
AIX Version 7.2

Performance Tools Guide and Reference

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
273 .

This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in new
editions.
© Copyright International Business Machines Corporation 2015, 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..v
Highlighting...v
Case-sensitivity in AIX... v
ISO 9000...v

Performance Tools Guide and Reference.. 1
What's new... 2
CPU Utilization Reporting Tool (curt)...2

Syntax for the curt Command.. 2
Measurement and Sampling.. 3
Examples of the curt command... 4

Simple performance lock analysis tool (splat)..33
splat command syntax... 33
Measurement and sampling...35
Examples of generated reports..37

Hardware performance monitor APIs and tools...55
Performance monitor accuracy..56
Performance monitor context and state..56
Performance monitoring agent.. 57
POWERCOMPAT events... 58
Thread accumulation and thread group accumulation... 62
Security considerations..63
The pmapi library... 63
The hpm library and associated tools..75

Perfstat API programming...83
API characteristics... 84
Global interfaces.. 84
Component-Specific interfaces... 103
WPAR Interfaces.. 164
RSET Interfaces... 174
Cached metrics interfaces... 179
Node interfaces.. 182
Change history of the perfstat API.. 191

Kernel tuning..195
Migration and compatibility... 196
Tunables file directory... 196
Tunable parameters type...197
Common syntax for tuning commands..198
Tunable file-manipulation commands.. 200
Initial setup.. 203
Reboot tuning procedure... 203
Recovery Procedure...204
Kernel tuning using the SMIT interface... 204

The procmon tool...209
Overview of the procmon tool..209
Components of the procmon tool..210
Filtering processes...212
Performing AIX commands on processes... 212

Profiling tools...213
The timing commands ...213

 iii

The prof command .. 213
The gprof command... 214
The tprof command..216

The svmon command.. 223
Security...224
The svmon configuration file... 224
Summary report metrics.. 224
Report formatting options..225
Segment details and -O options.. 227
Additional -O options... 231
Reports details... 234

Remote Statistics Interface API Overview... 255
Remote Statistics Interface list of subroutines.. 256
RSI Interface Concepts and Terms... 257
A Simple Data-Consumer Program..262
Expanding the data-consumer program..265
Inviting data suppliers... 266
A Full-Screen, character-based monitor... 267
List of RSI Error Codes... 268

Notices..273
Privacy policy considerations..274
Trademarks..275

Index.. 277

iv

About this document

The Performance Tools Guide and Reference provides experienced system administrators, application
programmers, service representatives, system engineers, end users, and system programmers with
complete, detailed information about the various performance tools that are available for monitoring and
tuning AIX® systems and applications running on those systems.

The information contained in this document pertains to systems running AIX 7.1, or later. Any content
that is applicable to earlier releases will be noted as such.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you
might see displayed, examples of portions of program code similar to what you might
write as a programmer, messages from the system, or information you should
actually type.

Case-sensitivity in AIX
Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS,
the system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three
distinct file names, even if they reside in the same directory. To avoid causing undesirable actions to be
performed, always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2015, 2018 v

vi AIX Version 7.2: Performance Tools Guide and Reference

Performance Tools Guide and Reference
Performance tuning on a new system involves setting base parameters for the operating system and its
applications. The CPU Utilization Reporting Tool (curt), Simple performance lock analysis tool (splat), and
procmon tool allow for optimal performance tuning.

The path to achieving this objective is a balance between appropriate expectations and optimizing the
available system resources. The performance-tuning process demands great skill, knowledge, and
experience, and cannot be performed by only analyzing statistics, graphs, and figures. If results are to be
achieved, the human aspect of perceived performance must not be neglected. Performance tuning also
takes into consideration problem-determination aspects as well as pure performance issues.

Expectations can often be classified as either of the following:

Item Descriptor

Throughput expectations A measure of the amount of work performed over a period of time

Response time expectations The elapsed time between when a request is submitted and when
the response from that request is returned

The performance-tuning process can be initiated for a number of reasons:

• To achieve optimal performance in a newly installed system
• To resolve performance problems resulting from the design (sizing) phase
• To resolve performance problems occurring in the run-time (production) phase

Performance tuning on a newly installed system usually involves setting some base parameters for the
operating system and applications. Throughout this book, there are sections that describe the
characteristics of different system resources and provide guidelines regarding their base tuning
parameters, if applicable.

Limitations originating from the sizing phase will either limit the possibility of tuning, or incur greater cost
to overcome them. The system might not meet the original performance expectations because of
unrealistic expectations, physical problems in the computer environment, or human error in the design or
implementation of the system. In the worst case, adding or replacing hardware might be necessary. Be
particularly careful when sizing a system to permit enough capacity for unexpected system loads. In other
words, do not design the system to be 100 percent busy from the start of the project.

When a system in a productive environment still meets the performance expectations for which it was
initially designed, but the demands and needs of the utilizing organization have outgrown the system's
basic capacity, performance tuning is performed to delay or even to avoid the cost of adding or replacing
hardware.

Many performance-related issues can be traced back to operations performed by a person with limited
experience and knowledge who unintentionally restricted some vital logical or physical resource of the
system.

Note: The metrics reported by any statistics tool such as lparstat, vmstat, iostat, mpstat and so on
including the applications that are based on Perfstat API or SPMI API varies to a certain extent at any
point of time. If the command is run multiple times for an instance, the values may not be similar for that
instance.

© Copyright IBM Corp. 2015, 2018 1

What's new in Performance Tools Guide and Reference
Read about new or significantly changed information for the Performance Tools Guide and Reference
topic collection.

How to see what's new or changed

In this PDF file, you might see revision bars (|) in the left margin that identify new and changed
information.

October 2016

The following information is a summary of the updates made to this topic collection:

• Updated the Node interfaces topic with the perfstat_cluster_disk interface example.

CPU Utilization Reporting Tool (curt)
The CPU Utilization Reporting Tool (curt) command converts an AIX trace file into a number of statistics
related to CPU utilization and either process, thread or pthread activity. These statistics ease the tracking
of specific application activity.

The curt command works with both uniprocessor and multiprocessor AIX Version 4 and AIX Version 5
traces.

Syntax for the curt Command
Review the syntax, flags, and parameters for the curt command.

The syntax for the curt command is as follows:

curt -i inputfile [-o outputfile] [-n gensymsfile] [-m trcnmfile] [-a pidnamefile] [-f timestamp] [-l timestamp]
[-r PURR][-ehpstP]

Flags

Item Descriptor

-i inputfile Specifies the input AIX trace file to be analyzed.

-o outputfile Specifies an output file (default is stdout).

-n gensymsfile Specifies a names file produced by gensyms.

-m trcnmfile Specifies a names file produced by trcnm.

-a pidnamefile Specifies a PID-to-process name mapping file.

-f timestamp Starts processing trace at timestamp seconds.

-l timestamp Stops processing trace at timestamp seconds.

-r PURR Uses the PURR register to calculate CPU times.

-e Outputs elapsed time information for system calls.

-h Displays usage text (this information).

-p Outputs detailed process information.

-s Outputs information about errors returned by system calls.

-t Outputs detailed thread information.

-P Outputs detailed pthread information.

Parameters

2 AIX Version 7.2: Performance Tools Guide and Reference

Item Descriptor

gensymsfile The names file as produced by the gensyms command.

inputfile The AIX trace file to be processed by the curt command.

outputfile The name of the output file created by the curt command.

pidnamefile If the trace process name table is not accurate, or if more descriptive names are
desired, use the -a flag to specify a PID to process name mapping file. This is a file
with lines consisting of a process ID (in decimal) followed by a space, then an
ASCII string to use as the name for that process.

timestamp The time in seconds at which to start and stop the trace file processing.

trcnmfile The names file as produced by the trcnmcommand.

PURR The name of the register that is used to calculate CPU times.

Measurement and Sampling
A raw, or unformatted, system trace is read by the curt command to produce CPU utilization summaries.
The summary information is useful for determining which application, system call, Network File System
(NFS) operation, hypervisor call, pthread call, or interrupt handler is using most of the CPU time and is a
candidate for optimization to improve system performance.

The following table lists the minimum trace hooks required for the curt command. Using only these trace
hooks will limit the size of the trace file. However, other events on the system might not be captured in
this case. This is significant if you intend to analyze the trace in more detail.

Hook ID Event Name Event Explanation

100 HKWD_KERN_FLIH Occurrence of a first level interrupt, such as an I/O
interrupt, a data access page fault, or a timer interrupt
(scheduler).

101 HKWD_KERN_SVC A thread has issued a system call.

102 HKWD_KERN_SLIH Occurrence of a second level interrupt, that is, first level
I/O interrupts are being passed on to the second level
interrupt handler which then is working directly with the
device driver.

103 HKWD_KERN_SLIHRET Return from a second level interrupt to the caller (usually
a first level interrupt handler).

104 HKWD_KERN_SYSCRET Return from a system call to the caller (usually a thread).

106 HKWD_KERN_DISPATCH A thread has been dispatched from the run queue to a
CPU.

10C HKWD_KERN_IDLE The idle process has been dispatched.

119 HKWD_KERN_PIDSIG A signal has been sent to a process.

134 HKWD_SYSC_EXECVE An exec supervisor call (SVC) has been issued by a
(forked) process.

135 HKWD_SYSC__EXIT An exit supervisor call (SVC) has been issued by a
process.

139 HKWD_SYSC_FORK A fork SVC has been issued by a process.

200 HKWD_KERN_RESUME A dispatched thread is being resumed on the CPU.

210 HKWD_KERN_INITP A kernel process has been created.

Performance Tools Guide and Reference 3

Hook ID Event Name Event Explanation

215 HKWD_NFS_DISPATCH An entry or exit NFS V2 and V3 operation has been
issued by a process.

38F HKWD_DR A processor has been added/removed.

419 HKWD_CPU_PREEMPT A processor has been preempted.

465 HKWD_SYSC_CRTHREAD A thread_create SVC has been issued by a process.

47F HKWD_KERN_PHANTOM_EXTINT A phantom interrupt has occurred.

488 HKWD_RFS4_VOPS An entry or exit NFS V4 client operation (VOPS) has been
issued by a process.

489 HKWD_RFS4_VFSOPS An entry or exit NFS V4 client operation (VFSOPS) has
been issued by a process.

48A HKWD_RFS4_MISCOPS An entry or exit NFS V4 client operation (MISCOPS) has
been issued by a process.

48D HKWD_RFS4 An entry or exit NFS V4 server operation has been issued
by a process.

492 HKWD_KERN_HCALL A hypervisor call has been issued by the kernel.

605 HKWD_PTHREAD_VPSLEEP A pthread vp_sleep operation has been done by a
pthread.

609 HKWD_PTHREAD_GENERAL A general pthread operation has been done by a pthread.

Trace hooks 119 and 135 are used to report on the time spent in the exit system call. Trace hooks 134,
139, 210, and 465 are used to keep track of TIDs, PIDs and process names.

Trace hook 492 is used to report on the time spent in the hypervisor.

Trace hooks 605 and 609 are used to report on the time spent in the pthreads library.

To get the PTHREAD hooks in the trace, you must execute your pthread application using the
instrumented libpthreads.a library.

Examples of the curt command
Preparing the curt command input is a three-stage process.

Trace and name files are generated using the following process:

1. Build the raw trace. On a 4-way machine, this will create files as listed in the example code below.
One raw trace file per CPU is produced. The files are named trace.raw-0, trace.raw-1, and so forth for
each CPU. An additional file named trace.raw is also generated. This is a master file that has
information that ties together the other CPU-specific traces.

Note: If you want pthread information in the curt report, you must add the instrumented libpthreads
directory to the library path, LIBPATH, when you build the trace. Otherwise, the export LIBPATH
statement in the example below is unnecessary.

2. Merge the trace files. To merge the individual CPU raw trace files to form one trace file, run the trcrpt
command. If you are tracing a uniprocessor machine, this step is not necessary.

3. Create the supporting gensymsfile and trcnmfile files by running the gensyms and trcnm
commands. Neither the gensymsfile nor the trcnmfile file are necessary for the curt command to run.
However, if you provide one or both of these files, or if you use the trace command with the -n option,
the curt command outputs names for system calls and interrupt handlers instead of just addresses.
The gensyms command output includes more information than the trcnm command output, and so,
while the trcnmfile file will contain most of the important address to name mapping data, a

4 AIX Version 7.2: Performance Tools Guide and Reference

gensymsfile file will enable the curt command to output more names, and is the preferred address to
name mapping data collection command.

The following is an example of how to generate input files for the curt command:

HOOKS="100,101,102,103,104,106,10C,119,134,135,139,200,210,215,38F,419,465,47F,488,489,48A,
 48D,492,605,609"
SIZE="1000000"
export HOOKS SIZE
trace -n -C all -d -j $HOOKS -L $SIZE -T $SIZE -afo trace.raw
export LIBPATH=/usr/ccs/lib/perf:$LIBPATH
trcon ; pthread.app ; trcstop
unset HOOKS SIZE
ls trace.raw*
trace.raw trace.raw-0 trace.raw-1 trace.raw-2 trace.raw-3
trcrpt -C all -r trace.raw > trace.r
rm trace.raw*
ls trace*
trace.r
gensyms > gensyms.out
trcnm > trace.nm

Overview of information generated by the curt command
Review the following information to learn the different information that is generated by the curt
command, and how you generate specialized reports.

The following is an overview of the content of the report that the curt command generates:

• A report header, including the trace file name, the trace size, and the date and time the trace was taken.
The header also includes the command that was used when the trace was run. If the PURR register was
used to calculate CPU times, this information is also included in the report header.

• For each CPU (and a summary of all the CPUs), processing time expressed in milliseconds and as a
percentage (idle and non-idle percentages are included) for various CPU usage categories.

• For each CPU (and a summary of all the CPUs), processing time expressed in milliseconds and as a
percentage for CPU usage in application mode for various application usage categories.

• Average thread affinity across all CPUs and for each individual CPU.
• For each CPU (and for all the CPUs), the Physical CPU time spent and the percentage of total time this

represents.
• Average physical CPU affinity across all CPUs and for each individual CPU.
• The physical CPU dispatch histogram of each CPU.
• The number of preemptions, and the number of H_CEDE and H_CONFER hypervisor calls for each

individual CPU.
• The total number of idle and non-idle process dispatches for each individual CPU.
• Average pthread affinity across all CPUs and for each individual CPU.
• The total number of idle and non-idle pthread dispatches for each individual CPU.
• Information on the amount of CPU time spent in application and system call (syscall) mode expressed

in milliseconds and as a percentage by thread, process, and process type. Also included are the number
of threads per process and per process type.

• Information on the amount of CPU time spent executing each kernel process, including the idle process,
expressed in milliseconds and as a percentage of the total CPU time.

• Information on the amount of CPU time spent executing calls to libpthread, expressed in milliseconds
and as percentages of the total time and the total application time.

• Information on completed system calls that includes the name and address of the system call, the
number of times the system call was executed, and the total CPU time expressed in milliseconds and as
a percentage with average, minimum, and maximum time the system call was running.

• Information on pending system calls, that is, system calls for which the system call return has not
occurred at the end of the trace. The information includes the name and address of the system call, the

Performance Tools Guide and Reference 5

thread or process which made the system call, and the accumulated CPU time the system call was
running expressed in milliseconds.

• Information on completed hypervisor calls that includes the name and address of the hypervisor call,
the number of times the hypervisor call was executed, and the total CPU time expressed in milliseconds
and as a percentage with average, minimum, and maximum time the hypervisor call was running.

• Information on pending hypervisor calls, which are hypervisor calls that were not completed by the end
of the trace. The information includes the name and address of the hypervisor call, the thread or
process which made the hypervisor call, and the accumulated CPU time the hypervisor call was running,
expressed in milliseconds.

• Information on completed pthread calls that includes the name of the pthread call routine, the number
of times the pthread call was executed, and the total CPU time expressed in milliseconds and the
average, minimum, and maximum time the pthread call was running.

• Information on pending pthread calls, that is, pthread calls for which the pthread call return has not
occurred at the end of the trace. The information includes the name of the pthread call, the process, the
thread and the pthread which made the pthread call, and the accumulated CPU time the pthread call
was running expressed in milliseconds.

• Information on completed NFS operations that includes the name of the NFS operation, the number of
times the NFS operation was executed, and the total CPU time, expressed in milliseconds, and as a
percentage with average, minimum, and maximum time the NFS operation call was running.

• Information on pending NFS operations, where the NFS operations did not complete before the end of
the trace. The information includes the sequence number for NFS V2/V3, or opcode for NFS V4, the
thread or process which made the NFS operation, and the accumulated CPU time that the NFS
operation was running, expressed in milliseconds.

• Information on the first level interrupt handlers (FLIHs) that includes the type of interrupt, the number
of times the interrupt occurred, and the total CPU time spent handling the interrupt with average,
minimum, and maximum time. This information is given for all CPUs and for each individual CPU. If
there are any pending FLIHs (FLIHs for which the resume has not occurred at the end of the trace), for
each CPU the accumulated time and the pending FLIH type is reported.

• Information on the second level interrupt handlers (SLIHs), which includes the interrupt handler name
and address, the number of times the interrupt handler was called, and the total CPU time spent
handling the interrupt with average, minimum, and maximum time. This information is given for all CPUs
and for each individual CPU. If there are any pending SLIHs (SLIHs for which the return has not occurred
at the end of the trace), the accumulated time and the pending SLIH name and address is reported for
each CPU.

To create additional, specialized reports, run the curt command using the following flags:

Item Descriptor

-e Produces reports containing statistics and additional information on the System Calls Summary
Report, Pending System Calls Summary Report, Hypervisor Calls Summary Report, Pending
Hypervisor Calls Summary Report, System NFS Calls Summary Report, Pending NFS Calls
Summary, Pthread Calls Summary, and the Pending Pthread Calls Summary. The additional
information pertains to the total, average, maximum, and minimum elapsed times that a system
call was running.

-s Produces a report containing a list of errors returned by system calls.

-t Produces a report containing a detailed report on thread status that includes the amount of CPU
time the thread was in application and system call mode, what system calls the thread made,
processor affinity, the number of times the thread was dispatched, and to which CPU(s) it was
dispatched. The report also includes dispatch wait time and details of interrupts.

-p Produces a report containing a detailed report on process status that includes the amount of
CPU time the process was in application and system call mode, application time details,
threads that were in the process, pthreads that were in the process, pthread calls that the
process made and system calls that the process made.

6 AIX Version 7.2: Performance Tools Guide and Reference

Item Descriptor

-P Produces a report containing a detailed report on pthread status that includes the amount of
CPU time the pthread was in application and system call mode, system calls made by the
pthread, pthread calls made by the pthread, processor affinity, the number of times the pthread
was dispatched and to which CPU(s) it was dispatched, thread affinity, and the number of times
the pthread was dispatched and to which kernel thread(s) it was dispatched. The report also
includes dispatch wait time and details of interrupts.

Default report generated by the curt command
The curt command output always includes this default report in its output, even if one of the flags
described in the previous section is used.

This section explains the default report created by the curt command, as follows:

curt -i trace.r -n gensyms.out -o curt.out

General information
The general information displays the time and date when the report was generated, and is followed by the
syntax of the curt command line that was used to produce the report.

This section also contains some information about the AIX trace file that was processed by the curt
command. This information consists of the trace file's name, size, and its creation date. The command
used to invoke the AIX trace facility and gather the trace file is displayed at the end of the report.

The following is a sample of the general information section:

Run on Wed Apr 26 10:51:33 2XXX
Command line was:
curt -i trace.raw -n gensyms.out -o curt.out

AIX trace file name = trace.raw
AIX trace file size = 787848
Wed Apr 26 10:50:11 2XXX
System: AIX 5.3 Node: bu Machine: 00CFEDAD4C00
AIX trace file created = Wed Apr 26 10:50:11 2XXX

Command used to gather AIX trace was:
 trace -n -C all -d -j 100,101,102,103,104,106,10C,134,139,200,215,419,465,47F,488,489,48A,48D,492,605,609
 -L 1000000 -T 1000000 -afo trace.raw

System summary
The system summary information produced by the curt command describes the time spent by the whole
system (all CPUs) in various execution modes.

The following is a sample of the System summary:

 System Summary

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
=========== =========== =========== ===================
 4998.65 45.94 75.21 APPLICATION
 591.59 5.44 8.90 SYSCALL
 110.40 1.02 1.66 HCALL
 48.33 0.44 0.73 KPROC (excluding IDLE and NFS)
 352.23 3.24 5.30 NFS
 486.19 4.47 7.32 FLIH
 49.10 0.45 0.74 SLIH
 8.83 0.08 0.13 DISPATCH (all procs. incl. IDLE)
 1.04 0.01 0.02 IDLE DISPATCH (only IDLE proc.)
----------- ---------- -------
 6646.36 61.08 100.00 CPU(s) busy time
 4234.76 38.92 IDLE
----------- ----------
 10881.12 TOTAL

Avg. Thread Affinity = 0.99

Performance Tools Guide and Reference 7

Total Physical CPU time (msec) = 20417.45
Physical CPU percentage = 100.00%

The System Summary has the following fields:

Item Descriptor

processing total time Total time in milliseconds for the corresponding processing category.

percent total time Time from the first column as a percentage of the sum of total trace elapsed
time for all processors. This includes whatever amount of time each
processor spent running the IDLE process.

percent busy time Time from the first column as a percentage of the sum of total trace elapsed
time for all processors without including the time each processor spent
executing the IDLE process.

Avg. Thread Affinity Probability that a thread was dispatched to the same processor on which it
last executed.

Total Physical CPU time The real time that the virtual processor was running and not preempted.

Physical CPU percentage Gives the Physical CPU Time as a percentage of total time.

The possible execution modes or processing categories are interpreted as follows:

Item Descriptor

APPLICATION The sum of times spent by all processors in User (that is, non-privileged) mode.

SYSCALL The sum of times spent by all processors doing System Calls. This is the portion
of time that a processor spends executing in the kernel code providing services
directly requested by a user process.

HCALL The sum of times spent by all processors doing Hypervisor Calls. This is the
portion of time that a processor spends executing in the hypervisor code
providing services directly requested by the kernel.

KPROC The sum of times spent by all processors executing kernel processes other than
IDLE and NFS processes. This is the portion of time that a processor spends
executing specially created dispatchable processes that only execute kernel
code.

NFS The sum of times spent by all processors executing NFS operations. This is the
portion of time that a processor spends executing in the kernel code providing
NFS services directly requested by a kernel process.

FLIH The sum of times spent by all processors executing FLIHs.

SLIH The sum of times spent by all processors executing SLIHs.

DISPATCH The sum of times spent by all processors executing the AIX dispatch code. This
sum includes the time spent dispatching all threads (that is, it includes
dispatches of the IDLE process).

IDLE DISPATCH The sum of times spent by all processors executing the AIX dispatch code where
the process being dispatched was the IDLE process. Because the DISPATCH
category includes the IDLE DISPATCH category's time, the IDLE DISPATCH
category's time is not separately added to calculate either CPU(s) busy time or
TOTAL (see below).

CPU(s) busy time The sum of times spent by all processors executing in APPLICATION, SYSCALL,
KPROC, FLIH, SLIH, and DISPATCH modes.

IDLE The sum of times spent by all processors executing the IDLE process.

TOTAL The sum of CPU(s) busy time and IDLE.

8 AIX Version 7.2: Performance Tools Guide and Reference

The System Summary example indicates that the CPU is spending most of its time in application mode.
There is still 4234.76 ms of IDLE time so there is enough CPU to run applications. If there is insufficient
CPU power, do not expect to see any IDLE time. The Avg. Thread Affinity value is 0.99 showing good
processor affinity; that is, threads returning to the same processor when they are ready to be run again.

System application summary
The system application summary information produced by the curt command describes the time spent by
the system as a whole (all CPUs) in various execution modes.

The following is a sample of the System Application Summary:

 System Application Summary

 processing percent percent
 total time total time application
 (msec) (incl. idle) time processing category
=========== =========== =========== ===================
 3.95 0.42 0.07 PTHREAD
 4.69 0.49 0.09 PDISPATCH
 0.13 0.01 0.00 PIDLE
 5356.99 563.18 99.84 OTHER
----------- ---------- -------
 5365.77 564.11 100.00 APPLICATION

Avg. Pthread Affinity = 0.84

The System Application Summary has the following fields:

Item Descriptor

processing total time Total time in milliseconds for the corresponding processing category.

percent total time Time from the first column as a percentage of the sum of total trace elapsed
time for all processors. This includes whatever amount of time each processor
spent running the IDLE process.

percent application
time

Time from the first column as a percentage of the sum of total trace elapsed
application time for all processors

Avg. Pthread Affinity Probability that a pthread was dispatched on the same kernel thread on which
it last executed.

The possible execution modes or processing categories are interpreted as follows:

Item Descriptor

PTHREAD The sum of times spent by all pthreads on all processors in traced pthread
library calls.

PDISPATCH The sum of times spent by all pthreads on all processors executing the
libpthreads dispatch code.

PIDLE The sum of times spent by all kernel threads on all processors executing the
libpthreads vp_sleep code.

OTHER The sum of times spent by all pthreads on all processors in non-traced user
mode.

APPLICATION The sum of times spent by all processors in User (that is, non-privileged)
mode.

Processor summary and processor application summary
This part of the curt command output is displayed by a processor-by-processor basis.

The same description that was given for the system summary and system application summary applies
here, except that this report covers each processor rather than the whole system.

Below is a sample of this output:

Performance Tools Guide and Reference 9

 Processor Summary processor number 0

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
=========== =========== =========== ===================
 45.07 0.88 5.16 APPLICATION
 591.39 11.58 67.71 SYSCALL
 0.00 0.00 0.00 HCALL
 47.83 0.94 5.48 KPROC (excluding IDLE and NFS)
 0.00 0.00 0.00 NFS
 173.78 3.40 19.90 FLIH
 9.27 0.18 1.06 SLIH
 6.07 0.12 0.70 DISPATCH (all procs. incl. IDLE)
 1.04 0.02 0.12 IDLE DISPATCH (only IDLE proc.)
----------- ---------- -------
 873.42 17.10 100.00 CPU(s) busy time
 4232.92 82.90 IDLE
----------- ----------
 5106.34 TOTAL

Avg. Thread Affinity = 0.98

Total number of process dispatches = 1620
Total number of idle dispatches = 782

Total Physical CPU time (msec) = 3246.25
Physical CPU percentage = 63.57%
Physical processor affinity = 0.50
Dispatch Histogram for processor (PHYSICAL CPUid : times_dispatched).

 PROC 0 : 15
 PROC 24 : 15

Total number of preemptions = 30
Total number of H_CEDE = 6 with preeemption = 3
Total number of H_CONFER = 3 with preeemption = 2

 Processor Application Summary processor 0
 --
 processing percent percent
 total time total time application
 (msec) (incl. idle) time processing category
=========== =========== =========== ===================
 1.66 0.04 0.06 PTHREAD
 2.61 0.05 0.10 PDISPATCH
 0.00 0.00 0.00 PIDLE
 2685.12 56.67 99.84 OTHER
----------- ---------- -------
 2689.39 56.76 100.00 APPLICATION

Avg. Pthread Affinity = 0.78

Total number of pthread dispatches = 104
Total number of pthread idle dispatches = 0

 Processor Summary processor number 1

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
=========== =========== =========== ===================
 4985.81 97.70 97.70 APPLICATION
 0.09 0.00 0.00 SYSCALL
 0.00 0.00 0.00 HCALL
 0.00 0.00 0.00 KPROC (excluding IDLE and NFS)
 0.00 0.00 0.00 NFS
 103.86 2.04 2.04 FLIH
 12.54 0.25 0.25 SLIH
 0.97 0.02 0.02 DISPATCH (all procs. incl. IDLE)
 0.00 0.00 0.00 IDLE DISPATCH (only IDLE proc.)
----------- ---------- -------
 5103.26 100.00 100.00 CPU(s) busy time
 0.00 0.00 IDLE
----------- ----------
 5103.26 TOTAL

Avg. Thread Affinity = 0.99

Total number of process dispatches = 516

10 AIX Version 7.2: Performance Tools Guide and Reference

Total number of idle dispatches = 0

Total Physical CPU time (msec) = 5103.26
Physical CPU percentage = 100.00%
Physical processor affinity = 1.00
Dispatch Histogram for processor (PHYSICAL CPUid : times_dispatched).
Total number of preemptions = 0
Total number of H_CEDE = 0 with preeemption = 0
Total number of H_CONFER = 0 with preeemption = 0

 Processor Application Summary processor 1
 --
 processing percent percent
 total time total time application
 (msec) (incl. idle) time processing category
=========== =========== =========== ===================
 2.29 0.05 0.09 PTHREAD
 2.09 0.04 0.08 PDISPATCH
 0.13 0.00 0.00 PIDLE
 2671.86 56.40 99.83 OTHER
----------- ---------- -------
 2676.38 56.49 100.00 APPLICATION

Avg. Pthread Affinity = 0.83

Total number of pthread dispatches = 91
Total number of pthread idle dispatches = 5

The following terms are referred to in the example above:
Total number of process dispatches

The number of times AIX dispatched any non-IDLE process on the processor.
Total number of idle dispatches

The number of IDLE process dispatches.
Total number of pthread dispatches

The number of times the libpthreads dispatcher was executed on the processor.
Total number of pthread idle dispatches

The number of vp_sleep calls.

Application summary by thread ID (Tid)
The application summary, by Tid, displays an output of all the threads that were running on the system
during the time of trace collection and their CPU consumption. The thread that consumed the most CPU
time during the time of the trace collection is displayed at the top of the output.

 Application Summary (by Tid)

 -- processing total (msec) -- -- percent of total processing time --
 combined application syscall combined application syscall name (Pid Tid)
 ======== =========== ======= ======== =========== ======= ===================
4986.2355 4986.2355 0.0000 24.4214 24.4214 0.0000 cpu(18418 32437)
4985.8051 4985.8051 0.0000 24.4193 24.4193 0.0000 cpu(19128 33557)
4982.0331 4982.0331 0.0000 24.4009 24.4009 0.0000 cpu(18894 28671)
 83.8436 2.5062 81.3374 0.4106 0.0123 0.3984 disp+work(20390 28397)
 72.5809 2.7269 69.8540 0.3555 0.0134 0.3421 disp+work(18584 32777)
 69.8023 2.5351 67.2672 0.3419 0.0124 0.3295 disp+work(19916 33033)
 63.6399 2.5032 61.1368 0.3117 0.0123 0.2994 disp+work(17580 30199)
 63.5906 2.2187 61.3719 0.3115 0.0109 0.3006 disp+work(20154 34321)
 62.1134 3.3125 58.8009 0.3042 0.0162 0.2880 disp+work(21424 31493)
 60.0789 2.0590 58.0199 0.2943 0.0101 0.2842 disp+work(21992 32539)

 ...(lines omitted)...

The output is divided into two main sections:

• The total processing time of the thread in milliseconds (processing total (msec))
• The CPU time that the thread has consumed, expressed as a percentage of the total CPU time (percent

of total processing time)

The Application Summary (by Tid) has the following fields:

Performance Tools Guide and Reference 11

Item Descriptor

name (Pid Tid) The name of the process associated with the thread, its process id, and its thread
id.

The processing total (msec) displays the following values:

Item Descriptor

combined The total amount of CPU time, expressed in milliseconds, that the thread was
running in either application mode or system call mode.

application The amount of CPU time, expressed in milliseconds, that the thread spent in
application mode.

syscall The amount of CPU time, expressed in milliseconds, that the thread spent in system
call mode.

The percent of total processing time displays the following values:

Item Descriptor

combined The amount of CPU time that the thread was running, expressed as percentage of
the total processing time.

application The amount of CPU time that the thread the thread spent in application mode,
expressed as percentage of the total processing time.

syscall The amount of CPU time that the thread spent in system call mode, expressed as
percentage of the total processing time.

In the example above, we can investigate why the system is spending so much time in application mode
by looking at the Application Summary (by Tid), where we can see the top three processes of the report
are named cpu, a test program that uses a great deal of CPU time. The report shows again that the CPU
spent most of its time in application mode running the cpu process. Therefore the cpu process is a
candidate to be optimized to improve system performance.

Application summary by process ID (Pid)
The application summary, by Pid, has the same content as the application summary, by Tid, except that
the threads that belong to each process are consolidated and the process that consumed the most CPU
time during the monitoring period is at the beginning of the list.

The name (PID) (Thread Count) column shows the process name, its process ID, and the number of
threads that belong to this process and that have been accumulated for this line of data.

 Application Summary (by Pid)

 -- processing total (msec) -- -- percent of total processing time --
 combined application syscall combined application syscall name (Pid)(Thread Count)
 ======== =========== ======= ======== =========== ======= ===================
 4986.2355 4986.2355 0.0000 24.4214 24.4214 0.0000 cpu(18418)(1)
 4985.8051 4985.8051 0.0000 24.4193 24.4193 0.0000 cpu(19128)(1)
 4982.0331 4982.0331 0.0000 24.4009 24.4009 0.0000 cpu(18894)(1)
 83.8436 2.5062 81.3374 0.4106 0.0123 0.3984 disp+work(20390)(1)
 72.5809 2.7269 69.8540 0.3555 0.0134 0.3421 disp+work(18584)(1)
 69.8023 2.5351 67.2672 0.3419 0.0124 0.3295 disp+work(19916)(1)
 63.6399 2.5032 61.1368 0.3117 0.0123 0.2994 disp+work(17580)(1)
 63.5906 2.2187 61.3719 0.3115 0.0109 0.3006 disp+work(20154)(1)
 62.1134 3.3125 58.8009 0.3042 0.0162 0.2880 disp+work(21424)(1)
 60.0789 2.0590 58.0199 0.2943 0.0101 0.2842 disp+work(21992)(1)

 ...(lines omitted)...

12 AIX Version 7.2: Performance Tools Guide and Reference

Application summary by process type
The application summary by process type consolidates all processes of the same name and sorts them in
descending order of combined processing time.

The name (thread count) column shows the name of the process, and the number of threads that belong
to this process name (type) and were running on the system during the monitoring period.

 Application Summary (by process type)

 -- processing total (msec) -- -- percent of total processing time --
 combined application syscall combined application syscall name (thread count)
 ======== =========== ======= ======== =========== ======= ==================
 14954.0738 14954.0738 0.0000 73.2416 73.2416 0.0000 cpu(3)
 573.9466 21.2609 552.6857 2.8111 0.1041 2.7069 disp+work(9)
 20.9568 5.5820 15.3748 0.1026 0.0273 0.0753 trcstop(1)
 10.6151 2.4241 8.1909 0.0520 0.0119 0.0401 i4llmd(1)
 8.7146 5.3062 3.4084 0.0427 0.0260 0.0167 dtgreet(1)
 7.6063 1.4893 6.1171 0.0373 0.0073 0.0300 sleep(1)

 ...(lines omitted)...

Kproc summary by thread ID (Tid)
The Kproc summary, by Tid, displays an output of all the kernel process threads that were running on the
system during the time of trace collection and their CPU consumption. The thread that consumed the
most CPU time during the time of the trace collection is displayed at the beginning of the output.

 Kproc Summary (by Tid)

 -- processing total (msec) -- -- percent of total time --
 combined kernel operation combined kernel operation name (Pid Tid
Type)
 ======== ====== =========== ======== ====== ===========
===================
 1930.9312 1930.9312 0.0000 13.6525 13.6525 0.0000 wait(8196 8197 W)
 2.1674 2.1674 0.0000 0.0153 0.0153
0.0000 .WSMRefreshServe(0 3 -)
 1.9034 1.9034 1.8020 0.0135 0.0135 0.0128 nfsd(36882 49177
N)
 0.6609 0.5789 0.0820 0.0002 0.0002 0.0000 kbiod(8050 86295
N)
 ...(lines omitted)...

 Kproc Types

 Type Function Operation
 ==== ============================ ==========================
 W idle thread -
 N NFS daemon NFS Remote Procedure Calls

The Kproc Summary has the following fields:

Item Descriptor

name (Pid Tid Type) The name of the kernel process associated with the thread, its process ID,
its thread ID, and its type. The kproc type is defined in the Kproc Types
listing following the Kproc Summary.

processing total (msec)

Item Descriptor

combined The total amount of CPU time, expressed in milliseconds, that the thread was
running in either operation or kernel mode.

kernel The amount of CPU time, expressed in milliseconds, that the thread spent in
unidentified kernel mode.

operation The amount of CPU time, expressed in milliseconds, that the thread spent in
traced operations.

percent of total time

Performance Tools Guide and Reference 13

Item Descriptor

combined The amount of CPU time that the thread was running, expressed as percentage
of the total processing time.

kernel The amount of CPU time that the thread spent in unidentified kernel mode,
expressed as percentage of the total processing time.

operation The amount of CPU time that the thread spent in traced operations, expressed
as percentage of the total processing time.

Kproc Types

Item Descriptor

Type A single letter to be used as an index into this listing.

Function A description of the nominal function of this type of kernel process.

Operation A description of the traced operations for this type of kernel process.

Application Pthread summary by process ID (Pid)
The application Pthread summary, by PID, displays an output of all the multi-threaded processes that
were running on the system during trace collection and their CPU consumption, and that have spent time
making pthread calls. The process that consumed the most CPU time during the trace collection is
displays at the beginning of the list.

 Application Pthread Summary (by Pid)

 -- processing total (msec) -- -- percent of total application time --
application other pthread application other pthread name (Pid)(Pthread
Count)
=========== ========== ========== =========== ========== ==========
=========================
 1277.6602 1274.9354 2.7249 23.8113 23.7605 0.0508 ./pth(245964)(52)
 802.6445 801.4162 1.2283 14.9586 14.9357 0.0229 ./pth32(245962)(12)

 ...(lines omitted)...

The output is divided into two main sections:

• The total processing time of the process in milliseconds (processing total (msec))
• The CPU time that the process has consumed, expressed as a percentage of the total application time

The Application Pthread Summary has the following fields:

Item Descriptor

name (Pid) (Pthread
Count)

The name of the process associated with the process ID, and the number of
pthreads of this process.

processing total (msec)

Item Descriptor

application The total amount of CPU time, expressed in milliseconds, that the process
was running in user mode.

pthread The amount of CPU time, expressed in milliseconds, that the process spent
in traced call to the pthreads library.

other The amount of CPU time, expressed in milliseconds, that the process spent
in non traced user mode.

percent of total application time

14 AIX Version 7.2: Performance Tools Guide and Reference

Item Descriptor

application The amount of CPU time that the process was running in user mode,
expressed as percentage of the total application time.

pthread The amount of CPU time that the process spent in calls to the pthreads
library, expressed as percentage of the total application time.

other The amount of CPU time that the process spent in non traced user mode,
expressed as percentage of the total application time.

System calls summary
The System Calls Summary provides a list of all the system calls that have completed execution on the
system during the monitoring period. The list is sorted by the total CPU time in milliseconds consumed by
each type of system call.

 System Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)
 (msec) time (msec) (msec) (msec)
 ======== =========== ====== ======== ======== ======== ================
 605 355.4475 1.74% 0.5875 0.0482 4.5626 kwrite(4259c4)
 733 196.3752 0.96% 0.2679 0.0042 2.9948 kread(4259e8)
 3 9.2217 0.05% 3.0739 2.8888 3.3418 execve(1c95d8)
 38 7.6013 0.04% 0.2000 0.0051 1.6137 __loadx(1c9608)
 1244 4.4574 0.02% 0.0036 0.0010 0.0143 lseek(425a60)
 45 4.3917 0.02% 0.0976 0.0248 0.1810 access(507860)
 63 3.3929 0.02% 0.0539 0.0294 0.0719 _select(4e0ee4)
 2 2.6761 0.01% 1.3380 1.3338 1.3423 kfork(1c95c8)
 207 2.3958 0.01% 0.0116 0.0030 0.1135 _poll(4e0ecc)
 228 1.1583 0.01% 0.0051 0.0011 0.2436 kioctl(4e07ac)
 9 0.8136 0.00% 0.0904 0.0842 0.0988 .smtcheckinit(1b245a8)
 5 0.5437 0.00% 0.1087 0.0696 0.1777 open(4e08d8)
 15 0.3553 0.00% 0.0237 0.0120 0.0322 .smtcheckinit(1b245cc)
 2 0.2692 0.00% 0.1346 0.1339 0.1353 statx(4e0950)
 33 0.2350 0.00% 0.0071 0.0009 0.0210 _sigaction(1cada4)
 1 0.1999 0.00% 0.1999 0.1999 0.1999 kwaitpid(1cab64)
 102 0.1954 0.00% 0.0019 0.0013 0.0178 klseek(425a48)

 ...(lines omitted)...

The System Calls Summary has the following fields:

Item Descriptor

Count The number of times that a system call of a certain type (see SVC (Address)) has
been called during the monitoring period.

Total Time (msec) The total CPU time that the system spent processing these system calls, expressed
in milliseconds.

% sys time The total CPU time that the system spent processing these system calls, expressed
as a percentage of the total processing time.

Avg Time (msec) The average CPU time that the system spent processing one system call of this
type, expressed in milliseconds.

Min Time (msec) The minimum CPU time that the system needed to process one system call of this
type, expressed in milliseconds.

Max Time (msec) The maximum CPU time that the system needed to process one system call of this
type, expressed in milliseconds.

SVC (Address) The name of the system call and its kernel address.

Performance Tools Guide and Reference 15

Pending system calls summary
The pending system calls summary provides a list of all the system calls that have been executed on the
system during the monitoring period but have not completed. The list is sorted by Tid.

 Pending System Calls Summary

Accumulated SVC (Address) Procname (Pid Tid)
Time (msec)
============ ========================= ==========================
 0.0656 _select(4e0ee4) sendmail(7844 5001)
 0.0452 _select(4e0ee4) syslogd(7514 8591)
 0.0712 _select(4e0ee4) snmpd(5426 9293)
 0.0156 kioctl(4e07ac) trcstop(47210 18379)
 0.0274 kwaitpid(1cab64) ksh(20276 44359)
 0.0567 kread4259e8) ksh(23342 50873)

 ...(lines omitted)...

The Pending System Calls Summary has the following fields:

Item Descriptor

Accumulated Time
(msec)

The accumulated CPU time that the system spent processing the pending system
call, expressed in milliseconds.

SVC (Address) The name of the system call and its kernel address.

Procname (Pid Tid) The name of the process associated with the thread that made the system call, its
process ID, and the thread ID.

Hypervisor calls summary
The Hypervisor calls summary provides a list of all the hypervisor calls that have completed execution on
the system during the monitoring period. The list is sorted by the total CPU time, in milliseconds,
consumed by each type of hypervisor call.

 Hypervisor Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time HCALL (Address)
 (msec) time (msec) (msec) (msec)
======== =========== ====== ======== ======== ======== =================
 4 0.0077 0.00% 0.0019 0.0014 0.0025 H_XIRR(3ada19c)
 4 0.0070 0.00% 0.0017 0.0015 0.0021 H_EOI(3ad6564)

The Hypervisor Calls Summary has the following fields:

Item Description

Count The number of times that a hypervisor call of a certain type has been called
during the monitoring period.

Total Time (msec) The total CPU time that the system spent processing hypervisor calls of this
type, expressed in milliseconds.

% sys Time The total CPU time that the system spent processing the hypervisor calls of
this type, expressed as a percentage of the total processing time.

Avg Time (msec) The average CPU time that the system spent processing one hypervisor call
of this type, expressed in milliseconds.

Min Time (msec) The minimum CPU time that the system needed to process one hypervisor
call of this type, expressed in milliseconds.

Max Time (msec) The maximum CPU time that the system needed to process one hypervisor
call of this type, expressed in milliseconds

HCALL (address) The name of the hypervisor call and the kernel address of its caller.

16 AIX Version 7.2: Performance Tools Guide and Reference

Pending Hypervisor calls summary
The pending Hypervisor calls summary provides a list of all the hypervisor calls that have been executed
on the system during the monitoring period but have not completed. The list is sorted by Tid.

 Pending Hypervisor Calls Summary

Accumulated HCALL (Address) Procname (Pid Tid)
Time (msec)
============ ========================= ==========================
 0.0066 H_XIRR(3ada19c) syncd(3916 5981)

The Pending Hypervisor Calls Summary has the following fields:

Item Descriptor

Accumulated Time
(msec)

The accumulated CPU time that the system spent processing the pending
hypervisor call, expressed in milliseconds.

HCALL (address) The name of the hypervisor call and the kernel address of its caller.

Procname (Pid Tid) The name of the process associated with the thread that made the
hypervisor call, its process ID, and the thread ID.

System NFS calls summary
The system NFS calls summary provides a list of all the system NFS calls that have completed execution
on the system during the monitoring period. The list is divided by NFS versions, and each list is sorted by
the total CPU time, in milliseconds, consumed by each type of system NFS call.

 System NFS Calls Summary

 Count Total Time Avg Time Min Time Max Time % Tot % Tot Opcode
 (msec) (msec) (msec) (msec) Time Count
======== =========== ======== ======== ======== ===== ===== =============
 253 48.4115 0.1913 0.0952 1.0097 98.91 98.83 RFS2_READLINK
 2 0.3959 0.1980 0.1750 0.2209 0.81 0.78 RFS2_LOOKUP
 1 0.1373 0.1373 0.1373 0.1373 0.28 0.39 RFS2_NULL
-------- ----------- -------- -------- -------- ----- ----- -------------
 256 48.9448 0.1912 NFS V2 TOTAL

 3015 4086.9121 1.3555 0.1035 31.6976 40.45 17.12 RFS3_READ
 145 2296.3158 15.8367 1.1177 42.9125 22.73 0.82 RFS3_WRITE
 10525 2263.3336 0.2150 0.0547 2.9737 22.40 59.77 RFS3_LOOKUP
 373 777.2854 2.0839 0.2839 17.5724 7.69 2.12 RFS3_READDIRPLUS
 2058 385.9510 0.1875 0.0875 1.1993 3.82 11.69 RFS3_GETATTR
 942 178.6442 0.1896 0.0554 1.2320 1.77 5.35 RFS3_ACCESS
 515 97.0297 0.1884 0.0659 0.9774 0.96 2.92 RFS3_READLINK
 25 11.3046 0.4522 0.2364 0.9712 0.11 0.14 RFS3_READDIR
 3 2.8648 0.9549 0.8939 0.9936 0.03 0.02 RFS3_CREATE
 3 2.8590 0.9530 0.5831 1.4095 0.03 0.02 RFS3_COMMIT
 2 1.1824 0.5912 0.2796 0.9028 0.01 0.01 RFS3_FSSTAT
 1 0.2773 0.2773 0.2773 0.2773 0.00 0.01 RFS3_SETATTR
 1 0.2366 0.2366 0.2366 0.2366 0.00 0.01 RFS3_PATHCONF
 1 0.1804 0.1804 0.1804 0.1804 0.00 0.01 RFS3_NULL
-------- ----------- -------- -------- -------- ----- ----- -------------
 17609 10104.3769 0.5738 NFS V3 TOTAL

 105 2296.3158 15.8367 1.1177 42.9125 22.73 0.82 CLOSE
 3025 2263.3336 0.2150 0.0547 2.9737 22.40 59.77 COMMIT
 373 777.2854 2.0839 0.2839 17.5724 7.69 2.12 CREATE
 2058 385.9510 0.1875 0.0875 1.1993 3.82 11.69 DELEGPURGE
 942 178.6442 0.1896 0.0554 1.2320 1.77 5.35 DELEGRETURN
 515 97.0297 0.1884 0.0659 0.9774 0.96 2.92 GETATTR
 25 11.3046 0.4522 0.2364 0.9712 0.11 0.14 GETFH
 3 2.8648 0.9549 0.8939 0.9936 0.03 0.02 LINK
 3 2.8590 0.9530 0.5831 1.4095 0.03 0.02 LOCK
 2 1.1824 0.5912 0.2796 0.9028 0.01 0.01 LOCKT
 1 0.2773 0.2773 0.2773 0.2773 0.00 0.01 LOCKU
 1 0.2366 0.2366 0.2366 0.2366 0.00 0.01 OOKUP
 1 0.1804 0.1804 0.1804 0.1804 0.00 0.01 LOOKUPP
 1 0.1704 0.1704 0.1704 0.1704 0.00 0.01 NVERIFY
-------- ----------- -------- -------- -------- ----- ----- -------------
 17609 10104.3769 0.5738 NFS V4 SERVER TOTAL

 3 2.8590 0.9530 0.5831 1.4095 0.03 0.02 NFS4_ACCESS
 2 1.1824 0.5912 0.2796 0.9028 0.01 0.01 NFS$_VALIDATE_CACHES

Performance Tools Guide and Reference 17

 1 0.2773 0.2773 0.2773 0.2773 0.00 0.01 NFS4_GETATTR
 1 0.2366 0.2366 0.2366 0.2366 0.00 0.01 NFS4_CHECK_ACCESS
 1 0.0000 0.0000 0.1804 0.1804 0.00 0.01 NFS4_HOLD
 1 0.1704 0.1704 0.1704 0.1704 0.00 0.01 NFS4_RELE

-------- ----------- -------- -------- -------- ----- ----- -------------
 17609 10104.3769 0.5738 NFS V4 CLIENT TOTAL

The System NFS Calls Summary has the following fields:

Item Descriptor

Count The number of times that a certain type of system NFS call (see Opcode)
has been called during the monitoring period.

Total Time (msec) The total CPU time that the system spent processing system NFS calls of
this type, expressed in milliseconds.

Avg Time (msec) The average CPU time that the system spent processing one system NFS
call of this type, expressed in milliseconds.

Min Time (msec) The minimum CPU time that the system needed to process one system NFS
call of this type, expressed in milliseconds.

Max Time (msec) The maximum CPU time that the system needed to process one system NFS
call of this type, expressed in milliseconds

% Tot Time The total CPU time that the system spent processing the system NFS calls
of this type, expressed as a percentage of the total processing time.

% Tot Count The number of times that a system NFS call of a certain type was made,
expressed as a percentage of the total count.

Opcode The name of the system NFS call.

Pending NFS calls summary
The pending NFS calls summary provides a list of all the system NFS calls that have executed on the
system during the monitoring period but have not completed. The list is sorted by the Tid.

Pending NFS Calls Summary

Accumulated Sequence Number Procname (Pid Tid)
Time (msec) Opcode
============ =============== ==========================
 0.0831 1038711932 nfsd(1007854 331969)
 0.0833 1038897247 nfsd(1007854 352459)
 0.0317 1038788652 nfsd(1007854 413931)
 0.0029 NFS4_ATTRCACHE kbiod(100098 678934)
..(lines omitted)...

The Pending System NFS Calls Summary has the following fields:

Item Descriptor

Accumulated Time (msec) The accumulated CPU time that the system spent processing the
pending system NFS call, expressed in milliseconds.

Sequence Number The sequence number represents the transaction identifier (XID) of an
NFS operation. It is used to uniquely identify an operation and is used in
the RPC call/reply messages. This number is provided instead of the
operation name because the name of the operation is unknown until it
completes.

Opcode The name of pending operation NFS V4.

Procname (Pid Tid) The name of the process associated with the thread that made the
system NFS call, its process ID, and the thread ID.

18 AIX Version 7.2: Performance Tools Guide and Reference

Pthread calls summary
The Pthread calls summary provides a list of all the pthread calls that have completed execution on the
system during the monitoring period. The list is sorted by the total CPU time, in milliseconds, consumed
by each type of pthread call.

 Pthread Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time Pthread Routine
 (msec) time (msec) (msec) (msec)
======== =========== ====== ======== ======== ======== ================
 62 3.6226 0.04% 0.0584 0.0318 0.1833 pthread_create
 10 0.1798 0.00% 0.0180 0.0119 0.0341 pthread_cancel
 8 0.0725 0.00% 0.0091 0.0064 0.0205 pthread_join
 1 0.0553 0.00% 0.0553 0.0553 0.0553 pthread_detach
 1 0.0229 0.00% 0.0229 0.0229 0.0229 pthread_kill

The Pthread Calls Summary report has the following fields:

Item Descriptor

Count The number of times that a pthread call of a certain type has been called during
the monitoring period.

Total Time (msec) The total CPU time that the system spent processing all pthread calls of this type,
expressed in milliseconds.

% sys time The total CPU time that the system spent processing all calls of this type,
expressed as a percentage of the total processing time.

Avg Time (msec) The average CPU time that the system spent processing one pthread call of this
type, expressed in milliseconds.

Min Time (msec) The minimum CPU time the system used to process one pthread call of this type,
expressed in milliseconds.

Pthread routine The name of the routine in the pthread library.

Pending Pthread calls summary
The pending Pthread calls summary provides a list of all the pthread calls that have been executed on the
system during the monitoring period but have not completed. The list is sorted by Pid-Ptid.

 Pending Pthread Calls Summary

Accumulated Pthread Routine Procname (Pid Tid Ptid)
Time (msec)
============ =============== ==========================
 1990.9400 pthread_join ./pth32(245962 1007759 1)

The Pending Pthread System Calls Summary has the following fields:

Item Descriptor

Accumulated Time
(msec)

The accumulated CPU time that the system spent processing the pending pthread
call, expressed in milliseconds.

Pthread Routine The name of the pthread routine of the libpthreads library.

Procname (Pid Tid
Ptid)

The name of the process associated with the thread and the pthread which made
the pthread call, its process ID, the thread ID and the pthread ID.

FLIH summary
The FLIH (First Level Interrupt Handler) summary lists all first level interrupt handlers that were called
during the monitoring period.

The Global FLIH Summary lists the total of first level interrupts on the system, while the Per CPU FLIH
Summary lists the first level interrupts per CPU.

Performance Tools Guide and Reference 19

 Global Flih Summary

 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 2183 203.5524 0.0932 0.0041 0.4576 31(DECR_INTR)
 946 102.4195 0.1083 0.0063 0.6590 3(DATA_ACC_PG_FLT)
 12 1.6720 0.1393 0.0828 0.3366 32(QUEUED_INTR)
 1058 183.6655 0.1736 0.0039 0.7001 5(IO_INTR)

 Per CPU Flih Summary

 CPU Number 0:
 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 635 39.8413 0.0627 0.0041 0.4576 31(DECR_INTR)
 936 101.4960 0.1084 0.0063 0.6590 3(DATA_ACC_PG_FLT)
 9 1.3946 0.1550 0.0851 0.3366 32(QUEUED_INTR)
 266 33.4247 0.1257 0.0039 0.4319 5(IO_INTR)

 CPU Number 1:
 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 4 0.2405 0.0601 0.0517 0.0735 3(DATA_ACC_PG_FLT)
 258 49.2098 0.1907 0.0060 0.5076 5(IO_INTR)
 515 55.3714 0.1075 0.0080 0.3696 31(DECR_INTR)

 Pending Flih Summary

 Accumulated Time (msec) Flih Type
 ======================== ================
 0.0123 5(IO_INTR)

 ...(lines omitted)...

The FLIH Summary report has the following fields:

Item Descriptor

Count The number of times that a first level interrupt of a certain type (see Flih Type)
occurred during the monitoring period.

Total Time (msec) The total CPU time that the system spent processing these first level interrupts,
expressed in milliseconds.

Avg Time (msec) The average CPU time that the system spent processing one first level interrupt of
this type, expressed in milliseconds.

Min Time (msec) The minimum CPU time that the system needed to process one first level interrupt
of this type, expressed in milliseconds.

Max Time (msec) The maximum CPU time that the system needed to process one first level interrupt
of this type, expressed in milliseconds.

Flih Type The number and name of the first level interrupt.

Accumulated Time
(msec)

The accumulated CPU time that the system spent processing the pending first
level interrupt, expressed in milliseconds.

FLIH types in the example
The following are FLIH types that were depicted in the FLIH summary.

Item Descriptor

DATA_ACC_PG_FLT Data access page fault

QUEUED_INTR Queued interrupt

DECR_INTR Decrementer interrupt

IO_INTR I/O interrupt

20 AIX Version 7.2: Performance Tools Guide and Reference

SLIH summary
The Second level interrupt handler (SLIH) Summary lists all second level interrupt handlers that were
called during the monitoring period.

The Global Slih Summary lists the total of second level interrupts on the system, while the Per CPU Slih
Summary lists the second level interrupts per CPU.

 Global Slih Summary

 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 43 7.0434 0.1638 0.0284 0.3763 s_scsiddpin(1a99104)
 1015 42.0601 0.0414 0.0096 0.0913 ssapin(1990490)

 Per CPU Slih Summary

 CPU Number 0:
 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 8 1.3500 0.1688 0.0289 0.3087 s_scsiddpin(1a99104)
 258 7.9232 0.0307 0.0096 0.0733 ssapin(1990490)
 CPU Number 1:
 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 10 1.2685 0.1268 0.0579 0.2818 s_scsiddpin(1a99104)
 248 11.2759 0.0455 0.0138 0.0641 ssapin(1990490)

 ...(lines omitted)...

The SLIH Summary report has the following fields:

Item Descriptor

Count The number of times that each second level interrupt handler was called during the
monitoring period.

Total Time (msec) The total CPU time that the system spent processing these second level interrupts,
expressed in milliseconds.

Avg Time (msec) The average CPU time that the system spent processing one second level interrupt
of this type, expressed in milliseconds.

Min Time (msec) The minimum CPU time that the system needed to process one second level
interrupt of this type, expressed in milliseconds.

Max Time (msec) The maximum CPU time that the system needed to process one second level
interrupt of this type, expressed in milliseconds.

Slih Name
(Address)

The module name and kernel address of the second level interrupt.

Reports generated with the -e flag
The report generated with the -e flag includes the data shown in the default report, and also includes
additional information in the System Calls Summary, the Pending System Calls Summary, the Hypervisor
Calls Summary, the Pending Hypervisor Calls Summary, the System NFS Calls Summary, the Pending NFS
Calls Summary, the Pthread Calls Summary and the Pending Pthread Calls Summary.

The additional information in the System Calls Summary, Hypervisor Calls Summary, System NFS Calls
Summary, and the Pthread Calls Summary includes the total, average, maximum, and minimum elapsed
time that a call was running. The additional information in the Pending System Calls Summary, Pending
Hypervisor Calls Summary, Pending NFS Calls Summary, and the Pending Pthread Calls Summary is the
accumulated elapsed time for the pending calls. This additional information is present in all the system
call, hypervisor call, NFS call, and pthread call reports: globally, in the process detailed report (-p), the
thread detailed report (-t), and the pthread detailed report (-P).

Performance Tools Guide and Reference 21

The following is an example of the additional information reported by using the -e flag:

curt -e -i trace.r -m trace.nm -n gensyms.out -o curt.out
cat curt.out

 ...(lines omitted)...

 System Calls Summary

 Count Total % sys Avg Min Max Tot Avg Min Max SVC (Address)
 Time time Time Time Time ETime ETime ETime ETime
 (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec)
 ===== ======== ===== ====== ====== ====== ========== ========= ========= ========= ======================
 605 355.4475 1.74% 0.5875 0.0482 4.5626 31172.7658 51.5252 0.0482 422.2323 kwrite(4259c4)
 733 196.3752 0.96% 0.2679 0.0042 2.9948 12967.9407 17.6916 0.0042 265.1204 kread(4259e8)
 3 9.2217 0.05% 3.0739 2.8888 3.3418 57.2051 19.0684 4.5475 40.0557 execve(1c95d8)
 38 7.6013 0.04% 0.2000 0.0051 1.6137 12.5002 0.3290 0.0051 3.3120 __loadx(1c9608)
 1244 4.4574 0.02% 0.0036 0.0010 0.0143 4.4574 0.0036 0.0010 0.0143 lseek(425a60)
 45 4.3917 0.02% 0.0976 0.0248 0.1810 4.6636 0.1036 0.0248 0.3037 access(507860)
 63 3.3929 0.02% 0.0539 0.0294 0.0719 5006.0887 79.4617 0.0294 100.4802 _select(4e0ee4)
 2 2.6761 0.01% 1.3380 1.3338 1.3423 45.5026 22.7513 7.5745 37.9281 kfork(1c95c8)
 207 2.3958 0.01% 0.0116 0.0030 0.1135 4494.9249 21.7146 0.0030 499.1363 _poll(4e0ecc)
 228 1.1583 0.01% 0.0051 0.0011 0.2436 1.1583 0.0051 0.0011 0.2436 kioctl(4e07ac)
 9 0.8136 0.00% 0.0904 0.0842 0.0988 4498.7472 499.8608 499.8052 499.8898 .smtcheckinit(1b245a8)
 5 0.5437 0.00% 0.1087 0.0696 0.1777 0.5437 0.1087 0.0696 0.1777 open(4e08d8)
 15 0.3553 0.00% 0.0237 0.0120 0.0322 0.3553 0.0237 0.0120 0.0322 .smtcheckinit(1b245cc)
 2 0.2692 0.00% 0.1346 0.1339 0.1353 0.2692 0.1346 0.1339 0.1353 statx(4e0950)
 33 0.2350 0.00% 0.0071 0.0009 0.0210 0.2350 0.0071 0.0009 0.0210 _sigaction(1cada4)
 1 0.1999 0.00% 0.1999 0.1999 0.1999 5019.0588 5019.0588 5019.0588 5019.0588 kwaitpid(1cab64)
 102 0.1954 0.00% 0.0019 0.0013 0.0178 0.5427 0.0053 0.0013 0.3650 klseek(425a48)

 ...(lines omitted)...

 Pending System Calls Summary

Accumulated Accumulated SVC (Address) Procname (Pid Tid)
Time (msec) ETime (msec)
============ ============ ========================= =========================
 0.0855 93.6498 kread(4259e8) oracle(143984 48841)

 ...(lines omitted)...

 Hypervisor Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time Tot ETime Avg ETime Min ETime Max ETime HCALL (Address)
 (msec) time (msec) (msec) (msec) (msec) (msec) (msec) (msec)
======== =========== ====== ======== ======== ======== ======== ========= ========= =========
=================
 4 0.0077 0.00% 0.0019 0.0014 0.0025 0.0077 0.0019 0.0014 0.0025 H_XIRR(3ada19c)
 4 0.0070 0.00% 0.0017 0.0015 0.0021 0.0070 0.0017 0.0015 0.0021 H_EOI(3ad6564)

 Pending Hypervisor Calls Summary

Accumulated Accumulated HCALL (Address) Procname (Pid Tid)
Time (msec) ETime (msec)
============ ============ ========================= =========================
 0.0855 93.6498 H_XIRR(3ada19c) syncd(3916 5981)

 System NFS Calls Summary

 Count Total Time Avg Time Min Time Max Time % Tot Total ETime Avg ETime Min ETime Max ETime % Tot % Tot
Opcode
 (msec) (msec) (msec) (msec) Time (msec) (msec) (msec) (msec) ETime Count
======== =========== ======== ======== ======== ===== =========== ========= ========= ========= ===== =====
=============
 6647 456.1029 0.0686 0.0376 0.6267 15.83 9267.7256 1.3943 0.0376 304.9501 14.63 27.88
RFS3_LOOKUP
 2694 147.1680 0.0546 0.0348 0.5517 5.11 1474.4267 0.5473 0.0348 25.9402 2.33 11.30
RFS3_GETATTR
 1702 85.8328 0.0504 0.0339 0.5793 2.98 146.4281 0.0860 0.0339 5.7539 0.23 7.14
RFS3_READLINK
 1552 78.1015 0.0503 0.0367 0.5513 2.71 153.5844 0.0990 0.0367 7.5125 0.24 6.51
RFS3_ACCESS
 235 33.3158 0.1418 0.0890 0.3312 1.16 1579.4557 6.7211 0.0890 56.0876 2.49 0.99
RFS3_SETATTR
 21 5.5979 0.2666 0.0097 0.8142 82.79 127.2616 6.0601 0.0097 89.0570 99.37 25.00
NFS4_WRITE
 59 1.1505 0.0195 0.0121 0.0258 17.01 0.7873 0.0133 0.0093 0.0194 0.61 70.24
NFS4_ATTRCACHE
 4 0.0135 0.0034 0.0026 0.0044 0.20 0.0135 0.0034 0.0026 0.0044 0.01 4.76
NFS4_GET_UID_GID
...(line omitted)...

 Pending NFS Calls Summary

Accumulated Accumulated Sequence Number Procname (Pid Tid)
Time (msec) ETime (msec) Opcode

22 AIX Version 7.2: Performance Tools Guide and Reference

============ ============ =============== ==========================
 0.0831 15.1581 1038711932 nfsd(1007854 331969)
 0.0833 13.8889 1038897247 nfsd(1007854 352459)
 0.0087 10.8976 NFS4_ATTRCACHE kbiod(100098 678934)
...(line omitted)...

 Pthread Calls Summary

Count Total Time % sys Avg Time Min Time Max Time Tot ETime Avg ETime Min ETime Max ETime Pthread Routine
 (msec) time (msec) (msec) (msec) (msec) (msec) (msec) (msec)
==== =========== ====== ======== ======== ======== ======== ========= ========= ========= ================
 72 2.0126 0.01% 0.0280 0.0173 0.1222 13.7738 0.1913 0.0975 0.6147 pthread_create
 2 0.6948 0.00% 0.3474 0.0740 0.6208 92.3033 46.1517 9.9445 82.3588 pthread_kill
 12 0.3087 0.00% 0.0257 0.0058 0.0779 25.0506 2.0876 0.0168 10.0605 pthread_cancel
 22 0.0613 0.00% 0.0028 0.0017 0.0104 2329.0179 105.8644 0.0044 1908.3402 pthread_join
 2 0.0128 0.00% 0.0064 0.0062 0.0065 0.1528 0.0764 0.0637 0.0891 pthread_detach

 Pending Pthread Calls Summary

Accumulated Accumulated Pthread Routine Procname (pid tid ptid)
Time (msec) ETime (msec)
============ ============ =============== =========================
 3.3102 4946.5433 pthread_join ./pth32(282718 700515 1)
 0.0025 544.4914 pthread_join ./pth(282720 - 1)

The system call, hypervisor call, NFS call, and pthread call reports in the preceding example have the
following fields in addition to the default System Calls Summary, Hypervisor Calls Summary, System NFS
Calls Summary, and Pthread Calls Summary :

Item Descriptor

Tot ETime (msec) The total amount of time from when each instance of the call was started until
it completed. This time will include any time spent servicing interrupts, running
other processes, and so forth.

Avg ETime (msec) The average amount of time from when the call was started until it completed.
This time will include any time spent servicing interrupts, running other
processes, and so forth.

Min ETime (msec) The minimum amount of time from when the call was started until it
completed. This time will include any time spent servicing interrupts, running
other processes, and so forth.

Max ETime (msec) The maximum amount of time from when the call was started until it
completed. This time will include any time spent servicing interrupts, running
other processes, and so forth.

Accumulated ETime
(msec)

The total amount of time from when the pending call was started until the end
of the trace. This time will include any time spent servicing interrupts, running
other processes, and so forth.

The preceding example report shows that the maximum elapsed time for the kwrite system call was
422.2323 msec, but the maximum CPU time was 4.5626 msec. If this amount of overhead time is
unusual for the device being written to, further analysis is needed.

Reports generated with the -s flag
The report generated with the -s flag includes the data shown in the default report, and data on errors
returned by system calls.

curt -s -i trace.r -m trace.nm -n gensyms.out -o curt.out
cat curt.out

...(lines omitted)...

 Errors Returned by System Calls

Errors (errno : count : description) returned for System Call: kioctl(4e07ac)
 25 : 15 : "Not a typewriter"
Errors (errno : count : description) returned for System Call: execve(1c95d8)
 2 : 2 : "No such file or directory"

Performance Tools Guide and Reference 23

...(lines omitted)...

If a large number of errors of a specific type or on a specific system call point to a system or application
problem, other debug measures can be used to determine and fix the problem.

Reports generated with the -t flag
The report generated with the -t flag includes the data shown in the default report, and also includes a
detailed report on thread status that includes the amount of time the thread was in application and
system call mode, what system calls the thread made, processor affinity, the number of times the thread
was dispatched, and to which CPUs it was dispatched.

The report also includes dispatch wait time and details of interrupts:

...(lines omitted)...
--
Report for Thread Id: 48841 (hex bec9) Pid: 143984 (hex 23270)
Process Name: oracle

 Total Application Time (ms): 70.324465
 Total System Call Time (ms): 53.014910
 Total Hypervisor Call Time (ms): 0.077000

 Thread System Call Summary

 Count Total Time Avg Time Min Time Max Time SVC (Address)
 (msec) (msec) (msec) (msec)
======== =========== =========== =========== =========== ================
 69 34.0819 0.4939 0.1666 1.2762 kwrite(169ff8)
 77 12.0026 0.1559 0.0474 0.2889 kread(16a01c)
 510 4.9743 0.0098 0.0029 0.0467 times(f1e14)
 73 1.2045 0.0165 0.0105 0.0306 select(1d1704)
 68 0.6000 0.0088 0.0023 0.0445 lseek(16a094)
 12 0.1516 0.0126 0.0071 0.0241 getrusage(f1be0)

 No Errors Returned by System Calls

 Pending System Calls Summary

Accumulated SVC (Address)
Time (msec)
============ ==========================
 0.1420 kread(16a01c)

 Thread Hypervisor Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time HCALL (Address)
 (msec) time (msec) (msec) (msec)
 ======== =========== ====== ======== ======== ======== =================
 4 0.0077 0.00% 0.0019 0.0014 0.0025 H_XIRR(3ada19c)

 Pending Hypervisor Calls Summary

 Accumulated HCALL (Address)
 Time (msec)
 ============ =========================
 0.0066 H_XIRR(3ada19c)

 processor affinity: 0.583333

Dispatch Histogram for thread (CPUid : times_dispatched).
 CPU 0 : 23
 CPU 1 : 23
 CPU 2 : 9
 CPU 3 : 9
 CPU 4 : 8
 CPU 5 : 14
 CPU 6 : 17
 CPU 7 : 19
 CPU 8 : 1
 CPU 9 : 4
 CPU 10 : 1
 CPU 11 : 4

24 AIX Version 7.2: Performance Tools Guide and Reference

 total number of dispatches: 131
 total number of redispatches due to interupts being disabled: 1
 avg. dispatch wait time (ms): 8.273515

 Data on Interrupts that Occurred while Thread was Running
 Type of Interrupt Count
 =============================== ============================
 Data Access Page Faults (DSI): 115
 Instr. Fetch Page Faults (ISI): 0
 Align. Error Interrupts: 0
 IO (external) Interrupts: 0
 Program Check Interrupts: 0
 FP Unavailable Interrupts: 0
 FP Imprecise Interrupts: 0
 RunMode Interrupts: 0
 Decrementer Interrupts: 18
 Queued (Soft level) Interrupts: 15

...(lines omitted)...

If the thread belongs to an NFS kernel process, the report will include information on NFS operations
instead of System calls:

Report for Thread Id: 1966273 (hex 1e00c1) Pid: 1007854 (hex f60ee)
Process Name: nfsd

 Total Kernel Time (ms): 3.198998
 Total Operation Time (ms): 28.839927
Total Hypervisor Call Time (ms): 0.000000

 Thread NFS Call Summary

 Count Total Time Avg Time Min Time Max Time % Tot Total ETime Avg ETime Min ETime Max ETime % Tot % Tot
Opcode
 (msec) (msec) (msec) (msec) Time (msec) (msec) (msec) (msec) ETime Count
======== =========== ======== ======== ======== ===== =========== ========= ========= ========= ===== =====
=============
 28 12.2661 0.4381 0.3815 0.4841 42.73 32.0893 1.1460 0.4391 16.6283 11.46 11.52
RFS3_READDIRPLUS
 63 3.8953 0.0618 0.0405 0.1288 13.57 23.1031 0.3667 0.0405 7.0886 8.25 25.93
RFS3_LOOKUP
 49 3.2795 0.0669 0.0527 0.0960 11.42 103.8431 2.1192 0.0534 35.3617 37.09 20.16
RFS3_READ
 18 2.8464 0.1581 0.1099 0.2264 9.91 7.9129 0.4396 0.1258 4.3503 2.83 7.41
RFS3_WRITE
 29 1.3331 0.0460 0.0348 0.0620 4.64 1.4953 0.0516 0.0348 0.0940 0.53 11.93
RFS3_GETATTR
 5 1.2763 0.2553 0.2374 0.3036 4.45 45.0798 9.0160 0.9015 21.7257 16.10 2.06
RFS3_REMOVE
 8 1.1001 0.1375 0.1180 0.1719 3.83 53.6532 6.7067 1.4293 19.9199 19.17 3.29
RFS3_COMMIT
 20 0.9262 0.0463 0.0367 0.0507 3.23 1.2060 0.0603 0.0367 0.1314 0.43 8.23
RFS3_READLINK
 15 0.6798 0.0453 0.0386 0.0519 2.37 0.8015 0.0534 0.0386 0.0788 0.29 6.17
RFS3_ACCESS
 2 0.4033 0.2017 0.1982 0.2051 1.40 0.5355 0.2677 0.2677 0.2677 0.19 0.82
RFS3_READDIR
 1 0.3015 0.3015 0.3015 0.3015 1.05 6.2614 6.2614 6.2614 6.2614 2.24 0.41
RFS3_CREATE
 2 0.2531 0.1265 0.1000 0.1531 0.88 3.7756 1.8878 0.1000 3.6756 1.35 0.82
RFS3_SETATTR
 2 0.0853 0.0426 0.0413 0.0440 0.30 0.1333 0.0667 0.0532 0.0802 0.05 0.82
RFS3_FSINFO
 1 0.0634 0.0634 0.0634 0.0634 0.22 0.0634 0.0634 0.0634 0.0634 0.02 0.41
RFS3_FSSTAT
-------- ----------- -------- -------- -------- ----- ----------- --------- --------- --------- ----- -----

 243 28.7094 0.1181 279.9534 1.1521
NFS V3 TOTAL
 4 0.0777 0.0194 0.0164 0.0232 10.00 0.0523 0.0131 0.0115 0.0152 10.00 10.00
LINK
-------- ----------- -------- -------- -------- ----- ----------- --------- ---------- --------- -----
----- -------------
 4 0.0777 0.0194 0.0523 0.0131
NFS V4 CLIENT TOTAL

 Pending NFS Calls Summary

Accumulated Accumulated Sequence Number
Time (msec) ETime (msec) Opcode
============ ============ ===============
 0.1305 182.6903 1038932778
 0.0123 102.6324 NFS4_ATTRCACHE

The following information is included in the threads summary:

Performance Tools Guide and Reference 25

Item Descriptor

Thread ID The Thread ID of the thread.

Process ID The Process ID that the thread belongs to.

Process Name The process name, if known, that the thread belongs to.

Total Application Time
(ms)

The amount of time, expressed in milliseconds, that the thread spent in
application mode.

Total System Call Time
(ms)

The amount of time, expressed in milliseconds, that the thread spent in
system call mode.

Thread System Call
Summary

A system call summary for the thread; this has the same fields as the global
System Calls Summary. It also includes elapsed time if the -e flag is
specified and error information if the -s flag is specified.

Pending System Calls
Summary

If the thread was executing a system call at the end of the trace, a pending
system call summary will be printed. This has the Accumulated Time and
Supervisor Call (SVC Address) fields. It also includes elapsed time if the -e
flag is specified.

Thread Hypervisor Calls
Summary

The hypervisor call summary for the thread; this has the same fields as the
global Hypervisor Calls Summary. It also includes elapsed time if the -e flag
is specified.

Pending Hypervisor Calls
Summary

If the thread was executing a hypervisor call at the end of the trace, a
pending hypervisor call summary will be printed. This has the Accumulated
Time and Hypervisor Call fields. It also includes elapsed time if the -e flag is
specified.

Thread NFS Calls
Summary

An NFS call summary for the thread. This has the same fields as the global
System NFS Call Summary. It also includes elapsed time if the -e flag is
specified.

Pending NFS Calls
Summary

If the thread was executing an NFS call at the end of the trace, a pending
NFS call summary will be printed. This has the Accumulated Time and
Sequence Number or, in the case of NFS V4, Opcode, fields. It also
includes elapsed time if the -e flag is specified.

processor affinity The process affinity, which is the probability that, for any dispatch of the
thread, the thread was dispatched to the same processor on which it last
executed.

Dispatch Histogram for
thread

Shows the number of times the thread was dispatched to each CPU in the
system.

total number of
dispatches

The total number of times the thread was dispatched (not including
redispatches).

total number of
redispatches due to
interrupts being disabled

The number of redispatches due to interrupts being disabled, which is when
the dispatch code is forced to dispatch the same thread that is currently
running on that particular CPU because the thread had disabled some
interrupts. This total is only reported if the value is non-zero.

avg. dispatch wait time
(ms)

The average dispatch wait time is the average elapsed time for the thread
from being undispatched and its next dispatch.

Data on Interrupts that
occurred while Thread
was Running

Count of how many times each type of FLIH occurred while this thread was
executing.

Reports generated with the -p flag
The report generated with the -p flag includes the data shown in the default report and also includes a
detailed report for each process that includes the Process ID and name, a count and list of the thread IDs,

26 AIX Version 7.2: Performance Tools Guide and Reference

and the count and list of the pthread IDs belonging to the process. The total application time, the system
call time, and the application time details for all the threads of the process are given. Lastly, it includes
summary reports of all the completed and pending system calls, and pthread calls for the threads of the
process.

The following example shows the report generated for the router process (PID 129190):

Process Details for Pid: 129190

 Process Name: router

 7 Tids for this Pid: 245889 245631 244599 82843 78701 75347 28941
 9 Ptids for this Pid: 2057 1800 1543 1286 1029 772 515 258 1

Total Application Time (ms): 124.023749
Total System Call Time (ms): 8.948695
Total Hypervisor Time (ms): 0.000000

Application time details:
 Total Pthread Call Time (ms): 1.228271
 Total Pthread Dispatch Time (ms): 2.760476
 Total Pthread Idle Dispatch Time (ms): 0.110307
 Total Other Time (ms): 798.545446
 Total number of pthread dispatches: 53
 Total number of pthread idle dispatches: 3

 Process System Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)
 (msec) time (msec) (msec) (msec)
 ======== =========== ====== ======== ======== ======== ================
 93 3.6829 0.05% 0.0396 0.0060 0.3077 kread(19731c)
 23 2.2395 0.03% 0.0974 0.0090 0.4537 kwrite(1972f8)
 30 0.8885 0.01% 0.0296 0.0073 0.0460 select(208c5c)
 1 0.5933 0.01% 0.5933 0.5933 0.5933 fsync(1972a4)
 106 0.4902 0.01% 0.0046 0.0035 0.0105 klseek(19737c)
 13 0.3285 0.00% 0.0253 0.0130 0.0387 semctl(2089e0)
 6 0.2513 0.00% 0.0419 0.0238 0.0650 semop(2089c8)
 3 0.1223 0.00% 0.0408 0.0127 0.0730 statx(2086d4)
 1 0.0793 0.00% 0.0793 0.0793 0.0793 send(11e1ec)
 9 0.0679 0.00% 0.0075 0.0053 0.0147 fstatx(2086c8)
 4 0.0524 0.00% 0.0131 0.0023 0.0348 kfcntl(22aa14)
 5 0.0448 0.00% 0.0090 0.0086 0.0096 yield(11dbec)
 3 0.0444 0.00% 0.0148 0.0049 0.0219 recv(11e1b0)
 1 0.0355 0.00% 0.0355 0.0355 0.0355 open(208674)
 1 0.0281 0.00% 0.0281 0.0281 0.0281 close(19728c)

 Pending System Calls Summary

Accumulated SVC (Address) Tid
Time (msec)
============ ========================= ================
 0.0452 select(208c5c) 245889
 0.0425 select(208c5c) 78701
 0.0285 select(208c5c) 82843
 0.0284 select(208c5c) 245631
 0.0274 select(208c5c) 244599
 0.0179 select(208c5c) 75347

 ...(omitted lines)...

 Pthread Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time Pthread Routine
 (msec) time (msec) (msec) (msec)
======== =========== ====== ======== ======== ======== ================
 19 0.0477 0.00% 0.0025 0.0017 0.0104 pthread_join
 1 0.0065 0.00% 0.0065 0.0065 0.0065 pthread_detach
 1 0.6208 0.00% 0.6208 0.6208 0.6208 pthread_kill
 6 0.1261 0.00% 0.0210 0.0077 0.0779 pthread_cancel
 21 0.7080 0.01% 0.0337 0.0226 0.1222 pthread_create

 Pending Pthread Calls Summary

Performance Tools Guide and Reference 27

Accumulated Pthread Routine Tid Ptid
Time (msec)
============ =============== ================ ================
 3.3102 pthread_join 78701 1

If the process is an NFS kernel process, the report will include information on NFS operations instead of
System and Pthread calls:

Process Details for Pid: 1007854
 Process Name: nfsd
 252 Tids for this Pid: 2089213 2085115 2081017 2076919 2072821 2068723
 2040037 2035939 2031841 2027743 2023645 2019547
 2015449 2011351 2007253 2003155 1999057 1994959
...(lines omitted)...
 454909 434421 413931 397359 364797 352459
 340185 331969 315411 303283 299237 266405

 Total Kernel Time (ms): 380.237018
 Total Operation Time (ms): 2891.971209

 Process NFS Calls Summary

 Count Total Time Avg Time Min Time Max Time % Tot Total ETime Avg ETime Min ETime Max ETime % Tot % Tot
Opcode
 (msec) (msec) (msec) (msec) Time (msec) (msec) (msec) (msec) ETime Count
======== =========== ======== ======== ======== ===== =========== ========= ========= ========= ===== =====
=============
 2254 1018.3621 0.4518 0.3639 0.9966 35.34 1800.5708 0.7988 0.4204 16.6283 2.84 9.45
RFS3_READDIRPLUS
 6647 456.1029 0.0686 0.0376 0.6267 15.83 9267.7256 1.3943 0.0376 304.9501 14.63 27.88
RFS3_LOOKUP
 1993 321.4973 0.1613 0.0781 0.6428 11.16 3006.1774 1.5084 0.0781 121.8822 4.75 8.36
RFS3_WRITE
 4409 314.3122 0.0713 0.0425 0.6139 10.91 14052.7567 3.1873 0.0425 313.2698 22.19 18.49
RFS3_READ
 1001 177.9891 0.1778 0.0903 8.7271 6.18 23187.1693 23.1640 0.7657 298.0521 36.61 4.20
RFS3_COMMIT
 2694 147.1680 0.0546 0.0348 0.5517 5.11 1474.4267 0.5473 0.0348 25.9402 2.33 11.30
RFS3_GETATTR
 495 102.0142 0.2061 0.1837 0.7000 3.54 185.8549 0.3755 0.1895 6.1340 0.29 2.08
RFS3_READDIR
 1702 85.8328 0.0504 0.0339 0.5793 2.98 146.4281 0.0860 0.0339 5.7539 0.23 7.14
RFS3_READLINK
 1552 78.1015 0.0503 0.0367 0.5513 2.71 153.5844 0.0990 0.0367 7.5125 0.24 6.51
RFS3_ACCESS
 186 64.4498 0.3465 0.2194 0.7895 2.24 4201.0235 22.5861 1.0235 117.5351 6.63 0.78
RFS3_CREATE
 208 56.8876 0.2735 0.1928 0.7351 1.97 4245.4378 20.4108 0.9015 181.0121 6.70 0.87
RFS3_REMOVE
 235 33.3158 0.1418 0.0890 0.3312 1.16 1579.4557 6.7211 0.0890 56.0876 2.49 0.99
RFS3_SETATTR
 190 13.3856 0.0705 0.0473 0.5495 0.46 19.3971 0.1021 0.0473 0.6827 0.03 0.80
RFS3_FSSTAT
 275 12.4504 0.0453 0.0343 0.0561 0.43 16.6542 0.0606 0.0343 0.2357 0.03 1.15
RFS3_FSINFO
-------- ----------- -------- -------- -------- ----- ----------- --------- --------- --------- ----- -----

 23841 2881.8692 0.1209 63336.6621 2.6566
NFS V3 TOTAL
 55 1.0983 0.0200 0.0164 0.0258 100.00 0.7434 0.0135 0.0115 0.0194 10.00 10.00
NFS4_ATTRCACHE
-------- ----------- -------- -------- -------- ----- ----------- --------- --------- --------- ----- -----

 55 1.0983 0.0200 0.7434 0.0135
NFS V4 CLIENT TOTAL

 Pending NFS Calls Summary

Accumulated Accumulated Sequence Number Tid
Time (msec) ETime (msec) Opcode
============ ============ =============== ================
 0.1812 48.1456 1039026977 2089213
 0.0188 14.8878 1038285324 2085115
 0.0484 2.7123 1039220089 2081017
 0.1070 49.5471 1039103658 2072821
 0.0953 58.8009 1038453491 2035939
 0.0533 62.9266 1039037391 2031841
 0.1195 14.6817 1038686320 2019547
 0.2063 37.1826 1039164331 2015449
 0.0140 6.0718 1039260848 2011351
 0.0671 8.8971 NFS4_WRITE 2012896
...(lines omitted)...

The following information is included in the process detailed report:

28 AIX Version 7.2: Performance Tools Guide and Reference

Item Descriptor

Total Application
Time (ms)

The amount of time, expressed in milliseconds, that the process spent in
application mode.

Total System Call
Time (ms)

The amount of time, expressed in milliseconds, that the process spent in
system call mode.

The following information is included in the application time details report:

Item Descriptor

Total Pthread Call
Time

The amount of time, expressed in milliseconds, that the process spent in traced
pthread library calls.

Total Pthread
Dispatch Time

The amount of time, expressed in milliseconds, that the process spent in
libpthreads dispatch code.

Total Pthread Idle
Dispatch Time

The amount of time, expressed in milliseconds, that the process spent in
libpthreads vp_sleep code.

Total Other Time The amount of time, expressed in milliseconds, that the process spent in non-
traced user mode code.

Total number of
pthread dispatches

The total number of times a pthread belonging to the process was dispatched
by the libpthreads dispatcher.

Total number of
pthread idle
dispatches

The total number of times a thread belonging to the process was in the
libpthreads vp_sleep code.

The following summary information is included in the report:

Item Descriptor

Process System Calls
Summary

A system call summary for the process; this has the same fields as the global
System Call Summary. It also includes elapsed time information if the -e flag is
specified and error information if the -s flag is specified.

Pending System Calls
Summary

If the process was executing a system call at the end of the trace, a pending
system call summary will be printed. This has the Accumulated Time and
Supervisor Call (SVC Address) fields. It also includes elapsed time information
if the -e flag is specified.

Process Hypervisor
Calls Summary

A summary of the hypervisor calls for the process; this has the same fields as
the global Hypervisor Calls Summary. It also includes elapsed time information
if the -e flag is specified.

Pending Hypervisor
Calls Summary

If the process was executing a hypervisor call at the end of the trace, a pending
hypervisor call summary will be printed. This has the Accumulated Time and
Hypervisor Call fields. It also includes elapsed time information if the -e flag is
specified.

Process NFS Calls
Summary

An NFS call summary for the process. This has the same fields as the global
System NFS Call Summary. It also includes elapsed time information if the -e
flag is specified.

Pending NFS Calls
Summary

If the process was executing an NFS call at the end of the trace, a pending NFS
call summary will be printed. This has the Accumulated Time and Sequence
Number or, in the case of NFS V4, Opcode, fields. It also includes elapsed time
information if the -e flag is specified.

Pthread Calls
Summary

A summary of the pthread calls for the process. This has the same fields as the
global pthread Calls Summary. It also includes elapsed time information if the -
e flag is specified.

Performance Tools Guide and Reference 29

Item Descriptor

Pending Pthread Calls
Summary

If the process was executing pthread library calls at the end of the trace, a
pending pthread call summary will be printed. This has the Accumulated Time
and Pthread Routine fields. It also includes elapsed time information if the -e
flag is specified.

Reports generated with the -P flag
The report generated with the -P flag includes the data shown in the default report and also includes a
detailed report on pthread status.

The report includes the following:

• The amount of time the pthread was in application and system call mode
• The application time details
• The system calls and pthread calls that the pthread made
• The system calls and pthread calls that were pending at the end of the trace
• The processor affinity
• The number of times the pthread was dispatched
• To which CPU(s) the thread was dispatched
• The thread affinity
• The number of times that the pthread was dispatched
• To which kernel thread(s) the pthread was dispatched

The report also includes dispatch wait time and details of interrupts.

The following is an example of a report generated with the -P flag:

Report for Pthread Id: 1 (hex 1) Pid: 245962 (hex 3c0ca)
Process Name: ./pth32

 Total Application Time (ms): 3.919091
 Total System Call Time (ms): 8.303156
 Total Hypervisor Call Time (ms): 0.000000

 Application time details:
 Total Pthread Call Time (ms): 1.139372
 Total Pthread Dispatch Time (ms): 0.115822
 Total Pthread Idle Dispatch Time (ms): 0.036630
 Total Other Time (ms): 2.627266

 Pthread System Calls Summary

 Count Total Time Avg Time Min Time Max Time SVC (Address)
 (msec) (msec) (msec) (msec)
======== =========== ======== ======== ======== ================
 1 3.3898 3.3898 3.3898 3.3898 _exit(409e50)
 61 0.8138 0.0133 0.0089 0.0254 kread(5ffd78)
 11 0.4616 0.0420 0.0262 0.0835 thread_create(407360)
 22 0.2570 0.0117 0.0062 0.0373 mprotect(6d5bd8)
 12 0.2126 0.0177 0.0100 0.0324 thread_setstate(40a660)
 115 0.1875 0.0016 0.0012 0.0037 klseek(5ffe38)
 12 0.1061 0.0088 0.0032 0.0134 sbrk(6d4f90)
 23 0.0803 0.0035 0.0018 0.0072 trcgent(4078d8)

...(lines omitted)...

 Pending System Calls Summary

Accumulated SVC (Address)
Time (msec)
============ ==========================
 0.0141 thread_tsleep(40a4f8)

 Pthread Calls Summary

30 AIX Version 7.2: Performance Tools Guide and Reference

 Count Total Time % sys Avg Time Min Time Max Time Pthread Routine
 (msec) time (msec) (msec) (msec)
======== =========== ====== ======== ======== ======== ================
 11 0.9545 0.01% 0.0868 0.0457 0.1833 pthread_create
 8 0.0725 0.00% 0.0091 0.0064 0.0205 pthread_join
 1 0.0553 0.00% 0.0553 0.0553 0.0553 pthread_detach
 1 0.0341 0.00% 0.0341 0.0341 0.0341 pthread_cancel
 1 0.0229 0.00% 0.0229 0.0229 0.0229 pthread_kill

 Pending Pthread Calls Summary

Accumulated Pthread Routine
Time (msec)
============ ===============
 0.0025 pthread_join

 processor affinity: 0.600000

Processor Dispatch Histogram for pthread (CPUid : times_dispatched):
 CPU 0 : 4
 CPU 1 : 1

 total number of dispatches : 5
 avg. dispatch wait time (ms): 798.449725

 Thread affinity: 0.333333

Thread Dispatch Histogram for pthread (thread id : number dispatches):
 Thread id 688279 : 1
 Thread id 856237 : 1
 Thread id 1007759 : 1

 total number of pthread dispatches: 3
 avg. dispatch wait time (ms): 1330.749542

 Data on Interrupts that Occurred while Phread was Running
 Type of Interrupt Count
 =============================== ============================
 Data Access Page Faults (DSI): 452
 Instr. Fetch Page Faults (ISI): 0
 Align. Error Interrupts: 0
 IO (external) Interrupts: 0
 Program Check Interrupts: 0
 FP Unavailable Interrupts: 0
 FP Imprecise Interrupts: 0
 RunMode Interrupts: 0
 Decrementer Interrupts: 2
 Queued (Soft level) Interrupts: 0

The information in the pthreads summary report includes the following:

Item Descriptor

Pthread ID The Pthread ID of the thread.

