xgboostlinearnode properties
XGBoost Linear© is an advanced
implementation of a gradient boosting algorithm with a linear model as the base model. Boosting
algorithms iteratively learn weak classifiers and then add them to a final strong classifier. The
XGBoost Linear node in SPSS Modeler is implemented in Python.
xgboostlinearnode properties |
Data type | Property description |
|---|---|---|
custom_fields |
boolean | This option tells the node to use field information specified here instead of that given in any upstream Type node(s). After selecting this option, specify fields as required. |
target |
field | |
inputs |
field | |
alpha |
Double | The alpha linear booster parameter. Specify any number 0 or greater. Default
is 0. |
lambda |
Double | The lambda linear booster parameter. Specify any number 0 or greater.
Default is 1. |
lambdaBias |
Double | The lambda bias linear booster parameter. Specify any number. Default is
0. |
num_boost_round |
integer | The num boost round value for model building. Specify a value between 1 and
1000. Default is 10. |
objectiveType |
string | The objective type for the learning task. Possible values are reg:linear,
reg:logistic, reg:gamma, reg:tweedie,
count:poisson, rank:pairwise, binary:logistic,
or multi. Note that for flag targets, only binary:logistic or
multi can be used. If multi is used, the score result will show
the multi:softmax and multi:softprob XGBoost objective
types. |
random_seed
|
integer | The random number seed. Any number between 0 and 9999999.
Default is 0. |
useHPO |
Boolean | Specify true or false to enable or disable the HPO options.
If set to true, Rbfopt will be applied to find out the "best" One-Class SVM model
automatically, which reaches the target objective value defined by the user with the
target_objval parameter. |