
 1

 SLES High Level Design

Version 3.16

 2

Change Log
Version Date Authors Reviewers Changes, Problems, Notes
3.0 5/1/04 JRD Original version based on EAL3 HLD.
3.1 5/24/04 JRD Added squadron info
3.2 5/25/04 JRD Rtas, sysfs and cleanup
3.3 6/01/04 JRD Removed UnitedLinux references
3.4 6/27/04 JRD Updated to sync up with the latest functional

specification.
3.5 7/8/04 JRD HK Updated to incorporate Helmut’s feedback
3.6 7/13/04 JRD HK Updated to incorporate Helmut’s feedback
3.7 7/19/04 JRD HK Updated to incorporate Helmut’s feedback

regarding reference information for V5 R3
3.8 7/25/04 JRD HK Updated system call handler name
3.9 7/26/04 JRD HK Updates to incorporate Helmut’s feedback
3.10 8/5/04 JRD SM Added atrm, /var/log/faillog as per Stephan’s

feedback
3.11 9/29/04 JRD SM Updated as per Stephan’s feedback – corrected

section names in 6.5.4
3.12 11/15/04 JRD SM Added reference to POWER5 in section 5.5.1.2
3.13 11/16/04 JRD SM Added missing audit interfaces in section

6.8.1.6.2
3.14 11/18/04 JRD HK Updated package list. Clarified that POWER5

pSeries is used only in LPAR mode.
3.15 11/20/04 JRD SM Added description of tmpfs
3.16 11/29/04 JRD HK Some minor updates: added atrm description in

chapters 4 and 5, special handling of device
special files in read only file systems, added the
additional cipher suites supported by the SSL
implementation of the TOE and explained that
the boot process for pSeries also applies for
booting the TOE in a.logical partition.

SuSE and its logo are registered trademarks of SUSE LINUX AG.

IBM, IBM logo, BladeCenter, eServer, iSeries, OS/400, i5/OS, PowerPC, POWER3, POWER4,
POWER4+, POWER5, pSeries, S390, xSeries, zSeries, zArchitecture, and z/VM are trademarks or
registered trademarks of International Business Machines Corporation in the United States, other countries,
or both.

Linux is a registered trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Intel and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

This document is provided “AS IS” with no express or implied warranties. Use the information in this
document at your own risk.

This document may be reproduced or distributed in any form without prior permission provided the
copyright notice is retained on all copies. Modified versions of this document may be freely distributed
provided that they are clearly identified as such, and this copyright is included intact.

 3

Copyright © 2004 SUSE LINUX AG. (is a Novell company)
Copyright © 2004 Novell Inc.
Copyright © 2004 by IBM Corporation or its wholly owned subsidiaries.

 4

1 INTRODUCTION ...11

1.1 Purpose of this document ... 11

1.2 Document overview... 11

1.3 Conventions used in this document ... 11

1.4 Terminology... 11

2 SYSTEM OVERVIEW..13

2.1 Product history.. 14
2.1.1 SUSE Linux Enterprise Server (SLES) .. 14
2.1.2 IBM eServer systems .. 14

2.2 High-level product overview .. 14
2.2.1 eServer host computer structure.. 15
2.2.2 eServer system structure ... 16
2.2.3 TOE services... 16
2.2.4 Security policy .. 17
2.2.5 Operation and administration.. 18
2.2.6 TSF interfaces ... 18

2.3 Approach to TSF identification ... 19

3 HARDWARE ARCHITECTURE ..27

3.1 xSeries .. 27
3.1.1 xSeries hardware overview... 27
3.1.2 xSeries hardware architecture ... 30

3.2 pSeries .. 31
3.2.1 pSeries hardware overview... 31
3.2.2 pSeries hardware architecture ... 34

3.3 iSeries ... 34
3.3.1 iSeries hardware overview.. 36
3.3.2 iSeries hardware architecture.. 38

3.4 zSeries... 39
3.4.1 zSeries hardware overview ... 39
3.4.2 zSeries hardware architecture ... 43

3.5 eServer 325 .. 44

 5

3.5.1 eServer 325 hardware overview.. 45
3.5.2 eServer 325 hardware architecture.. 45

4 SOFTWARE ARCHITECTURE...47

4.1 Hardware and software privilege .. 47
4.1.1 Hardware privilege.. 47
4.1.2 Software privilege... 48

4.2 TSF software structure... 49
4.2.1 Kernel Software .. 49

4.2.1.1 Logical components .. 49
4.2.1.2 Execution components .. 51

4.2.2 Non-kernel TSF software.. 52
4.2.2.1 init ... 52
4.2.2.2 agetty and mingetty... 52
4.2.2.3 ssh and sshd... 52
4.2.2.4 vsftpd... 53
4.2.2.5 crontab and cron.. 53
4.2.2.6 login .. 53
4.2.2.7 passwd... 53
4.2.2.8 gpasswd... 53
4.2.2.9 chage ... 53
4.2.2.10 su ... 53
4.2.2.11 useradd, usermod and userdel ... 53
4.2.2.12 groupadd, groupmod and groupdel ... 54
4.2.2.13 at and atd ... 54
4.2.2.14 atrm ... 54
4.2.2.15 ping ... 54
4.2.2.16 chsh ... 54
4.2.2.17 chfn ... 54
4.2.2.18 xinetd... 54
4.2.2.19 auditd... 54
4.2.2.20 aucat .. 54
4.2.2.21 augrep.. 54
4.2.2.22 aurun ... 54
4.2.2.23 audbin.. 55
4.2.2.24 stunnel ... 55
4.2.2.25 openssl... 55
4.2.2.26 amtu... 55
4.2.2.27 date.. 55

4.3 TSF databases.. 55

4.4 Definition of subsystems for the CC evaluation ... 56
4.4.1 File and I/O ... 57
4.4.2 Process control .. 57

 6

4.4.3 Inter-process communication.. 57
4.4.4 Networking ... 57
4.4.5 Memory management ... 57
4.4.6 Kernel modules ... 57
4.4.7 Device drivers ... 57
4.4.8 Audit ... 57
4.4.9 System initialization.. 57
4.4.10 Identification and authentication... 57
4.4.11 Network applications .. 57
4.4.12 System management ... 57
4.4.13 Batch processing ... 58
4.4.14 User level audit subsystem.. 58

5 FUNCTIONAL DESCRIPTIONS..59

5.1 File and I/O management... 59
5.1.1 Virtual File System ... 60

5.1.1.1 Pathname translation... 62
5.1.1.2 File system mounting.. 65

5.1.2 Disk-based file systems... 65
5.1.2.1 ext3 file system ... 65
5.1.2.2 ISO 9660 file system for CD-ROM.. 69

5.1.3 proc file system... 70
5.1.4 sysfs file system .. 70
5.1.5 tmpfs file system... 71
5.1.6 devpts file system.. 71
5.1.7 Discretionary access control ... 71

5.1.7.1 vfs_permission() ... 72
5.1.7.2 ext3_permission() ... 72

5.2 Process control and management .. 75
5.2.1 Data structures .. 76
5.2.2 Process creation/destruction.. 77
5.2.3 Process switch... 78
5.2.4 Kernel threads ... 79

5.3 Inter-process communication .. 79
5.3.1 Pipes.. 79

5.3.1.1 Data structures and algorithms.. 79
5.3.2 Named pipes (FIFO) ... 80

5.3.2.1 FIFO creation .. 80
5.3.2.2 FIFO open ... 80

5.3.3 System V IPC.. 81
5.3.3.1 Common data structures ... 81
5.3.3.2 Common functions.. 81
5.3.3.3 Message queues .. 82
5.3.3.4 Semaphores ... 82

 7

5.3.3.5 Shared memory regions .. 83
5.3.4 Signals... 84

5.3.4.1 Data structures .. 84
5.3.4.2 Algorithms .. 84

5.3.5 Sockets .. 85

5.4 Network subsystem ... 86
5.4.1 Overview of network stack ... 87

5.4.1.1 Transport layer protocols .. 88
5.4.1.2 Network layer protocols.. 88
5.4.1.3 Link layer protocols .. 89

5.4.2 Network services interface.. 90

5.5 Memory management... 93
5.5.1 Memory addressing... 94

5.5.1.1 xSeries... 94
5.5.1.2 pSeries... 98
5.5.1.3 iSeries.. 105
5.5.1.4 zSeries ... 109
5.5.1.5 eServer 325 ... 117

5.5.2 Kernel memory management.. 124
5.5.2.1 Page frame management ... 124
5.5.2.2 Memory area management.. 124
5.5.2.3 Noncontiguous memory area management... 124

5.5.3 Process address space ... 125
5.5.4 Symmetric multi processing and synchronization 126

5.5.4.1 Atomic operations... 127
5.5.4.2 Memory barriers.. 127
5.5.4.3 Spin locks.. 127
5.5.4.4 Kernel semaphores.. 127

5.6 Audit subsystem .. 127
5.6.1 Audit subsystem operation.. 128
5.6.2 SLES kernel with LAuS.. 131

5.7 Kernel modules.. 135

5.8 Device drivers .. 136
5.8.1 I/O virtualization on iSeries .. 137
5.8.2 I/O virtualization on zSeries ... 137
5.8.3 Audit device driver ... 138
5.8.4 Character device driver ... 138
5.8.5 Block device driver ... 139

5.9 System initialization.. 139
5.9.1 xSeries... 139

5.9.1.1 Boot methods .. 140

 8

5.9.1.2 Boot loader.. 140
5.9.1.3 Boot process.. 140

5.9.2 pSeries... 142
5.9.2.1 Boot methods .. 142
5.9.2.2 Boot loader.. 143
5.9.2.3 Boot process.. 143

5.9.3 iSeries.. 145
5.9.3.1 Boot methods .. 145
5.9.3.2 Hypervisor... 145
5.9.3.3 Boot process.. 145

5.9.4 zSeries ... 148
5.9.4.1 Boot methods .. 148
5.9.4.2 Control program.. 148
5.9.4.3 Boot process.. 148

5.9.5 eServer 325 ... 150
5.9.5.1 Boot methods .. 150
5.9.5.2 Boot loader.. 150
5.9.5.3 Boot process.. 150

5.10 Identification and authentication .. 153
5.10.1 Pluggable Authentication Modules... 153

5.10.1.1 Overview... 153
5.10.1.2 Configuration terminology.. 154
5.10.1.3 Modules... 154

5.10.2 Protected databases ... 155
5.10.3 Trusted commands and trusted processes ... 156
5.10.4 Interaction with audit .. 159

5.11 Network applications.. 159
5.11.1 Secure socket-layer interface .. 159

5.11.1.1 SSL concepts... 160
5.11.1.2 SSL architecture.. 164
5.11.1.3 OpenSSL algorithms... 167

5.11.2 ssh ... 169
5.11.2.1 ssh client.. 170
5.11.2.2 ssh server (sshd).. 170

5.11.3 xinetd... 170
5.11.4 vsftpd... 172
5.11.5 ping ... 173
5.11.6 openssl... 173
5.11.7 stunnel ... 173

5.12 System management ... 174

5.13 Batch processing.. 181
5.13.1 Batch processing user commands ... 181

5.13.1.1 at ... 182

 9

5.13.1.2 crontab .. 182
5.13.2 Batch processing daemons.. 182

5.13.2.1 atd ... 183
5.13.2.2 cron ... 183

5.14 User level audit subsystem ... 183
5.14.1 Audit daemon.. 183
5.14.2 Audit utilities .. 184
5.14.3 Audit logs.. 185
5.14.4 Audit configuration files ... 186
5.14.5 Audit libraries ... 187

5.15 Supporting functions .. 187
5.15.1 TSF libraries.. 187
5.15.2 Library linking mechanism... 188
5.15.3 System call linking mechanism .. 188

5.15.3.1 xSeries... 189
5.15.3.2 pSeries and iSeries .. 189
5.15.3.3 zSeries ... 189
5.15.3.4 eServer 325 ... 189

5.15.4 System call argument verification .. 189

6 MAPPING THE TOE SUMMARY SPECIFICATION TO THE HIGH-LEVEL
DESIGN ..191

6.1 Identification and authentication .. 191
6.1.1 User identification and authentication data management (IA.1) 191
6.1.2 Common authentication mechanism (IA.2).. 191
6.1.3 Interactive login and related mechanisms (IA.3) .. 191
6.1.4 User identity changing (IA.4) ... 191
6.1.5 Login processing (IA.5) .. 191

6.2 Audit... 191
6.2.1 Audit configuration (AU.1) .. 191
6.2.2 Audit processing (AU.2)... 191
6.2.3 Audit record format (AU.3) .. 191
6.2.4 Audit post-processing (AU.4)... 192

6.3 Discretionary Access Control... 192
6.3.1 General DAC policy (DA.1) ... 192
6.3.2 Permission bits (DA.2).. 192
6.3.3 Access Control Lists (DA.3)... 192
6.3.4 Discretionary Access Control: IPC objects (DA.4) 192

6.4 Object reuse... 192
6.4.1 Object reuse: file system objects (OR.1) .. 192
6.4.2 Object reuse: IPC objects (OR.2).. 192

 10

6.4.3 Object reuse: memory objects (OR.3) .. 192

6.5 Security management ... 192
6.5.1 Roles (SM.1) ... 192
6.5.2 Access control configuration and management (SM.2).............................. 192
6.5.3 Management of user, group and authentication data (SM.3)...................... 193
6.5.4 Management of audit configuration (SM.4) ... 193
6.5.5 Reliable time stamps (SM.5)... 193

6.6 Secure communications .. 193
6.6.1 Secure protocols (SC.1) .. 193

6.7 TSF protection... 193
6.7.1 TSF invocation guarantees (TP.1) .. 193
6.7.2 Kernel (TP.2) .. 193
6.7.3 Kernel modules (TP.3).. 193
6.7.4 Trusted processes (TP.4)... 193
6.7.5 TSF Databases (TP.5) ... 193
6.7.6 Internal TOE protection mechanisms (TP.6) .. 193
6.7.7 Testing the TOE protection mechanisms (TP.7)... 194

6.8 Security enforcing interfaces between subsystems .. 194
6.8.1 Kernel Subsystem Interfaces: Summary... 194

6.8.1.1 Kernel subsystem file and I/O... 195
6.8.1.2 Kernel subsystem process control and management 198
6.8.1.3 Kernel subsystem inter-process communication 200
6.8.1.4 Kernel subsystem networking... 201
6.8.1.5 Kernel subsystem memory management .. 202
6.8.1.6 Kernel subsystem audit ... 203
6.8.1.7 Kernel subsystem device drivers .. 203
6.8.1.8 Kernel subsystems kernel modules... 205

6.8.2 Trusted processes interfaces: summary .. 205

7 REFERENCES ..206

 11

1 Introduction
This document, the SLES High Level Design (HLD), summarizes the design and Target of Evaluation
Security Functions of the SUSE® Linux® Enterprise Server (SLES) Operating System version 9. This
document is used within the Common Criteria evaluation of SLES at Evaluation Assurance Level (EAL) 4
and describes the security functions defined in the Common Criteria Security Target document. Other
security-related functions of SLES that are not available or used in the evaluated configuration are not
described in this document.

1.1 Purpose of this document
The SLES HLD is a high-level design document that summarizes the design of the product and provides
references to other, more detailed, design documentation. The SLES HLD is consistent with additional
high-level design documents (pointers to those documents are included), as well as with the supporting
detailed design documents for the system.

The SLES HLD is intended for the evaluation team as a source of information about the architecture of the
system. The document provides pointers to detailed design documentation regarding the structure of and
functions performed by the system.

1.2 Document overview
This HLD contains the following chapters:

• Chapter 2 presents an overview of the IBM® eServer™ systems, including product history,
system architecture, and Target of Evaluation Security Functions (TSF) identification.

• Chapter 3 summarizes the eServer hardware subsystems, characterizes the subsystems with respect
to security relevance, and provides pointers to detailed hardware design documentation.

• Chapter 4 expands on the design of the TSF software subsystems, particularly the kernel (which is
identified in Chapter 2).

• Chapter 5 addresses functional topics and describes the functionality of individual subsystems,
such as memory management and process management.

• Chapter 6 maps the TOE summary specification from the SLES Security Target to specific
sections in this document.

1.3 Conventions used in this document
The following notational conventions are used in this document:

Constant Width

Shows the contents of code files or output from commands, and indicates source-code keywords
that appear in code.

Italic
Used for file and directory names, program and command names, command-line options, URLs,
and for emphasizing new terms.

1.4 Terminology
This section contains definitions of technical terms that have specific definitions for the purposes of this
document. Terms defined in the [CC] are not reiterated here unless stated otherwise.

SLES: An abbreviation of "SUSE Linux Enterprise Server 9."

 12

Administrative user: An administrator of a SUSE Linux Enterprise Server system. Some administrative
tasks require the use of the root username and password so that they can become the superuser (with a user
ID of 0).

Authentication data: Includes a user identifier, password, and authorizations for each user of the product.

Object: In SLES, objects belong to one of three categories: file system objects, IPC objects, and memory
objects.

Product: Defines software components that comprise the distributed SLES system.

Public object: A type of object for which all subjects have read access, but only the TSF or the system
administrator have write access.

Role: Represents a set of actions that an authorized user, upon assuming the role, can perform.

Security attributes: As defined by functional requirement FIA_ATD.1, includes the following as a
minimum: user identifier, group memberships, and user authentication data.

Subject: There are two classes of subjects in SLES:

untrusted internal subject, which is a SLES process running on behalf of some user outside of the
TSF (for example, with no privileges).

trusted internal subject, which is a SLES process running as part of the TSF (for example, service
daemons and the process implementing the identification and authentication of users).

System: Includes the hardware, software, and firmware components of the SLES product that are connected
or networked together and configured to form a usable system.

Target of Evaluation (TOE): The SUSE Linux Enterprise Server version 9 operating system, running and
tested on the hardware specified in this High Level Design document. The BootPROM firmware and the
hardware form part of the TOE Environment.

User: Any individual who has a unique user identifier and who interacts with the SLES product.

 13

2 System overview
The Target of Evaluation (TOE) is SLES version 9 running on an IBM eServer host computer. Multiple
TOE systems can be connected via a physically protected Local Area Network (LAN). The IBM eServer
line consists of Intel® processor-based xSeries® systems, POWER4+™ and POWER5™ processor-based
pSeries® and iSeries™ systems, IBM mainframe zSeries® systems, and AMD Opteron processor-based
systems that are intended for use as networked workstations and servers.

The following figure shows a series of interconnected TOE systems. Each TOE system is running the SLES
version 9 operating system on an eServer computer. SLES version 9 is based on the globally available
Linux operating system for enterprise customers.

Each computer provides the same set of local services, such as file, memory, and process management.
Each computer also provides network services, such as remote secure shells and file transfers, to users on
other computers. A user logs in to a host computer and requests services from the local host and potentially
from other computers within the LAN.

User programs issue network requests by sending Transmission Control Protocol (TCP) or User Datagram
Protocol (UDP) messages to another computer. Some network protocols, such as ssh, can start a shell
process for the user on another computer, while others are handled by trusted server daemon processes.

The TOE system provides user Identification and Authentication (I&A) by requiring each user to log in
with the proper password at the local workstation and also at any remote computer where the user can enter
commands to a shell program (for example, remote ssh sessions). Each computer enforces a coherent
discretionary access control (DAC) policy based on UNIX®-style mode bits and an optional Access
Control List (ACL) for the named objects under its control.

This chapter documents the SLES and eServer product histories, provides an overview of the TOE system,
and identifies the portion of the system that constitutes the TOE Security Functions (TSF).

SLES 9
running
on IBM
eServer

SLES 9
running
on IBM
eServer

SLES 9
running
on IBM
eServer

SLES 9
running
on IBM
eServer

LAN

Figure 2-1. Series of TOE systems connected by a physically protected LAN

 14

2.1 Product history
This section gives a brief history of the SUSE Linux Enterprise Server and the IBM eServer series systems.

2.1.1 SUSE Linux Enterprise Server (SLES)
SUSE Linux Enterprise Server is based on version 2.6.5 of the Linux kernel. Linux is a UNIX-like open-
source operating system originally created in 1991 by Linus Torvalds of Helsinki, Finland. SUSE was
founded in 1992 by four German software engineers, and is the oldest major Linux solutions provider.

2.1.2 IBM eServer systems
In 2000, IBM introduced the IBM eServer, a new generation of servers featuring mainframe-class
reliability and scalability, broad support of open standards for the development of new applications, and
capacity on demand for managing the unprecedented needs of e-business. The new servers feature
technology from IBM's high-end servers applied across the entire product line and include:

• eServer zSeries – the reliable, mission-critical data and transaction server
• eServer pSeries -- the powerful, technologically advanced POWER4+ and POWER5 processor-

based server
• eServer iSeries -- the high performance, POWER4+ and POWER5 integrated business server for

mid-market companies
• eServer xSeries -- the affordable Intel-based server with mainframe-inspired reliability

technologies
• eServer 325 – the AMD Opteron-based server with outstanding value in high performance

computing in both 32-bit and 64-bit environments.

Since introducing eServers in 2000, new models with more powerful processors were added to the xSeries,
pSeries, iSeries, and zSeries lines of systems. The AMD Opteron processor-based eServer 325 was added
to the eServer series in 2003. The AMD Opteron eServer 325 is designed for powerful scientific and
technical computing. The Opteron processor supports both 32-bit and 64-bit architectures, thus allowing
easy migration to 64-bit computing.

2.2 High-level product overview
The Target of Evaluation consists of SLES running on an eServer computer. The TOE system can be
connected to other systems by a protected Local Area Network.

SLES provides a multi-user, multi-processing environment, where users interact with the operating system
by issuing commands to a command interpreter, by running system utilities, or by developing their own
software to run in their own protected environment.

The Common Criteria for Information Technology Security Evaluation (CC) and the Common
Methodology for Information Technology Security Evaluation (CEM) call for breaking the TOE into
"logical subsystems" that can be either (a) products or (b) logical functions performed by the system. The
approach in this section is to break the system up into structural hardware and software "subsystems" that
include, for example, pieces of hardware (such as planars and adapters) or collections of one or more
software processes (for example, the base kernel and kernel modules). Chapter 4 explains the structure of
the system in terms of these architectural subsystems. Although the hardware is also described in this
document, the reader should be aware that the hardware itself is part of the TOE environment, but not part
of the TOE.

The following subsections present a structural overview of the hardware and software that make up an
individual eServer host computer. This single-computer architecture is one of the configurations permitted
under this evaluation.

 15

2.2.1 eServer host computer structure
This section describes the structure of SLES for an individual eServer host computer. As shown in the
following figure, the system consists of eServer hardware, the SLES kernel, trusted non-kernel processes,
TSF databases, and untrusted processes. The TOE itself consists of the Kernel Mode Software and User
Mode Software. The TOE Security Functions (TSF) are shaded in gray. (Details such as interactions within
the kernel, inter-process communications, and direct user access to the video frame buffer are omitted.)

The hardware includes the planar (CPUs, memory, buses, onboard adapters, and support circuitry),
additional adapters (for example, LAN and video), and other peripherals (storage devices, monitors,
keyboards, and front-panel hardware).

The SLES kernel includes separately loadable kernel modules and device drivers (a device driver can also
be a kernel module) in addition to the base SLES kernel. The kernel consists of the bootable kernel image
and its loadable modules. The kernel implements the SLES system call interface, which provides system
calls for file management, memory management, process management, networking, and other TSF (logical
subsystems) functions addressed in the Functional Descriptions chapter. The structure of the SLES kernel is
described further in the Software Architecture chapter.

Non-kernel TSF software includes programs that run with administrative privilege, such as the at and cron
daemons. Not included as TSF are shells used by administrators, and standard utilities invoked by
administrators. The TSF also includes the configuration files that define legitimate users, groups of users,
services provided by the system, and other configuration data.

The SLES system (hardware, kernel mode software, non-kernel programs, and databases) provides an
environment in which users and administrators run programs (sequences of CPU instructions) within a
protected environment. Programs execute as processes with the identity of the user that started them
(except for some exceptions defined in this HLD) and are subject to the system's access control and
accountability policies.

Figure 2-2. Overall structure of the TOE

eServer Hardware

Trusted
Processes

TSF
DB

Untrusted
Processes

System Call Interface

Device Drivers Kernel Modules

User

Kernel

Hardware

 16

2.2.2 eServer system structure
The system consists of an eServer computer described previously, which permits one user at a time to log
in to a computer's console. Several virtual consoles can be mapped to a physical console. Different users
can login through different virtual consoles simultaneously. The system can be connected to other
computers via physically and logically protected Local Area Networks (LANs). The eServer hardware and
the physical LAN interconnecting the different systems running SLES are not included within the
evaluation boundary. External routers, bridges, and repeaters are also not included in the evaluation
boundary.

A standalone host configuration operates as a CC-evaluated system, used by multiple users at a time. Users
can operate by logging in at the system’s virtual consoles or serial terminals, or by setting up background
execution jobs. Users can request local services, such as file, memory, and process management, by making
system calls to the kernel. The networking software is loaded, even though there may be no other hosts on
the network. When the networking software is loaded, users can request network services (for example,
FTP) from server processes on the same host.

Another configuration provides a useful network configuration on which a user can log in to the console of
any of the eServer host computers, request local services at that computer, and also request network
services from any of the other computers. For example, a user can use ssh to log into one host from another
or transfer files from one host to another. The configuration extends the single LAN architecture to show
that SLES provides IP routing from one LAN segment to another. For example, a user can log in at the
console of a host in one network segment and establish an ssh connection to a host in another network
segment. Packets on the connection travel across one LAN segment, and they are routed by a host in this
segment to a host on a second LAN segment. The packets are eventually routed by a host in the second
LAN segment to a host on a third LAN segment, where they are routed to the target host. The number of
hops from the client to the server are irrelevant to the security provided by the system and transparent to the
user (except for performance). The hosts that perform routing functions have statically-configured routing
tables. When the hosts use other components for routing (for example, a commercial router or switches)
those components are assumed to perform the routing functions correctly and do not alter the data part of
the packets.

Only the computers and software described in this document can be included in the TOE. This means that
none of the TOE computers in the LAN can be permitted to provide dialup connections, or can be
connected to the external Internet.

2.2.3 TOE services
Each host computer in the system is capable of providing the following types of services:

• Local services to the users who are currently logged in to the system using local computer console,
virtual consoles, or terminal devices connected through physically protected serial lines.

• Local services to previous users via deferred jobs (for example, at and cron).

• Local services to users who have accessed the local host via the network using a protocol such as

ssh that starts a user shell on the local host.

• Network services to potentially multiple users on either the local host or on remote hosts.

The following figure illustrates the difference between local services, which take place on each local host
computer, and network services, which involve a client-server architecture and a network service layer
protocol. For example, a user can log in to the local host computer and make file system requests or
memory management requests for services via system calls to the local host's kernel. All such local services
take place solely on the local host computer and are mediated solely by trusted software on that host.

 17

Network services, such as ssh or ftp, on the other hand, involve a client-server architecture and a network
service-layer protocol. The client-server model splits up the software that provides a service into a client
portion that makes the request and a server portion that carries out the request (usually on a different
computer). The service protocol is the interface between the client and server. For example, User A can log
in at Host 1, and then use ssh to log in to Host 2. On Host 2, User A is logged in from a remote host (Host
1). When User A uses ssh to log in to Host 2, the ssh client on Host 1 makes protocol requests to an ssh
server process on Host 2. The server process mediates the request on behalf of User A, carries out the
requested service (if possible), and returns the results to the requesting client process.

Note also that the network client and server may be on the same host system. For example, when User B
uses ssh to log in to Host 2, the user's client process opens an ssh connection to the ssh server process on
Host 2. Although this process takes place on the local host computer, it is distinguished from local services
because it involves networking protocols.

2.2.4 Security policy
A user is an authorized individual with an account. Users can use the system in one of three ways: either by
interacting directly with the system via a session at a computer console (in which case the user can use the
graphical display provided as the console), by interacting directly with system via a session at a serial
terminal, or through deferred execution of jobs using the cron and at utilities. A user must log in at the
local system in order to access the system's protected resources. Once a user is authenticated, the user can
access files or execute programs on the local computer or make network requests to other computers in the
system.

The only subjects in the system are processes. A process consists of an address space with an execution
context. The process is confined to a computer; that is, there is no mechanism for dispatching a process to
run remotely (across TCP/IP) on another host. Every process has a process ID (PID) that is unique on its
local host computer, but PIDs are not unique throughout the system. (For example, each host in the system
has an init process with PID 1.) Section 5.2 of this document explains how a parent process creates a
child by making a fork() or a vfork() system call; the child can then call execve() to load a new
program.

Objects are passive repositories of data. The TOE defines three types of objects: named objects, storage
objects, and public objects. Named objects are resources, such as files and interprocess communications
objects, which can be manipulated by multiple users using a naming convention defined at the TSF
interface. A storage object is an object that supports both read and write access by multiple non-trusted
subjects. Consistent with these definitions, all named objects are also categorized as storage objects, but not

Figure 2-3. Local and network services provided by SLES systems

Host 1 Host2

Client Proc

Client Proc Server Proc

Local client Processes

User
A

User
B

LAN

 18

all storage objects are named objects. A public object is an object that can be publicly read by non-trusted
subjects and can be written only by trusted subjects.

SLES enforces a Discretionary Access Control (DAC) policy for all named objects under its control and an
object reuse policy for all storage objects under its control. While the DAC policy that is enforced varies
among different object classes, in all cases it is based on user identity and on group membership associated
with the user identity. To allow for enforcement of the DAC policy, all users must be identified and their
identities must be authenticated. The TOE uses both hardware and software protection mechanisms. The
hardware mechanisms used by SLES to provide a protected domain for its own execution include a multi-
state processor, memory segment protection, and memory page protection. The TOE software relies on
these hardware mechanisms to implement TSF isolation, noncircumventability, and process address-space
separation.

A user can log in at the console, at other directly attached terminals, or via a network connection.
Authentication is based on a password entered by the user and authentication data stored in a protected file.
A user must log in to a host before he can access any named objects on that host. Some services, such as
using ssh to obtain a shell prompt on another host, or using ftp to transfer files between hosts in the
distributed system, require the user to re-enter authentication data to the remote host. SLES permits the user
to change passwords (subject to TOE enforced password guidelines), change identity, submit batch jobs for
deferred execution, and log out of the system. The Strength of Function Analysis [VA] shows that the
probability of guessing a password is sufficiently low given the minimum password length and password
lifetime.

The system architecture provides TSF self-protection and process isolation mechanisms.

2.2.5 Operation and administration
eServer networks can be composed of one, several, or many different host computers, each of which can be
in various states (shut down, initializing, single-user mode, or online in a secure state). Thus, administration
involves the configuration of multiple computers and the interactions of those computers, as well as the
administration of users, groups, files, printers, and other resources for each eServer system.

The TOE provides the commands useradd, usermod, and userdel to add, modify, and delete a user account.
Similarly, the commands groupadd, groupmod and groupdel allow an administrator to add, modify and
delete a group form the system. These commands accept options to set up or modify various parameters for
accounts and groups. The commands modify the appropriate TSF databases and thus provide a safer way
than manual editing to update authentication databases. Please refer to the appropriate command man pages
and the SLES Security Guide for detailed information on how to set up and maintain users and groups.

2.2.6 TSF interfaces
The TSF interfaces include local interfaces provided by each host computer and the network client-server
interfaces provided by pairs of host computers.

The local TSF interfaces provided by an individual host computer include:

• Files that are part of the TSF database that defines the configuration parameters used by the
security functions.

• System calls made by trusted and untrusted programs to the privileged kernel mode software. As
described separately in this document, system calls are exported by the base SLES kernel and by
kernel modules.

• Interfaces to trusted processes and trusted programs.

 19

The following are interfaces that are not viewed as TSF interfaces:

• Interfaces between non-TSF processes and the underlying hardware. Typically, user processes do
not interface directly with the hardware. Exceptions are processor and graphics hardware. User
processes interact with the processor by executing CPU instructions, reading and modifying CPU
registers, and modifying the contents of physical memory assigned to the process. User processes
interact with graphics hardware by modifying the contents of registers and memory on the
graphics adapter. These interfaces are not TSF interfaces because the hardware is not part of the
TOE. Hardware functions prohibit user processes from directly interfering with hardware
resources in a way that could bypass the security functions.

• Interfaces between non-TSF elements of the system (for example, a call from a user program to a
library function) are not TSF interfaces because they do not involve the trusted parts of the TOE.

• Interfaces between different parts of the TSF that are invisible to normal users (for example,
between subroutines within the kernel) are not considered to be TSF interfaces. This is because the
interface is internal to the trusted part of the TOE and cannot be invoked outside of those parts.
Those interfaces are, therefore, not part of the functional specification, but are explained in this
high level design.

Thus, TSF interfaces include any interface that is possible between untrusted software and the TSF.

2.3 Approach to TSF identification
This section summarizes the approach to identification of the TSF.

The SLES operating system is distributed as a collection of packages. A package can include programs,
configuration data, and documentation for the package. Analysis is performed at the file level, except
where a particular package can be treated collectively. A file is included in the TSF for one or more of the
following reasons:

• It contains code that runs in a privileged hardware state (kernel, kernel module, device driver).
• It enforces the system's security policy.
• It allows setuid or setgid to a privileged user (for example, root) or group.
• It started as a privileged daemon; for example, by /etc/init.d/rc.
• It is software that must function correctly to support the system security mechanisms.
• It is required for system administration.
• It consists of TSF data or configuration files.
• It consists of libraries linked to TSF programs.

There is a distinction between non-TSF user-mode software that can be loaded and run on the system, and
software that must be excluded from the system. The following methods are used to ensure that excluded
software cannot be used to violate the system's security policies:

• The installation software will not install any device drivers except those required for the installed
hardware. Consequently, excluded device drivers will not be installed even if they are on the
media.

• The install software may change the configuration (for example, mode bits) so that a program
cannot violate the security policy.

The following table lists the packages and their versions that are installed on TOE:

All Platforms:
aaa_base 9-29.13
aaa_skel 2004.6.8-0.2
acl 2.2.21-54.1
amtu 0.1-1.6

 20

All Platforms:
ash 0.4.18-56.1
at 3.1.8-898.1
attr 2.4.12-56.1
autoyast2-installation 2.9.45-0.2
bash 2.05b-305.6
bc 1.06-744.1
bzip2 1.0.2-346.1
certification-sles-ibm-eal4 1.0
core-release 9-6.3
coreutils 5.2.1-23.5
cpio 2.5-324.1
cracklib 2.7-1006.1
cron 3.0.1-920.1
curl 7.11.0-39.1
cyrus-sasl 2.1.18-33.1
db 4.2.52-86.3
device-mapper 1.00.09-17.5
devs 9-16.8
dialog 0.9b-188.1
diffutils 2.8.4-75.1
dosfstools 2.10-90.1
e2fsprogs 1.34-115.1
ed 0.2-864.1
evms 2.3.3-0.15
file 4.07-48.5
filesystem 9-29.4
fillup 1.42-98.1
findutils 4.1.7-860.1
gawk 3.1.3-210.1
gdbm 1.8.3-228.1
glibc 2.3.3-98.31
glibc-locale 2.3.3-98.31
gpg 1.2.4-68.1
gpm 1.20.1-301.1
grep 2.5.1-427.1
groff 1.17.2-881.1
gzip 1.3.5-136.1
hdparm 5.5-41.3
heimdal-lib 0.6.1rc3-55.3
hfsutils 3.2.6-1038.1
hotplug 0.44-32.21
howtoenh 2004.4.4-0.4
hwinfo 8.61-0.3
info 4.6-61.1
insserv 1.00.2-85.1
iproute2 2.4.7-866.5
iputils ss021109-147.1

 21

All Platforms:
kbd 1.12-26.1
ksymoops 2.4.9-135.1
laus 0.2-14.17
ldapcpplib 0.0.3-21.3
less 382-34.8
libacl 2.2.21-54.1
libattr 2.4.12-56.1
libgcc 3.3.3-43.24
libselinux 1.8-16.1
libstdc++ 3.3.3-43.24
libxcrypt 2.1.90-61.3
libxml2 2.6.7-28.1
liby2util 2.9.25-0.2
logrotate 3.7-31.1
lprng 3.8.25-37.1
lsof 4.70-30.1
lukemftp 1.5-578.1
m4 1.4o-622.1
mailx 10.6-65.1
man 2.4.1-214.1
man-pages 1.67-1.6
mingetty 0.9.6s-73.1
mkinitrd 1.0-199.53
mktemp 1.5-729.1
module-init-tools 3.0_pre10-37.16
ncurses 5.4-61.4
net-tools 1.60-543.6
netcat 1.10-864.1
netcfg 9-17.1
openldap2-client 2.2.6-37.19
openslp 1.1.5-73.9
openssh 3.8p1-37.9
openssl 0.9.7d-15.13
pam-laus 0.77-4.3
pam-modules 9-18.5
parted 1.6.6-138.3
pciutils 2.1.11-192.8
pcre 4.4-109.1
perl 5.8.3-32.1
perl-Config-Crontab 1.03-46.1
permissions 2004.7.30-0.2
popt 1.7-176.7
postfix 2.1.1-1.4
procps 3.2.1-5.3
psmisc 21.4-39.1
pwdutils 2.6.4-2.16
readline 4.3-306.5

 22

All Platforms:
release-notes 9.1-8.40
resmgr 0.9.8-47.3
rpm 4.1.1-177.6
scsi 1.7_2.34_1.06_0.11-9.9
sed 4.0.9-31.1
sitar 0.8.11-17.1
sles-admin_en 9.1.0.5-0.16
sles-release 9-82.11
star 1.5a38-26.1
stunnel 4.05-20.1
submount 0.9-33.6
suse-build-key 1.0-662.4
sysconfig 0.31.0-15.29
syslogd 1.4.1-519.3
sysvinit 2.85-21.3
tar 1.13.25-325.3
tcpd 7.6-710.1
telnet 1.1-38.3
terminfo 5.4-61.4
texinfo 4.6-61.1
timezone 2.3.3-98.31
udev 021-36.32
usbutils 0.11-211.1
utempter 0.5.2-385.4
util-linux 2.12-72.20
vim 6.2-235.1
vsftpd 1.2.1-69.3
w3m 0.4.1_m17n_20030308-201.1
wget 1.9.1-45.3
xinetd 2.3.13-39.3
yast2 2.9.75-0.2
yast2-bootloader 2.9.34-0.3
yast2-core 2.9.94-1.2
yast2-country 2.9.24-0.2
yast2-inetd 2.9.12-21.1
yast2-installation 2.9.89-0.2
yast2-ldap 2.9.15-1.2
yast2-ldap-client 2.9.23-0.2
yast2-mail-aliases 2.9.16-0.2
yast2-mouse 2.9.11-4.1
yast2-ncurses 2.9.26-0.2
yast2-network 2.9.59-0.2
yast2-online-update 2.9.12-0.3
yast2-packagemanager 2.9.51-1.3
yast2-packager 2.9.51-0.2
yast2-pam 2.9.13-0.3
yast2-perl-bindings 2.9.34-1.2

 23

All Platforms:
yast2-runlevel 2.9.15-0.2
yast2-security 2.9.14-18.1
yast2-storage 2.9.58-0.3
yast2-sysconfig 2.9.15-0.2
yast2-theme-SuSELinux 2.9.13-0.4
yast2-trans-en_US 2.9.7-1.2
yast2-transfer 2.9.3-0.2
yast2-update 2.9.27-0.2
yast2-users 2.9.39-0.3
yast2-x11 2.9.11-0.2
yast2-xml 2.9.8-19.1
zlib 1.2.1-70.6

Only on i386
grub 0.94-45.3
isapnp 1.26-489.1
kernel-default 2.6.5-7.108
kernel-smp 2.6.5-7.108
lilo 22.3.4-508.1

Only on x86_64
bzip2-32bit 9-200407011229
cracklib-32bit 9-200407011229
cyrus-sasl-32bit 9-200407011229
db-32bit 9-200407011229
e2fsprogs-32bit 9-200407011229
file-32bit 9-200407011229
gdbm-32bit 9-200407011229
glibc-32bit 9-200407011233
glibc-locale-32bit 9-200407011229
grub 0.94-45.3
heimdal-lib-32bit 9-200407011229
irqbalance 0.09-37.1
isapnp 1.26-489.1
kernel-default 2.6.5-7.108
kernel-smp 2.6.5-7.108
laus-32bit 9-200407011229
libacl-32bit 9-200407011229
libattr-32bit 9-200407011229
libselinux-32bit 9-200407011229
libxcrypt-32bit 9-200407011229
libxml2-32bit 9-200407011229
lilo 22.3.4-508.1
ncurses-32bit 9-200407011229
openldap2-client-32bit 9-200407011229
openssl-32bit 9-200407011229
pcre-32bit 9-200407011229

 24

Only on x86_64
perl-32bit 9-200407011229
popt-32bit 9-200407011229
readline-32bit 9-200407011229
resmgr-32bit 9-200407011229
utempter-32bit 9-200407011229
zlib-32bit 9-200407011229

Only on s390x
bzip2-32bit 9-200407011411
cracklib-32bit 9-200407011411
cyrus-sasl-32bit 9-200407011411
db-32bit 9-200407011411
e2fsprogs-32bit 9-200407011411
file-32bit 9-200407011411
gdbm-32bit 9-200407011411
glibc-32bit 9-200407011411
glibc-locale-32bit 9-200407011411
heimdal-lib-32bit 9-200407011411
kernel-s390x 2.6.5-7.108
laus-32bit 9-200407011411
libacl-32bit 9-200407011411
libattr-32bit 9-200407011411
libgcc-32bit 9-200407011411
libselinux-32bit 9-200407011411
libxcrypt-32bit 9-200407011411
libxml2-32bit 9-200407011411
ncurses-32bit 9-200407011411
openldap2-client-32bit 9-200407011411
openssl-32bit 9-200407011411
pcre-32bit 9-200407011411
perl-32bit 9-200407011411
popt-32bit 9-200407011411
readline-32bit 9-200407011411
resmgr-32bit 9-200407011411
s390-tools 1.3.1-0.3
utempter-32bit 9-200407011411
zlib-32bit 9-200408261522

Only on iSeries
baselibs-64bit 9-200407011606
bzip2-64bit 9-200407011606
cracklib-64bit 9-200407011606
cyrus-sasl-64bit 9-200407011606
db-64bit 9-200407011606
e2fsprogs-64bit 9-200407011606
file-64bit 9-200407011606
gdbm-64bit 9-200407011606

 25

Only on iSeries
glibc-64bit 9-200407011606
glibc-locale-64bit 9-200407011606
heimdal-lib-64bit 9-200407011606
kernel-pseries64 2.6.5-7.108
laus-64bit 9-200407011606
libacl-64bit 9-200407011606
libattr-64bit 9-200407011606
libgcc-64bit 9-200407011606
libselinux-64bit 9-200407011606
libstdc++-64bit 9-200407011606
libxcrypt-64bit 9-200407011606
libxml2-64bit 9-200407011606
lilo 0.0.15-22.17
ncurses-64bit 9-200407011606
openldap2-client-64bit 9-200407011606
openssl-64bit 9-200407011606
pcre-64bit 9-200407011606
pdisk 0.8a-445.1
perl-64bit 9-200407011606
popt-64bit 9-200407011606
ppc64-utils 0.9-1.1
readline-64bit 9-200407011606
resmgr-64bit 9-200407011606
utempter-64bit 9-200407011606
zlib-64bit 9-200407011606

Only on pSeries
bzip2-64bit 9-200407011606
cracklib-64bit 9-200407011606
cyrus-sasl-64bit 9-200407011606
db-64bit 9-200407011606
e2fsprogs-64bit 9-200407011606
file-64bit 9-200407011606
gdbm-64bit 9-200407011606
glibc-64bit 9-200407011606
heimdal-lib-64bit 9-200407011606
kernel-pseries64 2.6.5-7.108
laus-64bit 9-200407011606
libacl-64bit 9-200407011606
libattr-64bit 9-200407011606
libgcc-64bit 9-200407011606
libselinux-64bit 9-200407011606
libstdc++-64bit 9-200407011606
libxcrypt-64bit 9-200407011606
libxml2-64bit 9-200407011606
lilo 0.0.15-22.17
ncurses-64bit 9-200407011606

 26

Only on pSeries
openldap2-client-64bit 9-200407011606
openssl-64bit 9-200407011606
pcre-64bit 9-200407011606
pdisk 0.8a-445.1
perl-64bit 9-200407011606
popt-64bit 9-200407011606
ppc64-utils 0.9-1.1
readline-64bit 9-200407011606
resmgr-64bit 9-200407011606
utempter-64bit 9-200407011606
zlib-64bit 9-200407011606

Table 2-1. List of packages on TOE

 27

3 Hardware architecture
The target of evaluation includes the IBM xSeries, pSeries, iSeries, zSeries, and eServer 325. This section
describes the hardware architecture of these eServer systems. For more detailed information on Linux
support and resources for the entire eServer line, please refer to the following IBM Redbook:

Linux Handbook, A guide to IBM Linux Solutions and Resources, Nick Harris et al.
http://www.redbooks.ibm.com/redbooks/pdfs/sg247000.pdf

3.1 xSeries
IBM xSeries systems are Intel processor-based servers with X-architecture technology enhancements for
reliability, performance, and manageability. X-architecture is based on technologies derived from the IBM
ES-, RS-, and AS-series servers.

xSeries servers are available in the following four categories:

• Universal Servers
• Rack Optimized Servers
• Extremely Scalable Servers
• BladeCenter™ Servers

The following provides a brief overview of xSeries hardware. For more detailed information on xSeries
hardware, please refer to the xSeries hardware Web site:

http://www.pc.ibm.com/us/eserver/xseries

3.1.1 xSeries hardware overview
IBM xSeries servers offer a range of systems, from entry level to enterprise class. The high-end systems
offer support for gigabytes of memory, large RAID configurations of SCSI and Fiber Channel disks, and
options for high-speed networking. IBM xSeries servers are equipped with a real-time hardware clock. The
clock is powered by a small battery and continues to tick even when the system is switched off. The real-
time clock maintains reliable time for the system. For the specification of each of the xSeries servers,
please refer to the corresponding data sheets at the following xSeries literature Web site:

http://www.pc.ibm.com/us/eserver/xseries/literature

 28

The following tables list various hardware components, such as processors, memory, and storage devices,
for xSeries servers.

