernel call for each page referred to by the specified address and length.

The flags for this call will be (XMEM_HIDE | XMEM_ACC_CHK). The DMA address space is not managed
for you, and the offset into the DMA buffer is supplied in the daddr parameter.

Note: The dds member, maxmaster, must be set to the maximum number of concurrent
pdiag_dd_dma_setup()s to be used (that is, maximum number of pdiag_dd_dma_setup()s called
above the number of associated pdiag_dd_dma_complete ()s at any given time). maxmaster must be
set to at least 1 (one) for this call to pass without a DGX_BOUND_FAIL error.

Where bus type = BUS_BID and operation is PDIAG_DMA_MASTER

• The pdiag_dd_dma_setup() function pins and cross-memory attaches the user buffer. The function
allows for a transfer of 4k or 1 page. The transfer cannot cross a page boundary. Larger transfers are not
allowed at this time.

Understanding the Diagnostic Subsystem for AIX 87

This function issues the d_map_page kernel call for the specified address. The DMA space is managed
for the user, and the offset into the DMA buffer is supplied in the users_daddr parameter.

Where bus type = BUS_MICRO_CHANNEL and operation is PDIAG_DMA_SLAVE

• For slave operation on a Micro Channel, the pdiag_dd_dma_setup() function issues the d_slave kernel
call for the specified length. Only one Micro Channel slave DMA may occur at a time.

Note: The dds member, maxmaster, must be set to at least 1 (one) for this call to pass without a
DGX_BOUND_FAIL error.

Execution Environment

The pdiag_dd_dma_setup() function can be called from the process environment only.

Parameters

Parameter Description

handle Points to pdiag_info_handle_t structure which is returned from pdiag_open().

dma_flags This flag is ignored for 60X bus type adapters. The following refers only to Micro Channel bus type adapters.

Use the DMA_READ flag for transferring data from the adapter to user memory. Use 0 (zero) for transferring data from the
system to the adapter. See the header file sys/dma.h for more information on other DMA flags.

If the user wants to read or modify data before calling pdiag_dd_dma_complete(), then DMA_NOHIDE should also be set. This
may be useful for devices that set up long-term DMA mapping for purposes of communication (such as command blocks, status
blocks, common buffer pools). Then the pdiag_dd_dma_complete() does not have to be called each time they want to let the
application read/write, and then pdiag_dd_dma_setup() again for the next DMA transfer.

If DMA_NOHIDE is set and the user wants to read data before calling pdiag_dd_dma_complete(), then call the
pdiag_dd_dma_enable() routine to flush and read the data. If DMA_NOHIDE is set and the user wants to write data before
calling pdiag_dd_dma_complete(), then after the user modifies the data, call the pdiag_dd_dma_enable() routine with a flush
operation. Make sure that the adapter will not be transferring data to the same area that the user is manipulating.

baddr Points to user's read or write buffer where DMA transfer should take place.

users_daddr Points to an integer to be filled with the physical memory address of baddr upon successful completion of this call.

count Number of bytes to be transferred.

minxfer Minimum transfer length that the device will handle. (Slave transfer only on BUS_BID).

operation Type of operation to perform:

PDIAG_DMA_MASTER
PDIAG_DMA_SLAVE

Return Value

The pdiag_dd_dma_setup function returns one of the following values:

Return Value Description

DGX_OK The operation was successful. The errno is not set.

DGX_INVALID_HANDLE Specified handle has been closed or was not generated by the pdiag_open() call. The errno is not set.

DGX_BOUND_FAIL Application tried to setup a DMA outside its resources, the resources are currently unavailable, or the dds
member dma_bus_length (Micro Channel only) or maxmaster is set to zero. The errno is not set.

DGX_BADVAL_FAIL PDIAGEX was unable to update the specified daddr. The errno is set to the suword() return code.

DGX_PINU_FAIL Application could not pin the specified user buffer. The errno is set to the pinu() return code.

DGX_XMATTACH_FAIL Application could not attach user buffer to the physical address. The errno is set to the xmattach() return code.

Related reference
pdiag_dd_dma_complete
pdiag_dd_dma_enable

pdiag_dd_dma_complete

Purpose

The pdiag_dd_dma_complete() function unpins and detaches the user space DMA buffer. If the handle's
dds.bus_type is set for the Micro Channel, this function also calls the d_complete() kernel service, which

88 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

checks for detected IOCC errors, flushes the IOCC buffer (unhides it if necessary) and sets the page table
'modified' bit if the information was modified.

Syntax

#include <sys/pdiagex_dds.h>
int32 pdiag_dd_dma_complete(handle, daddr, operation)
pdiag_info_handle_t handle;
pdiag_addr_t daddr;
uint32 operation;

Description

The following is performed by the pdiag_dd_dma_complete depending on the bus type and operation:

Where bus type = BUS_MICRO_CHANNEL and operation is PDIAG_DMA_MASTER or PDIAG_DMA_SLAVE

• The pdiag_dd_dma_complete() function cleans up after the DMA transfer. First, the specified daddr is
used to retrieve the baddr, count, and dma_flags specified in the corresponding
pdiag_dd_dma_setup() calls. pdiag_dd_dma_complete() then issues the d_complete kernel call using
these parameters. The user address space used for the DMA transfer is then unpinned, detached, and
made available for another DMA transfer.

Where bus type = BUS_BID and operation is PDIAG_DMA_MASTER
• The pdiag_dd_dma_complete() should be called after I/O completion involving the area mapped by the

prior pdiag_dd_dma_setup() function call.

This function utilizes the D_UNMAP_PAGE macro to unmap the specified address.

Where bus type = BUS_BID and operation is PDIAG_DMA_SLAVE
• The pdiag_dd_dma_complete() should be called after I/O completion involving the area mapped by the

prior pdiag_dd_dma_setup() function call.

This function utilizes the D_UNMAP_SLAVE macro to unmap the specified address.

Execution Environment

The pdiag_dd_dma_complete() function can be called from the process or the interrupt environment on
a BUS_MICRO_CHANNEL system. The function can only be called from the process environment on a
BUS_BID system.

Parameters
Parameter Description

handle Points to pdiag_info_handle_t structure which is returned from pdiag_open().

daddr The offset into the user's physical DMA address. This is returned by pdiag_dd_dma_setup () routine. For DMA slave completes, this should be set to 0.

operation Type of operation to perform:

PDIAG_DMA_MASTER

PDIAG_DMA_SLAVE

Return Value

The pdiag_dd_dma_complete function returns one of the following values:

Return Value Description

DGX_OK The operation was successful. The errno is not set.

DGX_INVALID_HANDLE Specified handle has been closed or was not generated by the pdiag_open() call. The errno is not set.

DGX_BADVAL_FAIL daddr value was not valid. The errno is not set.

DGX_DCOMPLETE_FAIL Application received a DMA error detected by the system hardware. The errno is set to the d_complete() return code.

DGX_UNPINU_FAIL Application could not unpin the specified user buffer. The errno is set to the unpinu() return code.

DGX_XMDETACH_FAIL Application could not detach user space from the physical address. The errno is set to the xmdetach() return code.

Related reference
pdiag_dd_dma_setup

Understanding the Diagnostic Subsystem for AIX 89

pdiag_dd_dma_enable

pdiag_dd_dma_enable

Purpose

The pdiag_dd_dma_enable() function enables and disables a DMA operation. The actual function
performed depends on the bus type and operation requested.

Syntax

#include <sys/pdiagex_dds.h>
int32 pdiag_dd_dma_enable(handle, daddr, operation)
pdiag_info_handle_t> handle;
pdiag_addr_t daddr;
uint32 operation;

Description

Where bus type = BUS_MICRO_CHANNEL and operation is PDIAG_DMA_FLUSH

• The PDIAG_DMA_FLUSH operation uses the specified daddr to retrieve the baddr and count specified in
the corresponding pdiag_dd_dma_setup() call. Then the d_cflush and d_bflush kernel routines are
called to do the processor cache and IOCC buffer flushes, respectively.

If users need to change data in the DMA address space, they first change the data in their user space
and then call pdiag_dd_dma_enable() with a PDIAG_DMA_FLUSH operation. If they need to read data
in the DMA address space, they first call pdiag_dd_dma_enable () with a PDIAG_DMA_FLUSH
operation, and then reads the data in the user space.

• The PDIAG_DMA_FLUSH operation flushes the processor cache and the IOCC buffer. This may be used
if a user is required to look at or change the DMA area after a pdiag_dd_dma_setup() routine. This
routine works only if pdiag_dd_dma_setup() is called with dma_flags = DMA_NOHIDE.

This routine is required only if the user wants to read the data before doing pdiag_dd_dma_complete().

Where bus type = BUS_MICRO_CHANNEL or BUS_BID and operation is PDIAG_DMA_DISABLE

• The DMA channel for that handle is disabled.

Where bus type = BUS_MICRO_CHANNEL or BUS_BID and operation is PDIAG_DMA_ENABLE

• The DMA channel for that handle is enabled.

Execution Environment

The pdiag_dd_dma_enable() function can be called from the process or the interrupt environment on a
BUS_MICRO_CHANNEL system. The function can only be called from the process environment on a
BUS_BID system.

Parameters

Parameter Description

handle Points to pdiag_info_handle_t structure which is returned from pdiag_open ().

daddr Pointer to the user's physical DMA address. This is returned by
pdiag_dd_dma_setup() routine.

operation Type of operation to perform:

PDIAG_DMA_ENABLE PDIAG_DMA_DISABLE PDIAG_DMA_FLUSH

Return Value

The pdiag_dd_dma_enable function returns one of the following values:

90 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Return Value Description

DGX_OK The operation was successful. The errno is not set.

DGX_INVALID_HANDLE Specified handle has been closed or was not generated by the
pdiag_open() call. The errno is not set.

DGX_BADVAL_FAIL Specified daddr is not valid. The errno is not set.

DGX_FAIL Application could not transfer data between the processor and
the I/O controller (IOCC) data caches. The errno is set to the
d_cflush or d_bflush return code.

Related reference
pdiag_dd_dma_complete
pdiag_dd_dma_setup
pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode
The pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode() function writes any number of
locations in the hardware and sleeps until a desired number of interrupts occur or a timeout occurs. The
timeout occurs if any of the expected interrupts does not occur within the timeout time for that interrupt.

pdiag_shared_slot

Purpose

Finds all devices that share a slot with the requested device.

Syntax

#include <sys/pdiag_def.h>
int32 pdiag_shared_slot (char *device_instance)

Description

The pdiag_shared_slot subroutine finds the siblings of a device and then attempts to determine which
siblings are on the same slot. Under some circumstances this function may return more devices sharing a
slot than physically exist. This function will always return the device instance at the front of the list, if
there are no other devices sharing the slot, the function will return a pointer to the device instance.

Note: This subroutine function will return adapters that are in available and in defined state. It is the
responsibility of the calling application to determine if any of the adapters have been removed from the
system.

Parameters

Parameter Description

device_instance Name of device under test.

Return Value

The pdiag_shared_slot subroutine returns one of the following values:

Return Value Description

A pointer to the head of a
doubly-linked list

Successful return.

Note: The device_instance lies at the front of the list.

NULL An error occurred while finding siblings or retrieving data from the
ODM.

Related reference
pdiag_set_eeh_option

Understanding the Diagnostic Subsystem for AIX 91

pdiag_read_slot_reset

pdiag_read_slot_reset

Purpose

Queries the state of the physical reset signal to the I/O Adapter and the Enhanced Error Handling (EEH)
slot's capabilities.

Syntax

#include <sys/pdiagex_dds.h>
#include <sys/pdiag_def.h>

int32 pdiag_read_slot_reset(char *device_instance, int32 operation_type)

Description

The pdiag_read_slot_reset subroutine issues a Run-Time Abstraction service (RTAS) call to query the
state of the physical reset signal to the I/O Adapter and the EEH slot's capability.

Parameters

Parameter Description

device_instance Name of the device under test.

operation_type Integer indicating the function to be performed.
0:

Query Reset State This option returns the slot reset state, indicating if the slot
reset is activated or deactivated, and if the I/O adapter is in stopped state or
not.

1:
Query Slot Capabilities This option returns the EEH I/O Adapter capabilities,
indicating if EEH is supported or not.

Return Value

The pdiag_read_slot_reset subroutine returns one of the following values for the Query Reset State
operation:

Item Description

Return Code Description

-2 Software error

-1 Hardware error

0 Reset deactivated and I/O Adapter is not in the EEH stopped state.

1 Reset activated and I/O Adapter is not in the EEH stopped state.

2 I/O Adapter is in the EEH stopped state with the reset signal deactivated and the Load/
Store Path is disabled.

3 I/O Adapter is in the EEH stopped state with the reset signal deactivated and the Load/
Store Path is enabled.

4 I/O Adapter is permanently unavailable.

The pdiag_read_slot_reset subroutine returns one of the following values for the Query Slot Capabilities
operation:

92 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Item Description

Return Code Description

-2 Software error.

-1 Hardware error.

0 EEH not supported.

1 EEH supported.

Related reference
pdiag_set_slot_reset
pdiag_set_eeh_option
pdiag_shared_slot

pdiag_set_eeh_option

Purpose

Enables and disables the Enhanced Error Handling (EEH) option for an I/O Adapter, for systems
supporting the EEH option.

Syntax

#include <sys/pdiagex_dds.h>
#include <sys/pdiag_def.h>

int32 pdiag_set_eeh_option(char *device_instance, int32 operation_type)

Description

The pdiag_set_eeh_option subroutine issues Run-Time Abstraction Services (RTAS) calls to enable and
disable the EEH option for an I/O Adapter.

Parameters

Parameter Description

device_instance Name of the device under test.

operation_type Integer indicating the function to be performed. Supported operations:
0:

Disable EEH option: This operation disables the EEH option for the
selected I/O Adapter (freeze function is disabled). An error is reported if
the EEH function is not supported.

1:
Enable EEH option: This operation enables the EEH option for the selected
I/O Adapter (freeze function enabled). An error is reported if the EEH
function is not supported.

Return Value

The pdiag_set_eeh_option subroutine returns one of the following values:

Return Code Description

-2 A software error occurred.

-1 A hardware error occurred.

0 The operation was successful.

Understanding the Diagnostic Subsystem for AIX 93

Related reference
pdiag_read_slot_reset
pdiag_set_slot_reset
pdiag_shared_slot

pdiag_set_slot_reset

Purpose

Activates and deactivates the physical reset signal to the I/O adapter for systems supporting the
Enhanced Error Handling (EEH) option.

Syntax

#include <sys/pdiagex_dds.h>
#include <sys/pdiag_def.h>

int32 pdiag_set_slot_reset(char *device_instance)

Description

The pdiag_set_slot_reset subroutine resets a single PCI slot by activating and deactivating the slot
specific physical reset signal line to the I/O adapter by issuing a Run-Time Abstraction Service (RTAS) call.
All required timing parameters will be handled by this subroutine (such as the 100 millisecond minimum
reset signal active time for PCI bus).

Parameters

Parameter Description

device_instance Name of the device under test.

Return Value

The pdiag_set_slot_reset subroutine returns one of the following values:

Return Code Description

-2 A software error occurred.

-1 A hardware error occurred.

0 The operation was successful.

Related reference
pdiag_read_slot_reset
pdiag_set_eeh_option

Data dictionary

This section provides information on the data structures and kernel services used by the Diagnostic
Kernel Extension PDIAGEX.

• PDIAGEX Data Structures
• Kernel Services
• Programmed I/O Services

PDIAGEX data structures

This section describes the data structures used by PDIAGEX.

94 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

pdiagex_dds_t

The pdiagex_dds_t structure defines the device driver structure (dds) for PDIAGEX. The pdiagex_dds_t
structure must be initialized with attributes for the resource before calling pdiag_open(). The
pdiagex_dds_t structure is defined in /usr/include/sys/pdiagex_dds.h and contains the following fields:

/*--*/
/* PDIAGEX_DDS_T
/* This structure MUST be filled in by the Calling Application (TU)
/* This structure is passed to pdiagex in the pdiag_open() routine
/*--*/
typedef struct {
 uint32 slot_num; /* slot number of adapter

 /* BUS DATA */
 uint32 bus_id; /* Identifies the I/O bus that the DMA
 /* channel is to be allocated on.
 uint32 bus_type; /* BUS_MICRO_CHANNEL, BUS_60X or BUS_BID
 uint32 bus_io_addr; /* Base address of Bus I/O area
 uint32 bus_io_length; /* Length (width) of Bus I/O area
 uint32 bus_mem_addr; /* Base address of Shared Bus Memory area
 uint32 bus_mem_length; /* Length (width) of Shared Bus Memory area

 /* DMA /
 /* Next three are for BUS_MICRO_CHANNEL devices only */
 uint32 dma_bus_mem; /* Base address of Bus Memory DMA area
 uint32 dma_bus_length; /* Length (multiple of PAGESIZE) of BUS
 /* Memory DMA area in bytes.
 uint32 dma_lvl; /* Bus arbitration level

 uint32 maxmaster; /* maximum number of concurrent
 /* dma_master calls
 uint32 dma_flags; /* DMA flags as defined in sys/dma.h.
 /* These flags describe what actions to
 /* take (master/slave, initialize the
 /* channel, etc. Not used by 60X type devices)

 /* dma_bus_flags is for BUS_BID devices only */
 uint32 dma_bus_flags; /* Bus flags specific for DMA operation

 uint32 dma_chan_id; /* For BUS_MICRO_CHANNEL
 /* Dma channel ID is returned as a result
 /* of the DMA initialization.
 /* For BUS_BID
 /* Dma channel ID is the assigned DMA
 /* channel for the device.
 /* For BUS_60X
 /* Dma channel ID is not used

 /* Interrupt Handler */
 pdiag_addr_t data_ptr; /* Pointer for passing data to interrupt
 uint32 d_count; /* Count of bytes of data for interrupt
 uint32 bus_intr_lvl; /* Interrupt level
 uint32 intr_priority; /* Interrupt priority
 uint32 intr_flags; /* Interrupt flags as defined in intr.h

 /* Attribute Expansion Area */
 pdiag_addr_t attributes; /* Pointer to specific attributes

 }pdiagex_dds_t;

pdiagex_opflags_t

The pdiagex_opflags_t structure defines the device operations to be used. The pdiagex_opflags_t
structure is defined in /usr/include/sys/pdiagex_dds.h and consists of the following:

/*--*/
/* PDIAGEX_OPFLAGS_T
/* This structure MUST be filled in by the Calling Application (TU)
/* This structure is used for Read and Write Operations
/*--*/
typedef struct {
 uint32 memio; /* Type of Memory Operation
 /*PDIAG_MEM_OP,PDIAG_IO_OP,PDIAG_POS_OP
 uint32 count; /* Number of accesses to perform
 uint32 addr_incr_flag; /* Flag that determines whether the data

Understanding the Diagnostic Subsystem for AIX 95

 /* buffer address and/or the offset
 /* address gets incremented on each of
 /* count accesses.
 /* PDIAG_SING_LOC_ACC or
 /* PDIAG_SING_LOC_HW or
 /* PDIAG_SING_LOC_BUF or
 /* PDIAG_MULT_LOC_ACC
 uint32 intr_level; /* Indicates which environment the
 /* calling application is in.
 /* PROCLEV or INTRKMEM or INTRPMEM
 struct timestruc_t *times; /* Address of times structure, NULL if
 /* not used.
} pdiagex_opflags_t;

dma_struct

The dma_struct structure defines the DMA structure used by PDIAGEX. The dma_struct structure is
defined in /usr/include/sys/pdiagex_sys.h and contains the following fields:

typedef struct dmast {
 struct dmast *next;
 int firsttcw;
 /* first TCW used (micro channel only) */
 int last_tcw;
 /* last TCW used (micro channel only) */
 int dma_flags;
 /* see /usr/include/sys/dma.h */
 uchar *baddr;
 /* address of the host buffer to DMA to/from */
 uchar *daddr;
 /*Phys addr in DMAbus_mem, from
 diag_dma_master()*/
 uint count;
 /* size of the DMA data in bytes */
 struct xmem dp;
 /* Cross Memory descriptor of baddr */
 char pinned;
 /* NonZero if DMA buffer was pinned */
 char xmattached;
 /* NonZero if DMA buffer was CrossMemAttached */
 char in_use;
 /* TRUE if this linked list member is valid */
 } dma_info_t;

Parameter Description

next Pointer to the next dma_info_t structure in an 'in_use' list.

firsttcw (Micro Channel devices Only) first page of pdiagex_dds_t.dma_bus_mem used by an active DMA master/slave operation.

last_tcw (Micro Channel devices Only) last page of pdiagex_dds_t.dma_bus_mem used by an active DMA master/slave operation.

dma_flags DMA flags as defined in <sys/dma.h>. These flags describe what actions to take (such as, master/slave transfer, initialize the
DMA channel, and so on).

*baddr Address of memory buffer for transfer.

*daddr Address used to program the DMA master.

count Size (in bytes) of the DMA transfer.

dp Address of cross-memory descriptor.

pinned Nonzero if DMA buffer was pinned.

xmattached Nonzero if DMA buffer was cross-memory attached.

in_use Flag for determining if DMA buffer is valid for transfer.

aioo_struct_t

The AIOO_STRUCT_T structure defines the allocations, initializations, and outstanding operations for
each handle. This provides a mechanism for error-recovery cleanup, cleanup of outstanding operations
during a close, and general protection from the application. Common code may also be used for cleanup
operations.

/* Allocation/Initialization/OutstandingOperations Binary Flags Structure */

96 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 typedef struct {
 uint AllocIntrptDataMem : 1;
 uint AllocDmaAreaMem : 1;
 uint CopyDDS : 1;
 uint CopyIntrptEnt : 1;
 uint PinIntrptFunct : 1;
 uint PinUIntrptData : 1;
 uint PinDiagExt : 1;
 uint InitIntrptChan : 1;
 uint InitDmaChan : 1;
 uint XmatUIntrptData : 1;
 } aioo_struct_t;

Parameter Description

AllocIntrptDataMem Nonzero if Interrupt data area allocated.

AllocDmaAreaMem Nonzero if DMA data area allocated.

CopyDDS Nonzero if DDS data was copied to handle.

CopyIntrptEnt Nonzero if Intrpt function was in Kernel.

PinIntrptFunct Nonzero if Intrpt function was pinned.

PinUIntrptData Nonzero if Intrpt data area was pinned.

PinDiagExt Nonzero if Pinned PDIAGEX Extension.

InitIntrptChan Nonzero if Intrpt channel was initialized.

InitDmaChan Nonzero if DMA channel was initialized.

XmatUIntrptData Nonzero if Intrpt data area was XMattached.

diag_struc_t

The diag_struc_t structure defines the complete data structure returned in the handle for the
pdiag_open() call. This structure holds all the needed information for all the other PDIAGEX function
calls.

typedef struct handl {
 struct intr intr;
 struct handl *next;
 int (*intr_func)();
 uchar *intr_data;>
 struct xmem udata_dp;
 diagex_dds_t dds;
 struct timestruc_t itime;
 struct timestruc_t ntime;
 dma_info_t *dma_info;
 aioo_struct_t aioo;
 char *scratch_pad;
 uint sleep_flag;
 uint sleep_word;
 uint flag_word;
 struct watchdog wdt;
 struct d_handle * dhandle;
 dma_dio * dio_st;
 uint timeout;
 } diag_struc_t;

Parameter Description

intr Interrupt handler structure as defined in <sys/intr.h>. Needs to be first
parameter in diag_struc_t.

(*intr_func)() Pointer to user's interrupt handler.

*intr_data Pointer to interrupt data.

udata_dp Address of cross-memory descriptor for interrupt data.

Understanding the Diagnostic Subsystem for AIX 97

Parameter Description

dds Structure that contains the device driver structure (dds) information for
PDIAGEX. See the diagex_dds structure defined above.

itime Time elapsed for interrupts. Updated at interrupts.

ntime Time elapsed for read or write operations. Updated at reads or writes.

*dma_info Pointer to dma_info_t structure which allows multiple DMA operations. See the
dma_info_t structure defined above.

aioo Set of flags for Allocations, Initializations, and Outstanding Operations.

scratch_pad PIO scratch pad for large transfers.

sleep_flag pdiag_dd_watch_for_interrupt() sets this flag to TRUE if it is sleeping and
waiting for the application's interrupt handler to call
pdiag_dd_interrupt_notify(). This flag is initialized to FALSE and will be set to
FALSE after pdiag_dd_watch_for_interrupt() wakes up.

>The application's interrupt handler should use this word to determine whether
to 'wakeup' pdiag_dd_watch_for_interrupt(). This flag should not be modified
by the application's interrupt handler.

sleep_word pdiag_dd_watch_for_interrupt() sleeps on this word until the application's
interrupt handler calls pdiag_dd_interrupt_notify() using this word.

This word should not be modified by the application's interrupt handler.

flag_word This flag is defined by the application and should be set by the application's
interrupt handler to specify certain interrupt conditions. The application may
call pdiag_dd_watch_for_interrupt(), specifying a flag_mask which will be
bitwise ANDed with this flag_word. When this AND operation produces a
nonzero result and pdiag_dd_watch_for_interrupt() is awake,
pdiag_dd_watch_for_interrupt() will return.

wdt This is the watchdog timer used by the timeout function.

dhandle Structure returned by D_MAP_INIT macro which is called in the pdiag_open()
function. This handle is used to issue DMA operations to rspc type systems.

dio_st Pointer to a DIO structure used in DMA operations.

timeout True if watchdog timer expired.

kick_io_t

kick_io_t is used to pass kick I/O operation information to
thepdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode() call.

typedef struct
{
 uint32 kick_type; /* Size of the transfer.
 * Use IOCHAR8, IOSHORT16, or IOLONG32.
 */
 uint32 memio; /* Indicates IO or memory map space.
 * Must be PDIAG_IO_OP or PDIAG_MEM_OP.
 */
 uint32 offset; /* Offset in bytes from card base address.
 */
 uint32 data; /* Right justified data to write.
 * If IOCHAR8, then use 000000XX,
 * if IOSHORT16, then use 0000XXXX,
 * if IOLONG32, then use XXXXXXXX.
 */
} kick_io_t;

98 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Kernel services

The following is a list of Kernel Services used by PDIAGEX.

Kernel Service Description

copyin Copies data between user and kernel memory.

copyout Copies data from kernel to user memory.

curtime Read the current time into timestruc_t structure.

d_bflush Flushes the appropriate I/O controller cache (IOCC), identified by the TCE bus
address parameter, on memory-inconsistent platforms.

d_cflush Flushes the processor data cache and invalidates any prefetched data that may be
in the IOCC buffers on memory-inconsistent platforms.

e_sleep Causes process to sleep.

e_wakeup Wakes up sleeping process.

i_clear Removes an interrupt handler.

i_disable Disables interrupt priorities.

i_enable Enables interrupt priorities.

i_init Defines an interrupt handler.

io_att Selects, allocates, and maps a region in the current address space for I/O access.

io_det Unmaps and deallocates the region in the current address space at the given
address.

kmod_entrypt Returns a function pointer to a kernel module's entry point.

pincode Pins the code and data associated with an object file.

pinu Pins the specified address range in user or system memory.

unpincode Unpins the code and data associated with an object file.

unpinu Unpins the specified address range in user or system memory.

xmalloc Allocates memory.

xmattach Attaches to a user buffer for cross-memory operations.

xmdetach Detaches from a user buffer used for cross-memory operations.

xmemdma Prepares a page of memory for DMA (used with BUS_60X only).

xmemin Copies data to kernel space from a cross-memory attached buffer.

xmemout Copies data from kernel space to a cross-memory attached buffer.

xmfree Frees allocated memory.

Programmed I/O services

The following is a list of Programmed I/O (PIO) macros used by PDIAGEX.

Macro Description

BUS_GETCX Reads the specified character value from the supplied bus memory, bus I/O, or POS
address with built-in exception catching.

BUS_GETLX Reads the specified long value from the supplied bus memory, bus I/O, or POS address
with built-in exception catching.

BUS_GETSX Reads the specified short value from the supplied bus memory, bus I/O, or POS address
with built-in exception catching.

Understanding the Diagnostic Subsystem for AIX 99

Macro Description

BUS_PUTCX Writes the specified character value to the supplied bus memory, bus I/O, or POS
address with built-in exception catching.

BUS_PUTLX Writes the specified long value to the supplied bus memory, bus I/O, or POS address
with built-in exception catching.

BUS_PUTSX Writes the specified short value to the supplied bus memory, bus I/O, or POS address
with built-in exception catching.

The following is a list of Programmed I/O (PIO) macros used by the 64 bit PDIAGEX.

Macro Description

BUS_GETSTR Reads the specified character value from the supplied bus memory.

BUSIO_GETSTR Reads the specified character value from the supplied bus I/O.

BUS_GETS Reads the specified short value from the supplied bus memory.

BUSIO_GETS Reads the specified short value from the supplied bus I/O.

BUS_GETL Reads the specified long (32 bits) value from the supplied bus memory.

BUSIO_GETL Reads the specified long (32 bits) value from the supplied bus I/O.

BUS_PUTSTR Writes the specified character value to the supplied bus memory.

BUSIO_PUTSTR Writes the specified character value to the supplied bus I/O.

BUS_PUTS Writes the specified short value to the supplied bus memory.

BUSIO_PUTS Writes the specified short value to the supplied bus I/O.

BUS_PUTL Writes the specified long (32 bits) value to the supplied bus memory.

BUSIO_PUTL Writes the specified long (32 bits) value to the supplied bus I/O.

Diagnostic library
This section provides information on application programming interfaces to administrative and user
applications. The calls described are contained in the /usr/lib/libdiag.a diagnostic library.

The following is a list of exported programming interfaces available for user applications:

• Diagnostic Event Log Functions
• Diagnostic Event Log Data Structures

This section provides information on application programming interfaces to the Diagnostic Applications.
The calls described are contained in the /usr/lib/libdiag.a diagnostic library.

The following is a list of all the exported programming interfaces available:

• ODM Object Class Functions
• Device Configuration
• FRU Bucket Functions
• Catalog File Functions
• Menu Functions
• Device Attributes, Properties
• Diagnostic Event Log Functions
• Miscellaneous

The following functions are described in detail:

100 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

dlog_numMatches subroutine

Purpose

Count the number of diagnostic event log for entries matching an input criteria.

Syntax

#include <diag/diag_log.h>
int dlog_numMatches(query_log *criteria)

Description

The dlog_numMatches subroutine counts the number of diagnostic event log entries matching an input
criteria.

Parameters

Item Description

criteria Criteria used to search the diagnostic even t log. Unused fields must be set
to 0.

matches Count of the number of entries matching the input criteria.

Return Value

The dlog_numMatches subroutine returns one of the following values:

Item Description

0 If successful

-1 The diagnostic event log could not be opened

-2 An error occurs reading from the diagnostic event log

-3 The search criteria is invalid

-4 Memory could not be allocated

-5 An error occurred due to too many matches.

dlog_query subroutine

Purpose

Query the diagnostic event log for entries matching an input criteria.

Syntax

#include <diag/diag_log.h>
int dlog_query(query_log *criteria, query_results *results)

Description

The dlog_query subroutine queries the diagnostic event log for entries matching an input criteria.

Parameters

Item Description

criteria Criteria used to search the diagnostic event log. Unused fields must be set to
0.

results Structure containing a pointer to a list of entries matching the input
criteria.Entries are returned sorted by diagnostic event log sequence number
(highest first).

Understanding the Diagnostic Subsystem for AIX 101

Return Value

The dlog_query subroutine returns one of the following values:

Item Description

0 If successful

-1 The diagnostic event log could not be opened

-2 An error occurs reading from the diagnostic event log

-3 The search criteria is invalid

-4 Memory could not be allocated

dlog_query_cleanup subroutine

Purpose

Free memory allocated during a diagnostic event log query.

Syntax

#include <diag/diag_log.h>
int dlog_query_cleanup(query_results *results)

Description

The dlog_query_cleanup subroutine reclaims memory allocated during calls to dlog_query.

Parameters

Item Description

results Structure containing a pointer to a list of entries matching the input criteria.

Return Value

The dlog_query_cleanup subroutine returns one of the following values:

Item Description

0 If successful

-1 If unsuccessful

dl_fru_src structure

The dl_fru_src structure is used with the dl_srn_src. This structure defines a list of FRUs or
Procedures needed to resolve the failure.

The dl_fru_src structure is defined in diag_log.h, as:

typedef struct _log_fru_src {
 int type;
 char priority[2];
 char loc[RPA_LOC_SIZE];
 char frupn[RPA_FRU_PN_SIZE];
 char frusn[RPA_FRU_SN_SIZE_NN];
 char ccin[RPA_CCIN_SIZE_NN];
 char proc_id[RPA_PROC_SIZE];
 struct _log_fru_src *nextfru;
} dl_fru_src;

102 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Item Description

type FRU type, one of the following:

 RPA_FRUTYPE_NORMAL - normal Hardware FRU.
 RPA_FRUTYPE_CODE - code FRU described by procedure id field.
 RPA_FRUTYPE_C_PROC - configuration procedure required.
 RPA_FRUTYPE_M_PROC - maintainence procedure required.
 RPA_FRUTYPE_EXT - external FRU.
 RPA_FRUTYPE_EXT_CODE - external code FRU described by procedure d field
 RPA_FRUTYPE_TOOL - a tool required by another FRU in the list.
 RPA_FRUTYPE_SYMBOL - procedure id for acquiring or working with a FRU.

priority FRU Replacement/Procedure Priority, one of the following:

H
High priority and mandatory call-out. Replacing the FRU, or performing the Procedure is manadatory. Multiple call-outs with "H"
priority should be acted on as a group.

M
Medium priority. Each FRU/Procedure with "M" priority are should be acted on, one at a time, in the order given.

A
Medium priority group A. Each FRU/Procedure with "A" priority are should be acted on as a group.

B
Medium priority group B. Each FRU/Procedure with "B" priority are should be acted on as a group.

C
Medium priority group C. Each FRU/Procedure with "C" priority are should be acted on as a group.

L
Low priority. Each FRU/Procedure with "L" priority should be acted on only after all other priority call-outs failed to resolve the
problem.

loc Location code of the FRU

frupn FRU Part Number if available

frusn FRU Serial Number if available

ccin CCIN if available

proc_id Procedure Id if available. Mutually exclusive with frupn.

next_fru Pointer to next FRU

dl_partition structure

The dl_partition structure is contained within the query_output structure. The dl_partition structure is
defined in diag_log.h.

The dl_partition structure is defined as:

typedef struct _log_partition {
 int version;
 short callHomeFlg;
 int strSize;
 char *name;
 char *id;
 char *hostname;
 char *typeModel;
 char *sn;
 char *dev_typeModel;
 char *dev_sn;
}dl_partition;

Item Description

version Reserved for diagnostic use.

callHomeFlg Reserved for diagnostic use.

strSize Combined length of all the following strings.

name Partition name.

id Partition id.

hostname The hostname of the system taken from uname -n.

typeModel Machine type and model.

sn Machine serial number.

Understanding the Diagnostic Subsystem for AIX 103

Item Description

dev_typeModel Failing device's type and model.

dev_sn Failing device's serial number.

dl_menugoal structure

The dl_menugoal structure is contained within the query_output structure. The dl_menugoal structure
is defined in diag_log.h.

The query_fru structure is defined as:

typedef struct _log_menugoal {
 char *id;
 char *text;
}dl_menugoal;

Item Description

id Six digit menu number.

text Translated menugoal text.

dl_srn structure

The dl_srn structure is contained within the query_output structure. The dl_srn structure is defined in
diag_log.h.

The dl_srn structure is defined as:

typedef struct _log_srn {
 char *name;
 char *srn;
 char *errorText;
 query_fru *frus;
}dl_srn;

Item Description

name SRN's device name.

srn The Service Request Number.

errorText SRN's translated description text.

frus Pointer to the SRN's FRU list.

dl_srn_src structure

The dl_srn_src structure is contained within the query_output structure. The dl_srn_src structure
is defined in the diag_log.h header file.

The dl_srn_src structure is defined as:

typedef struct _log_srn_src {
 char name[NAME_SIZE];
 char src[MAX_SRC_SIZE];
 char *errorText;
 dl_descText frubDesc;
 dl_fru_src *frus;
 char crid[2];
 unsigned int plid;
 unsigned int action_flags;
 unsigned int subsysid;
 unsigned int event_sev;
 unsigned int refc2;
 unsigned int refc3;
 unsigned int refc4;
 unsigned int refc5;

104 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 unsigned int refc6;
 unsigned int refc7;
 unsigned int refc8;
 unsigned int refc9;
} dl_srn_src;

Item Description

name Device Name that detected the error.

errorText Translated description of the failure.

frubDesc Structure containing the source data for the message pointed to by errorText.

typedef struct _log_descText {
 char catName[NAME_SIZE];
 short set;
 short msg;
} dl_descText;

catName
The message catalog file name.

set
The set id of the message.

msg
The message id of the message.

frus Pointer to the SRC's FRU list. See the description of dl_fru_src.

crid Platform error log creator id.

plid Platform Log Id.

action_flags Reporting action for this failure. This is stored as a hex value. The following macros are defined in diag_log.h to decode
action_flags:

 IS_REPORT_EXTERNALLY(action_flags)
 Returns 1 if the failure should be reported to to external
 programs, like the Service Focal Point.
 IS_CALL_HOME_REQD(action_flags)
 Returns 1 if the failure should be reported automatically
 to IBM Service.

subsysid Platform subsystem identifier value. The values are:

 0x10-0x1F Processor subsystem
 0x20-0x2F Memory subsystem
 0x30-0x3F I/O subsystem
 0x40-0x4F I/O adapter, device and peripheral
 0x50-0x5F CEC Hardware
 0x60-0x6F Power/Cooling subsystem
 0x70-0x79 Other subsystem
 0x7A-0x7F Surveillance Error
 0x80-0x8F Platform Error
 0x90-0x9F Software
 0xA0-0xAF External environment
 0xB0-0xFF Reserved

event_sev Platform event severity value.

 0x10 Recovered error
 0x20 Predictive error, general
 0x21 Predictive error, degraded performance
 0x22 Predictive error, fault may be corrected after
 platform re-IPL
 0x23 Predictive error, fault may be corrected after
 IPL, degraded performance
 0x24 Predictive error, loss of redundancy
 0x40 Unrecovered error, general
 0x41 Unrecovered error, bypassed with degraded performance
 0x44 Unrecovered error, bypassed with loss of redundancy
 0x45 Unrecovered error, bypassed with loss of redundancy
 and performance
 0x48 Unrecovered error, bypassed with loss of function
 0x60 Error on diagnostic test, general
 0x61 Error on diagnostic test, resource may produce
 incorrect results

refc2 - refc9 Extended reference code values.

Understanding the Diagnostic Subsystem for AIX 105

query_fru structure

The query_fru structure is contained within the dl_srn structure. The query_fru structure is defined in
diag_log.h.

The query_fru structure is defined as:

typedef struct _log_query_fru {
 char *name;
 int locSize;
 char *locCode;
 char *partNumber;
 char *fruDesc;
 struct _log_query_fru *nextfru;
}query_fru;

Item Description

name The name of the Field Replacable Unit.

locSize The size of the location code string.

locCode The location code of the FRU (logical or physical).

partNumber The FRU's part number.

fruDesc The FRU's translated description text.

nextfru A pointer to the next FRU in the list. If this is the last FRU, then the pointer is
NULL.

query_log structure

The query_log structure is passed into dlog_query and dlog_numMatches to search the diagnostic event
log for entries matching an input criteria. The calling application is responsible for allocating memory for
the query_log structure and for inputting valid search criteria into the structure. This structure is defined
in diag_log.h.