Process ID The Process ID that the pthread belongs to.

Process Name The process name, if known, that the pthread belongs to.

Total Application
Time (ms)

The amount of time, expressed in milliseconds, that the pthread spent in
application mode.

Total System Call
Time (ms)

The amount of time, expressed in milliseconds, that the pthread spent in
system call mode.

The information in the application time details report includes the following:

Item Descriptor

Total Pthread Call
Time

The amount of time, expressed in milliseconds, that the pthread spent in traced
pthread library calls.

Total Pthread
Dispatch Time

The amount of time, expressed in milliseconds, that the pthread spent in
libpthreads dispatch code.

Performance Tools Guide and Reference 31

Item Descriptor

Total Pthread Idle
Dispatch Time

The amount of time, expressed in milliseconds, that the pthread spent in
libpthreads vp_sleep code.

Total Other Time The amount of time, expressed in milliseconds, that the pthread spent in non-
traced user mode code.

Total number of
pthread dispatches

The total number of times a pthread belonging to the process was dispatched
by the libpthreads dispatcher.

Total number of
pthread idle
dispatches

The total number of times a thread belonging to the process was in the
libpthreads vp_sleep code.

The summary information in the report includes the following:

Item Descriptor

Pthread System
Calls Summary

A system call summary for the pthread; this has the same fields as the global
System Call Summary. It also includes elapsed time information if the -e flag is
specified and error information if the -s flag is specified.

Pending System
Calls Summary

If the pthread was executing a system call at the end of the trace, a pending
system call summary will be printed. This has the Accumulated Time and
Supervisor Call (SVC Address) fields. It also includes elapsed time information if
the -e flag is specified.

Pthread Hypervisor
Calls Summary

A summary of the hypervisor calls for the pthread. This has the same fields as the
global hypervisor calls summary. It also includes elapsed time information if the -
e flag is specified.

Pending Hypervisor
Calls Summary

If the pthread was executing a hypervisor call at the end of the trace, a pending
hypervisor calls summary will be printed. This has the Accumulated Time and
Hypervisor Call fields. It also includes elapsed time information if the -e flag is
specified.

Pthread Calls
Summary

A summary of the pthread library calls for the pthread. This has the same fields as
the global pthread Calls Summary. It also includes elapsed time information if the
-e flag is specified.

Pending Pthread
Calls Summary

If the pthread was executing a pthread library call at the end of the trace, a
pending pthread call summary will be printed. This has the Accumulated Time and
Pthread Routine fields. It also includes elapsed time information if the -e flag is
specified.

The pthreads summary report also includes the following information:

Item Descriptor

processor affinity Probability that for any dispatch of the pthread, the pthread was dispatched to
the same processor on which it last executed.

Processor Dispatch
Histogram for pthread

The number of times that the pthread was dispatched to each CPU in the
system.

avg. dispatch wait
time

The average elapsed time for the pthread from being undispatched and its next
dispatch.

Thread affinity The probability that for any dispatch of the pthread, the pthread was
dispatched to the same kernel thread on which it last executed

Thread Dispatch
Histogram for pthread

The number of times that the pthread was dispatched to each kernel thread in
the process.

32 AIX Version 7.2: Performance Tools Guide and Reference

Item Descriptor

total number of
pthread dispatches

The total number of times the pthread was dispatched by the libpthreads
dispatcher.

Data on Interrupts
that occurred while
Pthread was Running

The number of times each type of FLIH occurred while the pthread was
executing.

Simple performance lock analysis tool (splat)
The Simple Performance Lock Analysis Tool (splat) is a software tool that generates reports on the use of
synchronization locks. These include the simple and complex locks provided by the AIX kernel, as well as
user-level mutexes, read and write locks, and condition variables provided by the PThread library.

The splat tool is not currently equipped to analyze the behavior of the Virtual Memory Manager (VMM)
and PMAP locks used in the AIX kernel.

splat command syntax
Review the splat command syntax, flags, and parameters.

The syntax for the splat command is as follows:

splat [-i file] [-n file] [-o file] [-d [bfta]] [-l address][-c class] [-s [acelmsS]] [-C#] [-S#] [-t start] [-T stop] [-
p]

splat -h [topic]

splat -j

Flags

The flags of the splat command are:

Item Descriptor

-i inputfile Specifies the &SWsym.AIX; trace log file input.

-n namefile Specifies the file containing output of the gensyms command.

-o outputfile Specifies an output file (default is stdout).

-d detail Specifies the level of detail of the report.

-c class Specifies class of locks to be reported.

-l address Specifies the address for which activity on the lock will be reported.

-s criteria Specifies the sort order of the lock, function, and thread.

-C CPUs Specifies the number of processors on the MP system that the trace was drawn from.
The default is 1. This value is overridden if more processors are observed to be
reported in the trace.

-S count Specifies the number of items to report on for each section. The default is 10. This
gives the number of locks to report in the Lock Summary and Lock Detail reports, as
well as the number of functions to report in the Function Detail and threads to report in
the Thread detail (the -s option specifies how the most significant locks, threads, and
functions are selected).

-t starttime Overrides the start time from the first event recorded in the trace. This flag forces the
analysis to begin an event that occurs starttime seconds after the first event in the
trace.

-T stoptime Overrides the stop time from the last event recorded in the trace. This flag forces the
analysis to end with an event that occurs stoptime seconds after the first event in the
trace.

Performance Tools Guide and Reference 33

The flags of the splat command are: (continued)

Item Descriptor

-j Prints the list of IDs of the trace hooks used by the splat command.

-h topic Prints a help message on usage or a specific topic.

-p Specifies the use of the PURR register to calculate CPU times.

Parameters

The parameters associated with the splat command are:

Item Descriptor

inputfile The AIX trace log file input. This file can be a merge trace file generated using the
trcrpt -r command.

namefile File containing output of the gensyms command.

outputfile File to write reports to.

detail The detail level of the report, it can be one of the following:
basic

Lock summary plus lock detail (the default)
function

Basic plus function detail
thread

Basic plus thread detail
all

Basic plus function plus thread detail

class Activity classes, which is a decimal value found in the /usr/include/sys/lockname.h
file.

address The address to be reported, given in hexadecimal.

criteria Order the lock, function, and thread reports by the following criteria:
a

Acquisitions
c

Percent processor time held
e

Percent elapsed time held
l

Lock address, function address, or thread ID
m

Miss rate
s

Spin count
S

Percent processor spin hold time (the default)

CPUs The number of processors on the MP system that the trace was drawn from. The
default is 1. This value is overridden if more processors are observed to be reported in
the trace.

34 AIX Version 7.2: Performance Tools Guide and Reference

The parameters associated with the splat command are: (continued)

Item Descriptor

count The number of locks to report in the Lock Summary and Lock Detail reports, as well as
the number of functions to report in the Function Detail and threads to report in the
Thread detail. (The -s option specifies how the most significant locks, threads, and
functions are selected).

starttime The number of seconds after the first event recorded in the trace that the reporting
starts.

stoptime The number of seconds after the first event recorded in the trace that the reporting
stops.

topic Help topics, which are: all overview input names reports sorting

Measurement and sampling
The splat tool takes as input an AIX trace log file or (for an SMP trace) a set of log files, and preferably a
names file produced by the gennames or gensyms command.

The procedure for generating these files is shown in the trace section. When you run trace, you will
usually use the flag -J splat to capture the events analyzed by splat (or without the -J flag, to capture all
events). The significant trace hooks are shown in the following table:

Hook
ID

Event name Event explanation

106 HKWD_KERN_DISPATCH The thread is dispatched from the run queue to a
processor.

10C HKWD_KERN_IDLE The idle process is been dispatched.

10E HKWD_KERN_RELOCK One thread is suspended while another is dispatched;
the ownership of a RunQ lock is transferred from the
first to the second.

112 HKWD_KERN_LOCK The thread attempts to secure a kernel lock; the sub-
hook shows what happened.

113 HKWD_KERN_UNLOCK A kernel lock is released.

134 HKWD_SYSC_EXECVE An exec supervisor call (SVC) has been issued by a
(forked) process.

139 HKWD_SYSC_FORK A fork SVC has been issued by a process.

419 HKWD_CPU_PREEMPT A process has been preempted.

465 HKWD_SYSC_CRTHREAD A thread_create SVC has been issued by a process.

46D HKWD_KERN_WAITLOCK The thread is enqueued to wait on a kernel lock.

46E HKWD_KERN_WAKEUPLOCK A thread has been awakened.

606 HKWD_PTHREAD_COND Operations on a Condition Variable.

607 HKWD_PTHREAD_MUTEX Operations on a Mutex.

608 HKWD_PTHREAD_RWLOCK Operations on a Read/Write Lock.

609 HKWD_PTHREAD_GENERAL Operations on a PThread.

Performance Tools Guide and Reference 35

Execution, trace, and analysis Intervals
In some cases, you can use the trace tool to capture the entire execution of a workload, while in other
cases you will capture only an interval of the execution.

The execution interval is the entire time that a workload runs. This interval is arbitrarily long for server
workloads that run continuously. The trace interval is the time actually captured in the trace log file by
trace. The length of this trace interval is limited by how large a trace log file will fit on the file system.

In contrast, the analysis interval is the portion of the trace interval that is analyzed by the splat command.
The -t and -T flags indicate to the splat command to start and finish analysis some number of seconds
after the first event in the trace. By default, the splat command analyzes the entire trace, so this analysis
interval is the same as the trace interval.

Note: As an optimization, the splat command stops reading the trace when it finishes its analysis, so it
indicates that the trace and analysis intervals end at the same time even if they do not.

To most accurately estimate the effect of lock activity on the computation, you will usually want to
capture the longest trace interval that you can, and analyze that entire interval with the splat command.
The -t and -T flags are usually used for debugging purposes to study the behavior of the splat command
across a few events in the trace.

As a rule, either use large buffers when collecting a trace, or limit the captured events to the ones you
need to run the splat command.

Trace discontinuities
The splat command uses the events in the trace to reconstruct the activities of threads and locks in the
original system.

If part of the trace is missing, it is because one of the following situations exists:

• Tracing was stopped at one point and restarted at a later point.
• One processor fills its trace buffer and stops tracing, while other processors continue tracing.
• Event records in the trace buffer were overwritten before they could be copied into the trace log file.

In any of the above cases, the splat command will not be able to correctly analyze all the events across
the trace interval. The policy of splat is to finish its analysis at the first point of discontinuity in the trace,
issue a warning message, and generate its report. In the first two cases, the message is as follows:

 TRACE OFF record read at 0.567201 seconds. One or more of the CPUs has
 stopped tracing. You might want to generate a longer trace using larger
 buffers and re-run splat.

In the third case, the message is as follows:

 TRACEBUFFER WRAPAROUND record read at 0.567201 seconds. The input trace
 has some records missing; splat finishes analyzing at this point. You
 might want to re-generate the trace using larger buffers and re-run splat.

Some versions of the AIX kernel or PThread library might be incompletely instrumented, so the traces
will be missing events. The splat command might not provide correct results in this case.

Address-to-Name resolution in the splat command
The lock instrumentation in the kernel and PThread library is what captures the information for each lock
event.

Data addresses are used to identify locks; instruction addresses are used to identify the point of
execution. These addresses are captured in the event records in the trace, and used by the
splatcommand to identify the locks and the functions that operate on them.

However, these addresses are not of much use to the programmer, who would rather know the names of
the lock and function declarations so that they can be located in the program source files. The conversion
of names to addresses is determined by the compiler and loader, and can be captured in a file using the
gensyms command. The gensyms command also captures the contents of the /usr/include/sys/
lockname.h file, which declares classes of kernel locks.

36 AIX Version 7.2: Performance Tools Guide and Reference

The gensyms output file is passed to the splat command with the -n flag. When splat reports on a kernel
lock, it provides the best identification that it can.

Kernel locks that are declared are resolved by name. Locks that are created dynamically are identified by
class if their class name is given when they are created. The libpthreads.a instrumentation is not
equipped to capture names or classes of PThread synchronizers, so they are always identified by address
only.

Examples of generated reports
The report generated by the splat command consists of an execution summary, a gross lock summary,
and a per-lock summary, followed by a list of lock detail reports that optionally includes a function detail
or a thread detail report.

Execution summary
The execution summary report is generated by default when you use the splat command.

The following example shows a sample of the execution summary.

splat Cmd: splat -p -sa -da -S100 -i trace.cooked -n gensyms -o splat.out

Trace Cmd: trace -C all -aj 600,603,605,606,607,608,609 -T 20000000 -L 200000000 -o CONDVAR.raw
Trace Host: darkwing (0054451E4C00) AIX 5.2
Trace Date: Thu Sep 27 11:26:16 2002

PURR was used to calculate CPU times.

Elapsed Real Time: 0.098167
Number of CPUs Traced: 1 (Observed):0
Cumulative CPU Time: 0.098167

 start stop
 -------------------- --------------------
trace interval (absolute tics) 967436752 969072535
 (relative tics) 0 1635783
 (absolute secs) 58.057947 58.156114
 (relative secs) 0.000000 0.098167
analysis interval (absolute tics) 967436752 969072535
 (trace-relative tics) 0 1635783
 (self-relative tics) 0 1635783
 (absolute secs) 58.057947 58.156114
 (trace-relative secs) 0.000000 0.098167
 (self-relative secs) 0.000000 0.098167
**

From the example above, you can see that the execution summary consists of the following elements:

• The splat version and build information, disclaimer, and copyright notice.
• The command used to run splat.
• The trace command used to collect the trace.
• The host on which the trace was taken.
• The date that the trace was taken.
• A sentence specifying whether the PURR register was used to calculate CPU times.
• The real-time duration of the trace, expressed in seconds.
• The maximum number of processors that were observed in the trace (the number specified in the trace

conditions information, and the number specified on the splat command line).
• The cumulative processor time, equal to the duration of the trace in seconds times the number of

processors that represents the total number of seconds of processor time consumed.
• A table containing the start and stop times of the trace interval, measured in tics and seconds, as

absolute timestamps, from the trace records, as well as relative to the first event in the trace
• The start and stop times of the analysis interval, measured in tics and seconds, as absolute timestamps,

as well as relative to the beginning of the trace interval and the beginning of the analysis interval.

Performance Tools Guide and Reference 37

Gross lock summary
The gross lock summary report is generated by default when you use the splat command.

The following example shows a sample of the gross lock summary report.

 Unique Acquisitions Acq. or Passes Total System
 Total Addresses (or Passes) per Second Spin Time
 --------- --------- ------------ -------------- ------------
AIX (all) Locks: 523 523 1323045 72175.7768 0.003986
 RunQ: 2 2 487178 26576.9121 0.000000
 Simple: 480 480 824898 45000.4754 0.003986
 Transformed: 22 18 234 352.3452
 Krlock: 50 21 76876 32.6548 0.000458
 Complex: 41 41 10969 598.3894 0.000000
 PThread CondVar: 7 6 160623 8762.4305 0.000000
 Mutex: 128 116 1927771 105165.2585 10.280745 *
 RWLock: 0 0 0 0.0000 0.000000

 (spin time goal)

The gross lock summary report table consists of the following columns:

Item Descriptor

Total The number of AIX Kernel locks, followed by the number of each type of AIX Kernel
lock; RunQ, Simple, and Complex. Under some conditions, this will be larger than
the sum of the numbers of RunQ, Simple, and Complex locks because we might not
observe enough activity on a lock to differentiate its type. This is followed by the
number of PThread condition-variables, the number of PThread Mutexes, and the
number of PThread Read/Write. The Transformed value represents the number of
different simple locks responsible for the allocation (and liberation) of at least one
Krlock. In this case, two simple locks will be different if they are not created at the
same time or they do not have the same address.

Unique Addresses The number of unique addresses observed for each synchronizer type. Under some
conditions, a lock will be destroyed and re-created at the same address; the splat
command produces a separate lock detail report for each instance because the
usage might be different. The Transformed value represents the number of different
simple locks responsible for the allocation (and liberation) of at least one Krlock. In
this case, simple locks created at different times but with the same address
increment the counter only once.

Acquisitions (or
Passes)

For locks, the total number of times acquired during the analysis interval; for
PThread condition-variables, the total number of times the condition passed during
the analysis interval. The Transformed value represents the number of acquisitions
made by a thread holding the corresponding Krlock.

Acq. or Passes
(per Second)

Acquisitions or passes per second, which is the total number of acquisitions or
passes divided by the elapsed real time of the trace. The Transformed value
represents the acquisition rate for the acquisitions made by threads holding the
corresponding krlock.

% Total System
spin Time

The cumulative time spent spinning on each synchronizer type, divided by the
cumulative processor time, times 100 percent. The general goal is to spin for less
than 10 percent of the processor time; a message to this effect is printed at the
bottom of the table. If any of the entries in this column exceed 10 percent, they are
marked with an asterisk (*). For simple locks, the spin time of the Krlocks is
included.

Per-lock summary
The pre-locl summary report is generated by default when you use the splat command.

The following example shows a sample of the per-lock summary report.

38 AIX Version 7.2: Performance Tools Guide and Reference

**

100 max entries, Summary sorted by Acquisitions:

 T Acqui- Wait
 y sitions or Locks or Percent Holdtime
Lock Names, p or Trans- Passes Real Real
Comb
Class, or Address e Passes Spins form %Miss %Total / CSec CPU Elapse
Spin
********************** * ****** ***** **** ***** ****** ********* ******* ******

PROC_INT_CLASS.0003 Q 486490 0 0 0.0000 36.7705 26539.380 5.3532 100.000
0.0000
THREAD_LOCK_CLASS.0012 S 323277 0 9468 0.0000 24.4343 17635.658 6.8216 6.8216
0.0000
THREAD_LOCK_CLASS.0118 D 323094 0 4568 0.0000 24.4205 17625.674 6.7887 6.7887
0.0000
ELIST_CLASS.003C S 80453 0 201 0.0000 6.0809 4388.934 1.0564 1.0564
0.0000
ELIST_CLASS.0044 S 80419 0 110 0.0000 6.0783 4387.080 1.1299 1.1299
0.0000
tod_lock C 10229 0 0 0.0000 0.7731 558.020 0.2212 0.2212
0.0000
LDATA_CONTROL_LOCK.0000 D 1833 0 10 0.0000 0.1385 99.995 0.0204 0.0204
0.0000
U_TIMER_CLASS.0014 S 1514 0 23 0.0000 0.1144 82.593 0.0536 0.0536
0.0000

(... lines omitted ...)

000000002FF22B70 L 368838 0 N/A 0.0000 100.000 9622.964 99.9865 99.9865
0.0000
00000000F00C3D74 M 160625 0 0 0.0000 14.2831 8762.540 99.7702 99.7702
0.0000
00000000200017E8 M 160625 175 0 0.1088 14.2831 8762.540 42.9371 42.9371
0.1487
0000000020001820 V 160623 0 624 0.0000 100.000 1271.728 N/A N/A
N/A
00000000F00C3750 M 37 0 0 0.0000 0.0033 2.018 0.0037 0.0037
0.0000
00000000F00C3800 M 30 0 0 0.0000 0.0027 1.637 0.0698 0.0698
0.0000

 (... lines omitted ...)
**

The first line indicates the maximum number of locks to report (100 in this case, but we show only 14 of
the entries here) as specified by the -S 100 flag. The report also indicates that the entries are sorted by
the total number of acquisitions or passes, as specified by the -sa flag. The various Kernel locks and
PThread synchronizers are treated as two separate lists in this report, so the report would produce the
top 100 Kernel locks sorted by acquisitions, followed by the top 100 PThread synchronizers sorted by
acquisitions or passes.

The per-lock summary table consists of the following columns:

Item Descriptor

Lock Names, Class, or
Address

The name, class, or address of the lock, depending on whether the splat
command could map the address from a name file.

Performance Tools Guide and Reference 39

Item Descriptor

Type The type of the lock, identified by one of the following letters:
Q

A RunQ lock
S

An enabled simple kernel lock
D

A disabled simple kernel lock
C

A complex kernel lock
M

A PThread mutex
V

A PThread condition-variable
L

A PThread read/write lock

Acquisitions or Passes The number of times that the lock was acquired or the condition passed, during
the analysis interval.

Spins The number of times that the lock (or condition-variable) was spun on during
the analysis interval.

Wait or Transform The number of times that a thread was driven into a wait state for that lock or
condition-variable during the analysis interval. When Krlocks are enabled, a
simple lock never enters the wait state and this value represents the number of
Krlocks that the simple lock has allocated, which is the transform count of
simple locks.

%Miss The percentage of access attempts that resulted in a spin as opposed to a
successful acquisition or pass.

%Total The percentage of all acquisitions that were made to this lock, out of all
acquisitions to all locks of this type. All AIX locks (RunQ, simple, and complex)
are treated as being the same type for this calculation. The PThread
synchronizers mutex, condition-variable, and read/write lock are all distinct
types.

Locks or Passes /
CSec

The number of times that the lock (or condition-variable) was acquired (or
passed) divided by the cumulative processor time. This is a measure of the
acquisition frequency of the lock.

Percent Holdtime

Real CPU The percentage of the cumulative processor time that the lock was held by any
thread at all, whether running or suspended. Note that this definition is not
applicable to condition-variables because they are not held.

Real Elapse The percentage of the elapsed real time that the lock was held by any thread at
all, whether running or suspended. Note that this definition is not applicable to
condition-variables because they are not held.

Comb Spin The percentage of the cumulative processor time that executing threads spent
spinning on the lock. The PThreads library uses waiting for condition-variables,
so there is no time actually spent spinning.

40 AIX Version 7.2: Performance Tools Guide and Reference

AIX kernel lock details
By default, the splat command prints a lock detail report for each entry in the summary report. The AIX
Kernel locks can be either simple or complex.

The RunQ lock is a special case of the simple lock, although its pattern of usage will differ markedly from
other lock types. The splat command distinguishes it from the other simple locks to ease its analysis.

Disabled simple and RunQ lock details
In an AIX SIMPLE Lock report, the first line starts with either [AIX SIMPLE Lock] or [AIX RunQ lock].

If the gennames or gensyms output file permits, the ADDRESS is also converted into a lock NAME and
CLASS, and the containing kernel extension (KEX) is identified as well. The CLASS is printed with an eight
hex-digit extension indicating how many locks of this class were allocated prior to it.

[AIX SIMPLE Lock] ADDRESS: 0000000020000D60 KEX: unknown
==
 | Trans- | | Percent Held (35.568534s)
Type: | Miss Spin form Busy | Secs Held | Real Real Comb Real
Disabled | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait
 |100.000 1 2658 0 |0.000000 0.000000 | 0.00 0.00 0.00 29.62
--
Total Acquisitions: 12945 |SpinQ Min Max Avg | Krlocks SpinQ Min Max Avg
Acq. holding krlock: 2498 |Depth 0 1 0 | Depth 0 1 0
--
PROD | CONFER | HANDOFF
0 | SELF: 0 TARGET: 0 ALL: 0 | 0
 | w/ preemption: 0 w/ preemption: 0 |
--

 Lock Activity (mSecs) - Interrupts Disabled

 SIMPLE Count Minimum Maximum Average Total
 +++++++ ++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
 LOCK 0 0.000000 0.000000 0.000000 0.000000
 w/ KRLOCK 0 0.000000 0.000000 0.000000 0.000000
 SPIN 0 0.000000 0.000000 0.000000 0.000000
 KRLOCK LOCK 0 0.000000 0.000000 0.000000 0.000000
 KRLOCK SPIN 0 0.000000 0.000000 0.000000 0.000000
 TRANSFORM 0 0.000000 0.000000 0.000000 0.000000

 Acqui- Miss Spin Transf. Busy Percent Held of Total Time
Function Name sitions Rate Count Count Count CPU Elapse Spin Transf. Return Address Start
Address Offset
^^^^^^^^^^^^ ^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^ ^^^^^^^^
 .dispatch 3177 0.63 20 0 0 0.00 0.02 0.00 0.00 0000000000039CF4
0000000000000000 00039CF4
 .dispatch 6053 0.31 19 0 0 0.03 0.07 0.00 0.00 00000000000398E4
0000000000000000 000398E4
 .setrq 3160 0.19 6 0 0 0.01 0.02 0.00 0.00 0000000000038E60
0000000000000000 00038E60
 .steal_threads 1 0.00 0 0 0 0.00 0.00 0.00 0.00 0000000000066A68
0000000000000000 00066A68
 .steal_threads 6 0.00 0 0 0 0.00 0.00 0.00 0.00 0000000000066CE0
0000000000000000 00066CE0
 .dispatch 535 2.19 12 0 12 0.01 0.02 0.00 0.00 0000000000039D88
0000000000000000 00039D88
 .dispatch 2 0.00 0 0 0 0.00 0.00 0.00 0.00 0000000000039D14
0000000000000000 00039D14
 .prio_requeue 7 0.00 0 0 0 0.00 0.00 0.00 0.00 000000000003B2A4
0000000000000000 0003B2A4
 .setnewrq 4 0.00 0 0 0 0.00 0.00 0.00 0.00 0000000000038980
0000000000000000 00038980

 Acqui- Miss Spin Transf. Busy Percent Held of Total Time Process
 ThreadID sitions Rate Count Count Count CPU Elapse Spin Transf. ProcessID Name
 ~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~~~~  ~~~~~~~~~~~~~ 
   775     11548      0.34     39    0      0      0.06   0.10   0.00   0.00     774     wait 
 35619         3     25.00      1    0      0      0.00   0.00   0.00   0.00   18392     sleep 
 31339        21      4.55      1    0      0      0.00   0.00   0.00   0.00    7364     java 
 35621         2      0.00      0    0      0      0.00   0.00   0.00   0.00   18394     locktrace 

(... lines omitted ...)

Performance Tools Guide and Reference  41



                

The SIMPLE lock report fields are as follows:

Item Descriptor

Type If the simple lock was used with interrupts, this field is enabled. Otherwise, this
field is disabled.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Busy Count The number of simple_lock_try calls that returned busy.

Seconds Held This field contains the following sub-fields:
CPU

The total number of processor seconds that the lock was held by an
executing thread.

Elapsed
The total number of elapsed seconds that the lock was held by any thread,
whether running or suspended.

Percent Held This field contains the following sub-fields:
Real CPU

The percentage of the cumulative processor time that the lock was held by
an executing thread.

Real Elapsed
The percentage of the elapsed real time that the lock was held by any
thread at all, either running or suspended.

Comb(ined) Spin
The percentage of the cumulative processor time that running threads spent
spinning while trying to acquire this lock.

Real Wait
The percentage of elapsed real time that any thread was waiting to acquire
this lock. If two or more threads are waiting simultaneously, this wait time
will only be charged once. To determine how many threads were waiting
simultaneously, look at the WaitQ Depth statistics.

Total Acquisitions The number of times that the lock was acquired in the analysis interval. This
includes successful simple_lock_try calls.

Acq. holding krlock The number of acquisitions made by threads holding a Krlock.

Transform count The number of Krlocks that have been used (allocated and freed) by the simple
lock.

SpinQ The minimum, maximum, and average number of threads spinning on the lock,
whether executing or suspended, across the analysis interval.

Krlocks SpinQ The minimum, maximum, and average number of threads spinning on a Krlock
allocated by the simple lock, across the analysis interval.

PROD The associated Krlocks prod calls count.

CONFER SELF The confer to self calls count for the simple lock and the associated Krlocks.

CONFER TARGET The confer to target calls count for the simple lock and the associated Krlocks

CONFER ALL The confer to all calls count for the simple lock and the associated Krlocks.

HANDOFF The associated Krlocks handoff calls count.

42  AIX Version 7.2: Performance Tools Guide and Reference



The Lock Activity with Interrupts Enabled (milliseconds) and Lock Activity with Interrupts Disabled
(milliseconds) sections contain information on the time that each lock state is used by the locks.

The states that a thread can be in (with respect to a given simple or complex lock) are as follows:

Item Descriptor

(no lock reference) The thread is running, does not hold this lock, and is not attempting to acquire this
lock.

LOCK The thread has successfully acquired the lock and is currently executing.

LOCK with
KRLOCK

The thread has successfully acquired the lock, while holding the associated Krlock,
and is currently executing.

SPIN The thread is executing and unsuccessfully attempting to acquire the lock.

KRLOCK LOCK The thread has successfully acquired the associated Krlock and is currently
executing.

KRLOCK SPIN The thread is executing and unsuccessfully attempting to acquire the associated
Krlock.

TRANSFORM The thread has successfully allocated a Krlock that it associates itself to and is
executing.

The Lock Activity sections of the report measure the intervals of time (in milliseconds) that each thread
spends in each of the states for this lock. The columns report the number of times that a thread entered
the given state, followed by the maximum, minimum, and average time that a thread spent in the state
once entered, followed by the total time that all threads spent in that state. These sections distinguish
whether interrupts were enabled or disabled at the time that the thread was in the given state.

A thread can acquire a lock prior to the beginning of the analysis interval and release the lock during the
analysis interval. When the splat command observes the lock being released, it recognizes that the lock
had been held during the analysis interval up to that point and counts the time as part of the state-
machine statistics. For this reason, the state-machine statistics might report that the number of times
that the lock state was entered might actually be larger than the number of acquisitions of the lock that
were observed in the analysis interval.

RunQ locks are used to protect resources in the thread management logic. These locks are acquired a
large number of times and are only held briefly each time. A thread need not be executing to acquire or
release a RunQ lock. Further, a thread might spin on a RunQ lock, but it will not go into an UNDISP or
WAIT state on the lock. You will see a dramatic difference between the statistics for RunQ versus other
simple locks.

Enabled simple lock details
The Lock Activity sections of the report measure the intervals of time (in milliseconds) that each thread
spends in each of the states for this lock. The columns report the number of times that a thread entered
the given state, followed by the maximum, minimum, and average time that a thread spent in the state
once entered, followed by the total time that all threads spent in that state.

These sections of the report distinguish whether interrupts were enabled or disabled at the time that the
thread was in the given state.

The following example is an enabled simple lock detail report:

[AIX SIMPLE Lock]                 CLASS:      PROC_INT_CLASS.00000004 
ADDRESS: 000000000200786C 
====================================================================================== 
         |                             |                  | Percent Held ( 26.235284s ) 
Type     |  Miss  Spin   Wait   Busy   |    Secs Held     |  Real  Real    Comb  Real 
Enabled  |  Rate  Count  Count  Count  |CPU      Elapsed  |  CPU  Elapsed  Spin  Wait 
     |  0.438 57     2658   12     |0.022852 0.032960 |  0.04   0.13   0.00   0.00 
-------------------------------------------------------------------------------------- 
Total Acquisitions:   2498 |SpinQ   Min   Max   Avg  | WaitQ    Min   Max   Avg 
                           |Depth   0     1     0    | Depth   0     0     0 
-------------------------------------------------------------------------------------- 

Performance Tools Guide and Reference  43



                      Lock Activity (mSecs) - Interrupts Enabled 

  SIMPLE       Count         Minimum        Maximum        Average          Total 
  +++++++      ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ 
  LOCK           8027        0.000597       0.022486       0.002847      22.852000 
  SPIN             45        0.001376       0.008960       0.004738       0.213212 
  UNDISP            0        0.000000       0.000000       0.000000       0.000000 
  WAIT              0        0.000000       0.000000       0.000000       0.000000 
  PREEMPT        4918        0.000811       0.009728       0.001955       9.615807 

                Acqui-  Miss  Spin   Wait   Busy    Percent Held of Total Time 
Function Name  sitions  Rate  Count  Count  Count    CPU   Elapse  Spin   Wait   Return Address   Start 
Address    Offset 
^^^^^^^^^^^^ ^^^^^^^^  ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^  ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^^^^^^ 
^^^^^^^^^^^^^^^^ ^^^^^^^^ 
   .dispatch    3177    0.63   20      0      0     0.00    0.02   0.00   0.00  0000000000039CF4 
0000000000000000 00039CF4 
   .dispatch    6053    0.31   19      0      0     0.03    0.07   0.00   0.00  00000000000398E4 
0000000000000000 000398E4 
   .setrq       3160    0.19    6      0      0     0.01    0.02   0.00   0.00  0000000000038E60 
0000000000000000 00038E60 
   .steal_threads  1    0.00    0      0      0     0.00    0.00   0.00   0.00  0000000000066A68 
0000000000000000 00066A68 
   .steal_threads  6    0.00    0      0      0     0.00    0.00   0.00   0.00  0000000000066CE0 
0000000000000000 00066CE0 
   .dispatch     535    2.19   12      0     12     0.01    0.02   0.00   0.00  0000000000039D88 
0000000000000000 00039D88 
   .dispatch       2    0.00    0      0      0     0.00    0.00   0.00   0.00  0000000000039D14 
0000000000000000 00039D14 
   .prio_requeue   7    0.00    0      0      0     0.00    0.00   0.00   0.00  000000000003B2A4 
0000000000000000 0003B2A4 
   .setnewrq       4    0.00    0      0      0     0.00    0.00   0.00   0.00  0000000000038980 
0000000000000000 00038980 

           Acqui-    Miss   Spin   Wait   Busy    Percent Held of Total Time             Process 
 ThreadID  sitions   Rate   Count  Count  Count    CPU   Elapse  Spin   Wait  ProcessID  Name 
 ~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~~~~  ~~~~~~~~~~~~~ 
 775 11548 0.34 39 0 0 0.06 0.10 0.00 0.00 774 wait
 35619 3 25.00 1 0 0 0.00 0.00 0.00 0.00 18392 sleep
 31339 21 4.55 1 0 0 0.00 0.00 0.00 0.00 7364 java
 35621 2 0.00 0 0 0 0.00 0.00 0.00 0.00 18394 locktrace

(... lines omitted ...)

The SIMPLE lock report fields are as follows:

Item Descriptor

Type If the simple lock was used with interrupts, this field is enabled. Otherwise, this
field is disabled.

Total Acquisitions The number of times that the lock was acquired in the analysis interval. This
includes successful simple_lock_try calls.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The number of times that a thread was forced into a suspended wait state,
waiting for the lock to come available.

Busy Count The number of simple_lock_try calls that returned busy.

44 AIX Version 7.2: Performance Tools Guide and Reference

Item Descriptor

Seconds Held This field contains the following sub-fields:
CPU

The total number of processor seconds that the lock was held by an
executing thread.

Elapsed
The total number of elapsed seconds that the lock was held by any thread,
whether running or suspended.

Percent Held This field contains the following sub-fields:
Real CPU

The percentage of the cumulative processor time that the lock was held by
an executing thread.

Real Elapsed
The percentage of the elapsed real time that the lock was held by any
thread at all, either running or suspended.

Comb(ined) Spin
The percentage of the cumulative processor time that running threads spent
spinning while trying to acquire this lock.

Real Wait
The percentage of elapsed real time that any thread was waiting to acquire
this lock. If two or more threads are waiting simultaneously, this wait time
will only be charged once. To determine how many threads were waiting
simultaneously, look at the WaitQ Depth statistics.

SpinQ The minimum, maximum, and average number of threads spinning on the lock,
whether executing or suspended, across the analysis interval.

WaitQ The minimum, maximum, and average number of threads waiting on the lock,
across the analysis interval.

The Lock Activity with Interrupts Enabled (milliseconds) and Lock Activity with Interrupts Disabled
(milliseconds) sections contain information on the time that each lock state is used by the locks.

The states that a thread can be in (with respect to a given simple or complex lock) are as follows:

Item Descriptor

(no lock reference) The thread is running, does not hold this lock, and is not attempting to acquire this
lock.

LOCK The thread has successfully acquired the lock and is currently executing.

SPIN The thread is executing and unsuccessfully attempting to acquire the lock.

UNDISP The thread has become undispatched while unsuccessfully attempting to acquire
the lock.

WAIT The thread has been suspended until the lock comes available. It does not
necessarily acquire the lock at that time, but instead returns to a SPIN state.

PREEMPT The thread is holding this lock and has become undispatched.

A thread can acquire a lock prior to the beginning of the analysis interval and release the lock during the
analysis interval. When the splat command observes the lock being released, it recognizes that the lock
had been held during the analysis interval up to that point and counts the time as part of the state-
machine statistics. For this reason, the state-machine statistics can report that the number of times that
the lock state was entered might actually be larger than the number of acquisitions of the lock that were
observed in the analysis interval.

Performance Tools Guide and Reference 45

RunQ locks are used to protect resources in the thread management logic. These locks are acquired a
large number of times and are only held briefly each time. A thread need not be executing to acquire or
release a RunQ lock. Further, a thread might spin on a RunQ lock, but it will not go into an UNDISP or
WAIT state on the lock. You will see a dramatic difference between the statistics for RunQ versus other
simple locks.

Function detail
The function detail report is obtained by using the -df or -da options of splat.

The columns are defined as follows:

Item Descriptor

Function Name The name of the function that acquired or attempted to acquire this lock, if it
could be resolved.

Acquisitions The number of times that the function was able to acquire this lock. For complex
lock and read/write, there is a distinction between acquisition for writing,
Acquisition Write, and for reading, Acquisition Read.

Miss Rate The percentage of acquisition attempts that failed.

Spin Count The number of unsuccessful attempts by the function to acquire this lock. For
complex lock and read/write there is a distinction between spin count for
writing, Spin Count Write, and for reading, Spin Count Read.

Transf. Count The number of times that a simple lock has allocated a Krlock, while a thread
was trying to acquire the simple lock.

Busy Count The number of times simple_lock_try calls returned busy.

Percent Held of Total
Time

Contains the following sub-fields:
CPU

Percentage of the cumulative processor time that the lock was held by an
executing thread that had acquired the lock through a call to this function.

Elapse(d)
The percentage of the elapsed real time that the lock was held by any thread
at all, whether running or suspended, that had acquired the lock through a
call to this function.

Spin
The percentage of cumulative processor time that executing threads spent
spinning on the lock while trying to acquire the lock through a call to this
function.

Wait
The percentage of elapsed real time that executing threads spent waiting for
the lock while trying to acquire the lock through a call to this function.

Return Address The return address to this calling function, in hexadecimal.

Start Address The start address to this calling function, in hexadecimal.

Offset The offset from the function start address to the return address, in hexadecimal.

The functions are ordered by the same sorting criterion as the locks, controlled by the -s option of splat.
Further, the number of functions listed is controlled by the -S parameter. The default is the top ten
functions.

Thread Detail
The Thread Detail report is obtained by using the -dt or -da options of splat.

At any point in time, a single thread is either running or it is not. When a single thread runs, it only runs on
one processor. Some of the composite statistics are measured relative to the cumulative processor time
when they measure activities that can happen simultaneously on more than one processor, and the

46 AIX Version 7.2: Performance Tools Guide and Reference

magnitude of the measurements can be proportional to the number of processors in the system. In
contrast, the thread statistics are generally measured relative to the elapsed real time, which is the
amount of time that a single processor spends processing and the amount of time that a single thread
spends in an executing or suspended state.

The Thread Detail report columns are defined as follows:

Item Descriptor

ThreadID The thread identifier.

Acquisitions The number of times that this thread acquired the lock.

Miss Rate The percentage of acquisition attempts by the thread that failed to secure the
lock.

Spin Count The number of unsuccessful attempts by this thread to secure the lock.

Transf. Count The number of times that a simple lock has allocated a Krlock, while a thread
was trying to acquire the simple lock.

Wait Count The number of times that this thread was forced to wait until the lock came
available.

Busy Count The number of simple_lock_try() calls that returned busy.

Percent Held of Total
Time

Consists of the following sub-fields:
CPU

The percentage of the elapsed real time that this thread executed while
holding the lock.

Elapse(d)
The percentage of the elapsed real time that this thread held the lock while
running or suspended.

Spin
The percentage of elapsed real time that this thread executed while
spinning on the lock.

Wait
The percentage of elapsed real time that this thread spent waiting on the
lock.

Process ID The Process identifier (only for simple and complex lock report).

Process Name Name of the process using the lock (only for simple and complex lock report).

Complex-Lock report
AIX Complex lock supports recursive locking, where a thread can acquire the lock more than once before
releasing it, as well as differentiating between write-locking, which is exclusive, from read-locking, which
is not exclusive.

This report begins with [AIX COMPLEX Lock]. Most of the entries are identical to the simple lock report,
while some of them are differentiated by read/write/upgrade. For example, the SpinQ and WaitQ statistics
include the minimum, maximum, and average number of threads spinning or waiting on the lock. They
also include the minimum, maximum, and average number of threads attempting to acquire the lock for
reading versus writing. Because an arbitrary number of threads can hold the lock for reading, the report
includes the minimum, maximum, and average number of readers in the LockQ that holds the lock.

A thread might hold a lock for writing; this is exclusive and prevents any other thread from securing the
lock for reading or for writing. The thread downgrades the lock by simultaneously releasing it for writing
and acquiring it for reading; this permits other threads to also acquire the lock for reading. The reverse of
this operation is an upgrade; if the thread holds the lock for reading and no other thread holds it as well,
the thread simultaneously releases the lock for reading and acquires it for writing. The upgrade operation
might require that the thread wait until other threads release their read-locks. The downgrade operation
does not.

Performance Tools Guide and Reference 47

A thread might acquire the lock to some recursive depth; it must release the lock the same number of
times to free it. This is useful in library code where a lock must be secured at each entry-point to the
library; a thread will secure the lock once as it enters the library, and internal calls to the library entry-
points simply re-secure the lock, and release it when returning from the call. The minimum, maximum,
and average recursion depths of any thread holding this lock are reported in the table.

A thread holding a recursive write-lock is not permitted to downgrade it because the downgrade is
intended to apply to only the last write-acquisition of the lock, and the prior acquisitions had a real reason
to keep the acquisition exclusive. Instead, the lock is marked as being in the downgraded state, which is
erased when the this latest acquisition is released or upgraded. A thread holding a recursive read-lock
can only upgrade the latest acquisition of the lock, in which case the lock is marked as being upgraded.
The thread will have to wait until the lock is released by any other threads holding it for reading. The
minimum, maximum, and average recursion-depths of any thread holding this lock in an upgraded or
downgraded state are reported in the table.

The Lock Activity report also breaks down the time based on what task the lock is being secured for
(reading, writing, or upgrading).

No time is reported to perform a downgrade because this is performed without any contention. The
upgrade state is only reported for the case where a recursive read-lock is upgraded. Otherwise, the
thread activity is measured as releasing a read-lock and acquiring a write-lock.

The function and thread details also break down the acquisition, spin, and wait counts by whether the
lock is to be acquired for reading or writing.

PThread synchronizer reports
By default, the splat command prints a detailed report for each PThread entry in the summary report.
The PThread synchronizers are of the following types: mutex, read/write lock, and condition-variable.

The mutex and read/write lock are related to the AIX complex lock. You can view the similarities in the
lock detail reports. The condition-variable differs significantly from a lock, and this is reflected in the
report details.

The PThread library instrumentation does not provide names or classes of synchronizers, so the
addresses are the only way we have to identify them. Under certain conditions, the instrumentation can
capture the return addresses of the function call stack, and these addresses are used with the gensyms
output to identify the call chains when these synchronizers are created. The creation and deletion times
of the synchronizer can sometimes be determined as well, along with the ID of the PThread that created
them.

Mutex reports
The PThread mutex is similar to an AIX simple lock in that only one thread can acquire the lock, and is
like an AIX complex lock in that it can be held recursively.

[PThread MUTEX] ADDRESS: 00000000F0154CD0
Parent Thread: 0000000000000001 creation time: 26.232305
Pid: 18396 Process Name: trcstop
Creation call-chain ==
00000000D268606C .pthread_mutex_lock
00000000D268EB88 .pthread_once
00000000D01FE588 .__libs_init
00000000D01EB2FC ._libc_inline_callbacks
00000000D01EB280 ._libc_declare_data_functions
00000000D269F960 ._pth_init_libc
00000000D268A2B4 .pthread_init
00000000D01EAC08 .__modinit
000000001000014C .__start
==
 | | | Percent Held (26.235284s)
Acqui- | Miss Spin Wait Busy | Secs Held | Real Real Comb Real
sitions | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait
1 | 0.000 0 0 0 |0.000006 0.000006 | 0.00 0.00 0.00 0.00
--
Depth Min Max Avg
SpinQ 0 0 0
WaitQ 0 0 0
Recursion 0 1 0

 Acqui- Miss Spin Wait Busy Percent Held of Total Time
 PThreadID sitions Rate Count Count Count CPU Elapse Spin Wait
 ~~~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~   ~~~~~~   ~~~~~~   ~~~~~~   ~~~~~~ 
         1         1    0.00      0      0      0     0.00     0.00     0.00     0.00 

48  AIX Version 7.2: Performance Tools Guide and Reference



                    Acqui-   Miss  Spin   Wait   Busy    Percent Held of Total Time 
Function Name      sitions   Rate  Count  Count  Count    CPU   Elapse  Spin   Wait   Return Address   Start Address    
Offset 
^^^^^^^^^^^^^^^^^^ ^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^  ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^  ^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^ 
^^^^^^^^ 
   .pthread_once        0    0.00    0      0      0     99.99  99.99   0.00   0.00  00000000D268EC98 00000000D2684180 
0000AB18 
   .pthread_once        1    0.00    0      0      0      0.01   0.01   0.00   0.00  00000000D268EB88 00000000D2684180 
0000AA08

In addition to the common header information and the [PThread MUTEX] identifier, this report lists the
following lock details:

Item Descriptor

Parent Thread Pthread id of the parent pthread.

creation time Elapsed time in seconds after the first event recorded in trace (if available).

deletion time Elapsed time in seconds after the first event recorded in trace (if available).

PID Process identifier.

Process Name Name of the process using the lock.

Call-chain Stack of called methods (if available).

Acquisitions The number of times that the lock was acquired in the analysis interval.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The number of times that a thread was forced into a suspended wait state
waiting for the lock to come available.

Busy Count The number of trylock calls that returned busy.

Seconds Held This field contains the following sub-fields:
CPU

The total number of processor seconds that the lock was held by an
executing thread.

Elapse(d)
The total number of elapsed seconds that the lock was held, whether the
thread was running or suspended.

Percent Held This field contains the following sub-fields:
Real CPU

The percentage of the cumulative processor time that the lock was held by
an executing thread.

Real Elapsed
The percentage of the elapsed real time that the lock was held by any
thread, either running or suspended.

Comb(ined) Spin
The percentage of the cumulative processor time that running threads spent
spinning while trying to acquire this lock.

Real Wait
The percentage of elapsed real time that any thread was waiting to acquire
this lock. If two or more threads are waiting simultaneously, this wait time
will only be charged once. To learn how many threads were waiting
simultaneously, look at the WaitQ Depth statistics.

Performance Tools Guide and Reference  49



Item Descriptor

Depth This field contains the following sub-fields:
SpinQ

The minimum, maximum, and average number of threads spinning on the
lock, whether executing or suspended, across the analysis interval.

WaitQ
The minimum, maximum, and average number of threads waiting on the
lock, across the analysis interval.

Recursion
The minimum, maximum, and average recursion depth to which each thread
held the lock.

Mutex Pthread detail
If the -dt or -da options are used, the splat command reports the following pthread details.

Item Descriptor

PThreadID The PThread identifier.

Acquisitions The number of times that this pthread acquired the mutex.

Miss Rate The percentage of acquisition attempts by the pthread that failed to secure the
mutex.

Spin Count The number of unsuccessful attempts by this pthread to secure the mutex.

Wait Count The number of times that this pthread was forced to wait until the mutex came
available.

Busy Count The number of trylock calls that returned busy.

Percent Held of Total
Time

This field contains the following sub-fields:
CPU

The percentage of the elapsed real time that this pthread executed while
holding the mutex.

Elapse(d)
The percentage of the elapsed real time that this pthread held the mutex
while running or suspended.

Spin
The percentage of elapsed real time that this pthread executed while
spinning on the mutex.

Wait
The percentage of elapsed real time that this pthread spent waiting on the
mutex.

Mutex function detail
If the -df or -da options are used, the splat command reports the function details.

The splat command reports the following function details:

Item Descriptor

PThreadID The PThread identifier.

Acquisitions The number of times that this function acquired the mutex.

Miss Rate The percentage of acquisition attempts by the function that failed to secure the
mutex.

Spin Count The number of unsuccessful attempts by this function to secure the mutex.

50  AIX Version 7.2: Performance Tools Guide and Reference



The splat command reports the following function details: (continued)

Item Descriptor

Wait Count The number of times that this function was forced to wait until the mutex came
available.

Busy Count The number of trylock calls that returned busy.

Percent Held of Total
Time

This field contains the following sub-fields:
CPU

The percentage of the elapsed real time that this function executed while
holding the mutex.

Elapse(d)
The percentage of the elapsed real time that this function held the mutex
while running or suspended.

Spin
The percentage of elapsed real time that this function executed while
spinning on the mutex.

Wait
The percentage of elapsed real time that this function spent waiting for the
mutex.

Return Address The return address to this calling function, in hexadecimal.

Start Address The start address to this calling function, in hexadecimal.

Offset The offset from the function start address to the return address, in
hexadecimal.

Read/Write lock reports
The PThread read/write lock is similar to an AIX complex lock in that it can be acquired for reading or
writing.

Writing is exclusive in that a single thread can only acquire the lock for writing, and no other thread can
hold the lock for reading or writing at that point. Reading is not exclusive, so more than one thread can
hold the lock for reading. Reading is recursive in that a single thread can hold multiple read-acquisitions
on the lock. Writing is not recursive.

[PThread RWLock]    ADDRESS:    000000002FF228E0 
Parent Thread:  0000000000000001     creation time:     5.236585          deletion time:  6.090511 
Pid: 7362        Process Name: /home/testrwlock 
Creation call-chain ================================================================== 
0000000010000458        .main 
00000000100001DC        .__start 
============================================================================= 
         |                     |                  | Percent Held ( 26.235284s ) 
Acqui-   |  Miss  Spin   Wait  |    Secs Held     |  Real  Real    Comb  Real 
sitions  |  Rate  Count  Count |CPU      Elapsed  |  CPU  Elapsed  Spin  Wait 
1150     |40.568   785    0    |21.037942 12.0346 |80.19   99.22  30.45 46.29 
-------------------------------------------------------------------------------------- 
                Readers             Writers                     Total 
Depth     Min   Max   Avg       Min   Max   Avg            Min   Max   Avg 
LockQ     0     2     0         0     1     0              0     2     0 
SpinQ     0     768   601       0     15    11             0     782   612 
WaitQ     0     769   166       0     15    3              0     783   169 

             Acquisitions   Miss   Spin   Count  Wait   Count  Busy    Percent Held of Total Time 
PthreadID    Write  Read    Rate   Write  Read   Write  Read   Count    CPU   Elapse  Spin   Wait 
 ~~~~~~~~~~  ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ 
 772 0 207 78.70 0 765 0 796 0 11.58 15.13 29.69 23.21
 515 765 0 1.80 14 0 14 0 0 80.10 80.19 49.76 23.08
 258 0 178 3.26 0 6 0 5 0 12.56 17.10 10.00 20.02

 Acquisitions Miss Spin Count Wait Count Busy Percent Held of Total Time
Function Name Write Read Rate Write Read Write Read Count CPU Elapse Spin Wait Return Address
Start Address Offset
 ^^^^^^^^^^^^^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^
^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^

Performance Tools Guide and Reference 51

 ._pthread_body 765 385 40.57 14 771 0 0 0 1.55 3.10 1.63 0.00 00000000D268944C
00000000D2684180 000052CC

In addition to the common header information and the [PThread RWLock] identifier, this report lists the
following lock details:

Item Descriptor

Parent Thread Pthread id of the parent pthread.

creation time Elapsed time in seconds after the first event recorded in trace (if available).

deletion time Elapsed time in seconds after the first event recorded in trace (if available).

PID Process identifier.

Process Name Name of the process using the lock.

Call-chain Stack of called methods (if available).

Acquisitions The number of times that the lock was acquired in the analysis interval.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The current PThread implementation does not force pthreads to wait for read/
write locks. This reports the number of times a thread, spinning on this lock, is
undispatched.

Seconds Held This field contains the following sub-fields:
CPU

The total number of processor seconds that the lock was held by an executing
pthread. If the lock is held multiple times by the same pthread, only one hold
interval is counted.

Elapse(d)
The total number of elapsed seconds that the lock was held by any pthread,
whether the pthread was running or suspended.

Percent Held This field contains the following sub-fields:
Real CPU

The percentage of the cumulative processor time that the lock was held by
any executing pthread.

Real Elapsed
The percentage of the elapsed real time that the lock was held by any pthread,
either running or suspended.

Comb(ined) Spin
The percentage of the cumulative processor time that running pthreads spent
spinning while trying to acquire this lock.

Real Wait
The percentage of elapsed real time that any pthread was waiting to acquire
this lock. If two or more threads are waiting simultaneously, this wait time will
only be charged once. To learn how many pthreads were waiting
simultaneously, look at the WaitQ Depth statistics.

52 AIX Version 7.2: Performance Tools Guide and Reference

Item Descriptor

Depth This field contains the following sub-fields:
LockQ

The minimum, maximum, and average number of pthreads holding the lock,
whether executing or suspended, across the analysis interval. This is broken
down by read-acquisitions, write-acquisitions, and total acquisitions.

SpinQ
The minimum, maximum, and average number of pthreads spinning on the
lock, whether executing or suspended, across the analysis interval. This is
broken down by read-acquisitions, write-acquisitions, and total acquisitions.

WaitQ
The minimum, maximum, and average number of pthreads in a timed-wait
state for the lock, across the analysis interval. This is broken down by read-
acquisitions, write-acquisitions, and total acquisitions.

Note: The pthread and function details for read/write locks are similar to the mutex detail reports, except
that they break down the acquisition, spin, and wait counts by whether the lock is to be acquired for
reading or writing.

Condition-Variable report
The PThread condition-variable is a synchronizer, but not a lock. A PThread is suspended until a signal
indicates that the condition now holds.

[PThread CondVar] ADDRESS: 0000000020000A18
Parent Thread: 0000000000000001 creation time: 0.216301
Pid: 7360 Process Name: /home/splat/test/condition
Creation call-chain ==
00000000D26A0EE8 .pthread_cond_timedwait
0000000010000510 .main
00000000100001DC .__start
===
 | | Spin / Wait Time (26.235284s)
 | Fail Spin Wait | Comb Comb
 Passes | Rate Count Count | Spin Wait
 1 |50.000 1 0 | 26.02 0.00