 29

 30

Figure 3-1. IBM xSeries models

3.1.2 xSeries hardware architecture
IBM xSeries servers are powered by Intel Pentium® III, Pentium 4, and Xeon, processors. For detailed
specification information for each of these processors, please refer to the Intel processor spec-finder Web
site at http://processorfinder.intel.com/scripts/default.asp

 31

For architectural details on all xSeries models, and for detailed information on individual components such
as memory, cache, and chipset, please refer to the IBM xSeries Technical Principles Training (XTW01) at
http://www-1.ibm.com/servers/eserver/education/xseries/technical.html

USB, PCMCIA and IEEE 1394 (Firewire) devices are not supported in the evaluated configuration.

3.2 pSeries
IBM pSeries systems are PowerPC processor-based systems that provide high availability, scalability, and
powerful 64-bit computing performance. IBM pSeries offers a broad range of proven systems with
innovative price-performance features.

The pSeries servers are available in the following three categories:

• Entry level servers
• Mid-range servers
• High-end servers

The following provides a brief overview of pSeries hardware. For more detailed information on pSeries
hardware, please refer to the following pSeries hardware Web site:

http://www-1.ibm.com/servers/eserver/pseries

3.2.1 pSeries hardware overview
IBM pSeries servers offer a range of systems, from entry level to enterprise class. The high-end systems
offer support for gigabytes of memory, large RAID configurations of SCSI and Fiber Channel disks, and
options for high-speed networking. IBM pSeries servers are equipped with a real-time hardware clock. The
clock is powered by a small battery and continues to tick even when the system is switched off. The real-
time clock maintains reliable time for the system. For the specification of each of the pSeries servers,
please refer to the corresponding data sheets at the pSeries literature Web site:

http://www-1.ibm.com/servers/eserver/pseries/literature

The following lists various POWER5 based pSeries models and their features:

 32

 33

For additional hardware information on POWER5 based pSeries systems, please refer to the following
document:

http://www-1.ibm.com/servers/eserver/pseries/hardware/factsfeatures.pdf

 34

The following figure displays various POWER4+ based pSeries models and their computational capacity.

For a detailed look at various peripherals such as storage devices, communications interfaces, storage
interfaces, and display devices supported on these pSeries models, please refer to the following hardware
matrix:

IBM eServer pSeries and IBM RS6000 Linux Facts and Features
http://www.ibm.com/servers/eserver/pseries/hardware/linux_facts.pdf

3.2.2 pSeries hardware architecture
IBM pSeries servers are powered by POWER3™, RS64-III, RS64 IV, POWER4™, POWER4+, and
POWER5™ processors. For detailed specification information for each of these processors, please refer to
the PowerPC processor documentation at http://www-3.ibm.com/chips/products/powerpc

For information on POWER5 architecture, please refer to http://www-
1.ibm.com/technology/power/?ca=power&met=web&me=powercallout

For architectural details on all pSeries models, and for detailed information on individual components such
as memory, cache, and chipset, please refer to the IBM pSeries technical documentation at the following
Web sites:

http://publib16.boulder.ibm.com/pseries/en_US/infocenter/base/hardware.htm
http://www-1.ibm.com/servers/eserver/pseries/library

USB, PCMCIA and IEEE 1394 (Firewire) devices are not supported in the evaluated configuration.

3.3 iSeries
IBM iSeries systems are PowerPC, POWER4 and POWER5 processor-based servers that provide
scalability, quick application integration, and server consolidation via industry leading logical partitioning.
This logical partitioning supports multiple images of SLES, OS/400®, and i5/OS, and is available across

Figure 3-2. IBM pSeries models

 35

the iSeries product line. SLES on iSeries requires very little dedicated hardware because it can share RAID
adapters, CD-ROM, and LAN adapters with OS/400 and i5/OS.

The following provides a brief overview of iSeries hardware. For more detailed information on iSeries
hardware, please refer to the following iSeries hardware Web site:

http://www-1.ibm.com/servers/eserver/iseries

For information on POWER5 architecture, please refer to the following Web site:

 http://www-1.ibm.com/technology/power/?ca=power&met=web&me=powercallout

For information on POWER5 processor based systems, please refer to the following iSeries i5 Redbook:

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/ga195486.html?Open

For information on POWER5 processor’s Symultaneous Multi Threading technology, please refer to the
following Web site:

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/SMT.pdf

 36

iSeries hardware overview
The IBM iSeries systems offer support for gigabytes of memory, large RAID configurations of SCSI and
Fiber Channel disks, and options for high-speed networking. IBM iSeries servers are equipped with a real-
time hardware clock. The clock is powered by a small battery and continues to tick even when the system is
switched off. The real-time clock maintains reliable time for the system. The following table lists different
POWER4 processor-based iSeries models and the number of SLES partitions supported on them.

The following provides brief description of the POWER5 processor based iSeries model i5 520.

Figure 3-3. IBM iSeries models

 37

i5 520 Hardware Configurations

• Includes i5/OS and can add Windows, Linux, and AIX 5L operating systems
• 1-way and 2-way offerings provide from 500 CPW to 6,000 CPW
• Up to 32 GB memory
• Up to 278 disk drives - 19TB of capacity
• Up to 6 I/O expansion towers/drawers via High Speed Link
• Up to 90 PCI-X slots, 192 WAN lines, 36 LANs
• Integrated DVD-ROM or DVD-RAM
• Base 2-line WAN and base IOP
• Up to 18 Integrated xSeries Servers
• Redundant, hot-plug components for additional reliability
• Choice of rack-mounted or Deskside tower

The following provides brief description of the POWER5 processor based iSeries model i5 570.

i5 570 Hardware Configurations

• Includes i5/OS and can add Windows, Linux, and AIX 5L operating systems

Software i5/OS V5R3
Memory (Range) Up to 32GB
Disk (Range) Up to 19TB
Processor performance 500 - 6000 CPW

Figure 3-4. IBM iSeries POWER5 based i5 520

Figure 3-5. IBM iSeries POWER5 based i5 570

 38

• 1/2-way and 2/4-way offerings provide from 3,200 CPW to 11,200 CPW
• 2 GB to 64 GB memory
• 1 to 546 disk drives - 39TB of capacity
• Up to 12 I/O expansion towers/drawers via High Speed Link
• Up to 173 PCI-X slots, 320 WAN lines, 128 LANs
• Integrated Ethernet LAN and disk controllers
• Integrated DVD-ROM or DVD-RAM
• Base 2-line WAN and base IOP
• Up to 36 Integrated xSeries Servers
• Up to 16 Integrated xSeries Adapters
• Redundant, hot-plug components for additional reliability
• Rack-optimized design

Software i5/OS V5R3
Memory (Range) Up to 64GB
Disk (Range) Up to 39TB
Processor performance 3300 - 11700 CPW

3.3.1 iSeries hardware architecture
IBM iSeries servers are powered by POWER3, RS64-III, RS64 IV, POWER4, POWER4+, and POWER5
and processors. For detailed specification information for each of these processors, please refer to the
PowerPC processor documentation at http://www-3.ibm.com/chips/products/powerpc

iSeries systems differ from pSeries systems in their I/O architecture. The Linux environment on iSeries
supports two types of I/O: virtual and direct.

With virtual I/O, the I/O resources such as disk drive, tape drive, and CD-ROM, are owned by an OS/400
or an i5/OS partition. OS/400 or i5/OS shares the resources with SLES. The shared resources are under
OS/400 or i5/OS management. For example, OS/400 or i5/OS provides the RAID protection and some
backup/restore facilities for the Linux environment. Virtual Ethernet provides sixteen 1 GB Ethernet
communications paths between partitions. With direct I/O, the I/O resources are owned by the partition
running SLES. Disk drives, LAN or WAN adapters connected with direct I/O are under the control of
SLES.

OS/400
Primary
Partition

Linux
Partition

network network

OS/400
Primary
Partition

Linux
Partition

network Virtual LAN

Virtual I/O Direct I/O

Figure 3-6. I/O architectures of iSeries

 39

For architectural details on all iSeries models, and for detailed information on individual components, such
as memory, cache, and chipset, please refer to the following IBM iSeries technical documentation:

IBM iSeries Hardware, ITSO Technical Overview
ftp://ftp.software.ibm.com/as400/marketing/pdf/v5r1/hw.pdf
http://www-1.ibm.com/servers/eserver/iseries/library

USB, PCMCIA and IEEE 1394 (Firewire) devices are not supported in the evaluated configuration.

3.4 zSeries
IBM zSeries is designed and optimized for high performance data and transaction serving requirements of
the next generation e-business. On a zSeries system, Linux can run on native hardware, in a logical
partition, or as a guest of the z/VM® operating system. SLES runs on zSeries as a guest of z/VM®
operating system.

The following provides a brief overview of zSeries hardware. For more detailed information on zSeries
hardware, please refer to the following zSeries hardware Web site:

http://www-1.ibm.com/servers/eserver/zseries

3.4.1 zSeries hardware overview
zSeries hardware runs z/Architecture™ and S/390® Enterprise Server Architecture (ESA). IBM zSeries
servers are equipped with a real-time hardware clock. The clock is powered by a small battery and
continues to tick even when the system is switched off. The real-time clock maintains reliable time for the
system. The following gives an overview of the zSeries hardware models. For more detailed information on
specific models, please refer to the following model-specific Web sites:

http://www-1.ibm.com/servers/s390/pes/
http://www-1.ibm.com/servers/eserver/zseries/800.html
http://www-1.ibm.com/servers/eserver/zseries/900.html
http://www-1.ibm.com/servers/eserver/zseries/990.html

 40

The following table lists S/390 hardware.

Table 3-1. IBM S/390 hardware

 41

The following table lists zSeries 800 hardware.

Table 3-2. IBM zSeries 800 hardware

 42

The following table lists zSeries 900 hardware.

Table 3-3. IBM zSeries 900 hardware

 43

The following table lists zSeries 990 hardware.

3.4.2 zSeries hardware architecture
zSeries servers are powered by IBM’s multi-chip module (MCM) that contains up to 20 processing units
(PU). These processing units contain the z/Architecture logic. There are three modes in which Linux can be
run on a zSeries server: native hardware mode, logical partition mode, and z/VM guest mode.

Native hardware mode
In native hardware mode, Linux can run on the entire machine without any other operating system. Linux
controls all I/O devices and needs support for their corresponding device drivers.

Table 3-4. IBM zSeries 990 hardware

 44

Logical partition mode
A zSeries system can be logically partitioned into a maximum of 30 separate Logical Partitions (LPAR). A
single zSeries can then host the z/OS operating system in one partition and Linux in another. Devices can
be dedicated to a particular logical partition or they can be shared among several logical partitions. Linux
controls devices allocated to its partition and thus needs support for their corresponding device drivers.

z/VM guest mode
Linux can run in a virtual machine using the z/VM operating system as a hypervisor. The hypervisor
provides virtualization of CPU processors, I/O subsystems, and memory. In this mode, hundreds of Linux
instances can run on a single zSeries system. SLES runs on zSeries in the z/VM guest mode. Virtualization
of devices in the z/VM guest mode, allows SLES to operate with generic devices. z/VM maps these generic
devices to actual devices.

The following diagram from the Linux Handbook[LH] illustrates z/VM concepts.

Figure 3-7. z/VM as hypervisor

For more detail on z/Architecture, please refer to the following z/Architecture document:

z/Architecture Principles of Operation
http://publibz.boulder.ibm.com/epubs/pdf/dz9zr002.pdf

USB, PCMCIA and IEEE 1394 (Firewire) devices are not supported in the evaluated configuration.

3.5 eServer 325
IBM eServer 325 systems are AMD Opteron processor-based systems that provide outstanding value for
high performance computing in both 32-bit and 64-bit environments. The eServer 325 significantly
improves on existing 32-bit applications and excels at 64-bit computing in performance, allowing for easy
migration to 64-bit computing.

The following provides a brief overview of the eServer 325 hardware. For more detailed information on
eServer 325 hardware, please refer to the following eServer 325 hardware Web site:

http://www.pc.ibm.com/us/eserver/opteron

 45

3.5.1 eServer 325 hardware overview
The IBM eServer 325 systems offer support for up to two AMD Opteron processors, up to twelve gigabytes
of memory, hot-swap SCSI or IDE disk drives, RAID-1 mirroring, and options for high-speed networking.
IBM eServer 325 servers are equipped with a real-time hardware clock. The clock is powered by a small
battery and continues to tick even when the system is switched off. The real-time clock maintains reliable
time for the system. The following table lists the different eServer 325 hardware components.

3.5.2 eServer 325 hardware architecture
IBM eServer 325 systems are powered by the AMD Opteron processor. For detailed specification
information on the Opteron processor, please refer to the following processor documentation:

http://www.amd.com/us-en/Processors/TechnicalResources/0,,30_182_739_9003,00.html

Opteron is based on AMD x86-64 architecture. AMD x86-64 architecture is an extension of x86
architecture to extend full support for 16-bit, 32-bit, and 64-bit applications that are running concurrently.
The x86-64 architecture adds a new mode called long mode. Long mode is activated by a global control bit
called LMA (Long Mode Active). When LMA is zero, the processor operates as a standard x86 processor
and is compatible with the existing 32-bit SLES operating system and applications. When LMA is one, 64-
bit processor extensions are activated, allowing the processor to operate in one of two sub-modes of LMA:
the 64-bit mode and the compatibility mode.

64-bit mode
In 64-bit mode, the processor supports 64-bit virtual addresses, a 64-bit instruction pointer, 64-bit general
purpose registers, and 8 additional general purpose registers for a total of 16 general purpose registers.

Table 3-5. IBM eServer 325 hardware

 46

Compatibility mode
Compatibility mode allows the operating system to implement binary compatibility with existing 32-bit x86
applications. These legacy applications can be run without recompilation. This coexistence of 32-bit legacy
applications and 64-bit applications is implemented with a compatibility thunking layer.

The thunk layer is a library provided by the operating system. The library resides in a 32-bit process created
by the 64-bit operating system to run 32-bit applications. A 32-bit application, transparent to the user, is
dynamically linked to the thunk layer. The thunk layer implements 32-bit system calls. The thunk layer
translates system call parameters, calls 64-bit kernel and translates results returned by the kernel
appropriately and transparently for a 32-bit application.

For detailed information on x86-64 architecture, please refer to the following AMD Opteron technical
documentation:

http://www.amd.com/us-en/Processors/TechnicalResources/0,,30_182_739_7044,00.html

USB, PCMCIA and IEEE 1394 (Firewire) devices are not supported in the evaluated configuration.

64-bit Operating System

32-bit process 64-bit process

32-bit Application 64-bit Application

Thunk Layer
User

Kernel

Figure 3-8. AMD x86-64 architecture in compatibility mode

 47

4 Software architecture
This chapter summarizes the software structure and design of the SLES system and provides references to
detailed design documentation.

The following subsections describe the TSF software and the TSF databases for the SLES system. The
descriptions are organized according to the structure of the system and describe a kernel that controls
access to shared resources from trusted (administrator) and untrusted (user) processes. This chapter
provides a detailed look at the architectural pieces, or subsystems, that make up the kernel and the non-
kernel TSF. This chapter also summarizes the databases that are used by the TSF.

The Functional Description chapter that follows this chapter describes the functions performed by the
SLES “logical subsystems.” These logical subsystems generally correspond to the architectural subsystems
described in this chapter. The two topics were separated into different chapters in order to emphasize that
the material in the Functional Descriptions chapter describes how the system performs certain key security-
relevant functions. The material in this chapter provides the foundation for the descriptions in the
Functional Description chapter.

4.1 Hardware and software privilege
This section describes the terms “hardware privilege” and “software privilege” as they relate to the SLES
operating system. These two types of privileges are critical for the SLES system to provide TSF self-
protection. This section does not enumerate the privileged and unprivileged programs. Rather, the TSF
Software Structure identifies the privileged software as part of the description of the structure of the
system.

4.1.1 Hardware privilege
eSeries servers are powered by different types of processors. Each of these processors provides a notion of
user mode execution and supervisor (or kernel) mode execution. The following briefly describes how these
user and kernel execution modes are provided by the xSeries, pSeries, iSeries, zSeries, and eServer 325
systems.

xSeries
xSeries servers are powered by Intel processors. Intel processors provide four execution modes
identified with processor privilege levels 0 through 3. The highest privilege level execution mode
corresponds to processor privilege level 0; the lowest privilege level execution mode corresponds
to processor privilege level 3. The SLES kernel, as with most other UNIX-variant kernels, only
utilizes two of these execution modes. The highest, with processor privilege level of 0,
corresponds to the kernel mode; the lowest, with processor privilege of 3, corresponds to the user
mode.

pSeries and iSeries
pSeries and iSeries servers are powered by PowerPC processors. These processors provide three
execution modes identified by the PR bit (bit 49) and the HV bit (bit 3) of the processor’s Machine
State Register. Values of 0 for both PR and HV bits indicate a hypervisor execution mode. An HV
bit value of 1 and a PR bit value of 0 indicate a supervisor (or kernel) execution mode, and an HV
bit value of 1 and a PR bit value of 1 indicate a user execution mode.

zSeries
zSeries systems also provide two execution modes identified by the Problem State bit (bit 15) of
the processor’s Program Status Word (PSW). A value of 0 indicates a supervisor (or kernel)
execution mode, whereas the value of 1 indicates a “problem state” (or user) execution mode.

 48

eServer 325
eServer 325 servers are powered by AMD Opteron processors. These processors provide four
execution modes identified with processor privilege levels 0 through 3. The highest privilege level
execution mode corresponds to processor privilege level 0; the lowest privilege level execution
mode corresponds to processor privilege level 3. The SLES kernel, as with most other UNIX-
variant kernels, only utilizes two of these execution modes. The highest, with processor privilege
level of 0, corresponds to the kernel mode; the lowest, with processor privilege of 3, corresponds
to the user mode.

User and kernel modes, which are offered by all of the eSeries systems, implement hardware privilege as
follows:

• When the processor is in kernel mode, the program has hardware privilege because it can access
and modify any addressable resources, such as memory, page tables, I/O address space, and
memory management registers. This is not possible in the user mode.

• When the processor is in kernel mode, the program has hardware privilege because it can execute
certain privileged instructions that are not available in user mode.

Thus, any code that runs in kernel mode executes with hardware privilege. Software that runs with
hardware privileges includes:

• The base SLES kernel. This is the large body of software that performs memory management file
I/O and process management.

• Separately loaded kernel modules, such as ext3. A module is an object file whose code can be
linked to and unlinked from the kernel at runtime. The module code is executed in kernel mode on
behalf of the current process, like any other statically linked kernel function.

All other software on the system normally runs in user mode, without hardware privileges, including user
processes, such as shells, networking client software, and editors. All user processes run at least part of the
time with hardware privileges, when a user-mode process makes a system call. The execution of the system
call switches the current process to kernel mode and continues operation at a designated address within the
kernel where the code of the system call is located.

4.1.2 Software privilege
Software privilege is implemented in the SLES software and is based on the user ID of the process.
Processes with user ID of 0 are allowed to bypass the system’s access control policies. Examples of
programs running with software privilege are:

• Programs that are run by the system, such as the cron and at daemon.
• Programs that are run by trusted administrators to perform system administration.
• Programs that run with privileged identity by executing setuid programs.

The SLES kernel also has a framework for providing software privilege through capabilities. These
capabilities, which are based on the POSIX.1e draft, allow breakup of the kernel software privilege
associated with user ID zero into a set of discrete privileges based on the operation being attempted. For
example, if a process is trying to create a device special file by invoking the mknod() system call, instead
of checking to ensure that the user ID is zero, the kernel checks to ensure that the process is “capable” of
creating device special files. In the absence of special kernel modules that define and use capabilities, as is
the case with the TOE, capability checks revert back to granting kernel software privilege based on the user
ID of the process.

All software that runs with hardware privileges or software privileges and that implements security
enforcing functions is part of the TSF. All other programs are either unprivileged software that run with the

 49

identity of the user that invoked the program, or software that executes with privileges but does not
implement any security functions. In a properly administered system, unprivileged software is subject to
the system’s security policies and does not have any means of bypassing the enforcement mechanisms.
This unprivileged software need not be trusted in any way and is thus referred to as untrusted software.
Trusted processes that do not implement any security function need to be protected from unauthorized
tampering using the security functions of the SLES. They need to be trusted to not perform any function
that violates the security policy of the SLES.

4.2 TSF software structure
This section describes the structure of the SLES software that is included in the TSF. The SLES system is a
multi-user operating system with a kernel. The kernel runs in a privileged hardware mode and the user
processes running in user mode. The TSF includes both the kernel software and certain trusted non-kernel
processes. The following sections provide more detailed descriptions of the kernel and non-kernel TSF
architectural subsystems. Each architectural subsystem, which may include multiple programs and
supporting data files, is briefly described with respect to the functions it performs.

Logical subsystems are concepts described in the Common
Criteria. These logical subsystems are the building blocks of
the TOE, as described in the Functional Descriptions chapter.
They include logical subsystems and trusted processes that
implement security functions. A logical subsystem can
implement or support one or more functional components. For
example, the “File and I/O” subsystem is partly implemented
by functions of the Virtual Memory Manager.

4.2.1 Kernel Software
The kernel is the core of the operating system. The kernel interacts with the hardware, providing common
services to programs and insulating them from hardware-dependent functions. Services provided by the
kernel include the following:

• Controlled execution of processes by allowing their creation, maintenance, and termination.
• Scheduling of multiple processes for execution.
• Allocation of private memory for each executing process.
• Configuration of a part of the hard disk as virtual memory.
• Mechanism for storing and retrieving user data from a storage device.
• Access to peripheral devices such as disk drives, printers, and terminals.
• Communication mechanism that allows different processes to communicate with each other.

4.2.1.1 Logical components
The kernel can be thought of as consisting of logical subsystems. These are logical subsystems only; that is,
the kernel is a single executable program, but the services it provides allow it to be “broken up” into logical
components. These components interact to provide specific functions.

The following schematically describes logical kernel subsystems, their interactions with each other and
with the system call interface available from user space.

Figure 4-1. TSF & non TSF software

Applications

OS commands
such as vi,
grep, line

printer subsys

OS commands
such as login,
passwd, su,

crond

Kernel

Hardware

TSF non TSF

 50

The kernel consists of the following logical subsystems:

File and I/O subystem
Implements all file system object-related functions. Functions include those that allow a process to create,
maintain, interact, and delete file system objects, such as regular files, directories, symbolic links, hard
links, device-special files, named pipes, and sockets.

Process subsystem
Implements functions related to process and thread management. Functions include those that allow the
creation, scheduling, execution, and deletion of process and thread subjects.

Memory subsystem
Implements functions related to the management of a system’s memory resources. Functions include those
that create and manage virtual memory, including management of page tables and paging algorithms.

Networking subsystem
Implements the UNIX and Internet domain sockets as well as algorithms for scheduling network packets.

IPC subsystem
Implements functions related to inter-process communication mechanisms. Functions include those that
facilitate controlled sharing of information between processes, allowing them to share data and synchronize
their execution in order to interact with a common resource.

Kernel modules subsystem
Implements an infrastructure to support loadable modules. Functions include those that load and unload
kernel modules.

Device driver subsystem
Implements support for various hardware and software devices through a common, device-independent
interface.

Figure 4-2. Logical kernel subsystems and their interactions

System Call Interface

Process
Subsystem

File and I/O
Subsystem

Networking
Subsystem

Memory
Subsystem

IPC
Subsystem

User

Kernel

Kernel Modules
Subsystem

Device Driver
Subsystem

Audit
subsystem

 51

Audit subsystem
Implements functions related to the recording of security-critical events on the system. Functions include
those that hook security relevant system calls to record security critical events, and those that implement
the collection and recording of audit data.

4.2.1.2 Execution components
From the perspective of execution, the kernel can be divided into three components: Base Kernel, Kernel
Threads, and Kernel Modules.

Base kernel
The base kernel is composed of the code that is executed to provide a service, such as servicing a user
invocation of a system call, or servicing an interrupt or exception event. A majority of the compiled kernel
code falls under this category.

Kernel threads
In order to perform certain routine tasks, such as flushing disk caches and swapping out unused page
frames, the kernel creates internal processes, or threads. Threads are scheduled just like regular processes
but they do not have context in user mode. Kernel threads execute a specific kernel C function. Kernel
threads reside in kernel space and only run in the kernel mode. The following lists some of the kernel
threads:

• keventd
A handler for the process context bottom half. keventd executes tasks, created by interrupt
handlers, which are queued in the qt_context task queue.

• kapmd

Handles advanced power management related tasks.

• kswapd

Reclaims memory. kswapd is activated by the kernel when the number of free page frames for a
memory zone fall below a warning threshold.

• kupdated
Flushes old, dirty buffers to disk to reduce the risk of file system inconsistencies.

• ksoftirq
Executes pending softirqs. Each CPU has its own ksoftirq thread. ksoftirq checks which
softirqs are pending, and executes the function to handle them.

• kjournald
Manages the logging device journal. kjournald periodically commits the current state of the
file system to disk and reclaims space in the log by flushing buffers to disk.

• bdflush

Figure 4-3. Kernel execution components

 Base Kernel Kernel Threads Modules

Kernel code implementing various subsystems,
such as file and I/O, memory, and process

subsystems. This code is executed as a result of a
user requesting some service from the kernel by

way of a system call.

Kernel code
scheduled just like a

regular process to
perform internal

kernel maintenance.

Code
linked to

the
kernel at
runtime.

 52

In the 2.4 Linux kernel, bdflush kernel thread periodically flushed dirty buffers to disk to
reclaim memory. In TOE, which is based on the version 2.6 of the Linux kernel, bdflush is
deprecated. The system call bdflush, which was used to launch the bdflush daemon, is now a
dummy system call that captures its use by applications by generating an entry in the kernel log.

Kernel threads are created with a call to kernel_thread() and can be listed from user space with the
command ps axu. The kernel threads are shown in square brackets and can be recognized by their virtual
memory size (VSZ) of 0; for example [kjournald].

Kernel modules and device drivers
Kernel modules are pieces of object code that can be linked to and unlinked from the kernel at runtime.
Once loaded, the kernel module object code can access other kernel code and data in the same manner as
statically linked kernel object code. A device driver is a special type of kernel module that is used to
control an I/O device such as a hard disk, a monitor, or a network interface. The driver interacts with the
remaining part of the kernel through a specific interface, which allows the kernel to deal with all devices in
a uniform way, independent of their underlying implementations.

4.2.2 Non-kernel TSF software
The software that runs without hardware privilege is organized into processes. A process is an active entity,
sometimes referred to as a “program in execution” or an “executing image of a program.” The non-kernel
TSF software consists of trusted programs that are used to implement security functions. The trusted
commands can be grouped as follows:

• Daemon processes that do not directly run on behalf of a user, but are started at system startup or
upon demand of a system administrator. Daemon processes are responsible for setting the
appropriate user identity when performing a service on behalf of a user. The daemon processes
that provide TSF functionality include agetty, sshd, vsftpd, atd, cron, and auditd.

• Programs that are executed by an unprivileged user and need access to certain protected databases
to complete their work. These programs include login, passwd, gpasswd, chage, su, at,
and crontab.

• Shared libraries that are used by trusted programs. These libraries include PAM (Pluggable
Authentication Module) modules.

4.2.2.1 init
init is the parent of all user processes. init is handcrafted by the kernel and is the first process that runs
in the user space. init consults the /etc/inittab file and spawns processes based on the default run level
specified in the /etc/inittab file.

4.2.2.2 agetty and mingetty
agetty, the alternative linux getty, is invoked from /sbin/init when the system becomes available in a
multiuser mode. agetty opens a tty port, prompts for a login name, and invokes /bin/login to
authenticate. mingetty, the minimal getty for consoles, provides the same functionality as agetty.
However, unlike agetty, which is used for serial lines, mingetty is used for virtual consoles.

4.2.2.3 ssh and sshd
ssh and sshd are client-server pair that allow authorized users to log in from remote systems using secure
encrypted communications.

 53

4.2.2.4 vsftpd
vsftpd is a server that allows authorized users to transfer files to and from remote systems.

4.2.2.5 crontab and cron
crontab and cron are a client-server pair that allow the execution of commands on a recurring basis at
a specified time. crontab creates a file that sets up the time and frequency of execution as well as the
command/script to execute. cron is the daemon that reads the crontab files for all users and performs
tasks specified in the crontab files on behalf of the user. cron is started by the init program during
system initialization.

4.2.2.6 login
login is used when a user signs on to a system. If root is trying to log in, the program makes sure that the
login attempt is being made from a secure terminal listed in /etc/securetty. login prompts for the
password and turns off the terminal echo in order to prevent the password from being displayed as it is
being typed by the user. login then verifies the password for the account. Although three attempts are
allowed before login dies, the response becomes slower after each failed attempt. Once the password is
successfully verified, various password aging restrictions, which are set up in the /etc/login.defs file, are
checked. If the password age is satisfactory, the program sets the user ID and group ID of the process,
changes the current directory to the user’s home directory, and executes a shell specified in the /etc/passwd
file. Please refer to the login man page for more detailed information.

4.2.2.7 passwd
passwd updates a user’s authentication tokens. passwd is configured to work through the PAM API.
passwd configures itself as a password service with PAM and utilizes configured password modules to
authenticate and then update a user’s password. passwd turns off terminal echo, while the user is typing
the old as well as the new password, in order to prevent displaying the password as it is being typed by the
user. Please refer to the passwd man page for more detailed information.

4.2.2.8 gpasswd
gpasswd administers the /etc/group and /etc/gshadow files. gpasswd allows system administrators to
designate group administrators for a particular group. Please refer to the gpasswd man page for more
detailed information.

4.2.2.9 chage
chage allows the system administrator to alter a user’s password expiration data. Please refer to the
chage man page for more detailed information.

4.2.2.10 su
su allows a user to switch identity. su changes the effective user and group IDs to those of the new user.
Please refer to the su man page for more detailed information.

4.2.2.11 useradd, usermod and userdel
useradd, usermod, and userdel allow an administrator to add, modify, or delete a user account.
Please refer to their respective man pages for more detailed information.

 54

4.2.2.12 groupadd, groupmod and groupdel
groupadd, groupmod, and groupdel allow an administrator to add, modify, or delete a group. Please
refer to their respective man pages for more detailed information.

4.2.2.13 at and atd
at and atd are a client-server pair that allow users to create tasks that are executed at a later time. Unlike
crontab, at reads commands from the standard input and executes them using the user’s shell. atd is
the server that reads at jobs submitted by all users and performs tasks specified in them on behalf of the
user. atd is started by the init program during system initialization.

4.2.2.14 atrm
atrm removes jobs already queued for execution. atrm deletes jobs, whose job numbers are passed to the
command line as arguments.

4.2.2.15 ping
ping sends the ICMP protocol’s mandatory ECHO_REQUEST datagram to elicit an
ICMP_ECHO_RESPONSE from a host or a gateway.

4.2.2.16 chsh
chsh allows a user to change his or her login shell. If a shell is not given on the command line, chsh
prompts for one.

4.2.2.17 chfn
chfn allows a user to change his or her finger information. The information, stored in /etc/passwd file, is
displayed by the finger command.

4.2.2.18 xinetd
xinetd is the super-server that starts other servers that provide network services, such as file transfer,
between systems.

4.2.2.19 auditd
The audit daemon reads audit records from the kernel buffer through the audit device and writes them to
disk in the form of audit logs.

4.2.2.20 aucat
aucat reads the binary audit log files and outputs the records in human-readable format.

4.2.2.21 augrep
augrep performs similar function as aucat, but it allows an administrative user to optionally filter the
records based on user, audit id, outcome, system call or file name.

4.2.2.22 aurun
aurun is a wrapper application that allows the attachment of trusted processes to the audit subsystem.

 55

4.2.2.23 audbin
audbin is a trusted application that can be used to manage audit log files.

4.2.2.24 stunnel
stunnel is a command line tool designed to work as an SSL encryption wrapper between remote clients
and local (xinetd-startable) or remote servers.

4.2.2.25 openssl
openssl is a command line tool used to setup various cryptography functions used by the Secure Socket
Layer (SSL v3) and Transport Layer Security (TSL v1).

4.2.2.26 amtu
amtu is a special tool provided to test features of the underlying hardware that the TSF depends on. The
test tool runs on all hardware architectures that are targets of evaluation and reports problems with any
underlying functionalities.

4.2.2.27 date
date command can be used to print or set the system date and time. Only an administrative user is allowed
to set the system date and time.

4.3 TSF databases
The following table identifies the primary TSF databases that are used in the SLES and explains their
purpose. The databases are listed as individual files (by pathname or a collection of files). Some are
readable by all users; only the root user has write access to all of the TSF databases. Access control is
performed by the file system component of the SLES kernel. For more information on the format of these
TSF databases, please refer to their respective section 5 man pages.

Database Purpose
/var/log/lastlog Stores the time and date of the last successful login for each user.
/var/log/faillog Stores the time and date of the last failed login attempt for each user.
/etc/inittab Describes the process started by the init program at different run levels.
/etc/init.d/* System startup scripts.
/etc/passwd Stores the login name, UID, primary GID, user name, home directory,

and shell for all system users.
/etc/security/opasswd Stores previously used passwords. It is used by the pam_pwcheck

module to prevent users from changing their passwords to previously
used passwords.

/etc/group Stores the group names, supplemental GIDs, and group members for
all system groups.

/etc/hosts Contains hostnames and their address for hosts in the network. The
/etc/hosts file resolves a hostname into an Internet address in the
absence of a domain name server. The resolving mechanism works bi-
directionally.

/etc/shadow Defines user passwords in one-way encrypted form, plus additional
password characteristics.

/etc/login.defs Defines various configuration options for the login process.
/etc/securetty Lists terminals from which root can log in.
/etc/ld.so.conf Configuration file dynamic linker/loader.
/etc/modprobe.d Contains 2.6 format component configurations to be included in

 56

Database Purpose
modprobe.conf

/etc/modprobe.conf Configuration file for modprobe. modprobe automatically loads or
unloads a module while taking into account its dependencies.

/etc/modprobe.conf.local Local modprobe component configuration file.
/etc/pam.d/* Contains the configuration files for PAM. /etc/pam.d contains one file

for each application that performs identification and authentication.
Each configuration file contains PAM modules to be used for that
application.

/etc/security/pam_pwcheck.conf Configuration file for the PAM module for password strength
checking.

/usr/lib/cracklib_dict.* Dictionaries for the PAM module for password strength checking.
/etc/security/pam_unix2.conf Configuration file for the PAM module for traditional password

authentication.
/var/spool/cron/tabs/root Crontab file for the root user.
/var/spool/cron/allow Lists users that are allowed to submit cron jobs. If this file exists,

only users listed in the file are allowed to submit cron jobs.
/var/spool/cron/deny Lists users that are not allowed to submit cron jobs.
/etc/crontab Crontab file for the system.
/etc/cron.d/* Cron jobs for the system.
/etc/cron.{weekly hourly
 daily monthly}/*

Cron jobs to be executed weekly, hourly, daily, and monthly.

/var/spool/atjobs/* atjobs submitted by users.
/etc/at.allow Lists users that are allowed to submit at jobs. If this file exists, only

users listed in the file are allowed to submit at jobs.
/etc/at.deny Lists users that are not allowed to submit at jobs.
/etc/ssh/sshd_config Configuration file for the sshd server.
/etc/sysconfig/* Contains files that configure various system components such as

keyboard and network.
/etc/ftpusers Contains a list of users who cannot log in via the FTP daemon.
/etc/vsftpd.conf Configuration file for the Very Secure FTP daemon.
/etc/xinetd.conf Configuration file for the Extended Internet Services daemon.
/etc/audit/audit.conf Configuration file for the audit subsystem.
/etc/audit/filter.conf Configuration file for filter audit records based on input parameters.
/etc/audit/filesets.conf Configuration file containing list of pathnames to be used to filter audit

records.
/etc/stunnel/*.conf Configuration file for stunnel command
/etc/stunnel/stunnel.pem File with certificate and private key for stunnel command

Table 4-1. TSF Databases

4.4 Definition of subsystems for the CC evaluation
Previous sections define various logical subsystems that make up the SLES system. One or more of these
logical subsystems combine to provide security functionalities. This section briefly describes the functional
subsystems that implement the required security functionalities and the logical subsystems that are part of
each of the functional subsystems.

The subsystems are structured into those implemented within the SLES kernel and those implemented as
trusted processes.

Kernel subsystems
The following sections describe the subsystems implemented as part of the SLES kernel.

 57

4.4.1 File and I/O
This subsystem includes the file and I/O management kernel subsystem only.

4.4.2 Process control
This subsystem includes the process control and management kernel subsystem.

4.4.3 Inter-process communication
This subsystem includes the inter-process communication kernel subsystem.

4.4.4 Networking
This subsystem contains the kernel networking subsystem.

4.4.5 Memory management
This subsystem contains the kernel memory management subsystem.

4.4.6 Kernel modules
This subsystem contains routines in the kernel that create an infrastructure to support loadable modules.

4.4.7 Device drivers
This subsystem contains the kernel device driver subsystem.

4.4.8 Audit
This subsystem contains the kernel auditing subsystem.

Trusted process subsystems
The following section describes the subsystems implemented as trusted processes.

4.4.9 System initialization
This subsystem consists of the boot loader (grub) and the init program.

4.4.10 Identification and authentication
This subsystem contains the su, passwd, and login trusted commands as well as the agetty trusted
process. This subsystem also includes Pluggable Authentication Module (PAM) shared library modules.

4.4.11 Network applications
This subsystem contains vsftpd and sshd trusted processes, which interact with PAM modules to
perform authentication. It also includes the xinet daemon (xinetd) and the ping program.

4.4.12 System management
This subsystem contains the trusted programs used for system management activities. Those include the
following programs:

• gpasswd
• chage
• useradd, usermod, userdel

 58

• groupadd, groupmode, groupdel
• chsh
• chfn
• openssl

4.4.13 Batch processing
This subsystem contains the trusted programs used for the processing of batch jobs. They are:

• at, atd, atrm
• crontab, cron

4.4.14 User level audit subsystem
This subsystem contains the portion of the audit system that lies outside the kernel. This subsystem
contains auditd trusted process, which reads audit records from kernel buffer and transfer them to on-
disk audit logs, trusted audit management commands aucat, augrep, aurun and audbin, audit logs,
audit configuration files, and audit libraries.

 59

5 Functional descriptions
The SLES kernel structure, its trusted software, and its TSF databases provide the foundation for the
descriptions in the Functional Architectural Subsystems Description section of this document.

5.1 File and I/O management
The file and I/O subsystem is a management system for defining objects on secondary storage devices. The
file and I/O subsystem interacts with the memory subsystem, the network subsystem, the IPC subsystem,
the process subsystem, the audit subsystem, and the device drivers.

A file system is the container for objects on the secondary storage devices. The implementation of the
SLES file system allows for the management of a variety of types of file systems. The TOE supports ext3,
proc, sysfs, tmpfs, and CD-ROM file systems.

At the user interface level, a file system is organized as a tree with a single root called a directory. A
directory contains other directories and files, which are the leaf nodes of the tree. Files are the primary
containers of user data. Additionally, files can be symbolic links, named pipes, sockets, or special files that
represent devices.

This section briefly describes the SLES file system implementation and focuses on how file system object
attributes support the kernel’s implementation of the Discretionary Access Control policy. This section also
highlights how file system data and metadata are allocated and initialized to satisfy the object reuse
requirement.

For more detailed information on other aspects of File and I/O management, please refer to the SLES Low
Level Design, by Janak Desai, George Wilson, and Michael Halcrow.

Figure 5-1. File and I/O subsystem and its interaction with other subsystems

Kernel
File and I/O

Hardware

System Call Service Routines

Virtual File System

Disk based file system

Buffer cache

Device drivers

Device Hardware

Memory
Subsystem

IPC
Subsystem

User
Library interface to system calls

Process
Subsystem

Network
Subsystem

Audit

 60

http://acl.bestbits.at/about-acl.html
Posix 1003.1e document at http://wt.xpilot.org/publications/posix.1e

In order to shield user programs from the underlying details of different types of disk devices and disk-
based file systems, the SLES kernel provides a software layer that handles all system calls related to a
standard UNIX file system. This common interface layer, called the Virtual File System, interacts with
disk-based file systems whose physical I/O devices are managed through device special files.

This section is divided into three subsections: “Virtual File System,” “Disk Based File Systems” and
“Discretionary Access Control.” The subsections describe data structures and algorithms that comprise
each subsystem, with special focus on access control and allocation mechanisms.

5.1.1 Virtual File System
Virtual File System (VFS) provides a common interface to users for performing all file related operations,
such as open, read, write, change owner, and change mode. The key idea behind the VFS is the concept of
the common file model, which is capable of representing all supported file systems. For example, consider
a SLES system where an ext3 file system is mounted on the ext3mnt directory and a CD-ROM file
system is mounted on the cdmnt directory, as follows.

To a user program, the virtual file system appears as follows:

Figure 5-2. ext3 and CD-ROM file systems

ext3 file system
CD-ROM file

system

ext3mnt

dir

dir1 file1 file1 dir1 file1

ext3mnt root of fs cdmnt root of fs

Figure 5-3. ext3 and CD-ROM file systems

ext3mnt

dir

dir1 file1 file1 dir1 file1

ext3mnt cdmnt

 61

The VFS allows programs to perform operations on files without having to know the implementation of the
underlying disk based file system. The VFS layer redirects file operation requests to the appropriate file
system-specific file operation. For example, see the following diagram.

Almost all of the system call interfaces available to a user program in the common file model of VFS
involve the use of a file pathname. The file pathname is either an absolute pathname such as /ext3mnt/file1
or a relative pathname such as ext3mnt/file1. The translation of a pathname to file data is security relevant
because the kernel performs access checks as part of this translation mechanism. The following list
describes the security-relevant data structures of the VFS:

super_block

Stores information about a mounted file system, such as file system type, block size, maximum
size of files, and dentry (described below) object of the mount point.

inode
Stores general information about a specific file, such as file type and access rights, file owner,
group owner, length in bytes, operations vector, time of last file access, time of last file write, and
time of last inode change.

file
Stores the interaction between an open file and a process, such as the pointer to a file operation
table, current offset (position within the file), user ID, group ID, and the dentry object
associated with the file. file exists only in kernel memory during the period when each process
accesses a file.

dentry
Stores information about the linking of a directory entry with the corresponding file, such as a
pointer to the inode associated with the file, filename, pointer to dentry object of the parent
directory, and pointer to directory operations.

vfsmount
Stores information about a mounted file system, such as dentry objects of the mount point and the
root of the file system, the name of device containing the file system, and mount flags.

The kernel uses the above data structures while performing security relevant operations of pathname
translation and file system mounting.

VFS

ext3 open
function

cd open function

open

“ext3mnt/file1”

“cdmnt/file1”

Figure 5-4. Virtual File System

 62

5.1.1.1 Pathname translation
When performing a file operation, the kernel translates a pathname to a corresponding inode. The
pathname translation process performs access checks appropriate to the intended file operation. For
example, any file system function that results in a modification to a directory (such as file creation or file
deletion), checks to make sure that the process has write access to the directory being modified. Directories
cannot be written directly.

Access checking in VFS is performed while an inode is derived from the corresponding pathname.
Pathname lookup routines break up the pathname into a sequence of file names and, depending on whether
the pathname is absolute or relative, the lookup routines start the search from the root of the file system or
from the process’s current directory, respectively. The dentry object for this starting position is available
through the fs field of the current process. Using the inode of the initial directory, the code looks at the
entry that matches the first name to derive the corresponding inode. Then the directory file that has that
inode is read from the disk and the entry matching the second name is looked up to derive the
corresponding inode. This procedure is repeated for each name included in the path. At each “file lookup
within a directory” stage, an access check is made to ensure that the process has appropriate permission to
perform the search. The last access check performed depends on the system call. For example, when a new
file is created, an access check is performed to ensure that the process has write access to the directory. If
an existing file is being opened for read, a permission check is made to ensure that the process has read
access to that file.

 63

Figure 5-5. VFS pathname translation and access control checks

N N Y Y

Y N

Y

N

N

Y
N

Y Y
N

N Y

N Y

File system
operation

Absolute
Path?

Get dentry for
root (/)

Get dentry for
current dir

Get inode
from dentry

Check search
permission.
Disk based inode
operations?

Call disk
based
permission
function

dentry
mounted on?

Call
vfs_permissio
n function

Get dentry of the
root of the
mounted file
system

Last component of
the path name?