The query_log structure is defined as:

typedef struct _log_query_crit {
 char *pathname; /*Path of diagnostic event log file to search*/
 char type; /*Request entries matching a log template*/
 char identifier[5]; /*Request entries matching identifier*/
 char *name; /*Request entries matching Resource Name*/
 unsigned int session; /*Request entries matching Diag Session's PID*/
 char *location; /*Pointer to logical or physical location code*/
 unsigned int firstSeqNum; /*Request entries with this sequence number or
 higher*/
 unsigned int lastSeqNum; /*Request entries with this sequence number or
 lower*/
 unsigned int el_identifier; /*Request entries matching this error log
 identifier*/
 unsigned int elSeqFirst; /*Request entires with this error log sequence
 number or higher*/
 unsigned int elSeqLast; /*Request entries with this error log
 sequence number or lower*/
 unsigned int numDays; /*Request entries x number of days backward or
 forward*/
 struct tm *startDate; /*Request entries after this date*/
 struct tm *endDate; /*Request entries before this date*/
 char *srn; /*Request entries matching this SRN*/
 char *mgoal; /*Request entries matching this menugoal*/
 unsigned int maxEntries; /*Maximum number of entries to return*/
 char *src; /*Request entries matching this SRC*/
 unsigned int openEvents; /*Request only entries newer than the last
 repair action for a given resource. */
 char reserved[100-(sizeof(char*))-(sizeof(unsigned int))];
 /*Reserved for future use*/
} query_log;

106 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Item Description

pathname Path of the diagnostic event log to search. The default path is searched if no path is provided.

type Specifies entries matching a type of log template. I, S, N, E, and X are the valid values for type.

identifier Specifies entries matching a diagnostic event log identifier.

name Specifies entries matching a resource name. This field can be fully or partially qualified. For example, when name is ent*, entries logged against devices
beginning with ent will be returned.

session Specifies entries containing a process ID of a diagnostic session.

location Specifies entries containing a location code.

firstSeqNum Specifies entries with this diagnostic event log sequence number or higher.

lastSeqNum Specifies entries with this diagnostic event log sequence number or lower. When searching on a single sequence number use only firstSeqNum.

el_identifier Specifies entries with this AIX error log identifier.

elSeqFirst Specifies entries with this AIX error log sequence number or higher.

elSeqLast Specifies entries with this AIX error log sequence number or lower. When searching on a single error log sequence number use elSeqFirst only.

numDays Searches the diagnostic event log for entries logged this number of days before endDate, or this number of days after startDate, or this number of days before
the current date and time. Valid with either startDate or endDate.

startDate Searches the diagnostic event log for entries logged after this date and time. Valid with either numDays or endDate.

srn Searches the diagnostic event log for entries matching this Service Request Number. This field can be fully or partially qualified. For example, when srn is
651*, entries containing Service Request Number starting with 651 will be returned.

mgoal Searches the diagnostic event log for entries matching this menugoal. This field can be fully or partially qualified. For example, when mgoal is 651*, entries
containing menugoals with a menu number starting with 651 will be returned.

endDate Searches the diagnostic event log for entries logged before this date and time. Valid with either numDays or startDate.

maxEntries Specifies a maximum number of entries to return. Entries with higher diagnostic event log sequence numbers have a higher priority to be returned. If
maxEntries is 0, then all matching entries are returned.

src The diagnostic event log is searched for entries matching this system reference code (SRC). This field can be fully or partially qualified. For example, when src
is BF0*, entries with SRCs beginning with BF0 will be returned.

openEvents The diagnostic event log is searched for matching entries and that are newer than the last repair action for a given resource. The name field, without wild
cards, must also be specified in the query.

reserved Reserved for future use.

query_output structure

The query_output structure contains information about individual diagnostic event log entries matching
the criteria specified by the query_log structure. These structures are contained within the query_results
structure returned by dlog_query. Some entries may not contain information for some of the fields within
query_output. The query_output structure is defined in diag_log.h.

The query_output structure is:

typedef struct _log_query_output {
 char type;
 char identifier[5];
 unsigned int el_identifier;
 char *timestamp;
 unsigned int seqNum;
 unsigned int el_seqNum;
 unsigned int session;
 unsigned int testMode;
 char *name;
 char *location;
 dl_srn *srn;
 dl_menugoal *mgoal;
 dl_partition *partition;
 dl_srn_src *srn_src;
 char reserved[100-(sizeof (dl_srn_src *))];
} query_output;

Item Description

type Type of log template used to create the entry. I, S, N, E, and X are the valid values
for type.

identifier Identifier of the diagnostic event log entry.

timestamp Formatted string of the time at which the diagnostic event log entry was logged.

Understanding the Diagnostic Subsystem for AIX 107

Item Description

seqNum Sequence number for the diagnostic event log entry.

el_seqNum AIX error log sequence number. The diagnostic event log entry may not be tied to
an AIX error log entry.

session Process id of the diagnostic session that created the entry.

testMode Diagnostics test mode. This is stored as a hex value. The following macros are
defined in diag_log.h to decode testMode:
IS_CONSOLE_MODE(testMode)

Returns 1 when the diagnostic event was in console mode (No-console mode
otherwise)

IS_ADVANCE_MODE(testMode)
Returns 1 when the diagnostic event was caused while running advanced
diagnostics (Customer diagnostics otherwise)

IS_NORMAL_BOOT(testMode)
Returns 1 when the diagnostics booted normally (Service Boot otherwise)

IS_NETWORK_BOOT(testMode)
Returns 1 when the diagnostics booted from the network

IS_ELA_MODE(testMode)
Returns 1 when the diagnostic event performed error log analysis only

IS_PD_MODE(testMode)
Returns 1 when the diagnostic event performed Problem Determination
(System Verification otherwise)

IS_SYSTEM_CHECK(testMode)
Returns 1 when the diagnostic event performed System Checkout (Option
Checkout otherwise)

IS_LOOP_MODE(testMode)
Returns 1 when the diagnostic event was in loop mode

IS_PRETEST_MODE(testMode)
Returns 1 when the diagnostic event performed a pretest

IS_MISSING_MODE(testMode)
Returns 1 when the diagnostic event was caused by Missing Options
Resolution

IS_NEW_MODE(testMode)
Returns 1 when the diagnostic event was caused while testing new devices

name Name of the resource the entry was logged against.

location Location code for the resource the entry was logged against.

srn Pointer to SRN information. The pointer will be NULL when there is not an SRN.

mgoal Pointer to menugoal information. The pointer will be NULL when there is not a
menugoal.

partition Pointer to partition information. The pointer will be NULL when there is no
partition information.

reserved Reserved for future use.

query_results structure

The query_results structure is returned by dlog_query. This structure contains the number of entries
matching the search criteria and a pointer to the entries matching the search criteria. The calling
application is responsible for allocating memory for the query_results structure. This structure is defined
in diag_log.h.

108 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

The query_results structure is defined as:

typedef struct _log_query_results {
 unsigned int numEntries;
 query_output **entryArray;
}query_results;

Item Description

numEntries Number of entries matching the search criteria.

entryArray Pointer to the entries matching the search criteria.

diag_add_obj

Purpose

Adds a new object into an object class.

Syntax

#include <diag/diagodm.h>
#include <sys/cfgodm.h>
#include <diag/DiagODM.h>

void diag_add_obj (
 void *classp,
 void *p_obj)

Description

The diag_add_obj subroutine takes as input the class symbol that identifies the object class to change
and a pointer to the data structure that contains the object to be added.

Note: init_dgodm must be called before starting this subroutine.

Parameters

Parameter Description

classp A class symbol identifier returned from a diag_open_class subroutine. If the
diag_open_class subroutine has not been called, this is the structure name of the
class normally defined in either diag/diagodm.h file, diag/DiagODM.h file or sys/
cfgodm.h file.

p_obj Pointer to an instance of the structure corresponding to the object class referenced
by the classp parameter.

Return Value

Upon successful completion, a value of 0 is returned. If the subroutine fails, a -1 is returned.

diag_change_obj

Purpose

Changes an object in the object class.

Syntax

#include <diag/diagodm.h>
#include <sys/cfgodm.h>
#include <diag/DiagODM.h>

void diag_change_obj (
 void *classp,

Understanding the Diagnostic Subsystem for AIX 109

 void *p_obj)

Description

The diag_change_obj subroutine takes, as input, the class symbol that identifies the object class to add
to and a pointer to the data structure that contains the object to be changed. The application must first
retrieve the object with a diag_get_list subroutine call, change the data values in the returned structure,
and then pass that structure to the diag_change_obj subroutine.

Note: init_dgodm must be called before starting this subroutine.

Parameters

Parameter Description

classp A class symbol identifier returned from a diag_open_class subroutine. If the
diag_open_class subroutine has not been called, then this is the structure name
of the class normally defined in either the diag/diagodm.h file, diag/DiagODM.h
file, or sys/cfgodm.h file.

p_obj Pointer to an instance of the structure corresponding to the object class
referenced by the classp parameter.

Return Value

Upon successful completion, a value of 0 is returned. If the subroutine fails, a -1 is returned.

diag_close_class

Purpose

Closes an object class.

Syntax

#include <diag/diagodm.h>
#include <sys/cfgodm.h>
#include <diag/DiagODM.h>

int diag_close_class (
 void *classp)

Description

The diag_close_class subroutine can be called to close an object class.

Note: init_dgodm must be called before starting this subroutine.

Parameters

Parameter Description

classp A class symbol identifier returned from a diag_open_class subroutine. If the
diag_open_class subroutine has not been called, then this is the structure name of
the class normally defined in either the diag/diagodm.h file, diag/DiagODM.h file,
or sys/cfgodm.h file.

Return Value

Upon successful completion, a value of 0 is returned. If the subroutine fails, a -1 is returned.

diag_free_list

Purpose

Frees memory previously allocated for a diag_get_list subroutine.

110 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Syntax

#include <diag/diagodm.h>
#include <sys/cfgodm.h>
#include <diag/DiagODM.h>

int diag_free_list (
 void *p_obj,
 struct listinfo *info)

Description

The diag_free_list subroutine recursively frees up a tree of memory object lists that were allocated for a
diag_get_list subroutine.

Parameters

Parameter Description

p_obj Points to the array of structures returned from the diag_get_list subroutine.

info Points to the listinfo structure returned from the diag_get_list subroutine.

Return Value

Upon successful completion, a value of 0 is returned. If the subroutine fails, a -1 is returned.

diag_get_list

Purpose

Retrieves all objects in an object class that match the specified criteria.

Syntax

#include <diag/diagodm.h>
#include <sys/cfgodm.h>
#include <diag/DiagODM.h>

void * diag_get_list (
 void *classp,
 char *criteria,
 struct listinfo *info,
 int max_expect,
 int depth)

Description

The diag_get_list subroutine takes an object class and criteria as input, and returns a list of objects
that satisfy the input criteria. The subroutine opens and closes the object class around the get if the
object class was not previously opened. If the object class was previously opened, the subroutine leaves
the object class open when it returns.

Note: init_dgodm must be called before starting this subroutine.

Parameters

Parameter Description

classp Class symbol identifier returned from a diag_open_class subroutine. If the
diag_open_class subroutine has not been called, then this is the structure name
of the class normally defined in either the diag/diagodm.h file, diag/DiagODM.h
file, or sys/cfgodm.h file.

criteria String that contains the qualifying criteria for selecting objects.

info Structure containing information about the retrieval of the objects.

Understanding the Diagnostic Subsystem for AIX 111

Parameter Description

max_expect Expected number of objects to be returned. This is used to control the increments
in which storage for structures is allocated, to reduce the realloc subroutine copy
overhead.

depth Number of levels to recurse for objects with linking descriptors.

Return Value

Upon successful completion, a pointer to an array of C language structures containing the objects is
returned. If no match is found, NULL is returned. If the diag_get_list fails, a value of -1 is returned.

diag_lock

Purpose

Obtain an ODM lock for the specified file

Syntax

#include <diag/odmi.h>

int diag_lock(char *file)

Description

The diag_lock subroutine calls odm_lock() for a specified file. It waits 5 seconds if a lock cannot be
immediately granted.

Parameters

Parameter Description

file Name of the file to lock

Return Value

The diag_lock subroutine returns one of the following values:

Return Code Description

>0 If successful

0 File is already locked

-1 Error

diag_open_class

Purpose

Opens an object class.

Syntax

#include <diag/diagodm.h>
#include <sys/cfgodm.h>
#include <diag/DiagODM.h>

void *diag_open_class (
 void *classp)

Description

The diag_open_class subroutine can be called to open an object class.

Note: init_dgodm must be called before starting this subroutine.

112 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameters

Parameter Description

classp The structure name of the class normally defined in either the diag/diagodm.h
file, diag/DiagODM.h file, or sys/cfgodm.h file.

Return Value

Upon successful completion, a class symbol identifier for the object class is returned. If the subroutine
fails, a -1 is returned.

diag_rm_obj

Purpose

Deletes objects from an object class.

Syntax

#include <diag/diagodm.h>
#include <sys/cfgodm.h>
#include <diag/DiagODM.h>

void diag_rm_obj (
 void *classp,
 char *criteria)

Description

The diag_rm_obj subroutine deletes objects from an object class.

Note: init_dgodm must be called before starting this subroutine.

Parameters

Parameter Description

classp Class symbol identifier returned from a diag_open_class subroutine. If the
diag_open_class subroutine has not been called, then this is the structure name
of the class normally defined in either diag/diagodm.h file, diag/DiagODM.h file
or sys/cfgodm.h file.

criteria String containing the qualifying criteria for selecting objects to delete.

Return Value

Upon successful completion, the number of objects deleted is returned. If the subroutine fails, a -1 is
returned.

diag_unlock

Purpose

Release an ODM lock.

Syntax

#include <odmi.h>
int diag_unlock(int *id)

Description

The diag_unlock subroutine releases an odm lock.

Parameters

Understanding the Diagnostic Subsystem for AIX 113

Parameter Description

id Lock id to release

Return Value

The diag_unlock subroutine returns one of the following values:

Parameter Description

0 If successful

-1 Error occured while trying to unlock a lock

init_dgodm, term_dgodm

Purpose

Initializes or stops the Object Data Manager.

Syntax

int init_dgodm ()

int term_dgodm ()

Description

The init_dgodm subroutine issues an odm_initialize call to the Object Data Manager. This should be done
at the beginning of the Diagnostic Application (DA).

The term_dgodm subroutine issues an odm_terminate call to the Object Data Manager. This should be
done at the end of the DA.

Parameters

Takes no parameters.

Return Value

A value of 0 is always returned.

configure_device, initial_state

Purpose

Puts a device and parentage into the available state.

Restores a device and parentage to their initial state before configuration.

Syntax

#include <diag/diagodm.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int configure_device (name)
char *name;

int initial_state (state, name)
int state;
char *name;

Description

The configure_device subroutine is used to put a device into the AVAILABLE state (for testing) if the
device is presently DEFINED or STOPPED. Also the parentage of the device is checked, and their states
also put into AVAILABLE state if necessary.

114 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

The initial_state subroutine is used to restore the device and parentage back to their initial state (after
testing).

Parameters

Parameter Description

name Identifies the device.

state Indicates the previous state of the device.

Return Value

The following values are returned:

Return Value Description

DEFINED Device was previously in the DEFINED state.

AVAILABLE Device is already in the AVAILABLE state.

STOPPED Device was previously in the STOPPED state.

-1 Error configuring the device.

diagex_cfg_state

Purpose

Puts the device under test in the DIAGNOSE state.

Syntax

#include <diag/diag.h>

int diagex_cfg_state (device_name)
char *device_name;

Description

The diagex_cfg_state subroutine unconfigures the device, and its children if necessary, to set the device
into the DIAGNOSE state. Original states of all devices changed will be saved. Use diagex_initial_state to
put the changed devices back to their original states.

The global variable diag_cfg_errno will be set to the return value of the method invoked for the device.

Parameters

Parameter Description

device_name Name of the device under test.

Return Value

The diagex_cfg_state subroutine returns one of the following values:

Return Code Description

0 Successful return.

-1 Software error.

1 Child device cannot be unconfigured.

2 Device cannot be unconfigured.

3 Device cannot be put into DIAGNOSE state.

Understanding the Diagnostic Subsystem for AIX 115

diagex_initial_state

Purpose

Puts the device under test back to its original state.

Syntax

#include <diag/diag.h>

int diagex_initial_state (device_name)
char *device_name;

Description

The diagex_initial_state subroutine puts the device, and its children if necessary, back to the original
state before the diagex_cfg_state routine was called.

Parameters

Parameter Description

device_name Name of the device under test.

Return Value

The diagex_initial_state subroutine returns one of the following values:

Return Code Description

0 Successful return.

-1 Software error.

4 Device cannot be restored to DEFINE state.

5 Device cannot be restored to AVAILABLE state.

6 Child device cannot be restored to original state.

get_device_status

Purpose

Returns the device's current configuration status.

Syntax

#include <sys/cfgdb.h>

int get_device_status (device_name)
char * device_name;

Description

The get_device_status subroutine returns the current device configuration status. The status is
obtained by returning the value of the CuDv status field of the device.

Note: init_dgodm must be called before starting this subroutine.

Parameters

Parameter Description

device_name Character pointer to the name of the device.

Return Value

The get_device_status subroutine returns one of the following values:

116 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Return Value Description

DEFINED Device is in the DEFINED state.

AVAILABLE Device is in the AVAILABLE state.

STOPPED Device is in the STOPPED state.

DIAGNOSE Device is in the DIAGNOSE state.

-1 System error obtaining device status.

addfrub

Purpose

Concludes a field replaceable unit (FRU) goal.

Syntax

#include <diag/da.h>
int addfrub (fptr)
struct fru_bucket *fptr;

Description

The addfrub subroutine associates a FRU with the device currently being tested. The TMInput object
class identifies the device currently being tested.

Parameters

Parameter Description

fptr Pointer to a structure of type fru_bucket, which is defined as follows:

struct fru_bucket {
 char dname[NAMESIZE];
 short ftype;
 short sn;
 short rcode;
 short rmsg;
 struct {
 int conf;
 char fname[NAMESIZE];
 char floc[LOCSIZE];
 short fmsg;
 char fru_flag;
 char fru_exempt;
 } frus[MAXFRUS];
};

dname Names the device under test.

ftype Indicates the type of FRU Bucket being added to the system. The following values
are defined:
FRUB1

The FRUs include the resource that failed, its parent, and any cables needed to
attach the resource to its parent.

FRUB2
This FRU Bucket is similar to FRU Bucket FRUB1, but does not include the
parent resource.

sn Source number of the failure. The source number is usually set to the led field of the
PdDV object class by the insert_frub subroutine. If the sn set by the insert_frub
subroutine is not the desired value, the calling subroutine should set sn to the
desired value after the insert_frub subroutine and before the addfrub subroutine.

Understanding the Diagnostic Subsystem for AIX 117

Parameter Description

rcode Reason code associated with the failure.

Note: A Service Request Number is formatted as follows:

SSS - RRR

where SSS is the sn and RRR is the rcode.

Some devices may use a different nomenclature for their service request numbers.
For this special case, the sn parameter indicates how the rcode value should be
formatted. If sn = 0, then rcode is interpreted as decimal. If sn = -1, then rcode is
interpreted as a 4-digit hexadecimal number.

If sn = -2, then the object class DAVars is searched for an attribute of Errorcode.
This allows the displaying of 8 digit hex Error Codes. The diagnostic application is
responsible for setting up a DAVars object similar to the following:

DAVars:

dname: <device name under test>
vname: Error_code "Error_code is an ascii string"
vtype: DIAG_STRING "Literal value"
val: <8 digit hex character string>

See the getdavar/putdavar subroutine for more information.

rmsg Message number of the text describing the reason code. The set number of the text
is predefined by the PSet field in the Predefined Diagnostic Resources object class.

conf Indicates whether an FRU is valid. A value of 0 indicates an invalid FRU. No other
FRUs are displayed once an invalid FRU is found in the FRU bucket.

However, if fname contains the string REF-CODE, then the fmsg and conf values are
used to make the 8-digit ref code.

fname Names the FRU.

The parameters floc and fmsg must be specified, if fname is not represented in the
Customized Devices object class. Otherwise, they should be set to 0.

floc Location of fname.

fmsg Message number of the text describing fname. The set number is predefined by the
PSet descriptor in the Predefined Diagnostic Resources object class.

fru_flag Flag used by the Diagnostic Applications (DA) in determining which FRU to use in the
frus[] structure. The following values are defined:
NOT_IN_DB

The FRU is not represented in the config database.
DA_NAME

frus[].fname should be the name of the device being tested.
PARENT_NAME

frus[].fname should be the name of the parent of the device being tested.
CHILD_NAME

frus[].fname should be the name of the child of the device being tested.
NO_FRU_LOCATION

The FRU name will be left blank, and the FRU location code will be set to the
location of the device under test (dname).

118 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

fru_exempt Indicates that the designated FRU will not be absorbed as a result of chip/FRU
integration. The following values are defined:
EXEMPT

FRU cannot be integrated (For example, fuse, cable, displays, etc.) This value
should be the most-used value, and should be used in conjunction with the
fru_flag field. Examples are:

FRU fru_flag fru_exempt
---- -------- ----------
Device being tested DA_NAME EXEMPT
Parent of device PARENT_NAME EXEMPT
CABLE NOT_IN_DB EXEMPT

NONEXEMPT
FRU can be integrated (generally, any specific chip set).

Note: DAs do not have to return MAXFRU frus. The Diagnostic Controller processes frus[] from
0..MAXFRU-1, while conf>0.

Return Value

Upon successful completion, a value of 0 is returned. If the addfrub subroutine is unsuccessful, then a
value of -1 is returned.

addfrub_src

Purpose

Concludes a collection of field replacement units (FRUs) with a platform specific System Reference Code
(SRC).

Syntax

#include <diag/da.h>

int addfrub_src (fptr)
struct fru_bucket_src *fptr;

Description

The addfrub_src subroutine associates a collection of FRUs with a failure detected by the device
currently being tested. The TMInput object class identifies the device currently being tested.

Note: addfrub() should be used when reporting a Service Request Number (SRN). insert_frub()
should be called before addfrub() to fill in some of the fru_bucket data. addfrub_src() should be
used when reporting an System Reference Code (SRC). Then, entire contents of the fru_bucket_src
should be filled in by the caller before calling addfrub_src(), thus there is no corresponding call to
insert_frub for fru_bucket_src.

Parameters

Understanding the Diagnostic Subsystem for AIX 119

Parameter Description

fptr Pointer to a structure of type fru_bucket_src, which is defined below. The entire structure must be filled out before calling
addfrub_src. Any optional or unknown values should be set to NULL (0).

struct fru_bucket_src
{
 char dname[NAMESIZE]; /* Resource Name */
 char src[RPA_SRC_SIZE_NN];/* Primary reference code */
 unsigned int refc2; /* Extended reference code - word 2 */
 unsigned int refc3; /* Extended reference code - word 3 */
 unsigned int refc4; /* Extended reference code - word 4 */
 unsigned int refc5; /* Extended reference code - word 5 */
 unsigned int refc6; /* Extended reference code - word 6 */
 unsigned int refc7; /* Extended reference code - word 7 */
 unsigned int refc8; /* Extended reference code - word 8 */
 unsigned int refc9; /* Extended reference code - word 9 */
 int rmsg; /* Failure description */
 char crid[2]; /* Platform error creator id */
 unsigned int plid; /* Platform Log Id */
 unsigned int subsysid; /* Subsystem Id */
 unsigned int event_sev;/* Event Severity */
 int action_flags; /* Error Action Flags */
 int errlg_seq; /* Error Log Sequence Number */
 frus_src_t *frus; /* Linked list of FRUs for SRC */
};

dname Names the device under test.

src System Reference Code. The Primary Reference Code is the 1st 8 characters of this 32 character string. The Primary Reference
Code is required, the remainder of the string is optional.

refc2 Extended reference code word 2 (required).

refc3 - refc9 Optional additional extended reference code words 3 - 9. Should be 0 if not present.

rmsg Message number of the text describing the failure. The set number of the text is predefined by the PSet field in the predefined
Diagnostic Resources object class.

crid ASCII character representing the subsystem creating the error log reporting the failure. Use NULL (0) if this failure is not from
platform error log analysis.

plid Unique identifier for this failure.

subsysid Platform Error Log Subsystem ID, otherwise 0.

event_sev Platform Error Log Severity, otherwise 0.

action_flags Flags defining reporting action for this failure. The values can be or' ed together.

Bit
Action

RPA_REPORT_EXTERNALLY
Report this failure to external programs like the Service Focal Point.

RPA_CALL_HOME_REQD
Only valid with RPA_REPORT_EXTERNALLY, this failure should be reported automatically to IBM Service.

NO_FAULT_INDICATOR
If the plid is zero and this bit is set, the system's fault indicator will not be turned on for this failure.

errlg_seq Error log sequence number of originating error.

frus Optional linked list of FRUs as described in the following structure. This list is not necessary if the SRC completely describes the
failure and resolution actions.

typedef struct frus_src
{
 int type; /* RPA FRU type */
 char priority; /* RPA FRU/Procedure Priority */
 char loc[RPA_LOC_SIZE];/* Physical location code */
 char pn[RPA_FRU_PN_SIZE]; /* FRU Stocking p/n */
 char proc_id[RPA_PROC_SIZE]; /* Procedure Id */
 char ccin[RPA_CCIN_SIZE_NN]; /* CCIN */
 char sn[RPA_FRU_SN_SIZE_NN]; /* FRU Serial Number*/
 struct frus_src *next_fru;
} frus_src_t;

120 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

type FRU type. One of the following:

RPA_FRUTYPE_NORMAL
Normal Hardware FRU.

RPA_FRUTYPE_CODE
Code FRU described by procedure id field.

RPA_FRUTYPE_C_PROC
Configuration procedure required.

RPA_FRUTYPE_M_PROC
Maintainence procedure required.

RPA_FRUTYPE_EXT
External FRU.

RPA_FRUTYPE_EXT_CODE
External code FRU described by procedure field.

RPA_FRUTYPE_TOOL
A tool required by another FRU in the list.

RPA_FRUTYPE_SYMBOL
Procedure id for acquiring or working with a FRU.

priority FRU Replacement/Procedure Priority. One of the following:

H
High priority and mandatory call-out. Replacing the FRU, or performing the Procedure is mandatory. Multiple call-outs with
H priority should be acted on as a group.

M
Medium priority. Each FRU/Procedure with M priority should be acted on, one at a time, in the order given.

A
Medium priority group A. Each FRU/Procedure with A priority should be acted on as a group.

B
Medium priority group B. Each FRU/Procedure with B priority should be acted on as a group.

C
Medium priority group C. Each FRU/Procedure with C priority should be acted on as a group.

L
Low priority. Each FRU/Procedure with L priority should be acted on only after all other priority call-outs have failed to
resolve the problem.

loc Location code

pn FRU Stocking Part Number if available, mutually exclusive with proc_id.

proc_id Procedure Id if available, mutually exclusive with pn.

ccin CCIN, if available and only if pn is available.

sn FRU Serial Number, if available, and only if pn is available.

next_fru Pointer to the next frus_src structure.

Return Value

Item Description

0 Upon successful completion.

-1 If the addfrub_src subroutine is unsuccessful.

insert_frub

Purpose

Updates FRU Bucket.

Syntax

#include <diag/tm_input.h>
#include <diag/da.h>

long insert_frub (tminput, frub)
struct tm_input *tminput;
struct fru_bucket *frub;

Understanding the Diagnostic Subsystem for AIX 121

Description

The insert_frub subroutine gets a device's FRU name and source number from the Customized Device
object class and places them into a structure of type fru_bucket. The calling routine specifies through the
fru_flag member of the FRU Bucket structure whether the FRU name is for device x or the FRU parent of
x.

Parameters

Parameter Description

tminput Identifies the device x (specifically, tminput.dname).

frub Pointer to the FRU Bucket structure to be updated.

This function should be called before addfrub.

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned.

add_more_frus

Purpose

Adds additional FRUs to an FRU bucket previously added by the addfrub() subroutine.

Syntax

#include <diag/da.h>

int add_more_frus(fptr)
struct fru_bucket *fptr);

Description

The add_more_frus subroutine takes an additional set of FRUs and adds them to an existing FRU bucket
that was previously added via the addfrub() subroutine.

This subroutine can add up to MAXFRUS number of FRUs per invocation, but can be called multiple times.
This subroutine is called only after calling addfrub(). The input fru_bucket should have the same data
as sent to addfrub(), except for the FRUs array.

Note: init_dgodm must be called before starting this subroutine.

Parameters

Parameter Description

fptr Pointer to a structure of type fru_bucket, that is almost identical to the structure
used in the call to addfrub(). The only difference should be the array of FRUs
structure that contains the additional FRUs that should be added to the existing
FRU bucket. For more information, refer to the fru_bucket definition in the
addfrub() subroutine.

Return Value

The add_more_frus subroutine returns one of the following values:

Return
Value

Description

0 On successful completion

-1 If ODM error

122 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Return
Value

Description

-2 If addfrub() did not add MAXFRUS number of FRUs (i.e. this function should not have
been called)

diag_catopen

Purpose

Opens a diagnostic catalog message file.

Syntax

#include <diag/diago.h>

nl_catd diag_catopen (filename, reserved)
char* filename;
int reserved;

Description

The diag_catopen subroutine is used to open a catalog message file. It first searches the normal catalog
directory as specified by the $LANG and $NLSPATH environment variables. If the catalog file is not found,
the function searches the default catalog directory.

Parameters

Parameter Description

filename Catalog file name to be opened.

Return Value

The diag_catopen subroutine returns a nl_catd catalog descriptor.

diag_cat_gets

Purpose

Obtains catalog messages from NLSPATH or default diagnostic catalog directory.

Syntax

#include <diag/diago.h>

char *diag_cat_gets (fdes, setid, msgid)
nl_catd fdes;
unsigned short setid;
unsigned short msgid;

Description

The diag_cat_gets subroutine is used to get messages from a catalog file. It first searches the normal
catalog directory as specified by the $LANG and $NLSPATH environment variables. If the set and
message is not found, the function searches the default catalog directory.

Parameters

Parameter Description

fdes Open catalog file descriptor returned from the diag_catopen system call.

setid Set ID of the message in the catalog.

msgid Message ID of the message in the catalog that serves as the format string.

Understanding the Diagnostic Subsystem for AIX 123

Return Value

The diag_cat_gets subroutine returns a character pointer to the message string.

diag_popup

Purpose

Creates a popup window with message text.

Syntax

#include <diag/diag_screen.h>

long diag_popup (char * fmt, [, name, ...])

char * fmt;

Description

The diag_popup subroutine displays a popup window.

Parameters

The parameters are similar to those of the standard I/O library subroutine printf(). There is a 2000
character limit on the length of the message.

Return Value

The diag_popup subroutine returns one of the following values:

Return Value Description

DIAG_CANCEL Cancel key was entered.

DIAG_ENTER Enter Function key was entered.

DIAG_EXIT Exit Function key was entered.

diag_progress

Purpose

Displays progress messages by the Diagnostic Applications and Diagnostic Tasks.

Syntax

#include <diag/diag_screen.h>

#include <diag/diag.h>

void diag_progress (screen_progress)

screen_prog_t *screen_progress;

Description

The diag_progress subroutine displays the progress indicators used by Diagnostic Applications and other
Diagnostic Tasks.

Parameters

124 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

screen_prog Screen Progress Information. This structure defines the progress message to be
displayed and the percentage complete.
int max_value

Maximum value.
int current_value

Current value.
char * progress_msg

Progress message to be displayed.

diag_read

Purpose

Reads user input.

Syntax

#include <diag/diag_screen.h>

#include <diag/diag.h>

long diag_read (screen_info, wait, buffer)

screen_info_t *screen_info;
int wait;
char * buffer;

Description

The diag_read subroutine reads the keyboard buffer.

Parameters

Parameter Description

screen_info Screen Information. This structure defines the screen type and
screen ID. Only the screen_type is used.

short screen_type Screen Type.

• INFORMATIVE
• TRANSITIONAL
• DIALOG
• SINGLE_SELECTION
• MULTIPLE_SELECTION

wait If TRUE, causes this subroutine to wait until the user presses one of
the keys allowed by the screen_type. If this parameter is FALSE, then
this subroutine does not wait for the user input but processes
anything typed ahead just as it would if the parameter were TRUE.

buffer Allocated by the application. It is used to return the values entered
by the user. The buffer size must not be greater than 100 bytes.
(Currently not implemented).

diag_resource_screen

Purpose

Displays menus commonly used by Diagnostic Applications (DA).

Understanding the Diagnostic Subsystem for AIX 125

Syntax

#include <diag/diag_screen.h>

#include <diag/diag.h>

long diag_resource_screen (screen_info, screen_data, screen_msg)

screen_info_t *screen_info;
screen_data_t *screen_data;
screen_msg_t screen_msg[];

Description

The diag_resource_screen subroutine displays menus commonly used by Diagnostic Applications.

Parameters

Parameter Description

screen_info Screen Information. This structure defines the screen type and
screen ID.

short screen_type Screen Type.

• INFORMATIVE
• TRANSITIONAL
• SINGLE_SELECTION

short screen_id Screen Identifier.

• TESTING_MENU
• ANALYZE_ERROR_LOG
• ANALYZE_POST
• ANALYZE_FIRMWARE
• ANALYZE_CHECKSTOP
• ANALYZE_SUBSYS

short screen_key Identifies extra function keys for
screen.

• DIAG_HELP_KEY

long item_selected Indicates the selected item in the
list, if screen_type is
SINGLE_SELECTION. First
selectable item in screen_msg
would have a 1 returned, second
selectable item would have a 2
returned, and so on.

126 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

screen_data Screen Data. This structure contains all data needed to construct the
screen.

nl_catd fdes Catalog file descriptor.

long menu_number Menu number that is displayed,
right-justified, as a hex number at
the top-right corner of the
screen.

char * resource_name The name of the resource being
tested. (tminput->dname)

char * location_code The logical location code of the
resource being tested. (tminput-
>dnameloc)

short test_mode The test mode (ADVANCED,
NON_ADVANCED) this session is
running in. (tminput->advanced)

short loop_mode Indicates whether Loop Mode
has been selected. (tminput-
>loopmode)

short lcount Total number of passes made.
This value is used only when
loop_mode is not set to
LOOPMODE_NOTLM.

short lerrors Total number of errors
encountered. This value is used
only when loop_mode is not set
to LOOPMODE_NOTLM.

short msg_count Total number of messages in the
screen_msg structure.

Understanding the Diagnostic Subsystem for AIX 127

Parameter Description

screen_msg The screen_msg structure contains an array of setid's and msgid's
used to construct the text (or body) of the screen. This includes all
messages except the last line, or INSTRUCTION line. This structure
is not required for a TRANSITIONAL screen type, use NULL for the
screen_msg argument.

short set_num The set number containing the
message text.

short msg_num The message number containing
the message text.

char * message Text message to use in place of <
set_num, msg_num >. This is
useful if string substitution was
required in order to build the
message text. This text will take
precedence over the < set_num,
msg_num > if not NULL.

short msg_type Flag indicating the type of
message to be displayed.

• HELP_MSG Only one message
of this type allowed. This help
message will always be
associated with the screen, and
not any particular line.

• SELECTABLE_MSG
• INFO_MSG

NOTES:

• This structure must be built exactly for a SINGLE_SELECTION screen type. screen_msg[0..n] MUST
have the msg_type set to SELECTABLE_MSG for all selectable messages.

• screen_msg[n+1] MUST have the msg_type set to INFO_MSG if you want some kind of information
displayed to the user before the INSTRUCTION line.

• The help message, if any, should be last.

Return Value

The diag_resource_screen subroutine returns one of the following values:

Return Code Description

DIAG_OK Successful return.

DIAG_MALLOCFAILED Memory allocation was unsuccessful.

DIAG_ENTER Enter Function key was entered.

DIAG_EXIT Exit Function key was entered.

DIAG_CANCEL Cancel Function key was entered.

DIAG_HELP Help Function key was entered.

DIAG_FAIL Invalid data structure, software error

diag_task_screen

Purpose

128 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Displays menus commonly used by Diagnostic Tasks.

Syntax

#include <diag/diag_screen.h>

#include <diag/diag.h>

long diag_task_screen (screen_info, screen_task_data, screen_task_msg)

screen_info_t *screen_info;
screen_task_t *screen_task_data;
screen_task_msg_t screen_task_msg[];

Description

The diag_task_screen subroutine displays menus commonly used by Diagnostic Tasks.

Parameters

screen_info
Screen Information. This structure defines the screen type.
short screen_type

Screen Type.

• INFORMATIVE
• TRANSITIONAL
• DIALOG
• SINGLE_SELECTION
• MULTIPLE_SELECTION

short screen_id
Screen Identifier - Not Used.

short screen_key
Identifies extra function keys for screen.

• DIAG_LIST_KEY
• DIAG_HELP_KEY if screen_type is INFORMATIVE

long item_selected
Indicates the selected item in the list, if screen_type is SINGLE_SELECTION. First selectable item
in screen_msg would have a 1 returned, second selectable item would have a 2 returned, and so
on. For a MULTIPLE_SELECTION screen_type, this field is used to keep track of the current
selection for subsequent calls until the COMMIT function key is used.

screen_task_data
Screen Data. This structure contains all data needed to construct the screen.
nl_catd fdes

Catalog file descriptor.
long menu_number

Menu number that is displayed, right-justified, as a hex number at the top-right corner of the
screen.

short msg_count
Total number of messages in the screen_task_msg structure.

screen_task_msg
The screen_task_msg structure contains an array of setid's and msgid's used to construct the text (or
body) of the screen. This includes all except the last line, or Instruction line.
short set_num

The set number containing the message text.

Understanding the Diagnostic Subsystem for AIX 129

short msg_num
The message number containing the message text.

char * message
Text message to use in place of < set_num, msg_num >. This is useful if string substitution was
required in order to build the message text. This text will take precedence over the < set_num,
msg_num > if not NULL.

short help_set_num
The set number containing the message text when the HELP key is pressed. Help message text is
line sensitive, and is normally used when the msg_type is set to SELECTABLE_MSG or
DIALOG_MSG.

short help_msg_num
The message number containing the message text when the HELP key is pressed. Help message
text is line sensitive, and is normally used when the msg_type is set to SELECTABLE_MSG or
DIALOG_MSG.

short msg_type
Flag indicating if text is help, selectable, dialog, or information.

• TITLE_MSG
• SELECTABLE_MSG
• DIALOG_MSG
• INFO_MSG

char leading_char
A specific character to be displayed before the message text. Note that this is also used as the
mechanism to determine which selectable items had been selected on a MULTIPLE_SELECTION
screen.

long line_num
Internal screen line number.

char op_type
Type of operation allowed on this field

char entry_type
type of (user) entry allowed in the field

char required

• DIAG_YES
• DIAG_YES_NON_EMPTY
• DIAG_EXCEPT_WHEN_EMPTY
• DIAG_NO = default
• DIAG_YES or DIAG_YES_NON_EMPTY means display required flag

char changed
DIAG_YES, DIAG_NO = default; field changed from default value

char *disp_values
disp. text of allowed/default choice(s, separated by ",")

char *data_value
MUST point to string (buffer) of size (entry_size + 1) if there is ANY way values may be changed
(typein/list/ring)

long entry_size
maximum size of (data_)value that can be entered OR returned (include a "return" of anything
from disp_values)

long cur_value_index
long default_value_index

0 origin index of default value

130 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Return Value

The diag_task_screen subroutine returns one of the following values:

Return Value Description

DIAG_OK Successful return.

DIAG_MALLOCFAILED Memory allocation was unsuccessful.

DIAG_ENTER Enter Function key was entered.

DIAG_EXIT Exit Function key was entered.

DIAG_CANCEL Cancel Function key was entered.

DIAG_HELP Help Function key was entered.

DIAG_LIST List Function key was entered.

DIAG_FAIL Invalid data structure, software error

DIAG_COMMIT Commit function key was entered.

diag_asl_clear_screen

Purpose

Clears the screen.

Syntax

#include <diag/diago.h>

long diag_asl_clear_screen ()

Description

The diag_asl_clear_screen subroutine is used to clear the screen.

Parameters

Takes no parameters.

Return Value

The following values are returned:

Return Value Description

DIAG_ASL_OK Successful return.

DIAG_ASL_FAIL Not called following diag_asl_init and before diag_asl_quit.

diag_asl_init

Purpose

Initializes the user interface.

Syntax

#include <diag/diago.h>

long diag_asl_init (name)
char *name;

Description

Understanding the Diagnostic Subsystem for AIX 131

The diag_asl_init subroutine is used to initialize the user interface and should be the first call made to
the user interface.

Parameters

Parameter Description

name Identifies any options. This field has the following values:
DEFAULT

Type ahead allowed.
NO_TYPE_AHEAD

Type ahead not allowed.

Return Value

The following values are returned:

Return Value Description

DIAG_ASL_OK Successful return.

DIAG_ASL_ERR_NO_SUCH_TERM Specified TERM entry does not exist.

DIAG_ASL_ERR_TERMINFO_GET TERMINFO get failed.

DIAG_ASL_ERR_NO_TERM TERM entry missing.

DIAG_ASL_ERR_INITSCR nitscr() failed.

DIAG_ASL_ERR_SCREEN_SIZE Screen/window size less than minimum.

diag_asl_msg

Purpose

Creates a pop-up window with message text.

Syntax

#include <diag/diago.h>

long diag_asl_msg (fmt, [, name, ...])
char *fmt;

Description

The diag_asl_msg subroutine should only be used by service aids to display a pop-up window with
informational text.

Parameters

The parameters are similar to those of the standard I/O library subroutine printf.

Return Value

The following values are returned:

Return Value Description

DIAG_ASL_CANCEL Cancel key was pressed.