Depth Min Max Avg
SpinQ 0 1 1
WaitQ 0 0 0
 Fail Spin Wait % Total Time
 PThreadID Passes Rate Count Count Spin Wait
 ~~~~~~~~~  ~~~~~~~~  ~~~~~~  ~~~~~~ ~~~~~~  ~~~~~~  ~~~~~~ 
         1         1  50.0000     1      0  99.1755  0.0000 

                                   Fail   Spin   Wait    % Total Time 
Function Name   Passes     Rate   Count  Count  Spin     Wait    Return Address   Start 
Address    Offset 
^^^^^^^^^^^^^^^ ^^^^^^^^  ^^^^^^  ^^^^^^ ^^^^^^ ^^^^^^   ^^^^^^  ^^^^^^^^^^^^^^^^ 
^^^^^^^^^^^^^^^^ ^^^^^^^^ 
  .__start       1        50.0000     1     0    99.1755 0.0000  00000000100001DC 
0000000010000000 000001DC 

In addition to the common header information and the [PThread CondVar] identifier, this report lists the
following details:

Item Descriptor

Passes The number of times that the condition was signaled to hold during the analysis
interval.

Fail Rate The percentage of times that the condition was tested and was not found to be
true.

Performance Tools Guide and Reference  53



Item Descriptor

Spin Count The number of times that the condition was tested and was not found to be true.

Wait Count The number of times that a pthread was forced into a suspended wait state
waiting for the condition to be signaled.

Spin / Wait Time This field contains the following sub-fields:
Comb Spin

The total number of processor seconds that pthreads spun while waiting for
the condition.

Comb Wait
The total number of elapsed seconds that pthreads spent in a wait state for
the condition.

Depth This field contains the following sub-fields:
SpinQ

The minimum, maximum, and average number of pthreads spinning while
waiting for the condition, across the analysis interval.

WaitQ
The minimum, maximum, and average number of pthreads waiting for the
condition, across the analysis interval.

Condition-Variable Pthread detail
If the -dt or -da options are used, the splat command reports the following pthread details.

The pthread details that the splat command reports are:

Item Descriptor

PThreadID The PThread identifier.

Passes The number of times that this pthread was notified that the condition passed.

Fail Rate The percentage of times that the pthread checked the condition and did not find
it to be true.

Spin Count The number of times that the pthread checked the condition and did not find it to
be true.

Wait Count The number of times that this pthread was forced to wait until the condition
became true.

Percent Total Time This field contains the following sub-fields:
Spin

The percentage of elapsed real time that this pthread spun while testing the
condition.

Wait
The percentage of elapsed real time that this pthread spent waiting for the
condition to hold.

Condition-Variable function detail
If the -df or -da options are used, the splat command reports the following function details.

Item Descriptor

Function Name The name of the function that passed or attempted to pass this condition.

Passes The number of times that this function was notified that the condition passed.

Fail Rate The percentage of times that the function checked the condition and did not find
it to be true.

54  AIX Version 7.2: Performance Tools Guide and Reference



Item Descriptor

Spin Count The number of times that the function checked the condition and did not find it
to be true.

Wait Count The number of times that this function was forced to wait until the condition
became true.

Percent Total Time This field contains the following sub-fields:
Spin

The percentage of elapsed real time that this function spun while testing the
condition.

Wait
The percentage of elapsed real time that this function spent waiting for the
condition to hold.

Return Address The return address to this calling function, in hexadecimal.

Start Address The start address to this calling function, in hexadecimal.

Offset The offset from the function start address to the return address, in hexadecimal.

Hardware performance monitor APIs and tools
The bos.pmapi fileset contains libraries and tools that are designed to provide access to some of the
counting facilities of the Performance Monitor feature included in select IBM® microprocessors.

They include the following:

• The pmapi library, which contains a set of low-level application programming interfaces, APIs, includes
the following:

– A set of system-level APIs to permit counting of the activity of a whole machine or of a set of
processes with a common ancestor.

– A set of first party kernel-thread-level APIs to permit threads to count their own activity.
– A set of third party kernel-thread-level APIs to permit a debug program to count the activity of target

threads.
• The pmcycles command, which returns the processor clock and decrementer speeds.
• The pmlist command, which displays information about processors, events, event groups and sets, and

derived metrics supported.
• The hpm and hpm_r libraries, which contain a set of high-level APIs that enable the following:

– Nested instrumentation of sections of code
– Automatic calculation of derived metrics, and gathering of operating system resource-consumption

metrics in addition to the raw hardware counter values
• The hpmstat command, which collects the hardware performance monitor raw and derived metrics

concerning total system activity of a machine.
• The hpmcount command, which executes applications and provides the applications' execution wall

clock time, the raw and derived hardware performance monitor metrics and the operating system
resource-utilization statistics.

Note: The APIs and the events available on each of the supported processors have been completely
separated by design. The events available, their descriptions, and their current testing status (which are
different on each processor) are in separately installable tables, and are not described here because none
of the API calls depend on the availability or status of any of the events.

The status of an event, as returned by the pm_initialize API initialization routine, can be verified,
unverified, caveat, broken, group-only, thresholdable, or shared (see “Performance monitor accuracy” on
page 56 about testing status and event accuracy).

Performance Tools Guide and Reference  55



An event filter (which is any combination of the status bits) must be passed to the pm_initialize routine to
force the return of events with status matching the filter. If no filter is passed to the pm_initialize routine,
no events will be returned.

Performance monitor accuracy
Only events marked verified have gone through full verification. Events marked caveat have been verified
within the limitations documented in the event description returned by the pm_initialize routine.

Events marked unverified have undefined accuracy. Use caution with unverified events. The Performance
Monitor API is essentially providing a service to read hardware registers that might not have any
meaningful content.

Users can experiment with unverified event counters and determine for themselves if they can be used for
specific tuning situations.

Performance monitor context and state
To provide Performance Monitor data access at various levels, the AIX operating system supports
optional performance monitoring contexts.

These contexts are an extension to the regular processor and thread contexts and include one 64-bit
counter per hardware counter and a set of control words. The control words define which events are
counted and when counting is on or off.

System-level context and accumulation
For the system-level APIs, optional Performance Monitor contexts can be associated with each of the
processors.

Thread context
Optional Performance Monitor contexts can also be associated with each thread. The AIX operating
system and the Performance Monitor kernel extension automatically maintain sets of 64-bit counters for
each of these contexts.

Thread counting-group and process context
The concept of thread counting-group is optionally supported by the thread-level APIs. All the threads
within a group, in addition to their own performance monitor context, share a group accumulation
context.

A thread group is defined as all the threads created by a common ancestor thread. By definition, all the
threads in a thread group count the same set of events, and, with one exception described below, the
group must be created before any of the descendant threads are created. This restriction is due to the
fact that, after descendant threads are created, it is impossible to determine a list of threads with a
common ancestor.

One special case of a group is the collection of all the threads belonging to a process. Such a group can be
created at any time regardless of when the descendant threads are created, because a list of threads
belonging to a process can be generated. Multiple groups can coexist within a process, but each thread
can be a member of only one Performance Monitor counting-group. Because all the threads within a
group must be counting the same events, a process group creation will fail if any thread within the
process already has a context.

Performance monitor state inheritance
The performance monitor is defined as the combination of the Performance Monitor programmation (the
events being counted), the counting state (on or off), and the optional thread group membership.

A counting state is associated with each group. When the group is created, its counting state is inherited
from the initial thread in the group. For thread members of a group, the effective counting state is the
result of AND-ing their own counting state with the group counting state. This provides a way to
effectively control the counting state for all threads in a group. Simply manipulating the group-counting
state will affect the effective counting state of all the threads in the group. Threads inherit their complete
Performance Monitor state from their parents when the thread is created. A thread Performance Monitor

56  AIX Version 7.2: Performance Tools Guide and Reference



context data (the value of the 64-bit counters) is not inherited, that is, newly created threads start with
counters set to zero.

Performance monitoring agent
The performance monitoring agent (perfagent.server fileset) is a collection of programs that make it
possible for a host to act as a provider of performance statistics across a network or locally. The key
program is the daemon xmtopas.

The following are the main components of the performance monitoring agent:

xmtopas
The data-supplier daemon, which permits a system where this daemon runs to supply performance
statistics to data-consumer programs on the local or remote hosts. This daemon also provides the
interface to SNMP.

Note: The interface to SNMP is available only on System p Agents.

xmtrend
A long-term recording daemon. This daemon also provides large metric set trend recordings for post-
processing by jazizo and jtopas.

xmscheck
A program that lets you pre-check the xmservd recording configuration file. This program is useful
when you want to start and stop xmservd recording at predetermined times.

filtd
A daemon that can be used to do data reduction of existing statistics and to define alarm conditions
and triggering of alarms.

xmpeek
A program that allows you to display the status of xmservd on the local or a remote host and to list all
available statistics from the daemon.

iphosts
A program to initiate monitoring of Internet Protocol performance by specifying which hosts to
monitor. The program accepts a list of hosts from the command line or from a file.

armtoleg
A program that can convert a pre-existing Application Response Management (ARM) library into an
ARM library that can be accessed concurrently with the ARM library shipped with PTX. This program is
only required and available on operating systems.

SpmiArmd
A daemon that collects Application Response Management (ARM) data and interfaces to the Spmi
library code to allow monitoring of ARM metrics from any PTX manager program.

SpmiResp
A daemon that polls for IP response times for selected hosts and interfaces to the Spmi library code
to allow monitoring of IP response time metrics from any PTX manager program.

Application Response Management API and Libraries
A header file and two libraries support the PTX implementation of ARM. The implementation allows
for coexistence and simultaneous use of the PTX ARM library and one previously installed ARM
library.

System Performance Measurement Interface API and Library
Header files and a library to allow you to develop your own data-supplier and local data-consumer
programs.

Sample Programs
Sample dynamic data-supplier and data-consumer programs that illustrate the use of the API.

Remote System Performance Measurement Interface API
This API is available for those who want to develop programs that access the statistics available from
one or more xmtopas daemons.

Performance Tools Guide and Reference  57



POWERCOMPAT events
The POWERCOMPAT events provide a list of hardware events that are available for processor
compatibility modes and are used as a subset of the actual processor events.

You can use the processor compatibility modes to move logical partitions between systems that have
different processor types without upgrading the operating system environments in the logical partition.
The processor compatibility mode allows the destination system to provide the logical partition with a
subset of processor capabilities that are supported by the operating systems environment in the logical
partition.

The following hardware events are supported in the POWERCOMPAT compatibility mode for different
versions of the AIX operating system.

Table 1. POWERCOMPAT events

Counter Event name Supported AIX version

1 PM_1PLUS_PPC_CMPL • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

1 PM_CYC • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

1 PM_DATA_FROM_L1.5 • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

1 PM_FLOP • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

1 PM_GCT_NOSLOT_CYC • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

1 PM_IERAT_MISS • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

1 PM_INST_CMPL • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

1 PM_INST_IMC_MATCH_CMPL • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

1 PM_LSU_DERAT_MISS_CYC • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

1 PM_PMC4_OVERFLOW • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

1 PM_SUSPENDED • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

1 PM_ANY_THRD_RUN_CYC • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

58  AIX Version 7.2: Performance Tools Guide and Reference



Table 1. POWERCOMPAT events (continued)

Counter Event name Supported AIX version

1 PM_MRK_INST_DISP • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

1 PM_MRK_BR_TAKEN_CMPL • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

1 PM_MRK_L1_ICACHE_MISS • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

1 PM_THRESH_EXC_4096 • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

1 PM_THRESH_EXC_256 • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

1 PM_MRK_L1_RELOAD_VALID • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

1 PM_THRESH_MET • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

2 PM_CYC • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

2 PM_DATA_FROM_L2MISS • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

2 PM_EXT_INT • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

2 PM_INST_CMPL • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

2 PM_INST_DISP • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

2 PM_L1_ICACHE_MISS • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

2 PM_LSU_DERAT_MISS • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

2 PM_PMC1_OVERFLOW • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

2 PM_RUN_CYC • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

Performance Tools Guide and Reference  59



Table 1. POWERCOMPAT events (continued)

Counter Event name Supported AIX version

2 PM_ST_FIN • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

2 PM_SUSPENDED • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

2 PM_MRK_DATA_FROM_MEM • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

2 PM_MRK_LD_MISS_L1 • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

2 PM_MRK_DATA_FROM_L3MISS • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

2 PM_THRESH_EXC_32 • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

2 PM_THRESH_EXC_512 • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

3 PM_CYC • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

3 PM_DATA_FROM_L3MISS • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

3 PM_DTLB_MISS • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

3 PM_INST_CMPL • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

3 PM_INST_DISP • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

3 PM_L1_DCACHE_RELOAD_VALID • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

3 PM_PMC2_OVERFLOW • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

3 PM_ST_MISS_L1 • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

3 PM_SUSPENDED • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

60  AIX Version 7.2: Performance Tools Guide and Reference



Table 1. POWERCOMPAT events (continued)

Counter Event name Supported AIX version

3 PM_TB_BIT_TRANS • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

3 PM_THRD_CONC_RUN_INST • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

3 PM_BR_TAKEN_CMPL • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

3 PM_MRK_ST_CMPL • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

3 PM_MRK_BR_MPRED_CMPL • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

3 PM_MRK_DERAT_MISS • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

3 PM_THRESH_EXC_64 • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

3 PM_THRESH_EXC_1024 • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

4 PM_1PLUS_PPC_DISP • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

4 PM_BR_MPRED_CMPL • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

4 PM_CYC • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

4 PM_FLUSH • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

4 PM_INST_CMPL • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

4 PM_ITLB_MISS • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

4 PM_LD_MISS_L1 • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

4 PM_PMC3_OVERFLOW • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

Performance Tools Guide and Reference  61



Table 1. POWERCOMPAT events (continued)

Counter Event name Supported AIX version

4 PM_RUN_INST_CMPL • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

4 PM_RUN_PURR • AIX 6.1 with 6100-04, or later
• AIX 7.1, or later

4 PM_SUSPENDED • AIX 6 with 6100-07, or earlier
• AIX 7 with 7100-01, or earlier

4 PM_MRK_INST_CMPL • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

4 PM_MRK_DTLB_MISS • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

4 PM_MRK_INST_FROM_L3MISS • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

4 PM_MRK_DATA_FROM_L2MISS • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

4 PM_THRESH_EXC_128 • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

4 PM_THRESH_EXC_2048 • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

4 PM_DATA_FROM_MEM • AIX 6 with 6100-08, or later
• AIX 7 with 7100-02, or later

5 PM_RUN_INST_CMPL • AIX 6.1, or later
• AIX 7.1, or later

6 PM_RUN_CYC • AIX 6.1, or later
• AIX 7.1, or later

Thread accumulation and thread group accumulation
When a thread gets suspended (or redispatched), its 64-bit accumulation counters are updated. If the
thread is member of a group, the group accumulation counters are updated at the same time.

Similarly, when a thread stops counting or reads its Performance Monitor data, its 64 bit accumulation
counters are also updated by adding the current value of the Performance Monitor hardware counters to
them. Again, if the thread is a member of a group, the group accumulation counters are also updated,
regardless of whether the counter read or stop was for the thread or for the thread group.

The group-level accumulation data is kept consistent with the individual Performance Monitor data for the
thread members of the group, whenever possible. When a thread voluntarily leaves a group, that is,
deletes its Performance Monitor context, its accumulated data is automatically subtracted from the
group-level accumulated data. Similarly, when a thread member in a group resets its own data, the data

62  AIX Version 7.2: Performance Tools Guide and Reference



in question is subtracted from the group level accumulated data. When a thread dies, no action is taken
on the group-accumulated data.

The only situation where the group-level accumulation is not consistent with the sum of the data for each
of its members is when the group-level accumulated data has been reset, and the group has more than
one member. This situation is detected and marked by a bit returned when the group data is read.

Security considerations
The system-level APIs calls are only available from the root user except when the process tree option is
used. In that case, a locking mechanism prevents calls being made from more than one process. This
mechanism ensures ownership of the API and exclusive access by one process from the time that the
system-level contexts are created until they are deleted.

Enabling the process tree option results in counting for only the calling process and its descendants; the
default is to count all activities on each processor.

Because the system-level APIs would report bogus data if thread contexts where in use, system-level API
calls are not enabled at the same time as thread-level API calls. The allocation of the first thread context
will take the system-level API lock, which will not be released until the last context has been deallocated.

When using first party calls, a thread is only permitted to modify its own Performance Monitor context.
The only exception to this rule is when making group level calls, which obviously affect the group context,
but can also affect other threads' context. Deleting a group deletes all the contexts associated with the
group, that is, the caller context, the group context, and all the contexts belonging to all the threads in the
group.

Access to a Performance Monitor context not belonging to the calling thread or its group is available only
from the target process's debugger program. The third party API calls are only permitted when the target
process is either being ptraced by the API caller, that is, the caller is already attached to the target
process, and the target process is stopped or the target process is stopped on a /proc file system event
and the caller has the privilege required to open its control file.

The fact that the debugger program must already have been attached to the debugged thread before any
third party call to the API can be made, ensures that the security level of the API will be the same as the
one used between debugger programs and process being debugged.

The pmapi library
Review the rules that are for the pmapi library.

The following rules are common to the Performance Monitor APIs:

• The pm_initialize routine must be called before any other API call can be made, and only events
returned by a given pm_initialize call with its associated filter setting can be used in subsequent
pm_set_program calls.

• PM contexts cannot be reprogrammed or reused at any time. This means that none of the APIs support
more than one call to a pm_set_program interface without a call to a pm_delete_program interface.
This also means that when creating a process group, none of the threads in the process is permitted to
already have a context.

• All the API calls return 0 when successful or a positive error code (which can be decoded using
pm_error) otherwise.

The pm_init API initialization routine
The pm_init routine returns (in a structure of type pm_info_t pointed to by its second parameter) the
processor name, the number of counters available, the list of available events for each counter, and the
threshold multipliers supported.

Some processor support two threshold multipliers, others none, meaning that thresholding is not
supported at all. You can not use the pm_init routine with processors newer than POWER4. You must use
the pm_initialize routine for newer processors.

Performance Tools Guide and Reference  63



For each event returned, in addition to the testing status, the pm_init routine also returns the identifier to
be used in subsequent API calls, a short name, and a long name. The short name is a mnemonic name in
the form PM_MNEMONIC. Events that are the same on different processors will have the same mnemonic
name. For instance, PM_CYC and PM_INST_CMPL are respectively the number of processor cycles and
instruction completed and should exist on all processors. For each event returned, a thresholdable flag is
also returned. This flag indicates whether an event can be used with a threshold. If so, then specifying a
threshold defers counting until a number of cycles equal to the threshold multiplied by the processor's
selected threshold multiplier has been exceeded.

The Performance Monitoring API enables the specification of event groups instead of individual events.
Event groups are predefined sets of events. Rather than each event being individually specified, a single
group ID is specified. The interface to the pm_init routine has been enhanced to return the list of
supported event groups in a structure of type pm_groups_info_t pointed to by a new optional third
parameter. To preserve binary compatibility, the third parameter must be explicitly announced by OR-ing
the PM_GET_GROUPS bitflag into the filter. Some events on some platforms can only be used from within
a group. This is indicated in the threshold flag associated with each event returned. The following
convention is used:

Item Descriptor

y A thresholdable event

g An event that can only be used in a group

G A thresholdable event that can only be used in a group

n A non-thresholdable event that is usable individually

On some platforms, use of event groups is required because all the events are marked g or G. Each of the
event groups that are returned includes a short name, a long name, and a description similar to those
associated with events, as well as a group identifier to be used in subsequent API calls and the events
contained in the group (in the form of an array of event identifiers).

The testing status of a group is defined as the lowest common denominator among the testing status of
the events that it includes. If at least one event has a testing status of caveat, the group testing status is
at best caveat, and if at least one event has a status of unverified, then the group status is unverified. This
is not returned as a group characteristic, but it is taken into account by the filter. Like events, only groups
with status matching the filter are returned.

The pm_initialize API initialize routine
The pm_initialize routine returns the processor name in a structure of type pm_info2_t defined by its
second parameter, its characteristics, the number of counters available, and the list of available events
for each counter.

For each event a status is returned, indicating the event status: validated, unvalidated, or validated with
caveat. The status also indicates if the event can be used in a group or not, if it is a thresholdable event
and if it is a shared event.

Some events on some platforms can be used only within a group. In the case where an event group is
specified instead of individual events, the events are defined as grouped only events.

For each returned event, a thresholdable state is also returned. It indicates whether an event can be used
with a threshold. If so, specifying a threshold defers counting until it exceeds a number of cycles equal to
the threshold multiplied by the selected processor threshold multiplier.

Some processors support two hardware threads per physical processing unit. Each thread implements a
set of counters, but some events defined for those processors are shared events. A shared event, is
controlled by a signal not specific to a particular thread's activity and sent simultaneously to both sets of
hardware counters, one for each thread. Those events are marked by the shared status.

For each returned event, in addition to the testing status, the pm_initialize routine returns the identifier
to be used in subsequent API calls, as a short name and a long name. The short name is a mnemonic
name in the form PM_MNEMONIC. The same events on different processors will have the same

64  AIX Version 7.2: Performance Tools Guide and Reference



mnemonic name. For instance, PM_CYC and PM_INST_CMPL are respectively the number of processor
cycles and the number of completed instructions, and should exist on all processors.

The Performance Monitoring API enables the specification of event groups instead of individual events.
Event groups are predefined sets of events. Rather than to specify individually each event, a single group
ID can be specified. The interface to the pm_initialize routine returns the list of supported event groups
in a structure of type pm_groups_info_t whose address is returned in the third parameter.

On some platforms, the use of event groups is required because all events are marked as group-only.
Each event group that is returned includes a short name, a long name, and a description similar to those
associated with events, as well as a group identifier to be used in subsequent API calls and the events
contained in the group (in the form of an array of event identifiers).

The testing status of a group is defined as the lowest common denominator among the testing status of
the events that it includes. If the testing status of at least one event is caveat, then the group testing
status is at best caveat, and if the status of at least one event is unverified, then the group status is
unverified. This is not returned as a group characteristic, but it is taken into account by the filter. Like
events, only groups whose status match the filter are returned.

If the proctype parameter is not set to PM_CURRENT, the Performance Monitor APIs library is not
initialized and the subroutine only returns information about the specified processor in its parameters,
pm_info2_t and pm_groups_info_t, taking into account the filter. If the proctype parameter is set to
PM_CURRENT, in addition to returning the information described, the Performance Monitor APIs library is
initialized and ready to accept other calls.

Basic pmapi library calls
Each of the following sections describes a system-wide API call that has variations for first- and third-
party kernel thread or group counting. Variations are indicated by suffixes to the function call names, such
as pm_set_program, pm_set_program_mythread, and pm_set_program_group.

pm_set_program
Sets the counting configuration. Use this call to specify the events (as a list of event identifiers, one
per counter, or as a single event-group identifier) to be counted, and a mode in which to count. The
list of events to choose from is returned by the pm_init routine. If the list includes a thresholdable
event, you can also use this call to specify a threshold, and a threshold multiplier.

The mode in which to count can include user-mode and kernel-mode counting, and whether to start
counting immediately. For the system-wide API call, the mode also includes whether to turn counting
on only for a process and its descendants or for the whole system. For counting group API calls, the
mode includes the type of counting group to create, that is, a group containing the initial thread and
its future descendants, or a process-level group, which includes all the threads in a process.

By default, the time spent during interrupts handling is counted. It is possible to override this default
behavior by modifying the counting mode.

pm_get_program
Retrieves the current Performance Monitor settings. This includes mode information and the list of
events (or the event group) being counted. If the list includes a thresholdable event, this call also
returns a threshold and the multiplier used.

pm_delete_program
Deletes the Performance Monitor configuration. Use this call to undo pm_set_program.

pm_start, pm_tstart
Starts Performance Monitor counting. pm_tstart returns a timestamp associated with the time the
Performance Monitoring counters started counting. This is a timebase value that can be converted to
time using time_base_to_time.

pm_stop, pm_tstop
Stops Performance Monitor counting. pm_tstop returns a timestamp associated with the time the
Performance Monitoring counters stopped counting. This is a timebase value that can be converted to
time using time_base_to_time.

Performance Tools Guide and Reference  65



pm_get_data, pm_get_tdata, pm_get_Tdata
Returns Performance Monitor counting data. The data is a set of 64-bit values, one per hardware
counter. For the counting group API calls, the group information is also returned. (See “Thread
counting-group information” on page 66.)

pm_get_tdata is similar to pm_get_data, but includes a timestamp that indicates the last time that
the hardware Performance Monitoring counters were read. This is a timebase value that can be
converted to time by using time_base_to_time.

pm_get_Tdata is also similar to pm_get_data but includes accumulated times corresponding to the
interval during which the hardware Performance Monitoring counters were active. The interval is
measured in real time, PURR and SPURR (on processors supporting those) values, and returned in
timebase units convertable to time using time_base_to_time.

The pm_get_data_cpu, pm_get_tdata_cpu and pm_get_Tdata_cpu interfaces return the
Performance Monitor counting data for a single processor. The specified processor number
represents a contiguous number going from 0 to _system_configuration.ncpus. This number can
represent a different processor from call to call if dynamic reconfiguration operations have occurred.

The pm_get_data_lcpu, pm_get_tdata_lcpu and pm_get_Tdata_lcpu interfaces return the
Performance Monitor counting data for a single logical processor. The logical processor numbering is
not contiguous, and the call to these interfaces returns an error if the specified logical processor has
not been on line since the last call to pm_set_program. A logical processor number always
designates the same processor even if dynamic reconfiguration operations have occurred. To get data
for all processors, these interfaces must be called in a loop from 0 to
_system_configuration.max_ncpus.

pm_reset_data
Resets Performance Monitor counting data. All values are set to 0.

Thread counting-group information
This the following information is returned by the pm_get_data_mygroup and pm_get_data_pgroup
interfaces in a pm_groupinfo_t structure.

The following information is associated with each thread counting-group:
member count

The number of threads that are members of the group. This includes deceased threads that were
members of the group when running.

If the consistency flag is on, the count will be the number of threads that have contributed to the
group-level data.

process flag
Indicates that the group includes all the threads in the process.

consistency flag
Indicates that the group PM data is consistent with the sum of the individual PM data for the thread
members.

Counter multiplexing mode
You can set the counting for more events than available hardware counters using counter multiplexing.
This mode is meant to be used to analyze workloads with homogenous performance characteristics. This
avoids the requirement to run the workload multiple times to collect more events than available hardware
counters.

In this mode, the pmapi periodically changes the setting of the counting and accumulates values and
counting time for multiple sets of events. The time each event set is counted before switching to the next
set can be in the range of 10 ms to 30 s. The default value is 100 ms.

The values returned include the number of times all sets of events have been counted, and for each set,
the accumulated counter values and the accumulated time the set was counted. The accumulated time is
measured up to three different ways: using Time Base, and when available, using the PURR time and one
the SPURR time. These times are stored in a timebase format that can be converted to time by using the

66  AIX Version 7.2: Performance Tools Guide and Reference



time_base_to_time function. These times are meant to be used to normalize the results across the
complete measurement interval.

Several basic pmapi calls have the following multiplexing mode variations indicated by the _mx suffix:

pm_set_program_mx
Sets the counting configuration. It differs from the pm_set_program function in that it accepts a set
of groups (or event lists) to be counted, and the time each set must be counted before switching to
the next set.

pm_get_program_mx
Retrieves the current Performance Monitor settings. It differs from the pm_get_program function in
that it returns a set of groups (or event lists).

pm_get_data_mx
Returns the Performance Monitor counting data. It returns a set of counting data, one per group (or
event list) configured. The returned data includes in addition to the accumulated counter values, the
number of times all the configured sets have been counted, and for each set, the accumulated time it
was counted.

pm_get_tdata_mx
Same as pm_get_data_mx, but includes a timestamp indicating the last time that the hardware
Performance Monitor counters were read.

pm_get_data_cpu_mx/pm_get_tdata_cpu_mx
Same as pm_get_data_mx or pm_get_tdata_mx, but returns the Performance Monitor counting data
for a single processor. The specified processor number must be in the range 0 to
_system_configuration.ncpus. This number might represent different processors from call to call if
dynamic reconfiguration operations have occurred.

pm_get_data_lcpu_mx/pm_get_tdata_lcpu_mx
Same as pm_get_data_cpu_mx or pm_get_tdata_cpu_mx, but returns the Performance Monitor
counting data for a single logical processor. The logical processor numbering is not contiguous, and
the call to these interfaces return an error if the specified logical processor has not been online since
the last call to pm_set_program_mx. A logical processor number always designates the same
processor even if dynamic reconfiguration operations have occurred. To get data for all processors,
these interfaces must be called in a loop from 0 to _system_configuration.max_ncpus.

Counter multi-mode
Counter multi-mode is similar to multiplexing mode. The counting mode in multiplexing mode is common
to all the event sets.

The multi-mode allows you to associate a counting mode with each event set, but as the counting mode
differs for an event set to another one, the results of the counting cannot be normalized on the complete
measurement interval.

Several basic pmapi calls have the following multi-mode variations indicated by the _mm suffix:
pm_set_program_mm

Sets the counting configuration. It differs from the pm_set_program_mx function in that it accepts a
set of groups and associated counting mode to be counted.

pm_get_program_mm
Retrieves the current Performance Monitor settings. It differs from the pm_get_program_mx
function in that it accepts a set of groups and associated counting mode.

WPAR counting
It is possible to monitor the system-wide activity of a specific WPAR from the Global WPAR. In this case,
only the activity of the processes running in this WPAR will be monitored.

Several basic pmapi calls have the following per-WPAR variations indicated by the _wp suffix:

Performance Tools Guide and Reference  67



pm_set_program_wp, pm_set_program_wp_mm
Same as the pm_set_program subroutine or the pm_set_program_mm subroutine, except that the
programming is set for the specified WPAR only (identified by its WPAR Configured ID). Notice that
there is no pm_set_program_wp_mx subroutine.

pm_get_program, pm_get_program_wp
Same as the pm_get_program subroutine or the pm_get_program_wp subroutine, except that it
retrieves the programming for the specified WPAR only (identified by its WPAR Configured ID). Notice
that there is no pm_get_program_wp_mx subroutine.

pm_start_wp, pm_tstart, pm_start_wp, pm_tstart_wp
Same as the pm_start subroutine or the pm_tstartsubroutine, except that it targets a specific WPAR
(identified by its WPAR Configured ID).

pm_stop_wp, pm_tstop, pm_stop_wp, pm_tstop_wp
Same as the pm_stop subroutine or the pm_tstop subroutine, except that it targets a specific WPAR
(identified by its WPAR Configured ID).

pm_get_data_wp, pm_get_tdata_wp, pm_get_Tdata
Same as the pm_get_data subroutine or the pm_get_tdata subroutine or the pm_get_Tdata
subroutine, except that it retrieves Performance Monitor counting data for the specified WPAR only
(identified by its handle, see the pm_get_wplist subroutines).

pm_reset_data
Same as the pm_get_data routine or the pm_get_tdatasburoutine or the pm_get_Tdata subroutine,
except that it retrieves Performance Monitor counting data for the specified WPAR only (identified by
its handle, see the pm_get_wplist subroutines).

pm_get_wplist
Retrieves the list of WPARs contexts that were active during the last system-wide counting. A WPAR
context includes the WPAR Configured ID, the WPAR name, and a WPAR handle that uniquely
identifies the WPAR. The WPAR handle can then be used to retrieve the Performance Monitor counting
data for a specified WPAR using one of the pm_get_data_wp subroutines.

Examples of pmapi library usage
The following examples demonstrate the use of Performance Monitor APIs in pseudo-code. Functional
sample code is available in the /usr/samples/pmapi directory.

Simple single-threaded program example
The following example displays a single-threaded program.

# include <pmapi.h>
main()
{
       pm_info_t pminfo;
       pm_prog_t prog;
       pm_data_t data;
       int filter = PM_VERIFIED; /* use only verified events */

       pm_init(filter, &pminfo)

       prog.mode.w       = 0;  /* start with clean mode */
       prog.mode.b.user  = 1;  /* count only user mode */

       for (i = 0; i < pminfo.maxpmcs; i++)
                prog.events[i] = COUNT_NOTHING;

       prog.events[0]    = 1;  /* count event 1 in first counter */
       prog.events[1]    = 2;  /* count event 2 in second counter */

       pm_set_program_mythread(&prog);
       pm_start_mythread();

(1)    ... usefull work ....

       pm_stop_mythread();
       pm_get_data_mythread(&data);

       ... print results ...
}

68  AIX Version 7.2: Performance Tools Guide and Reference



Initialization example using an event group
The following example displays initialization using an event group.

# include <pmapi.h>
main()
{
       pm_info2_t        pminfo;
       pm_prog_t        prog; 
       pm_groups_info_t pmginfo; 

       int filter = PM_VERIFIED;  /* get list of verified events */
 
       pm_initialize(filter, &pminfo, &pmginfo, PM_CURRENT )
 
       prog.mode.w           = 0;  /* start with clean mode */
       prog.mode.b.user      = 1;  /* count only user mode */ 
       prog.mode.b.is_group  = 1;  /* specify event group */
 
       for (i = 0; i < pminfo.maxpmcs; i++)
                prog.events[i] = COUNT_NOTHING;
 
       prog.events[0]    = 1;  /* count events in group 1 */ 
       ..... 
} 

Get the information about all the event-groups for a specific processor example
The following example displays how to obtain all the event-groups that are supported for a specific
processor.

#include <stdio.h>
#include <stdlib.h>
#include <pmapi.h>

int main()
{
    int rc = 0;
    pm_info2_t events;
    pm_groups_info_t groups;
    
    pm_events2_t *ev_ptr = NULL;
    
    int filter = 0;
    /*
    * Get the events and groups supported for POWER4.
  * To get the events and groups supported for the current processor,
  * use PM_CURRENT.
    */
    int processor_type = PM_POWER4;
    
    int group_idx = 0;
    int counter_idx = 0;
    int ev_count = 0;
    int event_found = 0;
    
    /*
     * PM_VERIFIED       - To get list of verified events
     * PM_UNVERIFIED    - To get list of unverified events
     * PM_CAVEAT          - To get list of events that are usable but with caveats
     */
    filter |= PM_VERIFIED | PM_UNVERIFIED | PM_CAVEAT;      
    
    /* Get list of events-groups */
    filter |= PM_GET_GROUPS;  
    
     if ((rc = pm_initialize(filter, &events, &groups, processor_type)) != 0)
    {
         pm_error("pm_initialize", rc);
         exit(-1);
     }
for(group_idx = 0; group_idx < groups.maxgroups; group_idx++)
    {
        printf("================================\n");
        printf("Group ID: %d.\n", groups.event_groups[group_idx].group_id);
        printf("Group Name: %s.\n", groups.event_groups[group_idx].short_name);
        printf("Group Long Name: %s.\n", groups.event_groups[group_idx].long_name);
        printf("Group Description: %s.\n", groups.event_groups[group_idx].description);
        printf("Events in this Group: \n");
        for(counter_idx = 0; counter_idx < events.maxpmcs; counter_idx++)

Performance Tools Guide and Reference  69



        {
            event_found = 0;
            for(ev_ptr = events.list_events[counter_idx], ev_count = 0;
                ev_count < events.maxevents[counter_idx]; 
                ev_ptr++, ev_count++)
            {
                /* If the event ID in "groups" matches with event ID supported
                 * in the counter */
                if(groups.event_groups[group_idx].events[counter_idx] == ev_count)
                {
                    printf("\tCounter ID: %d.\n", counter_idx+1);
                    printf("\tEvent ID: %d.\n", ev_count);
                    printf("\tEvent Name: %s.\n", ev_ptr->short_name);
                    event_found = 1;
                    break;
                }
        /* We have found the event for this counter. Move on to
                 * next counter. */
                if(event_found) break;
            }
        }
        printf("\n");
    }
    return 0;
}

Debugger program example for initialization program
The following example illustrates how to look at the performance monitor data while the program is
executing.

from a debugger at breakpoint (1)

       pm_initialize(filter);
(2)    pm_get_program_pthread(pid, tid, ptid, &prog);
       ... display PM programmation ...

(3)    pm_get_data_pthread(pid, tid, ptid);
       ... display PM data ...

       pm_delete_program_pthread(pid, tid, ptid);
       prog.events[0] = 2; /* change counter 1 to count event number 2 */
       pm_set_program_pthread(pid, tid, ptid, &prog);

continue program

The preceding scenario would also work if the program being executed under the debugger did not have
any embedded Performance Monitor API calls. The only difference would be that the calls at (2) and (3)
would fail, and that when the program continues, it will be counting only event number 2 in counter 1, and
nothing in other counters.

Count a single WPAR from the Global WPAR
The following program is an example of a count of a single WPAR from the global WPAR.

main ()
{
        pm_prog_t prog;
        pm_wpar_ctx_info_t wp_list;
        int nwpars = 1;
        cid_t cid;

        /* set programming for WPAR ``wpar1'' */
        getcorralid("wpar1", &cid);
        pm_set_program_wp(cid, &prog);

        pm_start_wp(cid);
        ... workload ...
        pm_stop_wp(cid);

        /* retrieve data for WPAR ``wpar1'' */
        pm_get_wplist("wpar1", &wp_list, &nwpars);
        pm_get_data_wp(wp_list.wp_handle, &data);

        pm_delete_program_wp(cid);
}

70  AIX Version 7.2: Performance Tools Guide and Reference



Count all active WPARs from the Global WPAR and retrieve per-WPAR data
The following program is an example of a count of all active WPARS from the global WPAR and also
retrieves per-WPAR data.

main ()
{
        pm_prog_t prog;
        pm_wpar_ctx_info_t *wp_list;
        int nwpars;

        /* set programming */
        ...
        prog.mode.b.wpar_all = 1;  /* collect per-WPAR data */
        pm_set_program(&prog);

        pm_start();
        ... workload ...
        pm_stop();

        /* retrieve the number of WPARs that were active during the counting */
        nwpars = 0;
        pm_get_wplist(NULL, NULL, &nwpars);
        /* allocate an array large enough to retrieve WPARs contexts */
        wp_list = malloc(nwpars * sizeof (pm_wpar_ctx_info_t));
        /* retrieve WPARs contexts */
        pm_get_wplist(NULL, wp_list, &nwpars);

        /* retrieve and print data for each WPAR */
        for (i = 0; i < nwpars; i++) {
            printf("WPAR: %s (CID=%d)\n", wp_list[i].name, wp_list[i].cid);
            pm_get_data_wp(wp_list[i].hwpar, &data);
        }

        free(wp_list);

        pm_delete_program();
}

Simple multi-threaded example
The following is a simple multi-threaded example with independent threads counting the same set of
events.

# include <pmapi.h>
pm_data_t data2;

void *
doit(void *)
{

(1)    pm_start_mythread();

       ... usefull work ....

       pm_stop_mythread();
       pm_get_data_mythread(&data2);
}

main()
{
       pthread_t threadid;
       pthread_attr_t attr;
       pthread_addr_t status;

       ... same initialization as in previous example ...

       pm_program_mythread(&prog);

       /* setup 1:1 mode */
       pthread_attr_init(&attr);
       pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
       pthread_create(&threadid, &attr, doit, NULL);

(2)    pm_start_mythread();

       ... usefull work ....

       pm_stop_mythread();

Performance Tools Guide and Reference  71



       pm_get_data_mythread(&data);

       ... print main thread results (data )...

       pthread_join(threadid, &status);

       ... print auxiliary thread results (data2) ...
}

In the preceding example, counting starts at (1) and (2) for the main and auxiliary threads respectively
because the initial counting state was off and it was inherited by the auxiliary thread from its creator.

Simple thread counting-group example
The following example has two threads in a counting-group. The body of the auxiliary thread's
initialization routine is the same as in the previous example.

main()
{
        ... same initialization as in previous example ...

        pm_set_program_mygroup(&prog); /* create counting group */
(1)     pm_start_mygroup()

        pthread_create(&threadid, &attr, doit, NULL)

(2)     pm_start_mythread(); 

        ... usefull work ....

        pm_stop_mythread();
        pm_get_data_mythread(&data)

        ... print main thread results ...

        pthread_join(threadid, &status);

        ... print auxiliary thread results ...

        pm_get_data_mygroup(&data)

        ... print group results ...
}

In the preceding example, the call in (2) is necessary because the call in (1) only turns on counting for the
group, not the individual threads in it. At the end, the group results are the sum of both threads results.

Simple thread counting-group with counter-multiplexing example
The following example has two threads in a counting-group. The body of the auxiliary thread's
initialization routine is the same as in the previous example.

main()
{
        pm_info2_t         pminfo;
        pm_groups_info_t   pmginfo;
        pm_prog_mx_r       prog;
        pm_events_prog_t   event_set[2];
        pm_data_mx_t       data;
        int filter = PM_VERIFIED;  /* get list of verified events */
        pm_initialize(filter, &pminfo, &pmginfo, PM_CURRENT )
        prog.mode.w           = 0;  /* start with clean mode */
        prog.mode.b.user      = 1;  /* count only user mode */
        prog.mode.b.is_group  = 1;  /* specify event group */
        prog.events_set       = event_set;
        prog.nb_events_prog   = 2;   /* two event group counted */
        prog.slice_duration   = 200; /* slice duration for each event group is 200ms */
        for (i = 0; i < pminfo.maxpmcs; i++) {
                event_set[0][i] = COUNT_NOTHING;
                event_set[1][i] = COUNT_NOTHING;
        }

        event_set[0][0]     = 1;   /* count events in group 1 in the first set */
        event_set[1][0]     = 3;   /* count events in group 3 in the first set */
        pm_set_program_mygroup_mx(&prog); /* create counting group */

72  AIX Version 7.2: Performance Tools Guide and Reference



        pm_start_mygroup()
        pthread_create(&threadid, &attr, doit, NULL)
        pm_start_mythread();
        ... usefull work ....
        pm_stop_mythread();
        pm_get_data_mythread_mx(&data)
        printf ("Main thread results:\n");
        for (i = 0; i < 2 ; i++) {
                group_number = event_set[i][0];
                printf ("Group #%d: %s\n", group_number, 
pmginfo.event_groups[group_number].short_name);
                printf ("    counting time: %d ms\n", data.accu_set[i].accu_time);
                printf ("    counting values:\n");

                for (counter = 0; counter < pminfo.maxpmcs; counter++) {
                        printf ("event %d: %d\n", counter, data.accu_set[i].accu_data[counter]);
                }
        }
  (1)   free(data.accu_set);   /* free the memory alloacted for the main thread results */
        pthread_join(threadid, &status);
        ... print auxiliary thread results ...
        free(data.accu_set);   /* free the memory allocated for the thread results */
        pm_get_data_mygroup_mx(&data)
        ... print group results ...
        free(data.accu_set);   /* free the memoory allocated for the group results */
        pm_delete_program()
}
(1) Each time data are got in time slice mode, the buffer allocated to return the counters */
must be freed after used.

Simple thread counting-group with counter-multiplexing and multi-mode example
The following example has two threads in a counting-group. The body of the auxiliary thread's
initialization routine is the same as in the previous example.

This example is similar to the previous one except that it uses the multi-mode functionality, and
associates a mode with each group counted.

main()
{
        pm_info2_t         pminfo; 
        pm_groups_info_t   pmginfo;
        pm_prog_mm_t       prog;
        pm_data_mx_t       data;
        pm_prog_t          prog_set[2];
        int filter = PM_VERIFIED;  /* get list of verified events */
        pm_initialize(filter, &pminfo, &pmginfo, PM_CURRENT );
        prog.prog_set = prog_set;
        prog.nb_set_prog   = 2;      /* two groups counted */
        prog.slice_duration   = 200; /* slice duration for each event group is 200ms */
        prog_set[0].mode.w           = 0;  /* start with clean mode */
        prog_set[0].mode.b.user      = 1;  /* grp 0: count only user mode */
        prog_set[0].mode.b.is_group  = 1;  /* specify event group */
        prog_set[0].mode.b.proctree  = 1;  /* turns process tree counting on:
                                              this option is common to all counted groups */
        prog_set[1].mode.w           = 0;  /* start with clean mode */
        prog_set[1].mode.b.kernel    = 1;  /* grp 1: count only kernel mode */
        prog_set[1].mode.b.is_group  = 1;  /* specify event group */
        for (i = 0; i < pminfo.maxpmcs; i++) {
                prog_set[0].events[i] = COUNT_NOTHING;
                prog_set[1].events[i] = COUNT_NOTHING;
        }
        prog_set[0].events[0]     = 1;   /* count events in group 1 in the first set */
        prog_set[1].events[0]     = 3;   /* count events in group 3 in the first set */
        pm_set_program_mygroup_mm(&prog); /* create counting group */
        pm_start_mygroup();
        pthread_create(&threadid, &attr, doit, NULL);
        pm_start_mythread();
        ... usefull work ....
        pm_stop_mythread();
        pm_get_data_mythread_mx(&data);
        printf ("Main thread results:\n");
        for (i = 0; i < 2 ; i++) {
                group_number = prog_set[i].events[0];
                printf ("Group #%d: %s\n", group_number, 
pmginfo.event_groups[group_number].short_name);
                printf ("    counting time: %d ms\n", data.accu_set[i].accu_time);
                printf ("    counting values:\n");
                for (counter = 0; counter < pminfo.maxpmcs; counter++) {

Performance Tools Guide and Reference  73



                        printf ("event %d: %d\n", counter, data.accu_set[i].accu_data[counter]);
                }
        }
  (1)   free(data.accu_set);   /* free the memory allocated for the main thread results */
        pthread_join(threadid, &status);
        ... print auxiliary thread results ...
        free(data.accu_set);   /* free the memory allocated for the thread results */
        pm_get_data_mygroup_mx(&data)
        ... print group results ...
        free(data.accu_set);   /* free the memory allocated for the group results */
        pm_delete_program();
}
(1) Each time data are got in time slice mode, the buffer allocated to return the 
counters must be freed after used.
}

Thread counting example with reset
The following example with a reset call illustrates the impact on the group data. The body of the auxiliary
thread is the same as before, except for the pm_start_mythread call, which is not necessary in this case.

main()
{
        ... same initialization as in previous example...

        prog.mode.b.count  = 1;  /* start counting immediately */
        pm_set_program_mygroup(&prog);

        pthread_create(&threadid, pthread_attr_default, doit, NULL)

        ... usefull work ....

        pm_stop_mythread()
        pm_reset_data_mythread()

        pthread_join(threadid, &status);

        ...print auxiliary thread results...

        pm_get_data_mygroup(&data)

        ...print group results...
}

In the preceding example, the main thread and the group counting state are both on before the auxiliary
thread is created, so the auxiliary thread will inherit that state and start counting immediately.

At the end, data1 is equal to data because the pm_reset_data_mythread automatically subtracted the
main thread data from the group data to keep it consistent. In fact, the group data remains equal to the
sum of the auxiliary and the main thread data, but in this case, the main thread data is null.

Accessing PMU registers from user applications
You cannot access Performance Monitoring Unit (PMU) registers from user applications (user-mode)
when a system starts, from another PMU-based profiler, or from Live Partition Mobility (LPM) with
libpmapi pragmas.

A libpmapi pragma is a light-weight subroutine that is exported through the libpmapi library, which
provides access to the PMU registers. A libpmapi pragma uses the mtspr and mfspr instructions instead
of the pmsvcs kernel extension to avoid system calls.

The following libpmapi pragmas are included in the AIX operating system:

• mmcr_read Subroutine
• mmcr_write Subroutine
• pmc_read_1to4 Subroutine
• pmc_read_5to6 Subroutine
• pmc_write Subroutine

74  AIX Version 7.2: Performance Tools Guide and Reference



In the following scenarios, if you use the libpmapi pragmas for read and write access to the PMU
registers, -1 is returned, which indicates that the option is not available. Therefore, you cannot access the
PMU registers from a user application in the following scenarios:

• When a system starts

MMCR0[PMCC] is set to 00
PMCs 1-6, MMCR0, MMCRA and MMCR2 registers are read only.
Access using pmc_read_1to4 , pmc_read_5to6 and mmcr_read returns 0
Access using pmc_write and mmcr_write returns -1

• Another PMU-based profiler is used

MMCR0[PMCC] is set to 00
PMCs 1-6, MMCR0, MMCRA and MMCR2 registers are read only.
Access using pmc_read_1to4 , pmc_read_5to6 and mmcr_read returns 0
Access using pmc_write and mmcr_write returns -1

• During LPM

Prior to the Mobility operation, any running PMU counting is stopped and MMCR0[PMCC] is set 
to 00.
Post Mobility operation, PMCs 1-6, MMCR0, MMCRA and MMCR2 registers are read only.
Access using pmc_read_1to4 , pmc_read_5to6 and mmcr_read returns 0
Access using pmc_write and mmcr_write returns -1

Instead of using the libpmapi pragmas, if you use the mtspr and the mfspr instructions to access the PMU
registers, a SIGILL signal is generated for any write operations.

Sample programs are located in the /usr/samples/pmapi directory.

Related information
mmcr_read subroutine
mmcr_write subroutine
pmc_read_1to4 subroutine
pmc_read_5to6 subroutine
pmc_write subroutine

The hpm library and associated tools
The hpm libraries are higher-level instrumentation libraries based on the pmapi library. They support
multiple instrumentation sections, nested instrumentation, and each instrumented section can be called
multiple times.

When nested instrumentation is used, exclusive duration is generated for the outer sections. Average and
standard deviation is provided when an instrumented section is activated multiple times.

The libraries support OpenMP and threaded applications, which requires linking with the thread-safe
version of the library,libhpm_r. Both 32-bit and 64-bit library modules are provided.

The libraries collect information and hardware Performance Monitor summarization during run-time. So,
there could be considerable overhead if instrumentation sections are inserted inside inner loops.

Compiling and linking
The functionality of the libhpm_r library depends upon the corresponding functions in the libpmapi and
libm libraries. Therefore, the lpmapi -lm flag must be specified when compiling applications using the
hpm libraries.

By default, argument passing from Fortran applications to the hpm libraries is done by reference, or
pointer, not by value. Also, there is an extra length argument following character strings. You can modify
the default argument passing method by using the %VAL and %REF built-in functions.

Performance Tools Guide and Reference  75



Overhead and measurement error issues
It is expected for any software instrumentation to incur some overhead. Since it is not possible to
eliminate the overhead, the goal is to minimize it. In the hpm library, most of the overhead is due to time
measurement, which tends to be an expensive operation in most systems.

A second source of overhead is due to run-time accumulation and storage of performance data. The hpm
libraries collect information and perform summarization during run-time. Hence, there could be a
considerable amount of overhead if instrumentation sections are inserted inside inner loops.

The hpm library uses hardware counters during the initialization and finalization of the library, retaining
the minimum of the two for each counter as an estimate of the cost of one call to the start and stop
functions. The estimated overhead is subtracted from the values obtained on each instrumented code
section, which ensures that the measurement of error becomes close to zero. However, since this is a
statistical approximation, in some situations where estimated overhead is larger than a measured count
for the application, the approach fails. When the approach fails, you might get the following error
message, which indicates that the estimated overhead was not subtracted from the measured values:

WARNING: Measurement error for <event name> not removed

You can deactivate the procedure that attempts to remove measurement errors by setting the
HPM_WITH_MEASUREMENT_ERROR environment variable to TRUE (1).

Common hpm library rules
Review common hpm library rules.

The following rules are common to the hpm library APIs:

• The hpmInit() or f_hpminit() function must be called before any other function in the API.
• The initialization function can only be called once in an application.
• Performance Monitor contexts, like the event set, event group, or counter/event pairs, cannot be

reprogrammed at any time.
• All functions of the API are specified as void and return no value or status.

Overview of the hpm library API calls
The following table lists the hpm library API calls.

API Call Purpose

hpmInit or f_hpminit Performs initialization for a specified node ID and program name.

hpmStart or f_hpmstart Indicates the beginning of an instrumented code segment, which is
identified by an instrumentation identifier, InstID.

hpmStop or f_hpmstop Indicates the end of an instrumented code segment. For each call to
the hpmStart() or f_hpmstart() function, there should be a
corresponding call to the hpmStop() or f_hpmstop() function with the
matching instrumentation identifier.

hpmTstart or f_hpmtstart Performs the same function as the hpmStart() and f_hpmstart()
functions, but they are used in threaded applications.

hpmTstop or f_hpmtstop Performs the same function as the hpmStop() and f_hpmstop()
functions, but they are used in threaded applications.

hpmGetTimeAndCounters or
f_hpmgettimeandcounters

Returns the time, in seconds, and the accumulated counts since the
call to the hpmInit() or f_hpminit() initialization function.

hpmGetCounters or
f_hpmgetcounter

Returns all the accumulated counts since the call to the hpmInit() or
f_hpminit() initialization function.

hpmTerminate or
f_hpmterminate

Performs termination and generates output. If an application exits
without calling the hpmTerminate() or f_hpmterminate() function,
no performance information is generated.

76  AIX Version 7.2: Performance Tools Guide and Reference



Threaded applications
The T/tstart and T/tstop functions respectively start and stop the counters independently on each
thread. If two distinct threads use the same instID parameter, the output indicates multiple calls.
However, the counts are accumulated.

The instID parameter is always a constant variable or integer. It cannot be an expression because the
declarations in the libhpm.h, f_hpm.h, and f_hpm_i8.h header files that contain #define statements
are evaluated during the compiler pre-processing phase, which permits the collection of line numbers and
source file names.

Selecting events when using the hpm libraries and tools
The hpm libraries use the same set of hardware counters and events used by the hpmcount and hpmstat
tools. The events are selected by sets. Sets are specially marked event groups for whichever derived
metrics are available.

For the hpm libraries, you can select the event set to be used by any of the following methods:

• The HPM_EVENT_SET environment variable, which is either explicitly set in the environment or
specified in the HPM_flags.env file.

• The content of the libHPMevents file.

For the hpmcount and hpmstat commands, you can specify which event types you want to be monitored
and the associated hardware performance counters by any of the following methods:

• Using the -s option
• The HPM_EVENT_SET environment variable, which you can set directly or define in the HPM_flags.env
file

• The content of the libHPM_events file

In all cases, the HPM_flags.env file takes precedence over the explicit setting of the HPM_EVENT_SET
environment variable and the content of the libHPMevents or libHPM_events file takes precedence over
the HPM_EVENT_SET environment variable.

An event group can be specified instead of an event set, using any of the following methods:

• The -g option
• The HPM_EVENT_GROUP environment variable that you can set directly or define in the

HPM_flags.env file

In all cases, the HPM_flags.env file takes precedence over the explicit setting of the
HPM_EVENT_GROUP environment variable. The HPM_EVENT_GROUP environment variable takes
precedence over the explicit setting of the HPM_EVENT_SET environment variable. The
HPM_EVENT_GROUP is a comma separated list of group names or group numbers.

A list of derived metric groups to be evaluated can be specified, using any of the following methods:

• The -m option
• The HPM_PMD_GROUP environment variable that you can set directly or define in the HPM_flags.env
file

In all cases, the HPM_flags.env file take precedence over the explicit setting of the HPM_PMD_GROUP
environment variable. The HPM_PMD_GROUP is a comma-separated list of derived metric group names.

Each set, group or derived metric group can be qualified by a counting mode. The allowed counting modes
are:

• u: user mode
• k: kernel mode
• h: hypervisor mode
• r: runlatch mode
• n: nointerrupt mode

Performance Tools Guide and Reference  77



The counting mode qualifier is separated from the set or group by a colon ":". For example:

HPM_EVENT_GROUP=pm_utilization:uk,pm_completion:u

To use the time slice functionality, specify a comma-separated list of sets instead of a single set number.
By default, the time slice duration for each set is 100 ms, but this can be modified with the
HPM_MX_DURATION environment variable. This value must be expressed in ms, and in the range 10 ms
to 30000 ms.

The libHPMevents and libHPM_events files
The libHPMevents and libHPM_events files are both supplied by the user and have the same format.

For POWER3 or PowerPC 604 RISC Microprocessor systems, the file contains the counter number and the
event name, like in the following example:

    0 PM_LD_MISS_L2HIT
    1 PM_TAG_BURSTRD_L2MISS
    2 PM_TAG_ST_MISS_L2
    3 PM_FPU0_DENORM
    4 PM_LSU_IDLE
    5 PM_LQ_FULL
    6 PM_FPU_FMA
    7 PM_FPU_IDLE

For POWER4 and later systems, the file contains the event group name, like in the following example:

pm_hpmcount1

The HPM_flags.env file
The HPM_flags.env file contains environment variables that are used to specify the event set and for the
computation of derived metrics

Example

HPM_L2_LATENCY 12
HPM_EVENT_SET  5

Output files of the hpm library
When the hpmTerminate function is called, a summary report is written to the
<progName>_<pid>_<taskID>.hpm file, by default. The taskID and progName values are the first and
second parameters of the hpmInit() function, respectively.

You can define the name of the output file with the HPM_OUTPUT_NAME environment variable. The hpm
libraries always add the _<taskID>.hpm suffix to the specified value. You can also include the date and
time in the file name using the HPM_OUTPUT_NAME environment variable. For example, if you use the
following code:

MYDATE=$(date +"m%d:2/2/06M%S")
export HPM_OUTPUT_NAME=myprogram_$MYDATE

the output file for task 27 is named myprogram_yyyymmdd:HHMMSS_0027.hpm.

You can also generate an XML output file by setting the HPM_VIZ_OUTPUT=TRUE environment variable.
The generated output files are named either <progName>_<pid>_<taskID>.viz or
HPM_OUTPUT_NAME_<taskID>.viz.

Output files of the hpmcount command
The output file for the hpmcount command depend on the environment variables set and the execution
environment.

The following are the output files of the hpmcount command:
File name

Description

78  AIX Version 7.2: Performance Tools Guide and Reference



file_<myID>.<pid>
The value for file is specified with the -o option and the myID value is assigned the value of the
MP_CHILD environment variable, which has a default value of 0000.

HPM_LOG_DIR/hpm_log.<pid>
When the HPM_LOG_DIR environment variable is set to an existing directory, results are additionally
written to the hpm_log.<pid> file.

HPM_LOG_DIR/hpm_log.MP_PARTITION
The MP_PARTITION environment variable is provided in POE environments. The
hpm_log.MP_PARTITION file contains the aggregate counts.

An XML output can be provided by using the -x option.

An alternative time base for the result normalization can be selected using any of the following methods:

• The -b time|purr|spurr option
• The HPM_NORMALIZE environment variable that you can set directly or define in the HPM_flags.env
file

Derived metrics and related environment variables
In relation to the hardware events that are selected to be counted and the hardware platform that is used,
the output for the hpm library tools and the hpmterminate function includes derived metrics.

You can list the globally supported metrics for a given processor with the pmlist -D -1 [-p
Processor_name] command.

You can supply the following environment variables to specify estimations of memory, cache, and TLB
miss latencies for the computation of related derived metrics:

• HPM_MEM_LATENCY
• HPM_L3_LATENCY
• HPM_L35_LATENCY
• HPM_AVG_L3_LATENCY
• HPM_AVG_L2_LATENCY
• HPM_L2_LATENCY
• HPM_L25_LATENCY
• HPM_L275_LATENCY
• HPM_L1_LATENCY
• HPM_TLB_LATENCY

Precedence is given to variables that are defined in the HPM_flags.env file.

You can use the HPM_DIV_WEIGHT environment variable to compute the weighted flips on systems that
are POWER4 and later.

Examples of the hpm tools
The examples in this section demonstrate the usage of the following hpm library commands:

The pmlist command
The following is an example of the pmlist command on a POWER5 processor-based system.

# pmlist -s

POWER5 supports 6 counters

Number of groups            : 144
Number of sets              : 8

Threshold multiplier (lower): 1
Threshold multiplier (upper): 32
Threshold multiplier (hyper): 64

Performance Tools Guide and Reference  79



Hypervisor counting mode is supported
Runlatch counting mode is supported

The following is another example of the pmlist command:

# pmlist -D -1  -p POWER5
Derived metrics supported:
        PMD_UTI_RATE                   Utilization rate
        PMD_MIPS                       MIPS
        PMD_INST_PER_CYC               Instructions per cycle
        PMD_HW_FP_PER_CYC              HW floating point instructions per Cycle
        PMD_HW_FP_PER_UTIME            HW floating point instructions / user time
        PMD_HW_FP_RATE                 HW floating point rate
        PMD_FX                         Total Fixed point operations
        PMD_FX_PER_CYC                 Fixed point operations per Cycle
        PMD_FP_LD_ST                   Floating point load and store operations
        PMD_INST_PER_FP_LD_ST          Instructions per floating point load/store
        PMD_PRC_INST_DISP_CMPL         % Instructions dispatched that completed
        PMD_DATA_L2                    Total L2 data cache accesses
        PMD_PRC_L2_ACCESS              % accesses from L2 per cycle
        PMD_L2_TRAF                    L2 traffic
        PMD_L2_BDW                     L2 bandwidth per processor
        PMD_L2_LD_EST_LAT_AVG          Estimated latency from loads from L2 (Average)
        PMD_UTI_RATE_RC                Utilization rate (versus run cycles)
        PMD_INST_PER_CYC_RC            Instructions per run cycle
        PMD_LD_ST                      Total load and store operations
        PMD_INST_PER_LD_ST             Instructions per load/store
        PMD_LD_PER_LD_MISS             Number of loads per load miss
        PMD_LD_PER_DTLB                Number of loads per DTLB miss
        PMD_ST_PER_ST_MISS             Number of stores per store miss
        PMD_LD_PER_TLB                 Number of loads per TLB miss
        PMD_LD_ST_PER_TLB              Number of load/store per TLB miss
        PMD_TLB_EST_LAT                Estimated latency from TLB miss
        PMD_MEM_LD_TRAF                Memory load traffic
        PMD_MEM_BDW                    Memory bandwidth per processor
        PMD_MEM_LD_EST_LAT             Estimated latency from loads from memory
        PMD_LD_LMEM_PER_LD_RMEM        Number of loads from local memory per loads from remote 
memory
        PMD_PRC_MEM_LD_RC              % loads from memory per run cycle

The hpmcount command
The following is example output from the of the hpmcount command.

# hpmcount -m cpi_breakdown ls
bar           foo
 Workload context: ls (pid:42234)
 Execution time (wall clock time): 0.004222 seconds
 ########  Resource Usage Statistics  ########
 Total amount of time in user mode            : 0.001783 seconds
 Total amount of time in system mode          : 0.000378 seconds
 Maximum resident set size                    : 220 Kbytes
 Average shared memory use in text segment    : 0 Kbytes*sec
 Average unshared memory use in data segment  : 0 Kbytes*sec
 Number of page faults without I/O activity   : 63
 Number of page faults with I/O activity      : 0
 Number of times process was swapped out      : 0
 Number of times file system performed INPUT  : 0
 Number of times file system performed OUTPUT : 0
 Number of IPC messages sent                  : 0
 Number of IPC messages received              : 0
 Number of signals delivered                  : 0
 Number of voluntary context switches         : 0
 Number of involuntary context switches       : 0
 #######  End of Resource Statistics  ########
 Counting mode: user
  PM_1PLUS_PPC_CMPL (One or more PPC instruction completed)   :    143749896
  PM_GCT_EMPTY_CYC (Cycles GCT empty)                         :     12905400
  PM_GRP_CMPL (Group completed)                               :    144626424
  PM_CYC (Processor cycles)                                   :    434717274
  PM_INST_CMPL (Instructions completed)                       :    193121895
  PM_RUN_CYC (Run cycles)                                     :    378397903
  PM_GCT_NOSLOT_CYC (Cycles no GCT slot allocated)            :     87592746
  PM_GCT_NOSLOT_IC_MISS                                       :     16066248
    (No slot in GCT caused by I cache miss)
  PM_GCT_NOSLOT_SRQ_FULL (No slot in GCT caused by SRQ full)  :            0
  PM_GCT_NOSLOT_BR_MPRED                                      :     27869700
    (No slot in GCT caused by branch mispredict)
  PM_GRP_MRK (Group marked in IDU)                            :      6041616

80  AIX Version 7.2: Performance Tools Guide and Reference



  PM_CMPLU_STALL_LSU                                          :    117973392
    (Completion stall caused by LSU instruction)
  PM_IOPS_CMPL (Internal operations completed)                :    162398665
  PM_CMPLU_STALL_REJECT (Completion stall caused by reject)   :     24318036
  PM_CMPLU_STALL_DCACHE_MISS                                  :     25055262
    (Completion stall caused by D cache miss)
  PM_CMPLU_STALL_ERAT_MISS                                    :     17332764
    (Completion stall caused by ERAT miss)
  PM_GRP_IC_MISS_BR_REDIR_NONSPEC                             :      2551038
   (Group experienced non-speculative I cache miss or branch redirect)
  PM_CMPLU_STALL_FXU                                          :     69575412
    (Completion stall caused by FXU instruction)
  PM_CMPLU_STALL_DIV                                          :     45664068
    (Completion stall caused by DIV instruction)
  PM_FPU_FULL_CYC (Cycles FPU issue queue full)               :        27660
  PM_CMPLU_STALL_FDIV                                         :       319104
    (Completion stall caused by FDIV or FQRT instruction)
  PM_CMPLU_STALL_FPU                                          :       500274
    (Completion stall caused by FPU instruction)
  Derived metric group: cpi_breakdown
  Total cycles                                                  : 2.250999
      Completion cycles                                         : 0.748887
      Completion Table empty (GCT empty)                        : 0.266825
          I-Cache Miss Penalty                                  : 0.083192
          Branch Mispredication Penalty                         : 0.144311
          Others GCT stalls                                     : 0.039322
      Completion Stall cycles                                   : 1.435288
          Stall by LSU instruction                              : 0.610875
              Stall by LSU Reject                               : 0.125921
                  Stall by LSU Translation Reject               : 0.089750
                  Stall by LSU Other Reject                     : 0.036170
              Stall by LSU D-cache miss                         : 0.129738
              Stall by LSU basic latency, LSU Flush penalty     : 0.355217
          Stall by FXU instruction                              : 0.360267
              Stall by any form of DIV/MTSPR/MFSPR instruction  : 0.236452
              Stall by FXU basic latency                        : 0.123815
          Stall by FPU instruction                              : 0.002590
              Stall by any form of FDIV/FSQRT instruction       : 0.001652
              Stall by FPU basic latency                        : 0.000938
          Stall by others                                       : 0.462493

The hpmstat command
The following is an example output from the hpmstat command.

# hpmstat -s 7
 Execution time (wall clock time): 1.003946 seconds
 Counting mode: user
  PM_TLB_MISS (TLB misses)                           :          260847
  PM_CYC (Processor cycles)                          :      3013964331
  PM_ST_REF_L1 (L1 D cache store references)         :       161377371
  PM_LD_REF_L1 (L1 D cache load references)          :       255317480
  PM_INST_CMPL (Instructions completed)              :      1027391919
  PM_RUN_CYC (Run cycles)                            :      1495147343
  Derived metric group: default
  Utilization rate                                 :         181.243 %
  Total load and store operations                  :         416.695 M
  Instructions per load/store                      :           2.466
  MIPS                                             :        1023.354
  Instructions per cycle                           :           0.341

The following is an example of the hpmstat command with counter multiplexing:

# hpmstat -s 1,2 -d
Execution time (wall clock time): 2.129755 seconds
Set: 1
Counting duration: 1.065 seconds
  PM_INST_CMPL (Instructions completed)                :          244687
  PM_FPU1_CMPL (FPU1 produced a result)                :               0
  PM_ST_CMPL (Store instruction completed)             :           31295
  PM_LD_CMPL (Loads completed)                         :           67414
  PM_FPU0_CMPL (Floating-point unit produced a result) :              19
  PM_CYC (Processor cycles)                            :          295427
  PM_FPU_FMA (FPU executed multiply-add instruction)   :               0
  PM_TLB_MISS (TLB misses)                             :             788
Set: 2
Counting duration: 1.064 seconds
  PM_TLB_MISS (TLB misses)                           :            379472
  PM_ST_MISS_L1 (L1 D cache store misses)            :             79943

Performance Tools Guide and Reference  81



  PM_LD_MISS_L1 (L1 D cache load misses)             :            307338
  PM_INST_CMPL (Instructions completed)              :         848578245
  PM_LSU_IDLE (Cycles LSU is idle)                   :         229922845
  PM_CYC (Processor cycles)                          :         757442686
  PM_ST_DISP (Store instructions dispatched)         :         125440562
  PM_LD_DISP (Load instr dispatched)                 :         258031257
Counting mode: user
  PM_TLB_MISS (TLB misses)                             :          380260
  PM_ST_MISS_L1 (L1 D cache store misses)              :          160017
  PM_LD_MISS_L1 (L1 D cache load misses)               :          615182
  PM_INST_CMPL (Instructions completed)                :       848822932
  PM_LSU_IDLE (Cycles LSU is idle)                     :       460224933
  PM_CYC (Processor cycles)                            :       757738113
  PM_ST_DISP (Store instructions dispatched)           :       251088030
  PM_LD_DISP (Load instr dispatched)                   :       516488120
  PM_FPU1_CMPL (FPU1 produced a result)                :               0
  PM_ST_CMPL (Store instruction completed)             :           62582
  PM_LD_CMPL (Loads completed)                         :          134812
  PM_FPU0_CMPL (Floating-point unit produced a result) :              38
  PM_FPU_FMA (FPU executed multiply-add instruction)   :               0
  Derived metric group: default
  Utilization rate                                 :         189.830 %
  % TLB misses per cycle                           :           0.050 %
  number of loads per TLB miss                     :           0.355
  Total l2 data cache accesses                     :           0.775 M
  % accesses from L2 per cycle                     :           0.102 %
  L2 traffic                                       :          47.276 MBytes
  L2 bandwidth per processor                       :          44.431 MBytes/sec
  Total load and store operations                  :           0.197 M
  Instructions per load/store                      :        4300.145
  number of loads per load miss                    :         839.569
  number of stores per store miss                  :        1569.133
  number of load/stores per D1 miss                :         990.164
  L1 cache hit rate                                :           0.999 %
  % Cycles LSU is idle                             :          30.355 %
  MIPS                                             :         199.113
  Instructions per cycle                           :           1.120

Examples of hpm library usage
The following are examples of hpm library usage:

A C programming language example
The following C program contains two instrumented sections which perform a trivial floating point
operation, print the results, and then launch the command interpreter to execute the ls -R / 2>&1 >/dev/
null command.

#include <sys/wait.h>
#include <unistd.h>
#include <stdio.h>
#include <libhpm.h>

void
do_work()
{
        pid_t p, wpid;
        int i, status;
        float f1 = 9.7641, f2 = 2.441, f3 = 0.0;

        f3 = f1 / f2;
        printf("f3=%f\n", f3);

        p = fork();

        if (p == -1) {
          perror("Mike fork error");
          exit(1);
        }

        if (p == 0) {
          i = execl("/usr/bin/sh", "sh", "-c", "ls -R / 2>&1 >/dev/null", 0);
          perror("Mike execl error");
          exit(2);
        }
        else
          wpid = waitpid(p, &status, WUNTRACED | WCONTINUED);

        if (wpid == -1) {
            perror("Mike waitpid error");

82  AIX Version 7.2: Performance Tools Guide and Reference



            exit(3);
        }

        return;
}

main(int argc, char **argv)
{
        int taskID = 999;

        hpmInit(taskID, "my_program");
        hpmStart(1, "outer call");
        do_work();
        hpmStart(2, "inner call");
        do_work();
        hpmStop(2);
        hpmStop(1);
        hpmTerminate(taskID);
} 

A Fortran programming language example
The following declaration is required on all source files that have instrumentation calls.

#include "f_hpm.h"

Fortran programs call functions that include the f_ prefix, as you can see in the following example:

call f_hpminit( taskID, "my_program" )
call f_hpmstart( 1, "Do Loop"  )
     do ...
      call do_work()
      call f_hpmstart( 5, "computing meaning of life" );
      call do_more_work();
      call f_hpmstop( 5 );
     end do
call f_hpmstop( 1 )
call f_hpmterminate( taskID ) 

Multithreaded application instrumentation example
When placing instrumentation inside of parallel regions, you should use a different ID for each thread.

The following is an example multithreaded application instrumentation:

!$OMP PARALLEL
!$OMP&PRIVATE (instID)
     instID = 30+omp_get_thread_num()
     call f_hpmtstart( instID, "computing meaning of life" )
!$OMP DO
      do ...
       do_work()
      end do
      call f_hpmtstop( instID )
!$OMP END PARALLEL

The library accepts the use of the same instID for different threads, but the counters are accumulated
for all instances with the same instID.

Perfstat API programming
The perfstat application programming interface (API) is a collection of C programming language
subroutines that is used in user space. It uses the perfstat kernel extension to extract various AIX
performance metrics.

System component information is also retrieved from the Object Data Manager (ODM) and returned with
the performance metrics.

The perfstat API is thread–safe, and does not require root authority.

The API supports extensions so binary compatibility is maintained across all releases of.AIX This
interface is accomplished by using one of the parameters in all the API calls to specify the size of the data
structure to be returned. The interface permits the library to determine the version is use, using the

Performance Tools Guide and Reference  83



structures that are growing. It helps the user from being dependent on the different versions. For the list
of extensions in earlier versions of,AIX see the Change History section.

The perfstat API subroutines are present in the libperfstat.a library that are part of the
bos.perf.libperfstat file set, which is installable from the AIX base installation media and requires that
the bos.perf.perfstat file set is installed. The latter contains the kernel extension and is automatically
installed with.AIX

The /usr/include/libperfstat.h file contains the interface declarations and type definitions of the data
structures to use when calling the interfaces. The include file is also part of the bos.perf.libperfstat file
set. Sample source code is provided with bos.perf.libperfstat file set and is present in the /usr/
samples/libperfstat directory.

Related information
libperfstat.h command

API characteristics
Five types of APIs are available. Global types return global metrics related to a set of components, while
individual types return metrics related to individual components. Both types of interfaces have similar
signatures, but slightly different behavior.

AIX supports different types of APIs such as WPAR and RSET. WPAR types return usage metrics related to
a set of components or individual components specific to a workload partition (WPAR). RSET types return
usage metrics of processors that belong to an RSET. With AIX Version 6.1 Technology Level (TL) 6, a new
type of APIs, called as NODE is available. The NODE types return usage metrics that re related to a set of
components or individual components specific to a remote node in a cluster. The perfstat_config
(PERFSTAT_ENABLE | PERFSTAT_CLUSTER_STATS, NULL) must be used to enable the remote node
statistics collection (that is available in a cluster environment).

All the interfaces return raw data; that is, values of running counters. Multiple calls must be made at
regular intervals to calculate rates.

Several interfaces return data retrieved from the ODM (object data manager) database. This information is
automatically cached into a dictionary that is assumed to be "frozen" after it is loaded. The
perfstat_reset subroutine must be called to clear the dictionary whenever the system configuration has
changed. In order to do a more selective reset, you can use the perfstat_partial_reset function. For more
details, see the “Cached metrics interfaces” on page 179 section.

Most types returned are unsigned long long; that is, unsigned 64 bit data.

Excessive and redundant calls to Perfstat APIs in a short time span can have a performance impact
because time-consuming statistics collected by them are not cached.

For examples of API characteristics, see the sample programs in the /usr/samples/libperfstat
directory. All of the sample programs can be compiled using the provided makefile (/usr/samples/
libperfstat/Makefile.samples).

Global interfaces
Global interfaces report metrics related to a set of components on a system (such as processors, disks, or
memory).

The following are the global interfaces:

Item Descriptor

perfstat_cpu_total Retrieves global processor usage metrics

perfstat_memory_total Retrieves global memory usage metrics

perfstat_disk_total Retrieves global disk usage metrics

Note: This API does not return any data when started from an
application running inside WPAR.

84  AIX Version 7.2: Performance Tools Guide and Reference



Item Descriptor

perfstat_netinterface_total Retrieves global network interfaces metrics

Note: This API does not return any data when started from an
application running inside WPAR.

perfstat_partition_config Retrieves Operating System and partition related information

perfstat_partition_total Retrieves global partition metrics

perfstat_tape_total Retrieves global tape usage metrics

Note: This API does not return any data when started from an
application running inside WPAR.

The common signature used by all of the global interfaces is as follows:

int perfstat_subsystem_total(perfstat_id_t *name,
                             perfstat_subsystem_total_t *userbuff,
                             int sizeof_struct,
                             int desired_number);

The usage of the parameters for all of the interfaces is as follows:

Item Descriptor

perfstat_id_t *name Reserved for future use, must be NULL

perfstat_subsystem_total_t *userbuff A pointer to a memory area with enough space for the
returned structure

int sizeof_struct Should be set to sizeof(perfstat_subsystem_t)

int desired_number Reserved for future use, must be set to 0 or 1

The return value is -1 in case of errors. Otherwise, the number of structures copied is returned. This is
always 1.

The following sections provide examples of the type of data returned and code using each of the
interfaces.

The following code shows an example of how perfstat_netinterface_total is used:

#include <stdio.h>
#include <libperfstat.h>

int main(int argc, char* argv[]) {
    perfstat_netinterface_total_t ninfo;
    int rc;
    rc = perfstat_netinterface_total(NULL, &ninfo, sizeof(perfstat_netinterface_total_t), 1);
    if (rc != 1)
    {
    perror("perfstat_netinterface_total");
    exit(-1);
    }
    perfstat_netinterface_total(NULL, &ninfo, sizeof(perfstat_netinterface_total_t), 1);

    printf("Network interfaces statistics\n");
    printf("-----------------------------\n");
    printf("number of interfaces : %d\n",   ninfo.number);
    printf("\ninput statistics:\n");
    printf("number of packets    : %llu\n", ninfo.ipackets);
    printf("number of errors     : %llu\n", ninfo.ierrors);
    printf("number of bytes      : %llu\n", ninfo.ibytes);
    printf("\noutput statistics:\n");
    printf("number of packets    : %llu\n", ninfo.opackets);
    printf("number of bytes      : %llu\n", ninfo.obytes);
    printf("number of errors     : %llu\n", ninfo.oerrors);
}

The program produces output similar to the following:

Performance Tools Guide and Reference  85



Network interfaces statistics
-----------------------------
number of interfaces : 2

input statistics:
number of packets    : 306688
number of errors     : 0
number of bytes      : 24852688

output statistics:
number of packets    : 63005
number of bytes      : 11518591
number of errors     : 0

The preceding program emulates ifstat's behavior and also shows how perfstat_netinterface_total is
used.

perfstat_cpu_total Interface
The perfstat_cpu_total interface returns a perfstat_cpu_total_t structure, which is defined in the
libperfstat.h file.

Selected fields from the perfstat_cpu_total_t structure include:

Item Descriptor

purr_coalescing PURR cycles consumes coalescing data if the calling partition is authorized to
see pool wide statistics, else set to zero.

spurr_coalescing SPURR cycles consumes coalescing data if the calling partition is authorized to
see pool wide statistics, else set to zero.

processorHz Processor speed in Hertz (from ODM)

description Processor type (from ODM)

CPUs Current number of active processors

ncpus_cfg Number of configured processors; that is, the maximum number of processors
that this copy of AIX can handle simultaneously

ncpus_high Maximum number of active processors; that is, the maximum number of active
processors since the last reboot

user Number of clock ticks spent in user mode

sys Number of clock ticks spent in system (kernel) mode

idle Number of clock ticks spent idle with no I/O pending

wait Number of clock ticks spent idle with I/O pending

Note: Page coalescing is a transparent operation wherein the hypervisor detects duplicate pages, directs
all user reads to a single copy, and reclaims the other duplicate physical memory pages.

Several other processor-related counters (such as number of system calls, number of reads, write, forks,
execs, and load average) are also returned. For a complete list, see the perfstat_cpu_total_t section of
the libperfstat.h header file.

The following program emulates lparstat's behavior and also shows an example of how the
perfstat_cpu_total interface is used:

#include <stdio.h>
#include <sys/time.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <wpars/wparcfg.h>
#include <libperfstat.h>
#include <stdlib.h>

/* default values for interval and count */

#define INTERVAL_DEFAULT  1
#define COUNT_DEFAULT     1

/* values for wpar status */

86  AIX Version 7.2: Performance Tools Guide and Reference



#define ACTIVE           0 
#define NOTACTIVE      1 

/* Check value returned by malloc for NULL */
#define CHECK_FOR_MALLOC_NULL(X) {  if ((X) == NULL) {\
                                       perror ("malloc");\
                                       exit(2);\
                                        }\
                                  }

/* Non zero WPAR ID indicates WPAR */

#define IS_WPAR(X) ((X))

 /* stores wpar id for perfstat library */

perfstat_id_wpar_t     wparid;
perfstat_wpar_total_t  wparinfo;
perfstat_wpar_total_t *wparlist;

 /*Corral id for WPAR */

cid_t cid;

int interval = INTERVAL_DEFAULT, count = COUNT_DEFAULT;
int totalwpar, activewpar;   /* to store and number of wpars available and active wpars */

/*
 *Name: do_cleanup
 *      free all allocated data structures
 */

void do_cleanup(void)
{
   if (wparlist)
       free(wparlist);    
 
}

/*
 *Name: display_global_sysinfo_stat
 *      Function used when called from global. 
 *      Gets all the system metrics using perfstat APIs and displays them 
 *
 */

void display_global_sysinfo_stat(void)
{
   perfstat_cpu_total_t *cpustat,*cpustat_last;
   perfstat_id_t first;

   /* allocate memory for data structures and check for any error */
 
   cpustat = (perfstat_cpu_total_t *)malloc(sizeof(perfstat_cpu_total_t));
   CHECK_FOR_MALLOC_NULL(cpustat);

   cpustat_last = (perfstat_cpu_total_t *)malloc(sizeof(perfstat_cpu_total_t));
   CHECK_FOR_MALLOC_NULL(cpustat_last);

   /* get the system wide statistics */

   if (perfstat_cpu_total(NULL , cpustat_last, sizeof(perfstat_cpu_total_t), 1) <= 0){
       perror("perfstat_cpu_total ");
       exit(1);
   }

   printf ("%10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s\n", "cswch", "scalls", "sread", "swrite", "fork", "exec", 
                            "rchar", "wchar", "deviceint", "bwrite", "bread", "phread");
   printf ("%10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s %10s\n", "=====", "======", "=====", "======", "====", "====", 
                            "=====", "=====", "=========", "======", "=====", "======"); 
   while (count > 0){
       sleep(interval);
       if (perfstat_cpu_total(NULL ,cpustat, sizeof(perfstat_cpu_total_t), 1) <= 0){
           perror("perfstat_cpu_total ");
           exit(1);
       }
       /* print the difference between the old structure and new structure */ 
       printf("%10llu %10llu %10llu %10llu %10llu %10llu %10llu %10llu %10llu %10llu %10llu %10llu\n",(cpustat->pswitch - cpustat_last-
>pswitch),
                                                         (cpustat->syscall - cpustat_last->syscall), (cpustat->sysread - cpustat_last-
>sysread ),
                                                         (cpustat->syswrite - cpustat_last->syswrite),(cpustat->sysfork - cpustat_last-
>sysfork),
                             (cpustat->sysexec - cpustat_last->sysexec ), (cpustat->readch - cpustat_last->readch),
                             (cpustat->writech - cpustat_last->writech ),(cpustat->devintrs - cpustat_last->devintrs),
                                                         (cpustat->bwrite - cpustat_last->bwrite), (cpustat->bread - cpustat_last->bread ),
                                                         (cpustat->phread - cpustat_last->phread ));
       count--;

       /*copy the present structure to the old structure */
       memcpy(cpustat_last , cpustat , sizeof(perfstat_cpu_total_t));
   }
   /* free the memory allocated for the data structures */
   free(cpustat);
   free(cpustat_last);

}
 
/*
 *Name: display_wpar_sysinfo_stat
 *      Displays both wpar and global metrics 
 *
 */

void display_wpar_sysinfo_stat(void)
{
   perfstat_wpar_total_t wparinfo;
   perfstat_cpu_total_wpar_t cinfo_wpar, cinfo_wpar_last;

Performance Tools Guide and Reference  87



   perfstat_cpu_total_t sysinfo, sysinfo_last;

   /* ste the spec and pass the wparname */ 
   wparid.spec = WPARNAME;
   strcpy(wparid.u.wparname, NULL);
   
   /* save the number of wpars which are active */
   activewpar = perfstat_wpar_total( NULL , &wparinfo ,sizeof(perfstat_wpar_total_t), 1);

   /* if the activewpar is less than zero exit with a perror */
   if (activewpar < 0){
       perror("perfstat_wpar_total :");
       exit(1); 
   }

   /* if the wpar is not active exit with a message */
   if (activewpar == 0){
       printf("wpar not active \n");
       exit(1);
   } 
   
   /* get the wpar wide cpu information */ 
   if (perfstat_cpu_total_wpar(NULL, &cinfo_wpar_last, sizeof(perfstat_cpu_total_wpar_t), 1) <=0){
       perror("perfstat_cpu_total_wpar :");
       exit(1);
   }
   if (perfstat_cpu_total(NULL , &sysinfo_last, sizeof(perfstat_cpu_total_t), 1) <=0){
       perror("perfstat_cpu_total_wpar :");
       exit(1);
   }
   printf("%10s %10s %10s %10s %10s %10s %10s %10s\n","wparname ", "cswch" , "syscalls", "fork","runque", "swpque", "runocc", "swpocc" );
   printf("%10s %10s %10s %10s %10s %10s %10s %10s\n","======== ", "=====" , "========", "====","======", "======", "======", "======" );

   while (count > 0){
       sleep(interval);
       if (perfstat_cpu_total_wpar( NULL,&cinfo_wpar,  sizeof(perfstat_cpu_total_wpar_t), 1) <=0){
           perror("perfstat_cpu_total_wpar :");
           exit(1);
       }
       if (perfstat_cpu_total(NULL, &sysinfo, sizeof(perfstat_cpu_total_t), 1) <=0){
           perror("perfstat_cpu_total :");
           exit(1);
       }
      
       /* display the difference between the current and old structure for the current wpar and system wide values*/ 
       printf("%10s %10llu %10llu %10llu %10llu %10llu %10llu %10llu\n",wparinfo.name, (cinfo_wpar.pswitch - cinfo_wpar_last.pswitch),
                (cinfo_wpar.syscall - cinfo_wpar_last.syscall), (cinfo_wpar.sysfork - cinfo_wpar_last.sysfork), 
                (cinfo_wpar.runque - cinfo_wpar_last.runque), (cinfo_wpar.swpque - cinfo_wpar_last.swpque), 
                (cinfo_wpar.runocc - cinfo_wpar_last.runocc), (cinfo_wpar.swpocc - cinfo_wpar_last.swpocc));

       printf("%10s %10llu %10llu %10llu %10llu %10llu %10llu %10llu\n\n", "Global", (sysinfo.pswitch - sysinfo_last.pswitch),
                (sysinfo.syscall - sysinfo_last.syscall), (sysinfo.sysfork - sysinfo_last.sysfork), 
                (sysinfo.runque - sysinfo_last.runque), (sysinfo.swpque - sysinfo_last.swpque), 
                (sysinfo.runocc - sysinfo_last.runocc), (sysinfo.swpocc - sysinfo_last.swpocc));
       count--;

       /* copy the data to the old structure */
       memcpy(&cinfo_wpar_last, &cinfo_wpar, sizeof(perfstat_wpar_total_t));
       memcpy(&sysinfo_last , &sysinfo , sizeof(perfstat_cpu_total_t));
   }
}
  
/* Name: display_wpar_total_sysinfo_stat
 *       displays statistics of individual wpar 
 *
 */
 
int display_wpar_total_sysinfo_stat(void)
{
   int i, *status;
   perfstat_wpar_total_t *wparinfo;
   perfstat_cpu_total_wpar_t *cinfo_wpar, *cinfo_wpar_last;
 
   /* allocate memory for the datastructures and check for any error */ 
   status = (int *) calloc(totalwpar ,sizeof(int));
   CHECK_FOR_MALLOC_NULL(status);

   cinfo_wpar = (perfstat_cpu_total_wpar_t *) malloc(sizeof (perfstat_cpu_total_wpar_t) * totalwpar);
   CHECK_FOR_MALLOC_NULL(cinfo_wpar);

   cinfo_wpar_last = (perfstat_cpu_total_wpar_t *) malloc(sizeof (perfstat_cpu_total_wpar_t) * totalwpar); 
   CHECK_FOR_MALLOC_NULL(cinfo_wpar_last);

   wparlist = (perfstat_wpar_total_t *) malloc(sizeof(perfstat_wpar_total_t) * totalwpar);
   CHECK_FOR_MALLOC_NULL(wparlist);

   activewpar = perfstat_wpar_total(&wparid, wparlist, sizeof(perfstat_wpar_total_t), totalwpar);
   
   if (activewpar < 0){
       perror("perfstat_wpar_total :");
       exit(1);
   }

   /* If no active wpars exit with a message */
   if (activewpar == 0){
       printf("no active wpars found \n");
       exit(1);
   }
   for (i = 0; i < activewpar; i++){
        /* copy the wparname into wparid and collect the data for all active wpars */
        strcpy(wparid.u.wparname, wparlist[i].name);
        if (perfstat_cpu_total_wpar(&wparid, &cinfo_wpar_last[i], sizeof(perfstat_cpu_total_wpar_t), 1) <= 0){
            status[i] = NOTACTIVE;
            continue;
        }
   }
   /*print the headers */ 
   printf("%20s %12s %12s %12s %12s %12s %12s %12s\n","wparname", "cswitch", "fork", "runque", "swpque", "runocc", "swpocc", "syscalls");
   printf("%20s %12s %12s %12s %12s %12s %12s %12s\n","========", "=======", "====", "======", "======", "======", "======", "========");

88  AIX Version 7.2: Performance Tools Guide and Reference



 
   while (count > 0){
         sleep(interval);
         for (i = 0; i < activewpar; i++){
              strcpy(wparid.u.wparname, wparlist[i].name);
              if (perfstat_cpu_total_wpar(&wparid, &cinfo_wpar[i], sizeof(perfstat_cpu_total_wpar_t), 1) <= 0){
                  status[i] = NOTACTIVE;
                  continue;
              }
         }
     /* print the data for all active wpars */
         for (i = 0; i < activewpar; i++){
              if(status[i] == ACTIVE)
              printf("%20s %12llu %12llu %12llu %12llu %12llu %12llu %12llu\n", wparlist[i].name,
            (cinfo_wpar[i].pswitch - cinfo_wpar_last[i].pswitch), (cinfo_wpar[i].sysfork - cinfo_wpar_last[i].sysfork),
            (cinfo_wpar[i].runque - cinfo_wpar_last[i].runque), (cinfo_wpar[i].swpque - cinfo_wpar_last[i].swpque),
            (cinfo_wpar[i].runocc - cinfo_wpar_last[i].runocc), (cinfo_wpar[i].swpocc - cinfo_wpar_last[i].swpocc),
            (cinfo_wpar[i].syscall- cinfo_wpar_last[i].syscall));
         }
         printf("\n");
         count--;
         memcpy(cinfo_wpar_last,cinfo_wpar,(totalwpar * sizeof(perfstat_cpu_total_wpar_t)));
   }
   /* free all the memory structures */
   free(cinfo_wpar);
   free(cinfo_wpar_last);
   free(status); 
}

/*
 *Name: showusage
 *      displays the usage message
 *
 */

void showusage()
{
   if (!cid)
       printf("Usage:simplesysinfo [-@ { ALL | WPARNAME }] [interval] [count]\n ");
   else
       printf("Usage:simplesysinfo [interval] [count]\n");

   exit(1);
}
 
/* NAME: main
 *       This function determines the interval, iteration count.
 *       Then it calls the corresponding functions to display
 *       the corresponding metrics
 */

int main(int argc, char* argv[])
{  
   int rc ,atflag = 0, c;
   char wpar[MAXCORRALNAMELEN+1];
   strcpy(wpar, NULL);
   cid = corral_getcid();
    
   while((c = getopt(argc, argv, "@:"))!= EOF){
        if (c == '@'){
            if (IS_WPAR(cid))
                showusage();
            atflag = 1;
            strcpy(wpar, optarg);
        }
   }
   argc -= optind;
   argv += optind;
   
   if (argc > 2)
       showusage();

   if (argc){
       if ((interval = atoi(argv[0])) <= 0)
           showusage();
       argc--;
   }

   if (argc){
       if ((count = atoi(argv[1])) <= 0)
           showusage();
   }      

       
 /* If no -@ flag call display_global_sysinfo_stat function */ 
   if (!atflag ){
       if (!cid)
           /*display global values */
           display_global_sysinfo_stat();
       else
           /* display wpar values */
           display_wpar_sysinfo_stat();
   } 
   else{
       /* if the argument to -@ is not ALL set the totalwpars to 1 */
       if (strcmp(wpar, "ALL")) {
           strcpy(wparid.u.wparname, wpar);
           wparid.spec = WPARNAME;
           totalwpar = 1;
       }
       else{
       totalwpar = perfstat_wpar_total(NULL, NULL, sizeof(perfstat_wpar_total_t), 0);
 
           if (totalwpar < 0){
               perror("perfstat_wpar_total : ");
               exit(1);
           }
           if (totalwpar == 0){
               printf("No wpars found");

Performance Tools Guide and Reference  89



               exit(1);
           }
           wparid.spec = WPARNAME;
           strcpy(wparid.u.wparname, NULL);
      }
      display_wpar_total_sysinfo_stat();
     
   }
   do_cleanup();
   return(0);
}

The program displays an output that is similar to the following example output:

cswch     scalls      sread     swrite       fork       exec      rchar      wchar  deviceint     bwrite      bread     