Error

Get dentry of the
next component
of the path name

Permission
granted?

Permission
granted?

Check permission
based on operation.

Disk based inode
operations?

Call
vfs_permissio
n function

Call disk
based
permission
function

Permission
granted?

Permission
granted? Perform

operation

Error

Error Error

 64

Figure 5-5 is a simplified description of a pathname lookup. In reality the algorithm for lookup becomes
more complicated because of the presence of symbolic links, “.”, “..” and extra “/” characters in the
pathname. Even though these objects complicate the logic of the lookup routine, the access check
mechanism remains the same.

The following describes the call sequence of an open() call to create a file:

1. Call the open() system call with a relative pathname and flags to create a file for read and write.
2. open() calls open_namei(), which ultimately derives the dentry for the directory in which

the file is being created. If the pathname contains multiple directories, search permission for all
directories in the path is required to get access to the file. This search permission check is
performed for each directory dentry by calling permission(). If the inode’s operation
vector (which contains pointers to valid inode operation routines) is set, each call to
permission() is diverted to the disk-based file system-specific permission call; otherwise,
vfs_permission() is called to ensure that the process has the appropriate permission.

3. Once the directory dentry is found, permission() is called to make sure the process is
authorized to write in this directory. Again, if the inode’s operation vector is set, the call to
permission()is diverted to the disk-based file system-specific permission call; otherwise,
vfs_permission() is called to ensure that the process has the appropriate permission.

4. If the user is authorized to create a file in this directory, get_empty_filp() is called to get a
file pointer. get_empty_filp() calls memset() to ensure that the newly allocated file
pointer is zeroed out, thus taking care of the object reuse requirement. To create the file,
get_empty_filp() calls the disk-based file-system specific open routine through the file
operations vector in the file pointer.

At this point, data structures for file object, dentry object, and inode object for the newly created file
are set up correctly, whereby the process can access the inode by following a pointer chain leading from
the file object to dentry object to inode object. The following diagram shows the simplified linkage.

Another example of a file system operation is a write() system call to write to a file that was opened for
writing. The following list shows the call sequence of a write() call.

1. Call the write() system call with a file descriptor that was returned by open().
2. Call fget() to get the file pointer corresponding to the file descriptor.
3. If the file pointer file operation vector is set, use the inode operation vector to call the disk-based

file system write() routine.

The write() system call in VFS is very straightforward because access checks are already performed by
open().

Figure 5-6. VFS data structures and their relationships with each other

Process
task

structure

fd

File
Object

f_dentry

dentry
object

d_inode

inode
object

Disk

 65

5.1.1.2 File system mounting
File systems are mounted by an administrator using the mount() system call. The mount() system call
provides the kernel with the file system type, the pathname of the mount point, the pathname of the block
device that contains the file system, flags that control the behavior of the mounted file system, and a pointer
to a file system dependent data structure (that may be NULL). For each mount operation, the kernel saves
the mount point and the mount flags in mounted file system descriptors. Each mounted file system
descriptor is a data structure of type vfsmount. The sys_mount() function in the kernel copies the
value of the parameters into temporary kernel buffers, acquires the big kernel lock, and invokes the
do_mount() function to perform the mount. For detailed information on the mount process, please refer
to the SLES Low Level Design, by Janak Desai, George Wilson, and Michael Halcrow.

There are no object reuse issues to handle during file system mounting because the data structures created
are not directly accessible to user processes. However, there are security-relevant mount flags that affect
access control. The following lists the security-relevant mount flags and their implications on access
control.

MS_RDONLY
The file system is mounted in read only mode. Write operations are prohibited for all files irrespective of
their mode bits. Only device special files may be writable.

MS_NOSUID
suid and sgid bits on executables are ignored by the kernel when executing files from this file system.

MS_NODEV
Device access to a character or block device is not permitted from files on this file system.

MS_NOEXEC
Execution of any programs from this file system is not permitted even if the execute bit is set for the
program binary.

MS_POSIXACL
Indicates if ACLs on files on this file system are to be honored or ignored.

5.1.2 Disk-based file systems
Disk-based file systems deal with how the data is stored on the disk. Different disk-based file systems
employ different layouts and support different operations on them. For example, the CD-ROM file system
does not support the write operation. The TOE supports two disk-based file systems: ext3 and the ISO 9660
File System for CD-ROM.

This section looks at data structures and algorithms used to implement these two disk-based file systems
and continues the study of open() and write() system calls in the context of disk-based file systems.

5.1.2.1 ext3 file system
The SLES kernel’s ext3 file system is a robust and efficient file system that supports automatic consistency
checks, immutable files, preallocation of disk blocks to regular files, fast symbolic links, Access Control
Lists, and journaling. The file system partitions disk blocks into groups. Each group includes data blocks
and inode blocks in adjacent tracks, which allow files to be accessed with a lower average disk seek time.
In addition to the traditional UNIX file object attributes, such as owner, group, permission bits, and access
times, the SLES ext3 file system supports Access Control Lists (ACLs) and Extended Attributes (EA).
ACLs provide a flexible method for granting or denying access to a directory or a file that is granular down
to an individual user. Extended attributes provide a mechanism for setting special flags on a directory or a
file. Some of these improve the system’s usability while others improve its security. The following diagram
illustrates the format of an ext3 inode.

 66

Access Control Lists provide a way of extending directory and file access restrictions beyond the traditional
owner, group, and world permission settings. For more details on the ACL format, please refer to section
5.1.3 of this document.

Extended attributes are stored on disk blocks allocated outside of an inode. Security-relevant extended
attributes provide the following functionality:

Immutable
If this attribute is set, the file cannot be modified, no link can be created to it, and it cannot be
renamed or removed. Only an administrator can change this attribute.

Figure 5-7. Security attributes, extended security attributes and data blocks for ext3 inode.

Double
indirect data

blocks

Indirect data blocks

Direct data blocks

inode

i file acl

gid

uid

mode

Extended attribute block

attr name

attr length

attr pointer

Attribute block

 67

Append only
If this attribute is set, the file may be modified in append mode. The “append only” attribute is
useful for system logs.

The following data structures and inode operations illustrate how Discretionary Access Control and
object reuse are performed by the ext3 file system.

ext3_super_block
The on-disk counterpart of the superblock structure of VFS, ext3_super_block stores file
system-specific information such as total number of inodes, block size, and fragment size.

ext3_group_desc
Disk blocks are partitioned into groups. Each group has its own group descriptor.
ext3_group_desc stores information such as the block number of the inode bit map and the
block number of the block bitmap

ext3_inode
The on-disk counter part of the inode structure of VFS, ext3_inode stores information such
as file owner, file type and access rights, file length in bytes, time of last file access, number of
data blocks, pointer to data blocks, and file access control list.

 ext3_xattr_entry
The structure that describes an extended attribute entry. ext3_xattr_entry stores
information such as attribute name, attribute size, and the disk block that stores the attribute.
Access Control Lists are stored on disk using this data structure, and associated to an inode by
pointing the inode’s i_file_acl field to this allocated extended attribute block.

ext3_create()
This routine is called when a file create operation makes a transition from VFS to a disk-based file
system. ext3_create() starts journaling and then calls ext3_new_inode() to create the
new inode.

ext3_lookup()
This routine is called when VFS’s real_lookup() calls the disk-based file system’s lookup
routine through the inode operation vector. ext3_lookup() calls ext3_find_entry() to
locate an entry in a specified directory with the given name.

ext3_get_block()
This is the general purpose routine for locating data that corresponds to a regular file.
ext3_get_block() is invoked when the kernel is looking for, or allocating a new data block.
The routine is called from routines set up in the address-space operations vector, a_ops, which is
accessed through the inode’s i_mapping field. ext3_get_block() calls
ext3_get_block_handle(), which in turn calls ext3_alloc_branch if a new data
block needs to be allocated. ext3_alloc_branch() explicitly calls memset() to zero out
the newly allocated block, thus taking care of the object reuse requirement.

 68

The following illustrates how new data blocks are allocated and initialized for an ext3 file.

A file needs new data blocks

Kernel invokes inode address space operation function prepare_write()

ext3_prepare_write()

ext3_get_block()

ext3_get_block_handle()

ext3_alloc_branch()

inode

i_mapping

address_space

a_ops

On ext3 file system address_space_operations map to ext3_aops

ext3_aops address_space_operations

ext3_writepage

ext3_readpage

ext3_sync_page

ext3_prepare_write

write_page

read_page

sync_page

prepare_write

Allocate new page, clear it with memset() and setup link from inode.

inode

0000000000
0000000000
0000000000

i_data

Figure 5-8. Data block allocation and object reuse handling on ext3 file system

 69

ext3_permission()
This is the entry point for all Discretionary Access Check. This routine is invoked when VFS calls
to permission() routine are diverted based on the ext3 inode operation vector i_op.

Similarly, for directory, symlink and special-file object type, inode operations map to
ext3_dir_inode_operations, ext3_symlink_inode_operations, and
ext3_special_inode_operations, respectively.

ext3_truncate()
This is the entry point for truncating a file. The ext3_truncate() routine is invoked when
VFS calls to the sys_truncate() routine are diverted based on the ext3 inode operation vector
i_op. This routine prevents the truncation of inodes whose extended attributes mark them as
“append only” or “immutable.”

5.1.2.2 ISO 9660 file system for CD-ROM
The SLES kernel supports the ISO 9660 file system for CD-ROM. Please refer to the following HOWTO
document on The Linux Documentation Project for a detailed specification of the ISO 9660 file system:

http://usr/share/doc/howto/en/html_single/Filesystems-HOWTO.html

5.1.2.2.1 Data structures and algorithms
The following data structures and inode operations implement the file system on the SLES kernel.
Because the file system is a read-only file system, there are no object reuse implications with respect to
allocating data blocks. The discretionary access check is performed at the VFS layer with the
vfs_permission() routine, which grants permission based on the process fsuid field.

isofs_sb_info
The CD-ROM file system super block isofs_sb_info stores file system-specific information,
such as number of inodes, number of zones, maximum size, and fields for the mount command-
line option to prohibit the execution of suid programs.

iso_inode_info
The in-core inode information for CD-ROM file objects. iso_inode_info stores information,
such as file format, extent location, and a link to the next inode.

Figure 5-9. Access control on ext3 file system

inode

i_op

On ext3 file system, for a file, inode_operations map to ext3_file_inode_operations

ext3_file_inode_operations inode_operations

ext3_truncate

ext3_setxattr

ext3_create

ext3_permission

truncate

setxattr

create

permission

 70

isofs_lookup()
isofs_lookup() is called when the pathname translation routine is diverted from the VFS
layer to the isofs layer. isofs_lookup() sets up the inode operation vector from the
superblock s_root field and then invokes isofs_find_entry() to retrieve the object from
the CD-ROM.

5.1.3 proc file system
The proc file system is a special file system that allows system programs and administrators to manipulate
the data structures of the kernel. The proc file system is mounted at /proc and provides Virtual File System
access to information about current running processes and kernel data structures. An administrator can
change kernel parameters, such as IP_FORWRDING, by editing files in /proc. For each active process, the
kernel creates a directory entry, named after the Process ID, in the /proc directory. This directory contains
pseudo files that can be used to read the status of the process. The Process ID directory is created with a
mode of 555 and is owned by the user ID and group ID of the process. Access Control is performed by the
VFS pathname translation mechanism function vfs_permission(), which prevents access by normal
users to data belonging to other processes. Permissions for files in /proc cannot be changed; they are
determined by the kernel. The pseudo files within the process directory are only readable for others as far
as they provide information similar to the ps command. Because files in /proc are not real disk-based files
with user data, there is no object reuse issue.

5.1.4 sysfs file system
The sysfs file system is a special file system that allows system programs and administrators to manipulate
the non-process related data structures of the kernel. Process related data structures are accessed through
the proc file system, while non-process related data structures, mainly device driver characterstics, are
accessed through sysfs file system. The sysfs file system is mounted at /sys using the file system type of
“sysfs”, and provides Virtual File System access to kernel object data structures. An administrator can
change kernel object parameters, by editing files in /sys. For each active kernel object, the kernel creates a
directory in the /sys directory. Access Control is performed by the VFS pathname translation mechanism
function vfs_permission(), which prevents access by normal users to data belonging to the kernel.
Permissions for files in /sys cannot be changed; they are determined by the kernel. Because files in /sys are
not real disk-based files with user data, there is no object reuse issue.

inode_operations

Figure 5-10. File lookup on CD-ROM file system.

inode

i_op

On CD-ROM file system inode_operations map to isofs_dir_inode_operations

isofs_dir_inode_operations

isofs_lookup

NULL

NULL

NULL

lookup

setxattr

set_posix_acl

permission

Permission points to
NULL, because access
check is performed at
the VFS layer by
vfs_permission()

 71

5.1.5 tmpfs file system
The tmpfs file system is a special virtual file system that provides file system interface to memory regions.
The tmpfs is not persistant across boots and provides fast, temporary, ram-based file system. On a typical
system tmpfs is mounted on /dev/shm; however it can be mounted on other directories just like any other
file system. Unlike ext3 or isofs, tmpfs is not a disk-based file system. tmpfs uses vfs pathname translation
function vfs_permission and inode attribute change function inode_change_ok to perform
discretionary access control checks. Object reuse is handled by shmem_getpage function, which is
called anytime new memory pages are allocated and associated with files within this shared memory virtual
file system. shmem_getpage calls shmem_alloc_page to allocate and zero out, using explicit call to
memset, new memory pages.

5.1.6 devpts file system
The devpts file system is a special file system that provides pseudo terminal support. Pseudo terminals are
implemented as character devices. A pseudo terminal is represented by a pair of character device-special
files, one corresponding to the master device and the other to the slave device. The slave device provides a
terminal interface. Instead of a hardware interface and associated hardware supporting the terminal
functions, the interface is implemented by a process that manipulates the master device of the pseudo
terminal. Any data written on the master device is delivered to the slave device, as though it had been
received from a hardware interface. Any data written on the slave device can be read from the master
device.

In order to acquire a pseudo terminal, a process opens the master device /dev/ptmx. The system then makes
available to the process <number>, as a slave, which can be accessed as /dev/pts/<number>. An
administrator can mount the devpts special file system by providing uid, gid, and mode values on the mount
command line. If specified, these values set the owner, group, and mode of the newly created pseudo
terminals to the specified values.

In terms of access control, pseudo terminal devices are identical to device special files. Therefore, access
control is performed by the VFS pathname translation mechanism function vfs_permission().
Because files in /dev/pts are not real disk-based files with user data, there is no object reuse issue.

5.1.7 Discretionary access control
Previous sections have described how appropriate *_permission() functions are called to perform
access checks for non-disk-based and disk-based file systems. Access checks are based on the credentials
of the process attempting access and access rights assigned to the object. When a file system object is
created, the creator becomes the owner of the object. The group ownership (group ID) of the object is set
either to the effective group ID of the creator or to the group ID of the parent directory, depending on the
mount options and the mode of the parent directory. If the file system is mounted with the option grpid, the
object takes the group ID of the directory in which it is created; otherwise (the default), the object takes the
effective group ID of the creator, unless the directory has the setgid bit set, in which case the object takes
the gid from the parent directory, and also gets the setgid bit set if it is a directory itself. This ownership can
be transferred to another user by invoking the chown() system call. The owner and the root user are
allowed to define and change access rights for an object.

This following subsection looks at vfs_permission(), which performs access checks for the
ISO9660, procfs, and devpts file systems, and ext3_permission(), which performs access checks for
the ext3 disk-based file system. Note that access rights are checked when a file is opened and not on each
access. Therefore, modifications to the access rights of file system objects become effective at the next
request to open the file.

 72

5.1.7.1 vfs_permission()
vfs_permission() implements standard UNIX permission bits to provide DAC for file system objects
for the procfs, the devpts, and the ISO9660 file systems. There are three sets of three bits that define access
for three categories of users: the owning user, users in the owning group, and other users. The three bits in
each set indicate the access permissions granted to each user category: one bit for read (r), one for write
(w), and one for execute (x). Note that write access to file systems mounted as read only (such as CD-
ROM) is always rejected. Each subject’s access to an object is defined by some combination of these bits:

• rwx symbolizing read/write/execute
• r-x symbolizing read/execute
• r-- symbolizing read
• --- symbolizing null

When a process attempts to reference an object protected only by permission bits, the access is determined
as follows:

• Users with an effective user ID of 0 are able to read and write all files, ignoring the permission

bits. Users with an effective user ID of zero are also able to execute any file if it is executable for
someone.

• If the the File System UID equals the object owning UID, and the owning user permission bits
allow the type of access requested, access is granted with no further checks.

• If the File System GID or any supplementary groups of the process = Object’s owning GID, and
the owning group permission bits allow the type of access requested, access is granted with no
further checks.

• If the process is neither the owner nor a member of an appropriate group and the permission bits
for world allow the type of access requested, then the subject is permitted access.

• If none of the conditions above are satisfied, and the process’s effective UID is not zero, then the
access attempt is denied.

5.1.7.2 ext3_permission()
ext3_permission() enforces POSIX Access Control Lists (ACLs). ACLs are created, maintained,
and used by the kernel. For more detailed information on the POSIX ACLs, please refer to the following:

http://acl.bestbits.at
http://wt.xpilot.org/publications/posix.1e

An ACL entry contains the following information:

1. A tag type that specifies the type of the ACL entry.
2. A qualifier that specifies an instance of an ACL entry type.
3. A permission set that specifies the discretionary access rights for processes identified by the tag

type and qualifier.

ACL Tag Types
The following tag types exist:

1. ACL_GROUP
An ACL entry of this type defines access rights for processes whose file system group ID or any
supplementary group IDs match the one in the ACL entry qualifier.

2. ACL_GROUP_OBJ
An ACL entry of this type defines access rights for processes whose file system group ID or any
supplementary group IDs match the group ID of the group of the file.

3. ACL_MASK
An ACL entry of this type defines the maximum discretionary access rights for a process in the
file group class.

 73

4. ACL_OTHER
An ACL entry of this type defines access rights for processes whose attributes do not match any
other entry in the ACL.

5. ACL_USER
An ACL entry of this type defines access rights for processes whose file system user ID matches
the ACL entry qualifier.

6. ACL_USER_OBJ
An ACL entry of this type defines access rights for processes whose file system user ID matches
the user ID of the owner of the file.

ACL qualifier
The qualifier is required for ACL entries of type ACL_GROUP and ACL_USER and contain either the
user ID or the group ID for which the access rights are defined.

ACL permissions
The permission that can be defined in an ACL entry is: read, write, and execute/search.

Relation with file permission bits
An ACL contains exactly one entry for each of the ACL_USER_OBJ, ACL_GROUP_OBJ, and
ACL_OTHER tag type (called the “required ACL entries”). An ACL may have between zero and a defined
maximum number of entries of the type ACL_GROUP and ACL_USER. An ACL that has only the three
required ACL entries is called a “minimum ACL.” ACLs with one or more ACL entries of type
ACL_GROUP or ACL_USER are called an “extended ACL.” The standard UNIX file permission bits, as
described in the previous section, are represented by the entries in the minimum ACL. The owner
permission bits are represented by the entry of type ACL_USER_OBJ. The entry of type
ACL_GROUP_OBJ represents the permission bits of the file group. The entry of type ACL_OTHER
represents the permission bits of processes running with an effective user ID and effective group ID or
supplementary group ID different from those defined in ACL_USER_OBJ and ACL_GROUP_OBJ entries.

ACL_MASK
If an ACL contains an ACL_GROUP or ACL_USER type entry, then exactly one entry of type
ACL_MASK is required in the ACL. Otherwise, the entry of type ACL_MASK is optional.

Default ACLs and ACL inheritance
A default ACL is an additional ACL, which may be associated with a directory. This default ACL has no
effect on the access to this directory. Instead, the default ACL is used to initialize the ACL for any file that
is created in this directory. When an object is created within a directory and the ACL is not defined with the
function creating the object, the new object inherits the default ACL of its parent directory as its initial
ACL. This is implemented by ext3_create(), which invokes ext3_new_inode(), which in turn
invokes ext3_init_acl() to set the initial ACL.

ACL representations and interfaces
ACLs are represented in the SLES kernel as extended attributes. The SLES kernel provides system calls
such as getxattr(), setxattr(), listxattr(), and removexattr() to create and manipulate
extended attributes. User space applications can use these system calls to create and maintain ACLs and
other extended attributes. However, ACL applications, instead of calling system calls directly, use library
functions provided by the POSIX 1003.1e compliant libacl.so. Inside the kernel, the system calls are
implemented using the getxattr, setxattr, listxattr, and removexattr inode operations.
The SLES kernel provides two additional inode operations, get_posix_acl() and
set_posix_acl(), to allow other parts of the kernel to manipulate ACLs in an internal format that is
more efficient to handle than the format used by the inode xattr operations.

In the ext3 disk-based file system, extended attributes are stored in a block of data accessible through the
i_file_acl field of the inode. This extended attribute block stores name-value pairs for all extended

 74

attributes associated with the inode. These attributes are retrieved and used by appropriate access control
functions.

ACL enforcement
ACLs are used by the ext3_permission() function to enforce Discretionary Access Control.
ext3_permission() calls __ext3_permission(), which goes through the following steps:

1. Performs sanity checks such as “no write access if read-only file system” and “no write access if
the file is immutable.”

2. Calls ext3_get_acl() to get the ACL corresponding to the object. ext3_get_acl() calls
ext3_xattr_get(), which in turn calls ext3_acl_from_disk() to retrieve the extended
attribute from the disk.

3. Invokes posix_acl_permission(), which goes through the following algorithm:

If the file system user ID of the process matches the user ID of the file object owner,
then

if the ACL_USER_OBJ entry contains the requested permissions, access is granted,
else access is denied.

else if the file system user ID of the process matches the qualifier of any entry of type
ACL_USER, then

if the matching ACL_USER entry and the ACL_MASK entry contain the requested
permissions, access is granted,
else access is denied.

else if the file system group ID or any of the supplementary group IDs of the process match the
qualifier of the entry of type ACL_GROUP_OBJ, or the qualifier of any entry of type
ACL_GROUP,
then

if the ACL_MASK entry and any of the matching ACL_GROUP_OBJ or ACL_GROUP
entries contain all the requested permissions, access is granted,
else access is denied.

else if the ACL_OTHER entry contains the requested permissions, access is granted.
else access is denied.

4. posix_acl_permission() cycles through each ACL entry to check if the process is

authorized to access the object in the attempted mode. Root is always allowed to override any read
or write access denials based an ACL entry. Root is allowed to override attempted execute access
only if an execute bit is set for owner, group, or other.

For example, consider a file /aclfile with mode of 640. The file is owned by root and belongs to the
group root. Its default ACL (without the extended POSIX ACL) would be:

owner: root
group: root
user:: rw-
group::r—
other::---

The file is readable and writeable by user root and readable by users belonging to group root. Other users
have no access to the file. With POSIX ACLs, a more granular access control can be provided to this file
by adding ACLs with the setfacl command. For example, the following setfacl command allows a user
“john” read access to this file even if “john” doesn’t belong to group root.

#setfacl –m user:john:4,mask::4 /aclfile

 75

The ACL on file will look like:

owner: root
group: root
user:: rw-
user:john:r—
group::r—
mask::r--
other::---

The mask field reflects the maximum permission that a user can get. Hence, as per the ACL, even though
“john” is not part of group root, he is allowed read access to the file /aclfile.

5.2 Process control and management
A process is defined as an instance of a program in execution. Process management consists of creating,
manipulating, and terminating a process. Process management is handled by the process management
subsystems of the kernel. It interacts with the memory subsystem, the network subsystem, the file and I/O
subsystem, audit subsystem, and the IPC subsystem.

The kernel views a process as a subject. A subject is an active entity that can access and manipulate data
and data repositories called objects, to which system resources, such as CPU time and memory are
allocated. A process is managed by the kernel through a number of data structures. These data structures
are created, manipulated, and destroyed to give processes “life.”

This section briefly describes how a process is given credentials that are used in access mediation, and how
the credentials are affected by process and kernel actions during the life cycle of the process. For more

Figure 5-11. Process subsystem and its interaction with other subsystems

Kernel
Process Subsystem

Memory
Subsystem

Network
Subsystem

File and I/O
subsystem

System Call Service Routines

Architecture
Independent Scheduler

Architecture
specific

scheduler
Scheduling

policy

Hardware
Processor(s)

User
Library interface to system calls

IPC
subsystem

Audit

 76

detailed information, please refer to the SLES Low Level Design, by Janak Desai, George Wilson, and
Michael Halcrow.

This section is divided into four subsections: “Data Structures” lists important structures that are used to
implement processes and highlight security relevant credentials fields. “Process Creation/Destruction”
describes creation, destruction, and maintenance of a process with emphasis on how security-relevant
credentials are affected by state transitions. “Process Switch” describes how the kernel switches the current
process that is executing on the processor, with emphasis on mechanisms that ensure a “clean” switch (that
is, ensuring that the latest process executing is not using any resources from the switched out process).
“Kernel Threads” describes special purpose subjects that are created to perform critical system tasks.

5.2.1 Data structures
The SLES kernel provides two abstractions for subject constructs: a regular process and a lightweight
process. A lightweight process differs from a regular process in its ability to share some resources, such as
address space and open files. With respect to security relevance, if differences exist between regular
processes and lightweight processes, those differences are highlighted. Otherwise, both regular and
lightweight processes are referred to as “processes” for better readability.

For each process, the kernel maintains a process descriptor with the task_struct structure. The
structure’s fields include the process priority, whether the process is running on a CPU or blocked on an
event, what address space has been assigned to the process, which files the process is allowed to access,
and security relevant credentials fields such as:

• uid and gid, which describe the process’s user ID and group ID.
• euid and egid, which describe the process’s effective user ID and effective group ID.
• fsuid, fsgid, which describe the process’s file system user ID and file system group ID.
• suid, sgid, which describe the process’s saved user ID and saved group ID.
• groups, which lists the groups to which the process belongs.
• state, which describes the run state of the process.
• pid, which is the process identifier used by the kernel and user processes for identification.

The credentials are used every time a process tries to access a file or IPC objects. Process credentials, along
with the object access control data and ownership, determine if access is allowed.

Please refer to /usr/src/include/linux/sched.h for information on other task_struct fields.

 77

The following figure schematically shows the task_struct structure with fields relevant for access
control.

The kernel maintains a circular doubly-linked list of all existing process descriptors. The head of the list is
the init_task descriptor referenced by the first element of the task array. The init_task descriptor
belongs to process 0, or the swapper, the ancestor of all processes.

5.2.2 Process creation/destruction
The SLES kernel provides two system calls for creating a new process: fork() and vfork(). When a
new process is created, resources owned by the parent process are duplicated in the child process. Because
this duplication is done using “memory regions” and “demand paging,” described in section 5.2.3, the
object reuse requirement is satisfied. vfork() differs from fork() by sharing the address space of its
parent. To prevent the parent from overwriting data needed by the child, the parent’s execution is blocked
until the child exits or executes a new program. The child process inherits the parent’s security-relevant
credentials, such as uid, euid, gid, and egid. Because these credentials are used for access control
decisions in the DAC policy, the child is given the same level of access to objects as the parent. The child’s
credentials change when it starts executing a new program or issues suitable system calls, which are listed
as follows:

• setuid() and setgid()

Sets the effective user/group ID and the file system user/group ID of the current process.
If the effective user ID of the caller is root, the real and saved user/group IDs are also set.

• seteuid() and setegid()
Sets the effective user/group ID and the file system user/group ID of the current process.
Normal user processes may only set the effective user/group ID and file system
user/group ID to the real user/group ID, the effective user/group ID, or the saved
user/group ID.

Figure 5-12. The task structure

…

state

Pointers to next
and prev task

…

Credentials such
as uid, gid, euid,
egid, fsuid, fsgid,

suid & sgid

fs

files

mm

fs_struct for current
directory

file_struct list of file
descriptors

mm_struct list of
memory are
descriptors

audit

aud_process struct
audit related data

 78

• setreuid() and setregid()
Sets the real, effective and file system user/group IDs of the current process. Normal
users may only set the real user/group ID to the real user/group ID or the effective
user/group ID, and can only set the effective user/group ID to the real user/group ID, the
effective user/group ID or the saved user/group ID. If the real user/group ID is set or the
effective user/group ID is set to a value not equal to the previous real user/group ID, the
saved user/group ID is set to the new effective user/group ID and file system user/group
ID.

• setresuid() and setresgid()

Sets the real user/group ID, the effective user/group ID, the file system user/group ID,
and the saved set-user/group ID of the current process. Normal user processes (for
example, processes with real, effective, and saved user IDs that are nonzero) may change
the real, effective, file system and saved user/group ID to either the current uid/gid,
the current effective uid/gid, or the current saved uid/gid. An administrator can
set the real, effective, file system and saved user/group ID to an arbitrary value.

• setfsuid() and setfsgid()
Sets the user/group ID that the SLES kernel uses to check for all accesses to the file
system. Normally, the value of fsuid/fsgid shadows the value of the effective
user/group ID. fsuid and fsgid are used by non-disk-based file systems such as NFS.
setfsuid/setfsgid only succeeds if the caller is an administrator, or if
fsuid/fsgid matches either the real user/group ID, effective user/group ID, saved
set-user/group-ID, or the current value of fsuid/fsgid.

• execve()
Invokes the exec_mmap() function to release the memory descriptor, all memory
regions, and all page frames assigned to the process, and to clean up the process’s Page
Tables. execve() invokes the do_mmap() function twice, first to create a new
memory region that maps the text segment of the executable, and then to create a new
memory region that maps the data segment of the executable file. The object reuse
requirement is satisfied because memory region allocation follows the demand paging
technique described in Section 5.5.3. execve() can also alter the process’s credentials
if the executable file’s setuid bit is set. If the setuid bit is set, the current process’s
euid and fsuid are set to the identifier of the file’s owner.

For more details on kernel execution of the execve() call, please refer to the
SLES Low Level Design, by Janak Desai, George Wilson, and Michael Halcrow.

Process termination is handled in the kernel by the do_exit() function. The do_exit() function
removes most references to the terminating process from the kernel data structures and releases resources,
such as memory, open files, and semaphores held by the process.

5.2.3 Process switch
To control the execution of multiple processes, the SLES kernel suspends the execution of the process
currently running on the CPU and resumes the execution of some other process previously suspended. In
performing a process switch, the SLES kernel ensures that each register is loaded with the value it had
when the process was suspended. The set of data that must be loaded into registers is called the hardware
context, which is part of the larger process execution context. Part of the hardware context is contained in
the process’s task structure; the rest is saved in the process’s kernel mode stack, which allows for the
separation needed for a clean switch. In a three-step process, the switch is performed by:

• installation of a new address space

 79

• switching the Kernel Mode Stack
• switching the hardware context

For a more detailed description of process context switching, please refer to the SLES Low Level Design, by
Janak Desai, George Wilson, and Michael Halcrow.

5.2.4 Kernel threads
The SLES kernel delegates certain critical system tasks, such as flushing disk caches, swapping out unused
page frames, and servicing network connections, to kernel threads. Because kernel threads execute only in
kernel mode, they do not have to worry about credentials. Kernel threads satisfy the object reuse
requirement by allocating memory from the kernel memory pool, as described in section 5.5.2.

5.3 Inter-process communication
The SLES kernel provides a number of inter-process communication mechanisms that allow processes to
exchange arbitrary amounts of data and synchronize execution. The IPC mechanisms include unnamed
pipes, named pipes (FIFOs), the System V IPC mechanisms (consisting of message queues, semaphores,
and shared memory regions), signals, and sockets. This section describes the general functionality and
implementation of each IPC mechanism and focuses on Discretionary Access Control and object reuse
handling. For more detailed information, please refer to the SLES Low Level Design, by Janak Desai,
George Wilson, and Michael Halcrow.

5.3.1 Pipes
Pipes allow the transfer of data in a first-in-first-out (FIFO) manner. Unnamed pipes are created with the
pipe() system call. Unnamed pipes are only accessible to the creating process and its descendants
through file descriptors. Once a pipe is created, a process may use the read() and write() VFS system
calls to access it. In order to allow access from the VFS layer, the kernel creates an inode object and two
file objects for each pipe. One file object is used for reading and the other for writing. It is the process’s
responsibility to use the appropriate file descriptor for reading and writing.

5.3.1.1 Data structures and algorithms
The inode object refers to a pipe with its i_pipe field, which points to a pipe_inode_info structure.
The pipe() system call invokes do_pipe() to create a pipe. read() and write() operations
performed on the appropriate pipe file descriptors invoke, through the file operations vector f_op of the
file object, the pipe_read() and pipe_write() routines, respectively.

pipe_inode_info
Contains generic state information about the pipe with fields such as base (which points to the
kernel buffer), len (which represents the number of bytes written into the buffer and yet to be
read), wait (which represents the wait queue), and start (which points to the read position in
the kernel buffer).

do_pipe()
Invoked through the pipe() system call, do_pipe() creates a pipe that performs the following
actions:

1. Allocates and initializes an inode.
2. Allocates a pipe_inode_info structure and stores its address in the i_pipe field of

the inode.
3. Allocates a page-frame buffer for the pipe buffer using __get_free_page(), which

in turn invokes alloc_pages() for the page allocation. Even though the allocated
page is not explicitly zeroed out, the way pipe_read() and pipe_write() are

 80

written it is not possible to read beyond what is written by the write channel. Therefore,
there are no object reuse issues.

pipe_read()
Invoked through the read() system call, pipe_read() reads the pipe buffer pointed to by the
base field of the pipe_info_structure.

pipe_write()
Invoked through the write() system call, pipe_write() writes in the pipe buffer pointed to
by the base field of the pipe_info_structure.

Because unnamed pipes can only be used by a process and its descendants who share file descriptors, there
are no Discretionary Access Control issues.

5.3.2 Named pipes (FIFO)
A FIFO is very similar to the unnamed pipe described in section 5.3.1. Unlike the unnamed pipe, a FIFO
has an entry in the disk-based file system. A large portion of a FIFO’s internal implementation is identical
to that of the unnamed pipe. Both use the same data structure, pipe_inode_info, and routines
pipe_read() and pipe_write(). The only differences are that FIFOs are visible on the system
directory tree and are a bi-directional communication channel.

5.3.2.1 FIFO creation
FIFO exists as a persistent directory entry on the system directory tree. A FIFO is created with the VFS
system call mknod(), as follows:

1. mknod() uses the path name translation routines to obtain the dentry object of the directory
where FIFO is to be created and then invokes vfs_mknod().

2. vfs_mknod() crosses over to the disk-based file system layer by invoking the disk-based file
system version of mknod (ext3_mknod()) through the inode operations vector i_op.

3. A special fifo inode is created and initialized. The inode file operation vector is set to
def_fifo_fops by a call to function init_special_inode(). The only valid file
operation in def_fifo_fops is fifo_open().

The creator of the FIFO becomes its owner. This ownership can be transferred to another user using the
chown() system call. The owner and root user are allowed to define and modify access rights associated
with the FIFO.

The allocation and initialization of inode object is done by the disk-based file system inode allocation
routine; thus, object reuse is handled by the disk-based file system.

5.3.2.2 FIFO open
A call to VFS system call open() performs the same operation as it does for device special files. Regular
Discretionary Access Checks when the FIFO inode is read are identical to access checks performed for
other file system objects, such as files and directories. If the process is allowed to access the FIFO inode,
the kernel proceeds by invoking init_special_inode() because a FIFO on disk appears as a special
file. init_special_inode() sets the inode’s file operation vector i_fop to def_fifo_fops. The
only valid function in def_fifo_fops is the fifo_open() function. fifo_open() appropriately
calls the pipe_read() or pipe_write() functions, depending on the access type. Access control is
performed by the disk-based file system.

 81

5.3.3 System V IPC
The System V IPC consists of message queues, semaphores, and shared memory regions. Message queues
allow formatted data streams that are sent between processes. Semaphores allow processes to synchronize
execution. Shared memory segments allow multiple processes to share a portion of their virtual address
space.

This section describes data structures and algorithms used by the SLES kernel to implement the System V
IPC. This section also focuses on the implementation of the enforcement of Discretionary Access Control
and handling of object reuse by the allocation algorithms.

The IPC mechanisms share the following common properties:

• Each mechanism is represented by a table in kernel memory whose entries define an instance of
the mechanism.

• Each table entry contains a numeric key, which is used to reference a specific instance of the
mechanism.

• Each table entry has an ownership designation and access permissions structure associated with it.
The creator of an IPC object becomes its owner. This ownership can be transferred by the IPC
mechanism’s “control” system call. The owner and root user are allowed to define and modify
access permissions to the IPC object. Credentials of the process attempting access, ownership
designation, and access permissions are used for enforcing Discretionary Access Control. The root
user is allowed to override Discretionary Access Control setup through access permissions.

• Each table entry includes status information such as time of last access or update.
• Each mechanism has a “control” system call to query and set status information, and to remove an

instance of a mechanism.

5.3.3.1 Common data structures
The following list describes security-relevant common data structures that are used by all three IPC
mechanisms:

ipc_ids

The ipc_ids data structure fields, such as size (which indicates the maximum number of
allocatable IPC resources), in_use (which holds the number of allocated IPC resources), and
entries (which points to the array of IPC resource descriptors).

ipc_id
Describes the security credentials of an IPC resource with the field p, which is a pointer to the
resource’s credential structure.

kern_ipc_perm
The credential structure for an IPC resource with fields such as key, uid, gid, cuid,
cgid, mode, and seq. uid and cuid represent the owner and creator user ID. gid and
cgid represent the owner and creator group ID. mode represents the permission bit mask and
seq identifies the slot usage sequence number.

5.3.3.2 Common functions
Common security-relevant functions are ipc_alloc() and ipcperms().

ipc_alloc()

ipc_alloc() is invoked from the initialization functions of all three IPC resources to allocate
storage space for the IPC resources’ respective arrays of IPC resource descriptors. The IPC
resource desciptors are pointed to by the ipc_ids data structure field, entries. Depending on

 82

the size, computed from the maximum number of IPC resources, ipc_alloc() invokes either
kmalloc() with the GFP_KERNEL flag or vmalloc(). There are no object reuse issues
because in both cases the memory allocated is in the kernel buffer and is used by the kernel for its
internal purposes.

ipcperms()

ipcperms() is called when a process attempts to access an IPC resource. Access to the IPC
resource is granted based on the same logic as that of regular files, using the object’s owner,
group, and access mode. The only difference is that the IPC resource’s owner and creator are
treated equivalently and the execute permission flag is not used.

5.3.3.3 Message queues
Important data structures for message queues are msg_queue, which describes the structure of a message
queue, and msg_msg, which describes the structure of the message. Important functions for message
queues are msgget(), msgsnd(), msgrcv(), and msgctl(). Once marked for deletion, no further
operation on a message queue is possible.

msg_queue

Describes the structure of a message queue with fields such as q_perm (which points to the
kern_ipc_perm data structure), q_stime (which contains time of the last msgsnd()),
q_qcbytes (which contains the number of bytes in queue, q), and qnum (which contains the
number of messages in a queue).

msg_msg
Describes the structure of a message with fields such as m_type (which specifies the message
type), m_ts (which specifies message text size), m_list (which points to message list) and next
(which points to msg_msgseg corresponding to the next page frame containing the message).

msgget()

The function invoked to create a new message queue or to get a descriptor of an existing queue
based on a key. The newly created message queue’s credentials are initialized from the creating
process’s credentials.

msgsnd()

msgsnd is a function that is invoked to send a message to a message queue. Discretionary Access
Control is performed by invoking the ipcperms() function. A message is copied from the user
buffer into the newly allocated msg_msg structure. Page frames are allocated in the kernel’s
buffer space using the kmalloc() and GFP_KERNEL flag. Thus, no special object reuse
handling is required.

msgrcv()

msgrcv is a function that is invoked to receive a message from a message queue. Discretionary
Access Control is performed by invoking the ipcperms() function.

msgctl()

msgclt is a function that is invoked to set attributes of, query status of, or delete a message
queue. Message queues are not deleted until the process waiting for the message has received it.
Discretionary Access Control is performed by invoking the ipcperms() function.

5.3.3.4 Semaphores
Semaphores allow processes to synchronize execution by performing a set of operations atomically on
themselves. An important data structure implementing semaphores in the kernel is sem_array, which

 83

describes the structure of the semaphore. Important functions are semget(), semop(), and semctl().
Once marked for deletion, no further operation on a semaphore is possible.

sem_array

Describes the structure and state information for a semaphore object. sem_array contains fields,
such as sem_perm (the kern_ipc_perm data structure), sem_base (which is a pointer to the
first semaphore), and sem_pending (which is a pointer to pending operations).

semget()
A function that is invoked to create a new semaphore or to get a descriptor of an existing
semaphore based on a key. The newly created semaphore’s credentials are initialized from the
creating process’s credentials. The newly allocated semaphores are explicitly initialized to zero by
a call to memset().

semop() and semtimedop()
semop is a function that is invoked to perform atomic operations on semaphores. semtimedop
is similar to semop, except that it provides an expiration time for cases where the calling process
may sleep. Discretionary Access Control is performed by invoking the ipcperms() function.

semctl()
semctl is a function that is invoked to set attributes of, query status of, or delete a semaphore. A
semaphore is not deleted until the process waiting for a semaphore has received it. Discretionary
Access Control is performed by invoking the ipcperms() function.

5.3.3.5 Shared memory regions
Shared memory regions allow two or more processes to access common data by placing the processes in an
IPC shared memory region. Each process that wants to access the data in an IPC shared memory region
adds to its address space a new memory region, which maps the page frames associated with the IPC shared
memory region. Shared memory regions are implemented in the kernel using the data structure
shmid_kernel and functions shmat(), shmdt(), shmget(), and shmctl().

shmid_kernel

Describes the structure and state information of a shared memory region with fields such as,
shm_perm (which stores credentials in the kern_ipc_perm data structure), shm_file (which is the
special file of the segment), shm_nattach (which holds the number of current attaches), and
shm_segsz (which is set to the size of the segment).

shmget()
A function that is invoked to create a new shared memory region or to get a descriptor of an
existing shared memory region based on a key. A newly created shared memory segment’s
credentials are initialized from the creating process’s credentials. shmget() invokes newseg()
to initialize the shared memory region. newseg() invokes shmem_file_setup() to set up
the shm_file field of the shared memory region. shmem_file_setup() calls
get_empty_filp() to allocate a new file pointer and explicitly zeroes it out to ensure that the
file pointer does not contain any residual data.

shmat()
shmat is invoked by a process to attach a shared memory region to its address space.
Discretionary Access Control is performed by invoking the ipcperms() function. The pages are
added to a process with the “Demand Paging” technique described in section 5.5.3. Hence, the
pages are dummy pages. The function adds a new memory region to the process’s address space,
but actual memory pages are not allocated until the process tries to access the new address for a
write operation. When the memory pages are allocated, they are explicitly zeroed out, as described
in section 5.5.3, satisfying the object reuse requirement.

 84

shmdt()

shmdt is invoked by a process to detach a shared memory region from its address space.
Discretionary Access Control is performed by invoking the ipcperms() function.

shmctl()
shmctl is a function that is invoked to set attributes of, query status of, or delete a shared
memory region. A shared memory segment is not deleted until the last process detaches it.
Discretionary Access Control is performed by invoking the ipcperms() function.

5.3.4 Signals
Signals offer a means of delivering asynchronous events to processes. Processes can send signals to each
other via the kill() system call, or the kernel can deliver the signals internally. Events that cause a signal
to be generated include: keyboard interrupts via the interrupt, stop or quit keys, exceptions from invalid
instructions, and termination of a process. Signal transmission can be broken up into the following two
phases:

Signal generation phase

The kernel updates appropriate data structures of the target process to indicate that a signal has
been sent.

Signal delivery phase

The kernel forces the target process to react to the signal by changing its execution state and/or by
starting the execution of a designated signal handler.

Signal transmission does not create any user-visible data structures. Therefore, there are no object reuse
issues. However, signal transmission does raise access control issues. This subsection describes relevant
data structures and algorithms used to implement discretionary access control. For more detailed
information on the design and implemenation of signal generation and signal transmission, please refer to
the SLES Low Level Design, by Janak Desai, George Wilson, and Michael Halcrow.

5.3.4.1 Data structures
Access control is implemented in the signal generation phase. The main data structure involved in signal
transmission access control is the process descriptor structure task_struct. Each process’s
task_struct contains fields that designate the real and effective user ID of the process. These fields are
used to determine if one process is allowed to send a signal to another process.

5.3.4.2 Algorithms
Access control is performed at the signal generation phase. Signal generation, either from the kernel or
from another process, is performed by invoking the routine send_sig_info(). The kill() system
call, along with signal generation by the kernel, ultimately invokes send_sig_info().
send_sig_info() allows signal generation if the kernel is trying to generate a signal for a process. For
user processes, send_sig_info() delivers the signal after ensuring that at least one of the following is
true:

• Sending and receiving processes belong to the same user.
• An administrator is the owner of the sending process.
• The signal is SIGCONT(to resume execution of a suspended process) and the receiving process is

in the same login session of the sending process.

If the above conditions are not met, access is denied.