DIAG_ASL_ENTER Enter key was pressed.

DIAG_ASL_HELP Help key was pressed.

DIAG_ASL_LIST List key was pressed.

DIAG_ASL_COMMAND Command key was pressed.

132 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Return Value Description

DIAG_ASL_COMMIT Commit key was pressed.

diag_asl_read

Purpose

Reads user input.

Syntax

#include <diag/diago.h>

long diag_asl_read (screen_code, wait, buf)
ASL_SCREEN_CODE screen_code;
int wait;
char *buf;

Description

The diag_asl_read subroutine reads the keyboard buffer.

Parameters

Parameter Description

screen_code Identifies the set of function keys that should be active.

wait If True, causes this subroutine to wait until the user presses one of the keys
allowed by the screen_type. If this parameter is False, then this subroutine does
not wait for the user input but processes anything typed ahead just as it would if
the parameter were True.

buf Allocated by the application. It is used to return the values entered by the user. If
used, this buffer MUST be at least ASL_READ_BUF_SIZE. Normally this value
should be set to NULL. When NULL, only the function key pressed is returned.

Return Value

The diag_asl_read subroutine returns one of the following values:

Return Value Description

DIAG_ASL_OK Successful return.

DIAG_ASL_FAIL Failure reading data.

DIAG_ASL_CANCEL Cancel key was entered.

DIAG_ASL_ENTER Enter key was entered.

DIAG_ASL_EXIT Exit key was entered.

diag_asl_quit

Purpose

Terminates the user interface.

Syntax

#include <diag/diago.h>

long diag_asl_quit (name)
char *name;

Description

Understanding the Diagnostic Subsystem for AIX 133

The diag_asl_quit subroutine is used to end the user interface and should be the last call made to the
user interface.

Parameters

Parameter Description

name Identifies any options. This field has the following values:
DCTRL

Used by Diagnostic Controller only.
DEFAULT

Used by all other applications.

Return Value

The following value is always returned:

Return Value Description

0 Successful return.

diag_display

Purpose

Displays a menu and reads the user's response.

Syntax

#include <diag/diago.h>

long diag_display (mnum, fdes, msglist, proctype,
 scrtype, menutype, menuinfo)
long mnum;
nl_catd fdes;
struct msglist msglist[];
long proctype;
long scrtype;
ASL_SCR_TYPE *menutype;
ASL_SCR_INFO *menuinfo;

Description

The diag_display subroutine displays a menu that has multiple user selections and reads the user's
response.

Parameters

Parameter Description

mnum Menu number that is displayed, right-justified, as a hex number at the top-right
corner of the screen.

fdes Open catalog file descriptor returned from the diag_catopen system call.

msglist Array of set numbers and message IDs. The msglist parameter must be ended by a
Null element.

134 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

proctype Specifies the type of operation to be performed. This parameter has the following
values:
DIAG_MSGONLY

The specified messages are retrieved from the catalog, but not displayed. The
application writer should update the menuinfo parameter and restart the
diag_display subroutine with the msglist parameter equal to Null.

DIAG_IO
The list of messages specified by msglist or, if that is Null, those in the array
menuinfo, are displayed in the format specified by the menutype parameter.

scrtype Specifies the type of screen to be displayed, where each type determines the
format of the output and the active function keys for the user.

menutype Defined in the file /usr/include/asl.h. If this parameter is equal to Null, the default
version is used. Otherwise, the application's version is used.

menuinfo Defined in the file /usr/include/asl.h. If this field is not equal to Null, it is
initialized with the retrieved messages.

Return Value

The diag_display subroutine returns one of the following values:

Return Value Description

DIAG_ASL_OK Successful return.

DIAG_ASL_ARGS1 Both the msglist and menuinfo parameters were Null.

DIAG_ASL_ARGS2 DIAG_MSGONLY option was specified, but no messages were
named.

DIAG_MALLOCFAILED Memory allocation was unsuccessful.

DIAG_ASL_ENTER Enter Function key was entered.

DIAG_ASL_EXIT Exit Function key was entered.

DIAG_ASL_CANCEL Cancel Function key was entered.

DIAG_ASL_HELP Help Function key was entered.

DIAG_ASL_LIST List Function key was entered.

DIAG_ASL_COMMIT Commit Function key was entered.

DIAG_ASL_PRINT Print Function key was entered.

diag_display_menu

Purpose

Displays menus commonly used by Diagnostic Applications (DA).

Syntax

#include <diag/diago.h>

#include <diag/diag.h>

long diag_display_menu (msgid, mnum, substitution, lcount, lerrors)
long msgid;
long mnum;
char *substitution[];
int lcount;
int lerrors;

Understanding the Diagnostic Subsystem for AIX 135

Description

The diag_display_menu subroutine displays commonly used menus.

Parameters

Parameter Description

msgid Message ID number defined in dcda.msg. Currently, the following message IDs are
defined:

CUSTOMER_TESTING_MENU

ADVANCED_TESTING_MENU

LOOPMODE_TESTING_MENU

NO_MICROCODE_MENU

NO_DIAGMICROCODE_MENU

NO_DDFILE_MENU

NO_HOT_KEY

DEVICE_INITIAL_STATE_FAILURE

mnum Menu number that is displayed, right-justified, as a hex number at the top-right
corner of the screen.

substitution Used to pass in strings to be substituted in the menu. This must be an array of
three (3) character pointers. The device descriptive text is the first element. The
device name as it comes from TMInput->dname is the second, and the location
code is the third.

lcount Used to allow the loop-count value to be displayed. This value is used only when
mnum is set to LOOPMODE_TESTING_MENU.

lerrors Used to allow the number of errors value to be displayed. This value is used only
when mnum is set to LOOPMODE_TESTING_MENU.

Return Value

The diag_display_menu subroutine returns one of the following values:

Return Value Description

DIAG_ASL_OK Successful return.

DIAG_ASL_ARGS1 Both the msglist and menuinfo parameters were Null.

DIAG_ASL_ARGS2 DIAG_MSGONLY option was specified, but no messages were
named.

DIAG_MALLOCFAILED Memory allocation was unsuccessful.

DIAG_ASL_ENTER Enter Function key was entered.

DIAG_ASL_EXIT Exit Function key was entered.

DIAG_ASL_CANCEL Cancel Function key was entered.

DIAG_ASL_HELP Help Function key was entered.

DIAG_ASL_LIST List Function key was entered.

DIAG_ASL_COMMIT Commit Function key was entered.

DIAG_ASL_PRINT Print Function key was entered.

136 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

diag_emsg

Purpose

Displays error messages.

Note: Diagnostic Applications (DAs) should not use this subroutine.

Syntax

#include <diag/diago.h>

long diag_emsg (fdes, setid, msgid [,val,...])
nl_catd fdes;
unsigned short setid;
unsigned short msgid;

Description

The diag_emsg subroutine displays an error message. Normally used with service aids.

Parameters

Parameter Description

fdes Open catalog file descriptor returned from the diag_catopen system call.

setid Set ID of the message in the catalog.

msgid Message ID of the message in the catalog that serves as the format string.

val Values that are optional and variable in number are inserted in the specified
message according to the conventions assumed by the printf() subroutine in the
standard I/O library. The format is specified by the message referenced by the
catalog set and message ID.

Return Value

The diag_emsg subroutine returns one of the following values:

Return Value Description

DIAG_ASL_OK Successful return.

DIAG_ASL_CANCEL Cancel key was entered.

DIAG_ASL_EXIT Exit key was entered.

diag_msg, diag_msg_nw

Purpose

Displays simple menus.

Syntax

#include <diag/diago.h>

long diag_msg (mnum, fdes, setid, msgid [, val, ...])
long mnum;
nl_catd fdes;
unsigned short setid;
unsigned short msgid;

long diag_msg_nw (mnum, fdes, setid, msgid [, val, ...])
long mnum;
nl_catd fdes;
unsigned short setid;
unsigned short msgid;

Understanding the Diagnostic Subsystem for AIX 137

Description

The diag_msg subroutine displays the specified text and obtains the user's response. The screen is
automatically cleared upon completion.

The diag_msg_nw subroutine displays the specified text but does not wait for the user to respond. The
screen is not automatically cleared.

Parameters

Parameter Description

mnum Menu number that is displayed, right-justified, as a hex number at the top-right
corner of the screen.

fdes Open catalog file descriptor returned from the diag_catopen system call.

setid Set ID of the message in the catalog.

msgid Message ID of the message in the catalog that serves as the format string.

val Values that are optional and variable in number are inserted in the specified
message according to the conventions assumed by the printf() subroutine in the
standard I/O library. The format is specified by the message referenced by the
catalog set and message ID.

Return Value

The diag_msg subroutine returns one of the following values:

Return Value Description

DIAG_ASL_OK Successful return.

DIAG_ASL_CANCEL Cancel key was entered.

DIAG_ASL_EXIT Exit key was entered.

diag_check_optical_media

Purpose

Checks the status of the optical drive.

Syntax

#include <diag.h>

int diag_check_optical_media(device_name)
char * device_name

Description

The diag_check_optical_media function will take an optical media device name passed by the caller
and check the status of the drive and unmount it if possible.

Parameters

Parameter Description

device_name This is the name of the optical media drive requested by the caller to be
accessed. /dev/cdXX where XX is the number of the optical drive as listed by
the ODM.

Return Value

138 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Item Description

-2 Fail due to software error.

-1 Fail. Optical device is in use.

0 Success. The optical device chosen is ready for use.

diag_get_device_flag

Purpose

Obtain device flag from residual data information.

Attention: This diagnostic library function has been removed in AIX® 5.2 but the information has
been left in for reference.

Syntax

#include <diag/diag.h>
#include <sys/residual.h>

int diag_get_device_flag (
 char *device_name,
 long *Flag)

Description

The diag_get_device_flagsubroutine searches residual data for an object matching the devicespecified
by device_name. The value of the Flags field asdefined in the DEVICE_ID structure for the device is
returned inthe Flag argument.

Implementation Specifics

POWER® processor-based

Parameters

Parameter Description

device_name Pointer to a character string containing the logical name of the device.

Flag Pointer to a long integer where the value of the Flag field in the DEVICE_ID
structure as defined by sys/residual.h header file will be written.

Return Value

Upon successful completion, a 0 isreturned if the device flag information was retrieved successfully. If
thediag_get_device_flag fails, a value of -1 is returned.

diag_get_property

Purpose

Obtain property value from Common Hardware Reference Platform (CHRP) firmware for a resource.

Syntax

#include <diag/diag.h>

char *diag_get_property (
 char *device_name,
 char *property_name,
 int *property_length)

Description

Understanding the Diagnostic Subsystem for AIX 139

The diag_get_property subroutine searches the Open Firmware device tree to obtain the value of a
property associated with the specified resource. The resource must be a valid ODM resource name with a
corresponding Open Firmware device tree node. If the resource's corresponding node is not found in the
Open Firmware device tree, or if the property value is not found, then a char *NULL is returned.

Implementation Specifics

POWER® processor-based

Parameters

Parameter Description

device_name Pointer to a character string containing the logical name of the device.

property_name Pointer to a character string containing the property to find.

property_length Contains total number of characters pointed to by the return character
value.

Return Value

Upon successful completion, a character string is returned containing the value (or values) of the property
requested. Multiple values may be separated by a NULL value. If the resource is not valid, or the property
value is not found, then a char *NULL is returned.

diag_get_sid_lun

Purpose

Returns the SCSI ID and Logical Unit Number (LUN) from a SCSI address.

Syntax

#include <diag/diag.h>

int diag_get_sid_lun (scsiaddr, sid_addr, lun_addr)
char *scsiaddr;
uchar *sid_addr;
uchar *lun_addr;

Description

The diag_get_sid_lun subroutine returns the SCSI ID and logical unit number associated with a SCSI
address for a device. The SCSI address must be in the format used by the connwhere field in CuDv object
class.

Parameters

Parameter Description

scsiaddr Pointer to the address of the SCSI device. This is the connwhere field of the device.
Format is "x,y" where x is the SCSI ID, and y is the logical unit number.

sid_addr Pointer to the SCSI ID of the device.

lun_addr Pointer to the logical unit number of the device.

Return Value

The diag_get_sid_lun subroutine returns one of the following values:

Return Value Description

0 Successful return.

-1 Error. Incorrect format for SCSI address.

140 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

diag_load_optical_media

Purpose

Loads optical media data and makes it available to the caller.

Syntax

#include <diag.h>

int diag_load_optical_media(device_name, mnt_path)
char * device_name
char * mnt_path

Description

The diag_load_optical_media function will take an optical media device name passed by the caller
and mount its data over a returned mounted path for the caller to access the data.

Parameters

Parameter Description

device_name This is the name of the optical media drive requested by the caller to be accessed. /dev/cdXX where XX is the number of the
optical drive as listed by the ODM.

mnt_path This is the mounted path returned to the caller to access the optical media data (for example, /usr/lpp/diagnostics/mnt/
cdXX) where XX is the drive number given to the optical drive by the ODM.

Return Value

Item Description

DIAG_NO_MEDIA Fail. No Media found in the drive.

-2 Fail. Software error.

-1 Fail. Device is in use.

0 The mount was successful.

diag_unload_optical_media

Purpose

Unmounts the optical media drive and makes it available to the caller.

Syntax

#include <diag.h>

int diag_unload_optical_media(device_name)
char * device_name

Description

The diag_unload_optical_media function takes an optical media device name passed by the caller
and unmounts the drive, if and only if, the drive is not already mounted or in use by another application.

Parameters

Parameter Description

device_name This is the name of the optical media drive requested by the caller to be
accessed. /dev/cdXX where XX is the number of the optical drive as listed by
the ODM.

Return Value

Understanding the Diagnostic Subsystem for AIX 141

Item Description

-2 Fail. Software error.

-1 Fail. Device is in use.

0 The mount was successful.

get_cpu_model

Purpose

Returns the CPU model number.

Syntax

#include <diag/modid.h>

unsigned int get_cpu_model (model_code)
int model_code;

Description

The get_cpu_model subroutine gets the CPU model number.

init_dgodm must be called before starting this subroutine.

Parameters

Implementation Specifics

POWER® processor-based

Parameter Description

model_code Attribute stored in the CuAt database for the sys0 model code. The unsigned
integer returned by the function is the raw model code obtained from the IPL
control block. Macros are defined in modid.h. These macros can be used to
determine the following information:
Package Type

Tower, Rack, or Desktop.
Speed

Low, Medium, High, or Turbo Charged.
Machine Type

Release 1, RSC, Release 2, or PowerPC.

Return Value

Upon successful completion, the model code as stored in the iplcb structure is returned. Otherwise, a
value of -1 is returned.

get_dev_desc

Purpose

Returns the device's descriptive text.

Syntax

char * get_dev_desc (device_name)
char * device_name;

Description

142 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

The get_dev_desc subroutine gets the descriptive text associated with the device. This text is stored in
the catalog field of the PdDv entry for the device. This is usually found in the /usr/lib/methods/
devices.cat file for most devices. Other devices may use different catalogs.

Note: init_dgodm must be called before starting this subroutine.

Parameters

Parameter Description

device_name Character pointer to the name of the device.

Return Value

Upon successful completion, a char pointer to a text string in memory is returned. Otherwise, a value of -1
is returned.

get_diag_att

Purpose

Reads an attribute from the predefined database PDiagAtt.

Syntax

#include <diag/modid.h>

int get_diag_att (type, attribute, conversion, byte_count, value)

char *type;
char *attribute;
char conversion;
int *byte_count;
void *value;

Description

The get_diag_att subroutine gets attributes from the predefined diagnostic database PDiagAtt.

Parameters

The arguments are defined as follows:

Parameter Description

type Device type, which should be Class/SubClass/Type string. This fully qualified string
reduces the chance of finding two objects having the same Type value in the PdDv
object class.

attribute Attribute name to get from the Predefined Attribute Object Class.

Understanding the Diagnostic Subsystem for AIX 143

Parameter Description

conversion The data type to which the attribute is to be converted, including the following:
`s' = string

rep = s
`b' = byte sequence

rep = s (for example "0x56FFE67")
`l' = long

rep = n
`i' = int

rep = n
`h' = short (half)

rep = n
`f' = float

rep = n
`c' = char

rep = n, or s
`a' = address

rep = n

byte_count Number of bytes (for byte sequence only).

value Pointer to where the converted attribute value is returned.

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned.

dlog_getTestMode

Purpose

Return the value of the dlog_testmode attribute in CDiagAtt for the specified device.

Syntax

#include <diag/diag_log.h>
int dlog_getTestMode(char *name)

Description

The dlog_getTestMode subroutine gets a CDiagAtt object for the specified device with an attribute of
dlog_testmode. The value of the dlog_testmode is returned.

Parameters

Parameter Description

name Character pointer to the name of the device

Return Value

Upon successful completion, the test mode is returned. Otherwise, -1 is returned if the object does not
exist.

dlog_close

Purpose

Closes the Diagnostic Event Log opened by dlog_open.

144 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Syntax

#include <diag/diag_log.h>

int dlog_close(dl_info *info)

Description

The dlog_close subroutine closes the log file opened with dlog_open. It will also free the memory
allocated with dlog_open.

Parameters

Parameter Description

info Pointer to structure of format:

 typedef struct _log_info {
 int fd; /* File descriptor */
 int lockId; /* ODM Lock id */
 dl_att *dlAtt; /* Pointer to log attributes */
 dl_einfo *dlArray; /* Pointer to log array */
} dl_info;

typedef struct _log_einfo {
 int version; /* Entry Version */
 char logType; /* Log Type - I,S,N,E,X */
 unsigned int size; /* Entry Size */
 unsigned int offset; /* Offset from the file's beginning */
} dl_einfo;

typedef struct _log_att {
 int version; /* Version */
 unsigned int numEntries; /* number of log entried */
 unsigned int lastIndex; /* index of latest entry */
 unsigned int nextSeqNum; /* sequence number of next log entry */
 unsigned int maxLogSize; /* maximum size of log */
 unsigned int arrayOffset; /* array offset */
 unsigned int wrapCount; /* number of times file has wrapped */
} dl_att;

Return Value

Upon successful completion, 0 is returned. Otherwise, a value of -1 is returned.

dlog_find_first

Purpose

Finds the first diagnostic log entry that matches the specified criteria.

Syntax

#include <diag/diag_log.h>

int dlog_find_first
(dl_info *dlogInfo,char *criteria,dlSearch *filter,dlEntry **results)

Description

The dlog_find_first subroutine finds the first diagnostic log entry that matches the specified criteria. It
also parses the search criteria and uses this to initialize the dlSearch structure for subsequent searches.
It allocates memory for the matching entry, and returns the array index of the matching entry. It is the
responsibility of the calling application to free the memory allocated for dlEntry.

Parameters
Parameter Description

dlogInfo Pointer to log information in dl_info

Understanding the Diagnostic Subsystem for AIX 145

Parameter Description

criteria search criteria consisting of any of the following:

-d
device_name

-n
dlog_sequenceNumber

-L
deviceLocation

-t
entryType

-i
dlog_EntryIdentifier

-s
startTime (format MMddhhmmyy)

-e
endTime (format MMddhhmmyy)

filter parsed search criteria

results pointer to entry matching the search criteria

Call this function before calling dlog_find_next.

Return Value

Upon successful completion, a value >= 0 is returned. Otherwise, a value of -1 is returned.

dlog_find_next

Purpose

Finds the first diagnostic log entry that matches the specified criteria.

Syntax

#include <diag/diag_log.h>

int dlog_find_next(dl_info *dlogInfo,int index,dlSearch *filter,dlEntry **results)

Description

The dlog_find_next subroutine finds the first diagnostic log entry that matches the specified search filter.
It allocates memory for the matching entry, and returns the array index of the matching entry. It is the
responsibility of the calling application to free the memory allocated for dlEntry.

Parameters

Parameter Description

dlogInfo Pointer to log information in dl_info

index Starting index

filter Parsed search criteria

results Pointer to entry matching the search criteria

Return Value

Upon successful completion, a value >= 0 is returned. Otherwise, a value of -1 is returned.

dlog_find_sequence

Purpose

Finds the diagnostic log entry that has the specified sequence number.

Syntax

#include <diag/diag_log.h>

146 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

int dlog_find_sequence(dl_info *dlogInfo,uint seq,dlEntry **results)

Description

The dlog_find_sequence subroutine finds the diagnostic log entry with a specific diagnostic log sequence
number. The matching entry will be in results and its index in the log array will be returned. It is the
responsibility of the calling application to free the memory allocated for dlEntry. The results variable will
be NULL if no match is found.

Parameters

Parameter Description

dlogInfo Pointer to log information in dl_info

seq Sequence number

results Pointer to entry with the specified sequence number

Return Value

Upon successful completion, a value >= 0 is returned. Otherwise, a value of -1 is returned and results will
be NULL.

dlog_formatElogResults

Purpose

Returns a formatted string of the diagnostic event log information.

Syntax

#include <diag/diag_log.h>

char *dlog_formatElogResults(dlEntry *entry)

Description

The dlog_formatElogResults subroutine formats a diagnostic log entry for display in the error log with
the errpt command. When a SRN is caused by an entry in the error log, the error log is updated with the
diagnostic log entry's sequence number. When the error log is displayed the formatted string returned
from this subroutine shows the diagnostic log information. It is up to the calling application to free the
memory allocated for the return string.

The return string will look like the following:

 Diagnostic Log sequence number: sequence number
 Resource tested: resource name
 Resource Description: resource description
 Location: resource location
 SRN: SRN
 Description: Error Description
 Possible FRUs: List of possible FRUs

Parameters

Parameter Description

dlogEntry Pointer to diagnostic log entry

Return Value

Upon successful completion a NON-ZERO pointer is returned. Otherwise, a pointer to NULL is returned.

Understanding the Diagnostic Subsystem for AIX 147

dlog_freeEntry

Purpose

Frees memory allocated for diagnostic log entry.

Syntax

#include <diag/diag_log.h>

int dlog_freeEntry(int version, void *dlogEntry)

Description

The dlog_freeEntry subroutine frees all the memory allocated for the specified entry. The version
determines which entry structure is being passed.

Parameters

Parameter Description

version Entry version (LATEST_ENTRY_VER is the latest version that corresponds to the
dlEntry structure)

dlogEntry Pointer to diagnostic log entry

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned.

dlog_open

Purpose

Read an entry from the Diagnostic Event Log at the specified offset.

Syntax

#include <diag/diag_log.h>

int dlog_open(char *pathname,dl_info **info)

Description

The dlog_open subroutine opens the specified log file for reading. If the pathname is NULL, then the
default diagnostic log file will be used. This subroutine also allocates memory for the dl_info structure
and initializes the structure.

Parameters
Parameter Description

pathname Name of log to open (if NULL, the default log is used)

148 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

info Pointer to structure of format:

 typedef struct _log_info {
 int fd; /* File descriptor */
 int lockId; /* ODM Lock id */
 dl_att *dlAtt; /* Pointer to log attributes */
 dl_einfo *dlArray; /* Pointer to log array */
} dl_info;

typedef struct _log_einfo {
 int version; /* Entry Version */
 char logType; /* Log Type - I,S,N,E,X */
 unsigned int size; /* Entry Size */
 unsigned int offset; /* Offset from the file's beginning */
} dl_einfo;

typedef struct _log_att {
 int version; /* Version */
 unsigned int numEntries; /* number of log entried */
 unsigned int lastIndex; /* index of latest entry */
 unsigned int nextSeqNum; /* sequence number of next log entry */
 unsigned int maxLogSize; /* maximum size of log */
 unsigned int arrayOffset; /* array offset */
 unsigned int wrapCount; /* number of times file has wrapped */
} dl_att;

Return Value

Upon successful completion, 0 is returned. Otherwise, a value of -1 is returned.

dlog_read

Purpose

Read an entry from the Diagnostic Event Log at the specified offset.

Syntax

#include <diag/diag_log.h>

dlEntry *dlog_read(dl_info *dlogInfo,int index)

Description

The dlog_read subroutine will read a Diagnostic Event Log entry at the specified offset, which is
determined from the index. It will return a pointer to a structure of format:

typedef struct _logEntry {
 char type; /* Log Type */
 char identifier[5]; /* Diagnostic Log identifier */
 unsigned int el_identifier; /* Error log identifier */
 int timestamp;
 unsigned int seqNum; /* order in which event is logged */
 unsigned int el_seqNum; /* Error log sequence number */
 unsigned int session; /* Diag Session's PID */
 unsigned int testMode; /* Diagnostics test mode - hex value*/
 resource_t *res_p; /* Resource information */
 int resSize; /* Size of resource info */
 void *errorInfo; /* Error information */
 int errorSize; /* Size of error info */
} dlEntry;

typedef struct resource {
 char name[NAME_SIZE];
 int locSize;
 char *location; /* Logical or Physical */
 short set;
 short msg;
 char catName[NAME_SIZE];
} resource_t;

Parameters

Understanding the Diagnostic Subsystem for AIX 149

Parameter Description

dlogInfo Pointer to structure of format:

 typedef struct _log_info {
 int fd; /* File descriptor */
 int lockId; /* ODM Lock id */
 dl_att *dlAtt; /* Pointer to log attributes */
 dl_einfo *dlArray; /* Pointer to log array */
} dl_info;

typedef struct _log_einfo {
 int version; /* Entry Version */
 char logType; /* Log Type - I,S,N,E,X */
 unsigned int size; /* Entry Size */
 unsigned int offset; /* Offset from the file's beginning */
} dl_einfo;

typedef struct _log_att {
 int version; /* Version */
 unsigned int numEntries; /* number of log entried */
 unsigned int lastIndex; /* index of latest entry */
 unsigned int nextSeqNum; /* sequence number of next log entry */
 unsigned int maxLogSize; /* maximum size of log */
 unsigned int arrayOffset; /* array offset */
 unsigned int wrapCount; /* number of times file has wrapped */
} dl_att;

index Index into Diagnostic Event log array for specific entry

Return Value

Upon successful completion, a pointer to dlEntry is returned. Otherwise, a value of NULL is returned.

dlog_same_elogId

Purpose

Determines if a diagnostic log entry has a specific error log identifier.

Syntax

#include <diag/diag_log.h>

int dlog_same_elogId(dlEntry *dlogEntry,uint el_identifier)

Description

The dlog_same_elogId subroutine determines if the specified entry has the same error log identifier as
the given error log identifier.

Parameters

Parameter Description

dlogEntry Pointer to diagnostic log entry

el_identifier Error log identifier

Return Value

If the entry has the same error log identifier, a value of 1 is returned. Otherwise, a value of 0 is returned.

dlog_setEntryType

Purpose

Returns the entry type for a given diagnostic log identifier.

Syntax

#include <diag/diag_log.h>
int dlog_setEntryType(char *id)

Description

150 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

The dlog_setEntryType subroutine returns an entry type for the specified entry identifier. The following
entry types are defined:

Entry Type Description

INFO Informational Type

NTF No Trouble Found

ERR Error

SRN Srn Callout

EXER Exerciser Error

SA Service Aid

Parameters

Parameter Description

id entry identifier

Return Value

Upon successful completion, the entry type is returned. Otherwise, a value of -1 is returned.

dlog_write

Purpose

Write a diagnostic event to the Diagnostic Event Log.

Syntax

#include <diag/diag_log.h>
int dlog_write(dlEntry *entry)

Description

The dlog_write subroutine writes a diagnostic event to the Diagnostic Event Log.

Parameters

Parameter Description

entry Pointer to a structure of type dlEntry, which is defined as follows:

 typedef struct _logEntry {
 char type; /* Log Type */
 char identifier[5]; /* Diagnostic log identifier */
 unsigned int el_identifier; /* Error log identifier */
 int timestamp;
 unsigned int seqNum; /* order in which event is logged */
 unsigned int el_seqNum; /* Error log sequence number */
 unsigned int session; /* Diag Session's PID */
 unsigned int testMode; /* Diagnostics test mode - hex value*/
 resource_t *res_p; /* Resource information */
 int resSize; /* Size of resource info */
 void *errorInfo; /* Error information */
 int errorSize; /* Size of error info */
} dlEntry;

typedef struct resource {
 char name[NAME_SIZE];
 int locSize;
 char *location;
 short set;
 short msg;
 char catName[NAME_SIZE];
}resource_t;

Return Value

Understanding the Diagnostic Subsystem for AIX 151

The dlog_write subroutine returns one of the following values:

Return Code Description

0 Successful

-1 Unsuccessful

ERROR_FS Indicates the /var filesystem is full

save_davars_ela

Purpose

Formats SRN and create DAVars object with error log information.

Syntax

#include <diag/diag_log.h>
int save_davars_ela(struct fru_bucket *frub,uint el_seq,uint el_id,uint
errorCode)

Description

The save_davars_ela subroutine formats the SRN if the errorCode is 0, and create a DAVars object
containing the error log information. The format of the DAVars object is:

DAVars: dname = ResourceName vname = "ErrorLogSRN_or_ErrorCode" vtype = 0 vvalue =
"ErrorlogIdentifier,ErrorlogSequenceNumber" ivalue = 0

An example of a DAVars object is:

DAVars: dname = "hdisk0" vname = "ErrorLog689-130" vtype = 0 vvalue = "1581762B,74" ivalue = 0

Parameters

Parameter Description

*frub Pointer to fru bucket

el_seq Error log sequence number

el_id Error log identifier

errorCode Error code (if 0, format the SRN)

Return Value

The subroutine returns a value of 0 on success; a value of -1 on failure.

save_davars_mgoal_ela

Purpose

Create DAVars object with error log information for a menugoal.

Syntax

#include <diag/diag_log.h>
int save_davars_ela(char *dname,uint el_seq,uint el_id,uint
menu_num)

Description

The save_davars_mgoal_ela subroutine creates a DAVars object containing the error log information for a
menugoal. The format of the DAVars object is:

DAVars:

152 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

dname = "ResourceName"
vname = "ErrorMenuMenugoalNumber"
vtype = 0
vvalue = "ErrorlogIdentifier,ErrorlogSequenceNumber"
ivalue = 0

An example of a DAVars object is:

dname = "sysplanar0"
vname = "ErrorMenu651202"
vtype = 0
vvalue = "56CDC3C8,22"
ivalue = 0

Parameters

Parameter Description

*dname String containing the resource name that created the menugoal.

el_seq Error log sequence number

el_id Error log identifier

menu_num Menugoal number

Return Value

The subroutine returns a value of 0 on success; a value of -1 on failure.

copy_text

Purpose

Format text to fit on line with a length of 74

Syntax

int copy_text(int string_length, char *buffer, char *text)

Description

The copy_text subroutine will take the text string and add \n so that the string can be displayed without
wrapping.

Parameters

Parameter Description

string_length Starting column for the formatted string

buffer Formatted string

text Unformatted string

Return Value

A value of 0 is returned.

DA_SETRC_XXXXXX, DA_CHECKRC_XXXXXX, DA_EXIT

Purpose

Processes Exit Status of Diagnostic Application (DA).

Syntax

#include <diag/diag_exit.h>

Understanding the Diagnostic Subsystem for AIX 153

#define DA_SETRC_STATUS(VAL) da_exit_code.field.status = (VAL)
#define DA_SETRC_USER(VAL) da_exit_code.field.user = (VAL)
#define DA_SETRC_ERROR(VAL) da_exit_code.field.error = (VAL)
#define DA_SETRC_TESTS(VAL) da_exit_code.field.tests = (VAL)
#define DA_SETRC_MORE(VAL) da_exit_code.field.more = (VAL)
#define DA_CHECKRC_STATUS() da_exit_code.status
#define DA_CHECKRC_USER() da_exit_code.user
#define DA_CHECKRC_ERROR() da_exit_code.error
#define DA_CHECKRC_TESTS() da_exit_code.tests
#define DA_CHECKRC_MORE() da_exit_code.more
#define DA_EXIT() exit(*((char*) &da_exit_code)))

enum diag_enum_status {
 DA_STATUS_GOOD,
/* No hardware problems were found */

 DA_STATUS_BAD,
/* A hardware problem was found */

 };
enum diag_enum_user {
 DA_USER_NOKEY,
/* No special function keys were entered */

 DA_USER_EXIT,
/* The user entered the exit key */

 DA_USER_QUIT,
/* The user entered the cancel key */

 };
enum diag_enum_error {
 DA_ERROR_NONE,
/* No software errors were encountered */

 DA_ERROR_OPEN,
/* The Device Driver failed to open */

 DA_ERROR_OTHER,
/* Another software error was encountered */

 };
enum diag_enum_tests {
 DA_TEST_NOTEST,
/* No diagnostic tests were run */

 DA_TEST_FULL,
/* The full tests were run */

 DA_TEST_SHR,
/* The shared tests were run */

 DA_TEST_SUB,
/* The sub tests were run */

 };
enum diag_enum_more {
 DA_MORE_NOCONT,
/* The problem has been isolated. */

 DA_MORE_CONT,
/* The parent or sibling will be tested next */

 };

typedef struct {
 unsigned status : 1;
/* enum diag_enum_status */

 unsigned user : 2;
/* enum diag_enum_user */

 unsigned error : 2;
/* enum diag_enum_error */

 unsigned tests : 2;
/* enum diag_enum_tests */

 unsigned more : 1;
/* enum diag_enum_more */

154 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 } da_return_code_t;
extern da_returncode_t da_exit_code;

Description

The DA_EXIT macro is used to exit a DA. To set a value other than the default, the appropriate
DA_SETRC_XXXXX macro must be called. To check the current value, use the appropriate
DA_CHECKRC_XXXXXX macro.

The defaults settings are:

DA_STATUS_GOOD
DA_USER_NOKEY
DA_ERROR_NONE
DA_TEST_NOTEST
DA_MORE_NOCONT

Parameters

Takes no parameters.

Return Value

There is no return code.

Structure Deciphering

Following is a easy chart to use to deciphered the bit positions:

Bit position

|128 | 64 32 | 16 8 | 4 2 | 1
| | | | |
| | | | | DA_MORE_NOCONT 0
| | | | | DA_MORE_CONT 1
| | | | |___________________
| | | | DA_TEST_NOTEST 0
| | | | DA_TEST_FULL 1
| | | | DA_TEST_SUB 2
| | | | DA_TEST_SHR 3
| | | |__________________________
| | | DA_ERROR_NONE 0
| | | DA_ERROR_OPEN 1
| | | DA_ERROR_OTHER 2
| | |__________________________________
| | DA_USER_NOKEY 0
| | DA_USER_EXIT 1
| | DA_USER_QUIT 2
| |___
| DA_STATUS_GOOD 0
| DA_STATUS_BAD 1
|__

diag_asl_beep

Purpose

Rings the bell.

Syntax

#include <diag/diago.h>

long diag_asl_beep ()

Description

The diag_asl_beep subroutine is used to ring the bell. Can be used to indicate that input is not valid.

Understanding the Diagnostic Subsystem for AIX 155

Parameters

Takes no parameters.

Return Value

Upon successful completion, a value of 0 is returned.

diag_asl_execute

Purpose

Executes an application.

Syntax

#include <diag/diago.h>
long diag_asl_execute (command, options, exit_status)
char *command;
char *options;
int *exit_status;

Description

The diag_asl_execute subroutine forks and executes an application while preserving the state of the ASL
interface.

Parameters

Parameter Description

command Command or application to run.

options Character array, starting with the command, followed by any command arguments,
ending with a NULL.

exit_status Exit status returned from the command.

Return Value

The following values are returned:

Return Value Description

0 Successful return.

DIAG_ASL_FAIL Error occurred.

diag_checkstop_eed

Purpose

Collect the checkstop Extended Error Data into a file.

Syntax

char *diag_checkstop_eed (char *dir)

Description

The diag_checkstop_eed subroutine collects Extended Error Data into a file in the directory given as
input. The Extended Error Data file is the output of the snap -C command.

Parameters

Parameter Description

dir Absolute path of the directory to create the EED file, maximum 200 characters.

Return Value

156 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

The diag_checkstop_eed subroutine returns one of the following values:

Return Value Description

NULL If error creating the EED file, otherwise, pointer to the absolute EED file name that
will be in the form of dir/snapC.pax.Z, where dir is the directory passed as input.

diag_checkstop_event

Purpose

Determines if the diagnostic event was the result of a checkstop.

Syntax

#include <diag/diag_log.h>
int diag_checkstop_event (query_output *entry,
 char *cs_file,
 unsigned int *cs_file_ts)

Description

The diag_checkstop_event subroutine will determine if the diagnostic event passed as input was
caused by a checkstop. Since multiple errors can be logged following a checkstop, the checkstop scan file
name and timestamp are returned to the calling routine for managing multiple reporting of the checkstop
event.

Parameters

Parameter Description

entry The diagnostic event extracted from the diagnostic event log.

cs_file The checkstop scanout file name.

cs_file_ts The checkstop scanout integer timestamp.

Return Value

The diag_checkstop_event subroutine returns one of the following values:

Return Value Description

1 If the diagnostic event was from a checkstop.

0 Otherwise

diag_cluster_support ()

Purpose

Determines if the current system is part of a clustered environment.

Syntax

int diag_cluster_support()

Description

The diag_cluster_support () routine determines if the cluster support software is installed to infer
whether this system is part of a clustered environment.

Parameters

None.

Return Value

Understanding the Diagnostic Subsystem for AIX 157

Item Description

0 Cluster support is not installed.

1 Cluster support is installed.

diag_cpu2proc (int n)

Purpose

Convert logical CPU number to physical processor name.

Syntax

char *diag_cpu2proc (n)

int n;

Description

The diag_cpu2proc routine is used to convert a logical CPU number to the physical processor name in
ODM CuDv class.

Note: init_dgodm must be called before starting this subroutine.

Parameters

Parameter Description

n Integer that is the logical CPU number

Return Value

Item Description

NULL If error such as ODM error, or invalid logical CPU number.

procn The name of the CuDv object for the physical processor

diag_exec_source

Purpose

Returns an indication of where diagnostics is being run from.

Syntax

int diag_exec_source (mount_point)
char *mount_point;

Description

The diag_exec_source determines where the diagnostics program is run from. If not from hard file, then
mount_point contains the directory where the file system resides (CDRFS).

Parameters

Parameter Description

mount_point Character pointer to directory name where the file system resides.

Return Value

The diag_exec_source subroutine returns one of the following values:

158 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Return Value Description

0 Running from hardfile.

1 Running from CD-ROM.

diag_execute

Purpose

Executes an application. Does not depend on ASL initialization.

Syntax

#include <diag/diago.h>

long diag_execute (command, options, exit_status)
char *command;
char *options;>
int *exit_status;

Description

The diag_asl_execute subroutine forks and executes an application. This subroutine does not depend on
ASL initialization, and it does not preserve the state of ASL.

Parameters

Parameter Description

command Command or application to run.

options Character array, starting with the command, followed by any command arguments,
ending with a NULL.

exit_status Exit status returned from the command.

Return Value

The following values are returned:

Return Value Description

0 Successful return.

-1 Error occurred.

diag_general_eed

Purpose

Collects the general Extended Error Data into a file.

Syntax

char *diag_general_eed (char *dir)

Description

The diag_general_eed subroutine collects Extended Error Data into a file in the directory given as
input. The Extended Error Data file is the output of the snap -H command, with the addition of the output
from the diagrpt -a and the lsdev -C commands.

Additional data can be collected and gathered in the EED by registering a collection application using a
PDiagAtt ODM object class attribute extend_gen_eed. For more information, refer to PDiagAtt.

Parameters

Understanding the Diagnostic Subsystem for AIX 159

Parameter Description

dir Absolute path of the directory to create the EED file, maximum 200 characters.

Return Value

The diag_general_eed subroutine returns one of the following values:

Return Value Description

NULL If error creating the EED file, otherwise, pointer to the absolute EED file
name that will be in the form of dir/snapH.pax.Z, where dir is the directory
passed as input.

diag_get_cluster_ms ()

Purpose

Retrieve the machine serial number of the cluster.

Syntax

char *diag_get_cluster_ms()

Description

The diag_get_cluster_ms () routine retrieves the machine serial number of the cluster by executing the
lscmtms cluster software command. The results are parsed and the machine serial number is returned.

Return Value

Item Description

NULL The machine serial number is not available.

string Value of the machine serial number..

diag_get_cluster_mt ()

Purpose

Retrieves the machine type/model of the cluster.

Syntax

char *diag_get_cluster_mt ()

Description

The diag_get_cluster_mt () routine retrieves the machine type/model of the cluster by executing the
lscmtms cluster software command. The results are parsed and the machine type/model is returned.

Parameters

None.

Return Value

Item Description

NULL Machine type/model is not available.

string Value of machine type/model..

diag_get_fru_serial

Purpose

160 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Gets the FRU serial number from the given FRU location code.

Syntax

int diag_get_fru_serial (char *loc, char **fru_serial)

Description

The diag_get_fru_serial routine attempts to retrieve the FRU (field replaceable unit) serial number
for a given physical location code.