phread
=====     ======      =====     ======       ====       ====      =====      =====  =========     ======      =====     
======
 83        525        133          2          0          1       1009462      264      27           0           
0          0

perfstat_memory_total Interface
The perfstat_memory_total interface returns a perfstat_memory_total_t structure, which is defined in
the libperfstat.h file.

Selected fields from the perfstat_memory_total_t structure include:
Item Descriptor

bytes_coalesced Number of bytes of the calling partition’s logical real memory coalesced

bytes_coalesced_mempool Number of bytes of logical real memory coalesced in the calling partition’s memory pool if the calling partition is authorized to see pool
wide statistics else, set to zero.

virt_total Amount of virtual memory (in units of 4 KB pages)

real_total Amount of real memory (in units of 4 KB pages)

real_free Amount of free real memory (in units of 4 KB pages)

real_pinned Amount of pinned memory (in units of 4 KB pages)

pgins Number of pages paged in

pgouts Number of pages paged out

pgsp_total Total amount of paging space (in units of 4 KB pages)

pgsp_free Amount of free paging space (in units of 4 KB pages)

pgsp_rsvd Amount of reserved paging space (in units of 4 KB pages)

Note: Page coalescing is a transparent operation wherein the hypervisor detects duplicate pages, directs
all user reads to a single copy, and can reclaim other duplicate physical memory pages.

Several other memory-related metrics (such as amount of paging space paged in and out, and amount of
system memory) are also returned. For a complete list, see the perfstat_memory_total_t section of the
libperfstat.h header file in Files Reference.

The preceding program emulates vmstat's behavior and also shows an example of how the
perfstat_memory_total interface is used:

#include <stdio.h>
#include <libperfstat.h>

int main(int argc, char* argv[]) {
    perfstat_memory_total_t minfo;
    int rc;
    rc = perfstat_memory_total(NULL, &minfo, sizeof(perfstat_memory_total_t), 1);    
    if (rc != 1) {
        perror("perfstat_memory_total");
        exit(-1);
    }  
    printf("Memory statistics\n");
    printf("-----------------\n");
    printf("real memory size                 : %llu MB\n",
           minfo.real_total*4096/1024/1024);
    printf("reserved paging space            : %llu MB\n",minfo.pgsp_rsvd);
    printf("virtual memory size              : %llu MB\n",
           minfo.virt_total*4096/1024/1024);
    printf("number of free pages             : %llu\n",minfo.real_free);
    printf("number of pinned pages           : %llu\n",minfo.real_pinned);
    printf("number of pages in file cache    : %llu\n",minfo.numperm);
    printf("total paging space pages         : %llu\n",minfo.pgsp_total);

90  AIX Version 7.2: Performance Tools Guide and Reference



    printf("free paging space pages          : %llu\n", minfo.pgsp_free);
    printf("used paging space                : %3.2f%%\n",
        (float)(minfo.pgsp_total-minfo.pgsp_free)*100.0/
        (float)minfo.pgsp_total);
    perfstat_memory_total(NULL, &minfo, sizeof(perfstat_memory_total_t), 1);
    printf("Memory statistics\n");
    printf("-----------------\n");
    printf("real memory size                 : %llu MB\n",
           minfo.real_total*4096/1024/1024);
    printf("reserved paging space            : %llu MB\n",minfo.pgsp_rsvd);
    printf("virtual memory size              : %llu MB\n",
           minfo.virt_total*4096/1024/1024);
    printf("number of free pages             : %llu\n",minfo.real_free);
    printf("number of pinned pages           : %llu\n",minfo.real_pinned);
    printf("number of pages in file cache    : %llu\n",minfo.numperm);
    printf("total paging space pages         : %llu\n",minfo.pgsp_total);
    printf("free paging space pages          : %llu\n", minfo.pgsp_free);
    printf("used paging space                : %3.2f%%\n",
        (float)(minfo.pgsp_total-minfo.pgsp_free)*100.0/
        (float)minfo.pgsp_total);
    printf("number of paging space page ins  : %llu\n",minfo.pgspins);
    printf("number of paging space page outs : %llu\n",minfo.pgspouts);
    printf("number of page ins               : %llu\n",minfo.pgins);
    printf("number of page outs              : %llu\n",minfo.pgouts);
}

The preceding program produces output such as the following:

Memory statistics
-----------------
real memory size                 : 256 MB
reserved paging space            : 512 MB
virtual memory size              : 768 MB
number of free pages             : 32304
number of pinned pages           : 6546
number of pages in file cache    : 12881
total paging space pages         : 131072
free paging space pages          : 129932
used paging space                : 0.87%
number of paging space page ins  : 0
number of paging space page outs : 0
number of page ins               : 20574
number of page outs              : 92508

The preceding program emulates vmstat's behavior and also shows how perfstat_memory_total is used.

perfstat_disk_total Interface
The perfstat_disk_total interface returns a perfstat_disk_total_t structure, which is defined in the
libperfstat.h file.

Selected fields from the perfstat_disk_total_t structure include:

Item Descriptor

number Number of disks

size Total disk size (in MB)

free Total free disk space (in MB)

xfers Total transfers to and from disk (in KB)

Several other disk-related metrics, such as number of blocks read from and written to disk, are also
returned. For a complete list, see the perfstat_disk_total_t section in the libperfstat.h header file in Files
Reference.

The following code shows an example of how perfstat_disk_total is used:

#include <stdio.h>
#include <libperfstat.h>

int main(int argc, char* argv[]) {
    perfstat_disk_total_t dinfo;
    int rc;
    rc = perfstat_disk_total(NULL, &dinfo, sizeof(perfstat_disk_total_t), 1);

Performance Tools Guide and Reference  91



    if (rc != 1)
    {
    perror("perfstat_disk_total");
        exit(-1);
    }  
    perfstat_disk_total(NULL, &dinfo, sizeof(perfstat_disk_total_t), 1);
    printf("Total disk statistics\n");
    printf("---------------------\n");
    printf("number of  disks         : %d\n",   dinfo.number);
    printf("total disk space         : %llu\n", dinfo.size);
    printf("total free space         : %llu\n", dinfo.free);
    printf("number of transfers      : %llu\n", dinfo.xfers);
    printf("number of blocks written : %llu\n", dinfo.wblks);
    printf("number of blocks read    : %llu\n", dinfo.rblks);
}

This program produces output such as the following:

Total disk statistics
---------------------
number of  disks         : 3
total disk space         : 4296
total free space         : 2912
number of transfers      : 77759
number of blocks written : 738016
number of blocks read    : 363120

The preceding program emulates iostat's behavior and also shows how perfstat_disk_total is used.

perfstat_netinterface_total Interface
The perfstat_netinterface_total interface returns a perfstat_netinterface_total_t structure, which is
defined in the libperfstat.h file.

Selected fields from the perfstat_netinterface_total_t structure include:

Item Descriptor

number Number of network interfaces

ipackets Total number of input packets received on all network interfaces

opackets Total number of output packets sent on all network interfaces

ierror Total number of input errors on all network interfaces

oerror Total number of output errors on all network interfaces

Several other network interface-related metrics (such as number of bytes sent and received). For a
complete list, see the perfstat_netinterface_total_t section in the libperfstat.h header file in Files
Reference.

perfstat_partition_total Interface
The perfstat_partition_total interface returns a perfstat_partition_total_t structure, which is defined in
the libperfstat.h file.

Selected fields from the perfstat_partition_total_t structure include:

Item Descriptor

purr_coalescing PURR cycles consumes coalescing data if the calling partition is authorized
to see pool wide statistics, else set to zero

spurr_coalescing SPURR cycles consumes coalescing data if the calling partition is authorized
to see pool wide statistics, else set to zero

type Partition type

online_cpus Number of virtual processors currently allocated to the partition

online_memory Amount of memory currently allocated to the partition

92  AIX Version 7.2: Performance Tools Guide and Reference



Note: Page coalescing is a transparent operation wherein the hypervisor detects duplicate pages, directs
all user reads to a single copy, and reclaims duplicate physical memory pages

For a complete list, see the perfstat_partition_total_t section in the libperfstat.h header file.

The following code shows examples of how to use the perfstat_partition_total function.

The following example demonstrates how to emulate the lpartstat -i command:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(int argc, char* argv[]) 
{

    perfstat_partition_total_t pinfo;
    int rc;

    rc = perfstat_partition_total(NULL, &pinfo, sizeof(perfstat_partition_total_t), 1);
    if (rc != 1) {
    perror("Error in perfstat_partition_total");
    exit(-1);
    }
    printf("Partition Name                 : %s\n", pinfo.name);
    printf("Partition Number               : %u\n", pinfo.lpar_id);
    printf("Type                           : %s\n", pinfo.type.b.shared_enabled ? "Shared" : 
"Dedicated");
    printf("Mode                           : %s\n", pinfo.type.b.donate_enabled ? "Donating" : 
                                                    pinfo.type.b.capped ? "Capped" : "Uncapped");
    printf("Entitled Capacity              : %u\n", pinfo.entitled_proc_capacity);
    printf("Partition Group-ID             : %u\n", pinfo.group_id);
    printf("Shared Pool ID                 : %u\n", pinfo.pool_id);
    printf("Online Virtual CPUs            : %u\n", pinfo.online_cpus);
    printf("Maximum Virtual CPUs           : %u\n", pinfo.max_cpus);
    printf("Minimum Virtual CPUs           : %u\n", pinfo.min_cpus);
    printf("Online Memory                  : %llu MB\n", pinfo.online_memory);
    printf("Maximum Memory                 : %llu MB\n", pinfo.max_memory);
    printf("Minimum Memory                 : %llu MB\n", pinfo.min_memory);
    printf("Variable Capacity Weight       : %u\n", pinfo.var_proc_capacity_weight);
    printf("Minimum Capacity               : %u\n", pinfo.min_proc_capacity);
    printf("Maximum Capacity               : %u\n", pinfo.max_proc_capacity);
    printf("Capacity Increment             : %u\n", pinfo.proc_capacity_increment);
    printf("Maximum Physical CPUs in system: %u\n", pinfo.max_phys_cpus_sys);
    printf("Active Physical CPUs in system : %u\n", pinfo.online_phys_cpus_sys);
    printf("Active CPUs in Pool            : %u\n", pinfo.phys_cpus_pool);
    printf("Unallocated Capacity           : %u\n", pinfo.unalloc_proc_capacity);
    printf("Physical CPU Percentage        : %4.2f%%\n",
           (double)pinfo.entitled_proc_capacity / (double)pinfo.online_cpus);
    printf("Unallocated Weight             : %u\n", pinfo.unalloc_var_proc_capacity_weight);
}

The program displays an output that is similar to the following example output:

Partition Name                 : perfdev10
Partition Number               : 23
Type                           : Shared
Mode                           : Capped
Entitled Capacity              : 100
Partition Group-ID             : 32791
Shared Pool ID                 : 0
Online Virtual CPUs            : 2
Maximum Virtual CPUs           : 4
Minimum Virtual CPUs           : 1
Online Memory                  : 4096 MB
Maximum Memory                 : 8192 MB
Minimum Memory                 : 2048 MB
Variable Capacity Weight       : 0
Minimum Capacity               : 100
Maximum Capacity               : 400
Capacity Increment             : 1
Maximum Physical CPUs in system: 64
Active Physical CPUs in system : 64
Active CPUs in Pool            : 59
Unallocated Capacity           : 0
Physical CPU Percentage        : 50.00%
Unallocated Weight             : 0

Performance Tools Guide and Reference  93



The following example demonstrates emulating the lparstat command in default mode:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <libperfstat.h>
#include <sys/systemcfg.h>

#define XINTFRAC    ((double)(_system_configuration.Xint)/(double)(_system_configuration.Xfrac))
/* convert physical processor tics to seconds */
#define HTIC2SEC(x)    ((double)x * XINTFRAC)/(double)1000000000.0

#define INTERVAL_DEFAULT      2
#define COUNT_DEFAULT          10

/*simplelparstat.c file can be used in two modes:-
1) Auto Mode:It makes use of perfstat_cpu_util API to calculate utilization values,enable 'UTIL_AUTO' macro for execution in auto mode.
2) Manual Mode: Calculations are done in the current code.
*/

/*#define UTIL_AUTO     1*/

#ifdef  UTIL_AUTO
 #define UTIL_MS 1
 #define UTIL_PCT 0
 #define UTIL_CORE 2
 #define UTIL_PURR 0
 #define UTIL_SPURR 1
 void display_lpar_util_auto(int mode,int cpumode,int count,int interval);
#endif

static int disp_util_header = 1;
static u_longlong_t last_time_base;
static u_longlong_t last_pcpu_user, last_pcpu_sys, last_pcpu_idle, last_pcpu_wait;
static u_longlong_t last_lcpu_user, last_lcpu_sys, last_lcpu_idle, last_lcpu_wait;
static u_longlong_t last_busy_donated, last_idle_donated;
static u_longlong_t last_busy_stolen, last_idle_stolen;
static u_longlong_t last_phint = 0, last_vcsw = 0, last_pit = 0;

/* support for remote node statistics collection in a cluster environment */
perfstat_id_node_t nodeid;
static char nodename[MAXHOSTNAMELEN] = "";
static int collect_remote_node_stats = 0;

void display_lpar_util(void);

int main(int argc, char* argv[])
{
    int interval = INTERVAL_DEFAULT;
    int count = COUNT_DEFAULT;
    int i, rc;
    char *optlist = "i:c:n:";
    int mode=0,cpumode=0;

    /* Process the arguments */
    while ((i = getopt(argc, argv, optlist)) != EOF)
    {
        switch(i)
        {
            case 'i':               /* Interval */
                     interval = atoi(optarg);
                     if( interval <= 0 )
                         interval = INTERVAL_DEFAULT;
                     break;
            case 'c':               /* Number of interations */
                     count = atoi(optarg);
                     if( count <= 0 )
                         count = COUNT_DEFAULT;
                     break;
            case 'n':               /* Node name in a cluster environment */
                     strncpy(nodename, optarg, MAXHOSTNAMELEN);
                     nodename[MAXHOSTNAMELEN-1] = '\0';
                     collect_remote_node_stats = 1;
                     break;
            default:
                    /* Invalid arguments. Print the usage and terminate */
                    fprintf (stderr, "usage: %s [-i <interval in seconds> ] [-c <number of iterations> ] [-n <node name in the cluster> ]
\n", argv[0]);
                    return(-1);
        }
    }
 
    if(collect_remote_node_stats)
    {   /* perfstat_config needs to be called to enable cluster statistics collection */
        rc = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);
        if (rc == -1)
        {
            perror("cluster statistics collection is not available");
            exit(-1);
        }
    }

    #ifdef UTIL_AUTO
      printf("Enter CPU mode.\n");
      printf(" 0 PURR \n 1 SPURR \n");
      scanf("%d",&cpumode);
      printf("Enter print mode.\n");
      printf(" 0 PERCENTAGE\n 1 MILLISECONDS\n 2 CORES \n");
      scanf("%d",&mode);

      if((mode>2)&& (cpumode>1))
      {

        printf("Error: Invalid Input\n");
        exit(0);
      }
      display_lpar_util_auto(mode,cpumode,count,interval);

94  AIX Version 7.2: Performance Tools Guide and Reference



    #else
    /* Iterate "count" times */
    while (count > 0)
    {
        display_lpar_util();
        sleep(interval);
        count--;
 
    } 
    #endif

    if(collect_remote_node_stats)
    {   /* Now disable cluster statistics by calling perfstat_config */
        perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);
    }

    return(0);
}

/* Save the current values for the next iteration */
void save_last_values(perfstat_cpu_total_t *cpustats, perfstat_partition_total_t *lparstats)
{
    last_vcsw      = lparstats->vol_virt_cswitch + lparstats->invol_virt_cswitch; 
    last_time_base = lparstats->timebase_last;
    last_phint     = lparstats->phantintrs;
    last_pit       = lparstats->pool_idle_time;

    last_pcpu_user = lparstats->puser;
    last_pcpu_sys  = lparstats->psys;
    last_pcpu_idle = lparstats->pidle;
    last_pcpu_wait = lparstats->pwait;

    last_lcpu_user = cpustats->user;
    last_lcpu_sys  = cpustats->sys;
    last_lcpu_idle = cpustats->idle;
    last_lcpu_wait = cpustats->wait;

    last_busy_donated = lparstats->busy_donated_purr;
    last_idle_donated = lparstats->idle_donated_purr;

    last_busy_stolen = lparstats->busy_stolen_purr;
    last_idle_stolen = lparstats->idle_stolen_purr;
}

/* retrieve metrics using perfstat API */
void collect_metrics (perfstat_cpu_total_t *cpustats, perfstat_partition_total_t *lparstats)
{
    if (collect_remote_node_stats)
    {
        strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
        nodeid.spec = NODENAME;

        if (perfstat_partition_total_node(&nodeid, lparstats, sizeof(perfstat_partition_total_t), 1) <= 0) {
            perror("perfstat_partition_total_node");
            exit(-1);
        }  
        if (perfstat_cpu_total_node(&nodeid, cpustats, sizeof(perfstat_cpu_total_t), 1) <= 0) {
            perror("perfstat_cpu_total_node");
            exit(-1);
        }  
    }
    else
    {
        if (perfstat_partition_total(NULL, lparstats, sizeof(perfstat_partition_total_t), 1) <= 0) {
            perror("perfstat_partition_total");
            exit(-1);
        }  
    
        if (perfstat_cpu_total(NULL, cpustats, sizeof(perfstat_cpu_total_t), 1) <= 0) {
            perror("perfstat_cpu_total");
            exit(-1);
        }  
    }
}

/* print header informations */
void print_header(perfstat_partition_total_t *lparstats)
{
    if (lparstats->type.b.shared_enabled) { /* partition is a SPLPAR */
       if (lparstats->type.b.pool_util_authority) { /* partition has PUA access */
          printf("\n%5s %5s %6s %6s %5s %5s %5s %5s %4s %5s",
          "%user", "%sys", "%wait", "%idle", "physc", "%entc", "lbusy", "app", "vcsw", "phint");
         
          printf("\n%5s %5s %6s %6s %5s %5s %5s %5s %4s %5s",
          "-----", "----", "-----", "-----", "-----", "-----", "-----", "---", "----", "-----");
       } else {
          printf("\n%5s %5s %6s %6s %5s %5s %5s %4s %5s",
          "%user", "%sys", "%wait", "%idle", "physc", "%entc", "lbusy", "vcsw", "phint");
         
          printf("\n%5s %5s %6s %6s %5s %5s %5s %4s %5s",
          "-----", "----", "-----", "-----", "-----", "-----", "-----", "----", "-----");
       }
    } else { /* partition is a DLPAR */
       printf("\n%5s %5s %6s %6s", "%user", "%sys", "%wait", "%idle");
       printf("\n%5s %5s %6s %6s", "-----", "----", "-----", "-----");
       if (lparstats->type.b.donate_enabled) { /* if donation is enabled for this DLPAR */
         printf(" %6s %6s", "%phsyc", "%vcsw");
         printf(" %6s %6s", "------", "-----");
       }
    }
    fprintf(stdout,"\n");
}

/* Gather and display lpar utilization metrics */
void display_lpar_util(void)
{
    u_longlong_t delta_pcpu_user, delta_pcpu_sys, delta_pcpu_idle, delta_pcpu_wait;
    u_longlong_t delta_lcpu_user, delta_lcpu_sys, delta_lcpu_idle, delta_lcpu_wait;

Performance Tools Guide and Reference  95



    u_longlong_t delta_busy_stolen, delta_busy_donated, delta_idle_stolen, delta_idle_donated;
    u_longlong_t vcsw, lcputime, pcputime;
    u_longlong_t entitled_purr, unused_purr;
    u_longlong_t delta_purr, delta_time_base;
    double phys_proc_consumed, entitlement, percent_ent, delta_sec;
    perfstat_partition_total_t lparstats;
    perfstat_cpu_total_t cpustats;
    
    /* retrieve the metrics */
    collect_metrics (&cpustats, &lparstats);

    /* Print the header for utilization metrics (only once) */  
    if (disp_util_header) {
       print_header (&lparstats);

       disp_util_header = 0;

       /* first iteration, we only read the data, print the header and save the data */
       save_last_values(&cpustats, &lparstats);
       return;
    }

    /* calculate physcial processor tics during the last interval in user, system, idle and wait mode  */
    delta_pcpu_user  = lparstats.puser - last_pcpu_user; 
    delta_pcpu_sys   = lparstats.psys  - last_pcpu_sys;
    delta_pcpu_idle  = lparstats.pidle - last_pcpu_idle;
    delta_pcpu_wait  = lparstats.pwait - last_pcpu_wait;
   
    /* calculate total physcial processor tics during the last interval */ 
    delta_purr = pcputime = delta_pcpu_user + delta_pcpu_sys + delta_pcpu_idle + delta_pcpu_wait;

    /* calculate clock tics during the last interval in user, system, idle and wait mode */
    delta_lcpu_user  = cpustats.user - last_lcpu_user; 
    delta_lcpu_sys   = cpustats.sys  - last_lcpu_sys;
    delta_lcpu_idle  = cpustats.idle - last_lcpu_idle;
    delta_lcpu_wait  = cpustats.wait - last_lcpu_wait;
   
    /* calculate total clock tics during the last interval */ 
    lcputime = delta_lcpu_user + delta_lcpu_sys + delta_lcpu_idle + delta_lcpu_wait;

    /* calculate entitlement for this partition - entitled physical processors for this partition */
    entitlement = (double)lparstats.entitled_proc_capacity / 100.0 ;

    /* calculate delta time in terms of physical processor tics */
    delta_time_base = lparstats.timebase_last - last_time_base;
    
    if (lparstats.type.b.shared_enabled) { /* partition is a SPLPAR */
        /* calculate entitled physical processor tics for this partitions */
        entitled_purr = delta_time_base * entitlement;
        if (entitled_purr < delta_purr) { /* for uncapped SPLPAR */
            /* in case of uncapped SPLPAR, consider entitled physical processor tics or 
             * consumed physical processor tics, which ever is greater */ 
            entitled_purr = delta_purr;
        }
        /* calculate unused physical processor tics out of the entitled physical processor tics */
        unused_purr = entitled_purr - delta_purr;
       
        /* distributed unused physical processor tics amoung wait and idle proportionally to wait and idle in clock tics */
        delta_pcpu_wait += unused_purr * ((double)delta_lcpu_wait / (double)(delta_lcpu_wait + delta_lcpu_idle));
        delta_pcpu_idle += unused_purr * ((double)delta_lcpu_idle / (double)(delta_lcpu_wait + delta_lcpu_idle));
      
        /* far SPLPAR, consider the entitled physical processor tics as the actual delta physical processor tics */
        pcputime = entitled_purr;
    }
    else if (lparstats.type.b.donate_enabled) { /* if donation is enabled for this DLPAR */
        /* calculate busy stolen and idle stolen physical processor tics during the last interval */ 
        /* these physical processor tics are stolen from this partition by the hypervsior
         * which will be used by wanting partitions */  
        delta_busy_stolen = lparstats.busy_stolen_purr - last_busy_stolen;
        delta_idle_stolen = lparstats.idle_stolen_purr - last_idle_stolen; 

        /* calculate busy donated and idle donated physical processor tics during the last interval */
        /* these physical processor tics are voluntarily donated by this partition to the hypervsior
         * which will be used by wanting partitions */  
        delta_busy_donated = lparstats.busy_donated_purr - last_busy_donated;
        delta_idle_donated = lparstats.idle_donated_purr - last_idle_donated;

        /* add busy donated and busy stolen to the kernel bucket, as cpu
         * cycles were donated / stolen when this partition is busy */
        delta_pcpu_sys += delta_busy_donated;
        delta_pcpu_sys += delta_busy_stolen;

        /* distribute idle stolen to wait and idle proportionally to the logical wait and idle in clock tics, as
         * cpu cycles were stolen when this partition is idle or in wait */
        delta_pcpu_wait += delta_idle_stolen * 
                              ((double)delta_lcpu_wait / (double)(delta_lcpu_wait + delta_lcpu_idle));
        delta_pcpu_idle += delta_idle_stolen * 
                              ((double)delta_lcpu_idle / (double)(delta_lcpu_wait + delta_lcpu_idle));

        /* distribute idle donated to wait and idle proportionally to the logical wait and idle in clock tics, as
         * cpu cycles were donated when this partition is idle or in wait */
        delta_pcpu_wait += delta_idle_donated * 
                              ((double)delta_lcpu_wait / (double)(delta_lcpu_wait + delta_lcpu_idle));
        delta_pcpu_idle += delta_idle_donated * 
                              ((double)delta_lcpu_idle / (double)(delta_lcpu_wait + delta_lcpu_idle));
     
        /* add donated to the total physical processor tics for CPU usage calculation, as they were 
         * distributed to respective buckets accordingly */
        pcputime +=  (delta_idle_donated + delta_busy_donated);

        /* add stolen to the total physical processor tics for CPU usage calculation, as they were 
         * distributed to respective buckets accordingly */
        pcputime +=  (delta_idle_stolen + delta_busy_stolen);

    }

    /* Processor Utilization - Applies for both SPLPAR and DLPAR*/
    printf("%5.1f ", (double)delta_pcpu_user * 100.0 / (double)pcputime);
    printf("%5.1f ", (double)delta_pcpu_sys  * 100.0 / (double)pcputime);

96  AIX Version 7.2: Performance Tools Guide and Reference



    printf("%6.1f ", (double)delta_pcpu_wait * 100.0 / (double)pcputime);
    printf("%6.1f ", (double)delta_pcpu_idle * 100.0 / (double)pcputime);

    if (lparstats.type.b.shared_enabled) { /* print SPLPAR specific stats */  
        /* Physical Processor Consumed by this partition */  
        phys_proc_consumed = (double)delta_purr / (double)delta_time_base;
        printf("%5.2f ", (double)phys_proc_consumed); 

        /* Percentage of Entitlement Consumed - percentage of entitled physical processor tics consumed */
        percent_ent = (double)((phys_proc_consumed / entitlement) * 100);
        printf("%5.1f ", percent_ent);

        /* Logical Processor Utilization of this partition */
        printf("%5.1f ", (double)(delta_lcpu_user+delta_lcpu_sys) * 100.0 / (double)lcputime);

        if (lparstats.type.b.pool_util_authority) { 
        /* Available physical Processor units available in the shared pool (app) */ 
           printf("%5.2f ", (double)(lparstats.pool_idle_time - last_pit) / 
                 XINTFRAC*(double)delta_time_base);
        }

        /* Virtual CPU Context Switches per second */
        vcsw = lparstats.vol_virt_cswitch + lparstats.invol_virt_cswitch; 
         delta_sec = HTIC2SEC(delta_time_base);
        printf("%4.0f ", (double)(vcsw - last_vcsw) / delta_sec);
        
        /* Phantom Interrupts per second */
        printf("%5.0f",(double)(lparstats.phantintrs - last_phint) / delta_sec);
    }
    else if (lparstats.type.b.donate_enabled) { /* print donation-enabled DLPAR specific stats */
        /* Physical Processor Consumed by this partition 
         * (excluding donated and stolen physical processor tics). */
        phys_proc_consumed = (double)delta_purr / (double)delta_time_base;
        printf("%5.2f ", (double)phys_proc_consumed); 

        /* Virtual CPU Context Switches per second */
        vcsw = lparstats.vol_virt_cswitch + lparstats.invol_virt_cswitch; 
         delta_sec = HTIC2SEC(delta_time_base);
        printf("%5.0f ", (double)(vcsw - last_vcsw) / delta_sec);
    }
    printf("\n");

    save_last_values(&cpustats, &lparstats);
}

#ifdef UTIL_AUTO
void display_lpar_util_auto(int mode,int cpumode,int count,int interval)
{
    float user_core_purr,kern_core_purr,wait_core_purr,idle_core_purr;
    float user_core_spurr,kern_core_spurr,wait_core_spurr,idle_core_spurr,sum_core_spurr;
    u_longlong_t user_ms_purr,kern_ms_purr,wait_ms_purr,idle_ms_purr,sum_ms;
    u_longlong_t user_ms_spurr,kern_ms_spurr,wait_ms_spurr,idle_ms_spurr;
    perfstat_rawdata_t data;
    u_longlong_t delta_purr, delta_time_base;
    double phys_proc_consumed, entitlement, percent_ent, delta_sec;
    perfstat_partition_total_t lparstats;
    static perfstat_cpu_total_t oldt,newt;
    perfstat_cpu_util_t util;
    int rc;

    /* retrieve the metrics */

    /* Print the header for utilization metrics (only once) */
    if (disp_util_header) {
    if(mode==UTIL_PCT)
          printf("\n%5s %5s %6s %6s %5s  \n",
          "%user", "%sys", "%wait", "%idle", "physc");
    else if(mode==UTIL_MS)
          printf("\n%5s   %5s   %6s   %6s   %5s \n",
          "user(ms)", "sys(ms)", "wait(ms)", "idle(ms)", "physc");
    else if(mode==UTIL_CORE)
          printf("\n%5s  %5s  %6s  %6s  %5s  \n",
          "user", "sys", "wait", "idle", "physc");

       disp_util_header = 0;

       /* first iteration, we only read the data, print the header and save the data */
    }

  while(count)
  {
    collect_metrics (&oldt, &lparstats);
    sleep(interval);
    collect_metrics (&newt, &lparstats);

   data.type = UTIL_CPU_TOTAL;
   data.curstat = &newt; data.prevstat= &oldt;
   data.sizeof_data = sizeof(perfstat_cpu_total_t);
   data.cur_elems = 1;
   data.prev_elems = 1;
   rc = perfstat_cpu_util(&data, &util,sizeof(perfstat_cpu_util_t), 1);
   if(rc <= 0)
   {
     perror("Error in perfstat_cpu_util");
     exit(-1);
   }
   delta_time_base =  util.delta_time;

  switch(mode)
   {
   case  UTIL_PCT:
         printf(" %5.1f  %5.1f  %5.1f  %5.1f  %5.4f \n",util.user_pct,util.kern_pct,util.wait_pct,util.idle_pct,util.physical_consumed);
         break;

   case  UTIL_MS:

Performance Tools Guide and Reference  97



         user_ms_purr=((util.user_pct*delta_time_base)/100.0);
         kern_ms_purr=((util.kern_pct*delta_time_base)/100.0);
         wait_ms_purr=((util.wait_pct*delta_time_base)/100.0);
         idle_ms_purr=((util.idle_pct*delta_time_base)/100.0);

        if(cpumode==UTIL_PURR)
        {
            printf(" %llu    %llu    %llu    %llu   %5.4f\n",user_ms_purr,kern_ms_purr,wait_ms_purr,idle_ms_purr,util.physical_consumed);
        }
       else if(cpumode==UTIL_SPURR)
       {
            user_ms_spurr=(user_ms_purr*util.freq_pct)/100.0;
            kern_ms_spurr=(kern_ms_purr*util.freq_pct)/100.0;
            wait_ms_spurr=(wait_ms_purr*util.freq_pct)/100.0;
            sum_ms=user_ms_spurr+kern_ms_spurr+wait_ms_spurr;
            idle_ms_spurr=delta_time_base-sum_ms;

            printf(" %llu    %llu    %llu    %llu    %5.4f 
\n",user_ms_spurr,kern_ms_spurr,wait_ms_spurr,idle_ms_spurr,util.physical_consumed);

       }
            break;

   case  UTIL_CORE:

           user_core_purr=((util.user_pct*util.physical_consumed)/100.0);
           kern_core_purr=((util.kern_pct*util.physical_consumed)/100.0);
           wait_core_purr=((util.wait_pct*util.physical_consumed)/100.0);
           idle_core_purr=((util.idle_pct*util.physical_consumed)/100.0);

           user_core_spurr=((user_core_purr*util.freq_pct)/100.0);
           kern_core_spurr=((kern_core_purr*util.freq_pct)/100.0);
           wait_core_spurr=((wait_core_purr*util.freq_pct)/100.0);
           
           if(cpumode==UTIL_PURR)
           {
            printf("%5.4f   %5.4f   %5.4f   %5.4f   %5.4f
\n",user_core_purr,kern_core_purr,wait_core_purr,idle_core_purr,util.physical_consumed);
           }
           else if(cpumode==UTIL_SPURR)
           {
           sum_core_spurr=user_core_spurr+kern_core_spurr+wait_core_spurr;
           idle_core_spurr=util.physical_consumed-sum_core_spurr;

            printf("%5.4f   %5.4f   %5.4f   %5.4f   %5.4f 
\n",user_core_spurr,kern_core_spurr,wait_core_spurr,idle_core_spurr,util.physical_consumed);
           }
           break;

           default:
           printf("In correct usage\n");
           return;

}
count--;
}
}
#endif

The program displays an output that is similar to the following example output:

%user  %sys  %wait  %idle physc %entc lbusy vcsw phint
-----  ----  -----  ----- ----- ----- ----- ---- -----
  0.1   0.4    0.0   99.5  0.01   1.2   0.2  278     0
  0.0   0.3    0.0   99.7  0.01   0.8   0.2  271     0
  0.0   0.2    0.0   99.8  0.01   0.5   0.1  180     0
  0.0   0.2    0.0   99.8  0.01   0.6   0.1  184     0
  0.0   0.2    0.0   99.7  0.01   0.6   0.1  181     0
  0.0   0.2    0.0   99.8  0.01   0.6   0.1  198     0
  0.0   0.2    0.0   99.8  0.01   0.7   0.2  189     0
  2.1   3.3    0.0   94.6  0.09   8.7   2.1  216     0
  0.0   0.2    0.0   99.8  0.01   0.7   0.1  265     0

perfstat_tape_total Interface
The perfstat_tape_total interface returns a perfstat_tape_total_t structure, which is defined in the
libperfstat.h file.

Selected fields from the perfstat_tape_total_t structure include:

Item Descriptor

number Total number of tapes

size Total size of all tapes(in MB)

free Total free portion of all tapes (in MB)

rxfers Total number of read transfers from/to tape

xfers Total number of transfers from/to tape

98  AIX Version 7.2: Performance Tools Guide and Reference



Several other tape-related metrics (such as number of bytes sent and received). For a complete list, see
the perfstat_tape_total section in the libperfstat.h header file.

The following code shows examples of how to use the perfstat_tape_total function.

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
    perfstat_tape_total_t *tinfo;
    int rc,i;

    rc = perfstat_tape_total(NULL, NULL, sizeof(perfstat_tape_total_t), 0);
    if(rc<=0){
        perror("perfstat_tape_total");
        exit(-1);
    }

    /* allocate enough memory for all the structures */
    tinfo = calloc(rc, sizeof(perfstat_tape_t));
    if(tinfo==NULL){
        printf("No sufficient memory\n");
        exit(-1);
    }

    rc = perfstat_tape_total(NULL, tinfo, sizeof(perfstat_tape_total_t), rc);
    if (rc < 0)
    {
        perror("perfstat_tape_total");
        exit(-1);
    }

    if(rc==0){
        printf("No tape found on the system\n");
        exit(-1);
    }

    for(i=0;i<rc;i++){
        printf("Total number of tapes=%d\n",tinfo[i].number);
        printf("Total size of all tapes (in MB)=%lld\n",tinfo[i].size);
        printf("Free portion of all tapes(in MB)=%lld\n",tinfo[i].free);
        printf("Number of read transfers to/from tape=%lld\n",tinfo[i].rxfers);
        printf("Total number of transfers to/from tape=%lld\n",tinfo[i].xfers);
        printf("Blocks written to all tapes=%lld\n",tinfo[i].wblks);
        printf("Blocks read from all tapes=%lld\n",tinfo[i].rblks);
        printf("Amount of time tapes are active=%lld\n",tinfo[i].time);
    }

    return(0);
}

The preceding program emulates diskstat behavior and also shows how perfstat_tape_total is used.

perfstat_partition_config interface
The perfstat_partition_config interface returns a perfstat_partition_config_t structure,
which is defined in the libperfstat.h file.

The selected fields from the perfstat_partition_config_t structure include:

Item Descriptor

partitionname Partition name

processorFamily Processor type

processorModel Processor model

machineID Machine ID

processorMHz Processor clock speed in megahertz

numProcessors Number of configured physical processors in frame

OSName Name of operating system

OSVersion Version of operating system

Performance Tools Guide and Reference  99



Item Descriptor

OSBuild Build of operating system

lcpus Number of logical CPUs

smtthreads Number of SMT threads

drives Total number of drives

nw_adapters Total number of network adapters

vcpus Minimum, maximum, and online virtual CPUs

cpucap Minimum, maximum, and online CPU capacity

entitled_proc_capacity Number of processor units that this partition is entitled to receive

cpucap_weightage Variable processor capacity weightage

mem_weightage Variable memory capacity weightage

cpupool_weightage Pool weightage

activecpusinpool Count of physical CPUs in the shared processor pool to which the
partition belongs

sharedpcpu Number of physical processors allocated for the use of the shared
processor

maxpoolcap Maximum processor capacity of partition's pool

entpoolcap Entitled processor capacity of partition's pool

mem Minimum, maximum, and online memory

totiomement I/O memory entitlement of the partition in bytes

mempoolid AMS pool ID of the pool to which the logical partition (LPAR) belongs

hyperpgsize Hypervisor page size in kilobytes

exp_mem Minimum, maximum, and online expanded memory

targetmemexpfactor Target memory expansion factor scaled by 100

targetmemexpsize Expanded memory size in megabytes

Subprocessormode Subprocessor mode for the partition

For a complete list, see the perfstat_partition_config_t section in the libperfstat.h header file.

The usage of the code for the perfstat_partition_config API is as follows:

#include <libperfstat.h>

int main(int argc, char *argv[])
{
   perfstat_partition_config_t pinfo;
   int rc;

   rc = perfstat_partition_config(NULL, &pinfo, sizeof(perfstat_partition_config_t), 1);
   if(rc != 1)
   { 
    perror("Error in perfstat_partition_config"); 
    exit(-1);
   } 
   printf("==========Configuration Information of Partition==========\n"); 
   printf("Partition Name =       %s\n",pinfo.partitionname); 
   printf("Node Name =            %s\n",pinfo.nodename); 
   printf("Partition Number =     %u\n",pinfo.partitionnum); 
   printf("Group ID =             %u\n",pinfo.groupid); 
   printf("\n\n========General Partition Properties(1=YES, 0=NO)=========\n"); 
   printf("SMT Capable =          %u\n",pinfo.conf.b.smt_capable);
              /* 1, if OS supports SMT mode */
   printf("SMT Enabled =          %u\n",pinfo.conf.b.smt_enabled);

100  AIX Version 7.2: Performance Tools Guide and Reference



              /* 1, if SMT mode is on */
   printf("LPAR Capable =         %u\n",pinfo.conf.b.lpar_capable);
              /* 1, if OS supports logical partitioning */
   printf("LPAR Enabled =         %u\n",pinfo.conf.b.lpar_enabled);
              /* 1, if logical partitioning is on */
   printf("Shared Capable =       %u\n",pinfo.conf.b.shared_capable);
              /* 1, if OS supports shared processor LPAR */
   printf("Shared Enabled =       %u\n",pinfo.conf.b.shared_enabled);
              /* 1, if partition runs in shared mode */
   printf("DLPAR Capable =        %u\n",pinfo.conf.b.dlpar_capable);
              /* 1, if OS supports dynamic LPAR */
   printf("Capped =               %u\n",pinfo.conf.b.capped);
              /* 1, if partition is capped */
   printf("64-Bit Kernel =        %u\n",pinfo.conf.b.kernel_is_64);
              /* 1, if kernel is 64 bit */
   printf("Pool Util Authority =  %u\n",pinfo.conf.b.pool_util_authority);
              /* 1, if pool utilization available */
   printf("Donate Capable =       %u\n",pinfo.conf.b.donate_capable);
              /* 1, if capable of donating cycles */
   printf("Donate Enabled =       %u\n",pinfo.conf.b.donate_enabled);
              /* 1, if capable of donating cycles */
   printf("AMS Capable =          %u\n",pinfo.conf.b.ams_capable);
              /* 1, if AMS(Active Memory Sharing) capable */
   printf("AMS Enabled =          %u\n",pinfo.conf.b.ams_enabled);
              /* 1, if AMS(Active Memory Sharing) enabled */
   printf("Power Saving Mode =    %u\n",pinfo.conf.b.power_save);
              /* 1, if Power saving mode is enabled */
   printf("AME Enabled =          %u\n",pinfo.conf.b.ame_enabled);
              /* 1, if Active Memory Expansion is enabled */
   printf("Shared Extended =      %u\n",pinfo.conf.b.shared_extended);
              /* 1, if Shared Extended */
   printf("\n\n==================Hardware Configuration==================\n");
   printf("Processor Type =               %s\n",pinfo.processorFamily);
   printf("Processor Model =              %s\n",pinfo.processorModel);
   printf("Machine ID =                   %s\n",pinfo.machineID);
   printf("Processor Clock Speed =        %lf MHz\n",pinfo.processorMHz);
   printf("Online Configured Processors = %lld\n",pinfo.numProcessors.online);
   printf("Max Configured Processors =    %lld\n",pinfo.numProcessors.max);
   printf("\n\n==================Software Configuration==================\n");
   printf("OS Name =                      %s\n",pinfo.OSName);
   printf("OS Version =                   %s\n",pinfo.OSVersion);
   printf("OS Build =                     %s\n",pinfo.OSBuild);
   printf("\n\n====================LPAR Configuration====================\n");
   printf("Number of Logical CPUs =       %u\n",pinfo.lcpus);
   printf("Number of SMT Threads =        %u\n",pinfo.smtthreads);
   printf("Number of Drives =             %u\n",pinfo.drives);
   printf("Number of NW Adapters =        %u\n",pinfo.nw_adapters);
   printf("\n\n===========Physical CPU Related Configuration=============\n");
   printf("Minimum CPU Capacity =         %.2f\n",(float)pinfo.cpucap.min/100.0);
   printf("Maximum CPU Capacity =         %.2f\n",(float)pinfo.cpucap.max/100.0);
   printf("CPU Capacity Weightage =       %u\n",pinfo.cpucap_weightage);
   printf("Entitled Proc Capacity =       %.2f\n",pinfo.entitled_proc_capacity/100.0);
   printf("\n\n============Virtual CPU Related Configuration=============\n");
   printf("Minimum Virtual CPUs =         %lld\n",pinfo.vcpus.min);
   printf("Maximum Virtual CPUs =         %lld\n",pinfo.vcpus.max);
   printf("Online Virtual CPUs =          %lld\n",pinfo.vcpus.online);
   printf("\n\n==========Processor Pool Related Configuration============\n");
   printf("Processor Pool Id =            %u\n",pinfo.processor_poolid);
   printf("Active CPUs in pool =          %u\n",pinfo.activecpusinpool);
   printf("Pool Weightage =               %u\n",pinfo.cpupool_weightage);
   printf("Shared processors Count =      %u\n",pinfo.sharedpcpu);
   printf("Max pool Capacity =            %u\n",pinfo.maxpoolcap);
   printf("Entitled pool Capacity =       %u\n",pinfo.entpoolcap);
   printf("\n\n==============Memory Related Configuration================\n");
   printf("Minimum Memory =               %lld\n",pinfo.mem.min);
   printf("Maximum memory =               %lld\n",pinfo.mem.max);
   printf("Online memory =                %lld\n",pinfo.mem.online);
   printf("Memory capacity Weightage =    %u\n",pinfo.mem_weightage);
   printf("\n\n===============AMS Related Configuration==================\n");
   printf("I/O memory Entitlement =       %lld\n",pinfo.totiomement);
   printf("AMS Pool ID =                  %d\n",pinfo.mempoolid);
   printf("Hypervisor Page Size =         %f\n",pinfo.hyperpgsize);
   printf("\n\n===============AME Related Configuration==================\n");
   printf("Minimum Expanded memory =      %lld\n",pinfo.exp_mem.min);
   printf("Maximum Expanded Memory =      %lld\n",pinfo.exp_mem.max);
   printf("Online Expanded memory =       %lld\n",pinfo.exp_mem.online);
   printf("Target memory Expansion factor = %lld\n",pinfo.targetmemexpfactor);
   printf("Target Memory Expansion Size = %lld\n",pinfo.targetmemexpsize);
   printf("\n==========================================================");
}    

Performance Tools Guide and Reference  101



The output of the program is as follows:

==========Configuration Information of Partition==========
Partition Name = clock15
Node Name = clock15
Partition Number = 9
Group ID = 0

========General Partition Properties(1=YES, 0=NO)=========
SMT Capable = 1
SMT Enabled = 1
LPAR Capable = 1
LPAR Enabled = 1
Shared Capable = 1
Shared Enabled = 1
DLPAR Capable = 1
Capped = 0
64-Bit Kernel = 1
Pool Util Authority = 0
Donate Capable = 0
Donate Enabled = 0
AMS Capable = 0
AMS Enabled = 0
Power Saving Mode = 1
AME Enabled = 0
Shared Extended = 0

==================Hardware Configuration==================
Processor Type = POWER_5
Processor Model = IBM,9133-55A
Machine ID = 061500H
Processor Clock Speed = 1648.350000 MHz
Online Configured Processors = 8
Max Configured Processors = 8

==================Software Configuration==================
OS Name = AIX
OS Version = 7.1
OS Build = Feb 17 2011 15:57:15 1107A_71D

====================LPAR Configuration====================
Number of Logical CPUs = 2
Number of SMT Threads = 2
Number of Drives = 2
Number of NW Adapters = 2

===========Physical CPU Related Configuration=============
Minimum CPU Capacity = 0.10
Maximum CPU Capacity = 8.00
CPU Capacity Weightage = 128
Entitled Proc Capacity = 0.75

============Virtual CPU Related Configuration=============
Minimum Virtual CPUs = 1
Maximum Virtual CPUs = 8
Online Virtual CPUs = 1

==========Processor Pool Related Configuration============
Processor Pool Id = 0
Active CPUs in pool = 3
Pool Weightage = 128
Shared processors Count = 0
Max pool Capacity = 0
Entitled pool Capacity = 0

==============Memory Related Configuration================
Minimum Memory = 256
Maximum memory = 4096
Online memory = 2048
Memory capacity Weightage = 0

===============AMS Related Configuration==================

102  AIX Version 7.2: Performance Tools Guide and Reference



I/O memory Entitlement = 0
AMS Pool ID = 0
Hypervisor Page Size = 0.000000
===============AME Related Configuration==================
Minimum Expanded memory = 0
Maximum Expanded Memory = 0
Online Expanded memory = 0
Target memory Expansion factor = 0
Target Memory Expansion Size = 0
==========================================================

Component-Specific interfaces
Component-specific interfaces report metrics related to individual components on a system (such as a
processor, disk, network interface, or paging space).

All of the following AIX interfaces use the naming convention perfstat_subsystem, and use a common
signature:

Item Descriptor

perfstat_cpu Retrieves individual processor usage metrics

Note: This interface returns global values when called by an
application running inside WPAR.

perfstat_disk Retrieves individual disk usage metrics

Note: This interface does not return any data when called by an
application running inside WPAR

perfstat_diskpath Retrieves individual disk path metrics

Note: This interface does not return any data when called by an
application running inside WPAR

perfstat_diskadapter Retrieves individual disk adapter metrics

Note: This interface does not return any data when called by an
application running inside WPAR.

perfstat_netinterface Retrieves individual network interfaces metrics

Note: This interface returns WPAR-specific data when called by an
application running inside WPAR.

perfstat_protocol Retrieves individual network protocol-related metrics

Note: This interface returns WPAR-specific data when called by an
application running inside WPAR.

perfstat_netbuffer Retrieves individual network buffer allocation metrics

Note: This interface returns WPAR-specific data when called by an
application running inside WPAR.

perfstat_pagingspace Retrieves individual paging space metrics

Note: This interface does not return any data when called by an
application running inside WPAR.

perfstat_memory_page Retrieves multiple page size usage metrics

Note: This interface returns global values when it is called by an
application running inside a WPAR.

Performance Tools Guide and Reference  103



Item Descriptor

perfstat_tape Retrieves individual tape usage metrics

Note: This interface does not return any data when it is called by an
application running inside a WPAR.

perfstat_logicalvolume Retrieves individual logical volume usage metrics

Note: This interface does not return any data when called it is by an
application running inside a WPAR.

perfstat_volumegroup Retrieves individual volume group usage metrics

Note: This interface does not return any data when it is called by an
application running inside a WPAR.

perfstat_hfistat Retrieves individual host fabric interface (HFI) statistics.

perfstat_hfistat_window Retrieves individual window-based HFI statistics.

perfstat_cpu_util Calculates CPU utilization

perfstat_process Retrieves process utilization metrics

perfstat_process_util Calculates process utilization metrics

perfstat_thread Retrieves kernel thread utilization metrics

perfstat_thread_util Calculates kernel thread utilization metrics

The common signature used by all the component interfaces except perfstat_memory_page and
perfstat_hfistat_window is as follows:

int perfstat_subsystem(perfstat_id *name,
                       perfstat_subsystem_t * userbuff,
                       int sizeof_struct,
                       int desired_number);

The perfstat_memory_page uses the following signature:

int perfstat_memory_page(perfstat_psize_t *psize ,
              perfstat_subsystem_t * userbuff,
              int sizeof_struct,
              int desired_number);

The perfstat_hfistat_window uses the following signature:

int perfstat_hfistat_window(perfstat_id_window_t *name,
                  perfstat_hfistat_window_t *userbuff,
                  int sizeof_struct,
                  int desired_number);

The usage of the parameters for all of the interfaces is as follows:

Item Descriptor

perfstat_id_t *name Enter the name of the first component (for example hdisk2 for
perfstat_disk()) to obtain the statistics. A structure containing a char
* field is used instead of directly passing a char * argument to the
function to avoid allocation errors and to prevent the user from giving
a constant string as parameter. To start from the first component of a
subsystem, set the char* field of the name parameter to "" (empty
string). You can use macros such as FIRST_SUBSYSTEM (for
example, FIRST_CPU) defined in the libperfstat.h file.

104  AIX Version 7.2: Performance Tools Guide and Reference



Item Descriptor

perfstat_id_window_t *name Enter the Host Fabric Interface name (for example, hfi0 or hfi1 or
FIRST_HFI) in the "name->name" field, and the HFI window number
in "name->windowid" field.

perfstat_subsystem_t *userbuff Specifies a pointer to a memory area with enough space for the
returned structures.

int sizeof_struct Set the parameter to sizeof(perfstat_subsystem_t).

int desired_number Specifies the number of structures of type perfstat_subsystem_t to
return in userbuff.

The return value is -1 in case of error. Otherwise, the number of structures copied is returned. The field
name is either set to NULL or to the name of the next structure available.

An exception to this scheme is when name=NULL, userbuff=NULL and desired_number=0, the total
number of structures available is returned.

To retrieve all structures of a given type, find the number of structures and allocate the required memory
to hold the structures. You must then call the appropriate API to retrieve all structures in one call.
Another method is to allocate a fixed set of structures and repeatedly call the API to get the next set of
structures, each time passing the name returned by the previous call. Start the process with the name set
to "" or FIRST_SUBSYSTEM, and repeat the process.

Minimizing the number of API calls, and the number of system calls, leads to more efficient code, so the
two-call approach is preferred. Some of the examples shown in the following sections illustrate the API
usage using the two-call approach. The two-call approach causes large amount of memory allocation, the
multiple-call approach is sometimes used, and is illustrated in the following examples.

The following sections provide examples of the type of data returned and the code used for each of the
interfaces.

perfstat_cpu interface
The perfstat_cpu interface returns a set of structures of type perfstat_cpu_t, which is defined in the
libperfstat.h file.

Selected fields from the perfstat_cpu_t structure include:

Item Descriptor

name Logical processor name (cpu0, cpu1, ...)

user Number of clock ticks spent in user mode

sys Number of clock ticks spent in system (kernel) mode

idle Number of clock ticks spent idle with no I/O pending

wait Number of clock ticks spent idle with I/O pending

syscall Number of system call executed

Several other CPU-related metrics (such as number of forks, read, write, and execs) are also returned. For
a complete list, see the perfstat_cpu_t section in the libperfstat.h header.

The following code shows an example of how the perfstat_cpu interface is used:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(int argc, char *argv[]) {
   int i, retcode, cputotal;
   perfstat_id_t firstcpu;
   perfstat_cpu_t *statp;
   
   /* check how many perfstat_cpu_t structures are available */

Performance Tools Guide and Reference  105



   cputotal =  perfstat_cpu(NULL, NULL, sizeof(perfstat_cpu_t), 0);
   
      /* check for error */
   if (cputotal <= 0)
   {
        perror("perfstat_cpu");
        exit(-1); 
   }
  
   /* allocate enough memory for all the structures */
   statp = calloc(cputotal,sizeof(perfstat_cpu_t));
   if(statp==NULL){
    printf("No sufficient memory\n");
    exit(-1);
   }
   
   /* set name to first cpu */
   strcpy(firstcpu.name, FIRST_CPU);
   
   /* ask to get all the structures available in one call */
   retcode = perfstat_cpu(&firstcpu, statp, sizeof(perfstat_cpu_t), cputotal);
   
   /* check for error */
   if (retcode <= 0)
   {
        perror("perfstat_cpu");
        exit(-1); 
   }
   
   /* return code is number of structures returned */
   
   for (i = 0; i < retcode; i++) {
      printf("\nStatistics for CPU : %s\n", statp[i].name);
      printf("------------------\n");
      printf("CPU user time (raw ticks)  : %llu\n", statp[i].user);
      printf("CPU sys  time (raw ticks)  : %llu\n", statp[i].sys);
      printf("CPU idle time (raw ticks)  : %llu\n", statp[i].idle);
      printf("CPU wait time (raw ticks)  : %llu\n", statp[i].wait);
      printf("number of syscalls         : %llu\n", statp[i].syscall);
      printf("number of readings         : %llu\n", statp[i].sysread);
      printf("number of writings         : %llu\n", statp[i].syswrite);
      printf("number of forks            : %llu\n", statp[i].sysfork);
      printf("number of execs            : %llu\n", statp[i].sysexec);
      printf("number of char read        : %llu\n", statp[i].readch);
      printf("number of char written     : %llu\n", statp[i].writech);
      }
}

The program displays an output that is similar to the following example output:

Statistics for CPU : cpu0
------------------
CPU user time (raw ticks)  : 2585
CPU sys  time (raw ticks)  : 25994
CPU idle time (raw ticks)  : 7688458
CPU wait time (raw ticks)  : 3207
number of syscalls         : 6051122
number of readings         : 436595
number of writings         : 1284469
number of forks            : 4804
number of execs            : 5420
number of char read        : 1014077004
number of char written     : 56464273

Statistics for CPU : cpu1
------------------
CPU user time (raw ticks)  : 23
CPU sys  time (raw ticks)  : 794
CPU idle time (raw ticks)  : 7703901
CPU wait time (raw ticks)  : 42
number of syscalls         : 66064
number of readings         : 3432
number of writings         : 20620
number of forks            : 412
number of execs            : 51
number of char read        : 7068025
number of char written     : 217425

Statistics for CPU : cpu2
------------------
CPU user time (raw ticks)  : 0

106  AIX Version 7.2: Performance Tools Guide and Reference



CPU sys  time (raw ticks)  : 720
CPU idle time (raw ticks)  : 7704041
CPU wait time (raw ticks)  : 0
number of syscalls         : 0
number of readings         : 0
number of writings         : 0
number of forks            : 0
number of execs            : 0
number of char read        : 0
number of char written     : 0

Statistics for CPU : cpu3
------------------
CPU user time (raw ticks)  : 0
CPU sys  time (raw ticks)  : 810
CPU idle time (raw ticks)  : 7703950
CPU wait time (raw ticks)  : 0
number of syscalls         : 0
number of readings         : 0
number of writings         : 0
number of forks            : 0
number of execs            : 0
number of char read        : 0
number of char written     : 0

Statistics for CPU : cpu4
------------------
CPU user time (raw ticks)  : 243
CPU sys  time (raw ticks)  : 1799
CPU idle time (raw ticks)  : 7702802
CPU wait time (raw ticks)  : 62
number of syscalls         : 722482
number of readings         : 34416
number of writings         : 2994
number of forks            : 597
number of execs            : 453
number of char read        : 128511349
number of char written     : 2352602

Statistics for CPU : cpu5
------------------
CPU user time (raw ticks)  : 0
CPU sys  time (raw ticks)  : 209834
CPU idle time (raw ticks)  : 7676489
CPU wait time (raw ticks)  : 0
number of syscalls         : 729
number of readings         : 42
number of writings         : 0
number of forks            : 16
number of execs            : 1
number of char read        : 14607
number of char written     : 0

Statistics for CPU : cpu6
------------------
CPU user time (raw ticks)  : 0
CPU sys  time (raw ticks)  : 210391
CPU idle time (raw ticks)  : 7677505
CPU wait time (raw ticks)  : 0
number of syscalls         : 0
number of readings         : 0
number of writings         : 0
number of forks            : 0
number of execs            : 0
number of char read        : 0
number of char written     : 0

Statistics for CPU : cpu7
------------------
CPU user time (raw ticks)  : 0
CPU sys  time (raw ticks)  : 209884
CPU idle time (raw ticks)  : 7675736
CPU wait time (raw ticks)  : 0
number of syscalls         : 0
number of readings         : 0
number of writings         : 0
number of forks            : 0
number of execs            : 0
number of char read        : 0
number of char written     : 0

Performance Tools Guide and Reference  107



In an environment where dynamic logical partitioning is used, the number of perfstat_cpu_t structures
available is equal to the ncpus_high field in the perfstat_cpu_total_t. This number represents the
highest index of any active processor since the last reboot. Kernel data structures holding performance
metrics for processors are not deallocated when processors are turned offline or moved to a different
partition and it stops updating the information. The CPUs field of the perfstat_cpu_total_t structure
represents the number of active processors, but the perfstat_cpu interface returns ncpus_high
structures.

Applications can detect offline or moved processors by checking clock-tick increments. If the sum of the
user, sys, idle, and wait fields is identical for a given processor between two perfstat_cpu calls, that
processor has been offline for the complete interval. If the sum multiplied by 10 ms (the value of a clock
tick) does not match the time interval, the processor has not been online for the complete interval.

The preceding program emulates mpstat behavior and also shows how perfstat_cpu is used.

perfstat_cpu_util interface
The perfstat_cpu_util interface returns a set of structures of type perfstat_cpu_util_t, which is
defined in the libperfstat.h file

The perfstat_cpu_util interface includes the following fields:

Item Descriptor

cpu_id Holds CPU ID

entitlement Partition's entitlement

user_pct Percentage of utilization in user mode

kern_pct Percentage of utilization in kernel mode

idle_pct Percentage of utilization in idle mode

wait_pct Percentage of utilization in wait mode

physical_busy Physical CPU is busy

physical_consumed Total CPUs consumed by the partition

freq_pct Average frequency over the last interval in percentage

entitlement_pct Percentage of entitlement used

busy_pct Percentage of entitlement busy

idle_donated_pct Percentage of idle cycles donated

busy_donated_pct Percentage of busy cycles donated

idle_stolen_pct Percentage of idle cycles stolen

busy_stolen_pct Percentage of busy cycles stolen

float l_user_pct Percentage of utilization in user mode in terms of the logical
processor ticks

float l_kern_pct Percentage of utilization in kernel mode in terms of the logical
processor ticks

float l_idle_pct Percentage of utilization in idle mode in terms of the logical
processor ticks

float l_wait_pct Percentage of utilization in wait mode in terms of the logical
processor ticks

u_longlong_t delta_time Percentage of the delta time in milliseconds for which the utilization
is evaluated

108  AIX Version 7.2: Performance Tools Guide and Reference



Both system utilization and per CPU utilization can be obtained by using theperfstat_cpu_util by
mentioning the type field of the perfstat_rawdata_t data structure as UTIL_CPU_TOTAL or UTIL_CPU
respectively. UTIL_CPU_TOTAL and UTIL_CPU are the macros, which can be referred in the definition of
the perfstat_rawdata_t data structure.

The use of the perrfstat_cpu_util API for system-level utilization follows:

#include <libperfstat.h>
#define PERIOD 5
void main()
{
   perfstat_cpu_total_t *newt, *oldt;
   perfstat_cpu_util_t *util;
   perfstat_rawdata_t data;
   int rc;

   oldt = (perfstat_cpu_total_t*)malloc(sizeof(perfstat_cpu_total_t)*1);
   if(oldt==NULL){
      perror ("malloc");
      exit(-1);
   }

   newt = (perfstat_cpu_total_t*)malloc(sizeof(perfstat_cpu_total_t)*1);
   if(newt==NULL){
      perror ("malloc");
      exit(-1);
   }

   util = (perfstat_cpu_util_t*)malloc(sizeof(perfstat_cpu_util_t)*1);
   if(util==NULL){
      perror ("malloc");
      exit(-1);
   }

   rc = perfstat_cpu_total(NULL, oldt, sizeof(perfstat_cpu_total_t), 1);
    if(rc <= 0)
    {
    perror("Error in perfstat_cpu_total");
       exit(-1);
    }
   sleep(PERIOD);
     rc = perfstat_cpu_total(NULL, newt, sizeof(perfstat_cpu_total_t), 1);
     if(rc <= 0)
     {
      perror("Error in perfstat_cpu_total");
       exit(-1);
     }
    data.type = UTIL_CPU_TOTAL;
    data.curstat = newt; data.prevstat= oldt;
    data.sizeof_data = sizeof(perfstat_cpu_total_t);
    data.cur_elems = 1;
    data.prev_elems = 1;
    rc = perfstat_cpu_util(&data, util,sizeof(perfstat_cpu_util_t), 1);
 if(rc <= 0)
    {
      perror("Error in perfstat_cpu_util");
      exit(-1);
    }
   printf("=======Overall CPU Utilization Metrics=======\n");
   printf("Utilization Metrics for a period of %d seconds\n",PERIOD);
   printf("User Percentage =                %f\n",util->user_pct);
   printf("System Percentage =              %f\n",util->kern_pct);
   printf("Idle Percentage =                %f\n",util->idle_pct);
   printf("Wait Percentage =                %f\n",util->wait_pct);
   printf("Physical Busy =                  %f\n",util->physical_busy);
   printf("Physical Consumed =              %f\n",util->physical_consumed);
   printf("Freq Percentage =                %f\n",util->freq_pct);
   printf("Entitlement Used Percentage =    %f\n",util->entitlement_pct);
   printf("Entitlement Busy Percentage =    %f\n",util->busy_pct);
   printf("Idle Cycles Donated Percentage = %f\n",util->idle_donated_pct);
   printf("Busy Cycles Donated Percentage = %f\n",util->busy_donated_pct);
   printf("Idle Cycles Stolen Percentage =  %f\n",util->idle_stolen_pct);
   printf("Busy Cycles Stolen Percentage =  %f\n",util->busy_stolen_pct);
   printf("User percentage for logical cpu in ticks = %f\n",util->l_user_pct);
   printf("Sytem percentage for logical cpu in ticks= %f\n",util->l_kern_pct);
   printf("Idle percentage for logical cpu in ticks=  %f\n",util->l_idle_pct);
   printf("Wait percentage for logical cpu in ticks=  %f\n",util->l_wait_pct);
   printf("delta time in milliseconds =  %llu \n",util->delta_time);

Performance Tools Guide and Reference  109



   printf("=============================================\n");
}

The program produces the output similar to the following:

=======Overall CPU Utilization Metrics=======
Utilization Metrics for a period of 5 seconds
User Percentage =                0.050689
System Percentage =              0.262137
Idle Percentage =                99.687172
Wait Percentage =                0.000000
Physical Busy =                  0.003128
Physical Consumed =              0.008690
Freq Percentage =                99.935417
Entitlement Used Percentage =    0.869017
Entitlement Busy Percentage =    0.312826
Idle Cycles Donated Percentage = 0.000000
Busy Cycles Donated Percentage = 0.000000
Idle Cycles Stolen Percentage =  0.000000
Busy Cycles Stolen Percentage =  0.000000
User percentage for logical cpu in ticks = 0.000000
Sytem percentage for logical cpu in ticks= 0.082034
Idle percentage for logical cpu in ticks=  99.917969
Wait percentage for logical cpu in ticks=  0.000000
delta time in milliseconds =  4980

The example code to calculate system utilization per CPU, and CPU utilization, by using the
perfstat_cpu_util interface follows:

#include <libperfstat.h>
#define PERIOD 5

void main()
{
  perfstat_rawdata_t data;
  perfstat_cpu_util_t *util;
  perfstat_cpu_t *newt,*oldt;
  perfstat_id_t id;
  int i,cpu_count,rc;

  /* Check how many perfstat_cpu_t structures are available */
  cpu_count = perfstat_cpu(NULL, NULL,sizeof(perfstat_cpu_t),0);

  /* check for error */
  if(cpu_count <= 0)
   {
     perror("Error in perfstat_cpu");
     exit(-1);
   }
    /* allocate enough memory */
   oldt = (perfstat_cpu_t *)calloc(cpu_count,sizeof(perfstat_cpu_t));
   if(oldt == NULL)
   {
     perror("Memory Allocation Error");
     exit(-1);
   }
   /* set name to first cpu */
   strcpy(id.name,FIRST_CPU);
   /* ask to get all the structures available in one call */
   rc = perfstat_cpu(&id, oldt, sizeof(perfstat_cpu_t), cpu_count);
    /* check for error */
   if(rc <=0)
   {
     perror("Error in perfstat_cpu");
      exit(-1);
    }
    data.type = UTIL_CPU;
    data.prevstat= oldt;
    data.sizeof_data = sizeof(perfstat_cpu_t);
    data.prev_elems = cpu_count;
    sleep(PERIOD);
     /* Check how many perfstat_cpu_t structures are available after a defined period */
   cpu_count = perfstat_cpu(NULL, NULL,sizeof(perfstat_cpu_t),0);

 /* Check for error */
    if(cpu_count <= 0)
    {
     perror("Error in perfstat_cpu");
      exit(-1);

110  AIX Version 7.2: Performance Tools Guide and Reference



    }

    data.cur_elems = cpu_count;
     if(data.prev_elems != data.cur_elems)
    {
     perror("The number of CPUs has become different for defined period");
     exit(-1);
    }
  /* allocate enough memory */
  newt = (perfstat_cpu_t *)calloc(cpu_count,sizeof(perfstat_cpu_t));
  util = (perfstat_cpu_util_t *)calloc(cpu_count,sizeof(perfstat_cpu_util_t));
  if(newt == NULL || util == NULL)
  {
   perror("Memory Allocation Error");
   exit(-1);
  }
  data.curstat = newt;
  rc = perfstat_cpu(&id, newt, sizeof(perfstat_cpu_t), cpu_count);
   if(rc <= 0)
   {
     perror("Error in perfstat_cpu");
     exit(-1);
   }
    /* Calculate CPU Utilization Metrics*/
   rc = perfstat_cpu_util(&data, util, sizeof(perfstat_cpu_util_t), cpu_count);
if(rc <= 0)
  {
    perror("Error in perfstat_cpu_util");
    exit(-1);
  }
printf("========= Per CPU Utilization Metrics =========\n");
  printf("Utilization Metrics for a period of %d seconds\n",PERIOD);
  printf("===============================================\n");
  for ( i = 0;i<cpu_count;i++)
{
   printf("Utilization metrics for CPU-ID =    %s\n",util[i].cpu_id);
   printf("User Percentage =                   %f\n",util[i].user_pct);
   printf("System Percentage =                 %f\n",util[i].kern_pct);
printf("Idle Percentage =                   %f\n",util[i].idle_pct);
   printf("Wait Percentage =                   %f\n",util[i].wait_pct);
   printf("Physical Busy =                     %f\n",util[i].physical_busy);
   printf("Physical Consumed =                 %f\n",util[i].physical_consumed);
   printf("Freq Percentage =                   %f\n",util[i].freq_pct);
   printf("Entitlement Used Percentage =       %f\n",util[i].entitlement_pct);
   printf("Entitlement Busy Percentage =       %f\n",util[i].busy_pct);
   printf("Idle Cycles Donated Percentage =    %f\n",util[i].idle_donated_pct);
   printf("Busy Cycles Donated Percentage =    %f\n",util[i].busy_donated_pct);
   printf("Idle Cycles Stolen Percentage =     %f\n",util[i].idle_stolen_pct);
   printf("Busy Cycles Stolen Percentage =     %f\n",util[i].busy_stolen_pct);
   printf("system percentage for logical cpu in ticks = %f\n",util[i].l_kern_pct);
   printf("idle percentage for logical cpu in ticks =  %f\n",util[i].l_idle_pct);
   printf("wait percentage for logical cpu in ticks =  %f\n",util[i].l_wait_pct);
   printf("delta time in milliseconds =  %llu \n",util[i].delta_time);
   printf("\n\n");
}
   printf("===========================================\n");
}

The program produces the output similar to the following:

========= Per CPU Utilization Metrics =========
Utilization Metrics for a period of 5 seconds
===============================================
Utilization metrics for CPU-ID =    cpu0
User Percentage =                   14.850358
System Percentage =                 63.440376
Idle Percentage =                   21.709267
Wait Percentage =                   0.000000
Physical Busy =                     0.003085
Physical Consumed =                 0.003941
Freq Percentage =                   99.975967
Entitlement Used Percentage =       0.394055
Entitlement Busy Percentage =       0.308508
Idle Cycles Donated Percentage =    0.000000
Busy Cycles Donated Percentage =    0.000000
Idle Cycles Stolen Percentage =     0.000000
Busy Cycles Stolen Percentage =     0.000000
system percentage for logical cpu in ticks = 0.000000
idle percentage for logical cpu in ticks =  100.000000
wait percentage for logical cpu in ticks =  0.000000
delta time in milliseconds =  4999

Performance Tools Guide and Reference  111



Utilization metrics for CPU-ID =    cpu1
User Percentage =                   0.000000
System Percentage =                 4.720662
Idle Percentage =                   95.279335
Wait Percentage =                   0.000000
Physical Busy =                     0.000065
Physical Consumed =                 0.001371
Freq Percentage =                   99.938919
Entitlement Used Percentage =       0.137110
Entitlement Busy Percentage =       0.006472
Idle Cycles Donated Percentage =    0.000000
Busy Cycles Donated Percentage =    0.000000
Idle Cycles Stolen Percentage =     0.000000
Busy Cycles Stolen Percentage =     0.000000
system percentage for logical cpu in ticks = 0.000000
idle percentage for logical cpu in ticks =  100.000000
wait percentage for logical cpu in ticks =  0.000000
delta time in milliseconds =  5000

Utilization metrics for CPU-ID =    cpu2
User Percentage =                   0.000000
System Percentage =                 5.848962
Idle Percentage =                   94.151039
Wait Percentage =                   0.000000
Physical Busy =                     0.000079
Physical Consumed =                 0.001348
Freq Percentage =                   99.900566
Entitlement Used Percentage =       0.134820
Entitlement Busy Percentage =       0.007886
Idle Cycles Donated Percentage =    0.000000
Busy Cycles Donated Percentage =    0.000000
Idle Cycles Stolen Percentage =     0.000000
Busy Cycles Stolen Percentage =     0.000000
system percentage for logical cpu in ticks = 0.000000
idle percentage for logical cpu in ticks =  100.000000
wait percentage for logical cpu in ticks =  0.000000
delta time in milliseconds =  5000

Utilization metrics for CPU-ID =    cpu3
User Percentage =                   0.000000
System Percentage =                 4.644570
Idle Percentage =                   95.355431
Wait Percentage =                   0.000000
Physical Busy =                     0.000061
Physical Consumed =                 0.001312
Freq Percentage =                   99.925430
Entitlement Used Percentage =       0.131174
Entitlement Busy Percentage =       0.006092
Idle Cycles Donated Percentage =    0.000000
Busy Cycles Donated Percentage =    0.000000
Idle Cycles Stolen Percentage =     0.000000
Busy Cycles Stolen Percentage =     0.000000
system percentage for logical cpu in ticks = 0.000000
idle percentage for logical cpu in ticks =  100.000000
wait percentage for logical cpu in ticks =  0.000000
delta time in milliseconds =  5000

Utilization metrics for CPU-ID =    cpu4
User Percentage =                   0.000000
System Percentage =                 55.325123
Idle Percentage =                   44.674877
Wait Percentage =                   0.000000
Physical Busy =                     0.000153
Physical Consumed =                 0.000276
Freq Percentage =                   99.927551
Entitlement Used Percentage =       0.027605
Entitlement Busy Percentage =       0.015273
Idle Cycles Donated Percentage =    0.000000
Busy Cycles Donated Percentage =    0.000000
Idle Cycles Stolen Percentage =     0.000000
Busy Cycles Stolen Percentage =     0.000000
system percentage for logical cpu in ticks = 0.000000
idle percentage for logical cpu in ticks =  100.000000
wait percentage for logical cpu in ticks =  0.000000
delta time in milliseconds =  4999

Utilization metrics for CPU-ID =    cpu5

112  AIX Version 7.2: Performance Tools Guide and Reference



User Percentage =                   0.000000
System Percentage =                 1.854463
Idle Percentage =                   98.145538
Wait Percentage =                   0.000000
Physical Busy =                     0.000002
Physical Consumed =                 0.000113
Freq Percentage =                   99.612183
Entitlement Used Percentage =       0.011326
Entitlement Busy Percentage =       0.000210
Idle Cycles Donated Percentage =    0.000000
Busy Cycles Donated Percentage =    0.000000
Idle Cycles Stolen Percentage =     0.000000
Busy Cycles Stolen Percentage =     0.000000
system percentage for logical cpu in ticks = 0.255102
idle percentage for logical cpu in ticks =  99.744896
wait percentage for logical cpu in ticks =  0.000000
delta time in milliseconds =  3913

Utilization metrics for CPU-ID =    cpu6
User Percentage =                   0.000000
System Percentage =                 1.776852
Idle Percentage =                   98.223145
Wait Percentage =                   0.000000
Physical Busy =                     0.000002
Physical Consumed =                 0.000115
Freq Percentage =                   99.475967
Entitlement Used Percentage =       0.011506
Entitlement Busy Percentage =       0.000204
Idle Cycles Donated Percentage =    0.000000
Busy Cycles Donated Percentage =    0.000000
Idle Cycles Stolen Percentage =     0.000000
Busy Cycles Stolen Percentage =     0.000000
system percentage for logical cpu in ticks = 0.255102
idle percentage for logical cpu in ticks =  99.744896
wait percentage for logical cpu in ticks =  0.000000
delta time in milliseconds =  3912

Utilization metrics for CPU-ID =    cpu7
User Percentage =                   0.000000
System Percentage =                 2.138275
Idle Percentage =                   97.861725
Wait Percentage =                   0.000000
Physical Busy =                     0.000002
Physical Consumed =                 0.000112
Freq Percentage =                   99.593727
Entitlement Used Percentage =       0.011205
Entitlement Busy Percentage =       0.000240
Idle Cycles Donated Percentage =    0.000000
Busy Cycles Donated Percentage =    0.000000
Idle Cycles Stolen Percentage =     0.000000
Busy Cycles Stolen Percentage =     0.000000
system percentage for logical cpu in ticks = 0.255102
idle percentage for logical cpu in ticks =  99.744896
wait percentage for logical cpu in ticks =  0.000000
delta time in milliseconds =  3912

Example for simplelparstat.c code
This topic provides an example for using the simplelparstat.c code.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <libperfstat.h>
#include <sys/systemcfg.h>

#define XINTFRAC    ((double)(_system_configuration.Xint)/(double)(_system_configuration.Xfrac))
/* convert physical processor tics to seconds */
#define HTIC2SEC(x)    ((double)x * XINTFRAC)/(double)1000000000.0

#define INTERVAL_DEFAULT      2
#define COUNT_DEFAULT          10

/*simplelparstat.c file can be used in two modes:-
1) Auto Mode:It makes use of perfstat_cpu_util API to calculate utilization values,enable 'UTIL_AUTO' macro for execution in auto mode.
2) Manual Mode: Calculations are done in the current code.
*/

/*#define UTIL_AUTO     1*/

#ifdef  UTIL_AUTO
 #define UTIL_MS 1
 #define UTIL_PCT 0
 #define UTIL_CORE 2
 #define UTIL_PURR 0
 #define UTIL_SPURR 1

Performance Tools Guide and Reference  113



 void display_lpar_util_auto(int mode,int cpumode,int count,int interval);
#endif

static int disp_util_header = 1;
static u_longlong_t last_time_base;
static u_longlong_t last_pcpu_user, last_pcpu_sys, last_pcpu_idle, last_pcpu_wait;
static u_longlong_t last_lcpu_user, last_lcpu_sys, last_lcpu_idle, last_lcpu_wait;
static u_longlong_t last_busy_donated, last_idle_donated;
static u_longlong_t last_busy_stolen, last_idle_stolen;
static u_longlong_t last_phint = 0, last_vcsw = 0, last_pit = 0;

/* support for remote node statistics collection in a cluster environment */
perfstat_id_node_t nodeid;
static char nodename[MAXHOSTNAMELEN] = "";
static int collect_remote_node_stats = 0;

void display_lpar_util(void);

int main(int argc, char* argv[])
{
    int interval = INTERVAL_DEFAULT;
    int count = COUNT_DEFAULT;
    int i, rc;
    char *optlist = "i:c:n:";
    int mode=0,cpumode=0;

    /* Process the arguments */
    while ((i = getopt(argc, argv, optlist)) != EOF)
    {
        switch(i)
        {
            case 'i':               /* Interval */
                     interval = atoi(optarg);
                     if( interval <= 0 )
                         interval = INTERVAL_DEFAULT;
                     break;
            case 'c':               /* Number of interations */
                     count = atoi(optarg);
                     if( count <= 0 )
                         count = COUNT_DEFAULT;
                     break;
            case 'n':               /* Node name in a cluster environment */
                     strncpy(nodename, optarg, MAXHOSTNAMELEN);
                     nodename[MAXHOSTNAMELEN-1] = '\0';
                     collect_remote_node_stats = 1;
                     break;
            default:
                    /* Invalid arguments. Print the usage and terminate */
                    fprintf (stderr, "usage: %s [-i <interval in seconds> ] [-c <number of iterations> ] [-n <node name in the cluster> ]
\n", argv[0]);
                    return(-1);
        }
    }
 
    if(collect_remote_node_stats)
    {   /* perfstat_config needs to be called to enable cluster statistics collection */
        rc = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);
        if (rc == -1)
        {
            perror("cluster statistics collection is not available");
            exit(-1);
        }
    }

    #ifdef UTIL_AUTO
      printf("Enter CPU mode.\n");
      printf(" 0 PURR \n 1 SPURR \n");
      scanf("%d",&cpumode);
      printf("Enter print mode.\n");
      printf(" 0 PERCENTAGE\n 1 MILLISECONDS\n 2 CORES \n");
      scanf("%d",&mode);

      if((mode>2)&& (cpumode>1))
      {

        printf("Error: Invalid Input\n");
        exit(0);
      }
      display_lpar_util_auto(mode,cpumode,count,interval);

    #else
    /* Iterate "count" times */
    while (count > 0)
    {
        display_lpar_util();
        sleep(interval);
        count--;
 
    } 
    #endif

    if(collect_remote_node_stats)
    {   /* Now disable cluster statistics by calling perfstat_config */
        perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);
    }

    return(0);
}

/* Save the current values for the next iteration */
void save_last_values(perfstat_cpu_total_t *cpustats, perfstat_partition_total_t *lparstats)
{
    last_vcsw      = lparstats->vol_virt_cswitch + lparstats->invol_virt_cswitch; 
    last_time_base = lparstats->timebase_last;
    last_phint     = lparstats->phantintrs;
    last_pit       = lparstats->pool_idle_time;

    last_pcpu_user = lparstats->puser;

114  AIX Version 7.2: Performance Tools Guide and Reference



    last_pcpu_sys  = lparstats->psys;
    last_pcpu_idle = lparstats->pidle;
    last_pcpu_wait = lparstats->pwait;

    last_lcpu_user = cpustats->user;
    last_lcpu_sys  = cpustats->sys;
    last_lcpu_idle = cpustats->idle;
    last_lcpu_wait = cpustats->wait;

    last_busy_donated = lparstats->busy_donated_purr;
    last_idle_donated = lparstats->idle_donated_purr;

    last_busy_stolen = lparstats->busy_stolen_purr;
    last_idle_stolen = lparstats->idle_stolen_purr;
}

/* retrieve metrics using perfstat API */
void collect_metrics (perfstat_cpu_total_t *cpustats, perfstat_partition_total_t *lparstats)
{
    if (collect_remote_node_stats)
    {
        strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
        nodeid.spec = NODENAME;

        if (perfstat_partition_total_node(&nodeid, lparstats, sizeof(perfstat_partition_total_t), 1) <= 0) {
            perror("perfstat_partition_total_node");
            exit(-1);
        }  
        if (perfstat_cpu_total_node(&nodeid, cpustats, sizeof(perfstat_cpu_total_t), 1) <= 0) {
            perror("perfstat_cpu_total_node");
            exit(-1);
        }  
    }
    else
    {
        if (perfstat_partition_total(NULL, lparstats, sizeof(perfstat_partition_total_t), 1) <= 0) {
            perror("perfstat_partition_total");
            exit(-1);
        }  
    
        if (perfstat_cpu_total(NULL, cpustats, sizeof(perfstat_cpu_total_t), 1) <= 0) {
            perror("perfstat_cpu_total");
            exit(-1);
        }  
    }
}

/* print header informations */
void print_header(perfstat_partition_total_t *lparstats)
{
    if (lparstats->type.b.shared_enabled) { /* partition is a SPLPAR */
       if (lparstats->type.b.pool_util_authority) { /* partition has PUA access */
          printf("\n%5s %5s %6s %6s %5s %5s %5s %5s %4s %5s",
          "%user", "%sys", "%wait", "%idle", "physc", "%entc", "lbusy", "app", "vcsw", "phint");
         
          printf("\n%5s %5s %6s %6s %5s %5s %5s %5s %4s %5s",
          "-----", "----", "-----", "-----", "-----", "-----", "-----", "---", "----", "-----");
       } else {
          printf("\n%5s %5s %6s %6s %5s %5s %5s %4s %5s",
          "%user", "%sys", "%wait", "%idle", "physc", "%entc", "lbusy", "vcsw", "phint");
         
          printf("\n%5s %5s %6s %6s %5s %5s %5s %4s %5s",
          "-----", "----", "-----", "-----", "-----", "-----", "-----", "----", "-----");
       }
    } else { /* partition is a DLPAR */
       printf("\n%5s %5s %6s %6s", "%user", "%sys", "%wait", "%idle");
       printf("\n%5s %5s %6s %6s", "-----", "----", "-----", "-----");
       if (lparstats->type.b.donate_enabled) { /* if donation is enabled for this DLPAR */
         printf(" %6s %6s", "%phsyc", "%vcsw");
         printf(" %6s %6s", "------", "-----");
       }
    }
    fprintf(stdout,"\n");
}

/* Gather and display lpar utilization metrics */
void display_lpar_util(void)
{
    u_longlong_t delta_pcpu_user, delta_pcpu_sys, delta_pcpu_idle, delta_pcpu_wait;
    u_longlong_t delta_lcpu_user, delta_lcpu_sys, delta_lcpu_idle, delta_lcpu_wait;
    u_longlong_t delta_busy_stolen, delta_busy_donated, delta_idle_stolen, delta_idle_donated;
    u_longlong_t vcsw, lcputime, pcputime;
    u_longlong_t entitled_purr, unused_purr;
    u_longlong_t delta_purr, delta_time_base;
    double phys_proc_consumed, entitlement, percent_ent, delta_sec;
    perfstat_partition_total_t lparstats;
    perfstat_cpu_total_t cpustats;
    
    /* retrieve the metrics */
    collect_metrics (&cpustats, &lparstats);

    /* Print the header for utilization metrics (only once) */  
    if (disp_util_header) {
       print_header (&lparstats);

       disp_util_header = 0;

       /* first iteration, we only read the data, print the header and save the data */
       save_last_values(&cpustats, &lparstats);
       return;
    }

    /* calculate physcial processor tics during the last interval in user, system, idle and wait mode  */
    delta_pcpu_user  = lparstats.puser - last_pcpu_user; 
    delta_pcpu_sys   = lparstats.psys  - last_pcpu_sys;
    delta_pcpu_idle  = lparstats.pidle - last_pcpu_idle;
    delta_pcpu_wait  = lparstats.pwait - last_pcpu_wait;
   
    /* calculate total physcial processor tics during the last interval */ 

Performance Tools Guide and Reference  115



    delta_purr = pcputime = delta_pcpu_user + delta_pcpu_sys + delta_pcpu_idle + delta_pcpu_wait;

    /* calculate clock tics during the last interval in user, system, idle and wait mode */
    delta_lcpu_user  = cpustats.user - last_lcpu_user; 
    delta_lcpu_sys   = cpustats.sys  - last_lcpu_sys;
    delta_lcpu_idle  = cpustats.idle - last_lcpu_idle;
    delta_lcpu_wait  = cpustats.wait - last_lcpu_wait;
   
    /* calculate total clock tics during the last interval */ 
    lcputime = delta_lcpu_user + delta_lcpu_sys + delta_lcpu_idle + delta_lcpu_wait;

    /* calculate entitlement for this partition - entitled physical processors for this partition */
    entitlement = (double)lparstats.entitled_proc_capacity / 100.0 ;

    /* calculate delta time in terms of physical processor tics */
    delta_time_base = lparstats.timebase_last - last_time_base;
    
    if (lparstats.type.b.shared_enabled) { /* partition is a SPLPAR */
        /* calculate entitled physical processor tics for this partitions */
        entitled_purr = delta_time_base * entitlement;
        if (entitled_purr < delta_purr) { /* for uncapped SPLPAR */
            /* in case of uncapped SPLPAR, consider entitled physical processor tics or 
             * consumed physical processor tics, which ever is greater */ 
            entitled_purr = delta_purr;
        }
        /* calculate unused physical processor tics out of the entitled physical processor tics */
        unused_purr = entitled_purr - delta_purr;
       
        /* distributed unused physical processor tics amoung wait and idle proportionally to wait and idle in clock tics */
        delta_pcpu_wait += unused_purr * ((double)delta_lcpu_wait / (double)(delta_lcpu_wait + delta_lcpu_idle));
        delta_pcpu_idle += unused_purr * ((double)delta_lcpu_idle / (double)(delta_lcpu_wait + delta_lcpu_idle));
      
        /* far SPLPAR, consider the entitled physical processor tics as the actual delta physical processor tics */
        pcputime = entitled_purr;
    }
    else if (lparstats.type.b.donate_enabled) { /* if donation is enabled for this DLPAR */
        /* calculate busy stolen and idle stolen physical processor tics during the last interval */ 
        /* these physical processor tics are stolen from this partition by the hypervsior
         * which will be used by wanting partitions */  
        delta_busy_stolen = lparstats.busy_stolen_purr - last_busy_stolen;
        delta_idle_stolen = lparstats.idle_stolen_purr - last_idle_stolen; 

        /* calculate busy donated and idle donated physical processor tics during the last interval */
        /* these physical processor tics are voluntarily donated by this partition to the hypervsior
         * which will be used by wanting partitions */  
        delta_busy_donated = lparstats.busy_donated_purr - last_busy_donated;
        delta_idle_donated = lparstats.idle_donated_purr - last_idle_donated;

        /* add busy donated and busy stolen to the kernel bucket, as cpu
         * cycles were donated / stolen when this partition is busy */
        delta_pcpu_sys += delta_busy_donated;
        delta_pcpu_sys += delta_busy_stolen;

        /* distribute idle stolen to wait and idle proportionally to the logical wait and idle in clock tics, as
         * cpu cycles were stolen when this partition is idle or in wait */
        delta_pcpu_wait += delta_idle_stolen * 
                              ((double)delta_lcpu_wait / (double)(delta_lcpu_wait + delta_lcpu_idle));
        delta_pcpu_idle += delta_idle_stolen * 
                              ((double)delta_lcpu_idle / (double)(delta_lcpu_wait + delta_lcpu_idle));

        /* distribute idle donated to wait and idle proportionally to the logical wait and idle in clock tics, as
         * cpu cycles were donated when this partition is idle or in wait */
        delta_pcpu_wait += delta_idle_donated * 
                              ((double)delta_lcpu_wait / (double)(delta_lcpu_wait + delta_lcpu_idle));
        delta_pcpu_idle += delta_idle_donated * 
                              ((double)delta_lcpu_idle / (double)(delta_lcpu_wait + delta_lcpu_idle));
     
        /* add donated to the total physical processor tics for CPU usage calculation, as they were 
         * distributed to respective buckets accordingly */
        pcputime +=  (delta_idle_donated + delta_busy_donated);

        /* add stolen to the total physical processor tics for CPU usage calculation, as they were 
         * distributed to respective buckets accordingly */
        pcputime +=  (delta_idle_stolen + delta_busy_stolen);

    }

    /* Processor Utilization - Applies for both SPLPAR and DLPAR*/
    printf("%5.1f ", (double)delta_pcpu_user * 100.0 / (double)pcputime);
    printf("%5.1f ", (double)delta_pcpu_sys  * 100.0 / (double)pcputime);
    printf("%6.1f ", (double)delta_pcpu_wait * 100.0 / (double)pcputime);
    printf("%6.1f ", (double)delta_pcpu_idle * 100.0 / (double)pcputime);

    if (lparstats.type.b.shared_enabled) { /* print SPLPAR specific stats */  
        /* Physical Processor Consumed by this partition */  
        phys_proc_consumed = (double)delta_purr / (double)delta_time_base;
        printf("%5.2f ", (double)phys_proc_consumed); 

        /* Percentage of Entitlement Consumed - percentage of entitled physical processor tics consumed */
        percent_ent = (double)((phys_proc_consumed / entitlement) * 100);
        printf("%5.1f ", percent_ent);

        /* Logical Processor Utilization of this partition */
        printf("%5.1f ", (double)(delta_lcpu_user+delta_lcpu_sys) * 100.0 / (double)lcputime);

        if (lparstats.type.b.pool_util_authority) { 
        /* Available physical Processor units available in the shared pool (app) */ 
           printf("%5.2f ", (double)(lparstats.pool_idle_time - last_pit) / 
                 XINTFRAC*(double)delta_time_base);
        }

        /* Virtual CPU Context Switches per second */
        vcsw = lparstats.vol_virt_cswitch + lparstats.invol_virt_cswitch; 
         delta_sec = HTIC2SEC(delta_time_base);
        printf("%4.0f ", (double)(vcsw - last_vcsw) / delta_sec);
        
        /* Phantom Interrupts per second */
        printf("%5.0f",(double)(lparstats.phantintrs - last_phint) / delta_sec);
    }

116  AIX Version 7.2: Performance Tools Guide and Reference



    else if (lparstats.type.b.donate_enabled) { /* print donation-enabled DLPAR specific stats */
        /* Physical Processor Consumed by this partition 
         * (excluding donated and stolen physical processor tics). */
        phys_proc_consumed = (double)delta_purr / (double)delta_time_base;
        printf("%5.2f ", (double)phys_proc_consumed); 

        /* Virtual CPU Context Switches per second */
        vcsw = lparstats.vol_virt_cswitch + lparstats.invol_virt_cswitch; 
         delta_sec = HTIC2SEC(delta_time_base);
        printf("%5.0f ", (double)(vcsw - last_vcsw) / delta_sec);
    }
    printf("\n");

    save_last_values(&cpustats, &lparstats);
}

#ifdef UTIL_AUTO
void display_lpar_util_auto(int mode,int cpumode,int count,int interval)
{
    float user_core_purr,kern_core_purr,wait_core_purr,idle_core_purr;
    float user_core_spurr,kern_core_spurr,wait_core_spurr,idle_core_spurr,sum_core_spurr;
    u_longlong_t user_ms_purr,kern_ms_purr,wait_ms_purr,idle_ms_purr,sum_ms;
    u_longlong_t user_ms_spurr,kern_ms_spurr,wait_ms_spurr,idle_ms_spurr;
    perfstat_rawdata_t data;
    u_longlong_t delta_purr, delta_time_base;
    double phys_proc_consumed, entitlement, percent_ent, delta_sec;
    perfstat_partition_total_t lparstats;
    static perfstat_cpu_total_t oldt,newt;
    perfstat_cpu_util_t util;
    int rc;

    /* retrieve the metrics */

    /* Print the header for utilization metrics (only once) */
    if (disp_util_header) {
    if(mode==UTIL_PCT)
          printf("\n%5s %5s %6s %6s %5s  \n",
          "%user", "%sys", "%wait", "%idle", "physc");
    else if(mode==UTIL_MS)
          printf("\n%5s   %5s   %6s   %6s   %5s \n",
          "user(ms)", "sys(ms)", "wait(ms)", "idle(ms)", "physc");
    else if(mode==UTIL_CORE)
          printf("\n%5s  %5s  %6s  %6s  %5s  \n",
          "user", "sys", "wait", "idle", "physc");

       disp_util_header = 0;

       /* first iteration, we only read the data, print the header and save the data */
    }

  while(count)
  {
    collect_metrics (&oldt, &lparstats);
    sleep(interval);
    collect_metrics (&newt, &lparstats);

   data.type = UTIL_CPU_TOTAL;
   data.curstat = &newt; data.prevstat= &oldt;
   data.sizeof_data = sizeof(perfstat_cpu_total_t);
   data.cur_elems = 1;
   data.prev_elems = 1;
   rc = perfstat_cpu_util(&data, &util,sizeof(perfstat_cpu_util_t), 1);
   if(rc <= 0)
   {
     perror("Error in perfstat_cpu_util");
     exit(-1);
   }
   delta_time_base =  util.delta_time;

  switch(mode)
   {
   case  UTIL_PCT:
         printf(" %5.1f  %5.1f  %5.1f  %5.1f  %5.4f \n",util.user_pct,util.kern_pct,util.wait_pct,util.idle_pct,util.physical_consumed);
         break;

   case  UTIL_MS:
         user_ms_purr=((util.user_pct*delta_time_base)/100.0);
         kern_ms_purr=((util.kern_pct*delta_time_base)/100.0);
         wait_ms_purr=((util.wait_pct*delta_time_base)/100.0);
         idle_ms_purr=((util.idle_pct*delta_time_base)/100.0);

        if(cpumode==UTIL_PURR)
        {
            printf(" %llu    %llu    %llu    %llu   %5.4f\n",user_ms_purr,kern_ms_purr,wait_ms_purr,idle_ms_purr,util.physical_consumed);
        }
       else if(cpumode==UTIL_SPURR)
       {
            user_ms_spurr=(user_ms_purr*util.freq_pct)/100.0;
            kern_ms_spurr=(kern_ms_purr*util.freq_pct)/100.0;
            wait_ms_spurr=(wait_ms_purr*util.freq_pct)/100.0;
            sum_ms=user_ms_spurr+kern_ms_spurr+wait_ms_spurr;
            idle_ms_spurr=delta_time_base-sum_ms;

            printf(" %llu    %llu    %llu    %llu    %5.4f 
\n",user_ms_spurr,kern_ms_spurr,wait_ms_spurr,idle_ms_spurr,util.physical_consumed);

       }
            break;

   case  UTIL_CORE:

           user_core_purr=((util.user_pct*util.physical_consumed)/100.0);
           kern_core_purr=((util.kern_pct*util.physical_consumed)/100.0);
           wait_core_purr=((util.wait_pct*util.physical_consumed)/100.0);
           idle_core_purr=((util.idle_pct*util.physical_consumed)/100.0);

Performance Tools Guide and Reference  117



           user_core_spurr=((user_core_purr*util.freq_pct)/100.0);
           kern_core_spurr=((kern_core_purr*util.freq_pct)/100.0);
           wait_core_spurr=((wait_core_purr*util.freq_pct)/100.0);
           
           if(cpumode==UTIL_PURR)
           {
            printf("%5.4f   %5.4f   %5.4f   %5.4f   %5.4f
\n",user_core_purr,kern_core_purr,wait_core_purr,idle_core_purr,util.physical_consumed);
           }
           else if(cpumode==UTIL_SPURR)
           {
           sum_core_spurr=user_core_spurr+kern_core_spurr+wait_core_spurr;
           idle_core_spurr=util.physical_consumed-sum_core_spurr;

            printf("%5.4f   %5.4f   %5.4f   %5.4f   %5.4f 
\n",user_core_spurr,kern_core_spurr,wait_core_spurr,idle_core_spurr,util.physical_consumed);
           }
           break;

           default:
           printf("In correct usage\n");
           return;

}
count--;
}
}
#endif

The program displays an output that is similar to the following example output:

%user  %sys  %wait  %idle physc %entc lbusy vcsw phint
-----  ----  -----  ----- ----- ----- ----- ---- -----
  0.1   0.3    0.0   99.6  0.01   1.1   0.2  285     0
  0.0   0.3    0.0   99.7  0.01   0.8   0.0  229     0
  0.0   0.2    0.0   99.8  0.01   0.6   0.1  181     0
  0.1   0.2    0.0   99.7  0.01   0.8   0.1  189     0
  0.0   0.3    0.0   99.7  0.01   0.7   0.0  193     0
  0.0   0.2    0.0   99.8  0.01   0.7   0.2  204     0
  0.1   0.3    0.0   99.7  0.01   0.9   1.0  272     0
  0.0   0.3    0.0   99.7  0.01   0.9   0.1  304     0
  0.0   0.3    0.0   99.7  0.01   0.9   0.0  212     0

Example for simplempstat.c code
This topic provides an example for using the simplempstat.c code.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <libperfstat.h>
#include <errno.h>
#include <wpars/wparcfg.h>
static int disp_util_header = 1;

/*simplempstat.c file can be used in two modes:-
1) Auto Mode:It makes use of perfstat_cpu_util API to calculate utilization values,enable 'UTIL_AUTO' macro for 
execution in auto mode.
2) Manual Mode: Calculations are done in the current code.
*/

/* #define UTIL_AUTO */

#ifdef  UTIL_AUTO
  #define UTIL_MS 1
  #define UTIL_PCT 0
  #define UTIL_CORE 2
  #define UTIL_PURR 0
  #define UTIL_SPURR 1
  void display_metrics_global_auto(int mode,int cpumode,int count,int interval);
#endif

/* To Check whether malloc is successful or not */
#define CHECK_FOR_MALLOC_NULL(X) {  if ((X) == NULL) {\
                                       perror ("malloc");\
                                       exit(2);\
                                     }\
                                 }

/* Convert 4K pages to MB */
#define AS_MB(X) ((X) * 4096/1024/1024)

/* WPAR ID for global will always be zero */
#define IS_GLOBAL(X) (!(X)) 

/* Non zero WPAR ID indicates WPAR */
#define IS_WPAR(X) ((X))

/* For WPAR, use NULL else use the actual WPAR ID (for global) */

118  AIX Version 7.2: Performance Tools Guide and Reference



#define WPAR_ID ((cid)?NULL:&wparid)

/* To store the count of Logical CPUs in the LPAR */

/* Default values for interval and count */

#define INTERVAL_DEFAULT 1 
#define COUNT_DEFAULT    1

static int  ncpu, atflag; 
static int returncode, count = COUNT_DEFAULT, interval = INTERVAL_DEFAULT;
unsigned long long  last_user, last_sys, last_idle, last_wait, last_timebase;
unsigned long long delta_user, delta_sys, delta_wait, delta_idle, delta_total, delta_timebase;

/* store LPAR level stats */
perfstat_cpu_total_t          *totalcinfo, *totalcinfo_last;
perfstat_memory_total_t       minfo;
perfstat_partition_total_t    pinfo, qinfo;
perfstat_cpu_t              *cinfo, *cinfo_last;

/* stores wpar id for perfstat library */
perfstat_id_wpar_t         wparid;

/* store per WPAR stats */
perfstat_wpar_total_t        winfo; 
perfstat_cpu_total_wpar_t    cinfo_wpar; 
    
/* store current WPAR ID */
cid_t cid; 
char wpar[MAXCORRALNAMELEN+1];

/* support for remote node statistics collection in a cluster environment */
perfstat_id_node_t nodeid;
char nodename[MAXHOSTNAMELEN];
int nflag = 0;
/* display the usage */

void showusage(char *cmd)
{
   if (!cid)
       fprintf(stderr, "usage: %s [-@ { ALL | WPARNAME } | -n nodename ] [-i <interval in seconds> ] [-c <number of 
iterations> ]\n", cmd);
   else
       fprintf(stderr, "usage: %s [-i <interval in seconds> ] [-c <number of iterations> ]\n", cmd);
   exit(1);
}

/* Save the current values for the next iteration */
    
void save_last_values (void)
{
   memcpy( totalcinfo_last, totalcinfo, sizeof(perfstat_cpu_total_t));
   memcpy( cinfo_last, cinfo, sizeof(perfstat_cpu_t));
}

void initialise(void)
{
   totalcinfo = (perfstat_cpu_total_t *)malloc(sizeof(perfstat_cpu_total_t));
   CHECK_FOR_MALLOC_NULL(totalcinfo);

   totalcinfo_last = (perfstat_cpu_total_t *)malloc(sizeof(perfstat_cpu_total_t));
   CHECK_FOR_MALLOC_NULL(totalcinfo_last);

   cinfo = (perfstat_cpu_t *)malloc(sizeof(perfstat_cpu_t) * ncpu);
   CHECK_FOR_MALLOC_NULL(cinfo);

   cinfo_last = (perfstat_cpu_t *)malloc(sizeof(perfstat_cpu_t) * ncpu);
   CHECK_FOR_MALLOC_NULL(cinfo_last);
 
}

void display_configuration (void)
{
   unsigned long long memlimit;
   double cpulimit;
   int i ,totalcpu;

   /* gather LPAR level data */
   if(nflag) {
      strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
      nodeid.spec = NODENAME;
      if (perfstat_partition_total_node(&nodeid, &pinfo, sizeof(perfstat_partition_total_t), 1) <= 0) {
          perror("perfstat_partition_total_node:");
          exit(1);
      }
      
      if (perfstat_memory_total_node(&nodeid, &minfo, sizeof(perfstat_memory_total_t), 1) <= 0) {
          perror("perfstat_memory_total_node:");
          exit(1);
      }

      totalcpu = perfstat_cpu_node(&nodeid, NULL, sizeof(perfstat_cpu_t), 0);

Performance Tools Guide and Reference  119



   }
   else {
      if (perfstat_partition_total(NULL, &pinfo, sizeof(perfstat_partition_total_t), 1) <= 0) {
          perror("perfstat_partition_total:");
          exit(1);
      }
      
      if (perfstat_memory_total(NULL, &minfo, sizeof(perfstat_memory_total_t), 1) <= 0) {
          perror("perfstat_memory_total:");
          exit(1);
      }

      totalcpu = perfstat_cpu(NULL, NULL, sizeof(perfstat_cpu_t), 0);
   }
   
   /* print LPAR configuration */
   printf("Purr counter value = %lld \n",pinfo.purr_counter);
   printf("Spurr counter value = %lld \n",pinfo.spurr_counter);
   printf("Free memory = %lld \n",pinfo.real_free);
   printf("Available memory = %lld \n",pinfo.real_avail);

   printf("\nlpar configuration : ");
   printf("lcpus = %d ", totalcpu); /* number of CPUs online */
   printf("mem = %lluMB ", AS_MB(minfo.real_total)); /* real memory */
   printf("ent = %#5.2f\n", (double)pinfo.entitled_proc_capacity/100.0); /* entitled capacity */

}

/*
 * NAME: display_metrics_global
 *       used to display the metrics when called from global 
 *
 */        

void display_metrics_global(void)
{
   int i;
   perfstat_id_t first;

   strcpy(first.name, FIRST_CPU);
   if(nflag){
       strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
       nodeid.spec = NODENAME;
       if (perfstat_cpu_total_node(&nodeid, totalcinfo_last, sizeof(perfstat_cpu_total_t), 1) <= 0){
           perror("perfstat_cpu_total_node:");
           exit(1);
       }
    
       if (perfstat_cpu_node(&nodeid, cinfo_last, sizeof(perfstat_cpu_t), ncpu) <= 0){
           perror("perfstat_cpu_node:");
           exit(1);
       }
    
       if (perfstat_partition_total_node(&nodeid, &qinfo, sizeof(perfstat_partition_total_t), 1) <= 0){
           perror("perfstat_partition_total_node:");
           exit(1);
       }
   }
   else{
       if (perfstat_cpu_total(NULL, totalcinfo_last, sizeof(perfstat_cpu_total_t), 1) <= 0){
           perror("perfstat_cpu_total:");
           exit(1);
       }
    
       if (perfstat_cpu(&first, cinfo_last, sizeof(perfstat_cpu_t), ncpu) <= 0){
           perror("perfstat_cpu:");
           exit(1);
       }
    
       if (perfstat_partition_total(NULL, &qinfo, sizeof(perfstat_partition_total_t), 1) <= 0){
           perror("perfstat_partition_total:");
           exit(1);
       }
   }
   printf("\n cpu\tuser\tsys\twait\tidle\tstate\n\n");

   while(count)
   {
      sleep(interval);

      if(nflag){
          if (perfstat_cpu_total_node(&nodeid, totalcinfo, sizeof(perfstat_cpu_total_t), 1) <= 0){
              perror("perfstat_cpu_total_node:");
              exit(1);
          }
    
          if (perfstat_cpu_node(&nodeid, cinfo, sizeof(perfstat_cpu_t), ncpu) <= 0){
              perror("perfstat_cpu_node:");
              exit(1);
          }
    
          if (perfstat_partition_total_node(&nodeid, &pinfo, sizeof(perfstat_partition_total_t), 1) <= 0){
              perror("perfstat_partition_total_node:");

120  AIX Version 7.2: Performance Tools Guide and Reference



              exit(1);
          }
      }
      else{
          if (perfstat_cpu_total(NULL, totalcinfo, sizeof(perfstat_cpu_total_t), 1) <= 0){
              perror("perfstat_cpu_total:");
              exit(1);
          }
    
          if (perfstat_cpu(&first, cinfo, sizeof(perfstat_cpu_t), ncpu) <= 0){
              perror("perfstat_cpu:");
              exit(1);
          }
    
          if (perfstat_partition_total(NULL, &pinfo, sizeof(perfstat_partition_total_t), 1) <= 0){
              perror("perfstat_partition_total:");
              exit(1);
          }
      }

      for(i = 0; i < ncpu; i++){
          delta_user = cinfo[i].puser - cinfo_last[i].puser;
          delta_sys  = cinfo[i].psys  - cinfo_last[i].psys;
          delta_idle = cinfo[i].pidle - cinfo_last[i].pidle;
          delta_wait = cinfo[i].pwait - cinfo_last[i].pwait; 
          delta_total= delta_user + delta_sys + delta_idle + delta_wait;
          delta_timebase = pinfo.timebase_last - qinfo.timebase_last;
                    if(!delta_total)
                    continue;

          printf("%s\t%#4.1f\t%#4.1f\t%#4.1f\t%#4.1f\t%#4.1d\n",cinfo[i].name,
                                 ((double)(delta_user)/(double)(delta_total) * 100.0),
                                 ((double)(delta_sys)/(double)(delta_total) * 100.0),
                                 ((double)(delta_wait)/(double)(delta_total) * 100.0),
                                 ((double)(delta_idle)/(double)(delta_total) * 100.0),
                                 cinfo[i].state);
      }
      delta_user = totalcinfo->puser - totalcinfo_last->puser;
      delta_sys  = totalcinfo->psys  - totalcinfo_last->psys;
      delta_wait = totalcinfo->pwait - totalcinfo_last->pwait;
      delta_idle = totalcinfo->pidle - totalcinfo_last->pidle;
      delta_total= delta_user + delta_sys + delta_idle + delta_wait;

      printf("%s\t%#4.1f\t%#4.1f\t%#4.1f\t%#4.1f\n\n","ALL",((double)(delta_user)/(double)(delta_total) * 100.0),
                          ((double)(delta_sys)/(double)(delta_total) * 100.0),
                          ((double)(delta_wait)/(double)(delta_total) * 100.0),
                          ((double)(delta_idle)/(double)(delta_total) * 100.0));

      count--;
      save_last_values();
   }
}

/*
 *NAME: display_metrics_wpar
 *      used to display the metrics when called from wpar
 *
 */
void display_metrics_wpar(void)
{

   int i;
   char last[5];
   perfstat_id_wpar_t first;
   /*first.spec = WPARNAME;*/
   strcpy(first.name,NULL );
   if (perfstat_wpar_total( NULL, &winfo, sizeof(perfstat_wpar_total_t), 1) <= 0){
       perror("perfstat_wpar_total:");
       exit(1);
   }

   if (perfstat_cpu_total_rset(NULL, totalcinfo_last, sizeof(perfstat_cpu_total_t), 1) <= 0){
       perror("perfstat_cpu_total_rset:");
       exit(1);
   }

   if (perfstat_cpu_rset(NULL, cinfo_last, sizeof(perfstat_cpu_t), ncpu) <= 0){
       perror("perfstat_cpu_rset:");
       exit(1);
   }

   if (perfstat_partition_total(NULL, &qinfo, sizeof(perfstat_partition_total_t), 1) <= 0){
       perror("perfstat_partition_total:");
       exit(1);
   }
   printf("\n cpu\tuser\tsys\twait\tidle\n\n");

   while(count)
   {
      sleep(interval);

      if (perfstat_cpu_total_rset(NULL, totalcinfo, sizeof(perfstat_cpu_total_t), 1) <= 0){
          perror("perfstat_cpu_total_rset:");

Performance Tools Guide and Reference  121



          exit(1);
      }

      if (perfstat_cpu_rset(NULL, cinfo, sizeof(perfstat_cpu_t), ncpu) <= 0){
          perror("perfstat_cpu_rset:");
          exit(1);
      }

      if (perfstat_partition_total(NULL, &pinfo, sizeof(perfstat_partition_total_t), 1) <= 0){
          perror("perfstat_partition_total:");
          exit(1);
      }

      for(i=0; i<ncpu; i++){
          delta_user = cinfo[i].puser - cinfo_last[i].puser;
          delta_sys  = cinfo[i].psys  - cinfo_last[i].psys;
          delta_idle = cinfo[i].pidle - cinfo_last[i].pidle;
          delta_wait = cinfo[i].pwait - cinfo_last[i].pwait;
          delta_total= delta_user + delta_sys + delta_idle + delta_wait;
          delta_timebase = pinfo.timebase_last - qinfo.timebase_last;
                    if(!delta_total)
                    continue;

          printf("%s\t%#4.1f\t%#4.1f\t%#4.1f\t%#4.1f\n",cinfo[i].name,((double)(delta_user)/(double)(delta_total) * 
100.0),
                                                             ((double)(delta_sys)/(double)(delta_total) * 100.0),
                                                             ((double)(delta_wait)/(double)(delta_total) * 100.0),
                                                             ((double)(delta_idle)/(double)(delta_total) * 100.0));
      }

      delta_user = totalcinfo->puser - totalcinfo_last->puser;
      delta_sys  = totalcinfo->psys  - totalcinfo_last->psys;
      delta_wait = totalcinfo->pwait - totalcinfo_last->pwait;
      delta_idle = totalcinfo->pidle - totalcinfo_last->pidle;
      delta_total= delta_user + delta_sys + delta_idle + delta_wait;

      if (winfo.type.b.cpu_rset)
          strcpy(last,"RST");
      else
          strcpy(last,"ALL");

      printf("%s\t%#4.1f\t%#4.1f\t%#4.1f\t%#4.1f\n\n",last,((double)(delta_user)/(double)(delta_total) * 100.0),
                                                  ((double)(delta_sys)/(double)(delta_total) * 100.0),