 85

5.3.5 Sockets
A socket is an endpoint for communication. Two sockets must be connected to establish a communications
link. Sockets provide a common interface to allow process communication across a network (internet
domain) or on a single machine (UNIX domain). Processes that communicate using sockets use a client-
server model. A server provides a service and clients make use of that service. A server that uses sockets
first creates a socket and then binds a name to it. An Internet domain socket has an IP port address bound to
it. The registered port numbers are listed in /etc/services; for example, the port number for the ftp server is
21. Having bound an address to the socket, the server then listens for incoming connection requests
specifying the bound address. The originator of the request, the client, creates a socket and makes a
connection request on it, specifying the target address of the server. For an Internet domain socket, the
address of the server is its IP address and its port number.

Sockets are created using the socket() system call. Depending on the type of socket (UNIX domain or
internet domain), the socket family operations vector invokes either unix_create() or
inet_create(). unix_create() and inet_create() invoke sk_alloc() to allocate the
sock structure. sk_alloc() calls kmem_cache_alloc() to allocate memory and then zeros the
newly allocated memory by invoking memset(), thus taking care of object reuse issues associated with
sockets created by users.

bind() and connect() to a UNIX domain socket file requires write access to it. UNIX domain sockets can be
created in the ext3 file system and, therefore, may have an ACL associated with it.

For a more detailed description of client-server communication methods and the access control performed
by them, please refer to section 5.10.

UNIX domainInternet domain

Socket create

Type of Socket? unix_create inet_create

sk_alloc

kmem_cache_alloc

Call memset() to zero the newly allocated memory

Figure 5-13. Object reuse handling in socket allocation

 86

5.4 Network subsystem
A network subsystem provides a general-purpose framework within which network services are
implemented. It interacts with the file and I/O subsystem, the memory subsystem, the process subsystem,
the IPC subsystem, and the device drivers.

Network services include transmission and reception of data, network independent support for message
routing, and network independent support for application software. The network subsystem interfaces to
system calls via the IPC subsystem and the socket interface described there. The following subsections
present an overview of the network stack and describe how various layers of the network stack are used to
implement network services. For detailed information on the networking subsystem, please refer to the
following:

Internetworking with TCP/IP, by Douglas E. Comer & David L. Stevens
SLES Low Level Design, by Janak Desai, George Wilson, and Michael Halcrow
IBM Redbook “TCP/IP Tutorial and Technical Overview”, by Adolfo Rodriguez, et al.
http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf

Figure 5-14. Networking subsystem and its interaction with other subsystems

Kernel

Network Subsystem

Hardware

System Call Service Routines

Protocol Independent Interface

Network Protocols

Device Independent Interface

Network Device Drivers

Device Hardware

File and I/O
Subsystem

Memory
Subsystem

Process
Subsystem

User
Library interface to system calls

IPC-Subsystem

 87

5.4.1 Overview of network stack
This section describes the path of a network packet within a Linux environment. There are five major
layers that comprise the Linux Network Architecture: application, transport, network, link, and physical.

The process of an outgoing packet begins at the application level, where such services as ftp and ssh
generate traffic and send a packet of information to the transport layer.

The transport layer is composed of a protocol, which in most cases is either TCP or UDP. These two
protocols provide the basic service of addressing packets to various ports in the system, and also provide
further services especially in the case of TCP. See the sections below on each particular protocol for further
detail.

Once the packet has been routed to the proper port, the network layer takes over. The standard network
protocol on Linux is IP. The main role of IP is to check whether a packet is to remain on the host or if it
needs forwarding to an outside system. When necessary, IP defragments packets and delivers them to the
transport protocol. IP also maintains a database that contains routing information for outgoing packets,
which is then utilized to address and fragment the packets before sending them on to the link layer.

The most common link layer protocol utilized for Linux is the Ethernet protocol. The link layer and
physical layer work hand in hand. The physical layer is composed of the actual network device, such as
Ethernet and token ring. The link layer allows devices in the physical layer to communicate with one
another, and thus send information (packets) between them. In the case of our outgoing packet, once the
network layer of the new host has been reached, the process is either reversed if the network layer protocol
determines the host is the intended destination system of the packet, or forwarded on to another system.

Application
layer

Transport
layer

Network
layer

Link layer

Physical layer

Application
layer

Transport
layer

Network
layer

Link layer

Physical layer

Figure 5-15. Network stack and protocols that operate at each level

Host 1 Host 2

The application layer handles
user applications such as ftp
and ssh.

The transport layer handles
communications between hosts
with TCP or UDP.

The network layer routes data
from source to destination using
IP protocol.

The link layer transfers data
to/from physical medium using
protocols such as Ethernet

The physical layer converts bits
into voltages or light impulses
for transmission.

 88

5.4.1.1 Transport layer protocols
The SLES kernel supports two transport layer protocols: Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP).

TCP
Transmission Control Protocol is a set of rules used along with the Internet Protocol (IP) to send data
between computing systems over the Internet. TCP keeps track of these data messages and organizes them
into fragments or packets for delivery, and then reassembles them to the original message upon arrival at
the intended remote system. TCP allows for a full-duplex stream of communication between two processes.
TCP is a connection-oriented protocol, which means that a connection is established and maintained until
such time as the message or messages that are to be exchanged by the application programs at each end
have been exchanged. TCP also has the ability to handle flow control. This prevents the source machine
from swamping a slower destination machine with data. If the destination machine's buffer becomes full
with incoming packets, TCP sends a control signal to the source machine indicating that it cannot handle
any more information at the moment and to slow down the transmission. TCP has the ability to handle
sequencing. When packets are being sent out, not all of them take the same route, which can result in
packets being delivered out of sequence. TCP has a way of reordering the segments to avoid the sender
having to resend all the segments. The operation of the TCP protocol can be divided into three distinct
sections: establishment of connection, transmission of data, and termination of connection. For more
information, see RFC7931.

UDP
User Datagram Protocol is similar to TCP, but provides fewer error recovery services and features. UDP is
primarily used for broadcasting messages over a network. UDP is an unreliable connectionless protocol that
is useful for applications that do not require or want TCP's sequencing or flow control. UDP is used for
one-shot, request-reply applications where prompt delivery is important. Examples of these types of
applications would be DNS (Domain Name System) and transmission of speech or video. For more
information, see RFC768.

5.4.1.2 Network layer protocols
The SLES kernel supports two network layer protocols: Internet Protocol (IP) and Internet Control
Message Protocol (ICMP).

Internet Protocol
The SLES kernel supports the Internet Protocol version 4. IPv4 is the standard that defines the manner in
which network layers of two hosts interact. IPv4 provides a connectionless, unreliable, best-effort packet
delivery service. IP stamps a packet with the addresses of the receiver and the sender and determines the
proper routing decisions for each packet. A best-effort delivery service means that packets might be
discarded during transmission, but not without a good reason.

All IP packets or datagrams consist of a header part and a text part (payload). The payload has a maximum
size limit of 65536 bytes per packet. The header also consists of a Time to Live (TTL) that is used to limit
the life of the packet on the network. Three fields in the IPv4 header are devoted to fragmentation. If the
network layer receives a transport datagram that is too large to transport, it subdivides the data into smaller
sized chunks. These fragments are controlled by the DF, MF and Fragment Offset fields in the header.

1 The Requests for Comments (RFCs) form a series of notes, started in 1969, about the Internet (originally
the ARPANET). These notes discuss many aspects of computer communication, focusing on networking
protocols, procedures, programs, and concepts. For more information see http://isc.faqs.org/rfcs/.

 89

The DF stands for Don't Fragment, which is an order to routers not to fragment the datagrams. This bit is
set when the destination node is incapable of reassembling the fragments.

The MF field stands for More Fragments, which indicates that the current packet does not contain the final
fragment in the datagram. Only the final fragment in a series has this bit turned off.

The Fragment Offset field specifies the order in which a particular fragment belongs in the current
datagram. All fragments except the last one in a datagram must be a multiple of 8 bytes, which is the
elementary fragment unit. Because 13 bits are provided for this field, there is a maximum of 8192 possible
fragments per datagram.

The Type of Service field is not commonly used. It allows the host to specify a tradeoff between fast
service and reliable service.

Further details on other fields in the IP header can be found in RFC 791.

As discussed previously, every host and router on the Internet has an address that uniquely identifies it and
also denotes the network on which it resides. No two machines can have the same IP address. To avoid
addressing conflicts, the network numbers have been assigned by the InterNIC (formerly known simply as
NIC). Blocks of IP addresses are assigned to individuals or organizations according to one of three
categories--Class A, Class B, or Class C. Class D format is used for multicasting, in which a datagram is
directed to multiple hosts. Class E format is reserved for future use. These addresses are in the form of 32-
bit binary strings. The address is divided into parts that determine the location of a system. The network
part of the address is common for all machines on a local network. The host part of the IP address provides
information that is specific to a local network and thus distinguishes one system from another. The host
part of an IP address can be further split into a sub-network address and a host address. Subnetworks permit
organizations to manage groups of information more effectively.

Internet Control Message Protocol
ICMP is a management protocol and messaging service provider for IP. The primary function is to send
messages between network devices regarding the health of the network. ICMP delivers error messages
between hosts. ICMP doesn’t use ports to communicate like transport protocols do.

ICMP messages fall into the following three general classes:

• The first class includes various errors that can occur somewhere in the network and that can be
reported back to the originator of the packet provoking the error.

• The second class includes gateway-to-host control messages; for example, a source-quench
message that reports excessive output and packet loss, and a routing redirect that informs a host
that a better route is available for a host or a network via a different gateway.

• The third class includes network address request and reply, network mask request and reply, an
echo request and reply, and a timestamp request and reply.

5.4.1.3 Link layer protocols
Address Resolution Protocol (ARP) is the link layer protocol that is supported on the SLES system.

Address Resolution Protocol
On a TCP/IP network, each computer and network device requires a unique IP address and also a unique
physical hardware address. Each Network Interface Card (NIC) has a unique physical address that is
programmed into the read-only memory chips on the card by the manufacturer. The physical address is also
referred to as the Media Access Control (MAC) address. The network layer works with and understands
physical addresses, whereas the transport and application layers understand IP addresses. The Address
Resolution Protocol maps MAC and IP addresses to convert one into another. When the link layer receives

 90

a frame, ARP broadcasts a frame requesting the MAC address that corresponds to the destination IP
address. Each computer on the subnet receives this broadcast frame and all but the computer that has the
requested IP address ignore it. The computer that has the destination IP address responds with its MAC
address.

5.4.2 Network services interface
The SLES kernel provides a socket interface to programs for obtaining network services from the system.
Network services are mainly implemented using the client/server architecture. The following illustrates
system calls of the socket interface and how they are used by client and server programs, to establish a
communication channel.

A communication channel is established using ports and sockets, which are needed to determine which
local process at a given host actually communicates with which process, on which remote host, using which
protocol. A port is a 16-bit number, used by the host-to-host protocol to identify which higher level
protocol or application program it must deliver incoming messages to. Sockets, which are described in

Create
connection

Blocks until connection
from client

Data reply

Data request

Connection
establishment

Process request

shutdown

Send/Receive
data

Send/Receive
data

Set up connection
to server

Open
communication

end point

socket()

bind()

listen()

accept()

read()

socket()

connect()

write()

write() read()

close() close()

server

client

Open communication
end point

Register well known
address with the system

Establish client
connection requests

queue size

Accept first client
connection request

on the queue

Send/Receive
data

Send/Receive
data

shutdown

Figure 5-16. Connection establishment using the socket interface

 91

section 5.3.5, are communications endpoint. Ports and sockets provide a way to uniquely and uniformly
identify connections and the program and hosts that are engaged in them.

The following describes any access control and object reuse handling associated with establishing a
communications channel.

socket()
socket() creates an endpoint of communication using the desired protocol type. Object reuse handling
during socket creation is described in section 5.3.5.

bind()
bind() associates a name (address) to a socket that was created with the socket system call. It is
necessary to assign an address to a socket before it can accept connections. Depending on the domain type
of the socket, the bind function gets diverted to the domain-specific bind function.

inet_bind() ensures that if the port number being associated with the socket is below PROT_SOCK
(defined at compile time as 1024) then the calling process possesses the CAP_NET_BIND_SERVICE
capability. On TOE, the CAP_NET_BIND_SERVICE capability maps to uid of zero.

Figure 5-18. bind() function for UNIX domain TCP socket.

socket

ops

For an UNIX domain TCP socket, socket operations map to unix_stream_ops

unix_stream_ops Socket operations

unix_bind

unix_stream_conne

unix_accept

unix_listen

bind

connect

accept

listen

Figure 5-17. bind() function for internet domain TCP socket.

socket

ops

For an internet domain TCP socket, socket operations map to inet_stream_ops

inet_stream_ops Socket operations

inet_bind

inet_stream_connec

inet_accept

inet_listen

bind

connect

accept

listen

 92

Similarly, for UNIX domain sockets, bind() invokes unix_bind(). unix_bind() creates an entry
in the regular (ext3) file system space. This process of creating an entry for a socket in the regular file
system space has to undergo all file system access control restrictions. The socket exists in the regular ext3
file system space and honors discretionary access control policies of the ext3 file system described in
section 5.1. bind() does not create any data objects that are accessible to users and therefore there are no
object reuse issues to handle.

listen()
listen() indicates a willingness to accept incoming connections on a particular socket. A queue limit
for the number of incoming connections is specified with listen(). Other than checking the queue limit,
listen() does not perform any access control. listen()does not create any data objects that are
accessible to users and therefore there are no object reuse issues to handle. Only TCP sockets support
listen() system call.

accept()
accept() accepts a connection on a socket. accept() does not perform any access control.
accept()does not create any data objects that are accessible to users and therefore there are no object
reuse issues to handle. Only TCP sockets support accept() system call.

connect()
connect() initiates a connection on a socket. The socket must be “listening” for connections otherwise
the system call returns an error. Depending upon the type of the socket (stream for TCP or datagram for
UDP), connect() invokes the appropriate domain type specific connection function. connect() does
not perform any access control. connect()does not create any data objects that are accessible to users
and therefore there are no object reuse issues to handle.

read(), write() and close()
read(), write() and close() are generic I/O system calls that operate on a file descriptor.
Depending on the object type, whether regular file, directory or socket, appropriate object specific
functions are invoked. Access control is performed at bind() time. read(), write(), and close()
operations on sockets do not perform any access control.

Figure 5-19. Mapping of read, write and close calls for sockets.

file

f_op

For a socket, file operations map to socket_file_ops

socket_file_ops File operations

sock_read

sock_write

sock_ioctl

Sock_close

read

write

ioctl

release

 93

5.5 Memory management
This section describes the memory management subsystem of the SLES kernel. The memory management
subsystem is responsible for the management of memory resources available on a system. The memory
management subsystem includes allocation of physical memory, management of the system and process
virtual address spaces, controlled sharing of memory among multiple processes, and allocation of memory
for objects implemented in memory. The memory management subsystem interacts with the process
subsystem, the network subsystem, the IPC subsystem and the file and I/O subsystem.

This section highlights the implementation of the System Architecture requirement of a) allowing the
kernel software to protect its own memory resources and b) isolating memory resources of one process
from those of another, while allowing controlled sharing of memory resources between user processes.

This section is divided into three subsections. The first subsection, “Memory Addressing,” illustrates the
SLES kernel’s memory addressing scheme and highlights how segmentation and paging are used to prevent
unauthorized access to a memory address. The second subsection, “Kernel Memory Management,”
describes how the kernel allocates dynamic memory for its own use and highlights how the kernel takes
care of object reuse while allocating new page frames. The third subsection, “Process Address Space,”
describes how a process views dynamic memory and what the different components are of a process’s
address space. The third subsection also highlights how the kernel enforces access control with memory
regions and handles object reuse with demand paging.

Because implementations of a portion of the memory management subsystem are dependent on the
underlying hardware architecture, the following subsections identify and describe, where appropriate, how
the hardware-dependent part of the memory management subsystem is implemented for the xSeries,
pSeries, iSeries, zSeries, and eServer 325 lines of servers, which are all part of the TOE.

Figure 5-20. Memory subsystem and its interaction with other subsystems

Kernel
Memory Subsystem

Process
Subsystem

Network
Subsystem

IPC
subsystem

System Call Service Routines

Architecture
Independent Manager

Architecture
specific
manager

Hardware
Memory Hardware

User
Library interface to system calls

File and I/O
subsystem

 94

5.5.1 Memory addressing
A memory address provides a way to access the contents of a memory cell. As part of executing a program
a processor accesses memory to fetch instructions or to fetch and store data. Addresses used by the program
are virtual addresses. The memory management subsystem provides translation from virtual to real
addresses. The translation process, in addition to computing valid memory locations, also performs access
checks to ensure that a process is not attempting an unauthorized access.

Memory addressing is highly dependent on the processor architecture. The following sections describe
memory addressing for xSeries, pSeries, iSeries, zSeries, and eServer 325 systems.

5.5.1.1 xSeries
The following briefly describes the xSeries memory addressing scheme. For more detailed information on
the xSeries memory management subsystem, please refer to the SLES Low Level Design, by Janak Desai,
George Wilson, and Michael Halcrow.

On xSeries computers, there are three address types:

Logical address

The address is included in the machine language instruction for an operand or for an instruction. A
logical address consists of a segment and an offset that signifies the distance from the start of the
actual address.

Linear address
A 32-bit unsigned integer that can address up to 4,249,967,296 (4GB) memory cells.

Physical address
A 32-bit unsigned integer that addresses memory cells in physical memory chips.

To access a particular memory location, the CPU, using its segmentation unit, transforms a logical address
into a linear address, which in turn is translated into a physical address by the CPU paging unit.

5.5.1.1.1 Segmentation
The segmentation unit translates a logical address into a linear address. A logical address has two parts: A
16-bit segment identifier called the segment selector, and a 32-bit offset. For fast retrieval of the segment
selector, the processor provides six segmentation registers to hold segment selectors. Each segmentation
register has a specific purpose. For example, the code segment (cs) register points to a memory segment
that contains program instructions. The code segment register also includes a 2-bit field that specifies the
Current Privilege Level (CPL) of the CPU. The CPL value of 0 denotes the highest privilege level,
corresponding to the kernel mode; the CPL value of 3 denotes the lowest privilege level, corresponding to
the user mode.

Figure 5-21. xSeries address types and their conversion units

Logical Address
16-bit segment identifier: 32-bit Offset

Linear Address
32-bit

Physical Address
32-bit

Segmentation Unit Paging Unit

 95

Each segment is represented by an 8-byte segment descriptor that describes characteristics of the segment.
Descriptors are stored in either the Global Descriptor Table (GDT) or the Local Descriptor Table (LDT).
The system has one GDT, but may create an LDT for a process if it needs to create additional segments
besides those stored in the GDT. The GDT is accessed through the gdtr processor register, while the
LDT is accessed through the ldtr processor register. From the perspective of hardware security access,
both GDT and LDT are equivalent. Segment descriptors are accessed through their 16-bit segment
selectors. A segment descriptor contains information, such as segment length, granularity for expressing
segment size, and segment type, which indicates whether the segment holds code or data. Segment
descriptors also contain a 2-bit Descriptor Privilege Level (DPL), which restricts access to the segment.
The DPL represents the minimal CPU privilege level required for accessing the segment. Thus, a segment
with a DPL of 0 is accessible only when the CPL is 0.

The following figure schematically describes access control as enforced by memory segmentation.

5.5.1.1.2 Paging
The paging unit translates a linear address into a physical address. Linear addresses are grouped in fixed
length intervals called pages. To allow the kernel to specify the physical address and access rights of a page
instead of addresses and access rights of all the linear addresses in the page, continuous linear addresses
within a page are mapped to continuous physical addresses.

 Figure 5-23. Contiguous linear addresses map to contiguous physical addresses

Linear Page Address Physical Page Address

Linear Address

…

Physical Address

Linear Page Physical Page

Descriptor Table

Segment Descript

Figure 5-22. Access control through segmentation

Seg Selector offset

seg descript
…
…
size
granularity
DPL = 0

DPL = 0 --- No Access
DPL = 3 --- Access

cs register

 CPL 3

Code Segment

Assembly Instr
….
….
….

Access logical
Address 0x___

….
….

 96

The paging unit sees all Random Access Memory as partitioned into fixed-length page frames. A page
frame is a container for a page. A page is a block of data that can be stored in a page frame, in memory, or
on disk. Data structures that map linear addresses to physical addresses are called page tables. Page tables
are stored in memory and are initialized by the kernel when the system is started.

5.5.1.1.2.1 Paging in hardware
The xSeries supports two types of paging: regular paging and extended paging. The regular paging unit
handles 4 KB pages, and the extended paging unit handles 4 MB pages. Extended paging is enabled by
setting the Page Size flag of a Page Directory Entry.

In regular paging, 32-bits of linear address are divided into location representations for the following:

Directory

The most significant 10-bits.
Table

The intermediate 10-bits.
Offset
 The least significant 12-bits.

In extended paging, 32-bits of linear address are divided into location representations for the following:

Directory

The most significant 10-bits.
Offset
 The remaining 22-bits.

Figure 5-25. 32 bit linear address – extended paging

Directory (bits 31-22) Offset (bits 0-21)

Page
Directory

4MB Page

Figure 5-24. 32 bit linear address

Directory (bits 31-22) Table (bits 12-21) Offset (bits 0-11)

Page
Directory

Page
Directory

Page

 97

Each entry of the page directory and the page table is represented by the same data structure. This data
structure includes fields that describe the page table or page entry (such as accessed flag, dirty flag, and
page size flag). The two important flags for access control are the Read/Write flag and the User/Supervisor
flag.

Read/Write flag

Contains the access rights of the page or the page table. The Read/Write flag is either read/write or
read. If set to 0, the corresponding page or page table can only be read; otherwise, the
corresponding page table can be written to or read.

User/Supervisor flag
Contains the privilege level that is required to access the page or page table. The User/Supervisor
flag is either 0, which indicates that the page can be accessed only in kernel mode, or 1, which
indicates it can be accessed always.

5.5.1.1.2.2 Paging in the SLES kernel
The SLES kernel is version 2.6.5 of Linux. The SLES kernel implements three-level paging to support 64-
bit architectures. The linear address is divided into the page global directory, the page middle directory, the
page table, and the offset. On the TOE configuration of the SLES kernel running on xSeries systems, the
page middle directory field is eliminated when it is set to zero.

5.5.1.1.2.3 Access control for control transfers through call gates
Intel processors uses call gates for control transfers to higher privileged code segments. Call gates are
descriptors that contain pointers to code-segment descriptors and control access to those descriptors.
Operating systems can use call gates to establish secure entry points into system service routines. Before
loading the code register with the code segment selector located in the call gate, the processor performs the
following three privilege checks:

1. Compare the CPL with the call-gate DPL from the call-gate descriptor. The CPL must be less than
or equal to the DPL.

2. Compare the RPL in the call-gate selector with the DPL. The RPL must be less than or equal to
the DPL.

Figure 5-26. Access control through paging

cs register

 CPL 3

Code Segment

Assembly Instr
….
….
….

Access linear
Address 0x___

….
….

Directory

Minimum Required PL = 0 --- No Access
Minimum Required PL = 3 --- Access

Table offset

Page
Directory
Descriptor

.

.

.
min req PL

Page Table
Descriptor

.

.

.

.
min req PL

 98

3. Call or jump, through a call gate, to a conforming segment requires that the CPL must be greater
than or equal to the DPL. A call or jump, through a call gate, requires that the CPL must be equal
to the DPL.

5.5.1.1.3 Translation Lookaside Buffers (TLB)
The xSeries processor includes an address translation cache called the Translation Lookaside Buffer (TLB)
to expedite linear-to-physical address translation. The TLB is built up as the kernel performs linear-to-
physical translations. Using the TLB, the kernel can quickly obtain a physical address corresponding to a
linear address, without going through the page tables. Because address translations obtained from the TLB
do not go through the paging access control mechanism described in 5.5.1.1.2, the kernel flushes the TLB
buffer every time a process switch occurs between two regular processes. This process enforces the access
control mechanism implemented by paging, as described in section 5.5.1.1.2.

5.5.1.2 pSeries
Linux on pSeries systems can run in native mode or in a logical partition. Memory addressing for the SLES
kernel running in logical partition is covered in the iSeries section 5.5.1.3. Both iSeries and pSeries use
either POWER4 or POWER5 processors. POWER5 processor based systems only support SLES kernel
running in a logical partition. This section describes the pSeries memory addressing for the SLES kernel
running in native mode. For more detailed information on the pSeries memory management subsystem,
please refer to the following:

Engebretsen David, PowerPC 64-bit Kernel Internals,
http://oss.software.ibm.com/linux/presentations/ppc64/ols2001/ppc64-ols-2001.ps

pSeries hardware documents at http://www.ibm.com/eserver/pseries

On pSeries systems, there are four address types:

Effective address

The effective address, also called the logical address, is a 64-bit address included in the machine
language instruction of a program to fetch an instruction, or to fetch and store data. It consists of
an effective segment ID (bits 0-35), a page offset within the segment (bits 36-51), and a byte offset
within the page (bits 52-63).

Virtual address
The virtual address, which is equivalent to the linear address of xSeries, is a 64-bit address used as
an intermediate address while converting an effective address to a physical address. It consists of a
virtual segment ID (bits 0-35), a page offset within the segment (bits 36-51), and a byte offset
within the page (bits 52-63). All processes are given a unique set of virtual addresses. This allows
a single hardware page table to be used for all processes. Unique virtual addresses for processes
are computed by concatenating the effective segment ID (ESID) of the effective address with a 23-
bit field, which is the context number of a process. All processes are defined to have a unique
context number. The result is multiplied by a large constant and masked to produce a 36-bit virtual
segment ID (VSID). In case of kernel addresses, the high order nibble is used in place of the
context number of the process.

Effective segment ID (ESID) Page Offset Byte Offset

Figure 5-27. Effective address

Virtual segment ID (VSID) Page Offset Byte Offset

Figure 5-28. Virtual address

 99

Physical address

The physical address is a 64-bit address of a memory cell in a physical memory chip.

Block address
A block is a collection of contiguous effective addresses that map to contiguous physical
addresses. Block sizes vary from 128-Kbyte to 256-Mbyte. The block address is the effective
address of a block.

To access a particular memory location, the CPU transforms an effective address into a physical address
using one of the following address translation mechanisms.

• Real mode address translation, where address translation is disabled. The physical address is the
same as the effective address.

• Block address translation, which translates the effective address corresponding to a block of size
128-Kbyte to 256-Mbyte.

• Page address translation, which translates a page-frame effective address corresponding to a 4-
Kbyte page.

The translation mechanism is chosen based on the type of effective address (page or block) and settings in
the processor Machine State Register (MSR). Settings in the MSR and page, segment, and block
descriptors are used in implementing access control. The following describes the MSR, page descriptor,
segment descriptor and block descriptor structures and identifies fields that are relevant for implementing
access control.

Machine State Register (MSR)
The Machine State Register is a 64-bit register. The MSR defines the state of the processor.

Figure 5-29. Block address

Block Address

Effective addr

…

Effective addr

Physical Address

Physical Address

contiguous
effective

page addrs

contiguous
physical

page addrs

bits relevant for access
control

Figure 5-30. Machine State Register

 100

PR – Privilege Level. The Privilege Level takes the value of 0 for the supervisor level and 1 for the user
level.
IR – Instruction Address Translation. The value of 0 disables translation and the value of 1 enables
translation.
DR – Data Address Translation. The value of 0 disables translation and the value of 1 enables translation.

Page descriptor
Pages are described by Page Table Entries (PTEs). PTEs are generated and placed in a page table in
memory by the operating system. A PTE on SLES is 128-bits in length. Bits relevant to access control are
Page protection bits (PP), which are used with MSR and segment descriptor fields to implement access
control.

Segment descriptor
Segments are described by Segment Table Entries (STEs). STEs are generated and placed in segment tables
in memory by the operating system. Each STE is a 128-bit entry that contains information for controlling
segment search process and for implementing the memory protection mechanism.

Ks – Supervisor-state protection key
Kp – User-state protection key
N – No-execute protection bit

bits relevant for access control

Figure 5-31. Page Table Entry

bits relevant for access
control

Figure 5-32. Segment Table Entry

 101

Block descriptor
For address translation, each block is defined by a pair of special purpose registers called upper and lower
BAT (Block Address Translation) registers that contain effective and physical addresses for the block.

Vs – Supervisor mode valid bit. Used with MSR[PR] to restrict translation for some block addresses.
Vp – User mode valid bit. Used with MSR[PR] to restrict translation for some block addresses.
PP – Protection bits for block.

Address translation mechanisms
The following simplified flowchart describes the process of selecting an address translation mechanism
based on the MSR settings for instruction (IR) or data (DR) access. For performance measurement, the
processor concurrently starts both Block Address Translation (BAT) and Segment Address Translation.
BAT takes precedence; therefore, if BAT is successful, Segment Address Translation result is not used.

The following sections describe the three address translation mechanisms and the access control performed
by them.

Upper BAT register

bits relevant for
access control

Lower BAT register

Figure 5-33. Block Address Translation entry

hit

miss

1

0

Real Mode
Address

Translation

MSR[X]
value?

X = IR
X = DR

Search BAT
array?

Effective
address

Page
Address

Translation

Block
Address

Translation

Figure 5-34. Address translation method selection

 102

Real Mode Address Translation
Real Mode Address Translation is not technically the translation of any addresses. Real Mode Address
Translation signifies no translation. That is, the physical address is the same as the effective address. This
mode is used by the operating system during initialization and some interrupt processing. Because there is
no translation, there is no access control implemented for this mode. However, because only the superuser
can alter MSR[IR] and MSR[DR], there is no violation of security policy.

Block Address Translation and access control
Block Address Translation checks to see if the effective address is within a block defined by the BAT
array. If it is, Block Address Translation goes through the steps described in Figure 5-21 to perform the
access check for the block and get its physical address.

Block Address Translation allows an operating system to designate blocks of memory for use in user mode
access only, for supervisor mode access only, or for user and supervisor access. In addition, Block Address
Translation allows the operating system to protect blocks of memory for read access only, read-write
access, or no access. BAT treats instruction or data fetches equally. That is, using BAT, it is not possible to
protect a block of memory with the “no-execution” access (no instruction fetches, only data load and store
operations allowed). Memory can be protected with “no-execution” bit on a per-segment basis, allowing
the Page Address Translation mechanism to implement access control based on instruction or data fetches.

supervisor user

10

x1

00

1 1

0

01

0

Effective address in BAT array

Get corresponding BAT upper register.

MSR[PR] Value?Vp

PP

Vs

No BAT,
translation,

perform Page
translation

Get BAT lower register with
physical address, and check PP

No BAT
translation,

perform Page
translation

No
access

Read
Write
access

Read only
access

Figure 5-35. Block Address Translation access control

 103

Page Address Translation and access control
If BAT is unable to perform address translation, Page Address Translation is used. Page Address
Translation provides access control at the segment level and at the individual page level. Segment level
access control allows the designation of a memory segment as “data only.” Page Address Translation
mechanism prevents instructions from being fetched from these “data only” segments.

Page address translation begins with a check to see if the effective segment ID, corresponding to the
effective address, exists in the Segment Lookaside Buffer (SLB). The SLB provides a mapping between
Effective Segment IDs (ESIDs) and Virtual Segment IDs (VSIDs). If the SLB search fails, a segment fault
occurs. This is an Instruction Segment exception or a data segment exception, depending on whether the
effective address is for an instruction fetch or for a data access. The Segment Table Entry (STE) is then
located with the Address Space Register and the segment table.

Page level access control uses a key bit from Segment Table Entry (STE) along with the Page Protection
(PP) bits from the Page Table Entry to determine whether supervisor and user programs can access a page.
Page access permissions are granular to “no access”, “read only access”, and “read-write” access. The key
bit is calculated from the Machine State Register PR bit and Kp and Ks bits from the Segment Table Entry,
as follows:

Key = (Kp & MSR[PR]) | (Ks & ~MSR[PR])

That is, in supervisor mode, use the Ks bit from the STE and ignore the Kp bit. In user mode, use the Kp
bit and ignore the Ks bit.

The following diagram schematically describes the Page Address Translation mechanism and the access
control performed by it.

 104

virtual to physical

Page level
protection

Effective addr

Virtual addr

Physical addr

effective to virtual

01
11 11

00
01
10

hit

miss

hit

miss

Y Y

N N

hit

miss

0 1

supervisor user
1

1

0

0

10
00

Effective
Address

Search
SLB Found

STE

Locate
Segment

Table using
ASR

Search
segment

Table

Access fault

MSR[IR]? N bit set? Instruct
fetch on

data
segment.
Memory

protection
violation

ESID Page byte

ESID context

VSID Page byte

Multiply by large number
& 0xfffffffff

Search TLB for this virtual addrSearch
Page

Tables

Found Page Table Entry with
physical address and page

protection bits, PP

MSR[PR]?Ks Kp

Key = 0 Key = 1

PP PP

Read
write

Read
only

No
access

Read
write

Read
only

segment location

segment level protection

Figure 5-36. Page Address Translation and access control

 105

5.5.1.3 iSeries
iSeries hardware uses 64-bit PowerPC processors. iSeries differs from pSeries in its I/O architecture
(however, they both use the same set of processors). Both iSeries and pSeries systems support Logical
Partitions (LPAR). Logical partitions divide the hardware resources, such as processors, memory, and
portions of real storage, to create multiple “logical” systems that can run their own copy of an operating
system. Unlike pSeries systems, which support running SLES in either direct native mode or in a logical
partition, SLES can run only in logical partitions on iSeries systems. This section describes logical
partitions and their impact on memory addressing and access control. For detailed information on LPAR
please refer to the following:

Engebretsen David, PowerPC 64-bit Kernel Internals,
http://oss.software.ibm.com/linux/presentations/ppc64/ols2001/ppc64-ols-2001.ps

David Boutcher, The Linux Kernel on iSeries, http://www.ibm.com/iseries/linux

iSeries hardware documents at http://www.ibm.com/eserver/iseries

OS/400 V5R3 documents at http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm
 & http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzaq9.pdf

The number of partition an iSeries can be partitioned into depends on the processor. POWER5 based
iSeries systems running V5 R3 can be portioned in to as many as 254 partitions. Partitions share processors
and memory. A partition can be assigned processors in increments of 0.01. The figure below represents a 4
CPU system that is split into 4 logical partitions. The primary partition runs OS/400 V5R2 or OS/400
V5R3 (i5/OS). From the perspective of the TOE Security Functions, V5R2 and V5R3 are equivalent.
Primary partition is assigned 0.25 of a CPU, while other partitions running SLES 9 are assigned 2, 1 and
0.75 CPUs, respectively. The hypervisor provides pre-emptive timeslicing between partitions sharing a
processor, guaranteeing that a partition gets the exact allocated share of the CPU, not more or less, even if
the remainder of the processor is unused.

On pSeries systems, without logical partitions, the processor has two operating modes, user and supervisor.
The user and supervisor modes are implemented using the PR bit of the Machine State Register (MSR).
Logical partitions on both pSeries and iSeries necessitate a 3rd mode of operation for the processor. This 3rd
mode, called the hypervisor mode, also affects access to certain instructions and memory areas. These
operating modes for the processor are implemented using the PR and HV bits of the Machine State
Register.

OS/400
V5R2

Primary

0.25
CPU

SLES 9

2.0
CPU

SLES 9

1.0
CPU

SLES 9

0.75
CPU

Hypervisor

CPU
0

CPU
1

CPU
2

CPU
3

Memory

Figure 5-37. Logical partitions

 106

PR – Privilege Level. The Privilege Level takes the value of 0 for the supervisor level and 1 for the user
level.
HV – Hypervisor. The hypervisor takes the value of 1 for hypervisor mode and 0 for user and supervisor
mode.

The following diagram describes the process that determines the operating mode of the processor based on
MSR[PR] and MSR[HV] values.

Just as certain memory areas are protected from access in user mode, there are memory areas, such as
hardware page tables, that are accessible only in hypervisor mode. The PowerPC architecture provides only
one system call instruction. This system call instruction, sc, is used to perform system calls from the user
space intended for the SLES kernel as well as hypervisor calls from the kernel space intended for the
hypervisor. Hypervisor calls can only be made from the supervisor state. This access restriction to
hypervisor calls is implemented with general purpose registers GPR0 and GPR3, as follows.

1

1

0

0

Value of
Machine

State
Register’s PR

bit

Value of
Machine

State
Register’s

HV bit

Processor in
Hypervisor

mode

Processor in
USER mode

Processor in
Supervisor mode

Figure 5-39. Determination of processor mode in LPAR

0

1

-1

Positive address

Processor
encounters

“sc”
instruction

Machine
State

Register’s
PR bit

GPR0 value

System Call.

 GPR0 loaded
with the

system call
function

Hypervisor Call.

GPR3 loaded with
hsypervisor call

function

Figure 5-40. Transition to supervisor or hypervisor state

49 3

bits that control
operating mode

Figure 5-38. Machine State Register

HV PR

 107

Actual physical memory is shared between logical partitions. Therefore, one more level of translation
beyond the four levels described by pSeries section 5.5.1.2 is needed to go from the effective address to the
hardware address of the memory. This translation is done by the hypervisor, which keeps a logical partition
unaware of the existence of other logical partitions. Because iSeries uses the same PowerPC processor
described in the pSeries section 5.5.1.2, the iSeries mechanism for translating effective-to-virtual and
virtual-to-physical is identical to that of the native pSeries. The only addition is the physical-to-absolute
address translated by the hypervisor, as illustrated below.

On iSeries and pSeries systems running with logical partitions, the effective address, the virtual address,
and the physical address format and meaning are identical to those of pSeries systems running in native
mode. The kernel creates and translates them from one another using the same mechanisms described in
section 5.5.1.2. Access control by Block Address Translation and Page Address Translation, described in
section 5.5.1.2, is performed here as well. The Block Address Translation and Page Address Translation
mechanisms provide iSeries and pSeries logical partitions with the same block and page level memory
protection capabilities, granular to no-access, read access, and read-write access. These capabilities allow
the majority of the kernel code to remain common between pSeries native mode and iSeries and pSeries
LPAR mode.

The difference between pSeries native mode and iSeries and pSeries LPAR mode comes from the kernel’s
logical view of the physical addresses versus the absolute memory addresses used by the processor. The
LPAR-specific code splits memory into 256-Kbyte “chunks.” To map these “chunks” to physical addresses
expected by the kernel memory model, the iSeries hypervisor code builds a translation table, called
msChunks array, to translate physical addresses to absolute addresses. The msChunks array is indexed
by (logical_address >> 18) and provides a translation from the logical address (kernel logical view of the
address, i.e., physical address) to the absolute address, as follows:

Absolute address = (msChunks[logical_address>>18]<<18) | (logical_address&0x3ffff)

The kernel is not aware that the physical address is not the final address used by the processor to access a
memory cell. When the kernel attempts an access using the physical address, the hypervisor intercepts the
access and converts the physical address to the absolute address using the msChunks array. This process
allows it to appear to the kernel that there is contiguous memory starting at physical address zero, while in
fact the absolute addresses are not contiguous, as illustrated in Figure 5-52.

Effective
address

Virtual
address

Physical
address

Absolute
address

Segmentation

Paging

Hypervisor

Figure 5-41. Address translation in LPAR

 108

The hypervisor interacts with the operating system in the logical partition through two data structures that
are used to store systemwide and processor specific information. The first data structure, the naca (node
address communications area), is used to hold systemwide information, such as the number of processors in
the system or partition, the size of real memory available to the kernel, and cache characteristics. The naca
also contains a field used by the iSeries hypervisor, which is initialized to point to the data area used by the
hypervisor to communicate system configuration data to the kernel. The naca is located at the fixed real
address of 0x4000. The second data structure, the paca (processor address communications area), contains
information pertaining to each processor. Depending on the number of processors, an array of paca
structures is created.

Because the hypervisor is accessible only through the kernel mode, no specific access control is performed
when the kernel interacts with the hypervisor. The kernel does provide a system call, rtas, to authorized
programs for interacting with the hardware. Run time abstraction services (RTAS) is a firmware interface
that shields the operating system from details of the hardware. rtas ensures that the calling process
posseses the CAP_SYS_ADMIN capability.

0

Contiguous physical
addresses

…

Logical Partition # 1

0

Contiguous physical
addresses

…

Logical Partition # 2

Hypervisor

Memory

 Non-contiguous absolute addresses

Figure 5-42. Absolute addresses

… …

 109

5.5.1.4 zSeries
There are three common alternatives for running SLES on zSeries systems. SLES can run on native
hardware, in Logical Partitions (LPAR), and as z/VM® guests. This section briefly describes these three
modes and how they address and protect memory. For more detailed information on zSeries architecture,
please refer to the following:

z/Architecture Principle of Operation, http://publibz.boulder.ibm.com/epubs/pdf/dz9zr002.pdf
zSeries hardware documents at http://www.ibm.com/eserver/zseries

Native Hardware mode
In native hardware mode, SLES runs directly on zSeries hardware. Only one instantiation of SLES can run
at one time. All CPUs, memory, and devices are directly under the control of the SLES operating system.
Native Hardware mode is useful when a single server requires a large amount of memory. Native Hardware
mode is not very common because it requires device driver support in SLES for all attached devices, and
Native Hardware does not provide the flexibility of the other two modes.

Logical Partition Mode (LPAR)
In logical partition mode, zSeries hardware is partitioned into up to thirty different partitions. The
partitioned hardware is under the control of a hypervisor called the Control Program. Each partition is
allocated a certain number of CPUs and a certain amount of memory. Devices can be dedicated to a
particular partition or they can be shared among several partitions. The control program provides pre-
emptive timeslicing between partitions sharing a processor, guaranteeing that a partition gets the exact
allocated share of the CPU, not more or less, even if the remainder of the processor is unused. SLES runs in
one of these logical partitions. LPAR mode provides more flexibility than Native Hardware mode, but still
requires device driver support for devices dedicated to a partition.

z/VM Guest mode
In z/VM Guest mode, SLES runs as a guest operating system on one or more z/VM virtual machines. z/VM
virtualizes the hardware by providing to a guest operating system the same interface definition provided by
the real hardware. Guests operate independent of each other even though they share memory, processors,
and devices. z/VM Guest mode provides even more flexibility than LPAR mode because, unlike logical
partitions, z/VM virtual machines allow dynamic addition or deletion of memory and devices. z/VM Guest
mode is the most commonly deployed mode because of the flexibility that it provides.

In terms of memory addressing, all three modes believe they are operating directly on the zSeries hardware.
The Control Program (either LPAR or VM or both) sets up their paging tables and zoning array so that the
SIE (Start Interpretive Execution) instruction can do the address conversion. The control program doesn’t
actively convert any addresses.

5.5.1.4.1 Address types
z/Architecture defines four types of memory addresses: virtual, real, absolute, and effective. These memory
addresses are distinguished on the basis of the transformations that are applied to the address during a
memory access.

Virtual address
A virtual address identifies a location in virtual memory. When a virtual address is used to access main
memory, it is translated by a Dynamic Address Translation (DAT) mechanism to a real address, which in
turn is translated by Prefixing to an absolute address. The absolute address of a virtualized system is in turn
subjected to dynamic address translation in VM or to zoning in LPAR.

Real address
A real address identifies a location in real memory. When a real address is used to access main memory, it
is converted by prefixing to an absolute address.

 110

Absolute address
An absolute address is the address assigned to a main memory location. An absolute address is used for a
memory access without any transformations performed on it.

Effective address
An effective address is the address that exists before any transformation by dynamic address translation or
prefixing. An effective address is the result of the address arithmetic of adding the base register, the index
register, and the displacement. If DAT is on, the effective address is the same as the virtual address. If DAT
is off, the effective address is the same as the real address.

5.5.1.4.2 Address sizes
z/Architecture supports 24-bit, 31-bit, and 64-bit virtual, real, and absolute addresses. Bits 31 and 32 of the
Program Status Word (PSW) control the address size. If they are both zero, the addressing mode is 24-bit.
If they are 0 and 1, the addressing mode is 31-bit. If they are both 1, the addressing mode is 64-bit. When
addressing mode is 24-bit or 31-bit, 40 or 33 zeros, respectively, are appended on the left to form a 64-bit
virtual address. The real address that is computed by dynamic address translation and the absolute address
that is then computed by prefixing are always 64-bit.

5.5.1.4.3 Address spaces
An address space is a consecutive sequence of integer numbers (virtual addresses), together with the
specific transformation parameters, which allow each number to be associated with a byte location in
memory. The sequence starts at zero and proceeds left to right. The z/Architecture provides the means to
access different address spaces. In order to access these address spaces, there are four different addressing
modes, namely primary, secondary, home, and access-register. In the access-register mode any number of
address spaces can be addressed, limited only by the number of different Access List Entry Tokens (ALET)
and the size of the main memory. The conceptual separation of kernel and user space of SLES is
implemented using these address spaces. The kernel space corresponds to the primary address space and
the user space corresponds to the home address space. Access-register address space is used to implement
memory area that transfers data between kernel and user space. The secondary address space is not used on
SLES. User programs, which run in the home-space translation mode, can only translate virtual addresses
of the home address space. The separation protects the kernel memory resources from user space programs.

5.5.1.4.4 Address translations
Address translation on z/Architecture can involve two steps. The first one, if dynamic address translation is
turned on, involves the use of hierarchical page tables to convert a virtual address to a real address. The
second one involves conversion of a real address to an absolute address using prefixing. If dynamic address
translation is turned off, the address translation consists of just one step, that of converting a real address to
an absolute address.

