Noun-phrases
At a glance
The Noun Phrases model extracts non-overlapping noun phrases from the input text. For example, in the text:
Anna went to school at University of California Santa Cruz
the noun phrases extracted are:
Anna
, school
, University of California Santa Cruz
.
Class definition |
---|
watson_nlp.blocks.noun_phrases.rbr.RBR |
For language support, see Supported languages.
Pretrained models
Model names are listed below.
Model ID | Container Image |
---|---|
noun-phrases_rbr_lang_ar_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_ar_stock:1.4.1 |
noun-phrases_rbr_lang_cs_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_cs_stock:1.4.1 |
noun-phrases_rbr_lang_da_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_da_stock:1.4.1 |
noun-phrases_rbr_lang_de_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_de_stock:1.4.1 |
noun-phrases_rbr_lang_en_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_en_stock:1.4.1 |
noun-phrases_rbr_lang_es_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_es_stock:1.4.1 |
noun-phrases_rbr_lang_fi_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_fi_stock:1.4.1 |
noun-phrases_rbr_lang_fr_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_fr_stock:1.4.1 |
noun-phrases_rbr_lang_he_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_he_stock:1.4.1 |
noun-phrases_rbr_lang_hi_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_hi_stock:1.4.1 |
noun-phrases_rbr_lang_it_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_it_stock:1.4.1 |
noun-phrases_rbr_lang_ja_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_ja_stock:1.4.1 |
noun-phrases_rbr_lang_ko_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_ko_stock:1.4.1 |
noun-phrases_rbr_lang_nb_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_nb_stock:1.4.1 |
noun-phrases_rbr_lang_nl_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_nl_stock:1.4.1 |
noun-phrases_rbr_lang_nn_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_nn_stock:1.4.1 |
noun-phrases_rbr_lang_pl_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_pl_stock:1.4.1 |
noun-phrases_rbr_lang_pt_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_pt_stock:1.4.1 |
noun-phrases_rbr_lang_ro_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_ro_stock:1.4.1 |
noun-phrases_rbr_lang_ru_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_ru_stock:1.4.1 |
noun-phrases_rbr_lang_sk_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_sk_stock:1.4.1 |
noun-phrases_rbr_lang_sv_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_sv_stock:1.4.1 |
noun-phrases_rbr_lang_tr_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_tr_stock:1.4.1 |
noun-phrases_rbr_lang_zh-cn_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_zh-cn_stock:1.4.1 |
noun-phrases_rbr_lang_zh-tw_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_zh-tw_stock:1.4.1 |
noun-phrases_rbr_lang_zh_stock | cp.icr.io/cp/ai/watson-nlp_noun-phrases_rbr_lang_zh_stock:1.4.1 |
In general, noun phrases are complex. The following table describes a few possible implementations of noun phrases:
Type | Definition and Computational considerations |
Simple Noun Phrases |
|
Complex Noun Phrases |
|
Hybrid Noun Phrases |
|
The following table illustrates the differences between these implementations, where noun phrases are enclosed between [
and ]
. The implementation of the Noun Phrase model in Watson NLP follows the Hybrid non-overlapping
semantics, with one modification: the noun phrases do not include leading determiners and numerals.
The list of prepositions allowed is language-specific.
The last column illustrates the output of the Noun Phrase models in Watson NLP.
Simple Noun Phrases | Complex Noun Phrases | Hybrid non-overlapping Noun Phrases |
---|---|---|
[a supply chain] | [a supply chain] [supply] |
a [supply chain] |
[the wonderful cat] | [the wonderful cat] | the [wonderful cat] |
[25 years] | [25 years] | 25 [years] |
[University] of [North Carolina] | [University of North Carolina] [North Carolina] |
[University of North Carolina] |
[the cat] in [the hat] | [the cat in the hat] [the hat] |
the [cat] in the [hat] |
[the cat] that was in [the hat] | [the cat that was in the hat] [the hat] |
the [cat] that was in the [hat] |
Running models
The Noun-phrases model request accepts the following fields:
Field | Type | Required Optional Repeated |
Description |
---|---|---|---|
raw_document |
watson_core_data_model.nlp.RawDocument |
required | The input document on which to perform Noun-phrases predictions |
Example requests
REST API
curl -s \
"http://localhost:8080/v1/watson.runtime.nlp.v1/NlpService/NounPhrasesPredict" \
-H "accept: application/json" \
-H "content-type: application/json" \
-H "Grpc-Metadata-mm-model-id: noun-phrases_rbr_lang_en_stock" \
-d '{ "raw_document": { "text": "Joe works at IBM. Joe lives in Denver. Arvind Krishna is CEO and President of IBM. One dollar is equal to 100 cents. And is more than a UK pound. It is 12:00pm somewhere. On April 12th." } }'
Response
{"nounPhrases":[
{"span":{"begin":0, "end":3, "text":"Joe"}},
{"span":{"begin":13, "end":16, "text":"IBM"}},
{"span":{"begin":18, "end":21, "text":"Joe"}},
{"span":{"begin":31, "end":37, "text":"Denver"}},
{"span":{"begin":39, "end":53, "text":"Arvind Krishna"}},
{"span":{"begin":57, "end":60, "text":"CEO"}},
{"span":{"begin":65, "end":81, "text":"President of IBM"}},
{"span":{"begin":87, "end":93, "text":"dollar"}},
{"span":{"begin":110, "end":115, "text":"cents"}},
{"span":{"begin":136, "end":144, "text":"UK pound"}},
{"span":{"begin":174, "end":184, "text":"April 12th"}}],
"producerId":{
"name":"RBR Noun phrases", "version":"0.0.1"
}
}
Python
import grpc
from watson_nlp_runtime_client import (
common_service_pb2,
common_service_pb2_grpc,
syntax_types_pb2,
)
channel = grpc.insecure_channel("localhost:8085")
stub = common_service_pb2_grpc.NlpServiceStub(channel)
request = common_service_pb2.NounPhrasesRequest(
raw_document=syntax_types_pb2.RawDocument(text="Joe works at IBM. Joe lives in Denver. Arvind Krishna is CEO and President of IBM. One dollar is equal to 100 cents. And is more than a UK pound. It is 12:00pm somewhere. On April 12th."),
)
response = stub.NounPhrasesPredict(
request, metadata=[("mm-model-id", "noun-phrases_rbr_lang_en_stock")]
)
print(response)
Response
noun_phrases {
span {
end: 3
text: "Joe"
}
}
noun_phrases {
span {
begin: 13
end: 16
text: "IBM"
}
}
noun_phrases {
span {
begin: 18
end: 21
text: "Joe"
}
}
noun_phrases {
span {
begin: 31
end: 37
text: "Denver"
}
}
noun_phrases {
span {
begin: 39
end: 53
text: "Arvind Krishna"
}
}
noun_phrases {
span {
begin: 57
end: 60
text: "CEO"
}
}
noun_phrases {
span {
begin: 65
end: 81
text: "President of IBM"
}
}
noun_phrases {
span {
begin: 87
end: 93
text: "dollar"
}
}
noun_phrases {
span {
begin: 110
end: 115
text: "cents"
}
}
noun_phrases {
span {
begin: 136
end: 144
text: "UK pound"
}
}
noun_phrases {
span {
begin: 174
end: 184
text: "April 12th"
}
}
producer_id {
name: "RBR Noun phrases"
version: "0.0.1"
}