Note: The calling routine must initialize and stop the Object Database Manager (ODM). It can use the
diagnostic library routines, init_dgodm() and term_dgodm(), respectively.

Parameters

Parameter Description

loc Physical location of the FRU to return it's FRU serial number.

fru_serial Returns the FRU serial number if found, otherwise is set to NULL.

Return Value

The diag_get_fru_serial subroutine returns one of the following values:

Return Value Description

-1 If there was an error retrieving the FRU serial number.

0 If the FRU serial number is not found.

1 If the FRU serial number was found, and fru_serial now points to the FRU serial
number.

dt

Purpose

Writes diagnostic trace information to a file.

Syntax

#include <diag/diag_trace.h>

void dt (dt_id, dt_type [,val, ...])
char *dt_id;
int dt_type;

Description

The dt subroutine allows trace information to be written to a file. If the file /tmp/.DIAG_TRACE exists,
trace information is written to a file specified by the dt_id argument. The default is to overwrite existing
trace information. To append to the trace file, export DIAG_TRACE=APPEND.

Parameters

Parameter Description

dt_id Used to uniquely identify the trace file. The resulting trace file will be
called .dt.'dt_id' in the /tmp directory.

Understanding the Diagnostic Subsystem for AIX 161

Parameter Description

dt_type The type of trace function to perform.
DT_TMI

Trace initialization for Diagnostic Applications (DA). Information from the
TMInput structure will be written to the trace file.

DT_BEGIN
Trace initialization for Service Aids (SA).

DT_DEC
Trace an integer variable in decimal.

DT_MDEC
Trace multiple integer variables in decimal.

DT_HEX
Trace an integer variable in hexadecimal.

DT_MHEX
Trace multiple integer variables in hexadecimal.

DT_LDEC
Trace a long integer variable in decimal.

DT_MLDEC
Trace multiple long integer variables in decimal.

DT_LHEX
Trace a long integer variable in hexadecimal.

DT_MLHEX
Trace multiple long integer variables in hexadecimal.

DT_MSTR
Trace multiple string variables.

DT_MSG
Trace a simple message such as "hello."

DT_BUFF
Trace a data buffer.

DT_SCSI_TUCB
Trace SCSI TUCB structure information.

DT_SCSI_TUCB_SD
Trace SCSI TUCB Sense Data information.

DT_END
Write "end of trace" identifier to the trace file.

val Variable arguments which may include the number of multiple variables to trace, the
trace labels, and the information to trace.

Return Value

There is no return code.

error_log_get

Purpose

Returns error-log entries.

Syntax

#include <diag/diag.h>

int error_log_get (option, criteria, err_data)

162 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

int option;
char *criteria;
struct errdata *err_data;

Description

The error_log_get subroutine allows the Diagnostic Application (DA) to query the error log for entries.

Implementation Specifics

The NVRAMEL option is only supported on the POWER® processor-based platform:

Parameters

Parameter Description

option Describes the operation to be performed. The following values are defined:
INIT

Initializes error log retrieve.
SUBSEQ

Gets next error-log entry.
TERMI

Ends error log retrieve.
NVRAMEL

Use the NVRAM error log as the source for the error log retrieve. Only the
following members of struct errdata are available when the error log is
obtained from NVRAM:

• time_stamp
• err_id
• resource
• detail_data_len
• detail_data

Note: This option is only supported on the POWER® processor-based platform.

INIT_IGNORE_LRA
Intializes error log retrieval and does not halt when a REPLACED_FRU entry is
reached. Also, REPLACED_FRU entries can be returned in the err_data
parameter. SUBSEQ calls following an INIT_IGNORE_LRA also do not halt
when a REPLACED_FRU entry is reached.

INIT_NEW_ONLY
Initializes error log retrieval and returns the first error log entry matching the
criteria that has not been previously analyzed by diagnostics.

SUBSEQ_NEW_ONLY
Gets the next error log entry matching the criteria that has not been previously
analyzed by diagnostics.

criteria Used with the INIT option to specify which device to obtain the error log data for
and how far back to search. This parameter can be set to any valid option used by
the errpt command.

When used with the NVRAMEL option, this can be either a list of resource names
(with the -N switch) or an error ID (with the -j switch), but not both.

Understanding the Diagnostic Subsystem for AIX 163

Parameter Description

struct errdata Data type that contains the following data filled in for use by the DA.

struct errdata {
 unsigned sequence; /* sequence number of entry */
 unsigned time_stamp; /* entry time stamp */
 unsigned err_id; /* error ID code */
 char *machine_id; /* machine ID */
 char *node_id; /* node */
 char *class; /* H=hardware, S=software */
 char *type; /* PERM,TEMP,PERF,PEND,UNKN */
 char *resource; /* Configured device name */
 char *vpd_data; /* VPD info */
 char *conn_where; /* connwhere field of CuDv */
 char *location; /* location field of CuDv */
 unsigned detail_data_len; /* length of detail data */
 char *detail_data; /* detail data */

Return Value

Return values are dependent on the option performed:

Return Value Description

INIT 0
No error

1
Error-log entry available

-1
Error obtaining data

SUBSEQ 0
No more entries available

1
Error-log entry available

0:

TERMI 0
Terminate successful

NVRAMEL 0
No entries matching criteria

1
Error-log entry available

-1
Error accessing NVRAM

-2
Invalid criteria

0:

INIT_IGNORE_LRA 0
No Error

1
Error-log entry available

-1
Error obtaining data

164 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Return Value Description

INIT_NEW_ONLY 0
No Error

1
Error-log entry available and no previously analyzed entries were
skipped.

2
Error-log entry available and at least one previously analyzed entry
was skipped.

SUBSEQ_NEW_ONLY 0
No more entries available

1
Error-log entry available and no previously analyzed entries were
skipped.

2
Error-log entry available and at least one previously analyzed entry
was skipped.

file_present

Purpose

Returns status indicating whether the file is present on the file system.

Syntax

int file_present (filename)
char *filename;

Description

The file_present subroutine determines the presence of a file.

Parameters

Parameter Description

filename Character pointer to full path name of file.

Return Value

The file_present subroutine returns one of the following values:

Return Value Description

0 File is not present.

1 File is present.

get_DApp

Purpose

Returns the DApp value associated with device as represented in the PDiagAtt object class.

Syntax

char *get_DApp (devicename, attribute)
char *devicename;
char *attribute;

Understanding the Diagnostic Subsystem for AIX 165

Description

The get_DApp subroutine returns the DApp value from the PDiagAtt object class associated with the
given device and attribute. Search criteria is in the following order:

1. DClass and DSClass and DType and attribute
2. DClass and DSClass and attribute
3. DClass and attribute

The calling application is responsible for freeing the storage allocated for the returned value.

Parameters

Parameter Description

devicename Character pointer to customized name of device.

attribute Character pointer to attribute associated with device.

Return Value

The get_DApp subroutine returns one of the following values:

Parameter Description

char * NULL Device and attribute is not found.

char *DApp Pointer to char string containing DApp value.

getdainput, clrdainput

Purpose

Gets and clears the input for the Diagnostic Application (DA).

#include <diag/tm_input.h>

int getdainput (tm_input)
struct tm_input *tm_input;

int clrdainput ()

Description

The getdainput subroutine gets the input for the DA from the TMInput object class. The clrdainput
subroutine clears the TMInput object class.

Parameters

Parameter Description

tm_input Pointer to the structure where the data should be written.

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned.

getdavar, putdavar

Purpose

Gets and puts persistent variables.

Syntax

#include <diag/diag.h>

int getdavar (dname, vname, vtype, val)

166 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

char *dname, *vname, *val;
unsigned short vtype;

int putdavar (dname, vname, vtype, val)
char *dname, *vname, *val;
unsigned short vtype;

Description

The getdavar subroutine gets the persistent variable vname from the Diagnostic Application Variables
object class. The putdavar subroutine is used to save the specified value.

Parameters

Parameter Description

dname Name of the device with which the variable is associated.

vname Name of the variable.

vtype Type of the variable. The following values are defined:
DIAG_STRING

The variable should be treated as a character string.
DIAG_INT

The variable should be treated as an integer.
DIAG_SHORT

The variable should be treated as a short.

val Location where the variable should be written when the subroutine getdavar is
called. Otherwise, val points to the value to be saved.

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned.

getELAdates

Purpose

Return the start and end timestamp for retrieving error log entries.

Syntax

char *getELAdates (notRTOmode)
int notRTOmode;

Description

The getELAdates subroutine formats and returns a string containing the start and end timestamp that
should be used for error log analysis. The end timestamp is the current date and time. The start
timestamp is created using either the value specified by the Customized Diagnostic Attribute for run time
options, or the value passed as a parameter. The string returned serves the same purpose as the date
parameter of the TMInput object class.

Note: init_dgodm must be called before starting this subroutine.

Parameters

notRTOmode
Determines how the run time option value for the number of ELA days is used. If notRTOmode is 0,
then the number of ELA days specified by the Customized Diagnostic Attribute for run time options is
used to create the start timestamp. If notRTOmode is greater than 0, then the notRTOmode value is
used as the number of ELA days when creating the start timestamp.

Return Value

Understanding the Diagnostic Subsystem for AIX 167

The following string is returned:

-s MMddhhmmyy -e MMddhhmmyy

where:

dd
is the 2-digit value for day

hh
is the 2-digit value for the hour in 24-hour format

mm
is the 2-digit value for minutes

yy
is the 2-digit value for year

has_diag_authority

Purpose

Checks if a user has the proper authority to run diagnostics.

Syntax

int has_diag_authority chk_shutdown;

Description

The has_diag_authority subroutine checks if the user is authorized to run diagnostics.

Parameters

Parameter Description

chk_shutdown If TRUE, the subroutine checks to see if the user is authorized to shut down
the system.

Return Value

Return Value Description

0 User is not authorized to run diagnostics.

1 User is authorized to run diagnostics.

ipl_mode

Purpose

Returns the state of the diagnostic IPL mode.

Syntax

#include <diag/diag.h>

int ipl_mode (source)
int source;

Description

The ipl_mode subroutine returns the state of the diagnostic IPL mode, and the IPL source.

Parameters

168 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

source Set according to IPL source:

If the value of the environment variable DIAG_IPL_SOURCE is NULL or
IPL_SOURCE_DISK or IPL_SOURCE_LAN, then the value of source will be set to
DIAG_FALSE (0).

If the value of the environment variable DIAG_IPL_SOURCE is IPL_SOURCE_CDROM or
IPL_SOURCE_TAPE, then the value of source will be set to DIAG_TRUE (1).

Return Value

The ipl_mode subroutine returns one of the following values:

Return Value Description

1 EXENV_IPL Diagnostics invoked during IPL

2 EXENV_STD Standalone Diagnostics, Online Service, or Online Maintenance

4 EXENV_CONC Online Concurrent Diagnostics

menugoal

Purpose

Concludes a Text Goal.

Syntax

int menugoal (msg)
char *msg;

Description

The menugoal subroutine associates a menu goal with the device being tested. The TMInput object class
identifies the device currently being tested.

Parameters

Parameter Description

msg Pointer to a text string that identifies a repair action intended for the customer, not
a trained service representative. The msg parameter should contain a six-digit hex
number (menu number) at the front of the buffer, followed by a space, and then the
title line. Everything after the first carriage return is considered menu text.

Return Value

Upon successful completion, a value of 0 is returned. If the menugoal subroutine fails, then a value of -1
is returned.

schedule_ela

Purpose

Schedule ELA for a device.

Syntax

int schedule_ela (device, minutes)

char *device;

int minutes;

Understanding the Diagnostic Subsystem for AIX 169

Description

This routine is used to schedule Error Log Analysis (ELA) for a given device. Typically, this would be used
by a Diagnostic Application to schedule ELA when processing indicates that an error log entry is expected
and necessary for completing the diagnostic conclusion.

The scheduled time is the current time plus the number of minutes given as input. The number of minutes
is limited to 24 hours. The scheduled ELA event, similar to using the diag -c -e -d device command,
occurs one time only.

Parameters

Parameter Description

device The device name for which ELA should be run. Example: sysplanar0

minutes The number of minutes that is added to the current time to schedule ELA to
run. Any value over 24 hours is truncated to a value less than 24 hours.
Example: 24 hours and 35 minutes (1475 minutes) is truncated to
35 minutes.

Return Value

There is no error return. Always returns 0.

Diagnostic object classes
This topic describes the types of various Diagnostic ODM object classes.

The Diagnostic Package contains ODM object classes that are used extensively by the Diagnostic
components. Some object classes store 'predefined' diagnostic information about the system and
resources. Other object classes store 'customized' information that is built and used during runtime
operation of diagnostics.

The following is a list of the Diagnostic ODM object classes:

Predefined Diagnostic Resource Object Class

The Predefined Diagnostic Resource object class (PDiagRes) identifies the resources supported by
diagnostics and provides additional information needed to test the resource.

The PDiagRes object class structure is defined as:

class PDiagRes {
 char Uniquetype[48];
 short Ports;
 short PSet;
 short PreTest;
 char AttUniquetype[48];
 short SupTests;
 short Menu;
 short DNext;
 vchar DaName[255];
 char PkgBlock[5];
 vchar EnclDaName[255];
 vchar SysxApp[255];
 vchar SupTasks[255];
 long FFC;
 short Fru;
 long TestSuiteId;
 long DiagEnvironment;
 vchar KernExt[255];
 char Version[5];
 };

Parameter Description

Uniquetype Predefined device "class/subclass/type."

170 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

Ports Indicates if the device will be represented in the Resource Selection menu by its
children. The intent is to use device names that are well known to the user (for
example, printers rather than serial ports). The values are as follows:
DIAG_NO (0)

Child devices should not be defined.
DIAG_YES (1)

Child devices should be defined.

When determining whether a child device should be defined, consider whether
the device is self-determining. Will the mkdev command be unsuccessful if the
device is not really there?

PSet Identifies the message set in either dcda.cat or the diagnostic application
catalog file reserved for the device. If the Ports field is not equal to 0, the first
message in the set describes the adapter port. This adapter text is used in place
of the real device text so that the customers are not misled into thinking that
they have devices that are not actually present. The additional messages are
used for reason-code text, which the DAs name when reporting FRUs.

The diagnostic application catalog file should be used by all diagnostic
applications integrated into the Diagnostic Package. This capability allows for
greater flexibility in installing and maintaining the diagnostic code. To use this
catalog file, set bit DIAG_DA_SRN in the Menu field.

PreTest Indicates that the device should be tested before the system is brought up.
Pretest occurs when the system is initial-program loaded with the key in service
position. The keyboard device, native serial ports, and display adapters are
normally pretested.

AttUniquetype The device class/subclass/type of the child device to define when the Ports field
is set. The device named should include a set of device drivers that contain
support for diagnostics.

Understanding the Diagnostic Subsystem for AIX 171

Parameter Description

SupTests Identifies the types of tests supported by the DA. See Staging the Impact of
Diagnostics for more information. More than one of the following types may be
specified:
SUPTESTS_SHR (0x0001)

Shared tests are supported.
SUPTESTS_SUB (0x0002)

Sub-tests are supported.
SUPTESTS_FULL (0x0004)

Full-tests are supported.
SUPTESTS_MS1 (0x0008)

An optional procedure that determines why the device was not detected.
This procedure is typically specified for devices that have external power
supplies. This procedure is associated with the first selection at the Missing
Resource menu.

SUPTESTS_MS2 (0x0010)
An optional procedure that performs device-specific actions when a device
is removed. For example, the DA might notify a subsystem (LVM) that a
physical resource (disk) has been removed. Or the DA might provide
warning about deleting a device. If this procedure is not specified, the
Diagnostic Controller deletes the device. If it is specified, the DA should
delete the device. Devices are deleted by calling the device's Undefine
Method. This procedure is associated with the second selection at the
Missing Resource menu.

Menu Identifies the diagnostic menus in which the device should be included. The
values are as follows:
DIAG_DTL (0x0001)

The Diagnostic Test List menu.
DIAG_NOTDLT (0x0002)

Indicates that the device should not be allowed to be deleted from the
Diagnostic Test List menu; for example, the VME adapters in the external
display enclosure.

DIAG_DS (0x0004)
Indicates that the device should be included in the Diagnostic Selection
menu.

DIAG_CON (0x0008)
Indicates that the device should be put in the Resource Selection menu if no
children are attached; otherwise, the child device is put in the menu and the
named device is not.

DIAG_DA_SRN (0x0010)
Indicates that the device's SRN text resides in the diagnostic applications
catalog file.

DNext Indicates the resource to be tested next. The values are as follows:
DIAG_PAR (0x0001)

The parent resource.
DIAG_SIB (0x0002)

A sibling resource.

DaName The name of the DA associated with the device.

172 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

PkgBlock The block number that includes the DA associated with the device for the
Removable Media Diagnostic package. This value should be an "S" if the DA is
on a Supplemental Diskette, or a "3S" if the DA is a graphics adapter that can be
used as a console device.

EnclDaName This field names a DA that provides missing-device analysis for an enclosure
that is not explicitly represented in the device configuration, but that needs to
be processed before the missing device. Many enclosures have their own
problem-determination procedures for checking cabling, power, idiot lights, and
so on, and frequently, it is helpful to know if a sibling of the missing device in the
same enclosure is available.

The specification of a separate DA to missing-device diagnostics for devices not
represented (for example, external enclosures or drawers) centralizes this logic
in a single command instead of distributing it among each DA supporting a
device that can operate in a bridge box or drawer.

For most devices, this field is null. The Diagnostic Controller calls the
EnclDaName field, if the user indicates that the device has not been moved or
turned off. The EnclDaName field is called before DaName.

SysxApp Identifies the application to invoke that performs a system exerciser function
for this resource. While not currently used, this is a reserved field, and should
be left blank.

SupTasks Reserved. This field is retained for compatibility and should not be used. For
more information, see Predefined Diagnostic Attribute Device.

FFC Failing Function Code for the resource. (may be used to override the PdDv led
value)

Fru Field Replaceable Unit indicator. (may be used to override the PdDv fru value):
0

No-Fru
1

Self-FRU
2

Parent-FRU
3

Hybrid - Could be integrated or nonintegrated device.

Understanding the Diagnostic Subsystem for AIX 173

Parameter Description

TestSuiteId Bit mask indicating test suite this resource is a member of:
Bit

Resource
1

Base system (planars, memory, etc.)
2

I/O Device (keyboard, mouse, etc.)
4

Asynchronous Device
8

Graphics
16

SCSI Adapters
32

Storage Device (disks, diskettes, tapes, etc.)
64

Commo
128

Multimedia
256

Miscellaneous Devices

DiagEnvironment Bit mask indicating various test mode environments this resource is capable of
running in:
Bit

Environment
1

Supports Diagnostics in concurrent mode
2

Supports ELA
4

LFT Device (should not be run with X)
8

Group Member, set if this resource is part of a conglomerate group, such as
memory, or SIMMS.

16
Resource supports ELA in concurrent mode only

32
Resource is not supported under WEBDIAG mode.

64
This object supports multiple resource types. The type for a given resource
is found in the CuAt object attribute=aix-subtype. The value of the attribute
is the type and is used to find the specific PDiagRes that supports the
resource. A value of "nodiag" in the CuAt object indicates that the resource
is not supported by diagnostics.

1024
The kernel extensions listed in KernExt are supported on the 64-bit kernel.

174 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

KernExt ',' separated list of kernel extensions to load for this resource. Each kernel
extension may be preceded by a platform type to indicate the platform that the
kernel extension should be loaded on. For example, chrp:device_kext, pdiagex
would indicate to always load pdiagex, and to conditionally load device_kext
only on a 'chrp' platform. The platform name is derived as the output from the
lscfg | grep Architecture command.

Version Version change number for this resource stanza. This value should be 1.0.

Note: All values can be found in header files under /usr/include/diag directory.

Predefined Diagnostic Attribute Device Object Class

The Predefined Diagnostic Attribute Device object class (PDiagAtt) contains device- specific attributes
for the DAs, diagnostic controller, and service aids to use.

The PDiagAtt object class structure is defined as:

class PDiagAtt {
 char DClass[16];
 char DSClass[16];
 char DType[16];
 char attribute[16];
 vchar value[255];
 char rep[8];
 vchar DApp[255];
 };

Parameter Description

DClass Predefined device class. Devices are uniquely identified by a combination of DClass,
DSClass, and DType.

DSClass Predefined device sub-class. Devices are uniquely identified by a combination of of
DClass, DSClass, and DType.

DType Predefined device type.

attribute 16-byte char field. The attribute value used by service aids to determine test mode
for devices is test_mode. Uses value field.

value 255-byte variable char field.

rep 8-byte char field.

DApp 255-byte variable char field.

Each field has specific meaning to each application that utilizes the Predefined Diagnostic Attribute
Device object class (PDiagAtt).

EXAMPLES

• To specify the tasks that are supported by a resource, create a PDiagAtt stanza for the resource,
indicating the supported tasks in the value field.

PDiagAtt:
 DClass = "disk"
 DSClass = "scsi"
 DType = ""
 attribute = "SupTasks"
 value = "1,2,7,8,9,10,13,14,16,31,33"
 rep = "s"

PDiagAtt:
 DClass = "disk"
 DSClass = "scsi"

Understanding the Diagnostic Subsystem for AIX 175

 DType = "355mb"
 attribute = "SupTasks"
 value = "1,2,7,8,9,10,13,14,31,33"
 rep = "s"

The search order performed by the Controller when determining the tasks a resource supports is as
follows:

DClass, DSClass, DType
DClass, DSClass
DClass

In the above example, if the disk type is 355mb, a match on the first call to search ODM is made; if not, a
match will be made on the second call.

Note: The 355mb does not have task id 16, which is microcode download.
• To specify the application for the Diagnostic Controller to execute for a specific resource that supports a

task, then a stanza similar to the following is needed. This example tells the Controller to invoke ufd to
start a format task on the selected resource that matches the diskette/siofd/fd criteria.

PDiagAtt:
 DClass = "diskette"
 DSClass = "siofd"
 DType = "fd"
 attribute = "format"
 value = ""
 rep = "s"
 DApp = "ufd"

• The following stanza indicates the current release level of the Diagnostic Controller:

PDiagAtt:
 DType = "Dctrl"
 attribute = "version"
 value = "xxx" #This is the diagnostic
 #version level seen on
 #the Operating
 #Instructions Menu.
 rep = "s"

• The NoScreen attribute is used by Display Test Pattern Service Aid to determine when a graphics
adapter specific application should be used to display the screens for the service aid.

PDiagAtt:
 DType = "2b101a05"
 DSClass = "pci"
 attribute = "NoScreen"
 value = "/usr/lpp/diagnostics/da/dsage -P"
 rep = "NotOpen"
 DClass = "adapter"
 DApp = "u5081"

The service aid that uses this stanza is /usr/lpp/diagnostics/bin/u5081. The command that is built
and executed is:

 /usr/lpp/diagnostics/da/dsage <device name> -P

• The platform_task+ attribute allows third parties to add tasks to the Task List based on the hardware
platform. The DApp field specifies the platform for the tasks in the Task List. The value field of the
stanza contains a comma delimited list of the task IDs to be added.

PDiagAtt:
 DType = ""
 DSClass = ""
 attribute = "platform_task+"

176 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 value = "101,102,110"
 rep = ""
 DClass = ""
 DApp = "rspc"

In the example above, the tasks whose IDs are 101, 102 and 110 will be included in the task list on an
ISA-bus based platform. Multiple PDiagAtt stanzas with the platform_task+ attribute are allowed.

Note: The platform value for the DApp field is the string obtained by using the lscfg | grep Architecture
command.

• To register external notification programs with the Diagnostic Controller:

1. When the system is managed by a Hardware Management Console. PDiagAtt:

DType = <fileset nickname>
DSClass = " "
attribute = "notify_service"
value = " "
rep = "s"
DClass = " "
Dapp = <complete path to external notification program>

2. When the system is not managed by a Hardware Management Console. PDiagAtt:

DType = <fileset nickname>
DSClass = " "
attribute = "notify_extern"
value = " "
rep = "s"
DClass = " "
Dapp = <complete path to external notification program>

where <fileset nickname> is any 15 character or less string that represents which fileset ships
this stanza. For example, fileset devices.chrp.base.diag might use a nickname DevChrBasDiag.
The application named in DApp will be executed with a diagnostics event log sequence number, or a
list of sequence numbers.

• To register an application to gather additional Extended Error Data for external notification programs:

PDiagAtt:
 DType = <fileset nickname>
 DSClass = " "
 attribute = "extend_gen_eed"
 value = " "
 rep = "s"
 DClass = " "
 Dapp = <complete path to the collection application>

where <fileset nickname> is any 15 character or less string that represents which fileset ships this
stanza. For example, fileset devices.chrp.base.diag might use a nickname DevChrBasDiag.

The application named in DApp will be executed with a directory name as an argument. The application
should put the collected data in files in the given directory. If the string in DApp contains -s, then the
application will be executed with flags -s <error log sequence number> and -d <directory>.

Predefined Diagnostic Task Object Class

The Predefined Diagnostic Task object class (PDiagTask) identifies the tasks supported by diagnostics
and provides additional information needed to execute the task.

The PDiagTask object class structure is:

class PDiagTask {
 long TaskId;
 long SetId;
 long MsgId;
 long Multisession;
 short Order;

Understanding the Diagnostic Subsystem for AIX 177

 long ResourceFlag;
 long DiagEnvironment;
 short Builtin;
 vchar Action[255];
 vchar Catalog[255];
 vchar KernExt[255];
 short DescriptionSetId;
 short DescriptionMsgId;
 char PkgBlock[5];
 };

Parameter Description

TaskId Unique number identifying the task.

SetId Catalog set number in either Dctrl.cat for the 'built-in' tasks, or in the
catalog file specified for this task. The Setid and Msgid are used to display
the task description on the Task Selection Menu.

MsgId Catalog message number in either Dctrl.cat for the 'built-in' tasks, or in the
catalog file specified for this task. The Setid and Msgid are used to display
the task description on the Task Selection Menu.

Multisession Flag indicating whether multiple instances of this task can be run
simultaneously. While not currently used, this is a reserved field, and should
be left blank.
0

No
1

Yes

Order Order to display the tasks in the Task Selection Menu. Value of 0 implies no
order required, and the task will be placed at the end. An order value greater
than 900 implies that Task is a subtask.

ResourceFlag Flag indicating whether the Resource Selection menu should be presented
after the task has been selected. If a resource is selected, then the task will
be called with the resource name as a command-line argument to the task.
If this value is 0, then the task is invoked directly.
Bit

Task
1

Present Resource Selection menu, and pass in selected Resource
2

Present Resource Section menu, and pass in selected Resources
4

Present Resource Selection menu, and pass in "ALL" if All is selected.
8

Rebuild Resource List after executing Task
16

Search PDiagAtt for DApp associated with Task
32

Task supports No Console mode
64

Task should be supported by all resources.

178 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

DiagEnvironment Bit mask indicating various test mode environments this task is capable of
running in.
Bit

Mode
1

Service Mode
2

Hardfile
4

Multiple Processor Platform Specific
8

ISA Bus Capability
16

RS6K and RS6KSMP Platform Specific
32

Removable Standalone Media
64

Hidden, do not display in Task Selection List
128

CHRP Platform
256

RSPC Platform
512

Do not display under WEB Diagnostics
1024

Task and the kernel extensions listed in KernExt are supported on the
64-bit kernel.

2048
The task should be queried with the -S flag to determine if it is
supported.

Builtin Built-in task (part of the Controller).

Action Basename of the program for this task. If no path given, then the default
path of /usr/lpp/diagnostics/bin is used. If a complete path is given, then
that path is used. When you are creating a task that displays a subtask list,
the action should include a %name,comma-separated list of TaskIds of each
subtask. In cases where task and subtask have the same TaskId, a %name
can be used. The following is an example of a task and a subtask that have
the same TaskId:

"%ThisTask,73,12,19" or "%ThisTask"

Catalog Catalog file for this task. Catalog files containing default message text are
assumed to be located in /usr/lpp/diagnostics/catalog/default directory.
Translated files are assumed to be in /usr/lib/nls/msg/$LANG directories.

KernExt ',' separated list of kernel extensions to load for this task.

Understanding the Diagnostic Subsystem for AIX 179

Parameter Description

DescriptionSetId Catalog set number of the help message text in either Dctrl.cat for the
'built-in' tasks, or in the catalog file specified for this task. The
DescriptionSetId and DescriptionMsgId are used to display the help task
description on the Task Selection Menu.

DescriptionMsgId Catalog message number of the help message text in either Dctrl.cat for the
'built-in' tasks, or in the catalog file specified for this task. The
DescriptionSetId and DescriptionMsgId are used to display the help task
description on the Task Selection Menu.

PkgBlock Block number that includes the task on the Removable Media Diagnostic
package. This value should be an "S" if the task is on a Supplemental Media.

Customized diagnostic attribute object class
The Customized Diagnostic Attribute object class (CDiagAtt) contains customized entries for selected
devices found in the current configuration, which is supported by diagnostics.

The CDiagAtt object class indicates specialized diagnostic attribute status of the device. It is used to
maintain diagnostic information about devices found in the current configuration across sessions.

The CDiagAtt object class structure is defined as:

class CDiagAtt {
 char name[16];
 char attribute[16];
 vchar value[255];
 char type[8];
 char rep[8];
 };

Parameter Description

name Resource name as specified in CuDv.

attribute 16-byte char field. The attribute value used by the Controller to identify persistent
state data for the device. Uses value field.

value 255-byte variable char field.

type 8-byte char field specifying data type.

rep 8-byte char field.

Examples

• The Diagnostic Controller creates a CDiagAtt entry for each device that is tested periodically by the
Diagnostic daemon. The format of the stanza looks like:

CDiagAtt:
 name = "hdisk0" Resource to test
 attribute = "p_test_time" Attribute: periodic-test-time
 value = "0300" Test time (3AM)
 type = "T" Data type of 'text'
 rep = "s" 'String' representation

CDiagAtt:
 name = "ent0" Resource name
 attribute = "p_test_time"
 value = "9999" Not tested
 indication
 type = "T"
 rep = "s"

180 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

• The Diagnostic Controller creates a CDiagAtt entry for each device that has been deleted from the
resource list. The format of the stanza looks like:

CDiagAtt:
 name = "mem0" Resource name
 attribute = "not_in_tst_list" Device has been deleted from
 value = "1" the Resource List
 type = "T"
 rep = "n"

Test mode input object class
The input parameters to the Diagnostic Application are stored in the TMInput object class. The subroutine
getdainput should be used to retrieve the test mode input data values from this object class.

The TMInput object class structure is defined as:

class TMInput {
 short exenv;
 short advanced;
 short system;
 short dmode;
 char date[80];
 short loopmode;
 short lcount;
 short lerrors;
 short console;
 char parent[16];
 char parentloc[16];
 char dname[16];
 char dnameloc[16];
 char child1[16];
 short state1;
 char childloc1[16];
 char child2[16];
 short state2;
 char childloc2[16];
 long pid;
 short cpuid;
 };

Parameter Description

exenv The execution environment. Possible values include the following:
EXENV_IPL

Diagnostics is being run in pre-test mode. Tests should not take longer than
one-minute.

EXENV_STD
Standalone and Online Service diagnostics. The Service IPL was used to load
the system. This can be accomplished either by initial program loading from
disk or removable media. This mode also applies if the normal IPL was used to
load the system and then maintenance mode was entered by issuing the
command shutdown -m.

EXENV_CONC
Online Concurrent diagnostics. The Normal IPL was used to load the system.

advanced Derived from the Function Selection menu. Possible values include the following:
ADVANCED_TRUE

Advanced Diagnostic Routines, which are run by a trained service
representative. May prompt for wrap plugs, etc.

ADVANCED_FALSE
Diagnostic Routines, which are run by the customer.

Understanding the Diagnostic Subsystem for AIX 181

Parameter Description

system Derived from the Diagnostic or Resource Selection menu. Possible values include
the following;
SYSTEM_TRUE

System Checkout (All Resources) was chosen. The DAs perform noninteractive
tests.

SYSTEM_FALSE
Option Checkout was chosen. The DAs perform interactive tests.

dmode The diagnostic mode indicates the type of analysis that should be undertaken.
Possible values include the following:
DMODE_ELA

Error-log analysis. No diagnostic tests are executed.
DMODE_MS1

This procedure is started because the user indicated that the named device
was not removed, moved, or turned off. This procedure should determine why
the option was not detected. Generally, this type of analysis involves asking the
user to check cables, power supplies, fans, panel lights, and so on. The device
is not deleted from the configuration.

DMODE_MS2
This procedure is started because the user indicated that the named device has
been removed from the system and should be removed from the system
configuration. This procedure should perform any unique "pseudo" device
manipulation, notification, and so on. For example, when a physical disk is
removed from the system, the LVM should be notified. The DA is responsible for
deleting the device from the configuration. The Device's Undefine Method is
provided for this purpose.

DMODE_PD
Problem determination, including error-log analysis and diagnostics tests.

DMODE_REMIND
Diagnostic reminder, which defaults to running once a week, looks for
deconfigured resources or other problems that have been previously reported,
but have not been fixed.

DMODE_REPAIR
Repair checkout, which includes only diagnostics tests. The error log is not
used because the user is attempting to verify new hardware.

date The date from which the error log should be scanned. For the syntax used to
describe the data, see the date command.

182 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

loopmode The maintenance mode and service mode diagnostic package supports loop
testing. All or part of the system can be tested multiple times. Possible values
include the following:
LOOPMODE_NOTLM

Not loop mode. The default value for concurrent diagnostics.
LOOPMODE_ENTERLM

Entering loop mode. The DA can interact with the user to set up a test or to
isolate a problem. The next time the DA is executed, it will be in loop mode.

LOOPMODE_INLM
In loop mode. No user interaction is allowed. The DA polls the keyboard. The
tests should be stopped when the user presses Cancel.

LOOPMODE_EXITLM
The system is restored to its pretest state. The DA guides the user in the
restoration of the system to its pretest state. For example, wrap plugs are
removed and cables are replugged. No tests are executed.

lcount Number of passes in loop mode that have been completed.

lerrors Number of errors logged while in loop mode.

console Diagnostic Controller queries the database to determine if the default console has
been configured. Configuration states include:
CONSOLE_TRUE

A console is available.
CONSOLE_FALSE

No console is available, or no console output is desired. The LEDs are used to
signal an error (if the platform supports LEDs).

parent Name of the parent of dname.

parentloc Location of parent. Format of string is "00-00-00-00".

dname Name of the device to be tested.

dnameloc Location of dname. Format of string is "00-00-00-00".

child1 Name of the child device that has already been tested. Relevant for Option
Checkout only.

childloc1 Location of child1. Format of string is "00-00-00-00".

state1 State associated with child1. The resource states include:
STATE_NOTEST

The resource has not been tested.
STATE_GOOD

The resource passed its tests.
STATE_BAD

The resource failed its tests.

child2 Name of another child device that has already been tested. Relevant for Option
Checkout only.

childloc2 Location of child2. The format of the string is "00-00-00-00".

Understanding the Diagnostic Subsystem for AIX 183

Parameter Description

state2 State associated with child2. The resource states include:
STATE_NOTEST

The resource has not been tested.
STATE_GOOD

The resource passed its tests.
STATE_BAD

The resource failed its tests.

pid Process ID of the DA when started from the Controller.

cpuid Logical processor number plus one which the DA when started from the Controller
should bind itself to. While not currently used, this is a reserved field, and should
be left blank.

All values can be found in /usr/include/diag/tmdefs.h.

Menu Goal Object Class

The Menu Goal object class (MenuGoal) is used to store additional text information that the Diagnostic
Application wants to pass back to the Diagnostic Controller. This text information is displayed to the user.
This information is usually additional information that would be useful to the user concerning the state of
the resource. One example would be that the Tape Drive requires cleaning.

All applications using the MenuGoal capability must use the menugoal diagnostic library subroutine.

The MenuGoal object class structure is defined as:

class MenuGoal {
 char dname[16];
 longchar tbuffer1[1000];
 longchar tbuffer2[1000];
 };

Parameter Description

dname Resource name as specified in CuDV

tbuffer1 Buffer used to store 1000 bytes of text

tbuffer2 Buffer used to store 1000 bytes of text

FRU bucket object class
The Fru Bucket Object Class (FRUB) is used to store failing replaceable unit information. This information
is specified by the Diagnostic Application and passed back to the Diagnostic Controller after an error has
been detected.

All applications using the FRU capability must use the addfrub diagnostic library subroutine.

The FRUB object class structure is defined as:

class FRUB {
 char dname[16];
 short ftype;
 short sn;
 short rcode;
 short rmsg;
 char timestamp[80];
 };

Parameter Description

dname Names the device under test.

184 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

ftype Indicates the type of FRU Bucket being added to the system. The following values
are defined:
FRUB1

The FRUs include the resource that failed, its parent, and any cables needed to
attach the resource to its parent.

FRUB2
This FRU Bucket is similar to FRU Bucket FRUB1, but does not include the
parent resource.

FRUB_ENCLDA
This FRU Bucket is used for missing devices in the I/O enclosure(s).

sn Source number of the failure.

rcode Reason code associated with the failure.

Note: A Service Request Number is formatted as follows:

SSS - RRR

where SSS is the sn and RRR is the rcode.

Some devices may use a different nomenclature for their service request numbers.
For this special case, the sn parameter indicates how the rcode value should be
formatted. If sn = 0, then rcode is interpreted as decimal. If sn = -1, then rcode is
interpreted as a 4-digit hexadecimal number.

If sn = -2, then the object class DAVars is searched for an attribute of Error_code.
This allows the displaying of eight-digit hex error codes. The diagnostic application
is responsible for setting up a DAVars object similar to the following:

DAVars:

dname: <device name under test>
vname: Error_code "Error_code is an ascii string"
vtype: DIAG_STRING "Literal value"
val: <8 digit hex character string>

See the getdavar/putdavar subroutine for more information.

rmsg Message number of the text describing the reason code. The set number of the text
is predefined by the PSet field in the Predefined Diagnostic Resources object
class.

timestamp Specifies the time the FRU bucket was added.

FRU reporting object class
The Fru Reporting Object Class (FRUs) is used to store failing replaceable unit information. This
information is specified by the Diagnostic Application and passed back to the Diagnostic Controller after
an error has been detected.

All applications using the FRU capability must use the addfrub diagnostic library subroutine.

The FRUs object class structure is defined as:

class FRUs {
 char dname[16];
 char fname[16];
 char floc[16];
 short ftype;
 short fmsg;

Understanding the Diagnostic Subsystem for AIX 185

 short conf;
 };

Parameter Description

dname Names the device under test.

fname Names the FRU.

The parameters floc and fmsg must be specified, if fname is not represented in the
Customized Devices object class. Otherwise, they should be set to 0.

floc Location icode for fname.

ftype Indicates the type of FRU Bucket being added to the system. The following values are
defined:
FRUB1

The FRUs include the resource that failed, its parent, and any cables needed to
attach the resource to its parent.

FRUB2
This FRU Bucket is similar to FRU Bucket FRUB1, but does not include the parent
resource.

FRUB_ENCLDA
This FRU Bucket is used for missing devices in the I/O enclosure(s).

fmsg Message number of the text describing fname. The set number is predefined by the
PSet descriptor in the Predefined Diagnostic Resources object class.

conf Indicates whether an FRU is valid. A value of 0 indicates an invalid FRU. No other FRUs
are displayed once an invalid FRU is found in the FRU bucket.

However, if fname contains the string REF-CODE, then the fmsg and conf values are
used to make the 8-digit ref code.

Diagnostic application variables object class
The Diagnostic Application Variables Object Class (DAVars) is used to store run time information
needed by the Diagnostic Application. This object class is used to store state variables to support Loop
Testing.

All applications using the DAVars capability must use the getdavar/putdavar diagnostic library
subroutine.

The DAVars object class structure is defined as:

class DAVars {
 char dname[16];
 char vname[30];
 short vtype;
 char vvalue[30];
 long ivalue;
 };

Parameter Description

dname Name of the device with which the variable is associated.

vname Name of the variable.

186 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

vtype Type of the variable. The following values are defined:
DIAG_STRING

The variable should be treated as a character string.
DIAG_INT

The variable should be treated as an integer.
DIAG_SHORT

The variable should be treated as a short.

vvalue Stores character string variable.

ivalue Stores integer or short value of variable.

Predefined Diagnostic Devices Object Class

The Predefined Diagnostic Devices object class (PDiagDev) identifies the resources supported by
diagnostics and provides additional information needed to test the resource. This object class is
recognized by the operating system for backlevel compatibility purposes. For development purposes, use
PDiagRes instead.