Figure 5-43. zSeries address types and their translation

Effective Address (DAT off)Effective Address (DAT on)

Virtual Address Real Address Absolute Address

Dynamic Address Translation Prefixing

 111

Dynamic address translation
Bit 5 of the current Program Status Word indicates whether a virtual address is to be translated using
paging tables. If it is, bits 16 and 17 control which address space translation mode (primary, secondary,
access-register or home) is used for the translation.

The following diagram illustrates the logic used to determine the translation mode. If the DAT mode bit is
not set, then the address is treated as a real address (Virtual = Real).

Each address-space translation mode translates virtual addresses corresponding to that address space. For
example, primary address-space mode translates virtual addresses from primary address space, and home-
address space mode translates virtual addresses belonging to the home address space. Each address space
has an associated Address Space Control Element (ASCE). For primary address translation mode, the
Primary Address Space Control Element (PASCE) is obtained from the CR1. For secondary address
translation mode, the Secondary Address Space Control Element (SASCE) is obtained from the CR7. For
home address translation mode, the Home Address Space Control Element (HASCE) is obtained from the
CR13. In access-register translation mode, the Access List Entry Token (ALET) in the access register is
checked. If it is the special ALET 0, PASCE is used. If it is the special ALET 1, SASCE is used.
Otherwise, the ASCE found in the Address Space Number (ASN) table is used. SLES does not use the
translation by the Address Space Number feature of the z/Architecture.

After the appropriate ASCE is selected, the translation process is the same for all of the four address
translation modes. The ASCE of an address space contains the region table (for 64-bit addresses) or the

Program Status Word (PSW) 5 16 17

Dynamic Address Translation
mode bit

Address Space Control bits

Figure 5-44. Program Status Word

11
0110

1

0

Figure 5-45. Address translation modes

DAT mode
bit

DAT off
V=R

Address Space
control bits

Primary
Space mode

Not Used on
SLES

Access
Register space

mode

Home Space
mode

00

 112

segment table (for 31-bit addresses) origin. DAT uses that table-origin address to translate a virtual address
to a real address, as illustrated below.

ASCE

Segment Table Origin +

Region Table

Segment table origin / Region table origin

Real Address

Figure 5-46. 64-bit or 31-bit Dynamic Address Translation

BXPXSX RX

Page Table Origin +

Page Frame Address +

+

Segment Table

Page Table

Virtual Address with Region, Segment, Page and Byte offset

Steps added for
64bit addressing are

displayed in blue

 113

Prefixing
Prefixing provides the ability to assign a range of real addresses to a different block in absolute memory for
each CPU, thus permitting more than one CPU sharing main memory to operate concurrently with a
minimum of interference. Prefixing is performed with the help of a prefix register. No access control is
performed while translating a real address to an absolute address. For a detailed description of prefixing as
well as implementation details, please refer to the following:

z/Architecture Principle of Operation, http://publibz.boulder.ibm.com/epubs/pdf/dz9zr002.pdf

5.5.1.4.5 Memory protection mechanisms
In addition to separating the address space of user and supervisor states, the z/Architecture provides
mechanisms to protect memory from unauthorized access. Memory protections are implemented using a
combination of the Program Status Word (PSW) register, a set of sixteen control registers (CRs), and a set
of sixteen access registers (ARs). The remainder of this section describes memory protection mechanisms
and how they are implemented using the PSW, CRs, and ARs.

z/Architecture provides three mechanisms for protecting the contents of main memory from destruction or
misuse by programs that contain errors or are unauthorized: low-address protection, page table protection,
and key-controlled protection. The protection mechanisms are applied independently at different stages of
address translation; access to main memory is only permitted when none of the mechanisms prohibit
access.

Low-address protection is applied to effective addresses, page table protection is applied to virtual
addresses while they are being translated into real addresses, and key-controlled protection is applied to
absolute addresses.

Low-address protection
The low-address protection mechanism provides protection against the destruction of main memory
information used by the CPU during interrupt processing. This is implemented by preventing instructions
from writing to addresses in the ranges 0 through 511 and 4096 through 4607 (the first 512 bytes of each of
the first and second 4K-byte address blocks).

Low-address protection is applied to effective addresses only if the following bit positions are set in control
register 0 and the Address Space Control Element (ASCE) of the address space to which the effective
address belongs.

Figure 5-47. Low-address protection on effective address

0

1

0

1

Bit 35 of
Control

Register 0

Bit 55 of Address
Space Control

Element of
effective address

Low-Address
Protection

Low-Address
protection
disabled

 114

Page table protection
The page table protection mechanism is applied to virtual addresses during their translation to real
addresses. The page table protection mechanism controls access to virtual storage by using the page-
protection bit in each page-table entry and segment-table entry. Protection can be applied to a single page
or an entire segment (a collection of contiguous pages). Once the ASCE is located, the following dynamic
address translation is used to translate virtual address to a real address. Page table protection (for a page or
a segment) is applied at this stage. The first diagram illustrates the DAT process for 31-bit addresses and
the second diagram for the 64-bit addresses.

 Virtual Address with Segment, Page and Byte offset

BXPX SX 0
ASCE

Page table origin Ps

Page frame address + Pp

Bit controlling
protection of a
single page.

+

Bit controlling
protection of a
whole segment.

Segment table origin

P == 1 P == 0

Real address

 Protection value
P = Ps || Pp

+

Read
Only

Read
Write

Segment table

Page table

Figure 5-48. 31-bit Dynamic Address Translation with page table protection

 115

P == 1 P == 0

Segment table origin +

BXPX SX RX

Page table origin Ps +

Page frame address + Pp

Real address

 Protection value
P = Ps || Pp

+

Read
Only

Read
Write

Bit controlling
protection of a
whole segment.

Bit controlling
protection of a
single page.

Region Table

Segment table

Page Table

ASCE

Region table origin

Figure 5-49. 64-bit Dynamic Address Translation with page table protection

Virtual address with region, segment, page and byte offset

 116

Key-controlled protection
Key-controlled protection is applied when an access attempt is made for an absolute address, which refers
to a memory location. Each 4K page, real memory location has a 7-bit storage key associated with it. These
storage keys for pages can only be set when the processor is in the supervisor state. The Program Status
Word contains an access key corresponding to the current running program. Key-controlled protection is
based on using the access key and the storage key to evaluate whether access to a specific memory location
is granted.

The 7-bit storage key consists of access control bits (0, 1,2, 3), fetch protection bit (4), reference bit (5), and
change bit (6).

Figures 5-50 and 5-51 describe the key-controlled protection.

The z/Architecture allows for fetch protection override for key-controlled protection. The following
diagram describes how fetch protection override can be used. Currently, SLES does not set the fetch
protection bit of the storage key.

no
yes

10

Fetch protection
bit of storage

key

Access keys
match?

Read
Write

No
Access

Read
Only

Figure 5-51. Fetch protection override for key-controlled

no

yes

Non
zero

0

Access key

Keys match

Access key = storage key?
Keys

mismatch

Figure 5-50. Key match logic for key-controlled protection

yes

no

0

1

Bit 39 of
CR 0

Storage key = 9 ?

 117

5.5.1.5 eServer 325
The following briefly describes the eServer 325 memory addressing scheme. For more detailed information
on the eServer 325 memory management subsystem, please refer to the following:

AMD64 Architecture, Programmer’s Manual Volume 2: System Programming,
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf

SUSE Linux Enterprise Server 8 for AMD64,
http://www.suse.com/en/business/products/server/sles/misc/sles8_amd64.pdf

Andi Kleen, Porting Linux to x86-64, http://old.lwn.net/2001/features/OLS/pdf/pdf/x86-64.pdf

eServer 325 systems are powered by AMD Opteron processors. The Opteron processor can either operate
in legacy mode to support 32-bit operating systems or in long mode to support 64-bit operating systems.
Long mode has two possible sub modes, the 64-bit mode, which runs only 64-bit applications and
compatibility mode, which can run on both 32-bit and 64-bit applications simultaneously. In legacy mode,
the Opteron processor complies with the x86 achtitecture described in the xSeries sections of this
document. SLES on eServer 325 uses the compatibility mode of the Opteron processor. The compatibility
mode complies with x86-64 architecture, which is an extension of x86 architecture to support 64-bit
applications along with legacy 32-bit applications. The following description corresponds to the x86-64
architecture.

On eServer 325 computers, there are the following four address types:

Logical address

The address is included in the machine language instruction for an operand or for an instruction. A
logical address consists of a segment selector and the effective address. The segment selector
specifies an entry in either the global or local descriptor table. The effective address is an offset
that signifies the distance from the start of the segment specified by the segment selector.

Effective Address
The effective address is the offset into a memory segement. Long mode supports 64-bit effective
address length.

Linear address
The linear address, which is also refered as virtual address, is a 64-bit address computed by adding
the segment base address to the segment offset.

Physical address
The physical address is a reference into the physical address space. Physical address is the address
assigned to a main memory location. Physical addresses are translated from virtual addresses
using the paging mechanism. On eServer 325 systems, 40-bit physical addresses allow access to 1
Terabyte of physical address space.

To access a particular memory location, the CPU, using its segmentation unit, transforms a logical address
into a linear address, which in turn is translated into a physical address by the CPU paging unit.

 Figure 5-52. eServer 325 address types and their conversion units

Logical address
16-bit segment identifier: 64-bit Offset

Linear address
64-bit

Physical address
40-bit

Segmentation Unit Paging Unit

 118

Access control and protection mechanisms are part of both segmentation and paging. The following
sections describe how segmentation and paging are used to provide access control and memory resource
separation by SLES on IBM eServer 325 systems.

5.5.1.5.1 Segmentation
The segmentation unit translates a logical address into a linear address. A logical address has two parts: A
16-bit segment identifier called the segment selector, and a 64-bit offset. For fast retrieval of the segment
selector, the processor provides six segmentation registers to hold segment selectors. Each segmentation
register has a specific purpose. For example, the code segment (cs) register points to a memory segment
that contains program instructions.

Each segment is represented by a segment descriptor that describes characteristics of the segment.
Descriptors are stored in either the Global Descriptor Table (GDT) or the Local Descriptor Table (LDT).
The system has one GDT, but may create an LDT for a process if it needs to create additional segments
besides those stored in the GDT. The GDT is accessed through the Global Descriptor Table Register
(GDTR), while the LDT is accessed through the Local Descriptor Table Register (LDTR). From the
perspective of hardware security access, both GDT and LDT are equivalent. Segment descriptors are
accessed through their 16-bit segment selectors. A segment descriptor contains information, such as
segment length, granularity for expressing segment size, and segment type, which indicates whether the
segment holds code or data.

Segment protection is used to isolate memory resources belonging to one process from that of another. The
segment protection mechanism uses the concept of privilege levels similar to the one used by x86
architecture. The processor supports four different privilege levels with a numerical value from 0 to 3, with
0 being the most privileged and 3 being the least privileged. SLES only needs two privilege levels, kernel
and user, and implements them by assigning user level to privilege level 3 and kernel level to privilege
levels 0, 1 and 2. The x86-64 architecture defines three types of privilege levels to control access to
segments.

Current Privilege Level (CPL)
CPL is the privilege level at which the processor is currently executing. The CPL is stored in an
internal processor register.

Requestor Privilege Level (RPL)
RPL represents the privilege level of the program that created the segment selector. The RPL is
stored in the segment selector used to reference the segment descriptor.

Descriptor Privilege Level (DPL)
DPL is the privilege level that is associated with an individual segment. The system software
assigns this DPL and it is stored in the segment descriptor.

CPL, RPL and DPL are used to implement access control on data accesses and control transfers as follows.

Access control for data access:
When loading a data segment register, the processor checks privilege levels to determine if the load should
succeed. The processor computes the subject’s effective privilege as the higher numerical value (lower
privilege) between the CPL and the RPL. The effective privilege value is then compared with the object’s
privilege value, the DPL of the segment. Access is granted if the effective privilege value is lower than the
DPL value (higher privilege). Otherwise, a general protection exception occurs and the segment register is
not loaded. The diagrams in Figure 5-53 illustrate data-access privilege checks.

 119

Access control for stack segments
When loading stack segment register, the processor ensures that the CPL and the stack selector RPL are
equal. If they are not equal, a general protection exception occurs. If CPL and RPL are equal, the processor
compares the CPL with the DPL in the descriptor table entry referenced by the segment selector. If the two
are equal, the stack segment register is loaded. Otherwise, a general protection exception occurs and the
stack segment is not loaded.

Access control for direct control transfer
The processor performs privilege checks when control transfer is attempted between different code
segments. Control transfer occurs with CALL/JMP instructions and SYSCALL/SYSRET instructions.
Unlike the x86 architecture, the AMD Opteron provides specific instructions SYSCALL and SYSRET to
perform system calls. If the code segment is non-conforming (conforming bit “C” set to zero in segment
descriptor), the processor first checks to ensure that CPL is equal to DPL. If CPL is equal to DPL, the
processor performs the next check to see if the RPL value is less than or equal to the CPL. A general
protection exception occurs if either of the two checks fail. If the code segment is conforming (conforming
bit “C” set to one in the segment descriptor), the processor compares the target code-segment descriptor

X

Data Segement Segment
Descriptor

DPL = 2
Code

Segment

CPL = 3

Segment
Selector

RPL = 0

Effective
privilege = 3

max(CPL, RPL)

Effective privilege
less than or equal to

DPL?
No

access

Data Segement Segment
Descriptor

DPL = 2
Code

Segment

CPL = 0

Segment
Selector

RPL = 0

Effective
privilege = 0

max(CPL, RPL)

Effective privilege
less than or equal to

DPL?
Access
granted

Figure 5-53. Data access privilege checks

 120

DPL with the currently executing program CPL. If the DPL is less than or equal to the CPL, access is
allowed. Otherwise, a general protection exception occurs. RPL is ignored for conforming segments.

Access control for control transfers through call gates
The AMD Opteron processor uses call gates for control transfers to higher privileged code segments. Call
gates are descriptors that contain pointers to code-segment descriptors and control access to those
descriptors. Operating systems can use call gates to establish secure entry points into system service
routines. Before loading the code register with the code segment selector located in the call gate, the
processor performs the following three privilege checks:

1. Compare the CPL with the call-gate DPL from the call-gate descriptor. The CPL must be less than
or equal to the DPL.

2. Compare the RPL in the call-gate selector with the DPL. The RPL must be less than or equal to
the DPL.

3. Call or jump, through a call gate, to a conforming segment requires that the CPL must be greater
than or equal to the DPL. A call or jump, through a call gate, requires that the CPL must be equal
to the DPL.

Access control through type check
After a segment descriptor is loaded into one of the segment registers, reads and writes into the segments
are restricted based on type checks, as follows:

• Prohibit write operations into read-only data segment types.
• Prohibit write operations into executable code segment types.
• Prohibit read operations from code segments if the readable bit is cleared to 0.

5.5.1.5.2 Paging
The paging unit translates a linear address into a physical address. Linear addresses are grouped in fixed
length intervals called pages. To allow the kernel to specify the physical address and access rights of a page
instead of addresses and access rights of all the linear addresses in the page, continuous linear addresses
within a page are mapped to continuous physical addresses.

The paging unit sees all Random Access Memory as partitioned into fixed-length page frames. A page
frame is a container for a page. A page is a block of data that can be stored in a page frame in memory or
on disk. Data structures that map linear addresses to physical addresses are called page tables. Page tables
are stored in memory and are initialized by the kernel when the system is started.

Figure 5-54. Contiguous linear addresses map to contiguous physical addresses

Linear page address Physical page address

Linear address

…

Physical address

Linear page Physical page

 121

The eServer 325 supports a four-level page table. The uppermost level is kept private to the architecture-
specific code of SLES. The page-table setup supports up to 48 bits of address space. The x86-64
architecture supports page sizes of 4 K-byte and 2 M-byte.

The following figure illustrates how paging is used to translate a 64-bit linear address is into a physical
address for the 4 K-byte page size.

When the page size is 2 M-byte, bits 0 to 20 represent the byte offset into the physical page. That is, page
table offset and byte offset of the 4 K-byte page translation are combined to provide a byte offset into the 2

Physical address +

Figure 5-55. 4K-byte page translation, from linear address to physical address

Page table

Page table entry +

+

Page directory table

Page directory entry

+

Page dir pointer table

Page dir pointer entry

CR3

+

PT PD PDP PML4

Page map level 4 base address

Virtual address with pagemap, page directory pointer, page dir, page table and byte offset

Page map level 4 table

Page map level 4 entry

PG

 122

M-byte physical page. The following figure illustrates how paging is used to translate a 64-bit linear
address into a physical address for the 2 M-byte page size.

Each entry of the page map level-4 table, the page-directory pointer table, the page-directory table, and the
page table is represented by the same data structure. This data structure includes fields that interact in
implementing access control during paging. These fields are the R/W (Read/Write) flag, the U/S
(User/Supervisor) flag, and the NX (No Execute) flag.

The following diagram displays the bit positions in a page map level-4 entry. The flags hold the same bit
positions for page directory pointer, page directory, page table, and page entries for both 4 K-byte page and
2 M-byte page sizes.

Figure 5-56. 2M-byte page translation, from linear address to physical address

Physical address +

+

CR3

PD PDP PML4

Page map level 4 base address

Virtual address with pagemap, page directory pointer, page dir, and byte offset

PG

+

Page directory table

Page directory entry

Page map level 4 table

Page map level 4 entry

+

Page dir pointer table

Page dir pointer entry

 123

Read/Write flag

Read/Write flag contains the access rights of the physical pages mapped by the table entry. The
Read/Write flag is either read/write or read. If set to 0, the corresponding page can only be read;
otherwise, the corresponding page can be written to or read. The Read/Write flag affects all
physical pages mapped by the table entry. That is, the R/W flag of the page map level-4 entry
affects access to all the 128 MB (512 x 512 x 512) physical pages it maps through the lower-level
translation tables.

User/Supervisor flag
User/Supervisor flag contains the privilege level that is required to access the page or page table.
The User/Supervisor flag is either 0, which indicates that the page can be accessed only in kernel
mode, or 1, which indicates it can be accessed always. This flag controls user access to all physical
pages mapped by the table entry. That is, the U/S flag of the page map level-4 entry affects access
to all the 128 MB (512 x 512 x 512) physical pages it maps through the lower-level translation
tables.

No Execute flag
This flag controls the ability to execute code from physical pages mapped by the table entry.
When No Execute is set to 0, code can be executed from the mapped physical pages. Otherwise,
when set to one, prevents code from being executed from the mapped physical pages. This flag
controls code execution from all physical pages mapped by the table entry. That is, the NX flag of
the page map level-4 entry affects all 128 MB (512 x 512 x 512) physical pages it maps through
the lower-level translation tables. The NX bit can only be set when the no-execute page-protection
feature is enabled by setting the NXE bit of the Extended Feature Enable Register (EFER).

In addition to the R/W, U/S, and NX flags of the page entry, access control is also affected by the Write
Protect (WP) bit of register CR0. If the write protection is not enabled (Write Protect bit set to 0), a process
in kernel mode (CPL 0, 1 or 2) can write any physical page, even if it is marked as read only. With write
protection enabled, a process in kernel mode cannot write into read-only, user, or supervisor pages.

Effects of segmentation on page protection
SLES operates in the x86-64 architecture’s compatibility mode. In compatibility mode, both segmentation
and paging are used to translate a logical address into a physical address. Segement-protection and page-
protection checks are performed serially. Segment-protection checks are made first and if they fail, page
protection checks are not performed. Therefore, for a successful access to a physical page, both segment
protection and page protection checks must succeed.

Flags used in implementing access control

Figure 5-57. Page map level 4 entry

 124

5.5.1.5.3 Translation Lookaside Buffers (TLB)
The AMD Opteron processor includes an address translation cache called the Translation Lookaside Buffer
(TLB) to expedite linear-to-physical address translation. The TLB is built up as the kernel performs linear-
to-physical translations. Using the TLB, the kernel can quickly obtain a physical address corresponding to a
linear address, without going through the page tables. Because address translations obtained from the TLB
do not go through the paging access control mechanism described in 5.5.1.5.2, the kernel flushes the TLB
buffer every time a process switch occurs between two regular processes. This process enforces the access
control mechanism implemented by paging, as described in section 5.5.1.5.2.

5.5.2 Kernel memory management
In the SLES kernel, a portion of the Random Access Memory (RAM) is permanently assigned to the
kernel. This memory stores kernel code and static data. The remaining part of RAM, called dynamic
memory, is needed by the processes and the kernel itself.

In this section, we consider dynamic memory used by the kernel and highlight how the object reuse
requirement is met. This section discusses the three sections of kernel memory management: Page Frame
Management, Memory Area Management, and Noncontiguous Memory Area Management. For a complete
description of Kernel Memory Management, please refer to the SLES Low Level Design, by Janak Desai,
George Wilson, and Michael Halcrow.

5.5.2.1 Page frame management
The SLES kernel adopts the smaller 4 KB page-frame size as the standard memory allocation unit. The
kernel keeps track of the current status of each page frame and distinguishes the page frames that are used
to contain pages that belong to processes from those that contain kernel code and data. Page frames that are
to be used by processes are allocated with the get_zeroed_page() routine. The routine invokes the
function alloc_pages(). The routine then fills the page frame it obtained with zeros by calling
clear_page(), thus satisfying the object reuse requirement.

5.5.2.2 Memory area management
A memory area is an arbitrary length of a sequence of memory cells that have contiguous physical
addresses. Memory areas are typically smaller, few tens to hundreds of bytes, compared to page frames.
Because allocating a full page frame to hold a few bytes is wasteful, the system employs a different
scheme, called slab allocator, to allocate smaller memory areas. Slab allocator interfaces with the page
frame allocator algorithm, Buddy System, to obtain free contiguous memory. Slab allocator calls the
kmem_getpages() function with a flag parameter that indicates how the page frame is requested. This
flag diverts the call to get_zeroed_page() if the memory area is to be used for a user mode process.
As noted before, get_zeroed_page() initializes the newly allocated memory area with zero, thus
satisfying the object reuse requirement.

5.5.2.3 Noncontiguous memory area management
Although it is preferable to map memory areas into sets of contiguous page frames, it makes sense to
consider noncontiguous page frames accessed through contiguous linear addresses if the requests for
memory areas are infrequent. Noncontiguous page frames help to reduce external fragmentation but require
modification of the kernel page tables. The SLES kernel provides the vmalloc() function to allocate
noncontiguous memory area to the kernel. To allocate memory for kernel use, vmalloc() calls
vmalloc_area_pages() with a gfp_mask flag that is always set to GFP_KERNEL |
__GFP_HIGHMEM.

 125

5.5.3 Process address space
The address space of a process consists of all the linear (virtual) addresses that the process is allowed to
use. The kernel allocates and maintains this address space. The address space represents contiguous groups
of linear addresses through resources called memory regions, which are characterized by an initial linear
address, a length, and some access rights. Although a process does not have direct control over its address
space, actions taken by it can affect its address space.

This section highlights how the SLES kernel enforces separation of address spaces belonging to different
processes using memory regions. It also highlights how the kernel prevents unauthorized disclosure of
information by handling object reuse for newly allocated memory regions. For more detailed information,
please refer to the SLES Low Level Design, by Janak Desai, George Wilson, and Michael Halcrow.

All information related to the process address space is included in a data structure called the memory
descriptor. The memory descriptor’s fields include the number of memory regions, pointers to code, data,
heap, and user stack. Each memory region, represented by the vm_area_struct structure, identifies a
linear address interval. Memory regions owned by a process never overlap. Memory regions are stored in a
red-black binary tree and a simple linked list for efficient insertion and deletion of memory regions into a
process’s address space. As stated previously, a process’s address space may need to expand or contract as
a result of actions, such as the following:

• Expand heap by malloc() or sbrk() calls
• Kernel decides to increase process’s user mode stack
• Creation/deletion of IPC shared memory region
• Process decides to memory map a file
• Process execs another program

To grow or shrink a process’s address space, the kernel uses the do_mmap() and do_unmap()
functions. The do_mmap()function calls arch_get_unmapped_area()to find an available
linear address interval. Because linear address intervals in memory regions do not overlap, it is not possible
for the linear address returned by arch_get_unmapped_area()to contain a linear address that is part
of another process’s address space. In addition to this process compartmentalization, the do_mmap()
routine also makes sure that when a new memory region is inserted it does not cause the size of the process
address space to exceed the threshold set by the system parameter rlimit. The do_mmap()function
only allocates a new valid linear address to a process’s address space. Actual page-frame allocation is
deferred until the process attempts to access that address for a write operation. This technique is called
Demand Paging. When accessing the address for a read operation, the kernel gives the address an existing
page called Zero Page, which is filled with zeros. When accessing the address for a write operation, the
kernel invokes the alloc_page()routine and fills the new page frame with zeros by using the
memset()macro, thus satisfying the object reuse requirement. The kernel also provides the fadvise
system call, by which a process can advise the kernel on its intended access pattern for file data. This
intention to read or write a certain file data allows the kernel to optimize the access. The intention conveyed
to the kernel is not binding and is used for optimization only. Because access control is not performed by
the system call, the system call is not part of the Trusted Security Function Interface (TSFI).

 126

The following diagram describes a simplified view of what occurs when a process tries to increase its
address space and, if successful, tries to access the newly allocated linear address.

5.5.4 Symmetric multi processing and synchronization
The SLES kernel is reentrant. This means that several processes may be executing in kernel mode at the
same time. Memory allocation and addressing described in the previous sections assume that access to
kernel data structures by different processes is synchronized to prevent corruption. This synchronization is
needed to support reentrancy and Symmetric Multi Processing (SMP – the system can use multiple
processors and there is no discrimination among them). This section describes various synchronization
techniques used by the SLES kernel. For more detailed information, please refer to the SLES Low Level
Design, by Janak Desai, George Wilson, and Michael Halcrow.

A kernel control path denotes the sequence of instructions executed by the kernel to handle a system call,
an exception, or an interrupt. If a kernel control path is suspended while acting on a kernel data structure,
no other kernel control path should be allowed to act on the same data structure. A critical region is any
section of code that must be completely executed by any kernel control path that enters it before another
kernel control path can enter it. A critical region could be as small as code to update a global variable, or
larger multi-instruction code to remove an element from a linked list. Depending on the size of, or the type
of, operation performed by a critical region, the SLES kernel uses the following methods to implement
synchronization.

Figure 5-58. Object reuse handling while allocating new linear address

Call
do_mmap()
to allocate
new linear

address

Is process
exceeding its

RLIMIT
value?

Deny request
to increase

process
address space

Allocate a new linear
address, 0x123456, but

do not allocate
corresponding page

yes

no

Process tries
to access the

address
0x123456

Is the access
for read?

Traslate 0x123456
to an address

belonging to a well
known zero page

Allocate a
new page at
0x123456
and Fill it

with zeros.

0x123456

0x123456

Zero Page

0000
0000
0000
0000
0000

0000
0000
0000
0000
0000

yes

no

 127

5.5.4.1 Atomic operations
Assembly language instructions of the type “read-modify-write” access a memory location twice, the first
time to read the old value and the second time to write a new value. The SLES kernel provides a way to
make such an operation atomic at the chip level. The operation is executed in a single instruction without
being interrupted in the middle and avoids accesses to the same memory location by other CPUs. The
SLES kernel provides a special atomic_t data type and special functions that act on atomic_t
variables. The compiler for the xSeries processor generates assembly language code with a special lock
byte (0xf0) around instructions involving atomic_t type variables and functions. When executing these
assembly instructions, the presence of the lock byte causes the control unit to “lock” the memory bus,
preventing other processors from accessing the same memory location.

5.5.4.2 Memory barriers
Optimization performed by compilers reorder instructions, which may affect memory access. When dealing
with critical regions, instruction reordering should be avoided. A memory barrier ensures that the
operations placed before the barrier, are finished before starting the operations placed after the barrier. The
barrier acts like a firewall that cannot be passed by any assembly language instruction. The eServer series
processors provide the following kinds of assembly language instructions that act as memory barriers:

• All instructions that operate on I/O ports.
• All instructions prefixed by the lock byte.
• All instructions that write into control registers, system registers, or debug registers.
• Memory barrier primitives, such as mb(), rmb(), and wmb(), that provide memory barrier, read

memory barrier, and write memory barrier, respectively, for multiprocessor or uniprocessor
systems.

• Memory barrier primitives, such as smp_mb(), smp_rmb(), and smp_wmb(), that provide
memory barrier, read memory barrier, and write memory barrier, respectively, for multiprocessor
systems only.

5.5.4.3 Spin locks
Spin locks are a special kind of lock designed to work in a multiprocessor environment. If the kernel
control path finds the spin lock “open,” it acquires the lock and continues its execution. Conversely, if the
kernel control path finds the lock “closed” by a kernel control path running on another CPU, it “spins”
around, repeatedly executing a tight instruction loop, until the lock is released.

5.5.4.4 Kernel semaphores
A kernel semaphore is similar to a spin lock in that it doesn’t allow a kernel control path to proceed unless
the lock is open. However, whenever a kernel control path tries to acquire a busy resource protected by a
kernel semaphore, the corresponding process is suspended. It becomes runnable again when the resource is
released.

5.6 Audit subsystem
The TOE includes a comprehensive audit subsystem, Linux Audit-Subsystem (LAuS), to provide an
administrative user with the ability to identify attempted and realized violations of the system’s security
policy. The audit subsystem records security relevant events in the form of an audit trail, and provides tools
to an administrative user to configure the subsystem and evaluate audit records. LAuS is designed to meet
the audit requirement of the Controlled Access Protection Profile (CAPP).

This section describes the operation of the audit subsystem and the high-level design of the kernel audit
subsystem. For more detailed information on the low-level design of the kernel audit subsystem, please
refer to Linux Audit-Subsystem Design Documentation for Kernel 2.6, by Thomas Biege

 128

5.6.1 Audit subsystem operation
In order to catch all security-relevant events, the audit subsystem is designed to record actions of the SLES
kernel as well as those of the security-relevant trusted programs. All actions are recorded in the form of
audit records. Each audit record contains information pertaining to the security-relevant action, which
allows the administrative user to irrefutably attribute the action to a particular user and ascertain the time
that the action was taken. Audit records are arranged in chronological order to form an audit trail.

The audit subsystem operation consists of the following steps:

• Load the audit kernel extension module (audit.o).
• Launch the audit daemon (auditd), which reads configuration files and sets kernel audit

parameters by communicating with the kernel through the audit device. The audit daemon then
activates filter configuration in the kernel and in a continuous loop, reads raw data from the kernel
and writes audit records to a disk log.

• Once auditing is enabled in the kernel, trusted processes that want to create audit records attach
themselves to the audit subsystem. Processes such as login that perform authentication use PAM
to attach themselves to the audit subsystems. Other trusted processes, such as web server or FTP
server, use aurun(8) to attach themselves to the audit subsystem. Descendants of attached
processes are automatically attached to the audit subsystem.

• Intercept potential security relevant system calls performed by processes attached to the audit
subsystem. Evaluate system call event’s security relevance based on audit configuration
parameters. If security relevant, generates an audit record.

• Use tools such as aucat and augrep to view and analyze audit logs.

There are two sources that generate audit records: The SLES kernel and trusted user programs. The
following sections describe how records are generated through these sources.

The SLES kernel
The SLES kernel evaluates each security relevant system call, file system object access, and netlink
operation for the potential to generate an audit record.

The following describes a typical operation of a process that generates audit records for each security
relevant system call it performs:

• To begin auditing, a process with CAP_SYS_ADMIN capability attaches itself to the audit
subsystem. Once attached, every security relevant system call performed by the process is
evaluated in the kernel. The process’s descendents maintain their attachment to the audit
subsystem. The process can only detach itself from the audit subsystem if it has the
CAP_SYS_ADMIN capability.

• All security relevant system calls made by the process are intercepted at the beginning of the
system call code, and at various return points to handle different errors. The intercept routine then
evaluates the intended action for its security relevance. If deemed relevant, the system collects
appropriate data to be used in the corresponding audit record.

• The process invokes a system call service routine to perform the intended system call.
• If the action performed is security relevant, the process invokes the audit subsystem function to

generate an audit record.
• The audit record is placed in a kernel buffer; from there it is transferred to the audit trail by the

audit daemon.

The following describes a typical operation of a process that generates audit records for access to file
system objects:

• To begin auditing, a process with CAP_SYS_ADMIN capability attaches itself to the audit
subsystem. Once attached, every time the process accesses a file system object through VFS

 129

functions such as open, truncate, and chdir, audit intercept functions are called at the beginning
and at the end of the monitored VFS functions.

• The process completes the intended VFS operation.
• If the operation performed was security relevant, the process invokes the audit subsystem function

to generate an audit record.
• The audit record is placed in a kernel buffer; from there it is transferred to the audit trail by the

audit daemon.

The following describes a typical netlink operation that generates an audit record:

• The kernel encounters a netlink message.
• If the netlink message is routing related, it invokes an audit subsystem function to collect

appropriate data to be used for the audit record.
• Once the netlink message is processed, it invokes an audit subsystem function to generate an audit

record.
• The audit record is placed in a kernel buffer; from there it is transferred to the audit trail by the

audit daemon.

The following diagram schematically describes the flow of data that results in audit records generated by
the kernel.

logs

Event:
system call

Event:
netlink

Audit hooks

Kernel buffer

Device file

Audit daemon

Filtering

Figure 5-59. Audit data flow in the kernel

Event:
VFS access

Filter table

 130

Trusted programs
Trusted programs, such as those that perform authentication, create their own audit records that describe
their actions. Because trusted programs are trusted, the kernel does not need to audit each and every system
call they perform. The following describes a typical trusted program operation with respect to audit:

• To begin auditing, the process associated with a trusted program attaches itself to the audit
subsystem. The process’s descendants maintain their attachment to the audit subsystem. The
process can only detach itself from the audit subsystem if it has the CAP_SYS_ADMIN
capability.

• Once attached, the process suspends system call auditing to prevent the kernel from generating
audit records for each security relevant system call performed by the process.

• After performing security-relevant actions, the program formats the audit record describing the
action and sends it to the audit trail with the help of the kernel.

The following diagram schematically describes the data flow that results in audit records generated by
trusted programs.

ioctl()
laus_textmessage()

ioctl()
laus_textmessage()

read() binary
log data

logs

System
application

PAM
system

Kernel buffer

Device file

Audit daemon

Kernel audit
subsystem

Figure 5-60. Audit data flow from the user space

 131

Components of the audit subsystem
The following illustrates different components that make up the audit subsystem and how they interact with
each other to implement functionality required by the Controlled Access Protection Profile.

These components can be placed into three different subsystems. The SLES kernel with LAuS is part of the
kernel audit subsystem and is described below in section 5.6.2. The audit device driver is part of the device
driver subsystem of the kernel and is described in section 5.8.3. The rest form the user level audit
subsystem, which is described in section 5.14.

5.6.2 SLES kernel with LAuS
The kernel component of LAuS consists of extensions to process task structures for storing additional audit
related attributes, two intercept functions, which are placed at the beginning and at various exit points of
security relevant system calls and object access functions of VFS, an extension to routing changes, and the
addition of an audit device driver.

Task structure extensions
Each process is represented by a task structure in the kernel. This task structure is extended to add a pointer
to audit data for that process. The audit data is represented by the structure aud_process, which
contains the following fields:

Login ID
Login ID is the user ID of the logged-in user. It remains unchanged through the setuid()or
seteuid()system calls. Login ID is required by the Controlled Access Protection Profile to
irrefutably associate a user with their actions, even across su(8) calls or use of setuid binaries.

Figure 5-61. Linux Audit-Subsystem (LAuS) components

/dev/audit
device

Library-kernel
API Library-kernel

API

Library-Server
API

Write logs

Access directly

/dev/audit device

Audit
Daemon

Config
files

aucat

augrep

audbin

Audit
logs

PAM

login
passwd

…

aurun

apache
ftp

SLES kernel with LAuS

 132

Audit ID
Audit ID is a unique session identifier that is assigned to every process attached to the audit
subsystem. If a process attached to the audit subsystem forks a child, the child process inherits the
audit ID of the parent. Audit ID is used by an administrative user to group together actions
performed by one session.

suspended flag
The suspended flag is used to indicate if the process has suspended system call auditing.

Audit intercept functions
In order to evaluate potential security relevant system calls as audit candidates, a subset (table 5-1) of the
SLES kernel’s system calls are modified with calls to audit intercept routines. The following table lists
system calls whose service routines are modified to call audit intercept functions.

Syscall call Name
access
adjtimex
brk
capset
chdir
chmod
chown
clone
creat
delete_module
execve
fchmod
fchown
fork
fremovexattr
fsetxattr
init module
ioctl
ioperm
iopl

Flag indicating suspension of syscall
auditing

Unique session identifier

User id at login time

aud_process structure

login id

audit id

suspended

Task structure

Figure 5-62. LAuS extensions to task structure

audit

 133

Syscall call Name
ipc (msgctl, msgget, semctl,
semget, shmat, shmctl,
shmget)
lchown
link
lremovexattr
lsetxattr
mkdir
mknod
mount
open
ptrace
removexattr
rename
rmdir
semtimedop
setfsgid
setfsuid
setgid
setgroups
setregid
setresgid
setresuid
setreuid
settimeofday
setuid
setxattr
socketcall (bind)
swapon
symlink
truncate
umask
unlink
utime/utimes
vfork

Audit intercept functions are inserted at the beginning and at appropriate exit points of the system call
service function. Ordinarily, system calls are performed in a three step process. The first step changes from
user to kernel mode, copies system call arguments and sets up appropriate kernel registers. The second step
calls the system call service function to perform the system call. The third step switches from the kernel to
user space after copying the result of the system call. The LAuS extensions to the previous steps involve
calling the audit subsystem function audit_intercept()at the beginning of step two, and calling the
audit subsystem function audit_result()at various exit points of steps two. audit_intercept()
stores relevant audit data needed to create the audit record. audit_result(), which is invoked after the
system call action is performed, applies filtering logic, generates the audit record, and places it in the kernel
buffer.

Table 5-1. System calls modified audit intercept functions

 134

Filtering logic allows an administrative user to filter out events based on user ID, system call, and file
names, using predicates and logical operations. Basic predicates can be combined to create more complex
user defined predicates. For example:

predicate is-one-or-two = eq(1) || eq(2);

The predicates can be used by defining a filter or by attaching the predicate to a syscall.

filter uid-is-one-or-two = is-one-or-two(uid);
...
syscall sleep = is-one-or-two(arg0);

The filter is used to bind the predicate to a so called target (syscall argument, process property, syscall
result, etc.). In order to handle a class of objects more easily, the audit filter lets you specify a set.

set sensitive = { /etc, /root, /usr }
...
predicate is-sensitive = prefix(@sensitive);

The example above illustrates the use of sets. A set can be referenced by a leading `@` sign. Please refer to
man page audit-filter.conf(5) for a more detailed description of the filtering scheme.

Extensions to routing changes
The SLES kernel supports two mechanisms for configuring IP network devices and IP routing. The first
mechanism, using the ioctl()system call, does not need any specific audit related changes because the
ioctl()system call is audited as part of the system call audit. The second method, using AF_NETLINK
sockets, is extended for audit to record routing changes. Netlink messages are sent through sockets of type
AF_NETLINK, where the destination is identified by numeric IDs such as NETLINK_ROUTE. The audit
code taps into the function rtenetlink_rcv_skb(), which delivers NETLINK_ROUTE messages.

kernel

user
System call library interface

System call service routine

System call interface

audit result()

audit intercept()

System call interface

LAuS
extensions

Perform audit related
setup, store arguments
for audit record.

Apply filtering logic
and generate audit
record.

Figure 5-63. Extensions to potential security relevant system call interface

...

 135

The audit function is invoked after the netlink message is processed. The message length, message
outcome, and the message itself are passed on to the audit subsystem for inspection. Based on the message
and its outcome, the audit subsystem decides if an audit record is to be generated.

5.7 Kernel modules
Kernel modules are pieces of object code that can be linked to and unlinked from the kernel at runtime.
Kernel modules usually consist of a set of functions that implement a file system, a device driver, or other
features at the kernel’s upper layer. Lower-layer function, such as scheduling and interrupt management,
cannot be modularized. Kernel modules can be used to add or replace system calls. The SLES kernel
supports dynamically loadable kernel modules that are loaded automatically on demand. Loading and
unloading occurs as follows:

• The kernel notices that a requested feature is not resident in the kernel.
• The kernel executes the modprobe program to load a module that fits this symbolic description.
• modprobe looks into its internal “alias” translation table to see if there is match. This table is

configured by “alias” lines in /etc/modprobe.conf.
• modprobe then inserts the modules that the kernel needs. The modules are configured according to

options specified in the /etc/modprobe.conf.

By default, the SLES system does not automatically remove kernel modules that have not been used for a
period of time. The SLES system provides a mechanism by which an administrator can periodically unload
unused modules. Each module automatically linked into the kernel has the MOD_AUTOCLEAN flag set in
the flags field of the module object set. The administrator can set up a cron job to periodically execute
“rmmod –a” to tag unused modules as “to be cleaned” and to remove already tagged modules. Modules
stay tagged if they remain unused since the previous invocation of “rmmod –a”. This two step cleanup
approach avoids transiently unused modules.

The /etc/modprobe.conf file can only be modified by an authorized user, allowing the administrator
complete control over which modules can be loaded and with what configuration options. In the kernel, the
module load function sys_init_module (called by modprobe during automatic load operation) is
protected by a capability check of CAP_SYS_MODULE. Thus, only a privileged process can initiate the
loading of modules in the kernel. In order to maintain backward compatibility, the 2.6 kernel stores
enhanced 2.6 versions of module loading tools in the /etc/modprobe.d, while providing /etc/modutils for the
2.4 versions. The format of the /etc/modprobe.conf allows inclusion of other files with the “include
filename” command. This allows administrators to split modules into separate configuration files.
Administrators can keep all critical modules in /etc/modprobe.conf and keep local customization in
/etc/modprobe.conf.local.

Loadable security modules (LSM)
The Linux kernel, from version 2.6, provides a flexible infrastructure for implementing access control
policies. This infrastructure takes the form of a set of security mediations strategically located throughout
the kernel. These generic security mediations allow kernel modules to implement additional restrictive
access control policies. To avoid performance penalties in the absence loadable security modules, security
mediations are compiled in to the kernel as inline functions that invoke LSM functions through a global
security operations structure of type security_operations. A loadable security module registers
itself with the kernel by providing its own security_operations structure. The
security_operations structure supplied during module registration contains valid function pointers
to those security mediation functions that the module wants to define. The process is similar to different file
systems registering themselves with the VFS by providing their own file_system_type structure.

The security mediations are of two forms. The first type is called after a kernel object, such as a file or a
process, is created or modified. The security mediation allows a security module to create or update any
security associations for that object. The second type is called before access to kernel objects in order to
allow a security module to deny that access.

 136

The following illustrates how a loadable security module, called xyz, can implement additional access
control policy.

From version 2.6, Linux process capabilities are implemented using an LSM module. The common
capability module gets loaded on top of the kernel during initialization and contains functions to manage
and enforce process capabilities.

5.8 Device drivers
A device driver consists of data structures and functions that make a hardware device respond to a well-
defined programming interface. The kernel interacts with the device only through this well-defined
interface. It allows the kernel to control the device without knowing the underlying device specific
functions. For detailed information on device drivers, please refer to the SLES Low Level Design, by Janak
Desai, George Wilson, and Michael Halcrow.

The TOE supports many different I/O devices, such as disk drives, tape drives, and network adapters. Each
of these hardware devices can have its own methods of handling data. The device driver subsystem
provides a layer of abstraction to other kernel subsystems so they can interact with hardware devices
without being cognizant of their internal workings. Each supported hardware device has a device driver that
is loaded into the kernel during system initialization. The device driver subsystem provides access to these
supported hardware devices from user space through special device files in the /dev directory. Valid
operations on the device-special files are initialized to point to appropriate functions in the device driver for
the corresponding hardware device.

Other kernel subsystems, such as File and I/O and the Networking subsystem, have direct access to these
device driver functions because the device driver is loaded into the kernel space at system initialization
time. The File and I/O subsystem and the Networking subsystem interact with these device driver functions
to “drive” the hardware device. For example, when a file is to be written to a hard drive, data blocks
corresponding to the file are queued in the File and I/O subsystem buffer cache. From there, the File and
I/O subsystem invokes the function to flush the data to the desired device. The device driver corresponding
to that device then takes that data and invokes the device-specific functions to transfer the data to the hard

xyz
loaded

xyz not
loaded

Figure 5-64. Loadable Security Modules

Call file system specific permission
function, if it exisits, otherwise call

vfs_permission

xyz_security_ops security_operations

xyz_security_ops is a structure of type security_operations

xyz_inode_create

xyz_inode_post_create

…

xyz_inode_permission

inode_create

inode_post_create

...

inode_permission

If permission denied, return error.

Call security mediation function
security_inode_permission

Return result

xyz LSM

 137

drive. Similarly, the Networking subsystem interacts with the device driver subsystem to transfer
networking traffic to a network adapter. The physical layer of the networking stack invokes appropriate
functions to send and receive networking packets through a network adapter. The device driver
corresponding to the network adapter invokes appropriate adapter-specific functions to send or receive
network packets through the network adapter.

Device drivers provide a generic interface to the rest of the kernel consisting of “device methods” for the
start-up of a device (open method), shutdown of a device (release method), flushing contents of internal
buffers (flush method), reading data from the device (read method), writing data to the device (write
method), and performing device-specific control operations (ioctl method).