                                                  ((double)(delta_wait)/(double)(delta_total) * 100.0),
                                                  ((double)(delta_idle)/(double)(delta_total) * 100.0));

      count--;
      save_last_values();
   }

}

/*
 * NAME: display_metrics_wpar_from_global
 *       display metrics of wpar when called from global
 *
 */    
void display_metrics_wpar_from_global(void)
{
   char last[5];
   int i;
   if (perfstat_wpar_total( &wparid, &winfo, sizeof(perfstat_wpar_total_t), 1) <= 0){
       perror("perfstat_wpar_total:");
       exit(1);
   }
   if (winfo.type.b.cpu_rset)
       strcpy(last,"RST");
   else
       strcpy(last,"ALL");

   strcpy(wparid.u.wparname,wpar);
 
   if (perfstat_cpu_total_rset(&wparid, totalcinfo_last, sizeof(perfstat_cpu_total_t), 1) <= 0){
       perror("perfstat_cpu_total_rset:");
       exit(1);
   }

   if (perfstat_cpu_rset(&wparid, cinfo_last, sizeof(perfstat_cpu_t), ncpu) <= 0){
       perror("perfstat_cpu_rset:");
       exit(1);
   }

   if (perfstat_partition_total(NULL, &qinfo, sizeof(perfstat_partition_total_t), 1) <= 0){
       perror("perfstat_partition_total:");
       exit(1);
   }

   printf("\n cpu\tuser\tsys\twait\tidle\n\n");

   while(count)
   {
       sleep(interval);

122  AIX Version 7.2: Performance Tools Guide and Reference



       if (perfstat_cpu_total_rset(&wparid, totalcinfo, sizeof(perfstat_cpu_total_t), 1) <= 0){
           perror("perfstat_cpu_total_rset:");
           exit(1);
       }

       if (perfstat_cpu_rset(&wparid, cinfo, sizeof(perfstat_cpu_t), ncpu) <= 0){
           perror("perfstat_cpu_rset:");
           exit(1);
       }

       if (perfstat_partition_total(NULL, &pinfo, sizeof(perfstat_partition_total_t), 1) <= 0){
           perror("perfstat_partition_total:");
           exit(1);
       }

       for(i = 0; i < ncpu; i++){
           delta_user = cinfo[i].puser - cinfo_last[i].puser;
           delta_sys  = cinfo[i].psys  - cinfo_last[i].psys;
           delta_idle = cinfo[i].pidle - cinfo_last[i].pidle;
           delta_wait = cinfo[i].pwait - cinfo_last[i].pwait;
           delta_total= delta_user + delta_sys + delta_idle + delta_wait;
           delta_timebase = pinfo.timebase_last - qinfo.timebase_last;
                     if(!delta_total)
                     continue;

       printf("%s\t%#4.1f\t%#4.1f\t%#4.1f\t%#4.1f\n",cinfo[i].name,((double)(delta_user)/(double)(delta_total) * 100.0),
                                                             ((double)(delta_sys)/(double)(delta_total) * 100.0),
                                                             ((double)(delta_wait)/(double)(delta_total) * 100.0),
                                                             ((double)(delta_idle)/(double)(delta_total) * 100.0));
       }

       delta_user = totalcinfo->puser - totalcinfo_last->puser;
       delta_sys  = totalcinfo->psys  - totalcinfo_last->psys;
       delta_wait = totalcinfo->pwait - totalcinfo_last->pwait;
       delta_idle = totalcinfo->pidle - totalcinfo_last->pidle;
       delta_total= delta_user + delta_sys + delta_idle + delta_wait;

       printf("%s\t%#4.1f\t%#4.1f\t%#4.1f\t%#4.1f\n\n",last, ((double)(delta_user)/(double)(delta_total) * 100.0),
                                                  ((double)(delta_sys)/(double)(delta_total) * 100.0),
                                                  ((double)(delta_wait)/(double)(delta_total) * 100.0),
                                                  ((double)(delta_idle)/(double)(delta_total) * 100.0));

       count--;
       save_last_values();
   }

}

#ifdef UTIL_AUTO
void display_metrics_global_auto(int mode,int cpumode,int count,int interval)
{
    float user_core_purr,kern_core_purr,wait_core_purr,idle_core_purr;
    float user_core_spurr,kern_core_spurr,wait_core_spurr,idle_core_spurr,sum_core_spurr;
    u_longlong_t user_ms_purr,kern_ms_purr,wait_ms_purr,idle_ms_purr,sum_ms;
    u_longlong_t user_ms_spurr,kern_ms_spurr,wait_ms_spurr,idle_ms_spurr;
    perfstat_rawdata_t data;
    u_longlong_t delta_purr;
    double phys_proc_consumed, entitlement, percent_ent, delta_sec;
    perfstat_partition_total_t lparstats;
    static perfstat_cpu_t  *oldt,*newt;
    perfstat_cpu_util_t *util;
    int rc,cpu_count,i;
    perfstat_id_t id;

    /* retrieve the metrics */

while(count) {

    /* Print the header for utilization metrics (only once) */
    if (disp_util_header) {
    if(mode==UTIL_PCT)
          printf("\nCPU  %5s %5s %6s %6s %5s  \n",
          "%user", "%sys", "%wait", "%idle", "physc");
    else if(mode==UTIL_MS)
          printf("\nCPU  %5s   %5s   %6s   %6s   %5s \n",
          "user(ms)", "sys(ms)", "wait(ms)", "idle(ms)", "physc");
    else if(mode==UTIL_CORE)
          printf("\nCPU %5s  %5s  %6s  %6s  %5s %5s \n",
          "user", "sys", "wait", "idle", "physc", "state");

       /* first iteration, we only read the data, print the header and save the data */
    }
  cpu_count = perfstat_cpu(NULL, NULL,sizeof(perfstat_cpu_t),0);

  /* check for error */
  if(cpu_count <= 0)
  {
    perror("Error in perfstat_cpu");
    exit(-1);
  }

Performance Tools Guide and Reference  123



  /* allocate enough memory */
  oldt = (perfstat_cpu_t *)calloc(cpu_count,sizeof(perfstat_cpu_t));
  if(oldt == NULL)
  {
    perror("Memory Allocation Error");
    exit(-1);
  }
  /* set name to first cpu */
  strcpy(id.name,FIRST_CPU);

  /* ask to get all the structures available in one call */
  rc = perfstat_cpu(&id, oldt, sizeof(perfstat_cpu_t), cpu_count);

  /* check for error */
  if(rc <=0)
  {
    perror("Error in perfstat_cpu");
    exit(-1);
  }

  data.type = UTIL_CPU;
  data.prevstat= oldt;
  data.sizeof_data = sizeof(perfstat_cpu_t);
  data.prev_elems = cpu_count;

  sleep(interval);

  /* Check how many perfstat_cpu_t structures are available after a defined period */
  cpu_count = perfstat_cpu(NULL, NULL,sizeof(perfstat_cpu_t),0);

  /* Check for error */
  if(cpu_count <= 0)
  {
    perror("Error in perfstat_cpu");
    exit(-1);
  }

  data.cur_elems = cpu_count;

  if(data.prev_elems != data.cur_elems)
  {
    perror("The number of CPUs has become different for defined period");
    exit(-1);
  }

  /* allocate enough memory */
  newt = (perfstat_cpu_t *)calloc(cpu_count,sizeof(perfstat_cpu_t));
  util = (perfstat_cpu_util_t *)calloc(cpu_count,sizeof(perfstat_cpu_util_t));

  if(newt == NULL || util == NULL)
  {
   perror("Memory Allocation Error");
   exit(-1);
  }
  data.curstat = newt;
  rc = perfstat_cpu(&id, newt, sizeof(perfstat_cpu_t), cpu_count);
  if(rc <= 0)
  {
    perror("Error in perfstat_cpu");
    exit(-1);
  }

  /* Calculate CPU Utilization Metrics*/
  rc = perfstat_cpu_util(&data, util, sizeof(perfstat_cpu_util_t), cpu_count);
  if(rc <= 0)
  {
    perror("Error in perfstat_cpu_util");
    exit(-1);
  }

switch(mode)
   {
   case  UTIL_PCT:
         for(i=0;i<cpu_count;i++)
         printf("%d %5.1f  %5.1f  %5.1f  %5.1f  %5.7f 
\n",i,util[i].user_pct,util[i].kern_pct,util[i].wait_pct,util[i].idle_pct,util[i].physical_consumed);
         break;

  case  UTIL_MS:
         for(i=0;i<cpu_count;i++)
         {
         user_ms_purr=((util[i].user_pct*util[i].delta_time)/100.0);
         kern_ms_purr=((util[i].kern_pct*util[i].delta_time)/100.0);
         wait_ms_purr=((util[i].wait_pct*util[i].delta_time)/100.0);
         idle_ms_purr=((util[i].idle_pct*util[i].delta_time)/100.0);
        if(cpumode==UTIL_PURR)
        {
            printf("%d\t %llu\t %llu\t %llu\t %llu\t %5.4f
\n",i,user_ms_purr,kern_ms_purr,wait_ms_purr,idle_ms_purr,util[i].physical_consumed);
        }
       else if(cpumode=UTIL_SPURR)

124  AIX Version 7.2: Performance Tools Guide and Reference



       {
            user_ms_spurr=(user_ms_purr*util[i].freq_pct)/100.0;
            kern_ms_spurr=(kern_ms_purr*util[i].freq_pct)/100.0;
            wait_ms_spurr=(wait_ms_purr*util[i].freq_pct)/100.0;
            sum_ms=user_ms_spurr+kern_ms_spurr+wait_ms_spurr;
            idle_ms_spurr=util[i].delta_time-sum_ms;

            printf("%d\t %llu\t %llu\t %llu\t %llu\t %5.4f 
\n",i,user_ms_spurr,kern_ms_spurr,wait_ms_spurr,idle_ms_spurr,util[i].physical_consumed);

       }
       }
            break;

  case  UTIL_CORE:
         for(i=0;i<cpu_count;i++)
         {
           user_core_purr=((util[i].user_pct*util[i].physical_consumed)/100.0);
           kern_core_purr=((util[i].kern_pct*util[i].physical_consumed)/100.0);
           wait_core_purr=((util[i].wait_pct*util[i].physical_consumed)/100.0);
           idle_core_purr=((util[i].idle_pct*util[i].physical_consumed)/100.0);

           user_core_spurr=((user_core_purr*util[i].freq_pct)/100.0);
           kern_core_spurr=((kern_core_purr*util[i].freq_pct)/100.0);
           wait_core_spurr=((wait_core_purr*util[i].freq_pct)/100.0);

           if(cpumode==UTIL_PURR)
           {
            printf("%d   %5.4f   %5.4f   %5.4f   %5.4f   %5.4f
\n",i,user_core_purr,kern_core_purr,wait_core_purr,idle_core_purr,util[i].physical_consumed);
           }

  else if(cpumode==UTIL_SPURR)
           {
           sum_core_spurr=user_core_spurr+kern_core_spurr+wait_core_spurr;
           idle_core_spurr=util[i].physical_consumed-sum_core_spurr;

            printf("%d    %5.4f   %5.4f   %5.4f   %5.4f   %5.4f 
\n",i,user_core_spurr,kern_core_spurr,wait_core_spurr,idle_core_spurr,util[i].physical_consumed);
           }
           } 
           break;

           default:
           printf("In correct usage\n");
           return;

}
count--;
}
}
#endif

/*
 *NAME: main
 *
 */

int main(int argc,char* argv[])
{
   int c, rc;
   int mode,cpumode;
 
   cid = corral_getcid();

   while((c = getopt(argc, argv, "@:n:i:c:"))!= EOF){
       switch(c)
       {
           case 'i':               /* Interval */
                    interval = atoi(optarg);
                    if( interval <= 0 )
                        interval = INTERVAL_DEFAULT;
                    break;
           case 'c':               /* Number of interations */
                    count = atoi(optarg);
                    if( count <= 0 )
                        count = COUNT_DEFAULT;
                    break;
           case 'n':               /* Node name in a cluster environment */
                    strncpy(nodename, optarg, MAXHOSTNAMELEN);
                    nodename[MAXHOSTNAMELEN-1] = '\0';
                    nflag = 1;
                    break;
           case '@':               /* Per-WPAR stats */
                    if (IS_WPAR(cid))
                        showusage(argv[0]);
                    atflag = 1;
                    strcpy(wpar, optarg);
                    break;
           default:
                    /* Invalid arguments. Print the usage and terminate */
                    showusage(argv[0]);
       }
   }
   if (nflag && atflag){
       showusage(argv[0]);
   } 
   if(nflag)
   {   /* perfstat_config needs to be called to enable cluster statistics collection */
       rc = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);

Performance Tools Guide and Reference  125



       if (rc == -1)
       {
           perror("cluster statistics collection is not available");
           exit(-1);
       }
   }
   if (atflag){
       wparid.spec = WPARNAME;
       strcpy(wparid.u.wparname,wpar);
       ncpu = perfstat_cpu_rset ( &wparid, NULL, sizeof(perfstat_cpu_t), 0);
   }
   else if (nflag){
       nodeid.spec = NODENAME;
       strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
       ncpu = perfstat_cpu_node(&nodeid, NULL, sizeof(perfstat_cpu_t), 0);
   }
   else if (IS_GLOBAL(cid)){
       ncpu = perfstat_cpu(NULL, NULL, sizeof(perfstat_cpu_t), 0);
   }
   else{
       ncpu = perfstat_cpu_rset(NULL, NULL, sizeof(perfstat_cpu_t), 0);
   }

   initialise();
   display_configuration();
 
   if(atflag)
       display_metrics_wpar_from_global();
   else if (cid)
       display_metrics_wpar();
   else
        #ifdef UTIL_AUTO
           printf("Enter CPU mode.\n");
           printf(" 0 PURR \n 1 SPURR \n");
           scanf("%d",&cpumode);
           printf("Enter print mode.\n");
           printf(" 0 PERCENTAGE\n 1 MILLISECONDS\n 2 CORES \n");
           scanf("%d",&mode);

           if((mode>2)&& (cpumode>1))
           {
              printf("Error: Invalid Input\n");
              exit(0);
           }
          display_metrics_global_auto(mode,cpumode,count,interval);
          #else
          display_metrics_global();
          #endif
    if(nflag)
    {   /* Now disable cluster statistics by calling perfstat_config */
       perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);
    }
   return(0);
}

The program displays an output that is similar to the following example output:

Purr counter value = 54500189780
Spurr counter value = 54501115744
Free memory = 760099
Available memory = 758179

lpar configuration : lcpus = 8 mem = 4096MB ent =  1.00

 cpu    user    sys     wait    idle    state

cpu0    26.8    54.9     0.0    18.3       1
cpu1     0.0     2.3     0.0    97.7       1
cpu2     0.0     4.7     0.0    95.3       1
cpu3     0.0     2.5     0.0    97.5       1
cpu4     0.0    49.6     0.0    50.4       1
cpu5     0.0    12.7     0.0    87.3       1
cpu6     0.0    10.5     0.0    89.5       1
cpu7     0.0    10.7     0.0    89.3       1
ALL     10.7    24.9     0.0    64.4

perfstat_diskadapter Interface
The perfstat_diskadapter interface returns a set of structures of type perfstat_diskadapter_t, which is
defined in the libperfstat.h file.

Selected fields from the perfstat_diskadapter_t structure include:

126  AIX Version 7.2: Performance Tools Guide and Reference



Item Descriptor

name Adapter name (from ODM)

description Adapter description (from ODM)

size Total disk size connected to this adapter (in MB)

free Total free space on disks connected to this adapter (in MB)

xfers Total transfers to/from this adapter (in KB)

Several other disk adapter-related metrics (such as the number of blocks read from and written to the
adapter) are also returned. For a complete list, see the perfstat_diskadapter_t section in the libperfstat.h
header file.

The following program emulates the diskadapterstat behavior and also shows an example of how the
perfstat_diskadapter interface is used:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <libperfstat.h>
#include <errno.h>
#include <wpars/wparcfg.h>

/* Non zero WPAR ID indicates WPAR */
#define IS_WPAR(X) ((X))

/* To Check whether malloc is successful or not */

#define CHECK_FOR_MALLOC_NULL(X) {  if ((X) == NULL) {\
                                       perror ("malloc");\
                                       exit(2);\
                                     }\
                                 }
/* Default values for interval and count  */
#define INTERVAL_DEFAULT 1
#define COUNT_DEFAULT 1

/* Function prototypes */

static int do_initialization(void);
static void do_cleanup(void);
static void collect_disk_metrics(void);
static void print_disk_header(void);
static void showusage(char *);

/* variables and data structures declaration */

static perfstat_diskadapter_t *statp, *statq;
static int num_adapt;
static int interval = INTERVAL_DEFAULT;
static int count = COUNT_DEFAULT;
static int rc;

/* support for remote node statistics collection in a cluster environment */
static perfstat_id_node_t nodeid;
static char nodename[MAXHOSTNAMELEN] = "";
static int collect_remote_node_stats = 0;

cid_t cid;               /* store the WPAR cid */

/*
 * NAME: do_initialization
 *       This function initializes the data structues.
 *       It also collects initial set of values.
 * 
 * RETURNS:
 * On successful completion:
 *    - returns 0.
 * In case of error
 *    - exit with code 1.
 */

static int do_initialization(void)
{
   if (collect_remote_node_stats){
       strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
       nodeid.spec = NODENAME;
       /* Get the total number of disk adapters available  in the current system */
       num_adapt = perfstat_diskadapter_node(&nodeid, NULL, sizeof(perfstat_diskadapter_t), 0);

Performance Tools Guide and Reference  127



   }
   else{
       /* Get the total number of disk adapters available  in the current system */
       num_adapt = perfstat_diskadapter(NULL, NULL, sizeof(perfstat_diskadapter_t), 0);
   } 

   if (num_adapt == 0) {
       printf("There are no disk adapters.\n");
       exit(0);
   }

   if (num_adapt < 0) {
       perror("perfstat_diskadapter: ");
       exit(1);
   }
           
   /* Allocate sufficient memory for perfstat structures */
            
   statp = (perfstat_diskadapter_t *)malloc(sizeof(perfstat_diskadapter_t) * num_adapt);
   CHECK_FOR_MALLOC_NULL(statp);
  
   statq = (perfstat_diskadapter_t *)malloc(sizeof(perfstat_diskadapter_t) * num_adapt);
   CHECK_FOR_MALLOC_NULL(statq);
   
   /* Make the structures as 0 */  
   memset(statq, 0, (sizeof(perfstat_diskadapter_t) * num_adapt));

   memset(statp, 0, (sizeof(perfstat_diskadapter_t) * num_adapt));

   return (0);
}

/*
 *NAME:  Showusage
 *        This function displays the usage
 */

void showusage (char *cmd)
{
   fprintf (stderr, "usage: %s [-i <interval in seconds> ] [-c <number of iterations> ] [-n <node name in the cluster> ]
\n", cmd);
   exit(1);
}

/*
 * NAME: do_cleanup
 *       This function frees the memory allocated for the perfstat structures.
 * 
 */

static void do_cleanup(void)
{
   if (statp) {
       free(statp);
   }

   if (statq) {
       free(statq);
   }
}

/*
 * NAME: collect_diskadapter_metrics
 *       This function collects the raw values in to
 *       the specified structures and derive the metrics from the
 *       raw values
 *
 */ 

void collect_diskadapter_metrics(void)
{
   perfstat_id_t first;
   unsigned long long delta_read, delta_write,delta_xfers, delta_xrate;

   if(collect_remote_node_stats) {
       strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
       nodeid.spec = NODENAME;
       strcpy(nodeid.name, FIRST_DISKADAPTER);
       rc = perfstat_diskadapter_node(&nodeid ,statq, sizeof(perfstat_diskadapter_t),num_adapt);            
   }
   else {
       strcpy(first.name, FIRST_DISKADAPTER);
       rc = perfstat_diskadapter(&first ,statq, sizeof(perfstat_diskadapter_t),num_adapt);            
   }

   if (rc < num_adapt){
       perror("perfstat_diskadapter: ");
       exit(1);
   }

128  AIX Version 7.2: Performance Tools Guide and Reference



   /* Name - name of the diskadapter
    * Disks- number of disks connected
    * Size - total size of all the disks
    * Free - free space on disk
    * ARS  - average read per second
    * AWS  - average write per second
    */

   printf("\n%-8s %7s %8s %8s %8s %8s\n", " Name ", " Disks ", " Size ", " Free ", " ARS ", " AWS ");
   printf("%-8s %7s %8s %8s %8s %8s\n", "======", "======", "======", "======", "=====", "=====");
    
   while (count > 0) {
       sleep(interval);
        
       if(collect_remote_node_stats) {
           rc = perfstat_diskadapter_node(&nodeid, statp, sizeof(perfstat_diskadapter_t), num_adapt);
       }
       else {
           rc = perfstat_diskadapter(&first ,statp, sizeof(perfstat_diskadapter_t),num_adapt);
       }

       if (rc < num_adapt ) {
       perror("perfstat_diskadapter:");
           exit(-1);
       }

       /* print statistics for each of the diskadapter */
       for (int i = 0; i < rc; i++) {
            delta_write = statp[i].wblks - statq[i].wblks;
        delta_read  = statp[i].rblks - statq[i].rblks;
            delta_xfers = statp[i].xfers - statq[i].xfers;
            delta_xrate = statp[i].xrate - statq[i].xrate;

        printf("%-8s %7d %8llu %8llu %8llu %8llu\n", statp[i].name, statp[i].number,
                     statp[i].size, statp[i].free, (u_longlong_t)(delta_read / (statp[i].xrate - statq[i].xrate)),
                     (u_longlong_t)(delta_write / (delta_xfers - delta_xrate)));
       }

       /* copy to the old data structures */
       memcpy(statq, statp, sizeof(perfstat_diskadapter_t) * num_adapt);
       count--;
       printf("\n");
   }
   /* Free all the memory allocated for all the data structures */
   do_cleanup();
}

/*
 *NAME: main 
 *
 */

int main(int argc, char* argv[]) 
{
   int i;
   cid = corral_getcid();
           
   /* Check Whether running Inside WPAR or on Global*/
   if(IS_WPAR(cid)) {
      printf("The metrics requested for WPAR cannot be retrieved.\n");
      exit(1);
   }

   /* Process the arguments */
   while ((i = getopt(argc, argv, "i:c:n:")) != EOF)
   {
       switch(i)
       {
           case 'i':               /* Interval */
                    interval = atoi(optarg);
                    if( interval <= 0 )
                        interval = INTERVAL_DEFAULT;
                    break;
           case 'c':               /* Number of interations */
                    count = atoi(optarg);
                    if( count <= 0 )
                        count = COUNT_DEFAULT;
                    break;
           case 'n':               /* Node name in a cluster environment */
                    strncpy(nodename, optarg, MAXHOSTNAMELEN);
                    nodename[MAXHOSTNAMELEN-1] = '\0';
                    collect_remote_node_stats = 1;
                    break;
           default:
                   /* Invalid arguments. Print the usage and terminate */
                   showusage(argv[0]);
       }
   }

   if(collect_remote_node_stats)
   {   /* perfstat_config needs to be called to enable cluster statistics collection */
       rc = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);

Performance Tools Guide and Reference  129



       if (rc == -1)
       {
           perror("cluster statistics collection is not available");
           exit(-1);
       }
   }
   do_initialization();
   /* call the functions to collect the metrics and display them */
   collect_diskadapter_metrics();
   
   if(collect_remote_node_stats)
   {   /* Now disable cluster statistics by calling perfstat_config */
       perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);
   }
   return (0);
}

The program displays an output that is similar to the following example output:

Name      Disks    Size     Free      ARS      AWS
======    ======   ======   ======    =====    =====
vscsi0     1       25568    19616      1        9

perfstat_disk Interface
The perfstat_disk interface returns a set of structures of type perfstat_disk_t, which is defined in the
libperfstat.h file.

Selected fields from the perfstat_disk_t structure include:

Item Descriptor

name Disk name (from ODM)

description Disk description (from ODM)

vgname Volume group name (from ODM)

size Disk size (in MB)

free Free space (in MB)

xfers Transfers to/from disk (in KB)

Several other disk-related metrics (such as number of blocks read from and written to disk, and adapter
names) are also returned. For a complete list, see the perfstat_disk_t section in the libperfstat.h header
file in Files Reference.

The following program emulates diskstat behavior and also shows an example of how the perfstat_disk
interface is used:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(int argc, char* argv[]) {
    int i, ret, tot;
    perfstat_disk_t *statp;
    perfstat_id_t first;

    /* check how many perfstat_disk_t structures are available */
    tot =  perfstat_disk(NULL, NULL, sizeof(perfstat_disk_t), 0);
    
    /* check for error */
    if (tot < 0)
    {
    perror("perfstat_disk");
    exit(-1);
    }
    if (tot == 0)
    {
        printf("No disks found in the system\n");
        exit(-1);
    }

    /* allocate enough memory for all the structures */
    statp = calloc(tot, sizeof(perfstat_disk_t));
    

130  AIX Version 7.2: Performance Tools Guide and Reference



    /* set name to first interface */
    strcpy(first.name, FIRST_DISK);
    
    /* ask to get all the structures available in one call */
    /* return code is number of structures returned */
    ret = perfstat_disk(&first, statp,
                        sizeof(perfstat_disk_t), tot);

/* check for error */
    if (ret <= 0)
    {
    perror("perfstat_disk");
    exit(-1);
    }

    /* print statistics for each of the disks */
    for (i = 0; i < ret; i++) {
        printf("\nStatistics for disk : %s\n", statp[i].name);
        printf("-------------------\n");
        printf("description              : %s\n", statp[i].description);
        printf("volume group name        : %s\n", statp[i].vgname);
        printf("adapter name             : %s\n", statp[i].adapter);
        printf("size                     : %llu MB\n", statp[i].size);
        printf("free space               : %llu MB\n", statp[i].free);
        printf("number of blocks read    : %llu blocks of %llu bytes\n", statp[i].rblks, 
statp[i].bsize);
        printf("number of blocks written : %llu blocks of %llu bytes\n", statp[i].wblks, 
statp[i].bsize);
        }
     }

The preceding program produces the following output:

Statistics for disk : hdisk1
-------------------
description              : 16 Bit SCSI Disk Drive
volume group name        : rootvg
adapter name             : scsi0
size                     : 4296 MB
free space               : 2912 MB
number of blocks read    : 403946 blocks of 512 bytes
number of blocks written : 768176 blocks of 512 bytes

Statistics for disk : hdisk0
-------------------
description              : 16 Bit SCSI Disk Drive
volume group name        : None
adapter name             : scsi0
size                     : 0 MB
free space               : 0 MB
number of blocks read    : 0 blocks of 512 bytes
number of blocks written : 0 blocks of 512 bytes

Statistics for disk : cd0
-------------------
description              : SCSI Multimedia CD-ROM Drive
volume group name        : not available
adapter name             : scsi0
size                     : 0 MB
free space               : 0 MB
number of blocks read    : 3128 blocks of 2048 bytes
number of blocks written : 0 blocks of 2048 bytes

perfstat_diskpath Interface
The perfstat_diskpath interface returns a set of structures of type perfstat_diskpath_t, which is defined
in the libperfstat.h file.

Selected fields from the perfstat_diskpath_t structure include:

Item Descriptor

name Path name (<disk_name>_Path<path_id>)

xfers Total transfers through this path (in KB)

adapter Name of the adapter linked to the path

Performance Tools Guide and Reference  131



Several other disk path-related metrics (such as the number of blocks read from and written through the
path) are also returned. For a complete list, see the perfstat_diskpath_t section in the libperfstat.h
header file.

The following code shows an example of how the perfstat_diskpath interface is used:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(int argc, char* argv[]) {
   int ret, tot, i;
   perfstat_diskpath_t *statp;
   perfstat_id_t first;
   char *substring;
   perfstat_disk_t dstat;

   /* check how many perfstat_diskpath_t structures are available */
   tot = perfstat_diskpath(NULL, NULL, sizeof(perfstat_diskpath_t), 0);

   /* check for error */
   if (tot < 0)
   {

    perror("perfstat_diskpath");
    exit(-1);
   }

   if (tot == 0)
   {

    printf("No Paths found in the system\n");
    exit(-1);

   }

   /* allocate enough memory for all the structures */
   statp = calloc(tot, sizeof(perfstat_diskpath_t));
   if(statp==NULL){
    printf("No sufficient memory\n");
    exit(-1);
   }
   
   /* set name to first interface */
   strcpy(first.name, FIRST_DISKPATH);
   
   /* ask to get all the structures available in one call */
   /* return code is number of structures returned */
   ret = perfstat_diskpath(&first, statp, sizeof(perfstat_diskpath_t), tot);
                    
   /* check for error */
   if (ret <= 0)
   {

    perror("perfstat_diskpath");
    exit(-1);
   }

   /* print statistics for each of the disk paths */
   for (i = 0; i < ret; i++) {
       printf("\nStatistics for disk path : %s\n", statp[i].name);
       printf("----------------------\n");
       printf("number of blocks read     : %llu\n", statp[i].rblks);
       printf("number of blocks written  : %llu\n", statp[i].wblks);
       printf("adapter name              : %s\n", statp[i].adapter);
       }
      
          /* retrieve paths for last disk if any */
   if (ret > 0) {
       /* extract the disk name from the last disk path name */
       substring = strstr(statp[ret-1].name, "_Path");
       if (substring == NULL) {
          return (-1);
       }
       substring[0] = '\0';
      
      /* set name to the disk name */
      strcpy(first.name, substring);
      /* retrieve info about disk */ 
      ret = perfstat_disk(&first, &dstat, sizeof(perfstat_disk_t),1);

132  AIX Version 7.2: Performance Tools Guide and Reference



   
      if (ret <= 0)
      {
          perror("perfstat_diskpath");
          exit(-1);
      }
   
      printf("\nPaths for disk path : %s (%d)\n", dstat.name, dstat.paths_count);
      printf("----------------------\n");

      /* retrieve all paths for this disk */
      ret = perfstat_diskpath(&first, statp, sizeof(perfstat_diskpath_t), dstat.paths_count);
      if (ret <= 0)
      {
          perror("perfstat_diskpath");
          exit(-1);
      }
                 
      /* print statistics for each of the paths */
      for (i = 0; i < ret; i++) {
          printf("\nStatistics for disk path : %s\n", statp[i].name);
          printf("----------------------\n");
          printf("number of blocks read     : %llu\n", statp[i].rblks);
          printf("number of blocks written  : %llu\n", statp[i].wblks);
          printf("adapter name              : %s\n", statp[i].adapter);
          }
     }
}

The program displays an output that is similar to the following example output:

Statistics for disk path : hdisk0_Path0
----------------------
number of blocks read     : 335354
number of blocks written  : 291416
adapter name              : vscsi0

Paths for disk path : hdisk0 (1)
----------------------

Statistics for disk path : hdisk0_Path0
----------------------
number of blocks read     : 335354
number of blocks written  : 291416
adapter name              : vscsi0

perfstat_fcstat Interface
The perfstat_fcstat interface returns a set of structures of type perfstat_fcstat_t, which is defined in the
libperfstat.h file.

The following program is an example of how the perfstat_fcstat interface is used:
/* The sample program displays the metrics *
 * related to every Individual   * 
 * Fiber Channel adapter in the LPAR      */
#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

/* define default interval and count values */
#define INTERVAL_DEFAULT 1
#define COUNT_DEFAULT    1

/* Check value returned by malloc for NULL */

#define CHECK_FOR_MALLOC_NULL(X) {  if ((X) == NULL) {\
                                       perror ("malloc");\
                                       exit(2);\
                                     }\
                  }

int count = COUNT_DEFAULT, interval = INTERVAL_DEFAULT, tot=0;
int returncode=0;

/* store the data structures */

static perfstat_fcstat_t *statp=NULL ,*statq=NULL;

/* support for remote node statistics collection in a cluster environment */
perfstat_id_node_t nodeid;
static char nodename[MAXHOSTNAMELEN] = "";
static int collect_remote_node_stats = 0;

unsigned long long wwpn_id=0;
int fc_flag=0, wwpn_flag=0;
char fcadapter_name[MAXHOSTNAMELEN];
/*
 * NAME: showusage
 *       to display the usage
 *
 */
void showusage(char *cmd)
{

Performance Tools Guide and Reference  133



    fprintf (stderr, "usage: %s [-i <interval in seconds> ] [-c <number of iterations> ] [-n <node name in the cluster> ] [-a FC adapter name] [-w worldwide port 
name]] \n", cmd);
    exit(1);
}
/*

* NAME: do_initialization
 *       This function initializes the data structures.
 *       It also collects the initial set of values.
 *
 * RETURNS:
 * On successful completion:
 *   - returns 0.
 * In case of error
 *    - exits with code 1.
 */

int do_initialization(void)
{
    /* check how many perfstat_fcstat_t structures are available */
    if(collect_remote_node_stats) {
        strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
        nodeid.spec = NODENAME;
        tot = perfstat_fcstat_node(&nodeid, NULL, sizeof(perfstat_fcstat_t), 0)
;
     } 
else if(fc_flag == 1 && wwpn_flag == 1)
 {
         tot = perfstat_fcstat_wwpn(NULL, NULL, sizeof(perfstat_fcstat_t), 0);
         if(tot >= 1)
 {
            tot = 1;
         }
 else
 {
            printf("There is no FC adapter \n");
            exit(-1);
         }
     }
 else
 {
         tot = perfstat_fcstat(NULL, NULL, sizeof(perfstat_fcstat_t), 0);
     }
    if (tot <= 0) {
        printf("There is no FC adapter\n");
        exit(0);
    }

    /* allocate enough memory for all the structures */

    statp = (perfstat_fcstat_t *)malloc(tot * sizeof(perfstat_fcstat_t));
    CHECK_FOR_MALLOC_NULL(statp);

    statq = (perfstat_fcstat_t *)malloc(tot * sizeof(perfstat_fcstat_t));
    CHECK_FOR_MALLOC_NULL(statq);
    return(0);
}

/*
 *Name: display_metrics
 *       collect the metrics and display them
 *
 */
void display_metrics()
{
    perfstat_id_t first;
    perfstat_wwpn_id_t wwpn;
    int ret=0, i=0;

    if(collect_remote_node_stats) {
        strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
        nodeid.spec = NODENAME;

        strcpy(nodeid.name , FIRST_NETINTERFACE);
        ret = perfstat_fcstat_node(&nodeid, statq, sizeof(perfstat_fcstat_t), tot);
    } else if((fc_flag == 1) && (wwpn_flag == 1)) {
        strcpy(wwpn.name , fcadapter_name);
        wwpn.initiator_wwpn_name = wwpn_id;
        ret = perfstat_fcstat_wwpn( &wwpn, statq, sizeof(perfstat_fcstat_t), tot);
     }
 else
 { 

134  AIX Version 7.2: Performance Tools Guide and Reference



        strcpy(first.name , FIRST_NETINTERFACE);
        ret = perfstat_fcstat( &first, statq, sizeof(perfstat_fcstat_t), tot);
     }
      if (ret < 0)
 {
         free(statp);
         free(statq);
         perror("perfstat_fcstat: ");
         exit(1);
     }
      while (count)
     {
         sleep (interval);
if(collect_remote_node_stats) {
           ret = perfstat_fcstat_node(&nodeid, statp, sizeof(perfstat_fcstat_t), tot);
         }
 if((fc_flag == 1) && (wwpn_flag == 1))
 {
            strcpy(wwpn.name , fcadapter_name);
            wwpn.initiator_wwpn_name = wwpn_id;
            ret = perfstat_fcstat_wwpn(&wwpn, statp, sizeof(perfstat_fcstat_t), tot);
         }
  else
 {
            ret = perfstat_fcstat(&first, statp, sizeof(perfstat_fcstat_t), tot);
         }
/* print statistics for the Fiber channel */
        for (i = 0; i < ret; i++) {
            printf(" FC Adapter name: %s \n",  statp[i].name);
            printf(" ======================== Traffic Statistics ============================\n");
            printf(" Number of Input Requests: %lld \n", 
            statp[i].InputRequests - statq[i].InputRequests);
            printf(" Number of Output Requests: %lld \n",
            statp[i].OutputRequests - statq[i].OutputRequests);
            printf(" Number of Input Bytes : %lld \n",
            statp[i].InputBytes - statq[i].InputBytes);
            printf(" Number of Output Bytes : %lld \n",
            statp[i].OutputBytes - statq[i].OutputBytes);
            printf(" ======================== Transfer Statistics ============================\n");
            printf(" Adapter's Effective Maximum  Transfer Value  : %lld \n",
            statp[i].EffMaxTransfer - statq[i].EffMaxTransfer);
            printf(" ======================== Driver Statistics ============================
\n");            
            printf(" Count of DMA failures: %lld \n",
            statp[i].NoDMAResourceCnt - statq[i].NoDMAResourceCnt);
            printf(" No command resource available :%lld \n",
            statp[i].NoCmdResourceCnt - statq[i].NoCmdResourceCnt);
            printf(" Link Indicator : %d \n", statp[i].AttentionType);
            printf(" ======================== CHBA Statistics ============================
\n");                        
            printf(" Seconds since last reset of the statistics on the adapter: %lld \n",
            statp[i].SecondsSinceLastReset - statq[i].SecondsSinceLastReset);
            printf(" Number of frames transmitted: %lld \n",
            statp[i].TxFrames - statq[i].TxFrames);
            printf(" Fiber Channel Kbytes transmitted : %lld \n",
            statp[i].TxWords - statq[i].TxWords);
            printf(" Number of Frames Received.: %lld \n",
            statp[i].RxFrames - statq[i].RxFrames);
            printf(" Fiber Channel Kbytes Received : %lld \n",
            statp[i].RxWords - statq[i].RxWords);
            printf(" Loop Initialization Protocol(LIP) Count: %lld \n",
            statp[i].LIPCount - statq[i].LIPCount);
            printf(" NOS(Not_Operational) Count : %lld \n",
            statp[i].NOSCount - statq[i].NOSCount);
            printf(" Number of frames received with the CRC Error : %lld \n",
            statp[i].ErrorFrames - statq[i].ErrorFrames);
            printf(" Number of lost frames : %lld \n",
            statp[i].DumpedFrames - statq[i].DumpedFrames);
            printf(" Count of Link failures: %lld \n",
            statp[i].LinkFailureCount - statq[i].LinkFailureCount);
            printf(" Count of loss of sync : %lld \n",
            statp[i].LossofSyncCount - statq[i].LossofSyncCount);
            printf(" Count of loss of Signal:%lld \n",
            statp[i].LossofSignal - statq[i].LossofSignal);
            printf(" Number of times a primitive sequence was in error :%lld \n", 
            statp[i].PrimitiveSeqProtocolErrCount - statq[i].PrimitiveSeqProtocolErrCount);
            printf(" Count of Invalid Transmission words received : %lld \n", 
            statp[i].InvalidTxWordCount - statq[i].InvalidTxWordCount);
            printf(" Count of CRC Errors in a Received Frame :%lld \n", 
            statp[i].InvalidCRCCount - statq[i].InvalidCRCCount);
            printf(" SCSI Id of the adapter : %lld \n", 
            statp[i].PortFcId);

Performance Tools Guide and Reference  135



            printf(" Speed of Adapter in GBIT : %lld \n", 
            statp[i].PortSpeed);
            printf(" Connection Type: %s \n", 
            statp[i].PortType);
            printf(" worldwide port name : %lld \n",
            statp[i].PortWWN);
            printf(" Supported Port Speed in GBIT: %lld \n",
            statp[i].PortSupportedSpeed);
            
            printf(" ================================== End ===============================\n");

        }
        memcpy(statq, statp, (tot * sizeof(perfstat_fcstat_t)));
        count--;
    }
}

/*
 *Name: main
 *
 */

int main(int argc, char *argv[])
{
    int i=0, rc=0;
    /* get the interval and count values */

    /* Process the arguments */
    while ((i = getopt(argc, argv, "i:c:n:a:w")) != EOF)
    {
        switch(i)
        {
           case 'i':               /* Interval */
                    interval = atoi(optarg);
                    if( interval <= 0 )
                        interval = INTERVAL_DEFAULT;
                    break;
           case 'c':               /* Number of interations */
                    count = atoi(optarg);
                    if( count <= 0 )
                        count = COUNT_DEFAULT;
                    break;
           case 'n':               /* Node name in a cluster environment */
                    strncpy(nodename, optarg, MAXHOSTNAMELEN);
                    nodename[MAXHOSTNAMELEN-1] = '\0';
                    collect_remote_node_stats = 1;
                    break;
           case 'a':    /* Fiber Channel Adapter Name */ 
                    strncpy(fcadapter_name, optarg, MAXHOSTNAMELEN);
                    fcadapter_name[MAXHOSTNAMELEN-1] = '\0';
                    fc_flag = 1;
                    break; 
           case 'w':    /* Worldwide port name(WWPN) */
                    wwpn_id = (unsigned long long) (atoll(optarg));
                    wwpn_flag = 1;
                    break;           
           default:
                   /* Invalid arguments. Print the usage and terminate */
                   showusage(argv[0]);
        }
    }

    if((fc_flag == 1))
    {
        if(fcadapter_name == NULL )
        {
            fprintf(stderr, "FC adapter Name  should not be NULL");
            exit(-1);
        }
    }

    if(wwpn_flag == 1)
    {
        if(wwpn_id < 0 )
        {
            fprintf(stderr, "WWPN id should not be negavite ");
            exit(-1);
        }        
    }

    if(collect_remote_node_stats)
    {   /* perfstat_config needs to be called to enable cluster statistics collection */

136  AIX Version 7.2: Performance Tools Guide and Reference



        rc = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);
        if (rc == -1)
        {
            perror("cluster statistics collection is not available");
exit(-1);
        }
    }

    do_initialization();
    display_metrics();

    if(collect_remote_node_stats)
    {   /* Now disable cluster statistics by calling perfstat_config */
        perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);
    }
    free(statp);
    free(statq);
    return 0;
}

perfstat_hfistat_window Interface
The perfstat_hfistat_window interface returns a set of structures of type perfstat_hfistat_window_t,
which is defined in the libperfstat.h file.

Selected fields from the perfstat_hfistat_window_t structure include:

Item Descriptor

pkts_sent The number of packets sent (56 bit counter).

pkts_dropped_sending The number of packets that were dropped from
sending (40 bit counter).

pkts_received The number of the packets that were received (56
bit counter).

perfstat_hfistat Interface
The perfstat_hfistat interface returns a set of structures of type perfstat_hfistat_t, which is defined in
the libperfstat.h file.

Selected fields from the perfstat_hfistat_t structure include:

Item Descriptor

cycles_blocked_sending The cycles that are blocked from sending.

link_retries The number of retries at the Link Level.

pkts_sent The aggregate number of the packet sent.

pkts_dropped_sending The number of packets that were at the sent first in
first out (FIFO), but dropped (not sent), regardless
of window.

mmu_cache_hits The memory hits from the Nest Memory
Management Unit Cache.

mmu_cache_misses The hits that were missed from the Nest Memory
Management Unit Cache.

cycles_waiting_on_a_credit The cycles that are waiting on credit.

perfstat_logicalvolume Interface
The perfstat_logicalvolume interface returns a set of structures of type perfstat_logicalvolume_t, which
is defined in the libperfstat.h file.

Selected fields from the perfstat_logicalvolume_t structure include:

Performance Tools Guide and Reference  137



Item Descriptor

Ppsize Physical partition size (in MB)

Iocnt Number of read and write requests

Kbreads Number of kilobytes read

Kbwrites Number of kilobytes written

Several other paging-space-related metrics (such as name, type, and active) are also returned. For a
complete list of other paging-space-related metrics, see the perfstat_logicalvolume_t section in the
libperfstat.h header file in Files Reference.

Note: The perfstat_config (PERFSTAT_ENABLE | PERFSTAT_LV, NULL) must be used to enable the
logical volume statistical collection.

The following code shows an example of how the perfstat_logicalvolume interface is used:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(){
int lv_count,i, rc;
perfstat_id_t first;
perfstat_logicalvolume_t *lv;

strcpy(first.name,NULL);

/* enable the logical volume statistical collection */
perfstat_config(PERFSTAT_ENABLE | PERFSTAT_LV,NULL);

/* get the number of logical volumes */
lv_count = perfstat_logicalvolume (NULL, NULL, sizeof(perfstat_logicalvolume_t), 0);

/* check the subroutine return code for any error */
if (lv_count == -1){
   perror("perfstat_logicalvolume");
   exit(-1);
}

/* Allocate enough memory to hold all the structures */
lv = (perfstat_logicalvolume_t *)calloc(lv_count, sizeof(perfstat_logicalvolume_t));
if (lv == NULL){
   perror(".malloc");
   exit(-1);
}

/* Call the API to get the data */
rc = perfstat_logicalvolume(&first,(perfstat_logicalvolume_t*)lv, 
sizeof(perfstat_logicalvolume_t),lv_count);

/* check the return code for any error */
if (rc == -1){
   perror("perfstat_logical volume ");
   exit(-1);
}

for(i=0;i<lv_count;i++){
    printf("\n");
    printf("Logical volume name=%s\n",lv[i].name);
    printf("Volume group name=%s\n",lv[i].vgname);
    printf("Physical partition size in MB=%lld\n",lv[i].ppsize);
    printf("total number of logical paritions configured for this logical volume=%lld
\n",lv[i].logical_partitions);
    printf("number of physical mirrors for each logical partition=%lu\n",lv[i].mirrors);
    printf("Number of read and write requests=%lu\n",lv[i].iocnt);
    printf("Number of Kilobytes read=%lld\n",lv[i].kbreads);
    printf("Number of Kilobytes written=%lld\n",lv[i].kbwrites);
}

/* disable logical volume statistical collection */
perfstat_config(PERFSTAT_DISABLE | PERFSTAT_LV , NULL);
}

138  AIX Version 7.2: Performance Tools Guide and Reference



The program displays an output that is similar to the following example output:

Logical volume name=hd5
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=1
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=hd6
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=16
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=hd8
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=1
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=hd4
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=2
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=hd2
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=31
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=hd9var
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=1
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=hd10opt
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=1
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=hd3
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=4
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=hd1
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=74
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0

Performance Tools Guide and Reference  139



Number of Kilobytes written=0

Logical volume name=hd11admin
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=4
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=lg_dumplv
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=32
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=livedump
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=8
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=fslv00
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=3
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

Logical volume name=fslv01
Volume group name=rootvg
Physical partition size in MB=32
total number of logical paritions configured for this logical volume=1
number of physical mirrors for each logical partition=1
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

The preceding program emulates vmstat behavior and also shows how perfstat_logicalvolume is used.

perfstat_memory_page Interface
The perfstat_memory_page interface returns a set of structures of type perfstat_memory_page_t,
which is defined in the libperfstat.h file.

Selected fields from the perfstat_memory_page_t structure include:

Item Descriptor

psize Page size in bytes

real_total Amount of real memory (in units of psize)

real_freesiz
e

Amount of free real memory (in units of psize)

real_pinned Amount of pinned memory (in units of psize multiplied by 4)

Pgins Number of pages paged in

Pgouts Number of pages paged out

Several other disk-adapter related metrics (such as the number of blocks read from and written to the
adapter) are also returned. For a complete list of other disk-adapter-related metrics, see the
perfstat_memory_page_t section in the libperfstat.h header file.

140  AIX Version 7.2: Performance Tools Guide and Reference



The following program shows an example of how the perfstat_memory_page interface is used:

#include <stdio.h> 
#include <stdlib.h>
#include <libperfstat.h>

int main (){
    int total_psizes, avail_psizes;
    perfstat_memory_page_t *psize_mem_values;
    perfstat_psize_t pagesize;
    int i;
    /*get the total number of page sizez */

    total_psizes = perfstat_memory_page(NULL, NULL, sizeof(perfstat_memory_page_t), 0);

    /*check for any error*/
    if(total_psizes < 1)
    {
        perror("do_initialization:"
               " Unable to retrieve the number of available pagesizes.");
        exit(-1);
    }

    /* allocate sufficient memory to store the structures */
    psize_mem_values = (perfstat_memory_page_t *)malloc(sizeof(perfstat_memory_page_t) * total_psizes);

    /*check for bad malloc */
    if(psize_mem_values == NULL)
    {
        perror("do_initialization: Unable to allocate sufficient"
               " memory for psize_mem_values buffer.");
        exit(-1);
    }

    pagesize.psize = FIRST_PSIZE;
   avail_psizes = perfstat_memory_page(&pagesize, psize_mem_values, sizeof(perfstat_memory_page_t), 
        total_psizes);

  /*check the return value for any error */

    if(avail_psizes < 1)
    {
        perror("display_psize_memory_stats: Unable to retrieve memory "
               "statistics for the available page sizes.");
        exit(-1);
   }

   for(i=0;i<avail_psizes;i++){
        printf("Page size in bytes=%llu\n",psize_mem_values[i].psize);
        printf("Number of real memory frames of this page size=%lld\n",psize_mem_values[i].real_total);
        printf("Number of pages on free list=%lld\n",psize_mem_values[i].real_free);
        printf("Number of pages pinned=%lld\n",psize_mem_values[i].real_pinned);
        printf("Number of pages in use=%lld\n",psize_mem_values[i].real_inuse);
        printf("Number of page faults =%lld\n",psize_mem_values[i].pgexct);
        printf("Number of pages paged in=%lld\n",psize_mem_values[i].pgins);
        printf("Number of pages paged out=%lld\n",psize_mem_values[i].pgouts);
        printf("\n");
   } 
    return 0;
}

The program displays an output that is similar to the following example output:

Page size in bytes=4096
Number of real memory frames of this page size=572640
Number of pages on free list=364101
Number of pages pinned=171770
Number of pages in use=208539
Number of page faults =1901334
Number of pages paged in=40569
Number of pages paged out=10381

Page size in bytes=65536
Number of real memory frames of this page size=29746
Number of pages on free list=24741
Number of pages pinned=4333
Number of pages in use=5005
Number of page faults =28495

Performance Tools Guide and Reference  141



Number of pages paged in=0
Number of pages paged out=0

perfstat_netbuffer Interface
The perfstat_netbuffer interface returns a set of structures of type perfstat_netbuffer_t, which is
defined in the libperfstat.h file.

Selected fields from the perfstat_netbuffer_t structure include:

Item Descriptoryes a

size Size of the allocation (string expressing size in bytes)

inuse Current allocation of this size

failed Failed allocation of this size

free Free list for this size

Several other allocation-related metrics (such as high-water mark and freed) are also returned. For a
complete list of other allocation-related metrics, see the perfstat_netbuffer_t section in the
libperfstat.h header file.

The following code shows an example of how the perfstat_netbuffer interface is used: The preceding
program produces the following output:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(int argc, char* argv[]) {
   int i, ret, tot;
   perfstat_netbuffer_t *statp;
   perfstat_id_t first;

   /* check how many perfstat_netbuffer_t structures are available */
   tot = perfstat_netbuffer(NULL, NULL, sizeof(perfstat_netbuffer_t), 0);

   /* check for error */ 
   if (tot <= 0)
   {
    perror("perfstat_netbuffer");
    exit(-1);
   }   
   

   /* allocate enough memory for all the structures */
   statp = calloc(tot, sizeof(perfstat_netbuffer_t));
   if(statp==NULL){
    printf("No sufficient memory\n");
    exit(-1);
   }
   
   /* set name to first interface */
   strcpy(first.name, FIRST_NETBUFFER);
   
   /* ask to get all the structures available in one call */
   /* return code is number of structures returned */
   ret = perfstat_netbuffer(&first, statp,
                          sizeof(perfstat_netbuffer_t), tot);
   /* check for error */
   if (ret <= 0)
   {
    perror("perfstat_netbuffer");
    exit(-1);
   }                  
   /* print info in netstat -m format */
   printf("%-12s %10s %9s %6s %9s %7s %7s %7s\n",
          "By size", "inuse", "calls", "failed",
          "delayed", "free", "hiwat", "freed");
   for (i = 0; i < ret; i++) {
       printf("%-12s %10llu %9llu %6llu %9llu %7llu %7llu %7llu\n",
           statp[i].name,
           statp[i].inuse,
           statp[i].calls,
           statp[i].delayed,

142  AIX Version 7.2: Performance Tools Guide and Reference



           statp[i].free,
           statp[i].failed,
           statp[i].highwatermark,
           statp[i].freed);
       }
}

The program displays an output that is similar to the following example output:

By size           inuse     calls failed   delayed    free   hiwat   freed
64                  598     12310     14       682       0   10480       0
128                 577      8457     16       287       0    7860       0
256                1476    287157     88       716       0   15720       0
512                2016   1993915    242       808       0   32750       0
1024                218      8417     81       158       0    7860       0
2048                563      2077    277       307       0   19650       0
4096                 39       127     15       143       0    1310       0
8192                  4        16      4         0       0     327       0
16384               128       257     19         4       0     163       0
32768                25        55      9         4       0      81       0
65536                59       121     35         5       0      81       0
131072                3         7      0       217       0     204       0

perfstat_netinterface Interface
The perfstat_netinterface interface returns a set of structures of type perfstat_netinterface_t, which is
defined in the libperfstat.h file.

Selected fields from the perfstat_netinterface_t structure include:

name Interface name (from ODM)

description Interface description (from ODM)

ipackets Total number of input packets received on this network interface

opackets Total number of output packets sent on this network interface

ierror Total number of input errors on this network interface

oerror Total number of output errors on this network interface

Several other network-interface related metrics (such as number of bytes sent and received, type, and
bitrate) are also returned. For a complete list of other network-interfaced related metrics, see the
perfstat_netinterface_t section in the libperfstat.h header file in Files Reference.

The following code shows an example of how perfstat_netinterface is used:

#include <stdio.h> 
#include <stdlib.h>
#include <libperfstat.h>
#include <net/if_types.h>

char *
decode(uchar type) {

    switch(type) {

    case IFT_LOOP:
        return("loopback");

    case IFT_ISO88025:
        return("token-ring");

    case IFT_ETHER:
        return("ethernet");
    }

    return("other");
}

int main(int argc, char* argv[]) {
   int i, ret, tot;
   perfstat_netinterface_t *statp;
   perfstat_id_t first;

Performance Tools Guide and Reference  143



   /* check how many perfstat_netinterface_t structures are available */
   tot = perfstat_netinterface(NULL, NULL, sizeof(perfstat_netinterface_t), 0);

   /* check for error */
   if (tot < 0)
   {

   /* check for error */
   if (tot == 0)
   {
    printf("No network interfaces found\n");
    exit(-1);
   }   

    perror("perfstat_netinterface");
    exit(-1);
   }   

   /* allocate enough memory for all the structures */
   statp = calloc(tot, sizeof(perfstat_netinterface_t));
   
   /* set name to first interface */
   strcpy(first.name, FIRST_NETINTERFACE);
   
   /* ask to get all the structures available in one call */
   /* return code is number of structures returned */
   ret = perfstat_netinterface(&first, statp, sizeof(perfstat_netinterface_t), tot);

   /* check for error */
   if (ret <= 0)
   {

    perror("perfstat_netinterface");
    exit(-1);
   }   

   /* print statistics for each of the interfaces */
   for (i = 0; i < ret; i++) {
       printf("\nStatistics for interface : %s\n", statp[i].name);
       printf("------------------------\n");
       printf("type : %s\n", decode(statp[i].type));
       printf("\ninput statistics:\n");
       printf("number of packets : %llu\n", statp[i].ipackets);
       printf("number of errors  : %llu\n", statp[i].ierrors);
       printf("number of bytes   : %llu\n", statp[i].ibytes);
       printf("\noutput statistics:\n");
       printf("number of packets : %llu\n", statp[i].opackets);
       printf("number of bytes   : %llu\n", statp[i].obytes);
       printf("number of errors  : %llu\n", statp[i].oerrors);
       }
}

The preceding program produces the following output:

Statistics for interface : tr0
------------------------
type : token-ring

input statistics:
number of packets : 306352
number of errors  : 0
number of bytes   : 24831776

output statistics:
number of packets : 62669
number of bytes   : 11497679
number of errors  : 0

Statistics for interface : lo0
------------------------
type : loopback

input statistics:
number of packets : 336
number of errors  : 0
number of bytes   : 20912

output statistics:
number of packets : 336

144  AIX Version 7.2: Performance Tools Guide and Reference



number of bytes   : 20912
number of errors  : 0

The preceding program emulates diskadapterstat behavior and also shows how perfstat_netinterface is
used.

perfstat_netadapter Interface
The perfstat_netadpater interface returns a set of structures of type perfstat_netadapter_t, which is
defined in the libperfstat.h file.

Note: The perfstat_netadpater interface returns only the network Ethernet adapter statistics similar to
the entstat command.

The following program shows an example of how the perfstat_netadapter interface is used:

/* The sample program displays the metrics *
 * related to every Individual  * 
 * network adapter in the LPAR*/
#include <stdio.h> 
#include <stdlib.h>
#include <libperfstat.h>
#include <net/if_types.h>
/* define default interval and count values */
#define INTERVAL_DEFAULT 1
#define COUNT_DEFAULT    1

/* Check value returned by malloc for NULL */

#define CHECK_FOR_MALLOC_NULL(X) {  if ((X) == NULL) {\
                                       perror ("malloc");\
                                       exit(2);\
                                     }\
                  }

int count = COUNT_DEFAULT, interval = INTERVAL_DEFAULT, tot;
int returncode;

/* store the data structures */

static perfstat_netadapter_t *statp ,*statq;
/* support for remote node statistics collection in a cluster environment */
perfstat_id_node_t nodeid;
static char nodename[MAXHOSTNAMELEN] = "";
static int collect_remote_node_stats = 0;

/*
 * NAME: showusage
 *       to display the usage
 *
 */

void showusage(char *cmd)
{
    fprintf (stderr, "usage: %s [-i <interval in seconds> ] [-c <number of iterations> ] [-n <node name in the 
cluster> ]\n", cmd);
    exit(1);
};

/*
 * NAME: do_initialization
 *       This function initializes the data structues.
 *       It also collects the initial set of values.
 *
 * RETURNS:
 * On successful completion:
 *   - returns 0.
 * In case of error
 *    - exits with code 1.
 */

int do_initialization(void)
{
    /* check how many perfstat_netadapter_t structures are available */
        if(collect_remote_node_stats) {
        strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
        nodeid.spec = NODENAME;
        tot = perfstat_netadapter_node(&nodeid, NULL, sizeof(perfstat_netadapter_t), 0);
        }
       else
       {
       tot = perfstat_netadapter(NULL, NULL, sizeof(perfstat_netadapter_t), 0);
       }
       if (tot == 0) 
       {
       printf("There is no net adapter\n");
       exit(0);

Performance Tools Guide and Reference  145



       }
       if (tot < 0)
       {
       perror("perfstat_netadapter: ");
       exit(1);
       }    /* allocate enough memory for all the structures */

    statp = (perfstat_netadapter_t *)malloc(tot * sizeof(perfstat_netadapter_t));
    CHECK_FOR_MALLOC_NULL(statp);

    statq = (perfstat_netadapter_t *)malloc(tot * sizeof(perfstat_netadapter_t));
    CHECK_FOR_MALLOC_NULL(statq);

    return(0);
}

/*
 *Name: display_metrics
 *       collect the metrics and display them
 *
 */
void display_metrics()
{
    perfstat_id_t first;
    int ret, i;

    if(collect_remote_node_stats) {
        strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
        nodeid.spec = NODENAME;

        strcpy(nodeid.name , FIRST_NETINTERFACE);
        ret = perfstat_netadapter_node(&nodeid, statq, sizeof(perfstat_netadapter_t), tot);
     }
     else {
         strcpy(first.name , FIRST_NETINTERFACE);
         ret = perfstat_netadapter( &first, statq, sizeof(perfstat_netadapter_t), tot);
     }
      if (ret < 0){
         free(statp);
         free(statq);
         perror("perfstat_netadapter: ");
         exit(1);
     }
      while (count)
     {
         sleep (interval);
         if(collect_remote_node_stats)
 {
            ret = perfstat_netadapter_node(&nodeid, statp, sizeof(perfstat_netadapter_t), tot);
         }
         else {
            ret = perfstat_netadapter(&first, statp, sizeof(perfstat_netadapter_t), tot);
         }
         /* print statistics for each of the interfaces */
         for (i = 0; i < ret; i++)
 {
             printf(" Adapter name: %s \n",  statp[i].name);
             printf(" ======================== Transmit Statistics=====================\n");
            printf(" Transmit Packets: %lld \n",
  statp[i].tx_packets - statq[i].tx_packets);
            printf(" Transmit Bytes: %lld \n",
  statp[i].tx_bytes - statq[i].tx_bytes);
            printf(" Transfer Interrupts : %lld \n",
  statp[i].tx_interrupts - statq[i].tx_interrupts);
            printf(" Transmit Errors : %lld \n",
  statp[i].tx_errors - statq[i].tx_errors);
            printf(" Packets Dropped at the time of Data Transmission : %lld \n",
  statp[i].tx_packets_dropped - statq[i].tx_packets_dropped);
            printf(" Transmit Queue Size: %lld \n",
  statp[i].tx_queue_size - statq[i].tx_queue_size);
            printf(" Transmit Queue Length :%lld \n",
 statp[i].tx_queue_len - statq[i].tx_queue_len);
            printf(" Transmit Queue Overflow : %lld \n",
 statp[i].tx_queue_overflow - statq[i].tx_queue_overflow);
            printf(" Broadcast Packets Transmitted: %lld \n",
 statp[i].tx_broadcast_packets - statq[i].tx_broadcast_packets);
            printf(" Multicast packets Transmitted: %lld \n",
 statp[i].tx_multicast_packets - statq[i].tx_multicast_packets);
            printf(" Lost Carrier Sense signal count : %lld \n",
statp[i].tx_carrier_sense - statq[i].tx_carrier_sense);
            printf(" Count of DMA Under-runs for Transmission: %lld \n",
statp[i].tx_DMA_underrun - statq[i].tx_DMA_underrun);
            printf(" Number of unsuccessful transmissions : %lld \n",
statp[i].tx_lost_CTS_errors - statq[i].tx_lost_CTS_errors);
            printf(" Maximum Collision Errors at Transmission: %lld \n",
statp[i].tx_max_collision_errors - statq[i].tx_max_collision_errors);
            printf(" Late Collision Errors at Transmission : %lld \n",
statp[i].tx_late_collision_errors - statq[i].tx_late_collision_errors);
            printf(" Number of packets deferred for Transmission : %lld \n",
statp[i].tx_deferred - statq[i].tx_deferred);
            printf(" Time Out Errors for Transmission : %lld \n",
statp[i].tx_timeout_errors - statq[i].tx_timeout_errors);

146  AIX Version 7.2: Performance Tools Guide and Reference



            printf(" Count of Single Collision error at Transmission: %lld \n",
statp[i].tx_single_collision_count - statq[i].tx_single_collision_count);
            printf(" Count of Multiple Collision error at Transmission : %lld \n",
statp[i].tx_multiple_collision_count - statq[i].tx_multiple_collision_count);
            printf(" ========================== Receive Statistics ====================\n");
            printf(" Receive Packets :%lld \n",
statp[i].rx_packets - statq[i].rx_packets);
            printf(" Receive Bytes :%lld \n",
statp[i].rx_bytes - statq[i].rx_bytes);
            printf(" Receive Interrupts : %lld \n",
 statp[i].rx_interrupts - statq[i].rx_interrupts);
            printf(" Input errors on interface :%lld \n",
 statp[i].rx_errors - statq[i].rx_errors);
            printf(" Number of Packets Dropped : %lld \n",
 statp[i].rx_packets_dropped - statq[i].rx_packets_dropped);
            printf(" Count of Bad Packets Received : %lld \n",
 statp[i].rx_bad_packets - statq[i].rx_bad_packets);
            printf(" Number of MultiCast Packets Received : %lld \n",
 statp[i].rx_multicast_packets - statq[i].rx_multicast_packets);
            printf(" Number of Broadcast Packets Received : %lld \n",
statp[i].rx_broadcast_packets - statq[i].rx_broadcast_packets);
            printf(" Count of Packets Received with CRC errors: %lld \n",
statp[i].rx_CRC_errors - statq[i].rx_CRC_errors);
            printf(" DMA over-runs : %lld \n",
 statp[i].rx_DMA_overrun - statq[i].rx_DMA_overrun);
            printf(" Alignment Errors : %lld \n",
 statp[i].rx_alignment_errors - statq[i].rx_alignment_errors);
            printf(" No Resource Errors : %lld \n",
 statp[i].rx_noresource_errors - statq[i].rx_noresource_errors);
            printf(" Collision Errors: %lld \n",
  statp[i].rx_collision_errors - statq[i].rx_collision_errors);
            printf(" Number of Short Packets Received: %lld \n",
statp[i].rx_packet_tooshort_errors - statq[i].rx_packet_tooshort_errors);
            printf(" Number of Too Long Packets Received : %lld \n",
 statp[i].rx_packet_toolong_errors - statq[i].rx_packet_toolong_errors);
            printf(" Number of Received Packets discarded by Adapter: %lld \n",
 statp[i].rx_packets_discardedbyadapter - statq[i].rx_packets_discardedbyadapter);
            printf(" ==================================================================\n");

        } 
        memcpy(statq, statp, (tot * sizeof(perfstat_netadapter_t)));
        count--;
    }
}

/*
 *Name: main
 *
 */

int main(int argc, char *argv[])
{
    int i, rc;
    /* get the interval and count values */

    /* Process the arguments */
    while ((i = getopt(argc, argv, "i:c:n:")) != EOF)
    {
        switch(i)
        {
           case 'i':               /* Interval */
                    interval = atoi(optarg);
                    if( interval <= 0 )
                        interval = INTERVAL_DEFAULT;
                    break;
           case 'c':               /* Number of iterations */
                    count = atoi(optarg);
                    if( count <= 0 )
                        count = COUNT_DEFAULT;
                    break;
           case 'n':               /* Node name in a cluster environment */
                    strncpy(nodename, optarg, MAXHOSTNAMELEN);
                    nodename[MAXHOSTNAMELEN-1] = '\0';
                    collect_remote_node_stats = 1;
                    break;
           default:
                   /* Invalid arguments. Print the usage and terminate */
                   showusage(argv[0]);
        }
    }

    if(collect_remote_node_stats)
    {   /* perfstat_config needs to be called to enable cluster statistics collection */
        rc = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);
        if (rc == -1)
        {
            perror("cluster statistics collection is not available");
            exit(-1);
        }
    }

    do_initialization();
    display_metrics();

Performance Tools Guide and Reference  147



    if(collect_remote_node_stats)
    {   /* Now disable cluster statistics by calling perfstat_config */
        perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);
    }
    free(statp);
    free(statq);
    return 0;
}

The program produces the output similar to the following:

Adapter name: ent0
 ======================== Transmit Statistics=====================
 Transmit Packets: 0
 Transmit Bytes: 0
 Transfer Interrupts : 0
 Transmit Errors : 0
 Packets Dropped at the time of Data Transmission : 0
 Transmit Queue Size: 0
 Transmit Queue Length :0
 Transmit Queue Overflow : 0
 Broadcast Packets Transmitted: 0
 Multicast packets Transmitted: 0
 Lost Carrier Sense signal count : 0
 Count of DMA Under-runs for Transmission: 0
 Number of unsuccessful transmissions : 0
 Maximum Collision Errors at Transmission: 0
 Late Collision Errors at Transmission : 0
 Number of packets deferred for Transmission : 0
 Time Out Errors for Transmission : 0
 Count of Single Collision error at Transmission: 0
 Count of Multiple Collision error at Transmission : 0
 ========================== Receive Statistics ====================
 Receive Packets :48
 Receive Bytes :2962
 Receive Interrupts : 44
 Input errors on interface :0
 Number of Packets Dropped : 0
 Count of Bad Packets Received : 0
 Number of MultiCast Packets Received : 0
 Number of Broadcast Packets Received : 47
 Count of Packets Received with CRC errors: 0
 DMA over-runs : 0
 Alignment Errors : 0
 No Resource Errors : 0
 Collision Errors: 0
 Number of Short Packets Received: 0
 Number of Too Long Packets Received : 0
 Number of Received Packets discarded by Adapter: 0

perfstat_protocol Interface
The perfstat_protocol interface returns a set of structures of type perfstat_protocol_t, which consists of
a set of unions to accommodate the different sets of fields needed for each protocol, as defined in the
libperfstat.h file.

Selected fields from the perfstat_protocol_t structure include:

Item Descriptor

name Protocol name, which can be any of the following values: ip, ip6, icmp, icmp6, udp, tcp,
rpc, nfs, nfsv2, or nfsv3.

ipackets Number of input packets received using this protocol. This field exists only for protocols
ip, ipv6, udp, and tcp.

opackets Number of output packets sent using this protocol. This field exists only for protocols ip,
ipv6, udp, and tcp.

received Number of packets received using this protocol. This field exists only for protocols icmp
and icmpv6.

calls Number of calls made to this protocol. This field exists only for protocols rpc, nfs, nfsv2,
and nfsv3.

Many other network-protocol related metrics are also returned. For a complete list of network-protocol
related metrics, see the perfstat_protocol_t section in the libperfstat.h header file.

148  AIX Version 7.2: Performance Tools Guide and Reference



The following code shows an example of how the perfstat_protocol interface is used:

#include <stdio.h>
#include <string.h>
#include <libperfstat.h>

int main(int argc, char* argv[]) {
    int ret, tot, retrieved = 0;
    perfstat_protocol_t pinfo;
    perfstat_id_t protid;

    /* check how many perfstat_protocol_t structures are available */
    tot = perfstat_protocol(NULL, NULL, sizeof(perfstat_protocol_t), 0);

    /* check for error */
    if (tot <= 0)
    {
     perror("perfstat_protocol");
      exit(-1);
    } 
   
    printf("number of protocol usage structures available : %d\n", tot);

    /* set name to first protocol */
    strcpy(protid.name, FIRST_PROTOCOL);

    /* retrieve first protocol usage information */
    ret = perfstat_protocol(&protid, &pinfo, sizeof(perfstat_protocol_t), 1);
    
    if (ret < 0)
    {
      perror("perfstat_protocol");
      exit(-1);
    }
   retrieved += ret;
    do {
       printf("\nStatistics for protocol : %s\n", pinfo.name);
       printf("-----------------------\n");

       if (!strcmp(pinfo.name,"ip")) {
           printf("number of input packets  : %llu\n", pinfo.u.ip.ipackets);
           printf("number of input errors   : %llu\n", pinfo.u.ip.ierrors);
           printf("number of output packets : %llu\n", pinfo.u.ip.opackets);
           printf("number of output errors  : %llu\n", pinfo.u.ip.oerrors);
       } else if (!strcmp(pinfo.name,"ipv6")) {
           printf("number of input packets  : %llu\n", pinfo.u.ipv6.ipackets);
           printf("number of input errors   : %llu\n", pinfo.u.ipv6.ierrors);
           printf("number of output packets : %llu\n", pinfo.u.ipv6.opackets);
           printf("number of output errors  : %llu\n", pinfo.u.ipv6.oerrors);
       } else if (!strcmp(pinfo.name,"icmp")) {
           printf("number of packets received : %llu\n", pinfo.u.icmp.received);
           printf("number of packets sent     : %llu\n", pinfo.u.icmp.sent);
           printf("number of errors           : %llu\n", pinfo.u.icmp.errors);
       } else if (!strcmp(pinfo.name,"icmpv6")) {
           printf("number of packets received : %llu\n", pinfo.u.icmpv6.received);
           printf("number of packets sent     : %llu\n", pinfo.u.icmpv6.sent);
           printf("number of errors           : %llu\n", pinfo.u.icmpv6.errors);
       } else if (!strcmp(pinfo.name,"udp")) {
           printf("number of input packets  : %llu\n", pinfo.u.udp.ipackets);
           printf("number of input errors   : %llu\n", pinfo.u.udp.ierrors);
           printf("number of output packets : %llu\n", pinfo.u.udp.opackets);
       } else if (!strcmp(pinfo.name,"tcp")) {
           printf("number of input packets  : %llu\n", pinfo.u.tcp.ipackets);
           printf("number of input errors   : %llu\n", pinfo.u.tcp.ierrors);
           printf("number of output packets : %llu\n", pinfo.u.tcp.opackets);
       } else if (!strcmp(pinfo.name,"rpc")) {
           printf("client statistics:\n");
           printf("number of connection-oriented RPC requests  : %llu\n",
                  pinfo.u.rpc.client.stream.calls);
           printf("number of rejected connection-oriented RPCs : %llu\n",
                  pinfo.u.rpc.client.stream.badcalls);
           printf("number of connectionless RPC requests       : %llu\n",
                  pinfo.u.rpc.client.dgram.calls);
           printf("number of rejected connectionless RPCs      : %llu\n",
                  pinfo.u.rpc.client.dgram.badcalls);
           printf("\nserver statistics:\n");
           printf("number of connection-oriented RPC requests  : %llu\n",
                  pinfo.u.rpc.server.stream.calls);
           printf("number of rejected connection-oriented RPCs : %llu\n",
                  pinfo.u.rpc.server.stream.badcalls);
           printf("number of connectionless RPC requests       : %llu\n",

Performance Tools Guide and Reference  149



                  pinfo.u.rpc.server.dgram.calls);
           printf("number of rejected connectionless RPCs      : %llu\n",
                  pinfo.u.rpc.server.dgram.badcalls);
       } else if (!strcmp(pinfo.name,"nfs")) {
           printf("total number of NFS client requests        : %llu\n",
                  pinfo.u.nfs.client.calls);
           printf("total number of NFS client failed calls    : %llu\n",
                  pinfo.u.nfs.client.badcalls);
           printf("total number of NFS server requests        : %llu\n",
                  pinfo.u.nfs.server.calls);
           printf("total number of NFS server failed calls    : %llu\n",
                  pinfo.u.nfs.server.badcalls);
           printf("total number of NFS version 2 server calls : %llu\n",
                  pinfo.u.nfs.server.public_v2);
           printf("total number of NFS version 3 server calls : %llu\n",
                  pinfo.u.nfs.server.public_v3);
       } else if (!strcmp(pinfo.name,"nfsv2")) {
           printf("number of NFS V2 client requests : %llu\n",
                  pinfo.u.nfsv2.client.calls);
           printf("number of NFS V2 server requests : %llu\n",
                  pinfo.u.nfsv2.server.calls);
       } else if (!strcmp(pinfo.name,"nfsv3")) {
           printf("number of NFS V3 client requests : %llu\n",
                  pinfo.u.nfsv3.client.calls);
           printf("number of NFS V3 server requests : %llu\n",
                  pinfo.u.nfsv3.server.calls);
       }

       /* make sure we stop after the last protocol */
       if (ret = strcmp(protid.name, "")) {
           printf("\nnext protocol name : %s\n", protid.name);

           /* retrieve information for next protocol */
           ret = perfstat_protocol(&protid, &pinfo, sizeof(perfstat_protocol_t), 1);
       if (ret < 0)
           {
              perror("perfstat_protocol");
              exit(-1);
           }
           retrieved += ret;
       }
    } while (ret == 1);

   printf("\nnumber of protocol usage structures retrieved : %d\n", retrieved);
}

The program displays an output that is similar to the following example output:

number of protocol usage structures available : 11

Statistics for protocol : ip
-----------------------
number of input packets  : 155855
number of input errors   : 32911
number of output packets : 25635
number of output errors  : 32909

next protocol name : ipv6

Statistics for protocol : ipv6
-----------------------
number of input packets  : 0
number of input errors   : 0
number of output packets : 0
number of output errors  : 0

next protocol name : icmp

Statistics for protocol : icmp
-----------------------
number of packets received : 2
number of packets sent     : 1
number of errors           : 1

next protocol name : icmpv6

Statistics for protocol : icmpv6
-----------------------
number of packets received : 0
number of packets sent     : 0
number of errors           : 0

150  AIX Version 7.2: Performance Tools Guide and Reference



next protocol name : udp

Statistics for protocol : udp
-----------------------
number of input packets  : 106630
number of input errors   : 91625
number of output packets : 14435

next protocol name : tcp

Statistics for protocol : tcp
-----------------------
number of input packets  : 16313
number of input errors   : 0
number of output packets : 11196

next protocol name : rpc

Statistics for protocol : rpc
-----------------------
client statistics:
number of connection-oriented RPC requests  : 41
number of rejected connection-oriented RPCs : 0
number of connectionless RPC requests       : 24
number of rejected connectionless RPCs      : 0

server statistics:
number of connection-oriented RPC requests  : 0
number of rejected connection-oriented RPCs : 0
number of connectionless RPC requests       : 0
number of rejected connectionless RPCs      : 0

next protocol name : nfs

Statistics for protocol : nfs
-----------------------
total number of NFS client requests        : 41
total number of NFS client failed calls    : 0
total number of NFS server requests        : 0
total number of NFS server failed calls    : 0
total number of NFS version 2 server calls : 0
total number of NFS version 3 server calls : 0

next protocol name : nfsv2

Statistics for protocol : nfsv2
-----------------------
number of NFS V2 client requests : 0
number of NFS V2 server requests : 0

next protocol name : nfsv3

Statistics for protocol : nfsv3
-----------------------
number of NFS V3 client requests : 41
number of NFS V3 server requests : 0

next protocol name : nfsv4

Statistics for protocol : nfsv4
-----------------------

number of protocol usage structures retrieved : 11

The preceding program emulates protocolstat behavior and also shows how perfstat_protocol is used.

perfstat_pagingspace Interface
The perfstat_pagingspace interface returns a set of structures of type perfstat_pagingspace_t, which is
defined in the libperfstat.h file.

Selected fields from the perfstat_pagingspace_t structure include:

Item Descriptor

mb_size Size of the paging space in MB

lp_size Size of the paging space in logical partitions

Performance Tools Guide and Reference  151



Item Descriptor

mb_used Portion of the paging space used in MB

Several other paging-space-related metrics (such as name, type, and active) are also returned. For a
complete list of other paging-space-related metrics, see the perfstat_pagingspace_t section in the
libperfstat.h header file in Files Reference.

The following code shows an example of how perfstat_pagingspace is used:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(int argc, char agrv[]) {
    int i, ret, tot;
    perfstat_id_t first;
    perfstat_pagingspace_t *pinfo;
    
    tot = perfstat_pagingspace(NULL, NULL, sizeof(perfstat_pagingspace_t), 0);
    /* check for error */
    if (tot <= 0)
    {
      perror("perfstat_pagingspace");
      exit(-1);
    }    

    pinfo = calloc(tot,sizeof(perfstat_pagingspace_t));

    strcpy(first.name, FIRST_PAGINGSPACE);

    ret = perfstat_pagingspace(&first, pinfo, sizeof(perfstat_pagingspace_t), tot);
    /* check for error */
    if (tot <= 0)
    {
      perror("perfstat_pagingspace");
      exit(-1);
    }
    for (i = 0; i < ret; i++) {
        printf("\nStatistics for paging space : %s\n", pinfo[i].name);
        printf("---------------------------\n");
        printf("type         : %s\n",
               pinfo[i].type == LV_PAGING ? "logical volume" : "NFS file");
        if (pinfo[i].type == LV_PAGING) {
            printf("volume group : %s\n", pinfo[i].u.lv_paging.vgname);
        }
        else {
            printf("hostname : %s\n", pinfo[i].u.nfs_paging.hostname);
            printf("filename : %s\n", pinfo[i].u.nfs_paging.filename);
        }
        printf("size (in LP) : %llu\n", pinfo[i].lp_size);
        printf("size (in MB) : %llu\n", pinfo[i].mb_size);
        printf("used (in MB) : %llu\n", pinfo[i].mb_used);
    }
}

The preceding program produces the following output:

Statistics for paging space : hd6
---------------------------
type         : logical volume
volume group : rootvg
size (in LP) : 64
size (in MB) : 512
used (in MB) : 4

perfstat_process interfaces
The perfstat_process interface returns a set of structures of type perfstat_process_t, which is
defined in the libperfstat.h file.

The field of the perfstat_process_t structure includes:

152  AIX Version 7.2: Performance Tools Guide and Reference



Item Descriptor

pid Process ID

proc_name Name of the process

proc_priority Priority of the process

num_threads Thread count

proc_uid Information of the owner

proc_classid WLM class name

proc_size Virtual size of the process

proc_real_mem_data Real memory used for the data in kilobytes

proc_real_mem_text Real memory used for text in kilobytes

proc_virt_mem_data Virtual memory used for data in kilobytes

proc_virt_mem_text Virtual memory used for text in kilobytes

shared_lib_data_size Data size from shared library in kilobytes

heap_size Heap size in kilobytes

real_inuse The real memory in kilobytes used by the process including the
segments

virt_inuse The virtual memory in kilobytes used by the process including the
segments

pinned Pinned memory in kilobytes used for the process that is inclusive of
all segments

pgsp_inuse Paging space in kilobytes uses inclusive of all segments

filepages File pages in kilobytes used including shared pages

real_inuse_map Real memory in kilobytes used for shared memory and memory
mapped regions

virt_inuse_map Virtual memory in kilobytes used for shared memory and memory
mapped regions

pinned_inuse_map Pinned memory in kilobytes for shared memory and memory
mapped regions

ucpu_time User mode CPU time in milliseconds

scpu_time System mode CPU time in milliseconds

last_timebase Timebase counter

inBytes Bytes read from the disk

outBytes Bytes written to the disk

inOps In operations from disk

outOps Out operations from disk

The following is an example of code for the perfstat_process API:

#include <libperfstat.h>

void main()
{
  perfstat_process_t *proct;
  perfstat_id_t id;
  int i,rc,proc_count;

Performance Tools Guide and Reference  153



  /* Get the count of processes */
  proc_count = perfstat_process(NULL, NULL,sizeof(perfstat_process_t),0);

  /* check for error */
  if(proc_count <= 0)
  {
    perror("Error in perfstat_process");
    exit(-1) ;
  }
  printf("Number of Processes = %d\n",proc_count);

  /* Allocate enough memory */
  proct = (perfstat_process_t *)calloc(proc_count,sizeof(perfstat_process_t));
  if(proct == NULL)
  {
    perror("Memory Allocation Error");
    exit(-1) ;
  }

  strcpy(id.name,"");
  rc = perfstat_process(&id,proct,sizeof(perfstat_process_t),proc_count); 
  if(rc <= 0) 
  { 
    perror("Error in perfstat_process"); 
    exit(-1) ; 
  } 

  printf("\n =======Process Related metrics =======\n"); 
  for(i=0 ; i<proc_count ;i++)
  {
    printf("Process Name =                     %s\n",proct[i].proc_name);
    printf("Process ID =                       %lld\n",proct[i].pid);
    printf("Process priority =                 %d\n",proct[i].proc_priority);
    printf("Thread Count =                     %lld\n",proct[i].num_threads); 
    printf("\nCredential Information\n");
    printf("Owner Info =                       %lld\n",proct[i].proc_uid);
    printf("WLM Class Name =                   %lld\n",proct[i].proc_classid);
    printf("\nMemory Related Statistics \n");
    printf("Process Virtual Size =             %lld KB \n",proct[i].proc_size);
    printf("Real Memory used for Data =        %lld KB \n",proct[i].proc_real_mem_data);
    printf("Real Memory used for Text =        %lld KB \n",proct[i].proc_real_mem_text);
    printf("Virtual Memory used for Data =     %lld KB \n",proct[i].proc_virt_mem_data);
    printf("Virtual Memory used for Text =     %lld KB \n",proct[i].proc_virt_mem_text);
    printf("Data Size from Shared Library =    %lld KB \n",proct[i].shared_lib_data_size);
    printf("Heap Size =                        %lld KB \n",proct[i].heap_size);
    printf("Real memory in use by process =    %lld KB \n",proct[i].real_inuse);
    printf("Virtual memory in use by process=  %lld KB \n",proct[i].virt_inuse);
    printf("Pinned Memory for this process =   %lld KB \n",proct[i].pinned);
    printf("Paging Space in use =              %lld KB \n",proct[i].pgsp_inuse);
    printf("File Pages used =                  %lld KB \n",proct[i].filepages);
    printf("Real memory used for Shared Memory and Memory Mapped regions =%lld KB \n", 
proct[i].real_inuse_map);
    printf("Virtual Memory used for Shared Memory and Memory Mapped regions =%lld KB \n", 
proct[i].virt_inuse_map);
    printf("Pinned memory for Shared Memory and Memory Mapped regions =%lld KB \n", 
proct[i].pinned_inuse_map);
    printf("\nCPU Related Statistics \n");
    printf("User Mode CPU time =               %lf ms\n",proct[i].ucpu_time);
    printf("System Mode CPU time =             %lf ms\n",proct[i].scpu_time);
    printf("Timebase Counter =                 %lld\n", proct[i].last_timebase);
    printf("\nDisk Related Statistics \n");
    printf("Bytes Written to Disk =            %lld\n",proct[i].inBytes);
    printf("Bytes Read from Disk =             %lld\n",proct[i].outBytes);
    printf("In Operations from Disk =          %lld\n",proct[i].inOps);
    printf("Out Operations from Disk =         %lld\n",proct[i].outOps);
    printf("=====================================\n");
    printf("\n\n");
    }
}

The program produces the output similar to the following:

Number of Processes = 77

 =======Process Related metrics =======
Process Name =                     swapper
Process ID =                       0
Process priority =                 16
Thread Count =                     0

Credential Information
Owner Info =                       0

154  AIX Version 7.2: Performance Tools Guide and Reference



WLM Class Name =                   257

Memory Related Statistics
Process Virtual Size =             384 KB
Real Memory used for Data =        384 KB
Real Memory used for Text =        0 KB
Virtual Memory used for Data =     384 KB
Virtual Memory used for Text =     0 KB
Data Size from Shared Library =    0 KB
Heap Size =                        0 KB
Real memory in use by process =    384 KB
Virtual memory in use by process=  384 KB
Pinned Memory for this process =   320 KB
Paging Space in use =              0 KB
File Pages used =                  0 KB
Real memory used for Shared Memory and Memory Mapped regions =0 KB
Virtual Memory used for Shared Memory and Memory Mapped regions =0 KB
Pinned memory for Shared Memory and Memory Mapped regions =0 KB

CPU Related Statistics
User Mode CPU time =               0.000000 ms
System Mode CPU time =             9262.345828 ms
Timebase Counter =                 7290723200327369

Disk Related Statistics
Bytes Written to Disk =            0
Bytes Read from Disk =             32768
In Operations from Disk =          0
Out Operations from Disk =         8
=====================================

The program displays an output that is similar to the following example output:

Number of Processes = 77

 =======Process Related metrics =======
Process Name =                     swapper
Process ID =                       0
Process priority =                 16
Thread Count =                     0

Credential Information
Owner Info =                       0
WLM Class Name =                   257

Memory Related Statistics
Process Virtual Size =             384 KB
Real Memory used for Data =        384 KB
Real Memory used for Text =        0 KB
Virtual Memory used for Data =     384 KB
Virtual Memory used for Text =     0 KB
Data Size from Shared Library =    0 KB
Heap Size =                        0 KB
Real memory in use by process =    384 KB
Virtual memory in use by process=  384 KB
Pinned Memory for this process =   320 KB
Paging Space in use =              0 KB
File Pages used =                  0 KB
Real memory used for Shared Memory and Memory Mapped regions =0 KB
Virtual Memory used for Shared Memory and Memory Mapped regions =0 KB
Pinned memory for Shared Memory and Memory Mapped regions =0 KB

CPU Related Statistics
User Mode CPU time =               0.000000 ms
System Mode CPU time =             9262.345828 ms
Timebase Counter =                 7290723200327369

Disk Related Statistics
Bytes Written to Disk =            0
Bytes Read from Disk =             32768
In Operations from Disk =          0
Out Operations from Disk =         8
=====================================

Performance Tools Guide and Reference  155



perfstat_process_util interface
The perfstat_process_util interface returns a set of structures of type perfstat_process_t,
which is defined in the libperfstat.h file.

The following is an example of code that uses the perfstat_process_util API:

#include <libperfstat.h>
#include <stdio.h>
#include <stdlib.h>
#define PERIOD 5

void main()
{
  perfstat_process_t *cur, *prev;
  perfstat_rawdata_t buf;
  perfstat_process_t *proc_util;
  perfstat_id_t id;
  int cur_proc_count,prev_proc_count;
  int i,rc;
  prev_proc_count = perfstat_process(NULL, NULL,sizeof(perfstat_process_t),0);
  if(prev_proc_count <= 0)
  {
    perror("Error in perfstat_process");
    exit(-1) ;
  }
  prev = (perfstat_process_t *)calloc(prev_proc_count,sizeof(perfstat_process_t));
  if(prev == NULL)
  {
    perror("Memory Allocation Error");
    exit(-1) ;
  }
  strcpy(id.name,"");
  rc = perfstat_process(&id,prev,sizeof(perfstat_process_t),prev_proc_count);
  if(rc <= 0)
  {
    perror("Error in perfstat_process"); 
    exit(-1) ; 
  }
  sleep(PERIOD); 

  cur_proc_count = perfstat_process(NULL, NULL,sizeof(perfstat_process_t),0);
  if(cur_proc_count <= 0)
  {
    perror("Error in perfstat_process");
    exit(-1) ;
  }
  cur = (perfstat_process_t *)calloc(cur_proc_count,sizeof(perfstat_process_t));
  proc_util = (perfstat_process_t *)calloc(cur_proc_count,sizeof(perfstat_process_t));
  if(cur == NULL || proc_util == NULL)
  {
    perror("Memory Allocation Error");
    exit(-1) ;
  }
  rc = perfstat_process(&id,cur,sizeof(perfstat_process_t),cur_proc_count); 
  if(rc < 0) 
  { 
    perror("Error in perfstat_process"); 
    exit(-1) ; 
  }

  bzero(&buf, sizeof(perfstat_rawdata_t)); 
  buf.type = UTIL_PROCESS;
  buf.curstat = cur;
  buf.prevstat = prev;
  buf.sizeof_data = sizeof(perfstat_process_t);
  buf.cur_elems = cur_proc_count;
  buf.prev_elems = prev_proc_count;

/* Calculate Process Utilization */
  rc = perfstat_process_util(&buf,proc_util,sizeof(perfstat_process_t),cur_proc_count); 
  if(rc <= 0) 
  { 
    perror("Error in perfstat_process_util"); 
    exit(-1); 
  }

  printf("\n =======Process Related Utilization Metrics =======\n");
  for(i=0 ; i<cur_proc_count ;i++)
  {

156  AIX Version 7.2: Performance Tools Guide and Reference



    printf("Process ID =                %lld\n",proc_util[i].pid);
    printf("User Mode CPU time =        %lf \n",proc_util[i].ucpu_time);
    printf("System Mode CPU time =      %lf \n",proc_util[i].scpu_time);
    printf("Bytes Written to Disk =     %lld\n",proc_util[i].inBytes);
    printf("Bytes Read from Disk =      %lld\n",proc_util[i].outBytes);
    printf("In Operations from Disk =   %lld\n",proc_util[i].inOps);
    printf("Out Operations from Disk =  %lld\n",proc_util[i].outOps);
    printf("=====================================\n");
    printf("\n\n");
}
}

The program displays an output that is similar to the following example output:

=======Process Related Utilization Metrics =======
Process ID =                0
User Mode CPU time =        0.000000
System Mode CPU time =      0.013752
Bytes Written to Disk =     0
Bytes Read from Disk =      0
In Operations from Disk =   0
Out Operations from Disk =  0
=====================================

Process ID =                1
User Mode CPU time =        0.000000
System Mode CPU time =      0.000000
Bytes Written to Disk =     0
Bytes Read from Disk =      0
In Operations from Disk =   0
Out Operations from Disk =  0
=====================================

Process ID =                196614
User Mode CPU time =        0.000000
System Mode CPU time =      0.000000
Bytes Written to Disk =     0
Bytes Read from Disk =      0
In Operations from Disk =   0
Out Operations from Disk =  0
=====================================

Process ID =                262152
User Mode CPU time =        0.000000
System Mode CPU time =      0.000000
Bytes Written to Disk =     0
Bytes Read from Disk =      0
In Operations from Disk =   0
Out Operations from Disk =  0
=====================================

perfstat_processor_pool_util interface
The perfstat_processor_pool_util interface returns a set of structures of type
perfstat_processor_pool_util_t, which is defined in the libperfstat.h file

Item Descriptor

max_capacity Maximum pool processor capacity of the partition.

entitled_capacity Entitled pool processor capacity of the partition.

phys_cpus_pool Physical processors that are available in the Shared
processor Pool to which the partition is associated.

idle_cores Physical processors that are available in the Shared
processor Pool from the last interval.

max_cores Maximum cores used by the Shared processor Pool
for the last interval, which is associated with the
partition.

Performance Tools Guide and Reference  157



Item Descriptor

busy_cores Maximum busy (non-idle) cores that are
accumulated for the last interval across all
partitions in the Shared processor Pool, which is
associated with the partition.

sbusy_cores Normalized summation of busy (non-idle) cores
that are accumulated across all partitions in the
Shared processor Pool, which is associated with
the partition. This option applies if the cores run at
nominal or rated frequency.

gpool_tot_cores Total number of cores across all physical
processors that are allocated for shared processor
use (across all pools).

gpool_busy_cores Summation of the busy (non-idle) cores that are
accumulated across all shared processor partitions
(across all pools) for the last interval.

gpool_sbusy_cores Normalized summation of the busy cores that are
accumulated across all shared processor partitions
(across all pools) for the last interval. This option
applies if the cores run at nominal or rated
frequency.

tb_last_delta Elapsed number of clock ticks.

version Version number of the data structure.

The use of the perfstat_processor_pool_util API for the system-level utilization follows:

#include <libperfstat.h>
#include <sys/dr.h>
#include <sys/types.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#define COUNT 2
#define INTERVAL 2
void main(int argc, char **argv)
{
    perfstat_rawdata_t data;
    perfstat_partition_total_t oldt,newt;
    perfstat_processor_pool_util_t util,*uti;
    static int once=0;
    int rc;
        u_longlong_t x=0;
        int iInter=0,iCount=0;

        int c;
        while( (c = getopt(argc,argv,"i:c:"))!= EOF ){
                switch(c) {
                        case 'i':
                        iInter=atoi(optarg);
                        break;
                        case 'c':
                        iCount=atoi(optarg);
                        break;
                }
        }

if(iCount<=0 && iInter<=0)
{
 iCount=COUNT;
 iInter=INTERVAL;
}
  while(iCount--)
  {
    rc = perfstat_partition_total(NULL, &oldt, sizeof(perfstat_partition_total_t), 1);
     if (rc != 1)

158  AIX Version 7.2: Performance Tools Guide and Reference



 {
     perror("Error in perfstat_partition_total");
     exit(-1);
     }
     sleep(INTERVAL);
     rc = perfstat_partition_total(NULL, &newt, sizeof(perfstat_partition_total_t), 1);
     if (rc != 1)
 {
     perror("Error in perfstat_partition_total");
     exit(-1);
     }
   data.type = SHARED_POOL_UTIL;
   data.curstat = &newt; data.prevstat= &oldt;
   data.sizeof_data = sizeof(perfstat_partition_total_t);
   data.cur_elems = 1;
   data.prev_elems = 1;
    rc = perfstat_processor_pool_util(&data, &util,sizeof(perfstat_processor_pool_util_t),1);
    if(rc <= 0)
    {
      perror("Error in perfstat_processor_util");
      exit(-1);
    }
      if(!once)
         {
         printf("Pool_id\tCapacity\tPhys_cpus_pool\tApp\t\tPool_utlization\t\tGlobal_pool\n");
         printf("\tMax|Entitled\t\t\t\t\tBusy|Scaled_busy\tMax|busy\n");
         printf("-------------------------------------------------------------------------\n");
         once=1;
         }
        printf("%u ", util.ssp_id);
        printf("\t%llu ", util.max_capacity/100);
        /*Convert physical units to cores*/
        printf("  %llu ", util.entitled_capacity/100);
        /*Convert physical units to cores*/
        printf("\t\t\t%d ", util.phys_cpus_pool);
        printf("\t%5.2f ",util.idle_cores);
        printf("\t\t%5.2f ", util.busy_cores );
        printf("%5.2f ", util.sbusy_cores );
        printf("\t\t%5.2f ", util.gpool_tot_cores );
        printf("%5.2f \n", util.gpool_busy_cores );

 }
}

perfstat_tape Interface
The perfstat_tape interface returns a set of structures of type perfstat_tape_t, which is defined in the
libperfstat.h file.

Selected fields from the perfstat_tape_t structure include:

Item Descriptor

size Size of the tape (in MB)

free Free portion of the tape (in MB)

bsize Tape block size (in bytes)

paths_count Number of paths to the tape

Several other paging-space-related metrics (such as name, type, and active) are also returned. For a
complete list of paging-space-related metrics, see the perfstat_pagingspace_t section in the
libperfstat.h header file in Files Reference.

The following code shows an example of how the perfstat_tape interface is used:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(){
    int ret, tot, i;
    perfstat_tape_t *statp;
    perfstat_id_t first;

    /* check how many perfstat_tape_t structures are available */

Performance Tools Guide and Reference  159



    tot =  perfstat_tape(NULL, NULL, sizeof(perfstat_tape_t), 0);
    
    /* check for error */
    if (tot < 0)
    {
      perror("perfstat_tape");
      exit(-1);
    }
    if (tot == 0)
    {

        printf("No tape found in the system\n");
        exit(-1);
    }
    
    /* allocate enough memory for all the structures */
    statp = calloc(tot, sizeof(perfstat_tape_t));
    if(statp==NULL){
    printf("No sufficient memory\n");
    exit(-1);
    }
    
    /* set name to first interface */
    strcpy(first.name, FIRST_TAPE);
    
    /* ask to get all the structures available in one call */
    /* return code is number of structures returned */
    ret = perfstat_tape(&first, statp,
                        sizeof(perfstat_tape_t), tot);

    
    /* check for error */
    if (ret <= 0)
    {
      perror("perfstat_tape");
      exit(-1);
    }
   
    for(i=0;i<ret;i++){
        
        printf("Name of the tape=%s\n",statp[i].name); 
        printf("Tape description=%s\n",statp[i].description);
        printf("Size of the tape (in MB)=%lld\n",statp[i].size);
        printf("Free portion of the tape (in MB)=%lld\n",statp[i].free);
        printf("Tape block size (in bytes)=%lld\n",statp[i].bsize);
        printf("Number of transfers to/from tape=%lld\n",statp[i].xfers);
        printf("Number of read transfers to/from tape=%lld\n",statp[i].rxfers);
        printf("Number of blocks written to tape=%lld\n",statp[i].wblks);
        printf("Number of blocks read from tape=%lld\n",statp[i].rblks);
        printf("Amount of time tape is active=%lld\n",statp[i].time);
        printf("Tape adapter name =%s\n",statp[i].adapter);
        printf("Number of paths to this tape=%d\n",statp[i].paths_count);
        printf("\n"); 
    }
}

perfstat_thread interfaces
The perfstat_thread interface returns a set of structures of type perfstat_thread_t, which is
defined in the libperfstat.h file.

The field of the perfstat_thread_t structure includes the following:

Table 2. perfstat_thread_t fields

Item Description

Pid The process ID of the thread.

Tid The kernel ID of the thread.

Cpuid The processor on which the thread is bound.

ucpu_time The user mode CPU time in milliseconds.

scpu_time The system mode CPU time in milliseconds.

160  AIX Version 7.2: Performance Tools Guide and Reference



The following is an example of code for the perfstat_thread_t API:

#include <libperfstat.h>

void main()
{
    perfstat_thread_t *threadt;
    perfstat_id_t id;
    int i,rc,thread_count;

    /* Get the count of threads */
    thread_count = perfstat_thread(NULL, NULL,sizeof(perfstat_thread_t),0);

    /* check for error */
    if(thread_count <= 0)
    {
        perror("Error in perfstat_thread");
        exit(-1) ;
    }
    printf("Number of Threads = %d\n",thread_count);

    /* Allocate enough memory */
    threadt = (perfstat_thread_t *)calloc(thread_count,sizeof(perfstat_thread_t));
    if(threadt == NULL)
    {
        perror("Memory Allocation Error");
        exit(-1) ;
    }

    strcpy(id.name,"");
    rc = perfstat_thread(&id,threadt,sizeof(perfstat_thread_t),thread_count);
    if(rc <= 0)
    {
        free(threadt);
        perror("Error in perfstat_thread");
        exit(-1) ;
    }

    printf("\n =======Thread Related metrics =======\n");
    for(i=0 ; i<thread_count ;i++)
    {
        printf("Process ID =                     %u\n",threadt[i].pid);
        printf("Thread ID =                       %u\n",threadt[i].tid);
        printf("\nCPU Related Statistics \n");
        printf("User Mode CPU time =               %f ms\n",threadt[i].ucpu_time);
        printf("System Mode CPU time =             %f ms\n",threadt[i].scpu_time);
        printf("Processor to which the thread is bound = %d\n", threadt[i].cpuid);
        printf("=====================================\n");
        printf("\n\n");
    }
    free(threadt);
}

The program displays an output that is similar to the following example output:

Process ID = 6553744
Thread ID  = 12345

CPU Related Statistics
User Mode CPU time = 714000.000000 ms
System Mode CPU time = 3000.000000 ms
Processor to which the thread is bound = 1

Related information
libperfstat.h command

perfstat_thread_util interface
The perfstat_thread_util interface returns a set of structures of type perfstat_thread_t, which
is defined in the libperfstat.h file.

The following is an example of code for the perfstat_thread_util API:

#include <libperfstat.h>
#define PERIOD 5

void main()

Performance Tools Guide and Reference  161



{
    perfstat_thread_t *cur, *prev;
    perfstat_rawdata_t buf;
    perfstat_thread_t *thread_util;
    perfstat_id_t id;
    int cur_thread_count,prev_thread_count;
    int i,rc;
    prev_thread_count = perfstat_thread(NULL, NULL,sizeof(perfstat_thread_t),0);
    if(prev_thread_count <= 0)
    {
        perror("Error in perfstat_thread");
        exit(-1) ;
    }
    prev = (perfstat_thread_t *)calloc(prev_thread_count,sizeof(perfstat_thread_t));
    if(prev == NULL)
    {
        perror("Memory Allocation Error");
        exit(-1) ;
    }
    strcpy(id.name,"");
    prev_thread_count = perfstat_thread(&id,prev,sizeof(perfstat_thread_t),prev_thread_count);
    if(prev_thread_count <= 0)
    {
        free(prev);
        perror("Error in perfstat_thread");
        exit(-1) ;
    }
    sleep(PERIOD);

    cur_thread_count = perfstat_thread(NULL, NULL,sizeof(perfstat_thread_t),0);
    if(cur_thread_count <= 0)
    {
        free(prev);
        perror("Error in perfstat_thread");
        exit(-1) ;
    }
    cur = (perfstat_thread_t *)calloc(cur_thread_count,sizeof(perfstat_thread_t));
    thread_util = (perfstat_thread_t *)calloc(cur_thread_count,sizeof(perfstat_thread_t));
    if(cur == NULL || thread_util == NULL)
    {
        free(prev);
         perror("Memory Allocation Error");
        exit(-1) ;
    }
    cur_thread_count = perfstat_thread(&id,cur,sizeof(perfstat_thread_t),cur_thread_count);
    if(cur_thread_count <= 0)
    {
        free(prev);
        free(cur);
        free(thread_util);
        perror("Error in perfstat_thread");
        exit(-1) ;
    }

    bzero(&buf, sizeof(perfstat_rawdata_t));
    buf.type = UTIL_PROCESS;
    buf.curstat = cur;
    buf.prevstat = prev;
    buf.sizeof_data = sizeof(perfstat_thread_t);
    buf.cur_elems = cur_thread_count;
    buf.prev_elems = prev_thread_count;

    /* Calculate Thread Utilization. This returns the number of thread_util structures that are 
filled */
    rc = perfstat_thread_util(&buf,thread_util,sizeof(perfstat_thread_t),cur_thread_count);
    if(rc <= 0)
    {
        free(prev);
        free(cur);
        free(thread_util);
        perror("Error in perfstat_thread_util");
        exit(-1);
    }

    printf("\n =======Thread Related Utilization Metrics =======\n");
    for(i=0 ; i<rc ;i++)
    {
        printf("Process ID =                %u\n",thread_util[i].pid);
        printf("Thread ID  =                  %u\n",thread_util[i].tid);
        printf("User Mode CPU time =      %f \n",thread_util[i].ucpu_time);
        printf("System Mode CPU time =      %f \n",thread_util[i].scpu_time);

162  AIX Version 7.2: Performance Tools Guide and Reference



        printf(" Bound CPU Id          =     %d\n", thread_util[i].cpuid);
        printf("=====================================\n");
        printf("\n\n");
    }
    free(prev);
    free(cur);
    free(thread_util);
}

The program displays an output that is similar to the following example output:

Process ID = 6160532
Thread ID = 123456
User Mode CPU time = 21.824531
System Mode CPU time = 0.000000
Bound CPU Id = 1

Related information
libperfstat.h command

perfstat_volumegroup Interface
The perfstat_volumegroup interface returns a set of structures of type perfstat_logicalvolume_t, which
is defined in the libperfstat.h file.

Selected fields from the perfstat_logicalvolume_t structure include:

Item Descriptor

Total_disks Total number of disks in the volume group

Active_disks Total number of active disks in the volume group

Iocnt Number of read and write requests

The following code shows an example of how the perfstat_logicalvolume interface is used:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
int vg_count, rc,i;
perfstat_id_t first;
perfstat_volumegroup_t *vg;

strcpy(first.name,NULL);

/* to enable the volumegroup statistical collection */
perfstat_config(PERFSTAT_ENABLE|PERFSTAT_LV,NULL);

/* to get the number of volume groups */
vg_count = perfstat_volumegroup (NULL, NULL, sizeof(perfstat_logicalvolume_t), 0);
/* check the subroutine return code for any error */
if (vg_count <=0 ){
   perror("perfstat_volumegroup");
   exit(-1);
}

/* Allocate enough memory to hold all the structures */
vg = (perfstat_volumegroup_t *)calloc(vg_count, sizeof(perfstat_volumegroup_t));
if (vg == NULL){
   perror(".malloc");
   exit(-1);
}

/* Call the API to get the data */
rc = perfstat_volumegroup(&first,vg,sizeof(perfstat_volumegroup_t),vg_count); 
/* check the return code for any error */
if (rc <= 0){
   perror("perfstat_volumegroup ");
   exit(-1);
}