The PDiagDev object class structure is defined as:

class PDiagDev {
 char DType[16];
 char DSClass[16];
 short Ports;
 short PSet;
 short PreTest;
 char AttDType[16];
 char AttSClass[16];
 short Conc;
 short SupTests;
 short Menu;
 short DNext;
 vchar DaName[255];
 char Diskette[5];
 vchar EnclDaName[255];
 short Sysxflg;
 char DClass[16];
 };

Parameter Description

DType Predefined device type.

DSClass Predefined device subclass.

DClass Predefined device class.

Ports Same definition as PDiagRes->Ports.

PSet Same definition as PDiagRes->PSet.

PreTest Same definition as PDiagRes->PreTest.

AttDType Device predefined type of the child device to define when the Ports field is set. The
device named should include a set of device drivers that contain support for
diagnostics.

AttSClass Device subclass of the child device to define when the Ports field is set.

Understanding the Diagnostic Subsystem for AIX 187

Parameter Description

Conc Indicates if the device is supported in multiuser mode. The values are as follows:
DIAG_YES

The device is supported in multiuser mode.
DIAG_NO

The device is not supported in multiuser mode.

SupTests Identifies the types of tests supported by the DA. More than one of the following
types may be specified:
SUPTESTS_SHR (0x0001)

Shared tests are supported.
SUPTESTS_SUB (0x0002)

Sub-tests are supported.
SUPTESTS_FULL (0x0004)

Full-tests are supported.
SUPTESTS_MS1 (0x0008)

An optional procedure that determines why the device was not detected. This
procedure is typically specified for devices that have external power supplies.
This procedure is associated with the first selection at the Missing Resource
menu.

SUPTESTS_MS2 (0x0010)
An optional procedure that performs device-specific actions when a device is
removed. For example, the DA might notify a subsystem (LVM) that a physical
resource (disk) has been removed. Or the DA might provide warning about
deleting a device. If this procedure is not specified, the Diagnostic Controller
deletes the device. If it is specified, the DA should delete the device. Devices are
deleted by calling the device's Undefine Method. This procedure is associated
with the second selection at the Missing Resource menu.

SUPTESTS_HFT
Set if the device is a graphics-related device.

SUPTESTS_DIAGEX
Set if the device uses DIAGEX, the diagnostic kernel extension. Also used if the
DA requires a second kernel extension loaded. The PDiagAtt database is used in
this instance. A stanza similar to the following must be used:

PDiagAtt:

DClass
The device Class.

DSClass
The device SubClass.

DType
The device Type.

attribute
Must be diag_kext.

value
Set to the kernel extension driver name. Must reside in /usr/lib/drivers
directory.

Menu Same definition as PDiagRes->Menu.

DNext Same definition as PDiagRes->DNext.

DaName Same definition as PDiagRes->DaName.

188 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Parameter Description

Diskette A diskette identification that includes the DA associated with the device for the
Standalone Diagnostic package. This value should be an "S" if the DA is on a
Supplemental Diskette, or a "3S" if the DA is a graphics adapter that can be used as a
console device.

EnclDaName Same definition as PDiagRes->EnclDaName.

SysxFlg Identifies the types of tests supported by the DA while running in the System
Exerciser Environment.
SYSX_NO

Set if the DA should not be run by the System Exerciser.
SYSX_ALONE

Set if the DA cannot be run with others with the same bit also set. This includes
the diskette DAs that issue a reset to the adapter, which would cause problems if
another diskette DA was running at the same time. Another example would be
graphics-related devices such as the keyboard, mouse, tablet, dials, and
LPFKeys.

SYSX_INTERACTION
Set if the DA can be run with media to be tested. This includes the diskette, tape
and CD-ROM DAs. SYSX_INTERACTION was formerly SYSX_MEDIA.

SYSX_LONG
Set if the DA runs for more than a minute or so. This bit can be used to determine
how many times to run the other DAs if no long DAs are running. The current loop
count for DAs that do not take long to run is 25 loops.

Diagnostic supervisor menu options object class
The Diagnostic Supervisor Menu Options object class (DSMOptions) contains stanzas describing
Diagnostic Service Aids. This object class is recognized by the operating system for backlevel
compatibility purposes.

For development purposes, use PDiagRes instead.

The DSMOptions object class structure is defined as:

class DSMOptions {
 char msgkey[4];
 vchar catalogue[255];
 short order;
 short setid;
 short msgid;
 vchar action[255];
 char Diskette[5];
 };

Parameter Description

msgkey Key used by the Service Aid Utility Controller to identify this entry as a Service Aid.
Must be set to "USM" for Service Aids.

catalogue Catalog name from which to extract the message for the Service Aid title and
description.

Understanding the Diagnostic Subsystem for AIX 189

Parameter Description

order Order in which the messages should be appended to build the menu. The following
values are defined:
0

Used by Third Party Service Aids. This causes the service aid to be appended to
the end of the menu.

99
Only display this service aid if not running in an 8MB system.

setid Set number of the message.

msgid Message ID of the message.

action Command to start, if the user selects the specified option.

Diskette Indicates that the Service Aid is on a Supplemental Diskette, and what actions to
take before processing the Service Aid. The following values are defined:
S

Supplemental Diskette.
100X

Indicates that all diskettes should be read in and processed before starting this
service aid.

200X
Indicates that this service aid is only supported in Service Mode from hardfile.

Diagnostic header files
All variables used by this guide should be found in one of the diagnostic header files.

Several files are shipped to the /usr/include/diag directory for use with compiling diagnostic code.

Diagnostic user interface
The following sections describe how Diagnostic Applications and Diagnostic Tasks should use the
interfaces provided in the Diagnostic Library to display the different screen types. The Diagnostic
Subsystem supports various display environments. The menu interfaces are designed to be display
environment independent, with the library routine(s) building the correct menu structures depending on
the display environment.

Screen Types

The Diagnostic Subsystem uses six different screen types, displayed by four different functions:

Screen Type Diagnostic Applications Diagnostic Tasks

INFORMATIVE diag_resource_screen diag_task_screen

SINGLE SELECTION diag_resource_screen diag_task_screen

MULTIPLE SELECTION n/a diag_task_screen

DIALOG SELECTION n/a diag_task_screen

TRANSITIONAL diag_resource_screen diag_progress diag_task_screen
diag_progress

POPUP diag_popup diag_popup

Screen Size Assumptions

In order for Diagnostics to run in a window, a minimum screen dimension of 24 lines by 80 columns is
required.

190 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

INSTRUCTION LINE

The INSTRUCTION LINE will be added automatically depending on the screen type. The following table
illustrates the messages used for the INSTRUCTION LINE.

Screen Type INSTRUCTION LINE

INFORMATIVE Use Enter to continue.

SINGLE SELECTION Make selection, use Enter to continue.

MULTIPLE SELECTION Make selection(s), use Commit to continue.

DIALOG SELECTION Enter selection(s), use Commit to continue.

TRANSITIONAL Please stand by.

POPUP n/a

Diagnostic applications
Diagnostic Applications should use one of the following screen types: INFORMATIVE, SINGLE
SELECTION, TRANSITIONAL or POPUP.

The following template shows a sample screen that is used when running diagnostics on a resource. The
DA would use the diag_resource_screen library function to display this screen.

The Title line is split between lines 1 and 2. The ACTION, TEST MODE, and the menu number go on the
first line. ACTION is defined as one of the following:

• TESTING
• ANALYZING ERROR LOG
• ANALYZING POST RESULTS
• ANALYZING FIRMWARE STATUS
• ANALYZING SUBSYSTEM STATUS
• ANALYZING CHECKSTOP STATUS

If the ACTION is TESTING, the TEST MODE will be displayed on the first line. TEST MODE is defined as:

• ADVANCED MODE
• LOOP MODE (Advanced Mode is always assumed if Looping.)

The TEST MODE field will be blank if running non-advanced mode diagnostics.

The Menu Number represented by xxxxxx, goes on the first line. The Resource Name and Location Code
go on the second line.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 ACTION {TEST MODE} xxxxxx
 2 Resource Name Location Code
 3
 4 +
 5 |
 6 |
 7 |
 8 |
 9 |
10 |
11 |
12 BODY OF MENU
13 |
14 |
15 |
16 |
17 |
18 |
19 |

Understanding the Diagnostic Subsystem for AIX 191

20 |
21 +
22 ___
23 Function Key Area | Progress Indicator Area |
24 Function Key Area | |
 --

The BODY of the menu can assume multiple personalities depending on the screen type. It includes all
text of the menu, including the INSTRUCTION line. The BODY does not include the TITLE.

INFORMATIVE screen type
For an INFORMATIVE screen, the body consists of information describing the test and what it does.

In the following example, lines 4 through 12 consist of the information about the test. Line 14 is the
INSTRUCTION LINE, and is added automatically by the diag_resource_screen function.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 TESTING ADVANCED MODE 935045
 2 fd0 00-00-0D-00
 3
 4 Diskette Change/Write Protect Test
 5
 6 REMOVE.........the diskette, if any, from the diskette drive (fd0).
 7 INSERT.........the High Capacity (4M byte) Diagnostic Test
 8 Diskette or an equivalent, formatted,
 9 scratch diskette into the diskette drive (fd0).
10
11 NOTE: The diskette must be write protected (the write protect
12 tab should not cover the hole).
13
14 Use Enter to continue.
15
16
17
18
19
20
21
22
23
24 F3=Cancel F10=Exit Enter
 --

SINGLE SELECTION screen type
For a SINGLE SELECTION screen, the body consists of results from a previous test that had run, and
asking the user if the results are accurate.

The User selects a response, normally YES or NO, from a given list. In the following example, lines 4
through 9 consist of the information about the test. Lines 13 and 14 consist of the SELECTION lines. Line
11 is the INSTRUCTION LINE, and is added automatically by the diag_resource_screen function.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 TESTING ADVANCED MODE 935025
 2 fd0 00-00-0D-00
 3
 4 Diskette Select and Deselect Test
 5
 6 OBSERVE........the in-use light on the diskette drive (fd0).
 7
 8 Was the in-use light on for approximately 5 seconds and
 9 then did it turn off?
10
11 Make selection, use Enter to continue.
12
13 YES
14 NO
15
16
17

192 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

18
19
20
21
22
23
24 F3=Cancel F10=Exit Enter
 --

TRANSITIONAL screen type
For a TRANSITIONAL screen, the body usually consists of a single INSTRUCTION line of Please stand
by.

This indicates that the test is currently processing some data. It is also used to indicate that looping is in
progress, and shows the number of passes made plus the total number of errors encountered. User may
press Cancel to stop the test. The following example shows a looping menu. Line 10 is the
INSTRUCTION LINE, and is added automatically by the diag_resource_screen function. See also
Diagnostic Progress Indicators.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 TESTING LOOP MODE 935025
 2 fd0 00-00-0D-00
 3
 4
 5
 6 1 passes completed.
 7 5 errors logged.
 8
 9
10 Please stand by.
11
12
13
14
15
16
17
18
19
20
21
22
23
24 F3=Cancel F10=Exit
 --

POPUP screen type
For a POPUP screen, the application code should use the diag_popup library function call.

Diagnostic tasks

Diagnostic Tasks are free to use any of the six supported screen types:

• INFORMATIVE
• SINGLE SELECTION
• MULTIPLE SELECTION
• DIALOG SELECTION
• TRANSITIONAL
• POPUP

The following template shows a sample screen that is used when running a task. The Task would use the
diag_task_screen library function to display this screen.

Understanding the Diagnostic Subsystem for AIX 193

The Title line is split between lines 1 and 2. Most all Task titles should fit on the first line, but the second
line may be used for clarity or for translation reasons. The TITLE text should be all capitalized.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 TASK TITLE LINE 1 8xxxxx
 2 TASK TITLE LINE 2
 3
 4 +
 5 |
 6 |
 7 |
 8 |
 9 |
10 |
11 |
12 BODY OF MENU
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 +
22
23 Function Key Area
24 Function Key Area
 --

The BODY of the menu can assume multiple personalities depending on the screen type. It includes all
text of the menu, including the INSTRUCTION line. The BODY does not include the TITLE.

INFORMATIVE screen type
For an INFORMATIVE screen, the body consists of information describing the task and what it does.

In the following example, lines 3 through 15 consist of the information about the task. Line 17 is the
INSTRUCTION LINE, and Line 24 consists of the function keys available for this screen type. Both lines are
added automatically by the diag_task_screen function.

Note: If the TITLE line consists of only one line, the text of the BODY will be adjusted up one line.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 PERIODIC DIAGNOSTICS SERVICE AID 802150
 2
 3 This service aid is used to periodically test hardware resources and
 4 monitor hardware errors in the error log.
 5
 6 A hardware resource can be chosen to be tested once a day, at a user
 7 specified time of day. If the resource cannot be tested because it is
 8 busy, error log analysis will be performed.
 9 Hardware errors logged against a resource can also be monitored by enabling
10 Automatic Error Log Analysis. This will allow error log analysis to be
11 performed every time a hardware error is put into the error log.
12
13 If a problem is detected, a message will be posted to the system console
14 and a mail message sent to user(s) belonging to system group with information
15 about the failure such as Service Request Number.
16
17 Use Enter to continue.
18
19
20
21
22
23
24 [F1=Help] F3=Cancel F10=Exit Enter
 --

194 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

SINGLE SELECTION screen type
For a SINGLE SELECTION screen, the body consists of individual selectable items and possibly a short
description.

In the following example, lines 5 through 21 consist of the selectable items. This example illustrates six
(6) selectable menu items. The indentions for the selectable item descriptions must be added when the
message is built. Line 3 is the INSTRUCTION LINE, and is added automatically by the diag_task_screen
function.

Any information about the selections may be added to the screen, and would appear after the TITLE
line[1] and before the INSTRUCTION line[3].

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 PERIODIC DIAGNOSTICS SERVICE AID 802151
 2
 3 Make selection, use Enter to continue.
 4
 5 Add a resource to the periodic test list
 6 This selection allows a resource to be periodically tested.
 7 Delete a resource from the periodic test list
 8 This selection removes a resource from the list of periodically
 9 tested resources.
10 Modify the time to test a resource
11 This selection allows the time of day to test a resource to be
12 changed.
13 Display the periodic test list
14 This selection displays all resources being tested periodically
15 by diagnostics.
16 Modify the error notification mailing list
17 This selection allows the mailing list for error notification
18 to be modified.
19 Disable Automatic Error Log Analysis
20 Automatic Error Log Analysis is currently enabled.
21 This selection stops the Automatic Error Log Analysis.
22
23
24 F1=Help F10=Exit F3=Previous Menu
 --
23 F1=Help F4=List F10=Exit Enter
24 F3=Previous Menu
 --

MULTIPLE SELECTION screen type
For a MULTIPLE SELECTION screen, the body consists of individual selectable items and possibly a short
description.

In the following example, lines 10 through 12 consist of the selectable items. Line 8 is the INSTRUCTION
LINE, and is added automatically by the diag_task_screen function.

Any information about the selections may be added to the screen, and would appear after the TITLE
line[1] and before the INSTRUCTION line[8].

HELP text may be displayed any time the cursor is on line 10, 11, or 12 in the following example. Each
selectable line may have associated HELP text.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 DELETE RESOURCES FROM THE PERIODIC DIAGNOSTICS TEST LIST 802155
 2
 3 The following resources are currently being tested periodically.
 4 Test time is shown inside the brackets in 24 hour format.
 5 Once deleted, a resource cannot be tested until it is added back to the
 6 test list.
 7
 8 Make selection(s), use Commit to continue.
 9
10 ioplanar0 [04:00] I/O Planar
11 hdisk0 [03:00] 1.0 GB SCSI Disk Drive
12 hdisk1 [03:00] 2.0 GB SCSI Disk Drive

Understanding the Diagnostic Subsystem for AIX 195

13
14
15
16
17
18
19
20
21
22
23 F1=Help F2=Refresh F3=Cancel F4=List
24 F5=Reset F7=Commit F10=Exit
 --

DIALOG SELECTION screen type
For a DIALOG SELECTION screen, the body consists of individual items with a bracketed area to the right.

This bracketed area allows data selections to be set for each individual item. In the following example,
lines 10 and 11 consist of the items. Line 7 is the INSTRUCTION LINE, and is added automatically by the
diag_task_screen function.

HELP text may be displayed any time the cursor is on line 10 or 11 in the following example. Each dialog
line may have associated HELP text.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 PERIODIC DIAGNOSTICS SERVICE AID 802157
 2
 3 ent0 00-00-0E Integrated Ethernet Adapter
 4
 5 Set the time when the resource should be tested.
 6
 7 Enter selection(s), use Commit to continue.
 8
 9
10 * HOUR (00-23) [00] +#
11 * MINUTES (00-59) [00] +#
12
13
14
15
16
17
18
19
20
21
22
23 F1=Help F2=Refresh F3=Cancel F4=List
24 F5=Reset F7=Commit F10=Exit
 --

TRANSITIONAL screen type
For a TRANSITIONAL screen, the body consists of a single INSTRUCTION line of Please stand by.

This indicates that the task is currently processing some data. Users may press Cancel to stop the task.
The following example shows a task in progress menu. Line 6 consists of the INSTRUCTION LINE, and is
automatically added by the diag_task_screen function. See also Diagnostic Progress Indicators.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 HARDWARE ERROR REPORT 802905
 2
 3
 4 Reading current error log.
 5
 6 Please stand by.
 7
 8
 9
10

196 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

11
12
13
14
15
16
17
18
19
20
21
22
23
24 F3=Cancel F10=Exit
 --

POP-UP screen type
For a POP-UP screen, the body consists normally of help text. It is used to help the user understand the
current screen, or menu selection.

In the following example, the pop-up appears in a windowed box near the bottom of the screen. No
INSTRUCTION line is used. This screen is added by the diag_pop-up function.

If the F1=Help key is selected, but there is no associated Help text associated with the current selection,
then this key is returned to the calling application.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 FUNCTION SELECTION 801002
 2
 3
 4 Move cursor to selection, then press Enter.
 5
 6 Diagnostic Routines
 7 This selection will test the machine hardware. Wrap plugs and
 8 other advanced functions will not be used.
 9 Advanced Dl __
10 This sel| |
11 other ad| |
12 Task Selec| Select this choice when you want to run |c.)
13 This sel| Diagnostics on a resource (device). |.
14 Once a t| |g
15 all reso| |
16 Resource S| |
17 This sel| |pported
18 by these| |ll
19 be prese| |).
20 | |
21 | |
22 | |
23 | F3=Cancel F10=Exit Enter |
24 F1=Help |__|
 --

Diagnostic progress indicators
Diagnostic Progress Indicators are used to inform the user what is going on.

The Progress Indicators appear as a popup box at the bottom of the screen during a Diagnostic
Application TRANSITIONAL screen or a Diagnostic Task TRANSITIONAL screen display.

The Progress Indicators may be turned off by using the Run Time Options Task. This selection sets the
diagnostic environment variable DIAG_NO_PROGRESS appropriately.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 DISPLAY/CHANGE DIAGNOSTIC RUN TIME OPTIONS 801009
 2
 3 Select values for the options below.
 4 When finished, use 'Commit' to continue.
 5 Display Diagnostic Mode Selection Menus [On] +
 6 Include Advanced Diagnostics [Off] +

Understanding the Diagnostic Subsystem for AIX 197

 7 Include Error Log Analysis [Off] +
 8 Display Progress Indicators [On] +
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 F1=Help F2=Refresh F3=Cancel F4=List
24 F5=Reset F7=Commit F10=Exit
 --

The following example shows a Diagnostic Application screen that is displaying a Progress indicator with
the type of test unit being run.

 1 2 3 4 5 6 7
 01234567890123456789012345678901234567890123456789012345678901234567890123456789
 --
 1 TESTING LOOP MODE 935025
 2 fd0 00-00-0D-00
 3
 4
 5
 6 1 passes completed.
 7 5 errors logged.
 8
 9
10 Please stand by.
11
12
13
14
15
16
17
18
19
22 --
23 | Register Test |
24 F3=Cancel --
 --

These Progress Indicator messages must be kept short, one line, and under 30 characters. Note that the
function key F10=Exit is overwritten by the Progress Indicator.

The diag_progress library function call is used for this Progress Indicator.

Examples: Diagnostic menus
This topic describes the various examples of Diagnostic menu options.

Diagnostic operating instructions menu
Use the topic to view an example for the Diagnostic Operating Instructions Menu.

DIAGNOSTIC OPERATING INSTRUCTIONS VERSION X.X.X 801001

LICENSED MATERIAL and LICENSED INTERNAL CODE - PROPERTY OF IBM
(C) COPYRIGHTS BY IBM AND BY OTHERS YYYY, YYYY.
ALL RIGHTS RESERVED.

These programs contain diagnostics, service aids, and tasks for
the system. These procedures should be used whenever problems
with the system occur which have not been corrected by any
software application procedures available.

In general, the procedures will run automatically. However,

198 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

sometimes you will be required to select options, inform the
system when to continue, and do simple tasks.

Several keys are used to control the procedures:
- The Enter key continues the procedure or performs an action.
- The Backspace key allows keying errors to be corrected.
- The cursor keys are used to select an option.

Press the F3 key to exit or press Enter to continue.

Note: The version number may vary depending on the version of diagnostics installed or the version the
standalone diagnostics used.

Function selection menu
Use the topic to view an example for the Function Selection Menu.

FUNCTION SELECTION 801002

Move cursor to selection, then press Enter.

 Diagnostic Routines
 This selection will test the machine hardware. Wrap plugs and
 other advanced functions will not be used.
 Advanced Diagnostics Routines
 This selection will test the machine hardware. Wrap plugs and
 other advanced functions will be used.
 Task Selection(Diagnostics, Advanced Diagnostics, Service Aids, etc.)
 This selection will list the tasks supported by these procedures.
 Once a task is selected, a resource menu may be presented showing
 all resources supported by the task.
 Resource Selection
 This selection will list the resources in the system that are supported
 by these procedures. Once a resource is selected, a task menu will
 be presented showing all tasks that can be run on the resource(s).

F1=Help F10=Exit F3=Previous Menu

Define terminal menu
Use the topic to view an example for the Define Terminal Menu.

DEFINE TERMINAL

The terminal is not properly initialized.
The following are some of the terminal types that are supported.

 ibm3101 tvi912 vt330
 ibm3151 tvi925 vt340
 ibm3161 tvi920 wyse30
 ibm3162 tvi950 wyse50
 ibm3163 vs100 wyse60
 ibm3164 vt100 wyse100
 ibmpc vt320 wyse350
 lft sun

NOTE: If you are using a Graphics Display, such as a
 5081 or 6091 display, enter 'lft' as the
 terminal type.

 If the next screen is unreadable, press <CTRL> C.

Please enter a terminal type, or press Enter to return.

Missing Resource Selection Menu

MISSING RESOURCE 801020

Understanding the Diagnostic Subsystem for AIX 199

The list below shows all the missing resources. Make a selection,
then press Enter to process missing options resolutions.
To list all siblings of a resource, use 'List'.

 fda0 00-00-0D Standard I/O Diskette Adapter
 fd0

F1=Help F4=List F10=Exit Enter
F3=Previous Menu

Missing Resource Menu

MISSING RESOURCE 801020

The following resource was detected previously, but is not detected now:

- fda0 00-00-0D Standard I/O Diskette Adapter

Has the resource been removed from the system, moved to another location
or address, or turned off?

 The resource has NOT been removed from the system, moved to
 another location or address, or turned off.
 This selection will determine why the resource was not detected.
 The resource has been removed from the system and should be
 removed from the system configuration.
 The resource has been moved to another location and should be
 removed from the system configuration.
 The resource has been turned off and should be removed from
 the system configuration.
 The resource has been turned off but should remain in the
 system configuration.

F3=Cancel F10=Exit

New Resource Menu

NEW RESOURCE 801030

The following new resource(s) were detected.
Some resources may require software installation or supplemental media
processing to appear on the list.

Select an option from the bottom of the list, then press Enter.

 - rmt0 00-04-00-4,0 4.0 GB 4mm Tape Drive

 1. Continue. The list contains all resources that should appear.
 2. A resource that should appear on the list is missing.

F3=Cancel F10=Exit

200 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Diagnostic mode selection menu
Use the topic to view an example for the Diagnostic Mode Selection Menu.

DIAGNOSTIC MODE SELECTION 801003

Move cursor to selection, then press Enter.

 System Verification
 This selection will test the system, but will not analyze the error
 log. Use this option to verify that the machine is functioning
 correctly after completing a repair or an upgrade.
 Problem Determination
 This selection tests the system and analyzes the error log
 if one is available. Use this option when a problem is
 suspected on the machine.

F1=Help F10=Exit F3=Previous Menu

Resource selection menu
Use the topic to view an example for the Resource Selection Menu.

RESOURCE SELECTION LIST 801006

From the list below, select any number of resources by moving
the cursor to the resource and pressing 'Enter'.
To cancel the selection, press 'Enter' again.
To list the supported tasks for the resource highlighted, press 'List'.

Once all selections have been made, press 'Commit'.
To exit without selecting a resource, press the 'Exit' key.

[TOP]
 All Resources
 This selection will select all the resources currently displayed.
 sysplanar0 00-00 CPU Planar
 proc0 00-00 Processor
 *slc0 00-00 Serial Optical Link Chip
 otp0 00-AB Serial Optical Channel Converter
 +op0 00-AB-1B Serial Optical Link Port
 op1 00-AB-2B Serial Optical Link Port
[MORE...30]

F1=Help F4=List F7=Commit F10=Exit
F3=Previous Menu

• The + by op0 indicates that it has been selected.
• The * by slc0 indicates that it has been selected and run.
• Each resource is listed with the parent followed by the children.
• Each resource provides the following information:

– Device logical name
– Device logical location code
– Device descriptive text

Resource selection menu - display common tasks operation
Use the topic to view an example for the Resource Selection Menu - Display Common Tasks operation.

RESOURCE SELECTION LIST 801006

Understanding the Diagnostic Subsystem for AIX 201

From the list below, select any number of resources by moving
the cursor to the resource and pressing 'Enter'.
To cancel the selection, press 'Enter' again.
To list the supported tasks for the resource highlighted, press 'List'.

Once all selections have been made, press 'Commit'.
To exit with--
 | |
 | |
[MORE...12] | [TOP] |
 sio0 | The following tasks are supported by the resource: |
 siokta0 | |
+ kbd0 | (A '*' in front of a task indicates |
 sioma0 | that it has been selected: |
+ mouse0 | Run Diagnostics |
 ppa0 | Display or Change Diagnostic Run Time Options |er
 lp0 | Display Configuration and Resource List |
 sa0 | Display Hardware Vital Product Data |
[MORE...16] | [MORE...5] |
 | |
F1=Help | F3=Cancel F10=Exit Enter |
F3=Previous --

Use the F4=List key to display the common tasks supported by the selected resources.

Test method menu
Use the topic to view an example for the Test Method Menu.

TEST METHOD SELECTION 801004

 Move cursor to selection, then press Enter.

 Run Test Once
 Run Test Multiple Times
 This selection should be used when a problem occurs intermittently.
 This selection will continue testing until 'Cancel' is pressed.
 NOTE: After 'Cancel' is pressed, it may take some time before
 the testing stops. The tests goes through a final phase
 to return the resources to their original state.

 F3=Cancel F10=Exit

No Trouble Found Menu

TESTING COMPLETE on Wed Jan 7 14:01:22 CST 1998 801010

No trouble was found.

The resources tested were:

- proc0 00-00 Processor

Use Enter to continue.

202 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

F3=Cancel F10=Exit Enter

Problem report menu
Use the topic to view an example for the Problem Report Menu.

A PROBLEM WAS DETECTED ON Wed Jan 7 13:45:57 CST 1998 801014

The Service Request Number(s)/Probable Cause or Cause(s):

 816-185: I/O Planar - key lock failed.
 65% OP Panel Operator panel
 30% Keylock Operator panel key lock
 5% ioplanar0 00-00 I/O Planar

Use Enter to continue.

F3=Cancel F10=Exit Enter

Additional resources menu
Use the topic to view an example for the Additional Resources Menu.

ADDITIONAL RESOURCES ARE REQUIRED FOR TESTING 801011

No trouble was found. However, the resource was not tested because
the device driver indicated that the resource was in use.

The resource needed is
- hdisk0 00-04-00-1,0 670 MB SCSI Disk Drive

To test this resource, you can:
 Free this resource and continue testing.
 Shut down the system and run in maintenance mode.
 Run Diagnostics from the Diagnostic Standalone package.

Move cursor to selection, then press Enter.

 Testing should stop.
 The resource is now free and testing can continue.

F3=Cancel F10=Exit

Task selection list menu
Use the topic to view an example for the Task Selection List Menu.

TASKS SELECTION LIST 801004

From the list below, select a task by moving the cursor to
the task and pressing 'Enter'.
To list the resources for the task highlighted, press 'List'.

[TOP]

Understanding the Diagnostic Subsystem for AIX 203

 Run Diagnostics
 Display or Change Diagnostic Run Time Options
 Display Service Hints
 Display Previous Diagnostic Results
 Display Hardware Error Report
 Display Software Product Data
 Display Configuration and Resource List
 Display Hardware Vital Product Data
 Display Resource Attributes
 Change Hardware Vital Product Data
 Format Media
 Certify Media
[MORE...21]

F1=Help F4=List F10=Exit Enter
F3=Previous Menu

Task selection list menu - display supported resources operation
Use the topic to view an example for the Task Selection List Menu - Display Supported Resources
operation.

TASKS SELECTION LIST 801004

From the list below, select a task by moving the cursor to
the task and pressing 'Enter'.
To list the resources for the task highlighted, press 'List'.

[TOP]
 Run Diagno--
 Display or| |
 Display Se| |
 Display Pr| [TOP] |
 Display Ha| The following resources support the current task: |
 Display So| (A '*' in front of a resource indicates that it |
 Display Co| has been selected) |
 Display Ha| sysplanar0 |
 Display Re| proc0 |
 Change Har| slc0 |
 Format Med| otp0 |
 Certify Me| op0 |
[MORE...21] | [MORE...31] |
 | |
F1=Help | F3=Cancel F10=Exit Enter |
F3=Previous --

Use the F4=List key to display all the resources supported by the selected Task.

Run time options menu
Use the topic to view an example for the Run Time Options Menu.

DISPLAY/CHANGE DIAGNOSTIC RUN TIME OPTIONS 801009

Select values for the options below.
When finished, use 'Commit' to continue.
 Display Diagnostic Mode Selection Menus [On] +
 Include Advanced Diagnostics [Off] +
 Include Error Log Analysis [Off] +
 Number of days used to search error log [7] +
 Save changes to the database? [NO] +

204 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F7=Commit F10=Exit

Diagnostic features
This topic describes the diagnostic features.

Missing Options Resolution
This section describes the Missing Options Resolution Procedure performed by Diagnostics when a
change in the system configuration has been detected. This procedure can be run to clean up the system
configuration database, or to determine why previously detected resources are no longer found by the
operating system.

Each time the system boots from an installed hardfile, the device configuration database (CuDv) that is
stored on the hardfile from the previous IPL is compared against the resources detected on the current
IPL. Detectable resources that were found on the previous IPL but not the current IPL are marked as
MISSING. Devices that were found on the current IPL, but not present in the previous IPL are marked as
NEW.

The customized device entry CuDv chgstatus field is set to the changed status for each resource. These
changed status values can be found in /usr/include/sys/cfgdb.h file.

When booting a system in normal mode, a message is written to the console if any devices have been
detected as MISSING. This message states:

 A device that was previously detected could not be found.

 Run diag -a to update the system configuration.

The diag -a command can then be run to process the missing options resolution procedure.

When booting a system in online service mode, the missing options resolution procedure is run
automatically if any missing devices were detected.

The following sections describe how the Diagnostic Controller presents information to the Diagnostic
Applications that get invoked during Missing Options.

Online Concurrent Diagnostics

Missing Options Resolution procedure can be run in online concurrent mode by using the following
command:

% diag -a // Runs in Customer Mode OR % diag -a -A // Runs in Advanced Mode

The first screen seen by the user is the MISSING RESOURCE Menu, 801020.

The following TMInput is an example of the input given to the Diagnostic Application when running the
diag -a command.

TMInput:
 exenv = 4 // Concurrent Environment
 advanced = 0 // Customer Mode
 system = 0 // Option Checkout
 dmode = 4 // System Verification
 date = "-s START -e NOW"// START = NOW - 24 hours.
 loopmode = 1 // Not in Loop Mode
 lcount = 0
 lerrors = 0
 console = 1 // Console Available
 parent = "parent0" // Parent of resource to test
 parentloc = "AB-CD" // Parent's Location Code
 dname = "resource0" // Name of resource to test
 dnameloc = "AB-CD" // Resource's Location Code
 child1 = "child0" // Missing Child of Resource
 state1 = 3 // State of Child is MISSING
 childloc1 = "AB-CD" // Child's Location Code

Understanding the Diagnostic Subsystem for AIX 205

 child2 = ""
 state2 = 0
 childloc2 = ""

The following TMInput is an example of the input given to the Diagnostic Application when running the
diag -a -A command.

TMInput:
 exenv = 4 // Concurrent Environment
 advanced = 1 // Advanced Mode
 system = 0 // Option Checkout
 dmode = 4 // System Verification
 date = "-s START -e NOW"// START = NOW - 24 hours.
 loopmode = 1 // Not in Loop Mode
 lcount = 0
 lerrors = 0
 console = 1 // Console Available
 parent = "parent0" // Parent of resource to test
 parentloc = "AB-CD" // Parent's Location Code
 dname = "resource0" // Name of resource to test
 dnameloc = "AB-CD" // Resource's Location Code
 child1 = "child0" // Missing Child of Resource
 state1 = 3 // State of Child is MISSING
 childloc1 = "AB-CD" // Child's Location Code
 child2 = ""
 state2 = 0
 childloc2 = ""

Online Service Diagnostics

Missing Options Resolution procedure is run automatically in online service mode when Diagnostics
or Advanced Diagnostics selection is made from the FUNCTION SELECTION Menu.

When booting a system in online service mode, the OPERATING INSTRUCTIONS Menu and the FUNCTION
SELECTION Menu are displayed in phase 1 by the service mode boot script. Once a selection is made, the
selection is stored in /etc/lpp/diagnostics/data/fastdiag file, and phase 2 of the boot process
commences.

The Diagnostic Application that gets called due to a missing child resource, after selecting Diagnostic
Routines from the FUNCTION SELECTION menu, gets a TMInput shown below:

TMInput:
 exenv = 2 // Standalone Environment
 advanced = 0 // Customer Mode
 system = 0 // Option Checkout
 dmode = 4 // System Verification
 date = "-s START -e NOW"// START = NOW - 24 hours.
 loopmode = 1 // Not in Loop Mode
 lcount = 0
 lerrors = 0
 console = 1 // Console Available
 parent = "parent0" // Parent of resource to test
 parentloc = "AB-CD" // Parent's Location Code
 dname = "resource0" // Name of resource to test
 dnameloc = "AB-CD" // Resource's Location Code
 child1 = "child0" // Missing Child of Resource
 state1 = 3 // State of Child is MISSING
 childloc1 = "AB-CD" // Child's Location Code
 child2 = ""
 state2 = 0
 childloc2 = ""

The Diagnostic Application that gets called due to a missing child resource, after selecting Advanced
Diagnostic Routines from the FUNCTION SELECTION menu, gets a TMInput shown below:

TMInput:
 exenv = 2 // Standalone Environment
 advanced = 1 // Advanced Mode
 system = 0 // Option Checkout
 dmode = 4 // System Verification
 date = "-s START -e NOW"// START = NOW - 24 hours.
 loopmode = 1 // Not in Loop Mode

206 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 lcount = 0
 lerrors = 0
 console = 1 // Console Available
 parent = "parent0" // Parent of resource to test
 parentloc = "AB-CD" // Parent's Location Code
 dname = "resource0" // Name of resource to test
 dnameloc = "AB-CD" // Resource's Location Code
 child1 = "child0" // Missing Child of Resource
 state1 = 3 // State of Child is MISSING
 childloc1 = "AB-CD" // Child's Location Code
 child2 = ""
 state2 = 0
 childloc2 = ""

Standalone Diagnostics (POWER® processor-based only)
Missing Options Resolution procedure is not run during Standalone Diagnostics. The reason for this is that
there is no previous configuration database for the Diagnostic Controller to compare against with the new
devices detected at boot time.

Therefore, only the NEW RESOURCES menu is seen during Standalone Diagnostics. This menu presents a
list of all the resources found in the system at the time the Standalone Diagnostics were booted.

The user is given a list of choices to make during this time. If the system contains ISA adapters, then
these adapters will not appear in the list. ISA adapters are not detectable, therefore an option is
presented to the user to help in the configuration of these adapters.

Missing Options Procedure Steps
Use the topic to view the steps performed by the Diagnostic Controller when running the Missing Options
Procedure.

1. The Diagnostic Controller keeps a sorted list of all resources found in the system as represented by the
Customized Device object class. This list is walked finding all resources that are tagged as MISSING.

2. Present the Missing Device menu for all MISSING devices. This menu lists each missing device with
any children devices indented a few spaces. Missing Options Resolution Procedure can only be
performed on the missing devices that do not have a parent also missing. See MISSING RESOURCE
Menu for an example of this menu.

3. After selection of a device, present the Missing Device Resolution menu. The menu asks the user if the
device was moved, removed, or turned off. The following selections may be chosen:
a) The resource has NOT been removed from the system, moved to another
location or address, or turned off. This selection will determine why the
resource was not detected.

1) Test the path to the missing device.
2) If a device in the path is defective, then skip to the next "missing" device in the list that is not

dependent on the one just named. Note that the defective device in the path has been added to
the FRU Bucket object class by the Diagnostic Application (DA).

3) Return to the step where the missing device menu was presented.
4) If an EnclDAName DA is named, call it.
5) If a problem was detected, skip to the next missing device in the list that has a different parent,

and return to the step where the Missing Device menu was presented.
6) If a missing device procedure was specified (suptests & SUPTESTS_MS1), then call it. Note

that the DA should conclude that there is a problem.
7) Skip to the next missing device in the list that is not dependent on the current missing device.
8) Return to the step where the Missing Device menu was presented.
9) If a missing device procedure was not specified, then add the device to the FRU Bucket object

class by the addfrub subroutine. The default information is obtained from the Predefined
Device object class.

b) The resource has been removed from the system and should be removed from
the system configuration.

Understanding the Diagnostic Subsystem for AIX 207

1) If the DA for the missing device supports the Missing Device Procedure 2
(suptests==SUPTESTS_MS2), then call the DA. The Diagnostic Controller does not
automatically delete the device from the system configuration.

2) Otherwise, flag the device to be deleted.
c) The resource has been moved to another location and should be removed from
the system configuration.

1) Display a list of the new devices that are of the same type so that the user can identify where the
missing device was moved. This list should contain a default selection for "Not Listed" in the
event that the device was not detected in its new location, in which case a default service
request number (SRN) should be generated.

2) Assuming the user identified a new location:

a) If the missing device has children which are non-detectable:

• Present a menu to the user asking if the children should be reconfigured to the new device.
The menu should contain a single selection for all of the devices and additional selections
for the individual devices.

• When a device is chosen, the parent field needs to be changed and the device configured.
The mkdev command is used to configure the device.

b) Delete the missing device and any children that have not been reconfigured.
d) The resource has been turned off and should be removed from the system
configuration.

1) Flag the device to be removed from the configuration database.
e) The resource has been turned off but should remain in the system
configuration.

1) Do nothing.
4. Once all the missing devices have been processed through one of the selections above, then perform

the following:
a) Report any problems found.
b) Delete the devices that were previously flagged to be deleted.
c) If a new resource has been added, then display a list of the new devices. Ask the user if the list is

correct.

1) If Yes, then exit.
2) If No, display predefined SRN indicating some new devices were not detected. Exit.

Error log analysis
Error log analysis does not test the resource. Instead this method searches the operating system error log
for an entry (or entries) related to the resource. If an entry is found, then an analysis is performed on the
error that was logged, and a determination is made by the Diagnostic Application as to whether the
resource should be called out as being bad.

Error log analysis is performed via different methods with the Diagnostic Subsystem. One method is that
error log analysis is performed automatically whenever a permanent hardware error is logged to the
operating system error log. This method is called Automatic Error Log Analysis (DIAGELA).

A second method can be set up to run diagnostics automatically at a pre-set time of the day. This method
is referred to as Periodic Diagnostics.

A third method can be run directly from the command line by using the -e flag with the diag command.

A fourth method is invoked automatically whenever diagnostics is ran in Problem Determination Mode
after first starting diagnostics. This method is described below.

208 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Running problem determination mode in diagnostics
If Problem Determination mode is selected upon entering diagnostics the first time, the Diagnostic
Controller searches the operating system error log for any Permanent Hardware errors.