SLES running on iSeries and zSeries supports virtual devices. From the perspective of the SLES kernel,
these devices are treated no differently than other devices. That is, the SLES kernel thinks that it is
controlling devices directly. However, the hypervisor on iSeries and the z/VM on zSeries map these virtual
devices to real devices, allowing SLES access to devices supported by OS/400 when running on iSeries,
and devices supported by z/VM when running on zSeries. The following subsections briefly describe this
virtualization of I/O, followed by brief description of device drivers for audit device, character device, and
block device.

5.8.1 I/O virtualization on iSeries
SLES runs on iSeries in a logical partition. In a logical partition, devices can operate in two different
modes, native I/O and virtual I/O. In native I/O mode, SLES device driver directly control the device as
described in the section above. In virtual I/O mode, SLES uses generic device drivers to communicate with
real devices. For example, a generic disk driver is used to communicate with different types of disks. This
virtualization of I/O is implemented by the iSeries hypervisor utilizing the special I/O structure of the
iSeries hardware.

On iSeries, many I/O events are not delivered as interrupts but rather as “events” on a queue. The
hypervisor provides a mechanism for communicating between logical partitions using these events. These
logical partition events (LP events) are anchored off processor architecture control area. The LP events are
key to the I/O structure of Linux on iSeries. The logical partition running SLES, first identifies the hosting
partition by making a hypervisor call, and then send all virtual I/O events to that partition.

5.8.2 I/O virtualization on zSeries
SLES runs on zSeries as a guest of the z/VM operating system. The z/VM operating system can provide
each end user with an individual working environment known as virtual machine. The virtual machine
simulates the existence of a dedicated real machine including storage and I/O resources. Virtual machines
can run applications or even operating systems. SLES on z/Series runs in such a virtual machine provided
by the z/VM operating system. z/VM provides hypervisor functions through its Control Program (CP). The
Control Program prevents guest virtual machines from interfering with each other. This isolation is
implemented using the interpretive execution facility of the zSeries hardware. The Processor
Resource/System Manager (PR/SM) permits a virtual machine instruction stream to be run on the processor
using a single instruction, SIE. The SIE instruction is used by the machine’s logical partitioning support
functions to divide a zSeries processor complex into logical partitions. When the Control Program
dispatches a virtual machine, details about the virtual machines are provided to the hardware. The SIE
instruction runs the virtual machine until the virtual machine’s time slice has been consumed, or the virtual
machine wants to perform an operation for which the Control Program must regain control. In this way, the
full capabilities and speed of the CPU are available to the virtual machine and only those instructions that
require assistance from or validation by the Control Program are intercepted.

To virtualize devices, the Control Program acts as a barrier between virtual machines and devices to which
the Control Program has access. The Control Program mediates access to those real devices based on
configuration of the device as shared, or exclusive use for a particular virtual machine. When a virtual
machine makes an I/O request, the request is intercepted by the Control Program, such that the virtual

 138

addresses in the I/O request can be translated to their corresponding real memory addresses. The Control
Program validates the request for access control and then starts the I/O operation on behalf of the virtual
machine.

For additional detail on z/VM features and technical details, please refer to the following:

Alan Altmark and Cliff Laking. The value of z/VM: Security and Integrity
http://www.ibm.com/servers/eserver/zseries/library/techpapers/pdf/gm130145.pdf

z/VM general Information
http://www.vm.ibm.com/pubs/pdfs/HCSF8A60.PDF

5.8.3 Audit device driver
To enable bidirectional communications between user space and kernel space, LAuS provides an audit
device driver. User space programs access this device driver through the /dev/audit device-special file. The
device has the major number 10 and minor number 224.

5.8.4 Character device driver
A character device driver is a collection of routines that make a character device, such as a mouse or a
keyboard, respond to a well-defined programming interface.

Programs operate on character devices by opening their file system entry. The file system entry contains a
major and a minor number by which the kernel identifies the device. The Virtual File System sets up the
file object for the device and points the file operations vector to def_chr_fops table. def_chr_fops
contains only one method chrdev_open() which rewrites f_op field of the file object with the address
stored in the chrdevs table element that corresponds to the major number, and minor number if the major is
shared among multiple device drivers, of the character device file. Ultimately the f_op field of the file
object points to the appropriate file_operations defined for that particular character device. The
structure file_operations provides pointers to generic operations that can be performed on a file. Each
device driver defines these file operations that are valid for the type of device that the driver manages.

This extra level of indirection is needed for character devices and not block devices because of the large
variety of character devices and the operations that they support. The following diagram illustrates how the
kernel maps the file operations vector of the device file object to the correct set of operations routines for
that device.

file_operations

Figure 5-65. Setup of f_op for character device specific file operations

Index based
on major
number

dev file
object

f_op

open

def_chr_fops

chrdev_open

file_operations

*_open

*_read

*_write

…

chrdevs

name

fops

name

fops

 139

5.8.5 Block device driver
A block device driver is a collection of routines that make a block device, such as a disk drive, respond to a
well-defined programming interface.

Programs operate on block devices by opening their file system entry. The file system entry contains a
major and a minor number by which the kernel identifies the device. The kernel maintains a hash table,
indexable by major and minor number, of block device descriptors. One of the fields of the block device
descriptor is bd_op, which is pointer to a structure block_device_operations. Structure
block_device_operations contains methods to open, release, llseek, read, write, mmap, fsync,
and ioctl the block device. Each block device driver needs to implement these block device operations
for device being driven.

The Virtual File System sets up the file object for the device and points the file operations vector to the
appropriate block device operations as follows.

5.9 System initialization
This section describes the system initialization process of eServer systems. Because part of the initialization
is dependent on the hardware architecture, the following subsections identify and describe, where
appropriate, how the hardware-dependent part of the system initialization is implemented for the xSeries,
pSeries, iSeries, zSeries, and eServer 325 lines of servers, which are all part of the TOE.

5.9.1 xSeries
This section briefly describes the system initialization process for xSeries servers. For detailed information
on system initialization, please refer to the following:

Booting Linux: History and the Future, 2000 Ottawa Linux Symposium, by Almesberger, Werner
SLES Low Level Design, by Janak Desai, George Wilson, and Michael Halcrow
/usr/src/linux/Documentation/i386/boot.txt

Figure 5-66. Setup of f_op for block device specific file operations

Index based
on major
number

dev file
object

f_op

block device file ops

blkdev_open

blkdev_close

blkdev_llseek

…

bdev_hashtable

…
bd_op

…
bd_op

 140

5.9.1.1 Boot methods
SLES supports booting from a hard disk, a CD-ROM, or a floppy disk. CD-ROM and floppy disk boots are
used for installation and to perform diagnostics and maintenance. A typical boot is from a boot image on
the local hard disk.

5.9.1.2 Boot loader
A boot loader is the first program that is run after the system completes the hardware diagnostics setup in
the firmware. The boot loader is responsible for copying the boot image from hard disk and then
transferring control to it. A typical boot image on various UNIX variant systems consists of a kernel binary
that is combined with an initial file system image. SLES does not need to combine a kernel binary with the
initial file system because it supports the boot loader GRUB (GRand Unified Boot Loader). GRUB lets
you set up pointers in the boot sector to the kernel image and to the RAM file system image. GRUB is
considered to be a part of the TSF. For detailed information on GRUB, please refer to the following:

http://www.gnu.org/manual/grub-0.92/html_mono/grub.html
/usr/share/info/grub.info

5.9.1.3 Boot process
For an individual computer, the boot process consists of the following steps when the CPU is powered on
or reset:

1. BIOS probes hardware, establishes which devices are present, and runs Power-On Self Test
(POST). BIOS is not part of the TOE.

2. Initializes hardware devices and makes sure they operate without IRQ or I/O port conflicts.
3. Searches for the operating system to boot in an order predefined by the BIOS setting. Once a valid

device is found, copies the contents of its first sector containing the boot loader into RAM and
starts executing the code just copied.

4. The boot loader is invoked by BIOS to load the kernel and the initial RAM file system into the
system’s Random Access Memory (RAM). It then jumps to the setup()code.

5. The setup()function reinitializes the hardware devices in the computer and sets up the
environment for the execution of the kernel program. The setup()function initializes and
configures hardware devices, such as the keyboard, video card, disk controller, and floating point
unit.

6. Reprograms the Programmable Interrupt Controller and maps the 16 hardware interrupts to the
range of vectors from 32 to 47. Switches the CPU from Real Mode to Protected Mode and then
jumps to the startup_32()function.

7. Initializes the segmentation registers and provisional stack. Fills the area of uninitialized data of
the kernel with zeros.

8. Decompresses the kernel, moves it into its final position at 0x00100000, and jumps to that
address.

9. Calls the second startup_32()function to set up the execution environment for process 0.
10. Initializes the segmentation registers.
11. Sets up the kernel mode stack for process 0.
12. Initializes the provisional Page Tables and enables paging.
13. Fills the bss segment of the kernel with zeros.
14. Sets up the IDT with null interrupt handlers. Puts the system parameters obtained from the BIOS

and the parameters passed to the operating system into the first page frame.
15. Identifies the model of the processor. Loads gdtr and idtr registers with the addresses of the

Global Descriptor Table (GDT) and Interrupt Descriptor Table (IDT) and jumps to the
start_kernel()function.

16. start_kernel()completes the kernel initialization by initializing Page Tables, Memory
Handling Data Structures, IDT tables, slab allocator (described in section 5.2.2.2), system date,
and system time.

 141

17. Uncompresses the initial RAM file system initrd, mounts it, and then executes /linuxrc.
18. Unmounts initrd, mounts the root file system, and executes /sbin/init. Resets the pid table to assign

process ID one to the init process.
19. /sbin/init determines the default run level from /etc/inittab and performs the following basic

system initialization by executing the script /etc/init.d/boot.

• Allows an administrator to perform interactive debugging of the startup process by
executing the script /etc/sysconfig/boot.

• Mounts special file system /proc.
• Mounts special file system /dev/pts.
• Executes /etc/init.d/boot.local set up by an administrator to perform site-specific setup

functions.
• If file /var/lib/YaST2/runme_at_boot exists, finishes YaST2 installation from previous

session.
• If file /var/lib/YaST2/run_suseconfig exists, executes /sbin/SuSEconfig to configure the

operating system.

20. Performs run-level specific initialization by executing startup scripts from /etc/init.d/rcX.d, where
X is the default run level. The default run level for a typical SLES system is 3. The following lists
some of the initializations performed at run level 3. For more details on services started at run
level 3, please refer to the scripts in /etc/init.d/rc3.d.

• Saves and restores the system entropy tool for higher quality random number generation.
• Starts the atd daemon.
• Configures network interfaces.
• Starts the system logging daemons.
• Starts the sshd daemon.
• Starts the cron daemon.
• Probes hardware for setup and configuration.
• Starts the program agetty.

 142

The following diagram schematically describes the boot process.

5.9.2 pSeries
This section briefly describes the system initialization process for pSeries servers.

5.9.2.1 Boot methods
SLES supports booting from a hard disk or from a CD-ROM. CD-ROM boots are used for installation and
to perform diagnostics and maintenance. A typical boot is from a boot image on the local hard disk. The
level of detail in the boot process described here does not include differences between the boot process on
an unpartitioned system and the boot process in a logical partition. Those differences are minor and
explained in the low-level design.

Figure 5-67. xSeries SLES boot sequence

Hardware startup

Firmware (BIOS)

Linux-capable
boot loader

Linux kernel

Mount root fs

/sbin/init

/etc/init.d/boot.local

Init run level 3

Mount initrd

/linuxrc

Boot loader

Kernel

 143

5.9.2.2 Boot loader
A boot loader is the first program that is run after the system completes the hardware diagnostics setup in
the firmware. The boot loader is responsible for copying the boot image from hard disk and then
transferring control to it. pSeries systems boot using a boot loader called Yaboot (Yet Another Boot
Loader). Yaboot is an OpenFirmware boot loader for open firmware-based machines. Yaboot is considered
to be a part of the TSF. For detailed information on Yaboot, please refer to the following:

http://penguinppc.org/projects/yaboot

5.9.2.3 Boot process
For an individual computer, the boot process consists of the following steps when the CPU is powered on
or reset:

1. Runs Power On Self Tests.
2. Yaboot loads the kernel into a contiguous block of real memory and gives control to it with

relocation disabled.
3. Interacts with OpenFirmware and determines the system configuration, including real

memory layout and the device tree.
4. Instantiates the Run-Time Abstraction Services (RTAS), a firmware interface that allows the

operating system to interact with the hardware platform without learning details of the
hardware architecture.

5. Relocates the kernel to real address 0x0.
6. Creates the initial kernel stack and initializes TOC and naca pointers.
7. Builds the hardware page table (HPT) and the segment page table (STAB) to map real

memory from 0x0 to HPT itself.
8. Enables relocation.
9. Starts kernel initialization by invoking start_kernel().
10. start_kernel() completes the kernel initialization by initializing Page Tables, Memory

Handling Data Structures, IDT tables, slab allocator (described in section 5.2.2.2), system
date, and system time.

11. Uncompresses the initial RAM file system initrd, mounts it, and then executes /linuxrc.
12. Unmounts initrd, mounts the root file system, and executes /sbin/init. Resets the pid table to

assign process ID one to the init process.
13. /sbin/init determines the default run level from /etc/inittab and performs the following basic

system initialization by executing the script /etc/init.d/boot.

• Allows an administrator to perform interactive debugging of the startup process by
executing the script /etc/sysconfig/boot.

• Mounts special file system /proc.
• Mounts special file system /dev/pts.
• Executes /etc/init.d/boot.local set up by an administrator to perform site-specific setup

functions.
• If file /var/lib/YaST2/runme_at_boot exists, finishes YaST2 installation from a previous

session.
• If file /var/lib/YaST2/run_suseconfig exists, executes /sbin/SuSEconfig to configure the

operating system.

14. Performs run-level specific initialization by executing startup scripts from /etc/init.d/rcX.d,
where X is the default run level. The default run level for a typical SLES system is 3. The
following lists some of the initializations performed at run level 3. For more details on
services started at run level 3, please refer to the scripts in /etc/init.d/rc3.d.

• Saves and restores the system entropy tool for higher quality random number generation.
• Starts the atd daemon.

 144

• Configures network interfaces.
• Starts the system logging daemons.
• Starts the sshd daemon.
• Starts the cron daemon.
• Probes hardware for setup and configuration.
• Starts the program agetty.

The following diagram schematically describes the boot process.

Figure 5-68. pSeries SLES boot sequence

Hardware startup

Firmware (RTAS)

Yaboot boot
loader

Linux kernel

Mount root fs

/sbin/init

/etc/init.d/boot.local

Init run level 3

Mount initrd

/linuxrc

Boot loader

Kernel

 145

5.9.3 iSeries
This section briefly describes the system initialization process for iSeries servers. For detailed information
on iSeries LPAR initialization, please refer to the following IBM Redbook:

LPAR Configuration and Management – Working with IBM eServer iSeries Logical Partitions
http://www.redbooks.ibm.com/redbooks/pdfs/sg246251.pdf

5.9.3.1 Boot methods
On an IBM eServer, iSeries SLES runs in a secondary logical partition with primary partition running
OS/400 or i5/OS, and providing hypervisor functions. Two environments are possible for running SLES in
a secondary LPAR, hosted and non-hosted.

Hosted environment
In a hosted environment, SLES depends on OS/400 partition for some or all of its I/O. The partition is
booted up and shutdown from OS/400 using Network Server Descriptor (NWSD). NWSD, which resides
on the hosting partition, contains configuration for starting and stopping SLES partitions, and provides a
link between SLES and its virtual disks. SLES is booted by varying-on (activating) its corresponding
NWSD.

Non-hosted environment
In non-hosted environment all I/O is native and controlled by SLES device drivers. NWSD is used only to
perform installation on a local disk drive. Once installation is complete, SLES boots from the partition’s
Direct Attached Storage Device (DASD). OS/400 running in primary partition is only used to provide low-
level hypervisor functions. The partition running SLES is initialized using “Work with Partition” utility
running on the primary partition.

5.9.3.2 Hypervisor
SLES runs in a logical partition on an iSeries system. Logical partitions are created by the hypervisor
program that interacts with actual hardware, and provides virtual versions of hardware to operating systems
running in different logical partitions. As part of an IPL (Initial Program Load), the hypervisor performs
certain initializations, listed below in section 5.9.3.3, before handing control over to the operating system.

5.9.3.3 Boot process
For an individual computer, the boot process consists of the following steps when the CPU is powered on
or reset:

1. The hypervisor assigns memory to the partition as a 64 MB contiguous load area and the
balance in 256 KB chunks.

2. Loads the SLES kernel into the load area.
3. Provides system configuration data to the SLES kernel via several data areas provided within

the kernel.
4. Sets up hardware translations to the SLES kernel space address 0xc000 for the first 32 MB of

the load area.
5. Gives control to the SLES kernel with relocation enabled.
6. Builds the msChunks array to map the kernel’s view of real addresses to the actual hardware

addresses.
7. Builds an event queue, which is used by the hypervisor to communicate I/O interrupts to the

partition.
8. Opens a connection to a hosting partition through the hypervisor to perform any virtual I/O.
9. Starts kernel initialization by invoking start_kernel().

 146

10. start_kernel() completes the kernel initialization by initializing Page Tables, Memory
Handling Data Structures, IDT tables, slab allocator (described in section 5.2.2.2), system
date, and system time.

11. Uncompresses the initial RAM file system initrd, mounts it, and then executes /linuxrc.
12. Unmount initrd, mounts the root file system, and executes /sbin/init. Resets the pid table to

assign process ID one to the init process.
13. /sbin/init determines the default run level from /etc/inittab and performs the following basic

system initialization by executing the script /etc/init.d/boot:

• Allows an administrator to perform interactive debugging of the startup process by
executing the script /etc/sysconfig/boot.

• Mounts special file system /proc.
• Mounts special file system /dev/pts.
• Executes /etc/init.d/boot.local set up by an administrator to perform site-specific setup

functions.
• If file /var/lib/YaST2/runme_at_boot exist, finished YaST2 installation from previous

session.
• If file /var/lib/YaST2/run_suseconfig exist, executes /sbin/SuSEconfig to configure the

operating system.

14. Performs run-level specific initialization by executing startup scripts from /etc/init.d/rcX.d,
where X is the default run level. The default run level for a typical SLES system is 3. The
following lists some of the initializations performed at run level 3. For more details on
services started at run level 3, please refer to the scripts in /etc/init.d/rc3.d.

• Saves and restores the system entropy tool for higher quality random number generation.
• Starts the atd daemon.
• Configures network interfaces.
• Starts the system logging daemons.
• Starts the sshd daemon.
• Starts the cron daemon.
• Probes hardware for setup and configuration.
• Starts the program agetty.

 147

The following diagram schematically describes the boot process.

Figure 5-69. iSeries SLES boot sequence

LPAR Startup

Provide system
configuration

data

Setup hardware
translation

Linux kernel

Mount root fs

/sbin/init

/etc/init.d/boot.local

Init run level 3

Mount initrd

/linuxrc

Hypervisor

Kernel

 148

5.9.4 zSeries
This section briefly describes the system initialization process for zSeries servers. For detailed information
on the zSeries initialization, please refer to the following IBM redbook:

Linux on IBM eServer zSeries and S/390: Building SUSE SLES8 Systems under z/VM
http://www.redbooks.ibm.com/redpapers/pdfs/redp3687.pdf

5.9.4.1 Boot methods
Linux on zSeries supports three installation methods, native installation, LPAR installation or z/VM guest
installation. SLES only supports z/VM guest installation. The process described below corresponds to the
z/VM guest mode. The boot method for the SLES guest partition involves issuing an Initial Program Load
(IPL) instruction to the Control Program (CP), which loads the kernel image from a virtual disk (DASD)
device. The zipl(8) Linux utility is responsible for creating the boot record used during the IPL process.

5.9.4.2 Control program
On a zSeries system, SLES runs in as a guest of the z/VM operating system. The control program, which is
the zSeries hypervisor, interacts with real hardware and provides SLES with the same interfaces that real
hardware would provide. As part of the IPL, the control program performs initializations before handing
control over to the operating system.

5.9.4.3 Boot process
For an individual computer, the boot process consists of the following steps when the CPU is powered on
or reset:

1. For an individual SLES guest partition, on issuing an IPL instruction, the CP reads the boot record
written to the DASD virtual disk by the zipl(8) utility.

2. Based on the boot record, CP loads the SLES kernel image into memory and jumps to the
initialization routine, handing control over to the SLES OS code.

3. SELS auto detects all the devices attached to the system.
4. Obtains information about the cpu(s).
5. Obtains information about disk devices and disk geometry.
6. Obtains information about network devices.
7. Jumps to start_kernel() function to continue kernel data structure initialization.
8. start_kernel() completes the kernel initialization by initializing Page Tables, Memory

Handling Data Structures, IDT tables, slab allocator (described in section 5.2.2.2), system date,
and system time.

9. Uncompresses the initial RAM file system initrd, mounts it, and then executes /linuxrc.
10. Unmounts initrd, mounts the root file system, and executes /sbin/init. Resets the pid table to assign

process ID one to the init process.
11. /sbin/init determines the default run level from /etc/inittab and performs the following basic

system initialization by executing the script /etc/init.d/boot.

• Allows an administrator to perform interactive debugging of the startup process by
executing the script /etc/sysconfig/boot.

• Mounts special file system /proc.
• Mounts special file system /dev/pts.
• Executes /etc/init.d/boot.local set up by an administrator to perform site-specific setup

functions.
• If file /var/lib/YaST2/runme_at_boot exists, finishes YaST2 installation from a previous

session.
• If file /var/lib/YaST2/run_suseconfig exists, executes /sbin/SuSEconfig to configure the

operating system.

 149

12. Performs run-level specific initialization by executing startup scripts from /etc/init.d/rcX.d, where

X is the default run level. The default run level for a typical SLES system is 3. The following lists
some of the initializations performed at run level 3. For more details on services started at run
level 3, please refer to the scripts in /etc/init.d/rc3.d.

• Saves and restores the system entropy tool for higher quality random number generation.
• Starts the atd daemon.
• Configures network interfaces.
• Starts the system logging daemons.
• Starts the sshd daemon.
• Starts the cron daemon.
• Probes hardware for setup and configuration.
• Starts the program agetty.

The following schematically describes the boot process for SLES as a z/VM guest.

Figure 5-70. pSeries SLES boot sequence

VM Startup

Obtains
information about

cpu(s), disks
devices and

network devices

Linux kernel

Mount root fs

/sbin/init

/etc/init.d/boot.local

Init run level 3

Mount initrd

/linuxrc

z/VM

Kernel

 150

5.9.5 eServer 325
This section briefly describes the system initialization process for eServer 325 servers. For detailed
information on system initialization, please refer to the following:

AMD64 Architecture, Programmer’s Manual Volume 2: System Programming,
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf

5.9.5.1 Boot methods
SLES supports booting from a hard disk, a CD-ROM, or a floppy disk. CD-ROM and floppy disk boots are
used for installation and to perform diagnostics and maintenance. A typical boot is from a boot image on
the local hard disk.

5.9.5.2 Boot loader
A boot loader is the first program that is run after the system completes the hardware diagnostics setup in
the firmware. The boot loader is responsible for copying the boot image from hard disk and then
transferring control to it. A typical boot image on various UNIX variant systems consists of a kernel binary
that is combined with an initial file system image. SLES does not need to combine a kernel binary with the
initial file system because it supports the boot loader GRUB (GRand Unified Boot Loader). GRUB lets you
set up pointers in the boot sector to the kernel image and to the RAM file system image. GRUB is
considered to be a part of the TSF. For detailed information on GRUB, please refer to the following:

http://www.gnu.org/manual/grub-0.92/html_mono/grub.html
/usr/share/info/grub.info

5.9.5.3 Boot process
For an individual computer, the boot process consists of the following steps when the CPU is powered on
or reset:

1. BIOS probes hardware, establishes which devices are present, and runs Power-On Self Test
(POST). BIOS is not part of the TOE.

2. Initializes hardware devices and makes sure they operate without IRQ or I/O port conflicts.
3. Searches for the operating system to boot in an order predefined by the BIOS setting. Once a

valid device is found, copies the contents of its first sector containing the boot loader into
RAM and starts executing the code just copied.

4. The boot loader is invoked by BIOS to load the kernel and the initial RAM file system into
the system’s Random Access Memory (RAM). It then jumps to the setup()code.

5. The setup()function reinitializes the hardware devices in the computer and sets up the
environment for the execution of the kernel program. The setup()function initializes and
configures hardware devices, such as the keyboard, video card, disk controller, and floating
point unit.

6. Reprograms the Programmable Interrupt Controller and maps the 16 hardware interrupts to
the range of vectors from 32 to 47. Switches the CPU from Real Mode to Protected Mode and
then jumps to the startup_32()function.

7. Initializes the segmentation registers and provisional stack. Fills the area of uninitialized data
of the kernel with zeros.

8. Decompresses the kernel, moves it into its final position at 0x00100000, and jumps to that
address.

9. Calls the second startup_32()function to set up the execution environment for process 0.
10. Prepares to enable long mode by enabling Physical Address Extensions (PAE) and Page

Global Enable (PGE).
11. Sets up early boot stage 4 level page tables, enables paging, and Opteron long mode. Jumps to

reach_compatibility_mode(), loads GDT with 64-bit segment and starts operating in 64-bit
mode.

 151

12. Initializes the segmentation registers.
13. Sets up the kernel mode stack for process 0.
14. Fills the bss segment of the kernel with zeros.
15. Sets up the IDT with null interrupt handlers. Puts the system parameters obtained from the

BIOS and the parameters passed to the operating system into the first page frame.
16. Identifies the model of the processor. Loads Global Descriptor Table Register (GDTR) and

Local Descriptor Table Register (LDTR) registers with the addresses of the Global Descriptor
Table (GDT) and Interrupt Descriptor Table (IDT) and jumps to the
x86_64_start_kernel()function.

17. x86_64_start_kernel()completes the kernel initialization by initializing Page Tables,
Memory Handling Data Structures, IDT tables, slab allocator (described in sections 5.5.1.5
and 5.5.2), system date, and system time.

18. Uncompresses the initial RAM file system initrd, mounts it, and then executes /linuxrc.
19. Unmounts initrd, mounts the root file system, and executes /sbin/init. Resets the pid table to

assign process ID one to the init process.
20. /sbin/init determines the default run level from /etc/inittab and performs the following basic

system initialization by executing the script /etc/init.d/boot.

• Allows an administrator to perform interactive debugging of the startup process by
executing the script /etc/sysconfig/boot.

• Mounts special file system /proc.
• Mounts special file system /dev/pts.
• Executes /etc/init.d/boot.local set up by an administrator to perform site-specific setup

functions.
• If file /var/lib/YaST2/runme_at_boot exist, finishes YaST2 installation from previous

session.
• If file /var/lib/YaST2/run_suseconfig exist, executes /sbin/SuSEconfig to configure

operating system.

21. Performs run-level specific initialization by executing startup scripts from /etc/init.d/rcX.d,
where X is the default run level. The default run level for a typical SLES system is 3. The
following lists some of the initializations performed at run level 3. For more details on
services started at run level 3, please refer to the scripts in /etc/init.d/rc3.d.

• Saves and restores the system entropy tool for higher quality random number generation.
• Starts the atd daemon.
• Configures network interfaces.
• Starts the system logging daemons.
• Starts the sshd daemon.
• Starts the cron daemon.
• Probes hardware for setup and configuration.
• Starts the program agetty.

 152

The following diagram schematically describes the boot process.

Figure 5-71. eServer 325 SLES boot sequence

Hardware startup

Firmware (BIOS)

Linux-capable
boot loader

Linux kernel

Mount root fs

/sbin/init

/etc/init.d/boot.local

Init run level 3

Mount initrd

/linuxrc

Boot loader

Kernel

 153

5.10 Identification and authentication
Identification is when a user professes an identity to a system in the form of a login ID. Identification
establishes user accountability and access restrictions for actions on the system. Authentication is
verification that the user’s claimed identity is valid, and is implemented through a user password at login
time. All discretionary access-control decisions made by the kernel are based on the process’s user ID
established at login time, which make the authentication process a critical component of a system. The
TOE implements identification and authentication through a set of trusted programs and protected
databases. These trusted programs use an authentication infrastructure called the Pluggable Authentication
Module (PAM). PAM allows different trusted programs to follow a consistent authentication policy. This
section briefly describes PAM, protected databases and their functions, trusted programs and their high-
level design implementation, and interaction of identification and authentication subsystem with audit. For
more detailed information, please refer to the following:

Scott Mann, Ellen Mitchell and Michell Krell, Linux System Security, 2nd Edition
Kevin Fenzi, Dave Wreski, Linux Security HOWTO at http://usr/share/doc/howto/en/html-single/Security-
HOWTO.html

5.10.1 Pluggable Authentication Modules
Pluggable Authentication Modules (PAM) is at the heart of the identification and authentication subsystem.
PAM provides a centralized mechanism for authenticating all services. PAM allows for limits on access to
applications and alternate, configurable authentication methods. For more detailed information on PAM,
please refer to the PAM project Web page at http://www.kernel.org/pub/linux/libs/pam.

5.10.1.1 Overview
PAM consists of a set of shared library modules that provide appropriate authentication and audit services
to an application. Applications are updated to offload their authentication and audit code to PAM, which
allows the system to enforce a consistent identification and authentication policy, as well as generate
appropriate audit records. The following trusted programs are enhanced to use PAM:

• login
• passwd
• su
• useradd, usermod, userdel
• groupadd, groupmod, groupdel
• sshd
• vsftpd
• chage
• chfn
• chsh

A PAM-aware application generally goes through the following steps:

1. The application makes a call to PAM to initialize certain data structures.
2. The PAM module locates the configuration file for that application from

/etc/pam.d/application_name and obtains a list of PAM modules necessary for servicing that
application. If no application-specific configuration file is found, then /etc/pam.d/other is used.

3. Depending on the order specified in the configuration file, PAM loads the appropriate modules.
Please refer to section 5.14 for the mechanics of loading a shared library.

4. The audit module opens the audit-device file, attaches the current process to the audit subsystem,
and closes the audit device file.

5. The authentication module code performs the authentication, which depending on the type of
authentication, may require input from the user.

6. Each authentication module performs its action and relays the result back to the application.

 154

7. The audit module creates an audit record of type “Audit User Message” to note the success or
failure from the authentication module.

8. The application takes appropriate action based on the aggregate results from all authentication
modules.

5.10.1.2 Configuration terminology
PAM configuration files are stored in /etc/pam.d. Each application is configured with a file of its own in the
/etc/pam.d directory. For example, the login configuration file is /etc/pam.d/login and the passwd
configuration file is /etc/pam.d/passwd. Each configuration file can have four columns that correspond to
the entry fields module-type, control-flag, module-path, and arguments.

module-type
Module types are auth, which tells the application to prompt the user for a password; account,
which verifies various account parameters, such as password age; session, which performs pre-
and post-processing of a session establishment; and password, which updates users’
authentication token.

control-flag
Control flags specify the action to be taken based on the result of a PAM module routine. When
multiple modules are specified for an application (stacking), the control flag specifies the relative
importance of modules in a stack. Control flags take a value, such as required, which indicates
that the module must return success for service to be granted; requisite, which is similar to
required, but PAM executes the rest of the module stack before returning failures to the
application; optional, which indicates that the module is not required; and sufficient,
which indicates that if the module is successful, there is no need to check other modules in the
stack.

module_path
Module path specifies the exact path name of the shared library module or just the name of the
module in /lib/security.

arguments
The argument field passes arguments or options to the PAM module. arguments can take
values like debug to generate debug output or no_warn to prevent the PAM from passing any
warning messages to the application. On the evaluated SLES system, the md5 option allows
longer passwords than the usual UNIX limit of eight characters.

5.10.1.3 Modules
SLES is configured to use the following PAM modules:

pam_unix2.so

Supports all four module types. pam_unix2.so provides standard password-based
authentication. pam_unix2.so uses standard calls from the system's libraries to retrieve and set
account information as well as to perform authentication. Authentication information on SLES is
obtained from the /etc/passwd and /etc/shadow files. The pam_unix2.so module is configured
by the /etc/security/pam_unix2.conf file, which contains options for authentication, account
management, and password management.

pam_pwcheck.so

Checks passwords by reading /etc/login.defs and making the checks provided by the Linux
shadow suite. pam_pwcheck.so is configured by the /etc/security/pam_pwcheck.conf file,
which instructs it to use the cracklib library to check the strength of the password. The cracklib
library uses the /usr/lib/cracklib_dict.* dictionary files to evaluate the strength of the password.

 155

pam_pwcheck.so also prevents users from reusing passwords already used before, by checking
the /etc/security/opasswd file.

pam_passwdqc.so

Performs additional password strength checks. For example, rejects passwords such as
“1qaz2wsx” that follow a pattern on the keyboard. In addition to checking regular passwords it
offers support for passphrases and can provide randomly generated passwords.

pam_wheel.so
Permits root access to members of the trusted group only. By default, pam_wheel.so permits
root access to the system if the applicant user is a member of the trusted group (first, the module
checks for the existence of a trusted group). Otherwise, the module defines the group with group
ID 0 to be the trusted group. The TOE is configured with a trusted group of GID = 42.

pam_nolgin.so
Provides standard UNIX nologin authentication. If the file /etc/nologin exists, only root is
allowed to log in; other users are turned away with an error message (and the module returns
PAM_AUTH_ERR or PAM_USER_UNKNOWN). All users (root or otherwise) are shown the
contents of /etc/nologin.

pam_securetty.so

Provides standard UNIX securetty checking, which causes authentication for root to fail
unless the calling program has set PAM_TTY to a string listed in the /etc/securetty file. For all
other users, pam_securetty.so succeeds.

pam_tally.so
Keeps track of the number of login attempts made and denies access based on the number of failed
attempts specified in the /etc/login.defs file.

pam_listfile.so
Allows for the use of access control lists based on users, ttys, remote hosts, groups, and shells.

pam_deny.so
Always returns a failure.

pam_laus.so
Provides interfaces for processes to interact with the audit subsystem. Allows processes to attach
to the audit subsystem and allows initialization of audit session for a user. Intercepts successes and
failures reported by other PAM authentication modules, and generates appropriate user-space audit
records for them.

5.10.2 Protected databases
The following databases are conferred by the identification and authentication subsystem during user
session initiation:

/etc/passwd

For all system users, stores login name, user ID, primary group ID, real name, home directory, and
shell. Each user’s entry occupies one line and fields are separated by “:”. The file is owned by user
root and group root, and its mode is 644.

/etc/group
For system groups, stores group names, group IDs, supplemental group IDs, and group
memberships. Each group’s entry occupies one line and fields are separated by “:”. The file is
owned by user root and group root, and its mode is 644.

 156

/etc/shadow

For all system users, stores user name, hashed password, last password change time (in days since
epoch), minimum number of days that must pass before password can be changed again,
maximum number of days after which the password must be changed, number of days before the
password expires when the user is warned, number of days after the password expires that the
account is locked, and total lifetime of the account. The hashing algorithm MD5 is used to build
the password checksum. The file is owned by user root and group shadow, and its mode is 400.

/var/log/lastlog
Stores the time and date of the last successful login for each user. The file is owned by user root
and group tty, and its mode is 644.

/var/log/faillog
Stores the time and date of the last failed login attempt for each user. The file is owned by user
root and group root, and its mode is 644.

/etc/login.defs
Defines various configuration options for the login process, such as minimum and maximum user
ID, for automatic selection by the command useradd. Minimum and maximum group ID for
automatic selection by the command groupadd, password aging controls, default location for
mail, and whether to create a home directory when creating a new user. The file is owned by user
root and group root, and its mode is 644.

/etc/securetty
Lists ttys from which the root user can log in. Device names are listed one per line, without the
leading /dev/. The file is owned by user root and group root, and its mode is 644.

/var/run/utmp
The utmp file stores information about who is currently using the system. utmp contains a
sequence of entries with the name of the special file associated with the user's terminal, the user's
login name, and the time of login in the form of time(2). The file is owned by user root and group
tty, and its mode is 664.

/var/log/wtmp
The wtmp file records all logins and logouts. Its format is exactly like utmp except that a null user
name indicates a logout on the associated terminal. Furthermore, the terminal name "~" with user
name "shutdown" or "reboot" indicates a system shutdown or reboot and the pair of terminal
names "|"/"}" logs the old/new system time when the command date changes it. The file is owned
by user root and group tty, and its mode is 664.

/etc/ftpusers
The text file ftpusers contains a list of users who cannot log in using the File Transfer Protocol
(FTP) server daemon. The file is owned by user root and group root, and its mode is 644.

5.10.3 Trusted commands and trusted processes
The Identification and Authentication subsystem contains the agetty and mingetty trusted processes,
and the login, passwd and su trusted commands.

agetty

agetty, the alternative linux getty, is invoked from /sbin/init when the system
transitions from a single-user mode to a multiuser mode. agetty opens a tty port, prompts for a
login name, and invokes /bin/login to authenticate. Please refer to the agetty man page for more
detailed information. agetty follows these steps:

 157

1. Sets language.
2. Parses command line setup options such as timeout and the alternate login program.
3. Updates the utmp file with tty information.
4. Initializes terminal I/O characteristics. For example, modem or regular terminal.
5. Prompts for login name.
6. Execs the login program.

The steps that are relevant to the identification and authorization subsystem are step 5, which
prompts for the user’s login name, and step 6, which executes the login program. The
administrator can also use a command-line option to terminate the program if a user name is not
entered within a specific amount of time.

mingetty

mingetty, the minimal linux getty, is invoked from /sbin/init when the system
transitions from single-user mode to multiuser mode. mingetty opens a pseudo tty port,
prompts for a login name, and invokes /bin/login to authenticate. Please refer to the mingetty
man page for more detailed information. mingetty follows these steps:

1. Sets language.
2. Parses command line setup options such as timeout and the alternate login program.
3. Updates the utmp file with pseudo tty information.
4. Prompts for login name.
5. Execs the login program.

The steps that are relevant to the identification and authorization subsystem are step 4, which
prompts for the user’s login name, and step 5, which executes the login program. The
administrator can also use a command-line option to terminate the program if a user name is not
entered within a specific amount of time.

login

login is used when a user signs on to a system. If root is trying to log in, the program makes
sure that the login attempt is being made from a secure terminal listed in /etc/securetty. login
prompts for the password and turns off the terminal echo in order to prevent displaying the
password as it is being typed by the user. login then verifies the password for the account. If an
initial password is not set for a newly created account, the user is not allowed to log in to that
account. Unsuccessful login attempts are tallied and access is denied if the number of failed
attempts exceeds the number specified in the /etc/login.defs file. Once the password is successfully
verified, various password aging restrictions, which are set up in /etc/login.defs, are checked. If the
password has expired, the login program requests the user to change his or her password. If the
password age is satisfactory, the program sets the user ID and group ID of the process, changes the
current directory to the user’s home directory, and executes the shell specified in the /etc/passwd
file. Please refer to the login man page for more detailed information. login generally follows
these steps.

1. Sets language.
2. Parses command-line options.
3. Checks tty name.
4. Sets process group ID.
5. Gets control of the tty by killing processes left on this tty.
6. Calls pam_start() to initialize PAM data structures, including hostname and tty.
7. If password is required and username is not set yet, prompts for user name.
8. Calls pam_authenticate()in a loop to cycle through all configured methods. Audit

records are created with the success and failure result of each configured authentication
method.

 158

9. If failed attempts exceed the maximum allowed, exits.
10. Performs account management by calling pam_acct_mgmt().
11. Sets up supplementary group list.
12. Updates utmp and wtmp files.
13. Changes ownership of the tty to the login user. When the user logs off, the ownership of

the tty reverts back to root.
14. Changes access mode of the tty.
15. Sets the primary group ID.
16. Sets environment variables.
17. Sets effective, real, and saved user ID.
18. Changes directory to the user’s home directory.
19. Executes shell.

passwd

passwd updates a user’s authentication tokens. passwd is configured to work through the PAM
API. passwd configures itself as a password service with PAM and utilizes configured password
modules to authenticate and then update a user’s password. passwd turns off terminal echo while
the user is typing the old as well as the new password, in order to prevent the password from being
displayed as it is being typed by the user. Please refer to the passwd man page for more detailed
information. passwd generally follows these steps:

1. Parses command-line arguments.
2. Handles requests for locking, unlocking, and clearing of passwords for an account.
3. If requested, displays account status.
4. If requested, updates password aging parameters
5. Reads new password from standard input.
6. Starts PAM session with a call to pam_start().
7. Calls pam_chauthtok()to perform password history and password strength checks,

and to update password. Generates audit record indicating successful update of the
password.

su

su allows a user to switch identity. su changes the effective and real user and group ID to those
of the new user. Please refer to the su man page for more detailed information. su generally
follows these steps:

1. Sets language.
2. Sets up a variable indicating whether the application user is the root user.
3. Gets current tty name for logging.
4. Processes command-line arguments.
5. Sets up the environment variable array.
6. Invokes pam_start()to initialize the PAM library and to identify the application with

a particular service name.
7. Invokes pam_set_item()to record tty and user name.
8. Validates the user that the application invoker is trying to become.
9. Invokes pam_authenticate()to authenticate the application user. Terminal echo is

turned off while the user is typing his or her password. Generates audit record to log the
authentication attempt and its outcome.

10. Invokes pam_acct_mgmt()to perform module-specific account management.
11. If the application user is not root, checks to make sure that the account permits su.
12. Makes new environment active.
13. Invokes setup_groups()to set primary and supplementary groups.
14. Invokes pam_setcred()to set parameters such as resource limits, console groups, and

so on.

 159

15. Becomes the new user by invoking change_uid(). For normal users,
change_uid()sets the real and effective user ID. If the caller is root, real and saved
user ID are set as well.

5.10.4 Interaction with audit
Trusted processes and trusted commands of the identification and authentication subsystem are responsible
for setting a process’s credentials. Once a user is successfully authenticated, these trusted processes and
trusted commands associate the user’s identity to the processes, which are performing actions on behalf of
the user. The audit subsystem tries to record security relevant actions performed by users. Because the user
identity attributes such as uid can be changed by appropriately privileged process, the audit subsystem in
SLES provides a mechanism by which actions can be associated, irrefutably, to a login user. This is
achieved by extending the process’s task structure to contain a login ID. This login ID can only be set once,
and once set cannot be changed irrespective of process privileges. It is set by trusted processes and trusted
programs that perform authentication. Programs such as login, crond, atd, and sshd, which authenticate a
user and associate a uid with the user process, set this login ID to that uid corresponding to the login user as
follows:

Upon successful authentication, the audit module generates an audit record of type “Audit Login Message.”
The generation of login message results in invocation of audit_login()routine in the kernel. The
audit_login()routine sets the login ID of the process. The login ID is not affected by calls such as
setuid(), setreuid()and seteuid(), that are invoked by trusted command su. This login ID is
contained in each audit record generated by the process, allowing all actions to be irrefutably traced back to
the login user.

5.11 Network applications
This section describes the network applications subsystem. The network applications subsystem contains
Secure Socket Layer (SSL) interface, sshd and vsftpd trusted processes, which interact with the PAM
modules to perform authentication. The network application subsystem also includes the xinetd super-
server and the ping program. These trusted processes and trusted programs recognize different hosts in
the LAN with their IP addresses or with their names. Host names are associated with IP addresses using the
/etc/hosts file.

5.11.1 Secure socket-layer interface
Network communications take place through well known standards that form the network stack. While
public standards allow different systems to communicate with each other, they also open up the possibility
of various kinds of attacks. Cryptography can be used to neutralize some of these attacks and to ensure
confidentiality and integrity of network traffic. Cryptography can also be used to implement authentication
schemes using digital signatures. The TOE supports a technology based on cryptography called OpenSSL.
OpenSSL is a publicly available implementation of the Secure Socket Layer (SSL). SSL, which is
encryption based, is a technology that provides message encryption, server authentication, message
integrity, and optional client authentication. The section briefly describes the SSL protocol and how it is
used to provide secure communication to and from a SLES system. For more detailed information on SSL,
please refer to the following:

OpenSSL project Web site at http://www.openssl.org/docs

William Stallings, Cryptography and Network Security Principles and Practice, 2nd Edition

Adolfo Rodriguez, et al., IBM Redbook TCP/IP Tutorial and Technical Overview
http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf

Eric Young, Internet Security Protocols: SSLeay & TLS

 160

Tim Dierks, Eric Rescorla, The TLS Protocol version 1.1
http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc2246-bis-05.txt

SSL was originally designed by Netscape. SSL version 3 was designed with public input. As SSL gained in
popularity, a Transport Layer Security (TLS) working group was formed to submit the protocol for Internet
standardization. OpenSSL implements Secure Socket Layer (SSL versions 2 and 3) and Transport Layer
Security (TLS version 1) protocols as well as a full-strength general purpose cryptography library. Because
TLS is based on SSL, the rest of this section uses the term SSL to describe both the SSL and TLS
protocols. Where the protocols differ, TLS protocols are identified appropriately.

SSL is a socket-layer security protocol that is implemented at the transport layer. SSL is a reliable
connection-based protocol and therefore available on top of TCP but not UDP.

5.11.1.1 SSL concepts
At the heart of the SSL architecture is the use of encryption with symmetric keys for data transfer,
encryption with asymmetric keys for exchanging symmetric keys, and one-way hash functions for data
integrity. The following sections briefly describe encryption and message-digest concepts and how they are
used to implement data confidentiality, data integrity, and the authentication mechanism.