for(i=0;i<vg_count;i++){
    printf("Volume group name=%s\n",vg[i].name);
    printf("Number of physical volumes in the volume group=%lld\n",vg[i].total_disks);

Performance Tools Guide and Reference  163



    printf("Number of active physical volumes in the volume group=%lld\n",vg[i].active_disks);
    printf("Number of logical volumes in the volume group=%lld\n",vg[i].total_logical_volumes);
    printf("Number of logical volumes opened in the volume group=%lld\n",vg[i].opened_logical_volumes);
    printf("Number of read and write requests=%lld\n",vg[i].iocnt);
    printf("Number of Kilobytes read=%lld\n",vg[i].kbreads);
    printf("Number of Kilobytes written=%lld\n",vg[i].kbwrites);
}

/* disable logical volume statistical collection */
perfstat_config(PERFSTAT_DISABLE | PERFSTAT_LV , NULL);

return 0;
}

The program displays an output that is similar to the following example output:

Volume group name=rootvg
Number of physical volumes in the volume group=1
Number of active physical volumes in the volume group=1
Number of logical volumes in the volume group=16
Number of logical volumes opened in the volume group=11
Number of read and write requests=0
Number of Kilobytes read=0
Number of Kilobytes written=0

The preceding program emulates vmstat behavior and also shows how perfstat_volumegroup is used.

WPAR Interfaces
The following are two types of WPAR interfaces:

• The metrics related to a set of components for a WPAR (such as processors, or memory).
• The specific metrics related to individual components on a WPAR (such as a processor, network

interface, or memory page).

All of the following WPAR interfaces use the naming convention perfstat_subsystem_total_wpar, and
use a common signature:

Item Descriptor

perfstat_cpu_total_wpar Retrieves WPAR processor summary usage metrics

perfstat_memory_total_wpar Retrieves WPAR memory summary usage metrics

perfstat_wpar_total Retrieves WPAR information metrics

perfstat_memory_page_wpar Retrieves WPAR memory page usage metrics

The signature used by the subsystem_total interfaces, except for perfstat_memory_page_wpar, is as
follows:

int perfstat_subsystem_total_wpar(perfstat_id_wpar_t *name,
                             perfstat_subsystem_total_t *userbuff,
                             int sizeof_struct,
                             int desired_number);

The signature used by the perfstat_memory_page_wpar interface is as follows:

int perfstat_memory_page_wpar(perfstat_id_wpar_t *name,
                  perfstat_psize_t *psize,            
                             perfstat_subsystem_total_t *userbuff,
                             int sizeof_struct,
                             int desired_number);

The usage of the parameters for all of the interfaces is as follows:

164  AIX Version 7.2: Performance Tools Guide and Reference



Item Descriptor

perfstat_id_wpar_t *name The WPAR ID or WPAR name for which the metrics
must be retrieved.

Note: When called inside of a WPAR environment,
the name must be NULL.

perfstat_subsystem_total_t *userbuff A memory area with enough space for the returned
structure.

int sizeof_struct The size of the perfstat_memory_total_wpar_t
structure.

int desired_number The number of different page size statistics to be
collected.

The number of structures copied and returned without errors use the return value of 1. If there are errors,
the return value is -1.

An exception to this scheme is perfstat_wpar_total. For this function, when name=NULL, userbuff=NULL
and desired_number=0, the total number of perfstat_wpar_total_t structures available is returned.

To retrieve all perfstat_wpar_total_t structures, select one of the following methods:

• Determine the number of structures and allocate the required memory to hold all structure at one time.
You can then call the appropriate API to retrieve all structures using one call.

• Allocate a fixed set of structures and repeatedly call the API to get the next number of structures, each
time passing the name returned by the previous call. Start the process by using one of the following
queries:

– wparname set to ""
– FIRST_WPARNAME
– wpar_id set to -1
– FIRST_WPARID

Repeat the process until the wparname is returned equal to “ or the wpar_id is returned equal to -1.

The perfstat_id_wpar_total interface returns a set of structures of type perfstat_id_wpar_total_t, which
is defined in the libperfstat.h file. Selected fields from the perfstat_id_wpar_total_t structure include:

Item Descriptor

spec Select WPAR ID, WPAR Name, or the RSET Handle from the union

wpar_id Specifies the WPAR ID

wparname Specifies the WPAR Name

rset Specifies the RSET Handle of the rset associated with the WPAR

name Reserved for future use, must be NULL

The following sections provide examples of the type of data returned and code using each of the
interfaces.

perfstat_wpar_total Interface
The perfstat_wpar_total interface returns a set of structures of type perfstat_wpar_total_t, which is
defined in the libperfstat.h file.

Selected fields from the perfstat_wpar_total_t structure include:

Item Descriptor

Type WPAR type.

Performance Tools Guide and Reference  165



Item Descriptor

online_cpus The number of virtual processors currently allocated to the partition rset
or the number of virtual processors currently allocated to the system
partition.

online_memory The amount of memory currently allocated to the system partition.

cpu_limit The maximum limit of processor resources this WPAR consumes. The
processor limit is in 100ths of percentage units.

Several other paging-space-related metrics (such as number of system calls, number of reads, writes,
forks, execs, and load average) are also returned. For a complete list of other paging-space-relate
metrics, see the perfstat_wpar_total_t section in the libperfstat.h header file in Files Reference.

The following program emulates wparstat behavior and also shows an example of how
perfstat_wpar_total is used from the global environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
    perfstat_wpar_total_t *winfo;
    perfstat_id_wpar_t wparid;
    int tot, rc, i;

    tot = perfstat_wpar_total(NULL, NULL, sizeof(perfstat_wpar_total_t), 0);

    if (tot < 0) {
        perror("Error in perfstat_wpar_total");
        exit(-1);
    }

    if (tot == 0) {
     printf("No WPARs found in the system\n");
     exit(-1);
    }
    
    /* allocate enough memory for all the structures */
    winfo = calloc(tot,sizeof(perfstat_wpar_total_t));    
    if(winfo==NULL){
    printf("No sufficient memory\n");
    exit(-1);
    }

    /* Retrieve all WPARs */
    bzero(&wparid, sizeof(perfstat_id_wpar_t));
    wparid.spec = WPARNAME;
    strcpy(wparid.u.wparname,FIRST_WPARNAME);
    rc = perfstat_wpar_total(&wparid, winfo, sizeof(perfstat_wpar_total_t), tot);

    if (rc < 0) {
        perror("Error in perfstat_wpar_total");
        exit(-1);
    }

    for(i=0;i<tot;i++){
        printf("Name of the Workload Partition=%s\n",winfo[i].name);
    printf("Workload partition identifier=%u\n",winfo[i].wpar_id);
    printf("Number of Virtual CPUs in partition rset=%d\n",winfo[i].online_cpus);
    printf("Amount of memory currently online in Global Partition=%lld\n",winfo[i].online_memory);
    printf("Number of processor units this partition is entitled to receive=%d
\n",winfo[i].entitled_proc_capacity);
    printf("\n");
    }

    return(0);
}

The program displays an output that is similar to the following example output:

Name of the Workload Partition=test
Workload partition identifier=1
Number of Virtual CPUs in partition rset=2

166  AIX Version 7.2: Performance Tools Guide and Reference



Amount of memory currently online in Global Partition=4096
Number of processor units this partition is entitled to receive=100

The following code shows an example of how perfstat_wpar_total is used from the WPAR environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
    perfstat_wpar_total_t *winfo;
    perfstat_id_wpar_t wparid;
    int tot, rc, i;

    tot = perfstat_wpar_total(NULL, NULL, sizeof(perfstat_wpar_total_t), 0);

    if (tot < 0) {
        perror("Error in perfstat_wpar_total");
        exit(-1);
    }

    if (tot == 0) {
     printf("No WPARs found in the system\n");
     exit(-1);
    }
    
    /* allocate enough memory for all the structures */
    winfo = calloc(tot,sizeof(perfstat_wpar_total_t));    
    if(winfo==NULL){
    printf("No sufficient memory\n");
    exit(-1);
    }

   rc = perfstat_wpar_total(NULL, winfo, sizeof(perfstat_wpar_total_t), tot);

    if (rc < 0) {
        perror("Error in perfstat_wpar_total");
        exit(-1);
    }

    for(i=0;i<tot;i++){
        printf("Name of the Workload Partition=%s\n",winfo[i].name);
    printf("Workload partition identifier=%u\n",winfo[i].wpar_id);
    printf("Number of Virtual CPUs in partition rset=%d\n",winfo[i].online_cpus);
    printf("Amount of memory currently online in Global Partition=%lld\n",winfo[i].online_memory);
    printf("Number of processor units this partition is entitled to receive=%d
\n",winfo[i].entitled_proc_capacity);
    printf("\n");
    }

    return(0);
}

perfstat_cpu_total_wpar Interface
The perfstat_cpu_total_wpar interface returns a set of structures of type perfstat_cpu_total_wpar_t,
which is defined in the libperfstat.h file.

Selected fields from the perfstat_cpu_total_wpar_t structure include:

Item Descriptor

processorHz Processor speed in Hertz (from ODM)

Description Processor type (from ODM)

Ncpus Current number of active processors available to the WPAR

ncpus_cfg Number of configured processors; that is, the maximum number of
processors that this copy of AIX® can handle simultaneously

Puser Total number of physical processor ticks spent in user mode

Psys Total number of physical processor ticks spent in system (kernel) mode

Piddle Total number of physical processor ticks spent idle with no I/O pending

Pwait Total number of physical processor ticks spent idle with I/O pending

Performance Tools Guide and Reference  167



Several other paging-space-related metrics (such as number of system calls, number of reads, writes,
forks, execs, and load average) are also returned. For a complete list of other paging-space-related
metrics, see the perfstat_cpu_total_wpar_t section in the libperfstat.h header file.

The following program emulates wparstat behavior and also shows an example of how
perfstat_cpu_total_wpar_t is used from the global environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
    perfstat_cpu_total_wpar_t *cpustats;
    perfstat_id_wpar_t wparid;
    perfstat_wpar_total_t *winfo;
    int i,j,rc,totwpars;

    /* Retrieve total number of WPARs in the system */
    totwpars = perfstat_wpar_total(NULL, NULL, sizeof(perfstat_wpar_total_t), 0);
    if (totwpars < 0) {

        perror("Error in perfstat_wpar_total");
        exit(-1);
    }

    if (totwpars == 0) {
        printf("No WPARs found in the system\n");
        exit(-1);
    }

    /* allocate enough memory for all the structures */
    winfo = calloc(totwpars,sizeof(perfstat_wpar_total_t));

    /* Retrieve all WPARs */
    bzero(&wparid, sizeof(perfstat_id_wpar_t));
    wparid.spec = WPARNAME;
    strcpy(wparid.u.wparname, "test");
    rc = perfstat_wpar_total(&wparid, winfo, sizeof(perfstat_wpar_total_t), totwpars);

    if (rc <= 0) {
        perror("Error in perfstat_wpar_total");
        exit(-1);
    }

    for(i=0; i < totwpars; i++)
    {
        bzero(&wparid, sizeof(perfstat_id_wpar_t));
        wparid.spec = WPARID;
        wparid.u.wpar_id = winfo[i].wpar_id;

        cpustats=calloc(1,sizeof(perfstat_cpu_total_wpar_t));
        rc =  perfstat_cpu_total_wpar(&wparid, cpustats, sizeof(perfstat_cpu_total_wpar_t), 1);
        if (rc != 1) {
            perror("perfstat_cpu_total_wpar");
            exit(-1);
        }
        for(j=0;j<rc;j++){
           printf("Number of active logical processors in Global=%d\n",cpustats[j].ncpus);
           printf("Processor description=%s\n",cpustats[j].description);
           printf("Processor speed in Hz=%lld\n",cpustats[j].processorHZ);
           printf("Number of process switches=%lld\n",cpustats[j].pswitch);
           printf("Number of forks system calls executed=%lld\n",cpustats[j].sysfork);
           printf("Length of the run queue=%lld\n",cpustats[j].runque);
           printf("Length of the swap queue=%lld\n",cpustats[j].swpque);
        }
    }
}

The program displays an output that is similar to the following example output:

Number of active logical processors in Global=8
Processor description=PowerPC_POWER7
Processor speed in Hz=3304000000
Number of process switches=1995
Number of forks system calls executed=322
Length of the run queue=3
Length of the swap queue=1

168  AIX Version 7.2: Performance Tools Guide and Reference



The following code shows an example of how perfstat_cpu_total_wpar is used from the WPAR
environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
    perfstat_cpu_total_wpar_t *cpustats;
    perfstat_id_wpar_t wparid;
    perfstat_wpar_total_t *winfo;
    int i,j,rc,totwpars;

    /* Retrieve total number of WPARs in the system */
    totwpars = perfstat_wpar_total(NULL, NULL, sizeof(perfstat_wpar_total_t), 0);
    if (totwpars < 0) {

        perror("Error in perfstat_wpar_total");
        exit(-1);
    }

    if (totwpars == 0) {
        printf("No WPARs found in the system\n");
        exit(-1);
    }

    /* allocate enough memory for all the structures */
    winfo = calloc(totwpars,sizeof(perfstat_wpar_total_t));

    /* Retrieve all WPARs */
    bzero(&wparid, sizeof(perfstat_id_wpar_t));
    wparid.spec = WPARNAME;
    strcpy(wparid.u.wparname, "test");
    rc = perfstat_wpar_total(NULL, winfo, sizeof(perfstat_wpar_total_t), totwpars);
    
    if (rc <= 0) {
        perror("Error in perfstat_wpar_total");
        exit(-1);
    }

    for(i=0; i < totwpars; i++)
    {
        bzero(&wparid, sizeof(perfstat_id_wpar_t));
        wparid.spec = WPARID;
        wparid.u.wpar_id = winfo[i].wpar_id;

        cpustats=calloc(1,sizeof(perfstat_cpu_total_wpar_t));
        rc =  perfstat_cpu_total_wpar(NULL, cpustats, sizeof(perfstat_cpu_total_wpar_t), 1);
        if (rc != 1) {
            perror("perfstat_cpu_total_wpar");
            exit(-1);
        }
        for(j=0;j<rc;j++){
           printf("Number of active logical processors in Global=%d\n",cpustats[j].ncpus);
           printf("Processor description=%s\n",cpustats[j].description);
           printf("Processor speed in Hz=%lld\n",cpustats[j].processorHZ);
           printf("Number of process switches=%lld\n",cpustats[j].pswitch);
           printf("Number of forks system calls executed=%lld\n",cpustats[j].sysfork);
           printf("Length of the run queue=%lld\n",cpustats[j].runque);
           printf("Length of the swap queue=%lld\n",cpustats[j].swpque);
        }
    }
}

perfstat_memory_total_wpar Interface
The perfstat_memory_total_wpar interface returns a set of structures of type
perfstat_memory_total_wpar_t, which is defined in the libperfstat.h file.

Selected fields from the perfstat_memory_total_wpar_t structure include:

Item Descriptor

real_total Amount of Global real memory (in units of 4 KB pages)

real_free Amount of Global free real memory (in units of 4 KB pages)

real_pinned Amount of WPAR pinned memory (in units of 4 KB pages)

Performance Tools Guide and Reference  169



Item Descriptor

Pgins Number of WPAR pages paged in

Pgouts Number of WPAR pages paged out

Several other paging-space-related metrics (such as number of system calls, number of reads, writes,
forks, execs, and load average) are also returned. For a complete list of other paging-space-related
metrics, see the perfstat_memory_total_wpar_t section in the libperfstat.h header file.

The following program emulates wparstat behavior and also shows an example of how
perfstat_memory_total_wpar is used from the global environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
    perfstat_memory_total_wpar_t *memstats;
    perfstat_id_wpar_t wparid;
    perfstat_wpar_total_t *winfo;
    int i,j,rc,totwpars;

    /* Retrieve total number of WPARs in the system */
    totwpars = perfstat_wpar_total(NULL, NULL, sizeof(perfstat_wpar_total_t), 0);
    if (totwpars < 0) {
        perror("Error in perfstat_wpar_total");
        exit(-1);
    }
    if (totwpars == 0) {
        printf("No WPARs found in the system\n");
        exit(-1);
    }

    /* allocate enough memory for all the structures */
    winfo = calloc(totwpars,sizeof(perfstat_wpar_total_t));

    /* Retrieve all WPARs */
    bzero(&wparid, sizeof(perfstat_id_wpar_t));
    wparid.spec = WPARNAME;
    strcpy(wparid.u.wparname, "test");
    rc = perfstat_wpar_total(&wparid, winfo, sizeof(perfstat_wpar_total_t), totwpars);
    if (rc <= 0) {

        perror("Error in perfstat_wpar_total");
        exit(-1);
    }
    for(i=0; i < totwpars; i++)
    {

        bzero(&wparid, sizeof(perfstat_id_wpar_t));
        wparid.spec = WPARID;
        wparid.u.wpar_id = winfo[i].wpar_id;

        memstats=calloc(1,sizeof(perfstat_memory_total_wpar_t));
        rc =  perfstat_memory_total_wpar(&wparid, memstats, sizeof(perfstat_memory_total_wpar_t), 1);
        if (rc != 1) {
            perror("perfstat_memory_total_wpar");
            exit(-1);
        }
for(j=0;j<rc;j++){
                printf("Global total real memory=%lld\n",memstats[j].real_total);
                printf("Global free real memory=%lld\n",memstats[j].real_free);
                printf("Real memory which is pinned=%lld\n",memstats[j].real_pinned);
                printf("Real memory which is in use=%lld\n",memstats[j].real_inuse);
                printf("Number of page faults=%lld\n",memstats[j].pgexct);
                printf("Number of pages paged in=%lld\n",memstats[j].pgins);
                printf("Number of pages paged out=%lld\n",memstats[j].pgouts);
        }
    }
}

The program produces output that is similar to the following output:

Global total real memory=1048576
Global free real memory=721338
Real memory which is pinned=464
Real memory which is in use=2886

170  AIX Version 7.2: Performance Tools Guide and Reference



Number of page faults=37176802
Number of pages paged in=1304
Number of pages paged out=64

The following code shows an example of how perfstat_memory_total_wpar is used from the WPAR
environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
    perfstat_memory_total_wpar_t *memstats;
    perfstat_id_wpar_t wparid;
    perfstat_wpar_total_t *winfo;
    int i,j,rc,totwpars;

    /* Retrieve total number of WPARs in the system */
    totwpars = perfstat_wpar_total(NULL, NULL, sizeof(perfstat_wpar_total_t), 0);
    if (totwpars < 0) {
        perror("Error in perfstat_wpar_total");
        exit(-1);
    }
    if (totwpars == 0) {
        printf("No WPARs found in the system\n");
        exit(-1);
    }

    /* allocate enough memory for all the structures */
    winfo = calloc(totwpars,sizeof(perfstat_wpar_total_t));

    /* Retrieve all WPARs */
    bzero(&wparid, sizeof(perfstat_id_wpar_t));
    wparid.spec = WPARNAME;
    strcpy(wparid.u.wparname, "test");
    rc = perfstat_wpar_total(NULL, winfo, sizeof(perfstat_wpar_total_t), totwpars);
    if (rc <= 0) {

        perror("Error in perfstat_wpar_total");
        exit(-1);
    }
    for(i=0; i < totwpars; i++)
    {

        bzero(&wparid, sizeof(perfstat_id_wpar_t));
        wparid.spec = WPARID;
        wparid.u.wpar_id = winfo[i].wpar_id;

        memstats=calloc(1,sizeof(perfstat_memory_total_wpar_t));
        rc =  perfstat_memory_total_wpar(NULL, memstats, sizeof(perfstat_memory_total_wpar_t), 1);
        if (rc != 1) {
            perror("perfstat_memory_total_wpar");
            exit(-1);
        }
for(j=0;j<rc;j++){
                printf("Global total real memory=%lld\n",memstats[j].real_total);
                printf("Global free real memory=%lld\n",memstats[j].real_free);
                printf("Real memory which is pinned=%lld\n",memstats[j].real_pinned);
                printf("Real memory which is in use=%lld\n",memstats[j].real_inuse);
                printf("Number of page faults=%lld\n",memstats[j].pgexct);
                printf("Number of pages paged in=%lld\n",memstats[j].pgins);
                printf("Number of pages paged out=%lld\n",memstats[j].pgouts);
        }
    }
}

perfstat_memory_page_wpar Interface
The perfstat_memory_page_wpar interface returns a set of structures of type
perfstat_memory_page_wpar_t, which is defined in the libperfstat.h file.

Selected fields from the perfstat_memory_page_wpar_t structure include:

Item Descriptor

Psize Page size in bytes

real_total Amount of Global real memory (in units of the psize)

Performance Tools Guide and Reference  171



Item Descriptor

real_pinned Amount of WPAR pinned memory (in units of psize)

Pgins Number of WPAR pages paged in

Pgouts Number of WPAR pages paged out

Several other paging-space-related metrics (such as number of system calls, number of reads, writes,
forks, execs, and load average) are also returned. For a complete list of other paging-space-related
metrics, see the perfstat_memory_page_wpar_t section in the libperfstat.h header file.

The following program emulates vmstat behavior and also shows an example of how
perfstat_memory_page_wpar is used from the global environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(){
int i, psizes, rc;
perfstat_memory_page_wpar_t *pageinfo;
perfstat_id_wpar_t wparid;
wparid.spec = WPARNAME;
strcpy(wparid.u.wparname,"test");
perfstat_psize_t psize;

psize.psize = FIRST_PSIZE;
/* Get the number of page sizes */
psizes = perfstat_memory_page_wpar(&wparid, NULL, NULL, sizeof(perfstat_memory_page_wpar_t),0);
/*check for error */
if (psizes <= 0 ){
    perror("perfstat_memory_page_wpar ");
    exit(-1);
}

/*Allocate enough memory to hold the structures */
pageinfo = (perfstat_memory_page_wpar_t *)calloc(psizes, sizeof(perfstat_memory_page_wpar_t));

/*check for memory allocation */
if (!pageinfo){
   perror("calloc");
   exit(-1);
}

/* call the API and get the data */
rc = perfstat_memory_page_wpar(&wparid, &psize, pageinfo , 
sizeof(perfstat_memory_page_wpar_t), psizes);
/* check the return values for any error */
if (rc <= 0){
    perror("perfstat_memory_page_wpar ");
    exit(-1);
}

for(i=0;i<psizes;i++){
    printf("Page size in bytes=%lld\n",pageinfo[i].psize);
    printf("Number of real memory frames of this page size=%lld\n",pageinfo[i].real_total);
    printf("Number of pages pinned=%lld\n",pageinfo[i].real_pinned);
    printf("Number of pages in use=%lld\n",pageinfo[i].real_inuse);
    printf("Number of page faults=%lld\n",pageinfo[i].pgexct);
    printf("Number of pages paged in=%lld\n",pageinfo[i].pgins);
    printf("Number of pages paged out=%lld\n",pageinfo[i].pgouts);
    printf("Number of page ins from paging space=%lld\n",pageinfo[i].pgspins);
    printf("Number of page outs from paging space=%lld\n",pageinfo[i].pgspouts);
    printf("Number of page scans by clock=%lld\n",pageinfo[i].scans);
    printf("Number of page steals=%lld\n",pageinfo[i].pgsteals);
}
}

The program produces output that is similar to the following output:

Page size in bytes=4096
Number of real memory frames of this page size=572640
Number of pages pinned=143
Number of pages in use=2542
Number of page faults=1613483
Number of pages paged in=1296

172  AIX Version 7.2: Performance Tools Guide and Reference



Number of pages paged out=58
Number of page ins from paging space=0
Number of page outs from paging space=0
Number of page scans by clock=0
Number of page steals=0
Page size in bytes=65536
Number of real memory frames of this page size=29746
Number of pages pinned=20
Number of pages in use=20
Number of page faults=25294
Number of pages paged in=0
Number of pages paged out=0
Number of page ins from paging space=0
Number of page outs from paging space=0
Number of page scans by clock=0
Number of page steals=0
Page size in bytes=0
Number of real memory frames of this page size=0
Number of pages pinned=0
Number of pages in use=0
Number of page faults=0
Number of pages paged in=0
Number of pages paged out=0
Number of page ins from paging space=0
Number of page outs from paging space=0
Number of page scans by clock=0
Number of page steals=0
Page size in bytes=0
Number of real memory frames of this page size=0
Number of pages pinned=0
Number of pages in use=0
Number of page faults=0
Number of pages paged in=0
Number of pages paged out=0
Number of page ins from paging space=0
Number of page outs from paging space=0
Number of page scans by clock=0
Number of page steals=0

The following code shows an example of how perfstat_memory_page_wpar is used from the WPAR
environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(){
int i, psizes, rc;
perfstat_memory_page_wpar_t *pageinfo;
perfstat_id_wpar_t wparid;
perfstat_psize_t psize;

psize.psize = FIRST_PSIZE;
/* Get the number of page sizes */
psizes = perfstat_memory_page_wpar(&wparid, NULL, NULL, sizeof(perfstat_memory_page_wpar_t),0);
/*check for error */
if (psizes <= 0 ){
    perror("perfstat_memory_page_wpar ");
    exit(-1);
}

/*Allocate enough memory to hold the structures */
pageinfo = (perfstat_memory_page_wpar_t *)calloc(psizes, sizeof(perfstat_memory_page_wpar_t));

/*check for memory allocation */
if (!pageinfo){
   perror("calloc");
   exit(-1);
}

/* call the API and get the data */
rc = perfstat_memory_page_wpar(NULL, &psize, pageinfo , 
sizeof(perfstat_memory_page_wpar_t), psizes);
/* check the return values for any error */
if (rc <= 0){
    perror("perfstat_memory_page_wpar ");
    exit(-1);
}

for(i=0;i<psizes;i++){

Performance Tools Guide and Reference  173



    printf("Page size in bytes=%lld\n",pageinfo[i].psize);
    printf("Number of real memory frames of this page size=%lld\n",pageinfo[i].real_total);
    printf("Number of pages pinned=%lld\n",pageinfo[i].real_pinned);
    printf("Number of pages in use=%lld\n",pageinfo[i].real_inuse);
    printf("Number of page faults=%lld\n",pageinfo[i].pgexct);
    printf("Number of pages paged in=%lld\n",pageinfo[i].pgins);
    printf("Number of pages paged out=%lld\n",pageinfo[i].pgouts);
    printf("Number of page ins from paging space=%lld\n",pageinfo[i].pgspins);
    printf("Number of page outs from paging space=%lld\n",pageinfo[i].pgspouts);
    printf("Number of page scans by clock=%lld\n",pageinfo[i].scans);
    printf("Number of page steals=%lld\n",pageinfo[i].pgsteals);
}
}

RSET Interfaces
The RSET interface reports processor metrics related to an RSET.

All of the following AIX 6.1 RSET interfaces use the naming convention perfstat_subsystem[_total]_rset,
and use a common signature:

Item Descriptor

perfstat_cpu_total_rset Retrieves processor summary metrics of the processors in an
RSET

perfstat_cpu_rset Retrieves per processor metrics of the processors in an RSET

The signature used by the previous“perfstat_memory_page_wpar Interface” on page 171 is as follows:

int perfstat_cpu_rset(perfstat_wpar_id_t *name,

                       perfstat_cpu_t * userbuff,

                       int sizeof_struct,

                       int desired_number);

int perfstat_cpu_total_rset(perfstat_wpar_id_t *name,

                       perfstat_cpu_total_t * userbuff,

                       int sizeof_struct,

                       int desired_number);

The usage of the parameters for all of the interfaces is as follows:

Item Descriptor

perfstat_id_wpar_t *name Specifies the RSET identifier and the name of the first component (for
example, cpu0) for which statistics are desired. A structure containing
the specifier, which can be an RSETHANDLE, WPARID, or WPARNAME, a
union to specify the wpar ID, or wpar name or rsethandle and a char *
field to specify the name of the first component. To start from the first
component of a subsystem, set the char* field of the name parameter to
"" (empty string). You can also use the macro FIRST_CPU defined in the
libperfstat.h file.

perfstat_cpu[_total]_t
*userbuff

A pointer to a memory area with enough space for the returned
structures.

int sizeof_struct Should be set to sizeof(perfstat_cpu[_total]_t).

int desired_number The number of structures of type perfstat_cpu[_total]_t to return in
userbuff.

174  AIX Version 7.2: Performance Tools Guide and Reference



The number of structures copied and returned without errors uses the return value of 1. If there are
errors, the return value is -1. The field name is either set to NULL or to the name of the next structure
available.

An exception to this scheme is when name=NULL, userbuff=NULL, and desired_number=0, the total
number of structures available is returned.

To retrieve all structures of a given type, either ask first for their number, allocate enough memory to hold
them all at once, then call the appropriate API to retrieve them all in one call. Else, allocate a fixed set of
structures and repeatedly call the API to get the next such number of structures, each time passing the
name returned by the previous call. Start the process with the name set to "" or FIRST_CPU, and repeat
the process until the name returned is equal to "".

The following sections provide examples of the type of data returned and code using each of the
interfaces.

perfstat_cpu_rset interface
The perfstat_cpu_rset interface returns a set of structures of type perfstat_cpu_t, which is defined in the
libperfstat.h file.

Selected fields from the perfstat_cpu_t structure include:

Item Descriptor

name Logical processor name (cpu0, cpu1, and so on)

user Number of clock ticks spent in user mode

sys Number of clock ticks spent in system (kernel) mode

idle Number of clock ticks spent idle with no I/O pending

wait Number of clock ticks spent idle with I/O pending

syscall Number of system call executed

Several other paging-space-related metrics (such as number of forks, reads, writes, and execs) are also
returned. For a complete list of other paging-space-related metrics, see the perfstat_cpu_t section in the
libperfstat.h header file.

The following code shows an example of how perfstat_cpu_rset is used from the global environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
   int i, retcode, rsetcpus;
   perfstat_id_wpar_t wparid;
   perfstat_cpu_t *statp;
   wparid.spec = WPARNAME;
   strcpy(wparid.u.wparname,NULL);
 
   /* give the wparname "wpar1" as the identifier */
   strcpy(wparid.u.wparname, "test");
   
   /* check how many perfstat_cpu_t structures are available */
   rsetcpus =  perfstat_cpu_rset(&wparid, NULL, sizeof(perfstat_cpu_t), 0);
   
   if (rsetcpus < 0 ){
       perror("perfstat_cpu_rset");
       exit(-1);
   }

   /*allocate memory for perfstat_cpu_t structures */
   statp = (perfstat_cpu_t *)calloc(rsetcpus , sizeof(perfstat_cpu_t)); 

   if(!statp){
      perror("calloc");
   }

   /*call the API and get the values */

   retcode = perfstat_cpu_rset(&wparid, statp,sizeof(perfstat_cpu_t), rsetcpus);

Performance Tools Guide and Reference  175



   
   if(retcode < 0){
      perror("perfstat_cpu_rset");
   }

   for(i=0;i<retcode;i++){
    printf("Logical processor name=%s\n",statp[i].name);
    printf("Raw number of clock ticks spent in user mode=%lld\n",statp[i].user);
    printf("Raw number of clock ticks spent in system mode=%lld\n",statp[i].sys);
    printf("Raw number of clock ticks spent in idle mode=%lld\n",statp[i].idle);
    printf("Raw number of clock ticks spent in wait mode=%lld\n",statp[i].wait);        
   }
   return 0;
}

The program displays an output that is similar to the following example output:

Logical processor name=cpu0
Raw number of clock ticks spent in user mode=2050
Raw number of clock ticks spent in system mode=22381
Raw number of clock ticks spent in idle mode=6863114
Raw number of clock ticks spent in wait mode=3002
Logical processor name=cpu1
Raw number of clock ticks spent in user mode=10
Raw number of clock ticks spent in system mode=651
Raw number of clock ticks spent in idle mode=6876627
Raw number of clock ticks spent in wait mode=42
Logical processor name=cpu2
Raw number of clock ticks spent in user mode=0
Raw number of clock ticks spent in system mode=610
Raw number of clock ticks spent in idle mode=6876712
Raw number of clock ticks spent in wait mode=0
Logical processor name=cpu3
Raw number of clock ticks spent in user mode=0
Raw number of clock ticks spent in system mode=710
Raw number of clock ticks spent in idle mode=6876612
Raw number of clock ticks spent in wait mode=0
Logical processor name=cpu4
Raw number of clock ticks spent in user mode=243
Raw number of clock ticks spent in system mode=1659
Raw number of clock ticks spent in idle mode=6875427
Raw number of clock ticks spent in wait mode=62
Logical processor name=cpu5
Raw number of clock ticks spent in user mode=0
Raw number of clock ticks spent in system mode=207327
Raw number of clock ticks spent in idle mode=6848952
Raw number of clock ticks spent in wait mode=0
Logical processor name=cpu6
Raw number of clock ticks spent in user mode=0
Raw number of clock ticks spent in system mode=207904
Raw number of clock ticks spent in idle mode=6849969
Raw number of clock ticks spent in wait mode=0
Logical processor name=cpu7
Raw number of clock ticks spent in user mode=0
Raw number of clock ticks spent in system mode=207375
Raw number of clock ticks spent in idle mode=6848209
Raw number of clock ticks spent in wait mode=0

The following code shows an example of how perfstat_cpu_rset is used from the WPAR environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
   int i, retcode, rsetcpus;
   perfstat_id_wpar_t wparid;
   perfstat_cpu_t *statp;
      
   /* check how many perfstat_cpu_t structures are available */
   rsetcpus =  perfstat_cpu_rset(NULL, NULL, sizeof(perfstat_cpu_t), 0);
   
   if (rsetcpus < 0 ){
       perror("perfstat_cpu_rset");
       exit(-1);
   }

   /*allocate memory for perfstat_cpu_t structures */
   statp = (perfstat_cpu_t *)calloc(rsetcpus , sizeof(perfstat_cpu_t)); 

   if(!statp){

176  AIX Version 7.2: Performance Tools Guide and Reference



      perror("calloc");
   }

   /*call the API and get the values */

   retcode = perfstat_cpu_rset(NULL, statp,sizeof(perfstat_cpu_t), rsetcpus);
   
   if(retcode < 0){
      perror("perfstat_cpu_rset");
   }

   for(i=0;i<retcode;i++){
    printf("Logical processor name=%s\n",statp[i].name);
    printf("Raw number of clock ticks spent in user mode=%lld\n",statp[i].user);
    printf("Raw number of clock ticks spent in system mode=%lld\n",statp[i].sys);
    printf("Raw number of clock ticks spent in idle mode=%lld\n",statp[i].idle);
    printf("Raw number of clock ticks spent in wait mode=%lld\n",statp[i].wait);        
   }
   return 0;
}

perfstat_cpu_total_rset interface
The perfstat_cpu_total_rset interface returns a set of structures of type perfstat_cpu_total_t, which is
defined in the libperfstat.h file.

Selected fields from the perfstat_cpu_t structure include:

Item Descriptor

processorHz Processor speed in Hertz (from ODM)

description Processor type (from ODM)

CPUs Current number of active processors

ncpus_cfg Number of configured processors (maximum number of processors that this
copy of AIX can handle simultaneously)

ncpus_high Maximum number of active processors; that is, the maximum number of
active processors since the last reboot

User Total number of clock ticks spent in user mode

Sys Total number of clock ticks spent in system (kernel) mode

Idle Total number of clock ticks spent idle with no I/O pending

Wait Total number of clock ticks spent idle with I/O pending

Several other paging-space-related metrics (such as number of forks, read, writes, and execs) are also
returned. For a complete list of other paging-space-related metrics, see the perfstat_cpu_total_t section
in the libperfstat.h header file.

The following code shows an example of how the perfstat_cpu_total_rset interface is used from the
global environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
    perfstat_cpu_total_t *cpustats;
    perfstat_id_wpar_t wparid;
    int rc,i;
    wparid.spec = WPARNAME;
  
    rc =  perfstat_cpu_total_rset(NULL,NULL,sizeof(perfstat_cpu_total_t),0); 
    if (rc <= 0) {
        perror("perfstat_cpu_total_rset");
        exit(-1);
    }

    cpustats=calloc(rc,sizeof(perfstat_cpu_total_t));
    if(cpustats==NULL){
       perror("MALLOC error:");

Performance Tools Guide and Reference  177



       exit(-1);
    }

    strcpy(wparid.u.wparname,"test");
    rc =  perfstat_cpu_total_rset(&wparid, cpustats, sizeof(perfstat_cpu_total_t), rc);

    if (rc <= 0) {
        perror("perfstat_cpu_total_rset");
        exit(-1);
    }
    for(i=0;i<rc;i++){
    printf("Number of active logical processors=%d\n",cpustats[i].ncpus);
    printf("Number of configured processors=%d\n",cpustats[i].ncpus_cfg);
    printf("Processor description=%s\n",cpustats[i].description);
    printf("Processor speed in Hz=%lld\n",cpustats[i].processorHZ);
    printf("Raw total number of clock ticks spent in user mode=%lld\n",cpustats[i].user);
    printf("Raw total number of clock ticks spent in system mode=%lld\n",cpustats[i].sys);
    printf("Raw total number of clock ticks spent idle=%lld\n",cpustats[i].idle);
    printf("Raw total number of clock ticks spent wait=%lld\n",cpustats[i].wait);
    }
    return 0;
}

The program produces output that is similar to the following output:

Number of active logical processors=8
Number of configured processors=8
Processor description=PowerPC_POWER7
Processor speed in Hz=3304000000
Raw total number of clock ticks spent in user mode=86400
Raw total number of clock ticks spent in system mode=30636100
Raw total number of clock ticks spent idle=2826632699
Raw total number of clock ticks spent wait=852000

The following code shows an example of how perfstat_cpu_total_rset is used from the WPAR
environment:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>
int main(){
    perfstat_cpu_total_t *cpustats;
    perfstat_id_wpar_t wparid;
    int rc,i;
      
    rc =  perfstat_cpu_total_rset(NULL,NULL,sizeof(perfstat_cpu_total_t),0); 
    if (rc <= 0) {
        perror("perfstat_cpu_total_rset");
        exit(-1);
    }

    cpustats=calloc(rc,sizeof(perfstat_cpu_total_t));
    if(cpustats==NULL){
       perror("MALLOC error:");
       exit(-1);
    }

    rc =  perfstat_cpu_total_rset(NULL, cpustats, sizeof(perfstat_cpu_total_t), rc);

    if (rc <= 0) {
        perror("perfstat_cpu_total_rset");
        exit(-1);
    }
    for(i=0;i<rc;i++){
    printf("Number of active logical processors=%d\n",cpustats[i].ncpus);
    printf("Number of configured processors=%d\n",cpustats[i].ncpus_cfg);
    printf("Processor description=%s\n",cpustats[i].description);
    printf("Processor speed in Hz=%lld\n",cpustats[i].processorHZ);
    printf("Raw total number of clock ticks spent in user mode=%lld\n",cpustats[i].user);
    printf("Raw total number of clock ticks spent in system mode=%lld\n",cpustats[i].sys);
    printf("Raw total number of clock ticks spent idle=%lld\n",cpustats[i].idle);
    printf("Raw total number of clock ticks spent wait=%lld\n",cpustats[i].wait);
    }
    return 0;
}  

178  AIX Version 7.2: Performance Tools Guide and Reference



Cached metrics interfaces
Cached metrics interfaces are used when the system configuration changes to inform the libperfstat API
that it must reset cached metrics, which consist of values that seldom change such as disk size or
processor description.

The following table lists the metrics that are cached:

Object Content Sample value

perfstat_cpu_total char cpu_description
[IDENTIFIER_LENGTH] u_longlong_t
processorHZ

PowerPC_POWER3375000000

perfstat_diskadapt
er

The list of disk adapters The number of disk
adapters u_longlong_t size
u_longlong_t free char description
[IDENTIFIER_LENGTH]

scsi0, scsi1, ide0 3 17344 15296
Wide/Ultra-3 SCSI I/O Controller

perfstat_pagingspa
ce

The list of paging spaces The number of
paging spaces char automatic char
type longlong_t lpsize longlong_t
mbsize char hostname
[IDENTIFIER_LENGTH] char filename
[IDENTIFIER_LENGTH]

hd6 1 1 NFS_PAGING 16
512pompei or rootvg /var/tmp/
nfsswap/swapfile1

perfstat_disk char adapter [IDENTIFIER_LENGTH]
char description
[IDENTIFIER_LENGTH] char vgname
[IDENTIFIER_LENGTH] u_longlong_t
sizeu_longlong_t free

scsi0 16 Bit LVD SCSI Disk Drive
rootvg 17344 15296

perfstat_diskpath char adapter [IDENTIFIER_LENGTH] scsi0

perfstat_netinterfa
ce

char description
[IDENTIFIER_LENGTH]

Standard Ethernet Network
Interface

perfstat_logicalvolu
me

char description
[IDENTIFIER_LENGTH]

Logical volume1

perfstat_volumegro
up

char description
[IDENTIFIER_LENGTH]

Volume group1

You can use the following AIX interfaces to refresh the cached metrics:

Interface Purpose Definition of interface

perfstat_reset Resets every cached metric void perfstat_reset (void);

perfstat_partial_re
set

Resets selected cached metrics or
resets the system's minimum and
maximum counters for disks

void perfstat_partial_reset
(char * name, u_longlong_t
resetmask);

The usage of the parameters for all of the interfaces is as follows:

Parameter Usage

char *name Identifies the name of the component of the cached metric
that must be reset from the libperfstat API cache. If the value
of the parameter is NULL, this signifies all of the components.

Performance Tools Guide and Reference  179



Parameter Usage

u_longlong_t resetmask Identifies the category of the component if the value of the
name parameter is not NULL. The possible values are:

• FLUSH_CPUTOTAL
• FLUSH_DISK
• RESET_DISK_MINMAX
• FLUSH_DISKADAPTER
• FLUSH_DISKPATH
• FLUSH_NETINTERFACE
• FLUSH_PAGINGSPACE
• FLUSH_LOGICALVOLUME
• FLUSH_VOLUMEGROUP

If the value of the name parameter is NULL, the resetmask
parameter value consists of a combination of values. For
example: RESET_DISK_MINMAX|FLUSH_CPUTOTAL|
FLUSH_DISK

The perfstat_reset interface
The perfstat_reset interface resets every cached metric that is stored by the libperfstat API. It also
resets the system's minimum and maximum counters related to disks and paths. To be more selective, it
is advised to use the perfstat_partial_reset interface.

perfstat_partial_reset Interface
The perfstat_partial_reset interface resets the specified cached metrics that are stored by the
libperfstat API.

The perfstat_partial_reset interface can also reset the system's minimum and maximum counters
related to disks and paths. The following table summarizes the various actions of the
perfstat_partial_reset interface:

The resetmask value Action taken when the value of
name is NULL

Action taken when the value of
name is not NULL and a single
resetmask value is set

FLUSH_CPUTOTAL Flushes the speed and
description values in the
perfstat_cputotal_t structure.

Error. The value of errno is set to
EINVAL.

FLUSH_DISK

Flushes the description,
adapter, size, free, and vgname
values in every perfstat_disk_t
structure.Flushes the list of disk
adapters. Flushes the size, free,
and description values in
everyperfstat_diskadapter_t
structure.

Flushes the description,
adapter, size, free, and vgname
values in the specified
perfstat_disk_t structure. Flushes
the adapter value in every
perfstat_diskpath_t structure that
matches the disk name that is
followed by the _Path identifier.
Flushes the size, free, and
description values of each
perfstat_diskadapter_t structure
that is linked to a path leading to
the disk or to the disk itself.

180  AIX Version 7.2: Performance Tools Guide and Reference



The resetmask value Action taken when the value of
name is NULL

Action taken when the value of
name is not NULL and a single
resetmask value is set

RESET_DISK_MINMAX

Resets the following values in every
perfstat_diskadapter_t structure:

• wq_min_time
• wq_max_time
• min_rserv
• max_rserv
• min_wserv
• max_wserv

Error. The value of errno is set to
ENOTSUP.

FLUSH_DISKADAPTER

Flushes the list of disk adapters.
Flushes the size, free, and
description values in every
perfstat_diskadapter_t structure.
Flushes the adapter value in every
perfstat_diskpath_t structure.
Flushes the description and
adapter values in every
perfstat_disk_t structure.

Flushes the list of disk adapters.
Flushes the size, free, and
description values in every
perfstat_diskadapter_t
structure.Flushes the adapter
value in every perfstat_diskpath_t
structure. Flushes the
description and adapter values
in every perfstat_disk_t structure.

FLUSH_DISKPATH Flushes the adapter value in every
perfstat_diskpath_t structure.

Flushes the adapter value in the
specified perfstat_diskpath_t
structure.

FLUSH_PAGINGSPACE Flushes the list of paging spaces.
Flushes the automatic, type,
lpsize, mbsize, hostname,
filename, and vgname values in
every perfstat_pagingspace_t
structure.

Flushes the list of paging spaces.
Flushes the automatic, type,
lpsize, mbsize, hostname,
filename, and vgname values in
the specified
perfstat_pagingspace_t structure.

FLUSH_NETINTERFACE Flushes the description value in
every perfstat_netinterface_t
structure.

Flushes the description value in
the specified
perfstat_netinterface_t structure.

FLUSH_LOGICALVOLUME Flushes the description value in
every perfstat_logicalvolume_t
structure.

Flushes the description value in
every perfstat_logicalvolume_t
structure.

FLUSH_VOLUMEGROUP Flushes the description value in
every perfstat_volumegroup_t
structure.

Flushes the description value in
every perfstat_volumegroup_t
structure.

You can see how to use the perfstat_partial_reset interface in the following example code:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

int main(int argc, char *argv[]) {
   int i, retcode;
   perfstat_id_t diskname;
   perfstat_disk_t *statp;

   /* set name of the disk */
   strcpy(diskname.name, "hdisk0");

   /* we will now reset global system min/max metrics
    * Be careful as this could interact with other programs.

Performance Tools Guide and Reference  181



    */
   perfstat_partial_reset(NULL, RESET_DISK_MINMAX);

   /* min/max values are now reset.
    * We can now wait for some time before checking the variation range.
    */
   sleep(10);

   retcode =  perfstat_disk(NULL, NULL, sizeof(perfstat_disk_t), 0);
   statp = calloc (retcode,sizeof(perfstat_disk_t));
   /* get disk metrics - min/max counters illustrate variations during the
    *                    last 60 seconds unless someone else reset these
    *                    values in the meantime.
    */
   retcode =  perfstat_disk(&diskname, statp, sizeof(perfstat_disk_t), 1);

   /* At this point, we assume the disk free part changes due to chfs for example */

   /* if we get disk metrics here, the free field will be wrong as it was
    * cached by the libperfstat.
    */

   /* That is why we reset cached metrics */
   perfstat_partial_reset("hdisk0", FLUSH_DISK);

   /* we can now get updated disk metrics */
   retcode =  perfstat_disk(&diskname, statp, sizeof(perfstat_disk_t), 1);

   for(i=0;i<retcode;i++){
      printf("Name of the disk=%s\n",statp[i].name);
      printf("Disk description=%s\n",statp[i].description);
      printf("Volume group name=%s\n",statp[i].vgname);
      printf("Size of the disk=%lld\n",statp[i].size);
      printf("Free portion of the disk=%lld\n",statp[i].free);
      printf("Disk block size=%lld\n",statp[i].bsize);
  }
}

The program displays an output that is similar to the following example output:

Name of the disk=hdisk0
Disk description=Virtual SCSI Disk Drive
Volume group name=rootvg
Size of the disk=25568
Free portion of the disk=18752
Disk block size=512

Node interfaces
Node interfaces report metrics related to a set of components or individual components of a remote node
in the cluster. The components include processors or memory, and individual components include a
processor, network interface, or memory page of the remote node in the cluster.

The remote node must belong to one of the clusters of the current node, which uses the perfstat API.

The following node interfaces use theperfstat_subsystem_node as the naming convention and a
common signature:

Item Descriptor

perfstat_cpu_node Retrieves the usage metrics of an individual processor on a
remote node.

perfstat_disk_node Retrieves the usage metrics of an individual disk on a remote
node.

perfstat_diskadapter_node Retrieves the adapter metrics of a disk on a remote node.

perfstat_diskpath_node Retrieves the path metrics of a disk on a remote node.

perfstat_logicalvolume_node Retrieves the usage metrics of a logical volume on a remote
node.

perfstat_memory_page_node Retrieves the usage metrics of a memory page size on a
remote node.

182  AIX Version 7.2: Performance Tools Guide and Reference



Item Descriptor

perfstat_netbuffer_node Retrieves the buffer allocation metrics of a network on a
remote node.

perfstat_netinterface_node Retrieves the interface metrics of a network on a remote size
node.

perfstat_pagingspace_node Retrieves the space metrics of a page on a remote node.

perfstat_protocol_node Retrieves the protocol-related metrics of a network on a
remote node.

perfstat_tape_node Retrieves the usage metrics of a tape on a remote node.

perfstat_volumegroup_node Retrieves the usage metrics of a volume group on a remote
node.

perfstat_cpu_total_node Retrieves the summary on the usage metrics of a processor on
a remote node.

perfstat_partition_total_node Retrieves the partition metrics on a remote node.

perfstat_tape_total_node Retrieves the summary on the usage metrics of a tape on a
remote node.

perfstat_memory_total_node Retrieves the summary on the usage metrics of a memory on a
remote node.

perfstat_netinterface_total_node Retrieves the summary on the usage metrics of a network
interface on a remote node.

perfstat_disk_total_node Retrieves the summary on the usage metrics of a disk on a
remote node.

The following common signature is used by the perfstat_subsystem_node interface except the
perfstat_memory_page_node interface:

int perfstat_subsystem_node(perfstat_id_node_t *name,
perfstat_subsystem_t *userbuff,
int sizeof_struct,
int desired_number);

The following signature is used by the perfstat_memory_page_node interface:

int perfstat_memory_page_node(perfstat_id_node_t *name,
perfstat_psize_t *psize;
perfstat_subsystem_t *userbuff,
int sizeof_struct,
int desired_number);

The following table describes the usage of the parameters of the perfstat_subsystem_node interface:

Item Descriptor

perfstat_id_node_t
*name

Specify the name of the node in name->u.nodenameformat. The name must
contain the name of the first component. For example, hdisk2 for
perfstat_disk_node(), where hdisk 2 is the name of the disk for which you
require the statistics.

Note: When you specify a nodename, it must be initialized as NODENAME.

perfstat_subsystem_t
*userbuff

Points to a memory area that has enough space for the returned structure.

int sizeof_struct Sets this parameter to the size of perfstat_subsystem_t.

Performance Tools Guide and Reference  183



Item Descriptor

int desired_number Specifies the number of structures of type perfstat_subsystem_t to
return to a userbuff field.

The perfstat_subsystem_node interface return -1 value for error. Otherwise it returns the number of
structures copied. The field namename is set to the name of the next available structure, and an
exceptional case when userbuff equals NULL and desired_number equals 0, the total number
of structures available is returned.

The following example shows the usage of the perfstat_disk_node interface:

#include <stdio.h>
#include <stdlib.h>
#include <libperfstat.h>

#define INTERVAL_DEFAULT 2
#define COUNT_DEFAULT 10

int main(int argc, char* argv[])
{
    int i, ret, tot;
    int interval = INTERVAL_DEFAULT, count = COUNT_DEFAULT;
    int collect_remote_node_stats = 0;
    char nodename[MAXHOSTNAMELEN];
    perfstat_disk_t *statp;
    perfstat_id_t first;
    perfstat_id_node_t nodeid;

    /* Process the arguments */
    while ((i = getopt(argc, argv, "i:c:n:")) != EOF)
    {
       switch(i)
       {
           case 'i':/* Interval */
                    interval = atoi(optarg);
                    if( interval <= 0 )
                        interval = INTERVAL_DEFAULT;
                    break;
           case 'c':/* Number of interations */
                    count = atoi(optarg);
                    if( count <= 0 )
                        count = COUNT_DEFAULT;
                    break;
           case 'n':/* Node name in a cluster environment */
                    strncpy(nodename, optarg, MAXHOSTNAMELEN);
                    nodename[MAXHOSTNAMELEN-1] = '\0';
                    collect_remote_node_stats = 1;
                    break;
           default:
                    /* Invalid arguments. Print the usage and terminate */
                    fprintf (stderr, "usage: %s [-i <interval in seconds>] [-c <number of iterations>] [-n <node name in the cluster>]\n", 
argv[0]); 
       }
    }

    if(collect_remote_node_stats)
    {
        /* perfstat_config needs to be called to enable cluster statistics collection */
        ret = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);
        if (ret == -1)
        {
           perror("cluster statistics collection is not available");
           exit(-1);
        }
    }

    /* check how many perfstat_disk_t structures are available */
    if(collect_remote_node_stats)
    {
        strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
        nodeid.spec = NODENAME;
        tot =  perfstat_disk_node(&nodeid, NULL, sizeof(perfstat_disk_t), 0);
    }
    else
    {
        tot =  perfstat_disk(NULL, NULL, sizeof(perfstat_disk_t), 0);
    }

    
    /* check for error */
    if (tot < 0)
    {
        perror("perfstat_disk");
        exit(-1);
    }
    if (tot == 0)
    {
        printf("No disks found\n");
        exit(-1);
    }

    /* allocate enough memory for all the structures */
    statp = calloc(tot, sizeof(perfstat_disk_t));
    if(statp==NULL){
    printf("No sufficient memory\n");
    exit(-1);
    }
    
    if(collect_remote_node_stats)

184  AIX Version 7.2: Performance Tools Guide and Reference



    {
        /* Remember nodename is already set */
        /* Now set name to first interface */
        strcpy(nodeid.name, FIRST_DISK);
        
        /* ask to get all the structures available in one call */
        /* return code is number of structures returned */
        ret = perfstat_disk_node(&nodeid, statp,
                            sizeof(perfstat_disk_t), tot);
    }
    else
    {
        /* set name to first interface */
        strcpy(first.name, FIRST_DISK);
        
        /* ask to get all the structures available in one call */
        /* return code is number of structures returned */
        ret = perfstat_disk(&first, statp,
                            sizeof(perfstat_disk_t), tot);
    }

    /* check for error */
    if (ret <= 0)
    {
        perror("perfstat_disk");
        exit(-1);
    }

    /* print statistics for each of the disks */
    for (i = 0; i < ret; i++) {
        printf("\nStatistics for disk : %s\n", statp[i].name);
        printf("-------------------\n");
        printf("description              : %s\n", statp[i].description);
        printf("volume group name        : %s\n", statp[i].vgname);
        printf("adapter name             : %s\n", statp[i].adapter);
        printf("size                     : %llu MB\n", statp[i].size);
        printf("free space               : %llu MB\n", statp[i].free);
        printf("number of blocks read    : %llu blocks of %llu bytes\n", statp[i].rblks, statp[i].bsize);
        printf("number of blocks written : %llu blocks of %llu bytes\n", statp[i].wblks, statp[i].bsize);
    }

   if(collect_remote_node_stats) {
     /* Now disable cluster statistics by calling perfstat_config */
     perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);
   }
}

The program displays an output that is similar to the following example output:

Statistics for disk : hdisk0
----------------------------
description              : Virtual SCSI Disk Drive
volume group name        : rootvg
adapter name             : vscsi0
size                     : 25568 MB
free space               : 19616 MB
number of blocks read    : 315130 blocks of 512 bytes
number of blocks written : 228352 blocks of 512 bytes

The following program shows the usage of the vmstat command and an example of using the
perfstat_memory_total_node interface to retrieve the virtual memory details of the remote node:

#include <stdio.h>
#include <libperfstat.h>

#define INTERVAL_DEFAULT 2
#define COUNT_DEFAULT 10

int main(int argc, char* argv[])
{
    perfstat_memory_total_t minfo;
    perfstat_id_node_t nodeid;
    char nodename[MAXHOSTNAMELEN];
    int interval = INTERVAL_DEFAULT, count = COUNT_DEFAULT;
    int collect_remote_node_stats = 0;
    int i, rc;

    /* Process the arguments */
    while ((i = getopt(argc, argv, "i:c:n:")) != EOF)
    {
       switch(i)
       {
           case 'i': /* Interval */
                    interval = atoi(optarg);
                    if( interval <= 0 )
                        interval = INTERVAL_DEFAULT;
                    break;
           case 'c': /* Number of iterations */
                    count = atoi(optarg);
                    if( count <= 0 )
                        count = COUNT_DEFAULT;
                    break;
           case 'n': /* Node name in a cluster environment */
                    strncpy(nodename, optarg, MAXHOSTNAMELEN);
                    nodename[MAXHOSTNAMELEN-1] = '\0';
                    collect_remote_node_stats = 1;
                    break;
           default:
                   /* Invalid arguments. Print the usage and end */
                   fprintf (stderr, "usage: %s [-i <interval in seconds>] [-c <number of iterations>] [-n <node name in the cluster>]\n", 
argv[0]);

Performance Tools Guide and Reference  185



       }
    }

    if(collect_remote_node_stats)
    {
        /* perfstat_config needs to be called to enable cluster statistics collection */
        rc = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);
        if (rc == -1)
        {
           perror("cluster statistics collection is not available");
           exit(-1);
        }
    }

    if(collect_remote_node_stats)
    {
        strncpy(nodeid.u.nodename, nodename, MAXHOSTNAMELEN);
        nodeid.spec = NODENAME;
        rc = perfstat_memory_total_node(&nodeid, &minfo, sizeof(perfstat_memory_total_t), 1);
    }
    else
    {
        rc = perfstat_memory_total(NULL, &minfo, sizeof(perfstat_memory_total_t), 1);
    }

    if (rc != 1) {
        perror("perfstat_memory_total");
        exit(-1);
    }  
    printf("Memory statistics\n");
    printf("-----------------\n");
    printf("real memory size                 : %llu MB\n",
           minfo.real_total*4096/1024/1024);
    printf("reserved paging space            : %llu MB\n",minfo.pgsp_rsvd);
    printf("virtual memory size              : %llu MB\n",
           minfo.virt_total*4096/1024/1024);
    printf("number of free pages             : %llu\n",minfo.real_free);
    printf("number of pinned pages           : %llu\n",minfo.real_pinned);
    printf("number of pages in file cache    : %llu\n",minfo.numperm);
    printf("total paging space pages         : %llu\n",minfo.pgsp_total);
    printf("free paging space pages          : %llu\n", minfo.pgsp_free);
    printf("used paging space                : %3.2f%%\n",
        (float)(minfo.pgsp_total-minfo.pgsp_free)*100.0/
        (float)minfo.pgsp_total);
    printf("number of paging space page ins  : %llu\n",minfo.pgspins);
    printf("number of paging space page outs : %llu\n",minfo.pgspouts);
    printf("number of page ins               : %llu\n",minfo.pgins);
    printf("number of page outs              : %llu\n",minfo.pgouts);

    if(collect_remote_node_stats) {
     /* Now disable cluster statistics by calling perfstat_config */
     perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);
   }
}

The program displays an output that is similar to the following example output:

Memory statistics
-----------------
real memory size                 : 4096 MB
reserved paging space            : 512 MB
virtual memory size              : 4608 MB
number of free pages             : 768401
number of pinned pages           : 237429
number of pages in file cache    : 21473
total paging space pages         : 131072
free paging space pages          : 128821
used paging space                : 1.72%
number of paging space page ins  : 0
number of paging space page outs : 0
number of page ins               : 37301
number of page outs              : 9692

The perfstat_cluster_total interface is used to retrieve cluster statistics from the
perfstat_cluster_total_t structure, which is defined in the libperfstat.h file. The following
selected fields are from the perfstat_cpu_total_t structure:

Item Descriptor

name Specifies the name of the cluster.

Type Specifies the set of bits that describes the cluster.

num_nodes Specifies the number of nodes in the cluster.

node_data Points to a memory area that describes the details of all the nodes.

num_disks Specifies the number of disks in the cluster.

disk_data Points to a memory area that describes the details of all the disks.

186  AIX Version 7.2: Performance Tools Guide and Reference



For a complete list of parameters related to the perfstat_cluster_total_t structure, see the
libperfstat.h header file.

The following code example shows the usage of the perfstat_cluster_total interface:

#include <stdio.h>
#include <libperfstat.h>

typedef enum {
    DISPLAY_DEFAULT = 0,
    DISPLAY_NODE_DATA = 1,
    DISPLAY_DISK_DATA = 2
} display_t;

int main(int argc, char* argv[])
{
    perfstat_cluster_total_t cstats;
    perfstat_node_data_t *node_details;
    perfstat_disk_data_t *disk_details;
    perfstat_id_node_t nodeid;
    display_t display = DISPLAY_DEFAULT;
    int num_nodes;
    int i, rc;

    /* Process the arguments */
    while ((i = getopt(argc, argv, "lnd")) != EOF)
    {
       switch(i)
       {
           case 'n': /* Request to display node data */
                    display |= DISPLAY_NODE_DATA;
                    break;
           case 'd': /* Request to diplay disk data */
                    display |= DISPLAY_DISK_DATA;
                    break;
           case 'h': /* Print help message */
           default:
                   /* Print the usage and end */
                   fprintf (stderr, "usage: %s [-n] [-d]\n", argv[0]);
                   exit(-1);
       }
    }

    /* perfstat_config needs to be called to enable cluster statistics collection */
    rc = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);
    if (rc == -1)
    {
        perror("cluster statistics collection is not available");
        exit(-1);
    }

    /* Collect cluster statistics */
    strncpy(nodeid.u.nodename, FIRST_CLUSTERNAME, MAXHOSTNAMELEN);
    nodeid.spec = CLUSTERNAME;
    cstats.node_data = NULL;  /* To indicate no interest in node details */
    cstats.disk_data = NULL;  /* To indicate no interest in disk details */
    rc = perfstat_cluster_total(&nodeid, &cstats, sizeof(perfstat_cluster_total_t), 1);
    if (rc == -1)
    {
        perror("perfstat_cluster_total failed");
        exit(-1);
    }
    fprintf(stdout, "Cluster statistics\n");
    fprintf(stdout, "------------------\n");
    fprintf(stdout, "Cluster Name : %s\n", cstats.name);
    fprintf(stdout, "Cluster type : ");
    if (cstats.type.b.is_local)
        fprintf(stdout, "LOCAL\n");
    else if (cstats.type.b.is_zone)
        fprintf(stdout, "ZONE\n");
    else if (cstats.type.b.is_link)
        fprintf(stdout, "LINK\n");
    fprintf(stdout, "Number of nodes : %u\n", cstats.num_nodes);
    fprintf(stdout, "Number of disks : %u\n", cstats.num_disks);

    /* check if the user requested node data */
    if(((display & DISPLAY_NODE_DATA) && (cstats.num_nodes > 0)) ||
       ((display & DISPLAY_DISK_DATA) && (cstats.num_disks > 0)))
    {
        if(display & DISPLAY_NODE_DATA)

Performance Tools Guide and Reference  187



        {
            cstats.sizeof_node_data = sizeof(perfstat_node_data_t);
            /* Make sure you allocate at least cstats.num_nodes */
            /* Otherwise, perfstat_cluster_total() fails with ENOSPC */
            cstats.node_data = (perfstat_node_data_t *) malloc(cstats.sizeof_node_data * 
cstats.num_nodes);
            if(cstats.node_data == NULL)
            {
                perror("malloc failed for node_data");
                exit(-1);
            }
        }
        if(display & DISPLAY_DISK_DATA)
        {
            cstats.sizeof_disk_data = sizeof(perfstat_disk_data_t);
            /* Make sure you allocate at least cstats.num_disks */
            /* Otherwise, perfstat_cluster_total() fails with ENOSPC */
            cstats.disk_data = (perfstat_disk_data_t *) malloc(cstats.sizeof_disk_data * 
cstats.num_disks);
            if(cstats.disk_data == NULL)
            {
                perror("malloc failed for disk_data");
                exit(-1);
            }
        }

        rc = perfstat_cluster_total(&nodeid, &cstats, sizeof(perfstat_cluster_total_t), 1);
        if (rc == -1)
        {
            perror("perfstat_cluster_total failed");
            exit(-1);
        }
        if(display & DISPLAY_NODE_DATA)
        {
            fprintf(stdout, "\nNode details:\n");
            fprintf(stdout, "-------------\n");
            node_details = cstats.node_data;
            for (i = 0; i < cstats.num_nodes; i++, node_details++)
            {
                fprintf(stdout, "Node name : %s\n", node_details->name);
                fprintf(stdout, "Node shorthand id : %llu\n",
                        node_details->shorthand_id);
                fprintf(stdout, "Status of the node : ");
                if (node_details->status.b.is_up)
                    fprintf(stdout, "UP\n");
                else if (node_details->status.b.is_down)
                    fprintf(stdout, "DOWN\n");
                fprintf(stdout, "Number of clusters the node is participating : %u\n", node_details-
>num_clusters);
                fprintf(stdout, "Number of zones the node is participating    : %u\n", node_details-
>num_zones);
                fprintf(stdout, "Number of points of contact to the node      :%u\n", node_details-
>num_points_of_contact); 
                fprintf(stdout, "\n");
            }
        }

        if(display & DISPLAY_DISK_DATA)
        {
            fprintf(stdout, "\nDisk details:\n");
            fprintf(stdout, "-------------\n");
            disk_details = cstats.disk_data;
            for (i = 0; i < cstats.num_disks; i++, disk_details++)
            {
                fprintf(stdout, "Disk name : %s\n", disk_details->name);
                fprintf(stdout, "Status of the disk :");
                if (disk_details->status.b.is_found)
                {
                    fprintf(stdout, " FOUND");
                    if (disk_details->status.b.is_ready)
                        fprintf(stdout, " | READY");
                    else
                        fprintf(stdout, " | NOT READY");
                }
                else
                    fprintf(stdout, " NOT FOUND");
                fprintf(stdout, "\n");
                fprintf(stdout, "\n");
            }
        }
    }

188  AIX Version 7.2: Performance Tools Guide and Reference



     /* Now disable cluster statistics by calling perfstat_config */
     perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);
}

The perfstat_node_list interface is used to retrieve the list of nodes in the perfstat_node_t
structure, which is defined in the libperfstat.h file. The following selected fields are from the
perfstat_node_t structure:

Item Descriptor

nodeid Specifies the identifier of the node.

nodename Specifies the name of the node.

The following code example shows the usage of theperfstat_node_list interface:

#include <stdio.h>
#include <libperfstat.h>

int main(int argc, char* argv[])
{
    perfstat_id_node_t nodeid;
    perfstat_node_t *node_list;
    int num_nodes;
    int i, rc;

    /* perfstat_config needs to be called to enable cluster statistics collection */
    rc = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);
    if (rc == -1)
    {
        perror("cluster statistics collection is not available");
        exit(-1);
    }

    strncpy(nodeid.u.nodename, FIRST_CLUSTERNAME, MAXHOSTNAMELEN);
    nodeid.spec = CLUSTERNAME;
    num_nodes = perfstat_node_list(&nodeid, NULL, sizeof(perfstat_node_t), 0);
    if (num_nodes == -1)
    {
        perror("perfstat_node_list failed");
        exit(-1);
    }
    if (num_nodes == 0)
    {   /* This cannot happen */
        fprintf(stdout, "No nodes in the cluster.\n");
        exit(-1);
    }
    node_list = (perfstat_node_t *) malloc(sizeof(perfstat_node_t) * num_nodes);
    num_nodes = perfstat_node_list(&nodeid, node_list, sizeof(perfstat_node_t), num_nodes);
    if (num_nodes == -1)
    {
        perror("perfstat_node_list failed");
        exit(-1);
    }
    fprintf(stdout, "Number of nodes : %d\n\n", num_nodes);
    for (i = 0; i < num_nodes; i++)
    {
        fprintf(stdout, "Node name : %s\n", node_list[i].nodename);
        fprintf(stdout, "Node id : %llu\n", node_list[i].nodeid);
        fprintf(stdout, "\n");
    }

    /* Now disable cluster statistics by calling perfstat_config */
    perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);

     return (0);
}

The perfstat_cluster_disk interface is used to retrieve the list of disks in the
perfstat_disk_data_t structure. The perfstat_cluster_disk interface is defined in the
libperfstat.h file.

The following example code shows the usage of the perfstat_cluster_disk subroutine:

#include <stdio.h>

Performance Tools Guide and Reference  189



#include <libperfstat.h>

typedef enum {
    DISPLAY_NODE_DATA = 1,
    DISPLAY_DISK_DATA = 2,
} display_t;

int main(int argc, char* argv[])
{
    perfstat_node_data_t *node_details;
    perfstat_disk_data_t *disk_details;
    perfstat_id_node_t nodeid;
    char nodename[MAXHOSTNAMELEN];
    display_t display = DISPLAY_DISK_DATA;
    int num_nodes;
    int i, rc, num_of_disks = 0;

    /* Process the arguments */
    while ((i = getopt(argc, argv, "n:d")) != EOF)
    {
        switch(i)
        {
            case 'n':               /* Request to display node data */
                display |= DISPLAY_NODE_DATA;
                strncpy(nodename,optarg,MAXHOSTNAMELEN);
                break;
            case 'd':               /* Request to diplay disk data */
                display |= DISPLAY_DISK_DATA;
                break;

            case 'h':               /* Print help message */
            default:
                /* Print the usage and terminate */
                fprintf (stderr, "usage: %s [-n <nodename>] [-d]\n", argv[0]);
                exit(-1);
        }
    }

    /* perfstat_config needs to be called to enable cluster statistics collection */
    rc = perfstat_config(PERFSTAT_ENABLE|PERFSTAT_CLUSTER_STATS, NULL);
    if (rc == -1)
    {
        perror("cluster statistics collection is not available");
        exit(-1);
    }
    /*If Node details are specified pass that data as input to get the disk details
      for that node . Else pass FIRST_NODENAME */
    if (display & DISPLAY_NODE_DATA)
    {
        strncpy(nodeid.u.nodename,nodename,MAXHOSTNAMELEN);
    }
    else
        strncpy(nodeid.u.nodename, FIRST_NODENAME, MAXHOSTNAMELEN);

    nodeid.spec = NODENAME;
    /*Get the number of disks for that node */
    num_of_disks = perfstat_cluster_disk(&nodeid,NULL, sizeof(perfstat_disk_data_t), 0);    
    if (num_of_disks == -1)
    {
        perror("perfstat_cluster_disk failed");
        exit(-1);
    }

    disk_details = (perfstat_disk_data_t *)calloc(num_of_disks,sizeof(perfstat_disk_data_t));
    /* collect all the disk data for the node */
    if(!disk_details){
        perror("calloc");
    exit(-1);
    }
    num_of_disks = 
perfstat_cluster_disk(&nodeid,disk_details,sizeof(perfstat_disk_data_t),num_of_disks);
    fprintf(stdout, "Disk Details\n");
    fprintf(stdout, "------------------\n");
    for(i = 0; i < num_of_disks; i++)
    {
        fprintf(stdout,"Disk Name:%s\t UDID:%s\n",disk_details[i].name,disk_details[i].uuid);

    }

    /* Now disable cluster statistics by calling perfstat_config */
    perfstat_config(PERFSTAT_DISABLE|PERFSTAT_CLUSTER_STATS, NULL);
    free(disk_details);

190  AIX Version 7.2: Performance Tools Guide and Reference



    disk_details = NULL;
}

Change history of the perfstat API
The following changes and additions have been made to the perfstat APIs.

Interface changes
With the following filesets the rblks and wblks fields of libperfstat are represented by blocks of 512
bytes in the perfstat_disk_total_t, perfstat_diskadapter_t and perfstat_diskpath_t structures,
regardless of the actual block size used by the device for which metrics are being retrieved.

• bos.perf.libperfstat 4.3.3.4
• bos.perf.libperfstat 5.1.0.50
• bos.perf.libperfstat 5.2.0.10

Interface additions
Review the specific interfaces that are available for a fileset.

The following interfaces were added in the bos.perf.libperfstat 5.2.0 file set:

• perfstat_netbuffer
• perfstat_protocol
• perfstat_pagingspace
• perfstat_diskadapter
• perfstat_reset

The perfstat_diskpath interface was added in the bos.perf.libperfstat 5.2.0.10 file set.

The perfstat_partition_total interface was added in the bos.perf.libperfstat 5.3.0.0 file set.

Theperfstat_partial_reset interface was added in the bos.perf.libperfstat 5.3.0.10 file set.

The following interfaces were added in the bos.perf.libperfstat 6.1.2 file set:

• perfstat_cpu_total_wpar
• perfstat_memory_total_wpar
• perfstat_cpu_total_rset
• perfstat_cpu_rset
• perfstat_wpar_total
• perfstat_tape
• perfstat_tape_total
• perfstat_memory_page
• perfstat_memory_page_wpar
• perfstat_logicalvolume
• perfstat_volumegroup
• perfstat_config

The following interfaces were added in thebos.perf.libperfstat 6.1.6.0 file set:

• perfstat_cpu_node
• perfstat_disk_node
• perfstat_diskadapter_node
• perfstat_diskpath_node
• perfstat_logicalvolume_node
• perfstat_memory_page_node

Performance Tools Guide and Reference  191



• perfstat_netbuffer_node
• perfstat_netinterface_node
• perfstat_protocol_node
• perfstat_volumegroup_node
• perfstat_cpu_total_node
• perfstat_disk_total_node
• perfstat_memory_total_node
• perfstat_netinterface_total_node
• perfstat_partition_total_node
• perfstat_tape_total_node
• perfstat_cluster_total
• perfstat_node_list

The following interfaces were added in thebos.perf.libperfstat 6.1.7.0 file set:

• perfstat_hfistat
• perfstat_hfistat_window

Field additions
The following additions have been made to the specified file set levels.

The bos.perf.libperfstat 5.1.0.15 file set

The following fields were added to perfstat_cpu_total_t:

    u_longlong_t bread
    u_longlong_t bwrite
    u_longlong_t lread
    u_longlong_t lwrite
    u_longlong_t phread
    u_longlong_t phwrite

Support for C++ was added in this file set level.

The bos.perf.libperfstat 5.1.0.25 file set

The following fields were added to perfstat_cpu_t:

    u_longlong_t bread
    u_longlong_t bwrite
    u_longlong_t lread
    u_longlong_t lwrite
    u_longlong_t phread
    u_longlong_t phwrite

The bos.perf.libperfstat 5.2.0 file set

The following fields were added to perfstat_cpu_t:

    u_longlong_t iget
    u_longlong_t namei
    u_longlong_t dirblk
    u_longlong_t msg
    u_longlong_t sema

The name field which returns the logical processor name is now of the form cpu0, cpu1, instead of proc0,
proc1 as it was in previous releases.

The following fields were added to perfstat_cpu_total_t:

    u_longlong_t runocc
    u_longlong_t swpocc
    u_longlong_t iget

192  AIX Version 7.2: Performance Tools Guide and Reference



    u_longlong_t namei
    u_longlong_t dirblk
    u_longlong_t msg
    u_longlong_t sema
    u_longlong_t rcvint
    u_longlong_t xmtint
    u_longlong_t mdmint
    u_longlong_t tty_rawinch
    u_longlong_t tty_caninch
    u_longlong_t tty_rawoutch
    u_longlong_t ksched
    u_longlong_t koverf
    u_longlong_t kexit
    u_longlong_t rbread
    u_longlong_t rcread
    u_longlong_t rbwrt
    u_longlong_t rcwrt
    u_longlong_t traps
    int ncpus_high

The following field was added to perfstat_disk_t:

       char adapter[IDENTIFIER_LENGTH]

The following field was added to perfstat_netinterface_t:

     u_longlong_t bitrate

The following fields were added to perfstat_memory_total_t:

     u_longlong_t real_system
     u_longlong_t real_user
     u_longlong_t real_process 

The following defines were added to libperfstat.h:

    #define FIRST_CPU          ""
    #define FIRST_DISK         ""
    #define FIRST_DISKADAPTER  ""
    #define FIRST_NETINTERFACE ""
    #define FIRST_PAGINGSPACE  ""
    #define FIRST_PROTOCOL     ""
    #define FIRST_ALLOC        ""

The bos.perf.libperfstat 5.2.0.10 file set

The following field was added to the perfstat_disk_t interface:

    uint paths_count

The following define was added to libperfstat.h:

    #define FIRST_DISKPATH  ""

The bos.perf.libperfstat 5.3.0.0 file set

The following fields were added to the perfstat_cpu_t interface:

    u_longlong_t puser
    u_longlong_t psyss
    u_longlong_t pidle
    u_longlong_t pwait
    u_longlong_t redisp_sd0
    u_longlong_t redisp_sd1
    u_longlong_t redisp_sd2
    u_longlong_t redisp_sd3
    u_longlong_t redisp_sd4
    u_longlong_t redisp_sd5
    u_longlong_t migration_push
    u_longlong_t migration_S3grq
    u_longlong_t migration_S3pul
    u_longlong_t invol_cswitch
    u_longlong_t vol_cswitch

Performance Tools Guide and Reference  193



    u_longlong_t runque
    u_longlong_t bound
    u_longlong_t decrintrs
    u_longlong_t mpcrintrs
    u_longlong_t mpcsintrs
    u_longlong_t devintrs
    u_longlong_t softintrs
    u_longlong_t phantintrs

The following fields were added to the perfstat_cpu_total_t interface:

    u_longlong_t puser
    u_longlong_t psys
    u_longlong_t pidle
    u_longlong_t pwait
    u_longlong_t decrintrs
    u_longlong_t mpcrintrs
    u_longlong_t mpcsintrs
    u_longlong_t phantintrs

The bos.perf.libperfstat 5.3.0.10 file set

The following fields were added to both the perfstat_disk_t and perfstat_diskpath_t interfaces:

    u_longlong_t  q_full
    u_longlong_t  rserv
    u_longlong_t  rtimeout
    u_longlong_t  rfailed
    u_longlong_t  min_rserv
    u_longlong_t  max_rserv
    u_longlong_t  wserv
    u_longlong_t  wtimeout
    u_longlong_t  wfailed
    u_longlong_t  min_wserv
    u_longlong_t  max_wserv
    u_longlong_t  wq_depth
    u_longlong_t  wq_sampled
    u_longlong_t  wq_time
    u_longlong_t  wq_min_time
    u_longlong_t  wq_max_time
    u_longlong_t  q_sampled

In addition, the xrate field in the following data structures has been renamed to _rxfers and contains
the number of read transactions when used with selected device drivers or zero:

    perfstat_disk_t
    perfstat_disk_total_t
    perfstat_diskadapter_t
    perfstat_diskpath_t

The following definitions were added to the libperfstat.h header file:

    #define FLUSH_CPUTOTAL
    #define FLUSH_DISK
    #define RESET_DISK_MINMAX
    #define FLUSH_DISKADAPTER
    #define FLUSH_DISKPATH
    #define FLUSH_PAGINGSPACE
    #define FLUSH_NETINTERFACE

The bos.perf.libperfstat 5.3.0.50 file set

The following fields were added to perfstat_partition_total_t:

    u_longlong_t reserved_pages
    u_longlong_t reserved_pagesize

The bos.perf.libperfstat 5.3.0.60 file set

The following fields were added to perfstat_cpu_t, perfstat_cpu_total_t and perfstat_partition_total_t:

   u_longlong_t idle_donated_purr 
   u_longlong_t idle_donated_spurr

194  AIX Version 7.2: Performance Tools Guide and Reference



   u_longlong_t busy_donated_purr 
   u_longlong_t busy_donated_spurr
   u_longlong_t idle_stolen_purr  
   u_longlong_t idle_stolen_spurr 
   u_longlong_t busy_stolen_purr  
   u_longlong_t busy_stolen_spurr 

The following flags were added to perfstat_partition_type_t:

    unsigned donate_capable 
    unsigned donate_enabled 

The bos.perf.libperfstat 6.1.6.0 file set

The following field is added to all existing interfaces:

   u_longlong_t version    

Structure additions
Review the specific structure additions that are available for different file sets.

The following structures are added in the bos.perf.libperfstat 6.1.2.0 file set:

perfstat_cpu_total_wpar_t
perfstat_cpu_total_rset_t
perfstat_cpu_rset_t
perfstat_wpar_total_t
perfstat_tape_t
perfstat_tape_total_t
perfstat_memory_page_t
perfstat_memory_page_wpar_t
perfstat_logicalvolume_t
perfstat_volumegroup_t

The following structures are added in the bos.perf.libperfstat 6.1.6.0 file set:

perfstat_id_node_t
perfstat_node_t
perfstat_cluster_total_t
perfstat_cluster_type_t
perfstat_node_data_t
perfstat_disk_data_t
perfstat_disk_status_t
perfstat_ip_addr_t

The following structures are added in the bos.perf.libperfstat 6.1.7.0 file set:

perfstat_hfistat_t
perfstat_hfistat_window_t

Kernel tuning
You can make permanent kernel-tuning changes without having to edit any rc files. This is achieved by
centralizing the reboot values for all tunable parameters in the /etc/tunables/nextboot stanza file. When
a system is rebooted, the values in the /etc/tunables/nextboot file are automatically applied.

The following commands are used to manipulate the nextboot file and other files containing a set of
tunable parameter values:

• The tunchange command is used to change values in a stanza file.
• The tunsave command is used to save values to a stanza file.
• The tunrestore is used to apply a file; that is, to change all tunables parameter values to those listed in

a file.
• The tuncheck command must be used to validate a file created manually.
• The tundefault is available to reset tunable parameters to their default values.

Performance Tools Guide and Reference  195



The preceding commands work on both current and reboot values.

All six tuning commands (no, nfso, vmo, ioo, raso, and schedo) use a common syntax and are available to
directly manipulate the tunable parameter values. Available options include making permanent changes
and displaying detailed help on each of the parameters that the command manages. A large majority of
tunable parameter values are not modifiable when the login session is initiated outside of the global
WPAR partition. Attempts to modify such a read only tunable parameter value is refused by the command
and a diagnostic message written to standard error output.

SMIT panel is also available to manipulate the current and reboot values for all tuning parameters, as well
as the files in the /etc/tunables directory.

Related information
bosboot command
no command
tunables command

Migration and compatibility
When machines are migrated from a previous release of AIX, the tuning commands are automatically set
to run in compatibility mode.

Most of the information in this section does not apply to compatibility mode. For more information, see
compatibility mode in Files Reference.

When a machine is initially installed with AIX, it is automatically set to run in the tuning mode, which is
described in this chapter. The tuning mode is controlled by the sys0 attribute called pre520tune, which
can be set to enable to run in compatibility mode and disable to run in the tuning mode.

To retrieve the current setting of the pre520tune attribute, run the following command:

lsattr -E -l sys0 

To change the current setting of the pre520tune attribute, run the following command:

chdev -l sys0 -a pre520tune=enable

OR

use SMIT panel.

Tunables file directory
Information about tunable parameter values is located in the /etc/tunables directory. Except for a log file
created during each reboot, this directory only contains ASCII stanza files with sets of tunable
parameters.

These files contain parameter=value pairs specifying tunable parameter changes, classified in six
stanzas corresponding to the six tuning commands : schedo, vmo, ioo, no, raso, and nfso. Additional
information about the level of AIX, when the file was created, and a user-provided description of file
usage is stored in a special stanza in the file. For detailed information on the file's format, see the
tunables file.

The main file in the tunables directory is called nextboot. It contains all the tunable parameter values to
be applied at the next reboot. The lastboot file in the tunables directory contains all the tunable values
that were set at the last machine reboot, a timestamp for the last reboot, and checksum information about
the matching lastboot.log file, which is used to log any changes made, or any error messages
encountered, during the last rebooting. The lastboot and lastboot.log files are set to be read-only and are
owned by the root user, as are the directory and all of the other files.

Users can create as many /etc/tunables files as needed, but only the nextboot file is ever automatically
applied. Manually created files must be validated using the tuncheck command. Parameters and stanzas
can be missing from a file. Only tunable parameters present in the file will be changed when the file is
applied with the tunrestore command. Missing tunables will simply be left at their current or default

196  AIX Version 7.2: Performance Tools Guide and Reference



values. To force resetting of a tunable to its default value with tunrestore (presumably to force other
tunables to known values, otherwise tundefault, which sets all parameters to their default value, could
have been used), DEFAULT can be specified. Specifying DEFAULT for a tunable in the nextboot file is the
same as not having it listed in the file at all because the reboot tuning procedure enforces default values
for missing parameters. This will guarantee to have all tunables parameters set to the values specified in
the nextboot file after each reboot.

Tunable files can have a special stanza named info containing the parameters AIX_level, Kernel_type
and Last_validation. Those parameters are automatically set to the level of AIX and to the type of kernel
(MP64) running when the tuncheck or tunsave is run on the file. Both commands automatically update
those fields. However, the tuncheck command will only update if no error was detected.

The lastboot file always contains values for every tunable parameters. Tunables set to their default value
will be marked with the comment DEFAULT VALUE. Restricted tunables modified from their default value
are marked, after the value, with an additional comment # RESTRICTED not at default value. The
Logfile_checksum parameter only exists in that file and is set by the tuning reboot process (which also
sets the rest of the info stanza) after closing the log file.

Tunable files can be created and modified using one of the following options:

• Using SMIT to modify the next reboot value for tunable parameters, or to ask to save all current values
for next boot, or to ask to use an existing tunable file at the next reboot. All those actions will update
the /etc/tunables/nextboot file. A new file in the /etc/tunables directory can also be created to save
all current or all nextboot values.

• Using the tuning commands (ioo, raso, vmo, schedo, no or nfso) with the -p or -r options, which will
update the /etc/tunables/nexboot file.

• A new file can also be created directly with an editor or copied from another machine. Running
tuncheck [-r | -p] -f must then be done on that file.

• Using the tunsave command to create or overwrite files in the /etc/tunables directory
• Using the tunrestore -r command to update the nextboot file.

Tunable parameters type
The manual page for each of the six tuning commands contains the complete list of all the parameter
manipulated by each of the commands and for each parameter, its type, range, default value, and any
dependencies on other parameters.

All the tunable parameters manipulated by the tuning commands (no, nfso, vmo, ioo, raso, and schedo)
have been classified into the following categories:

• Dynamic: if the parameter can be changed at any time
• Static: if the parameter can never be changed
• Reboot: if the parameter can only be changed during reboot
• Bosboot: if the parameter can only be changed by running bosboot and rebooting the machine
• Mount: if changes to the parameter are only effective for future file systems or directory mounts
• Incremental: if the parameter can only be incremented, except at boot time
• Connect: if changes to the parameter are only effective for future socket connections
• Deprecated: if changing this parameter is no longer supported by the current release of AIX

For parameters of type Bosboot, whenever a change is performed, the tuning commands automatically
prompt the user to ask if they want to execute the bosboot command. When specifying a restricted
tunable for modification in association with the option -p or -r, you are also prompted to confirm the
change. For parameters of type Connect, the tuning commands automatically restart the inetd daemon.

The tunables classified as restricted use tunables exist primarily for specialized intervention by the
support or development teams and are not recommended for end user modification. For this reason, they
are not displayed by default and require the force option on the command line. When modifying a

Performance Tools Guide and Reference  197



restricted tunable, a warning message is displayed and confirmation required if the change is specified for
reboot or permanent.

Common syntax for tuning commands
Review the syntax for all the tuning commands.

The no, nfso, vmo, ioo, raso, and schedo tuning commands all support the following syntax:

command [-p|-r] {-o tunable[=newvalue]} 
command [-p|-r] {-d tunable} 
command [-p|-r] -D 
command [-p|-r] [-F]-a 
command -h [tunable] 
command [-F] -L [tunable] 
command [-F] -x [tunable] 

The flags of the tuning command are:

Item Descriptor

-a Displays current, reboot (when used in conjunction with -r) or permanent (when
used in conjunction with -p) value for all tunable parameters, one per line in pairs
tunable = value. For the permanent options, a value is displayed for a parameter
only if its reboot and current values are equal. Otherwise, NONE is displayed as the
value. If a tunable is not supported by the running kernel or the current platform,
"n/a" is displayed as the value.

-d tunable Resets tunable to default value. If a tunable needs to be changed (that is, it is
currently not set to its default value) and is of type Bosboot or Reboot, or if it is of
type Incremental and has been changed from its default value, and -r is not used
in combination, it is not changed, but a message displays instead.

-D Resets all tunables to their default value. If tunables needing to be changed are of
type Bosboot or Reboot, or are of type Incremental and have been changed from
their default value, and -r is not used in combination, they are not changed, but a
message displays instead.

-F Forces display of restricted tunable parameters when the options -a, -L, or -x are
specified alone on the command line to list all tunables. When -F is not specified,
restricted tunables are not included in a display unless specifically named in
association with a display option.

-h [tunable] Displays help about tunable parameter. Otherwise, displays the command usage
statement.

-o tunable[=newvalue] Displays the value or sets tunable to newvalue. If a tunable needs to be changed
(the specified value is different than current value), and is of type Bosboot or
Reboot, or if it is of type Incremental and its current value is bigger than the
specified value, and -r is not used in combination, it is not changed, but a
message displays instead.

When -r is used in combination without a new value, the nextboot value for
tunable is displayed. When -p is used in combination without a new value, a value
is displayed only if the current and next boot values for tunable are the same.
Otherwise, NONE is displayed as the value. If a tunable is not supported by the
running kernel or the current platform, "n/a" is displayed as the value.

198  AIX Version 7.2: Performance Tools Guide and Reference



The flags of the tuning command are: (continued)

Item Descriptor

-p When used in combination with -o, -d or -D, makes changes apply to both current
and reboot values; that is, turns on the updating of the /etc/tunables/nextboot
file in addition to the updating of the current value. This flag cannot be used on
Reboot and Bosboot type parameters because their current value cannot be
changed.

When used with -a or -o flag without specifying a new value, values are displayed
only if the current and next boot values for a parameter are the same. Otherwise,
NONE is displayed as the value.

-r When used in combination with -o, -d or -D flags, makes changes apply to reboot
values only; that is, turns on the updating of the /etc/tunables/nextboot file. If
any parameter of type Bosboot is changed, the user will be prompted to run
bosboot.

When used with -a or -o without specifying a new value, next boot values for
tunables are displayed instead of current values.

-x [tunable] Lists the characteristics of one or all tunables, one per line, using the following
format:

tunable,current,default,reboot, min,max,unit,type,{dtunable } 

where:

     current = current value
     default = default value 
     reboot = reboot value 
     min = minimal value 
     max = maximum value 
     unit = tunable unit of measure 
     type = parameter type: D(for Dynamic), S(for Static), 
            R(for Reboot), B(for Bosboot), M(for Mount), 
            I(for Incremental), C (for Connect), and 
            d (for Deprecated)
     dtunable = space separated list of dependent tunable 
                parameters

-L [tunable] Lists the characteristics of one or all tunables, one per line, using the following
format:

NAME            CUR    DEF    BOOT   MIN    MAX    UNIT           TYPE 
     DEPENDENCIES 
-----------------------------------------------------------------------
memory_frames   128K   128K                        4KB pages         S 
-----------------------------------------------------------------------
maxfree         128    128    128    16     200K   4KB pages         D 
     minfree 
     memory_frames 
----------------------------------------------------------------------

where:

     CUR  = current value
     DEF  = default value 
     BOOT = reboot value 
     MIN  = minimal value 
     MAX  = maximum value 
     UNIT = tunable unit of measure 
     TYPE = parameter type: D (for Dynamic),S (for Static),
                            R (for Reboot),B (for Bosboot),
                            M (for Mount), I (for Incremental),
                            C (for Connect), and d (for Deprecated) 
     DEPENDENCIES = list of dependent tunable parameters, 
                    one per line 

Performance Tools Guide and Reference  199



Any change (with -o, -d or -D) to a restricted tunable parameter will result in a message being displayed
to warn the user that a tunable of the restricted use type has been modified and, if the -r or -p options are
also specified on the command line, the user will be prompted for confirmation of the change. In addition,
at system reboot, the presence of restricted tunables modified to a value different from their default using
a command line specifying the -r or -p options will cause the addition of an error log entry identifying the
list of these modified tunables.

Any change (with -o, -d or -D flags) to a parameter of type Mount will result in a message displays to warn
the user that the change is only effective for future mountings.

Any change (with -o, -d or -D flags) to a parameter of type Connect will result in the inetd daemon being
restarted, and a message will display to warn the user that the change is only effective for socket
connections.

Any attempt to change (with -o, -d or -D flags ) a parameter of type Bosboot or Reboot without -r, will
result in an error message.

Any attempt to change (with -o, -d or -D flags but without -r) the current value of a parameter of type
Incremental with a new value smaller than the current value, will result in an error message.

Tunable file-manipulation commands
The following commands normally manipulate files in the /etc/tunables directory, but the files can be
located anywhere. Therefore, as long as the file name does not contain a forward slash (/), all the file
names specified are expanded to /etc/tunables/filename.

To guarantee the consistency of their content, all the files are locked before any updates are made. The
commands tunsave, tuncheck (only if successful), and tundefault -r all update the info stanza.

tunchange Command
The tunchange command is used to update one or more tunable stanzas in a file.

The following is the syntax for the tunchange command:

tunchange -f filename ( -t stanza ( {-o parameter[=value]} | -D ) | -m filename2 ) 

where stanza is schedo, vmo, ioo, raso, no, or nfso.

The following is an example of how to update the pacefork parameter in the /etc/tunables/mytunable
directory:

tunchange -f mytunable -t schedo -o pacefork=10

The following is an example of how to unconditionally update the pacefork parameter in the /etc/
tunables/nextboot directory. This should be done with caution because no warning will be printed if a
parameter of type bosboot was changed.

tunchange -f nextboot -t schedo -o pacefork=10

The following is an example of how to clear the schedo stanza in the nextboot file.

tunchange -f nextboot -t schedo -D

The following is an example of how to merge the /home/admin/schedo_conf file with the current
nextboot file. If the file to merge contains multiple entries for a parameter, only the first entry will be
applied. If both files contain an entry for the same tunable, the entry from the file to merge will replace
the current nextboot file's value.

tunchange -f nextboot -m /home/admin/schedo_conf

The tunchange command is called by the tuning commands to implement the -p and -r flags using -f
nextboot.

200  AIX Version 7.2: Performance Tools Guide and Reference



tuncheck Command
The tuncheck command is used to validate a file.

The following is the syntax for the tuncheck command:

tuncheck [-r|-p] -f filename 

The following is an example of how to validate the /etc/tunables/mytunable file for usage on current
values.

tuncheck -f mytunable

The following is an example of how to validate the /etc/tunables/nextboot file or my_nextboot file for
usage during reboot. Note that the -r flag is the only valid option when the file to check is the nextboot
file.

tuncheck -r -f nextboot

tuncheck -r -f /home/bill/my_nextboot

All parameters in the nextboot or my_nextboot file are checked for range, and dependencies, and if a
problem is detected, a message similar to: "Parameter X is out of range" or "Dependency
problem between parameter A and B" is issued. The -r and -p options control the values used in
dependency checking for parameters not listed in the file and the handling of proposed changes to
parameters of type Incremental, Bosboot, and Reboot.

Except when used with the -r option, checking is performed on parameter of type Incremental to make
sure the value in the file is not less than the current value. If one or more parameters of type Bosboot are
listed in the file with a different value than its current value, the user will either be prompted to run
bosboot (when -r is used) or an error message will display.

Parameters having dependencies are checked for compatible values. When one or more parameters in a
set of interdependent parameters is not listed in the file being checked, their values are assumed to either
be set at their current value (when the tuncheck command is called without -p or -r), or their default
value. This is because when called without -r, the file is validated to be applicable on the current values,
while with -r, it is validated to be used during reboot when parameters not listed in the file will be left at
their default value. Calling this command with -p is the same as calling it twice; once with no argument,
and once with the -r flag. This checks whether a file can be used both immediately, and at reboot time.

Note: Users creating a file with an editor, or copying a file from another machine, must run the tuncheck
command to validate their file.

tunrestore Command
The tunrestore command is used to restore all the parameters from a file.

The following is the syntax for the tunrestore command:

tunrestore -R | [-r] -f filename

For example, the following will change the current values for all tunable parameters present in the file if
ranges, dependencies, and incremental parameter rules are all satisfied.

tunrestore -f mytunable

tunrestore -f /etc/tunables/mytunable

In case of problems, only the changes possible will be made.

For example, the following will change the reboot values for all tunable parameters present in the file if
ranges and dependencies rules are all satisfied. In other words, they will be copied to the /etc/tunables/
nextboot file.

tunrestore -r -f mytunable

Performance Tools Guide and Reference  201



If changes to parameters of type Bosboot are detected, the user will be prompted to run the bosboot
command.

The following command can only be called from the /etc/inittab file and changes tunable parameters to
values from the /etc/tunables/nextboot file.

tunrestore -R

Any problem found or change made is logged in the /etc/tunables/lastboot.log file. A new /etc/
tunables/lastboot file is always created with the list of current values for all parameters. Any change to
restricted tunables from their default values will cause the addition of an error log entry identifying the list
of these modified tunables.

If filename does not exist, an error message displays. If the nextboot file does not exist, an error message
displays if -r was used. If -R was used, all the tuning parameters of a type other than Bosboot will be set
to their default value, and a nextboot file containing only an info stanza will be created. A warning will
also be logged in the lastboot.log file.

Except when -r is used, parameters requiring a call to bosboot and a reboot are not changed, but an error
message is displayed to indicate they could not be changed. When -r is used, if any parameter of type
Bosboot needs to be changed, the user will be prompted to run bosboot. Parameters missing from the
file are simply left unchanged, except when -R is used, in which case missing parameters are set to their
default values. If the file contains multiple entries for a parameter, only the first entry will be applied, and
a warning will be displayed or logged (if called with -R).

tunsave Command
The tunsave command is used to save current tunable parameter values into a file.

The following is the syntax for the tunsave command:

tunsave [-a|-A] -f|-F filename

For example, the following saves all of the current tunable parameter values that are different from their
default into the /etc/tunables/mytunable file.

tunsave -f mytunable

If the file already exists, an error message is printed instead. The -F flag must be used to overwrite an
existing file.

For example, the following saves all of the current tunable parameter values different from their default
into the /etc/tunables/nextboot file.

tunsave -f nextboot

If necessary, the tunsave command will prompt the user to run bosboot.

For example, the following saves all of the current tunable parameters values (including parameters for
which default is their value) into the mytunable file.

tunsave -A -f mytunable

This permits you to save the current setting. This setting can be reproduced at a later time, even if the
default values have changed (default values can change when the file is used on another machine or when
running another version of AIX).

For example, the following saves all current tunable parameter values into the /etc/tunables/mytunable
file or the mytunable file in the current directory.

tunsave -a -f mytunable

tunsave -a -f ./mytunable

202  AIX Version 7.2: Performance Tools Guide and Reference



For the parameters that are set to default values, a line using the keyword DEFAULT will be put in the file.
This essentially saves only the current changed values, while forcing all the other parameters to their
default values. This permits you to return to a known setup later using the tunrestore command.

tundefault Command
The tundefault command is used to force all tuning parameters to be reset to their default value. The -
p flag makes changes permanent, while the -r flag defers changes until the next reboot.

The following is the syntax for the tundefault command:

tundefault [-p|-r]

For example, the following example resets all tunable parameters to their default value, except the
parameters of type Bosboot and Reboot, and parameters of type Incremental set at values bigger than
their default value.

 tundefault

Error messages will be displayed for any parameter change that is not permitted.

For example, the following example resets all the tunable parameters to their default value. It also
updates the /etc/tunables/nextboot file, and if necessary, offers to run bosboot, and displays a message
warning that rebooting is needed for all the changes to be effective.

tundefault -p

This command permanently resets all tunable parameters to their default values, returning the system to
a consistent state and making sure the state is preserved after the next reboot.

For example, the following example clears all the command stanzas in the /etc/tunables/nextboot file,
and proposes bosboot if necessary.

tundefault -r

Initial setup
Installing the bos.perf.tune fileset automatically creates an initial /etc/tunables/nextboot file.

When you install the bos.perf.tune fileset the following line is added at the beginning of the /etc/inittab
file:

tunable:23456789:wait:/usr/bin/tunrestore -R > /dev/console 2>&1 

This entry sets the reboot value of all tunable parameters to their default. For more information about
migration from a previous version of AIX and the compatibility mode automatically setup in case of
migration, see the Files Reference guide.

Reboot tuning procedure
Parameters of type Bosboot are set by the bosboot command, which retrieves their values from the
nextboot file when creating a new boot image.

Parameters of type Reboot are set during the reboot process by the appropriate configuration methods,
which also retrieve the necessary values from the nextboot file. In both cases, if there is no nextboot file,
the parameters will be set to their default values. All other parameters are set using the following
process:

1. When tunrestore -R is called, any tunable changed from its default value is logged in the lastboot.log
file. The parameters of type Reboot and Bosboot present in the nextboot file, and which should
already have been changed by the time tunrestore -R is called, will be checked against the value in
the file, and any difference will also be logged.

Performance Tools Guide and Reference  203



2. The lastboot file will record all the tunable parameter settings, including default values, which will be
flagged using # DEFAULT VALUE, and the AIX_level, Kernel_type, Last_validation, and
Logfile_checksum fields will be set appropriately.

3. If there is no /etc/tunables/nextboot file, all tunable parameters, except those of type Bosboot, will
be set to their default value, a nextboot file with only an info stanza will be created, and the following
warning: "cannot access the /etc/tunables/nextboot file" will be printed in the log file.
The lastboot file will be created as described in step 2.

4. If the desired value for a parameter is found to be out of range, the parameter will be left to its default
value, and a message similar to the following: "Parameter A could not be set to X, which
is out of range, and was left to its current value (Y) instead" will be printed in
the log file. Similarly, if a set of interdependent parameters have values incompatible with each other,
they will all be left at their default values and a message similar to the following: "Dependent
parameter A, B and C could not be set to X, Y and Z because those values are
incompatible with each other. Instead, they were left to their current
values (T, U and V)" will be printed in the log file.

All of these error conditions could exist if a user modified the /etc/tunables/nextboot file with an
editor or copied it from another machine, possibly running a different version of AIX with different valid
ranges, and did not run tuncheck -r -f on the file. Alternatively, tuncheck -r -f prompted the user to