If any errors were logged within the last 24 hours, the appropriate Diagnostic Application is called to
analyze the error log. If an problem is suspected due to an error logged, a Problem Report screen will be
presented to the user. If no problem is found, then the Resource Selection menu is displayed.

Periodic diagnostics
Periodic testing of the disk drives and battery are enabled by default on systems that support these tests.
The disk diagnostics perform disk error log analysis on all disks. The battery test checks the real-time
clock and NV-RAM battery.

Periodic diagnostics are performed in different ways, depending on the diagnostic version. Use the
Periodic Diagnostics task to change the test times or to add other resources to the list.

Processors that are dynamically removed from the system will also be removed from the periodic test list.
Processors that are dynamically added are automatically added to the periodic test list.

Periodic Diagnostics supports only processors. Periodic Diagnostics automatically analyzes the error log
and reports the errors. Periodic Diagnostics supports processor diagnostics on systems that own the
processor. However, some hardware platforms own the processors and provide testing instead of AIX®, so
Periodic Diagnostics on those processors is not supported. Errors on the processors owned by the
platform are logged by the platform and analyzed by automatic error log analysis.

Support is determined at run time from the characteristics of the hardware configuration. Periodic
Diagnostics determines it is not supported when processors do not have physical location codes, which
are created by platform firmware and passed to the operating system.

If processors have a physical location code, then the partition owns the processor and Periodic
Diagnostics is supported. If there is no physical location code for a processor, it is a shared or virtual
processor and Periodic Diagnostics is not supported.

Technical Description

The Diagnostic daemon diagd executes once the bos.diag diagnostic package is installed. The diagd
looks for customized entries in CDiagAtt odm database to determine which devices to run at which times.
The database is built when diagnostics are run or the Periodic Diagnostic Service Aid is run to change run
times for devices. If the database has no entries (for example, when diagnostics have never been run),
then default times are given to the ioplanar battery test and disk drives. The following is an example of
CDiagAtt entries.

CDiagAtt->attribute = p_test_time
CDiagAtt->value = 9999 Do not test
 = 0400 Test at 4AM

The diagd sets a timer to wake up at the next scheduled time to run. Once diagd wakes up, the
script /usr/lpp/diagnostics/bin/diagela is executed with the -t flag.

diagela checks the PDiagAtt->test_mode bit for the device to determine whether that device should be
tested in this mode. If the bit is not set, diagela does not test the device. If the bit is set, diagnostics are
run on the device with the -e (ELA) flag set.

Platform firmware, rather than Periodic Diagnostics, is used to test memory and processors on some
systems. AIX® still reports errors on theses resources, but firmware does the actual testing. If the diagd
determines that there are no resources to test periodically, it will terminate.

Limitation

The IBM® System p5® does not support AIX® processor diagnostics and Periodic Diagnostics in any version
of AIX®.

Understanding the Diagnostic Subsystem for AIX 209

Automatic error log analysis (DIAGELA)
Automatic Error Log Analysis (diagela) provides the capability to do error log analysis whenever a
permanent hardware error is logged. Whenever a permanent hardware resource error is logged and the
diagela program is enabled, the diagela program is invoked. Automatic Error Log Analysis is enabled by
default on all platforms.

The diagela program determines whether the error should be analyzed by the diagnostics. If the error
should be analyzed, a diagnostic application will be invoked and the error will be analyzed. No testing is
done. If the diagnostics determines that the error requires a service action, it sends a message to your
console and to all system groups. The message contains the SRN, or a corrective action.

Running diagnostics in this mode is similar to using the diag -c -e -d device command.

Notification can also be customized by adding a stanza to the PDiagAtt object class. The following
example illustrates how a customer's program can be invoked in place of the normal mail message:

PDiagAtt:

DClass = ""
DSClass = ""
DType = ""
attribute = "diag_notify"
value = "/usr/bin/customer_notify_program $1 $2 $3 $4 $5 $6"
DApp = ""

If DClass, DSClass, and DType are blank, then the customer_notify_program will apply for ALL devices.
Filling in the DClass, DSClass, and DType with specifics will cause the customer_notify_program to be
invoked only for that device type.

Once the above stanza is added to the ODM data base, problems will be displayed on the system console
and the program specified in the value field of the diag_notify pre-defined attribute will be invoked. The
following keywords will be expanded automatically as arguments to the notify program:

Item Description

$1 the keyword diag_notify

$2 the resource name that reported the problem

$3 the Service Request Number

$4 the device type

$5 the error label from the error log entry

$6 the process id of the diagnostic session reporting the problem

In the case where no diagnostic program is found to analyze the error log entry, or analysis is done but no
error was reported, a separate program can be specified to be invoked. This is accomplished by adding a
stanza to the PDiagAtt object class with an attribute = diag_analyze. The following example illustrates
how a customer's program can be invoked for this condition:

PDiagAtt:
 DClass = ""
 DSClass = ""
 DType = ""
 attribute = "diag_analyze"
 value = "/usr/bin/customer_analyzer_program $1 $2 $3 $4 $5"
 rep = "s"
 DApp = ""

If DClass, DSClass, and DType are blank, then the customer_analyzer_program will apply for ALL devices.
Filling in the DClass, DSClass, and DType with specifics will cause the customer_analyzer_program to be
invoked only for that device type.

210 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Once the above stanza is added to the ODM data base, the program specified will be invoked if there is no
diagnostic program specified for the error, or if analysis was done, but no error found. The following
keywords will be expanded automatically as arguments to the analyzer program:

Item Description

$1 the keyword diag_analyze

$2 the resource name that reported the problem

$3 the error label from the error log entry if invoked for ELA, or the keyword PERIODIC if
invoked for Periodic Diagnostics, or the keyword REMINDER if invoked for providing a
Diagnostic Reminder

$4 the device type

$5 the keyword: no_trouble_found, if analyzer was run, but no trouble was found; or
no_analyzer, if analyzer not available.

To activate the Automatic Error Log Analysis feature, log in as root and type the following command:

/usr/lpp/diagnostics/bin/diagela ENABLE

To disable the Automatic Error Log Analysis feature, log in as root and type the following command:

/usr/lpp/diagnostics/bin/diagela DISABLE

Diagela can also be enabled and disabled using the Periodic Diagnostic Service Aid.

Loop testing
Loop testing is the testing of a resource or resources multiple times under program control. The looping is
controlled by the Diagnostic Controller. Loop testing is only supported when running in maintenance mode
or service mode, and Advanced Diagnostic Routines have been chosen.

The user indicates that loop testing is desired at the Test Method menu. The rule associated with loop
testing is that user interaction is only allowed on the first and last pass.

The diagnostic applications get notification that loop mode has been invoked by obtaining the value of
loopmode in the TMInput object class. The following actions should be taken by the DA when loopmode
has the following values:

LOOPMODE_ENTERLM
The Diagnostic Application should perform any tests as usual, plus perform Error Log Analysis if
running in Problem Determination mode.

LOOPMODE_INLM
The Diagnostic Application should perform any tests as usual, and not Error Log Analysis.

LOOPMODE_EXITLM
The Diagnostic Application should not perform any tests, nor perform Error Log Analysis. Instead
cleanup procedures should be invoked to remove wrap plugs, etc, before exiting.

Understanding the Diagnostic Subsystem for AIX 211

Diagnostic Packaging
This section contains information about the various components that make up the Diagnostic Subsystem
environment.

Hardfile packaging
This section contains information about how the various diagnostic files are packaged. These packages
are used by the install process to load diagnostics on the hardfile.

Software packages and filesets
Diagnostics is packaged into separate software packages and filesets.

The base diagnostics support is contained in package bos.diag. The individual device support is packaged
in separate devices.[type].[deviceid] packages.

The bos.diag package is split into three distinct filesets:

Fileset Description

bos.diag.rte Contains the Controller and other base diagnostic code.

bos.diag.util Contains the Service Aids and Tasks.

bos.diag.com Contains the diagnostic libraries, kernel extensions, and development header
files.

The devices.[type].[deviceid] packages are split into various distinct filesets. type usually signifies a bus
type, or device class of devices. deviceid usually signifies a unique identifier for the device. For example:

Identifier Descrption

devices.mca.8d77.rte Contains the device driver and configuration methods for the Micro
Channel 8-bit SCSI I/O Controller.

devices.mca.8d77.diag Contains the Diagnostic Application and default catalog file for the
device.

These packages/filesets are normally installed to a hardfile with the installp command.

Directory structure organization
Use the topic to view the directory structures used by the Diagnostic Subsystem. New files created for
diagnostic purposes should follow the same convention.

• /etc/lpp/diagnostics/data - Contains files that are created (Read/Write) by the diagnostics programs.
Examples are the diagnostic report files created by the Diagnostic Controller.

• /usr/lpp/diagnostics/bin - Contains the Diagnostic Controller, and Service Aids/Tasks.
• /usr/lpp/diagnostics/da - Contains the Diagnostic Applications.
• /usr/lpp/diagnostics/catalog - Contains the default (English) catalog files used by all Diagnostic

programs.
• /usr/lpp/diagnostics/slih - Contains the Second Level Interrupt Handlers used by the Test Units.
• /usr/lpp/diagnostics/lib - Contains the loadable Test Unit Libraries.

Note: The translated diagnostic catalog files are in /usr/lib/nls/msg/[LANG] directories.

212 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

CDROM packaging (POWER® processor-based only)
The Rock Ridge-based CDROM File System was used for the Diagnostic CDROM. The Rock Ridge CDROM
File System supports directory levels deeper than 8, mixed-case file names and a file structure similar to
operating system file systems.

The Standalone Diagnostic CDROM contains all programs and applications necessary to run Diagnostics.
This includes the latest version of the operating system, device drivers, device configuration methods,
diagnostic applications, and ODM stanzas.

Device support that is not on the Diagnostic CDROM must be supported by Diagnostic Supplemental
Media.

Diagnostic supplemental media
A Diagnostic Supplemental Media contains all the necessary diagnostic programs and files required to
test a particular resource when used with the Standalone Diagnostic CDROM. The supplemental is
normally released and shipped with the resource as indicated on the diskette label.

The Process Supplemental Media task processes the diagnostic supplemental media.

The following topics describe the Diagnostic Supplemental Media and the contents in more detail.

Diagnostic Supplemental Diskette Contents

A Diagnostic Supplemental Diskette must contain all files required to configure and test a device. Three
special files, diagstartS, diagS.dep, and diagcleanupS, are required by the Standalone Diagnostic
Package to maintain the software on the diskette. The diskette must be written in cpio format. Use the
C36 block option on the cpio command to create the diskette. The following list describes each required
file:

File Description

etc/diagstartS Shell script (with execute permission) to add the
object class stanzas to the database, configure the
devices, and so on. See the example diagstartS
shell script file. This file must be the first file on
diskette.

etc/diagS.dep Dependency file. This file is a list of all files on the
diskette. Each file must be listed with its full path
name.

etc/diagcleanupS Cleanup script file. This script should perform any
cleanup necessary after the supplemental has
been processed and run; for example, restoring the
ODM database to its original condition if the
supplemental changed some of the original values.

etc/stanzas/device .add Stanza file for the device. The stanzas must include
the PdDv, PdCn, PdAt, and PDiagRes information
required for the device.

usr/lib/drivers/devicedd Device driver for the device. The devicedd variable
should be the name of the device driver.

usr/lib/methods/devicecfgmethod and usr/lib/methods/deviceunconfigmethod

Methods necessary to define, configure, undefine,
and unconfigure the device. The names must be the
same referenced by the PdDv method objects. Do
not include any methods that are already part of
the operating system. Include only the unique
methods used by this device.

Understanding the Diagnostic Subsystem for AIX 213

File Description

usr/lib/methods/devicedesc.cat Device description catalog file devicedesc.cat
should be the name of the catalog file referenced
by the PdDv catalog object. The device description
file should contain the description of the device
shown when using the lsdev or lscfg command.

usr/lpp/diagnostics/da/ddevice Diagnostic Application (DA) for the device. The
ddevice variable should be the name of the DA,
which is the same name referenced by the
PDiagRes DaName object.

usr/lpp/diagnostics/catalog/default/ddevice.cat

DA message catalog for the device. The DA menus
are included in this file.

This message catalog file also contains FRU
information. The set number used must be the
same number referenced by the PDiagRes PSet
object.

Note: If the supplemental diskette being
developed is for a graphics adapter that can be
used as a console device, then the suffix 3S should
be used instead of S. For example, the file etc/
diagstartS should be etc/diagstart3S, etc/
diagS.dep should be etc/diag3S.dep, and etc/
diagcleanupS should be etc/diagcleanup3S.

usr/lpp/diagnostics/slih/device_slih Second Level Interrupt Handler for the device.

usr/lpp/diagnostics/lib/lib_device Device Test Unit loadable library.

Example ODM Stanzas

PdDv:
 type = xyz
 subclass = mca
 class = adapter
 catalog = xyz.cat
 setno = 1
 msgno = 1
 Define = /usr/lib/methods/definexyz
 Configure = /usr/lib/methods/cfgxyz
 Undefine = /usr/lib/methods/udefinexyz
 Unconfigure = /usr/lib/methods/ucfgxyz
 led = 0x902
 fru = 1 1 if device is FRU
 2 if parent is FRU

PDiagRes:
 Uniquetype = adapter/mca/xyz
 PSet = 1
 DaName = dxyz
 PkgBlock = S
 Menu = 21
 DNext = 1
 SupTests = 7

For a description of all fields in PDiagRes, refer to Predefined Diagnostic Resource Object Class.

/usr/lib/methods/xyz.cat:

214 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 1 1 XYZ adapter

/usr/lpp/diagnostics/catalog/default/dxyz.cat:

 1 1 Description of FRU1
 1 2 Description of FRU2
 2 1 DA menus, etc

Example diagstartS Script File

DIAG S
Do not erase top line. Chkdskt searches for the string DIAG S
#
COMPONENT_NAME: DIAGBOOT - DIAGNOSTIC SUPPLEMENTAL DISKETTE
#
FUNCTIONS: Diagnostic Diskette Supplemental Script File
#
ORIGINS: 27
#
(C) COPYRIGHT International Business Machines Corp. 1991
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM
Corp.
#

configure=0
See if there is a need to add stanzas to data base.
This is done by searching the /etc/addfile for your stanza file
name. If not found, add stanzas and call /etc/cfgmgr to
configure the resources that are needed to be tested.

cd /etc/stanzas
set `echo *`
ADD=`echo $1`

Warning: If your stanza is already in PDiagDev, DO NOT ADD another.

for i in `/bin/cat /etc/addfile`
do
 if [$i = $ADD]
 then
 configure=1
 break
 fi
done

Check the PDiagDev for a DType/DSClass equal to your stanza
before adding in the new one. If not found, add stanzas and
call /etc/cfgmgr to configure the resources that are needed to
be tested.

if [$configure = 0]
then
 # Check the PDiagDev for a DType/DSClass equal to your
 # stanza before adding in the new one.
 # If not found, add stanzas and call /etc/cfgmgr to
 # configure the resources that are needed to be tested.

Understanding the Diagnostic Subsystem for AIX 215

 X=`odmget -q"DType=DeviceType and DSClass=SubClass" PDiagDev`
if ["X$X" != X]
then
 # save the data and read it in later with the diagcleanup script.
 odmget -q"DType=DeviceType and DSClass=SubClass" PDiagDev > /tmp/mysave
 odmdelete -q"DType=DeviceType and DSClass=SubClass" -o PDiagDev

fi
 for i in *.add
 do
 odmadd $i >>$F1 2>&1
 echo $i >> /etc/addfile
 rm $i >>$F1 2>&1
 done
 /etc/cfgmgr -t -d >>$F1 2>&1
else
 for i in *.add
 do
 rm $i >>$F1 2>&1
 done
fi
exit 0

Example diagstart3S Script File

DIAG 3S
Do not erase top line. Chkdskt searches for the string DIAG 3S
#
COMPONENT_NAME: DIAGBOOT - DIAGNOSTIC GRAPHIC SUPPLEMENTAL
DISKETTE
#
FUNCTIONS: Diagnostic Diskette Supplemental Script File
#
ORIGINS: 27

configure=0
See if there is a need to add stanzas to database.
This is done by searching the /etc/addfile for your stanza file
name. If not found, add stanzas and call /etc/cfgmgr to
configure the resources that are needed to be tested.

cd /etc/stanzas
set `echo *`
ADD=`echo $1`

Warning: If your stanza is already in PDiagDev, DO NOT ADD
another one in again.

for i in `/bin/cat /etc/addfile`
do
 if [$i = $ADD]
 then
 configure=1
 break
 fi
done

Check the PDiagDev for a DType/DSClass equal to your stanza
before adding in the new one. If not found, add stanzas and

216 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

call /etc/cfgmgr to configure the resources that are needed to
be tested.

if [$configure = 0]
then
 # Check the PDiagDev for a DType/DSClass equal to your stanza
 # before adding in the new one. If not found, add stanzas and
 # call /etc/cfgmgr to configure the resources that are needed to
 # be tested.
 X=`odmget -q"DType=DeviceType and DSClass=SubClass" PDiagDev`
if ["X$X" != X]
then
 # save the data and read it in later with the diagcleanup script.
 odmget -q"DType=DeviceType and DSClass=SubClass" PDiagDev > /tmp/mysave
 odmdelete -q"DType=DeviceType and DSClass=SubClass" -o PDiagDev

fi
 for i in *.add
 do
 odmadd $i >>$F1 2>&1
 echo $i >> /etc/addfile
 rm $i >>$F1 2>&1
 done
 /etc/cfgmgr -t -d >>$F1 2>&1
else
 for i in *.add
 do
 rm $i >>$F1 2>&1
 done
fi

echo > /tmp/3S # flag that indicates diskette read.
exit 0

Diagnostic Supplemental Diskette Label

Each Diagnostic Supplemental Diskette must have a label. The label should state the lowest version of the
operating system that the diskette supports.

Diagnostic debugging hints
This section has hints on how to debug applications in a Diagnostic environment.

The following areas are covered:

Debugging hints for diagnostic applications
The Diagnostic Controller uses the process ID (PID) of the DA to determine which TMInput object class
entry to use for the DA during execution.

To debug the DA, run the following:

export DIAG_DEBUG=1

• Run diagnostics as usual against your resource once.

odmget TMInput > /tmp/tminput.add # save off contents of TMInput.

• Edit the /tmp/tminput.add file and set the pid field to 0.

odmdelete -o TMInput # delete what is currently in TMInput.
odmadd /tmp/tminput.add # add new contents of TMInput.

• Execute the code debugger against the DA.

Understanding the Diagnostic Subsystem for AIX 217

If the Diagnostic Application uses a kernel extension or Second Level Interrupt Handler, you may have to
perform the following before trying to load and debug the DA.

• Load the kernel extension. This can be done by running diagnostics once on the device, and then exiting.
The Controller will normally load any kernel extensions needed by the DA. When exiting Diagnostics, the
Controller does not unload the extensions, so it should still be loaded during the debugging,

• Export the diagnostic environment variable DIAGX_SLIH_DIR to /usr/lpp/diagnostics/slih.

Debugging hints for diagnostic kernel extension
This topic provides examples and debugging hints for Diagnostic Kernel Extension.

Starting trace for diagnostic kernel extension
The Diagnostic Controller loads the Kernel Extensions for each device that requires it. This is specified by
the PDiagRes->KernExt ODM stanza for the device. If using DIAGEX or PDIAGEX, there is a trace hook
built in for debugging purposes.

To use this trace hook, you first must make sure that the trace command is installed. This command is
part of the bos.sysmgt.trace fileset.

To run trace, perform the following:

trace -j 355 // Invoke trace
> trcon // Start trace
> !diag -d "device_name"// Run diagnostics against the device
> trcoff // Stop trace
> quit // Quit

To generate a trace file, perform the following:

trcrpt -o /tmp/diagex.trc

This trace file will contain all the steps performed by the diagnostic kernel extension. To understand the
tags, you must use the source code.

Running trace for diagnostic kernel extension in the background
The Diagnostic Controller loads the Kernel Extensions for each device that requires it. This is specified by
the PDiagRes->KernExt ODM stanza for the device. If you are using DIAGEX or PDIAGEX, there is a trace
hook built in for debugging purposes.

To use this trace hook, first make sure that the trace command is installed. This command is part of the
bos.sysmgt.trace fileset.

To run trace in the background, enter:

trace -a -j 355 -L < length of file > -o < filename >

The -L flag overrides the default trace log file size of 1 MB with the value stated. Specifying a file size of
zero sets the trace log file size to the default size. The -o flag outputs trace data to a specific trace log file.

To generate a trace file, enter:

trcrpt < filename > < output filename >

This trace file will contain all the steps performed by the diagnostic kernel extension. To understand the
tags, you must use the source code.

Note: You can only have one trace running at a time.

218 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

To stop a trace, enter:

trcstop

Finding the right address
While in the Kernel Debugger, there is a structure that can be searched that gives the address of the trace
buffer and first device handle. For DIAGEX, this structure is diag_cntl. For PDIAGEX, it is pdiag_cntl. Use
the map command to get the address of the structure.

Note: The following examples are based on a particular debugger. The concepts shown can be applied
using the debugger available to you.

For instance, for PDIAGEX:

1.

>0> map pdiag_cntl
pdiag_cntl:0x0123F220, type:CSECT Definition

2. Use that address and display 100 words:

>0> d 123F220 100
0123F220 FFFFFFFF FFFFFFFF 05C8A400 00000764 |...............d|
0123F230 64677874 72616365 544F5021 21212100 |dgxtraceTOP!!!!.|
0123F240 72775F61 00000004 00000000 00000000 |rw_a............|
0123F250 67697042 00000018 00000004 2FF3B270 |gipB......../..p|
0123F260 67697064 000000C0 00000000 3D7FF018 |gipd........=...|
0123F270 67697045 00000000 3D7FF018 00000000 |gipE....=.......|
0123F280 72775F62 00000001 00000001 00000001 |rw_b............|
0123F290 72775F45 00000000 00000000 00000000 |rw_E............|
0123F2A0 52656445 00000000 20001111 00000000 |RedE....|
0123F2B0 57727442 05C8A200 00000004 00000014 |WrtB............|
0123F2C0 5772742B 14000000 00000001 00000001 |Wrt+............|
0123F2D0 5772742B 00000001 0000007B 00000000 |Wrt+.......{....|
0123F2E0 72775F42 05C8A200 00000001 00000001 |rw_B............|
0123F2F0 72775F2B 00000004 00000014 00000001 |rw_+............|
0123F300 72775F2B 0000007B 14000000 00000001 |rw_+...{........|
0123F310 66685F42 05C8A200 05C8A200 00000000 |fh_B............|

• The first and second words, FFFFFFFF, are locks. Ignore them.
• The third word (in bold) is a pointer to the linked list of device handles.
• The fourth word is the start of the internal trace table.
• dgxtraceTOP! defines the TOP of the trace table.
• dgxtraceBOT! defines the end of the trace table.

3. The current pointer can be found by searching from this point for dgxtraceCUR!:

>0> find dgxtraceCUR 123F220
01240FC0 64677874 72616365 43555221 21212121 |dgxtraceCUR!!!!!|

Work backwards from this point to see exactly what events have taken place to this point.
4. As far as the device handles are concerned, display 100 words to see the data associated with the

device at that address (the third word from 2.b above):

>0> d 05C8A400 100
05C8A400 00000000 012438B8 00040040 0000000D |.....$8....@....|
05C8A410 00000003 000000C0 0000002C 00000000 |...........,....|
05C8A420 011759FC 05F1D000 00000000 60054335 |..Y.........`.C5|
05C8A430 00000000 00000000 00000070 000000C0 70 is slot#, C0 is bus id#
05C8A440 00000004 007FF800 00000100 00000000 4 is bus type 7ff800 is io
05C8A450 00000100 00000000 00000000 00000000 address of the bus

The 8th word is a pointer to the next device in the linked list. In this case the 8th word is 00000000,
indicating this is the only device.

Understanding the Diagnostic Subsystem for AIX 219

Looking at an illegal trap
In some instances, an Illegal Trap Instruction may occur if some application unloads their SLIH or kernel
extension, without having previously unpinned its memory. This can also happen if the Diagnostic Kernel
Extension close routine is not called on exit.

If this happens when the debugger is enabled, a screen similar to the following may appear. The
appearance of ff_free in the dump is the indicator that an application did not unpin some code before
unloading.

The address passed to ff_free is in (r29) or r30. Use the (s)creen command to trace back until you see a
familiar function name. In the following example, the SLIH mps_interrupt was indicated.

1.

GPR0 00000000 2FF3B188 00192DF0 00000016 007FFFFF C0000000 00009030 2FF3B400
GPR8 00000000 00000000 00000000 00000010 0014032C DEADBEEF DEADBEEF DEADBEEF
GPR16 DEADBEEF DEADBEEF 200004B0 DEADBEEF DEADBEEF DEADBEEF 2FF3B2C0 00000000
GPR24 00000000 00161BF8 C0000420 03762428 0015FF40 01A1C5A0 01A1C5A8 0015FF40

MSR 00029030 CR 44224828 LR 0014032C CTR 000908A8 MQ 00000000
XER 00000000 SRR0 00140334 SRR1 00029030 DSISR 40000000 DAR 00000000

IAR 00140334 (ORG+00140334) ORG=00000000 Mode: VIRTUAL
00140330 5400D97E 0C800000 387F0000 4BECADC5 |T..~....8...K...|
 | tweqi r0,0x0
00140340 81810058 30210050 7D8803A6 BBA1FFF4 |...X0!.P}.......|

 |
00140330 5400D97E 0C800000 387F0000 4BECADC5 |T..~....8...K...|
00140340 81810058 30210050 7D8803A6 BBA1FFF4 |...X0!.P}.......|
00140350 4E800020 00000000 00002041 80030100 |N.. A....|
00140360 00000000 00000174 00076666 5F667265 |.......t..ff_fre|
00140370 65000000 80E20328 BF81FFF0 7C0802A6 |e......(....|...|
00140380 2C070000 90010008 9421FFB0 3B830000 |,........!..;...|
00140390 41820050 80E201E8 38640000 83810040 |A..P....8d.....@|

Illegal Trap Instruction Interrupt in Kernel

>0>

2. Use (s)creen to display contents of R29:

>0> s 1A1C5a0 100
GPR0 00000000 2FF3B188 00192DF0 00000016 007FFFFF C0000000 00009030 2FF3B400
GPR8 00000000 00000000 00000000 00000010 0014032C DEADBEEF DEADBEEF DEADBEEF
GPR16 DEADBEEF DEADBEEF 200004B0 DEADBEEF DEADBEEF DEADBEEF 2FF3B2C0 00000000
GPR24 00000000 00161BF8 C0000420 03762428 0015FF40 01A1C5A0 01A1C5A8 0015FF40

MSR 00029030 CR 44224828 LR 0014032C CTR 000908A8 MQ 00000000
XER 00000000 SRR0 00140334 SRR1 00029030 DSISR 40000000 DAR 00000000

IAR 00140334 (ORG+00140334) ORG=00000000 Mode: VIRTUAL
00140330 5400D97E 0C800000 387F0000 4BECADC5 |T..~....8...K...|
 | tweqi r0,0x0
00140340 81810058 30210050 7D8803A6 BBA1FFF4 |...X0!.P}.......|

 |
01A1C5A0 01A29850 0000A518 01DF0004 325E9F94 |...P........2^..|
01A1C5B0 00000000 00000000 00481007 010B0001 |.........H......|
01A1C5C0 00000BF0 0000010C 00000000 000000E4 |................|
01A1C5D0 00000000 00000000 000000F0 00020001 |................|
01A1C5E0 00020002 00040003 00020003 314C0000 |............1L..|
01A1C5F0 00000000 00000000 00000000 00000000 |................|
01A1C600 00000000 2E746578 74000000 00000000 |.....text.......|

3. Press enter until you find a function name:

>0> enter several times
GPR0 00000000 2FF3B188 00192DF0 00000016 007FFFFF C0000000 00009030 2FF3B400
GPR8 00000000 00000000 00000000 00000010 0014032C DEADBEEF DEADBEEF DEADBEEF
GPR16 DEADBEEF DEADBEEF 200004B0 DEADBEEF DEADBEEF DEADBEEF 2FF3B2C0 00000000
GPR24 00000000 00161BF8 C0000420 03762428 0015FF40 01A1C5A0 01A1C5A8 0015FF40

MSR 00029030 CR 44224828 LR 0014032C CTR 000908A8 MQ 00000000
XER 00000000 SRR0 00140334 SRR1 00029030 DSISR 40000000 DAR 00000000

220 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

IAR 00140334 (ORG+00140334) ORG=00000000 Mode: VIRTUAL
00140330 5400D97E 0C800000 387F0000 4BECADC5 |T..~....8...K...|
 | tweqi r0,0x0
00140340 81810058 30210050 7D8803A6 BBA1FFF4 |...X0!.P}.......|

 |
01A1CDF0 41820010 306300CC 48000479 80410014 |A...0c..H..y.A..|
01A1CE00 38600000 4800000C 3860FFFF 48000004 |8`..H...8`..H...|
01A1CE10 80010088 7C0803A6 30210080 BBC1FFF8 |....|...0!......|
01A1CE20 4E800020 00000000 00002041 80020201 |N.. A....|
01A1CE30 00000000 00000780 000D6D70 735F696E |..........mps_in|
01A1CE40 74657272 75707400 00000000 BDA1FFB4 |terrupt.........|
01A1CE50 80A20004 39C30000 80650060 7C0802A6 |....9....e.`|...|

Diagnostic patch diskette procedure
The Diagnostic Patch Diskette purpose is to allow file replacement from diskette, overriding the file(s) on
the CDROM.

Patch diskettes can be made to help in the debug of problems that occur when running diagnostics from
the Diagnostic CDROM. Three types of diskettes can be used:

All diskettes are in backup or restore format. The Diagnostic Debug diskette can be combined with the
other two to allow command line debugging as well as file replacement.

Diagnostic configuration diskette
The Diagnostic Configuration diskette has two main purposes.

The first purpose of the Diagnostic Configuration diskette is to allow the refresh rate of the graphics
adapter to be set to a different value than the default. The default value is 60Hz. If the graphics display's
refresh rate is 77 Hz, then set the refresh rate to 77.

The second purpose of the Diagnostic Configuration diskette is to allow a terminal attached to any RS232
or RS422 adapter to be selected as a console device. The default device is a RS232 tty attached to the
first standard serial port(S1).

Each of these can be accomplished by using the Create Customized Configuration Diskette Task.

A valid Diagnostic Configuration Diskette contains the following files:

• ./.signature
• ./CONSDEF
• ./REFRESH

The .signature file contains a single line describing the diskette purpose. For this diskette, the description
should be /etc/diagconf.

Diagnostic patch diskette
The Diagnostic Patch diskette is used to patch failing applications until a new release of the Diagnostic
CDROM is available. This diskette may also be used in development to help in the debug of why a
particular application is failing.

A valid Diagnostic Patch Diskette contains the following files:

• ./.signature
• ./etc/diagpatch
• ./etc/[applications]

The .signature file contains a single line describing the diskette purpose. For this diskette, the description
should be /etc/diagpatch. The /etc/diagpatch file is a Korn shell script file that is used to remove the
application first from the RAM file system, then links the new application to the old one. The /etc/diag
patch file must be executable. Following is an example:

#!/bin/ksh
begin diagpatch

Understanding the Diagnostic Subsystem for AIX 221

Files to be replaced on the RAM file system must first be removed,
then linked from /etc to /usr/lpp/....[or correct location]

Replacing a diagnostic application
rm /usr/lpp/diagnostics/da/dxspa
ln -s /etc/dxspa /usr/lpp/diagnostics/da/dxspa

Diagnostic debug diskette
A valid Diagnostic Debug Diskette contains the following files: ./.signature, ./etc/NOKEYPOS.

The .signature file contains a single line describing the diskette purpose. For this diskette, the description
could be either /etc/diagpatch or /etc/diagconf. The script file does not need to be present if files are not
being replaced.

The /etc/NOKEYPOS file is a zero length file.

Note: This function can be combined with either the Patch or Configuration diskette by simply adding
the /etc/NOKEYPOS file to either diskette.

Code examples
This section contains various sample C programming code for both the Application Test Unit and
Diagnostic Application code.

These examples are meant for review to understand the concepts and library routines used and cannot
not be compiled clean. They are included here as reference only.

Example {DEVICE}_ERR_DETAIL.H: TU specific outputs

/*
 * COMPONENT_NAME: TU_DEVICE
 *
 * FUNCTIONS: SAMPLE Header file for TU Error Detail (OUTPUT)
 *
 */

#ifndef _h_device_err_detail
#define _h_device_err_detail

/*
 * ERROR_DETAILS structure and related definitions follow.
 *
 * These structures are used to provide detailed error information
 * for some of the errors that are detected by the test units.
 * Whether the detailed error is available for a particular TU and error
 * code is documented in the TU Component Interface Specification, and
 * the actual source files where that error code is defined.
 */

/**/
/* The following structures are examples. Modify */
/* as needed. */
/**/

typedef struct {
 unsigned long int error_code;
 unsigned long int crc_expected;
 unsigned long int crc_actual;
} CRC_ERROR_DETAILS;

typedef struct {
 unsigned long int error_code;
 unsigned long int miscompare_address;
 unsigned long int expected_data;
 unsigned long int actual_data;
 } DMA_ERROR_DETAILS;

typedef union {
 unsigned long int error_code;
 CRC_ERROR_DETAILS crc_test;
 DMA_ERROR_DETAILS dma_test;
} ERROR_DETAILS;

222 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

/* The following is required by <diag/tucb.h> file */
#define OUTPUT_DATA ERROR_DETAILS

 #endif

Example {DEVICE}_INPUT_PARAMS.H: TU specific inputs

/*
 * COMPONENT_NAME: TU_DEVICE
 *
 * FUNCTIONS: SAMPLE TU Input Parameters Header File
 *
 */

#ifndef _h_device_input_params
#define _h_device_input_params

/*
 * INPUT_DATA structure and related definitions follow.
 *
 * These structures are used to provide detailed input data information
 * for some of the test units. This data is only used in manufacturing
 * or other special case test areas.
 */

/**/
/* The following structures are examples. Modify */
/* as needed. */
/**/

typedef struct {
 unsigned long int mfg_mode;
} TU_SPECIFIC_INPUT;

/* The following is required by the <diag/tucb.h> header */
#define INPUT_DATA TU_SPECIFIC_INPUT

#endif

Example TU local leader file

/*
 * COMPONENT_NAME: TU_DEVICE
 *
 * FUNCTIONS: TU Header file
 */

#ifndef _h_tu
#define _h_tu

#include <diag/tucb.h>
#include <sys/pdiagex_dds.h>

#define TU_SUCCESS 0
#define TU_DEVICE_BUSY 1
#define TU_CHILD_BUSY 2
#define TU_SOFTWARE_ERROR 3
#define TU_INVALID_PARAM 4
#define TU_INCORRECT_STATE 5

#define TU_OPEN 0x01
 etc, etc
#define TU_CLOSE 0xEFFF

typedef struct {
 int adapter_diagnose_state;
 pdiagex_dds_t dds;
 pdiag_info_handle_t pdiagex_handle;
} TU_GLOBAL_DATA;

#endif

Understanding the Diagnostic Subsystem for AIX 223

Example TU exectu function

/*
 * COMPONENT_NAME: (TU_DEVICE) Device Adapter Test Units
 *
 * FUNCTIONS: exectu
 */

/* FILE NAME: device_exectu.c */
/* FUNCTION: Device Adapter Application Test Units. */
/* */
/* This source file contains source code for the Device adapter's */
/* Application Test Units to aid in various testing environments */
/* of the device adapter. These test units provide a basic inter- */
/* face between the diagnostic application program and functions */
/* written in the diagnostic extension (pdiagex) which provide direct */
/* access to the device without the need for a device driver. */
/* */
/* */
/* EXTERNAL PROCEDURES CALLED: */
/* */

/* INCLUDED FILES */
#include <sys/types.h>
#include <stdio.h>
#include <errno.h>

#include "device_input_params.h"
#include "device_err_detail.h"
#include "tu.h"
#include <diag/tucb.h>

/*- global variables -*/
TU_GLOBAL_DATA *tu_data;

/*- extern functions -*/
extern void Do_INIT_TUS(TU_TYPE *, TU_GLOBAL_DATA *, TU_RETURN_TYPE *tu_rc);
extern void Do_TERM_TUS(TU_TYPE *, TU_GLOBAL_DATA *, TU_RETURN_TYPE *tu_rc);

/*
 * NAME: exectu
 *
 * FUNCTION: Execute a specific Resource Test Unit.
 *
 * EXECUTION ENVIRONMENT:
 * This routine is called as a subroutine of a diagnostic application.
 *
 * NOTES: This routine is used as the interface between an application
 * and the test units for a Resource.
 *
 */

ulong
exectu(TU_TYPE *dev_tucb, TU_INFO_HANDLE *tu_handle, TU_RETURN_TYPE *tu_rc)
{
 int loopcount;
 int mfg_flag=0;

 /* Set the tu_handle pointing to the global tu structure data */
 /* if the first time in. Also initialize elements. */
 if (*tu_handle == (TU_INFO_HANDLE *)NULL) {
 tu_data = (TU_GLOBAL_DATA *)calloc(1,sizeof(TU_GLOBAL_DATA));
 *tu_handle = (TU_INFO_HANDLE *)tu_data;
 }

 /* number of times to repeat a command */
 loopcount = dev_tucb->parms.loop;

 /*---------------------------------------*/
 /* assure adapter is proper state */
 /* before attempting test unit */
 /*---------------------------------------*/
 if ((dev_tucb->parms.tu != 1) && /* for tus other than init tu */
 (tu.adapter_diagnose_state != 1)){ /* test for NOT Diag state */
 tu_rc->major_rc = TU_INCORRECT_STATE;
 if (dev_tucb->parms.msg_file != (FILE *)NULL)
 fprintf(dev_tucb->parms.msg_file, "TU is not 1, and
 not in correct state. status = %d\n", tu_rc->major_rc);

224 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 return(tu_rc->major_rc); /* must be in diagnose state */
 }
 else if ((dev_tucb->parms.tu == 1) && /*- for tu 1 only -*/
 /*- test for Diagnose state -*/
 (tu.adapter_diagnose_state == 1)) {
 tu_rc->major_rc = TU_SUCCESS;
 if (dev_tucb->parms.msg_file != (FILE *)NULL)
 fprintf(dev_tucb->parms.msg_file, "TU is 1, and is in
 correct state. status = %d\n", tu_rc->major_rc);
 return(tu_rc->major_rc); /*- already in diagnose state -*/
 }

 switch (dev_tucb->parms.tu) {

 /*--------------------------------------*/
 /*- INITIALIZE Test Unit #1 -*/
 /*--------------------------------------*/
 case TU_OPEN:
 {
 (void) Do_INIT_TUS(dev_tucb, tu_data, tu_rc);
 if (tu_rc->major_rc == TU_SUCCESS)
 /*- flag Diagnose state -*/
 tu.adapter_diagnose_state = 1;
 if (dev_tucb->parms.msg_file != (FILE *)NULL)
 fprintf(dev_tucb->parms.msg_file,
 "TU is 1 status = %d\n", tu_rc->major_rc);
 break;

 }

 /*--------------------------------------*/
 /*- Other Test Units -*/
 /*--------------------------------------*/

 /*--------------------------------------*/
 /*- TERMINATE Test Unit #EFFF -*/
 /*--------------------------------------*/
 case TU_CLOSE:
 {
 (void) Do_TERM_TUS(dev_tucb, tu_data, tu_rc);
 if (tu_rc->major_rc == TU_SUCCESS)
 /*- reset Diagnose state -*/
 tu.adapter_diagnose_state = 0;
 if (dev_tucb->parms.msg_file != (FILE *)NULL)
 fprintf(dev_tucb->parms.msg_file,
 "TU is 2 status = %d\n", tu_rc->major_rc);
 break;
 }

 /*---------------------------------------*/
 /* Unknown tu number */
 /*---------------------------------------*/
 default:
 tu.rc.major_rc = TU_INVALID_PARAM;

 } /* end of switch on tu number */

 /* If the OUTPUT_DATA is wanted by the calling application, */
 /* then the tucb->data_log should not be NULL. If so, then */
 /* this structure may be used. */

 if (dev_tucb->parms.data_log)
 dev_tucb->parms.data_log->error_code = TU_FAILED;

 /* If the INPUT_DATA is specified by the calling application, */
 /* then the tucb->tu_data should not be NULL. If so, then */
 /* get specific input data from this structure */

 if (dev_tucb->parms.tu_data)
 mfg_flag = dev_tucb->parms.tu_data->mfg_mode;

 return (tu_rc->major_rc);

