Constricted model types and software specifications

Constricted software specifications are only supported in an upgraded instance. They are not supported in new installations, imported space assets, and patch operations.

Constricted model types and software specifications

Support for the following software specifications is constricted:

List of constricted software specifications and model types
Framework Versions Model Type Default software specification Supported platforms
PyTorch 1.10 pytorch-onnx_1.10
pytorch-onnx_rt22.1
runtime-22.1-py3.9
pytorch-onnx_rt22.1-py3.9
pytorch-onnx_rt22.1-py3.9-edt
x86
PyTorch 1.12 pytorch-onnx_1.12
pytorch-onnx_rt22.2
runtime-22.2-py3.10 (F)pytorch-onnx_rt22.2-py3.10 (F)pytorch-onnx_rt22.2-py3.10-edt (F) x86. PPC, s390x
PyTorch 1.12 pytorch-onnx_1.12
pytorch-onnx_rt22.2
pytorch-onnx_rt22.2-py3.10-dist(x86) (F) x86
PyTorch 2.0 pytorch-onnx_2.0
pytorch-onnx_rt23.1
runtime-23.1-py3.10
pytorch-onnx_rt23.1-py3.10
pytorch-onnx_rt23.1-py3.10-edt
pytorch-onnx_rt23.1-py3.10-dist
x86, s390x, PPC
Python functions NA NA runtime-22.1-py3.9 x86
Python functions NA NA runtime-22.2-py3.10 (F)
runtime-23.1-py3.10
x86, PPC, s390x
Python Functions NA NA runtime-23.1-py3.10-cuda x86
Python Scripts NA NA runtime-22.1-py3.9 x86
Python Scripts NA NA runtime-23.1-py3.10 x86, s390x, PPC
Python scripts NA NA runtime-22.2-py3.10 (F) x86, PPC, s390x
R Scripts NA NA default_r3.6
runtime-22.1-r3.6
runtime-22.2-r4.2 (F)
x86
R Scripts NA NA runtime-23.1-r4.2 x86, PPC
R Shiny applications NA NA shiny-r3.6 x86, PPC
R Shiny applications NA NA rstudio_r4.2 x86
R Shiny applications NA NA rstudio-23.1-r4.2 x86, PPC
Scikit-learn 1.0 scikit-learn_1.0 runtime-22.1-py3.9 x86
Scikit-learn 1.1 scikit-learn_1.1 runtime-22.2-py3.10 (F)
runtime-23.1-py3.10
x86, PPC, s390x
Spark 3.3 mllib_3.3 spark-mllib_3.3 x86, PPC
Tensorflow 2.7 tensorflow_2.7
tensorflow_rt22.1
runtime-22.1-py3.9
tensorflow_rt22.1-py3.9
x86
Tensorflow 2.9 tensorflow_2.9
tensorflow_rt22.2
runtime-22.2-py3.10 (F)
tensorflow_rt22.2-py3.10 (F)
x86, PPC, s390x
Tensorflow 2.9 tensorflow_2.9
4.8.4tensorflow_rt22.2
tensorflow_rt22.2-py3.10-dist(x86) (F)
tensorflow_rt22.2-py3.10-edt(x86) (F)
x86, s390x, PPC
Tensorflow 2.12 tensorflow_2.12
tensorflow_rt23.1
runtime-23.1-py3.10
tensorflow_rt23.1-py3.10-dist
tensorflow_rt23.1-py3.10-edt
tensorflow_rt23.1-py3.10
x86, s390x, PPC
Tensorflow 2.12 tensorflow_2.12
tensorflow_rt23.1
runtime-23.1-py3.10-cuda x86
XGBoost 1.5 xgboost_1.5 or scikit-learn_1.0 (see notes) runtime-22.1-py3.9 x86
XGBoost 1.6 xgboost_1.6 or scikit-learn_1.1 runtime-22.2-py3.10 (F) x86, s390x, PPC
XGBoost 1.6 xgboost_1.6 or scikit-learn_1.1 (see notes) runtime-23.1-py3.10 x86, s390x, PPC
Important:

For XGBoost, if model is trained with sklearn wrapper (XGBClassifier or XGBRegressor), use the scikit-learn_1.1 model type in Python 3.10.

Constricted model types and software specifications for hybrid models

List of constricted model types and software specifications for Hybrid models
Framework Versions Model Type Default
Software specification
Pipeline software specification Supported platform
Hybrid 0.1 wml-hybrid_0.1 hybrid_0.1 autoai-kb_rt22.1-py3.9
autoai-ts_rt22.1-py3.9
x86
Hybrid 0.1 wml-hybrid_0.1 hybrid_0.1 autoai-kb_rt22.2-py3.10 (F)
autoai-ts_rt22.2-py3.10 (F)
autoai-kb_rt23.1-py3.10
autoai-ts_rt23.1-py3.10
autoai-tsad_rt23.1-py3.10
x86. PPC, s390x

Parent topic: Frameworks and software specifications in Watson Machine Learning