Modelos lineales mixtos

El procedimiento Modelos lineales mixtos amplía el modelo lineal general de manera que los datos puedan presentar variabilidad corelacionada y no constante. El modelo lineal mixto proporciona, por tanto, la flexibilidad necesaria para modelar no sólo las medias sino también las varianzas y covarianzas de los datos.

El procedimiento Modelos lineales mixtos es asimismo una herramienta flexible para ajustar otros modelos que puedan ser formulados como modelos lineales mixtos. Dichos modelos incluyen los modelos multinivel, los modelos lineales jerárquicos y los modelos con coeficientes aleatorios.

Ejemplo
Una cadena de tiendas de comestibles está interesada en los efectos de varios vales en el gasto de los clientes. Se toma una muestra aleatoria de los clientes habituales para observar el gasto de cada cliente durante 10 semanas. Cada semana se envía por correo un vale distinto a los clientes. Los modelos lineales mixtos se utilizan para estimar el efecto de los distintos vales en el gasto, a la vez que se corrige respecto a la correlación debida a las observaciones repetidas de cada sujeto durante las 10 semanas.
Métodos
Estimación de máxima verosimilitud (MV) y máxima verosimilitud restringida (MVR).
Estadísticas
Estadísticos descriptivos: tamaños de las muestras, medias y desviaciones estándar de la variable dependiente y las covariables para cada combinación de niveles de los factores. Información de los niveles del factor: valores ordenados de los niveles de cada factor y las frecuencias correspondientes. Asimismo, las estimaciones de los parámetros y los intervalos de confianza para los efectos fijos y las pruebas de Wald y los intervalos de confianza para los parámetros de las matrices de covarianzas. Pueden emplearse las sumas de cuadrados de Tipo I y Tipo III para evaluar diferentes hipótesis. Tipo III es el valor predeterminado.

Consideraciones sobre datos de modelos mixtos lineales

Data
La variable dependiente debe ser cuantitativa. Los factores deben ser categóricos y pueden tener valores numéricos o valores de cadena. Las covariables y la variable de ponderación deben ser cuantitativas. Las variables de sujetos y repetidas pueden ser de cualquier tipo.
Supuestos
Se supone que la variable dependiente está relacionada linealmente con los factores fijos, los factores aleatorios y las covariables. Los efectos fijos modelan la media de la variable dependiente. Los efectos aleatorios modelan la estructura de las covarianzas de la variable dependiente. Los efectos aleatorios múltiples se consideran independientes entre sí y se calculan por separado las matrices de covarianzas de cada uno de ellos; sin embargo, se puede establecer una correlación entre los términos del modelo especificados para el mismo efecto aleatorio. Las medidas repetidas modelan la estructura de las covarianzas de los residuos. Se asume además que la variable dependiente procede de una distribución normal.
Procedimientos relacionados
Use el procedimiento Explorar para examinar los datos antes de realizar un análisis. Si no cree que haya una variabilidad correlacionada o no constante, puede usar alternativamente el procedimiento GLM Univariante o GLM Medidas repetidas. Alternativamente, puede usar el procedimiento Análisis de componentes de la varianza en caso de que los efectos aleatorios tengan una estructura de covarianzas en los componentes de la varianza y no haya medidas repetidas.