} /* end of exectu()---*/

Understanding the Diagnostic Subsystem for AIX 225

Example TU open/close device interface

/*
 * COMPONENT_NAME: (TU_DEVICE) Resource Interface Access Code
 *
 * FUNCTIONS: Do_INIT_TUS
 * Do_TERM_TUS
 */

/* FILE NAME: device_interface.c */
/* FUNCTION: Device Adapter Application Interface Code */
/* */
/* This source file contains source code for the Device adapter's */
/* Application Test Units to aid in various testing environments */
/* of the device adapter. These test units provide a basic inter- */
/* face between the diagnostic application program and functions */
/* written in the diagnostic extension (pdiagex) which provide direct */
/* access to the device without the need for a device driver. */
/* */
/* */

/* INCLUDED FILES */
#include <sys/types.h>
#include <stdio.h>
#include <errno.h>
#include <sys/intr.h>
#include <sys/dma.h>

#include "device_err_detail.h"
#include "tu.h"
#include <diag/tucb.h>
#include <sys/pdiagex_dds.h>

/***/
/*- INITIALIZE Test Unit #1 -*/
/***/
void
Do_INIT_TUS(TU_TYPE *dev_tucb, TU_GLOBAL_DATA *tu_data, TU_RETURN_TYPE *tu_rc)
{
 int rc;
 void *ih_handle;

 /* Set initial tu success status */
 tu_rc->major_rc = TU_SUCCESS;

 /*- unconfigure device/children and place device in diagnose state -*/
 rc = pdiag_diagnose_state(dev_tucb->resource_name);
 if (rc != 0) { /*- test unit failed to complete normally -*/
 tu_rc->major_rc = TU_DEVICE_BUSY;
 tu_rc->minor_rc = rc;
 return;
 }

 tu_data->adapter_diagnose_state = 1;

 /* Get all the device attributes for the dds structure */
 rc = get_dds(dev_tucb, tu_data);
 if (rc != 0) { /*- test unit failed to complete normally -*/
 tu_rc->major_rc = TU_SOFTWARE_ERROR;
 tu_rc->minor_rc = rc;
 return;
 }

 /**
 * Call pdiag_open
 * This also loads the interrupt handler
 **/
 /* Open the device for testing via PDIAGEX */
 rc = pdiag_open(dev_tucb->resource_name, &tu_data->dds, "device_intr",
 &tu_data->pdiagex_handle);
 if (rc != 0) { /*- test unit failed to complete normally -*/
 if (dev_tucb->parms.msg_file != (FILE *)NULL)
 fprintf(dev_tucb->parms.msg_file,
 "pdiagex open rc = %d\n", rc);
 tu_rc->major_rc = TU_DEVICE_BUSY;
 tu_rc->minor_rc = rc;
 return;
 }

226 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 return; /*- normal completion -*/
}

/***/
/*- TERMINATE Test Unit #EFFF -*/
/***/
void
Do_TERM_TUS(TU_TYPE *dev_tucb, TU_GLOBAL_DATA *tu_data, TU_RETURN_TYPE *tu_rc)
{
 int rc;

 tu_rc->major_rc = TU_SUCCESS;

 /* Close/terminate device from PDIAGEX */
 /* This also unloads the interrupt handler */
 rc = pdiag_close(tu_data->pdiagex_handle);
 if (rc != 0) {
 if (dev_tucb->parms.msg_file != (FILE *)NULL)
 fprintf(dev_tucb->parms.msg_file,
 "pdiagex close rc = %d\n", rc);
 tu_rc->major_rc = TU_SOFTWARE_ERROR;
 tu_rc->minor_rc = rc;
 }

 /*- reconfigure device/children to their original state -*/
 rc = pdiag_restore_state(dev_tucb->resource_name);
 if (rc != 0) { /*- test unit failed to complete normally -*/
 tu_rc->major_rc = TU_SOFTWARE_ERROR;
 tu_rc->minor_rc = rc;
 }

 return; /*- normal completion -*/
}

/***/
/*- Get the device attributes -*/
/***/
int
get_dds(TU_TYPE *dev_tucb, TU_GLOBAL_DATA *tu_data)
{
 int rc;
 char type;
 char *parent_name;

 /* Open/Initialize Configuration Services */
 if ((rc = pdiag_cs_open()) != 0)
 return (rc);

 /**/
 /* Initialize the DDS structure with all pertinent data */
 /**/

 /* Get the parent name */
 rc = pdiag_cs_get_attr(dev_tucb->resource_name, "parent_name",
 &parent_name, &type);

 /* Bus ID for the parent resource */
 rc = getatt(&tu_data->dds.bus_id,'l',parent_name,"bus_id",NULL);
 pdiag_cs_free_attr (parent_name);

 /* Slot number */
 rc=getatt(&tu_data->dds.slot_num,'i',dev_tucb->resource_name,
 "connwhere", NULL);

 /* Bus Interrupt Level */
 rc=getatt(&tu_data->dds.bus_intr_lvl,'i',dev_tucb->resource_name,
 "busintr", NULL);

 /* assign bus_io_addr */
 rc=getatt(&tu_data->dds.bus_io_addr,'l',dev_tucb->resource_name,
 "busio",NULL);

 /* assign bus_io_length */
 rc=getatt(&tu_data->dds.bus_io_length,'l',dev_tucb->resource_name,
 "bus_io_length",NULL);

 /* assign bus_mem_addr */
 rc=getatt(&tu_data->dds.bus_mem_addr,'l',dev_tucb->resource_name,
 "bus_mem_addr",NULL);

 /* assign bus_mem_length */

Understanding the Diagnostic Subsystem for AIX 227

 rc=getatt(&tu_data->dds.bus_mem_length,'l',dev_tucb->resource_name,
 "bus_mem_length",NULL);

 tu_data->dds.intr_priority = INTCLASS2;
 tu_data->dds.intr_flags = NULL; /* not used by PCI */
 tu_data->dds.dma_lvl = NULL; /* not used by PCI */
 tu_data->dds.dma_bus_mem = NULL;
 tu_data->dds.dma_bus_length = NULL;
 tu_data->dds.dma_flags = DMA_MASTER;
 tu_data->dds.bus_type = BUS_BID;

 tu_data->dds.data_ptr = (uchar *)NULL;

 tu_data->dds.maxmaster = 32;

 /* Close Configuration Services */
 pdiag_cs_close();
 return (rc);
}
/**
 * NAME: getatt
 *
 * FUNCTION: Obtains attribute from the configuration services
 * database, or change list.
 *
 * EXECUTION ENVIRONMENT:
 *
 * NOTES:
 *
 * int
 * getatt(dest_addr,dest_type,lname,att_name,newatt)
 *
 * dest_addr = pointer to the destination field.
 * dest_type = The data type which the attribute is to be converted to
 * 's' = string rep=s
 * 'b' = byte sequence rep=s, e.g. "0x56FFE67.."
 * 'l' = long rep=n
 * 'i' = int rep=n
 * 'h' = short (half) rep=n
 * 'c' = char rep=n,or s
 * 'a' = address rep=n
 * lname = Device logical name. (or parent's logical name)
 * att_name = attribute name to retrieve
 * newatt = New attributes to be scanned before reading database
 *
 *
 * RETURNS:
 * 0 = Successful
 * <0 = Successful (for byte sequence only, = -ve no. of bytes)
 * >0 = errno (E_NOATTR = attribute not found)
 *
**/
int getatt(dest_addr, dest_type, lname, att_name, newatt)
void *dest_addr; /* Address of destination */
char dest_type; /* Destination type */
char *lname; /* device logical name */
char *att_name; /* attribute name */
struct attr *newatt; /* List of new attributes */
{
 struct attr *att_changed();
 struct attr *att_ptr;
 int convert_seq();
 int rc;
 char *val_ptr;
 char rep;
 char *value;

 /* Note: We need an entry from customized, or predefined even if */
 /* an entry from newatt is going to be used because there is no */
 /* representation (rep) in newatt */

 /* SEARCH FOR ENTRY */
 rc = pdiag_cs_get_attr(lname, att_name, &value, &rep);

 /* CONVERT THE DATA TYPE TO THE DESTINATION TYPE */
 rc = convert_att(dest_addr, dest_type, value, rep);

 /* Free up what the pdiag_cs_get_addr allocated */
 pdiag_cs_free_attr(&value);

 return(rc);
}

228 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

/***
 * NAME: convert_att
 *
 * FUNCTION: This routine converts attributes into different data types
 *
 * EXECUTION ENVIRONMENT:
 *
 * Generally this routine is called by getatt(), but it is available
 * to other procedures which need to convert data which may not also
 * be represented in the database.
 * No global variable are used, so this may be dynamically linked.
 *
 * RETURNS:
 *
 * 0 = Successful
 * <0 = Successful (for byte sequence only, = -ve no. of bytes)
 * >0 = errno
**/
int convert_att(dest_addr, dest_type, val_ptr, rep)
void *dest_addr; /* Address of destination */
char dest_type; /* Destination type */
char *val_ptr; /* Address of source */
char rep; /* Representation of source ('s', or 'n') */
{

 if(rep == 's') {
 switch(dest_type) {
 case 's':
 strcpy((char *)dest_addr, val_ptr);
 break;
 case 'c':
 *(char *)dest_addr = *val_ptr;
 break;
 case 'b':
 return (convert_seq(val_ptr, (char *)dest_addr));
 case 'i':
 *(int *)dest_addr =
 (int)strtoul(val_ptr, (char **)NULL, 0);
 break;
 default:
 return 1;
 }
 } else if(rep == 'n') {
 switch(dest_type) {
 case 'l':
 *(long *)dest_addr =
 strtoul(val_ptr, (char **)NULL, 0);
 break;
 case 'i':
 *(int *)dest_addr =
 (int)strtoul(val_ptr, (char **)NULL, 0);
 break;
 case 'h':
 *(short *)dest_addr =
 (short)strtoul(val_ptr, (char **)NULL, 0);
 break;
 case 'c':
 *(char *)dest_addr =
 (char)strtoul(val_ptr, (char **)NULL, 0);
 break;
 case 'a':
 *(void **)dest_addr =
 (void *)strtoul(val_ptr, (char **)NULL, 0);
 break;
 default:
 return 1;
 }
 } else {
 return 1;
 }
 return 0;
}

/**
 * NAME: convert_seq
 *
 * FUNCTION: Converts a hex-style string to a sequence of bytes
 *
 * EXECUTION ENVIRONMENT:

Understanding the Diagnostic Subsystem for AIX 229

 *
 * This routine uses no global variables
 *
 * NOTES:
 *
 * The string to be converted is of the form
 * "0xFFAAEE5A567456724650789789ABDEF678" (for example)
 * This would put the code FF into the first byte, AA into the second,
 * etc.
 *
 * RETURNS: No of bytes, or -3 if error.
 *
***/

int convert_seq(source, dest)
char *source;
uchar *dest;
{
 char byte_val[5]; /* e.g. "0x5F\0" */
 int byte_count = 0;

 uchar tmp_val;
 char *end_ptr;

 strcpy(byte_val, "0x00");

 if(*source == '\0') { /* Accept empty string as legal */
 return 0;
 }

 if(*source++ != '0') {
 return 1;
 }

 if(tolower(*source++) != 'x') {
 return 1;
 }

 while((byte_val[2] = *source) && (byte_val[3] = *(source+1))) {
 source += 2;

 /* be careful not to store illegal bytes in case the
 * destination is of exact size, and the source has
 * trailing blanks
 */

 tmp_val = (uchar) strtoul(byte_val, &end_ptr, 0);
 if(end_ptr != &byte_val[4]) {
 break;
 }

 *dest++ = tmp_val;
 byte_count++;
 }

 return -byte_count;
}

Example TU makefiles

#
COMPONENT_NAME: (TU_DEVICE)
#
FUNCTIONS: EXAMPLE TU LIBRARY MAKEFILE
#
#
VPATH = ${MAKETOP}/bos/kernext/exp
The following three lines are for building a
Second Level Interrupt Handler.
SUBDIRS = slih
EXPINC_SUBDIRS = slih
EXPLIB_SUBDIRS = slih
PROGRAMS = libtu_device
Flag to the linker that exectu is the main entry point.
libtu_device_LDFLAGS += -e exectu
If using PDIAGEX, the diagnostic kernel extension
libtu_device_IMPORTS = -bI:pdiagex.exp

230 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

#
LIBS = -ldiag -lpdiag
Install list and directory.
ILIST = ${PROGRAMS}
IDIR = /usr/lpp/diagnostics/lib/
OFILES = device_exectu.o device_interface.o
.include <${RULES_MK}>

#
#Using command line make:
#
libtu_device: device_exectu.o device_interface.o
 ld -o tu /lib/crt0.o device_exectu.o
device_interface.o -lpdiag -lc -e exectu
device_exectu.o: device_exectu.c
 cc -c -I. device_exectu.c
device_interface.o: device_interface.c
 cc -c -I. device_interface.c

Example C source file for TU interrupt handler

/*
 * COMPONENT_NAME: tu_device
 *
 * FUNCTIONS: device_interrupt
 */

/*** header files ***/
#include <sys/adspace.h>
#include <sys/ioacc.h>
#include <sys/types.h>
#include <sys/sleep.h>
#include <sys/watchdog.h>
#include <sys/trcmacros.h>

#include <sys/pdiagex_dds.h>

/**
*
* NAME: device_interrupt
*
* FUNCTION: Interrupt handler for the adapter.
*
* INPUT PARAMETERS: handle = handle returned from pdiagex_open
* data = data passed to handler during
* initialization.
*
* EXECUTION ENVIRONMENT: Interrupt
*
* RETURN VALUE DESCRIPTION: none.
*
* EXTERNAL PROCEDURES CALLED: pdiag_dd_read, pdiag_dd_write
*
**/
int device_interrupt(pdiag_info_handle_t handle, char *data_area,
 int *interrupt_flag, int sleep_flag, int *sleep_word)
{
 ushort readdata, rc;
 int interrupt_mask;
 int offset;
 ulong writedata;
 pdiagex_opflags_t flags={ PDIAG_MEM_OP,
 1,
 PDIAG_SING_LOC_ACC,
 INTRKMEM,
 NULL };

 /**
 * Get value of interrupt status register
 **/

 rc = pdiag_dd_read(handle, IOSHORT16, offset,
 (void *)&readdata, &flags);

 *interrupt_flag = 0;

 /***
 * An Interrupt for this resource has occurred, process it.

Understanding the Diagnostic Subsystem for AIX 231

 ***/
 rc = pdiag_dd_write(handle, IOSHORT16, offset, (void *)&writedata,
 &flags);

 /**
 * Set a value to the watchdog function that indicates that
 * this is the interrupt expected
 **/
 *interrupt_flag |= interrupt_mask;

 /***
 * Wake up sleeping application IF necessary
 **/
 if (sleep_flag) {
 pdiag_dd_interrupt_notify(sleep_word);
 }

 return (0);

} /* end device_intr */

Example TU interrupt handler makefile

COMPONENT_NAME: tu_device
#
FUNCTIONS: none
#
#
#---#
#
Make file for the
#
#---#

@(#)17 1.1 src/idd/en_US/aixprggd/diagunsd/TU_64bit_port.htm, iddiagunsd,
idd500 5/23/00 13:54:31
#

.include <${MAKETOP}bos/kernext/Kernext.mk>

TU_VPATH = ${MAKETOP}/bos/diag/tu/tu_dir
VPATH = ${MAKETOP}bos/kernel/exp:${MAKETOP}bos/kernext/exp:$TU_VPATH

32-bit version of load object
#
KERNEL_EXT = your_intr

64-bit version of load object
#
KERNEL_EXT64 = your_intr64

IDIR = /usr/lpp/diagnostics/slih/

install list containing 32-bit and 64-bit version
#
ILIST = your_intr your_intr64

OPT_LEVEL = -qlist -qsource

entry point, import and export files for 32-bit version
#
your_intr_DEPENDS = your_intr.exp
your_intr_ENTRYPOINT = your_interrupt
your_intr_IMPORTS = -bI:pdiagex.exp
your_intr_EXPORTS = -bE:your_intr.exp

entry point, import and export files for 64-bit version
(common with 32-bit version)
your_intr64_DEPENDS = your_intr.exp
your_intr64_ENTRYPOINT = your_interrupt
your_intr64_IMPORTS = -bI:pdiagex.exp \
 pdiagex64.exp
your_intr64_EXPORTS = -bE:your_intr.exp

object list definition for 32-bit version
#

232 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

your_intr_OFILES = your_intr.o

object list definition for 64-bit version (common objects
across 32-bit and 64-bit versions), with 64-bit objects
renamed to .64o
#
your_intr64_OFILES = your_intr.64o

INCFLAGS = -I${MAKETOP}/bos/diag/tu/tu_dir \
 -I${MAKETOP}bos/usr/include
LIBS = ${KERNEXT_LIBS}

.include <${RULES_MK}>

Note: Replace the environment variables and file names with your own names to customize this example
for your own use.

Example diagnostic application

/*
* COMPONENT_NAME : DAXYZ - diagnostic application for resource xyz
*
* FUNCTIONS : main
 tu_test
 clean_up
 stand_by_screen
 loop_stand_by_screen
 check_rc
 ela
 check_microcode
*/

#include <stdio.h>
#include <locale.h>
#include <cf.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/ldr.h>
/* ... etc (any necessary system header files)*/
#include <diag/da.h>
#include <diag/diago.h>
#include <diag/diag.h>
#include <diag/tm_input.h>
#include <diag/tmdefs.h>
#include <diag/diag_exit.h>
#include "dxyz_msg.h"
#include "dxyz.h"

/**/
/* If the application wants detailed error data */
/* then include the header file containing the */
/* structures for the error or output data, else*/
/* do not include. This header file is normally */
/* dropped with the test unit code. */
/**/
#include "device_err_detail.h"

/**/
/* If the application uses special input data */
/* then include the header file which must be */
/* common between the DA and TU, else */
/* do not include. Manufacturing and HTX use */
/* only. This header file is normally */
/* dropped with the test unit code. */
/**/
#include "device_input_params.h"

/**/
/* Include the tucb header file. */
/**/

Understanding the Diagnostic Subsystem for AIX 233

#include <diag/tucb.h>

/* TU operation defines */
#define TU_OPEN 1
#define TU_CLOSE 0xEFFF
/* OTHERS AS REQUIRED */

int reg_tu_seq[6] =
{
 TU_OPEN,
 18,
 19,
 3,
 4,
 TU_CLOSE /*Problem determination sequence*/
};

int sys_tu_seq[8] =
{
 TU_OPEN,
 18,
 19,
 3,
 4,
 8,
 17,
 TU_CLOSE /*System checkout sequence*/
};

/*fru_bucket is a structure that holds information for the diagnostic
 program to return to the diagnostic controller when a failure is
 found that needs to be reported. (FRU means Field Replaceable Unit).
*/

struct fru_bucket frub[] =
{
 {"", FRUB1, 0x849, 0x210, R_XYZ_ADAPTER,
 {
 {87,"","",0,DA_NAME,NONEXEMPT},
 {13,"DRAM Sip","00-00-00",F_XYZ_DRAM,NOT_IN_DB,EXEMPT},
 },
 },
 {"", FRUB1, 0x849, 0, R_ELA,
 {
 {90,"","",0,DA_NAME,NONEXEMPT},
 {10,"","",0,PARENT_NAME, NONEXEMPT},
 },
 },
 {"", FRUB1, 0x849, 0x160, R_V35_CABLE,
 {
 {95,"V35 Cable", "",CABLEFRU,0,0},
 {5,"","",0,DA_NAME,NONEXEMPT},
 },
 },
};

struct msglist plug_37[] = {
 {Q_PLUG_37_PIN,Q_PLUG_37_PIN_TITLE},
 {Q_PLUG_37_PIN,Q_PLUG_37_PIN_YES},
 {Q_PLUG_37_PIN,Q_PLUG_37_PIN_NO},
 {Q_PLUG_37_PIN,Q_PLUG_37_PIN_ACTION},
 NULL
};

/* The above messages are stored in the DA message file - dxyz.msg.
 The following screen will be displayed by making an ASL
 call during the execution of this DA. The complete DA will have
 more menus displayed during different instances. */

234 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

#define IS_CONSOLE ((int)(tm_input.console == CONSOLE_TRUE))
/* include your own macros here */

static ASL_SCR_INFO q_plug_37[DIAG_NUM_ENTRIES(plug_37)];
/* include additional msglist here */
static ASL_SCR_TYPE menutype = DM_TYPE_DEFAULTS;

/* static variables */

struct tm_input tm_input;
struct errdata err_data;
struct stat *tmpbuf;
int envflag;
char *slot;
char *libpath = NULL;
nl_catd fdes;
short state;
int diskette_based;
int fd;
int rc;
int i;
int val;
int (*tu_entry)();
FILE *fd;
TU_TYPE dev_tucb;
TU_TYPE *dev_tucb_ptr;
TU_INFO_HANDLE *tu_handle = (TU_INFO_HANDLE *)NULL;
TU_RETURN_TYPE tu_rc;

void tu_test(int);

/* external functions */
extern getdainput();
extern addfrub();
unsigned int dtoh();

main()
{
 /*variables declaration */
 DA_SETRC_STATUS(DA_STATUS_GOOD);
 DA_SETRC_ERROR(DA_ERROR_NONE);
 DA_SETRC_USER(DA_USER_NOKEY);
 DA_SETRC_TESTS(DA_TEST_FULL);
 DA_SETRC_MORE(DA_MORE_NOCONT);

 /*initialize locale environment*/
 setlocale(LC_ALL, "");

 /*initialize the Configuration database*/
 init_dgodm();

 /* get input environment */

Understanding the Diagnostic Subsystem for AIX 235

 if (getdainput(&tm_input)!= 0) {
 DA_SETRC_ERROR(DA_ERROR_OTHER);
 clean_up();
 }

 /*if using console - initialize ASL and open message catalog*/
 if (IS_CONSOLE) {
 diag_asl_init("DEFAULT");
 fdes=diag_catopen(MF_XYZ,0);
 }

 /*display initial screen depending on loopmode*/
 if(tm_input.loopmode==LOOPMODE_NOTLM) {
 stand_by_screen();
 }
 else
 loop_stand_by_screen();

 /*verify existence of any microcode needed to run*/
 check_microcode();

 /* TU initialization*/
 dev_tucb_ptr = &dev_tucb;
 dev_tucb_ptr->resource_name = tm_input.dname;

 /* If detailed output data is not desired, then set to NULL */
 dev_tucb_ptr->parms.data_log = (void *)NULL;
 dev_tucb_ptr->parms.data_log_length = (long)0;

 /* Else If detailed output data is expected, then malloc some space */
 dev_tucb_ptr->parms.data_log =
 (OUTPUT_DATA*)malloc(sizeof(OUTPUT_DATA));

 /* This particular test wants to use the crc_test structure */
 /* See {device}_err_detail.h file for details */
 dev_tucb_ptr->parms.data_log_length = (long)sizeof(
 dev_tucb_ptr->parms.data_log->crc_test);

 /* If specific input data is not used, then set to NULL */
 dev_tucb_ptr->parms.tu_data = (void *)NULL;
 dev_tucb_ptr->parms.tu_data_length = (long)0;

 /* Else If specific input data is used, then malloc some space */
 dev_tucb_ptr->parms.tu_data = (INPUT_DATA *)malloc(sizeof(INPUT_DATA));
 dev_tucb_ptr->parms.tu_data_length = (long)sizeof(
 dev_tucb_ptr->parms.tu_data);

 /* and set whatever input parameters required */
 dev_tucb_ptr->parms.tu_data->mfg_mode = 5;

 /* If not using a file for debug messages, set to NULL */
 /* Use the environment variable DIAG_DEBUG */
 if((char *)getenv("DA_DEBUG") == (char *)NULL)
 dev_tucb_ptr->parms.msg_file = (FILE *)NULL;

 /* Else open a file and set FILE * */
 else {
 fd = (FILE *)fopen("/tmp/debug.file", "w");
 dev_tucb_ptr->parms.msg_file = fd;
 }
 /*--------------------------------------*/
 /*- Load the Test Unit Library -*/
 /*--------------------------------------*/
 /* The path for the test unit library will be */
 /* in /usr/lpp/diagnostics/lib directory. */
 if((libpath = (char *)getenv("DIAGNOSTICS_TU_LIB")) != NULL)
 tu_entry = load("libtu_device", L_LIBPATH_EXEC, libpath);
 else
 tu_entry = load("/usr/lpp/diagnostics/lib/libtu_device",
 L_LIBPATH_EXEC, (char *)NULL);

 if (tm_input.dmode!=DMODE_ELA) {
 if(tm_input.system==SYSTEM_TRUE) {
 /* System Checkout*/
 if (tm_input.loopmode==LOOPMODE_NOTLM)
 stand_by_screen();
 else
 loop_stand_by_screen();

236 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 /* Execute system checkout sequence*/
 for(i=0;i<10; ++i)
 tu_test(sys_tu_seq[i]);
 }
 /* Diagnostic Routines */
 else if (tm_input.loopmode==LOOPMODE_NOTLM) {
 stand_by_screen();
 if (IS_CONSOLE) {
 /*Execute problem determination sequence */
 for (i=0; i<9; ++i)
 /*Problem Determination */
 tu_test(reg_tu_seq[i]);

 /* After running "regular" TUs,
 see if Advanced Diag is invoked */
 if(tm_input.advanced==ADVANCED_TRUE) {
 /* Ask user if a particular wrap plug
 is available */
 rc=diag_diplay(0x00,fdes,plug_37,DIAG_IO,
 ASL_DIAG_LIST_CANCEL_EXIT_SC,&menutype,q_plug_37);
 check_rc(rc);
 if (rc==DIAG_ASL_COMMIT)
 switch (DIAG_ITEM_SELECTED(menutype)) {
 case 1: /* Answer is YES */
 slot = tm_input.dnameloc;
 rc=diag_msg(0x902000,fdes,
 PLUG_37_PIN,
 PLUG_37_PIN_TITLE,slot);
 check_rc(rc);
 stand_by_screen();
 tu_test(10);
 rc=diag_msg(0x902001,fdes,
 UNPLUG_37_PIN,
 UNPLUG_37_PIN_TITLE,slot);
 check_rc(rc);
 break;
 case 2: /* Answer is NO */
 break;
 default:
 DA_SETRC_ERROR(DA_ERROR_OTHER);
 clean_up();
 break;
 } /* end switch */
 }/* end Advanced Tests*/
 stand_by_screen();
 /* execute remaining tests
 in problem determination, if any */
 tu_test(17);
 }
 else { /*Console false - execute System Checkout
 sequence */
 for (i=0; i<10; ++i)
 tu_test(sys_tu_seq[i]);
 }
 } /* end problem determination - diagnostic routines */
 else
 {/* Must be loop mode */
 switch (tm_input.loopmode) {
 case LOOPMODE_ENTERLM:
 loop_stand_by_screen();
 val = 0;
 putdavar(tm_input.dname, "vname",
 DIAG_INT, &val);
 /* Do what is necessary - enter loop mode */
 ela();
 break;
 case LOOPMODE_INLM:
 loop_stand_by_screen();
 getdavar(tm_input.dname, "vname",
 DIAG_INT, &val);
 /* Do what is necessary - IN loop mode */
 break;
 case LOOPMODE_EXITLM:
 getdavar(tm_input.dname, "vname",
 DIAG_INT, &val);
 /* Do what is necessary - EXIT loop mode.
 For example,put of menus to restore
 machine's original state. */
 break;

Understanding the Diagnostic Subsystem for AIX 237

 default:
 DA_SETRC_ERROR(DA_ERROR_OTHER);
 clean_up();
 break;
 } /* end switch - loop mode */
 } /* end if-else - loop mode */
 } /* end if ! ELA */

 /* Performing Error Log Analysis */
 if (((tm_input.dmode==DMODE_PD) || (tm_input.dmode==DMODE_ELA))
 && (tm_input.loopmode==LOOPMODE_NOTLM))
 ela();
 DA_SETRC_ERROR(DA_ERROR_NONE);
 DA_SETRC_TESTS(DA_TEST_FULL);
 clean_up();
} /*end main */

/*
* NAME : tu_test
*
* FUNCTION : Executes test units and reports FRUs to the controller
* if a failure is found.
*
* EXECUTION ENVIRONMENT :
*
* Called by the main program to execute test units.
* Call external routine exectu to actually execute the test units.
* Call external routine diag_asl_read to get user's input to screen
* e.g. Cancel or Exit.
* Call external routines insert_frub and addfrub when a failure
* is found.
* Call clean_up after a fru is reported to the controller.
*
* RETURNS : NONE
*
*/

void tu_test(int tunum)
{
 ulong major_rc; /*return code from test unit */
 dev_tucb_ptr->parms.tu = tunum;
 dev_tucb_ptr->parms.loop = 1; /* command loop */
 major_rc = tu_entry(dev_tucb_ptr, &tu_handle, &tu_rc);
 if (fd != (FILE *) NULL)
 fprintf(fd,"(DA)TU_OPEN - major_rc = %d\n", tu_rc.major_rc);

 if (IS_CONSOLE) {
 rc = diag_asl_read(ASL_DIAG_KEYS_ENTER_SC,FALSE,NULL);
 check_rc(rc);
 }

 if (major_rc !=0) {
 switch (tunum) {
 case 1:
 if (major_rc < 0x00) {
 rc = insert_frub(&tm_input,&frub[2]);
 if (rc != 0) {
 DA_SETRC_STATUS(DA_STATUS_BAD);
 DA_SETRC_ERROR(DA_ERROR_OTHER);
 clean_up();
 }
 strncpy (frub[2].dname,
 tm_input.dname,sizeof(frub[0].dname));
 addfrub(&frub[2]);
 }
 break;
 case 3:
 case 9:
 case 10:
 /*etc*/
 case 16:
 break;
 default :
 DA_SETRC_ERROR(DA_ERROR_OTHER);
 clean_up();
 break;

238 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 } /* end switch*/

 DA_SETRC_STATUS(DA_STATUS_BAD);
 DA_SETRC_MORE(DA_MORE_NOCONT);
 DA_SETRC_TESTS(DA_TEST_FULL);
 clean_up();
 } /* end - if*/
} /* end tu_test */

/* clean_up */

clean_up()
{
 if (fd>0)
 close (fd);
 /*--------------------------------------*/
 /*- UnLoad the Test Unit Library -*/
 /*--------------------------------------*/
 rc = unload((void *)tu_entry);

 /* Restore machine to original state, if you need to switch back
 microcode, do it here. */

 if (IS_CONSOLE) {
 diag_asl_quit(); /* close ASL */
 catclose(fdes);
 }

 term_dgodm(); /* close ODM */
 DA_EXIT();
} /* end clean_up*/

/*stand_by_screen*/

int
stand_by_screen()
{
 char *text_array[3];
 text_array[0] = diag_cat_gets(fdes, DESC, MSG1);
 text_array[1] = tm_input.dname;
 text_array[2] = tm_input.dnameloc;

 if (IS_CONSOLE) {
 switch (tm_input.advanced) {
 case ADVANCED_TRUE:
 rc = diag_display_menu(ADVANCED_TESTING_MENU,0x902002,
 text_array,0,0);
 break;
 case ADVANCED_FALSE:
 rc = diag_display_menu(CUSTOMER_TESTING_MENU,0x902003,
 text_array,0,0);
 break;
 default:
 break;/*not really necessary*/
 }
 check_rc(rc);
 }
} /*end stand_by_screen */

/* loop_stand_by_screen */

int
loop_stand_by_screen()
{
 char *text_array[3];
 text_array[0] = diag_cat_gets(fdes, DESC, MSG1);
 text_array[1] = tm_input.dname;
 text_array[2] = tm_input.dnameloc;

 if (IS_CONSOLE) {
 rc = diag_display_menu(LOOPMODE_TESTING_MENU,0x902004,
 text_array, tm_input.lcount,tm_input.lerrors);
 check_rc(rc);
 }

Understanding the Diagnostic Subsystem for AIX 239

} /*end loop_stand_by_screen */

/* check_rc */

int
check_rc(rc)
 int rc; /* user's input */
{
 if (rc == DIAG_ASL_CANCEL) {
 /*force microcode swap - if applies */
 tm_input.loopmode = LOOPMODE_EXITLM;
 DA_SETRC_USER(DA_USER_QUIT);
 DA_SETRC_TESTS(DA_TEST_FULL);
 clean_up();
 }
 if (rc == DIAG_ASL_EXIT) {
 DA_SETRC_USER(DA_USER_EXIT);
 DA_SETRC_TESTS(DA_TEST_FULL);
 clean_up();
 }
 return (rc);
} /* end check_rc */

/* ela */

int
ela()
{
 char crit[255];
 sprintf(crit, "-N %s %s", tm_input.dname,tm_input.date);
 rc = error_log_get (INIT,crit,&err_data);
 while (rc !=0) {
 if (rc == -1) {
 DA_SETRC_STATUS(DA_STATUS_GOOD);
 DA_SETRC_ERROR(DA_ERROR_OTHER);
 clean_up();
 }
 else if (rc>0) {
 if((err_data.err_id == 0x0000000)
 || (err_data.err_id == 0x000000)) {
 rc = insert_frub(&tm_input,&frub[1]);
 if (rc !=0) {
 DA_SETRC_STATUS(DA_STATUS_GOOD);
 DA_SETRC_ERROR(DA_ERROR_OTHER);
 DA_SETRC_TESTS(DA_TEST_FULL);
 clean_up();
 }
 strncpy (frub[1].dname,tm_input.dname,
 sizeof(frub[1].dname));
 addfrub (&frub[1]);
 DA_SETRC_STATUS(DA_STATUS_BAD);
 clean_up();
 } /* end if */
 rc = error_log_get (SUBSEQ,crit,&err_data);
 }
 rc = error_log_get (TERMI,crit,&err_data);
 if (rc == -1) {
 DA_SETRC_STATUS(DA_STATUS_GOOD);
 DA_SETRC_ERROR(DA_ERROR_OTHER);
 clean_up();
 }
 }
}

/* check_microcode */
int
check_microcode()
{
 char mpath[255];
 char *no_rcm_msg;
 char *no_diag_msg;

 /* Check if the functional microcode file xxxx.xxx is present.
 Check only if diagnostics is run off hard disk */
 envflag = ipl_mode(&diskette_based);
 if (diskette_based == DIAG_FALSE) {

240 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

 if (0 > (rc = findmcode("funcmcode",mpath,VERSIONING, NULL))) {
 sprintf(no_rcm_msg,catgets(fdes,NO_RCM,NO_RCM_TITLE,
 NULL));
 menugoal(no_rcm_msg);
 }
 }
 /* Check if all the diagnostic microcode files are present. */
 if (0 > (rc = findmcode("diagmcode", mpath, VERSIONING, NULL))) {
 sprintf(no_diag_msg,catgets(fdes,MENU_SET,NO_
 DIAGMICROCODE_MENU,NULL));
 menugoal(no_diag_msg);
 clean_up();
 }
}

Example diagnostic application message file

$
$ COMPONENT_NAME: DAXYZ
$
$ FUNCTIONS: dxyz.msg - message file for screen display when diagnostic
$ application dxyz is invoked.
$
$ Compilation: Use AIX command mkcatdefs to create header file containing
$ symbols for use in C source code.

$ GENERAL NOTES FOR TRANSLATION PURPOSES
$
$ Do not translate %c, %d, %s, %x, %07X, or \t in any messages. They
$ are used for word or number substitution and are noted in the
$ comments for the individual messages. The 1$, 2$, 3$, etc,
$ within the substitutions are used to denote the order of the
$ substitutions.
$
$ These comments concern the TITLE LINES at the top the diagnostic screen.
$ The title must be in all capital letters. The first line
$ of the title cannot be longer than 65 characters starting from
$ column 1. If the line is greater than 65, it may be continued on
$ the next line. Leave line spacing as shown: one blank line after
$ the last title line. For example:
$
$ *****
$ TESTING PORT 12 OF THE 16-PORT ASYNCHRONOUS ADAPTER IN PLANAR SLOT 2
$ IN ADVANCED MODE
$
$ Please stand by.
$ *****
$
$ These comments concern the user ACTIONS in all caps.
$ If translations require the creation of new lines, begin the
$ new lines in the column immediately following the row of periods.
$ For example:
$
$ *****
$ ACTION.........one line of English might require several when translated, so
$ begin the next line at the same point of the previous line.
$ ACTION.........the next action follows with no blank line preceding it.
$ *****
$
$ The location of a resource is in the form of xx-xx-xx where x is an
$ alpha-numeric character. The location is not translatable. It is
$ an alpha-numeric descriptor of where the resource can be found.
$
$ END OF GENERAL NOTES

$set DESC
$quote "
$
MSG1 "XYZ ADAPTER"
$
$ Leave line spacing as shown. See general notes on length of title line.

Understanding the Diagnostic Subsystem for AIX 241

$set SRNS
$ ---
$ Reason code set used by device type "XYZ"

R_XYZ_ADAPTER "An error was found on the adapter."
R_V35_CABLE "An error was found with the XYZ interface adapter cable."
R_ELA "Error log analysis indicates a hardware error."
R_DD "Adapter hardware has caused a software failure."

F_XYZ_DRAM "DRAM SIPs on the adapter card"
$ DRAM stands for Dynamic Random Access Memory. SIP stands for
$ Single In-line Package.
CABLEFRU "Cable Part Number xxxxxxxx"

$set Q_PLUG_37_PIN

Q_PLUG_37_PIN_TITLE "TESTING XYZ ADAPTER IN ADVANCED MODE\n\n\
The following test requires a 37 pin wrap plug, Part Number xxxxxxx.\n\n\
Do you have this wrap plug ?"
$
$ Check for appropriate part number in translating country.
$ Leave line spacing as shown. See general notes on length of title line.

Q_PLUG_37_PIN_YES "YES"
$ This option is shown when a YES answer is possible.

Q_PLUG_37_PIN_NO "NO"
$ This option is shown when a NO answer is possible.

Q_PLUG_37_PIN_ACTION "Move cursor to selection, then press Enter."
$ This message is shown when a multiple selection list is presented.

$set PLUG_37_PIN
$
PLUG_37_PIN_TITLE "TESTING XYZ ADAPTER IN ADVANCED MODE\n\n\
REMOVE.........the cable, if attached, from the adapter in\n\
 location %1$s.\n\
PLUG...........the wrap plug (Part Number xxxxxxx) into\n\
 the adapter.\n\n\
When finished, press Enter."
$
$ %1$s is the location of the adapter as described in the general notes.
$ See general notes on how to expand ACTION lines if necessary.
$ Check for appropriate part number in translating country.
$ Leave line spacing as shown. See general notes on length of title line.

$set UNPLUG_37_PIN
$
UNPLUG_37_PIN_TITLE "TESTING XYZ ADAPTER IN ADVANCED MODE\n\n\
UNPLUG.........the wrap plug from the adapter.\n\
PLUG...........the interface cable, if it was removed,\n\
 into the adapter.\n\n\
When finished, press Enter."
$
$ This line instructs the user to restore things to the original state
$ after testing is done.
$ See general notes on how to expand ACTION lines if necessary.
$ Leave line spacing as shown. See general notes on length of title line.

$set NO_RCM
$
NO_RCM_TITLE "902XXX \
XYZ OPERATIONAL MICROCODE IS MISSING\n\n\
The XYZ operational microcode is either\n\
missing or not accessible.\n\n\
This microcode is necessary in order to use the XYZ adapter card\n\

242 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

in normal system operations."
$
$ Leave line spacing as shown. See general notes on length of title.
$ Do not translate the number 902XXX at the beginning of the message.
$ Leave it exactly as shown.

Diagnostic task matrix
Use the topic to view the diagnostic task matrix.

Legend: Y = supported, N = not supported

Table 4. Diagnostic Tasks.