run bosboot, but this was not done.

Recovery Procedure
If the machine becomes unstable with a given nextboot file, users should put the system into
maintenance mode, make sure the sys0 pre520tune attribute is set to disable, delete the nextboot file,
run the bosboot command and reboot. This action will guarantee that all tunables are set to their default
value.

Kernel tuning using the SMIT interface
To start the SMIT panels that manage AIX kernel tuning parameters, use the SMIT fast path smitty
tuning.

The following is a view of the tuning panel:

    Tuning Kernel & Network Parameters 
  
  Save/Restore All Kernel & Network Parameters 
  Tuning Scheduler and Memory Load Control Parameters 
  Tuning Virtual Memory Manager Parameters 
  Tuning Network Parameters 
  Tuning NFS Parameters 
  Tuning I/O Parameters
  Tuning RAS Parameters 
  Tuning Development Parameters 
  

Select Save/Restore All Kernel & Network Parameters to manipulate all tuning parameter values at the
same time. To individually change tuning parameters managed by one of the tuning commands, select
any of the other lines.

Global manipulation of tuning parameters
Review the following steps to globally manipulate tuning parameters.

The main panel to manipulate all tunable parameters by sets looks similar to the following:

204  AIX Version 7.2: Performance Tools Guide and Reference



       Save/Restore All Kernel Tuning Parameters 

  View Last Boot Parameters 
  View Last Boot Log File 

  Save All Current Parameters for Next Boot 
  Save All Current Parameters 
  Restore All Current Parameters from Last Boot Values 
  Restore All Current Parameters from Saved Values 
  Reset All Current Parameters To Default Value 

  Save All Next Boot Parameters 
  Restore All Next Boot Parameters from Last Boot Values 
  Restore All Next Boot Parameters from Saved Values 
  Reset All Next Boot Parameters To Default Value 

Each of the options in this panel are explained in the following sections.

1. View Last Boot Parameters All last boot parameters are listed stanza by stanza, retrieved from
the /etc/tunables/lastboot file.

2. View Last Boot Log File Displays the content of the file /etc/tunables/lastboot.log.
3. Save All Current Parameters for Next Boot

     Save All Current Kernel Tuning Parameters for Next Boot

  ARE YOU SURE ? 

After selecting yes and pressing ENTER, all the current tuning parameter values are saved in
the /etc/tunables/nextboot file. Bosboot will be offered if necessary.

4. Save All Current Parameters

     Save All Current Kernel Tuning Parameters

  File name                                     [] 
  Description                                   []  
  

Type or select values for the two entry fields:

• File name: F4 will show the list of existing files. This is the list of all files in the /etc/tunables
directory except the files nextboot, lastboot and lastboot.log which all have special purposes. File
names entered cannot be any of the above three reserved names.

• Description: This field will be written in the info stanza of the selected file.

After pressing ENTER, all of the current tuning parameter values will be saved in the selected stanza
file of the /etc/tunables directory.

5. Restore All Current Parameters from Last Boot Values

     Restore All Current Parameters from Last Boot Values

  ARE YOU SURE ? 

After selecting yes and pressing ENTER, all the tuning parameters will be set to values from the /etc/
tunables/lastboot file. Error messages will be displayed if any parameter of type Bosboot or Reboot
would need to be changed, which can only be done when changing reboot values.

6. Restore All Current Parameters from Saved Values

     Restore Saved Kernel Tuning Parameters

Move cursor to desired item and press Enter.  

  mytunablefile    Description field of mytunable file 
  tun1             Description field of lastweek file 
  

Performance Tools Guide and Reference  205



A select menu shows existing files in the /etc/tunables directory, except the files nextboot, lastboot
and lastboot.log which all have special purposes. After pressing ENTER, the parameters present in
the selected file in the /etc/tunables directory will be set to the value listed if possible. Error
messages will be displayed if any parameter of type Bosboot or Reboot would need to be changed,
which can't be done on the current values. Error messages will also be displayed for any parameter of
type Incremental when the value in the file is smaller than the current value, and for out of range and
incompatible values present in the file. All possible changes will be made.

7. Reset All Current Parameters To Default Value

     Reset All Current Kernel Tuning Parameters To Default Value

  ARE YOU SURE ? 
  

After pressing ENTER, each tunable parameter will be reset to its default value. Parameters of type
Bosboot and Reboot, are never changed, but error messages are displayed if they should have been
changed to get back to their default values.

8. Save All Next Boot Parameters

     Save All Next Boot Kernel Tuning Parameters

  File name                                     [] 
  

Type or a select values for the entry field. Pressing F4 displays a list of existing files. This is the list of
all files in the /etc/tunables directory except the files nextboot, lastboot and lastboot.log which all
have special purposes. File names entered cannot be any of those three reserved names. After
pressing ENTER, the nextboot file, is copied to the specified /etc/tunables file if it can be
successfully tunchecked.

9. Restore All Next Boot Parameters from Last Boot Values

     Restore All Next Boot Kernel Tuning Parameters from Last Boot Values

  ARE YOU SURE ? 
  

After selecting yes and pressing ENTER, all values from the lastboot file will be copied to the
nextboot file. If necessary, the user will be prompted to run bosboot, and warned that for all the
changes to be effective, the machine must be rebooted.

10. Restore All Next Boot Parameters from Saved Values

     Restore All Next Boot Kernel Tuning Parameters from Saved Values

Move cursor to desired item and press Enter.  

  mytunablefile    Description field of mytunablefile file 
  tun1             Description field of tun1 file 
  

A select menu shows existing files in the /etc/tunables directory, except the files nextboot, lastboot
and lastboot.log which all have special purposes. After selecting a file and pressing ENTER, all
values from the selected file will be copied to the nextboot file, if the file was successfully
tunchecked first. If necessary, the user will be prompted to run bosboot, and warned that for all the
changes to be effective, rebooting the machine is necessary.

11. Reset All Next Boot Parameters To Default Value

     Reset All Next Boot Kernel Tuning Parameters To Default Value
  
ARE YOU SURE ? 
  

206  AIX Version 7.2: Performance Tools Guide and Reference



After hitting ENTER, the /etc/tunables/nextboot file will be cleared. If necessary bosboot will be
proposed and a message indicating that a reboot is needed will be displayed.

Changing individual parameters managed by a tuning command
All the panels for all six commands behave the same way. In the following sections, we will use the
example of the Scheduler and Memory Load Control (i.e. schedo) panels to explain the behavior.

Here is the main panel to manipulate parameters managed by the schedo command:

     Tuning Scheduler and Memory Load Control Parameters

  List All Characteristics of Current Parameters 
  Change / Show Current Parameters 
  Change / Show Parameters for next boot 
  Save Current Parameters for Next Boot 
  Reset Current Parameters to Default value 
  Reset Next Boot Parameters To Default Value 
  

Interaction between parameter types and the different SMIT sub-panels
Review the following information to learn about the SMIT panel actions.

The following table shows the interaction between parameter types and the different SMIT sub-panels:

Sub-panel name Action

List All Characteristics of Current Parameters Lists current, default, reboot, limit values, unit, type
and dependencies. This is the output of a tuning
command called with the -L option.

Change / Show Current Parameters Displays and changes current parameter value, except
for parameter of type Static, Bosboot and Reboot
which are displayed without surrounding square
brackets to indicate that they cannot be changed.

Change / Show Parameters for Next Boot Displays values from and rewrite updated values to
the nextboot file. If necessary, bosboot will be
proposed. Only parameters of type Static cannot be
changed (no brackets around their value).

Save Current Parameters for Next Boot Writes current parameters in the nextboot file,
bosboot will be proposed if any parameter of type
Bosboot was changed.

Reset Current Parameters to Default value Resets current parameters to default values, except
those which need a bosboot plus reboot or a reboot
(bosboot and reboot type).

Reset Next Boot Parameters to Default value Clears values in the nextboot file, and propose
bosboot if any parameter of type Bosboot was
different from its default value.

Each of the sub-panels behavior is explained in the following sections using examples of the scheduler
and memory load control sub-panels:

1. List All Characteristics of Tuning Parameters The output of schedo -L is displayed.
2. Change/Show Current Scheduler and Memory Load Control Parameters

Performance Tools Guide and Reference  207



Change / Show Current Scheduler and Memory Load Control Parameters 

                                   [Entry Field] 

  affinity_lim                          [7] 
  idle_migration_barrier                [4] 
  fixed_pri_global                      [0] 
  maxspin                               [1] 
  pacefork                              [10] 
  sched_D                               [16] 
  sched_R                               [16] 
  timeslice                             [1] 
  %usDelta                              [100] 
  v_exempt_secs                         [2] 
  v_min_process                         [2] 
  v_repage_hi                           [2] 
  v_repage_proc                         [6] 
  v_sec_wait                            [4] 
  

This panel is initialized with the current schedo values (output from the schedo -a command). Any
parameter of type Bosboot, Reboot or Static is displayed with no surrounding square bracket
indicating that it cannot be changed. From the F4 list, type or select values for the entry fields
corresponding to parameters to be changed. Clearing a value results in resetting the parameter to its
default value. The F4 list also shows minimum, maximum, and default values, the unit of the
parameter and its type. Selecting F1 displays the help associated with the selected parameter. The
text displayed will be identical to what is displayed by the tuning commands when called with the -h
option. Press ENTER after making all the required changes. Doing so will launch the schedo command
to make the changes. Any error message generated by the command, for values out of range,
incompatible values, or lower values for parameter of type Incremental, will be displayed to the user.

3. The following is an example of the Change / Show Scheduler and Memory Load Control Parameters for
next boot panel.

Change / Show Scheduler and Memory Load Control Parameters for next boot
 
                                   [Entry Field] 

  affinity_lim                          [7] 
  idle_migration_barrier                [4] 
  fixed_pri_global                      [0] 
  maxpin                                [1] 
  pacefork                              [10] 
  sched_D                               [16] 
  sched_R                               [16] 
  timeslice                             [1] 
  %usDelta                              [100] 
  v_exempt_secs                         [2] 
  v_min_process                         [2] 
  v_repage_hi                           [2] 
  v_repage_proc                         [6] 
  v_sec_wait                            [4] 
  

This panel is similar to the previous panel, in that, any parameter value can be changed except for
parameters of type Static. It is initialized with the values listed in the /etc/tunables/nextboot file,
completed with default values for the parameter not listed in the file. Type or select (from the F4 list)
values for the entry field corresponding to the parameters to be changed. Clearing a value results in
resetting the parameter to its default value. The F4 list also shows minimum, maximum, and default
values, the unit of the parameter and its type. Pressing F1 displays the help associated with the
selected parameter. The text displayed will be identical to what is displayed by the tuning commands
when called with the -h option. Press ENTER after making all desired changes. Doing so will result in
the/etc/tunables/nextboot file being updated with the values modified in the panel, except for out of
range, and incompatible values for which an error message will be displayed instead. If necessary, the
user will be prompted to run bosboot.

4. The following is an example of the Save Current Scheduler and Memory Load Control Parameters for
Next Boot panel.

208  AIX Version 7.2: Performance Tools Guide and Reference



     Save Current Scheduler and Memory Load Control Parameters for Next Boot 
  
ARE YOU SURE ? 
  

After pressing ENTER on this panel, all the current schedo parameter values will be saved in the /etc/
tunables/nextboot file . If any parameter of type Bosboot needs to be changed, the user will be
prompted to run bosboot.

5. The following is an example of the Reset Current Scheduler and Memory Load Control Parameters to
Default Values

     Reset Current Scheduler and Memory Load Control Parameters to Default Value

  ARE YOU SURE ? 
  

After selecting yes and pressing ENTER on this panel, all the tuning parameters managed by the
schedo command will be reset to their default value. If any parameter of type Incremental, Bosboot
or Reboot should have been changed, and error message will be displayed instead.

6. The following is an example of the Reset Scheduler and Memory Load Control Next Boot Parameters
To Default Values

     Reset Next Boot Parameters To Default Value

  ARE YOU SURE ? 
  

After pressing ENTER, the schedo stanza in the /etc/tunables/nextboot file will be cleared. This will
defer changes until next reboot. If necessary, bosboot will be proposed.

The procmon tool
This section provides detailed information about the procmon tool.

Overview of the procmon tool
You can use the procmon tool on systems running AIX.

The procmon tool enables you to view and manage the processes running on a system. The procmon tool
has a graphical interface and displays a table of process metrics that you can sort on the different fields
that are provided. The default number of processes listed in the table is 20, but you can change the value
in the Table Properties panel from the main menu. Only the top processes based on the sorting metric
are displayed and the default sorting key is CPU consumption.

The default value of the refresh rate for the table of process metrics is 5 seconds, but you can change the
refresh rate by either using the Table Properties panel in the main menu or by clicking on the Refresh
button.

By default, the procmon tool displays the following:

• How long a process has been running
• How much CPU resource the processes are using
• Whether processes are being penalized by the system
• How much memory the processes are using
• How much I/O a process is performing
• The priority and nice values of a process
• Who has created a particular process

You can choose other metrics to display from the Table Properties panel in the main menu. For more
information, see “The process table of the procmon tool” on page 210.

Performance Tools Guide and Reference  209



You can filter any of the processes that are displayed. For more information, see “Filtering processes” on
page 212.

You can also perform certain AIX performance commands on these processes. For more information, see
“Performing AIX commands on processes” on page 212.

The procmon tool is a Performance Workbench plugin, so you can only launch the procmon tool from
within the Performance Workbench framework. You must install the bos.perf.gtools fileset by either
using the smitty tool or the installp command. You can then access the Performance Workbench by
running the /usr/bin/perfwb script.

Note: Do not run the /opt/perfwb/perfwb binary file.

Components of the procmon tool
The graphical interface of the procmon tool consists of the following components.

The global statistics area of the procmon tool
The global statistics area is a table that is displayed at the top of the procmon tool window. The global
statistics area displays the amount of CPU and memory that is being used by the system.

You can refresh the statistics data by either clicking on the Refresh button in the menu bar or by
activating the automatic refresh option through the menu bar. To save the statistics information, you can
export the table to any of the following file formats:

• XML
• HTML
• CSV

The process table of the procmon tool
The process table is the main component of the procmon tool. The process table displays the various
processes that are running on the system, ordered and filtered according to the user configuration.

The default value of the number of processes listed in the process table is 20, but you can change this
value from the Table Properties panel from the main menu.

The yellow arrow key in the column header indicates the sort key for the process table. The arrow points
either up or down, depending on whether the sort order is ascending or descending, respectively. You can
change the sort key by clicking on any of the column headers.

You can customize the process table, modify the information on the various processes, and run
commands on the displayed processes. By default, the procmon tool displays the following columns:

PID Process identifier

CPUPER Percentage of CPU used per process since the last refresh

PRM Percent real memory usage

ELOGIN Effective login of the process user

COMMAND Short name of the process launched

WPAR WPAR of the process

You can choose to display other metrics, like the following:

Item Descriptor

PPID Parent process identifier

NICE Nice value for the process

PRI Priority of the process

DRSS Data resident set size

210  AIX Version 7.2: Performance Tools Guide and Reference



Item Descriptor

TRSS Text resident set size

STARTTIME Time when the command started

EUID Effective user identifier

RUID Real user identifier

EGID Effective group identifier

RGID Real group identifier

THCOUNT Number of threads used

CLASSID Identifier of the class which pertains to the WLM process

CLASSNAME Name of the class which pertains to the WLM process

TOTDISKIO Disk I/O for that process

NVCSW N voluntary context switches

NIVCSW N involuntary context switches

MINFLT Minor page faults

MAJFLT Major page faults

INBLK Input blocks

OUBLK Output blocks

MSGSEND Messages sent

MSGRECV Messages received

EGROUP Effective group name

RGROUP Real group name

You can use either the table properties or preference to display the metrics you are interested in. If you
choose to change the table properties, the new configuration values are set for the current session only. If
you change the preferences, the new configuration values are set for the next session of the procmon
tool.

There are two types of values listed in the process table:

• Real values
• Delta values

Real values are retrieved from the kernel and displayed in the process table. An example of a real value is
the PID, PPID, or TTY.

Delta values are values that are computed from the last-stored measurements. An example of a delta
value is the CPU percent for each process, which is computed using the values measured between
refreshes.

Below the process table, there is another table that displays the sum of the values for each column of the
process table. For example, this table might provide a good idea of the percentage of total CPU used by
the top 20 CPU-consuming processes.

You can refresh the data by either clicking on the Refresh button in the menu bar or by activating the
automatic refresh option through the menu bar. To save the statistics information, you can export the
table to any of the following file formats:

• XML

Performance Tools Guide and Reference  211



• HTML
• CSV

The status line of the Performance Workbench
The Performance Workbench status line displays the date on which the information was retrieved, as well
as the name of the system. The status line is hidden if you activate another view or perspective, but
automatically reappears if you refresh the information.

The WPAR table of the procmon tool
A WPAR tabulation displays all the WPAR defined on the system in a table.

By default, the procmon tool displays the following columns:

Item Descriptor

Name WPAR name

Hostname WPAR hostname

Type WPAR type, either System or Application

State WPAR state–this can have one of the following values:
Active, Defined, Transitional, Broken, Paused, Loaded,
Error

Directory WPAR root directory

Nb. virtual PIDs Number of virtual PIDs running in this WPAR

Filtering processes
You can filter processes based on the various criteria that is displayed in the process table. To create a
filter, select Table Filters from the menu bar. A new window opens and displays a list of filters.

Performing AIX commands on processes
To run any of the following commands on one or more processes, select the processes in the process
table and right click your mouse, and select either Commands or Modify and then select the command
you want to run. A new window opens, which displays the command output while the command is
running.

You can interrupt the command by clicking on the STOP button.

You can run the following AIX commands on the processes you select in the process table:

• The svmon command
• The renice command
• The kill command
• The following proctools commands:

– The procfiles command
– The proctree command
– The procsig command
– The procstack command
– The procrun command
– The procmap command
– The procflags command
– The proccred command
– The procldd command

212  AIX Version 7.2: Performance Tools Guide and Reference



Profiling tools
You can use profiling tools to identify which portions of the program are executed most frequently or
where most of the time is spent.

Profiling tools are typically used after a basic tool, such as the vmstat or iostat commands, shows that a
CPU bottleneck is causing a performance problem.

Before you begin locating hot spots in your program, you need a fully functional program and realistic
data values.

The timing commands
Use the timing commands for testing and debugging programs whose performance you are recording and
trying to improve.

The output from the time command is in minutes and seconds, as follows:

real    0m26.72s
user    0m26.53s
sys     0m0.03s

The output from the timex command is in seconds, as follows:

real 26.70
user 26.55
sys  0.02

Comparing the user+sys CPU time to the real time will give you an idea if your application is CPU-bound
or I/O-bound.

Note: Be careful when you do this on an SMP system. For more information, see time and timex
Cautions).

The timex command is also available through the SMIT command on the Analysis Tools menu, found
under Performance and Resource Scheduling. The -p and -s options of the timex command
enable data from accounting (-p) and the sar command (-s) to be accessed and reported. The -o option
reports on blocks read or written.

The prof command
The prof command displays a profile of CPU usage for each external symbol, or routine, of a specified
program.

In detail, it displays the following:

• The percentage of execution time spent between the address of that symbol and the address of the
next

• The number of times that function was called
• The average number of milliseconds per call

The prof command interprets the profile data collected by the monitor() subroutine for the object file
(a.out by default), reads the symbol table in the object file, and correlates it with the profile file (mon.out
by default) generated by the monitor() subroutine. A usage report is sent to the terminal, or can be
redirected to a file.

To use the prof command, use the -p option to compile a source program in C, FORTRAN, or COBOL. This
inserts a special profiling startup function into the object file that calls the monitor() subroutine to track
function calls. When the program is executed, the monitor() subroutine creates a mon.out file to track
execution time. Therefore, only programs that explicitly exit or return from the main program cause the
mon.out file to be produced. Also, the -p flag causes the compiler to insert a call to the mcount()
subroutine into the object code generated for each recompiled function of your program. While the
program runs, each time a parent calls a child function, the child calls the mcount() subroutine to
increment a distinct counter for that parent-child pair. This counts the number of calls to a function.

Performance Tools Guide and Reference  213



Note: You cannot use the prof command for profiling optimized code.

By default, the displayed report is sorted by decreasing percentage of CPU time. This is the same as when
specifying the -t option.

The -c option sorts by decreasing number of calls and the -n option sorts alphabetically by symbol name.

If the -s option is used, a summary file mon.sum is produced. This is useful when more than one profile
file is specified with the -m option (the -m option specifies files containing monitor data).

The -z option includes all symbols, even if there are zero calls and time associated.

Other options are available and explained in the prof command in the Files Reference.

The following example shows the first part of the prof command output for a modified version of the
Whetstone benchmark (Double Precision) program.

# cc -o cwhet -p -lm cwhet.c
# cwhet > cwhet.out
# prof
Name                 %Time     Seconds     Cumsecs  #Calls   msec/call
.main                 32.6       17.63       17.63       1  17630.
.__mcount             28.2       15.25       32.88
.mod8                 16.3        8.82       41.70 8990000      0.0010
.mod9                  9.9        5.38       47.08 6160000      0.0009
.cos                   2.9        1.57       48.65 1920000      0.0008
.exp                   2.4        1.32       49.97  930000      0.0014
.log                   2.4        1.31       51.28  930000      0.0014
.mod3                  1.9        1.01       52.29  140000      0.0072
.sin                   1.2        0.63       52.92  640000      0.0010
.sqrt                  1.1        0.59       53.51
.atan                  1.1        0.57       54.08  640000      0.0009
.pout                  0.0        0.00       54.08      10      0.0
.exit                  0.0        0.00       54.08       1      0.
.free                  0.0        0.00       54.08       2      0.
.free_y                0.0        0.00       54.08       2      0.

In this example, we see many calls to the mod8() and mod9() routines. As a starting point, examine the
source code to see why they are used so much. Another starting point could be to investigate why a
routine requires so much time.

Note: If the program you want to monitor uses a fork() system call, be aware that the parent and the child
create the same file (mon.out). To avoid this problem, change the current directory of the child process.

The gprof command
The gprof command produces an execution profile of C, FORTRAN, or COBOL programs.

The statistics of called subroutines are included in the profile of the calling program. The gprof command
is useful in identifying how a program consumes CPU resources. It is roughly a superset of the prof
command, giving additional information and providing more visibility to active sections of code.

Implementation of the gprof command
The source code must be compiled with the -pg option.

This action links in versions of library routines compiled for profiling and reads the symbol table in the
named object file (a.out by default), correlating it with the call graph profile file (gmon.out by default).
This means that the compiler inserts a call to the mcount() function into the object code generated for
each recompiled function of your program. The mcount() function counts each time a parent calls a child
function. Also, the monitor() function is enabled to estimate the time spent in each routine.

The gprof command generates two useful reports:

• The call-graph profile, which shows the routines, in descending order by CPU time, plus their
descendants. The profile permits you to understand which parent routines called a particular routine
most frequently and which child routines were called by a particular routine most frequently.

• The flat profile of CPU usage, which shows the usage by routine and number of calls, similar to the prof
output.

214  AIX Version 7.2: Performance Tools Guide and Reference



Each report section begins with an explanatory part describing the output columns. You can suppress
these pages by using the -b option.

Use -s for summaries and -z to display routines with zero usage.

Where the program is executed, statistics are collected in the gmon.out file. These statistics include the
following:

• The names of the executable program and shared library objects that were loaded
• The virtual memory addresses assigned to each program segment
• The mcount() data for each parent-child
• The number of milliseconds accumulated for each program segment

Later, when the gprof command is issued, it reads the a.out and gmon.out files to generate the two
reports. The call-graph profile is generated first, followed by the flat profile. It is best to redirect the gprof
output to a file, because browsing the flat profile first might answer most of your usage questions.

The following example shows the profiling for the cwhet benchmark program. This example is also used
in “The prof command ” on page 213:

# cc -o cwhet -pg -lm cwhet.c
# cwhet > cwhet.out
# gprof cwhet > cwhet.gprof

The call-graph profile
The call-graph profile is the first part of the cwhet.gprof file.

The following is an example of the cwhet.gprof file:

granularity: each sample hit covers 4 byte(s) Time: 62.85 seconds

                                  called/total       parents
index  %time    self descendents  called+self    name           index
                                  called/total       children

               19.44       21.18       1/1           .__start [2]
[1]     64.6   19.44       21.18       1         .main [1]
                8.89        0.00 8990000/8990000     .mod8 [4]
                5.64        0.00 6160000/6160000     .mod9 [5]
                1.58        0.00  930000/930000      .exp [6]
                1.53        0.00 1920000/1920000     .cos [7]
                1.37        0.00  930000/930000      .log [8]
                1.02        0.00  140000/140000      .mod3 [10]
                0.63        0.00  640000/640000      .atan [12]
                0.52        0.00  640000/640000      .sin [14]
                0.00        0.00      10/10          .pout [27]

-----------------------------------------------
                                                     <spontaneous>
[2]     64.6    0.00       40.62                 .__start [2]
               19.44       21.18       1/1           .main [1]
                0.00        0.00       1/1           .exit [37]
-----------------------------------------------

Usually the call graph report begins with a description of each column of the report, but it has been
deleted in this example. The column headings vary according to type of function (current, parent of
current, or child of current function). The current function is indicated by an index in brackets at the
beginning of the line. Functions are listed in decreasing order of CPU time used.

To read this report, look at the first index [1] in the left-hand column. The .main function is the current
function. It was started by .__start (the parent function is on top of the current function), and it, in turn,
calls .mod8 and .mod9 (the child functions are beneath the current function). All the accumulated time
of .main is propagated to .__start. The self and descendents columns of the children of the current
function add up to the descendents entry for the current function. The current function can have more
than one parent. Execution time is allocated to the parent functions based on the number of times they
are called.

Performance Tools Guide and Reference  215



Flat profile
The flat profile sample is the second part of the cwhet.gprof file.

The following is an example of the cwhet.gprof file:

granularity: each sample hit covers 4 byte(s) Total time: 62.85 seconds

  %   cumulative   self              self     total
 time   seconds  seconds     calls  ms/call  ms/call  name
 30.9      19.44    19.44        1 19440.00 40620.00  .main [1]
 30.5      38.61    19.17                             .__mcount [3]
 14.1      47.50     8.89  8990000     0.00     0.00  .mod8 [4]
  9.0      53.14     5.64  6160000     0.00     0.00  .mod9 [5]
  2.5      54.72     1.58   930000     0.00     0.00  .exp [6]
  2.4      56.25     1.53  1920000     0.00     0.00  .cos [7]
  2.2      57.62     1.37   930000     0.00     0.00  .log [8]
  2.0      58.88     1.26                             .qincrement [9]
  1.6      59.90     1.02   140000     0.01     0.01  .mod3 [10]
  1.2      60.68     0.78                             .__stack_pointer [11]
  1.0      61.31     0.63   640000     0.00     0.00  .atan [12]
  0.9      61.89     0.58                             .qincrement1 [13]
  0.8      62.41     0.52   640000     0.00     0.00  .sin [14]
  0.7      62.85     0.44                             .sqrt [15]
  0.0      62.85     0.00      180     0.00     0.00  .fwrite [16]
  0.0      62.85     0.00      180     0.00     0.00  .memchr [17]
  0.0      62.85     0.00       90     0.00     0.00  .__flsbuf [18]
  0.0      62.85     0.00       90     0.00     0.00  ._flsbuf [19]

The flat profile is much less complex than the call-graph profile and very similar to the output of the prof
command. The primary columns of interest are the self seconds and the calls columns. These
reflect the CPU seconds spent in each function and the number of times each function was called. The
next columns to look at are self ms/call (CPU time used by the body of the function itself) and total
ms/call (time in the body of the function plus any descendent functions called).

Normally, the top functions on the list are candidates for optimization, but you should also consider how
many calls are made to the function. Sometimes it can be easier to make slight improvements to a
frequently called function than to make extensive changes to a piece of code that is called once.

A cross reference index is the last item produced and looks similar to the following:

Index by function name

  [18] .__flsbuf            [37] .exit                 [5] .mod9
  [34] .__ioctl              [6] .exp                 [43] .moncontrol
  [20] .__mcount            [39] .expand_catname      [44] .monitor
   [3] .__mcount            [32] .free                [22] .myecvt
  [23] .__nl_langinfo_std   [33] .free_y              [28] .nl_langinfo
  [11] .__stack_pointer     [16] .fwrite              [27] .pout
  [24] ._doprnt             [40] .getenv              [29] .printf
  [35] ._findbuf            [41] .ioctl                [9] .qincrement
  [19] ._flsbuf             [42] .isatty              [13] .qincrement1
  [36] ._wrtchk              [8] .log                 [45] .saved_category_nam
  [25] ._xflsbuf             [1] .main                [46] .setlocale
  [26] ._xwrite             [17] .memchr              [14] .sin
  [12] .atan                [21] .mf2x2               [31] .splay
  [38] .catopen             [10] .mod3                [15] .sqrt
   [7] .cos                  [4] .mod8                [30] .write

Note: If the program you want to monitor uses a fork() system call, be aware that by default, the parent
and the child create the same file, gmon.out. To avoid this problem, use the GPROF environment variable.
You can also use the GPROF environment variable to profile multi-threaded applications.

The tprof command
The typical program execution is a variable combination of application code, library subroutines, and
kernel services. Frequently, programs that have not been tuned expend most of their CPU cycles in
certain statements or subroutines.

You can determine which particular statements or subroutines to examine with the tprof command.

The tprof command is a versatile profiler that provides a detailed profile of CPU usage by every process
ID and name. It further profiles at the application level, routine level, and even to the source statement

216  AIX Version 7.2: Performance Tools Guide and Reference



level and provides both a global view and a detailed view. In addition, the tprof command can profile
kernel extensions, stripped executable programs, and stripped libraries. It does subroutine-level profiling
for most executable programs on which the stripnm command produces a symbols table. The tprof
command can profile any program produced by any of the following compilers:

• C
• C++
• FORTRAN
• Java™

The tprof command only profiles CPU activity. It does not profile other system resources, such as
memory or disks.

The tprof command can profile Java programs using Java Persistence API (JPA) (-x java -Xrunjpa) to
collect Java Just-in-Time (JIT) source line numbers and instructions, if the following parameters are
added to -Xrunjpa:

• source=1; if IBM Java Runtime Environment (JRE) 1.5.0 is installed, this parameter enables JIT source
line collecting.

• instructions=1; enables JIT instructions collecting.

Time-based profiling
Time-based profiling is the default profiling mode and it is triggered by the decrementer interrupt, which
occurs every 10 milliseconds.

With time-based profiling, the tprof command cannot determine the address of a routine when interrupts
are disabled. While interrupts are disabled, all ticks are charged to the unlock_enable() routines.

Event-based profiling
Event-based profiling is triggered by any one of the software-based events or any Performance Monitor
event that occurs on the processor.

The primary advantages of event-based profiling over time-based profiling are the following:

• The routine addresses are visible when interrupts are disabled.
• The ability to vary the profiling event
• The ability to vary the sampling frequency

With event-based profiling, ticks that occur while interrupts are disabled are charged to the proper
routines. Also, you can select the profiling event and sampling frequency. The profiling event determines
the trigger for the interrupt and the sampling frequency determines how often the interrupt occurs. After
the specified number of occurrences of the profiling event, an interrupt is generated and the executing
instruction is recorded.

The default type of profiling event is processor cycles. The following are various types of software-based
events:

• Emulation interrupts (EMULATION)
• Alignment interrupts (ALIGNMENT)
• Instruction Segment Lookaside Buffer misses (ISLBMISS)
• Data Segment Lookaside Buffer misses (DSLBMISS)

The sampling frequency for the software-based events is specified in milliseconds and the supported
range is 1 to 500 milliseconds. The default sampling frequency is 10 milliseconds.

The following command generates an interrupt every 5 milliseconds and retrieves the record for the last
emulation interrupt:

# tprof -E EMULATION -f 5 

Performance Tools Guide and Reference  217



The following command generates an interrupt every 100 milliseconds and records the contents of the
Sampled Instruction Address Register, or SIAR:

# tprof -E -f 100 

The following are other types of Performance Monitor events:

• Completed instructions
• Cache misses

For a list of all the Performance Monitor events that are supported on the processors of the system, use
the pmlist command. The chosen Performance Monitor event must be taken in a group where we can also
find the PM_INST_CMPL Performance Monitor event. The sampling frequency for these events is specified
in the number of occurrences of the event. The supported range is 10,000 to MAXINT occurrences. The
default sampling frequency is 10,000 occurrences.

The following command generates an interrupt after the processor completes 50,000 instructions:

# tprof -E PM_INST_CMPL -f 50000

Event-based profiling uses the SIAR, which contains the address of an instruction close to the executing
instruction. For example, if the profiling event is PM_FPU0_FIN, which means the floating point unit 0
produces a result, the SIAR might not contain that floating point instruction but might contain another
instruction close to it. This is more relevant for profiling based on Performance Monitor events. In fact for
the proximity reason, on systems based on POWER4 and later, it is recommended that the Performance
Monitor profiling event be one of the marked events. Marked events have the PM_MRK prefix.

Certain combinations of profiling event, sampling frequency, and workload might cause interrupts to
occur at such a rapid rate that the system spends most of its time in the interrupt handler. The tprof
command detects this condition by keeping track of the number of completed instructions between two
consecutive interrupts. When the tprof command detects five occurrences of the count falling below the
acceptable limit, the trace collection stops. Reports are still generated and an error message is displayed.
The default threshold is 1,000 instructions.

Large page analysis
The tprof -a command collects profile trace from a representative application run and produces
performance projections for mapping different portions of the application's data space to different page
sizes.

Large Page Analysis uses the information in the trace to project translation buffer performance when
mapping any of the following four application memory regions to a different page size:

• static application data (initialized and uninitialized data)
• application heap (dynamically allocated data)
• stack
• application text

The performance projections are provided for each of the page sizes supported by the operating system.
The first performance projection is a baseline projection for mapping all four memory regions to the
default 4 KB pages. Subsequent projections map one region at a time to a different page size. The
statistics reported for each projection include: the page size, the number of pages needed to back all four
regions, a translation miss score, and a cold translation miss score.

The summary section lists the processes profiled and the statistics reported including: number/
percentage of memory reference, modeled memory reference, malloc calls, and free calls.

How to interpret the results
The translation miss score is an indicator of the translation miss rate and ranges from 0 (no translation
misses) to 1 (every reference results in a translation miss).

The translation miss rate is defined as:

218  AIX Version 7.2: Performance Tools Guide and Reference



Translation miss rate = (Number of translation misses)/(Number of translation buffer accesses) 

The translation miss score differs from the actual translation miss rate because it is based on sampled
references. Sampling has the effect of reducing the denominator (Number of translation buffer accesses)
in the above equation faster than the numerator (Number of translation misses). As a result, the
translation miss score tends to overestimate the actual translation miss rate at increasing sampling rates.
Thus, the translation score should be interpreted as a relative measure for comparing the effectiveness of
different projections rather than as a predictor of actual translation miss rates.

The translation miss score is directly affected by larger page sizes: growing the page size reduces the
translation miss score. The performance projection report includes both a cold translation miss score
(such as compulsory misses) and a total translation miss score (such as compulsory and capacity misses).
The cold translation miss score provides a useful lower bound; if growing the page size has reduced the
translation miss score to the cold translation miss score, then all capacity translation misses have been
eliminated and further increases in page size can only have negligible additional benefits.

The performance projection for a process would appear similar to the following:

Modeled region for the process ./workload [661980]

Region Start End Size (KB) %MemRef

====== ===== ==== ========= =========

heap 0x1100059b0 0x1207b0b60 269996.43 74.45

data 0x110000710 0x11000598c 20.63 1.55

stack 0xffffffffffced10 0xfffffffffffffe0 196.71 20.44

text 0x100000288 0x100053710 333.14 2.56

Performance projection for the process ./workload [661980]

Region PageSize # Pages TMissScore ColdTMissScore

====== ======== ======== ========== =============

heap 4 KB 67500 0.92343 (100.0%) 0.09234 (100.0%)

heap 64 KB 4219 0.53615 ( 45.0%) 0.02744 ( 30.0%)

heap 16 MB 17 0.00010 ( 00.1%) 0.00002 ( 00.1%)

data 4 KB 6 0.53615 (100.0%) 0.02744 (100.0%)

data 64 KB 1 0.00053 ( 00.1%) 0.00009 ( 00.1%)

data 16 MB 1 0.00053 ( 00.1%) 0.00009 ( 00.1%)

stack 4 KB 50 0.53615 (100.0%) 0.02744 (100.0%)

stack 64 KB 4 0.05361 ( 10.0%) 0.00274 ( 10.0%)

stack 16 MB 1 0.00053 ( 00.1%) 0.00009 ( 00.1%)

text 4 KB 84 0.53615 (100.0%) 0.04744 (100.0%)

text 64 KB 6 0.05361 ( 10.0%) 0.00274 ( 10.0%)

text 16 MB 1 0.00053 ( 00.1%) 0.00009 ( 00.1%)

Data profiling
The tprof –b command turns on basic data profiling and collects data access information.

The summary section reports access information across kernel data, library data, user global data, and
stackheap sections for each process, as shown in the following example:

Performance Tools Guide and Reference  219



Table 3. Data profiling of the tprof -b command

Process Freq Total Kernel User Shared Other

tlbref 1 60.49 0.07 59.71 0.38 0.00

/usr/bin/dd 1 39.30 26.75 11.82 0.73 0.00

tprof 2 0.21 0.21 0.00 0.33 0.00

Total 20 100.00 27.03 71.53 1.44 0.00

Table 4. An example of the data profiling report for the /usr/bin/dd process.

Process PID TID Total Kernel User Shared Other

tlbref 327688 757943 60.49 0/07 59.71 0.38 0.00

Kernel: 0.04%

lib: 0.00%

u_global: 0.00%

stackheap: u_global: 0.00%

unresolved: 99.42%

tprof 3278000 792863 0.21 0.21 0.00 0.00 0.00

kernel: 0.20%

lib: 0.00%

u_global: 0.00%

stackheap 0.00%

unresolved: 0.01%

/usr/bin/dd 323768 974985 39.30 26.75 11.82 0.73 0.00

kernel: 12.86%

lib: 0.00%

u_global: 7.80%

stackheap: 2.42%

unresolved: 2.18%

Total 100.00 27.03 99.01 1.44 0.00

When used with the-s, -u, -k and -e flags, the tprof command's data profiling reports most-used data
structures (exported data symbols) in shared library, binary, kernel and kernel extensions. The -B flag
also reports the functions that use data structures.

The second table shown is an example of the data profiling report for the /usr/bin/dd process.. The
example report shows that __start data structure is the most used data structure in the /usr/bin/dd
process, based on the samples collected. The data structure is a list of functions (right aligned) that use
the data structure, reported along with their share and source as shown in the following example:

 Total % For /usr/bin/dd[323768] (/usr/bin/dd) = 11.69

Subroutine % Source

.noconv 11.29 /usr/bin/dd

.main 0.14 /usr/bin/dd

220  AIX Version 7.2: Performance Tools Guide and Reference



Subroutine % Source

.read 0.07 glink.s

.setobuf 0.05 /usr/bin/dd

.rpipe 0.04 /usr/bin/dd

.flsh 0.04 /usr/bin/dd

.write 0.04 glink.s

.wbuf 0.02 /usr/bin/dd

.rbuf 0.02 /usr/bin/dd

Data % Source

__start 7.80 /usr/bin/dd

.noconv 6.59 /usr/bin/dd

.main 0.14 /usr/bin/dd

.read 0.04 glink.s

.wbuf 0.02 /usr/bin/dd

.write 0.02 glink.s

.flsh 0.102 /usr/bin/dd

Implementation of the tprof command
The tprof command uses the system trace facility. Since you can only execute the trace facility one user
at a time, you can only execute one tprof command at a time.

You can obtain the raw data for the tprof command through the trace facility. For more information about
the trace facility, see Analyzing Performance with the Trace Facility in Files Reference.

When a program is profiled, the trace facility is activated and instructed to collect data from the trace
hook with hook ID 234 that records the contents of the Instruction Address Register, or IAR, when a
system-clock interrupt occurs (100 times a second per processor). Several other trace hooks are also
activated to enable the tprof command to track process and dispatch activity. The trace records are not
written to a disk file. They are written to a pipe that is read by a program that builds a table of the unique
program addresses that have been encountered and the number of times each one occurred. When the
workload being profiled is complete, the table of addresses and their occurrence counts are written to
disk. The data-reduction component of the tprof command then correlates the instruction addresses that
were encountered with the ranges of addresses occupied by the various programs and reports the
distribution of address occurrences, or ticks, across the programs involved in the workload.

The distribution of ticks is roughly proportional to the CPU time spent in each program, which is 10
milliseconds per tick. After the high-use programs are identified, you can take action to restructure the
hot spots or minimize their use.

Example: tprof command
You can view the complete details of the tprof command in Files Reference.

The following example demonstrates how to collect a CPU tick profile of a program using the tprof
command. The example was executed on a 4-way SMP system and since it is a fast-running system, the
command completed in less than a second. To make this program run longer, the array size, or Asize, was
changed to 4096 instead of 1024.

Upon running the following command, the version1.prof file is created in the current directory:

# tprof -z -u -p version1 -x version1

Performance Tools Guide and Reference  221



The version1.prof file reports how many CPU ticks for each of the programs that were running on the
system while the version1 program was running.

The following is an example of what the version1.prof file contains:

          Process            Freq    Total   Kernel     User   Shared    Other
          =======            ====    =====   ======     ====   ======    =====
             wait               4     5810     5810        0        0        0
       ./version1               1     1672       35     1637        0        0
   /usr/bin/tprof               2       15       13        0        2        0
       /etc/syncd               1        2        2        0        0        0
      /usr/bin/sh               2        2        2        0        0        0
          swapper               1        1        1        0        0        0
 /usr/bin/trcstop               1        1        1        0        0        0
             rmcd               1        1        1        0        0        0
          =======             ===    =====   ======     ====   ======    =====
            Total              13     7504     5865     1637        2        0

           Process      PID      TID    Total   Kernel     User   Shared    Other
          =======      ===      ===    =====   ======     ====   ======    =====
             wait    16392    16393     1874     1874        0        0        0
             wait    12294    12295     1873     1873        0        0        0
             wait    20490    20491     1860     1860        0        0        0
       ./version1   245974   606263     1672       35     1637        0        0
             wait     8196     8197      203      203        0        0        0
   /usr/bin/tprof   291002   643291       13       13        0        0        0
   /usr/bin/tprof   274580   610467        2        0        0        2        0
       /etc/syncd    73824   110691        2        2        0        0        0
      /usr/bin/sh   245974   606263        1        1        0        0        0
      /usr/bin/sh   245976   606265        1        1        0        0        0
 /usr/bin/trcstop   245976   606263        1        1        0        0        0
          swapper        0        3        1        1        0        0        0
             rmcd   155876   348337        1        1        0        0        0
          =======      ===      ===    =====   ======     ====   ======    =====
            Total                       7504     5865     1637        2        0

      Total Samples = 7504       Total Elapsed Time = 18.76s

   Profile: ./version1
   Total Ticks For All Processes (./version1) = 1637

           Subroutine   Ticks     %        Source   Address  Bytes
        =============  ======  ======     =======   =======  =====
                .main    1637   21.82  version1.c       350    536

   Profile: ./version1
   Total Ticks For ./version1[245974] (./version1) = 1637

           Subroutine   Ticks     %        Source   Address  Bytes
        =============  ======  ======     =======   =======  =====
                .main    1637   21.82  version1.c       350    536

The first section of the report summarizes the results by program, regardless of the process ID, or PID. It
shows the number of different processes, or Freq, that ran each program at some point.

The second section of the report displays the number of ticks consumed by, or on behalf of, each process.
In the example, the version1 program used 1637 ticks itself and 35 ticks occurred in the kernel on behalf
of the version1 process.

The third section breaks down the user ticks associated with the executable program being profiled. It
reports the number of ticks used by each function in the executable program and the percentage of the
total run's CPU ticks (7504) that each function's ticks represent. Since the system's CPUs were mostly
idle, most of the 7504 ticks are idle ticks.

To see what percentage of the busy time this program took, subtract the wait thread's CPU ticks, which
are the idle CPU ticks, from the total and then divide the difference from the total number of ticks.

Total number of ticks / (Total - Idle CPU ticks) = % busy time of program
                1637 /  (7504 - 5810) =
                1637 /  1694 = 0.97    

So, the percentage of system busy ticks is 97%.

222  AIX Version 7.2: Performance Tools Guide and Reference



The raso tunables
As the root user, you can tune the instruction threshold with the tprof_inst_threshold tunable of the raso
command.

As the root user, you can tune the sampling frequency with the following raso tunables:

• tprof_cyc_mult
• tprof_evt_mult

For example, for events based on processor cycles, setting the tprof_cyc_mult tunable to 50 and
specifying the -f flag as 100 is equivalent to specifying a sampling frequency of 100/50 milliseconds.

For other Performance Monitor events, setting the tprof_evt_mult tunable to 100 and specifying the -f
flag as 20,000 is equivalent to specifying a sampling frequency of 20,000/100 occurrences.

Manual offline processing with the tprof command
You can perform offline processing of trace files with the tprof command, but you must specify filenames
with a rootstring name.

Also, there are certain suffixes required for the input files that the tprof command uses. For example, the
trace binary file must end in .trc. Also, you need to collect the gensyms command output and put it in a
file called the rootstring.syms file.

To insure the trace file contains sufficient information to be post-processed by tprof, the trace command
line must include the -M and -j tprof flags.

If you name the rootstring file trace1, to collect a trace, you can use the trace command using all of the
hooks or at least the following hooks:

# trace -af -M -T 1000000 -L 10000000 -o trace1.trc -j tprof
# workload
# trcoff
# gensyms > trace1.syms
# trcstop
# trcrpt -r trace1 -k -u -s -z

The example above creates a trace1.prof file, which gives you a CPU profile of the system while the trace
command was running.

The svmon command
The svmon command provides a more in-depth analysis of memory usage.

The svmon command captures a snapshot of the current state of memory; however, it is not a true
snapshot because it runs at the user level with interrupts enabled.

If an interval is indicated by the the -i flag statistics will be displayed until the command is killed or until
the number of intervals which is specified with the-i flag, is reached.

You can generate the following different reports to analyze the memory consumption of your machine:

• command report (-C)
• detailed report (-D)
• global report (-G)
• process report (-P)
• segment report (-S)
• user report (-U)
• workload management Class report (-W)
• workload management tier report (-T)
• XML report (-X)

For more information on the svmon command, see Files Reference.

Performance Tools Guide and Reference  223



Security
Any user of the machine can run the svmon command. It uses two different mechanisms to allow two
different views for a non-root user.

The following will create the views:

• When RBAC authorization is used, the user will have the same view as the root user if their role is
defined with aix.system.stat authorization.

• When RBAC is not used or when the user does not have the aix.system.stat authorization, the user's
reports are limited to its environment or processes.

You can view the complete details of the RBAC in Files Reference.

The svmon configuration file
A configuration file named .svmonrc, containing a list of svmon -O option, can be defined to overwrite the
default values of these options. This file must be defined in the home directory of the user running svmon
command.

At start time, the svmon command does the following:

• Initializes the default values for each -O option.
• Reads the .svmonrc file and overwrites the default -O option values with these new users default

values.
• Reads the command flag defined by the user.

For example, the following .svmonrc file sets svmon to generate the default report format before the -O
option were introduced:

# cat .svmonrc
summary=basic
segment=category
pgsz=on

Note:

• When an option is not recognized in the file, it is ignored.
• When an option is defined more than once, only the last value will be used.

Summary report metrics
The command report (-C option), global report (-G option), process report (-P option), user report (-U
option), and workload management class report (-W option) include the same set type of summary
metrics.

The following are the summary metrics:

• The -O summary=basic option used alone produces compact reports for the command report (-C), the
process report (-P ), the user report (-U ), and the workload management class report (-W ).

• The -O summary=longreal option used alone produces a compact report of the global report (-G ).

In a system with Active Memory Expansion enabled, two new summary report metrics are available for
global report (-G option).

• The -O summary=ame option used alone produces detailed memory compression information for the
global report (-G).

• The -O summary=longame option used alone produces a compact report of memory compression
information for the global report (-G)

Basic summary report metrics
This is the compatibility mode with the previous versions of svmon command (before the -O option was
introduced). This format uses 80 columns.

In these summaries, the following columns are always displayed:

224  AIX Version 7.2: Performance Tools Guide and Reference



Item Descriptor

Inuse Number of frames containing pages (expressed in <unit>) used by the report entities.

Pin Number of frames containing pinned pages (expressed in <unit>) used by the report entities.

Pin Number of pages (expressed in <unit>) allocated in the paging space by the report entities.

Virtual Number of pages (expressed in <unit>) allocated in the virtual space by the report entities.

Report formatting options
Review the report formatting options for the svmon command.

The svmon configuration file can generate two types of reports for the -G, -P, -U, -C, and -W option:

• Compact report, which is a one-line-per-entity report.
• Long report, which uses several lines per entity.

For the -G option, you can switch from the standard report to the compact report with the option -O
summary=longreal. For the -P, -U, -C and -W options, a compact report is reported when the option -O
summary=basic is set and the option -O segment=off is set (default value).

The following -O options can be used in both compact or long reports:

• -O format=[80,160,nolimit]: This option sets the width of the report. The default width of most reports
is 80 characters. But, some reports need 160 characters, in which case this option is implicitly set. You
can always specify to display the reports with more columns, to eliminate truncated strings.

• -O timestamp=[on | off]: When this flag is set to on, a timestamp, recorded when the svmon command
begins retrieving data, is displayed at the beginning of the report. Because the data collection can take
some time, you can use the -O timestamp=on with the -i flag to specify timestamp intervals. The time
specified with the -i flag is the interval between the end of one svmon command iteration and the start
of the next one.

Example:

In this example, the command line specifies to run svmon 3 times every 5 seconds. The timestamp and
command line are set with the .svmonrc file.

• -O commandline=[on|off]: when set to on, this option adds the command line you use to produce the
report in the report header.

# svmon -G -i 5 3

Command line : svmon -G -i 5 3
.svmonrc: -O timestamp=on,commandline=on
Unit: page                                                   Timestamp: 11:23:02
-------------------------------------------------------------------------------
               size       inuse        free         pin     virtual  available
memory       262144      227471       34673      140246      223696      53801
pg space     131072       39091

               work        pers        clnt       other
pin          113676           0           0       10186
in use       189693           0       29586
Unit: page                                                   Timestamp: 11:23:07
-------------------------------------------------------------------------------
               size       inuse        free         pin     virtual  available
memory       262144      227473       34671      140243      223697      53800
pg space     131072       39091

               work        pers        clnt       other
pin          113673           0           0       10186
in use       189694           0       29587
Unit: page                                                   Timestamp: 11:23:12
-------------------------------------------------------------------------------
               size       inuse        free         pin     virtual  available
memory       262144      227475       34670      140244      223699      53799
pg space     131072       39091

               work        pers        clnt       other

Performance Tools Guide and Reference  225



pin          113674           0           0       10186
in use       189696           0       29587

Example:

# svmon -G -O commandline=on

Command line : svmon -G -O commandline=on 
Unit: page
-------------------------------------------------------------------------------
               size       inuse        free         pin     virtual  available
memory       262144      227312       34832      140242      223536      53961
pg space     131072       39091

               work        pers        clnt       other
pin          113672           0           0       10186
in use       189533           0       29587

• -O unit=[auto,page,KB,MB,GB]: this option is set to page by default. In this case, the reported metrics
for each segment are in the segment page size:

– s are 4 KB pages
– m are 64 KB pages
– L are 16 MB pages
– S are 16 GB pages

When auto,KB, MB, or GB are used, only the 3 most significant digits are displayed. You should be careful
when interpreting the results with a unit other than page. When the auto setting is selected, the
abbreviated units are specified immediately after each metric (K for kilobytes, M for megabytes, or G for
gigabytes).

Examples:

This is the same report using different unit options:

# svmon -G -O unit=page
Unit: page
==============================================================================
               size       inuse        free         pin     virtual  available
memory      1048576      220617      827959      113371      194382     819969
pg space     131072        1280

               work        pers        clnt       other
pin           78124           0           0       35247
in use       194382           0       26235

# svmon -G -O unit=GB  
Unit: GB
==============================================================================
               size       inuse        free         pin     virtual  available
memory         4.00        0.84        3.16        0.43        0.74       3.13
pg space       0.50           0

               work        pers        clnt       other
pin            0.30           0           0        0.13
in use         0.74           0        0.10

# svmon -G -O unit=auto
Unit: auto
==============================================================================
               size       inuse        free         pin     virtual  available
memory        4.00G     860.78M       3.16G     442.86M     758.29M      3.13G
pg space    512.00M       5.00M

               work        pers        clnt       other
pin         305.17M          0K          0K     137.68M
in use      758.29M          0K     102.49M

226  AIX Version 7.2: Performance Tools Guide and Reference



Segment details and -O options
Review the segment details and -O options for the svmon command.

Segment details can be added to the user, command, process, and class reports after the summary when
the -O segment=on or -O segment=category option is set to:

• -O segment=on, the list of segments is displayed for each entity.
• -O segment=category, the segments are grouped into the following three categories for each entity:

– system: used by the system
– exclusive: used only by one entity, except for shared memory (shm) segments
– shared: used by two or more entities, except for shared memory (shm) segments

The following table contains the description of the items that the svmon reports for segment information.

Table 5. Description table

Segmen
t type Segment usage Description

persiste
nt

log files IO space mapping

persiste
nt

files and directories device name : inode number

persiste
nt

large files large file device name : inode number

mapping files mapping mapped to sid source sid no longer mapped

working data areas of processes and shared
memory segments

dependent on the role of the segment based on
the VSID and ESID

client NFS and CD-ROM files dependent on the role of the segment based on
the VSID and ESID

client JFS2 files device name: inode number

rmappin
g

I/O space mapping dependent on the role of the segment based on
the VSID and ESID

When -O segment=on or -O segment=category is set, additional details can be added:

• -O range=on: each segment is followed by the ranges, within the segment, where pages have been
allocated.

Example:

# svmon -P 1 -O range=on
Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
       1 init             16874     8052        0    16858

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               m    576   503    0     576
                   Addr Range: 0..3945
   d802d         d work shared library text          m    467     0    0     467
                   Addr Range: 0..562
    1001         2 work process private              s     98     4    0      98
                   Addr Range: 0..179 : 65309..65535
  1c101d         f work shared library data          s     72     0    0      72
                   Addr Range: 0..545
  1a101b         1 clnt code,/dev/hd2:531            s     11     0    -       -
                   Addr Range: 0..10
   21023         - clnt /dev/hd4:1236                s      5     0    -       -
                   Addr Range: 0..4

Performance Tools Guide and Reference  227



• -O pidlist=on and -O pidlist=number: adds either the list of PIDs of processes or the number of
processes using this segment. It also adds either the user name or the command name corresponding
to each PID. When the -@ flag is added, the WPAR name is also added.

Example:

# svmon -C yes -O pidlist=on
Unit: page
===============================================================================
Command                              Inuse      Pin     Pgsp  Virtual
yes                                  16893     8112        0    16892

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               m    579   506    0     579
                   System segment
   d802d         d work shared library text          m    468     0    0     468
                   Shared library text segment
  111750         2 work process private              s     18     4    0      18
                   pid(s)=348386
   e174f         2 work process private              s     18     4    0      18
                   pid(s)=340154
  131752         2 work process private              s     18     4    0      18
                   pid(s)=389352
  1c171d         2 work process private              s     18     4    0      18
                   pid(s)=360640
   81749         f work shared library data          s     17     0    0      17
                   pid(s)=340154
   71726         f work shared library data          s     17     0    0      17
                   pid(s)=360640
  101751         f work shared library data          s     17     0    0      17
                   pid(s)=348386
  121753         f work shared library data          s     17     0    0      17
                   pid(s)=389352
   a172b         1 clnt code,/dev/hd2:338            s      1     0    -       -
                   pid(s)=389352, 360640, 348386, 340154

# svmon -C yes -O pidlist=number
Unit: page
===============================================================================
Command                              Inuse      Pin     Pgsp  Virtual
yes                                  16893     8112        0    16892

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               m    579   506    0     579
                   System segment
   d802d         d work shared library text          m    468     0    0     468
                   Shared library text segment
  111750         2 work process private              s     18     4    0      18
                   pid number=1
   e174f         2 work process private              s     18     4    0      18
                   pid number=1
  131752         2 work process private              s     18     4    0      18
                   pid number=1
  1c171d         2 work process private              s     18     4    0      18
                   pid number=1
   81749         f work shared library data          s     17     0    0      17
                   pid number=1
   71726         f work shared library data          s     17     0    0      17
                   pid number=1
  101751         f work shared library data          s     17     0    0      17
                   pid number=1
  121753         f work shared library data          s     17     0    0      17
                   pid number=1
   a172b         1 clnt code,/dev/hd2:338            s      1     0    -       -
                   pid number=4

• -O filename=on: Each persistent segment's complete, corresponding file name is shown. Note that
because files can be deeply nested, running the svmon command with this flag, or with the -S and -i
flags, can take significantly more time.

Example:

# svmon -P 266414 -O filename=on,format=nolimit
Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  266414 IBM.ServiceRMd    17227     8116        0    17174

228  AIX Version 7.2: Performance Tools Guide and Reference



    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               m    579   506    0     579
   d802d         d work shared library text          m    468     0    0     468
   31322         2 work process private              s    202     4    0     202
  171316         f work shared library data          s    167     0    0     167
  1e133f         - work                              s     52    16    0      52
   11320         1 clnt code,/dev/hd2:9929           s     51     0    -       -
                        /opt/rsct/bin/IBM.ServiceRMd
   b134a         - clnt /dev/hd9var:368              s      1     0    -       -
                        /var/ct/3394394444/registry/local_tree/IBM,ServiceEvent,Class
   a134b         - clnt /dev/hd9var:372              s      1     0    -       -
                        /var/ct/3394394444/registry/local_tree/IBM,ServiceEvent,Resources
    1341         4 work shared memory segment        s      1     0    0       1
  121333         3 mmap maps 2 source(s)             s      0     0    -       -
  131312         - clnt /dev/hd9var:360              s      0     0    -       -
                        /var/ct/IBM.ServiceRM.stderr
  111310         - clnt /dev/hd9var:418              s      0     0    -       -
                        /var/ct/3394394444/lck/mc/RMIBM.ServiceRM

• -O mapping=on: adds information about the source segment and the mapping segment when a
segment is used to map another segment. If this option is used, source segments not belonging to the
process address space are listed in the report and marked with an asterisk (*). Note that they are also
taken into account in the process-level summary's number calculations.

Example:

# svmon -P 266414 -O mapping=off
Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  266414 IBM.ServiceRM    17227     8116        0    17174

# svmon -P 266414 -O mapping=on
Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  266414 IBM.ServiceRM    17231     8116        0    17174

# svmon -P 266414 -O mapping=on,segment=on
Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  266414 IBM.ServiceRM    17231     8116        0    17174

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               m    579   506    0     579
   d802d         d work shared library text          m    468     0    0     468
   31322         2 work process private              s    202     4    0     202
  171316         f work shared library data          s    167     0    0     167
  1e133f         - work                              s     52    16    0      52
   11320         1 clnt code,/dev/hd2:9929           s     51     0    -       -
  191338 *       - clnt /dev/hd9var:363              s      3     0    -       -
  131332 *       - clnt /dev/hd9var:361              s      1     0    -       -
   b134a         - clnt /dev/hd9var:368              s      1     0    -       -
   a134b         - clnt /dev/hd9var:372              s      1     0    -       -
    1341         4 work shared memory segment        s      1     0    0       1
  131312         - clnt /dev/hd9var:360              s      0     0    -       -
  121333         3 mmap maps 2 source(s)             s      0     0    -       -
                   source(s)=131332, 191338
  111310         - clnt /dev/hd9var:418              s      0     0    -       -

In these examples, the mapping option adds or removes the mapping source segments which are not in
the address space of the process number 266414. There is a difference of four pages (three pages from
segment 191338, and one page from segment 131332) in the Inuse consumption between -O
mapping=off and -O mapping=on.

• -O sortseg=[inuse | pin | pgsp | virtual]: by default, , all segments are sorted in decreasing order of
real memory usage (the Inuse metric) for each entity (user, process, command, segment). Sorting
options for the report include the following:

– Inuse: real memory used
– Pin: pinned memory used
– Pgsp: paging space memory used

Performance Tools Guide and Reference  229



– Virtual: virtual memory used

Examples:

# svmon -P 1 -O unit=KB,segment=on
Unit: KB
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
       1 init             67752    32400        0    67688

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               m  37056 32384    0   37056
   d802d         d work shared library text          m  29952     0    0   29952
    1001         2 work process private              s    392    16    0     392
  1c101d         f work shared library data          s    288     0    0     288
  1a101b         1 clnt code,/dev/hd2:531            s     44     0    -       -
   21023         - clnt /dev/hd4:1236                s     20     0    -       -

# svmon -P 1 -O unit=KB,segment=on,sortseg=pin
Unit: KB
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
       1 init             67752    32400        0    67688

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               m  37056 32384    0   37056
    1001         2 work process private              s    392    16    0     392
   21023         - clnt /dev/hd4:1236                s     20     0    -       -
   d802d         d work shared library text          m  29952     0    0   29952
  1a101b         1 clnt code,/dev/hd2:531            s     44     0    -       -
  1c101d         f work shared library data          s    288     0    0     288

• -O mpss=[on | off]: breaks down the metrics for multiple page size segments, by page size.

Examples:

# svmon -P 1 -O segment=on,mpss=on
Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
       1 init             14557     5492        0    14541

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work shared library text          m    502     0    0     502
    2002         0 work kernel segment               m    396   343    0     396
   10001         2 work process private              s    100     4    0     100
                                                     m      0     0    0       0
    8019         f work shared library data          s     73     0    0      73
                                                     m      0     0    0       0
    6017         1 clnt code,/dev/hd2:532            s     11     0    -       -
    e01f         - clnt /dev/hd4:893                 s      5     0    -       -

sm pages are separated into s and m pages. The metrics reported are in the unit of the page size: s
pages are 4 KB and m pages are 64 KB.

• -O shmid=[on | off]: displays shared memory IDs associated with shared memory segments. This
option does not work you run it in inside a WPAR.

Examples:

# svmon -P 221326 -O commandline=on,segment=on,shmid=on,filterprop=notempty 
Command line : svmon -P 221326 -O commandline=on,segment=on,shmid=on,filterprop=notempty 

Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  221326 java             20619     6326     9612    27584

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work text or shared-lib code seg  m    585     0    1     585
       0         0 work kernel segment               m    443   393    4     444
   14345         3 work working storage             sm   2877     0 7865    9064
   15364         e work shared memory segment       sm   1082     0 1473    1641
                        shmid:3                                                
   1b36a         f work working storage             sm    105     0  106     238
   17386         - work                              s    100    34   64     146              
   1a38b         2 work process private             sm      7     4   24      31

230  AIX Version 7.2: Performance Tools Guide and Reference



Additional -O options
Review the additional -O options for the svmon command.

The following additional options are:

• -O process=on: adds, for a given entity, the memory statistics of the processes belonging to the entity
(user name or command name). If you specify the -@ flag, each process report is followed by a line that
shows the WPAR name. This option is only valid for the User and the Command reports.

All reports containing two or more entities can be filtered and/or sorted with the following options:

• -O sortentity=[inuse |...]: specifies the summary metric used to sort the entities (process, user, and so
on) when several entities are printed in a report.

The list of metrics permitted in the report depend on the type of summary (-O summary option) chosen.
Any of the metrics used in a summary can be used as a sort key.

Examples:

# svmon -P -t 5 -O summary=off -O segment=off -O sortentity=pin
Command line : svmon -P -t 5 -O summary=off -O segment=off -O sortentity=pin    
Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  127044 dog               9443     8194        0     9443
       0 swapper           9360     8176        0     9360
    8196 wait              9360     8176        0     9360
   53274 wait              9360     8176        0     9360
  237700 rpc.lockd         9580     8171        0     9580

• -O filtercat=[off | exclusive | kernel | shared | unused | unattached]: this option filters the output by
segment category. You can specify more than one filter at a time.

Note: Use the unattached filter value with the -S report because unattached segments cannot be
owned by a process or command.

Examples:

# svmon -P 1 -O unit=KB,segment=on,sortseg=pin,filtercat=off
Unit: KB
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
       1 init             58684    28348        0    58616

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               s  30948 28332    0   30948
   6902f         2 work process private              s    396    16    0     396
   6c10d         d work shared library text          s  26996     0    0   26996
   a9017         f work shared library data          s    276     0    0     276
   b9015         1 clnt code,/dev/hd2:531            s     44     0    -       -
   f101c         - clnt /dev/hd4:824                 s     24     0    -       -

# svmon -P 1 -O unit=KB,segment=on,sortseg=pin,filtercat=shared
Unit: KB
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
       1 init             58684    28348        0    58616

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
   6c10d         d work shared library text          s  26996     0    0   26996
   a9017         f work shared library data          s    276     0    0     276

• -O filtertype=[off | working | persistent | client]: this option allows you to filter on the Type column of
the segment details. You can specify more than one filter at a time.

Examples:

# svmon -P 495618 -O segment=on,filtertype=client
Unit=page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual

Performance Tools Guide and Reference  231



  495618 IBM.AuditRMd       308        0        0        0

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
  1619f7         - clnt /dev/fslv07:417              s    253     0    -     - 
   31382         1 clnt code,/dev/hd2:9803           s     36     0    -     - 
  1319f2         - clnt /dev/fslv07:400              s     16     0    -     - 
  1a19db         - clnt /dev/fslv07:399              s      1     0    -     - 
   a19cb         - clnt /dev/fslv07:397              s      1     0    -     - 
   919c8         - clnt /dev/fslv07:398              s      1     0    -     - 
   519c4         - clnt /dev/fslv07:358              s      0     0    -     - 
  1f19de         - clnt /dev/fslv07:325              s      0     0    -     - 

Only the client segments for process number 495618 are displayed. Note that the summary only
reports the sum of the metrics displayed in the entity details. This means that the summary numbers
shown here do not represent the complete memory consumption for this process, only its consumption
using client segments.

• -O filterprop=[off | notempty | data | text]:

This option allows filtering on the segment property:

– Data: Computational segments consisting of the pages belonging to working-storage segments or
program text (executable files) segments.

– Text: Non-computational segments ofFile memory (or file pages), which are the remaining pages.
These pages are usually from permanent data files in persistent storage.

– Notempty: Segments where the Inuse value is not 0.

You can specify more than one property at a time.

Examples:

# svmon -C yes -O segment=category,filterprop=notempty   

Unit: page
===============================================================================
Command                              Inuse      Pin     Pgsp  Virtual
yes                                  16256     6300       80    16271

...............................................................................
SYSTEM segments                      Inuse      Pin     Pgsp  Virtual
                                      7088     6288       64     7104

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               m    443   393    4     444

...............................................................................
EXCLUSIVE segments                   Inuse      Pin     Pgsp  Virtual
                                       112       12        0      111

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    851d         2 work process private             sm     19     4    0      19
    e6fb         2 work process private             sm     19     4    0      19
   1940f         2 work process private             sm     19     4    0      19
    1017         f work shared library data         sm     18     0    0      18
    6f73         f work shared library data         sm     18     0    0      18
    4a71         f work shared library data         sm     18     0    0      18
   24626         1 clnt code,/dev/hd2:338            s      1     0    -       -

...............................................................................
SHARED segments                      Inuse      Pin     Pgsp  Virtual
                                      9056        0       16     9056

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work shared library text          m    566     0    1     566

# svmon -C yes -O segment=category,filterprop=text    

Unit: page
===============================================================================
Command                              Inuse      Pin     Pgsp  Virtual
yes                                      1        0        0        0

...............................................................................
EXCLUSIVE segments                   Inuse      Pin     Pgsp  Virtual
                                         1        0        0        0

232  AIX Version 7.2: Performance Tools Guide and Reference



    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
   24626         1 clnt code,/dev/hd2:338            s      1     0    -       -

# svmon -C yes -O segment=category,filterprop=data

Unit: page
===============================================================================
Command                              Inuse      Pin     Pgsp  Virtual
yes                                  16255     6300       80    16271

...............................................................................
SYSTEM segments                      Inuse      Pin     Pgsp  Virtual
                                      7088     6288       64     7104

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               m    443   393    4     444

...............................................................................
EXCLUSIVE segments                   Inuse      Pin     Pgsp  Virtual
                                       111       12        0      111

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    e6fb         2 work process private             sm     19     4    0      19
    851d         2 work process private             sm     19     4    0      19
   1940f         2 work process private             sm     19     4    0      19
    4a71         f work shared library data         sm     18     0    0      18
    1017         f work shared library data         sm     18     0    0      18
    6f73         f work shared library data         sm     18     0    0      18

...............................................................................
SHARED segments                      Inuse      Pin     Pgsp  Virtual
                                      9056        0       16     9056

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work shared library text          m    566     0    1     566

• -O filterpgsz=[off | s m | L | S]: this option filters the segment based on their page size. Multiple page
size segments can be selected using multiple code letters in the form <min_size><max_size>: -O
filterpgsz="sm s" filters the small page segments and the multiple page size segments with small and
medium pages.

For the -P report however, the behavior is slightly different. Indeed, the report contains all the
processes having at least one page of the size specified with the -O filterpgsz option, and for these
processes, svmon displays all their segments (whatever their page size).

Examples:

# svmon -P -O segment=on,filterpgsz=L
Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  270450 ptxtst_shm_al    21674    17136        0    21658

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
   10002         0 work kernel segment               m    607   556    0     607
  1b9b35  70000000 work default shmat/mmap           L      2     2    0       2
   28005  9ffffffd work shared library               s   1767     0    0    1767
  188030  90000000 work shared library text          m    110     0    0     110
  1010a2  90020014 work shared library               s    114     0    0     114
  209b43 f00000002 work process private              m      5     3    0       5
  3c107a  9fffffff clnt USLA text,/dev/hd2:2774      s     13     0    -       -
   7000e  9ffffffe work shared library               s     11     0    0      11
   21b06  9001000a work shared library data          s     11     0    0      11
  241b4a  80020014 work USLA heap                    s      5     0    0       5
  281b52  8fffffff work private load data            s      4     0    0       4
  131a24        10 clnt text data BSS heap,          s      3     0    -       -
                        /dev/hd2:2745                                          
  2a1b56        11 work text data BSS heap           s      1     0    0       1
  159a29  ffffffff work application stack            s      1     0    0       1
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  266262 ptxtst_shm_al    17578    13040        0    17562

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
   10002         0 work kernel segment               m    607   556    0     607
  119ba1  70000000 work default shmat/mmap           L      1     1    0       1
   28005  9ffffffd work shared library               s   1767     0    0    1767
  188030  90000000 work shared library text          m    110     0    0     110

Performance Tools Guide and Reference  233



  1010a2  90020014 work shared library               s    114     0    0     114
  3e19fe f00000002 work process private              m      5     3    0       5
  3c107a  9fffffff clnt USLA text,/dev/hd2:2774      s     13     0    -       -
   7000e  9ffffffe work shared library               s     11     0    0      11
   c1a1a  9001000a work shared library data          s     11     0    0      11
  2a9a57  80020014 work USLA heap                    s      5     0    0       5
  149b2b  8fffffff work private load data            s      4     0    0       4
  131a24        10 clnt text data BSS heap,          s      3     0    -       -
                        /dev/hd2:2745                                          
  1f9b3d  ffffffff work application stack            s      1     0    0       1
  2b1b54        11 work text data BSS heap           s      1     0    0       1
                   Addr Range: 0..3012

In this example, all processes running large pages are reported. For these processes, all segments are
displayed whatever their page size.

# svmon -U root -O filterpgsz=L,segment=on

Unit: page
===============================================================================
User                                 Inuse      Pin     Pgsp  Virtual
root                                 12288    12288        0    12288

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
  1b9b35  70000000 work default shmat/mmap           L      2     2    0       2
  119ba1  70000000 work default shmat/mmap           L      1     1    0       1

# svmon -C ptxtst_shm_alt_pgsz -O filterpgsz=L,segment=on
Unit: page
===============================================================================
Command                              Inuse      Pin     Pgsp  Virtual
ptxtst_shm_alt_pgsz                   12288   12288        0    12288

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
  1b9b35  70000000 work default shmat/mmap           L      2     2    0       2
  119ba1  70000000 work default shmat/mmap           L      1     1    0       1

The previous two examples illustrate the difference of behavior with -P. In these examples, for the given
entity, only the pages of the given size are kept in the report.

Reports details
Review the output for the svmon command reports.

To display compact report of memory expansion information (in a system with Active Memory Expansion
enabled), enter:

# svmon -G -O summary=longame

Unit: page
------------------------------------------------------------------------------------------------
-----
                                                     Active Memory Expansion
------------------------------------------------------------------------------------------------
-----
      Size      Inuse       Free      DXMSz   UCMInuse    CMInuse       TMSz       TMFr       
CPSz       
    262144     152625      43055      67640      98217      54408     131072       6787      
26068       

CPFr    txf    cxf     CR
3888   2.00   1.48   2.45

Global report
To print the Global report, specify the -G flag. The Global report displays a system-wide detailed real
memory view of the machine. This report contains various summaries, only the memory and inuse
summaries are always displayed.

When the -O summary option is not used, or when it is set to -O summary=basic, the column headings
used in global reports summaries are:

234  AIX Version 7.2: Performance Tools Guide and Reference



memory
Specifies statistics describing the use of memory, including:
size

Number of frames (size of real memory)

Tip: This does not include the free frames that have been made unusable by the memory sizing
tool, the rmss command.

inuse
Number of frames containing pages

Tip: On a system where a reserved pool is defined (such as the 16 MB page pool), this value
includes the frames reserved for any of these reserved pools, even if they are not used.

free
Number of frames free in all memory pools. There may be more memory available depending on
the file cache (see: available)

pin
Number of frames containing pinned pages

Tip: On a system where a reserved pool is defined (such as the 16 MB page pool), this value
includes the frames reserved for any of these reserved pools.

virtual
Number of pages allocated in the system virtual space

available
Amount of memory available for computational data. This metric is calculated based on the size of
the file cache and the amount of free memory.

stolen
Displayed only when rmss runs on the machine. Number of frames stolen by rmss and marked
unusable by the VMM

mmode
Indicates the memory mode the system is running.

Following are the current possible values for mmode.
Ded

Neither Active Memory Sharing nor Active Memory Expansion is enabled.
Shar

Only Active Memory Sharing is enabled, Expansion in not enabled.
Ded-E

Active Memory Sharing is not enabled but Expansion is enabled.
Shar-E

Both Active Memory Sharing & Active Memory Expansion are enabled.

ucomprsd
This gives a breakdown of expanded memory statistics in the uncompressed pool, including:
inuse Number of uncompressed pages that are in use.

comprsd
This gives a breakdown of expanded memory statistics in the compressed pool, including: inuse
Number of compressed pages in the compressed pool.

pg space
Specifies statistics describing the use of paging space.
size

Size of paging space
inuse

Number of paging space pages used

Performance Tools Guide and Reference  235



ucomprsd
This gives a breakdown of expanded memory statistics of working pages in the uncompressed
pool, including: inuse Number of compressed pages in the compressed pool.

comprsd
This gives a breakdown of expanded memory statistics of working pages in the compressed pool,
including: inuse Number of compressed pages in the compressed pool.

Pin
Specifies statistics on the subset of real memory containing pinned pages, including:
work

Number of frames containing working segment in use pages
pers

Number of frames containing persistent segment in use pages
clnt

Number of frames containing client segment in use pages
other

Number of frames containing all memory pages that do not use segment control blocks. Examples
for these memory pages are physical to virtual page tables (PVT), physical to virtual page lists
(PVLIST), and kernel special purpose (KSP) region.

in use
Specifies statistics on the subset of real memory in use, including:
work

Number of frames containing working segment in use pages
pers

Number of frames containing persistent segment in use pages
clnt

Number of frames containing client segment in use pages
ucomprsd

This gives a breakdown of expanded memory statistics of working pages in the uncompressed pool,
including: inuse Number of uncompressed pages in the compressed pool.

comprsd
This gives a breakdown of expanded memory statistics of working pages in the compressed pool,
including: inuse Number of compressed pages in the compressed pool.

PageSize
Displayed only if alternative page sizes (non-4KB) are available on the system and the option -O
pgsz=on is set. It displays separate sets of statistics for each of the page sizes available on the
system.
PageSize

Page size for the following statistics
PoolSize

Number of pages in the pool for a page size using reserved pools (such as the 16 MB page pool)
inuse

Number of pages of this size that are used
pgsp

Number of pages of this size that are allocated in the paging space
pin

Number of pinned pages of this size
virtual

Number of pages of this size that are allocated in the system virtual space
ucomprsd

Number of pages of this size that are in uncompressed form.

236  AIX Version 7.2: Performance Tools Guide and Reference



Domain affinity
Displays statistics per affinity domain. This is activated by the -O affinity=on option.
total

Total memory in this affinity domain.
used

Total memory used in this affinity domain.
free

Total remaining free memory in this affinity domain
lcpus

List of logical cpus in this affinity domain.

Note: The ucomprsdand comprsd metrics are available only in systems with Active Memory Expansion
enabled.–O summary=ame option is needed to show these expanded memory statistics.

When the –O summary=ame option is used in a system with Active Memory Expansion enabled, the
following memory information (true memory snapshot) is displayed in the global report summary at the
end of the regular report.

True Memory
True memory size.

ucomprsd
Displays detailed information about the uncompressed pool, including

CurSz
Current size of the uncompressed pool.

%Cur
Percentage of true memory used by the uncompressed pool

TgtSz
Target size of the uncompressed pool needed to achieve the target memory expansion factor.

% Tgt
Percentage of true memory that will be used by the uncompressed pool when the target memory
expansion factor is achieved.

comprsd
Displays detailed information about the compressed pool, including:

CurSz
Current size of the compressed pool

%Cur
Percentage of true memory used by the compressed pool.

TgtSz
Target size of the compressed pool needed to achieve the target memory expansion factor.

% Tgt
Percentage of true memory that will be used by the compressed pool when the target memory
expansion factor is achieved

% Max
Percentage of true memory that will be used by the compressed pool when the compressed pool
achieves maximum size.

CRatio
Compression ratio

AME
Displays the following information

txf
Target Memory Expansion Factor

Performance Tools Guide and Reference  237



cxf
Current Memory Expansion Factor

dxf
Deficit factor to reach the target expansion factor

dxm
Deficit memory to reach the target expansion

Note: The above true memory section of expanded memory statistics can be turned off using the option –
O tmem=off.

When the -O summary=longreal option is set with -G, the compact report header contains the following
metrics:

Size
Number of frames (size of real memory)

Tip: This includes any free frames that have been made unusable by the memory sizing tool, the rmss
command.

Inuse
Number of frames containing pages

Tip: On a system where a reserved pool is defined (such as the 16 MB page pool), this value includes
the frames reserved for any of these reserved pools.

Free
Number of frames free in all memory pools. There may be more memory available depending on the
file cache (see: available)

Pin
Number of frames containing pinned pages

Tip: On a system where a reserved pool is defined (such as the 16 MB page pool), this value includes
the frames reserved for any of these reserved pools.

Virtual
Number of pages allocated in the system virtual space

Available
Amount of memory available for computational data. This metric is calculated based on the size of the
file cache and the amount of free memory.

Pgsp
Number of pages allocated in the paging space

When -G is used in conjunction with -@ the following additional column is displayed:

WPAR
WPAR name

Note:

• If you specify the -@ flag without a list, the flag has no effect except when the -O summary option is
used, then the WPAR name is added in the last column.

If a list is provided after the -@ flag, the svmon command report includes one section per WPAR listed.
If ALL is specified, a system-wide and a global section will also be present. Any metric not available on
a per WPAR basis is either replaced by the corresponding global value (in the case of -@ WparList) or by
a "-" (in the case of -@ ALL).

• Global values are displayed instead of a per WPAR metrics. They are flagged by the presence of a @ in
the report.

• Some of the metrics are only available on a per WPAR basis if the WLM is used to restrict the WPAR
memory usage.

When the -O summary=longameoption is set with -G , the compact report header contains the following
Active Memory Expansion metrics

238  AIX Version 7.2: Performance Tools Guide and Reference



Size
Expanded memory size

Inuse
Number of pages in use (expanded form).

Free
Size of freelist (expanded form).

DXMSz
Deficit memory to reach the target memory expansion

UCMInuse
Number of uncompressed pages in use.

CMInuse
Number of compressed pages in the compressed pool.

TMSz
True memory size

TMFr
True number of free page frames

CPSz
Size of Compressed pool.

CPFr
Size of Uncompressed pool.

txf
Target Memory Expansion Factor

cxf
Current Memory Expansion Factor

CR
Compression Ratio.

Examples

• To display the default svmon report, with automatic unit selection, enter:

# svmon -O summary=basic,unit=auto,pgsz=on
or 

# svmon -G -O unit=auto,pgsz=on     

Unit: auto
-------------------------------------------------------------------------------
               size       inuse        free         pin     virtual  available
memory        31.0G       2.85G       28.1G       1.65G       2.65G      27.3G
pg space    512.00M       13.4M

               work        pers        clnt       other
pin         688.57M          0K          0K     924.95M
in use        2.65G          0K     124.55M

PageSize   PoolSize       inuse        pgsp         pin     virtual
s    4 KB         -       2.41G       13.4M       1.34G       2.29G
m   64 KB         -     376.81M          0K     241.81M     376.81M
L   16 MB         5          0K          0K       80.0M          0K

The memory size of the system is 31GB. This size is split into the in-used frames for 2.85 GB and into
the free frames for 28.1 GB. 1.65 GB are pinned in memory, 2.65 GB are allocated in the system virtual
space and 27.3 GB are available to be used as computational data by new processes.

The inuse and pin values include the pages reserved for the 16 MB page memory pool (80 MB).

The size of the paging space is 512 MB, where 13.4 MB are used.

Performance Tools Guide and Reference  239



The pinned frames (1.65 GB) is composed of working segment pinned pages (688.57 MB) and 924.95
MB of other pin pages (can be used by the kernel for example), not counting the memory not used but
pinned by the 16 MB page pool.

The number of frames containing pages (2.85 GB) is composed of working segment pages (2.65 GB)
and client segment pages (124.55 MB), not counting the memory that is only reserved but counted
inuse from the 16 MB pool.

Then statistics are displayed for each page size available on the system. For instance, the 16 MB page
pool is composed of 5 pages of 16 MB. None of these are used, none are in the paging space (since they
are all pinned), all of these are pinned, and none are in the system's virtual space.

• To also display the affinity domain information, enter:

# svmon -G -O unit=MB,pgsz=on,affinity=on

Unit: MB
-------------------------------------------------------------------------------
               size       inuse        free         pin     virtual  available
memory     31744.00     3055.36    28688.64     1838.84     2859.78   27911.33
pg space     512.00        14.7

               work        pers        clnt       other
pin          833.90           0           0      924.95
in use      2859.78           0      163.59

PageSize   PoolSize       inuse        pgsp         pin     virtual
s    4 KB         -     1628.93        14.7     1291.47     1465.34
m   64 KB         -     1346.44           0      467.38     1346.44
L   16 MB         5        48.0           0        80.0        48.0

Domain affinity        free       used      total     lcpus
              0    14131.05    1475.13   15606.18     0  1  2  3 
              1    14589.65    1538.35   16128.00     4  5  6  7 

In this example taken on a dedicated LPAR partition, we added the domain affinity metrics. The 31744
MB of memory are split into 2 memory affinity domain:

– The domain 0 contains 15606.18 MB of memory with 1475.13 MB used, and 14131.05 MB free.
– The domain 1 contains 16128 MB of memory with 1538.35 MB used and 14589.65 MB free.

• To display detailed affinity domain information, enter:

# svmon -G -O unit=MB,pgsz=on,affinity=detail

Unit: MB
-------------------------------------------------------------------------------
               size       inuse        free         pin     virtual  available
memory     31744.00     3055.70    28688.30     1838.91     2860.11   27910.99
pg space     512.00        14.7

               work        pers        clnt       other
pin          833.96           0           0      924.95
in use      2860.11           0      163.58

PageSize   PoolSize       inuse        pgsp         pin     virtual
s    4 KB         -     1629.26        14.7     1291.47     1465.68
    Domain affinity        used
                  0      129735
                  1       44909
m   64 KB         -     1346.44           0      467.44     1346.44
    Domain affinity        used
                  0       12432
                  1        8512
L   16 MB         5        48.0           0        80.0        48.0
    Domain affinity        used
                  0        4096