Encryption
Encryption is a process of disguising a message. Encryption transforms a clear-text message into
ciphertext.

EIA/TIA-232, X.21

Ethernet

IP

TCP

http, ftp, set

SSL

Application layer

Transport layer

Network layer

Link layer

Physical layer

UDP

Figure 5-72. SSL location in the network stack

ciphertext cleartext

Comprehensible

message

Eqortgjgpukdng

oguucig

Encryption

process

Figure 5-73. Encryption

 161

Decryption converts ciphertext back into the original, comprehensible cleartext.

Most encryption processes involve the use of an algorithm and a key. For example, in the previous
illustration the algorithm was “replace alphabets by moving forward” and the key was 2.

Data confidentiality can be maintained by keeping the algorithm, the key or both, secret from unauthorized
people. In most cases, including OpenSSL, the algorithm used is well known but the key is protected from
unauthorized people.

Encryption with symmetric keys
A symmetric key, also known as secret key, is a single key that is used for both encryption and decryption.
For example, key = 2 used in the above illustration is a symmetric key. Only the parties exchanging secret
messages have access to this symmetric key.

Encryption with asymmetric keys
Asymmetric key encryption and decryption, also known as public key cryptography, involve the use of a
key pair. Encryption performed with one of the keys of the key pair can only be decrypted with the other
key of the key pair. The two keys of the key pair are known as public key and private key. A user generates
public and private keys from a key pair. The user then makes the public key available to others while
keeping the private key a secret.

Encryption process

cleartext ciphertext

Eqortgjgpukdng

oguucig

Comprehensible

message

Decryption

process

Figure 5-74. Decryption

ciphertext cleartext

comprehensible

message

eqortgjgpukdng

oguucig

c " e
o " q
m " o

…
…

algorithm
+

key

Figure 5-75. Encryption Algorithm and Key

 162

The following diagram conceptually illustrates the creation of asymmetric keys for encryption and
decryption.

If encryption is done with a public key, only the corresponding private key can be used for decryption. This
allows a user to communicate confidentially with another user by encrypting messages with the intended
receiver’s public key. Even if messages are intercepted by a third party, the third party cannot decrypt
them. Only the intended receiver can decrypt messages with his or her private key. The following diagram
conceptually illustrates encryption with a public key to provide confidentiality.

Key pair Private key Public key

Figure 5-76. Asymmetric keys

++

Public key data
Encrypted

data Private key
Original

data

Figure 5-77. Encryption with public key provides confidentiality

Encrypted
data

 163

If encryption is done with a private key, only the corresponding public key can be used for decryption. This
gives the receiver of the message the ability to authenticate the sender. Encryptions of a message with the
sender’s private key acts like a digital signature, because only the corresponding public key of the sender
can decrypt the message. Thus, indicating that the message was indeed sent by the sender. The following
diagram conceptually illustrates the use of encryption with a private key to provide authentication.

Message digest
A message digest is created with a one-way hash function. One-way hash functions are algorithms that
transform a message of arbitrary length into a fixed length tag called message digest. A good hash function
can detect even a small change in the original message to generate a different message digest. The hash
function is “one-way”; it is not possible to deduce the original message from its message digest. Message
digests are used to provide assurance of message integrity. The sender generates a message digest for each
of the message being sent. Each message is transmitted, along with its message digest. The receiver
separates the message digest from the message, generates a new message digest from the received message
using the same algorithm used by the sender and compares the received message digest with the newly
generated one. If the two message digests are different, then the message was altered on the way. If the two
message digests are identical, then the receiver can be assured that the message’s integrity was not
compromised during transmission.

Message Authentication Code (MAC)
A message authentication code (MAC) is a type of message digest that is created by encrypting, with a
symmetric key, the output of a one-way hash function.

Digital certificates and certificate authority
Cryptography with an asymmetric key depends on public keys being authentic. If two people are
exchanging their public keys over untrusted network, then that process introduces a security vulnerability.
An intruder can intercept messages between them, replace their public keys with his own public key, and
monitor their network traffic. The solution for this vulnerability is the digital certificate. A digital
certificate is a file that ties an identity to the associated public key. This association of identity to a public
key is validated by a trusted third party known as the certificate authority. The certificate authority signs
the digital certificate with its private key. In addition to a public key and an identity, a digital certificate
contains the date of issue and expiration date. OpenSSL supports the international standard, ISO X.509, for
digital certificates.

++

Public keydata
Encrypted

dataPrivate key
Original

data

Figure 5-78. Encryption with private key provides authentication

Encrypted
data

 164

5.11.1.2 SSL architecture
SSL occupies a space between the transport and application layer in the network stack. The SSL protocol
itself consists of two layers. Both layers use services provided by the layer below them to provide
functionality to the layers above them. The “lower” layer consists of the SSL Record Protocol, which uses
symmetric key encryption to provide confidentiality to data communications over a reliable, connection
oriented, transport protocol TCP. The “upper” layer of SSL consists of the SSL Handshake Protocol, the
SSL Change Cipher Spec Protocol, and the SSL Alert Protocol. The SSL Handshake Protocol is used by
the client and server to authenticate each other, and to agree on encryption and hash algorithms to be used
by the SSL Record Protocol. Authentication method supported by SSL in the evaluated configuration is
client and server authentication using X.509 certificates. The SSL Change Cipher Spec changes the Cipher
suite (encryption and hash algorithms) used by the connection. The SSL Alert Protocol reports SSL-related
errors to communicating peers.

The following diagram depicts different SSL protocols and their relative positions in the network stack.

The SSL architecture differentiates between an SSL session and an SSL connection. A connection is a
transient transport device between peers. A session is an association between a client and a server. Sessions
define a set of cryptographic security parameters, which can be shared among multiple connections.
Sessions are used to avoid the expensive negotiation of security parameters for each new connection.

A session is identified with a session identifier, peer certificate, compression method, cipher spec, master
secret, and is_resumable flag.

A connection is identified with server and client random numbers, a server write MAC secret key, a client
write MAC secret key, a server write key, a client write key, initialization vectors, and sequence numbers.

SSL handshake protocol
The SSL handshake protocol is responsible for performing authentication of peers that are attempting
secure communications. The SSL handshake protocol negotiates security parameters (encryption and hash
algorithms) to be used by the SSL record protocol, and exchanges PreMasterSecret, which is used to
generate authentication and encryption keys.

The handshake protocol is the most complex part of SSL. It starts with mandatory authentication of the
server. Client authentication is optional. After successful authentication, the negotiation for the cipher suite
(encryption algorithm, MAC algorithm, cryptographic keys) takes place. Security parameters, set up by the

EIA/TIA-232, X.21

Ethernet

IP

TCP

SSL record

http, ftp, set
Application layer

Transport layer

Network layer

Link layer

Physical layer

UDP

Figure 5-79. SSL Protocol

SSL
Handshake

SSL Change
Cipher Spec

SSL
Alert

 165

handshake protocol, are used for all connections in a session. The following diagram from [STALLINGS]
illustrates the handshake protocol. Additional details on actions taken at different stages of the handshake
are provided on the next page.

Client hello message
The CipherSuite list, passed from the client to the server in the client hello message, contains the
combinations of cryptographic algorithms supported by the client in order of the client's preference (first
choice first). Each CipherSuite defines both a key exchange algorithm and a CipherSpec. The server selects
a cipher suite or, if no acceptable choices are presented, returns a handshake failure alert and closes the
connection.

Server key exchange message
The server key exchange message is sent by the server if it has no certificate, has a certificate only used for
signing (e.g., DSS [DSS] certificates, signing-only RSA [RSA] certificates), or FORTEZZA KEA key
exchange is used. This message is not used if the server certificate contains Diffie-Hellman [DH1]
parameters.

change_cipher_spec

finished

finished

change_cipher_spec

certificate verify

client_key_exchange

certificate

server_hello_done

certificate request

server_key_exchange

client_hello

server_hello

certificate

ServerClient

Time

mandatory

optional

Establish security
capabilities, including
protocol version,
session ID, cipher suite
and initial random
number.

Server may send
certificate, key
exchange, and request
certificate. Server
signals end of hello
message phase.

Change cipher suite
and finish handshake.

Figure 5-80. Handshake protocol action

Client sends certificate if
requested. Client sends key
exchange. Exchange of the
symmetric key is performed
by encrypting it with the
public RSA key of the
server. Client may send
certificate verification.

 166

Client key exchange message (RSA encrypted premaster secret message)
In the evaluated configuration, RSA is used for key agreement and authentication. The client generates a
48-byte pre-master secret, encrypts it under the public key from the server's certificate or temporary RSA
key from a server key exchange message, and sends the result in an encrypted premaster secret message.

Certificate verify message
This message is used to provide explicit verification of a client certificate. This message is only sent
following any client certificate that has signing capability (i.e. all certificates except those containing fixed
Diffie-Hellman parameters).

Cipher suites supported
The evaluated configuration supports the following cipher suite:

CipherSuite Key Exchange Cipher Hash
SSL_RSA_WITH_RC4_128_SHA RSA RC4_128 SHA-1
SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA TripleDES SHA-1
TLS_RSA_WITH_AES_128_CBC_SHA RSA AES (128 bit) SHA-1
TLS_RSA_WITH_AES_256_CBC_SHA RSA AES (256 bit) SHA-1

Note: The last two cipher suites are defined in the IETF RFC 3268 for both the SSLv3 and the TLSv1
standard. In SLES9 they are supported by the implementation of SSLv3 in the OpenSSL library.

SSL Change cipher spec protocol
The SSL change cipher spec protocol signals transitions in the security parameters. The protocol consists of
a single message, which is encrypted with the current security parameters. Using the change cipher spec
message, security parameters can be changed by either the client or the server. The receiver of the change
cipher spec message informs the SSL record protocol of the updates to security parameters.

SSL alert protocol
The SSL alert protocol communicates SSL-specific errors (for example, errors encountered during
handshake or message verification) to the appropriate peer.

SSL record protocol
The SSL record protocol takes messages to be transmitted, fragments them into manageable blocks, and
optionally compresses them. Then, using all the negotiated security parameters, applies a MAC, encrypts
the data, and transmits the result to the transport layer (TCP). The received data is decrypted, verified,
decompressed, and reassembled. It is then delivered to a higher layer.

The SSL record protocol provides confidentiality by encrypting the message with the shared secret key
negotiated by the handshake protocol. The SSL record protocol provides message integrity by attaching a
message authentication code (MAC) to the message. The MAC is created with another shared secret key
negotiated by the handshake protocol.

 167

The following diagram from [STALLINGS] depicts the operation of the SSL record protocol.

5.11.1.3 OpenSSL algorithms
This section briefly describes various encryption and hash algorithms supported by OpenSSL on TOE.

5.11.1.3.1 Symmetric ciphers
OpenSSL on TOE supports the following symmetric key encryption algorithms. For a detailed description
of each of these algorithms, please refer to their manual pages.

blowfish
blowfish is a block cipher that operates on 64-bit blocks of data. It supports variable key sizes, but
generally uses 128-bit keys.

DES
DES, or Data Encryption Standard, is a symmetric key cryptosystem derived from the Lucifer algorithm
developed at IBM. DES describes the Data Encryption Algorithm (DEA). DEA operates on a 64-bit block
size and uses a 56-bit key.

TDES (3DES)
TDES, or Triple DES, encrypts a message three times using DES. This encryption can be accomplished in
several ways. For example, using two keys, the message can be encrypted with key 1, decrypted with key 2
and encrypted again with key 1. With three keys, the message can be encrypted three times with each
encryption using a different key.

IDEA
The International Data Encryption Algorithm (IDEA) cipher is secret key block encryption algorithm
developed by James Massey and Xuejia Lai. IDEA operates on 64-bit plaintext blocks and uses a 128-bit
key.

Application data

Fragment

Optionally
compress

Add MAC

Encrypt

Append SSL
record header

Figure 5-81. SSL record protocol operations

 168

RC4
RC4, proprietary of RSA Security Inc., is a stream cipher with variable key length. A typical key length of
128-bit is used for strong encryption.

RC5
RC5 is a cryptographic algorithm invented by Ronald Rivest of RSA Security Inc. RC5 is a block cipher of
variable block length and encrypts through integer addition, the application of a bit-wise eXclusive OR, and
variable rotations. The key size and number of rounds are also variable.

AES
AES is the new encryption standard published by NIST in FIPS 197. It is a symmetric block cipher with a
data block size of 128 bit and key sizes of 128, 192 and 256 bit.

5.11.1.3.2 Asymmetric ciphers
OpenSSL on TOE supports the following asymmetric key encryption algorithms. For a detailed description
of each of these algorithms, please refer to their manual pages.

DSA
DSA (Digital Signature Algorithm) is based on a modification to the El Gamal digital signature
methodology, which is based on discrete logarithms. DSA conforms to US Federal Information Processing
Standard FIPS 186, ANSI X9.30.

Diffie-Hellman
The Diffie-Hellman Key Exchange is a method for exchanging secret keys over a non-secure medium
without exposing the keys.

RSA
RSA, derived from the last names of its inventors, Rivest, Shamir, and Addleman, is a public key crypto
system, which is based on the difficulty of factoring a number that is the product of two large prime
numbers.

5.11.1.3.3 Certificates
OpenSSL on TOE supports the following certificate format. For a detailed description of this format, please
refer to its manual page.

X.509
The X.509 certificate is a structured grouping of information. X.509 contains subject information, the
public key of the subject, the name of the issuer, and the active key lifetime. An X.509 certificate is
digitally signed by the certificate authority.

5.11.1.3.4 Hash functions
OpenSSL on TOE supports the following hash functions to generate message authentication codes (MAC).
For a detailed description of each of these functions, please refer to their manual pages.

MD2, MD4 & MD5
MD2, MD4, and MD5 are cryptographic message-digest algorithms that take a message of arbitrary length
and generate a 128-bit message digest. In MD5, the message is processed in 512-bit blocks in four distinct
rounds.

MDC2
MDC2 is a method to construct hash functions with 128-bit output from block ciphers. These functions are
an implementation of MDC2 with DES.

 169

RIPEMD
RIPEMD is a cryptographic hash function with 160-bit output.

SHA-1
The Secure Hash Algorithm (SHA) is a cryptographic hash function with 160-bit output. It is defined in the
Federal Information Processing Standard - FIPS 180. SHA-1 sequentially processes blocks of 512 bits
when computing a message digest.

5.11.2 ssh
ssh allows a user to run commands as if they are logged in on a text console of a remote system. On a local
system, the user starts the ssh client to open a connection to a remote server running the sshd daemon. If the
user is authenticated successfully, an interactive session is initiated, allowing the user to run commands on
the remote system. ssh is not a shell in the sense of a command interpreter, but it permits the use of a shell
on the remote system.

In addition to interactive logins, the user can tunnel TCP network connections through the existing channel
(allowing the use of X11 and other network-based applications), and copy files through the use of the scp
and sftp tools. OpenSSH is configured to use the PAM framework for authentication, authorization,
account, and session maintenance. Password expiration and locking are handled through the appropriate
PAM functions.

The communication between the ssh client and ssh server uses the SSH protocol, version 2.0. SSH
protocol requires that each host has a host specific key. When the ssh client initiates a connection, the
keys are exchanged using the Diffe-Hellman protocol. A session key is generated and all traffic is
encrypted using this session key and the agreed upon algorithm. Default encryption algorithms supported
by ssh are 3DES (triple DES) and blowfish. The default can be overridden by providing the list in the
server configuration file with keyword “ciphers”. The default message authentication code algorithms
supported by ssh are SHA-1 and MD5. The default can be overridden by providing the list in the server
configuration file with keyword “MACs”. Please refer to section 5.11.1.3.1 for brief descriptions of these
algorithms. Encryption is provided by the OpenSSL package, which is a separate package maintained by an
independent group of developers. The following briefly describes the default ssh setup with respect to
encryption, integrity check, certificate format, and key exchange protocol.

Encryption
The default cipher used by ssh is 3des-cbc (three-key 3DES in CBC mode). The "3des-cbc" cipher is
three-key triple-DES (encrypt-decrypt-encrypt), where the first 8 bytes of the key are used for the first
encryption, the next 8 bytes for the decryption, and the following 8 bytes for the final encryption. This
requires 24 bytes of key data (of which 168 bits are actually used). To implement CBC mode, outer
chaining MUST be used (for example, there is only one initialization vector). This is a block cipher with 8
byte blocks. This algorithm is defined in [SCHNEIER].

Integrity check
Data integrity is protected by including with each packet a message authentication code (MAC) that is
computed from a shared secret, packet sequence number, and the contents of the packet. The message
authentication algorithm and key are negotiated during key exchange. Initially, no MAC will be in effect,
and its length MUST be zero. After key exchange, the selected MAC will be computed before encryption
from the concatenation of packet data:

 mac = MAC(key, sequence_number || unencrypted_packet)

where unencrypted_packet is the entire packet without MAC (the length fields, payload and padding), and
sequence_number is an implicit packet sequence number represented as uint32. The sequence number is
initialized to zero for the first packet, and is incremented after every packet (regardless of whether
encryption or MAC is in use). It is never reset, even if keys/algorithms are renegotiated later. It wraps

 170

around to zero after every 2^32 packets. The packet sequence number itself is not included in the packet
sent over the wire.

The MAC algorithms for each direction MUST run independently, and implementations MUST allow
choosing the algorithm independently for both directions. The MAC bytes resulting from the MAC
algorithm MUST be transmitted without encryption as the last part of the packet. The number of MAC
bytes depends on the algorithm chosen. The default MAC algorithm defined is the hmac-sha1 (with digest
length = key length = 20).

Certificate format
The default certificate format used is ssh-dss singed with Simple DSS. Signing and verifying using this
key format is done according to the Digital Signature Standard [FIPS-186] using the SHA-1 hash. A
description can also be found in [SCHNEIER].

Key exchange protocol
The default key exchange protocol is diffie-hellman-group1-sha1. The "diffie-hellman-group1-
sha1" method specifies Diffie-Hellman key exchange with SHA-1 as HASH.

The following paragraphs briefly describe the implementation of the ssh client and the ssh server. For
detailed information on the SSH Transport Layer Protocol, SSH Authentication Protocol, SSH Connection
Protocol and SSH Protocol Architecture, please refer to the corresponding protocol documents at the Web
site http://www.ietf.org/internet-drafts.

5.11.2.1 ssh client
The ssh client first parses arguments and reads the configuration (readconf.c), then calls ssh_connect
(in sshconnect*.c) to open a connection to the server, and performs authentication (ssh_login in
sshconnect.c). Terminal echo is turned off while the user is typing his or her password. ssh prevents the
password from being displayed on the terminal as it is being typed. The ssh client then makes any pty and
forwarding requests and can call code in ttymodes.c to encode current tty modes. Finally, it calls
client_loop in clientloop.c.

The client is typically installed suid root. The client temporarily gives up this right while reading the
configuration data. The root privileges are used to make the connection from a privileged socket (required
for host-based authentication), and to read the host key (for host-based authentication using protocol
version 1). Any extra privileges are dropped before calling ssh_login.. Because .rhosts support is not
included in the TSF, the ssh client is not SUID root on the system.

5.11.2.2 ssh server (sshd)
The sshd daemon starts by processing arguments and reading the configuration file /etc/ssh/sshd_config.
The configuration file contains keyword-argument pairs, one per line. Please refer to the sshd_config(5)
manual page for available configuration options. It then reads the host key, starts listening for connections,
and generates the server key. The server key is regenerated every hour by an alarm.

When the server receives a connection, it forks, disables the regeneration alarm, and starts communicating
with the client. The server and client first perform identification string exchange, negotiate encryption and
perform authentication. If authentication is successful, the forked process sets the effective user ID to that
of the authenticated user, performs preparatory operations, and enters the normal session mode by calling
server_loop in serverloop.c.

5.11.3 xinetd
xinetd is the super server that starts other servers that provide network services, such as file transfer,
between systems. xinetd starts at system initialization and listens on all service ports for the services

 171

listed in its configuration file /etc/xinetd.conf. When a request comes in, xinetd starts the appropriate server.
The xinetd super server conserves system resources by avoiding having to fork a lot of processes that might
be dormant for most of their lifetime. xinetd also provides access control and logging. The remainder of
this section describes some of the security-relevant features of xinetd. For additional information on
xinetd and its configuration, please refer to the following:

Scott Mann, Ellen Mitchell and Michell Krell, Linux System Security, 2nd Edition, Chapter 10
Hal Burgiss, Security-QuickStart HOWTO for Linux at http://usr/share/doc/howto/en/html-single/Security-
QuickStart-HOWTO.html
http://www.xinetd.org

xinetd provides the following security-relevant features:

• Provides access control for TCP, UDP, and RPC services.
• Provides access limitations based on time.
• Provides for killing of services that are no longer allowed.
• Limits the number of daemons of a given type that can run concurrently, which helps prevent

Denial of Service (DoS) attacks.
• Limits overall number of processes forked by xinetd, which helps prevent DoS attacks.
• Provides extensive logging capabilities for both successful and unsuccessful connections.
• Limits log file sizes, which helps prevent DoS attacks.

Network services and their behaviors are configured through the /etc/xinetd.conf configuration file.
Each entry in /etc/xinetd.conf is of the following form:

Service service_name
{
attribute operator value value …
…
…
}

service is a required keyword and the braces surround the list of attributes. The service_name is
arbitrary, but is chosen to conform to the standard network services in the default SLES configuration.
Attributes used for security relevant configurations are:

access_times

Sets the time intervals for when the service is available. The format is hh:mm-hh:mm. Hours
range from 0 to 23 and minutes can be from 0 to 59.

only_from

Space-separated list of allowed client systems in resolvable names or IP addresses. If this attribute
is specified without a value, it acts to deny access to the service.

no_access

Space-separated list of denied clients in resolvable names or IP addresses.

instances
Accepts integer greater than, or equal to, one or UNLIMITED. Sets the maximum number of
concurrent running daemons.

per_source

Accepts integer or UNLIMITED. Specifies the maximum number of instances of a service per
source IP address.

 172

cps
Accepts two arguments: number of connections per second to handle, and number of seconds to
wait before reenabling the service if it has been disabled. cps limits the rate of incoming
connections.

max_load
Accepts a floating point value, which is the load at which the service will stop accepting
connections.

5.11.4 vsftpd
vsftpd is the Very Secure File Transfer Protocol daemon. vsftpd provides a secure, fast, and stable file
transfer service to and from a remote host. vsftpd is invoked from the xinetd super-server. The behavior
of vsftpd behavior can be controlled by its configuration file /etc/vsftpd.conf. The remainder of this
section describes some of the security-relevant features of vsftpd. For additional information on
vsftpd and its configuration, please refer to the following:

/usr/share/doc/packages/vsftpd/SECURITY/*
http://vsftpd.beasts.org

vsftpd provides the following security-relevant features:

• Ability to use PAM to perform authentication.
• Ability to disable anonymous logins. If enabled, prevents anonymous users from writing.
• Ability to lock certain users in chroot jail in their home directory.
• Ability to hide all user and group information in directory listing.
• Ability to set up secure tunneling scheme.
• Ability to perform enhanced logging.
• Ability to set up up connection timeout values.

The daemon generally follows these steps:

1. Parses command line arguments.
2. Parses configuration file.
3. Performs sanity checks such as ensuring that standard input is a socket.
4. Initializes the session.
5. Sets up environment.
6. Starts up logging.
7. Depending on the configuration, start one or multiple process session.
8. Invokes appropriate functions to initiate connection.
9. Invokes handle_local_login() for non-anonymous users.
10. handle_local_login() invokes vsf_sysdep_check_auth() to perform

authentication.
11. Performs authentication by PAM and starts the session.

a. Invokes pam_start() to initialize the PAM library and to identify the
application with a particular service name.

b. Invokes pam_authenticate() to authenticate the application user.
Terminal echo is turned off while the user is typing his/her password.

c. Invokes pam_acct_mgmt() to perform module specific account
management.

d. Invokes pam_setcred() to set credentials.
e. Invokes pam_end().

 173

5.11.5 ping
ping opens a raw socket and uses the ICMP protocol's mandatory ECHO_REQUEST datagram to elicit an
ICMP ECHO_RESPONSE from a host or a gateway. ECHO_REQUEST datagrams (``pings'') have an IP
and ICMP header, followed by a struct timeval and then an arbitrary number of “pad” bytes used to fill out
the packet.

5.11.6 openssl
openssl is a command line interface to the OpenSSL cryptography toolkit, which implements the
Secure Socket Layer (SSL v2/v3) and Transport Layer Security (TLS v1) network protocols and related
cryptography standards required by them. The openssl command can be used by an administrative user
for the following:

• Creation of RSA, DH and DSA parameters.
• Generation of 1024-bit RSA keys.
• Creation of X.509 certificates, CSRs and CRLs.
• Calculation of message digests.
• Encryption and Decryption with ciphers.
• SSL/TLS client and server tests.
• Handling of S/MIME signed or encrypted mail.

For more detailed information on the openssl command and its usage, please refer to the following
openssl man page at the openssl.org Web site.

http://www.openssl.org/docs/apps/openssl.html

5.11.7 stunnel
stunnel is designed to work as an SSL encryption wrapper between remote clients and local, xinetd
startable, or remote servers. stunnel can be used to add SSL functionality to commonly used xinetd
daemons such as POP and IMAP servers, to standalone daemons like SMTP and HTTP, and in tunneling
PPP over network sockets without changes to the source code. The most common use of stunnel is to
listen on a network port and establish communications with either a new port via connect option, or a new
program via the exec option. There is also an option to allow a program to accept incoming connections
and then launch stunnel, for example with xinetd.

Each SSL enabled daemon needs to present a valid X.509 certificate to the peer. The SSL enabled daemon
also needs a private key to decrypt incoming data. stunnel is built on top of SSL, so on the TOE the private
key and the certificate can be generated by OpenSSL utilities. These private keys are stored in the file
/etc/stunnel.pem. stunnel uses the openssl library and therefore can use the cipher suites implemented by
that library. The SSL cipher suites supported in the evaluated configuration are
SSL_RSA_WITH_RC4_128_SHA, SSL_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA and TLS_RSA_WITH_AES_256_CBC_SHA.

Stunnel is configured by the file /etc/stunnel/stunnel.conf. The file is a simple ASCII file that can be edited
by the administrative user to secure SSL-unaware servers. Each service to be secured is named in sqare
bracket, followed by “option_name = option_value” pairs for that service. Global parameters such as
location of the private key file are listed at the beginning of the file. For example,

Global parameters
cert = /usr/local/etc/stunnel/stunnel.pem
pid = /tmp/stunnel.pid
setuid = nobody
setgid = nogroup

 174

Service-level configuration

[ssmtp]
accept = 465
connect = 25

The above configuration secures localhost-SMTP when someone connects to it via port 465.
The configuration tells stunnel to listen to the SSH port 465, and to send all info to the plain port 25 (on
localhost).

For additional information on stunnel, please refer to its man page as well as the following links:

http://stunnel.mirt.net
http://www.stunnel.org

5.12 System management
This subsystem contains the trusted programs used for system management activities. They include
chage, chsh, chfn, useradd, usermod, userdel, groupadd, groupmod, groupdel,
gpasswd, date, and amtu.

chage

chage allows the system administrator to alter a user’s password expiration data. Please refer to
the chage man page for more detailed information. chage generally follows these steps.

1. Sets language.
2. Sets up a variable indicating whether the application user is the root user.
3. Parses command-line arguments.
4. Performs a sanity check on command-line arguments.
5. If the application user is not root, allows only the listing of the user’s own password

age parameters.
6. Invokes getpwuid(getuid()) to obtain the application user’s passwd

structure.
7. Invokes pam_start() to initialize the PAM library and to identify the application

with a particular service name.
8. Invokes pam_authenticate() to authenticate the application user. Generates

audit record to log the authentication attempt and its outcome.
9. Invokes pam_acct_mgmt() to perform module specific account management.
10. If called to list password age parameters, lists them now and exits.
11. Locks and opens authentication database files.
12. Updates appropriate database files with new password age parameters.
13. Closes database files.
14. Invokes pam_chauthok() to rejuvenate user’s authentication tokens.
15. Exits.

chsh

chsh allows a user to change his or her login shell. If a shell is not given on the command line,
chsh prompts for one. Please refer to the chsh man page for detailed information on usage of
the command. chsh generally follows these steps:

1. Sets language.
2. Gets invoking user’s ID.
3. Parses command-line arguments.

 175

4. Performs a check that a non-root user is not trying to change shell of another user.
5. Performs a check to ensure that a non-root user is not trying to set his or her shell to

a non standard shell.
6. Invokes pam_start()to initialize the PAM library and to identify the application

with a particular service name.
7. Invokes pam_authenticate()to authenticate the application user. Generates

audit record to log the authentication attempt and its outcome.
8. Invokes pam_acct_mgmt()to perform module-specific account management.
9. Invokes pam_chauthok()to rejuvenate the user’s authentication tokens.
10. Invokes pam_setcred()to set credentials.
11. Prompts for new shell if one is not provided on the command line.
12. Checks the shell to make sure that it is accessible.
13. Invokes setpwnam()to update appropriate database files with the new shell.
14. Exits.

chfn

chfn allows a user to change his or her finger information. The information, stored in /etc/passwd
file, is displayed by the finger command. Please refer to the chfn man page for detailed
information on usage of the command. chfn generally follows these steps:

1. Sets language.
2. Gets invoking user’s ID.
3. Parses command-line arguments.
4. Performs a check that a non-root user is not trying to change finger information of

another user.
5. Invokes pam_start()to initialize the PAM library and to identify the application

with a particular service name.
6. Invokes pam_authenticate()to authenticate the application user. Generates

audit record to log the authentication attempt and its outcome.
7. Invokes pam_acct_mgmt()to perform module-specific account management.
8. Invokes pam_chauthok()to rejuvenate the user’s authentication tokens.
9. Invokes pam_setcred()to set credentials.
10. Prompts for new finger information if not supplied on the command line.
11. Updates appropriate database files with new finger information.
12. Exits.

useradd

useradd allows an authorized user to create new user accounts on the system. Please refer to the
useradd man page for more detailed information on usage of the command. useradd
generally follows these steps:

1. Sets language.
2. Invokes getpwuid(getuid())to obtain the application user’s passwd structure.
3. Invokes pam_start()to initialize PAM library and to identify the application with a

particular service name.
4. Invokes pam_authenticate()to authenticate the application user. Generates audit

record to log the authentication attempt and its outcome.
5. Invokes pam_acct_mgmt()to perform module specific account management.
6. Gets the default parameters for a new user account from /etc/default/useradd.
7. Processes command-line arguments.
8. Ensures that the user account being created doesn’t already exist.
9. Invokes open_files()to lock and open authentication database files.
10. Invokes usr_update()to update authentication database files with new account

information.

 176

11. Generates audit records to log actions of the useradd command. Actions such as
addition of new user, addition of user to a group, update of default user parameters, and
creation of a user’s home directory.

12. Invokes close_files() to close authentication database files.
13. Creates a home directory for the new user.
14. Invokes pam_chauthok() to rejuvenate the user’s authentication tokens.
15. Exits.

usermod

usermod allows an administrator to modify an existing user account. Please refer to the
usermod man page for more detailed information on the usage of the command. usermod
generally follows these steps:

1. Sets language.
2. Invokes getpwuid(getuid())to obtain application user’s passwd structure.
3. Invokes pam_start()to initialize PAM library and to identify the application with a

particular service name.
4. Invokes pam_authenticate()to authenticate the application user. Generates audit

record to log the authentication attempt and its outcome.
5. Invokes pam_acct_mgmt()to perform module-specific account management.
6. Processes command-line arguments.
7. Ensures that the user account being modified exists.
8. Invokes open_files()to lock and open authentication database files.
9. Invokes usr_update()to update authentication database files with updated account

information.
10. Generates audit record to log actions of the usermod command. Actions, such as

locking and unlocking of user account, changing of user password, user name, user ID,
default user group, user shell, user home directory, user comment, inactive days,
expiration days, mail file owner, and moving of user’s home directory.

11. If updating group information, invokes grp_update() to update group information.
12. Invokes close_files()to close authentication database files.
13. Invokes pam_chauthok()to rejuvenate the user’s authentication tokens.
14. Exits.

userdel

userdel allows an administrator to delete an existing user account. Please refer to the userdel
man page for more detailed information on the usage of the command.userdel generally
follows these steps:

1. Sets language.
2. Invokes getpwuid(getuid()) to obtain the application user’s passwd structure.
3. Invokes pam_start()to initialize PAM library and to identify the application with a

particular service name.
4. Invokes pam_authenticate()to authenticate the application user. Generates audit

record to log the authentication attempt and its outcome.
5. Invokes pam_acct_mgmt()to perform module-specific account management.
6. Processes command-line arguments.
7. Ensures that the user being deleted does exist, and is currently not logged on.
8. Invokes open_files()to lock and open authentication database files.
9. Invokes usr_update()to update authentication database files with updated account

information.
10. Invokes grp_update() to update group information.
11. Generates audit record to log deletion of a user and the deletion of user’s mail file.

 177

12. Invokes close_files()to close authentication database files.
13. If called with the ‘-r’ flag, removes the user’s mailbox by invoking

remove_mailbox()and removes the user’s home directory tree by invoking
remove_tree().

14. Cancels any cron or at jobs created by the user.
15. Invokes pam_chauthok() to rejuvenate the user’s authentication tokens.
16. Exits.

groupadd

groupadd allows an administrator to create new groups on the system. Please refer to the
groupadd man page for more detailed information on usage of the command. groupadd
generally follows these steps:

1. Sets language.
2. Invokes getpwuid(getuid())to obtain application user’s passwd structure.
3. Invokes pam_start()to initialize the PAM library and to identify the application with

a particular service name.
4. Invokes pam_authenticate()to authenticate the application user. Generates audit

record to log the authentication attempt and its outcome.
5. Invokes pam_acct_mgmt()to perform module-specific account management.
6. Processes command-line arguments.
7. Ensures that the group being created doesn’t exist already.
8. Invokes open_files()to lock and open authentication database files.
9. Invokes grp_update()to update authentication database files with new group

information. Generates audit record to log creation of new group.
10. Invokes close_files()to close the authentication database files.
11. Invokes pam_chauthok()to rejuvenate the user’s authentication tokens.
12. Exits.

groupmod

groupmod allows an administrator to modify existing groups on the system. Please refer to the
groupmod man page for more detailed information on usage of the command. groupmod
generally follows these steps:

1. Sets language.
2. Invokes getpwuid(getuid())to obtain application user’s passwd structure.
3. Invokes pam_start()to initialize PAM library and to identify the application with a

particular service name.
4. Invokes pam_authenticate()to authenticate the application user. Generates audit

record to log the authentication attempt and its outcome.
5. Invokes pam_acct_mgmt()to perform module-specific account management.
6. Processes command-line arguments.
7. Ensures that the group being modified does exist.
8. Invokes open_files()to lock and open authentication database files.
9. Invokes grp_update()to update authentication database files with updated group

information. Generates audit record to log updates to existing groups.
10. Invokes close_files()to close authentication database files.
11. Invokes pam_chauthok()to rejuvenate user’s authentication tokens.
12. Exits.

 178

groupdel
groupdel allows an administrator to delete existing groups on the system. Please refer to the
groupdel man page for more detailed information on usage of the command. groupdel
generally follows these steps:

1. Sets language.
2. Invokes getpwuid(getuid())to obtain the application user’s passwd structure.
3. Invokse pam_start()to initialize the PAM library and to identify the application with

a particular service name.
4. Invokes pam_authenticate()to authenticate the application user. Generates audit

record to log the authentication attempt and its outcome.
5. Invokes pam_acct_mgmt()to perform module specific account management.
6. Processes command-line arguments.
7. Ensures that the group being deleted does exist, and that it is not the primary group for

any users.
8. Invokes open_files()to lock and open authentication database files.
9. Invokes grp_update() to update group information. Generates audit record to log

deletion of existing groups.
10. Invokes close_files()to close the authentication database files.
11. Invokes pam_chauthok()to rejuvenate the user’s authentication tokens.
12. Exits.

date

date, for a normal user, displays current date and time. For an administrative user, date can
display or set the current system time. Please refer to the date man page for detailed information
on usage of the command. date generally follows these steps:

1. Sets language.
2. Parses command-line arguments.
3. Validates command-line arguments.
4. If command line options indicate a system time set operation, invokes stime()system

call to set system time. The system call handler routine for stime()checks if the
process possesses the CAP_SYS_TIME capability. If it does the operation is allowed;
otherwise, an error is returned to the command.

5. Process return from the stime()system call. Print current time or error depending on
the return value from the system call.

6. Exits.

gpasswd

gpasswd administers the /etc/group and /etc/gshadow files. gpasswd allows system
administrators to designate group administrators for a particular group. Please refer to the
gpasswd man page for more detailed information. Group passwords are not used on the TOE.

amtu (abstract machine test utility)
The TOE security functions are implemented using underlying hardware. The TSF depends on the
hardware to provide certain functionalities in order for the security functions to work properly.
Because the TOE includes different hardware architectures, a special tool is provided to test
features of the underlying hardware that the TSF depends on. This tool works from a premise that
it is working on an abstract machine, which is providing functionalities to the TSF. The test tool
runs on all hardware architectures that are targets of evaluation and reports problems with any
underlying functionalities. For more detailed information on the Abstract Machine Test, please
refer to the following:

Emily Ratliff, Abstract Machine Testing: Requirements and Design

 179

The test tool performs the following tests:

Memory
The tool allocates 10% of the free memory of the system, and then writes a pattern of random
bytes. The tool reads back the memory and ensures that what was read matches what was written.
If they do not match, the tool reports a memory failure. If the allocation of 10% of the free
memory fails, the tool performs the above test after allocating 5% of the free memory.

Memory separation
To fulfill the memory separation requirement, the test tool performs the following:

1. As a normal user, the tool picks random areas of memory in ranges reported in

/proc/self/maps to ensure that user-space programs cannot read from and write to areas of
memory utilized by such things as Video RAM and kernel code.

The tool reports a failure if any of the above attempts succeed.

I/O controller - network
Because portions of the TSF depend on the reliability of the network devices and the disk
controllers, the test tool also checks I/O devices. This section describes how the network devices
are tested. When the kernel detects an attempt to open a network connection to an address that is
configured on the local machine, the kernel short-circuits the packets rather than sending them to
the physical device. To evade this optimization without requiring a remote server, the tool
specifies the PF_PACKET communication domain (see packet(7)) when opening the socket. The
tool performs the following:

1. Using the PF_PACKET communication domain, opens another connection to the

listening server.
2. Ensures that the random data transmitted is also the data received.

These steps are repeated for each configured network device.

I/O controller – disk
In order to check the disk controllers (IDE and SCSI only), the test tool opens a file on each
read/write mounted file system, writes a 10 MB random string, syncs the file and directory, closes
the file, re-opens the file, and reads it to validate that the string is unchanged. The string size 10
MB is chosen so that the file exceeds the size of the device's buffer. The AMTU utility prints a
warning to the administrator if it has determined that a disk controller (IDE only) was not tested,
unless that disk controller is dedicated to floppy and cdrom devices. (This might happen if a disk
controller only controls read-only file systems. More than one test is performed on disk controllers
that control more than one r/w file system.)

Supervisor mode instructions
Certain instructions are only available in supervisor mode. The kernel has the ability to switch to
supervisor mode to use the instructions, but user space tools should not be able to use these
instructions. A subset of these privileged instructions should be tested to confirm that is true. The
list of instructions that are available only in supervisor mode is architecture dependent. The subset
of the privileged instructions that are tested per platform is listed below. In addition, to generically
test that privileged instructions cannot be executed while not in supervisor mode, the test ensures
that the CPU control registers, task registers, and interrupt descriptor tables cannot be changed
while not in supervisor mode. Instructions to do this for each architecture are given below.

pSeries, iSeries

The instruction set for the PowerPC® processor is given in the book at the following Web address:

 180

http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/
852569B20050FF778525699600682CC7/$file/booke_rm.pdf

For each instruction, the description in the book lists whether it is available only in supervisor
mode. The following instructions are tested by this tool:

TLBSYNC - TLB Synchronize
MFSR – Move from Segment Register
MFMSR – Move From Machine State Register

The expected outcome from attempting to execute these instructions is an ILLEGAL Instruction
signal (SIGILL – 4).

zSeries

Principles of Operation is a handy reference for the zSeries architecture:
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR006/CCONTENTS

The following privileged instructions are tested by this tool:

PTLB - Purge TLB
RRBE - Reset reference bit extended
PALB – Purge ALB
EPAR – Extract Primary ASN
HSCH – Halt subchannel
LPSW - Load PSW (To test the CPU control register).

The expected outcome from attempting to execute these instructions is an ILLEGAL Instruction
signal (SIGILL – 4).

xSeries

Section 4.9 from the Intel Architecture Software Developer's Manual Volume 3: System
Programming book at ftp://download.intel.com/design/PentiumII/manuals/24319202.pdf
gives a list of privileged instructions for the x86 architecture.

The following privileged instructions are tested by this tool:

HLT- halt the processor
RDPMC - read performance-monitoring counter
CLTS – Clear task-switched flag in register CR0.
LIDT – Load Interrupt Descriptor Table Register
LGDT – Load Global Descriptor Table Register
LTR – Load Task Register
LLDT – Load Local Descriptor Table Register

To test CPU control registers: MOVL %cs,28(%esp) – Overwrite the value of the register that
contains the code segment. The register that contains the address of the next instruction (eip) is not
directly addressable. Note that in the Intel documentation of MOV it is explicitly stated that MOV
cannot be used to set the CS register. Attempting to do so will cause an exception (SIGILL rather
than SIGSEGV).

The expected outcome of attempting to execute these instructions is a Segmentation Violation
signal (SIGSEGV – 11).

 181

eServer 325

Chapter 4 of the AMD Architecture Programmer’s Manual Volume 3: General Purpose and
System Instructions at
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24594.pdf gives a
list of privileged instructions for the AMD64 architecture.

The following privileged instructions are tested by this tool:

HLT- halt the processor
RDPMC - read performance-monitoring counter
CLTS – Clear task-switched flag in register CR0.
LIDT – Load Interrupt Descriptor Table Register
LGDT – Load Global Descriptor Table Register
LTR – Load Task Register
LLDT – Load Local Descriptor Table Register

To test CPU control registers: MOVL %cs,28(%esp) – Overwrite the value of the register that
contains the code segment. The register that contains the address of the next instruction (eip) is not
directly addressable. Note that in the Intel documentation of MOV it is explicitly stated that MOV
cannot be used to set the CS register. Attempting to do so will cause an exception (SIGILL rather
than SIGSEGV).

The expected outcome of attempting to execute these instructions is a Segmentation Violation
signal (SIGSEGV – 11).

Utility output
For each of these subsystems, the tool reports what aspect of the system it is currently testing and
then reports either success or failure. This message is also logged to the audit subsystem. In the
case of failure, any additional information available is reported to the system administrator to help
troubleshoot the problem.

5.13 Batch processing
On an SLES system, a user can submit jobs in the background for execution at a later time. Batch
processing allows users to perform CPU-intensive tasks while the system load is low; it also allows users
and system administrators to automate routine maintenance tasks. While batch processing provides a
convenient feature, it also raises a security issue because a privileged process has to perform a task ordered
by a normal user.

This section describes different trusted commands and processes that implement the batch processing
feature. Mechanisms are highlighted that ensure how normal users are prevented from performing actions
for which they are not authorized.

Batch processing is implemented with the user commands at, batch, and crontab, and trusted
processes atd and cron. The command batch is a script that invokes at; hence, only at internals are
described in this section.

5.13.1 Batch processing user commands
Batch processing user commands are at and crontab. at schedules the one-time execution of jobs
based on time value; crontab uses a control file to dictate when repeated jobs will execute.

 182

5.13.1.1 at, atrm
at reads commands from standard input and sets them up to be executed at a later time. at is also used for
performing maintenance, such as listing and removing existing jobs. at generally follows these steps:

1. Registers if it was called as at, atq, or atrm, to create at jobs, list at jobs or remove at
jobs, respectively.

2. Checks to ensure that the user is allowed to use this command. If /etc/at.allow exists, only users
listed in that file are allowed to use this command. If /etc/at.deny exists, any users listed in the file
are not allowed to use this command. If a user is not allowed to use this command to create an
“at” job, generates an audit record to log the attempt.

3. If called as atq, invokes list_jobs()to list existing at jobs. atq changes directory to
/var/spool/atjobs, reads its directory content, and lists all existing jobs queued for execution.

4. If called as atrm, invokes process_jobs()to remove existing jobs. atrm changes directory
to /var/spool/atjobs and unlinks the appropriate job file.

5. If called as at, parses the time argument and calls writefile()to create a job file in
/var/spool/atjobs. Generates an audit record to log the creation on an “at” job. The job file is
owned by the invoking user and contains current umask and environment variables along with the
commands that are to be executed. Information stored in this job file, along with its attributes, is
used by the atd daemon to recreate the invocation of the user’s identity while performing tasks at
the scheduled time.

5.13.1.2 crontab
crontab allows an administrator to perform specific tasks on a regularly scheduled basis without
logging in. A user can create a crontab file with the help of this command. crontab files are processed by
the cron trusted process daemon. crontab generally goes through these steps:

1. Parses command-line options to determine if the crontab file is to be created, listed, edited or
replaced.

2. Checks if the user is authorized to use this command. If the /var/spool/cron/allow file exists only
users listed in that file are allowed to use this command. If the /var/spool/cron/deny file exists,
users listed in that file are not allowed to use this command. Generates an audit record if a user is
not allowed to use this command.