Platform Environment

Task Description ID# rs6ksmp rs6
k

rspc chrp Online CDROM NIM

(PCI/ISA) Conc Ser
v

Run Diagnostics 1 Y Y Y Y Y Y Y Y

Run Error Log Analysis 33 Y Y Y Y Y Y N N

Run Exercisers 59 N N N Y N Y N

Display or Change Diagnostic
Run Time Options

2 Y Y Y Y Y Y Y Y

7135 RAIDiant Array Service
Aids

38 Y Y Y Y Y Y Y Y

Shell Prompt 27 Y Y Y Y N Y N

Add Resource to Resource List 13 Y Y Y Y Y Y Y Y

Add or Delete Drawer
Configuration

23 Y Y N N Y Y N

Analyze Adapter Internal Log 55 N N Y Y Y Y N

Backup and Restore Media 19 Y Y Y Y Y Y Y Y

Certify Media 10 Y Y Y Y Y Y Y Y

Change Hardware Vital
Product Data

8 Y Y Y Y Y Y Y Y

Configure Dials & LPFkeys 22 Y Y Y Y Y Y Y Y

Configure ISA Adapter 26 N N Y Y Y Y Y Y

Configure Reboot Policy 47 N N N Y Y Y Y Y

Configure Remote
Maintenance Policy

48 N N N Y Y Y Y Y

Configure Ring Indicate
Power-On Policy

45 N N N Y Y Y Y Y

Configure Ring Indicate
Power-On

36 N N Y N Y Y Y Y

Configure Service Processor 37 N N Y N Y Y Y Y

Configure Surveillance Policy 46 N N N Y Y Y Y Y

Understanding the Diagnostic Subsystem for AIX 243

Table 4. Diagnostic Tasks. (continued)

Platform Environment

Task Description ID# rs6ksmp rs6
k

rspc chrp Online CDROM NIM

(PCI/ISA) Conc Ser
v

Create Customized
Configuration Diskette

24 Y Y Y Y Y Y N Y

Delete Resource from
Resource List

14 Y Y Y Y Y Y Y Y

Disk Maintenance 20 Y Y Y Y Y Y Y Y

Display Checkstop Analysis
Results

54 Y N N N Y Y N

Display Configuration and
Resource List

35 Y Y Y Y Y Y Y Y

Display Firmware Device Node
Information

42 N N N Y Y Y Y Y

Display Hardware Error Report 5 Y Y Y Y Y Y N Y

Display Hardware Vital
Product Data

7 Y Y Y Y Y Y Y Y

Display Machine Check Error
Log

41 N N Y N N N Y

Display Microcode Level 60 Y Y Y Y Y Y Y Y

Display Multipath I/O Device
Configuration

63 N N Y Y Y Y Y Y

Display Previous Diagnostic
Results

4 Y Y Y Y Y Y N

Display Resource Attributes 7 Y Y Y Y Y Y Y Y

Display Service Hints 3 Y Y Y Y Y Y Y Y

Display Software Product Data 6 Y Y Y Y Y Y N

Display System Environmental
Sensors

51 N N N Y Y Y Y Y

Display Test Patterns 11 Y Y Y Y Y Y Y Y

Display USB Devices b Y Y Y Y

Display or Change BUMP
Configuration

29 Y N N N Y Y Y Y

Display or Change Bootlist 17,
43

Y Y Y Y Y Y Y Y

Display or Change Electronic
Mode Switch

30 Y N N N Y Y Y

Display or Change
Multiprocessor Configuration

28 Y N N N Y Y Y

Download Microcode 16 Y Y Y Y Y Y Y

244 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Table 4. Diagnostic Tasks. (continued)

Platform Environment

Task Description ID# rs6ksmp rs6
k

rspc chrp Online CDROM NIM

(PCI/ISA) Conc Ser
v

Escon Bit Error Rate Service
Aid

n/a Y Y N N Y Y N

Fibre Channel RAID Service
Aids

58 N N Y Y Y Y Y

Flash SK-NET FDDI Firmware 56 N N Y Y Y Y Y

Format Media 9 Y Y Y Y Y Y Y

Generic Microcode Download 32 Y Y Y Y Y Y Y

Identify and/or Remove
Resource

61 Y Y Y Y Y Y Y

Local Area Network Analyzer 12 Y Y Y Y Y Y Y

Log Repair Action 62 Y Y Y Y Y Y N

PCI RAID Physical Disk
Identify

53 N N Y Y Y Y Y

Periodic Diagnostics 18 Y Y Y Y Y Y N

Process Supplemental Media 31 Y Y Y Y N N Y

SCSD Tape Drive Service Aid 40 Y Y Y Y Y Y Y

SCSI Bus Analyzer 15 Y Y Y Y Y Y Y

SCSI Device Identification and
Removal

39 Y Y Y Y Y Y Y

Save or Restore Hardware
Management Policies

49 N N N Y Y Y N

Save or Restore Service
Processor Configuration

57 N N Y N Y Y N

Service Aids for use with
Ethernet

34 Y Y N N Y Y Y

Spare Sector Availability 44 Y Y Y Y Y Y Y

System Fault Indicator 65 Y Y Y Y

System Modify Indidicator 64 Y Y Y Y

Update Disk Based
Diagnostics

25 Y Y Y Y Y Y N

Update Syskonnect PCI FDDI
Adapter (48110040) Flash

56 Y Y Y Y

Update System Flash 52 N N Y N Y Y N

Update System or Service
Processor Flash

50 N N N Y Y Y N

Microcode Tasks 72 N N N Y Y Y Y

Understanding the Diagnostic Subsystem for AIX 245

246 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2010, 2014 247

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

248 Notices

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices 249

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml

250 AIX Version 7.1: Understanding the Diagnostic Subsystem for AIX

Index

Special Characters
/etc/lpp/diagnostics/data 10

Numerics
64-bit kernel 81
64-bit porting 60
7135 RAIDiant Array 45

A
activate the physical reset signal 94
adapter

SysKonnect SK-NET FDDI 38
add drawer configuration 23
add fru 119
add objects to object class 109
add resource 23
add_more_frus 122
addfrub 117, 122
addfrub_src 119
additional resources menu 203
aioo_struct_t 96
alter disk sector 31
alter vital product data 24
analysis

diagnostic controller 10
error log 208

analyze adapter internal log 24
APARS 44
application test units 45
application, execute 156
associate a FRU with the device 117
async terminal 7
attribute

resource_alias 13
automatic error log analysis 210

B
backup and restore media 24
bell 155
bootlist

change or display 32
BUMP configuration

display or change 32

C
C language data model 60
C source file for TU interrupt handler 231
call in/call out 29
CDiagAtt 180
CDiagAtt object 144
CEREADME 35

certify
diskette 24
hardfile 24

certify media 24
change bootlist 32
change BUMP configuration 32
change diagnostic run time options 33
change electronic mode switch 33
change hardware vital product data 24
change multiprocessor configuration 34
change NVRAM 28
change NVRAM settings 29
change object class 109
checkstop analysis results 31
CHPR, property value 139
CHRP

configure reboot policy 25, 26
configure remote maintenance policy 26
configure ring indicate power on 28
configure surveillance policy 30
display firmware device node information 32
save or restore hardware management policies 41
update system or service processor flash 44

clean up the system configuration database 205
clear diagnostic application input 166
clear screen 131
clients

dataless 8
diskless 8

close an object class 110
close configuration services 69
close diagnostic event log 144
close log file 145
clrdainput 166
code examples 222
commands

diag 5
diagrpt 6
lscfg 5
shutdown 7

concurrent mode diagnostics 6
configuration

modem 29
configuration diskette 30
configuration services

close 69
initialize 68
open 68
pdiag_cs_free_attr 70

configuration services device attributes 55
configuration, device 12
configure

dials 24
ISA adapters 24
LPFKeys 24

configure ISA adapter 24
configure reboot policy 25, 26

 251

configure remote maintenance policy 26
configure service processor 28
configure surveillance policy

CHRP 30
configure_device 114
console configuration diskette 7
copy

disk to disk 30
copy_text 153, 158
CPU model number, return 142
create a popup window 124
create customized configuration diskette 30
create pop-up window 132
creating a task 20
CuDV object class 9
customize device 9
Customized Device object class 122
customized diagnostic attribute 180
cyclic redundancy checks of Loadable ROS 4

D
DA 12
DA_CHECKRC_XXXXXX 153
DA_EXIT 153
DA_SETRC_XXXXXX 153
dataless clients 8
DAVars 15
deactivate the physical reset signal 94
debugging hints 217
define terminal menu 199
defined system resource 9
definition of exectu 56
delete drawer configuration 23
delete objects 113
delete resource from resource list 30
detach user space DMA buffer 88
determine file presence 165
determining the test level 12
device configuration 12, 64
Device Configuration

MPIO 34
device configuration services 63
device driver

diagnostic 13
device error log analysis 170
device flag 139
device, current configuration 116
device's descriptive text, return 142
diag command 5
diag_add_obj 109
diag_asl_beep 155
diag_asl_clear_screen 131
diag_asl_execute 156
diag_asl_init 131
diag_asl_msg 132
diag_asl_quit 133
diag_asl_read 133
diag_cat_gets 123
diag_catopen 123
diag_change_obj 109
diag_check_optical_media 138
diag_checkstop_eed 156
diag_checkstop_event 157

diag_close_class 110
diag_display 134
diag_display_menu 135
diag_emsg 137
diag_exec_source 158
diag_execute 159
diag_free_list 110
diag_general_eed 159
diag_get_cluster_ms () 160
diag_get_cluster_mt () 160
diag_get_device_flag 139
diag_get_fru_serial 160
diag_get_list 111
diag_get_property 139
diag_get_sid_lun 140
diag_load_optical_media 141
diag_lock 112
diag_msg 137
diag_msg_nw 137
diag_open_class 112
diag_popup 124
diag_progress 124
diag_read 125
diag_resource_screen 125
diag_rm_obj 113
diag_struc_t 97
diag_task_screen 128
diag_unload_optical_media 141
diag_unlock 113
diagela 210
diagex_cfg_state 115
diagex_initial_state 116
diagnose state 115
diagnostic application

completion status 16
control flow 17
INFORMATIVE Screen Type 192
POPUP Screen Type 193
SINGLE SELECTION Screen Type 192
TRANSITIONAL Screen Type 193

Diagnostic Application
clear input 166
exit status 153
get input 166

diagnostic application massage file 241
diagnostic application menus 125
diagnostic application variables 15
Diagnostic Application Variables 167
diagnostic applications 12
Diagnostic Applications

display menus 135
Diagnostic Applications (DAs)

code checklist 19
diagnostic catalog 123
diagnostic commands

diag 5
diagrpt 6

diagnostic configuration diskette 221
diagnostic controller

analysis
/etc/lpp/diagnostics/data 10

return status 11
starting 10

diagnostic controller generated SRNs 18

252

diagnostic database
PDiagAtt 143

diagnostic debug diskette 222
diagnostic event log 6, 147–149, 151
Diagnostic Event Log Data Structures

dl_fru_src 102
dl_srn_src 104

diagnostic event log, close 144
diagnostic kernel extension 63
Diagnostic Library

copy_text 153, 158
diag_lock 112
diag_popup 124
diag_read 125
diag_resource_screen 125
diag_task_screen 128
diag_unlock 113
diagex_cfg_state 115
dl_menugoal 104
dl_partition 103
dl_srn 104
dlog_getTestMode 144
dlog_numMatches 101
dlog_query 101
dlog_query_cleanup 102
getELAdates 167
query_fru 106
query_log 106
query_output 107
query_results 108
schedule_ela 169

diagnostic library functions 12
diagnostic log entry

memory 148
diagnostic log entry, find 145
diagnostic log identifier

entry type 150
diagnostic menu examples 198
diagnostic mode selection menu 201
diagnostic object classes 170
diagnostic operating instructions menu 198
diagnostic package utility service aid 30
diagnostic patch diskette 221
diagnostic programs

writing 16
diagnostic progress indicators 197
diagnostic results 34
diagnostic run time options 33
diagnostic subroutines

pdiag_read_slot_reset 14
pdiag_set_eeh_option 14
pdiag_set_slot_reset 14

diagnostic supplemental diskette contents 213
diagnostic supplemental media 213
diagnostic task matrix 243
diagnostic task menus

display 128
diagnostic tasks

DIALOG SELECTION Screen Type 196
INFORMATIVE Screen Type 194
MULTIPLE SELECTION Screen Type 195
POPUP Screen Type 197
SINGLE SELECTION Screen Type 195
TRANSITIONAL Screen Type 196

diagnostic trace 161
diagnostic user interface 190
diagnostics

concurrent mode 6
maintenance mode 6
NIM 8
online 6
online concurrent 205
online service 206
service mode 6
standalone 7

diagnostics dpplication interface
pdiag_read_slot_reset 14
pdiag_set_eeh_option 14
pdiag_set_slot_reset 14

Diagnostics Library
add_more_frus 122
addfrub 117
addfrub_src 119
clrdainput 166
configure_device 114
DA_CHECKRC_XXXXXX 153
DA_EXIT 153
DA_SETRC_XXXXXX 153
diag_add_obj 109
diag_asl_beep 155
diag_asl_clear_screen 131
diag_asl_execute 156
diag_asl_init 131
diag_asl_msg 132
diag_asl_quit 133
diag_asl_read 133
diag_cat_gets 123
diag_catopen 123
diag_change_obj 109
diag_check_optical_media 138
diag_checkstop_eed 156
diag_checkstop_event 157
diag_close_class 110
diag_display 134
diag_display_menu 135
diag_emsg 137
diag_exec_source 158
diag_execute 159
diag_free_list 110
diag_general_eed 159
diag_get_cluster_ms () 160
diag_get_cluster_mt () 160
diag_get_device_flag 139
diag_get_fru_serial 161
diag_get_list 111
diag_get_property 139
diag_get_sid_lun 140
diag_load_optical_media 141
diag_msg 137
diag_msg_nw 137
diag_open_class 112
diag_progress 124
diag_rm_obj 113
diag_unload_optical_media 141
diagex_initial_state 116
dlog_close 144
dlog_find_first 145
dlog_find_next 146

 253

Diagnostics Library (continued)
dlog_find_sequence 146
dlog_formatElogResults 147
dlog_freeEntry 148
dlog_open 148
dlog_read 149
dlog_same_elogId 150
dlog_setEntryType 150
dlog_write 151
dt 161
error_log_get 162
file_present 165
get_cpu_model 142
get_DApp 165
get_dev_desc 142
get_device_status 116
get_diag_att 143
getdainput 166
getdavar 166
has_diag_authority 168
init_dgodm 114
initial_state 114
insert_frub 121
int diag_cluster_support () 157
ipl_mode 168
menugoal 169
putdavar 166
save_davars_ela 152
save_davars_mgoal_ela 152
term_dgodm 114

diagnostics strategy 3
diagnostics, authority 168
diagrpt command 6
diagstart3S script file example 216
diagstartS script file example 215
DIALOG SELECTION Screen Type 196
dials 24
directory structure 212
disable a DMA operation 90
disable Enhanced Error Handling 93
disable surveillance 29
disk

alter sector 31
display sector 31

disk maintenance (SCSI disks) 30
disk to disk copy 30
diskette

certify 24
customized configuration 30
diagnostic configuration 221
diagnostic debug 222
diagnostic patch 221

diskette contents
diagnostic supplemental 213

diskless clients 8
display checkstop analysis results 31
display configuration and resource list 31
display diagnostic application menus 125
display diagnostic conclusions 6
display diagnostic task menus 128
display disk sector 31
display error message 137
display firmware device node information (CHRP) 32
display hardware error report 32

display hardware vital product data 32
display machine check error log (standalone diagnostics) 32
display menus 135
display microcode level 32
display NVRAM settings 29
display or change bootlist 32
display or change BUMP configuration 32
display or change diagnostic run time options 33
display or change electronic mode switch 33
display or change multiprocessor configuration 34
display previous diagnostic results 34
display progress messages 124
display requirements for test units 63
display resource attributes 34
display service hints 35
display simple menus 137
display software product data 35
display system environmental sensors (CHRP) 35
display test patterns 37
display vital product data 24
disruptive test 4
dl_fru_src 102
dl_menugoal 104
dl_partition 103
dl_srn 104
dl_srn_src 104
dlog_close 144
dlog_find_first 145
dlog_find_next 146
dlog_find_sequence 146
dlog_formatElogResults 147
dlog_freeEntry 148
dlog_getTestMode 144
dlog_numMatches 101
dlog_open 148
dlog_query 101
dlog_query_cleanup 102
dlog_read 149
dlog_same_elogId 150
dlog_setEntryType 150
dlog_write 151
DMA

disable operation 90
enable operation 90

dma_struct 96
DMAbuffer

unpin and detach user space 88
download latest microcode 37
download microcode 37
drawer configuration 23
dt 161

E
EEH 14
electronic mode switch

display or change 33
enable a DMA operation 90
enable Enhanced Error Handling 93
enable surveillance 29
endstamp 167
enhanced error handling 14, 63
Enhanced Error Handling

disable 93

254

Enhanced Error Handling (continued)
enable 93

Enhanced Error Handling (EEH) Option
PCI bus 14

entry type
diagnostic log identifier 150

error log
machine check 32

error log analysis
automatic 210

error log analysis foa a device 170
error log entries 162
error log identifier 150
error log information

DAVars object 152
SRN 152

error message, display 137
error rate

ESCON bit 37
error recovery 14
error_log_get 162
error-log analysis 4
ESCON bit error rate 37
ethernet 43
example

additional resources menu 203
C source file for TU interrupt handler 231
code 222
define terminal menu 199
diagnostic application 233
diagnostic application massage file 241
diagnostic menu 198
diagnostic mode selection menu 201
diagnostic operating instructions menu 198
function selection menu 199
missing resource menu 200
missing resource selection menu 199
new resource menu 200
no trouble found menu 202
problem report menu 203
resource selection menu 201
resource selection menu – display common tasks 201
run time options menu 204
task selection list menu 203
task selection list menu - display supported resources
204
test method menu 202
TU close device interface 226
TU error detail 222
TU exectu function 224
TU input parameters 223
TU interrupt handler makefile 232
TU local header file 223
TU makefiles 230
TU open device interface 226

exectu 50, 56
execute an application 156, 159
exit DA 155
exit status 153

F
fibre channel RAID 38
field replaceable unit 117

field replaceable units 15
file_present 165
find diagnostic log entry 145, 146
find first diagnostics log entry 146
firmware device node information (CHRP) 32
first diagnostics log entry 146
flag bit mask

interrupt 53
Flash SK-NET FDDI Firmware 38
fork an application 156, 159
format media 38
format text 153, 158
free kernel extension resources 72
free memory 110, 148
FRU 117
FRU bucket 184
FRU Bucket Functions

add_more_frus 122
addfrub_src 119

FRU, update 121
FRUs 15
function selection menu 199

G
generate a list of supported resources 9
genucode 39
get diagnostic application input 166
get persistent variables 166
get_cpu_model 142
get_DApp 165
get_dev_desc 142
get_device_status 116
get_diag_att 143
getdainput 166
getdavar 15, 166
getELAdates 167

H
hardfile

certify 24
hardware error report 32
hardware management policies 41
hardware problem determination 5
hardware vital product data 24, 32
hardware VPD 24
has_diag_authority 168
high-function terminals 8
hot plug task 39

I
I/O Devices

PCI configuration space 58
identify

ISA adapters 24
illegal trap 220
INFORMATIVE Screen Type 192, 194
init_dgodm 114
initial_state 114
initialize object data manager 114
initialize the configuration services 68

 255

initialize user interface 131
input invalid 155
input structure

TU_TYPE 50
insert_frub 121
int diag_cluster_support () 157
internal log 24
interrupt flag bit mask 53
interrupt handler call interface 51
interrupt handlers 55
interrupt handling

test units 52
invalid input 155
IPL mode, state 168
ipl_mode 168
ISA adapters 24
isolation strategy 4
issue a run-time abstraction service 92

K
kick_io_t 98

L
libc.a.min 16
library functions 12
library restrictions 16
Load ISO Image to USB Mass Storage Device 39
loading PDIAGEX 64
local area network analyzer 40
log repair action 40
logical unit umber (LUN) 140
long version, diagnostic event log 6
loop testing 211
LPFKeys 24
lscfg 5
LUN 140

M
machine check error log 32
maintenance

SCSI disks 30
maintenance mode diagnostics 6
makefile 60
media

optical
check 138
load 141
unload 141

menu
Resource Selection 9

menu example
additional resources selection 203
define terminal 199
diagnostic 198
diagnostic mode selection 201
diagnostic operating instructions 198
function selection 199
missing resource 200
missing resource selection 199
new resource 200

menu example (continued)
no trouble found selection 202
problem report selection 203
resource selection selection 201
resource selection selection – display common tasks
201
run time options 204
task selection list 203
task selection list - display supported resources 204
test method selection 202

menu goal object 184
menu, simple 137
menugoal 169
message file 123
message handling 56
microcode 37
microcode download for test units 63
microcode level 32
missing options resolution 205
missing resource menu 200
missing resource selection menu 199
modem configuration 29
modem configurations 26
monitor the system for hang conditions 30
MPIO Device Configuration 34
MultiPath I/O 34
multiple resources analysis 13
MULTIPLE SELECTION Screen Type 195
multiprocessor configuration 34

N
new resource menu 200
NIM diagnostics 8
no trouble found menu 202
nondistruptive test 4

O
object class

CuDv 9
Customized Device 122
DAVars 15
Diagnostic Application Variables 167
PDiagAtt 165
PDiagRes 9
PDiagTask 20
TMInput 13, 117, 166, 169

object class, open 112
object class, retrieve 111
object data manager

initialize 114
stop 114

objects class, delete 113
obtain device flag 139
ODM lock 112
ODM stanzas example 214
on board self test 4
online concurrent diagnostics 205
online diagnostics

concurrent mode 6
maintenance mode 6
service mode 6

256

online service diagnostics 206
online service mode 23
open an object class 112
open diagnostic catalog message file 123
open the configuration services 68
option checkout 4
output structure

TU_RETURN_TYPE 51

P
PCI bus and EEH 14
PCI configuration register 73
PCI configuration space 58
PCI RAID adapter

internal log 24
PCI RAID physical disk identify 40
pdiag_close 72
pdiag_cs_* 55
pdiag_cs_close 69
pdiag_cs_free_attr 70
pdiag_cs_get_attr 69
pdiag_cs_open 68
pdiag_dd_big_dma_complete 75
pdiag_dd_big_dma_setup 76
pdiag_dd_dma_complete 87, 88
pdiag_dd_dma_enable 90
pdiag_dd_interrupt_notify 81
pdiag_dd_read 84
pdiag_dd_read_64 84
pdiag_dd_watch_for_interrupt 80
pdiag_dd_write 81
pdiag_dd_write_64 81
pdiag_diagnose_multifunc_state 66
pdiag_diagnose_state 65
pdiag_open 71
pdiag_pcicfg_read 73
pdiag_pcicfg_write 74
pdiag_read_slot_reset 92
pdiag_restore_multifunc_state 67
pdiag_restore_state 67
pdiag_set_slot_reset 94
pdiag_shared_slot 91
PDiagAtt 143, 175
PDiagAtt object class 165
PDIAGEX

loading 64
pdiagex_opflags_t 95
PDiagRes 170
PDiagRes object class 9
PDiagTask 177
perform write operations on a resource 81
performing a specific function on a resource 20
performing a task 21
periodic diagnostics 209
Periodic Diagnostics 40
persistent variables 15, 166
pin and cross-memory attach the user buffer 77
pop-up window, create 132
POPUP Screen Type 193, 197
popup window

create 124
portability 47
portable diagnostic kernel extension 75

predefined diagnostic attribute device 175
predefined diagnostic resource object class 170
predefined diagnostic task 177
Predefined Diagnostic Task object class 20
prepare resource for testing 71
problem report 9
problem report menu 203
process supplemental media 41
progress messages, display

Diagnostic Applications 124
Diagnostic Tasks 124

prompt
shell 23

property value 139
put device in original state 116
put persistent variables 166
putdavar 15, 166

Q
query the state of the physical reset signal 92
query_fru 106
query_log 106
query_output 107
query_results 108

R
read keyboard buffer 125
read PCI configuration register 73
read user input 133
reads user's response 134
reason codes

guidelines 18
reboot policy

change 25, 26
display 25, 26

recover
system crash 25, 26

release ODM lock 113
remote maintenance policy 26
remote power on 28
remove

dials 24
LPFKeys 24

required changes
SLIH 61

reset a PCI slot 94
resource attributes 34
resource list

add 23
delete resource 30

resource not found 205
resource selection menu 201
Resource Selection menu 9
resource selection menu – display common tasks 201
resource_alias attribute 13
restore a device 114
restore hardware management policies 41
restore resource and children 67
restore service processor configuration (RSPC) 42
retrieve objects 111
return CPU model number 142

 257

return device's descriptive text 142
return end endstamp 167
return error log entries 162
return resource attribute information 69
return SCSI ID 140
return start endstamp 167
ring bell 155
ring indicate power on

CHRP 28
RSPC 28

RSPC
configure ring indicate power on 28
configure service processor 28
save or restore service processor configuration 42
update system flash 44

RTAS 92
run diagnostics 41, 168
run error log analysis 41
run time options menu 204
running problem determination 209
running trace 218

S
save or restore hardware management policies (CHRP) 41
save or restore service processor configuration (RSPC) 42
save_davars_ela 152
save_davars_mgoal_ela 152
schedule ELA for a device 169
schedule_ela 169
screen type

DIALOG SELECTION 196
INFORMATIVE 192, 194
MULTIPLE SELECTION 195
POPUP 193, 197
SINGLE SELECTION 192, 195
TRANSITIONAL 193, 196

screen, clear 131
SCSD tape drive 42
SCSI address 140
SCSI bus analyzer 42
SCSI disks

maintenance 30
second level interrupt handler

conversion tips 61
second-level interrupt handlers 64
service aid

7135 RAIDiant Array 45
analyze adapter internal log 24
backup and restore media 24
call in/call out 29
change hardeware vital product data 24
configure dials and LPFKeys 24
configure ISA adapter 24
configure reboot policy (CHRP) 25, 26
configure remote maintenance policy (CHRP) 26
configure ring indicate power on 28
configure ring indicate power on (RSPC) 28
configure service processor (RSPC) 28
configure surveillance policy (CHRP) 30
delete resource from resource list 30
diagnostic package utility 30
disk to disk copy 30
display checkstop analysis results 31

service aid (continued)
display configuration and resource list 31
display firmware device node information (CHRP) 32
display hardware error report 32
display hardware vital product data 32
display microcode level 32
display or change bootlist 32
display or change BUMP configuration 32
display or change diagnostic run time options 33
display or change electronic mode switch 33
display or change multiprocessor configuration 34
display previous diagnostic results 34
display resource attributes 34
display software product data 35
display system environmental sensors (CHRP) 35
display test patterns 37
display/alter Sector 31
download latest microcode 37
download microcode 37
ESCON bit error rate 37
ethernet 43
Fibre Channel RAID 38
flash SK-NET FDDI firmware 38
format media 38
generic microcode download 39
hardware vital product data 32
hot plug task 39
machine check error log 32
modem configuration 29
Periodic Diagnostics 40
save or restore hardware management policies (CHRP)
41
SCSD tape drive 42
SCSI bus analyzer 42
shell prompt 23
spare sector availability 44
update disk based diagnostics 44
update system or service processor flash (CHRP) 44

service aids
display service hints 35

service hints 35
service mode diagnostics 6
service processor

configure (RSPC) 28
configure ring indicate power on 28
modem configuration 29
surveillance 29

service processor configuration (RSPC) 42
service processor flash 44
service request numbers 17
sevice aid

surveillance setup 29
shell prompt 23
short version, diagnostic event log 6
signal handling 56
simple menus, display. 137
simultaneous execution of test units 49
SINGLE SELECTION Screen Type 192, 195
site specific call in/out setup 29
SLIH 64
SLIH conversion tips 61
SMIT 23
software filesets 212
software packages 212

258

software product data 35
source numbers 18
spare sector availability 44
specifying a text conclusion 15
SRN

reason codes 18
staging diagnostics

full test 3
shared 3
subtest 3

standalone diagnostics
async terminal 7
NIM clients 8
unsupported tasks 7

standalone diagnostics (POWER® processor-based only) 207
standlone diagnostics

console configuration diskette 7
starting diagnostic controller 10
starting trace 218
state of IPL mode 168
status 16
stop the operating system 7
stops object data manager 114
strategy, diagnostics 3
subroutine

pdiag_close 72
pdiag_cs_close 69
pdiag_cs_free_attr 70
pdiag_cs_get_attr 69
pdiag_cs_open 68
pdiag_diagnose_state 65
pdiag_open 71
pdiag_restore_state 67

subroutines
getdavar 15
putdavar 15

supported tasks 21
surveillance policy 30
surveillance setup 29
SysKonnect SK-NET FDDI adapter 38
system checkout 4
system crash

recover 25, 26
system environmental sensors 35
system flash 44
system resource, defined 9

T
task lists 21
task matrix 243
task selection list menu 203
task selection list menu - display supported resources 204
tasks 20
term_dgodm 114
terminates user interface 133
test level 12
test method menu 202
test mode input 181
Test Mode Input 13
test patterns 37
test scenarios 20
test unit

64-bit porting 60

test unit (continued)
programming interface 55

test unit call interface 50
test unit code

general structure 48
test unit code device open and close 46
test unit control block 50
test unit definition 45
test unit numbering 46
test units

display requirements 63
in-service 48
interrupt handling 52
microcode download 63
out-of-service 48
simultaneous execution 49

testing parents 4
testing siblings 4
text goal 169
third party vendors

source numbers 18
TMInput 117
TMInput object class 166
trace

running 218
starting 218

trace information 161
TRANSITIONAL Screen Type 193, 196
TU close device interfice 226
TU error detail 222
TU exectu function 224
TU input parameters 223
TU interrupt handler makefile 232
TU local header file 223
TU makefiles 230
TU open device interfice 226
TU specific inputs 223
TU specific outputs 222
TU_RETURN_TYPE output structure 51
TU_TYPE input structure 50
TUUB 50

U
unpin the user space DMA buffer 88
unsupported tasks 7
update disk based diagnostics 44
update FRU Bucket 121
update system flash (RSPC) 44
update system or service processor flash (CHRP) 44
user interface

diagnostic 190
user interface, initialize 131
uspchrp -b 26
uspchrp -m 28
uspchrp -r 28

V
vital product data 32
VPD 24

 259

W
write PCI configuration register 74
writing diagnostic programs 16

260

IBM®

	Contents
	About this document
	Highlighting
	Case sensitivity in AIX
	ISO 9000

	Understanding the Diagnostic Subsystem for AIX
	Diagnostic subsystem for AIX concepts
	Structure of diagnostics
	Strategy for diagnostics
	Staging the impact of diagnostics
	Option Checkout
	System checkout

	Diagnostic commands
	diag command
	diagrpt command

	Operating Environments
	Online Diagnostics
	Concurrent mode
	Service mode
	Maintenance Mode

	Standalone diagnostics (POWER® processor-based systems only)
	Tasks not supported in standalone diagnostics
	Console configuration diskette
	Different async terminal for console
	High function terminals 60/77-Mhz refresh rate

	NIM Diagnostics

	Diagnostic components
	Diagnostic controller
	Control flow of the diagnostic controller

	Diagnostic applications
	Device configuration
	Determining the level of tests to execute
	Drivers used for diagnostic purposes
	Acquiring a greater share of the resource
	Error log analysis
	resource_alias attribute

	Enhanced Error Handling (EEH) option
	Known problems

	Persistent variables
	Field Replaceable Units (FRUs)
	Specifying a text conclusion
	Library restrictions for diagnostic programs
	Guidelines for writing diagnostic programs using C++
	Completion status for diagnostic applications
	Control flow of a diagnostic application
	SRN architecture
	Diagnostic controller generated SRNs
	Source numbers
	Diagnostic application code checklist
	Other test scenarios

	Tasks and service aids
	Creating a task
	Performing a task
	Task list
	Add or delete drawer configuration
	Add resource to resource list
	Shell prompt
	Analyze adapter internal log (Device specific)
	Backup and restore media
	Certify media
	Change hardware vital product data
	Configure dials and LPF keys
	Configure ISA adapter
	Configure reboot policy (CHRP) on POWER4 and earlier RS/6000 systems
	Configure reboot Policy (CHRP) on POWER5 systems or later
	Configure remote maintenance policy (CHRP)
	Configure ring indicate power on (RSPC)
	Configure Ring Indicate Power On Policy (CHRP)
	Configure service processor (RSPC)
	Surveillance setup
	Modem configuration
	Call in/out setup
	Site specific call in/out setup
	Configure surveillance policy (CHRP)
	Create customized configuration diskette
	Delete resource from resource list
	Disk maintenance (SCSI disks)
	Disk to disk copy
	Display or alter sector

	Display checkstop analysis results
	Display configuration and resource list
	Display firmware device node information (CHRP)
	Display hardware error report
	Display hardware vital product data
	Display machine check error log
	Display microcode level
	Display or change bootlist
	Display or change BUMP configuration
	Display or change diagnostic run time options
	Display or change electronic mode switch
	Display or change multiprocessor configuration (multiprocessor service)
	Display multipath I/O (MPIO) device configuration
	Display previous diagnostic results
	Display resource attributes
	Display service hints
	Display software product data
	Display system environmental sensors (CHRP)
	Display test patterns
	Download microcode
	Download latest available microcode
	ESCON bit error rate
	Fibre channel RAID (device specific)
	Flash SK-NET FDDI firmware
	Format media
	Generic microcode download
	Hot plug task
	Load ISO image to USB mass storage device
	Local area network analyzer
	Log repair action
	Microcode tasks
	PCI RAID physical disk identify
	Periodic diagnostics
	Process supplemental media
	Run diagnostics
	Run error log analysis
	Save or restore hardware management policies (CHRP)
	Save or restore service processor configuration (RSPC)
	SCSD tape drive service aid
	SCSI bus analyzer
	Service aids for use with ethernet
	Spare sector availability
	Update disk based diagnostics
	Update system flash (RSPC)
	Update system or service processor flash (CHRP)
	7135 RAIDiant array service aid

	Application test units
	Test unit definition
	Hardware functional coverage
	Test unit numbering
	Test unit code device open and close
	Test Unit Conventions

	Portability
	In-service versus out-of-service test units
	Recommended general structure of test unit code
	Designing for multitasking environments
	Persistent data and the TU_INFO_HANDLE
	Test unit call interface
	Definition of the TU_TYPE input structure
	Definition of the TU_RETURN_TYPE output structure
	Return codes
	Interrupt handler call interface
	Interrupt handling in test units
	Using the interrupt flag bit mask
	Programming interfaces for TUs and interrupt handlers
	Configuration services device attributes
	Message handling
	Signal handling
	Definition of exectu()
	PCI configuration space for I/O devices

	Test unit 64-bit porting guideline
	C language data model
	Makefile
	Makefile Source
	SLIH conversion tips
	SLIH conversion required changes
	Microcode download or display requirements for test units
	Enhanced error handling option

	Diagnostic kernel extension
	Overview
	Device configuration
	Loading PDIAGEX
	Second level interrupt handlers
	Programming interfaces for libpdiag.a
	pdiag_diagnose_state
	pdiag_diagnose_multifunc_state
	pdiag_restore_state
	pdiag_restore_multifunc_state
	pdiag_cs_open
	pdiag_cs_close
	pdiag_cs_get_attr
	pdiag_cs_free_attr
	pdiag_open
	pdiag_close
	pdiag_pcicfg_read
	pdiag_pcicfg_write
	Programming Interfaces for PDIAGEX
	pdiag_dd_big_dma_complete
	pdiag_dd_big_dma_setup
	pdiag_dd_kick_hdw_and_watch_for_interrupts_safe_mode

	pdiag_dd_watch_for_interrupt
	pdiag_dd_interrupt_notify
	pdiag_dd_write, pdiag_dd_write_64
	pdiag_dd_read, pdiag_dd_read_64
	pdiag_dd_dma_setup
	pdiag_dd_dma_complete
	pdiag_dd_dma_enable
	pdiag_shared_slot
	pdiag_read_slot_reset
	pdiag_set_eeh_option
	pdiag_set_slot_reset
	Data dictionary
	PDIAGEX data structures
	pdiagex_dds_t
	pdiagex_opflags_t
	dma_struct
	aioo_struct_t
	diag_struc_t
	kick_io_t
	Kernel services
	Programmed I/O services

	Diagnostic library
	dlog_numMatches subroutine
	dlog_query subroutine
	dlog_query_cleanup subroutine
	dl_fru_src structure
	dl_partition structure
	dl_menugoal structure
	dl_srn structure
	dl_srn_src structure
	query_fru structure
	query_log structure
	query_output structure
	query_results structure
	diag_add_obj
	diag_change_obj
	diag_close_class
	diag_free_list
	diag_get_list
	diag_lock
	diag_open_class
	diag_rm_obj
	diag_unlock
	init_dgodm, term_dgodm
	configure_device, initial_state
	diagex_cfg_state
	diagex_initial_state
	get_device_status
	addfrub
	addfrub_src
	insert_frub
	add_more_frus
	diag_catopen
	diag_cat_gets
	diag_popup
	diag_progress
	diag_read
	diag_resource_screen
	diag_task_screen
	diag_asl_clear_screen
	diag_asl_init
	diag_asl_msg
	diag_asl_read
	diag_asl_quit
	diag_display
	diag_display_menu
	diag_emsg
	diag_msg, diag_msg_nw
	diag_check_optical_media
	diag_get_device_flag
	diag_get_property
	diag_get_sid_lun
	diag_load_optical_media
	diag_unload_optical_media
	get_cpu_model
	get_dev_desc
	get_diag_att
	dlog_getTestMode
	dlog_close
	dlog_find_first
	dlog_find_next
	dlog_find_sequence
	dlog_formatElogResults
	dlog_freeEntry
	dlog_open
	dlog_read
	dlog_same_elogId
	dlog_setEntryType
	dlog_write
	save_davars_ela
	save_davars_mgoal_ela
	copy_text
	DA_SETRC_XXXXXX, DA_CHECKRC_XXXXXX, DA_EXIT
	diag_asl_beep
	diag_asl_execute
	diag_checkstop_eed
	diag_checkstop_event
	diag_cluster_support ()
	diag_cpu2proc (int n)
	diag_exec_source
	diag_execute
	diag_general_eed
	diag_get_cluster_ms ()
	diag_get_cluster_mt ()
	diag_get_fru_serial
	dt
	error_log_get
	file_present
	get_DApp
	getdainput, clrdainput
	getdavar, putdavar
	getELAdates
	has_diag_authority
	ipl_mode
	menugoal
	schedule_ela

	Diagnostic object classes
	Predefined Diagnostic Resource Object Class
	Predefined Diagnostic Attribute Device Object Class
	Predefined Diagnostic Task Object Class
	Customized diagnostic attribute object class
	Test mode input object class
	Menu Goal Object Class
	FRU bucket object class
	FRU reporting object class
	Diagnostic application variables object class
	Predefined Diagnostic Devices Object Class
	Diagnostic supervisor menu options object class

	Diagnostic header files
	Diagnostic user interface
	Diagnostic applications
	INFORMATIVE screen type
	SINGLE SELECTION screen type
	TRANSITIONAL screen type
	POPUP screen type

	Diagnostic tasks
	INFORMATIVE screen type
	SINGLE SELECTION screen type
	MULTIPLE SELECTION screen type
	DIALOG SELECTION screen type
	TRANSITIONAL screen type
	POP-UP screen type
	Diagnostic progress indicators

	Examples: Diagnostic menus
	Diagnostic operating instructions menu
	Function selection menu
	Define terminal menu
	Missing Resource Selection Menu
	Missing Resource Menu
	New Resource Menu
	Diagnostic mode selection menu
	Resource selection menu
	Resource selection menu - display common tasks operation
	Test method menu
	No Trouble Found Menu
	Problem report menu
	Additional resources menu
	Task selection list menu
	Task selection list menu - display supported resources operation
	Run time options menu

	Diagnostic features
	Missing Options Resolution
	Online Concurrent Diagnostics
	Online Service Diagnostics
	Standalone Diagnostics (POWER® processor-based only)
	Missing Options Procedure Steps

	Error log analysis
	Running problem determination mode in diagnostics

	Periodic diagnostics
	Automatic error log analysis (DIAGELA)
	Loop testing

	Diagnostic Packaging
	Hardfile packaging
	Software packages and filesets
	Directory structure organization

	CDROM packaging (POWER® processor-based only)
	Diagnostic supplemental media
	Diagnostic Supplemental Diskette Contents
	Example ODM Stanzas
	Example diagstartS Script File
	Example diagstart3S Script File
	Diagnostic Supplemental Diskette Label

	Diagnostic debugging hints
	Debugging hints for diagnostic applications
	Debugging hints for diagnostic kernel extension
	Starting trace for diagnostic kernel extension
	Running trace for diagnostic kernel extension in the background
	Finding the right address
	Looking at an illegal trap

	Diagnostic patch diskette procedure
	Diagnostic configuration diskette
	Diagnostic patch diskette
	Diagnostic debug diskette

	Code examples
	Example {DEVICE}_ERR_DETAIL.H: TU specific outputs
	Example {DEVICE}_INPUT_PARAMS.H: TU specific inputs
	Example TU local leader file
	Example TU exectu function
	Example TU open/close device interface
	Example TU makefiles
	Example C source file for TU interrupt handler
	Example TU interrupt handler makefile
	Example diagnostic application
	Example diagnostic application message file

	Diagnostic task matrix

	Notices
	Privacy policy considerations
	Trademarks

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