                  1        8192

Domain affinity        free       used      total     lcpus
              0    14131.05    1475.13   15606.18     0  1  2  3
              1    14589.65    1538.35   16128.00     4  5  6  7

240  AIX Version 7.2: Performance Tools Guide and Reference



In this example, we can see that the breakdown by affinity domain is also shown in the per-page size
report. This option takes some time to execute.

• On a shared partition, attempting to display affinity domain information, results in:

# svmon -G -O unit=MB,pgsz=on,affinity=on

Unit: MB
-------------------------------------------------------------------------------
               size       inuse        free         pin     virtual  available
memory      4096.00      811.59     3284.41      421.71      715.08    3248.66
pg space     512.00        6.23

               work        pers        clnt       other
pin          284.02           0           0      137.68
in use       715.08           0        96.5

PageSize   PoolSize       inuse        pgsp         pin     virtual
s    4 KB         -      506.78        6.23      288.77      410.27
m   64 KB         -      304.81           0      132.94      304.81

Domain affinity        free       used      total     lcpus
              *** not supported in shared pools ***

Memory affinity domains only have meaning for dedicated partitions.
• To display the one line global report, enter:

# svmon -O summary=longreal

Unit: page
------------------------------------------------------------------------
                                 Memory                                
-----------------------------------------------------------------------
      Size     Inuse      Free        Pin   Virtual Available      Pgsp
    262144    187219     74925      82515    149067    101251    131072 

The metrics reported here are identical to the metrics in the basic format. There is a memory size of
262144 frames with 187219 frames inuse and 74925 remaining frames. 149067 pages are allocated in
the virtual memory and 101251 frames are available.

• To display global memory statistics in MB units at interval, enter:

# svmon -G -O unit=MB,summary=shortreal -i 60 5

Unit: MB
-------------------------------------------------------------------------------
     Size     Inuse      Free        Pin   Virtual Available      Pgsp
  1024.00    709.69    314.31     320.89    590.74    387.95    512.00
  1024.00    711.55    312.39     320.94    592.60    386.02    512.00
  1024.00    749.10    274.89     322.89    630.15    348.53    512.00
  1024.00    728.08    295.93     324.57    609.11    369.57    512.00
  1024.00    716.79    307.21     325.66    597.50    381.16    512.00

This example shows how to monitor the whole system by taking a memory snapshot every 60 seconds
for 5 minutes.

• To display detailed memory expansion information (in a system with Active Memory Expansion
enabled), enter:

# svmon -G -O summary=ame

Unit: page
--------------------------------------------------------------------------------------
               size       inuse        free         pin     virtual  available   mmode
memory       262144      152619       43061       73733      154779      41340   Ded-E
 ucomprsd         -       98216           -
 comprsd          -       54403           -
pg space     131072        1212

               work        pers        clnt       other
pin           66195           0           0        7538
in use       147831           0        4788

Performance Tools Guide and Reference  241



 ucomprsd     93428
 comprsd      54403
--------------------------------------------------------------------------------------
True Memory: 131072

CurSz        %Cur       TgtSz        %Tgt       MaxSz       %Max     CRatio
ucomprsd     105004       80.11       37450       28.57           -          -          -
comprsd       26068       19.89       93622       71.43       45308      34.57       2.45

                txf         cxf         dxf         dxm
AME            2.00        1.48        0.52       67641

• To display memory expansion information with true memory snapshot turned-off (in a system with
Active Memory Expansion enabled), enter:

# svmon -G -O summary=ame,tmem=off

Unit: page
--------------------------------------------------------------------------------------
               size       inuse        free         pin     virtual  available   mmode
memory       262144      152619       43061       73733      154779      41340   Ded-E
 ucomprsd         -       98216           -
 comprsd          -       54403           -
pg space     131072        1212

               work        pers        clnt       other
pin           66195           0           0        7538
in use       147831           0        4788
 ucomprsd     93428
 comprsd      54403

User report
The User report displays the memory usage statistics for all specified login name or when no argument is
specified for all users.

To print the user report, specify the -U flag. This report contains all the columns detailed in the common
summary metrics as well as its own defined here:

User
Indicates the user name

If processes owned by this user use pages of a size other than the base 4 KB page size, and the -O
pgsz=on option is set, these statistics are followed by breakdown statistics for each page size. The
metrics reported in this per-page size summary are reported in the page size unit by default.

Note:

• If you specify the -@ flag without an argument, these statistics will be followed by the users
assignments to WPARs. This information is shown with an additional WPAR column displaying the WPAR
name where the user was found.

• If you specify the -O activeusers=on option, users which do not use memory (Inuse memory is 0 page)
are not shown in the report.

Examples

1. To display per user memory consumption statistics, enter:

# svmon -U 

Unit: page
===============================================================================
User                                 Inuse      Pin     Pgsp  Virtual
root                                 56007    16070        0    54032
daemon                               14864     7093        0    14848
guest                                14705     7087        0    14632
bin                                      0        0        0        0
sys                                      0        0        0        0
adm                                      0        0        0        0
uucp                                     0        0        0        0
nobody                                   0        0        0        0

242  AIX Version 7.2: Performance Tools Guide and Reference



This command gives a summary of all the users using memory on the system. This report uses the
default sorting key: the Inuse column. Since no -O option was specified, the default unit (page) is used.
Each page is 4 KB.

The Inuse column, which is the total number of pages in real memory from segments that are used by
all the processes of the root user, shows 56007 pages. The Pin column, which is the total number of
pages pinned from segments that are used by all the processes of the root user, shows 16070 pages.
The Pgsp column, which is the total number of paging-space pages that are used by all the processes
of the root user, shows 0 pages. The Virtual column (total number of pages in the process virtual
space) shows 54032 pages for the root user.

2. To display per WPAR per active user memory consumption statistics, enter:

# svmon -U -O summary=basic,activeusers=on -@ ALL

Unit: auto

###############################################################################
######## WPAR : Global
###############################################################################
===============================================================================
User                                 Inuse      Pin     Pgsp  Virtual
root                               155.49M    49.0M       0K  149.99M
daemon                               69.0M    34.8M       0K    68.9M

###############################################################################
######## WPAR : wp0
###############################################################################
===============================================================================
User                                 Inuse      Pin     Pgsp  Virtual
root                               100.20M    35.4M       0K    96.4M

###############################################################################
######## WPAR : wp1
###############################################################################
===============================================================================
User                                 Inuse      Pin     Pgsp  Virtual
root                               100.20M    35.4M       0K    96.4M

###############################################################################
######## WPAR : wp2
###############################################################################
===============================================================================
User                                 Inuse      Pin     Pgsp  Virtual
root                               100.14M    35.4M       0K    96.3M

In this case, we run in each WPAR context and we want some details about every users in all the
WPARs running on the system. Since there are users that are not active, we want to keep only the
active user by adding the -O activeusers=on option on the command line. Each WPAR has a root user,
which in this example consumes the same amount of memory since each one runs the exact same list
of processes. The root user of the Global WPAR uses more memory since more processes are running
in the Global than in a WPAR.

Command report
The Command report displays the memory usage statistics for the specified command names. To print
the command report, specify the -C flag.

This report contains all the columns detailed in the common summary metrics as well as its own defined
here:
Command

Indicates the command name.

If processes running this command use pages of size other than the base 4KB page size, and the -O
pgsz=on option is set, these statistics are followed by breakdown statistics for each page size. The
metrics reported in this per-page size summary are reported in the page size unit by default.

Examples:

Performance Tools Guide and Reference  243



1. To display memory statistics about the yes command, with breakdown by process and categorized
detailed statistics by segment, enter:

# svmon -C yes -O summary=basic,pidlist=on,segment=category,process=on

Unit: page
===============================================================================
Command                              Inuse      Pin     Pgsp  Virtual
yes                                  14405     5492        0    14404
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  217132 yes              14405     5492        0    14404
  397448 yes              14405     5492        0    14404
  372980 yes              14405     5492        0    14404

...............................................................................
SYSTEM segments                      Inuse      Pin     Pgsp  Virtual
                                      6336     5488        0     6336

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    2002         0 work kernel segment               m    396   343    0     396

...............................................................................
EXCLUSIVE segments                   Inuse      Pin     Pgsp  Virtual
                                        37        4        0       36

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
     711         2 work process private             sm     19     4    0      19
   126a3         f work shared library data         sm     17     0    0      17
   1b70a         1 clnt code,/dev/hd2:338            s      1     0    -       -

...............................................................................
SHARED segments                      Inuse      Pin     Pgsp  Virtual
                                      8032        0        0     8032

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work shared library text          m    502     0    0     502
                   Shared library text segment

In this example, we are looking at the yes command. The report is divided in several sub-reports. The
summary line for the command displays the Inuse memory, the Pin pages in memory, the paging
space and virtual pages used by the command. The -O process=on option adds the process section,
where we have the list of the processes for this command.

2. To display memory statistics about the yes command, with breakdown by process and statistics by
segment including file names, enter:

# svmon -C yes -O summary=basic,segment=on,pidlist=on,filename=on

Unit: page
===============================================================================
Command                              Inuse      Pin     Pgsp  Virtual
yes                                  14405     5492        0    14404

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work shared library text          m    502     0    0     502
                   Shared library text segment
    2002         0 work kernel segment               m    396   343    0     396
                   System segment
   13722         2 work process private             sm     19     4    0      19
                   pid(s)=397566
   1a72b         f work shared library data         sm     17     0    0      17
                   pid(s)=397566
   1b70a         1 clnt code,/dev/hd2:338            s      1     0    -       -
                        /usr/bin/yes                                           
                   pid(s)=397566, 295038, 217212

This report displays for each segment its list of pids when the segment is in a process address space.
It also displays the filename of all client and persistent segments.

3. To display memory statistics about the init command, with breakdown by process, enter:

244  AIX Version 7.2: Performance Tools Guide and Reference



# svmon -@ -C init -O commandline=on,segment=off,process=on           

# svmon -@ -C init -O commandline=on,segment=off,process=on 
Command line : svmon -@ -C init -O commandline=on,segment=off,process=on 
Unit: page
===============================================================================
Command                              Inuse      Pin     Pgsp  Virtual
init                                 18484     8900        0    18469
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
       1 init             18494     8900        0    18477
         WPAR=Global
  159976 init             18484     8900        0    18469
         WPAR=wp1
  233722 init             18484     8900        0    18469
         WPAR=wp2
  180562 init             18484     8900        0    18469
         WPAR=wp0
-------------------------------------------------------------------------------

In a WPAR context, the -@ flag combined with the -O process=on flag, adds WPAR information in the
report. This example shows which init process belongs to which WPAR.

Process report
The process report displays the memory usage statistics for all or the specified process names. To print
the process report, specify the -P flag.

This report contains all the columns detailed in the common summary metrics as well as its own defined
here:

Pid
Indicates the process ID.

Command
Indicates the command the process is running.

If processes use pages of size other than the base 4KB page size, and the -O pgsz=on option is set, these
statistics are followed by breakdown statistics for each page size. The metrics reported in this per-page
size summary are reported in the page size unit by default.

After process information is displayed, svmon displays information about all the segments that the
process used. Information about segments are described in the paragraph Segment Report.

Note:

• If you specify the -@ flag, the svmon command displays two additional lines that show the virtual pid
and the WPAR name of the process. If the virtual pid is not valid, a dash sign (-) is displayed.

• The -O affinity flag supported by the -P option, gives details on domain affinity for the process when set
to on and for each of the segments when set to detail. Note that the Memory affinity information is not
available for the shared partitions.

Examples:

1. To display the top 10 list of processes in terms of real memory usage in KB unit, enter:

# svmon -P -O unit=KB,summary=basic,sortentity=inuse  -t 10

Unit: KB
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  344254 java            119792    22104        0   102336
  209034 xmwlm            68612    21968        0    68256
  262298 IBM.CSMAgentR    60852    22032        0    60172
  270482 rmcd             60844    21996        0    60172
  336038 IBM.ServiceRM    59588    22032        0    59344
  225432 IBM.DRMd         59408    22040        0    59284
  204900 sendmail         59240    21968        0    58532
  266378 rpc.statd        59000    21980        0    58936
  168062 snmpdv3ne        58700    21968        0    58508
  131200 errdemon         58496    21968        0    58108

Performance Tools Guide and Reference  245



This example gives the top 10 processes consuming the most real memory. The report is sorted by the
inuse count, 119792 KB for the java process, 68612 KB for the xmwlm daemon and so on. The other
metrics are: KB pinned in memory, KB of paging space and virtual memory.

2. To display information about all the non empty segments of a process, enter:

# svmon -P 221326 -O commandline=on,segment=on,filterprop=notempty

Command line : svmon -P 221326 -O commandline=on,segment=on,filterprop=notempty 

Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  221326 java             20619     6326     9612    27584

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work text or shared-lib code seg  m    585     0    1     585
       0         0 work kernel segment               m    443   393    4     444
   14345         3 work working storage             sm   2877     0 7865    9064
   15364         e work shared memory segment       sm   1082     0 1473    1641
   1b36a         f work working storage             sm    105     0  106     238
   17386         - work                              s    100    34   64     146
   1a38b         2 work process private             sm      7     4   24      31

The detailed section displays information about each non empty segment used by process 221326.
This includes the virtual, Vsid, and effective, Esid, segment identifiers. The type of the segment is also
displayed along with its description that consists of a textual description of the segment, including the
volume name and i-node of the file for persistent segments.

The report also details the size of the pages the segment is backed by (Psize column), where s denotes
4 KB pages and L denotes 16 MB pages, and sm a multi size page (small and medium page in this
case) the number of pages in memory (Inuse column), the number of pinned pages (Pin column),
the number of pages used in the paging space (Pgsp column), and the number of virtual pages
(Virtual column).

3. To display information about all the non empty segments used by a process, including the
corresponding shared memory ids and affinity domain data, enter:

# svmon -P 221326 -O 
commandline=on,segment=on,affinity=on,shmid=on,filterprop=notempty

Command line : svmon -P 221326 -O 
commandline=on,segment=on,affinity=on,shmid=on,filterprop=notempty 

Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  221326 java             20619     6326     9612    27584
                        Domain affinity      Npages
                                      0       29345
                                      1       11356

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work text or shared-lib code seg  m    585     0    1     585
                   Domain affinity      Nbpages
                                 0        4800      
                                 1        4560      
       0         0 work kernel segment               m    443   393    4     444
                   Domain affinity      Nbpages
                                 0        5744      
                                 1        1344
   14345         3 work working storage             sm   2877     0 7865    9064
                   Domain affinity      Nbpages
                                 0        1518      
                                 1        1359      
   15364         e work shared memory segment       sm   1082     0 1473    1641
                        shmid:3                                                
                   Domain affinity      Nbpages
   1b36a         f work working storage             sm    105     0  106     238
                   Domain affinity      Nbpages
                                 0          48      
                                 1          57      
   17386         - work                              s    100    34   64     146
                   Domain affinity      Nbpages

246  AIX Version 7.2: Performance Tools Guide and Reference



                                 0        5744      
                                 1        1344      
   1a38b         2 work process private             sm      7     4   24      31
                   Domain affinity      Nbpages
                                 0           3      
                                 1           4           

The detailed section displays the list of all segments used by the process 221326. In this case, the -O
affinity=detail option adds for each Vsid, the Domain affinity breakdown. The Vsid 15364 also
shows the shared memory id (shmid: 3 in this case). This information can be matched with the
results given by the ipcs command.

4. To display memory statistics in the legacy format which includes a breakdown by segments, enter:

$ svmon -P 209034 -O segment=on       

Unit: page
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  209034 xmwlm            15978     5492        0    15929

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work shared library text          m    495     0    0     495
    2002         0 work kernel segment               m    396   343    0     396
   19288         c work shared memory segment       sm   1477     0    0    1477
    b27a         f work shared library data         sm    106     0    0     106
    d27c         2 work process private             sm     90     4    0      90
   1b24a         - clnt /dev/hd4:15493               s     22     0    -       -
   1f24e         1 clnt code,/dev/hd2:2521           s     18     0    -       -
    8079         3 clnt file mapped read write,      s      8     0    -       -
                        /dev/hd3:5                                             
    a27b         - clnt /dev/hd2:123146              s      1     0    -       -

5. To only display non empty segments and add per page size breakdown for segments with multiple
page sizes, enter:

$ svmon -P 209034 -O segment=on,filterprop=notempty,mpss=on     

     Pid Command          Inuse      Pin     Pgsp  Virtual
  209034 xmwlm            15977     5492        0    15929

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work shared library text          m    495     0    0     495
    2002         0 work kernel segment               m    396   343    0     396
   19288         c work shared memory segment        s      5     0    0    1477
                                                     m     92     0    0       0
    b27a         f work shared library data          s    106     0    0     106
                                                     m      0     0    0       0
    d27c         2 work process private              s     74     4    0      90
                                                     m      1     0    0       0
   1b24a         - clnt /dev/hd4:15493               s     21     0    -       -
   1f24e         1 clnt code,/dev/hd2:2521           s     18     0    -       -
    8079         3 clnt file mapped read write,      s      8     0    -       -
                        /dev/hd3:5
    a27b         - clnt /dev/hd2:123146              s      1     0    -       -

The 2 previous examples show the difference of the values reported in the Inuse, Pin, Pgsp and
Virtual columns with MPSS pages. On this system sm pages are used by the process 209034, the
metrics reported in the first report are in 4KB pages (in the smaller page size) while when the break
down by page size is displayed with the -O mpss=on option, s pages are in 4KB page and m pages are
in 64KB pages. So, for the segment 19288 this gives 1477*4=5908KB in the first example, and
5*4*1024 + 92*64*1024 =5908KB in the second example. Dashes are put on the Pgsp and Virtual
memory columns for the client segments because it is meaningless for this type of segment.

6. To display detailed information about mapping segments for a process, in KB unit, enter:

$ svmon -P 340216 274676 -O segment=on,unit=KB,mapping=on

Unit: KB
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  274676 ptxtstmmap       57276    21968        0    57256

Performance Tools Guide and Reference  247



    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work shared library text          m  31744     0    0   31744
    2002         0 work kernel segment               m  25344 21952    0   25344
   10661         2 work process private             sm     76    16    0      76
   1a36b         f work shared library data         sm     52     0    0      52
   14665         1 clnt code,/dev/hd2:825            s     12     0    -       -
   11660 *       - work mmap paging                 sm      8     0    0       8
                   source=b2ba
    d65c *       - work mmap paging                 sm      8     0    0       8
                   source=b2ba
   13662 *       - work mmap paging                 sm      8     0    0       8
                   source=b2ba
    4655 *       - work mmap paging                 sm      8     0    0       8
                   source=b2ba
    b2ba         - clnt /dev/hd3:13                  s      8     0    -       -
    1350 *       - work mmap paging                 sm      8     0    0       8
                   source=b2ba
   18329         3 mmap maps 5 source(s)            sm      0     0    -       -
                   source(s)=b2ba/13662, b2ba/d65c, b2ba/4655, b2ba/11660
                   source(s)=b2ba/1350
-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  340216 ptxtstmmap       57240    21968        0    57216

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
    502d         d work shared library text          m  31744     0    0   31744
    2002         0 work kernel segment               m  25344 21952    0   25344
    f65e         2 work process private             sm     76    16    0      76
   19668         f work shared library data         sm     52     0    0      52
   1d66c         - clnt /dev/hd3:14                  s     12     0    -       -
   14665         1 clnt code,/dev/hd2:825            s     12     0    -       -
   1c66d         3 mmap maps 3 source(s)            sm      0     0    -       -
                   source(s)=1d66c, 1d66c, 1d66c

The mapping option is used in this case to also show mmaped segments which are not in the address
space of the process. The process 274676 has created a shared memory file (client segment b2ba),
this segment is used by mmap segments (11660, d65c, 13662, 4655, 1350) which are not in the
address space of the process. The mmap segment of the process gives the list of all mmaped segment
and their associated source (b2ba/13662, ...).

The process 340216 has created a private memory file, no extra mmap segments are displayed since
all segments which are using this resource are private to the process and are already so shown by
default.

Workload management class report
To print the class report, specify the -W flag.

This report contains all the columns detailed in the common summary metrics as well as its own defined
here:

Class or Superclass
Indicates the class or superclass name.

The -O subclass=on option can be added to display the list of subclasses.

Examples:

1. To display memory statistics about all WLM classes in the system, enter:

# svmon -W -O unit=page,commandline=on,timestamp=on

Command line : svmon -W -O unit=page,commandline=on,timestamp=on 
Unit: page                                                   Timestamp: 10:41:20
===============================================================================
Superclass                           Inuse      Pin     Pgsp  Virtual
System                              121231    94597    19831   135505
Unclassified                         27020     8576       67     8659
Default                              17691       12     1641    16491
Shared                               15871        0        0    13584
Unmanaged                                0        0        0        0

248  AIX Version 7.2: Performance Tools Guide and Reference



In this example, all the WLM classes of the system are reported. Since no sort option was specified,
the Inuse metric (real memory usage) is the sorting key. The class System uses 121231 pages in real
memory. 94597 frames are pinned. The number of pages reserved or used in paging space is 19831.
The number of pages allocated in the virtual space is 135505.

2. To display memory statistics about all WLM classes and subclasses in the system, enter:

# svmon -W -O subclass=on -O unit=page,commandline=on,timestamp=on

Command line : svmon -W -O subclass=on -O unit=page,commandline=on,timestamp=on 
Unit: page                                                   Timestamp: 10:43:18
===============================================================================
Superclass                           Inuse      Pin     Pgsp  Virtual
System                              120928    94609    19831   135202
System.Default                      120928    94609    19831   135202
System.Shared                            0        0        0        0
Unclassified                         27020     8576       67     8659
Default                              17691       12     1641    16491
Default.Default                      17691       12     1641    16491
Default.Shared                           0        0        0        0
Shared                               15871        0        0    13584
Shared.Default                       15871        0        0    13584
Shared.Shared                            0        0        0        0
Unmanaged                                0        0        0        0

In this example, all the WLM classes and sub-classes of the system are reported. Since the no sort
option was specified, the Inuse metric (real memory usage) is the sorting key. The class System uses
120928 pages in real memory, they are split into 120928 pages in the System Default sub-class, and
no pages in the Shared sub-class.

Workload management tier report
To print the tier report, specify the -T flag.

This report contains all the columns detailed in the common summary metrics as well as its own defined
here:

Tier
Indicates the tier number

Superclass
The optional column heading indicates the superclass name when tier applies to a superclass (when
the -a flag is used).

The -O subclass=on option can be added to display the list of subclasses. The -a <supclassname> option
allows reporting only the details of a given super class.

Examples:

1. To display memory statistics about all WLM tiers and superclasses in the system, enter:

# svmon -T -O unit=page

Unit: page
===============================================================================
Tier                                 Inuse      Pin     Pgsp  Virtual
   0                                137187    61577     2282   110589
===============================================================================
Superclass                           Inuse      Pin     Pgsp  Virtual
System                               81655    61181     2282    81570
Unclassified                         26797      384        0     2107
Default                              16863       12        0    15040
Shared                               11872        0        0    11872
Unmanaged                                0        0        0        0
   1                                  9886      352        0     8700
===============================================================================
Superclass                           Inuse      Pin     Pgsp  Virtual
myclass                               9886      352        0     8700

All the superclasses of all the defined tiers are reported. Each Tier has a summary header with the
Inuse, Pin, Paging space, and Virtual memory, and then the list of all its classes.

Performance Tools Guide and Reference  249



2. To display memory statistics about all WLM tiers, superclasses and classes in the system, enter:

# svmon -T -O subclass=on -O unit=page,commandline=on,timestamp=on

Command line : svmon -T -O subclass=on -O unit=page,commandline=on,timestamp=on 
Unit: page                                                   Timestamp: 10:44:31
===============================================================================
Tier                                 Inuse      Pin     Pgsp  Virtual
   0                                181824   103185    21539   174250
===============================================================================
Superclass                           Inuse      Pin     Pgsp  Virtual
System                              121242    94597    19831   135516
===============================================================================
Class                                Inuse      Pin     Pgsp  Virtual
System.Default                      121242    94597    19831   135516
System.Shared                            0        0        0        0
Unclassified                         27020     8576       67     8659
===============================================================================
Superclass                           Inuse      Pin     Pgsp  Virtual
Default                              17691       12     1641    16491
===============================================================================
Class                                Inuse      Pin     Pgsp  Virtual
Default.Default                      17691       12     1641    16491
Default.Shared                           0        0        0        0
===============================================================================
Superclass                           Inuse      Pin     Pgsp  Virtual
Shared                               15871        0        0    13584
===============================================================================
Class                                Inuse      Pin     Pgsp  Virtual
Shared.Default                       15871        0        0    13584
Shared.Shared                            0        0        0        0
Unmanaged                                0        0        0        0

Details at sub-class level can also be displayed for each class of each Tier.
3. To display memory statistics about a particular WLM superclass in a tier, with segment and per page

size details, enter:

# svmon -T 0 -a myclass2 -O segment=on,pgsz=on,pidlist=on

Unit: page
===============================================================================
Tier Superclass                      Inuse      Pin     Pgsp  Virtual
   0 myclass2                           36        4        0       36

     PageSize                Inuse        Pin       Pgsp    Virtual
     s    4 KB                  36          4          0         36
     m   64 KB                   0          0          0          0
===============================================================================
Class                                Inuse      Pin     Pgsp  Virtual
myclass2.Default                        36        4        0       36

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
     711         2 work process private             sm     19     4    0      19
                   pid(s)=372980
   126a3         f work shared library data         sm     17     0    0      17
                   pid(s)=372980
===============================================================================
Class                                Inuse      Pin     Pgsp  Virtual
myclass2.Shared                          0        0        0        0

The statistics of all the subclasses, in the tier 0, of the superclass myclass2 are reported. The
distribution between the different page sizes is displayed by the -O pgsz=on option. Then, as -O
segment=on is specified, the subclass statistics are followed by its segments statistics. Finally, as -O
pidlist=on' is specified for each segment, the list of process which uses it, is displayed.

Segment report
To print the segment report, specify the -S flag.

This report contains all the columns detailed in the common summary metrics as well as its own defined
here:

Vsid
Indicates the virtual segment ID. Identifies a unique segment in the VMM.

250  AIX Version 7.2: Performance Tools Guide and Reference



Esid
Indicates the effective segment ID. The Esid is only valid when the segment belongs to only one
process (i.e: only one address space). When provided, it indicates how the segment is used by the
process. If the Vsid segment is mapped by several processes (i.e: several address spaces), then this
field contains - (hyphen). The exact Esid values can be obtained through the -P flag applied on each of
the process identifiers using the segment. A - (hyphen) also displays for segments used to manage
open files or multi-threaded structures because these segments are not part of the user address
space of the process.

Type
Identifies the type of the segment:

• pers indicates a persistent segment
• work indicates a working segment
• clnt indicates a client segment
• mmap indicates a mapped segment
• rmap indicates a real memory mapping segment

Description
Gives a textual description of the segment. The content of this column depends on the segment type
and usage.

If the segment is a persistent segment and is not associated with a log, then the device name and i-
node number of the associated file are displayed, separated by a colon. The device name and i-node
can be translated into a file name with the ncheck command or by using the -O filename=on flag. If
the segment is the primary segment of a large file, then the words large file are prepended to the
description.

PSize
Indicates the size of the pages inside the segment.

Note:

• Mapping device name and inode number to file names can be a lengthy operation for deeply nested file
systems. Because of that, the -O filename=on option should be used with caution.

• If the segment is a persistent segment and is associated with a log, then the string log displays. If the
segment is a working segment, then the svmon command attempts to determine the role of the
segment. For instance, special working segments such as the kernel and shared library are recognized
by the svmon command. If the segment is the private data segment for a process, then private prints
out. If the segment is the code segment for a process, and the segment report prints out in response to
the -P flag, then the string code is prepended to the description.

• If the segment is mapped by several processes and used in different ways (that is, a process private
segment mapped as shared memory by another process), then the description is empty. The exact
description can be obtained through -P flag applied on each process identifier using the segment.

• If a segment description is too large to fit in the description space, then the description is truncated. If
you need to enlarge the output you can use the -O format flag. When set to -O format=160, the report
is displayed in 160 columns, which means more room for the description field. When set to -O
format=nolimit, the description will be fully printed even if it brakes the column alignment.

Restriction:

• Segment reports can only be generated for primary segments.

Examples:

1. To display information about a list of segments including the list of processes using them, enter:

# svmon -S 11c02 3393e5 2c10da 2c4158 1b1a34 -O pidlist=on

Unit: page

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual

Performance Tools Guide and Reference  251



   11c02         - work kernel heap                  s  65536     0    0   65536
                   System segment
  3393e5         3 work working storage              s  10143     0    0   10143
                   pid(s)=168138
  2c4158         - work                              s   5632  5632    0    5632
                   System segment
  1b1a34         - work                              L      2     2    0       2
                   Unattached segment
  2c10da         - clnt /dev/hd2:4183                s   2110     0    -       -
                   Unused segment

Information about each segment in the list is displayed. The Esid column contains information only
when -O pidlist=on is specified because the Esid has a meaning only in the address space of a
process. In this case, since the segment 3393e5 belongs to the process 168138, the Esid is reported,
in all other cases no information is displayed. The segments 11c02 is the kernel pinned heap. The
segment 2c4158 has no special characteristics. The segment 2c10da is relative to a file whose device
is /dev/hd2 and whose inode number is 4183. The Paging space and Virtual fields of the segment
2c10da are not meaningful (because it is a client segment). The segment 1b1a34 is a 16 MB page
segment which contains 2 pages of 16 MB (equivalent to 8192 pages of 4KB).

2. To display information about all unattached segments in the system, enter:

# svmon -S -O filtercat=unattached

Unit: page

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
  1b1a34         - work                              L      2     2    0       2
  2618ce         - work                              s      1     0    0       1

In this example, the report contains all the segments coming from processes which have allocated
shared memory areas, and which have exited without freeing these memory areas.

3. To display the top 10 (in real memory consumption or sorted by the inuse field) text segments with
their corresponding file name, enter:

#  svmon -S -t 10 -O unit=auto,filterprop=text,filename=on  

Unit: auto

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
   1a0cb         - clnt /dev/hd2:4140                s  7.62M    0K    -       -
                        /usr/ccs/lib/libc.a                                    
    a37b         - clnt /dev/hd2:65692               s  4.34M    0K    -       -
                        /usr/java5/jre/bin/libj9jit23.so                       
    1150         - clnt /dev/hd2:16394               s  3.77M    0K    -       -
                        /usr/lpp/xlC/lib/aix61/libC.a                          
   16667         - clnt /dev/hd2:2716                s  3.10M    0K    -       -
                        /usr/bin/ptxtstoverflow_heap                           
   14285         - clnt /dev/hd2:131333              s  2.91M    0K    -       -
                        /opt/rsct/lib/libct_rmf.a                         
    8159         - clnt /dev/hd2:9535                s  2.52M    0K    -       -
                        /usr/lib/drivers/nfs.ext                               
   1b2ca         - clnt /dev/hd2:65747               s  2.27M    0K    -       -
                        /usr/java5/jre/lib/core.jar                            
    f23e         - clnt /dev/hd2:115081              s  1.88M    0K    -       -
                        /usr/opt/perl5/lib/5.8.2/aix-thread-multi/CORE/libperl.
   17026         - clnt /dev/hd2:8470                s  1.79M    0K    -       -
                        /usr/lib/boot/unix_64                                  
   15104         - clnt /dev/hd2:2258                s  1.41M    0K    -       -
                        /usr/lib/libdns_nonsecure.a                            

The -O filename=on option allows in this case to display the filename of each client text segment. The
amount of memory used by every segment is put with the unit identifier because of the -O unit=auto
option. The segment 1a0cb holds 7.62MB of real memory and no pinned memory. The paging space
and virtual memory are meaningless for client segments. The Description of the segment f23e is
truncated because the default format of the report is 80 columns. The -O format=180 or -O
format=nolimit could be used to display the full path of this file.

252  AIX Version 7.2: Performance Tools Guide and Reference



Named Shared Libraries
When the Named Shared Libraries (NSLA) areas are used, the segment description contains the name of
the area.

When a WPAR was used during a checkpoint and restarted, some shared library areas might be local to
the WPAR. The name of the WPAR is printed after the name of the area. Note that using Named Shared
Library Areas in a WPAR does not mean that the area is for this WPAR only. For more information, see the
documentation on NSLA.

In all other examples, the area is system-wide; therefore, the WPAR name is omitted.

The following is a list of possible examples:

• myarea means a system-wide area myarea is defined on the system.
• @myarea means an unnamed area is defined on the WPAR mywpar.
• myarea@mywpar means an area named myarea is defined on the WPAR mywpar.

Examples:

System-wide Named Shared Library area:

# svmon -P 381050 -O pidlist=on,pgsz=on,segment=on,summary=basic or
# svmon -P 381050 -O pidlist=on,pgsz=on

Unit: page

-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual
  381050 yes              11309     9956        0    11308

     PageSize                Inuse        Pin       Pgsp    Virtual
     s    4 KB                 221          4          0        220
     m   64 KB                 693        622          0        693

    Vsid      Esid Type Description              PSize  Inuse   Pin Pgsp Virtual
       0         0 work kernel segment               m    693   622    0   693
                   System segment
   60006         d work shared library text          s    185     0    0   185
                        myshlarea
                   Shared library text segment
   91a08         2 work process private              s     18     4    0    18
                   pid(s)=381050
   21a23         f work shared library data          s     17     0    0    17
                   pid(s)=381050
   11920         1 clnt code,/dev/hd2:338            s      1     0    -     -
                   pid(s)=381050

Detailed report
The detailed report (-D) displays information about the pages owned by a segment and, on-demand, it
can display the frames these pages are mapped to. To print the detailed report, specify the -D flag.

Several fields are presented before the listing of the pages used:

Segid
The segment identifier.

Type
The type of the segment.

PSize
The type of the segment.

Address Range
Ranges in which frames are used by this segment.

Ranges in which frames are used by this segment.

Size of paging space allocation
Virtual

Number of pages used by this segment.

Performance Tools Guide and Reference  253



Inuse
Number of frames used by this segment.

Column headings in a detailed report:

Page
Relative page number to the virtual space. This page number can be higher than the number of frames
in a segment (65535) if the virtual space is larger than a single segment (large file).

Frame
Frame number in the real memory. Since frames are always considered 4KB in size regardless of the
page size of the segment, for any page size larger than 4 KB, a range of frames instead of a single
frame is associated to one page. This range is noted as XXXXXXX..YYYYYYY, which means that the
continuous range of frames between ID XXXXXXX and YYYYYYY is used for the given page.

Pin
Indicates if the frame is pinned or not.

Ref
Indicates if the frame has been referenced by a process.

Mod
Indicates if the frame has been modified by a process.

ExtSegid
Extended segment identifier. This field is only set when the page number is higher than the maximum
number of frames in a segment.

ExtPage
Extended page number. This field is only set when the page number is higher than the maximum
number of frames in a segment and indicates the page number within the extended segment.

Note:

• The -@ flag has no effect on the -D option.
• This option only supports the additional -O frame option, which shows additional frame level details.
• The format used by this report is on 160 columns.

Examples:

#svmon -D b9015

Segid: b9015
Type:  client
PSize: s (4 KB)
Address Range: 0..9 : 122070..122070

           Page   Psize                Frame    Pin    Ref    Mod    ExtSegid    ExtPage
              0       s                74870     N      N      N         -          -
              1       s                11269     N      N      N         -          -
              2       s                11270     N      N      N         -          -
              3       s                11271     N      N      N         -          -
              4       s                11272     N      N      N         -          -
              5       s                11273     N      N      N         -          -
              6       s                11274     N      N      N         -          -
              7       s                11275     N      N      N         -          -
              8       s               986106     N      N      N         -          -
              9       s                 4093     N      N      N         -          -
         122070       s                78191     N      N      N       208831      dcd6 

The segment b9015 is a client segment with 11 pages. None of them are pinned.
The page 122070 is physically the page dcd6 in the extended segment 208831.

# svmon -D 6902f -O frame=on

Segid: 6902f
Type:  working
PSize: s (4 KB)
Address Range: 0..179 : 65309..65535
Size of page space allocation: 0 pages (  0.0 MB)

254  AIX Version 7.2: Performance Tools Guide and Reference



Virtual: 99 frames ( 0.4 MB)
Inuse: 99 frames ( 0.4 MB)

    Page  Psize           Frame  Pin  Ref Mod   ExtSegid    ExtPage  Pincount   State   Swbits
   65483      s           72235   Y    N   N        -          -       1/0     Hidden 88000000
   65353      s            4091   Y    N   N        -          -       1/0     Hidden 88000000
   65352      s            4090   Y    N   N        -          -       1/0     Hidden 88000000
   65351      s            4089   Y    N   N        -          -       1/0     Hidden 88000000
   65350      s         1010007   N    N   N        -          -       0/0     In-Use 88020000
   65349      s         1011282   N    N   N        -          -       0/0     In-Use 88020000
   65354      s          992249   N    N   N        -          -       0/0     In-Use 88020000
   65494      s         1011078   N    N   N        -          -       0/0     In-Use 88020000
       0      s           12282   N    N   N        -          -       0/0     In-Use 88820000
       1      s           12281   N    N   N        -          -       0/0     In-Use 88820000
       2      s           64632   N    N   N        -          -       0/0     In-Use 88a20000
       3      s           64685   N    N   N        -          -       0/0     In-Use 88a20000
       4      s           64630   N    N   N        -          -       0/0     In-Use 88a20000
       5      s           64633   N    N   N        -          -       0/0     In-Use 88820000

The frame 72235 is pinned, not referenced and not modified, it is in the Hidden state, it does not pertain
to an extended segment nor to a large page segment.

XML report
To print the XML report, specify the -X option.

By default the report is printed to standard output. The -o filename flag allows you to redirect the report
to a file. When the -O affinity option is used, affinity information is added to the report.

Note: The -O affinity=detail option can take a long time to compute.

The extension of XML reports is .svm. To prevent a report overwrite, the option -O overwrite=off option
can be specified (by default this option is set to on).

This XML file uses a XML Schema Definition (XSD) which can be found in the file: /usr/lib/perf/
svmon_measurement.xsd. This schema is self-documented and thus can be used by anyone to build
custom application using the XML data provided in these reports.

The data provided in this file is a snapshot view of the whole machine. It contains enough data to build an
equivalent of the -G, -P, -S, -W, -U, and -C options.

Remote Statistics Interface API Overview
The Remote Statistics Interface (RSI) is an application programming interface (API) that is available for
developing programs that access the statistics available from one or more xmtopas daemons.

Learn the procedure to use the RSI Interface API through the sample programs. The sample programs,
and others, are also provided in the machine-readable. The sample programs can be found in the /usr/
samples/perfmgr directory.

Use the RSI Interface API to write programs that access one or more xmtopas daemons. It allows you to
develop programs that print, post-process, or otherwise manipulate the raw statistics provided by the
xmtopas daemons. Such programs are known as Data-Consumer programs. AIX Version 7.1 Technical
Reference: Communications, Volume 2 must be installed to see the RSi subroutines

Makefile

The include files are based on the define directives, which must be properly set. They are defined with the
-D preprocessor flag.

• _AIX® specifies the include files to generate code for AIX.
• _BSD required for proper BSD compatibility.

An example of a Makefile that helps to build a sample program follows:

LIBS = -L./ -lbsd -lSpmi
CC = cc
CFLAGS = -D_BSD -DRSIv6 -D_AIX®
all:: RsiCons RsiCons1 chmon

Performance Tools Guide and Reference  255



RsiCons: RsiCons.c
      $(CC) -o RsiCons RsiCons.c $(CFLAGS) $(LIBS)

RsiCons1: RsiCons1.c
      $(CC) -o RsiCons1 RsiCons1.c $(CFLAGS) $(LIBS)

chmon: chmon.c $
      $(CC) -o chmon chmon.c $(CFLAGS) $(LIBS) -lcurses

If the system that is used to compile does not support ANSI function prototypes, include the -
D_NO_PROTO flag.

Remote Statistics Interface list of subroutines
The xmperf interface is used to view the graphical display of statistics on all the hosts in a network.

The Remote Statistics Interface (RSI) application programming interface (API) is used to create data-
consumer programs that helps to access statistics of any host's xmtopas daemon.

The RSI interface consists of the following groups of subroutines.

Initialization and Termination

Item Descriptor

RSiInitx Allocates or changes the table of RSI handles.

RSiOpenx Initializes the RSI interface for a remote host.

RSiClosex Terminates the RSI interface for a remote host and
releases all memory allocated.

RSiInvitex Invites data suppliers on the network to identify
themselves and returns a table of data-supplier
host names.

Instantiation and Traversal of Context Hierarchy

Item Descriptor

RSiInstantiatex Creates (instantiates) all subcontexts of a context
object.

RSiPathGetCxx Searches the context hierarchy for a context that
matches a context path name.

RSiFirstCxx Returns the first subcontext of a context.

RSiNextCxx Returns the next subcontext of a context.

RSiFirstStatx Returns the first statistic of a context.

RSiNextStatx Returns the next statistic of a context.

Defining Sets of Statistics to Receive

Item Descriptor

RSiAddSetHotx Adds a single set of peer statistics to a hotset.

RSiCreateHotSetx Creates an empty hotset.

RSiCreateStatSetx Creates an empty statset.

RSiPathAddSetStatx Adds a single statistic to a statset.

RSiDelSetHotx Deletes a single set of peer statistics from a hotset.

RSiDelSetStatx Deletes a single statistic from a statset.

256  AIX Version 7.2: Performance Tools Guide and Reference



Item Descriptor

RSiStatGetPathx Finds the full path name of a statistic identified by
an SpmiStatVals pointer.

Starting, Changing, and Stopping Data Feeding

Item Descriptor

RSiStartFeedx Tells xmtopas to start sending data feeds for a
statset.

RSiStartHotFeedx Tells xmtopas to start sending hot feeds for a
hotset.

RSiChangeFeedx Tells xmtopas to change the time interval between
sending data feeds for a statset.

RSiChangeHotFeedx Tells xmtopas to change the time interval between
sending hot feeds for a hotset.

RSiStopFeedx Tells xmtopas to stop sending data feeds for a
statset.

RSiStopHotFeedx Tells xmtopas to stop sending hot feeds for a
hotset.

Receiving and Decoding Data Feed Packets

Item Descriptor

RSiGetHotItemx Returns the peer context name and data value for
the first (next) SpmiHotItems element by
extraction from data feed packet.

RSiMainLoopx Allows an application to suspend execution and
waits to be woken when data feeds arrive.

RSiGetValuex Returns data value for a given SpmiStatVals pointer
by extraction from data feed packet.

RSiGetRawValuex Returns a pointer to a valid SpmiStatVals structure
for a given SpmiStatVals pointer by extraction from
data feed packet.

RSI Interface Concepts and Terms
Learn about the structures and the commonalities of the library functions and important design concepts.

To start using the RSI interface API you must be aware of the format and use of the RSI interface data
structures.

RSI Interface data structures
The RSI interface is based upon control blocks (data structures) that describe the current view of the
statistics on a remote host and the state of the interaction between a data consumer program and the
remote host's xmtopas daemon.

The RSI interface supports the following data structures:

• RSI handle
• SpmiStatVals

Performance Tools Guide and Reference  257



RSI handle

An RSI handle is a pointer to a data structure of type RsiHandleStructx. Prior to using any other RSI
call, a data-consumer program must use the RSiInit subroutine to allocate a table of RSI handles. An RSI
handle from the table is initialized when you open the logical connection to a host and that RSI handle
must be specified as an argument on all subsequent subroutines to the same host. Only one of the
internal fields of the RSI handle should be used by the data-consumer program, namely the pointer to
received network packets, pi. Only in very special cases will you ever need to use this pointer, which is
initialized by RSiOpenx and must never be modified by a data-consumer program. If your program
changes any field in the RSI handle structure, results are highly unpredictable. The RSI handle is defined
in /usr/include/sys/Rsi.h.

SpmiStatVals

A single data value is represented by a structure defined in /usr/include/sys/Spmidef.h as struct
SpmiStatVals. Be aware that none of the fields defined in the structure must be modified by application
programs. The two handles in the structure are symbolic references to contexts and statistics and should
not be confused with pointers. The last three fields are updated whenever a data_feed packet is
received. These fields are as follows:

Item Descriptor

val The latest actual contents of the statistics data
field.

val_change The difference (delta value) between the latest
actual contents of the statistics data field and the
previous value observed.

error An error code as defined by the enum Error in
included in the /usr/include/sys/Spmidef.h
file.

Note: The two value fields are defined as union Value, which means that the actual data fields may be
long or float, depending on flags in the corresponding SpmiStat structure. The SpmiStat structure
cannot be accessed directly from the StatVals structure (the pointer is not valid, as previously
mentioned). Therefore, to determine the type of data in the val and val_change fields, you must have
saved the SpmiStat structure as returned by the RSiPathAddSetStatx subroutine. This is rather
clumsy, so the RSiGetValuex subroutine does everything for you and you do not need to keep track of
SpmiStat structures.

The SpmiStat structure is used to describe a statistic. It is defined in the /usr/include/sys/
Spmidef.h file of type SpmiStat struct . If you ever need information from this data structure (apart
from information that can be returned by the RSiStatGetPathx subroutine) be sure to save it as it is
returned by the RSiPathAddSetStatx subroutine.

The RSiGetValuex subroutine provides another way of getting access to an SpmiStat structure but can
only do so while a data feed packet is being processed.

The xmtopas daemon accepts the definition of sets of statistics that are to be extracted simultaneously
and sent to the data-consumer program in a single data packet. The structure that describes such a set of
statistics is defined in the /usr/include/sys/Spmidef.h file of type SpmiStatSet struct . As
returned by the RSiCreateStatSetx, the SpmiStatSet pointer must be treated as a handle whose
only purpose is to identify the correct set of statistics to several other subroutines.

When returned in a data feed packet, the SpmiStatSet structure holds the actual time the data feed
packet was created (according to the remote host's clock) and the elapsed time since the latest previous
data feed packet for the same SpmiStatSet was created.

SpmiHotSet structure represents another set of access structures that allow an application program to
define an alternative way of extracting and processing metrics. They are used to extract data values for
the most or least active statistics for a group of peer contexts. For example, it can be used to define that

258  AIX Version 7.2: Performance Tools Guide and Reference



the program wants to receive information about the two highest loaded disks, optionally subject to the
load exceeding a specified threshold.

When the SPMI receives a read request for an SpmiHotSet, the SPMI reads the latest value for all the
peer sets of statistics in the hotset in one operation. This action reduces the system overhead caused by
access of kernel structures and other system areas, and ensures that all data values for the peer sets of
statistics within a hotset are read at the same time. The hotset may consist of one or many sets of peer
statistics.

SpmiHotVals One SpmiHotVals structure is created for each set of peer statistics selected for the
hotset. When the SPMI executes a request from the application program to read the data values for a
hotset, all SpmiHotVals structures in the set are updated. The RSi application program can then traverse
the list of SpmiHotVals structures by using the RSiGetHotItemx subroutine call.

The SpmiHotVals structure carries the data values from the SPMI to the application program. Its data
carrying fields are:

Item Descriptor

error Returns a zero value if the SPMI's last attempt to
read the data values for a set of peer statistics was
successful. Otherwise, this field contains an error
code as defined in the sys/Spmidef.h file.

avail_resp Used to return the number of peer statistic data
values that meet the selection criteria (threshold).
The field max_responses determines the
maximum number of entries actually returned.

count Contains the number of elements returned in the
array items. This number is the number of data
values that met the selection criteria (threshold),
capped at max_responses.

items The array used to return count elements. This array
is defined in the SpmiHotItems data structure.
Each element in the SpmiHotItems array has the
following fields:
name

The name of the peer context for which the
values are returned.

val
Returns the value of the counter or level field
for the peer statistic. This field returns the
statistic's value as maintained by the original
supplier of the value. However, the val field is
converted to an SPMI data format.

val_change
Returns the difference between the previous
reading of the counter and the current reading
when the statistic contains counter data. When
this value is divided by the elapsed time
returned in the SpmiHotSet Structure, an
event rate-per-time-unit can be calculated.

RSI Request-Response Interface
The RSI interface API has two distinctly different ways of operation.

The RSI request-response protocol that sends a single request to xmtopas daemon and waits for a
response. A timeout occurs if no response has been received within a specified time limit and a single

Performance Tools Guide and Reference  259



retry is attempted. If the retry also results in a timeout, the same is communicated to the caller by placing
the RSiTimeout constant in the external integer RSiErrno field . If any other error occurred, the
external integer field has some other non-zero value.

If neither a communication error nor a timeout error occurred, a packet is available in the receive buffer
pointed to by the pi pointer in the RSI handle. The packet includes a status code that tells whether the
subroutine was successful at the xmtopas daemon. You must check the status code in a packet if it
matters what exactly it is because the RSiBadStat constant is placed in RSiErrno field to indicate to
your program that a bad status code was received.

You can use the indication of error or success as defined for each subroutine to determine if the
subroutine succeeded or you can test the external integer RSiErrno. If this field is RSiOkay the
subroutine succeeded; otherwise it did not. The error codes returned in RSiErrno are defined in the
RSiErrorType enum .

All the library functions use the request-response interface, except for RSiMainLoop (which uses a
network driven interface) and RSiInitx, RSiGetValuex, and RSiGetRawValuex (that do not involve
network traffic).

RSI Network driven interface
The xmquery protocol defines three types of data packets that are sent from the data supplier of the
xmtopas daemon without being solicited by a request packet.

The request packet types are the still_alive, the data_feed, and the except_rec packets. The
still_alive packets are handled internally in the RSI interface and require no programming in the
data-consumer program.

The data_feed packets are received asynchronously with any packets produced by the request-
response type subroutines. If a data_feed packet is received when processing a request-response
function, control is passed to a callback function, which must be named when the RSI handle is initialized
with the RSiOpenx subroutine.

When the data-consumer program is not using the request-response functions, it still needs to be able to
receive and process data_feed packets. This is done with the RSiMainLoopx function, which invokes
the callback function whenever a packet is received.

Actually, the data feed callback function is invoked for all packets received that cannot be identified as a
response to the latest request sent, except if such packets are of type i_am_back, still_alive, or
except_rec. Note that this means that responses to “request-response” packets that arrive after a
timeout is sent to the callback function. It is the responsibility of your callback function to test for the
packet type received.

The except_rec packets are received asynchronously with any packets produced by the request-
response type subroutines. If an except_rec packet is received when processing a request-response
function, control is passed to a callback function, which must be named when the RSI handle is initialized
with the RSiOpenx subroutine.

When the data-consumer program is not using the request-response functions, it still needs to be able to
receive and process except_rec packets. This is done with the RSiMainLoopx function which invokes
the callback function whenever a packet is received.

Note: The API discards except_rec messages from a remote host unless a callback function to process
the message type was specified on the RSiOpenx subroutine call for that host.

Resynchronizing
Network connections can go bad, hosts can go down, interfaces can be taken down and processes can
stop functioning.

In the case of the xmtopas protocol, such situations usually result in one or more of the following:

• Missing packets
• Resynchronizing requests

260  AIX Version 7.2: Performance Tools Guide and Reference



Missing packets

Responses to outstanding requests are not received, which generate a timeout. That's fairly easy to cope
with because the data-consumer program has to handle other error return codes anyway. It also results
in expected data feeds not being received. Your program may want to test for this happening. The proper
way to handle this situation is to use the RSiClosex function to release all memory related to the dead
host and to free the RSI handle. After this is done, the data-consumer program may attempt another
RSiOpenx to the remote system or may simply exit.

Resynchronizing requests

Whenever an xmtopas daemon hears from a given data-consumer program on a particular host for the
first time, it responds with a packet of i_am_back type, effectively prompting the data-consumer
program to resynchronize with the daemon. Also, when the daemon attempts to reconnect to data-
consumer programs that it talked to when it was killed or died, it sends an i_am_back packet.

It is important that you understand how the xmtopas daemon handles “first time contacted.” It is based
upon tables internal to the daemon. Those tables identify all the data-consumers that the daemon knows
about. Be aware that a data-consumer program is known by the host name of the host where it executes
suffixed by the IP port number used to talk to the daemon. Each data-consumer program running is
identified uniquely as are multiple running copies of the same data-consumer program.

Whenever a data-consumer program exits orderly, it alerts the daemon that it intends to exit and the
daemon removes it from the internal tables. If, however, the data-consumer program decides to not
request data feeds from the daemon for some time, the daemon detects that the data consumer has lost
interest and removes the data consumer from its tables as described in Life and Death of xmtopas. If the
data-consumer program decides later that it wants to talk to the xmtopas daemon again, the daemon
responds with an i_am_back packet.

The i_am_back packets are given special treatment by the RSI interface. Each time one is received, a
resynchronizing callback function is invoked. This function must be defined on the RSiOpenx subroutine.

Note: All data-consumer programs can expect to have this callback invoked once during execution of the
RSiOpenx subroutine because the remote xmtopas does not know the data consumer. This is usual and
should not cause your program to panic. If the resynchronize callback is invoked twice during processing
of the RSiOpenx function, the open failed and can be retried, if appropriate.

Specifying port range for RSI communication
A random communication port is required between the xmtopasor xmtopas interface and the
consumers. The Rsi.hosts configuration file is used to set the ports within a specified range.

To set the port range, complete these steps:

1. Locate the Rsi.hosts file in the $HOMEor the /etc/perf directory. If the file does not exist in either
of the directories, search the file in the /usr/lpp/perfmgr directory.

2. Specify the start and the end port in the acceptable range as mentioned in the Rsi.hosts file. If the
Rsi.hosts file cannot be located in directories or the port range is specified incorrectly, the RSI
communication uses random ports.

To specify the port range in the Rsi.hosts file, use the following command:

portrange <start_port> <end_port>

Example:

portrange 3001 3003

When the RSI communication starts, it uses 3001, 3002 or 3003 ports in the specified range. Only 3 RSI
agents can listen to the ports and the subsequent RSI communication fails.

Performance Tools Guide and Reference  261



A Simple Data-Consumer Program
The use of the application programming interface (API) is illustrated by creating a small data-consumer
program to produce a continuous list of statistics from a host.

The first version accesses only CPU-related statistics. It assumes that you want to get your statistics from
the local host unless you specify a host name on the command line. The program continues to display the
statistics until it is killed. The source code for the sample program can be found in the /usr/samples/
perfmgr/RsiCons1.c file.

Initializing and terminating the program

The main function of the sample program uses the three subroutines as shown in the following code
segment. The lines 12 through 15 use any command line argument to override the default host name
obtained by the uname function. Then lines 17 through 28 initialize the RSI interface using the RSiInitx
and RSiOpenx subroutines. The program exits if the initialization fails.

[01] extern char   RSiEMsg[];
[02] extern int   RSiErrno;
[03] char   host[64], apath[256], head1[24][10], head2[24][10];
[04] char   *nptr, **navn = &nptr, *dptr, **desc = &dptr;
[05] struct utsname  uname_struct;
[07]  RsiHandlex rsh;
[08]   struct SpmiStatVals *svp[24];
[09]   int     lct = 99, tix = 0;
[10]   [11] main(int argc, char **argv)
[12]  { 
[13]   uname(&uname_struct);
[14]   strcpy(host, uname_struct.nodename);
[15]     if (argc > 1) 
[16]        strcpy(host, argv[1]); 
[17]     if (!(rsh = RsiInitx(1))) 
[18]     { 
[19]        fprintf(stderr, “Unable to initialize RSI interface\n”); 
[20]        exit(98); 
[21]     } 
[22]     if (RSiOpenx(rsh, 100, 2048, host, feeding, resync, NULL)) 
[23]     { 
[24]        if (strlen(RSiEMsg)) 
[25]           fprintf(stderr, “%s”, RSiEMsg); 
[26]        fprintf(stderr, “Error contacting host\”%s\“\n”, host); 
[27]        exit(-99); 
[28]     } 
[29]     signal(SIGINT, must_exit); 
[30]     signal(SIGTERM, must_exit); 
[31]     signal(SIGSEGV, must_exit); 
[32]     signal(SIGQUIT, must_exit); 
[33] 
[34]     strcpy(apath, “hosts/”); 
[35]     strcat(apath, host); 
[36]     strcat(apath, “/”); 
[37]     lststats(apath); 
[38]     RSiClosex(rsh); 
[39]     exit(0); 
[40] } The following lines (29-32) make sure that the program detects any attempt to kill or 
terminate it. 
If this happens, the function must_exit is invoked. This function has the sole purpose of 
making sure the 
association with the xmtopas daemon is terminated. It does this as shown in the following piece 
of code:  
void must_exit() {    RSiClosex(rsh);    exit(-9); }

Finally, lines 34 through 36 prepare an initial value path name for the main processing loop of the data-
consumer program. This is the method followed to create the value path names. Then, the main
processing loop in the internal lststats function is called. If this function returns, issue an RSiClosex
call and exit the program.

262  AIX Version 7.2: Performance Tools Guide and Reference



Defining a Statset

Eventually, you want the sample of the data-consumer program to receive data feeds from the xmtopas
daemon. Thus, start preparing the SpmiStatSet, which defines the set of statistics with which you are
interested. This is done with the RSiCreateStatSetx subroutine.

[01] voidlststats(char *basepath)
[02] {
[03]    struct SpmiStatSet *ssp;
[04]    char     tmp[128];
[05]
[06]    if (!(ssp = RSiCreateStatSetx(rsh)))
[07]    {
[08]       fprintf(stderr, “RsiCons1 can\'t create StatSet\n”);
[09]       exit(62);
[10]    }
[11]
[12]    strcpy(tmp, basepath);
[13]    strcat(tmp, “CPU/cpu0”);
[14]    if ((tix = addstat(tix, ssp, tmp, “cpu0”)) == -1)
[15]    {
[16]       if (strlen(RSiEMsg))
[17]          fprintf(stderr, “%s”, RSiEMsg);
[18]       exit(63);
[19]    }
[20]
[21]    RSiStartFeedx(rsh, ssp, 1000);
[22]    while(TRUE)
[23]       RSiMainLoopx(499);
[24] }

In the sample program, the SpmiStatSet is created in the local lststats function shown previously in
lines 6 through 10.

Lines 12 through 19 invoke the local function addstat (Adding Statistics to the Statset), which finds all
the CPU-related statistics in the context hierarchy and initializes the arrays to collect and print the
information. The first two lines expand the value path name passed to the function by appending CPU/
cpu0. The resulting string is the path name of the context where all CPU-related statistics for cpu0 are
held. The path name has the hosts/hostname/CPU/cpu0 format without a terminating slash, which is
what is expected by the subroutines that take a value path name as an argument. The addstat function
is shown in the next section. It uses three of the traversal functions to access the CPU-related statistics.

Data-Consumer initialization of data feeds

The only part of the main processing function in the main section yet to explain consists of lines 21
through 23. The first line simply tells the xmtopas daemon to start feeding observations of statistics for
an SpmiStatSet by issuing the RSiStartFeedx subroutine call. The next two lines define an infinite
loop that calls the RSiMainLoopx function to check for incoming data_feed packets.

There are two more subroutines concerned with controlling the flow of data feeds from xmtopas
daemon. Neither is used in the sample program. The subroutines are described in RSiChangeFeedx and
RSiStopFeedx structures.

Adding Statistics to the Statset

[01] int addstat(int ix, struct SpmiStatSet *ssp, char *path, char *txt)
[02] {
[03]    cx_handle   *cxh;
[04]    int     i = ix;
[05]    char     tmp[128];
[06]    struct SpmiStatLink *statlink;
[07]
[08]    if (!(cxh = RSiPathGetCxx(rsh, path)))
[09]    {
[10]       fprintf(stderr, “RSiPathGetCxx can\'t access host %s (path %s)\n”, host, path);
[11]       exit(61);
[12]    }
[13]
[14]    if ((statlink = RSiFirstStatx(rsh, cxh, navn, desc)))
[15]    {
[16]       while (statlink)
[17]       {

Performance Tools Guide and Reference  263



[18]          if (i > 23)
[19]              break;
[20]          strcpy(head1[i], txt);
[21]          strcpy(head2[i], *navn);
[22]          strcpy(tmp, path);
[23]          strcat(tmp, “/”);
[24]          strcat(tmp, *navn);
[25]          if (!(svp[i] = RSiPathAddSetStatx(rsh, ssp, tmp)))
[26]             return(-1);
[27]          i++;
[28]          statlink = RSiNextStatx(rsh, cxh, statlink, navn, desc);
[29]       }
[30]    }
[31]  return(i);
[32] }

The use of RSiPathGetCxx by the sample program is shown in lines 8 through 12. Following that, in
lines 14 through 30, two subroutines are used to get all the statistics values defined for the CPU context.
This is done by using RSiFirstStatx and RSiNextStatx subroutines.

In lines 20-21, the short name of the context (“cpu0”) and the short name of the statistic are saved in two
arrays for use when printing the column headings. Lines 22-24 construct the full path name of the
statistics value by concatenating the full context path name and the short name of the value. This is
necessary to proceed with adding the value to the SpmiStatSet with the RSiPathAddSetStatx. The
value is added by using the lines 25 and 26.

Data-Consumer decoding of data feeds

Whenever a data_feed is detected by the RSI interface, the data feed callback function defined in the
RSiOpenx subroutine is invoked, passing the RSI handle as an argument to the callback function. The
sample program's callback function for data feeds is shown in the following example. Most of the lines in
the function are concerned with printing headings after each 20 detail lines printed. This is in line
numbers 9 through 19 and 26.

[01] void feeding(RSiHandlex rsh, pack *p)
[02] {
[03]    int  i;
[04]    float f;
[05]    long  v;
[06]
[07]    if (p->type != data_feed)
[08]       return;
[09]    if (lct > 20)
[10]    {
[11]       printf(“\n\n”);
[12]       for (i = 0; i < tix; i++)
[13]          printf(“%08s”, head1[i]);
[14]       printf(“\n”);
[15]       for (i = 0; i < tix; i++)
[16]          printf(“%08s”, head2[i]);
[17]       printf(“\n”);
[18]       lct = 0;
[19]    }
[20]    for (i = 0; i < tix; i++)
[21]    {
[22]       v = RSiGetValuex(rsh, svp[i]) * 10.0;
[23]       printf(“%6d.%d”, v/10, v%10);
[24]    }
[25]    printf(“\n”);
[26]    lct++;
[27] }

Actual processing of received statistics values is done by the lines 20-24. It involves the use of the library
RSiGetValuex subroutine. The following is an example of output from the sample program RsiCons1:

$ RsiCons1 umbra

    cpu0    cpu0    cpu0    cpu0    cpu0    cpu0    cpu0    cpu0
    user    kern    wait    idle  uticks  kticks  wticks  iticks
     0.0     0.0     0.0   100.0     0.0     0.0     0.0   100.0
     0.0     0.0     0.0   100.0     0.0     0.0     0.0    99.9
     0.2     3.1     0.0    96.5     0.2     3.2     0.0    96.6
     3.5     5.5     1.5    89.1     3.5     5.5     1.5    89.1
     5.8     3.4     0.0    90.8     5.8     3.4     0.0    90.8

264  AIX Version 7.2: Performance Tools Guide and Reference



     8.8     8.3     0.1    82.5     8.8     8.3     0.2    82.5
    67.5     2.4     3.0    27.0    67.5     2.3     2.9    26.9
    16.0     0.6     0.8    82.5    16.0     0.6     0.8    82.6
    67.5     5.0     0.0    27.3    67.5     5.0     0.0    27.3
    19.0     6.1     0.9    73.8    19.1     6.1     0.9    73.8
    22.5     0.8     1.6    75.0    22.5     0.8     1.6    74.9
    60.2     6.1     0.0    33.5    60.2     6.1     0.0    33.5
$

An Alternative way to decode data feeds
To know more about the data received in data_feed packets than what can be obtained by using the
RSiGetValuex subroutine, you can use the library RSiGetRawValuexsubroutine.

Expanding the data-consumer program
A slightly more capable version of the sample program discussed in the previous sections is provided as
the /usr/samples/perfmgr/RsiCons.c file. This program also lists the statistics with the short name
xfer for all the disks found in the system where the daemon runs. To do so, the program uses some
additional subroutines to traverse contexts.

Traversing contexts

The adddisk function in the following list shows how the RSiFirstCxx, RSiNextCxx, and the
RSiInstantiatex subroutines are combined with RSiPathGetCxx to make sure all subcontexts are
accessed. The sample program's addstat internal function is used to add the statistics of each
subcontext to the SpmiStatSet structure. A programmer who wanted to traverse all levels of
subcontexts below a start context could easily create a recursive function to do this.

01] int adddisk(int ix, struct SpmiStatSet *ssp, char *path)
[02] {
[03]    int     i = ix;
[04]    char     tmp[128];
[05]    cx_handle   *cxh;
[06]    struct SpmiStatLink *statlink;
[07]    struct SpmiCxLink *cxlink;
[08]
[09]    cxh = RSiPathGetCxx(rsh, path);
[10]    if ((!cxh) || (!cxh->cxt))
[11]    {
[12]       if (strlen(RSiEMsg))
[13]          fprintf(stderr, “%s”, RSiEMsg);
[14]       fprintf(stderr, “RSiPathGetCxx can\'t access host %s (path %s)\n”,
[15]       host, path);
[16]       exit(64);
[17]    }
[18]    if (rsh->pi->data.getcx.context.inst_freq == SiContInst)
[19]    {
[20]       if ((i = RSiInstantiatex(rsh, cxh)))
[21]          return(-1);
[22]    }
[23]    if ((cxlink = RSiFirstCxx(rsh, cxh, navn, desc)))
[24]    {
[25]       while (cxlink)
[26]       {
[27]         strcpy(tmp, path);
[28]         if (strlen(tmp))
[29]            strcat(tmp, “/”);
[30]         if (*navn)
[31]            strcat(tmp, *navn);
[32]         if ((i = addstat(i, ssp, tmp, *navn)) == -1)
[33]         {
[34]            if (strlen(RSiEMsg))
[35]               fprintf(stderr, “%s”, RSiEMsg);
[36]            exit(63);
[37]         }
[38]         cxlink = RSiNextCxx(rsh, cxh, cxlink, navn, desc);
[39]       }
[40]    }
[41]    return(i);
[42] }

Performance Tools Guide and Reference  265



The output from the RsiCons program when run on the xmtopas daemon on an AIX operating system
host is shown in the following example.

$ RsiCons encee

     CPU     CPU     CPU     CPU  hdisk3  hdisk1  hdisk0     cd0
  uticks  kticks  wticks  iticks    xfer    xfer    xfer    xfer
    19.6    10.0     4.1    67.1     2.7     4.1     0.0     0.0
    10.9    15.3     8.2    65.3     0.0     8.2     0.0     0.0
     0.5     2.0     0.0    97.5     0.0     0.0     0.0     0.0
    10.5     4.0     0.0    85.5     0.0     0.0     0.0     0.0
    55.4     8.9     0.0    35.4     2.4     0.0     0.0     0.0
    19.0     5.5     0.0    75.5     0.0     0.0     0.0     0.0
     5.9     6.4     0.0    87.4     0.0     0.0     0.0     0.0
    10.5     7.0     0.0    82.5     0.0     0.0     0.0     0.0
     7.9     7.4     0.0    84.4     0.0     0.0     0.0     0.0
    88.5     8.5     3.0     0.0     9.5     4.5     0.0     0.0
    89.4     8.9     1.4     0.0     5.9     0.0     0.0     0.0
    92.5     5.5     2.0     0.0     9.0     8.5     0.0     0.0
    71.0     6.0    23.0     0.0    44.0    41.0     0.0     0.0
    37.9     2.4    58.9     0.4    67.9    61.4     0.0     0.0
    17.5     4.5     0.0    78.0     1.5     3.0     0.0     0.0
     0.5     1.5    10.0    88.0     7.5     1.5     0.0     0.0
$

Inviting data suppliers
The RSiInvitex subroutine allows to design programs that can present the end user with a list of
potential data-supplier hosts rather than requiring the user to specify which host to monitor.

Identifying data suppliers
The RSiInvitex subroutine uses one or more of the following methods to obtain the Internet Protocol
(IP) addresses to which an invitational are_you_there message can be sent.

The last two methods depend on the presence of the $HOME/Rsi.hosts file. PTX also has alternative
locations of the Rsi.hosts file. The three ways to invite data-supplier hosts are:

1. Unless instructed not to by the user, the broadcast address corresponding to each of the network
interfaces of the local host is found. The invitational message is sent on each network interface using
the corresponding broadcast address. Broadcasts are not attempted on the Localhost (loopback)
interface or on point-to-point interfaces such as X.25 or Serial Line Interface Protocol (SLIP)
connections.

2. If a list of Internet broadcast addresses is supplied in the $HOME/Rsi.hosts file, an invitational
message is sent on each such broadcast address. Note that if you specify the broadcast address of a
local interface, broadcasts are sent twice on those interfaces. You may want to use this as a feature in
order to minimize the likelihood of the invitation being lost.

3. If a list of host names is supplied in the $HOME/Rsi.hostsfile, the host IP address for each host in
the list is looked up and a message is sent to each host. The look-up is done through a
gethostbyname() call, so that whichever name service is active for the host where the data-
consumer application runs is used to find the host address.

The $HOME/Rsi.hosts file has a simple layout. Only one keyword is recognized and only if placed in
column one of a line. That keyword is:

nobroadcast and means that the are_you_there message should not be broadcast using method 1
shown previously. This option is useful in situations where a large number of hosts are on the network
and only a well-defined subset should be remotely monitored. To say that you don't want broadcasts but
want direct contact to three hosts, your $HOME/Rsi.hosts file might look like this:

nobroadcast
birte.austin.ibm.com
gatea.almaden.ibm.com
umbra

This example shows that the hosts to monitor do not necessarily have to be in the same domain or on a
local network. However, doing remote monitoring across a low-speed communications line is unlikely to
be popular; neither with other users of that communications line nor with yourself.

266  AIX Version 7.2: Performance Tools Guide and Reference



Be aware that whenever you want to monitor remote hosts that are not on the same subnet as the data-
consumer host, you must specify the broadcast address of the other subnets or all the host names of
those hosts in the $HOME/Rsi.hosts file. The reason is that IP broadcasts do not propagate through IP
routers or gateways.

The following example illustrates a situation where you want to do broadcasting on all local interfaces,
want to broadcast on the subnet identified by the broadcast address 129.49.143.255, and also want to
invite the host called umbra. (The subnet mask corresponding to the broadcast address in this example is
255.255.240.0 and the range of addresses covered by the broadcast is 129.49.128.0 - 129.49.143.255.)

129.49.143.255

If the RSiInvitex subroutine detects that the name server is inoperational or has abnormally long
response time, it returns the IP addresses of hosts rather than the host names. If the name server fails
after the list of hosts is partly built, the same host may appear twice, once with its IP address and once
with its host name.

The execution time of the RSiInvitex subroutine depends primarily on the number of broadcast
addresses you place in the $HOME/Rsi.hosts file. Each broadcast address increases the execution time
with roughly 50 milliseconds plus the time required to process the responses. The minimum execution
time of the subroutine is roughly 1.5 seconds, during which time your application only gets control if
callback functions are specified and if packets arrive that must be given to those callback functions.

A Full-Screen, character-based monitor
This program uses the API and the curses programming interface to create a screen full of statistics.

Another sample program written to the data-consumer API is the chmon program . Source code to the
program is in /usr/samples/perfmgr/chmon.c.file. The chmon program is also stored as an
executable during the installation of the Manager component. An example program follows:

Data-Consumer API       Remote Monitor for host     Tue Apr 14 09:09:05
1992
CHMON Sample Program       ***   birte  ***         Interval:      5 seconds

% CPU                                            EVENTS/QUEUES  FILE/TTY
Kernel  13.3   |####                           | Pswitch  1295  Readch 24589
User    23.7   |#######                        | Syscall  6173  Writech 1646
Wait     6.5   |##                             | Reads     487  Rawin      0
Idle    56.1   |################               | Writes    143  Ttyout   106
                                                 Forks       1  Igets   1763
PAGING counts   PAGING SPACE   REAL MEM  48MB    Execs       1  Namei    809
Faults    131   % Used  33.7   % Comp    68.0    Runqueue    1  Dirblk   174
Steals      0   % Free  66.2   % NonComp 15.0    Swapqueue   0  Reads     48
Reclaim     0   Size,MB   96   % Client   4.0                   Writes   143

PAGING page/s   DISK       Read  Write     %     NETWORK   Read  Write
Pgspin      0   ACTIVITY KB/sec  KB/sec  Busy    ACTIVITY KB/sec KB/sec
Pgspout     0   hdisk0      0.0    35.1  15.7    lo0         1.1    1.1
Pagein      0   hdisk1      0.0     0.0   0.0    tr0         1.1    0.0
Pageout    11   hdisk2      0.0     9.5   3.5
Sios       10   cd1         0.0     0.0   0.0

      Process wait     (514)   %cpu 63.2, PgSp: 0.0mb, uid:
      Process xlcentry (12657) %cpu 58.0, PgSp: 1.1mb, uid: birte
      Process make     (21868) %cpu 15.0, PgSp: 0.2mb, uid: birte
      Process make     (5998)  %cpu 15.0, PgSp: 0.1mb, uid: birte

The chmon command line is:

chmon[-iseconds_interval][-pno_of_processes][hostname>]

Performance Tools Guide and Reference  267



Item Descriptor

seconds_interval Is the interval between observations. Must be
specified in seconds. No blanks must be entered
between the flag and the interval. Defaults to 5
seconds.

no_of_processes Is the number of “hot” processes to be shown. A
process is considered “hotter” the more CPU it
uses. No blanks must be entered between the flag
and the count field. Defaults to 0 (no) processes.

hostname Is the host name of the host to be monitored.
Default is the local host. The sample program exits
after 2,000 observations have been taken, or when
you type the letter “q” in its window.

List of RSI Error Codes
All RSI subroutines use constants to define error codes.

The RSI Error Code table lists the error descriptions.

Symbolic Name Number Description

RSiTimeout 280 A time-out occurred while waiting
for a response to a request.

RSiBusy 281 An RSiOpenx subroutine was
issued, but another is already
active.

RSiSendErr 282 An error occurred when the
library attempted to send a UDP
packet with the sendto() system
call.

RSiPollErr 283 A system error occurred while
issuing or processing a poll() or
select() system call.

RSiRecvErr 284 A system error occurred while
attempting to read an incoming
UDP packet with the recvfrom()
system call.

RSiSizeErr 285 A recvfrom() system call returned
a UDP packet with incorrect
length or incorrect source
address.

268  AIX Version 7.2: Performance Tools Guide and Reference



Symbolic Name Number Description

RSiResync 286 While waiting for a response to an
outgoing request, one of the
following occurred and cause an
error return to the calling
program:

1. An error occurred while
processing an exception
packet.

2. An error occurred while
processing an i_am_back
packet.

3. An i_am_back packet was
received in response to an
output request other than
are_you_there.

4. While waiting for a response
to an outgoing request, some
asynchronous function closed
the handle for the remote
host.

The code may also be set when a
success return code is returned
to the caller, in which case it
shows that either an exception
packet or an i_am_back packet
was processed successfully while
waiting for a response.

RSiBadStat 287 A bad status code was received in
the data packet received.

RSiBadArg 288 An argument that is not valid was
passed to an RSi subroutine.

RSiBadHost 289 A valid host address cannot be
constructed from an IP address
or the nameservice doesn't know
the hostname.

RSiDupHost 290 An RSiOpenx call was issued
against a host but a connection is
already open to a host with this
IP address and a different
hostname.

RSiSockErr 291 An error occurred while opening
or communicating with a socket.

RSiNoPort 292 The RSi is unable to find the port
number to use when inviting
remote suppliers. The likely
cause is that the xmquery entry is
missing from the /etc/
services file or the NIS (Yellow
Pages) server.

Performance Tools Guide and Reference  269



Symbolic Name Number Description

RSiNoMatch 293 One of the following occurred:

1. The SpmiStatVals argument
on the RSiStatGetPathx
call is not valid.

2. On an RSiPathAddSetStatx
call, the SpmiStatSet
argument is not valid or the
path name given in the last
argument does not exist.

3. On an RSiAddSetHotx call,
the SpmiHotSet argument is
not valid, the grand parent
context doesn't exist or none
of its subcontexts contain the
specified statistic.

4. On an RSiDelSetStatx call,
the SpmiStatSet or the
SpmiStatVals argument is
not valid.

5. On an RSiDelSetHotx call,
the SpmiHotSet or the
SpmiHotVals argument is
not valid.

6. On an RSiPathGetCxx call,
the path name given does not
exist. On an RSiGetValuex
or RSiGetRawValuex call,
the SpmiStatVals argument
is not valid.

7. On an RSiGetHotItemx call,
the SpmiHotSet argument
was not valid.

RSiInstErr 294 An error was returned when
attempting to instantiate a
remote context.

RSiNoFeed 295 When extracting a data value with
the RSiGetValuex call, the
data value was marked as not
valid by the remote data supplier.

RSiTooMany 296 An attempt was made to add
more values to a statset than the
current buffer size permits.

RSiNoMem 297 Memory allocation error.

RSiNotInit 298 An RSi call was attempted before
an RSiInitx call was issued.

RSiNoLicense 299 License expired or no license
found.

270  AIX Version 7.2: Performance Tools Guide and Reference



Symbolic Name Number Description

RSiNotSupported 300 The subroutine call requires a
later protocol version that is the
one supported by the remote
system's xmtopas daemon.

Performance Tools Guide and Reference  271



272  AIX Version 7.2: Performance Tools Guide and Reference



Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

© Copyright IBM Corp. 2015, 2018 273



The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice
as follows:
© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as the customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

274  Notices



For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Notices  275

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml


276  AIX Version 7.2: Performance Tools Guide and Reference



Index

A
API calls

basic
pm_delete_program 65
pm_get_data 65
pm_get_program 65
pm_get_tdata 65
pm_get_Tdata 65
pm_reset_data 65
pm_set_program 65
pm_start 65
pm_stop 65
pm_tstart 65
pm_tstop 65

B
bos.perf.libperfstat 5.2.0 file set 192

C
commands

gprof 214
prof 213
tprof 216

counter multiplexing mode
pm_get_data_mx 67
pm_get_program_mx 67
pm_get_tdata_mx 67
pm_set_program_mx 67

CPU Utilization Reporting Tool
see curt 2

curt
Application Pthread Summary (by PID) Report 14
Application Summary (by process type) Report 13
Application Summary by Process ID (PID) Report 12
Application Summary by Thread ID (Tid) Report 11
default reports 7
Event Explanation 3
Event Name 3
examples 4
FILH Summary Report 19
flags 2
FLIH types 20
General Information 7
Global SLIH Summary Report 21
Hook ID 3
Kproc Summary (by Tid) Report 13
measurement and sampling 3
parameters 2
Pending Pthread Calls Summary Report 19
Pending System Calls Summary Report 16
Processor Summary Report 9
Pthread Calls Summary Report 19
report overview 5
sample report

curt (continued)
sample report (continued)

-e flag 21
-p flag 26
-P flag 30
-s flag 23
-t flag 24

syntax 2
System Calls Summary Report 15
System Summary Report 7

E
event list

POWERCOMPAT 58
examples

performance monitor APIs 68

G
gennames utility 36
global interfaces

perfstat_cpu_util interface 108
perfstat_process 152
perfstat_process_util 156
perfstat_processor_pool_util 157

K
kernel tuning

commands
flags 198
tundefault 203
tunrestore 201
tunsave 202

commands syntax 198
initial setup 203
reboot tuning procedures 203
recovery procedure 204
SMIT interface 204

P
performance monitor API

accuracy 56
common rules 63
context and state

state inheritance 56
system level context 56
thread context 56
thread counting-group and process context 56

programming 55
security considerations 63
thread accumulation 62
thread group accumulation 62

perfstat

Index  277



perfstat (continued)
characteristics 84
component-specific interfaces 103
perfstat_fcstat interface 133
perfstat_memory_total Interface 90
perfstat_netadapter interface 145

perfstat API programming
see perfstat 83

perfstat_cpu_util interfaces
simplelparstat.c 113
simplempstat.c 118

pm_delete_program 63
pm_error 63
pm_groups_info_t 63
pm_info_t 63
pm_init API initialization 63
pm_initialize 63
pm_initialize API initialization 64
pm_set_program 63
pmapi library 63
PMU registers 74
POWERCOMPAT 58
procmon tool 209
profiling 213

R
reboot procedure 203
recovery procedure 204
release specific features 191
Remote Statistics Interface (RSI)

A Full-Screen, character-based monitor 267
Adding statistics to the Statset 263
An Alternative way to decode data feeds 265
Concepts and Terms 257
Data structures 257
Data-Consumer decoding of data feeds 264
Defining a Statset 263
Expanding the data-consumer program 265
Identifying data suppliers 266
Initializing and terminating the program 262
Inviting data suppliers 266
List of RSi Error Codes 268
List of subroutines 256
Makefile 255
Remote Statistics Interface (RSI) overview 255
Request-Response Interface 259
Resynchronizing 260
RSI network driven interface 260
Sample code 262
Specifying port range for RSI communication 261
Traversing contexts 265

S
simple performance lock analysis tool (splat)

see splat 33
SMIT Interface 204
splat

address-to-name resolution 36
AIX kernel lock details 41
command syntax 33
condition-variable report 53

splat (continued)
event explanation 35
event name 35
execution, trace, and analysis intervals 36
flags 33
hook ID 35
measurement and sampling 35
mutex function detail 50
mutex pthread detail 50
mutex reports 48
parameters 33
PThread synchronizer reports 48
read/write lock reports 51
reports

execution summary 37
gross lock summary 38
per-lock summary 38

simple and runQ lock details 41, 43
trace discontinuities 36

T
thread counting-group information

consistency flag 66
member count 66
process flag 66

278  AIX Version 7.2: Performance Tools Guide and Reference





IBM®


	Contents
	About this document
	Highlighting
	Case-sensitivity in AIX
	ISO 9000

	Performance Tools Guide and Reference
	What's new
	CPU Utilization Reporting Tool (curt)
	Syntax for the curt Command
	Measurement and Sampling
	Examples of the curt command
	Overview of information generated by the curt command
	Default report generated by the curt command
	General information
	System summary
	System application summary
	Processor summary and processor application summary
	Application summary by thread ID (Tid)
	Application summary by process ID (Pid)
	Application summary by process type
	Kproc summary by thread ID (Tid)
	Application Pthread summary by process ID (Pid)
	System calls summary
	Pending system calls summary
	Hypervisor calls summary
	Pending Hypervisor calls summary
	System NFS calls summary
	Pending NFS calls summary
	Pthread calls summary
	Pending Pthread calls summary
	FLIH summary
	FLIH types in the example

	SLIH summary
	Reports generated with the -e flag
	Reports generated with the -s flag
	Reports generated with the -t flag
	Reports generated with the -p flag
	Reports generated with the -P flag



	Simple performance lock analysis tool (splat)
	splat command syntax
	Measurement and sampling
	Execution, trace, and analysis Intervals
	Trace discontinuities
	Address-to-Name resolution in the splat command

	Examples of generated reports
	Execution summary
	Gross lock summary
	Per-lock summary
	AIX kernel lock details
	Disabled simple and RunQ lock details
	Enabled simple lock details
	Function detail
	Thread Detail
	Complex-Lock report

	PThread synchronizer reports
	Mutex reports
	Mutex Pthread detail
	Mutex function detail
	Read/Write lock reports
	Condition-Variable report
	Condition-Variable Pthread detail
	Condition-Variable function detail



	Hardware performance monitor APIs and tools
	Performance monitor accuracy
	Performance monitor context and state
	System-level context and accumulation
	Thread context
	Thread counting-group and process context
	Performance monitor state inheritance

	Performance monitoring agent
	POWERCOMPAT events
	Thread accumulation and thread group accumulation
	Security considerations
	The pmapi library
	The pm_init API initialization routine
	The pm_initialize API initialize routine
	Basic pmapi library calls
	Thread counting-group information
	Counter multiplexing mode
	Counter multi-mode
	WPAR counting
	Examples of pmapi library usage
	Simple single-threaded program example
	Initialization example using an event group
	Get the information about all the event-groups for a specific processor example
	Debugger program example for initialization program
	Count a single WPAR from the Global WPAR
	Count all active WPARs from the Global WPAR and retrieve per-WPAR data
	Simple multi-threaded example
	Simple thread counting-group example
	Simple thread counting-group with counter-multiplexing example
	Simple thread counting-group with counter-multiplexing and multi-mode example
	Thread counting example with reset

	Accessing PMU registers from user applications

	The hpm library and associated tools
	Compiling and linking
	Overhead and measurement error issues
	Common hpm library rules
	Overview of the hpm library API calls
	Threaded applications
	Selecting events when using the hpm libraries and tools
	The libHPMevents and libHPM_events files
	The HPM_flags.env file

	Output files of the hpm library
	Output files of the hpmcount command
	Derived metrics and related environment variables
	Examples of the hpm tools
	The pmlist command
	The hpmcount command
	The hpmstat command

	Examples of hpm library usage
	A C programming language example
	A Fortran programming language example
	Multithreaded application instrumentation example



	Perfstat API programming
	API characteristics
	Global interfaces
	perfstat_cpu_total Interface
	perfstat_memory_total Interface
	perfstat_disk_total Interface
	perfstat_netinterface_total Interface
	perfstat_partition_total Interface
	perfstat_tape_total Interface
	perfstat_partition_config interface

	Component-Specific interfaces
	perfstat_cpu interface
	perfstat_cpu_util interface
	Example for simplelparstat.c code
	Example for simplempstat.c code

	perfstat_diskadapter Interface
	perfstat_disk Interface
	perfstat_diskpath Interface
	perfstat_fcstat Interface
	perfstat_hfistat_window Interface
	perfstat_hfistat Interface
	perfstat_logicalvolume Interface
	perfstat_memory_page Interface
	perfstat_netbuffer Interface
	perfstat_netinterface Interface
	perfstat_netadapter Interface
	perfstat_protocol Interface
	perfstat_pagingspace Interface
	perfstat_process interfaces
	perfstat_process_util interface
	perfstat_processor_pool_util interface
	perfstat_tape Interface
	perfstat_thread interfaces
	perfstat_thread_util interface
	perfstat_volumegroup Interface

	WPAR Interfaces
	perfstat_wpar_total Interface
	perfstat_cpu_total_wpar Interface
	perfstat_memory_total_wpar Interface
	perfstat_memory_page_wpar Interface

	RSET Interfaces
	perfstat_cpu_rset interface
	perfstat_cpu_total_rset interface

	Cached metrics interfaces
	The perfstat_reset interface
	perfstat_partial_reset Interface

	Node interfaces
	Change history of the perfstat API
	Interface changes
	Interface additions
	Field additions
	The bos.perf.libperfstat 5.1.0.15 file set
	The bos.perf.libperfstat 5.1.0.25 file set
	The bos.perf.libperfstat 5.2.0 file set
	The bos.perf.libperfstat 5.2.0.10 file set
	The bos.perf.libperfstat 5.3.0.0 file set
	The bos.perf.libperfstat 5.3.0.10 file set
	The bos.perf.libperfstat 5.3.0.50 file set
	The bos.perf.libperfstat 5.3.0.60 file set
	The bos.perf.libperfstat 6.1.6.0 file set

	Structure additions


	Kernel tuning
	Migration and compatibility
	Tunables file directory
	Tunable parameters type
	Common syntax for tuning commands
	Tunable file-manipulation commands
	tunchange Command
	tuncheck Command
	tunrestore Command
	tunsave Command
	tundefault Command

	Initial setup
	Reboot tuning procedure
	Recovery Procedure
	Kernel tuning using the SMIT interface
	Global manipulation of tuning parameters
	Changing individual parameters managed by a tuning command
	Interaction between parameter types and the different SMIT sub-panels


	The procmon tool
	Overview of the procmon tool
	Components of the procmon tool
	The global statistics area of the procmon tool
	The process table of the procmon tool
	The status line of the Performance Workbench
	The WPAR table of the procmon tool

	Filtering processes
	Performing AIX commands on processes

	Profiling tools
	The timing commands
	The prof command
	The gprof command
	Implementation of the gprof command
	The call-graph profile
	Flat profile


	The tprof command
	Time-based profiling
	Event-based profiling
	Large page analysis
	How to interpret the results
	Data profiling


	Implementation of the tprof command
	Example: tprof command
	The raso tunables
	Manual offline processing with the tprof command


	The svmon command
	Security
	The svmon configuration file
	Summary report metrics
	Basic summary report metrics

	Report formatting options
	Segment details and -O options
	Additional -O options
	Reports details
	Global report
	User report
	Command report
	Process report
	Workload management class report
	Workload management tier report
	Segment report
	Named Shared Libraries
	Detailed report
	XML report


	Remote Statistics Interface API Overview
	Remote Statistics Interface list of subroutines
	RSI Interface Concepts and Terms
	RSI Interface data structures
	RSI Request-Response Interface
	RSI Network driven interface
	Resynchronizing
	Specifying port range for RSI communication

	A Simple Data-Consumer Program
	Initializing and terminating the program
	Defining a Statset
	Adding Statistics to the Statset
	Data-Consumer decoding of data feeds
	An Alternative way to decode data feeds

	Expanding the data-consumer program
	Traversing contexts

	Inviting data suppliers
	Identifying data suppliers

	A Full-Screen, character-based monitor
	List of RSI Error Codes


	Notices
	Privacy policy considerations
	Trademarks

	Index
	A
	B
	C
	E
	G
	K
	P
	R
	S
	T