3. If listing crontab, invokes the list_cmd()routine to list the existing crontab file. Generates an
audit record to log the listing of crontab files.

4. If deleting crontab, invokes the delete_cmd()routine to delete the existing crontab file.
Generates audit record to log the deletion of an existing crontab file.

5. If editing crontab, invokes the edit_cmd()routine to edit the existing crontab file. Generates
audit record to log modification of an existing crontab file.

6. If replacing crontab, invokes the replace_cmd()routine to replace the existing crontab file.
After both the edit and replace options, the command ensure that the modified/new crontab file is
owned by root and has an access mode of 600. Generates audit record to log the replacement of an
existing crontab file.

crontab files are created in the /var/spool/cron/tabs directory and are created with the login name of the
respective user. The cron daemon uses the name of the file to determine the identity of the user on whose
behalf commands will be executed. Since the /var/spool/cron directory is owned by root and has an access
mode of 700, normal users cannot schedule jobs in the name of other users.

5.13.2 Batch processing daemons
Trusted processes that implement batch processing are atd and cron. atd runs jobs queued by the at
command; cron executes commands scheduled through crontab or listed in /etc/crontab for standard
system cron jobs.

 183

5.13.2.1 atd
atd is the trusted process daemon that services users’ requests for timed execution of specific tasks. atd
ensures that the system’s discretionary access control policy is not violated by exactly duplicating the
identity for the user on whose behalf it is performing tasks. atd depends on the trusted command at to
have appropriately created an at jobs file containing pertinent information about the user’s identity. atd is
started during system initialization time and generally goes through these steps:

1. Attaches to the audit subsystem.
2. On a regular interval or on receiving a signal from a user, looks into the /var/spool/atjobs directory

for processing jobs.
3. If an appropriate job is found, forks a child process and sets its user and group IDs to those of the

owner of the job file. Sets up standard out to go to a file. Performs the tasks listed in the job file by
executing the user’s shell and e-mails the user when the job is finished. Generates audit record to
log processing of an “at” job.

5.13.2.2 cron
cron is the trusted process daemon that processes users’ crontab files. cron ensures that the system’s
discretionary access control policy is not violated by duplicating the login environment of the user whose
crontab file is being processed. cron depends on the trusted command crontab to create the crontab file
of each user with his or her name. The file /var/spool/cron/tabs/root contains the crontab for root and;
therefore, is highly critical. cron also depends on the kernel’s file system subsystem to prevent normal
users from creating or modifying other users’ crontab files. cron is started during system initialization and
generally follows these steps:

1. Sits in an infinite loop waking up after one minute to process crontab files.
2. Sets up system’s cron jobs by reading crontab files in the directory /etc/cron.d/.
3. Sets up cron jobs to be executed weekly, hourly, daily, and monthly by reading their respective

crontab files from directories /etc/cron {weekly hourly daily monthly}.
4. Calls the routine load_database()to read crontab files existing in the /var/spool/cron/tabs

directory.
5. For every crontab file, invokes getpwnam()to get the user’s identity information.
6. For each crontab file, at the appropriate time (which is set up in the file), the daemon forks a child

to execute commands listed in the crontab file. The child sets its credentials based on the user’s
login environment before executing any commands. Generates audit records to log execution of
cron jobs.

5.14 User level audit subsystem
This subsystem contains the portion of the audit system that lies outside the kernel. This subsystem
contains auditd trusted process, which reads audit records from kernel buffer and transfer them to on-
disk audit logs, trusted audit management utilities aucat, augrep, aurun and audbin, audit logs,
audit configuration files, and audit libraries.

5.14.1 Audit daemon
The audit daemon reads audit records from the kernel buffer through the /dev/audit device and writes them
to disk. The audit daemon supports three modes for writing records to disk. In file mode, data is written the
same way as it is in syslogd; that is, records are appended to a file that is allowed grow arbitrarily.
stream mode is similar to the file mode, except that data is sent to an external command on standard input.
This allows forwarding of audit data to other commands or hosts. In bin mode, arbitrary numbers of fixed
length files are maintained with a pointer to current location. The audit records are written until the current
file has reached its maximum capacity and then the next file is utilized until it reaches its maximum
capacity. The files are used in a round-robin fashion.

 184

In addition to writing audit records to disk, the audit daemon sends configuration parameters, such as filter
policy, to the kernel, turns kernel auditing on and off, and monitors the current state of the system for
potential audit record loss. The audit daemon performs the following steps:

• Parses command line arguments.
• Parses filter configuration file.
• Sets up output file(s).
• Configures disk space thresholds.
• Becomes a daemon (run in background) and sets up the signal handler.
• Opens audit device (/dev/audit) and clears the filter policy for each system call.
• Exports policy initialized from the filter configuration file to the kernel.
• In an infinite loop, reads from audit device (kernel buffer) and writes the audit record to output

file.
• Before each write, checks the disk-space threshold. If the disk space of the file system containing

the output file exceeds the threshold value, generates an alarm. If the file system becomes full, the
kernel suspends the processes attached to the audit subsystem to prevent loss of any audit data.

5.14.2 Audit utilities
The user space utilities consist of aucat, augrep, aurun, and audbin.

aucat
aucat reads the binary audit log files and outputs the records in human readable format. aucat supports
ASCII format. The aucat command performs the following steps:

• Parses command line arguments.
• Sets up output format based on the command line argument.
• Invokes the audit_print()function of the audit server API library to print each and every

audit record in the audit log.

augrep
augrep performs a similar function as aucat, but it allows an administrative user to optionally filter the
records based on user, audit ID, outcome, system call, or file name. augrep supports ASCII format. The
augrep command performs the following steps:

• Parses command line arguments.
• Sets up filter options based on command line arguments.
• Invokes the audit_process_log()function of the audit server API library to process and

print audit records based on the filter options.

Filter options allow the selection of audit records based on the following criteria:

• User ID – effective, real and file system
• Group ID – effective, real and file system
• Login ID
• System call with specified outcome (success/failure)
• Process ID
• Event type
• Netlink message with specifiec group, dstgroup or result
• Login from specific remote hostname, host address or executable name
• Start time / End time
• Audit ID
• Exit message with specified exit code

 185

• Text message

aurun
aurun is a wrapper application that allows attachment of trusted processes, such as Web servers, to the
audit subsystem. The aurun command performs the following steps:

• Parses command line arguments.
• If a user is given on the command line, verifies that it is valid user. Initialize user’s groups.
• Opens the audit subsystem and attach to it.
• Closes the audit subsystem and sets the UID to that given on the command line.
• Executes the program specified on the command line.

audbin
audbin is a trusted application that manages audit log files. audbin archives files that are generated
when the system is running in bin mode. audbin parses command-line arguments and, if requested, clears
the log file after saving its contents. audbin supports appending or overwriting the existing audit log file.

5.14.3 Audit logs
LAuS audit logs, also known as audit trails, are the final repository of audit records generated by the kernel
and the trusted programs. An administrative user can use LAuS audit utilities, such as aucat and
augrep, on audit logs to extract and analyze security-relevant events.

Audit logs are protected by their discretionary-access control mod, in order to protect them from
unauthorized deletion or modification.

Audit records in an audit log contain the major and minor version numbers of LAuS and a flag specifying
the byte order. An audit record consists of a record header and a variable message. Each audit record
contains information such as timestamp, login ID, audit ID and process ID along with variable audit data
that depend on the type of the event. Each audit record for system calls contain the system call return code,
which indicates if the call was successful or not. The following table lists security relevant events for which
an audit record is generated on the TOE.

Event Description LAuS event codes
Startup and shutdown of the audit functions. AUDIT_start, AUDIT_stop
Modifications to audit configuration files. Events AUDCONF_reload (generated by

auditd); syscalls open, link, unlink,
rename, truncate (write access to configuration
files)

Reading of information from audit records syscall open (on the audit log files)
Audit storage space exceeds a threshold AUDIT_disklow
Audit storage space failure AUDIT_diskfail
Operations on file system objects syscalls chmod, chown, setxattr, link,

mknod, open, rename, truncate,
unlink, rmdir, mount, umount

Operations on message queues syscalls msgctl and msgget
Operations on semaphores syscalls semget, semctl, semop
Operations on shared memory segments syscalls shmget, shmctl
Rejection or acceptance by the TSF of any
tested secret.

Events AUTH_success, AUTH_failure (from
PAM framework, ``authentication''
subtype)

Use of identification and authentication
mechanism.

Events AUTH_success, AUTH_failure (from
PAM framework, ``authentication''
subtype)

 186

Event Description LAuS event codes
Success and failure of binding user security
attributes to a subject (e.g. success and
failure to create a subject).

LOGIN audit record (from pam_laus.so module or
aurun); syscalls fork and clone

All modifications of subject security values syscalls chmod, chown, setxattr, msgctl,
semctl, shmctl

Modifications of the default setting of
permissive or restrictive rules.

syscalls umask, open

Modifications to TSF data. syscalls open, rename, link, unlink,
truncate (of audit log files and audit configuration
files), AUDCONF_reload event, ``gpasswd’’ audit
text messages (from shadow suite), details include new
value of of the TSF data

Modifications to the group of users that are
part of a role.

Event: ``gpasswd:’’ audit text messages ``group
member added’’, ``group member removed’’, ``group
administrators set’’, ``group members set’’ (from
trusted programs in shadow suite).

Execution of the test of the underlying
machine and the result of the test.

Event: ADMIN_amtu (generated by AMTU testing
tool)

Changes to system time. Event: syscalls settimeofday, adjtimex, stime
Setting up a trusted channel Event: syscall exec (of stunnel program)

5.14.4 Audit configuration files
The configuration file /etc/audit/audit.conf is used to set the path to the filter rules, and to define the
threshold for disk space. The configuration file /etc/audit/filter.conf sets up filter rules. The configuration
file /etc/audit/filesets.conf contains a list of pathnames on which audit records could be filtered.
Configuration files are simple ASCII files and can be changed with any text editor. Once the files are
updated, the `auditd –r` can be used to notify the audit daemon of the new configuration files. The
audit daemon then performs the appropriate ioctl()calls to load the new configuration parameters into
the kernel as illustrated in the following diagram.

Text
Editor

Kernel Audit Subsystem

Audit
Daemon

Figure 5-82. Audit subsystem configuration

Config
files

Table 5-2. Audit Subsystem event codes

 187

5.14.5 Audit libraries
The audit subsystem provides two libraries: one for interacting with the kernel and the other for interacting
with the audit daemon. The kernel API provides trusted program functions to attach to and detach from the
audit subsystem, and functions to generate application audit records. Using a kernel API, a trusted program
can generate a single, more descriptive, audit record instead of numerous audit records generated by each
system call executed by the program.

The second library is used by applications to interact with the audit daemon. LAuS audit utilities use
functions from this server API library to communicate configuration parameters, read audit logs and
display them in human readable form, and send control messages.

5.15 Supporting functions
On a SLES system, all trusted programs and trusted processes use libraries. Libraries do not form a
subsystem in the notation of the Common Criteria, but they provide supporting functions to trusted
commands and processes.

A library is an archive of link-edited objects and their export files. A shared library is an archive of objects
that has been bound as a module with imports and exports, and is marked as a shared object. When an
object exported by a shared library is referenced, the loader checks for the object in the calling process’s
shared library segment. If the library is there, the links are resolved and the program can call the shared
library code. If the library isn’t there, the loader pages the library into the shared memory segment where it
can subsequently be used by other programs. This section briefly describes the library and system-call
linking mechanism in user and kernel space and illustrates any security implications.

5.15.1 TSF libraries
The following table lists some of the libraries that are used by trusted programs and processes. The libraries
may also be used by untrusted programs, but are still part of the TSF. The libraries are protected from
modification by the file system discretionary access control mechanism.

Library Description
/lib/libc.so.6 Runtime library of C functions.
/lib/libcrypt.so.1 Library that performs one-way encryption of user and group

passwords.
/lib/libxcrypt.so Replacement library for libcrypt.so. Supports bigcrypt and

blowfish password encryption.
/lib/security/pam_unix2.so Modules that perform basic password-based authentication, configured

with the MD5 hashing algorithm.
/lib/security/pam_pwcheck.so Modules that use cracklib to ensure stronger passwords.
/lib/security/pam_passwdqc.so Modules that enforce additional stricter password rules. For example,

reject passwords that follow keyboard patterns such as “1qaz2wsx”.
/lib/security/pam_wheel.so Modules that restrict use of the su command to members of the wheel

group.
/lib/security/pam_nologin.so Modules that allow the administrator to disable all logins with the

/etc/nologin file.
/lib/security/pam_securetty.so Modules that restrict root access to specific terminals.
/lib/security/pam_laus.so LAuS PAM module to create audit records from authentication

modules.
/lib/security/pam_tally.so Modules that deny access based on the number of failed login attempts

specified in the /etc/login.defs file.
/lib/security/pam_listfile.so Modules that allow use of access control lists based on users, ttys,

remote hosts, groups, and shells.
/lib/security/pam_deny.so Module that always returns a failure.

 188

Library Description
/lib/liblaus.1a LAuS kernel application interface library for trusted commands to

interact with the LAuS kernel component.
/lib/liblaussrv.1a LAuS server application interface library for trusted commands to

interact with the LAuS audit daemon.
/usr/lib/libssl3.so OpenSSL library with interfaces to Secure Socket Layer version 3 and

Transport Layer Security version 1 protocols.
/lib/libcrypto.so.2 OpenSSL crypto library with interfaces to wide range of cryptographic

algorithms used in various Internet standards.

Table 5-3. TSF libraries

5.15.2 Library linking mechanism
On SLES, a binary executable automatically causes the program loader /lib/ld-linux.so.2 to be
loaded and run. This loader takes care of analyzing the library names in the executable file, locating the
library in the system’s directory tree, and making requested code available to the executing process. The
loader does not copy the library object code, but instead performs a memory mapping of the appropriate
object code into the executing process’s address space. This mapping allows the page frames containing the
object code of the library to be shared among all processes that invoke that library function. Page frames
included in private regions can be shared among several processes with the Copy On Write mechanism.
That is, the page frames can be shared as long as they are not modified. The page frames containing the
library object code are mapped in the text segment of the linear address space of the program. Because the
text segment is read-only, it is possible to share executable code from the library among all currently
executing processes.

This mapping of page frames in a read-only text segment is carried out by the kernel without any input
from the user. Object code is shared in read-only mode, preventing one process from making an
unauthorized modification to another process’s execution context, thus satisfying the Discretionary Access
Control requirement. Page frames used for this mapping are allocated with the demand paging technique,
described in section 5.5.3, which satisfies the object reuse requirement.

On SLES systems, the administrator can control the list of directories that are automatically searched
during program startup. The directories searched are listed in the /etc/ld.so.conf file. A normal user is not
allowed write access to the /etc/ld.so.conf file. The loader also allows certain functions to be overridden
from shared libraries with environment variables LD_PRELOAD and LD_LIBRARY_PATH. The variable
LD_PRELOAD lists object files with functions that override the standard set. The variable
LD_LIBRARY_PATH sets up lists of directories that are searched before loading from the standard
directory list. In order to prevent a normal user from violating the security policy, these variables are
ignored and removed from process’s environment when the program being executed is either setuid or
setgid. The system determines if a program is setuid or setgid by checking the program's credentials; if the
UID and EUID differ, or the GID and the EGID differ, the system presumes the program is setuid/setgid
(or descended from one) and does not allow preloading of user-supplied functions to override ones from the
standard libraries.

When an executable is created by linking with a static library, the object code from the library is copied
into the executable. Because there is no sharing of page frames with other executing processes, there are no
Discretionary Access Control or object reuse issues with static libraries.

5.15.3 System call linking mechanism
A system call is an explicit request to the kernel made via a software interrupt. The implementation of this
interrupt is dependent on the hardware architecture. The following briefly describes the system call
interrupt setup for the different hardware architectures that are part of the TOE.

 189

5.15.3.1 xSeries
On xSeries systems, the Intel processors’ Interrupt Descriptor Table is initialized to allow a trap gate that
can be accessed by a user-mode process. This mapping is done at system initialization time by the routine
trap_init(), which sets up the Interrupt Descriptor Table (IDT) entry corresponding to vector 128
(Ox80) to invoke the system call exception handler. When compiling and linking a program that makes a
system call, the libc library wrapper routine for that system call stores the appropriate system call number
in the eax register and executes the “int 0x80” assembly language instruction to generate the hardware
exception. The exception handler in the kernel for this vector is the system call handler,
system_call(). system_call()saves the contents of registers in the kernel-mode stack, handles the
call by invoking a corresponding C function in the kernel, and exits the handler by means of the
syscall_exit() function. For a more detailed explanation of the system call invocation, please refer to
the SLES Low Level Design, by Janak Desai, George Wilson, and Michael Halcrow.

5.15.3.2 pSeries and iSeries
On pSeries and iSeries, the PowerPC architecture provides the assembly instruction sc (supervisor call) to
make a system call. The sc instruction is also used by the kernel to make hypervisor calls when the SLES
system is running in a logical partition. The processor distinguishes between hypervisor calls and system
calls by examining the general purpose register 0 (GPR0). If the GPR0 contains –1 and the processor is in
privileged state, the sc instruction is treated as a hypervisor call. Otherwise, it is treated as system call
request from user space. The sc instruction without –1 in GPR0 generates an exception. The exception
handler in the kernel redirects the call to the system call handler, DoSyscall(). DoSyscall()saves
the contents of registers in the kernel mode stack, handles the call by invoking a corresponding C function
in the kernel, and exits the handler by means of the ret_from_sys_call_1()function.

5.15.3.3 zSeries
On zSeries, z/Architecture provides the assembly instruction SVC (SuperVisor Call) to make a system call.
The SVC instruction generates an exception. The exception handler in the kernel redirects the call to the
system call handler, system_call(). system_call()saves the contents of registers in the kernel
mode stack, handles the call by invoking a corresponding C function in the kernel, and exits the handler by
means of the sysc_return()function.

5.15.3.4 eServer 325
The AMD Opteron processors differ significantly from x86 architecture with respect to the entry point into
the kernel. The Opteron processor provides special instructions SYSCALL and SYSRET instead of using
the interrupt 0x80. Assembly instruction SYSCALL performs a call to the system call handler
system_call() running at CPL level 0. The address of the target procedure is specified implicitly
through Model Specific Registers (MSR). system_call()saves the contents of registers in the kernel
mode stack, handles the call by invoking a corresponding C function in the kernel, and executes the
SYSRET privileged instruction to return control back to the user space.

5.15.4 System call argument verification
The process of transferring control from user mode to kernel mode does not generate any user-accessible
objects; thus, there are no object reuse issues to handle. However, because system calls often require input
parameters, which may consist of addresses in the address space of the user-mode process, an illegal access
violation can occur as a result of a bad parameter. For example, a user-mode process might pass an address
belonging to the kernel-address space as a parameter, and because the kernel routines are able to address all
pages present in memory, the address is able to read or write any page present in the memory without
causing a Page Fault exception. The SLES kernel prevents these kinds of access violations by validating
addresses passed as system-call parameters. For the sake of efficiency, the SLES kernel performs validation
in a two-step process, as follows:

 190

1. Verifies that the linear address (virtual address for iSeries, pSeries and zSeries) passed as a
parameter does not fall within the range of interval addresses reserved for the kernel. That is, the
linear address is lower than PAGE_OFFSET.

2. Since bad addresses lower than PAGE_OFFSET cause a page fault, consults the exception table
and verifies that the address of the instruction that triggered the exception is NOT included in the
table. Exception tables are automatically generated by the C compiler when building the kernel
image. They contain addresses of instructions that access the process address space.

The above satisfies the Access Control requirement.

 191

6 Mapping the TOE summary specification to the High-
Level Design

This chapter provides a mapping of the security functions of the TOE summary specification to the
functions described in this High-Level Design document.

6.1 Identification and authentication
Section 5.10 provides details of the SLES system’s Identification and Authentication subsystem.

6.1.1 User identification and authentication data management (IA.1)
Section 5.10.2 provides details of the configuration files for user and authentication management. Section
5.10.3 explains how a password can be changed.

6.1.2 Common authentication mechanism (IA.2)
Section 5.10.1 provides a description of PAM, which is used to implement the common authentication
mechanism for all activities that create a user session.

6.1.3 Interactive login and related mechanisms (IA.3)
Section 5.10.3 provides a description of the interactive login process. Section 5.11.2 describes the process
of obtaining a shell on a remote system.

6.1.4 User identity changing (IA.4)
Section 5.10.3 provides a description of changing identity on the local system using the su command.

6.1.5 Login processing (IA.5)
Section 5.10.3 provides details of the login process as well as the details of changing the identity on the
local system.

6.2 Audit
Section 5.6 provides details of the SLES system’s Audit subsystem.

6.2.1 Audit configuration (AU.1)
Section 5.6.2 provides details of configuration of the audit subsystem to select events to be audited based
on rules defined in filter.conf audit configuration file. Section 5.14.4 describes how configuration
parameters are loaded into the SLES kernel.

6.2.2 Audit processing (AU.2)
Sections 5.6.1 and 5.6.2 provide details of how processes attach and detach themselves from the audit
subsystem. Section 5.14.1 describes the audit daemon and how it reads audit data from the kernel buffer
and writes audit records to a disk file.

6.2.3 Audit record format (AU.3)
Section 5.14.3 describes information stored in each audit record.

 192

6.2.4 Audit post-processing (AU.4)
Section 5.14.2 describes audit subsystem utilities provided for post-processing of audit data.

6.3 Discretionary Access Control
Section 5.1 and 5.2 provide details on Discretionary Access Control on the SLES system.

6.3.1 General DAC policy (DA.1)
Section 5.1 and 5.2.2 provide details on functions that implement general Discretionary Access Control
policy.

6.3.2 Permission bits (DA.2)
Section 5.1.1.1, 5.1.2.1 and 5.1.7.1 provide details on calls that perform Discretionary Access Control
based on permission bits.

6.3.3 Access Control Lists (DA.3)
Sections 5.1.2.1 and 5.1.7.2 provide details on Discretionary Access Control based on access control lists
on file system objects.

6.3.4 Discretionary Access Control: IPC objects (DA.4)
Section 5.3.3 provides details on Discretionary Access Control for IPC objects.

6.4 Object reuse
Sections 5.1, 5.2, 5.3, 5.4 and 5.5 provide details on object reuse handling by the SLES kernel.

6.4.1 Object reuse: file system objects (OR.1)
Section 5.1.2.1 provides details on object reuse handling for data blocks for file system objects.

6.4.2 Object reuse: IPC objects (OR.2)
Sections 5.3.3.2, 5.3.3.3, 5.3.3.4 and 5.3.3.5 provide details on object reuse handling for message queues,
semaphores, and shared-memory segments.

6.4.3 Object reuse: memory objects (OR.3)
Sections 5.5.2.1, 5.5.2.2 and 5.5.3 provide details on object reuse handling for memory objects.

6.5 Security management
Section 5.12 provides details on various commands used to perform security management.

6.5.1 Roles (SM.1)
Section 5.12 provides details on various commands that support the notion of an administrator and a normal
user.

6.5.2 Access control configuration and management (SM.2)
Sections 5.1.1 and 5.1.2.1 provide details on file system system calls that are used to set attributes on
objects to configure access control.

 193

6.5.3 Management of user, group and authentication data (SM.3)
Sections 5.10.3 and 5.12 provide details on various commands used to manage authentication databases.

6.5.4 Management of audit configuration (SM.4)
Sections 5.14.2 and 5.14.4 describe utilities used to upload audit configuration parameters to the SLES
kernel and utilities used by trusted processes to attach and detach from the audit subsystem.

6.5.5 Reliable time stamps (SM.5)
Sections 3.1.1, 3.2.1, 3.3.1 and 3.4.1 describe the use of hardware clocks, by eServer hardware, to maintain
reliable time stamps.

6.6 Secure communications
Sections 5.11.1, 5.11.2 and 5.11.4 describe secure communications protocols supported by SLES.

6.6.1 Secure protocols (SC.1)
Section 5.11.2 describes the Secure Shell (SSH) protocol. Section 5.11.1 describes the Secure Socket Layer
(SSL) protocol. Section 5.11.1.3 describes cipher suites and cryptographic algorithms supported by SLES.

6.7 TSF protection
Section 4 provides details on TSF protection.

6.7.1 TSF invocation guarantees (TP.1)
Section 4.2 provides details of the TSF structure. Section 4.2 also provides a mechanism to separate TSF
software from non-TSF software.

6.7.2 Kernel (TP.2)
Section 4.2.1 provides details on the SLES kernel.

6.7.3 Kernel modules (TP.3)
Section 4.2.1.2 provides details on kernel modules on the SLES system.

6.7.4 Trusted processes (TP.4)
Section 4.2.2 provides details on the non-kernel trusted process on the SLES system.

6.7.5 TSF Databases (TP.5)
Section 4.3 provides details on the TSF databases on the SLES system.

6.7.6 Internal TOE protection mechanisms (TP.6)
Section 4.1.1 describes hardware privilege implementation for the xSeries, pSeries, iSeries, zSeries, and
Opteron eServer 325. Section 5.5.1 describes memory management and protection. Section 5.2 describes
process control and management.

 194

6.7.7 Testing the TOE protection mechanisms (TP.7)
Section 5.15 describes the tool available to administrative user to test the protection features of the
underlying abstract machine.

6.8 Security enforcing interfaces between subsystems
This section identifies the security enforcing interfaces between subsystems in the high level design of
SLES. The individual functions exported by each subsystem are described with the subsystem itself. This
section, therefore, only discusses in general how the individual subsystems work together to provide the
security functions of the TOE. This section is mainly used to identify those internal interfaces between
subsystems that are “security enforcing” in the sense that the subsystems work together to provide a
defined security function. Interfaces that are “not security enforcing” are interfaces between subsystems
where the interface is not used to implement a security function. There is also the situation where a kernel
subsystem A invokes functions from another kernel subsystem B using the external interface of the kernel
subsystem. This, for example, is the case when a kernel subsystem needs to open and read or write files
(using the File & I/O kernel subsystem) or when a kernel subsystem sets the user ID or group ID of a
process (using the Process Control subsystem). In those cases, all the security checks performed by those
interface functions apply (note that a system call function in the kernel operates with the real and effective
user ID and group ID of the caller unless the kernel function that implements the system call changes this).

This section discusses the interfaces between subsystems, but it will only discuss interfaces between kernel
components that directly implement security functions. Note that kernel subsystems can use the kernel
internal interfaces described in the individual subsystems as well as the externally visible interfaces (system
calls).

The subsystems are:

Kernel subsystems:

• File and I/O
• Process Control
• Inter-Process Communication
• Networking
• Memory Management
• Audit
• Kernel Modules
• Device Drivers

Trusted Process Subsystems:

• System Initialization
• Identification and Authentication
• Network Applications
• System Management
• Batch Processing
• User level audit subsystem

6.8.1 Kernel Subsystem Interfaces: Summary
This section identifies the kernel subsystem interfaces and structures them per kernel subsystem into:

• External Interfaces
Those are the system calls associated with the subsystem. Those system calls are
strcutured into “TSFI System Calls” and “Non-TSFI System Calls”.

 195

• Internal Interfaces
Those are interfaces not exported as system calls that are intended to be used by other
kernel subsystem. Note that other kernel subsystems may of course also use the system
calls by calling the kernel internal entry point of the system call. This entry point is
always the name of the system call prefixed with “sys_” (for example, for a system call
“xyz” the kernel internal entry point is “sys_xyz”).

• Data Structures
Kernel subsystem maintain data structures that can be read directly by other kernel
subsystems to obtain specific information. They are considered to be data interfaces. Data
structures are defined in header files.

The system calls are not further described in this chapter. To obtain the information on the purpose of the
system call, its parameter, return code, restrictions and effects, the reader is referred to the man page for the
system call, which is part of the functional specification. The spreadsheet delivered as part of the functional
specification shows also, on which platform the system call is available.

Concerning the internal interfaces, this chapter contains a reference where to find the description of the
function implementing this internal interface. This may either be a reference to another chapter of this
document or a reference to another document or book, which are part of the high level design of the TOE.

Conncerning the data structures, this chapter contains the name of the header file within the TOE source
tree that defines the data structure. This document, as well as the other documents provided as references
within this chapter, provides details of the purpose of those data structures.

6.8.1.1 Kernel subsystem file and I/O
This section lists external interfaces, internal interfaces and data structures of the file and I/O subsystem.

6.8.1.1.1 External interfaces (System calls)
1. TSFI System Calls
access
chdir
chmod
chown
creat
execve
fchmod
fchown
fremovexattr
fsetxattr
ioctl
lchown
link
lremovexattr
lsetxattr
mkdir
mknod
mount
open
removexattr
rename
rmdir
setxattr
symlink
truncate

 196

umask
unlink
utime
utimes

2. Non-TSFI System Calls
chroot
close
dup
dup2
epoll_create
epoll_ctl
epoll_wait
fadvise
fchdir
fcntl
fdatasync
fgetxattr
flistxattr
flock
fstat
fstatfs
fsync
ftruncate
getdents
getxattr
io_cancel
io_destroy
io_getevents
io_setup
io_submit
lgetxattr
listxattr
llistxattr
lookup_dcookie
lseek
lstat
mmap
mmap2
msync
munmap
pciconfig_iobase
pciconfig_read
pciconfig_write
pipe
pivot_root
poll
pread
pwrite
quotatcl
read
readahead
readdir
readlink
readv
select

 197

stat
statfs
swapoff
sysfs
umount
ustat
write
writev

6.8.1.1.2 Internal function interfaces defined in
permission this document, chapter 5.1.1.1

vfs_permission this document, chapter 5.1.1.1
get_empty_filp this document, chapter 5.1.1.1
fget this document, chapter 5.1.1.1
do_mount this document, chapter 5.1.1.2

specific ext3 methods:

ext3_create this document, chapter 5.1.2.1
ext3_lookup this document, chapter 5.1.2.1
ext3_get_block this document, chapter 5.1.2.1
ext3_permission this document, chapter 5.1.2.1
ext3_truncate this document, chapter 5.1.2.1

specific isofs methods:
isofs_lookup this document, chapter 5.1.2.2

basic inode operations (create to revalidate are described in [VFS], attribute and extended attribute
functions are described in this document in chapter 5.1.2.1 in the context of the ext3 file system):

create
lookup
link
unlink
symlink
mkdir
rmdir
mknod
rename
readlink
followlink
truncate
permission
revalidate
setattr
getattr
setxattr
getxattr
listxattr
removexattr

inode super operations (not to be used by other subsystems, therefore no subsystem interface!)

read_inode2 [ORL], chapter 12
dirty_inode [ORL], chapter 12
write_inode [ORL], chapter 12
put_inode [ORL], chapter 12
delete_inode [ORL], chapter 12
put_super [ORL], chapter 12
write_super [ORL], chapter 12

 198

write_super_lockfs [ORL], chapter 12
unlockfs [ORL], chapter 12
statfs [ORL], chapter 12
remount_fs [ORL], chapter 12
clear_inode [ORL], chapter 12
umount_begin [ORL], chapter 12

dentry operations (not to be used by other subsystems, therefore no subsystem interface!):

d_revalidate [ORL], chapter 12
d_hash [ORL], chapter 12
d_compare [ORL], chapter 12
d_delete [ORL], chapter 12
d_release [ORL], chapter 12
d_iput [ORL], chapter 12

6.8.1.1.3 Data structures
super_block include/linux/fs.h

ext3_super_block include/linux/ext3_fs.h
isofs_sb_info include/linux/iso_fs_sb.h

inode include/linux/fs.h
ext3_inode include/linux/ext3_fs.h
iso_inode_info include/linux/iso_fs_i.h
ext3_xattr_entry include/linux/ext3_xattr.h

file include/linux/fs.h
dentry include/linux/dcache.h
vfsmount include/linux/mount.h

6.8.1.2 Kernel subsystem process control and management
This section lists external interfaces, internal interfaces and data structures of the process control and
management subsystem.

6.8.1.2.1 External interfaces (System calls)
1. TSFI System Calls
sysctl
capset
clone
fork
ioperm
iopl
kill
modify_ldt
ptrace
reboot
setfsgid
setfsuid
setgid
setgroups
setregid
setresgid
setresuid
setreuid
setuid
swapon
vfork

 199

vm86

2. Non-TSFI System Calls
exit
acct
alarm
arch_prctl
clock_getres
clock_gettime
clock_nanosleep
clock_settime

capget
exit_group
futex
getcwd
getegid
geteuid
getgid
getgroups
getitimer
getpeername
getpgid
getpgrp
getpid
getppid
getpriority
getresgid
getresuid
getrlimit
getrusage
getsid
gettid
gettimeofday
getuid
nice
pause
personality
prctl
restart_syscall
sched_get_priority_max
sched_get_priority_min
sched_getaffinity
sched_getparam
sched_getscheduler
sched_rr_get_interval
sched_setaffinity
sched_setparam
sched_setscheduler
sched_yield
setitimer
setpgid
setpriority
setrlimit
setsid
set_tid_address

 200

stime
sync
sysinfo
tgkill
time
timer_create
timer_delete
timer_getoverrun
timer_gettime
timer_settime
times
tkill
uname
uselib
vhangup
wait4
waitpid

6.8.1.2.2 Internal function interfaces defined in
current [ORL], chapter 3
request_irq [RUBN], chapter 9
free_irq [RUBN], chapter 9

6.8.1.2.3 Data structures
task_struct include/linux/sched.h

6.8.1.3 Kernel subsystem inter-process communication
This section lists external interfaces, internal interfaces and data structures of the inter-process
communication subsystem.

6.8.1.3.1 External interfaces (System calls)
1. TSFI System Calls
ipc (placeholder for all ipc related system calls on x, i, p and z Series)
msgcntl
msgget
msgrcv
msgsnd
semctl
semget
semop
semtimedop
shmat
shmctl
shmget

2. Non_TSFI System Calls
accept
connect
getsockname
getsockopt
listen
recv
recvfrom
recvmsg
rt_sigaction

 201

rt_sigpending
rt_sigprocmask
rt_sigqueueinfo
rt_sigreturn
rt_sigsuspend
rt_sigtimedwait
send
sendfile
sendmsg
sendto
setdomainname
setsockopt
shutdown
sigaction
signal
sigpending
sigprocmask
sigreturn
sigsuspend
socket
socketcall (placeholder for all socket related system calls on x, i, p and z Series)
ssetmask

6.8.1.3.2 Internal function interfaces defined in
do_pipe this document, chapter 5.3.1.1
 [ORL], chapter 19
pipe_read this document, chapter 5.3.1.1
 [ORL], chapter 19
pipe_write this document, chapter 5.3.1.1
 [ORL], chapter 19
init_special_inode this document, chapter 5.3.2.1
fifo_open this document, chapter 5.3.2.2
ipc_alloc this document, chapter 5.3.3.2
ipcperms this document, chapter 5.3.3.2
send_sig_info this document, chapter 5.3.4.2
unix_create this document, chapter 5.3.5
inet_create this document, chapter 5.3.5
sk_alloc this document, chapter 5.3.5

6.8.1.3.3 Data structures
ipc_ids ipc/util.h
ipc_id ipc/util.h
kern_ipc_perm include/linux/ipc.h
msg_queue ipc/msg.c
msg_msg ipc/msg.c
sem_array include/linux/sem.h
shmid_kernel ipc/shm.c
sock include/net/sock.h

6.8.1.4 Kernel subsystem networking
This section lists external interfaces, internal interfaces and data structures of the networking subsystem.

 202

6.8.1.4.1 External interfaces (System calls)
1. TSFI System Calls
bind

2. Non-TSFI System Calls
Sethostname
socketpair

6.8.1.4.2 Internal interfaces
Sockets are implemented within the inode structure as specific inode types. inode.u in the case of an
inode for a socket points to a structure of type socket. This structure contains the pointers to the methods
for the socket, which are:

• release
• bind
• connect
• socketpair
• accept
• getname
• poll
• ioctl
• listen
• shutdown
• setsockopt
• getsockopt
• sendmsg
• recvmsg
• mmap
• sendpage

The inode is created by the socket system call. The system calls for bind, connect, accept, poll,
listen, setsockopt, getsockopt, and ioctl are directly implemented by the methods registered for the
socket. read and write as well as send, sendmsg, sendto and recv, recvfrom, recvmsg are
implemented by the methods registered for sendmsg and recvmsg, close is implemented by the
methods registered for shutdown and release, getsockname is implemented by the method
registered for getname. Please note that send is an alias for sendmsg and recv is an alias for
recvfrom.

6.8.1.4.3 Data structures
socket include/linux/net.h

6.8.1.5 Kernel subsystem memory management
This section lists external interfaces, internal interfaces and data structures of the memory management
subsystem.

6.8.1.5.1 External interfaces
1. TSFI System Calls
brk

2. Non-TSFI System Calls
get_mempolicy
madvice
mbind
mincore

 203

mlock
mockall
mprotect
mremap
munlock
munlockall
rtas
set_mempolicy
swapcontext

6.8.1.5.2 Internal interfaces defined in
get_zeroed_page this document, chapter 5.5.2.1
 [RUBN], chapter 7
__vmalloc [RUBN], chapter 7
vfree [RUBN], chapter 7
kmalloc [RUBN], chapter 7
kfree [RUBN], chapter 7
__ get_free_pages [RUBN], chapter 7
free_pages [RUBN], chapter 7

6.8.1.5.3 Data structures
mm_struct include/linux/sched.h

6.8.1.6 Kernel subsystem audit
This section lists external interfaces, internal interfaces and data structures of the audit subsystem.

6.8.1.6.1 External interfaces (System calls)
None

6.8.1.6.2 Internal interfaces
audit_intercept [LLD], section 7.2
audit_lresult [LLD], section 7.2
audit_netlink_msg [LLD], section 7.2
In addition, the audit kernel subsystem has two internal interfaces between itself and the audit
device driver:

• the buffer for audit messages
• the kernel structure defining the filter rules

The buffer is filled by the audit kernel subsystem and and emptied by the audit device driver.
The filter rules are set by the device driver when it receives them from the audit daemon. The filter
rules are used by the kernel subsystem for filter defined selective auditing. The internal structure
of the filter rules is defined in the man page of laus_setfilter(3).

6.8.1.6.3 Data structures
audit_filter laus_setfilter(3) man page

6.8.1.7 Kernel subsystem device drivers
6.8.1.7.1 External interfaces (System calls)
No direct interface. Device driver specific commands can be passed from a user space program to the
device driver using the ioctl system call, which is a system call of the File and I/O subsystem. File and I/O
first checks for some generic ioctl commands it can handle itself and calls the device driver ioctl method if
the request by the user program is not one of those generic requests. To issue an ioctl system call the calling
process must first have opened the device, which requires full access rights to the device itself. Those
access checks are performed by the open system call within the File and I/O subsystem.

 204

The TOE includes a specific device driver for the audit device. As with most other devices, direct access to
this device is restricted to processes running with root privileges. The audit device driver implements a set
of ioctl commands a trusted process can use to communicate with the audit device driver. The set of ioctl
commands for the audit device driver is defined in the audit(4) man page. A library is provided trusted
processes can use to format the parameter for the ioctl system calls to the audit device driver.

6.8.1.7.2 Internal interfaces
Device drivers implement a set of “methods” other kernel subsystems can use directly. In most cases, the
File and I/O subsystem will use those methods after its processing of a user’s request (including checking
the user’s right to perform the requested action). The internal interfaces are therefore the methods
implemented by the various device drivers.

Except for the audit device drivers security functions as defined in the Security Target are not implemented
in the device driver itself. All checks according to the security policy have to be performed by the kernel
subsystem invoking a method of a specific device driver before it calls the function.

For a description of the purpose of the device driver methods for character device drivers and block device
drivers see [RUBN]. Chapter 3 describes the methods for character devices and Chapter 12 describes the
methods for block devices.

1. Character Devices
Possible Character Device methods are:

• llseek
• read
• write
• readdir
• poll
• ioctl
• mmap
• open
• flush
• release
• fsync
• fasync
• lock
• readv
• writev
• owner

other functions:

• register_chrdev [RUBN], chapter 3
• unregister_chrdev [RUBN], chapter 3

2. Block Devices
Possible Block Device Methods are:

• open
• release
• ioctl
• check_media_change
• revalidate

In addition a device specific function request()needs to be defined.

other functions:

 205

• register_blkdev [RUBN], chapter 12
• unregister_blkdev [RUBN], chapter 12

6.8.1.7.3 Data structures
device_struct fs/devices.c
file_operations include/linux/fs.h
block_device_operations include/linux/fs.h

6.8.1.8 Kernel subsystems kernel modules
This section lists external interfaces, internal interfaces and data structures of the kernel modules
subsystem.

6.8.1.8.1 External interfaces (System calls)
1. TSFI System Calls
delete_module
init_module

2. Non_TSFI System Calls
nfsservctl
syslog

6.8.1.8.2 Internal interfaces
module dependent

6.8.1.8.3 Data structures
module dependent

6.8.2 Trusted processes interfaces: summary
Trusted processes need to use system calls when they need the functions of a kernel subsystem. The
interfaces to the kernel subsystems therefore are the system calls only.

Trusted processes can communicate with each other using the named objects provided by the kernel: files
and IPC objects. There is no way for trusted processes to communicate with other without using those
primitives provided by the kernel.

As described in the functional specification trusted processes use configuration files as an external interface
used to define their behaviour. Those configuration files are described as man pages in the functional
specification and their use by the trusted processes is described in this document in the sections about the
individual trusted processes.

 206

7 References

[CC] Common Criteria for Information Technology Security Evaluation, CCIMB-99-031, Version 2.1,
August 1999

[CEM] Common Methodology for Information Technology Security Evaluation, CEM-99/045, Part 2 –
Evaluation Methodology, Version 1.0, 1999

[ORL] Understanding the LINUX KERNEL, 2nd Edition, Daniel P. Bovet, Marco Cesati, ISBN# 0-596-
00213-0

[MANN] Linux System Security, 2nd Edition, Scott Mann, Ellen Mitchell, Mitchell Krell, ISBN# 0-13-
047011-2

[OF94] IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration) Firmware, Core Practices
and Requirements.

[STALLINGS] Cryptography and Network Security, 2nd Edition, William Stallings, ISBN# 0-13-869017-0

[LH] Linux Handbook, A guide to IBM Linux Solutions and Resources, Nick Harris et al.

[PSER] IBM eServer pSeries and IBM RS6000 Linux Facts and Features

[ISER] IBM iSeries Hardware, ITSO Technical Overview

[ZPOP] z/Architecture Principles of Operation

[TIGR] Linux Kernel 2.4 Internals, Tigran Aivazian

[COMR] Internetworking with TCP/IP, Douglas E. Comer & David L. Stevens, ISBN# 0-13-474222-2

[RODR] TCP/IP Tutorial and Technical Overview, Adolfo Rodriguez, et al.

[YNG] Internet Security Protocols: SSLeay & TLS, Eric Young

[DRKS] The TLS Protocol version 1, Tim Dierks, Eric Rescorla

[ENG] PowerPC 64-bit Kernel Internals, Engebretsen David

[BOU] The Linux Kernel on iSeries, David Boutcher

[BIE] Linux Audit-Subsystem Design Documentation for Kernel 2.6, Thomas Biege

[ALM] Booting Linux: History and the Future, 2000 Ottawa Linux Symposium, Almesberger, Werner.

[FEN] Linux Security HOWTO, Kevin Fenzi, Dave Wreski

[BURG] Security-QuickStart HOWTO, Hal Burgiss

[RATL] Abstract Machine Testing: Requirements and Design, Emily Ratliff

[INTL] Intel Architecture Software Developer's Manual Volume 3: System Programming

[AMD64] AMD64 Architecture, Programmer’s Manual Volume 2: System Programming

 207

[SAMD] SUSE Linux Enterprise Server 8 for AMD64

[KLN] Porting Linux to x86-64, Andi Kleen

[ALTM] The value of z/VM: Security and Integrity, Alan Altmark and Cliff Laking

[ZGEN] z/VM general Information

[IINIT] LPAR Configuration and Management – Working with IBM eServer iSeries Logical Partitions

[ZINIT] Linux on IBM eServer zSeries and S/390: Building SUSE SLES8 Systems under z/VM

[RUBN] Linux Device Drivers, O’Reilly, 2nd Edition June 2001, Alessandro Rubini

[VA] SLES Vulnerability Assessment, Janak Desai

[LLD] SLES Low Level Design, Janak Desai, George Wilson, Michael Halcrow

[RSA] "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Communications of
the ACM, v. 21, n. 2, Feb 1978, pp. 120-126, R. Rivest, A. Shamir, and L. M. Adleman,

[DH1] "New Directions in Cryptography," IEEE Transactions on Information Theory, V.IT-22, n. 6, Jun
1977, pp. 74-84, W. Diffie and M. E. Hellman.

[DSS] NIST FIPS PUB 186, "Digital Signature Standard," National Institute of Standards and Technology,
U.S.Department of Commerce, 18 May 1994.

[SCHNEIER] "Applied Cryptography Second Edition: protocols algorithms and source in code in C",
1996, Schneier, B.

[FIPS-186] Federal Information Processing Standards Publication, "FIPS PUB 186, Digital Signature
Standard", May 1994.

